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ABSTRACT

Ogunsina, Kolawole E. Ph.D., Purdue University, December 2020. A Novel Data-
Driven Design Paradigm for Airline Disruption Management. Major Professor:
Daniel DeLaurentis.

Airline disruption management traditionally seeks to address three problem di-

mensions: aircraft scheduling, crew scheduling, and passenger scheduling, in that

order. However, current efforts have, at most, only addressed the first two problem

dimensions concurrently and do not account for the propagative effects that uncertain

scheduling outcomes in one dimension can have on another dimension. Uncertain-

ties in scheduling outcomes originate from random disruption events (like inclement

weather and aircraft malfunction), the order in which the events occur, and how they

are resolved. As such, these uncertainties propagate through all problem dimensions

for airline disruption management on the day of operation.

In addition, existing approaches for airline disruption management include human

specialists who decide on necessary corrective actions for airline schedule disruptions

on the day of operation. However, human specialists are limited in their ability

to process copious amounts of information imperative for making robust decisions

that simultaneously address all problem dimensions during disruption management.

Therefore, there is a need to augment the decision-making capabilities of a human

specialist with quantitative and qualitative tools that can rationalize complex inter-

actions amongst all dimensions in airline disruption management, and provide objec-

tive insights to the specialists in the Airline Operations Control Center (AOCC). To

that effect, we provide a discussion and demonstration of an agnostic and systematic

paradigm for enabling simultaneously-integrated recovery of all problem dimensions

during airline disruption management, through an intelligent multi-agent system that

employs principles from artificial intelligence and distributed ledger technology.
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1. INTRODUCTION

Irregular operations (IROPS) constitute one of the most challenging problems faced

by the airline industry. Random disruptive events such as inclement weather and

equipment (aircraft) malfunction can negatively impact airline operations more so

than they would on any other mode of transportation [1]. Most airlines are often

forced to delay (or cancel) flights in order to resume scheduled operations. Dis-

ruptions induced by irregular operations on scheduled airline operations result in

displaced flight crews and passenger delays, yielding an increased total annual oper-

ating cost of about three to five percent of the airline revenue [1]. Hence, efforts to

mitigate the effects of irregular operations on scheduled day-to-day flight operations

of an airline are planned and monitored by the Airline Operations Control Center

(AOCC) to maintain the overall efficiency of airline operations. The AOCC consists

of specialized human teams with specific (local) objectives (for example, the aircraft

team is primarily responsible for having the right aircraft on a disrupted flight), which

are subordinate to the overall airline (global) objective of minimizing the impacts of

deviations from the planned airline schedule (i.e. maximizing recovery of scheduled

operations) [2].

Figure 1.1. The airline scheduling process
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1.1 Airline Scheduling

Understanding airline disruption management requires a brief introduction of the

overarching problem of airline scheduling. Airlines try to maximize profit (or minimize

loss) by solving problems that arise during the scheduling process shown in Fig. 1.1.

The scheduling process represents a paramount long-term and short-term planning

mechanism of every airline, wherein resources (i.e. aircraft and crew) available to an

airline are paired with a certain amount of passenger demand for air travel [3] that

effectively define three interdependent problem dimensions - aircraft, crew, and pas-

senger [4]. A typical airline schedule is the principal outcome of the airline scheduling

process that reveals the flights offered to customers on a particular day of operation.

This schedule includes assigned aircraft types, departure and arrival airports, and

time of day details on how the operation of each flight unfolds from turnaround at

the departure airport to aircraft gate-parking at the destination airport.

Specifically, the airline scheduling process can be defined by two separate and

periodic phases with respect to schedule execution. The first phase, which is airline

scheduling prior to schedule execution, commences with the publishing of a timetable

of flight services that will be offered to passengers over a certain time period (usually

between six to nine months). Next, revenue management commences such that the

goal is to maximize revenue by selling tickets at certain prices to different types of

customers. The allocation of airline resources (such as aircraft and crew) are scheduled

during revenue management, at which point fleet assignment is used to designate

aircraft fleet types to different flights in order to determine the number of available

seats in each flight. Upon completing the fleet assignment, the airline begins the crew

scheduling process, where the first step is to define necessary crew duty periods (i.e.

crew pairing) that will accommodate for all flights in the timetable over a specific

period of time, usually one month. After obtaining the crew pairings, crew members

are designated to the pairings (i.e. crew rostering) and an individual personalized

crew roster is made available to crew members. As flight dates draw closer, each
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aircraft in the fleet is assigned to a specific flight in the tail assignment step [3],

and the aircraft-crew pair roster is continually revised to facilitate changes that may

occur during the second phase of the airline scheduling process (i.e. rescheduling

during schedule execution on the day of operation) [5, 6].

1.2 Airline Disruption Management

Airline disruption management is a subprocess of the airline scheduling process.

Upon effectively attaining an optimal schedule through proactive disruption manage-

ment during airline scheduling prior to execution, the airline is left with monitoring

the execution of the schedule, by means of the AOCC, on the day of operation. A

disruption is defined as a state during the execution of an otherwise optimal schedule,

where deviation from the schedule is sufficiently large that it has has to be substan-

tially changed [7]. The purpose of developing optimal flight schedules is defeated if

disruptions abound later on during operation and cause significant deviations from

the original schedule. Hence, airline disruption management is the process of solving

problems related to aircraft, crew and passengers when a significant deviation from

the optimal schedule obtained prior to execution occurs during schedule execution

on the day of operation. In that regard, reactive disruption management during

Figure 1.2. The disruption management process [4]
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schedule execution typically begins when airline scheduling for proactive disruption

management prior to schedule execution ends. Fig. 1.2 shows a generic disruption

management process used in industry today to mitigate changes in planned schedule

and improve IROPS efficacy on day of operation.

1. Monitor Operations : This is the first step in disruption management where

flights, crew check-in, and passenger check-in are monitored to verify that the

planned airline schedule for the day is still valid.

2. Need to do something? : If an unexpected event occurs such as inclement weather

or aircraft malfunction, the event is evaluated to see whether or not further

action is required. If not, monitoring of operations continues. If a corrective

action is required, then one or more problem dimensions needs to be resolved.

3. Identify and Evaluate possible options : Using available information, the AOCC

is tasked with finding and evaluating candidate resolutions to issues affecting

each problem dimension in the airline schedule. The AOCC generally addresses

a disruption by sequentially resolving issues related to aircraft fleet, crew mem-

bers, and passengers respectively in that order, primarily through the use of

rules-of-thumb (i.e. aircraft swap, flight rerouting, crew swap, etc.) amassed

from the experience of human specialists in each problem dimension [8].

4. Take Decision: A decision is taken based on the list of plausible resolutions.

5. Implement Decision: The decision is implemented and the airline schedule is

updated accordingly.

1.3 Resolution Paradigms for Airline Disruption Management

[8] and [9] proposed two different classification schemes to describe the system

design and recovery methods that are being, or can be, used by the AOCC to address

disruptions in airline operations. [9] analyzed sixty compelling research works in air-

line operations recovery, published between 1984 and 2012. The schemes categorize
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different resolution paradigms used for airline disruption management by the type of

systems that can be used to recover operations, and the problem dimensions that can

be solved during disruptions.

1.3.1 Classification by System Paradigm

[9] developed a system paradigm classification to include both commercially avail-

able software and tools only available in an academic setting for airline disruption

management, and are as follows:

1. Models and Algorithms (MALG): This class of system paradigms refers to re-

search work that proposes mathematical models and algorithms to resolve any

or all of the problems domains in the AOCC.

2. Database Query Systems (DBQS): This is the most commonly used class of

system paradigms at airlines, which allows human specialists in the AOCC to

query existing databases in order to obtain necessary data for decision-making.

While DBQS may be fairly easy to develop and implement, they are limited by

the fact that the best decision is solely dependent on the human specialist. The

quality of the resolution to a particular disruption is dependent on the knowl-

edge and experience of the human operator, thus making DBQS susceptible to

the propagation of epistemic uncertainty during disruption management.

3. Decision Support Systems (DSS): This class of system paradigms for airline dis-

ruption management has the same properties as the DBQS, but with additional

and enhanced capabilities to support decision-making of human specialists in

the AOCC. Unlike DBQS, DSS are able to analyze large volumes of data and

present disruption resolutions that consider more variables in order to enable

better and informed decision-making by AOCC specialists.

4. Automatic or Semi-Automatic Systems (ASAS): This class of system paradigms

for airline disruption management automate repetitive tasks in the resolution
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generation and evaluation steps of the disruption management process, thereby

effectively replacing the functional part of the AOCC with computerized pro-

grams. In a completely automatic system, all the decision-making is performed

by the system while some decisions are made by human controllers in a semi-

automatic system.

Analysis of the classification of system design paradigms for airline operations re-

covery, performed by [9], reveal that 75% of the sixty research works reviewed fall

under Models and Algorithms (MALG), and as such, are not included in current tools

or systems used by the AOCC. About 22% of the research works were classified as

Decision Support Systems (DSS), which indicates that they can be incorporated in

tools used by human specialists in the AOCC for disruption management, while 3%

of the works reviewed classified as Automatic or Semi-Automatic Systems (ASAS).

1.3.2 Classification by Operations Recovery Paradigm

[8] and [9] expressed in their respective works that resolution paradigms can

also be classified based upon the problem dimension in which a resolution is applied.

These classifications are as follows:

1. Aircraft Recovery (AR): This class of resolution paradigms for operations re-

covery only addresses the aircraft domain. A lot of research work in aircraft

recovery utilize operations research (OR) methods, such as network flow models,

graph theory algorithms, time-band optimization, etc, to minimize total pas-

senger delays on an airline network when one or more scheduled aircraft are out

of service. For example, [10] used a mixed integer multi-commodity flow model,

coupled with Dantzig Wolfe decomposition [11], to address disruptions due to

aircraft swaps. The model proved to yield high quality solutions when tested us-

ing data from a Swedish domestic airline. Another popular method adopted for

solving the aircraft recovery problem is meta heuristics. [12] combined Greedy

Random Adaptive Search Procedure (GRASP) [13] and Ant Colony Optimiza-



7

tion (ACO) [14] to create an hybrid heuristic procedure that minimizes the

total cost of reassignments of aircraft to flights, and delaying and cancellation

of flights.

2. Crew Recovery (CR): This class of resolution paradigms for operations recov-

ery solves only the problems in the crew domain. Similar to aircraft recov-

ery, most literature on crew recovery use conventional OR methods or hybrid

methods that combine OR methods with search heuristics. However, unlike

resolution paradigms for aircraft recovery which are mainly dependent on the

type of method applied, resolution paradigms for crew recovery hinge on the

assumptions made by researchers. Most solution paradigms assume a fixed

flight schedule during crew recovery wherein aircraft recovery is assumed to be

first complete. For instance, [15] adopt column generation to develop and solve

an optimization model that integrates crew scheduling and crew pairing for a

fixed flight schedule, such that columns are created by determining shortest

paths through a depth-first search strategy. Other solution approaches do not

assume or require a fixed flight schedule and allow for flight cancellations and

delays. [16] use a rolling approach to obtain an efficient crew recovery sched-

ule, where a sequence of optimization assignment problems is solved such that

flights are recovered in order of increasing departure times.

3. Partial Integrated Recovery (PIR): Partial integrated recovery paradigms ad-

dress at least two of the three main problem dimensions in airline operations

recovery. Research for these resolution paradigms have just recently emerged

over the last decade and have significantly less literature than aircraft recovery

and crew recovery. Similar to aircraft recovery and crew recovery, paradigms

for partial integrated recovery adopt optimization and/or heuristics to mini-

mize airline operating costs together with some measure of passenger disruption

costs. [17] studied an approach to integrate fleet assignment with crew schedul-

ing during airline planning, such that the Benders decomposition method [18]
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for generating feasibility cuts from aircraft maintenance routing is combined

with a crew duty flow model. The authors note that a major challenge encoun-

tered during the development of the multi-commodity network flow model was

addressing the cascading effect caused by disruptions from both problem dimen-

sions. Complementary to the work by [17] which addressed the aircraft and crew

domains in airline disruption management, [19] proposed a dual-optimization

model that simultaneously developed recovery plans for aircraft and passen-

ger domains, such that airline operating costs and estimated passenger delay

and disruption costs are minimized to determine which flight leg departures to

postpone and which ones to cancel.

4. Integrated Recovery (IR): This class of resolution paradigms is able to recover all

three problem (aircraft, crew, passenger) domains in operations recovery sepa-

rately but not concurrently. Analysis performed by [9] reveal that there are only

a handful of literature on this class of disruption resolution paradigms (three

proposals between 1996 and 2013), due to the increased complexity of the prob-

lem and computational time when a monolithic process is employed to obtain an

integrated solution. The authors believe that a non-monolithic method, such as

a distributed system design supported by an acceptable decision-making mecha-

nism, can reduce the complexity of the integrated problem. [20] were the first to

present computational results on a fully integrated airline operations recovery

problem. The authors use a backtracking optimization approach, via a Benders

decomposition scheme, to develop and solve a schedule recovery model. The

schedule recovery model is the master problem that relates several variables

from different sub-problems that represent the problem dimensions in airline

operations recovery. However, a sub-problem resolution order is inherently im-

posed by the optimization algorithm, thereby making some problem dimensions

more important than others. This approach was tested using data from a major

US airline with a dense network, and showed to be effective when no more than

65% of the flights in the network are subject to disruption. [20].
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Figure 1.3. Resolution paradigms for airline disruption management

5. Simultaneously-Integrated Recovery (SIR): This class of resolution paradigms is

able to recover all problem dimensions in airline operations simultaneously, such

that the hierarchy (or importance) of one problem dimension over another is

eliminated. There has been only one approach, by [9], that uses this resolution

paradigm till date. The authors use a multi-agent system design paradigm to

characterize the AOCC, such that human roles in each problem dimension - with

the most frequent tasks - are performed by intelligent agents. The approach uses

an adaptive protocol, called the Generic-Q-Negotiation (GQN) [21], to ensure

multi-attribute negotiation, with several rounds of feedback, between two types

of agents (organizer and respondent) in order to achieve consensus. However,

this prototype disruption resolution approach and most of those discussed in the

operations recovery paradigms aforementioned, are unable to handle evolving

information dynamics (i.e. uncertainty in information evolution) during the

disruption management process.

Fig. 1.3 shows the evolution of the amount of literature on the different classes of

operations recovery paradigms. There is significantly less literature for IR and SIR

when compared to other recovery paradigms over the three-decade period, such that
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Figure 1.4. Current (sequential) practice for airline disruption management [9]

the very few available literature for these classes of paradigms recently emerged over

the last decade.

1.4 Motivation for a new Paradigm for Airline Disruption Management

As evidenced in the previous section, current resolution approaches for addressing

the airline operations recovery problem, during disruption management, have gener-

ally focused on using traditional operations research (i.e. optimization and heuristics)

methods that resolve one or more (but not all) of the primary problem dimensions

(aircraft schedule recovery, crew schedule recovery, and passenger schedule recovery).

These schedule recovery approaches try to achieve one or more of a set of possible

objectives, such as: minimizing the cost of reserve crews and spare aircraft used;

minimizing passenger recovery costs; minimizing loss of passenger goodwill; and min-

imizing the amount of time until it is possible to resume the original schedule [22].

Regardless of the objective, the airline operations recovery problem must be solved

within minutes, and this time limitation makes it unrealistic to solve large detailed

optimization models, as such, to meet these objectives, most airline recovery processes

are sequential [23].

Fig. 1.4 shows the current practice for airline disruption management. When a

disruption in scheduled operations occurs, the AOCC typically reacts by resolving

the problem in a sequential manner where issues related to the aircraft fleet, crew
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members, and passengers are addressed respectively, in that order, by their corre-

sponding human specialists. These specialists, stationed in the AOCC, proactively

monitor and mitigate problems and disruptions related to aircraft, crew members,

and passengers in the airline network. The resolutions implemented by human spe-

cialists in each phase of the airline recovery process influence the resolutions applied

in subsequent phases, and hence, the global objectives of the AOCC are achieved such

that the overall airline recovery is restricted to a specific order during resolution (i.e.

aircraft-crew-passenger).

According to the Amadeus IT group (a major IT group for the global travel indus-

try), one of the main drivers that has significantly contributed to the lack of progress

in developing a full solution to airline disruption management is limited bandwidth

of human specialists [1]. Several key decisions at each phase of the recovery practice

shown in Fig. 1.4, such as corrective actions implemented for a certain disruption

type, are made by human managers in the AOCC. Although human managers are

flexible in decision-making, they are not capable of parsing the copious amounts of

data necessary for simultaneously making robust real-time decisions for all the prob-

lem dimensions in operations recovery. In major airlines, adding more personnel to

the AOCC does not effectively increase human bandwidth because of the significantly

large size of the airline network [1].

Furthermore, most decision support systems used to solve each problem dimension

in the current recovery practice, are often deterministic and require the assessment of

a human specialist before the resolutions generated by these support systems, at one

or more phases of the recovery, are implemented as corrective action [8]. In addition

to aleatoric uncertainty stemming from the random occurrence of disruptive events

(like bad weather) on the day of operation, the current practice introduces epistemic

uncertainty at each phase of the recovery when human specialists, with different levels

of experience, are required to make decisions that will affect the solution generated

in the subsequent phase.
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Moreover, almost all of the resolution paradigms currently in practice adopt tra-

ditional monolithic system design methods where specifications are first developed

before a system that meets the specifications is subsequently designed [1]. For in-

stance, robust airline scheduling, a fairly new and integrated recovery paradigm for

airline operations, aims to augment existing airline planning models to include both

the costs associated with performing the original airline schedule and the expected

costs of recovering the schedule from disruptions [2]. However, adding supplemental

features to the existing planning model increases its complexity, and consequently

increases the computational time needed to effectively recover a disrupted airline

schedule. In addition, many existing decision support systems are unable to simulta-

neously address all the problem dimensions in airline operations, while recovering the

original airline schedule, partly due to the propagation and evolution of disruptions

during the operations recovery process.

Finally and most importantly, majority of the operations research methods adopted

in current decision support systems do not explicitly account for the passengers’ view

of the journey during disruption management [24]. What may be considered as a

minor delay from the AOCC’s perspective (with respect to the reallocation of airline

resources during a disruption) may be a significant disruption to a business executive

that misses a crucial meeting or a family whose long-awaited vacation is delayed.

In 2012, over 150 million people were affected by airline disruptions in the United

States, of which 17 million experienced missed connections and cancelled flights [25].

According to Ira Gershkoff, the Principal Consultant at Travel Technology Research

Ltd: “There is every reason to believe the historic challenge of re-routing planes,

crew and passengers during disruption will finally be addressed over the next sev-

eral years. As system and procedural innovations improve technical capabilities, the

people side will evolve as well, making better decisions and executing coordinated

responses.” [26] Although the expected revenue lost from loss of passenger goodwill

from airline disruption may not be readily quantifiable via the current sequential

recovery practice, proper characterization of different disruption types specifically re-
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Table 1.1. Limitations to current paradigm for airline operations recovery

Drawbacks of Current Practice for Airline Disruption Management

1. Sequential Resolution Approach: Solving aircraft, crew, then passenger problems in

that order imposes an inherent constraint on the design (and solution) space for

airline operations recovery.

2. Deterministic Resolutions : Resolutions obtained from most decision support tools

in practice do not account for uncertainties in decision-making by human specialists

and evolving information at each stage of flight on day of operation.

3. Monolithic System Design: Specifications continuously evolve as new capabilities are

developed for existing recovery methods, thereby rapidly increasing system complex-

ity and thus making monolithic system design less desirable for resolution platforms

for airline operations recovery.

lated to (or caused by) passengers (e.g. delays due to security check-in) can serve

as a proxy for estimating and minimizing loss of passenger goodwill by effectively

affording airlines the option to implement disruption resolutions that prioritize the

re-accommodation of passengers over the reallocation of airline resources. To that

effect, there is a need for a simple, heterogeneous, and integrated airline operations

recovery paradigm that leverages data on different rules-of-thumb employed by human

specialists in the AOCC to accurately and concurrently prescribe corrective solutions

for all problem dimensions in the event of a disruption in original airline schedule,

while addressing the limitations (highlighted in Table 1.1) to the current operations

recovery practice.
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1.5 Research Statement

The main objective of this research is to develop and implement a semi-automatic

learning and decision-making paradigm that simultaneously recovers all problem di-

mensions during airline disruption management via a special type of consensus mech-

anism design, where the disruption resolutions obtained are unrestricted by the order

in which the problem dimensions are solved. The rules-of-thumb used by human

specialists in the AOCC are inculcated in an automated and non-monolithic decision

support framework by employing data-driven methods like predictive analytics and

machine learning techniques, such that decisions made to resolve a certain type of

disruption influence the behaviors and decisions that are used to address the same (or

similar) disruption in the future. This ensures that the decision-making framework

learns from previous experiences in order to make better and informed decisions just

like a human specialist would.

1.6 Research Questions and Tasks

In order to achieve the aforementioned research objectives, a total of five tasks

will be completed to answer three research questions:

• Can we use the statistics of predictive analytics and machine learning to char-

acterize and assess the functional parts of the AOCC for intelligent decision

support systems?

1. Develop uncertainty models by employing unsupervised machine learn-

ing to properly characterize evolutionary and propagative behavior for

different types of disruption, which impact the resolution reliability for

all problem dimensions during airline operations recovery and disruption

management.

2. Develop predictive models by means of supervised machine learning tech-

niques, to prescribe the recovery impact of disruption resolutions across



15

all problem dimensions at each phase of flight schedule execution during

airline disruption management.

• Can we achieve simultaneous decision-making among intelligent systems for all

problem dimensions in airline operations recovery by leveraging recent improve-

ments in consensus mechanism design?

1. Develop hashgraph protocol for achieving consensus among disruption res-

olutions prescribed by intelligent systems for all problem dimensions during

airline disruption management.

2. Integrate and test intelligent systems (i.e. uncertainty and predictive mod-

els), for operations recovery and disruption management across all problem

dimensions with consensus protocol.

• How can we assess the new airline operations recovery paradigm?

1. Identify and develop consistent metrics to measure performance and ef-

fectiveness of resolutions (or corrective actions) prescribed by intelligent

systems for concurrent operations recovery.
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2. NOVEL PARADIGM FOR AIRLINE DISRUPTION

MANAGEMENT

This chapter introduces a novel simultaneously-integrated recovery (SIR) design paradigm

for airline disruption management, and then discusses the intelligent domain manager;

a key component of the paradigm that characterizes the decision-making process used

by human managers in the AOCC for all problem dimensions in operations recovery.

Lastly, we discuss the comparison between our new SIR design paradigm and the

existing SIR approach for airline disruption management.

2.1 Simultaneously-integrated Recovery Design Paradigm for Airline Dis-

ruption Management

The simultaneously-integrated recovery paradigm is a design philosophy that en-

ables the modeling of all support functions in the AOCC as a system of intelligent

agents, such that their interactions are concurrently driven by local and global objec-

tives. As such, this approach enables the realization of an acknowledged, distributed

and scalable AOCC that can significantly reduce the problems encountered by exist-

ing AOCC organizations during disruption management. The acknowledged attribute

of a new AOCC that adopts the SIR design paradigm ensures that while different

teams (or intelligent agents) are responsible for their respective local objectives, their

actions are subordinate to improving the global objective of the AOCC [27]. The

distributed attribute is of three forms namely functional distribution, spatial distri-

bution, and physical distribution [9]. Functional distribution allows the existing roles

and functions in the AOCC to be distributed and managed using intelligent software

agents. Spatial distribution allows the data and information utilized by different roles

or intelligent agents to be distributed. For instance, data in different databases and
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data in the same database but different partitions are spatially distributed. As such

this attribute can help alleviate system and data integration problems in the AOCC.

Physical distribution ensures that the roles and functions designated to different in-

telligent agents can be distributed to different machines, such that the agents have

access to more computational resources. Lastly, the scalability attribute allows the

AOCC framework to grow as long as functional and spatial requirements are satisfied

accordingly. Based upon the combined effect from these attributes, the AOCC is best

represented as a multi-agent system (MAS) [28,29], such that support functions with

frequently executed or repetitive tasks are performed by intelligent software agents.

Human supervisors in the AOCC can also be modeled as software agents that make

a final decision based upon candidate disruption resolutions. Some other benefits of

adopting a MAS framework for enabling simultaneously-integrated recovery in the

AOCC include:

• Ability to consider all problem dimensions (aircraft, crew, and passenger) at

the same level of importance when generating resolutions.

• Increased autonomy and automation.

• Ability to measure local performance of constituent intelligent agents and global

performance of the multi-agent system.

• Consideration of local preferences of each team (i.e. intelligent agent) responsi-

ble for solving different problem dimensions.

• Ability to consider environment dynamics based upon the fact that existing

information can change while resolutions are being generated.

• Ability to generate solutions in real or almost-real time.
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Figure 2.1. Automatic System for Airline Disruption Management

2.2 Proposed SIR Approach for Airline Disruption Management

Historically, majority of the research on decision support systems for the current

recovery practice, shown in Fig. 1.4, primarily adopt general operations research

(OR) methods [2] (i.e. integer optimization, network flow models, column generation

methods, etc.), while the rest rely on meta heuristics to provide decision support to

human specialists. Furthermore, only a few of the systems developed using these OR

methods are included in tools that are used by human specialists in the AOCC today,

and even much fewer are able to automate most of the functional (decision-making)

parts of the AOCC by using computerized programs.

However, recent advancements in machine learning techniques, big data analysis,

and mechanism design [30–32], coupled with cost-effective computational and data

storage platforms [33], have presented an avenue for the development and evalua-

tion of a new design paradigm for airline disruption management that addresses the

antecedent drawbacks in the current recovery practice. Fig. 2.1 reveals an original au-

tomatic (or semi-automatic) system for airline disruption management wherein func-

tional parts of the AOCC necessary for concurrent decision-making across all problem

dimensions are characterized by an automated and intelligent multi-agent system (i-

MAS ) framework that predominantly employs predictive analytics and mechanism

design. The light brown box in Fig. 2.1 defines the automated property of the overall

approach where there is a simultaneous interaction among different intelligent special-
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ist agents that represent separate managers for aircraft, crew and passenger domains.

Each intelligent specialist agent is described by a data-driven and predictive decision-

making model such as an artificial neural network. In the event of a disruption to

the original airline schedule, each manager first predicts a set of disruption resolution

actions -which a human specialist in its problem dimension would implement- that is

independent of the resolution actions predicted by managers (specialist agents) from

other problem dimensions. Next, the resolution actions by the manager are compared

with predicted resolutions from other managers to ensure that their combined cor-

rective actions do not result in a schedule conflict across all problem dimensions. A

negotiation protocol in form of a consensus mechanism, such as hashgraph [32], can

be invoked by a smart contract [34] to insure that disruption resolutions from each

domain manager align with those from other managers so as to eliminate schedule

conflicts during operations recovery and disruption management.

The final solution from the automated framework which contains the consensus

(i.e. no schedule conflict) set of plausible corrective actions from all domain managers

is then presented to a human AOCC Supervisor - shown in the light blue box in

Fig. 2.1 - for approbation. If the best recommended action from the automated

i-MAS framework is not implemented by the AOCC Supervisor then a rationale

provided by the Supervisor and appropriated to the set of recommended corrective

actions from the automated framework, is used to train the automated framework

(and hence its learning property) for better-informed disruption resolutions in the

future. The next section describes, in detail, the framework and mechanisms that

the intelligent systems (i.e. IROPS managers) in the automated framework use for

decision-making.

2.3 Intelligent Managers for an Automated Decision-making Framework

Before comparing the proposed SIR paradigm with the existing SIR paradigm for

airline disruption management, it is necessary to first introduce the processes that
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Figure 2.2. Flowchart for IROPS domain manager in intelligent Multi-
Agent System

define the decision-making of IROPS domain managers for all problem dimensions

in airline disruption management. Two separate timelines define the disruption res-

olution process of a domain manager in the automated i-MAS framework and are

described by Resolution Update and Learning Update, as represented by solid and

dashed arrows respectively in Fig. 2.2.
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2.3.1 Intelligent Resolution

The Resolution Update timeline describes the manner in which a characteristic

domain manager develops plausible resolutions to a certain type of disruption in the

original airline schedule. The first step in the flow along the Resolution Update time-

line is to obtain scheduled flight data and information on the corresponding type of

disruption related to the problem dimension. Next, disruption information and flight

schedule data are combined and transformed for use in machine learning algorithms

(to enable predictive analytics) by employing data abstraction and preprocessing

techniques [35].

Following data refinement, the uncertainty and predictive transfer function mod-

els (i.e. UTFM and PTFM) for the domain manager, represented in Fig. 2.2, are

developed and managed by using historical data retrieved from primary air trans-

portation stakeholders such as airlines. This data contains information on different

types and instances of disruptions and their corresponding impact on original flight

schedules and operations over a certain time period. The UTFM yields a set of plausi-

ble futures of decision actions for the most likely deviations from the original schedule

based upon the long-term impact of uncertainty in schedule execution. In comple-

ment, the PTFM predicts short-term operations recovery metrics that represent the

effectiveness and performance of the decision actions implemented by a domain man-

ager during irregular operations. The predictions from the UTFM and PTFM (i.e.

corrective actions) are subsequently ratified by ensuring that they align with the cor-

rective actions from other IROPS domain managers, via a consensus algorithm as

shown in Fig. 2.2, before they are presented to the AOCC Supervisor.

The transition from the first step (i.e. obtain disrupted flight information) to the

last step (i.e. approbate disruption resolutions) along the Resolution Update time-

line should be completed in minutes, in order to satisfy fast solution requirements by

airlines and other air transportation stakeholders during disruption management. To

that effect, we adopt a consensus framework that is based upon distributed ledger
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technology (DLT) [36–38] to enable swift intelligent resolutions for disruption man-

agement. The components of the framework are described as follows:

• Smart Contracts are computerized transaction protocols that automatically

execute the terms of a contract. They manage their internal states by using

the state machine model, which allows for ease of framework development and

programming [38]. Since smart contracts are self-enforcing upon satisfaction

of contractual conditions, they minimize the need for trusted intermediaries

thus making them very suitable for facilitating the development of a decentral-

ized disruption resolution framework that mitigates malicious and accidental

exceptions in decision-making. As such, smart contracts are useful for airline

disruption management because they eliminate the need for intermediate hu-

man assessments of corrective actions generated by domain managers in an

automated framework, which consequently eliminates the propagation of epis-

temic uncertainty during operations recovery. Smart contracts are executed on

a distributed consensus mechanism design platform, such as hashgraph (a spe-

cial type of blockchain-inspired technology), that defines the properties of the

protocols executed by smart contracts.

• Hashgraph is a type of consensus mechanism design that uses gossip-about-

gossip and virtual voting techniques to achieve fast, fair, and secure consensus

thereby ensuring high fidelity negotiations amongst domain managers. The

gossip-about-gossip and virtual voting properties of Hashgraph allows a do-

main manager to know what its disruption resolution will be and what that of

other managers would be during a negotiation round. This allows all domain

managers to achieve consensus on both the timing and the order in which dis-

ruption resolutions are made without having to make a formal decision during

negotiation, which significantly accelerates the negotiation process. Hashgraph

provides an ordering to an otherwise unordered set of disruption resolutions

proferred by each manager after every consensus round (i.e. corrective actions
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defined by resolutions from all domain managers) such that all domain man-

agers receive an identical list of corrective actions as output. This property

promotes the discovery, tracking, and validation of plausible corrective actions

(disruption resolutions) that do not follow the sequential resolution paradigm

currently used in industry today. Hashgraph also achieves asynchronous byzan-

tine fault tolerance (ABFT) [39] by ensuring that consensus will be achieved

with a probability of 1 if an IROPS domain manager influences (i.e. gossips)

less than one-third of the disruption resolutions predicted by other managers

during each round of negotiations, thus minimizing the number and increasing

the overall quality of corrective actions recommended to the AOCC Supervisor

by the intelligent multi-agent system framework.

2.3.2 Intelligent Learning

The Learning Update timeline, illustrated by the dashed arrows in Fig. 2.2, de-

scribes the manner in which the domain manager learns from the corrective actions

implemented by the AOCC Supervisor. In a scenario where a different disruption

resolution -other than the best-recommended resolution from any domain manager

in the automated framework- is implemented by the human AOCC Supervisor in

Fig. 2.1, the implemented resolution is used to train the affected domain manager in

order to improve its decision-making process along the Resolution Update timeline in

the future. If the disruption resolution implemented by the AOCC Supervisor is not

among the list of previously recommended resolutions (i.e. new disruption resolution)

from a domain manager, then the uncertainty model transfer function is updated. If

the implemented resolution is among the corrective actions recommended by a do-

main manager, but is not the best-recommended corrective action as determined by

the domain manager, then the predictive model transfer function is updated. Up-

dates to the uncertainty and predictive transfer function models are periodic, so as to
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improve the overall accuracy of disruption resolutions recommended by the domain

managers over time.

The next section of this chapter discusses the similarities and differences between

the extant SIR approach and the new SIR paradigm for airline disruption manage-

ment, based upon the background provided in this section.

2.4 Comparison between Existing and Proposed SIR Paradigms for Air-

line Disruption Management

Simultaneously-integrated recovery (SIR) is the most recent class of approach

for disruption management in airline operations recovery, which aims to recover all

problem dimensions concurrently in a cooperative manner that does not grant priority

to the order in which each problem dimension is resolved. The first and only existing

published work on SIR was used to facilitate the implementation of a system called

MASDIMA - Multi-Agent System for Disruption Management, which is based upon

real data from TAP Air Portugal [9]. As such, we employ the principles and taxonomy

of agent-based modeling [40,41] and multi-agent systems [42] to present the knowledge

gap in SIR for airline disruption management, based upon an assessment of pertinent

properties that define the MASDIMA and i-MAS frameworks. Table 2.1 shows a list

of six fundamental properties that are necessary to classify and compare the existing

and new multi-agent system SIR approaches for airline disruption management.

1. Agent-based Architecting Method : This property defines the characteri-

zation of the rationale that informs the modeling of the internal architecture

of human behavior in a representative multi-agent system for simultaneously-

integrated recovery [41]. The existing (MASDIMA) SIR approach adopts a

mathematical framework for defining human behavior, such that expressions

such as the Boltzmann exploration and Q-value formulas [21] are used to de-

scribe the responsiveness of a domain manager, in order to represent the manner

and threshold (i.e. probability) for which a human specialist would select a spe-
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Table 2.1. Properties of SIR paradigms for airline disruption management

Paradigm Properties Existing

MASDIMA

Architecture

Proposed

i-MAS

Architecture

Agent-based Architecting Method Mathematical Cognitive

Agent’s Learning Environment Model-free Model-based

Computing Distributed Distributed

Decision Mechanism Utility-based Goal-based

Data Utilization (Statistical Efficiency) Low High

Verification and Validation Structural Structural

cific disruption resolution action over another during operations recovery. In

contrast, our proposed i-MAS SIR approach adopts a cognitive framework that

aligns closely with routine AOCC operations for defining human behavior. For

instance, time-of-day events (e.g. departure and arrival times) are definable

by a periodic vector, based upon the percentage of 8-hr work shift completed

(at the time of departure or arrival) by human specialists in the AOCC. The

work shift characterization can capture and represent daily disruption resolu-

tion proclivities of human specialists, which can be induced by how much time

the specialists have to address a disruption before their work shift is complete.

