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ABSTRACT

Polymer bonded explosives (PBXs) consist of energetic material (EM) crystals embedded

inside a polymeric binder. These are highly heterogeneous structures designed to explode

under controlled conditions. However, accidental ignition of PBXs leading to deflagration, or

even detonation, may take place due to non-shock stimulus such as low velocity impacts and

vibration. Thus, assessing the safety of PBXs under non-shock stimulus is very important.

The ignition in PBXs depends on several microstructural features which include me-

chanical properties of EM particles and polymeric binder, as well as the adhesive properties

of interface between EM particles and binder. It is also sensitive to initial defects in EM

particles including cracks or voids. EM particle size distribution, distance between particles

and their relative location are also shown to be affecting the ignition behavior of PBXs.

This study focuses on PBX composition consisting of HMX as EM and Sylgard or HTPB as

polymeric binder. Among several mechanisms of hot-spot formation, this study focuses on

frictional heating at cracks or debonded surfaces.

Finite element simulations are performed on a domain containing a single EM particle

embedded inside polymer binder under compressive and tensile loading at 10 m/s. The

effect of the binder properties and the particle surface properties, on damage evolution

and corresponding temperature rise due to frictional heat generation, is investigated. Two

binders, Sylgard and HTPB, while two surface qualities for HMX particle, low and high,

are compared. The adhesion strength of the particle-polymer interface is varied and damage

evolution is qualitatively compared with experimental results to estimate interfacial energy

release rate for HMX-Sylgard and HMX-HTPB interfaces. Simulations of two HMX particles

inside Sylgard binder, subjected to vibration loading, are performed to analyze the effect of

particle-particle distance and relative location of particles on the damage evolution and

frictional heating in the particles.

The results of impact simulations show that the low surface quality HMX particle inside

HTPB is likely to propagate cracks as compared to high surface quality particle. The HMX

particle inside Sylgard shows crack propagation irrespective of particle surface quality. The

impact simulations with the lower stiffness binder do not show a significant increase in
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temperature after impact. A polymer with higher stiffness induces more particle damage

under impact contributing to a larger temperature rise. Furthermore, high quality surface

and higher adhesion strength induces larger stresses and increase the temperature rise. The

vibration simulations show that a small particle is less likely to damage when it is shielded

by a large particle irrespective of its distance, within 40-200µm, from the large particle.

However, the small particle is likely to damage when it is in parallel to the large particle

with respect to loading. The temperature rise in the small particle is higher than the larger

particle only in case of parallel configuration. The adhesion between the particles and the

polymer has a direct effect on the formation of hot-spots due to friction and through local

increase of compressive stresses that may cause a surge in heat generation.

The energetic materials often show anisotropy in elastic and crystalline properties. Frac-

ture in HMX along the preferred cleavage plane is considered. Anisotropy in the elastic

constants is also incorporated in the fracture model. The dependence of pressure on temper-

ature is considered using Mie-Gruneisen equation of state which is shown to be important

for damage evolution in HMX at impact velocity of 100 m/s.
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1. INTRODUCTION

Polymer bonded explosives (PBX) are synthesized by embedding energetic material crystals

in a polymeric binder in order to control the sensitivity of the crystals [1 ]. In 1952, first

ever PBX was developed by Los Alamos National Laboratory, USA which consisted of RDX

crystals inside plasticized polystyrene. Since then, various energetic materials and polymers

have been used to manufacture different compositions of PBXs. The energetic materials

used in PBXs include RDX, HMX, HNS, PETN, TATB and CL-20 while polymers include

Sylgard, HTPB, Nylon, Fluoro-polymer, Kel-F800, Estane, Nitrocellulose, Viton-A, BDNPA,

Polystyrene. Typically the polymer consists of 5-10% by weight of any PBX composition

while the rest is energetic material. The mechanical properties of final PBX composition can

be controlled by controlling the properties of individual constituent materials which include

chemical composition and mechanical properties. Thus, any change in the composition,

constituent material properties and initial condition of constituent material can affect the

overall explosive outcome of the composition. Thus, it is important to consider the entirity

of the PBX microstructure in order to assess their final outcome and safety.

The design of polymer bonded explosives is aimed to control the initiation, mechanical

loading being one of the stimulus to initiate the material. Properties of constituent materials

such as binder properties, energetic material properties, crystal size distribution, crystal

concentration can be varied in order to control the final explosive outcome of the composition

[1 ]. Non-shock stimulus such as low velocity impacts and vibrations have been estimated

to produce hot-spots and initiate the reaction in PBXs [2 ]. These can lead to accidental

ignition followed by deflagration. Therefore, in order to assess the safety in the use of PBXs,

it is of primary importance to understand the underlying heat generating mechanisms when

loaded with non-shock stimulus and quantify the dependency of the sensitivity of the PBX on

the properties such as adhesion at crystal-binder interface, quality of crystals, inter-particle

distance, etc. In this work low velocity impacts and vibrations are primarily considered as

non-shock stimulus.

Mechanical energy can be transformed to thermal energy by several mechanisms [2 ], [3 ].

When the thermal energy is localized, small regions of very high temperature are formed
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which are called hot-spots. The mechanisms, leading to hot-spot formation, considered in

literature are: (i) adiabatic compression of trapped gas spaces, (ii) void collapse, (iii) plastic

deformation, (iv) heating at crack tips, (v) heating at dislocation pile-ups, (vi) friction at

crack surfaces, (vii) dissipation due to crack propagation, (viii) particle/polymer debonding,

and (ix) viscous heating [3 ], [4 ]. Dienes et al. [5 ], [6 ] provided a quantitative comparison

among the different mechanisms that produce heat over a range of strain rates and pres-

sures. These studies suggest that frictional heat generation at cracks may be the dominating

mechanism over a wide range of loading conditions. Thus, properties of PBXs which are

important for damage and crack propagation in PBXs are important to study.

Chapter 2 examines the low velocity impact loading on single HMX particle inside Sylgard

and HTPB binder. It discusses the effect of mechanical properties of binder and surface

quality of HMX crystal on the damage evolution. The effect of different adhesion strength of

particle-polymer interface is also discussed. The chapter gives explanation of the phase field

damage model used in the simulations, the results of compression & tension experiments,

results of simulations and discusses the comparison between the experiment and simulation.

Chapter 3 discusses the response of PBX microstructure under vibration loading. Further

investigation with two HMX crystals inside Sylgard binder under vibration is also carried.

Different particle surface qualities and the effect of the inter-particle distance on the damage

response of the particles are considered. Two configuration of particle location are considered.

The chapter explains the model used in simulations, discusses the results of microstructure

& two particle simulations and gives a comparison between experiments in literature and

current simulations.

Chapter 4 explains the phase field damage model for anisotropic crack propagation and

inclusion of equation of state for calculation of pressure. It gives some preliminary results

of damage evolution in HMX under impact at 100 m/s. The comparison of results with

and without equation of state explains the importance of inclusion of equation of state for

high velocity impacts. It also discusses the heat generation due to molecular jetting inside

cracks in HMX under shock impact and possibility of incorporating the same in finite element

simulations.
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2. SINGLE EM PARTICLE PBX UNDER LOW VELOCITY
COMPRESSION AND TENSION

Note: A version of this chapter has been published in Computational Materials Science with
title ’The effect of the particle surface and binder properties on the response of polymer
bonded explosives at low impact velocities’ [7 ]. The experimental results in the article are
by courtesy of co-authors Dr. Zane Roberts, Shane Paulson, Dr. Weinong Chen and Dr.
Steven Son. DOI: https://doi.org/10.1016/j.commatsci.2019.04.033

2.1 Introduction

Polymer bonded explosives (PBXs) contain energetic particles in a polymeric binder.

These composites are designed to detonate under a controlled shock stimulus by optimizing

the binder properties, crystal size distribution and concentration [1 ]. However, when the

explosives are subjected to non-shock initiation stimulus, such as low impact loading, high

temperature, or vibrations, accidental ignition followed by deflagration may occur [2 ].