2. Agent’s Environment Learning Class : This property describes the frame-

work and manner in which intelligent agents (i.e. domain managers) in a SIR

design paradigm learn to predict and optimize the consequence of their behavior

in their respective environments for which different actions lead them from one

state or situation to the next [42]. As shown in Table 2.1, the MASDIMA ar-

chitecture adopts a model-free environment, wherein domain managers interact

through reinforcement learning that does not use (nor estimate) a predefined
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flight operations model consistent with airline scheduling practices to obtain

optimal disruption resolutions during disruption management. As a result, the

SIR implementation adopted in MASDIMA requires considerable trial-and-error

experience to obtain acceptable estimates of future consequences from applying

specific disruption resolutions. Conversely, our proposed SIR paradigm uses

experience in form of historical data on airline scheduling and operations re-

covery to construct an internal model of transitions and immediate outcomes

during different phases of flight to define a model-based environment for the

multi-agent system. The model-based nature of the proposed SIR approach

provides a statistically efficient way to use experience, such that every iota of

information acquired from the modeling environment can be stored in a manner

that is both statistically reliable and computationally flexible [43]. This enables

constant replaning by domain managers and allows predicted disruption reso-

lutions to be readily adaptive to evolving uncertainty (i.e. changing transition

probabilities) at different phases of flight operations.

3. Computing : This property describes the manner in which the domain man-

agers of a multi-agent SIR design paradigm coordinate and communicate their

individual actions to each another to achieve optimal and effective disruption

resolutions. Both SIR approaches in Table 2.1 employ distributed comput-

ing [44], wherein intelligent agents address airline disruption management by

independently solving different parts of the problem dimensions before commu-

nicating with each other through messages to agree on a unified solution.

4. Decision Mechanism : The decision mechanism in a multi-agent system

framework for simultaneously-integrated recovery during airline disruption man-

agement is the property that defines necessary methods and protocols for at-

taining unanimity by all intelligent agents (domain managers) on specific dis-

ruption resolutions. While both SIR design paradigms enable an automatic

or semi-automatic system, the existing SIR approach in MASDIMA uses an
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automated negotiation protocol called Generic Q-Negotiation (GQN) [21] as

its decision mechanism. GQN provides a model-free reinforcement learning

and adaptive protocol that negotiates multiple attributes and utilities (such

as costs) among agents through several rounds of qualitative feedback across

interdependent problem dimensions, thereby offering domain managers full or

partial knowledge of each other’s payoff to achieve consensus [9]. Contrary to

GQN, which uses a utility-based decision mechanism to achieve consensus, our

proposed SIR approach adopts a dynamic directed acyclic graph platform called

hashgraph to enable autonomous time-sequencing of predicted disruption reso-

lutions by intelligent domain managers, based upon substantive proof that each

domain manager will efficiently predict the likelihood for employing its most

probable sequence of corrective actions during operations recovery. To that ef-

fect, our proposed SIR design paradigm imposes a goal-based property on the

i-MAS framework, wherein the goal of each intelligent domain manager in the

semi-automatic system is to estimate its stake (i.e. probability of most likely

sequence of corrective actions) before its predicted disruption resolution is con-

sidered when the swirlds hashgraph consensus algorithm [45] is invoked. Every

domain manager in the proposed SIR design paradigm can achieve Byzantine

agreement on any number of disruption resolutions, without voting (feedback)

on disruption resolutions thereby allowing for zero bandwidth usage by the au-

tomated system, except for only communicating the hashgraph data structure.

This significantly reduces the time needed to reach consensus, which is an ad-

vantage over the GQN protocol used in the existing SIR approach.

5. Data Utilization : This property defines how much data is appropriated

for developing multi-agent systems in a simultaneously-integrated recovery ap-

proach for airline disruption management. MASDIMA’s model-free SIR ap-

proach provides an easy-to-use platform for functional decision-making interac-

tion among intelligent agents but cannot leverage big data directly to improve

real-time performance, because information from the modeling environment is



28

combined with dated and potentially inaccurate estimates or beliefs about state

values representing different phases of flight operation. To that end, the existing

SIR paradigm is statically inefficient. Moreover, information is stored in scalar

quantities from which specific knowledge about rewards and transitions from

moving from one flight phase to another cannot be untangled. As a result, the

existing SIR approach in MASDIMA cannot readily accommodate for changes

in contingencies and outcome utilities at different phases of flight during dis-

ruption management. Unlike the existing SIR approach, the our proposed SIR

approach adopts a model-based method for developing a multi-agent system

that is inherently statistically efficient and gets more accurate and amenable as

more data becomes available [42].

6. Verification and Validation : This property defines the method a SIR ap-

proach for a multi-agent system employs for determining its ability to produce

valid and robust models that can serve as basis for decision makers in the AOCC.

The existing and proposed SIR approaches for MASDIMA and i-MAS respec-

tively adopt a structural validation method [46], as shown in Table 2.1. Fig 2.3

shows the general procedure for executing structural validation of multi-agent

systems. The procedure commences with face validation, which ensures that

animated behaviors and output trends are commensurate to real world trends.

Next, significant parameters that affect behaviors and outputs are determined

through sensitivity analysis, before the parameters are calibrated to fit real data

by employing relevant optimization methods. Lastly, the results predicted from

the multi-agent system are are sanctioned to ensure they match reality through

output validation. Different results, parameters and processes are validated in

both SIR paradigms. For the model-free MASDIMA architecture, equations

and parameters used in the Q-Negotiation protocol that describe agents’ archi-

tecting methods are verified through sensitivity analysis, while cost and delay

estimates from different variations of the Q-Negotiation protocol are validated

as a function of airline revenue. In our proposed model-based SIR paradigm,
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Figure 2.3. Verification and validation process for Multi-Agent Systems [46]

the accuracy and sensitivity of models representing different phases of flight op-

erations are verified through statistics, while the order and quality of predicted

disruption resolutions obtained by using the consensus algorithm are validated

by estimating and comparing disruptions resolutions from real-world test data.

Chapter Summary: This chapter provided a high-level overview of our proposed

SIR design paradigm for an automated and intelligent multi-agent system architec-

ture, and its applicability for effectively improving airline disruption management.

The chapter is concluded with a discussion of the comparison of crucial properties
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that characterize our proposed SIR design paradigm and the only existing imple-

mentation of SIR for airline disruption management. The next chapter discuses, in

extensive detail, the processes and techniques employed to analyze and prepare the

historical data that inform the development and integration of constituent models

that make up the i-MAS framework for achieving simultaneously-integrated recov-

ery.
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3. EXPLORATORY DATA ANALYSIS FOR A SIR

PARADIGM IN AIRLINE DISRUPTION MANAGEMENT

Despite overcoming numerous financial and technical challenges over the last century

through continued drive towards innovation and productivity, a complete solution

to irregular operations in the airline industry has remained elusive. A major driver

that has significantly stunted the progress in developing a full solution for airline

disruption management is poor data integration and integrity.

Internal data containing real-time information about an airline’s resources and

its scheduled utilization over time, and external data for factors such as current and

future weather forecasts, competitor activities, and air traffic control are necessary

for efficient operations [24]. These bits of information and data must be readily

available and accessible to represent drivers and constraints for scenarios induced

by irregular operations, so as to facilitate the development of effective self-governing

platforms for airline disruption management. In addition, whenever a new airline

system is replaced or upgraded, new data sources are typically integrated into the

existing framework [26]. The new data must be maintained for both existing and

new applications, and thus present cost-intensive challenges for mitigating disruption

because many facets of the airline infrastructure are impacted.

While there have been consistent improvements to the existing decision support

systems used by human controllers in the AOCC, two factors have continued to limit

the performance of the disruption resolutions that are applied. First, the decision

support systems do not explicitly proffer solutions to specific schedule disruptions,

and as such, human controllers in the AOCC are required to be reactive in addressing

disruptions by using their best judgement based upon their prior experience from

resolving the same (or similar) disruption. Second, majority of the decision support
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(computer) systems used by multiple departments in an airline (including the AOCC)

and other air transportation stakeholders (e.g. airports) are not designed or devel-

oped at the same time nor by the same vendor [24]. As such, information and data

are required to be entered into multiple computer systems thereby exposing human

controllers in the AOCC to data input problems and errors. As such, information

entered into a decision support system for disruption management may be out of sync

with other systems and yield incorrect decisions due to lack of data integrity.

In the bid to improve data integrity for existing decision support systems, airlines

have significantly invested in creating better localized data collection platforms within

their respective organizations, which can amass information from different sources

within and outside the organization that is easily accessible through a centralized data

server [47]. As such, there is a need to fully leverage the ubiquity and accessibility

of information (data) collected by existing platforms in the AOCC to enhance agile

decision-making capabilities of the AOCC during airline disruption management. To

this effect, this chapter provides a comprehensive discussion on exploratory analysis

administered on historical scheduling and operations recovery data supplied by a

major airline in the United States, which serves as the basis for the development

of the predictive and prescriptive models discussed in subsequent chapters of this

dissertation.

The next section in this chapter provides an overview of the elements of historical

scheduling and operations recovery data retrieved from a major U.S. airline, followed

by a section that expansively discuses several relevant interrelated processes for ex-

ploratory data analysis.

3.1 Data Overview

The raw data utilized for demonstrating the exploratory analysis discussed in this

chapter and ultimately creating the i-MAS framework, which is the focus of this

dissertation, was provided by Southwest Airlines. Like many major U.S. airlines,
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Southwest Airlines employs an integrated AOCC organization wherein all functional

roles share the same physical space (at the airline’s headquarters in Dallas) and are

hierarchically dependent on AOCC Supervisors for multiple problem dimensions in

airline operations recovery [48]. As the largest carrier in the United States in terms

of originating domestic passengers boarded with more than 4,100 flight schedule op-

erations daily to over 100 destinations, the supervisors (and controllers) at Southwest

Airlines Network Operations Control (SWA-NOC) seek to use technology to see the

impact of their decisions to make better ones for improved disruption management.

For many years, the controllers at SWA-NOC relied on gut instincts to track and

understand how their disruption resolution actions cascaded throughout the airline’s

network, but could not inform their instincts with data. To address this issue, up-

per management at SWA-NOC created the Baker workgroup; an integrated team of

supervisors and software developers dedicated to improving decision-making during

disruption management by developing and enhancing a suite of computerized decision

support systems called the Baker tool. In order to better support the Baker tool, the

workgroup created an autonomous data collection platform to record flight schedules

that are subject and not subject to different disruption incidents in the Southwest

Airlines route network.

As such, the raw data generously provided to us for the research discussed in

this dissertation contains approximately 1.1 million instances of direct flight sched-

ules from the Southwest Airlines route network operations recorded from September

2016 to September 2017; of which there are 620,000 flight schedules that were not

subject to disruptions, over 430,000 flight schedules that were subject to flight delays,

and approximately 26,000 flight schedules that were either cancelled or diverted. The

instances of disrupted flight schedules (i.e. delayed, cancelled or diverted flight sched-

ules) are distributed across eleven separate functional roles in SWA-NOC (i.e. the

AOCC) that represent primary disruption resolution domains for different problem

dimensions in airline disruption management. Table 3.1 reveals a list of functional

disruption resolution domains in the Southwest Airlines Network Operations Control,
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including the corresponding problem dimensions they seek to address, and the class

of disruption and the number of instances of different effects of a disruption class for

a specific functional domain. The disruption class defines the origination of a specific

disruption, and as such, disruptions resolved by functional domains in SWA-NOC

with a “controllable” disruption class indicate that all instances of disrupted flight

schedules associated with those domains were caused (or could have been avoided)

by the airline. Conversely, disruptions resolved by functional domains in SWA-NOC

with an “uncontrollable” disruption class indicate that all instances of disrupted flight

schedules affiliated with those domains were not caused (nor could have been avoided)

by the airline. A brief description of the functional disruption resolution domains (or

roles) in SWA-NOC highlighted in Table 3.1 is as follows:

1. Customer Hold : This functional domain addresses disruptions related to

holding aircraft for passengers on inbound flight connections and holding air-

craft to accommodate passengers off cancelled and delayed flights. As such, the

customer hold functional domain resolves the aircraft and passenger problem

dimensions in airline disruption management. Disruption instances for the cus-

tomer hold domain accounted for about 11% of delayed flight schedules in the

Southwest Airlines route network over the one-year period (i.e September 2016

to September 2017).

2. Dispatch CSC : This functional domain manages disruptions related to flight

dispatch activities by the airline that also includes holding flights to accommo-

date international flight schedule slot times. To that effect, the Dispatch CSC

functional domain addresses the aircraft and crew problem dimensions dur-

ing disruption management, and disruption instances related to Dispatch CSC

represented 4% of delayed flight schedules in the airline operations between

September 2016 and September 2017.

3. Flight Operations: This functional domain resolves disruptions defined by

Pilot (cockpit crew) scheduling activities as they relate to Pilot tardiness and
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normal aircraft readiness, and addresses the crew problem dimension of airline

disruption management. Between September 2016 and September 2017, disrup-

tion instances related to Flight Operations represented about 8.5% of delayed

flight schedules, 5.7% of cancelled flight schedules, and 13.5% of diverted flight

schedules in Southwest Airlines operations.

4. Fuel Management : This functional role in SWA-NOC manages disruptions

related to aircraft fueling and other energy administration activities, and ad-

dresses the aircraft problem dimension during disruption management. Dis-

ruption instances related to Fuel Management between September 2016 and

September 2017 represented 1.1% of delayed flight schedules in Southwest Air-

lines operations.

5. Ground Operations: This functional domain in SWA-NOC manages disrup-

tions defined by several activities ranging from passenger boarding and aircraft

provisioning to ramp services and aircraft towing, and as such, resolves the

aircraft and passenger problem dimensions in airline disruption management.

Over the one year period of airline operations, disruptions related to Ground

Operations accounted for the largest percentage of total flight schedule delays

of 39%, and the third highest percentage of total flight schedule cancellations

of 13%.

6. Inflight : Similar to Flight Operations, Inflight resolves disruptions defined

by Flight Attendant (cabin crew) scheduling activities as they relate to Flight

attendant tardiness and normal aircraft preparedness, and thus addresses the

crew problem dimension of airline disruption management. Between September

2016 and September 2017, disruption instances related to Flight Operations

represented about 18.5% of delayed flight schedules, 5.1% of cancelled flight

schedules, and about 1% of diverted flight schedules in Southwest Airlines op-

erations.
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7. Maintenance : This functional domain resolves disruptions defined by aircraft

maintenance and inspection activities, and as such, addresses the aircraft prob-

lem dimension of airline disruption management. Disruption instances related

to Maintenance represented 7.8% of delayed flight schedules and about 0.3% of

cancelled flight schedules during Southwest Airlines operations from September

2016 to September 2017.

8. NAS : This adopted functional role in SWA-NOC manages disruptions defined

by air traffic control activities related to gate hold for congestion at departure

and arrival airport stations. As such, the NAS functional domain addresses

uncontrollable disruptions representing all problem dimensions during airline

disruption management. Disruption instances associated with NAS represented

5.3% of delayed flight schedules, 13.5% of cancelled flight schedules and 6.4% of

diverted flight schedules during Southwest Airlines operations from September

2016 to September 2017.

9. Security : This functional domain addresses disruptions defined by security

measures enforced to ensure the safety and convenience of passengers at airports

prior to aircraft boarding. Its responsibilities includes managing disruptions due

to baggage screening by TSA (Transportation Security Administration) at the

skycap or ticket counter. As such, the Security functional domain resolves the

passenger problem dimension during airline disruption management. Between

September 2016 and September 2017, disruption instances related to Security

represented the least percentages of total delayed, cancelled, and diverted flight

schedules of 0.7%, 0.03%, and 0.16%, respectively, in Southwest Airlines oper-

ations.

10. Technology : This functional role manages all disruption activities defined by

system-wide technology outages, and thus aims to resolve all problem dimen-

sions during airline disruption management. Disruption instances related to
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Technology accounted for 2.1% of all delayed flight schedules in Southwest Air-

lines operations between September 2016 and September 2017.

11. Weather : Similar to NAS, this adopted functional domain in SWA-NOC man-

ages all kinds of uncontrollable disruption defined by inclement weather activ-

ities. To that effect, the Weather functional role aims to resolve the aircraft,

crew and passenger problem dimensions during disruption management. Dis-

ruption instances associated with the Weather functional domain accounted

for the highest percentage of cancelled and diverted flight schedules (62.6%

and 72.8% respectively) among all functional domains in SWA-NOC between

September 2016 and September 2017. In addition, delayed flight instances re-

lated to Weather represented 2.9% of the total delayed flight instances addressed

by all functional domains in SWA-NOC over the one year data collation period.

3.2 Data Analysis

The previous section provided a macroscopic overview of disruption activities for

different functional roles in SWA-NOC and revealed that about 42% of all flight

schedules for Southwest Airlines route network operations from September 2016 to

September 2017 were disrupted. As a result, the functional disruption resolution do-

mains in SWA-NOC were most likely to address irregular operations due to delayed

flight schedules, which represent approximately 94% of all disrupted flight schedules

recorded from September 2016 to September 2017. Furthermore, there are two sep-

arate chunks of data which are defined by the occurrence of disruption during flight

schedule execution. The first chunk, which is known as the non-disrupted data set,

represents the larger chunk that contains instances of flight schedules that executed

without any disruption. The smaller chunk, also known as the disrupted data set, con-

tains instances of flight schedules that executed with disruption, and thus represent

instances of flight schedule execution due to irregular operations. As such, the major

difference between the non-disrupted data set and disrupted data set is the existence
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Figure 3.1. Data analysis procedure for a SIR design paradigm

of additional data features (i.e. disruption features) in the disrupted data set that

indicate different types of disruption. However, there is a small subset (6%) of the

disrupted data set that represents instances of canceled and diverted flight schedules,

which have less data fields with sparse data entries that present significant challenges

for machine learning applications. To that end, we restrict the scope of the research

presented in this dissertation to irregular operations based upon delayed flight sched-

ules and ignore flight cancellations and diversions which are primarily limited to the

Weather functional domain. Henceforth, irregular operations only represent control-

lable and uncontrollable disruptions due to delayed flight schedules.
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Fine details that highlight pertinent high-level patterns for elements (or features)

that define each flight schedule in the raw data set introduced in Section 3.1 can

not be readily observed nor acknowledged through macroscopic inspection. Hence, in

order to mine relevant microscopic information from raw data, this section elucidates

the exploratory data analysis used to effectively generalize pattern-finding schemes

for consistent flight schedule features that are applicable in all functional roles in

SWA-NOC. Fig 3.1 shows the general procedure adopted for performing exploratory

data analysis on the raw data set. The process commences by abstracting separate

data features that represent distinct properties of flight scheduling and operations,

next raw data features are transformed into data forms that are readily decipherable

by appropriate machine learning algorithms. The data transformation is necessary

for applying separate methods for identifying critical data features and reducing the

dimension space of the data set achieved by the feature selection and dimensionality

reduction processes shown in Fig 3.1. The subsequent parts of this section provide

more insight into the aforementioned processes as they relate to the historical schedul-

ing and operations data adapted for the research discussed in this dissertation.

3.2.1 Feature Abstraction

Feature abstraction (often referred to as data abstraction) is an effective technique

for accommodating semantic relationships between features in a database [49]. Fea-

ture abstraction ensures that features that define specific properties of fundamental

tenets of flight scheduling and operations (embedded in each flight schedule from the

raw data set) is generalized into abstract values [35]. As such, a specific property can

be viewed as a specialized quality of an abstract value. The properties describing the

tenets of flight scheduling and operations are described by two separate principles of

abstraction that represent a knowledge abstraction [35,50,51]. These related feature

abstraction principles exist for creating semantic associations among data features
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Figure 3.2. Sample knowledge abstraction of a basic flight schedule
for airline disruption management

for airline scheduling and disruption management and are namely: event abstraction

and uncertainty abstraction.

• Event abstraction: Event abstraction serves two primary purposes. First, it

characterizes the importance of planned airline activities and resources associ-

ated with a specific flight schedule, and how their importance can be subject

to change prior to (or on) day of operation due to the risk of disruption from

passenger-boarding at a departure station to aircraft gate-parking at an arrival

station. Second, event abstraction defines the manner in which planned airline

activities for a specific flight schedule varies during schedule execution based

upon the impact of irregular operations. As such, the event abstraction prin-

ciple is synonymous to flight operation value abstraction, wherein the specific

value (or profit) that a particular flight schedule in the airline route network

provides is appraised by how effectively the flight schedule features estimated

prior to schedule execution align with flight schedule features that are realized

during and after schedule execution. To that effect, flight schedule features
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that are determined prior to schedule execution represent low-value features

for event abstraction, and flight schedule features estimated during and after

schedule execution represent high-value features for event abstraction.

• Uncertainty abstraction: From an airline planning perspective, the uncertainty

abstraction principle, also analogous to a functional domain planning abstrac-

tion, defines the manner in which the uncertainty for the risk of irregular op-

erations during schedule planning and execution is quantified and propagated

via various features in the data set. Most airlines, including Southwest Airlines,

adopt a perspective on the scheduling process that accentuates the internal

planning approach of different planning departments as an iterative cycle of

flight schedule development and assessment over a timeline horizon, such that

the flight schedule is continually adjusted and optimized until a suitable sched-

ule is obtained or the planning period is over [3]. Thus, the primary purpose

of uncertainty abstraction is to express the relationships among flight sched-

ule features that are representative of the transitions through three iterative

and interconnected airline planning phases namely: strategic planning, tactical

planning and operational planning respectively [6]. Strategic planning, other-

wise known as “future scheduling”, focuses on long-term decision-making for

the subsequent tactical and operational planning phases, such that a generic

service plan consisting of essential and viable sets of serviceable routes without

specific aircraft and crew assignments and tentative departure and arrival times

are determined. Tactical planning or “current scheduling” focuses on creating

a refined schedule of operations for the service plan based upon the resources

that are actually expected to be available to the airline over a definitive time

period. Lastly, the operational planning phase focuses on adjusting the sched-

ule generated in the tactical planning phase with respect to changes in demand

for air travel prior to executing the flight schedule, and also on executing the

schedule with minimal penalty (cost) in the event of unexpected disruptions on

the day of operation (i.e. rescheduling for disruption management) [52].
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By applying the event and uncertainty abstraction principles, we identify three sep-

arate classes of features in the raw data that can be used to enable robust airline

disruption management and are described as follows:

1. Determinate aleatoric features : These represent flight schedule features that

are determined during the strategic planning phase of airline planning and are

required to remain unchanged during schedule execution on the day of opera-

tion. Examples of determinate aleatoric features include flight date, origin (de-

parture) station, destination (arrival) station, route originator indicator, route

distance, etc. With respect to disruption management, determinate aleatoric

features represent flight schedule features whose alternatives do not differ con-

siderably each time the AOCC invokes a disruption management initiative.

Thus, from a statistical perspective, determinate aleatoric features are flight

schedule features that are subject to the least possible uncertainty for the risk

of reassessment (or alteration) during irregular operations for disruption man-

agement, based upon inherent randomness of disruption events. For instance,

airport identifiers and exact longitude and latitude coordinates that provide

specific information for origin and destination stations are always assumed to

remain unchanged, by the AOCC, during the recovery of a delayed flight sched-

ule. However, if a human specialist in the AOCC chooses to divert the same

delayed flight to another airport during schedule execution, then the airport

information for the destination station changes to that of the airport where the

flight is to be diverted. It is important to note that this scenario is unlikely,

based upon our research scope, because we consider irregular operations for

delayed flight schedules only.

2. Indeterminate aleatoric features : These are separate data features from flight

schedule features that represent disruption types for different functional do-

mains, which occur randomly during schedule execution on day of operation.

Examples of indeterminate aleatoric features include delay codes for uncon-
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trollable inclement weather and controllable maintenance inspections. From a

disruption management perspective, indeterminate aleatoric features represent

triggers for the need of the AOCC to address a specific disruption. As such, inde-

terminate aleatoric features are data features that can create the most uncertain

responses in disruption management initiatives employed by the AOCC during

schedule execution. From a statistical perspective, indeterminate aleatoric fea-

tures are data features that are subject to the most possible uncertainty for

the risk of occurrence (or instantiation) of irregular operations during schedule

execution, due to inherent randomness of disruption events. For example, in-

clement weather at a particular airport may require a human specialist in the

AOCC to delay the departure of a specific flight at the (origin) airport and

reassign some or all of its passengers to another flight with a later departure,

while also reallocating the arrival of the original delayed flight to a different

gate at the destination airport.

3. Epistemic features : These represent flight schedule features that are determined

during the tactical and operational phases of airline planning and can be subject

to change during schedule execution on day of operation. Examples of epistemic

features include specific departure and arrival times during the day, aircraft

type, delay periods, actual turnaround and block time periods. With regards

to disruption management, epistemic features represent flight schedule features

with considerable amount of alternatives for every time the AOCC initiates a

disruption management plan. As such, from a statistical standpoint, epistemic

features are flight schedule features that are subject to the most possible un-

certainty for the risk of alteration during irregular operations for disruption

management, due to lack of knowledge of the exact impact of their alteration.

For instance, following a specific disruption like late arrival of flight crew for

a scheduled flight, a human specialist in the AOCC may choose to delay the

departure of the flight by a specific period of time after the original departure

time. However, most times, the human specialist can not guarantee that the
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decision on applying a particular delay duration after scheduled departure will

produce a specific recovery plan, due to the cascading effect of disruptions in

large airline networks.

Fig. 3.2 shows a generic knowledge abstraction for airline disruption management

based upon some specific flight schedule features. The horizontal axis in Fig. 3.2

represents event abstraction for defining the value of flight operations management

based upon the perishable nature of a flight service during schedule execution, while

the vertical axis represents uncertainty abstraction for defining the risk of disruption

instances and schedule alteration during flight schedule planning.

3.2.2 Feature Transformation

While the abstraction of raw flight schedule data features provides an excellent

avenue for effectively representing latent planning capabilities in airline operations

control, the quality of the knowledge extracted from the raw data can be enhanced

through transformation to enable discernible representation and interpretation for

machine learning algorithms [53, 54]. These algorithms provide efficient means for

easily recognizing useful patterns and relationships amongst flight schedule features

in a data set. To this end, feature transformation is the process of converting flight

schedule and disruption features in raw historical airline scheduling and operations

data into relevant mathematical properties (or functions) that can be readily under-

stood by machine learning algorithms. Every direct flight schedule in the raw data

set is defined by forty separate data features (or attributes) that describe different

resources, behaviors, and performance indicators that are observable during airline

scheduling and disruption management. As such, raw flight schedule features can

be separated into four distinct categories namely: geographical features, temporal

features, categorical features, and continuous features.

• Geographical features : These are flight schedule features which represent re-

sources, behaviors, or performance indicators that require or enable the percep-
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tion and property of geographic location (or position) during airline disruption

management. Examples of geographical features in the raw data set are In-

ternational Air Transport Association (IATA) codes for departure and arrival

airport stations, and the identifier for the origin of the first departure flight of

the day.

• Temporal features : These are flight schedule features that describe and enable

the perception and property of time during airline scheduling and disruption

management. Temporal features are conceptualized by four different types of

time [55] namely:

1. ordinal time: This represents time points that occur one after another on

day of operation. Examples of flight schedule features defined by ordinal

time are time-of-day events such as aircraft pushback time, takeoff time,

landing time, and aircraft gate-parking time.

2. interval time: This represents time events that are measured on an inter-

val scale with a specific duration (or length). Examples of flight schedule

features characterized by interval time include the duration between air-

craft pushback and aircraft gate-parking otherwise known as blocktime,

the duration for boarding passengers and loading cargo unto an aircraft

also known as turnaround, and the duration of any form of delay in airline

operations during schedule execution.

3. cyclic time: This describes cyclic or repeatable processes wherein the ap-

plication of an ordered relation is inane. Flight date is an example of a

flight schedule feature characterized by cyclic time.

4. branching time: This represents time points that can occur in different

branches or alternatives to describe several scenarios or processes. Thus,

all temporal flight schedule features in the raw data set are defined by

branching time.
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Figure 3.3. Feature transformation process of raw data for airline
disruption management

• Categorical features : These are flight schedule features that represent fields in

the raw data defined by discrete values which belong to a finite set of categories

or classes. Categorical features can be text or numeric, and are separated into

two classes namely nominal and ordinal, based upon the perception of ordering.

1. nominal : Nominal categorical features represent flight schedule features

for which there is no concept of ordering among different values of each

feature. An example of a nominal categorical feature is A0, which is a

binary number (i.e. 0 or 1) indicating whether or not a flight schedule

arrives exactly on time.

2. ordinal : Ordinal categorical features represent flight schedule features for

which there is a strict adherence to the concept of ordering among different

values of each feature. An example of an ordinal categorical feature in flight

schedule data is aircraft type, which effectively characterizes the relevance

of size and seat capacity for aircraft performance.

• Continuous features : These are flight schedule features that represent fields in

the raw data, which have infinitely many alternatives between any two val-

ues. Examples of continuous features in raw flight schedule data include digital

timestamps for different time-of-day events (such as takeoff time) during sched-

ule execution.

Fig 3.3 reveals a two-layer data transformation process of raw flight schedule

data features for airline disruption management. The first layer, known as feature
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engineering, enables the creation of additional data features from mathematical func-

tions that characterize rudimentary properties of the airline operations control center.

Next, these data features are combined with extant low-level data features in the raw

data set and normalized by using fundamental statistical parameters in the second

layer through a process called feature scaling.

(i) Feature engineering represents a first-degree transformation of raw flight

schedule data that defines the augmentation of properties associated with daily

routines of functional roles in the AOCC by using mathematical principles.

Thus, flight schedule features representing geographic locations (i.e. geograph-

ical features) such as departure and arrival stations are first transformed into

spherical directional vectors based upon the longitude and latitude coordinates

of their corresponding airport stations, and subsequently transformed into the

distance between the departure and arrival airports on an oblate spheroid Earth

via the Vincenty geodesic equation [56]. Ordinal temporal flight schedule fea-

tures (such as departure and arrival times) are transformed into two separate

periodic (i.e. sine and/or cosine) vectors of different amplitudes, based upon

a 24-hr clock period and the percentage of 8-hr work shift completed (at the

time of departure or arrival) by human specialists in the AOCC, respectively.

The work shift characterization of time-of-day events, via a periodic vector, is

intended to capture and represent daily disruption resolution proclivities of hu-

man specialists, which can be induced by how much time the specialists have to

address a disruption before their work shift is complete. Cyclic temporal flight

schedule features defined by Gregorian dates are transformed into four separate

periodic vectors, whose periods are based upon the season of the year, month

of the year, day of the week, and day of the year respectively.

Lastly, most categorical flight schedule features defined by texts are transformed

into binary numbers by one-hot encoding [57], wherein all n feature values

are represented as a n-dimensional sparse vector with zero entries except for

one of the dimensions for which the entry is one. However, categorical flight
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schedule feature values for aircraft type, which are defined by aircraft model

codes, are transformed into discrete numbers based upon the total number of

available seats in the aircraft. A secondary objective of feature engineering is

to provide a precursor for continuous feature representation by ensuring that

all data features are in numeric form. As such, feature engineering may not be

applicable to flight schedule features that are already in continuous form in a

raw data set.

(ii) Feature Scaling represents a second-degree transformation of raw numeric

data features that include additional features created from feature engineering,

such that a uniform statistical grounding basis is used to transform values for

all data fields (i.e. flight schedule features) in the raw data set into bounded

continuous values that describe a differentiable function. We explore three

different approaches for enabling feature normalization [58] namely: Standard

scaling, Range scaling, and Power scaling.

(a) Standard scaling : Standard scaling or standardization normalizes values

for each flight schedule feature in the data set by removing the mean of

the values and scaling to a unit variance, thus resulting in a standard

score for each value. The standard score, zi, of an arbitrary sample (i.e

data feature value), xi, in the data set is calculated as follows:

zi =
(xi − u)

s
(3.1)

where u and s represent the mean and standard deviation, respectively,

of all values for each flight schedule feature in the data set. As such,

standardization provides a platform to ensure that each flight schedule

feature in the data set follows a Gaussian distribution with zero mean and

a variance of one.

(b) Range scaling : Range scaling, otherwise known as min-max normalization,

transforms each flight schedule feature in the data set by scaling the values
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of each feature by the difference between the maximum value and the

minimum value (i.e. range). This results in adjusted values of a range

(or distance) between zero and one for each flight schedule feature. The

adjusted (range-scaled) value, yi, of a characteristic flight schedule feature

in the data set is calculated as follows:

yi =
xi −min(X)

max (X)−min (X)
(3.2)

where xi and X represent an original value and set of all original values,

respectively, for a flight schedule feature.

(c) Power scaling : Power scaling involves adapting a family of parametric

and monotonic transformations to convert flight schedule data values from

any distribution to the closest possible representation of Gaussian distri-

bution, so as to reduce variance and skewness in data. An appropriate

power transformation of flight schedule and disruption features is the Yeo-

Johnson transform [59], because it can be applied to all forms of numeric

data just like standard and range scaling transforms. The Yeo-Johnson

transform is given by:

x
(λ)
i =



[(xi + 1)λ − 1]/λ if λ 6= 0, xi ≥ 0,

ln (xi + 1) if λ = 0, xi ≥ 0,

−[(−xi + 1)2−λ − 1]/(2− λ) if λ 6= 2, xi < 0,

− ln (−xi + 1) if λ = 2, xi < 0

(3.3)

where xi and λ represent an original data value and an arbitrary parameter

that is determined through maximum likelihood estimation [60], respec-

tively.

Completion of the feature transformation process shown in Fig. 3.3 results in a

refined, continuous data set that can be readily comprehensible by suitable machine

learning estimators.
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3.2.3 Dimensionality Reduction

The efficacy of constructing and applying relevant machine learning algorithms for

identifying and acknowledging high-level properties from data features (such as flight

schedule and disruption data features) is dependent on the form in which the data

values are presented. To this end, feature transformation has a strong propensity to

increase the number of elements in the flight schedule and disruption feature space

that constitutes the problem dimensions for airline disruption management. As such,

the intrinsic dimensionality of the refined data appropriated for airline disruption

management is defined by the least number of flight schedule and disruption features

required to delineate observed behavioral properties from AOCC routines. Hence,

dimensionality reduction is the process of mitigating the curse of dimensionality [61]

and other unwanted properties of high-dimensional feature space through classifica-

tion, visualization, and compression of high dimensional data obtained as a result of

feature transformation [62]. In essence, dimensionality reduction aims to provide a

rudimentary means to attain and observe the latent feature space of a refined data

set for airline disruption management.

From a mathematical perspective, we assume that the refined flight schedule and

disruption data set is represented in a n ×m matrix X, which consists of n feature

vectors xi(i ∈ {1, 2, ..., n}) with dimensionality m. Furthermore, we assume that

the refined data set has an intrinsic dimensionality d, such that d < m and often

d << m. The intrinsic dimensionality property refers to points in the refined data

set X, which lie near a manifold with dimensionality d that is embedded in the

m-dimensional feature space. To that effect, dimensionality reduction techniques

transmute the refined flight schedule and disruption data set X with dimensionality

m into a new data set Y with dimensionality d, while maintaining the geometry of

the refined data set X as much as possible. Typically, the intrinsic dimensionality d

and the geometry of the manifold of the new data set Y are unknown, and as such,

most dimensionality reduction techniques require that certain assumptions about the
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properties (like intrinsic dimensionality) of the refined data set be made a priori. For

the remainder of this section, we denote a high dimensional data instance for flight

schedule and disruption (i.e. datapoint) by xi, such that xi is the ith row of the

refined m-dimensional data set X. In complement, the low-dimensional equivalent of

xi is expressed by yi, where yi is the ith row of the new d-dimensional matrix Y.