Mechanical energy can be transformed to thermal energy by several mechanisms includ-

ing, friction, crack propagation, void collapse and plastic dissipation [2 ], [3 ], [5 ], [8 ]. Dienes

et al. [5 ], [6 ] provide a quantitative comparison among the different mechanisms that pro-

duce heat over a range of strain rates and pressures. These studies suggest that frictional

heat generation at cracks may be the dominating mechanism over a wide range of loading

conditions.

Due to the importance of fracture as a heat source in PBXs there is extensive numerical

and experimental work done. For example, quasi-static compression experiments on PBX-

9501 have shown that failure starts at the particle/binder interface, especially near the larger

HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) particles [9 ], [10 ]. On the other hand, dynamic

compression experiments on HMX particles inside HTPB (hydroxyl-terminated polybuta-

diene) binder at impact velocities around 10 m/s have shown crack propagation inside the

crystals [11 ], [12 ]. Similar compression tests with Sylgard (polypolydimethylsiloxane) binder

have shown crack propagation inside of particles and debonding at the crystal-polymer in-

terface [12 ].

However, most numerical simulations focus on failure at the particle/binder interface.

For example, Arora et al. [13 ] studied the effect of particle density and geometry on the
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failure of PBXs at strain rates below 10−1 s−1. Their simulations considered only failure

at particle/binder interfaces. The energy release rate used in their model is obtained from

atomistic simulations of TATB by Gee et al. [14 ] and it is Gc=0.27 J/m2. Tan et al. [15 ]

developed a model to find the cohesive zone parameters of the particle/binder interface of

PBX-9501. They found a cohesive strength of 1.66 MPa and an energy release rate Gc=89

J/m2 for the interface between HMX and the polymeric binder.

Recent experiments and simulations by Walters et al. [16 ] were performed on HMX-

HTPB systems to extract cohesive zone damage parameters using finite elements. The

fracture energy, Gc, for the HMX-HTPB interface was estimated to be in the range 3 to

10 J/m2 for a loading rate of 3.33 µm/s. This value is in the same range as experimental

measurements of Sylgard-quartz interfaces [17 ] that rendered Gc=1-10 J/m2 and for the

interface between Sylgard and glass [18 ]–[20 ], Gc=17 J/m2.

At larger impact velocities fracture and heat transfer simulations have been coupled to

calculate the temperature field with heat sources due to friction at crack surfaces. Barua et

al. [21 ] studied the temperature rise in HMX-Estane for impact velocities between 50 - 300

m/s using cohesive zone elements at the particle/polymer interfaces. In the early stage of

deformation the temperature rise was dominated by viscoelastic dissipation in the binder,

while in the later stage of deformation the friction at particle-binder interfaces dominated

the temperature rise. Grilli et al. [22 ] considered single HMX particles inside Sylgard binder

with impact velocity between 100 - 400 m/s using a phase field damage model. The largest

temperature increase was found at cracks that intersected the particle/binder interface.

Unfortunately, the experimental data available to inform the numerical models at the

particle level remains limited. Therefore, more detailed experiments and simulations are

needed to calibrate and validate the thermo-mechanical response of PBX composites at the

mesoscale level to understand the relative importance of each of the heat sources proposed

in different models. Here, we use a combination of experiments and simulations to study

fracture and heating due to friction at crack surfaces.

This work focuses on the response of HMX particles inside HTPB and Sylgard 184

binders upon compressive and tensile loading using finite element simulations and experi-

ments. Different particle surface qualities are studied. The simulations include fracture and
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crack propagation and predict the temperature rise due to frictional heating at cracks and

debonded surfaces. The effects of the mechanical properties of the binder as well as the

adhesive properties of the particle/binder interface are compared.

The paper is organized as follows. In Section 2.2 , the mechanical, fracture and thermal

models used in the simulations are described. Section 2.3 contains the experimental methods

and findings. In Section 2.4 , the details of the geometry used in the simulations are presented

with reports of the results for compression and tension including fracture and temperature

fields. Section 2.5 summarizes the findings and offers conclusions and further prospects.

2.2 Methods

2.2.1 Phase field damage model

The phase field damage model (PFDM) is a numerical approach to describe fracture

evolution [23 ]. The model is based on Griffith’s theory of fracture [24 ] in which the energy

dissipated by fracture is:

Wf =
∫

Γ
GcdΓ (2.1)

where Gc is the surface energy for brittle materials and the critical energy release rate

for ductile materials. Micro-indentation experiments show that HMX behaves as a brittle

material at low strain rates [25 ], [26 ] while at higher strain rates, atomistic simulations show

plastic activity [27 ]–[29 ]. In the PFDM the crack surface, Γ, is expressed in terms of a diffuse

delta function γ(c) as [30 ]–[34 ]:

∫
Γ
dΓ =

∫
V
γ (c) dV (2.2)

with

γ (c) = 1
2l0

(
c2 + l20 |∇c|2

)
(2.3)

where the phase field variable, c(x), ranges from 0 to 1, with c = 0 being undamaged

material while c = 1 corresponds to fully damaged material, and l0 is a characteristic length

that determines the width of the transition from damaged to undamaged material [20 ], [31 ].
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To introduce the loss of stiffness in the damaged regions, the strain energy is divided into

two terms:

a (ε, c) =
[
(1 − c)2 + kr

]
a+ (ε) + a− (ε) (2.4)

where kr is a residual stiffness included for numerical stability [31 ]. The first term in the

strain energy density is the part that degrades with damage and the second term is not

affected by damage. Different representations of Equation 2.4 have been presented to take

into account the damage response of different materials [34 ].

To make the model thermodynamically consistent, the rate of work dissipated needs to

be positive. Therefore, the next condition needs to be satisfied [30 ], [32 ]:

Ẇf =
∫

Ω
Gcγ̇(c,∇c)dV =

∫
Ω
Gcδcγ · ċ dV ≥ 0 . (2.5)

Equation 2.5 reduces to the conditions: δcγ ≥ 0 and ċ ≥ 0 , where δcγ = ∂cγ − ∇ · ∂∇cγ is

the functional derivative of γ(c,∇c) with respect to c.

The evolution of deformation and damage are coupled using the Lagrangian,

L (u̇, ε, c) = K (u̇) − A (ε, c) −Wf (c) (2.6)

where K (u̇) is the kinetic energy given by

K (u̇) =
∫

V

1
2ρ |u̇|2 dV (2.7)

and A (ε, c) is strain energy given by

A (ε, c) =
∫

V
a (ε, c) dV (2.8)

Here, u̇ is the velocity vector and ρ is the density. The Euler-Lagrange equations result in:

∇ · σ = ρ
∂2u

∂t2
(2.9)
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where ρ is the mass density and the stress tensor is obtained as:

σ = ∂a (ε, c)
∂ε

=
[
(1 − c)2 + kr

] ∂a+ (ε)
∂ε

+ ∂a− (ε)
∂ε

(2.10)

The evolution of the damage field is obtained from a time dependent Ginzburg-Landau

equation, that results in [33 ]:

ċ = 1
η

〈
l0∆c+ 2(1 − c)a

+(ε)
Gc

− c

l0

〉
, (2.11)

where η plays a role of a viscosity that controls the convergence by adding dissipation. The

value of η was chosen to reach a rate independent behavior [33 ], [35 ]. The operator 〈x〉 is

defined as,

〈x〉 =

 x if x ≥ 0

0 if x < 0
(2.12)

Equations 2.9 , 2.10 , and 2.11 are implemented and solved numerically in the finite element

software MOOSE (Multiphysics Object Oriented Simulation Environment)[33 ], [36 ]. Given

that the stresses observed in the simulations are below the yield stress of HMX, 75 MPa,

[37 ], [38 ], plastic deformation is not considered.