To demonstrate the usefulness of dimensionality reduction on refined flight sched-

ule and operations data, we investigate two separate techniques that employ linear

and nonlinear principles nicknamed PCA and t-SNE, respectively, by utilizing delayed

flight schedule and disruption instances for the Weather functional domain in SWA-

NOC between September 2016 and September 2017. It is important to note that

the flight schedule data for the Weather functional domain constitutes a subset (with

12,659 delayed flight schedule instances) of the full refined data set. For validation,

we adopt min-max normalization for scaling all feature values in the refined data set

because both dimensionality reduction techniques strongly depend on Euclidean dis-

tances between refined high-dimensional datapoints xi and xj to obtain and simplify

the gradient of their respective cost functions [62,63].

1. Principal Component Analysis (PCA): Principal component analysis or PCA

is a standard non-parametric tool in modern data analysis used for extracting

relevant information from large and confusing data sets [64]. PCA is also a

full spectral linear technique for dimensionality reduction that embeds data

into a linear subspace of lower dimensionality. In the lower dimension, the

refined variables (or data features) in the data set are transformed into linear

combinations of the data features, which are called principal components. With

minimal effort, PCA provides a schema for reducing a fairly complex data set

to a lower dimension in order to show simplified structures that often define

it, by revealing as much of the variance in the data as possible. As such, the

first and second principal components are the orthogonal linear combinations

of the refined data features that have the largest and second-largest possible

variance (or inertia), respectively, in the refined data set. In mathematical
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terms, PCA aims to find a linear mapping X that maximizes the cost function

defined by trace(ST cov(X)S)), wherein cov(X) is the sample covariance matrix

of the refined data [65]. Thus, the linear mapping created by the d principal

components (or principal eigenvectors) are solutions to the eigenproblem defined

as follows:

cov(X) = λ(S) (3.4)

Figure 3.4. Principal component analysis of indeterminate aleatoric
features for Weather domain

The lower dimensional representation of the refined flight schedule and disrup-

tion feature instances, defined by yi of xi datapoints, are computed by mapping

them onto a linear basis Y = XS that solves the eigenproblem for the d principal

eigenvalues defined by λ, via the scikit-learn software [58].
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Fig. 3.4 presents a visualization of the analysis for the first two principal com-

ponents describing indeterminate aleatoric features that represent delays for the

Weather functional domain in SWA-NOC. The first and second principal com-

ponents represent orthogonal linear combinations of the refined flight schedule

features that account for 8.1% and 5.6%, respectively, of the variance of inde-

terminate aleatoric features related to weather delays in the data set. Fig. 3.4

reveals that there are four major types of weather-related delays (ATC Hold at

Origin, ATC Hold at Destination, Deicing at Gate, and Hail or Snow Damage)

in the data set. ATC Hold at Origin and ATC Hold at Destination represent

weather delays due to gate hold from air traffic control (ATC) at departure and

arrival stations respectively. Deicing at Gate and Hail or Snow Damage rep-

resent weather delays due to deicing at the gate, and aircraft swap due to hail

or snow damage respectively. Fig. 3.4 shows that the data set is divided into

four separate clusters of the same delay type along the axis of the first principal

component. This reveals that the axis of the first principal component (horizon-

tal) represents linear combinations of flight schedule features that capture the

seasonal behavior of weather-related delays, as each data cluster describes each

weather season over the one-year data-collation period. Furthermore, the data

set is divided into two polarizing (ATC Hold at Origin and ATC Hold at Des-

tination) and two overlapping (Deicing at Gate and Hail and Snow Damage)

clusters along the second principal component (vertical) axis. This shows that

the axis of the second principal component represents linear combinations of

flight schedule features that capture the difference in the types of indeterminate

aleatoric features for weather-related delays in the refined data set.

The patterns and information gleaned from the results and observations from

the principal component analysis (PCA) method can be appropriated for in-

forming model development for airline disruption management. For instance,

the seasonal relationship among the four predominant types of weather-related

delays observed in Fig. 3.4 can be quantified via a linear combination of flight
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schedule features, which suggests that decision-making by human specialists

in the AOCC is sensitive to weather seasons. In addition, the overlapping ef-

fect observed between Deicing at Gate and Hail and Snow Damage in Fig. 3.4

is representative of similarities in the type of disruption resolutions used for

weather-related delays during the winter season, thus bolstering the significance

of the effect of seasonal properties on decision-making by human specialists in

the AOCC.

2. t-distributed Stochastic Neighborhood Embedding (t-SNE): t-distributed Stochas-

tic neighborhood embedding or t-SNE represents a recent advancement in clu-

tering and visualization for dimensionality reduction that provides a nonlinear

platform for transforming the Euclidean distances between refined values (i.e.

datapoints) of flight schedule and disruption features into conditional probabili-

ties that define similarities. As such, the similarity of a datapoint xj to another

datapoint xi is the conditional probability (pj|i) that xi will select xj as its neigh-

bor if neighbors are selected in proportion to their probability density under a

Student-t distribution with one degree of freedom (i.e. Cauchy distribution)

centered about xi [62, 66]. Thus, pj|i remains comparatively high for data-

points in close proximity and insignificant for datapoints that are substantially

separated. Mathematically, the objective of t-SNE is to minimize the Kullback-

Leibler divergence [67,68] between a joint probability distribution defined by P

in the high-dimensional feature space and a joint probability distribution de-

fined by Q in the low-dimensional feature space. Hence, the Kullback-Leibler

divergence represents the cost function of the following optimization problem,

which is solved via the scikit-learn software [58]:
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Figure 3.5. t-Distributed Stochastic Neighborhood Embedding anal-
ysis of indeterminate aleatoric features for Weather domain

min KL(P||Q) =
∑
i

∑
j

pij log
pij
qij

s.t. pij =
exp (−||xi − xj||2/2σ2)∑
k 6=l exp (−||xi − xj||2/2σ2)

qij =
(1 + ||yi − yj||2)−1∑
k 6=l (1 + ||yk − yl||2)−1

(3.5)

where pii and qii are set to zero, and pij = pji and qij = qji for all i, j.

Fig. 3.5 presents a strictly visual perception of the t-SNE nonlinear projection

of the two-dimensional space for flight schedule features, which describes in-

determinate aleatoric features that represent delays for the Weather functional

domain in SWA-NOC. Similar to observations from PCA, the red and gold clus-

ters in Fig. 3.5 reveal that weather-related delays due to ATC Hold at Origin

and ATC Hold at Destination are the most prominent and oppositely related,
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based upon the symmetry observed from the small and large blobs of red and

gold clusters. As such, the polarizing effect observed between ATC Hold at Ori-

gin and ATC Hold at Destination in Figs. 3.4 and 3.5 can be attributed to the

importance of the geographical location (i.e departure or arrival stations) on

how weather-related disruption resolutions are applied in the AOCC. As such,

flight schedule features associated with geographical location are relevant for

creating robust models for airline disruption management.

3.2.4 Feature Selection

Although dimensionality reduction techniques provide an effective means to read-

ily (i.e. visually) discern high-level patterns and properties associated with a data

set, they are ineffectual in revealing detailed information on the specific importance

of flight schedule and disruption features in a data set and their corresponding rela-

tionships [69]. To this end, feature selection presents simple fundamental methods for

efficiently selecting and investigating pertinent associations among data features in a

refined data set, which can provide insightful knowledge (or a priori information) for

developing useful data-driven models for robust airline disruption management. In

essence, feature selection methods aim to proactively enhance model prediction per-

formances by increasing generalization (i.e. minimize data overfitting) and decreasing

model runtimes [70]. There are three major categories of feature selection methods

namely: wrapper, filter, and embedded methods.

Wrapper methods involve algorithms that search the feature space for plausible

subsets of features by assessing each subset after running a specific model. Typically,

the model is validated on a test data set to estimate the model’s error rate, before a

score is registered for each feature subset and the feature subset with the best score is

ultimately selected. Unlike computationally intensive wrapper methods, filter meth-

ods do not consider a model when searching the feature space for relevant subsets of

the feature space, and rely on general statistical measures such as Pearson correla-
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tion coefficient [71] and mutual information [72]. In this manner, filter methods are

somewhat analogous to dimensionality reduction techniques, such that they are not

customized to a particular type of predictive model and consume significantly less

computational resources than wrapper methods. Embedded methods involve feature

selection methods that are entrenched in a specific learning algorithm that performs

classification (or regression) and feature selection concurrently. As such, embedded

methods deliver the advantages of both wrapper and filter methods with medium

computational expense.

To demonstrate the relevance of feature selection on refined flight scheduling and

operations data, we apply two specific types of feature selection that belong to the

filter and embedded categories, respectively, to identify flight schedule features that

are pertinent for disruption management during turnaround. Turnaround is an airline

process (or time period) primarily representative of loading, unloading and occasional

servicing of aircraft, and is crucial for minimizing overall flight schedule delays. In

addition to reducing overall flight delay, most airlines typically aim to expedite the

turnaround process as much as possible in order to avoid causing discomfort to pas-

sengers, stemming from long waits in the aircraft on the ground, thus invariably

minimizing loss of passenger goodwill.

In that regard, the filter method that we apply is defined by mutual informa-

tion and the embedded method is defined by a Gaussian process, such that actual

turnaround duration is set as the target flight schedule feature. We do not consider

wrapper methods in our discussion because of the significant computational expense

required as compared to filter and embedded methods. Similar to the dimension-

ality reduction analysis discussed in Section 3.2.3, we utilize delayed flight schedule

and disruption instances for the Weather functional domain in SWA-NOC between

September 2016 and September 2017 for our analysis. For validation, we adopt stan-

dardization for the second-degree transformation (i.e. scaling) of all feature (i.e label

and target) values in the refined data set, because the algorithms for both filter and
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embedded methods perform best with a zero-mean Gaussian distribution as prior

instantiation for each feature space in the refined data set [30, 72,73].

1. Mutual Information Regression (MIR): Mutual information is a non-negative

measure from information theory that provides an excellent statistic for quanti-

fying the degree of relatedness among flight schedule and disruption features in

a refined data set. In that regard, mutual information is closely related to the

entropy of a flight schedule feature based upon observing another flight schedule

feature in a refined data set [74]. In addition to the ability to readily identify

relationships amongst data features, mutual information provides a fundamen-

tal metric for straightforward interpretation of the relationships among data

features as shared information (i.e. shannons or bits) between data features.

To that effect, mutual information is insensitive to the number of instances in

a data set [73].

Mathematically, mutual information, I, is expressed as:

I(X;Y ) =

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (3.6)

where p(x, y) is the joint probability density function of X and Y , and p(x) and

p(y) are the marginal probability density functions of X and Y respectively.

Thus, for feature selection, the objective is to maximize the mutual informa-

tion between a subset of flight schedule features defined by Xs and a target

flight schedule feature defined by y as represented by the following optimization

problem:

s∗ = arg max
s

I(Xs; y) s.t. |s| = k (3.7)

where k is the number of features that are to be selected. A non-parametric

regression algorithm based upon entropy estimation from k-nearest neighbor

distances is used to solve the NP-hard optimization problem via the scikit-learn
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Figure 3.6. Mutual information of flight schedule data features for
Weather Domain with respect to actual turnaround duration

software [58], for a set of possible combinations of data features that increases

exponentially [74,75].

Fig. 3.6 shows the mutual dependence, in decreasing order, of flight schedule fea-

tures (i.e. determinate aleatoric and epistemic features) on actual turnaround

period for instances of flight delay from the Weather functional domain. Fig. 3.6

reveals that turnaround duration adjusted during schedule execution has the

highest mutual information of over 3, thus implying that it has the strongest

mutual dependency on the decison-making for estimating actual turnaround

duration during disruption management. In addition, turnaround period esti-

mated prior to schedule execution and a flight’s capacity to be a route originator
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(i.e. first departure flight of the day) have the second and third highest mutual

information of 0.4 and 0.3 respectively, thereby revealing a weak mutual depen-

dency on the estimation of actual turnaround schedule for managing weather-

related delay of flight schedule. Month of the year (moy) can not be selected

as a significant predictor for estimating actual turnaround duration because of

zero mutual dependency as shown in Fig. 3.6.

2. Gaussian Process Regression (GPR): A Gaussian process is a stochastic process

(i.e. random variables indexed by time or space) where a finite collection of ran-

dom variables have a multivariate normal distribution [30]. As such, Gaussian

Process Regression or GPR is the inference of continuous feature values with

a Gaussian process (or distribution) prior, such that the marginal likelihood of

the data is maximized [30]. Converse to MIR, which is a model-free method for

dimensionality reduction and feature selection, GPR is an embedded method

that offers nonlinear and non-parametric regression properties that enable the

natural decomposition of flight schedule features in an airline data set for simul-

taneously attaining high fidelity dimensionality reduction and feature selection.

GPR provides an appropriate medium to obtain the sensitivity and importance

of flight schedule and disruption features necessary for informing the develop-

ment of appropriate models for airline disruption management.

f(x) ∼ N (0, K(θ, x, x′))

log p(f(x)|θ, x) = −1

2
f(x)TK(θ, x, x′)−1f(x)−

1

2
log det(K(θ, x, x′))− |x|

2
log 2π

max log p(f(x)|θ, x)

(3.8)

GPR infers the maximum log marginal likelihood of the distribution of a target

flight schedule feature for a training data set, where hyperparameters (or length-

scales) associated with all flight schedule features that define different drivers of

disruption management by the AOCC are optimized with respect to a certain
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kernel (covariance) function. The inference problem solved by GPR is defined

by the expressions in Eqn. 3.8. Observed flight schedule features from direct

flight schedules (datapoints) in the data set are symbolized by x, while f(x)

symbolizes a sample from a multivariate Gaussian distribution of dimension

equal to the number of observed datapoints x. θ represents a hyperparameter

or lengthscale vector, and K(θ, x, x′) symbolizes the covariance matrix between

all possible pairs of (x, x′) for a given set of hyperparameters.

Figure 3.7. Probability densities of test turnaround duration and
mean predictions of turnaround duration for delayed flight schedule
instances in Weather domain

As previously mentioned, a subset of the data set defined only by flight schedules

delayed by weather incidents is used for the GPR demonstration. This subset

of data is split into two separate sets of training and test data respectively, such

that the training data (70% of the data subset) is used to fit the GPR model

for actual turnaround duration and the test (i.e. new or unseen) data is used

to validate the model by verifying that the test data is consistent with mean

predictions from the model. Plotting the probability density function of the test

data, revealed a lognormal distribution of the actual turnaround duration in the

data set, as evidenced by Fig.3.7. Hence, the Matern32 kernel function, which is
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Figure 3.8. Mean predicted turnaround duration data vs. test
turnaround duration data

a combination of Gamma and Bessel functions correlated by an hyperparameter

of 3/2, is selected to fit the GPR model by means of a Gaussian process software

named GPy [76].

Fig. 3.8 shows the plot of the mean predictions of the actual turnaround duration

from the GPR model versus the actual turnaround duration from the test data,

for which the turnaround duration values in both axes are scaled to a unit

variance from the mean of the data values. The red diagonal line in Fig. 3.8

represents the 45-degree line, while each blue star represents a coordinate of the

mean GPR prediction and test data describing actual turnaround duration for

each datapoint (i.e. instance of weather-delayed flight schedule). Fig. 3.8 shows

that the coordinates for the datapoints follow the trend of red diagonal line
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Table 3.2. Lengthscales of refined data features for predicting actual
turnaround duration through Gaussian process regression

GPR.Mat32.lengthscale Feature Class Feature Name

1738.68 Determinate Aleatoric sin date

1650.37 Determinate Aleatoric cos date

1857.16 Determinate Aleatoric orig x dir

1808.49 Determinate Aleatoric orig y dir

1652.50 Determinate Aleatoric orig z dir

1750.13 Determinate Aleatoric ONBD CT

1193.69 Determinate Aleatoric SCHED TURN MINS

44.77 Epistemic ADJST TURN MINS

1367.11 Determinate Aleatoric schd acft type

1367.11 Epistemic actl acft type

1406.15 Epistemic SWAP FLT FLAG

975.98 Indeterminate Aleatoric ATC Hold at Origin

972.46 Indeterminate Aleatoric ATC Hold at Destination

1.00 Indeterminate Aleatoric Deicing at Gate

156.75 Indeterminate Aleatoric Ice on Wings

1.00 Indeterminate Aleatoric Lightning Strike

1.00 Indeterminate Aleatoric Turbulence

1.00 Indeterminate Aleatoric Hail or Snow Damage
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Figure 3.9. Quantile-Quantile plot of standard mean error between
predicted and test data for actual turnaround duration

almost perfectly (root mean square error of 9%), which indicates that the GPR

model is able to effectively predict “unknown” actual turnaround duration.

Each coordinate that falls on the red line implies an exact prediction of the

test data by the GPR model, and as such, Fig. 3.8 shows that the GPR model

perfectly predicts actual turnaround periods that lie over six standard deviations

away from the mean.

Table 3.2 shows the values of the optimized hyperparameters (i.e. length-

scales) of refined flight schedule and disruption features for estimating actual

turnaround time. Lower values in Table 3.2 indicate higher importance of fea-

tures for predicting actual turnaround period. Similar to the result from MIR,

turnaround duration adjusted during schedule execution (i.e. ADJST TURN MINS )
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is the most significant epistemic flight schedule feature for predicting actual

turnaround duration, as indicated by its low lengthscale value of approximately

45. Of all the aleatoric features (determinate and indeterminate), disruption

features representing deicing at the gate, lightning strike, turbulence, and hail

and snow damage (all with lengthscale values of 1) are the most significant for

accurately estimating actual turnaround period during schedule execution.

Fig. 3.9 shows the quantile-quantile (QQ) plot of the standard mean error (SME)

between the mean predictions from the GPR model and the test data for actual

turnaround duration. The straight red line in Fig. 3.9 represents the trend line

for a standard normal distribution, and as such, the bi-linear trend for standard

mean error (portrayed by the blue dots) in Fig. 3.9 confirms that the distribution

of actual turnaround period for weather-delayed flight schedules is lognormal.

Categorically, the overlapping trend between the 45-degree red line and the

spread of the coordinates in Fig. 3.8, coupled with the lognormal distribution

trend noted from the QQ plot in Fig. 3.9, validates that the turnaround process

for weather-delayed flight schedules is indeed a Gaussian process. To that effect,

the relationship between the data features (shown in Table 3.2) and the actual

turnaround duration during schedule execution (i.e. target feature) can be

described by a Matern32 covariance function.

Chapter Summary: This chapter provided macroscopic and microscopic sum-

maries of the historical airline scheduling and operations data necessary for creating

high fidelity models for airline disruption management. Through macroscopic anal-

ysis, we identified that over 94% of the irregular operations over a one-year period

(from a major U.S. airline) occurred due to different forms of flight schedule delays.

To that end, we investigated crucial drivers and properties for effectively managing

flight schedule delays through microscopic analysis of weather-delayed flight schedule

data, which also demonstrated a toolbox for applying appropriate machine learning

techniques to enable data-driven simultaneously-integrated recovery during disruption
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management. In the next chapter, we extensively discuss the processes and routines

used to obtain high fidelity data-driven models for simultaneously-integrated recovery.
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4. CREATING INTELLIGENT AGENTS FOR A SIR

PARADIGM IN AIRLINE DISRUPTION MANAGEMENT

Most airlines incorporated computer support for proactively and reactively managing

their operations in the 1970s. However, that support is presently restricted to inform-

ing human managers in the AOCC about the resources available to their functional

roles and domains, and what activities the resources are involved in at a particular

time [47]. As such, the current practice for airline disruption management requires

that actionable decisions are made by human managers (or specialists) in the AOCC

exercising judgement. Human specialists are capable of readily identifying key fac-

tors that can affect the direction of an actionable decision for airline disruption man-

agement. However, human managers can not quickly evaluate copious amounts of

information to make flexible and readily scalable decisions for managing irregular op-

erations [24], and adding more personnel to the functional roles in the AOCC can not

effectively offer nor increase the bandwidth necessary to address this limitation [26].

Hence, there is a need to develop suitable models (i.e. intelligent agents), for assisting

human specialists, to expeditiously generate high quality decisions during disruption

management and operations recovery.

Predictive analytics is an emerging advancement in traditional data analytics that

aims to enable the creation of seamless platforms for making predictions about future

outcomes based upon historical data and appropriate analytics techniques such as

statistical modeling and machine learning [77]. To that effect, predictive analytics

provides an appropriate medium to readily estimate decision-making components of

intelligent domain managers at different instances during airline scheduling, so as to

enable real-time disruption management. Unlike exploratory analysis that reveals

inherent patterns in data, predictive analytics represents a set of business intelligence
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technologies that uncovers forward-looking patterns within flight scheduling and op-

erations data that can be used to predict human decision-making behavior at any

instance in time during airline disruption management [78]. There are two primary

categories of predictive analytics, based upon the manner in which data is mined to

develop an intelligent agent, namely: supervised learning and unsupervised learning.

• Supervised learning : Supervised learning represents the process of utilizing his-

torical data sets on airline operations that contains specific features of interest

(i.e. features to be estimated) to develop intelligent agents that are capable of

predicting future outcomes of the features of interest during disruption manage-

ment. As such, supervised learning requires the appropriation of a subset of the

data for training the intelligent agent, and another data subset for testing and

validating the predictions (i.e performance) of the intelligent agent in new situ-

ations. Primary approaches for training intelligent agents (or models) through

supervised learning include classification, regression, and time-series analysis.

Classification methods distinguish the groups to which different entries in a data

set belong based upon latent data properties. For instance, classification can be

used to teach an intelligent agent how to identify whether or not a specific flight

schedule arrived on time. Regression forecasts future outcomes from past out-

comes by providing an analysis of variance between predicted and actual values

of features of interest. Continuous values for flight schedule features such as

block time, turnaround duration, and delay duration can be estimated through

regression. Similar to regression, time series analysis predicts future outcomes

of continuous values for temporal features by accounting for unique properties

like periodicity of time and calendars. As such, the estimation of exact de-

parture and arrival times in a day, by an intelligent agent, can be facilitated

through time series analysis techniques.

• Unsupervised learning : Unlike supervised learning that primarily relies on a

cache of results imbued in a trained model, unsupervised learning uses descrip-



70

tive statistics [79,80] to assess the natural patterns and associations that occur

among features within a data set and does not predict a value for a target

feature [81]. To that effect, the main objective of unsupervised learning is to

extract and model the underlying structure or distribution of a data set to de-

fine the behavioral properties of an intelligent agent. Unsupervised learning

approaches can be categorized into clustering and association. Clustering is

analogous to classification in supervised learning, but unlike classification, the

grouping of data features into clusters is not defined by dependence on a tar-

get feature, but rather on algorithms defined by specific and implicit statistical

rules. Association addresses problems where the objective is to discover the

rules that describe the interactions between features for large portions of data.

As such, unsupervised learning through association can be used to develop in-

telligent agents capable of predicting sequences of flight schedule features that

represent decision actions during airline disruption management.

The existing integrated recovery paradigms for airline disruption management

employ monolithic system design methods that rely on the development of specific

rules and requirements before a system that meets the specifications is designed [47].

As such, current design methods are unable to readily accommodate additional sys-

tem complexities resulting from the introduction of new capabilities to the system.

Furthermore, existing systems that enable the current practice in airline operations

recovery and disruption management are unable to effectively quantify uncertainty in

decision-making at stable intermediate forms during disruption management [4, 27].

Thus, from an airline scheduling and disruption management perspective, pre-

dictive analytics presents an avenue to create intelligent domain managers for a

simultaneously-integrated recovery paradigm by enabling studies that aim to actively

allow and enhance modular and adaptive decision-making capabilities for intelligent

domain managers [82,83]. To that effect, this chapter extensively discuses the princi-

ples and routines used for learning and predicting long-term behavioral properties and

short-term performance proclivities during airline disruption management, through
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the development of two separate models that define an intelligent manager for a rep-

resentative functional domain in the AOCC. Hence, the uncertainty and predictive

transfer function models (i.e. UTFM and PTFM) are distinct components of an in-

telligent domain manager that define the domain manager’s capacity to efficiently

estimate its disruption resolution actions and performance impact, respectively, for a

disrupted flight schedule.

4.1 Data Preprocessing

Prior to learning and assembling the UTFM and PTFM frameworks to enable

the estimation of uncertainty propagation and resolution performance patterns dur-

ing airline disruption management, it is imperative to define the nature of the airline

data set that will be used to develop the constituent models for intelligent domain

managers. By following the data nomenclature elucidated in Chapter 3, this section

briefly introduces the methods used to abstract and encode data features in the his-

torical scheduling and operations data set to achieve high-fidelity intelligent models.

Table 4.1 shows the data preprocessing methods applied to facilitate the devel-

opment of intelligent agents for airline disruption management. As demonstrated in

Chapter 3, many algorithms for learning artificial intelligence models perform best

with continuous data [84]. Hence, it is necessary to encode all applicable feature values

in the raw data set into functional and relevant continuous data for use in appropri-

ate algorithms. Therefore, temporal data features defined by dates are transformed

into periodic (i.e. sine and/or cosine) vectors based upon the season of the year,

month of the year, day of the week and day of the year, partly based upon the sea-

sonal behavior trends observed from principal component analysis on a data subset

of weather-related disruptions from prior exploratory data analysis in Chapter 3. In

that regard, data features representing geographical locations such as departure and

arrival stations are first transformed into spherical directional vectors based upon the

longitude and latitude coordinates of their corresponding airports, and subsequently
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Table 4.1. Data preprocessing for development of intelligent agents
for disruption management

Raw Data Class First-Degree

Transformation

Second-Degree

Transformation

Refined Data

Type

Geographic

Features

Spherical

directional

vectors, geodesic

distance

Standardization Continuous

Temporal Features Periodic

(Sine/Cosine)

vectors

Standardization Continuous

Categorical

Features

One-hot encoding Standardization Continuous

Continuous

Features

N/A Standardization Continuous

transformed into the distance between the departure and arrival airports on an oblate

spheroid Earth via the Vincenty geodesic equation [56]. Temporal time-of-day events

(e.g. departure and arrival times) are transformed into two separate periodic vectors

of different amplitudes, based upon a 24-hr clock period and the percentage of 8-hr

work shift completed (at the time of departure or arrival) by human specialists in

the AOCC, respectively. The work shift characterization of time-of-day events, via a

periodic vector, is intended to capture and represent daily disruption resolution pro-

clivities of human specialists, which can be induced by how much time the specialists

have to address a disruption before their work shift is complete. Categorical features

in the data set are transformed into sparse matrices through one-hot encoding [57],

and all data features (fields) in the data set are subsequently scaled to obtain a stan-

dard normal distribution (i.e. standardization) to facilitate statistical interpretation



73

and assessment of results obtained from the intelligent models. A complete definition

of all the refined data features used for creating the intelligent agents discussed in

this dissertation can be found in the Appendix A.

The subsequent sections in this chapter provide extensive discussions of the tenets

and techniques employed to develop the uncertainty transfer function model and

predictive transfer function model for an intelligent domain manager (or specialist

agent) in the AOCC.

4.2 Uncertainty Transfer Function Model (UTFM)

From a statistical perspective, the main objective of disruption management is

to eradicate the functional impact of aleatoric uncertainty [85] that stems from ran-

dom occurrence of disruptive events like inclement weather (i.e. uncertainty from

indeterminate aleatoric data features) on optimal schedule execution on the day of

operation. However, the state of the art for attaining the primary objective of air-

line disruption management introduces epistemic uncertainty in resolving disruptions

at each phase of flight when human specialists, with different experience levels and

perspectives, are required to make decisions that will affect the disruption resolu-

tion action implemented in a subsequent flight phase. Although existing approaches

for airline disruption management are capable of mitigating the effect of uncertainty

from indeterminate aleatoric features during scheduled flight operations, they are lim-

ited by the incapacity to explicitly address epistemic uncertainty and its impact on

the quality of resolutions applied for schedule recovery and disruption management.

Advancements in unsupervised learning techniques for big data [30, 31, 86], coupled

with cost-efficient computational data storage platforms [87], have presented an av-

enue for the development and assessment of predictive and prescriptive models to

facilitate the exploration of new approaches for addressing uncertainty during airline

disruption management.
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[9] introduced and demonstrated the first and only published application of

principles from unsupervised learning in airline disruption management that enables

simultaneously-integrated recovery of all problem dimensions. Although [9] provide a

qualitative and quantitative framework for discerning and modeling adaptive decision-

making for airline disruption management, their approach is statistically inefficient

because the model-free environment, wherein intelligent agents interact through rein-

forcement learning [43], does not employ (nor estimate) a predefined flight schedule

and operations model consistent with airline scheduling practices to obtain optimal

disruption resolutions during airline schedule recovery. As a result, their approach re-

quires considerable trial-and-error experience to obtain acceptable estimates of future

consequences from adopting specific disruption resolutions during airline disruption

management. In contrast with the work by [9], our proposed uncertainty transfer func-

tion model (or UTFM) framework leverages real-world historical data to eliminate

the necessity of trial-and-error experience for facilitating simultaneously-integrated

recovery during airline disruption management. Essentially, the UTFM offers a ro-

bust approach that utilizes historical airline data on different rules-of-thumb employed

by human specialists in the AOCC, together with current practices in airline sched-

ule operations and recovery, to effectively quantify and minimize the propagation of

epistemic uncertainty (i.e. uncertainty stemming from epistemic data features) in

decision-making during disruption management.

4.2.1 UTFM Methodology

The debilitating effect of disruptions on the optimal execution of a scheduled

revenue flight becomes more pronounced with increasing number of flight legs [26].

According to the International Air Transport Association (IATA), a scheduled rev-

enue flight is any flight schedule executed by an airline for commercial remuneration

according to a published timetable, and each flight leg in a scheduled revenue flight
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represents an aircraft’s trip from one airport to another airport without any interme-

diate stops.

Figure 4.1. Disruption management for a scheduled flight defined by
a Markov decision process

Every flight leg in a scheduled flight is defined by phases of aircraft activity (or

flight phases) that are influenced by the decision-making activities of multiple air

transportation stakeholders as the aircraft journeys between airports. For an airline,

human specialists located in the AOCC perform important decision-making activities

at respective flight phases during each flight leg in a scheduled flight, where actions

implemented during the most precedent flight leg influence the changes in schedule

and decisions made in subsequent flight legs. Thus, fundamentally, the decision-

making process for managing disruptions in a scheduled flight adheres to the Markov

property [88], as illustrated in Fig. 4.1. Congruently, schedule changes and decisions

at a future flight phase (conditional on both past and present flight phases) during

a flight leg are strictly dependent on the schedule changes and decisions made for

mitigating irregular operations in the present flight phase, and not on the sequence

of schedule changes and decisions made during the flight phases that preceded it.

Problem Formulation as a Relational Dynamic Bayesian Network

We formulate our UTFM framework for airline disruption management as a rela-

tional dynamic Bayesian network (RDBN) [84, 89, 90] wherein the modeling domain

is defined as an airline route network containing multiple related flight schedules that

are routinely executed and randomly disrupted over a certain time frame. The RDBN

architecture provides a generative modeling approach that defines a probability distri-

bution over instances of scheduled (disrupted) flights in an airline route network. By
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employing data features (attributes) that provide a logical description of airline activ-

ities for disruption management coupled with probabilistic graphical model templates

(schema), the RDBN architecture defines the probabilistic dependencies in a domain

across two time slices. Thus, for our RDBN architecture, the following general and

interrelated definitions apply [86,90,91]:

Definition 1 (Dynamic Relational Domain)

Syntax : A term represents any flight phase, flight leg, or flight schedule in an airline

route network domain. A predicate represents any concatenation of attributes or

activities for any term in the domain.

• The dynamic relational domain is the set of constants, variables, functions,

terms, predicates and atomic formulas Q(r1, ..., rn, t) that define an airline route

network, such that each argument ri is a term and t is the time step during

disruption management.

• The set of all possible ground predicates at time t is determined by substituting

the variables in a low-level schema of each argument with constants and sub-

stituting the functions in a high-level schema of each argument with resulting

constants.

Semantics : The state of an airline route network domain at time t during dis-

ruption management is the set of ground predicates that are most likely at time t.

Assumptions :

• The dependencies in an airline route network domain are first-order Markov

such that ground predicates at time t can only depend on the ground predicates

at time t or t− 1.

• A grounding (i.e. referential learning or decoding process) in an airline route

network domain at time t − 1 precedes a grounding at time t, such that this

assumption takes priority over the ordering between predicates in the domain.

Q(r1, ..., rn, t) ≺ Q(r′1, ..., r
′
m, t

′) if t < t′
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Definition 2 (Two-time-slice relational dynamic Bayesian network: 2-TRDBN )

Syntax : The 2-TRDBN is any graph (or schema) that provides a probability distri-

bution on the state of an airline route network domain at time t + 1 given the state

of the domain at time t.

Semantics: For any predicate Q bounded by groundings at time t, we have:

• A set of parents Pa(Q) = {Pa1, ..., Pal}, such that each Pai is a predicate at

time t− 1 or t.

• A conditional probability model for P (Q|Pa(Q)), which is a first-order proba-

bility tree (or a trellis) on the parent predicates.

Assumptions :

• If Pai is at time t, then Pai ≺ Q or Pai = Q.

• If Pai = Q, then its groundings are bounded to those that precede the defined

grounding of Q.

Definition 3 (Relational Dynamic Bayesian Network: RDBN )

Syntax : A RDBN for disruption management is any network pair (N′,N→), such

that N′ is a dynamic Bayesian network (DBN) at time t = 0 and N→ is a 2-TRDBN.

Semantics : N′ characterizes the probability distribution over a relational (airline

route network) domain prior to schedule execution (i.e. at t = 0). Given the state of

the relational domain at a time t during disruption management (or schedule execu-

tion), N→ represents the transition probability distribution on the state of the domain

at time t+ 1.

Assumptions : A term (node) is created for every ground predicate and edges are

added between a predicate and its parents at a time t > 0.

• Parents are obtained from N′ if t = 0, else from N→.

• The conditional probability distribution for each term is defined by a probabilistic

graphical model bounded by a specific grounding of the predicate.
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Figure 4.2. RDBN architecture for a representative flight leg

For the purposes of uncertainty quantification and propagation discussed in this

Chapter, we adapt the aforementioned definitions for a RDBN to construct a UTFM,

such that the modeling domain is for a representative flight leg that is defined by

the probabilistic graphical model (i.e. atomic formula) illustrated by Fig. 4.2. The

flight leg operation sequence (i.e. disruption progression along horizontal axis in

Fig. 4.2) represents the spatiotemporal axis in a multidimensional Markov chain [92]

that describes the order in which (or when) random disruptions (i.e. indeterminate

aleatoric features such as bad weather events) occur during different phases of flight.

As such, the flight leg operation sequence defines the propagation of aleatoric un-

certainty in schedule and operations recovery. The schedule evolution sequence (i.e.

schedule-planning evolution along vertical axis in Fig 4.2) captures epistemic uncer-

tainty in decision-making for operations recovery by characterizing the order in which

(or how) the flight schedule changes with respect to disruption resolutions such as

rules-of-thumb or decision features like delay period applied by human specialists
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on the day of operation. Scheduled events constitute data features (such as depar-

ture times, arrival times, aircraft type, etc.) that define the optimal airline (flight)

schedule for m different flight phases prior to schedule execution.

Furthermore, scheduled events serve as start points in the UTFM architecture

and may also inform the decision-making of human specialists during the resolution

of a specific type of disruption. Unscheduled events represent an updated set of

data features that characterize the adjustment of optimal flight schedule by human

specialists based upon the impact of disruption at m different flight phases during

schedule execution. Unscheduled events provide end points in the UTFM architecture.