The numerical parameters used in the simulation are chosen as l0 = 40 µm, η = 0.1 s/m,

and kr = 1 · 10−6 [22 ]. The dynamical response is solved using a Newmark time integration

scheme:

ün+1 = un+1 − un

β∆t2 − u̇n

β∆t + β − 0.5
β

ün (2.13)

u̇n+1 = u̇n + (1 − γ) ∆tün + γ∆tün+1 (2.14)

where β and γ are Newmark time integration parameters. The values used in the present

analysis are, β = 0.3025, γ = 0.6 and ∆t = 1 ns.
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Damage models

The strain energy density in Equation 2.4 has different forms for the HMX particle and

the polymer. For the particles the following division of the strain energy density is used [20 ],

[22 ]:

a+ (ε) = λ

2 〈εv〉2 + µ
(
〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2

)
(2.15)

a− (ε) = λ

2 (εv − 〈εv〉)2 + µ
(
(ε1 − 〈ε1〉)2 + (ε2 − 〈ε2〉)2 + (ε3 − 〈ε3〉)2

)
(2.16)

where the volumetric strain is εv = ε1 + ε2 + ε3 and ε1, ε2, and ε3 are the principal strains,

and λ = Eν

(1 + ν) (1 − 2ν) and µ = E

2 (1 + ν) are the Lame’s parameters.

Experimental and numerical results show that polymers damage under shear and vol-

umetric tensile loads [34 ]. However, due to the low stresses in the matrix no damage is

observed in the polymers in the experiments, as described in Section 2.3 . Therefore, no

damage in the matrix will be considered in the simulations.

Debonding between the particle and the matrix is observed in the experiments. The

experiments of Gent et al. [18 ] suggest that debonding between Sylgard and rigid spherical

inclusions occurs due to tensile stress. 3D simulations using our model confirm that including

only the positive volumetric stress reproduce the debonding patterns observed in experiments

using Sylgard and glass spheres [19 ]. Thus, the components of strain energy density for the

damage model in the interface are approximated as:

a+ (ε) = 1
2

(
λ+ 2µ

3

)
〈εv〉2 (2.17)

a− (ε) = 1
2

(
λ+ 2µ

3

)
(εv − 〈εv〉)2 + µεd : εd (2.18)

where the operator : denotes the double contraction product of two second order tensors and

εd is the deviatoric strain tensor given by,

εd = ε − εv

3 I (2.19)
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where I is the identity tensor.

2.2.2 Heat generation model

The integral form of the heat equation is given by:

∫
Ω
ρC

∂T

∂t
dV =

∫
Ω
q̇dV −

∫
∂Ω

h · n dA , (2.20)

where C denotes the specific heat, T is the temperature, q is a heat source density, h =

−k∇T is the heat flux per unit area across the surface ∂Ω with normal n , and k is the

thermal conductivity.

The only heat source considered here is friction at crack surfaces. Dissipation due to

crack propagation is one order of magnitude smaller than the heat generated due to friction

and therefore, is not considered here [39 ]. The surface term in Equation 2.20 is divided in

two contributions representing the domain boundary and the cracks [22 ], [39 ]:

∫
∂Ω

h · n dA =
∫

∂Ω−Γ
h · n dA+

∫
Γ

hc · n dA (2.21)

where the heat flux at the crack surfaces, hc = hc · n is given by [5 ], [40 ]:

hc = −µf 〈−tn〉 vs (2.22)

where µf is the friction coefficient, tn is the normal component of the traction at the crack

surface, and vs is the tangential component of the velocity jump across the crack surfaces.

The symbol 〈〉 ensures that heat due to friction operates only when the traction is negative.

The velocity jump across the crack surface can be approximated from the velocity gradient

as,

v+ − v− = (∇v · n̂) l0 (2.23)
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where the distance between crack surfaces is approximated by the characteristic length, l0,

and the normal to the crack surface is calculated from the gradient of the phase field variable

as [39 ]:

n̂ = − ∇c
|∇c|

(2.24)

2.3 Experimental results

The samples were approximately 2 mm x 2 mm x 1 mm with a 500-800 µm size HMX

crystal embedded. Production-grade B class 3 β-HMX particles from BAE Systems with

rough, cracked surface and porous interior, without any modification, were encapsulated in

the polymer binders. Degassing steps under vacuum were followed prior to curing in order to

draw air bubbles away from crystal surfaces and promote good binder adhesion. The sample

preparation techniques and the experimental procedures for X-ray phase contrast imaging

(PCI) under dynamic compression performed at the Advanced Photon Source, Argonne

National Laboratory are described in detail in Parab et. al [11 ].

(a) t = 0 µs (b) t = 1 µs (c) t = 3 µs (d) t = 21 µs

Figure 2.1. Experiment showing the fracture evolution in an HMX-HTPB
system during compressive loading from the left-hand side with a hard stop
on the right of the image. Note the lack of crystal-binder delamination despite
significant crystal damage and strain.

Figure 2.1 shows a series of high-speed X-ray phase contrast images that reveal the

behavior of a single HMX crystal inside HTPB binder loaded with a compressive velocity

of 10 m/s using a modified Split Hopkinson (Kolsky) bar. The sample was confined by two

acrylic windows and a hard stop on the right side of the image. As the sample was compressed
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from the left, two horizontal cracks developed and propagated across the crystal. The particle

broke in approximately 21 µs after the initiation of the crack. Other single crystal HMX-

HTPB samples were loaded at the same velocity and a different behavior was observed. For

example, the particle translated along the impact direction or rotated with no evidence of

interfacial debonding or cracking. Figure 2.2 shows this behavior.

(a) t = 0 µs (b) t = 50 µs

Figure 2.2. Experiment showing no damage evolution in a HMX-HTPB
system for compressive loading.

Similar experiments performed using Sylgard 184 (polydimethylsiloxane) as a binder

mixed in a 10:1 base to curative ratio and cured at 60oC for over 12 hours after degassing are

shown in Figure 2.3 . Multiple cracks nucleated and damage spread across the whole crystal.

The entire particle shattered within 6 µs after the initiation of very first crack in the particle

and debonding was observed in Figure 2.3 (d).

(a) t = 0 µs (b) t = 1 µs (c) t = 3 µs (d) t = 5 µs

Figure 2.3. Experiment showing fracture evolution of a HMX-Sylgard system
for compressive loading.
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Figure 2.4 shows the behavior of a HMX-HTPB sample loaded with tensile velocity of

10 m/s using a Kolsky tension bar. Despite having initial defects, no crack propagation is

observed. Conversely, tensile experiments with Sylgard as a binder showed either debonding

at the HMX-Sylgard interface or fracture of the the particle.

(a) t = 0 µs (b) t = 100 µs

Figure 2.4. Experiment showing no damage evolution in a HMX-HTPB
system for tensile loading.

Figure 2.5 shows the behavior of a single HMX crystal inside the Sylgard binder where

debonding was observed. Figure 2.6 shows a vertical crack developing inside the particle for

the HMX-Sylgard system under the same loading conditions.

(a) t = 0 µs (b) t = 50 µs (c) t = 60 µs (d) t = 80 µs

Figure 2.5. Experiment showing debonding for a HMX-Sylgard system for
tensile loading.

2.4 Simulation results

Finite element simulations are performed using 2D domains with plane strain conditions

under tensile and compressive loads. The domains and boundary conditions are selected to

duplicate the specimens in Figures 2.1 and 2.5 .
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(a) t = 0 µs (b) t = 8 µs (c) t = 10 µs

Figure 2.6. Experiment showing crack development in a HMX-Sylgard sys-
tem for tensile loading. The black boundary at the bottom of image is the
closing shutter of the camera. Note that binder delamination occurs in tan-
dem with crystal cracking in this case.

2.4.1 Geometry and material parameters

The domains used in the compression and tension simulations are shown in Figures 2.7 

and 2.8 . The particles contain elements with an average size of 10 µm, and increases from

10 µm to 20 µm towards the edge of domains. The boundary conditions are assigned to

reproduce the experimental conditions with an applied velocity v0=10 m/s. The displace-

ment in the right boundary is fixed in the horizontal direction and in the bottom boundary

is fixed in the vertical direction. The total number of elements is over 31,000 in Figure 2.7 

and 45,000 in Figure 2.8 .