Schedule feature states (labeled S in Fig. 4.2) represent functions of data items that

are strictly subject to uncertainty in determinate aleatoric data features with respect

to airline planning and scheduling prior to schedule execution. Decision feature states

(labeled D in Fig. 4.2) represent functions of action items that human specialists

implement during schedule execution to resolve disruptions in the optimal schedule

obtained prior to schedule execution (e.g. delay time, flight swap flag, etc.), while

outcome feature states (labeled O in Fig. 4.2) represent functions of data items that

human specialists use to assess the impact of their decisions after resolving deviations

from the optimal schedule obtained prior to schedule execution. The parameters for

S,D,O, α, β, γ, κ, λ in Fig. 4.2 are obtained by grounding (algorithms in Appendix B)

via hidden Markov models, to determine the schedule evolution and decision-making

proclivities of human specialists at each flight phase during disruption management

for a characteristic flight leg.

4.2.2 Solution Approach for UTFM

We use a solution technique based upon a component assembly process, which

enables generative programming for probabilistic graphical models [86], to calibrate

(ground) the parameters of the multidimensional Markov chain that define the UTFM

introduced in Section 4.2.1. Component assembly is a widely espoused modeling
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paradigm in computer science and software engineering [93], and facilitates the in-

tegration of state components of the UTFM that define separate phases of flight

operation and schedule-recovery evolution in the UTFM architecture. Through gen-

erative programming [94,95], highly customized and optimized intermediate parame-

ters defining each state component and aggregate UTFM parameters, can be created

on demand from elementary and reusable parameters of state components, through

a priori knowledge of the graph structure of the Markov system.

Fig. 4.3 reveals our solution approach to automatic uncertainty quantification

for airline disruption management. The approach starts by abstracting historical

Figure 4.3. Component assembly approach for automatic uncertainty
quantification for disruption management
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airline schedule and operations recovery data into a digestible data set, appropriate for

machine learning algorithms [51,96]. Next, the refined data set is used to learn optimal

probabilistic graphical model parameters of each state component of the UTFM,

before constructing an overarching probabilistic graphical model from the aggregation

of the respective optimized probabilistic graphical models of state components.

For the remainder of this section, we introduce probabilistic graphical modeling

and discuss the role of hidden Markov models for grounding (i.e. calibrating the

parameters) in a probabilistic graphical model representation of the UTFM.

Probabilistic Graphical Modeling

Figure 4.4. Probabilistic graphical model representation of UTFM

Probabilistic graphical modeling provides an avenue for a data-driven approach

to constructing the UTFM architecture, which is very effective in practice [86]. By

employing rudimentary activity guidelines from human specialists in the AOCC for
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airline disruption management, critical components for constructing an intelligent

system such as representation, learning, and inference can be readily inculcated in

the UTFM.

Fig. 4.4 shows the probabilistic graphical model representation of the UTFM

defined by four major phases of flight along the operation sequence axis namely:

Turnaround, Taxi-Out, Enroute, and Taxi-In, while the schedule evolution sequence

axis is defined by three separate phases of schedule changes with respect to airline

planning on day of operation namely: Schedule, Decision, and Outcome. Thus, the

graph structure of the UTFM comprises of 12 distinct component states (nodes) with

12 internal state transitions and 17 external state transitions, such that each com-

ponent state contains a set of combination (interaction) of data features, listed in

Section 4.2.3, that encode the behavioral proclivities of human specialists at different

phases of activity during airline disruption management.

Schedule state components (i.e., TAS, TOS, ES, TIS) in Fig. 4.4 represent an inter-

action of data features that describe the evolution of original (optimal) flight schedule

predetermined prior to schedule execution on day of operation, which would inform

the decision-making of a human specialist in the AOCC during schedule execution.

As such, schedule state components in the UTFM encapsulate epistemic uncertainty

in proactive disruption management prior to schedule execution (i.e., uncertainty

in tactical disruption management). Decision state components in the UTFM (i.e.,

TAD, TOD, ED, TID) define the interaction of data features that describe the ac-

tion items that human specialists implement for resolving specific types of disruption

that occur during schedule execution, and define epistemic uncertainty in reactive

disruption management during rescheduling on day of operation (i.e., uncertainty in

operational disruption management). Outcome state components in Fig. 4.4 (i.e.,

TAO, TOO, EO, TIO) represent the interaction of a set of data features that charac-

terize the original schedule adjusted based upon the impact of disruption resolutions

(i.e. action items) implemented by human specialists during schedule execution, and

therefore define epistemic uncertainty in proactive disruption management for future
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airline scheduling after schedule execution (i.e., uncertainty in strategic disruption

management).

Hidden Markov Models for Probabilistic Graphical Modeling of UTFM

The hidden Markov model (HMM), also known as a transducer-style probabilistic

finite state machine [97], is the simplest class of dynamic Bayesian networks and a

useful tool for representing probability distributions over a sequence of observations

[98, 99]. The hidden Markov model obtains its name from defining two separate but

related characteristics. First, it assumes that the observation at a particular instance

in time was generated by an arbitrary process whose state is hidden from the observer.

Second, it assumes that the state of this hidden process satisfies the Markov property.

To that effect, the hidden Markov model lends an appropriate grounding medium for

solving the learning and inference (decoding) problems [100] for the probabilistic

graphical model representation and construction of the UTFM.

Mathematically, the hidden Markov model is defined as a stochastic process

(Xk, Yk)k≥0 on the product state space (E×F, E ⊗F) if there exist transition kernels

P : E × E → [0, 1] and Φ : E ×F → [0, 1] such that

E(g(Xk+1, Yk+1)|X0, Y0, ..., Xk, Yk) =

∫
g(x, y)Φ(x, dy)P (Xk, dx) (4.1)

and a probability measure µ on E wherein

E(g(X0, Y0)) =

∫
g(x, y)Φ(x, dy)µ(dx) (4.2)

for any bounded and measurable function g : E × F → R. As such, µ represents the

initial measure, P is the transition kernel, and Φ represents the observation kernel of

the hidden Markov model (Xk, Yk)k≥0.



84

HMM Learning

The learning problem for construction of the UTFM is representative of optimiz-

ing the parameters of the pair of dynamic Bayesian networks (N′,N→) defined in

Section 4.2.1 based upon available data, and therefore presents two separate learn-

ing sub-problems: Intra-State HMM learning and Inter-State HMM learning. Hence,

Intra-State HMM learning and Inter-State HMM learning characterize the grounding

process for obtaining optimal parameters for N′ and N→ respectively. Specifically,

Intra-State HMM learning represents the ability to effectively determine appropriate

interaction patterns (i.e. transition likelihood) for hidden data features (subject to

epistemic uncertainty) which are embedded in each state component of the UTFM

shown in Fig. 4.4, based upon observing data features (i.e. observations) that are

strictly subject to uncertainty from determinate or indeterminate aleatoric features

observed at any phase of activity during airline disruption management. Some ex-

amples of data features that represent observations for Intra-State HMM learning of

state components in the UTFM include total distance between origin airport and des-

tination airport, and total number of passengers (i.e. demand for air travel) available

for flight before and after schedule execution. Thus, the primary objective of Intra-

State HMM learning is to achieve an optimal HMM (probability distribution mixture

model) that is capable of efficiently predicting the likelihood of remaining at a par-

ticular phase of activity (i.e. state component) in the UTFM for airline disruption

management.

Inter-State HMM learning, on the other hand, characterizes the ability to ascertain

the interaction or transition patterns between any two neighboring state components

(phases of activity) in the UTFM, wherein data features (listed in Section 4.2.3)

embedded in the state component at the future (posterior) phase of activity in the

UTFM are set as observations while data features embedded in the state component

at the current (prior) phase of activity are set as hidden states. As such, the primary

objective of Inter-State HMM learning is to attain an optimal HMM (probability
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distribution mixture model) that is capable of accurately predicting the likelihood of

transitioning between present and future phases of activity (i.e. state components)

in the UTFM.

1. Compute

Q(θ, θ′) =
∑
z=Z̄

log[P (X, z; θ)]P (z|X; θ′) (4.3)

2. Set

θ′+1 = arg max
θ

Q(θ, θ′) (4.4)

The Baum-Welch algorithm [101] is a dynamic programming approach that uses

the expectation maximization (EM) algorithm [102] to find the maximum likelihood

estimate of the parameters of an HMM given a set of observations. The Baum-Welch

algorithm presents a convenient means for learning the optimal parameters (i.e. state

transition and emission probabilities) of an Intra-State or Inter-State HMM, because

it guarantees that the optimal parameters of the HMM are easily estimated in an

unsupervised manner during training by utilizing unannotated observation data [103].

In essence, the Baum-Welch algorithm described by steps in Equations 4.3 and 4.4,

Figure 4.5. Intra-state HMM schema for remaining in an activity phase in UTFM
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where X, Z̄, and θ are the latent state space, observation space, and initial HMM

parameters respectively, is an iterative procedure for estimating θ′ until convergence,

such that each iteration of the algorithm is guaranteed to increase the log-likelihood

of the data. However, convergence to a global optimal solution is not necessarily

guaranteed [101].

Fig. 4.5 reveals the general schema for learning the optimal parameters of an

Intra-State HMM. The circles and squares in Fig. 4.5 represent the hidden (latent)

states (i.e. data features subject to epistemic uncertainty) and observations (i.e. data

features which are representative of aleatoric uncertainty) respectively. The learning

objective for the Intra-State HMM schema in Fig. 4.5 is to use the Baum-Welch

algorithm to find the optimal HMM parameters, which are the solid and dashed arrows

that represent state transition probabilities and emission probabilities respectively.

Fig. 4.6 shows a generic schema for learning the optimal parameters of a typical

Inter-State HMM, essential for predicting the likelihood of transitioning from one ac-

tivity phase to another activity phase across both spatiotemporal axes in the UTFM.

The circles labeled ‘EPIST FEAT A’ and ‘EPIST FEAT B’ in the Inter-State HMM

Figure 4.6. Inter-state HMM schema for transitioning between activ-
ity phases in UTFM
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schema, shown in Fig. 4.6, represent epistemic data features embedded in current

activity phase A (i.e. hidden states) and future activity phase B (i.e. observations),

respectively, in the UTFM. Similar to the Intra-State HMM, the learning objective for

the Inter-State HMM schema depicted by Fig. 4.6 is to use the Baum-Welch algorithm

to find the optimal HMM parameters, which are the solid and dashed arrows that

represent the state transition probabilities and emission probabilities respectively.

Unlike the Intra-State HMM schema where hidden states represent data features

subject to epistemic uncertainty for disruption management and observations rep-

resent data features subject to aleatoric uncertainty, both hidden states and obser-

vations in the Inter-State HMM schema are representative of data features subject

to epistemic uncertainty for disruption management. Thus, the overarching objec-

tive of an optimal Intra-State HMM is to accurately and expeditiously quantify the

epistemic uncertainty at a specific phase of activity in the UTFM, while the overall

objective of an optimal Inter-State HMM is to precisely predict the propagation of

epistemic uncertainty between different phases of activity in the UTFM, for robust

airline disruption management.

HMM Inference

Upon learning optimal parameters of Intra-State and Inter-State hidden Markov

models, which define proactive and reactive behavioral patterns of human specialists

at different stages of airline disruption management in the UTFM, it is imperative to

conduct inference on the models to complete the assembly of the UTFM for effectively

predicting uncertainty propagation patterns for airline disruption management. Sim-

ilar to the learning problem, the inference problem for the assemblage of the UTFM

is defined by two separate sub-problems: component UTFM decoding and aggregate

UTFM decoding. Component UTFM decoding, defines the capacity of both Intra-

State and Inter-State hidden Markov models for obtaining the most probable sequence

of hidden (epistemic) data features in both types of HMMs, based upon (aleatoric or
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epistemic) observation data features necessary for decoding in their respective schema

illustrated in Figs. 4.5 and 4.6. Thus, the primary objective of component UTFM

decoding problem is to provide the maximum likelihood estimates of the most proba-

ble sequence of hidden data features from optimal Intra-State and Inter-State HMMs

upon inputting appropriate observation data features.

Aggregate UTFM decoding, on the other hand, describes the ability of the amal-

gamation of all Intra-State and Inter-State HMMs that constitute the UTFM, to

precisely estimate the quantification and propagation of epistemic uncertainty at all

phases of activity in the UTFM, based upon observing the maximum likelihood esti-

mates of the most probable sequence of hidden data features retrieved from optimal

Intra-State HMMs in the UTFM by way of component UTFM decoding. As such,

a complementary objective of aggregate UTFM decoding problem is to obtain the

parameters for S,D,O, α, β, γ, κ, λ as shown in Fig. 4.2, by estimating the weighted

average of the maximum likelihood estimates of the most probable sequence of hid-

den data features retrieved from all optimal Intra-State and Inter-State HMMs upon

observing their respective input data features (i.e. observations).

x∗ = arg max
x

P (z, x|θ′) (4.5)

The Viterbi decoding algorithm [104, 105] is a proven dynamic programming al-

gorithm that performs the HMM inference of the most probable sequence of hid-

den states (and its corresponding likelihood) based upon a specific sequence of ob-

servations, ultimately solving both the component and aggregate UTFM decoding

sub-problems respectively. In principle, the Viterbi decoding algorithm defined by

Equation 4.5, where x, z, and θ′ represent sequence of hidden states, sequence of ob-

servations, and an arbitrary HMM respectively, uses a recursive (backtracking search)

procedure for obtaining the optimal sequence of hidden states from the total num-

ber of possible sequences of hidden states for a specific sequence of observations, by

selecting the sequence of hidden states that has the highest probability based upon

maximum likelihood estimations from the arbitrary HMM [105]. As such, the Viterbi
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decoding algorithm provides an efficient method for avoiding the explicit enumeration

of all possible combinations of sequences of hidden states (i.e. concatenations of data

features) while identifying the optimal sequence (i.e. Viterbi path) of hidden states

with the highest probability of occurrence or least uncertainty [106].

In summary, from a UTFM assemblage perspective, the underlying objective of

component UTFM decoding is to perform inference on all optimal Intra-State and

Inter-State HMMs that define the UTFM, by implementing the Viterbi decoding al-

gorithm to effectively estimate the likelihood (Viterbi probability) of the most likely

sequence of hidden states (data features) based upon observing appropriate data fea-

tures (observations), as shown in Figs. 4.5 and 4.6. By extension, the overall objective

of aggregate UTFM decoding is to apply the Viterbi algorithm for determining the

most likely sequence of state components that describes the propagation of epistemic

uncertainty at different phases of activity in the UTFM shown in Fig. 4.4. The state

transition parameters of a representative probabilistic finite state machine for the

UTFM are weighted averages of the Viterbi probabilities obtained via component

UTFM decoding that satisfy the properties of a stochastic matrix [107].

4.2.3 Computational Setup and Analysis

We now discuss the computational framework for generating state components of

the probabilistic graphical model representation of the UTFM (shown in Fig. 4.4),

which is used to predict epistemic uncertainty propagation during decision-making for

airline disruption management. Prior to implementing the Baum-Welch and Viterbi

algorithms to learn and decode useful HMMs for determining authentic likelihoods of

internal and external transitions amongst different state components in the UTFM,

raw historical airline data, necessary for enabling the application of algorithms for

the development of these probabilistic graphical models, is first refined by follow-

ing the data abstraction and feature engineering guidelines described in Section 4.1.

Following data pre-processing and refinement, models are subsequently implemented
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through learning and decoding in the Python programming language and facilitated

by pomegranate [108], by utilizing a 56-core workstation running at 2.60 GHz with

192 GB of RAM.

Table 4.2.: List of features for Intra-State HMMs in

UTFM.

Intra-State HMM for

UTFM

Hidden States (Latent Data

Features)

Observations (Ob-

served Data Features)

TAS (Turnaround Sched-

ule)

SWAP FLT FLAG,

SCHED ACFT TYPE,

SCHED TURN MINS,

tod sched PB

RTE, FREQ, PAX DMD

TOS (Taxi-out Schedule) taxi out, tod actl TO,

sched block mins

RTE, FREQ, PAX DMD

ES (Enroute Schedule) actl enroute mins, tod actl LD,

sched block mins

RTE, FREQ, PAX DMD

TIS (Taxi-in Schedule) taxi in, tod sched GP,

sched block mins

RTE, FREQ, PAX DMD

TAD (Turnaround Deci-

sion)

shiftper sched PB, AD-

JST TURN MINS, DELY MIN,

SWAP FLT FLAG

ORIG, DEST, FREQ,

PAX DMD, DISRP

TOD (Taxi-out Decision) late out vs sched mins, shift-

per actl PB, DELY MIN

ORIG, DEST, FREQ,

PAX DMD, DISRP

ED (Enroute Decision) shiftper actl TO, shiftper actl LD,

DOT DELAY MINS

ORIG, DEST, FREQ,

PAX DMD, DISRP

TID (Taxi-in Decision) DOT DELAY MINS, shift-

per sched GP, shiftper actl GP

ORIG, DEST, FREQ,

PAX DMD, DISRP
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TAO (Turnaround Out-

come)

SWAP FLT FLAG,

ACTL ACFT TYPE,

ACTL TURN MINS, tod actl PB

RTE, FREQ, PAX DMD

TOO (Taxi-out Out-

come)

taxi out, tod actl TO,

actl block mins

RTE, FREQ, PAX DMD

EO (Enroute Outcome) actl enroute mins, tod actl LD,

actl block mins

RTE, FREQ, PAX DMD

TIO (Taxi-in Outcome) taxi in, tod actl GP,

actl block mins

RTE, FREQ, PAX DMD

4.2.4 UTFM Input and Output Features

Table 4.3.: List of features for Inter-State HMMs in

UTFM.

Inter-State HMM for

UTFM

Hidden States Observations

TAS → TOS SWAP FLT FLAG,

SCHED ACFT TYPE,

SCHED TURN MINS,

tod sched PB

taxi out, tod actl TO,

sched block mins

TOS → ES taxi out, tod actl TO,

sched block mins

actl enroute mins,

tod actl LD,

sched block mins

ES → TIS actl enroute mins, tod actl LD,

sched block mins

taxi in, tod sched GP,

sched block mins
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TAD → TOD shiftper sched PB, AD-

JST TURN MINS, DELY MIN,

SWAP FLT FLAG

late out vs sched mins,

shiftper actl PB,

DELY MIN

TOD → ED late out vs sched mins, shift-

per actl PB, DELY MIN

shiftper actl TO,

shiftper actl LD,

DOT DELAY MINS

ED → TID shiftper actl TO, shiftper actl LD,

DOT DELAY MINS

DOT DELAY MINS,

shiftper sched GP, shift-

per actl GP

TAO → TOO SWAP FLT FLAG,

ACTL ACFT TYPE,

ACTL TURN MINS, tod actl PB

taxi out, tod actl TO,

actl block mins

TOO → EO taxi out, tod actl TO,

actl block mins

actl enroute mins,

tod actl LD,

actl block mins

EO → TIO actl enroute mins, tod actl LD,

actl block mins

taxi in, tod actl GP,

actl block mins

TAS → TAD SWAP FLT FLAG,

SCHED ACFT TYPE,

SCHED TURN MINS,

tod sched PB

shiftper sched PB, AD-

JST TURN MINS,

DELY MIN,

SWAP FLT FLAG

TOS → TOD taxi out, tod actl TO,

sched block mins

late out vs sched mins,

shiftper actl PB,

DELY MIN

ES → ED actl enroute mins, tod actl LD,

sched block mins

shiftper actl TO,

shiftper actl LD,

DOT DELAY MINS
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TIS → TID taxi in, tod sched GP,

sched block mins

DOT DELAY MINS,

shiftper sched GP, shift-

per actl GP

TAD → TAO shiftper sched PB, AD-

JST TURN MINS, DELY MIN,

SWAP FLT FLAG

SWAP FLT FLAG,

ACTL ACFT TYPE,

ACTL TURN MINS,

tod actl PB

TOD → TOO late out vs sched mins, shift-

per actl PB, DELY MIN

taxi out, tod actl TO,

actl block mins

ED → EO shiftper actl TO, shiftper actl LD,

DOT DELAY MINS

actl enroute mins,

tod actl LD,

actl block mins

TID → TIO DOT DELAY MINS, shift-

per sched GP, shiftper actl GP

taxi in, tod actl GP,

actl block mins

Table 4.2 and Table 4.3 reveal the hidden states (latent output features) and

observations (observed input features) for all Intra-State and Inter-State HMMs, re-

spectively, that constitute an aggregate HMM which defines the UTFM. The selec-

tion of specific hidden and observation data features, for all Intra-State and Inter-

State HMMs that define the UTFM, was informed partly by literature [109–111],

exploratory data analysis discussed in Chapter 3, and partly by discussions with hu-

man experts at the AOCC of the US airline that provided the raw historical data.

We adopted this hybrid feature selection approach to ensure that data features which

are appropriately relevant at a specific phase of activity in the UTFM are parameters

of the corresponding HMM that represents that phase of activity for airline schedule

planning and disruption management.

For Intra-State HMMs listed in Table 4.2, observations (i.e. observed aleatoric

data features) are defined by data features that are strictly subject to aleatoric

uncertainty with respect to how often they are considered, by human specialists,



94

in order to attain optimal schedules during the airline scheduling process shown in

Fig. 1.1. Therefore, observations for Intra-State HMMs, listed in Table 4.2, include

data features that represent the following: origin airport location and flight origin

(ORIG), destination airport location (DEST), flight operating period in a calendar

year (FREQ), route distance between origin and destination airports (RTE), number

of passengers available for flight (PAX DMD), and random disruption types such as

inclement weather (DISRP). ORIG, DEST, FREQ, RTE, and PAX DMD represent

determinate aleatoric features that are determined by the airline, which are subject to

aleatoric uncertainty at all phases of activity in the UTFM. As such, these features are

indicative of the uniqueness of a particular flight schedule with respect to the airline

route network. DISRP represents indeterminate aleatoric features that are subject

to uncertainty which can not be readily controlled by an airline, and thus represent

pure aleatory in airline disruption management. Hidden states (i.e. epistemic output

data features) for Intra-State HMMs represent data features that are strictly sub-

ject to epistemic uncertainty with respect to the concatenation (interaction) of latent

data features with the highest probability of occurrence, which indicate the activity

patterns of human specialists (i.e. decision-making) for attaining optimal schedules

during the airline scheduling process.

For Inter-State HMMs listed in Table 4.3, observations (i.e. observed epistemic

data features) represent data features that are strictly subject to epistemic uncer-

tainty with respect to the Viterbi probability (i.e. probability of the most likely

sequence of latent data features estimated by an Intra-State HMM) at an immedi-

ate future phase of activity in the UTFM, while hidden states (i.e. latent epistemic

data features) represent data features whose concatenations are strictly subject to

epistemic uncertainty with respect to the Viterbi probability estimated by a charac-

teristic Intra-State HMM in the present phase of activity in the UTFM during airline

schedule planning and disruption management.
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Figure 4.7. Phases of disruption management with respect to schedule execution

4.2.5 UTFM Learning

Defining Hidden States and Observations

Fig. 4.7 reveals a one-dimensional spatiotemporal representation of the UTFM

reduced along the operation sequence axis (i.e. arbitrary column in Fig. 4.2). Yellow

plates, indicated by SCHD FEAT, DESN FEAT, and OUT FEAT in Fig. 4.7, are

representative of epistemic data features which define separate hidden states for Intra-

State HMMs at each phase of flight operation along the operation sequence axis (i.e.

Turnaround, Taxi-Out, Enroute, and Taxi-In) in the UTFM detailed in Fig. 4.4. In
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that regard, SCHD FEAT represents data features that define hidden states for TAS,

TOS, ES, and TIS Intra-State HMMs in the UTFM; DESN FEAT represents data

features that define hidden states for TAD, TOD, ED, and TID Intra-State HMMs,

while OUT FEAT is representative of data features that define hidden states for

TAO, TOO, EO, and TIO states in the UTFM. Green and red plates in Fig. 4.7

are representative of uncertainty from determinate and indeterminate and aleatoric

features for disruption management respectively, which define observations (inputs)

for all Intra-State HMMs in the UTFM.

Data Segmentation for Learning

We employ the two separate lots of data in the full data set, defined in Chapter 3 as

the non-disrupted and disrupted data sets, to learn optimal parameters of all HMMs

that define different phases of activity for disruption management in the UTFM.

The non-disrupted data set contains six hundred and twenty thousand instances of

flight schedules in the airline network that executed as originally planned between

September 2016 and September 2017. As such, the non-disrupted data set contains

appropriate latent (hidden) and observation data features for flight schedules that

executed without any uncertainty from indeterminate aleatoric features (i.e. random

disruption features). Thus, we use the non-disrupted data set to calibrate Intra-State

HMMs that define the tactical and strategic (i.e. Schedule and Outcome) phases of

activity for disruption management in the UTFM. Unlike the non-disrupted data set,

the disrupted data set contains all instances of flight schedules that executed through

irregular operations due to delays in the airline route network from September 2016 to

September 2017. Hence, the disrupted data set comprises of instances of flight sched-

ules that executed with uncertainty from indeterminate aleatoric features over a one

year period for separate functional roles in the AOCC. Therefore, we conduct Intra-

State HMM learning for operational disruption management (i.e. Decision activity

phases in the UTFM) by utilizing the disrupted data set. Similarly, we also utilize
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the disrupted data set to learn the optimal parameters of all Inter-State HMMs along

the operation sequence and schedule-change sequence axes in the UTFM for separate

functional roles in the AOCC. To demonstrate the application of the UTFM in this

Chapter, we only consider disruptions due to weather-related events (i.e. UTFM for

the Weather functional role). As such, the non-disrupted data set is used to cal-

ibrate the Intra-State HMMs for tactical and strategic disruption management; a

disrupted data set, with over twelve thousand instances of delayed flight schedules

due to weather-related disruptions, is used to calibrate the Intra-State HMMs for

operational disruption management and all Inter-State HMMs respectively. All dis-

rupted and non-disrupted data sets used for training and validation are instantiated

and segmented by using a random seed of 42 to ensure reproducible models.

Learning and Validation

Intra-State and Inter-State HMM learning for the development of the UTFM

is implemented first by fitting data feature samples for hidden states to standard

normal probability distributions that define the components of the initial measure of

the UTFM. Next, samples (set) of observed data features are grouped as observations

and the initial HMM state transition parameters are set as uniform distributions based

upon the total number of hidden states, before invoking the Baum-Welch algorithm

set to a convergence criterion of 1e−9. We perform a 5-fold cross validation [112] of

Baum-Welch training on the sets of observations by examining marginal probability

distributions of latent states across different folds to ensure modeling uniformity and

generalizability, for approbation of a candidate optimal Intra-State or Inter-State

HMM trained on the complete set of observations. The cross validation technique

is used to assess the performance (goodness) of a trained HMM (for the UTFM) for

estimating the likelihood of new observation (input) data, by verifying that the sums

of the log likelihood of an appropriate test set of observations across each of the five

folds and corresponding state probability distributions are consistent [113].
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4.2.6 UTFM Decoding

Upon utilizing refined training data to learn the optimal parameters for Intra-

State and Inter-State HMMs, a hidden Markov model (i.e. probabilistic finite state

machine) representation of the UTFM is assembled to enable the decoding of new

(unseen) data that represent disrupted flight schedules, by setting the weighted esti-

mates of Viterbi probabilities estimated from all Intra-State and Inter-State HMMs

as parameters of the aggregate left-right HMM that represents the UTFM, before

applying the Viterbi algorithm to decode (predict) the most likely sequence of state

components (i.e. phases of activity during airline disruption management) in the

UTFM due to observed inputs from a typical disrupted flight schedule.

Intra-State HMM Decoding

Fig. 4.8 shows an optimal state transition graph for hidden state features from a

trained Intra-State HMM for remaining in the Turnaround Decision (TAD) phase of

activity in the UTFM. Based upon the graph shown in Fig. 4.8, a specialist agent

Figure 4.8. State transition graph of optimal Intra-State HMM for
remaining in turnaround decision (TAD)



99

will commence decision-making for the turnaround phase of activity in the UTFM for

operational disruption management first by assessing how much time there is until

the scheduled aircraft pushback time, before considering (transitioning) to adjust the

aircraft turnaround time (i.e. start probability of 1 and transition probability of 1).

In the less likely event that the specialist agent does not return to assessing the time

remaining prior to the scheduled aircraft pushback, a consideration to swap the air-

craft is most likely (transition probability of 0.18) and there is a 77% likelihood that

the process to swap the aircraft type will continue throughout the turnaround phase

of flight operation during operational disruption management. Fig. 4.8 reveals that

there is almost no prerogative for the specialist agent to consider delaying aircraft

pushback time after swapping aircraft during the turnaround phase of flight opera-

tion for operational disruption management, as evidenced by the negligible transition

probability of 1%.

Inter-State HMM Decoding

Fig. 4.9 shows an optimal state transition graph for hidden state features from

a trained Inter-State HMM for transitioning from the Turnaround Decision (TAD)

phase of activity to the Turnaround Outcome (TAO) phase of activity in the UTFM.

From the graph shown in Fig. 4.9, a specialist agent will most likely commence the

transitioning from operational decision-making for the turnaround phase of activity to

strategic (proactive) decision-making for a future turnaround phase of activity in the

UTFM for disruption management, first by assessing flight swap (start probability of

0.92 and internal state probability of 0.38), before a most likely transition to consider

adjusting aircraft turnaround time (transition probability of 0.47 and internal state

probability of 0.07). In the much less likely event that the specialist agent commences

the transition to strategic disruption management by considering delay time before

pushback first (start probability of 0.08 and internal state probability of 0.07), there

is a 57% likelihood that the decision to adjust the turnaround time will follow, and
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Figure 4.9. State transition graph of optimal Inter-State HMM for
transition from turnaround decision (TAD) to turnaround outcome
(TAO)

transitioning for strategic disruption management of the turnaround phase of future

flight operation concludes by assessing the work shift (time available) for the next

aircraft pushback schedule (end probability of 0.91 and internal state probability of

0.09).

Unlike the ergodic structure of the optimal state transition graph for the TAD

Intra-State HMM represented in Fig. 4.8, the optimal state transition graph for the

Inter-State HMM for transitioning between TAD and TAO phases of activity in the

UTFM (depicted in Fig. 4.9) is modeled as a non-ergodic structure by introducing

an absorption state (i.e. ‘end’ state) to characterize a definite transition process

between both phases of activity. Thus, we apply ergodic (and non-ergodic) properties
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to determine the optimal parameters of all Intra-State and Inter-State HMMs that

constitute different phases of activity in the UTFM.

4.2.7 UTFM Results

We now evaluate two distinct flight schedules, impacted by two different kinds of

weather-related disruptions (i.e. uncertainty from indeterminate aleatoric features),

which represent two separate samples from disrupted test (unseen) data set, by em-

ploying the UTFM (operation-schedule framework) for airline disruption manage-

ment. We selected these flight schedules as candidate test subjects for our demon-

stration because they represent major routes in the network of the US airline carrier

that provided the data which enabled the development of the UTFM. For our assess-

ments, we implement an aggregate non-ergodic HMM representation of the UTFM,

such that the disruption management process strictly starts at Turnaround Schedule

(TAS) phase of activity and ends at Taxi-In Outcome (TIO) phase of activity.

Figure 4.10 shows the probabilistic graphical model representation of the UTFM

for disruption management on the operation of a typical flight from Dallas to Houston

(DAL-HOU), which was disrupted by air traffic control (ATC) hold for bad weather

at Dallas (i.e. HDO6 delay code). Figure 4.10 reveals that there is a 100% likelihood

that a specialist agent transitions to employ reactive disruption management measures

from tactical disruption management measures during the turnaround phase of flight

operation at Dallas (100% transition probability from TAS to TAD). As such, to

effectively resolve the same disruption instance in the future, the most likely approach

is adjust or update features in the turnaround, taxi-out and enroute phases of flight

operation accordingly, as evidenced by internal state probabilities of 16%, 6%, and 3%

for remaining in the TAO, TOO, and EO phases of activity respectively. Furthermore,

Figure 4.10 reveals that tactical disruption management measure implemented for the

turnaround flight phase to address the ATC hold for inclement weather at Dallas for

that particular Dallas to Houston flight was ineffective, as evidenced by the lack
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Figure 4.10. Probabilistic graphical map for UTFM assessment of a
specific disrupted DAL-HOU flight

of transition from the turnaround phase of flight operation to the taxi-out phase

of operation (i.e. zero probability of transition from TAS to TOS). As such delays

were most likely incurred during the turnaround phase of operation while executing
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that particular flight from Dallas to Houston. However, tactical initiatives proved

somewhat effective during the taxi-out, enroute, and taxi-in phases of activity for

disruption management of the Dallas to Houston flight, affirmed by internal state

probabilities (i.e. interaction of hidden data features in Intra-State HMMs) of 4%,

3%, and 10% for remaining in the TOS, ES, and TIS phases of activity respectively.

Figure 4.11 shows the probabilistic graphical model representation of the UTFM

for disruption management on the operation of a typical flight from Chicago to Boston

(MDW-BOS), which was disrupted by ATC hold for bad weather en route to or at

Boston (i.e. HDO7 delay code). Figure 4.11 affirms that it is more likely that the

tactical disruption management measures a specialist agent employs for disruption

management of bad weather at Boston are proactively effective for the turnaround

and taxi-out phases of flight operation, as indicated by internal state probabilities

of 0.16 and 0.57 for TAS and TOS respectively and zero likelihood of transitions

from those states to TAD and TOD respectively. Even though the tactical disruption

management measures for addressing the inclement weather disruption at Boston in

the enroute and taxi-in phases of activity are somewhat effective, there may be situ-

ations where decision-making for reactive disruption management at the enroute and

taxi-in phases of activity during schedule execution may prove useful; as evidenced

by the state transition probabilities of 0.16 and 0.59 from ES to ED and TIS to TID

respectively. Furthermore, Figure 4.11 reveals that the proactive tactical disruption

management measures for the turnaround and taxi-out phases of operation, imple-

mented prior to departure from Chicago, were optimally effective for resolving ATC

delay at Boston, as there are no transitions from TAS to TAD and TOS to TOD

phases on activity in the UTFM. As such delays during the flight were accrued at

the enroute and taxi-in phases of operation during disruption management. How-

ever, the UTFM representation from Figure 4.11 reveals that strategic disruption

management initiatives to improve the future disruption resolution for this particu-

lar flight from Chicago to Boston, due to uncontrollable aleatoric uncertainty from

inclement weather at Boston, do exist for turnaround, taxi-out and enroute phases



104

Figure 4.11. Probabilistic graphical map for UTFM assessment of a
specific disrupted MDW-BOS flight

of flight operation; as indicated by internal state probabilities of 17%, 60%, and 64%

for remaining in the TAO, TOO, and EO phases of activity respectively.
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4.3 Predictive Transfer Function Model (PTFM)

Many models for the processes that affect different flight phases are defined by

explicit objective functions, decision variables, and constraints, through optimization

methods that impose a set of airline business rules at each phase of flight schedule

execution from aircraft boarding at the origin airport to aircraft gate-parking at the

destination airport [2]. As such, these optimization methods place an inherent re-

striction on the search rules that are used to obtain a feasible solution for a flight

schedule feature, thereby enabling a parochial routine for estimating values of rele-

vant flight schedule features during disruption management. Some of these models

provide decent estimates of different flight schedule features for reactive disruption

management during schedule execution [20, 114, 115]. However, their solution pro-

cesses require considerable amount of time to evaluate the objectives and constraints

posed by unscalable local and global routines that define the optimization of a mono-

lithic system.