Figure 2.7. Domain used in compressive loading simulations
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Figure 2.8. Domain used in tensile loading simulations

The material properties used in the simulations are given in Table 2.1 . The surface energy

of HMX reported in experiments is 0.06 J/m2 [25 ]. To account for the inelastic effects at the

crack tip, a higher value is chosen following [20 ], [22 ], [39 ]. Studies on amorphous polymers

have shown that the fracture energy of polymers is in the range of 200-400 J/m2 [34 ], [41 ],

[42 ]. With a fracture energy in this range and the low stresses obtained in the simulations,

no damage will be observed in the the polymer in agreement with the experiments.

To study the effect of the adhesion between the particle and the polymer, an interface

region around the particle with thickness 20-30 µm is defined, see Figures 2.7 and 2.8 .

This interface has the mechanical properties of the binder while the fracture energy of the

interface, Gi
c, is reduced. The range of the fracture energy of the interface is 10 J/m2 to 90

J/m2 in different simulations following previous results [15 ], [16 ], [20 ], see Table 2.1 .

Table 2.1. Material properties and numerical parameters used in the simulations [43 ]–[52 ]

Property HMX Sylgard HTPB
E [GPa] 15 0.15 0.005

ν 0.35 0.48 0.49
ρ [kg/m3] 1903 1030 900
Gi

c [J/m2] 2 10-90 10-90
ku [W/m·K] 0.31 0.18 0.22
C [J/kg·K] 1200 1100 2500
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The thermal conductivity of the material is reduced in the damaged regions [35 ], [39 ]

following:

k (c) = (1 − c)2 ku (2.25)

where ku is the conductivity of the undamaged material reported in Table 2.1 .

2.4.2 Particle surface quality and adhesive properties

Different initial crack distributions are selected to study the effect of the surface quality

of the particles. The initial cracks are defined using the steady state solution of the 1D

damage field which is an exponential function [22 ]:

c (r, t = 0) = cmaxe− |r|
l0 (2.26)

where r is the distance perpendicular to crack line. The values of cmax are chosen from a

uniform distribution in the range (0.8, 1). The initial crack lengths and crack orientation

angles follow a Gaussian distribution with mean 100 µm and a standard deviation 35 µm

and mean 0◦ with respect to the horizontal direction and a standard deviation of 45◦. The

initial crack density is 8.6%.

Figure 2.9 shows the initial crack distributions used in the compressive and tensile sim-

ulations. The black line is the boundary of the particle and the cracks are shown in white.

Figures 2.9 (a) and (c) do not contain initial cracks close to the particle/binder interface,

this configuration will be referred as high quality surface. In contrast, in Figures 2.9 (b) and

(d) some of the initial cracks intersect the interface, therefore, this configuration is used to

represent a particle with poor quality surface.

2.4.3 Compressive loading

Compressive simulations with an impact velocity of 10 m/s are performed in the domain

shown in Figures 2.9 (a) and (b) with HTPB and Sylgard binders. The effects of the initial

crack distribution to account for particle surface quality and the surface fracture energy are

studied and compared with the experimental results.
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(a) High quality surface.(b) Poor quality surface.

(c) High quality surface.(d) Poor quality surface.

Figure 2.9. Initial crack distributions used in the compressive (a-b) and
tensile (c-d) simulations.

HTPB binder

Figure 2.10 shows the time evolution of the damage and the volumetric stress for Gi
c=

30 J/m2. White regions correspond to a damage field c > 0.9 and the volumetric stress is

shown in the background, stress concentrations at the crack tips are visible in Figures 2.10 

(e) and (f). For the high quality surface particle, Figure 2.10 (a)-(c) no debonding or crack

growth is observed. In the poor quality surface system, Figures 2.10 (d)-(f), two horizontal

cracks that initially intersect the polymer/particle interface propagate through the particle.

The time scales and crack patterns in Figures 2.10 (d)-(f) are similar to the ones observed

in the experiment shown in Figure 2.1 .