Current research and practices on airline disruption management have primar-

ily focused on minimizing flight delay propagation in the air transportation network

during reactive disruption management, by attempting to predict flight delay and its

effect on flight schedule management by heuristically studying rudimentary mecha-

nisms (i.e. rules) of operation in the air transportation network [116–119]. Moreover,

the recent emergence of data-driven methods have provided avenues to readily dis-

cover and approbate air transportation mechanisms that enable the estimation of

flight delay directly through data mining, in lieu of exploring existing flight delay

propagation mechanisms [120]. As such, the status quo for evaluating the perfor-

mance of disruption resolutions during airline disruption management rely on the

precision and accuracy in estimating flight delay duration. While flight delay dura-

tion provides a credible performance metric (or proxy) for assessing reactive disruption

management (i.e corrective actions) during schedule execution, it can not provide the

criteria necessary to readily evaluate the performance of disruption management ini-
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tiatives obtained and implemented during the strategic and tactical phases of disrup-

tion management prior to schedule execution. In that regard, many airlines (including

Southwest Airlines) spend considerable amount of time and resources in scheduling

block time and turnaround duration during proactive airline scheduling before sched-

ule execution, in order to alleviate flight delays during schedule execution on day of

operation [111].

For many years, senior management in the AOCC at many airlines have argued

that the measure of the performance of a corrective action for resolving a specific

disruption event is only viable for reactive disruption management during schedule

execution. As such, there are several industry-wide metrics that human specialists in

the AOCC use to examine the quality of their corrective actions for disrupted flight

schedules during irregular operations. Some of these metrics include [47]:

• Re-accommodation time period required for all passengers on a disrupted flight

schedule

• Time period required to create a plan of delays (or cancellations) that will

enable the resumption of a disrupted flight schedule.

• The capacity for a disrupted flight schedule to depart exactly as scheduled, and

arrive on schedule or within 14mins of original schedule.

• The amount of delayed or canceled flight legs in a flight schedule.

Although each of the aforementioned metrics is relevant for improving the quality

of disruption management solutions over time, every one of them only addresses an

aspect of mitigation approaches for irregular operations during schedule execution.

As such, to enable an objective and all-inclusive methodology that conclusively mea-

sures the performance of irregular operations for a disrupted flight schedule, it is

imperative that a candidate intelligent agent for airline disruption management is

capable of expediently estimating the performance of alternative disruption resolu-

tions (or flight schedules) by applying multiple performance metrics. To that effect,
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supervised learning techniques provide a suitable medium for creating models that

can promptly estimate useful target features for appraising the performance of dis-

ruption resolution initiatives at different phases of disruption management during the

airline scheduling process. Thus, our proposed predictive transfer function model (or

PTFM) offers a complete routine that mines historical data on flight schedules and

their corresponding performance on airline resource management to calibrate func-

tional structures (i.e., find and apply new search rules), which represent efficient tools

for an intelligent domain manager. These tools enable prompt and precise estima-

tion of appropriate measures of performance for disruption resolutions (i.e. alternate

flight schedules) during strategic, operational, and tactical phases of disruption man-

agement.

4.3.1 PTFM Methodology

From a passenger’s perspective, considerable evaluation of the quality of service

provided by an airline during the journey from an origin airport station to a destina-

tion airport station starts from aircraft boarding at the departure station’s gate and

ends upon aircraft parking at the arrival station’s gate [110]. As such, airlines aim to

ensure optimal efficiency in the operational processes that ensue during the events in

the flight execution horizon shown in Fig. 4.12.

Figure 4.12. Timeline horizon during flight schedule execution
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Hence, there are two primary stages during the execution of a characteristic flight

schedule on day of operation, based upon an airline’s resource capacity to serve its

customers (i.e. passengers). The first stage, known as flight capacity management,

defines the airline’s ability to effectively load and unload an aircraft with passengers

and necessary flight provisions (such as food and drinks), while intermittently con-

ducting minor aircraft servicing tasks. Thus, from an airline operations perspective,

the main objective of flight capacity management is to precisely estimate the time

period required to complete the aircraft boarding (and deplaning) process during

flight schedule execution, which is also known as turnaround duration as shown in

Fig. 4.12. As such, a secondary objective of flight capacity management is to minimize

unnecessary holdup (i.e. tactical delay) during the turnaround process.

The second stage of flight schedule execution also known as flight service man-

agement defines the capacity of the airline and other air transportation stakeholders

(such as air traffic control) to efficiently move the aircraft (loaded with passengers)

from a designated gate at the departure airport station to a paritcular gate at the

arrival airport station. To this effect, flight service management can be divided into

three separate periods during schedule execution as shown in Fig. 4.12, based upon

the management of aircraft operations, namely: Taxi-out, Enroute, and Taxi-in [110].

Taxi-out represents the time and process used to move the aircraft from the gate to

the runway at the departure airport prior to takeoff, enroute represents the duration

and process where the aircraft is airborne as it makes its way to the destination air-

port, and taxi-in represents the duration and process used to transport the aircraft

from the runway to the gate at the arrival airport. As such, the main objective of

flight service management is to accurately estimate the duration (i.e block time) be-

tween the time when the aircraft pushes back from the departure gate at the origin

airport and the time when the aircraft parks in the arrival gate at the destination

airport. In complement, a secondary objective of flight service management is to min-

imize discretionary holdup (i.e. strategic delay) during the pushback of an aircraft

from the departure airport gate to the parking of the aircraft at the arrival airport
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gate during irregular operations. To this end, the estimation of turnaround duration

and block time present a predictive modeling problem for airline resource capacity

(i.e. flight capacity and flight service) management during schedule execution and

disruption management.

Problem Formulation as an Artificial Neural Network

We formulate our PTFM framework for airline disruption management based upon

the underlying principles of an artificial neural network (ANN). The artificial neural

network is a data structure inspired by a framework of biological neurons in living

organisms like the human brain, wherein each neuron is a unit that performs a simple

task characterized by responding to an input signal. However, a connected network

of neurons (such as the human brain) is capable of completing complex tasks and

processes with impeccable speed and accuracy [121]. Similar to the biological neural

network, an ANN for airline resource capacity management during irregular opera-

tions represents a connection of nodes that are analogous to neurons that implicitly

describe the physical processes of airline disruption management. To this effect, the

ANN is defined by three pertinent characteristics namely: node character, network

topology, and learning rules [122].

• Node character represents the information (signal) processing qualities of a

node, which are properties such as number of inputs and outputs associated

with a node, the appropriate weight for each input and output, and the node’s

activation function. Fig. 4.13 shows a generic model for a single neuron or node

in an ANN for estimating relevant flight schedule features for optimal airline

schedule execution during disruption management. The node, which represents

a specific flight schedule or disruption feature, obtains multiple inputs from

other nodes or flight schedule features that define associated weights describing

the strength (or importance) of the flight schedule features with respect to

the node. To enable the transmission of information amongst flight schedule
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Figure 4.13. Fundamental model of a single neuron in an artificial neural network

features, a transfer function is used to determine the activation of the flight

schedule feature (node) when the weighted sum of the inputs from other flight

schedule features exceeds a certain threshold value, as shown by the expression

in Eqn. 4.6

y = f(
n∑
i=0

wixi − T ) (4.6)

where y is the response of the flight schedule feature (i.e information recipient

node), f represents the transfer function, wi is the weight or importance of

an input flight schedule feature xi, and T is an arbitrary threshold value. The

expression for the transfer function in Eqn. 4.6 can be defined by linear and non-

linear functions. However, non-linear functions such as the sigmoid function

S(x) [123], generally expressed as:

S(x) =
1

1 + e−x
(4.7)

are often preferred for modeling real world applications because of their contin-

uous differentiable property [124].
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Figure 4.14. Artificial neural network framework for estimating target
flight schedule features

• Network topology of an ANN defines the manner in which nodes representing

flight schedule features are organized and connected in a neural network, thereby

defining the general architecture of the ANN. A single hidden layer perceptron

provides an excellent medium for solving linearly separable problems and can

also be used to define a Gaussian process [125–127]. As such, we define the

topology of our artificial neural network as a single hidden layer perceptron,

based upon the following properties gleaned from the exploratory data analysis

discussed in Chapter 3:

1. Determinate aleatoric and epistemic schedule features in the data set are

linearly separable as demonstrated by the existence of orthogonal linear

combinations of flight schedule features through principal component anal-

ysis (PCA).
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2. The functional process at any stage of airline resource capacity manage-

ment (such as turnaround) can be defined by a Gaussian process, as demon-

strated by the existence of optimal kernel functions and hyperparameters

from Gaussian process regression (GPR).

Fig. 4.14 shows the ANN framework for estimating appropriate target features

like turnaround duration for disruption management. The ANN framework,

shown in Fig. 4.14, represents a feedforward perceptron that consists of an

input layer i with a set of aleatoric and epistemic flight schedule features, a

hidden layer j that transmutes information from nodes in the input layer, and

an output layer k with a flight schedule feature that represents performance

measures at any stage of flight schedule execution. For validation of the ANN

topology, predicted values of performance measures are compared with actual

(realized) values to inform the adjustment of the ANN parameters for improving

its predictions.

• Learning rules define the routines that calibrate an ANN by optimizing the

parameters of the network topology (or structure) through the use of data that

represents instances of flight schedule executions. For calibration, we adopt

a supervised learning approach wherein the ANN is trained first before it is

applied only when the optimized network topology produces the desired per-

formance from a target feature based upon a set of input features. As such,

supervised learning ensures that all possible search rules for obtaining reason-

able estimates of target features are inherently cached and readily accessible

during irregular operations, thereby reducing the time required for disruption

management. Fig. 4.15 reveals a generic process for learning a suitable ANN to

facilitate the prediction of pertinent features for airline resource management

during irregular operations. The process begins by defining input and output

flight schedule features appropriate for each stage of airline resource manage-

ment, and then dividing available instances of flight schedule executions into
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Figure 4.15. Flowchart of general process for ANN learning
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training and testing categories. Next, a learning algorithm is defined and the

optimal parameters for the network topology of the ANN are estimated based

upon error correction methods that employ a backpropagation mechanism [128].

An error function can be defined as the difference between the flight schedule

feature (node) value in the output layer and a corresponding target flight sched-

ule feature value. Let yk,n be the value of the data feature (i.e. node) in the kth

output layer at epoch n during training, and y∗k be the target value for the data

feature in the kth output layer. Thus, the error function is defined as:

ek = yk,n − y∗k (4.8)

To define an error goal, let θ be a constant positive value (i.e. learning param-

eter) that regulates the rate at which the weights of the network are adjusted

based upon the following expression:

wkj,n+1 = wkj,n − θekxj (4.9)

Eqn. 4.9 describes the new weight vector at the next epoch, wkj,n+1, for an input

data feature xj that reduces the error value at epoch n + 1 based upon error

function ek. As such, θ defines the rate at which the ANN learning process

shown in Fig. 4.15 converges.

4.3.2 Solution Approach for PTFM

Similar to the UTFM, we employ a component assembly process to create artificial

neural networks for predicting different target features for flight capacity management

and flight service management at all phases of airline disruption management. By ap-

plying generative programming techniques, specialized ANNs for each functional role

in the AOCC are trained and validated through supervised learning, before perfor-

mance measures that represent the outputs of the PTFM are estimated by combining

the prediction of specific flight schedule features by employing trained component

ANNs. Fig. 4.16 shows our solution approach for automatic estimation of perfor-
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Figure 4.16. Component assembly approach for automatic estimation
of performance measures for disruption management

mance measures for airline disruption management. Just like the UTFM solution

process, the approach begins by preprocessing raw data into readily decipherable data

formats that are suitable for ANN learning algorithms, by employing the techniques

described in Section 4.1. Next, we learn the optimal network topology of each ANN

for predicting target flight schedule features at each stage of airline resource capacity

management, before performance measures at each stage are estimated through a

combination of flight schedule features inferred from the optimal ANNs.

For the remainder of this section, we discuss the methods employed to define

and learn optimal structures of separate ANNs that represent components of the
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PTFM for airline disruption management. Next, we demonstrate the inference of

performance measures from the PTFM based upon a simple set of overarching rules

for disruption management.

4.3.3 Single Phase ANN Development

Single phase ANN development represents the creation of artificial neural networks

for each of the three individual phases of airline disruption management namely:

proactive disruption management before schedule execution (i.e. tactical disruption

management), reactive disruption management during schedule execution (i.e. opera-

tional disruption management), and proactive disruption management after schedule

execution (i.e. strategic disruption management). By applying guidelines defined

in Fig. 4.15 from Section 4.3.1, we discuss key routines and rationale for developing

customizable ANNs for each phase of airline disruption management.

Defining Inputs and Targets

For each of the three phases of disruption management, there exist relevant flight

schedule features in a historical airline scheduling and operations data set that are

of significant interest to AOCC practitioners. With respect to the processes involved

during flight schedule execution, tactical disruption management aims to eradicate

any inconvenience to passengers that may arise during flight capacity management

of irregular operations prior to aircraft pushback from the departure airport gate.

As such, turnaround duration represents an appropriate target flight schedule feature

for a feedforward ANN for tactical disruption management. Operational disruption

management seeks to ensure that the departure and arrival flight chronology retro-

spectively set by airlines (and sanctioned by other air transportation stakeholders)

remains valid during schedule execution. To that effect, binary indicators for on-

time flight arrival and arrival within 14mins of original schedule (i.e. A0 and A14

respectively) represent suitable target flight schedule features for a feedforward ANN
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for operational disruption management. Complementary to tactical disruption man-

agement, strategic disruption management aims to eradicate operational delays and

inconsistencies during flight service management of irregular operations after aircraft

pushback from the departure airport gate. Thus, block time represents a suitable tar-

get flight schedule feature for an ANN for strategic disruption management. From a

feature abstraction perspective, the target flight schedule features for all three phases

of airline disruption management represent epistemic flight schedule features. Inputs

for the artificial neural networks for each of the three phases of airline disruption man-

agement are defined based upon appropriate aleatoric and epistemic features that are

observable at different stages of flight schedule execution. As such, all determinate

aleatoric features (i.e. features representing flight date, origin airport, destination air-

port, number of passengers, etc.) are viable ANN inputs that indicate the uniqueness

of a particular flight schedule with respect to the airline route network. Furthermore,

indeterminate aleatoric features (such as features representing IATA delay codes) are

necessary ANN inputs for estimating on-time performance of reactive disruption man-

agement during schedule execution, and define the uniqueness of a particular flight

schedule with respect to the disruptions encountered in the airline route network.

Lastly, epistemic features provide inputs that indicate the uniqueness of the disrup-

tion resolution (or rule-of-thumb) applied by a human specialist in the AOCC during

irregular operations and disruption management.

Data Segmentation for Learning

Prior to invoking suitable algorithms for learning the optimal parameters of the

network topology of ANNs for each phase of disruption management, it is necessary to

define the data set that will inform the learning and validation process based upon the

general objectives for each phase. Recall from Chapter 3 that there are two distinct

chunks of data that make up the full data set namely: non-disrupted and disrupted

data sets. The non-disrupted data set represents all instances of flight schedules in
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the Southwest network that executed without any disruptions between September

2016 and September 2017, and the disrupted data set represents all instances of flight

schedules that executed with disruptions (i.e. delays) during the same time frame.

As such, two separate ANNs that define the estimation of actual turnaround dura-

tion for proactive disruption management before schedule execution are created by

using the non-disrupted data set and disrupted data set respectively. Similarly, two

separate feedforward ANNs that define the estimation of actual block time duration

for proactive disruption management after schedule execution are developed from the

non-disrupted and disrupted data sets respectively. For evaluation of on-time perfor-

mance for reactive disruption management during schedule execution, two separate

ANNs that predict on-time aircraft arrival and aircraft arrival within 14mins at the

destination airport gate, respectively, are created using the disrupted data set. Thus,

a total of six distinct feedforward ANNs are created across all three phases of airline

disruption management. The appropriate data set for developing each of the ANNs is

further partitioned, via a random seed of 42, such that 70% of the instances of flight

schedule execution in the data set are randomly selected to train the ANN, and the

remaining 30% of flight schedule executions are used to test the validity the trained

ANN.

ANN Learning and Validation

Upon defining the inputs, targets and appropriate data sets for learning the ANNs

for each phase of disruption management, the next step in the single phase ANN

development process is to find optimal parameters for the network topology that

defines the ANNs. Thus, we define the network topology for each of the six ANNs as

the single hidden layer perceptron shown in Fig. 4.14. All nodes in input and output

layers of the ANNs are activated by linear functions, while nodes in the hidden layer

are activated by nonlinear functions described later on in this section. The optimal

size (i.e. number of nodes) of the hidden layer is usually between the size of the input
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and size of the output layers [129]. Hence, we set the number of nodes in the hidden

layer of the perceptron as the mean of the number of nodes in the input layer and

the number of nodes in the output layer for each of the six ANNs.

1. Learning : ANNs for tactical and strategic disruption management have contin-

uous targets (i.e. turnaround duration and block time respectively). As such,

learning optimal weights for these ANNs presents a regression problem. Thus,

we define the error function for adjusting the weights of the single hidden layer

perceptron as the Huber loss function (H) [130], expressed as follows:

H(x, y) =
1

n

n∑
i

zi (4.10)

such that zi is given by:

zi =

0.5(x2
i + y2

i ) if |xi − yi| < 1,

|xi − yi| − 0.5 otherwise

(4.11)

where xi and yi represent each entry in the input space and target space of the

training data set respectively, and n represents the total number of instances

of flight schedule executions in the training data set. As shown in Eqns. 4.10

and 4.11, the Huber loss function creates an error goal that uses a squared term

if the absolute element-wise error is below 1 and an L1 term otherwise, thus

making it amenable (i.e. less sensitive) to accommodating for outliers during

ANN training. We employ the logarithm of the sigmoid function to activate

the nodes in hidden layers of the ANNs for tactical and strategic disruption

management during the search for optimal network parameters. ANNs for op-

erational disruption management have binary targets (i.e. 0 or 1) for whether

or not an aircraft arrives at the destination airport gate at a particular time.

As such, learning optimal weights for these ANNs presents a classification prob-

lem. To that effect, we define the error function for adjusting the weights of the

single hidden layer network topology for operational disruption management as
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a function that measures the binary cross entropy (BCE) [131] between the

target and output layer value, expressed as follows:

BCE(x, y) =
1

n

n∑
k

bk (4.12)

such that bk is given by:

bk = −[yk log xk + (1− yk) log (1− xk)] (4.13)

where xk is the value of the node in the output layer of the ANN and yk is

the target value adjusted by the sigmoid function. The nodes in the hidden

layer of ANNs for operational disruption management are activated through

the softplus function s(x), expressed in Eqn. 4.14, to obtain the weights that

optimally define the network topology during training.

s(x) = log (1 + ex) (4.14)

We apply the popular adaptive moment estimation (Adam) learning algorithm

[132] to find the optimal parameters of each of the six ANNs, by ensuring

that the error goal for training the respective ANNs remains constant after a

considerable amount of epochs.

2. Validation: After learning the optimal weight parameters of the network topol-

ogy for each of the six ANNs for separate phases of disruption management, it is

imperative to verify the credibility of the estimations from the neural networks.

The ANNs that address the regression problems for tactical and strategic dis-

ruption management are validated by simply comparing the actual turnaround

and block time duration values from appropriate test (unseen) data sets with

the turnaround and block time duration values predicted by the ANNs, based

upon corresponding input flight schedule features from the test data sets. As

such, the root mean square error (RMSE) indicates the absolute fit of a generic

ANN’s predicted values with observed test data values, by providing a measure
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of the standard deviation of the unexplained (residual) variance in the predic-

tive capacity of the ANN [133]. RMSE also has the useful property of being

in the same units as the target values from the test data and is expressed as

follows:

RMSE =

√√√√ n∑
i=1

(ŷ2
i − y2

i )

n
(4.15)

where yi represents a target value in a test data set, ŷi indicates the corre-

sponding predicted value from the ANN, and n represents the total number of

samples in the test data set.

For ANNs that solve the classification problem for operational disruption man-

agement, a special parameter called area under the receiver operating charac-

teristic (ROC) curve (or AUC for short) is used to test the validity of the ANNs.

The ROC curve is a two-dimensional graph that reveals the performance of a

classification model for any classification threshold. This curve plots two pa-

rameters namely: true positive rate and false positive rate. True positive rate,

also known as recall or sensitivity, is a function of correct ANN predictions of

on-time arrival (i.e. A0 or A14) from the test data set that are identified (i.e

true positive or TP) and incorrect ANN predictions of A0 or A14 from the test

data set that are rejected (i.e. false negative or FN). False positive rate, also

known as fallout, is a function of incorrect ANN predictions of on-time arrival

that are identified from the test data set (i.e. false positive or FP) and correct

ANN predictions of on-time arrival from the test data set that are rejected (i.e.

true negative or TN). As such, recall and fallout are expressed as follows:

recall =
TP

TP + FN
(4.16)

fallout =
FP

FP + TN
(4.17)
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Thus, AUC measures the entire two-dimensional area underneath an ROC curve

from (0,0) to (1,1). AUC values range from 0 to 1, such that an ANN whose

predictions are 100% wrong has an AUC of 0.0 while an ANN whose predictions

are 100% correct has an AUC of 1.0. Some other metrics that can be used to

verify the credibility of the ANNs for operational disruption management are

precision and F1-score [134], which assess correctly identified estimations of

on-time arrivals and the harmonic mean of precision and sensitivity of on-time

arrivals respectively.

4.3.4 Multi-Phase ANN Inference

Multi-phase ANN inference represents the appropriate estimation of turnaround

duration and block time for both stages of airline resource management during ir-

regular operations and disruption management. As mentioned in Section 4.3.3, the

estimation of separate features of interest at each phase of airline disruption manage-

ment relies on multiple ANNs. As such, we apply a parallel ensemble approach [135]

to obtain quality estimations of turnaround duration and block time, such that the

component ANNs for each phase of airline disruption management are independently

learned in parallel and their corresponding predictions are combined via a custom

bootstrap aggregating (i.e. bagging) procedure. The bootstrap aggregating approach

leverages the independence between the component ANNs (i.e. base learners) to en-

sure that the overall error from the PTFM estimates of turnaround duration and block

time can be significantly reduced by combining independent ANN predictions [135].

Fig. 4.17 reveals the parallel ensemble approach for multi-phase ANN inference

to obtain PTFM estimates of turnaround duration and block time for airline re-

source management and flight schedule execution during irregular operations. The

bagging process begins by obtaining necessary refined data features for a disrupted

flight schedule, which represent inputs of separate ANNs for tactical, operational,

and strategic disruption management. Next, the predictions of binary indicators for
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on-time flight (aircraft) arrival and flight arrival within 14mins of scheduled arrival,

respectively, at the destination gate are retrieved through inference of the respec-

tive ANNs for operational disruption management. The inferred values of the binary

indicators for both measures of on-time performance (i.e. A0 and A14) are subse-

quently summed, and used to retroactively estimate turnaround duration and block

time through the inference of respective ANNs for tactical and strategic disruption

management. A sum of zero (for A0 and A14) implies that a disrupted flight does not

arrive as originally scheduled nor does it arrive within 14mins of the scheduled time,

and the aircraft operated on the flight effectively arrives at the destination airport

gate much later than 14mins past its original scheduled arrival time. A sum of A0 and

A14 that yields one implies that the aircraft on a disrupted flight either arrives pre-

cisely as originally scheduled or within 14mins beyond the original scheduled arrival

time at the destination airport gate. A sum of A0 and A14 that yields two indicates

that a disrupted flight either arrives exactly as originally scheduled or within 14mins

earlier than the precise arrival time scheduled for parking at the destination airport

gate.

If the sum of the values for A0 and A14 is zero, then the turnaround duration

and block time predictions from the tactical and strategic disruption management

ANNs, trained by using the disrupted data set, are set as the PTFM estimations of

turnaround duration and block time. If the sum of the values for A0 and A14 is

one, then the averages of the turnaround duration and block time predictions from

tactical and strategic disruption management ANNs that are trained by using the

disrupted and non-disrupted data sets respectively, are set as the PTFM estimates of

turnaround duration and block time. If the sum of the predicted values for A0 and

A14 is two, then the turnaround duration and block time predictions from the tacti-

cal and strategic disruption management ANNs, trained by using the non-disrupted

data set, are set as the PTFM estimations of turnaround duration and block time.

Thus, we estimate the tactical delay incurred during flight capacity management as

the difference between the turnaround duration predictions retrieved from the ANNs
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for tactical disruption management, trained by using the disrupted and non-disrupted

data sets respectively. Congruently, the strategic delay period accrued during flight

service management is estimated as the difference between the block time predic-

tions retrieved from respective ANNs for strategic disruption management, calibrated

through the disrupted and non-disrupted data sets

4.3.5 Computational Setup

We now discuss the computational setup and analysis for the predictive transfer

function model in a characteristic computational and intelligent agent (i.e functional

role) in the AOCC. Table 4.4 summarizes specific epistemic input flight schedule

features and corresponding target features in all ANNs for separate phases of airline

disruption management.

These features represent inputs and targets that are applicable for separate classes

of ANNs for each phase of disruption management, and are adopted based upon

the results observed from exploratory data analysis. Furthermore, all determinate

aleatoric flight schedule features represent additional generic inputs for all ANNs for

Table 4.4. Epistemic features for multi-phase ANN inference in PTFM

ADM Phase Epistemic input

Features

Target Feature

Tactical ADJST TURN MINS ACTL TURN MINS

Operational shiftper sched PB,

shiftper sched GP,

DOT DELAY MINS

A0, A14

Strategic shiftper actl PB,

shiftper actl GP,

actl enroute mins

actl block mins
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each phase of disruption management. In complement, indeterminate aleatoric fea-

tures (i.e. disruption features) represent additional specific inputs for ANNs that

define the PTFMs for different functional roles in the AOCC during operational dis-

ruption management. Complete lists of the definitions of all aleatoric and epistemic

features used for PTFM development can be found in the Appendix A. Following

appropriate data preprocessing and segmentation, all ANNs are subsequently imple-

mented through parallel learning (for 15,000 epochs) and then inference in the Python

programming language, which is significantly accelerated through computations via

the PyTorch software [136] running on an NVIDIA GTX 1080Ti graphics card [137].

4.3.6 PTFM Analysis and Results

This section is comprised of two separate parts, which describe different analyses

and results from the development and implementation of the PTFM respectively. The

first part on PTFM development outcome discusses the evaluation of the optimal ANN

topology, obtained through learning, for the PTFM of a generic intelligent agent at

each phase of disruption management. The second part on PTFM implementation

results demonstrates the assessment of PTFM estimations from a generic intelligent

agent obtained through the combination of the predictions from multiple optimal

ANNs.

• Single Phase Results

Fig. 4.18 shows the plots of the predictions of actual block time duration versus

the observed block time duration for instances of non-disrupted flight schedules

and delayed flight schedules due to weather disruptions respectively. The plot on

the left in Fig. 4.18 represents the predicted block time duration from the ANN

for strategic disruption management, learned by using the non-disrupted data

set of instances of flight schedule executions with significantly more examples

(430,000 training samples and 186,000 test samples). Thus, the left plot in

Fig. 4.18 reveals that the predictive capacity of the ANN for non-disrupted flight
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service management during strategic disruption management has a standard

deviation of unexplained variance (i.e. RMSE) of 4.23min between the pushback

of a particular aircraft at an origin airport and parking the aircraft at the

destination airport gate. The plot on the right in Fig. 4.18 shows the predicted

block time duration from the ANN for strategic disruption management, learned

by using the disrupted data set with about 6,200 instances of delayed flight

schedules due to inclement weather events. Unlike the left plot in Fig. 4.18,

the plot on the right reveals a relatively lower predictive capacity for disrupted

flight service management during strategic disruption management of weather-

related delays, with a root mean square error of about 13mins between aircraft

pushback and aircraft gate-parking for a specific flight.

Fig. 4.19 represents the plots of the predictions of actual turnaround duration

versus the observed turnaround duration for instances of non-disrupted flight

schedules and delayed flight schedules due to weather disruptions respectively.

Similar to Fig. 4.18, the plot on the left in Fig. 4.19 represents the predicted

turnaround duration from the ANN for tactical disruption management, learned

by using the non-disrupted data set of instances of flight schedule executions.

Hence, the left plot in Fig. 4.19 reveals that the predictive capacity of the

ANN for non-disrupted flight capacity management during tactical disruption

Figure 4.18. ANN predictions vs. test data for strategic disruption management
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Figure 4.19. ANN predictions vs. test data for tactical disruption management

management has a standard deviation of unexplained variance (i.e. RMSE) of

6.23mins between the passenger boarding of a particular aircraft at an origin

airport gate and pushback of the aircraft from the origin airport gate. The

plot on the right in Fig. 4.19 shows the predicted turnaround duration from the

ANN for tactical disruption management, learned by using the disrupted data

set of instances of delayed flight schedules due to inclement weather events.

Unlike Fig. 4.18, the plot on the right in Fig. 4.19 reveals a relatively similar

predictive capacity for disrupted flight capacity management during tactical

disruption management of weather-related delays, with a root mean square

error of 6.80mins between aircraft boarding and aircraft pushback for a specific

flight.

The red diagonal line in the plots in Fig. 4.18 and Fig. 4.19 represents the line

of perfect prediction, such that coordinates (i.e. data points) that lie on this

line indicate a perfect prediction of the observed test data value by the ANN.

As such, Figs. 4.19 reveal near-perfect predictions of turnaround duration that

are more than a couple of standard deviations away from the mean turnaround

duration for both non-disrupted and disrupted flight schedules observed, respec-

tively, in the test data sets.
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Fig. 4.20 shows the ROC plots of the separate ANNs for operational disruption

management, which predict whether or not a specific disrupted flight arrives

exactly on-time and within 14mins of the scheduled arrival time, respectively.

Thus, both ANNs, described by Fig 4.20, are learned by using the disrupted

data set of instances of delayed flight schedule executions due to weather-related

disruptions. The blue dashed diagonal line in both plots in Fig. 4.20 represents

perfect chance. That is, an ANN for operational disruption management that

makes predictions based upon the blue diagonal line has no better odds of

detecting A0 and A14 than a random coin flip. As such, the solid orange

curve from the plot on the left in Fig. 4.20 represents the receiver operating

characteristic (ROC) curve of the ANN classifier for assessing on-time arrival

(i.e. A0) of a disrupted flight schedule due to weather-related disruptions. The

area under the ROC curve (i.e. AUC) is 0.9972, which indicates that the ANN

can correctly classify the on-time arrival status of a disrupted flight schedule

due to weather-related delays over 99% of the time. Similar to the left plot,

the solid orange curve from the plot on the right in Fig. 4.20 reveals the ROC

curve of the ANN classifier for assessing arrival within 14mins (i.e. A14) of a

disrupted flight schedule due to weather-related disruptions. As such, the area

under the orange ROC curve, from the plot on the right in Fig. 4.20, is 0.9987,

Figure 4.20. ROC plots of ANN classifiers for operational disruption management
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thus indicating that the ANN can correctly identify whether or not a disrupted

flight schedule arrives within 14mins of the original schedule over 99% of the

time.

Table 4.5 shows the summary of the model performance of separate ANNs in

estimating appropriate flight schedule features for all functional roles in the

AOCC during disruption management. As shown in Table 4.5, all ANNs for

operational disruption management have near perfect performance with AUC

values of approximately 1. The highest RMSE value (i.e. 7.15mins) for pre-

dicting turnaround duration for disrupted flight capacity management during

schedule execution (i.e. tactical disruption management) was attained by the

ANN for the Customer Hold functional role in the AOCC. Thus, this implies

that the predictive capacity for disrupted flight capacity management during

tactical disruption management of delays related to holding aircraft for pas-

sengers on inbound flight connections has a standard deviation of unexplained

variance of 7.15mins between aircraft boarding and aircraft pushback for a spe-

cific flight. As evidenced from Table 4.5, the highest RMSE value for predicting

block time for disrupted flight service management during schedule execution

(i.e. strategic disruption management) is less than 14mins, and attained by

the ANN for the Weather functional role in the AOCC. Thus, the predictions

from the ANNs for flight service management are valid with respect to current

industry standards for on-time arrival.

• Multi-Phase Results

We now employ the multi-phase inference of the set of ANNs for airline disrup-

tion management to demonstrate the PTFM estimation of turnaround duration

and block time for a specific test flight schedule from Dallas to Houston, affected

by delay due to air traffic control hold for bad weather in Dallas.

Table 4.6 reveals the inputs of respective ANNs for different phases of airline dis-

ruption and resource management for the disrupted (test) flight schedule from
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Dallas to Houston, same as the test case for UTFM assessment in Section 4.2.7.

Features in Table 4.6 that serve as general inputs of all ANNs across separate

phases of disruption management are determinate aleatoric features, which de-

fine the specificity (or uniqueness) of the test flight schedule being considered

for our demonstration with respect to other flight schedules in the test data

Table 4.6. Input features and corresponding values for a specific dis-
rupted DAL-HOU flight.

Input Feature ADM Phase Standardized Value

ADJST TURN MINS Tactical -0.63548

shiftper sched PB Operational -0.07008

shiftper sched GP Operational 0.66334

DOT DELAY MINS Operational 0.08585

shiftper actl PB Strategic 0.39709

shiftper actl GP Strategic 1.38748

actl enroute mins Strategic -0.49476

ATC Hold at Origin Operational 1.12319

doy All -0.01179

orig x dir All -0.25736

orig y dir All -0.75922

orig z dir All -0.50746

dest x dir All -0.12307

dest y dir All -1.46375

dest z dir All -1.25591

ONBD CT All 0.46063

route dist All -1.16903

sched route originator flag All -0.36540
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set. Features in Table 4.6 that serve as specific (additional) inputs of ANNs for

each phase of disruption management are epistemic features, which define the

observability and peculiarity of the disruption resolution of a particular flight

schedule during schedule execution. As such, the values of epistemic features

Table 4.7. Target features and corresponding values for a specific
disrupted DAL-HOU flight.

Target Feature Value Source Actual

Value

Actual A0 Real Schedule Execution 0

Actual A14 Real Schedule Execution 0

Scheduled Turnaround (mins) Real Schedule Execution 35.00

Actual Turnaround (mins) Real Schedule Execution 38.00

Scheduled Block Time (mins) Real Schedule Execution 65.00

Actual Block Time (mins) Real Schedule Execution 104.00

Actual Tactical Delay (mins) Real Schedule Execution 3.00

Actual Strategic Delay (mins) Real Schedule Execution 39.00

Predicted A0 Operational ANN 0

Predicted A14 Operational ANN 0

Non-disrupted Turnaround (mins) Tactical ANN 30.03

Disrupted Turnaround (mins) Tactical ANN 38.37

Non-disrupted Block Time (mins) Strategic ANN 92.02

Disrupted Block Time (mins) Strategic ANN 93.61

Estimated Turnaround (mins) PTFM Inference 38.37

Estimated Block Time (mins) PTFM Inference 93.61

Estimated Tactical Delay (mins) PTFM Inference 8.34

Estimated Strategic Delay (mins) PTFM Inference 1.59
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represent the inputs (or rules-of-thumb) applied by human specialists in the

AOCC during disruption management.

Table 4.7 shows the predicted values of target features from separate ANNs for

disruption management and actual values from the observed (i.e. real world)

execution of the specific disrupted flight from Dallas to Houston, defined by

the ANN input information from Table 4.6. As evidenced in Table 4.7, the

ANNs for operational disruption management predicted that the flight would

not arrive at Houston as scheduled nor within 14mins of the scheduled arrival

time (i.e. binary indicators of 0), which is consistent with the observed (real)

execution of that particular flight from Dallas to Houston. The ANNs for tacti-

cal disruption management predicted a turnaround duration of 30.03mins and

38.37mins, repectively, for non-disrupted and disrupted flight capacity manage-

ment of aircraft boarding at Dallas. In complement, the respective ANNs for

strategic disruption management predicted a block time duration of 92.02mins

and 93.61mins for non-disrupted and disrupted flight service management of air-

craft operation from pushback at Dallas to gate-parking in Houston. Since the

predicted A0 and A14 values sum to zero, the estimated turnaround and block

time duration from the PTFM are the corresponding values of turnaround du-

ration and block time retrieved from the disrupted flight capacity and disrupted

flight service management ANNs. As such, the PTFM estimates of turnaround

duration and block time are 38.37mins and 93.61mins, respectively, for the

disrupted flight from Dallas to Houston.

The actual observed turnaround duration and block time for the disrupted

DAL-HOU flight are 38mins and 104mins respectively. This indicates a 0.97%

difference between the PTFM estimate for turnaround duration and the ac-

tual turnaround duration of the weather-disrupted DAL-HOU flight. Similarly,

there is a 10.52% difference between the PTFM estimate for block time and

the actual observed block time of the weather-disrupted flight from Dallas to

Houston. The execution of the disrupted flight schedule from Dallas to Hous-
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ton resulted in a tactical delay of 3mins during turnaround at Dallas and a

strategic delay (i.e. discretionary holdup by human specialists in the AOCC) of

39mins from aircraft pushback at Dallas to aircraft parking at the arrival gate

in Houston. On the other hand, the PTFM (i.e. system of ANNs) estimated a

tactical delay of 8.34mins and a strategic delay of 1.59mins for this particular

disrupted flight schedule from Dallas to Houston. As such, there is a 94.18%

difference between the tactical delay applied to resolve the disrupted DAL-HOU

flight during schedule execution when compared to the tactical delay estimate

from the PTFM. Similarly, the percentage difference between the strategic de-

lay applied to resolve the disrupted flight during schedule execution and the

strategic delay estimated by the PTFM is about 180%.

Chapter Summary: This chapter provided a detailed review of the supervised

and unsupervised techniques that enabled the creation of two separate platforms for

modeling intelligent agents for predictive purposes in a simultaneously-integrated re-

covery paradigm for airline disruption management. By applying a fusion of abstrac-

tion techniques through exploratory data analysis (discussed in Chapter 3) and do-

main knowledge of airline operations control, we developed and evaluated the frame-

works for the uncertainty and predictive transfer function models (i.e. UTFM and

PTFM) that constitute a generic intelligent agent in the AOCC for airline disruption

management. In the next chapter, we elucidate the tenets for the integration and

interaction of multiple intelligent agents in the AOCC that reveal simultaneously-

integrated recovery during airline disruption management.
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5. ENABLING INTEGRATION AND INTERACTION OF

INTELLIGENT AGENTS FOR A SIR PARADIGM IN

AIRLINE DISRUPTION MANAGEMENT

Humans assume a primary role in the development, evolution, and assessment of ex-

isting paradigms and systems adopted for making decisions during airline operations

recovery and disruption management [48]. Current paradigms for operations recov-

ery in many airlines involve database query systems (DBQS), which allow human

operators (or specialists) in the AOCC to perform inquires on databases in order to

effectively assess solutions proffered by decision support systems (DSS) for different

problem dimensions (i.e. aircraft, crew and passenger) during irregular operations

and disruption management. Together, DBQS and DSS provide a credible platform

Figure 5.1. Human involvement in disruption management and oper-
ations recovery at the AOCC
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for addressing irregular operations, as shown in Fig. 5.1, during schedule execution on

day of operation. However, the efficiency of this platform is bottlenecked by human

operators for two reasons. First, humans find it difficult to simultaneously utilize large

volumes of data to make the best decision that spans multiple problem dimensions

for disruption management [5,138]. In order words, they can not promptly employ all

available and necessary data to select and apply appropriate information that is most

effective for managing irregular operations. Second, plausibly inferior quality (i.e.

goodness) of information (retrieved by the human operator from the database query

system) that is subsequently passed on to the decision support system can compro-

mise the efficacy of solutions provided by the decision support system, thus rendering

disruption resolutions sub-optimal. To complicate decision-making matters, existing

paradigms for airline disruption management do not readily allow human experts to

see the impact of these disruption resolutions (partly informed by DBQS) until the

recovery plan is already in motion and its consequence can not be revoked [48]. As

such, delineating skill from luck while managing disruptions for optimal airline re-

covery remains an open and challenging problem. To this effect, current industry

techniques for airline disruption management are unable to attain and maintain ex-

peditious, effective and concurrent recovery of all problem dimensions in a disrupted

airline route network.

Furthermore, many decision support systems adopted by the current integrated

recovery paradigms for airline disruption management are imbued in a monolithic

system design doctrine, wherein specifications are created first before a system that

meets the specifications is constructed. However, this design approach has not suc-

ceeded in eradicating irregular airline operations because specifications continue to

evolve as new capabilities are added to an existing system [47]. Although current

approaches for airline disruption management are capable of providing decision sup-

port, albeit restricted by a sequential process resolution of problem dimensions, the

rapid evolutionary manner in which different situations for irregular operations occur

typically renders DSS solutions ineffectual within moments after they are generated.
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Moreover, adding more proficiency, in form of computerized information systems,

to existing decision support systems in the AOCC to address fleeting solution va-

lidity significantly increases the complexity of the monolithic and centralized design

approach for airline disruption management. To this end, there is a need to substan-

tially augment the decision-making capacity of human specialists in the AOCC with

modular and decentralized decision support platforms that allow real-time genera-

tion and tracking of disruption resolutions with minimal complexity during irregular

operations and schedule recovery.

Recent advancements in artificial intelligence (AI) and distributed ledger technol-

ogy (DLT) [37, 129, 139–142] have provided an avenue to develop decision support

systems that can allow human specialists in the AOCC to readily assess and validate

the effectiveness of their decisions while concurrently recovering the airline network

during irregular operations. To that effect, this chapter provides a compendious dis-

cussion of the mechanisms that enable the integration of constituent AI models (i.e.

UTFM and PTFM elucidated in Chapter 4) that define the intelligent agent for each

functional domain in the AOCC, and the interaction of multiple intelligent agents for

simultaneously-integrated recovery during airline disruption management.

We begin this chapter by elucidating different tenets of artificial intelligence and

distributed ledger technology, which provide a conducive medium for achieving scal-

able simultaneously-integrated recovery of airline schedule during disruption man-

agement. Next, we describe the consensus platform for a special type of distributed

ledger called Hashgraph and how routines that define the UTFM and PTFM (i.e. AI

agents) serve as elements for a proof-of-stake system for achieving simultaneously-

integrated recovery. We conclude the chapter with the discussion of a demonstration

of the AI-DLT synthesis for simultaneously-integrated recovery of sets of disrupted

flight schedules across multiple functional domains in the AOCC.
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5.1 A Symbiotic Synthesis of AI and DLT

One of the primary objectives of the fourth industrial revolution (i.e. Indus-

try 4.0) is to transform traditional industrial practices by combining these practices

with the latest smart technology [143]. As such, current industry practices for irreg-

ular airline operations, which involve multiple air transportation stakeholders, can

benefit amply from the use of machine to machine communication and internet of

things (IoT) deployments to achieve increased automation, better communication,

and self-monitoring during disruption management without significant need for hu-

man intervention. Furthermore, the unrelenting ubiquity of data that span many

different areas of society has necessitated and enabled the creation of new interdisci-

plinary principles founded on mathematics, statistics, and probability theory, which

enable machines (or computers) to have cognitive functions to learn, infer and adapt

by leveraging data [144, 145]. To this effect, there is a strong mandate to explore

decentralized interactions among intelligent machines that represent functional roles

in the AOCC for better disruption management.

5.1.1 Artificial Intelligence

Artificial intelligence or AI is the field that studies and applies interdisciplinary

principles to achieve computationally intelligent agents that can directly assist hu-

mans with their day-to-day functions. A very prominent principle used in AI is

machine learning [33, 42], which relies on a centralized model for training wherein

a group of servers run a particular algorithm against many training and validation

examples, as described in Chapters 3 and 4. As such, the few AI systems that exist

(or in development) today for airline disruption management are generally specialized

expert systems that utilize rolling and centralized data from a DBQS to assist human

specialists in the AOCC with making decisions during irregular operations [120,146].

Thus, current AI trends for airline disruption management aim to enable automated

machine learning processes to manage data acquisition and knowledge updates for
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database query systems (DBQS), thereby minimizing the manual labor required by

human specialists for developing and evaluating decision support systems to mitigate

irregular operations during schedule execution. Furthermore, the complex nature of

the interaction between different actors (e.g. functional roles in the AOCC and air

transportation stakeholders like air traffic controllers) does not augur well for robust

airline disruption management, because a centralized AI system can not efficiently

capture the proclivities amongst actors to discover and track emergent behavior in col-

lective decision-making during schedule execution in a scalable manner [87,147,148].

As such, a complementary platform is required to enhance the performance qualities

of AI systems for improved disruption management during irregular operations.

5.1.2 Distributed Ledger Technology and Blockchain

Distributed ledger technology or DLT [149] represents an emerging technology

that embodies two peculiar properties. First, it is distributed in nature such that

the agreement about the state of a particular ledger being maintained is attained

through recompensed consensus by a network of intelligent agents in lieu of relying

on trust in a third-party intermediary that is extraneous to the network. Second,

intelligent agents can deposit digital assets such as acts, timestamps, and states in

the ledger, whose records are readily auditable, transparent, and incommutable based

upon cryptographic and distributed basis that resist censorship and manipulation of

assets [150]. To that effect, DLT enables high levels of anonymity and pseudonymity

for intelligent agents during transactions (i.e. digital asset trades), such that records of

transaction activities are observable at the meta-level and resistant to manipulation.

However, the identification of specific intelligent agents performing trades on the

ledger remains impossible during transactions, thereby rendering DLT immensely

resilient to the intolerance of false information sharing for enhanced data security.

The first noteworthy application of DLT was for the cryptocurrency named Bitcoin

[151,152].
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The blockchain, which is a rudimentary but effective form of DLT, was used to

solve the problem of distributed consensus in a trustless network that provides a

secure, controlled, and decentralized method of minting the Bitcoin digital currency.

At its core, blockchain is a layer of a distributed peer-to-peer network running on

the front end of the internet. In that regard, blockchain is characterized by a data

structure for tracking digital footprints in logical blocks of information, a shared ledger

for recording actions (e.g. digital currency mining activities) by member computer

systems or intelligent agents, and a decentralized consensus mechanism that solves a

complex and random mathematical problem to validate member interactions based

upon different routines that define engagement rules for participating members. DLT

can be either permissioned or permissionless depending on the manner in which access

for information exchange is granted to current and prospective members of the DLT.

Thus, a permissioned DLT only allows authorized intelligent agents to access the DLT

application in private, consortium, or cloud-based settings, while a permissionless

DLT like the Bitcoin blockchain is publicly accessible to any intelligent (mining)

agent via the internet.

5.1.3 Decentralized AI for Airline Disruption Management

Background

The existing scope of AI applications for airline disruption management primarily

focuses on automated machine learning to improve the quality of information retrieved

by human specialists from database query systems (DBQS) [146]. While AI provides a

means for improving the decision-making flexibility of human specialists in the AOCC

during irregular operations, the centralized nature of existing monolithic systems for

disruption managment does not enhance the efficiency of the decision-making process

as a whole [20, 153]. Thus, agile decision-making for irregular operations during

airline schedule execution requires a platform that inculcates decentralized intelligence

during disruption management [154].
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Furthermore, many existing integrated recovery paradigms for airline disruption

management employ decision support mechanisms (i.e. time-space optimization for-

mulations) that provide disruption resolutions for separate problem dimensions with-

out readily disclosing the unique rationale behind the solution generation process

for a specific disruption event. As such, human specialists in the AOCC are often

detached from the resolution creation process of the DSS. In addition, majority of

existing system design paradigms for airline operations recovery are Models and Al-

gorithms (MALG) typically created by developers that operate separately from the

AOCC organization, and as such, Models and Algorithms are not willingly accepted

nor included in many highly customized tools and systems currently used by the

AOCC for disruption management [9, 153,155].

A recent study of the Southwest Airlines Baker workgroup for disruption man-

agement, conducted by Deloitte Insights [48], revealed that having superintendents of

dispatch (i.e. human specialists in the AOCC) manage the creation of DSS that they

themselves would use guaranteed that the disruption resolution sought by develop-

ers and users was shared and agreeable. This way, human specialists from different

functional roles in the AOCC were more likely to accept and commit to a disruption

resolution outcome proferred by a decision support system that is truly representative

of their individual and collective decision-making expertise. As such, human special-

ists in the AOCC would prefer a DSS that can expediently verify the efficacy and

validity of their decision to implement a certain disruption resolution, in lieu of ex-

tant DSS that propose a disruption resolution to which the specialists have to decide

whether or not to implement the proffered resolution. To that effect, a decentralized

AI platform lends a suitable medium for developing next generation DSS for airline

disruption management.



143

Taxonomy

The synthesis of artificial intelligence and distributed ledger technology (i.e. de-

centralized AI) can be categorized into two separate but related decentralized plat-

forms, based upon certain integration properties and benefits, namely: Blockchain

for AI and AI for Blockchain [156, 157]. Blockchain for AI represents a disruptive

integration of artificial intelligence and distributed ledger technology that aims to

help AI systems to attain the following enhancements: i) a secure data sharing en-

vironment for intelligent agents, ii) decentralized computing for intelligent agents,

iii) explainable rationale for the actions of intelligent agents, iv) the coordination

of distrusting intelligent agents. In complement, AI for Blockchain represents an

integration of artificial intelligence and distributed ledger technology that seeks to

use AI to improve the automation, decision-making, and optimization of DLT (such

as blockchain) for enhanced performance and governance. In that regard, AI for

Blockchain aims to achieve the following enhancements for distributed ledger tech-

nology: i) secure and scalable distributed ledgers, ii) readily customizable distributed

ledger systems that preserve the privacy of intelligent agents, iii) automated referee-

Figure 5.2. Taxonomy of a decentralized AI platform for airline dis-
ruption management
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ing and governance of participating intelligent agents for distributed computing. A

hybrid of these platforms represents a unique platform that enables multiple sepa-

rate enhancements applicable to Blockchain for AI and AI for Blockchain. Fig. 5.2

shows a tree-diagram that represents five separate aspects of taxonomy in decentral-

ized AI for airline disruption management based upon type, application, operation,

consensus, and infrastructure [158].

• Type: The type of decentralized AI platform for airline disruption management

is defined by the caliber (i.e. importance and hierarchy) of stakeholders involved

in irregular operations. As such, there are two appropriate types of decentralized

AI namely: private and consortium AI systems respectively. A private decen-

tralized AI for airline disruption management represents a Blockchain for AI

platform that models the intrinsic behavioral properties of individual high-level

stakeholders (i.e. airlines, airports, policy makers, etc) in the air transportation

network during disruption management. Thus, a private decentralized AI for

airline disruption management models the interaction amongst functional roles

(i.e. low-level actors) within high-level stakeholder organizations during sched-

ule execution and irregular operations. To this effect, a private decentralized

AI presents a credible avenue for a system of systems modeling architecture

for the AOCC [159, 160]. In complement, a consortium decentralized AI for

airline disruption management represents a hybrid of the Blockchain for AI

and AI for Blockchain platforms that models the interaction amongst multiple

high-level stakeholders within the air transportation system during disruption

management. As such, a consortium decentralized AI provides an appropriate

means for modeling irregular operations in the air transportation network as a

federated system of systems [161].

• Application: The application of a decentralized AI platform for airline dis-

ruption management allows for the following enhancements to existing decision

support systems:
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1. Autonomic computing - This ensures that intelligent agents, such as func-

tional roles in the AOCC, are able to cope when subjected to heterogeneity

at all verticals including data sources, data processing, and data storage in

order to perceive their internal states and conduct specified actions accord-

ingly. As such, distributed ledger technology (e.g. blockchain) provides a

medium to permanently track the interactions among multiple intelligent

agents across separate levels of hierarchy within the air transportation

system.

2. Optimization - Existing paradigms for airline disruption management are

enforced with centralized optimization strategies that impose global (i.e.

system-wide) objectives such as maximizing airline profit margin, which

result in strictly constrained and subordinate system-wide behaviors and

performance to insure local objectives (such as minimizing flight delay du-

ration) of constituent actors [20, 109]. Thus, the application of decentral-

ized AI strategies through distributed ledger technology (i.e. Blockchain

for AI ) creates a distributed optimization platform that concurrently in-

creases the search and design space to allow for improved system-wide

performance for constrained and unconstrained interaction of intelligent

agents in the AOCC.

3. Planning - From an airline stakeholder’s perspective, the outcome of the

integration of artificial intelligence and distributed ledger technology dur-

ing schedule execution is to readily attain a dynamic schedule planning

scheme while managing airline disruptions. Existing integrated recovery

paradigms are limited to static and tedious re-planning routines that take

considerable amount of time (due to significant human interventions) to

obtain an updated planning scheme. In that regard, Blockchain for AI pro-

vides an applicable platform to obtain new planning strategies that utilize

decentralized and distributed optimization routines for recording multi-
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ple planning schemes and their respective evolution histories (i.e. prove-

nance) [158].

4. Knowledge discovery and management - The management of data for sep-

arate intelligent agents in existing systems is centralized, and as such,

creates a monolithic system that can not enable peer-to-peer interaction

amongst system constituents for disruption management. As such, the de-

centralized Blockchain for AI platform provides a means for unstructured

peer-to-peer network interaction of low-level stakeholders that represent

functional roles or domains in the AOCC of an airline. Hence, emergent

behavior in form of new sequence of resolution activities amongst multiple

functional roles can be discovered during disruption management. In com-

plement, AI for Blockchain provides a medium for a structured peer-to-

peer network interaction of high-level stakeholders (created via Blockchain

for AI platforms) that represent primary actors in the air transportation

network, such as multiple airlines and airports. As such, emergent behavior

in terms of different collaborative decision-making (CDM) [162, 163] rou-

tines for airline disruption management can be enabled through autonomic

AI computing.

5. Learning - Existing AI platforms for airline disruption management are

strictly trained and employed by using a centralized framework to achieve

global intelligence. However, decentralized AI platforms are capable of

autonomous and immutable learning through distributed computing that

promotes fully coordinated local intelligence to achieve new calibration

routines for global intelligence. For instance, the sequence of real-time

events to re-plan a disrupted airline network may require the interaction

many functional roles (i.e. intelligent agents) in the AOCC. As such, the

transactions amongst functional roles seeking consensus on a distributed

ledger creates a platform to discover new learning routines for different

scenarios of airline disruption.
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• Operation: The operation of a decentralized AI platform for airline disrup-

tion management represents its capacity to readily manage copious amounts of

data for adaptable decision-making through AI applications. Unlike centralized

AI systems with strict system specifications and operations, decentralized AI

operations ensure versatility in data for separate functional roles in the AOCC

through the following means:

1. Data management : There is a high proclivity for data duplication in exist-

ing DSS because small changes in data content typically results in repeated

transfer of updated datasets during disruption management [2, 164, 165].

As such, centralized data management becomes significantly inefficient as

the airline route network (or air transportation network) expands. This in-

efficiency is characterized by rapid bandwidth overloading experienced by

human specialists and increased backhaul network traffic that create sub-

stantial latency issues in existing DSS. Thus, decentralized data manage-

ment provides an avenue for explicit DSS modeling routines to be simulta-

neously developed and deployed at node levels that represent fundamental

components of intelligent agents in a multi-agent system. Consequently,

these DSS modeling routines serve as dynamic metadata that can provide

substantial latent information to a distributed ledger platform while track-

ing and maintaining provenance and immutability of disruption resolutions

during consensus.

2. Learning model development - Centralized learning creates a platform where

learning models are calibrated and tested before software deployment [138].

As such, centralized platforms are unable to accommodate for rapidly

evolving data streams because of the dynamic and cascading nature of

the impact of airline disruptions on the air transportation network. In

that regard, decentralized AI platforms, especially Blockchain for AI, en-

able the premeditation and predetermination of all possible search rules

for addressing a specific type of disruption from separate AI agents. These
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search rules are made readily accessible to a consensus algorithm based

upon the engagement routines (i.e. smart contracts) that activate the in-

stantiation of a specific search rule during negotiations amongst intelligent

agents.

3. Model deployment - Complementary to learning model development, AI

replaces the brute force approach present in many centralized learning

platforms that first solve an explicit optimization problem by trying every

possible combination of decision variables, before recommending suitable

solutions for the recovery of the airline network. Hence, distributed ledger

technology adopts different engagement routines to qualitatively and vi-

sually reveal the interaction of various search rules employed (i.e. learned

and cached a priori from data) by multiple AI agents for real-time recovery

of a disrupted airline network.

• Consensus: The consensus of a decentralized AI platform for airline disruption

management relies on the capacity of multiple participating functional roles in

the AOCC to agree on a set of acts for recovering a disrupted route network

[153]. As such, the following artifacts provide pertinent properties for enforcing

consensus in a decentralized multi-agent system for airline operations recovery.

1. Byzantine fault tolerance (BFT) - This represents a majority voting algo-

rithm that eliminates transaction validation from malicious participants on

a distributed ledger [39, 139]. Malicious participants represent intelligent

agents (or functional roles) in a permissioned DLT platform (i.e. multi-

agent system) that can directly or indirectly manipulate the outcome of

a recovery plan for a disrupted airline network. As such, many existing

BFT algorithms guarantee consistent maximum fidelity and operability of

a multi-agent system if at least two-thirds of all participants in the decen-

tralized AI platform are not malicious [158].
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2. Proof of stake (PoS) - This represents a type of routine that selects stake-

holders (e.g. functional roles in the AOCC) as signatories and validators

of disruption events and corresponding disruption resolutions, respectively,

during irregular operations [149]. To that effect, stake in PoS indicates the

degree to which the efficacy of the decisions (or resolutions) of a stakeholder

can be trusted, or the measure of stakeholder interest in the effective-

ness of a decentralized AI interaction for airline disruption management.

A typical airline route network is somewhat delay-tolerant due to the fi-

nite capacity for useful resources in the air transportation network [166].

Hence, PoS provides an energy-efficient protocol for unconstrained interac-

tions amongst stakeholders as long as stakeholders are defined by appropri-

ately calibrated AI systems embedded with possible and readily applicable

search rules for different disruption resolutions.

3. Smart contract - This represents computational models (i.e. computer pro-

grams) that execute a set of engagements specified in digital form [167]. To

this effect, constituent AI models for intelligent agents, such as functional

roles in the AOCC, define the terms, conditions, and execution of a smart

contract for airline disruption management. Furthermore, smart contracts

assimilate and execute workflows, and as such, present a viable means for

automating decision-making for regulatory compliance and approbation

of several air transportation and flight operation processes during airline

schedule execution.

• Infrastructure: The infrastructure of a decentralized AI platform for airline

disruption management represents the architecture (or environment) in which

the interaction amongst separate stakeholders acting on a distributed ledger is

simulated for any scenario of irregular operations. Many DLTs such as the Bit-

coin blockchain are based upon a linear infrastructure wherein blocks of data

content are sequentially connected via hashing mechanisms for a single chain

link to achieve immutability and transparency. As such, single-chained DLTs
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(i.e. linear blockchain infrastructures) do not scale up well and struggle to

achieve acceptable real-time performance necessary for effective decentralized

applications [168]. Furthermore, to enable concurrent and independent interac-

tions of multiple intelligent agents in a multi-agent system, distinct single chains

are necessary to record the individual transaction activities of each intelligent

agent, thereby rendering digital exchanges of assets, value, and information

impossible for linear blockchain infrastructurs in heterogeneous environments.

To this end, nonlinear DLT infrastructures based upon graph theory provide

a fitting platform for developing and deploying decentralized AI frameworks

for airline disruption management that promote scalable real-time applications

while utilizing big data.

Many existing nonlinear DLT infrastructures exist in the form of a directed

acyclic graph (DAG) [169–171] that create multi-chain architectures such as

parent-child chains and parallel chains. Parent-child chains represent multi-

chain architectures where one or more chains serve as the primary chain that

records the information and digital activities of other chains. As such, from a

high-level perspective, a parent-child chain presents an appropriate nonlinear

infrastructure for interaction in a consortium decentralized AI for airline dis-

ruption management, such that the primary chain is representative of a major

policy maker (e.g. FAA) in the air transportation system while other chains

in the consortium represent stakeholders like airlines and airports that are sub-

ordinate to the compliance directives (defined by smart contracts) provided by

the policy maker. In transition, parallel chains represent multi-chain architec-

tures where constituent chains operate independently from other chains. Thus,

the conscription of the rules of engagement for performing a transaction on a

specific chain is controlled by a particular intelligent agent, and is sovereign

from the actions of other intelligent agents operating on other chains in the

decentralized platform. Hence, from a low-level perspective, a parallel multi-

chain architecture provides a fitting nonlinear infrastructure for interaction in a
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private decentralized AI for airline disruption management, wherein each chain

is representative of queuing disruption and resolution information from a par-

ticular functional role in the AOCC during airline schedule execution.

5.2 A Case Study

For an exhibition of the fusion of artificial intelligence and distributed ledger tech-

nology for airline disruption management, we consider a system of systems modeling

of the network operations control center at Southwest Airlines (i.e. SWA-NOC). For

our demonstration, each of the eleven functional roles in SWA-NOC is modeled as

a separate AI system (i.e. intelligent agent) defined by uncertainty and predictive

transfer function models (UTFM and PTFM) described in Chapter 4.

The uncertainty transfer function model or UTFM provides the most likely se-

quence and likelihood of decision-making activities at different phases of flight for a

specific resolution during disruption management. Thus, from an information theory

perspective [172, 173], the UTFM estimates the maximum amount of information or

recovery uncertainty (measured as negative log likelihood) that can be predicted for

a specific disruption resolution considered by a human specialist in a functional role

Figure 5.3. Integration and interaction routine in a decentralized AI
platform for airline disruption management
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during airline operations recovery. The recovery uncertainty estimated by the UTFM

represents the reliability of the disruption resolution provided by the human special-

ist, which is subsequently used to define the stake of a specific functional role during

its interaction with other functional roles in SWA-NOC to achieve consensus during

disruption management. In complement, the predictive transfer function model or

PTFM provides an evaluation of the required duration and delay at different phases

of flight upon enacting a particular resolution during disruption management. As

such, from an airline operations recovery perspective [15,20,174,175], the PTFM es-

timates the recovery impact for a specific disruption resolution conceived by a human

specialist in a functional role during airline disruption management. Thus, for any

functional role (i.e. intelligent domain manager) operating based upon the routine

defined in Fig 5.3 for a private decentralized AI platform, the UTFM and PTFM

conjointly define a smart contract that measures the reliability of a human-generated

disruption resolution and its corresponding effect on the recovery plan for a disrupted

airline route network, thereby enabling integration in a multi-agent system for airline

disruption management. Furthermore, the execution of the smart contract on a DLT

is instantiated by the occurrence of disruptions that induce irregular operations for

specific functional roles in SWA-NOC, thereby enabling interaction in a multi-agent

system for airline disruption management. As such, the multi-agent system for airline

disruption management investigated in this case study represents a hybrid decentral-

ized AI platform that enables multiple separate properties of the AI for Blockchain

and Blockchain for AI platforms for integration and interaction respectively. To this

end, the subsequent parts of this section describe relevant rationale used to calibrate

AI models as intelligent agents for integration into an applicable DLT protocol that

enables creation and observation of interactions amongst intelligent agents during

airline disruption management.
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5.2.1 AI Calibration

Artificial intelligence calibration is the process of adapting the behavior of an

intelligent agent in a multi-agent system for a specific research scope and environment

in order to attain high fidelity real-world simulations [46,176]. As such, to foster trust

in airline network recovery obtained through human-AI collaboration, the estimation

of the reliability of human-generated disruption resolutions by an intelligent agent

during airline disruption management must be acceptable [177,178]. To this effect, we

discuss the rationale used to calibrate the UTFM for intelligent agents that represent

functional roles in SWA-NOC.

Definition

The UTFM, detailed in Chapter 4, represents a design platform for creating prob-

abilistic finite state machines [179, 180] that define the manner in which disruption

resolution activities, i.e. a series of input criteria provided by a human specialist,

are translated by employing probabilities to evaluate the chance with which the dis-

ruption resolution yields the outcome intended by the human specialist. Hence, for

a human specialist capable of providing a set of possible disruption resolutions (i.e.

outcomes) r1, ..., rk, let X represent a random variable that represents the unpre-

dictable outcome of a single disruption resolution trial. As such, there exist values

p1, ..., pk ∈ [0, 1] wherein

pi = Pr[X = ri] (5.1)

and
k∑
i=1

pi = 1 (5.2)

Note that the term Pr[∗] means “ the probability or likelihood of ∗ ”.
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Thus, for every state s ∈ S in a probabilistic finite state machine and every action

or symbol a ∈ A defined by a specific disruption resolution, the following expressions

are valid:

either ∆(s, a) = ∅

or
∑

s′∈∆(s,a)

Pr[s
a−→ s′] = 1

(5.3)

Hence, for any series of input criteria x ∈ A∗ of length k and every trace t that defines

the probabilistic finite state machine in the form:

t = s0, x1, s1, ..., sk−1, xk, sk (5.4)

the probability that the trace defined by Eqn 5.4 represents the path taken through

the finite state machine upon reading the input criteria x is expressed as:

Pr[t] = Pr[s0
x1−→ s1] ... P r[sk−1

xk−→ sk] (5.5)

Congruently, for all scenarios where s′ /∈ ∆(s, a),

Pr[s
a−→ s′] = 0 (5.6)

To this end, the probability that a disruption resolution provided by a human spe-

cialist is accepted by an aggregate probabilistic finite state machine F that represents

the UTFM, is based upon a set of traces T (x) for x wherein the final state sk of each

trace is an accept state and Pr[t] is summed over all such traces t by the following

expression:

Pr[x is accepted] =
∑

t∈T (x),sk∈F

Pr[t] (5.7)

Learning Probabilities for Integration in SWA-NOC

As we detailed in Chapter 4, the real world application of probabilistic finite

state machines for airline disruption management is made possible through a spe-

cial state machine variant called the hidden Markov model. As such, the UTFM is

representative of a hidden Markov model (i.e. a transducer-style probabilistic finite



155

state machine) wherein outcomes are randomly generated at a state (in lieu of along

transitions) according to a random stochastic process that models the activities at

that state [181]. Thus, for each state s ∈ Q of the hidden Markov model, there

exists a random variable associated with s that takes in values of disruption resolu-

tion x according to certain state-dependent probabilities. As such, it is imperative

that these state-dependent probabilities are appropriately representative of the fre-

quency to which the random process (or variable) associated with a particular state

is instantiated during disruption management in the real world. To this effect, in-

ferring the structure (i.e. state transition and observation probabilities) of a hidden

Markov model from real world data presents a common learning problem in artificial

intelligence.

A variant of the expectation maximization algorithm [182, 183] called the Baum-

Welch algorithm [184], described in Chapter 4, provides a credible platform for learn-

ing the probabilities of a hidden Markov model from data through an unsupervised

optimization routine that guarantees local convergence but not global convergence.

As such, the Baum-Welch algorithm seeks to facilitate optimal prediction on train-

ing data that represents empirical frequency. However, empirical frequency does not

provide a good estimate of the probability of new real-world situations. And just

because an intelligent agent, defined by a model based upon empirical frequency, has

not observed some value of a variable does not mean that the likelihood that the

value exists should be zero (i.e., an impossible value does not exist) [185]. Thus,

to ensure high quality and fidelity of constituent UTFM structures for an intelligent

agent, we employ prior domain knowledge on airline scheduling and operations to

solve the zero-probability problem by implementing pseudocount (or prior count) for

each value to which real-world data values are added during Baum-Welch training.

To understand the pseudocount effect, suppose there is a binary feature Y and

a training data set with n0 observed instances where Y = 0 and n1 instances where

Y = 1, then a pseudocount c0 ≥ 0 is defined for Y = 0 and another pseudocount
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c1 ≥ 0 for Y = 1 so as to estimate the probability (or inherent likelihood) of an

outcome as:

Pr[Y = 1] =
n1 + c1

n0 + c0 + n1 + c1
(5.8)

Without loss of specificity, suppose Y is defined by the domain y1, ..., yk, then a

pseudocount ci is defined for each yi such that all prior counts are selected before

training commences. As such, given a training data set with observed real-world

examples where ni represents the number of instances with Y = yi, then:

Pr[Y = yi] =
ni + ci∑
i ni + ci

(5.9)

Thus, choosing pseudocounts represents a supplementary part of designing the

UTFM learner that effectively estimates how much an intelligent agent should accept

(or believe) an input criterion yi if it had seen one instance with yi to be true during

Baum-Welch training as compared to if it had seen no instances with yi to be true.

As such, if there were no instances of yi to be true during training, then the intelligent

agent believes that yi is impossible and ci was set as zero during training. However,

setting ci as zero during Baum-Welch training of data sets with substantially small ni

may cause the optimization to diverge, and not arrive at a local optimal due to the

undefined nature of the logarithm for a value of zero. Therefore, prior counts provide

a means to avoid to this problem. If there are instances with yi to be true during

training, then the intelligent agent accepts that a value for yi observed one time would

be 1+ci
ci

times more likely than a value observed zero times. Thus, the prior knowledge

factor, fpk, for the consideration of a specific value in a data set during Baum-Welch

training of constituent probabilistic finite state machines for the UTFM is expressed

as:

fpk =
1 + ci
ci

(5.10)

For example, we use the binary feature that indicates a flight swap from the

non-disrupted data set to fix pseudocounts for Baum-Welch training of constituent

probabilistic finite state machines for the UTFM, which define the random processes
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for remaining in the tactical and strategic (i.e. Schedule and Outcome) phases of ac-

tivity (refer to Fig. 4.4) during disruption management. As mentioned in Chapter 4,

the non-disrupted data set represents approximately 620,000 instances of Southwest

Airlines flight schedules that executed without disruptions between September 2016

and September 2017. About 16,160 flight schedules in the non-disrupted data set

executed with a flight swap. The subset of flight schedules that executed with a

flight swap were neither driven by the occurrence of active disruptions nor required

irregular operations (i.e. considerable AOCC intervention) for execution. Theoreti-

cally, from an airline disruption management perspective, swapping a flight prior to

schedule execution that is not necessitated by the existence of a disruption should

be impossible. As such, the total number of instances of these flight schedules in the

non-disrupted data set represents an appropriate pseudocount value for eliminating

the zero-probability problem during Baum-Welch training of tactical and strategic

probabilistic finite state machines for the UTFM. Thus, there is at least a 2.61%

probability (i.e. inherent likelihood) that any value for remaining in the tactical and

strategic phases of activity that is observed once would be 0.0062% more likely than

any value that is not observed at all during Baum-Welch training.

The arrival of a flight at the exact time planned prior to schedule execution is

almost impossible when there are disruptions in the airline route network [186]. As

such, we use the binary feature that indicates precise on-time arrival (i.e. A0) from the

disrupted data set to set pseudocounts for Baum-Welch training of probabilistic finite

state machines for the UTFM that define the random processes for remaining in the

operational (i.e. Outcome) phase of activity during airline disruption management.

The disrupted data set contains about 434,000 instances of Southwest Airlines flight

schedules that were subject to flight delays across multiple functional roles in the

AOCC between September 2016 and September 2017. In that regard, we use the

binary features that indicate route origination (i.e. first scheduled flight on day of

operation) and flight swap from the disrupted data set to specify pseudocounts for
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Baum-Welch training of probabilistic finite state machines that define the transitions

along and across different phases of activity in the UTFM respectively.

Table 5.1 reveals the pseudocount and inherent likelihood of observing new val-

ues (i.e. disruption resolution criteria) for each functional role in Southwest Airlines

network operations control, based upon an assessment of a training subset of the dis-

rupted data set that represents 99% of all instances of flight schedule execution in the

disrupted data set. Note that the remaining 1% represent instances of flight schedules

in the disrupted data set that are used later on in this chapter as new (disrupted)

flight schedules for demonstrating interaction in the decentralized AI platform. As

shown in Table 5.1, the Security functional role has the highest inherent likelihoods

of 29.1% and 32.6% for observing new values for tactical and operational disruption

management respectively. Similarly, the Dispatch CSC functional role has the high-

est inherent likelihood of 27.7% for observing a new value for strategic disruption

management. Conversely, the lowest inherent likelihoods of observing a new value

for tactical, operational, and strategic disruption management are 4.1%, 4.8%, and

3.4% respectively, and are realized by the Customer Hold, Weather, and Ground

Operations functional roles. Thus, human specialists in the Security and Dispatch

CSC functional roles have the most trial-and-error learning tendencies during dif-

ferent phases of airline disruption management. In contrast, human specialists in

the Weather, Customer Hold, and Ground Operations functional roles have the least

trial-and-error learning proclivities during separate phases of airline disruption man-

agement.

5.2.2 DLT Protocol

Distributed ledger technology presents a means to rive and improve airline schedul-

ing and operations [158]. To this effect, we employ a special type of nonlinear parallel-

chain DLT called Hashgraph, which offers four pertinent advantages for achieving

adaptive and dynamic decision-making interaction that are not readily available in
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current decision support systems for airline operations recovery and disruption man-

agement [37].

1. Performance - The Hashgraph consensus algorithm can process hundreds of

thousands of transactions per second, and thus affords an almost-perfect effi-

ciency in bandwidth usage for a fully connected peer-to-peer network of intelli-

gent agents that represent functional roles in SWA-NOC. This ensures that con-

sensus latency (i.e. real time recovery negotiation amongst intelligent agents)

is restricted to seconds, as opposed to minutes observed in existing approaches

for simultaneously-integrated recovery in airline disruption management [9].

2. Security - Existing platforms for simultaneously-integrated recovery in airline

disruption management employ consensus methods that require coordinators,

leaders and communication downtime to enable interaction amongst agents in a

multi-agent system [153]. As such, these platforms are vulnerable to distributed

denial of service (DDoS) [187,188] attacks that compromise the integrity of the

multi-agent system by allowing multiple systems to innudate the bandwidth

and resources of a targeted system. In that regard, Hashgraph is immune to

DDoS attacks against the consensus algorithm because there are no leaders

or coordinators in the data infrastructure. As such, Hashgraph enables the

ultimate benchmark for security currently attainable in distributed consensus

through asynchronous byzantine fault tolerance (ABFT) [37, 139, 189]. ABFT

ensures that the consensus order of transactions (i.e. disruption resolutions)

match the actual order in which the transactions posted to the distributed

ledger are resolved by intelligent agents. To that effect, it is almost impossible

for a single intelligent agent to prevent the writing of transaction information

to the distributed ledger, or influence the order of transactions from consequent

consensus in the multi-agent system.

3. Governance - The decentralized AI network hosted on the Hashgraph platform

is governed concurrently by all eleven functional roles in the AOCC that rep-
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resent intelligent agents in a multi-agent system, wherein no intelligent agent

has control and no small group of intelligent agents has exorbitant influence

over the multi-agent system as a whole. This eliminates the need for central-

ized control observed in many existing monolithic systems for airline disruption

management.

4. Stability - Hashgraph presents a technology and platform that ensures that

intelligent agents automatically validate the ancestry of the information cir-

culated on the distributed ledger prior to deployment through a shared state

mechanism. As such, the state mechanism on the Hashgraph platform for airline

disruption management is defined by the UTFM and PTFM, which represent

unilateral technical controllers in the decentralized AI network during sched-

ule recovery. Furthermore, Hashgraph enables human specialists or supervisors

(i.e. platform and software developers) in the AOCC to specify changes and

updates to components of intelligent agents, such that the updates are auto-

matically adopted for all intelligent agents at precisely the same time. This

ensures that any intelligent agent with antiquated updates is unable to modify

the distributed ledger or tender its version of the ledger as valid.

Interaction in SWA-NOC as a Byzantine Generals Problem

Solving the Byzantine Generals Problem [39] represents one of the most challeng-

ing methods for verifying and validating the reliability of a computerized multi-agent

system in order to manage the failure of one or more of its constituent agents. Con-

ceptually, the Byzantine Generals Problem describes the communication of separate

generals in several divisions of the Byzantine army camped outside an enemy city,

with only one messenger available to each general. The objective of the generals’

mission is to decide on the best collective plan of action after each general observes

the behavior (i.e. stratagem) of the enemy. However, some generals may be betray-

ers that try to hinder loyal generals from achieving a consensus on the best plan of
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action to defeat the enemy. Thus, solving the Byzantine Generals Problem is analo-

gous to enabling interaction amongst functional roles in SWA-NOC during disruption

management. In this analog, each intelligent agent for a functional role represents a

Byzantine general and the enemy represents a disruption in schedule and operations

at a particular airline station. The collective plan of action (i.e. recovery plan) de-

scribes the order in which disruption resolutions from multiple functional roles (or

intelligent agents) are implemented. As such, the messenger for an intelligent agent

is defined by cryptographic keys [190] that encode disruption resolutions from appro-

priate AI models imbued in the intelligent agent. In that regard, the objective of the

interaction amongst intelligent agents in a multi-agent system for airline disruption

management is to agree on the best recovery plan of action for a disrupted airline

schedule such that the following conditions are upheld:

• All intelligent agents representative of separate functional roles in SWA-NOC

decide upon the same recovery plan of action.

• A small number of traitors (i.e. intelligent agents) cannot cause loyal intelligent

agents to employ a bad recovery plan.

Thus, the intelligent agents operating in a decentralized multi-agent system must

have a robust algorithm to guarantee these conditions. To that effect, the Swirlds

(Hashgraph) consensus algorithm provides an appropriate medium for insuring that

the aforementioned conditions are always satisfied during disruption management and

operations recovery.

Hashgraph for Consensus in SWA-NOC

The algorithms that solve the Byzantine agreement problem typically exchange

many messages for intelligent agents to vote. For many multi-agent systems, a sin-

gle YES/NO decision by n intelligent agents can require up to O(n3) messages to

be sent across the network [9, 191]. And extending an algorithm to decide a total
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order on a set of transactions for a single YES/NO decision can further increase the

voting traffic and compound latency problems. However, the Swirlds consensus al-

gorithm [37], which addresses Byzantine agreement on the Hashgraph DLT, employs

a virtual voting mechanism that sends zero votes over the network for a multi-agent

system. As such, we define pertinent concepts that enable the applicability of the

Swirlds (Hashgraph) consensus algorithm to the decentralized AI network for airline

disruption management as follows [45]:

• Transactions : A transaction occurs when any intelligent agent representative

of a functional role in SWA-NOC publishes its disruption resolution data and

corresponding timestamp (i.e. time when the data is appended) to the dis-

tributed Hashgraph ledger. The disruption resolution data contains two pieces

of information namely:

1. The recovery uncertainty or reliability measure (i.e. entropy) of the set of

actions for disruption resolution generated by the UTFM in the intelligent

agent.

2. The recovery impact measured in terms of turnaround duration, block time

duration, tactical delay duration, and strategic delay duration estimated

by the PTFM in the intelligent agent.

Any intelligent agent in the multi-agent system (i.e. decentralized AI network)

can create a signed transaction at any time when a disruption in scheduled

airline operations occurs. All intelligent agents in the multi-agent system receive

a copy of the transaction, and the decentralized AI network reaches Byzantine

agreement on the order of those transactions.

• Fairness : This ensures that it is difficult for a small group of dubious intelli-

gent agents to unfairly influence the order of transactions that is selected as

consensus.
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• Gossip: This represents how disruption resolution information is disseminated

by each intelligent agent repeatedly selecting another intelligent agent at ran-

dom, and telling them all they know.

• Hashgraph: This represents the data structure or ledger upon which transaction

records are gossiped and in what order they are gossiped.

• Gossip-about-gossip: This indicates the gossip protocol that the Hashgraph em-

ploys for its operation. The information being gossiped is the history of the

gossip itself, and not the disruption resolution data contained in the gossip. As

such, only a small amount of bandwidth is required for gossiping transactions

amongst intelligent agents.

• Virtual voting : Every intelligent agent is privy to a copy of the Hashgraph. For

instance, an intelligent agent that represents the Security functional role can

estimate the vote that another intelligent agent representative of the Ground

Operations functional role would have sent if they both had been executing

a traditional Byzantine agreement protocol that required them to send votes.

As such, the intelligent agent representing Ground Operations does not need

the intelligent agent representing the Security functional role to actually vote.

To that effect, every intelligent agent can attain Byzantine agreement on any

number of recovery plan actions without a single vote ever being sent. The

Hashgraph data structure alone is sufficient, so no additional bandwidth is ex-

pended beyond that required for gossiping the data structure.

• Famous witnesses : There are situations during interaction in the multi-agent

system where a list of n transactions are ordered by running separate Byzantine

agreement protocols on O(n log n) different YES/NO questions that seek to an-

swer whether a disruption resolution event x occurred before another disruption

resolution event y. To address these situations in an expedient manner, a few

disruption resolution events (i.e. vertices in the Hashgraph) called witnesses
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are selected that define a witness to be famous if the Hashgraph data structure

shows that majority of the participating intelligent agents on the ledger received

a particular disruption resolution event fairly soon after it was created. Thus,

it is sufficient to execute the Byzantine agreement protocol only for witnesses

that decide whether or not a particular witness is famous for each intelligent

agent. As such, it becomes relatively easy to retrieve a fair total order for all

disruption resolution events upon attaining Byzantine agreement on the exact

set of famous witnesses.

• Strongly seeing : This property is defined as the ability of any two disruption

resolution events (i.e. vertices) x and y in the Hashgraph to be connected by

multiple directed paths passing through enough participating intelligent agents

on the distributed ledger. For instance, if the intelligent agents for the Security

and Ground Operations functional roles are able to independently estimate the

virtual vote on a specific question from the intelligent agent representing the

Weather functional role, then the intelligent agents for the Security and Ground

Operations functional role will get the same answer. The proof of the lemma

that demonstrates this proposition forms the foundation for the subsequent

mathematical proof of Byzantine agreement with a probability of one, which is

achieved by the Swirlds consensus algorithm [192].

• Asynchronous Byzantine Fault Tolerance: The Byzantine fault tolerance theo-

rem states that there is absolute certainty that each disruption resolution event

x created by an honest intelligent agent will eventually be assigned a consensus

position in the total order of disruption events. Asynchrony for Byzantine fault

tolerance is ensured based upon the assumption that the digital signatures and

cryptographic hashes are secured, such that signatures can not be forged, signed

messages can not be altered without being detected, and hash impingement can

never be found [193]. As such, syncing the gossip protocol ensures that when an

intelligent agent a sends intelligent agent b all the disruption resolution data it
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knows, b accepts only those that have a valid signature and contain valid hashes

corresponding to the disruption resolution data that it has available. Therefore,

the following definitions describe the property of asynchronous Byzantine fault

tolerance in the multi-agent system for obtaining a recovery plan during airline

disruption management:

1. A disruption resolution event x is defined to be an ancestor of a disruption

resolution event y if x is y, a parent of y, a parent of a parent of y and so

on. Furthermore, x is also a self-ancestor of y if x is y, or a self-parent of

y, or a self-parent of a self-parent of y and so on.

2. The round created number (i.e. round) of a disruption resolution event x

is r + i, where r is the maximum round number of the parents of x or 1 if

it has no parents, and i is 1 if x can strongly see more than 2n/3 witnesses

in round r or 0 otherwise. Note that n is the total number of participating

intelligent agents.

3. The round received number (i.e. received round) of a disruption resolution

event x is the first round where all unique famous witnesses are descendants

of x.

4. The pair of disruption resolution events (x, y) is a fork (i.e. a collectively

agreed upon intelligent agent update) if x and y have the same creator but

neither of them is a self-ancestor of the other.

5. An honest intelligent agent participant on the distributed ledger tries to

sync infinitely often with every other participating intelligent agent, cre-

ates a valid disruption resolution event after each sync with cryptographic

hashes of the latest self-parent and other parents, and will never create

two disruption resolution events that are forks with each other.

6. A disruption resolution event y can be seen by a disruption resolution event

x if y is an ancestor of x, and the ancestors of x do not include a fork by

the creator of y.
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7. A disruption resolution event x can strongly see disruption resolution event

y if x can see y and there is a set of disruption resolution events R from

more than two-thirds of participant intelligent agents, such that x can

see every disruption resolution event in R and y can be seen by every

disruption resolution event in R.

8. A witness is the first disruption resolution event created by an intelligent

agent in a round.

9. A unique famous witness is a famous witness that does not have the same

creator as any other famous witness created in the same round.

10. Hashgraph P for intelligent agent a and Hashgraph Q for intelligent agent

b are said to be consistent (i.e. exactly the same) if and only if for any

disruption resolution event x in both Hashgraphs, there are the same set

of ancestors for x with the same parent and self-parent edges between the

set of ancestors.

• Consensus : The stake of each intelligent agent is defined by a positive integer

that represents the total entropy (i.e. information) of the set of recovery activ-

ities generated by its UTFM. As such, the vote of an intelligent agent in the

multi-agent system, while creating a recovery plan, is weighted proportional to

its voting stake during each round of voting. Thus, consensus in the multi-agent

system is defined by a set of intelligent agents whose combined voting stake is

more than 2n/3, where n is the total stake of all participating intelligent agents.

In complement, the consensus timestamps of disruption resolution events for a

set of disruption resolution events R is the median of the timestamps in R

weighted by the voting stake of the creator of each event in R. As such, the

weighted median is analogous to selecting each disruption resolution event x in

R and placing multiple copies of the timestamp of x into a basket, such that

the number of timestamp copies is equal to the stake of the intelligent agent

that created y, and then choosing the median of the timestamps in the basket.
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Table 5.2. Position weights of states at separate phases of activity in
the UTFM for an intelligent agent

ADM Phase Possible States Position Weight

Tactical TAS, TOS, ES, TIS 1

Operational TAD, TOD, ED, TID 4

Strategic TAO, TOO, EO, TIO 2

These routines form the basis for proof of stake in achieving consensus in the

multi-agent system.

All mathematical proofs, lemmas, and algorithmic routines that enable all the

aforementioned concepts for the Hashgraph consensus framework can be found in [45].

Defining Stake for Functional Roles in SWA-NOC

Recall from Chapter 4 that the UTFM is comprised of a total of 12 interconnected

states for three separate phases of activity; that is, four schedule states for tactical

disruption management, four decision states for operational disruption management,

and four outcome states for strategic disruption management. Furthermore, the stake

of an intelligent agent operating on the Hashgraph consensus platform must be ex-

pressed as a positive integer [45]. As such, we employ a method that measures the

stake of a functional role in the AOCC as the total entropy of the trace from the

first schedule state (i.e. Turnaround Schedule or TAS) to the last outcome state (i.e.

Taxi-Out Outcome or TIO), given a set of input criteria for each phase of activity.

Mathematically, the entropy E of a discrete random variable T representing the trace

with probability mass function t(x) is expressed as:

E(T ) = −
∑
x

t(x) log2 t(x) (5.11)
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Thus, the entropy is the expected number of bits necessary to communicate the

value of the trace T if the best possible method (i.e. coding scheme) is used for

estimating the distribution of t(x). As such, we estimate t(x) as the probability of

the most likely sequence of transitions (i.e. the Viterbi likelihood) from Turnaround

Schedule to Taxi-In Outcome for a given set of input (or action) criteria x provided by

a human specialist in the AOCC. However, we can not guarantee that t(x) represents

the globally optimal distribution for communicating the value of trace T because the

best possible “coding scheme” for t(x) was obtained through Baum-Welch training,

which only guarantees local optimality. Thus, we create a surrogate value S of trace T

based upon domain knowledge that describes the significance of the value management

of flight operation at separate phases of activity in airline disruption management.

To estimate the surrogate value, we assign a position weight [194, 195] to states at

each phase of activity, such that the lowest position weight is assigned to states for

tactical disruption management and the highest position weight is assigned to states

for operational disruption management. States for tactical and strategic disruption

management receive lower position weights, as compared to states for operational

disruption management, because these states are only active prior to the execution

of a flight schedule and do not rapidly diminish the real-time value of flight recovery.

Table 5.2 shows the position weights for states at distinct phases of activity in the

UTFM for a functional role in the AOCC. Since entropy is measured in bits, we

adopt a binary position weighting scheme for any trace from Turnaround Schedule to

Taxi-Out Schedule, such that each state observed for tactical and strategic disruption

management is assigned a value of 1 and 2 respectively, while each state observed for

operational disruption management is assigned a value of 4. As such, S represents

the sum of the position weights s(x) for N transitions from Turnaround Schedule to

Taxi-Out Outcome by following the Viterbi path (i.e. the most likely sequence of

actions from Turnaround Schedule to Taxi-Out Outcome obtained through Viterbi

decoding). To this end, we amend the entropy estimated in Eqn. 5.11 to information

cross entropy, which defines the expected number of bits necessary to communicate
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the value (or information) taken by T for employing the plausibly sub-optimal Baum-

Welch coding scheme defined by t(x). Mathematically, the information cross entropy

(ICE) is expressed as:

ICE(s, t) = −S log2 t(x) = −N
∑
x

s(x) log2 t(x) (5.12)

Thus, the voting stake vs of a functional role in the AOCC on a single transaction

during airline disruption management is expressed as:

vs = bICEc (5.13)

5.2.3 Results and Discussion

This section describes the results from a demonstration of our decentralized AI

platform for a multi-agent system that creates airline disruption management and

schedule recovery plans, through the interaction of intelligent agents that perform

transactions on the Hashgraph data structure and consensus platform. In that regard,

the following assumptions, conditions and terms apply for our demonstration:

1. We use a data subset that represents 1% of the disrupted data set to create

a disrupted airline route network, which involves multiple functional roles in

SWA-NOC. This data subset represents disrupted flight schedules that exe-

cuted sometime between September 2016 and September 2017 in the Southwest

Airlines route network, which are not used for developing (i.e. calibrating or

training) the UTFM and PTFM for intelligent agents.

2. We assume that the disrupted flight schedules define all or part of a “fictitious”

and arbitrary route network served by Southwest Airlines in a representative

day of the year.

3. A new transaction, created by an intelligent agent representative of a func-

tional role in the AOCC, is stored as random bytes on the Hashgraph ledger,
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Table 5.3. Total number of queued disrupted flight schedules for each
functional role in SWA-NOC used for case study

Functional Domain Total Number of

Queued Disrupted

Flight Schedules

Affected Problem

Dimension

Customer Hold 469 Aircraft and Passenger

Dispatch CSC 175 Aircraft and Crew

Flight Operations 364 Crew

Fuel Management 49 Aircraft

Ground Operations 1684 Aircraft and Passenger

Inflight 795 Crew

Maintenance 336 Aircraft

NAS 227 All

Security 30 Passenger

Technology 90 All

Weather 127 All

based upon the queue number of a specific disruption in the irregular operations

(IROPS) database of the functional role.

4. We assume that all queued disrupted flight schedules in the database of the

functional role for each intelligent agent have a set of corresponding disruption

resolutions (i.e. input criteria) provided by human specialists in the AOCC.

With respect to the disrupted data set, these input criteria represent actual dis-

ruption resolutions used to recover the disrupted flight schedules that executed

at a particular time, and serve as concurrent inputs for the UTFM and PTFM.

5. We assume that all human specialists in the AOCC, who provide input criteria

for the decentralized AI platform (or disruption resolutions for the multi-agent

system), are flexible and expert decision-makers in their respective functional
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roles. Hence, they are capable of expediently proffering rules-of-thumb to ad-

dress disruptions that affect their respective functional roles.

Table 5.3 shows the total amount of queued disrupted flight schedules for each

functional role in the Southwest Airlines network operations control center. Recall

that Southwest Airlines operates over 4, 000 flight schedules every day [48]. As such,

there are a total of 4, 364 disrupted flight schedules, which represent the worst plau-

sible IROPS scenario where all flight schedules in the arbitrary airline route network

are disrupted at the same time on a representative day of the year. We employ the

Python programming language for the amalgamation of the Hashgraph consensus al-

gorithm and the AI models for the intelligent agents that represent functional roles

in SWA-NOC, which enables the operation and deployment of the decentralized AI

platform for airline disruption management.

Data Structure

Figure 5.4. Hashgraph data structure revealing a recovery plan from
a few functional roles in SWA-NOC

Fig. 5.4 shows the Hashgraph (i.e. distributed ledger data structure) for a creating

a simultaneously-integrated recovery plan that involves five of the eleven functional

roles in SWA-NOC. We use five functional roles for this specific demonstration for
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ease of readability. As such, there are five participating intelligent agents (or domain

managers) that represent the following functional roles: Customer Hold, Dispatch

CSC, Flight Operations, Fuel Management, and Ground Operations, respectively.

The circles shown in Fig. 5.4 represent disruption resolution events, such that the

larger circles are disruption resolution events that are also famous witnesses. In

addition, the dark blue circles towards the bottom of the ledger shown in Fig. 5.4

represent disruption resolution events from the first round of consensus, while the

purple circles located towards the top of the ledger represent resolution events from

the second round of consensus. Furthermore, the non-negative integers shown in

Fig. 5.4 represent the position (or place) of a specific disruption resolution event in

the consensus order of disruption resolution events, which describe the recovery plan

of action during disruption management by the five functional roles. The resolution

horizon, which goes from bottom to top (i.e. moving upwards) as shown in Fig. 5.4,

describes the manner in which a disruption resolution event or transaction is added

to the distributed ledger (i.e. timestamp) by an intelligent agent. Hence, the grey

lines represent the gossip paths that indicate how disruption events occur and how

corresponding resolution information is disseminated amongst the intelligent domain

managers. Therefore, the recovery plan of action agreed upon by the five functional

roles, as shown in Fig. 5.4, is to apply the resolution for the second disruption en-

countered by the Fuel Management functional role first (i.e. small circle labeled 0)

before applying the resolution for the third disruption encountered by the Dispatch

CSC functional role next (i.e. small circle labeled 1), and so on and so forth. In that

vein, the recovery plan of action represents a trace r that follows a set of non-negative

integers in ascending order, p, such that each integer in p represents the label of a cor-

responding disruption resolution event, as shown in Fig. 5.4. Therefore, the recovery

plan of action from all five functional roles is expressed as:

r = {0, 1, 2, ..., 32} = { p | p is non-negative } (5.14)
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Fig. 5.4 represents a snapshot in a dynamic and continuous timestamp horizon

that infinitely increases the set r as new disruptions occur for different functional

roles in the AOCC. As such, any number in the trace sequence r that is not visible

in Fig. 5.4 is further up along the resolution horizon. Note that the circles shown in

Fig. 5.4 are unlabeled and all have the same size prior to achieving consensus on the

Hashgraph platform.

Table 5.4 reveals the summaries of the first ten disruption resolution events (i.e.

transactions) in the consensus recovery plan shown in Fig. 5.4. Of the ten disruption

resolution events, four of them (i.e. 2, 3, 4, 8) are famous witnesses. Thus, the first

(parent) disruption resolution events registered by intelligent domain managers on the

Hashgraph ledger are for disrupted flight schedules with the following identification

numbers (i.e. flight id) respectively: 2201, 11670, 12388, and 13753. The highest

tactical delay (i.e. delay applied before aircraft boarding and departure) of 61mins

was estimated for the recovery (or management) of disrupted flight 1536 by the Fuel

Management functional role. Conversely, the least tactical delay estimated among the

ten disrupted flights from Table 5.4 represents the execution of flight 13753 twenty

minutes earlier than originally planned by the Ground Operations functional role in

the AOCC. Congruently, the highest strategic delay (i.e. delay applied after aircraft

arrival and deplaning) of 40mins was estimated for the recovery of disrupted flight

15505 by the Dispatch CSC domain manager. Furthermore, the lowest strategic delay

estimated among the ten disrupted flight schedules, highlighted in Table 5.4, affirms

the arrival of flight 11670 fourteen minutes earlier than the originally scheduled arrival

time prior to disruption, as estimated by the Flight Operations functional domain

manager. The total tactical and strategic delay estimated for recovering the ten

flights are 269mins and 190mins respectively, as evidenced in Table 5.4. As such,

the recovery plan (from the decentralized AI platform) for the first ten flights will

cost the airline an average of $359.55 per disrupted passenger, assuming $47/hr [196]

as the average value of a passenger’s time on each disrupted flight and the passenger

flew on all ten disrupted flights.
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Figure 5.5. Elapsed time period before first round of consensus for an
increasing number of functional roles in SWA-NOC

Performance

Fig. 5.5 shows a plot of the period of time that elapsed before the first round

of consensus is attained and registered on the Hashgraph platform, as the number

of functional roles involved in disruption management (or operations recovery) is in-

creased from four to eleven. Note that the number of functional roles, shown on the

x-axis in Fig. 5.5, is increased based upon the alphabetical order of all the functional

roles in SWA-NOC. As such, the scenario with four functional roles indicates an inter-

action of the following functional roles on the Hashgraph platform: Customer Hold,

Dispatch CSC, Flight Operations, and Fuel Management. In that vein, the scenario

with five functional roles indicates an interaction of the Customer Hold, Dispatch

CSC, Flight Operations, Fuel Management, and Ground Operations functional roles

on the Hashgraph consensus platform. Since the Hashgraph consensus timeline con-

tinues infinitely, we measure the time to reach first consensus in lieu. Hence, the
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time to reach first consensus, shown on the y-axis in Fig. 5.5, represents the duration

from the start of the interaction amongst intelligent domain managers until the time

when all famous witnesses in the first round are assigned a consensus position and

corresponding timestamp, assuming the throughput that Hashgraph provides remains

constant for all scenarios. Fig. 5.5 reveals that the rate at which the elapsed time to

reach first consensus increases for interactions amongst nine to eleven functional roles

is six times the rate at which the elapsed time to reach first consensus increases for

interactions amongst four to six functional roles in the AOCC. As such, the minimum

elapsed time to reach first consensus is 90s during interaction for simultaneously-

integrated recovery amongst four functional roles, and the maximum elapsed time to

reach first consensus is 1780s during interaction for simultaneously-integrated recov-

ery amongst all eleven functional roles in SWA-NOC.

Chapter Summary: This chapter provided an extensive review of fusion tech-

niques for artificial intelligence and distributed ledger technology, and how they en-

abled the creation of a decentralized AI platform that simulates the integration and

interaction of intelligent agents for simultaneously-integrated recovery during airline

disruption management. Through a synthesis of AI models (i.e. UTFM and PTFM

discussed in Chapter 4) and a nonlinear parallel-chain distributed ledger technol-

ogy called Hashgraph, we developed and assessed the framework of an intelligent

multi-agent system that can provide real-time schedule recovery plans based upon

rules-of-thumb provided by human experts in the airline operations control center.
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6. OUTRO

The airline scheduling and disruption management process for distinctive flight op-

erations is an innately iterative profit-maximizing process that occurs over a six to

nine month period, and can be separated into tactical planning, operational planning,

and strategic planning respectively. Tactical and strategic planning are short-term

and long-term scheduling initiatives, respectively, employed by airlines to facilitate

the initiatives developed in the operational planning phase (i.e. during execution of

planned airline schedule). Many a time, the planned (optimal) flight schedule prior

to execution is subject to random disruptive events during execution that invariably

complicate schedule recovery typically enabled by large-scale monolithic optimiza-

tion techniques. Furthermore, the systems upon which these optimization techniques

are imbued are centralized and rapidly become inefficient as more complexity (i.e.

functionality) is added to the system. As such, these systems are only capable of

recovering one or two problem dimensions (i.e. aircraft, crew, passenger) in airline

disruption management at a time in a sequential manner. To this end, this disserta-

tion introduced and demonstrated a data-driven and modular framework that engages

a unique and systematic design paradigm for enabling simultaneously-integrated re-

covery of all problem dimensions in airline disruption management, via a multi-agent

system modeling of the airline operations control center. Thus, to conclude, this chap-

ter outlines a summary of the research contributions of this dissertation to the field

of airline scheduling and disruption management and recommendations of directions

for further research studies.



179

6.1 Summary

The executive synopsis for each chapter in the body of this dissertation are as

follows:

6.1.1 A Novel Paradigm for ADM

Contribution

1. We introduced an intelligent multi-agent system (i-MAS ) framework for airline

disruption management that strictly applies historical data on airline schedul-

ing and recovery operations to find optimum flight schedule recovery plans,

which are attained through simultaneous interaction of functional domains (i.e.

IROPS managers) in the AOCC.

2. We provided an insight of the existing framework for simultaneously-integrated

recovery and our (i-MAS ) framework, to establish the relevance of generic re-

search assignments necessary for enabling a purely data-driven design paradigm

for airline disruption management.

3. To the best of our knowledge, our i-MAS framework is the first architecture for

airline disruption management that employs concurrent virtual voting amongst

functional roles in the AOCC – which are affected by separate problem dimen-

sions – to achieve an automatic (or semi-automatic) system for simultaneously-

integrated recovery.

Conclusion

Simultaneously-integrated recovery in airline disruption management is a fledgling

research area that can benefit from more investigation. Through new design principles

and methodologies that leverage the quotidian existence of data and relevant domain

information on several aspects of the air transportation system, robust strategies that
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address every fundamental tenet of airline disruption management can be readily

created and implemented.

6.1.2 Exploratory Data Analysis for a SIR Paradigm in ADM

Contribution

1. We introduced and explored several abstraction methods for applying, enhanc-

ing, and sequestering raw features and labels in a historical data set on airline

scheduling and operations recovery from a major U.S. airline, to readily identify

relevant cognitive patterns for key drivers during airline disruption management.

2. We investigated the application of appropriate machine learning techniques for

revealing patterns, pertinence, and properties of abstracted data features, which

provide necessary a priori information for Bayesian and pseudo-Bayesian meth-

ods. These methods are subsequently used for developing functional models in

an intelligent multi-agent system for airline disruption management.

Conclusion

Machine learning techniques such as feature transformation and dimensionality

reduction provide excellent platforms for verifying empirical processes and validating

domain knowledge for airline disruption management. The patterns and information

gleaned from the results and observations from visual techniques (such as PCA and

t-SNE) identified the viability of seasonal (temporal) and geographical features in

the data set as appropriate predictors for AI models; while the results obtained from

qualitative methods (such as MIR and GPR) established the importance of these

predictors and the underlying processes that define their combination for high fidelity

AI models. As such, the findings from Chapter 3 partially address our first research

question; through the completion of research tasks that identify the credibility of
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exercising machine learning to characterize functional parts of the AOCC as intelligent

decision support systems.

6.1.3 Creating Intelligent Agents for a SIR Paradigm in ADM

Contribution

1. We adeptly used experience (i.e. historical data on airline schedule and opera-

tions recovery) to construct an internal model of the transitions and immediate

outcomes of scheduling activities and decisions for different phases of flight

operations, by effectively describing the model environment as a relational dy-

namic Bayesian network (RDBN) architecture. Our architecture defines the

interaction between schedule changes and decision-making during airline dis-

ruption management, for a unique intelligent agent (i.e. domain manager) in a

multi-agent system.

2. We provided a modular approach for implementing an uncertainty transfer func-

tion model (UTFM) for disruption management. Our approach inculcates fea-

ture engineering and probabilistic graphical modeling methods that enable the

use of appropriate machine learning algorithms to effectively calibrate parame-

ters for a RDBN architecture.

3. We expertly used historical data on airline schedule and operations recovery

to develop a system of artificial neural networks (ANNs), which define a pre-

dictive transfer function model (PTFM) for estimating the recovery impact of

disruption resolutions at separate phases of schedule execution during disrup-

tion management.

4. We provided a modular approach for assessing and executing a PTFM for airline

disruption management, by employing a parallel ensemble method to develop

generative routines that amalgamate a system of ANNs.
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Conclusion

Predictive analytics provided a set of learning and inference techniques that en-

sure the accessibility, efficacy and reliability of distinct patterns and behaviors for

proactive (tactical) disruption management prior to schedule execution, reactive (op-

erational) disruption management during schedule execution and proactive (strategic)

disruption management after schedule execution; all of which are necessary for achiev-

ing robust airline disruption management. First, we attained an effective application

of two different classes of dynamic programming algorithms, i.e. the Baum-Welch

and Viterbi algorithms, to respectively learn and decode the parameters of different

HMMs that constitute an overarching relational dynamic Bayesian network called the

UTFM. Next, we achieved a suitable implementation of bootstrap aggregation (i.e.

bagging) for combining multiple independently trained ANNs that define the PTFM,

such that current industry standards for tardiness during flight schedule execution are

satisfied. Thus, the findings from Chapter 4 completely address our first and third

research questions, respectively, by:

1. Verifying the information retrieved through exploratory data analysis in Chap-

ter 3 and validating the use of the statistics of predictive analytics to evaluate

functional parts of the AOCC.

2. Recognizing and assessing consistent metrics, such as delay periods, to measure

the performance and effectiveness of disruption resolutions.

6.1.4 Enabling Integration and Interaction for a SIR Paradigm in ADM

Contribution

1. We enabled the fusion of artificial intelligence (AI) and distributed ledger tech-

nology (DLT) for airline disruption management, by developing the i-MAS

architecture for multiple functional roles in the AOCC as a decentralized AI

platform.
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2. We created a protocol to invoke the Hashgraph consensus algorithm, which em-

ploys the reliability of any disruption resolution provided by a human specialist

as the stake (i.e. relative interest) of the associated functional role during its

interaction with other participating functional roles in the AOCC.

3. We established the efficacy of a decentralized AI platform for simultaneously-

integrated recovery in airline disruption management, by assessing a scenario of

randomly disrupted flight schedules across multiple functional roles and problem

dimensions in the AOCC.

Conclusion

Trust in human-AI collaboration for robust airline disruption management is con-

tingent upon expedient verification and validation of rules-of-thumb – provided by

human specialists in the AOCC – that define input criteria for a decentralized AI

platform. Thus, we adopted a synthesis of artificial intelligence and distributed ledger

technology to create a symbiotic relationship for the integration and interaction of

intelligent agents in the i-MAS framework for the AOCC. As such, we achieved a

semi-automatic platform that effectively eliminates the drawback of centralization

for integration of intelligent agents in the AOCC, by engaging the decentralized and

immutable nature of distributed ledger technology to realize simultaneous interaction

amongst intelligent agents during airline disruption management. We used the re-

sultant decentralized AI platform to effect simultaneously-integrated recovery for an

artificial network of disrupted real-world flight schedules across multiple functional

roles in the AOCC, and obtained credible recovery plans within minutes of invok-

ing the i-MAS framework. To this effect, the findings from Chapter 5 completely

addresses our second research question, by revealing simultaneous decision-making

among intelligent functional roles in the AOCC through latest advancements in con-

sensus mechanism design.
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6.2 Recommendations for Future Work

Based upon the scope of work presented in this dissertation, we propose the fol-

lowing recommendations for further research in simultaneously-integrated recovery

for airline disruption management:

• First, the data used to inform the development of the AI models (i.e. UTFM and

PTFM), was provided by one airline that primarily operates a point-to-point

route network structure. As such, there is a need to investigate an equiva-

lent framework for creating AI models that can readily appropriate data from

any major airline, which utilizes a hub and spoke route network or a point-to-

point route network. Moreover, to facilitate system-wide disruption manage-

ment measures like the FAA collaborative decision making (CDM) initiative,

readily accessible data from other air transportation system stakeholders (such

as airports) can be inculcated to improve the effectiveness of the existing i-MAS

framework.

• Second, the selection of specific data features for different phases of activity in

the construction of the UTFM is primarily informed by literature and expert in-

puts of human specialists from one airline, and may contain biases with respect

to separate perspectives for different objectives of air transportation stakehold-

ers for system-wide disruption management. As such, proven non-parametric

and unsupervised machine learning techniques can be employed to mitigate and

validate biases for ensuring a fairly objective selection of features to represent

different air transportation system stakeholders for robust disruption manage-

ment in the national airspace system. Furthermore, the Baum-Welch algorithm

presents an inherently sub-optimal unsupervised learning routine for obtain-

ing component HMMs of the UTFM. To that effect, more research to ensure

and enhance solution fidelity of unsupervised machine learning methods is most

opportune.
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[82] Andreas Glöckner, Benjamin E. Hilbig, and Marc Jekel. What is adaptive about
adaptive decision making? A parallel constraint satisfaction account. Cognition,
2014.

[83] Paul C. Clements and David M. Weiss. The Modular Structure of Complex
Systems. IEEE Transactions on Software Engineering, 1985.

[84] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2007.

[85] Craig R Fox and Gulden Ulkumen. Distinguishing two dimensions of uncer-
tainty. Perspectives on Thinking, Judging, and Decision Making, 2011.

[86] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. 2009.

[87] Jc Pomerol. Artificial intelligence and human decision making. European Jour-
nal of Operational Research, 2217(96):1–28, 1997.

[88] Morten Frydenberg. The chain graph Markov property. Scandinavian journal
of statistics, 1990.

[89] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning proba-
bilistic relational models. In IJCAI International Joint Conference on Artificial
Intelligence, 1999.

[90] Sumit Sanghai, Pedro Domingos, and Daniel Weld. Relational dynamic bayesian
networks. Journal of Artificial Intelligence Research, 24:759–797, 2005.

[91] Jennifer Neville and David Jensen. Relational dependency networks. Journal
of Machine Learning Research, 2007.

[92] Wai Ki Ching, Michael K. Ng, and Eric S. Fung. Higher-order multivariate
Markov chains and their applications. Linear Algebra and Its Applications,
428(2-3):492–507, 2008.

[93] Fei Cao, Barrett R. Bryant, Carol C. Burt, Rajeev R. Raje, Andrew M. Olson,
and Mikhail Auguston. A component assembly approach based on aspect-
oriented generative domain modeling. Electronic Notes in Theoretical Computer
Science, 114(SPEC. ISS.):119–136, 2005.

[94] Scott C. Chase. Generative design tools for novice designers: Issues for selection.
In Automation in Construction, 2005.

[95] Krzysztof Czarnecki. Overview of generative software development. In Lecture
Notes in Computer Science, 2005.

[96] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L. Wolf. A
conceptual basis for feature engineering. Journal of Systems and Software,
49(1):3–15, 1999.

[97] Enrique Vidal, Frank Thollard, Colin de la Higuera, Francisco Casacuberta,
and Rafael C. Carrasco. Probabilistic finite-state machines - Part II, 2005.



191

[98] Zoubin Ghahramani. An Introduction to Hidden Markov Models and Bayesian
Netweoks. International Journal of Pattern Recognition and Artificial Intelli-
gence, 2001.

[99] Ben Letham and Cynthia Rudin. Probabilistic Modeling and Bayesian Analysis.
Prediction: Machine Learning and Statistics Lecture Notes, pages 1–42, 2012.

[100] Jie Yang, Yangsheng Xu, and Chiou S. Chen. Human action learning via hidden
Markov model. IEEE Transactions on Systems, Man, and Cybernetics Part
A:Systems and Humans., 27(1):34–44, 1997.

[101] Leonard E. Baum and Ted Petrie. Statistical Inference for Probabilistic Func-
tions of Finite State Markov Chains. The Annals of Mathematical Statistics,
2007.

[102] JeffA. Bilmes. A Gentle Tutorial of the EM Algorithm and its Application
to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.
42(5):42–45, 2011.

[103] Yves Boussemart, Jonathan Las Fargeas, Mary L. Cummings, and Nicholas
Roy. Comparing Learning Techniques for Hidden Markov Models of Human
Supervisory Control Behavior. 2012.

[104] Andrew J. Viterbi. Error Bounds for Convolutional Codes and an Asymp-
totically Optimum Decoding Algorithm. IEEE Transactions on Information
Theory, 1967.

[105] G. David Forney. The Viterbi Algorithm. Proceedings of the IEEE, 1973.

[106] Jim K. Omura. On the Viterbi Decoding Algorithm. IEEE Transactions on
Information Theory, 1969.

[107] Olle Haggstrom. Finite Markov Chains and Algorithmic Applications. 2002.

[108] Jacob Schreiber. pomegranate Documentation. 2016.

[109] Michael Dudley Delano Clarke. Irregular airline operations: a review of the
state-of-the-practice in airline operations control centers. Journal of Air Trans-
port Management, 1998.

[110] Alan H Midkiff, R John Hansman, and Tom G Reynolds. Air Carrier Flight
Operations. Technical Report July, MIT International Center for Air Trans-
portation, Cambridge, MA, 2004.

[111] Lu Hao and Mark Hansen. How airlines set scheduled block times. In Proceed-
ings of the 10th USA/Europe Air Traffic Management Research and Develop-
ment Seminar, ATM 2013, 2013.

[112] R Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. Proceedings of the 14th international joint conference on
Artificial intelligence - Volume 2, 2(0):1137–1143, 1995.

[113] Kolawole E. Ogunsina, Marios Papamichalis, Ilias Bilionis, and Daniel A. De-
Laurentis. Hidden Markov Models for Pattern Learning and Recognition in a
Data-Driven Model for Airline Disruption Management. 2019.



192

[114] Lavanya Marla, Bo Vaaben, and Cynthia Barnhart. Integrated disruption man-
agement and flight planning to trade off delays and fuel burn. Transportation
Science, 51(1):88–111, 2017.

[115] Jane Lee, Lavanya Marla, and Alexandre Jacquillat. Dynamic Airline Dis-
ruption Management Under Airport Operating Uncertainty. SSRN Electronic
Journal, 2007:1–41, 2018.

[116] Roger Beatty, Rose Hsu, Lee Berry, and James Rome. Preliminary Evaluation
of Flight Delay Propagation through an Airline Schedule. Air Traffic Control
Quarterly, 1999.

[117] Yu Zhang and Mark Hansen. Real-time intermodal substitution: Strategy for
airline recovery from schedule perturbation and for mitigation of airport con-
gestion. Transportation Research Record, 2008.

[118] Hartmut Fricke and Michael Schultz. Delay impacts onto turnaround perfor-
mance. Eighth USA/Europe Air Traffic Management Research and Development
Seminar (ATM2009), 2009.

[119] Poornima Balakrishna, Rajesh Ganesan, and Lance Sherry. Accuracy of re-
inforcement learning algorithms for predicting aircraft taxi-out times: A case-
study of Tampa Bay departures. Transportation Research Part C: Emerging
Technologies, 2010.

[120] Bojia Ye, Bo Liu, Yong Tian, and Lili Wan. A methodology for predicting
aggregate flight departure delays in airports based on supervised learning. Sus-
tainability (Switzerland), 2020.

[121] João P.S. Rosa, Daniel J.D. Guerra, Nuno C.G. Horta, Ricardo M.F. Martins,
and Nuno C.C. Lourenço. Overview of Artificial Neural Networks. 2020.

[122] Jinming Zou, Yi Han, and Sung Sau So. Overview of artificial neural networks,
2008.

[123] E W Weisstein. Sigmoid Function. MathWorld - A Wolfram Web resource,
2006.

[124] Earl Hunt, Marvin Minsky, and Seymour Papert. Perceptrons. The American
Journal of Psychology, 1971.

[125] Bernard Widrow and Michael A. Lehr. 30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation. Proceedings of the IEEE, 1990.

[126] Radford M. Neal. Priors for Infinite Networks. 1996.

[127] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Deep neural networks as Gaussian
processes. In 6th International Conference on Learning Representations, ICLR
2018 - Conference Track Proceedings, 2018.

[128] Alex M. Andrew. Backpropagation. Kybernetes, 2001.

[129] Jeff Heaton. Artificial Intelligence for Humans, Volume 3: Neural Networks
and Deep Learning. 2015.



193

[130] Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of
Mathematical Statistics, 1964.

[131] Shie Mannor, Bori Peleg, and Reuven Rubinstein. The cross entropy method for
classification. In ICML 2005 - Proceedings of the 22nd International Conference
on Machine Learning, 2005.

[132] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic opti-
mization. In 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, 2015.

[133] Shashi Shekhar and Hui Xiong. Root-Mean-Square Error. In Encyclopedia of
GIS. 2008.

[134] Peter A. Flach and Meelis Kull. Precision-Recall-Gain curves: PR analysis done
right. In Advances in Neural Information Processing Systems, 2015.

[135] Zhi Hua Zhou. Ensemble methods: Foundations and algorithms. 2012.

[136] Nikhil Ketkar and Nikhil Ketkar. Introduction to PyTorch. In Deep Learning
with Python. 2017.

[137] PyTorch Community. Tensors and Dynamic neural networks in Python with
strong GPU acceleration. Github, 2016.

[138] Kathleen L. Mosier and Linda J. Skitka. Human decision makers and automated
decision aids: Made for each other? In Automation and Human Performance:
Theory and Applications. 2018.

[139] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Transactions on Computer Systems, 20(4):398–461,
2002.

[140] Melanie Swan. Blockchain Thinking : the Brain as a Decentralized Autonomous
Corporation [Commentary], 2015.

[141] Tsan Ming Choi, Stein W. Wallace, and Yulan Wang. Big Data Analytics in Op-
erations Management. Production and Operations Management, 27(10):1868–
1883, 2018.

[142] Amy Maxmen. AI researchers embrace Bitcoin technology to share medical
data, 2018.

[143] Ercan Oztemel and Samet Gursev. Literature review of Industry 4.0 and related
technologies, 2020.

[144] E. T. Jaynes. Probability Theory: The Logic of Science. The Mathematical
Intelligencer, 27(2):83–83, 2003.

[145] Michela Piccarozzi, Barbara Aquilani, and Corrado Gatti. Industry 4.0 in man-
agement studies: A systematic literature review. Sustainability (Switzerland),
2018.



194

[146] Yulin Liu, Yi Liu, Mark Hansen, Alexey Pozdnukhov, and Danqing Zhang. Us-
ing machine learning to analyze air traffic management actions: Ground delay
program case study. Transportation Research Part E: Logistics and Transporta-
tion Review, 2019.

[147] Douwe Kiela, Luana Bulat, Anita L. Vero, and Stephen Clark. Virtual Em-
bodiment: A Scalable Long-Term Strategy for Artificial Intelligence Research.
(Nips), 2016.

[148] Li Li, Yi Lun Lin, Nan Ning Zheng, Fei Yue Wang, Yuehu Liu, Dongpu Cao,
Kunfeng Wang, and Wu Ling Huang. Artificial intelligence test: a case study
of intelligent vehicles. Artificial Intelligence Review, 2018.

[149] Michel Rauchs, Andrew Glidden, Brian Gordon, Gina C. Pieters, Martino Re-
canatini, François Rostand, Kathryn Vagneur, and Bryan Zheng Zhang. Dis-
tributed Ledger Technology Systems: A Conceptual Framework. SSRN Elec-
tronic Journal, (August), 2018.

[150] Roger Maull, Phil Godsiff, Catherine Mulligan, Alan Brown, and Beth Kewell.
Distributed ledger technology: Applications and implications. Strategic Change,
26(5):481–489, 2017.

[151] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System — Satoshi
Nakamoto Institute. Technical report, 2008.

[152] Craig S Wright. Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Elec-
tronic Journal, 2019.

[153] Soufiane Bouarfa, Jasper Müller, and Henk Blom. Evaluation of a Multi-Agent
System approach to airline disruption management. Journal of Air Transport
Management, 2018.

[154] Stefan Janson, Daniel Merkle, and Martin Middendorf. A decentralization ap-
proach for swarm intelligence algorithms in networks applied to multi swarm
PSO. International Journal of Intelligent Computing and Cybernetics, 2008.

[155] Michael Ball, Cynthia Barnhart, George Nemhauser, and Amedeo Odoni. Air
Transportation : Irregular Operations and Control. Handbooks of Operations
Research and Management, pages 1–71, 2006.

[156] Thang N. Dinh and My T. Thai. AI and Blockchain: A Disruptive Integration.
Computer, 2018.

[157] Yueyue Dai, Du Xu, Sabita Maharjan, Zhuang Chen, Qian He, and Yan Zhang.
Blockchain and Deep Reinforcement Learning Empowered Intelligent 5G be-
yond. IEEE Network, 2019.

[158] Khaled Salah, M. Habib Ur Rehman, Nishara Nizamuddin, and Ala Al-Fuqaha.
Blockchain for AI: Review and open research challenges. IEEE Access, 2019.

[159] Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres Sousa-Poza,
Robert Safford, William Peterson, and Ghaith Rabadi. System of systems
engineering. EMJ - Engineering Management Journal, 2003.



195

[160] Daniel A. DeLaurentis. Understanding transportation as system-of-systems de-
sign problem. In 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting
Papers, 2005.

[161] Andrew Sage and Christopher Cuppan. On the Systems Engineering and Man-
agement of Systems of Systems and Federations of Systems. Information Knowl-
edge Systems Management, 2001.

[162] Michael O. Ball, Chien-Yu Chen, Robert Hoffman, and Thomas Vossen. Col-
laborative Decision Making in Air Traffic Management: Current and Future
Research Directions. 2001.

[163] Douglas Fearing and Cynthia Barnhart. Evaluating air traffic flow manage-
ment in a collaborative decision-making environment. Transportation Research
Record, 2011.

[164] Ahmad I. Jarrah, Jon Goodstein, and Ram Narasimhan. An Efficient Airline
Re-Fleeting Model for the Incremental Modification of Planned Fleet Assign-
ments. Transportation Science, 34(4):349–363, 2000.

[165] Hanif D. Sherali, Ebru K. Bish, and Xiaomei Zhu. Airline fleet assignment
concepts, models, and algorithms. European Journal of Operational Research,
172(1):1–30, 2006.

[166] Oriol Lordan, Jose M. Sallan, Nuria Escorihuela, and David Gonzalez-Prieto.
Robustness of airline route networks. Physica A: Statistical Mechanics and its
Applications, 2016.

[167] Daniele Magazzeni, Peter Mcburney, and William Nash. Validation and verifi-
cation of smart contracts: A research agenda. Computer, 2017.
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A. Nomenclature for Chapters 3, 4 & 5

A.1 Nomenclature for determinate aleatoric data features

Aleatoric Data Fea-

ture

Description Observation Input

Category

dow Day of the week FREQ

doy Day of the year FREQ

dest x dir Destination airport location in

spherical X coordinate

DEST

dest y dir Destination airport location in

spherical Y coordinate

DEST

dest z dir Destination airport location in

spherical Z coordinate

DEST

moy Month of the year FREQ

ONBD CT Total number of passengers on-

board flight

PAX DMD

orig x dir Origin airport location in spheri-

cal X coordinate

ORIG

orig y dir Origin airport location in spheri-

cal Y coordinate

ORIG

orig z dir Origin airport location in spheri-

cal Z coordinate

ORIG

route Spherical distance between origin

and destination airports

RTE
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sched route originator flag Flag to indicate first flight of the

day

ORIG

season Season of the year FREQ

A.2 Nomenclature for indeterminate aleatoric data features

Aleatoric Data

Feature

Description Observation Input

Category

Functional Role

HD04 Holding aircraft for

inbound connections

DISRP Customer Hold

HD05 Holding aircraft to

accommodate cus-

tomers of delayed

flight

DISRP Customer Hold

HD10 Team accommoda-

tion

DISRP Customer Hold

DP01 Flight dispatch activ-

ities

DISRP Dispatch CSC

HD11 Holding flight to ac-

commodate interna-

tional schedule slot

times

DISRP Dispatch CSC

FO01 Pilot activities as

they relate to normal

aircraft readiness

DISRP Flight Operations

FO02 Flight dispatch activ-

ities

DISRP Flight Operations

FO03 Pilot scheduling ac-

tivities

DISRP Flight Operations
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FO04 Pilot late for flight

or missing items re-

quired for flight

DISRP Flight Operations

EA11 Fueler late to aircraft DISRP Fuel Management

EA12 Fueling equipment

failure

DISRP Fuel Management

EA13 Inoperative gauges or

dripstick

DISRP Fuel Management

EA14 Any other energy ad-

ministration delay

DISRP Fuel Management

EA15 Heavy fuel load (≥

3000 gallons)

DISRP Fuel Management

EA16 Uplift change DISRP Fuel Management

OP01 Customer boarding DISRP Ground Operations

OP02 Customer service DISRP Ground Operations

OP03 Ramp service DISRP Ground Operations

OP04 Ramp service - cargo DISRP Ground Operations

OP05 Provisioning - non

provisioning station

DISRP Ground Operations

OP06 Non routine DISRP Ground Operations

OP07 Southwest Airlines

security

DISRP Ground Operations

OP09 Ramp service delay -

mail

DISRP Ground Operations

OP11 Airstart - delay >

5mins

DISRP Ground Operations

OP12 Towing aircraft DISRP Ground Operations

OP13 Operations DISRP Ground Operations
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PV01 Provisioning - provi-

sioning station activ-

ities

DISRP Ground Operations

IF01 Flight attendant

activities related

to normal aircraft

readiness

DISRP Inflight

IF02 Flight attendant sick

or injured online

DISRP Inflight

IF03 Flight attendant

scheduling activities

DISRP Inflight

IF04 Flight attendant late

for flight / miss-

ing items required for

flight

DISRP Inflight

MX01 Scheduled or non-

scheduled inspection

DISRP Maintenance

MX02 Mechanical problem DISRP Maintenance

MX03 Waiting on aircraft

parts or mechanics

DISRP Maintenance

MX09 Airstart - delay <

5mins

DISRP Maintenance

HD01 ATC gate hold for

congestion at depar-

ture station

DISRP NAS
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HD02 ATC gate hold for

flow control enroute

or at destination sta-

tion

DISRP NAS

MX06 Bird strike - main-

tenance inspection or

aircraft swap

DISRP NAS

SD01 Baggage screening by

TSA at skycap or

ticket counter

DISRP Security

SD02 Excessive security

checkpoint process-

ing times

DISRP Security

SD03 Selectee gate screen-

ing delay

DISRP Security

SD04 Inoperative security

screening equipment

delay

DISRP Security

SD05 Terminal or con-

course security

evacuation delay

DISRP Security

SD06 Bomb threat DISRP Security

SD07 Weapons confisca-

tion

DISRP Security

SD08 Other TSA delay DISRP Security

SD09 Random TSA gate

screening

DISRP Security
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SD10 Immigration and cus-

toms

DISRP Security

SD11 Positive passenger

bag match (PPBM)

DISRP Security

OP10 Technology system

outage

DISRP Technology

HD03 Weather holding DISRP Weather

HD06 ATC gate hold for

weather at departure

station

DISRP Weather

HD07 ATC gate hold for

weather at enroute or

at destination station

DISRP Weather

HD08 Ice on wings / cold-

soaked fuel

DISRP Weather

HD09 Deicing at gate DISRP Weather

MX05 Inspection due to

lightning strike

DISRP Weather

MX07 Inspection due to

turbulence

DISRP Weather

MXO8 Hail ice, or snow

damage

DISRP Weather

A.3 Nomenclature for epistemic data features

Epistemic Data Fea-

ture

Description Activity Phase in

UTFM

ACTL ACFT TYPE Actual aircraft type used TAO
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actl block mins Actual blocktime period TOO, EO, TIO

actl enroute mins Actual flight period in the air EO

ACTL TURN MINS Actual turnaround period TAO

ADJST TURN MINS Adjusted turnaround period TAD

DELY MINS Total delay period before actual

pushback

TAD, TOD

DOT DELAY MINS Total arrival delay ED, TID

late out vs sched mins Total departure delay TOD

SCHED ACFT TYPE Scheduled aircraft type used TAS

sched block mins Scheduled blocktime period TOS, ES, TIS

SCHED TURN MINS Scheduled turnaround period TAS

shiftper actl GP % work shift completed at actual

gate parking time

TID

shiftper actl LD % work shift completed at actual

landing time

ED

shiftper actl PB % work shift completed at actual

pushback time

TOD

shiftper actl TO % work shift completed at actual

takeoff time

ED

shiftper sched GP % work shift completed at sched-

uled gate parking time

TID

shiftper sched PB % work shift completed at sched-

uled pushback time

TAD

SWAP FLT FLAG Flight swap flag TAS, TAD, TAO

taxi in Taxi-in period TIS, TIO

taxi out Taxi-out period TOS, TOO

tod actl GP Actual aircraft gate parking time

at destination

TIO
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tod actl LD Actual aircraft landing time at

destination

EO

tod actl PB Actual aircraft pushback time at

origin

TAO

tod actl TO Actual aircraft takeoff time at ori-

gin

TOO

tod sched GP Scheduled aircraft gate parking

time at destination

TIS

tod sched PB Scheduled aircraft pushback time

at origin

TAS
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B. Algorithms for Chapters 4 & 5

B.1 Dynamic Programming Algorithm 1

Algorithm 1: Baum-Welch Algorithm

0: procedure BaumWelch(Y,X)

1: A,B, α, β ∈ Y

2: for t = 1 : N do

3: γ(:, t) =
α(:, t)� β(:, t)∑
(α(:, t)� β(:, t))

4: ξ(:, :, t) =
(α(:, t)� A(t+ 1)) ∗ (β(; , t+ 1)�B(Xt+1))T∑

(α(:, t)� β(:, t))
5: end for where N = |X|

6: π̂ =
γ(:, 1)∑
(γ(:, 1))

7: for j = 1 : K do

8: Â(j, :) =

∑
(ξ(2 : N, j, :), 1)∑

(
∑

(ξ(2 : N, j, :), 1), 2)

9: B̂(j, :) =
X(:, j)Tγ∑

(γ, 1)
10: end for where K is number of states

11: return π̂, Â, B̂

11: end procedure=0
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B.2 Dynamic Programming Algorithm 2

Algorithm 2: Viterbi Algorithm

0: procedure Viterbi(Y,X)

1: A,B, π ∈ Y

2: Initialize: δ1 = π ◦BX1 , a1 = 0

3: for t = 2 : N do

4: for j = 1 : K do

5: [at(j), δt(j)] = maxi(log δt−1(:) + logAij + logBXi
(j))

6: end for where K is number of states

7: end for where N = |X|

8: Z∗N = arg max δN

9: for t = N − 1 : 1 do

10: Z∗t = at+1Z
∗
t+1

11: end for

12: return Z∗1:N

12: end procedure=0
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B.3 Dynamic Programming Algorithm 3

Algorithm 3: UTFM Learning Algorithm

0: procedure UTFMlearning(X, Y )

1: XS = {s1, ..., sm}, XD = {d1, ..., dm}, XO = {o1, ..., om} Disrupted flight

data

2: for all j ∈ (1, 2, ...,m) do

3: S ′ ← Sj, D′ ← Dj, O′ ← Oj,

A′ ← αij : Si → Sj, B′ ← βij : Di → Dj, Γ′ ← γij : Oi → Oj

K ′ ← κj : Sj → Dj, Λ′ ← λj : Dj → Oj for i = j − 1 and i > 0

4: M′ ← {S ′,D′,O′, A′, B′,Γ′, K ′,Λ′} Initialize Optimal HMM sets for

UTFM

5: while |XS|, |XD|, |XO| > m or ¬M′ do

6: YS = {ys1, ..., ysl}, YD = {yd1, ..., ydl},

YO = {yo1, ..., yol} Training (flight schedule) data for l ≥ m

7: S ′j ← BaumWelch(Sj, YS), D′j ← BaumWelch(Dj, YD),

O′j ← BaumWelch(Oj, YO),

α′ij ← BaumWelch(αij, YS), β′ij ← BaumWelch(βij, YD),

γ′ij ← BaumWelch(γij, YO),

κ′j ← BaumWelch(κj, YD), λ′j ← BaumWelch(λj, YO)

8: S ′ ← S ′j, D′ ← D′j, O′ ← O′j, A′ ← α′ij, B′ ← β′ij, Γ′ ← γ′ij,

K ′ ← κ′j, Λ′ ← λ′j Update Optimal HMM sets for UTFM

9: end while

10: end for

11: N′ ← {S ′,D′,O′}, N〉→| ← {A′, B′,Γ′}, N〉→〉 ← {K ′,Λ′}

12: N→ ← {N〉→〉,N〉→|}

13: K ← (N′,N→) Optimal (RDBN) Data Architecture for UTFM

13: end procedure=0
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B.4 Dynamic Programming Algorithm 4

Algorithm 4: UTFM Decoding Algorithm

Require: K Optimal UTFM Architecture

0: procedure UTFMdecoding(X)

1: P (s)← Viterbi(S ′, XS), P (d)← Viterbi(D′, XD),

P (o)← Viterbi(O′, XO),

P (α)← Viterbi(A′, XS), P (β)← Viterbi(B′, XD),

P (γ)← Viterbi(Γ′, XO),

P (κ)← Viterbi(K ′, XD), P (λ)← Viterbi(Λ′, XO) Unroll K with

disrupted flight information

2: for all j ∈ (1, 2, ...,m) do

3: φj ← P (sj) + P (αij) + P (κj), ψj ← P (dj) + P (βij) + P (λj),

ρj ← P (oj) + P (γij)

for i = j − 1 and i > 0

4: a← P (sj)

φj
, b← P (αij)

φj
, c← P (κj)

φj
, p← P (dj)

ψj
, q ← P (βij)

ψj
, r ← P (λj)

ψj

u← P (oj)

ρj
, v ← P (γij)

ρj
State probabilities (stochastic matrix) for UTFM

5: end for

6: N0 ← {a, p, u}, Ni→j ← {b, q, v}, Ni→i ← {c, r}

7: N→ ← {Ni→i, Ni→j}

8: K ← (N0, N→) UTFM for disrupted flight

9: return K

9: end procedure=0
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C. Single-Layer Neural Network as Gaussian Process

Let the ith component of a single-layer neural network output z1
i be computed as:

z1
i = b1

i +

N1∑
j=1

W 1
ijx

1
j(x), x1

j(x) = f(b0
j +

din∑
k=1

W 0
jkxk) (C.1)

where x represents the input, W and b represent the weight and bias parameters

at appropriate layers respectively, and N1 represents the width of the single hidden

layer. Since the weight and bias parameters are set to be independent and identically

distributed (i.e. i.i.d.), thus applying the Central Limit Theorem (CLT) ensures that

z1
i will be Gaussian distributed if and only if N1 →∞. Without loss of specificity, any

finite set of outputs {z1
i (x

β=1), ..., z1
i (x

β=k)} that follows the multidimensional CLT

will have a joint multivariate Gaussian distribution, which defines a Gaussian process.

As such, z1
i ∼ GP(µ1, K1), where µ1 and K1 represent the mean and covariance

parameters of the Gaussian process, respectively, and are independent of i. Thus, for

µ1(x) = E[z1
i (x)] = 0 and,

K1(x, x′) ' E[z1
i (x)z1

i (x
′)] = σ2

b + σ2
wE[x1

i (x)x1
i (x
′)] ' σ2

b + σ2
wQ(x, x′) (C.2)

where Q(x, x′) is retrieved by summing the distribution of W 0, b0 along infinitely

many discrete intervals. For i 6= j, any two outputs, z1
i , z

1
j , of the single-layer network

are guaranteed to be joint Gaussian with zero covariance. Refer to [126, 197] for

more information and proofs for relationships between Gaussian processes and neural

networks.
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D. Testing Methods for Algorithms and Processes

The following framework and approaches for software testing and verification are

adapted from Schaum’s Outline of Software Engineering [198]. As such, the deploy-

ment of the algorithms and processes (i.e. software) that define the i-MAS framework

can be separated into two categories of software testing, shown in Fig. D.1, namely:

static testing and dynamic testing.

Figure D.1. Software testing routine for i-MAS algorithms and processes

D.1 Static Testing

Static testing verifies that basic mathematical functions and necessary packages,

for the programming languages in which the i-MAS architecture is written, are valid

and produce the appropriate outcomes. As such, we assume that the developers of

many fundamental packages for Python, which represents the programming language

used for the development of the i-MAS platform discussed in this work, conducted

extensive static testing before their packages were deployed to the corresponding
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Python libraries. To that effect, we performed minimal static testing for the devel-

opment of the i-MAS architecture and focus the scope of our software testing on

dynamic testing.

D.2 Dynamic Testing

Ideally, dynamic testing of the algorithms and processes for the i-MAS architec-

ture represents the execution of every possible test scenario for the decentralized AI

platform with actual test data. However, it is practically infeasible to perform ex-

haustive testing for the deployment of the i-MAS architecture because there are too

many possible test cases due to the platform’s complexity and infinitely long testing

duration [198]. Thus, the main objective of dynamic testing is to execute a very

minute percentage of possible test cases, by adequately discerning what test cases to

use and how many of these cases are necessary before deployment [199,200]. Human

specialists across multiple domains in the AOCC can provide a plethora of input cri-

teria for the i-MAS platform without any definitive ascertainment that their inputs

would result in the perfect recovery plan. As such, the decentralized AI platform (i.e.

i-MAS ) is fundamentally agnostic. To this effect, we employ a combination of several

forms of dynamic testing methods, shown in Fig. D.1 and discussed in subsequent

sections, to ensure that major components of the i-MAS architecture can be properly

tested and deployed in reasonable time.

D.2.1 Data Flow Testing

Data flow testing represents methods for ensuring the movement of input data from

a human specialist through the i-MAS platform. The definition of data indicates the

instance when a specific value, either from a human specialist or historical record, is

assigned to a particular data feature. As such, a path from the definition of a data

feature from historical record to a use of that data feature by a human specialist,

which does not involve another definition of the data feature from historical record,
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represents a definition free path. There are two separate methods for the use of any

defined data feature through a definition-free path in the i-MAS platform, namely:

computation use and predicate use.

• Computation-use for i-MAS represents data flow test situations where a de-

fined data feature appears on the right-hand side of an assignment statement.

To this effect, we apply a criteria that requires a definition-free path from every

possible definition of data features to a computation-use. As such, all inference

and decoding methods for different components of the UTFM and PTFM are

subjected to computation-use for data flow testing, by ensuring that appropriate

mathematical and statistical formulations are satisfied. For instance, a charac-

teristic state transition matrix for the UTFM, retrieved by unrolling an optimal

set of HMMs with refined data features from a human specialist via the Viterbi

algorithm, must satisfy the properties of a stochastic matrix. As such, the val-

ues of columns and/or rows in the stochastic matrix from a UTFM decoding, for

any instantiation of test data, are always guaranteed to sum to one, as shown in

Fig. 4.10 and Fig. 4.11.

• Predicate-use represents data flow test situations where a defined data feature

from a human specialist is used as the condition of a decision statement by the

i-MAS framework, such that a predicate-use can be imposed on both branches of

the decision statement. Thus, we apply a predicate-use criteria, which requires

a definition-free-path from every possible definition to a predicate-use, for all

learning and aggregating methods for different components of the UTFM and

PTFM. For example, prior to instantiating the UTFM and PTFM in the i-MAS

platform, the cardinality of all necessary data features for each component of

the UTFM and PTFM are checked to ensure that the most optimal versions

of the UTFM and PTFM are invoked. The cardinality represents the number

of significant data features appropriate for defining the behavior of UTFM and

PTFM components, which describe multiple separate phases of airline disruption

management.
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D.2.2 Random Testing

Random testing represents a method where random data samples are selected to

facilitate statistical inference and verify the efficacy of statistical assumptions for dif-

ferent components of the i-MAS platform. As such, all data features for exercising

different components of the UTFM and PTFM are initialized by applying pseudoran-

dom number generators, which automatically and randomly select different instances

of training data and test data for developing and validating the respective models.

For instance, to develop the PTFM, we employ 70% of the total available data to

train its component ANN models and the remaining 30% of the data to test the

statistical validity of ANN models, while applying a random seed of 42 to initialize

pseudorandom selection of training and test data.

D.2.3 Coverage Criterion Testing

Coverage criterion testing represents a testing method for creating rules on how

to choose tests and when to stop testing for systems that define the i-MAS plat-

form before deployment. To this effect, we tested the PTFM, which represents the

brain of the i-MAS platform, by ensuring that the ANN models for separate parts

of the PTFM are trained to meet specific criteria acceptable for airline disruption

management. For instance, we employed the root mean square error (RMSE), which

defines the standard deviation of unexplained variance, to adjudicate the effectiveness

of generic ANN models for the PTFM by ensuring that the RMSE for turnaround

duration or block time duration was less than equal to 14mins. The threshold value

of 14mins was selected based upon current industry standards for tardiness in flight

schedule arrival, such that any flight that arrives within 14mins of the original sched-

uled time during disruption management is considered to have arrived on time. As

such, by appropriating a test data set representative of 30% of the total available

data through regression analysis, we ensured that all ANN models for estimating

turnaround duration and block time duration achieved a RMSE value that is less
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than 14mins, as shown in Table 4.5. For the UTFM, we applied a cross-validation

of the total sum of log-likelihoods of separately partitioned data samples to define

the test coverage criteria, while learning the optimal parameters for a generic HMM

representing a UTFM state.
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Relevant Industry Experience
Southwest Airlines Dallas, TX
Flight Operations Engineering Intern Summer 2017, Summer 2013, Fall 2012

– Designed new and revamped existing One Engine Inoperative (OEI) departure flight procedures to achieve the
highest plausible Maximum Takeoff Weight (MTOW) from major and minor Southwest Airlines stations.
Procedures validated in hydraulic-enabled Boeing 737 simulators and published in Jeppesen 10-7A charts

– Developed an application using FORTRAN to manage Boeing Airplane Performance Monitoring (APM) data
for Boeing 737-300,500,700,800. Data used for real-time fuel bias analysis of Southwest Airlines Boeing 737
aircraft fleet

– Assisted with implementation of the Electronic Flight Bag (EFB) program at Southwest Airlines
– Evaluated the impact of existing and proposed obstacles to support management decision in airport

negotiations and obstacle mitigation
– Collaborated with operations engineers on the audit and maintenance of the aircraft onboard performance

system (OPS) to support current Southwest Airlines operations, while verifying, validating, and integrating the
OPS successor

Southwest Airlines Dallas, TX
Powerplant Operations Engineering Intern Summer 2016

– Proactively reviewed daily oil consumption rates of all jet engines in the Southwest Airlines fleet to ensure
compliance with guidelines provided by the engine manufacturer

– Issued appropriate work instructions to aircraft maintenance technicians for oil consumption related repairs on
affected engines

– Investigated the correlation between different fuel nozzle types in the engine fleet and exhaust gas temperature
(EGT) indication incidents recorded in GE customer notification reports (CNR)
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Academic Work Experience
• Graduate Research Assistant at Purdue University January 2015 - December 2020

FAA ASCENT Project 010, FAA NEXTOR II
• Graduate Teaching Assistant at Purdue University January 2015 - May 2017

Control Systems Laboratory, Introduction to Aerospace Design, Aeromechanics

Skills
• Software: MATLAB, Simulink, FLOPS, Python,

FORTRAN 90/95, CATIA v5, NASTRAN, Digital
Datcom, XML, VLAERO+, Surfaces

• Training: Lean Methodology, 6-Sigma, Safety
Management System (SMS)

Languages
• Languages: English (fluent), Yoruba (fluent)

Scholarships and Awards
• Outstanding Performance Award, Southwest Airlines December 2012
• Outstanding Performance Award, Southwest Airlines August 2013
• Undergraduate Outstanding Student of the Year, ERAU April 2014
• Outstanding Performance Award, Southwest Airlines August 2017
• Bilsland Dissertation Fellowship, Purdue University August 2019 - August 2020
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