Figure 2.11 shows the results for the same geometry, materials, and loading conditions

but with an interface fracture energy, Gi
c= 10 J/m2. At t = 15µs debonding is observed

in the poor quality surface particle. For Gi
c > 10 J/m2 in high quality surface particles, no

debonding or crack propagation is predicted with our model.
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For low quality surface particles the damage evolution depends on Gi
c. For Gi

c = 10

J/m2, debonding is predominant, whereas for Gi
c ≥ 30 J/m2, crack propagation inside the

particle is always observed. A qualitative comparison with the experiment shown in Figure

2.1 suggests that in the experiment the value of the fracture energy of the HTPB-HMX

interface should be greater than 30 J/m2.

(a) t = 15 µs (b) t = 27.5 µs (c) t = 30 µs

(d) t = 15 µs (e) t = 27.5 µs (f) t = 30 µs

Figure 2.10. Volumetric stress and damage evolution for the compressive
loading condition in a HTPB-HMX system with Gi

c =30 J/m2, (a-c) high
quality surface (d-f) poor quality surface.
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(a) high quality surface (b) poor quality surface

Figure 2.11. Volumetric stress and damage at t = 15 µs for compressive
loading in the HTPB-HMX system with Gi

c =10 J/m2, (a) high quality surface
(e) poor quality surface.

Sylgard binder

Figure 2.12 shows the time evolution of damage and the volumetric stress for the high and

poor quality surface particles in a Sylgard binder with Gi
c= 10 J/m2. The higher stiffness

of Sylgard, see Table 2.1 , renders higher strain energy for the same applied deformation,

thus, more damage is observed in the particle in agreement with the experimental results in

Figure 2.3 . The time scales are also in good agreement with experimental results shown in

Figure 2.3 . The path of the cracks is affected by pre-existing cracks in the particle as well

as sharp corners at interfaces due to high stress concentrations. Several features of crack

propagation are observed inside the particle, such as stress concentrations at the crack tips

in Figure 2.12 (d) and crack branching in Figure 2.12 (b). The poor quality surface particle,

Figures 2.12 (d)-(f), exhibit debonding on the bottom interface as observed in experiments,

see Figure 2.3 (d).

In the simulations where Gi
c is increased up to 90 J/m2, the crack patterns and the stress

fields are equivalent to the ones in Figure 2.12 . Clearly, the damage pattern and its evolution

is dominated by the surface quality, i. e., the presence of cracks intersecting the interface.
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Also, the higher stiffness of Sylgard renders higher stresses in the composition while creating

more damage.

The higher stiffness of Sylgard is found to be critical for fracture and frictional heating.

However, the same stiffness can produce a PBX that is very rigid and will maintain it’s

shape under stress. This also helps during machining or when stored over longer times.

Similarly, while manufacturing the PBX, the curing of Sylgard can be completed at a lower

temperatures as compared to HTPB and, thus, producing lower thermal stresses in the final

product when it is brought to storage temperature [53 ].

(a) t = 3.75 µs (b) t = 5 µs (c) t = 7.50 µs

(d) t = 3.75 µs (e) t = 5 µs (f) t = 7.50 µs

Figure 2.12. Volumetric stress and damage evolution for the compressive
loading condition with a Sylgard-HMX system and Gi

c =10 J/m2, (a-c) high
quality surface (d-f) poor quality surface.
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Temperature evolution

The temperature field is obtained with the model described in Section 2.2.2 with friction

as the only heat source. The temperature change in HTPB-HMX system is negligible. The

temperature field for the Sylgard-HMX system at t= 7.5 µs is shown in Figure 2.13 . The

temperature increase in the cracks and in the surface of the particles can be observed. The

temperature and damage fields are similar for all the values of Gi
c in the range 10 J/m2 to

90 J/m2 simulated in this work.

(a) High quality surface (b) Poor quality surface

Figure 2.13. Temperature field at t=7.5µs for compressive loading for HMX-
Sylgard system, Gi

c=30 J/m2.

Figure 2.14 shows the evolution of the average temperature calculated in a region of

radius R = 8µm where the maximum temperature is reached during the compressive loading

simulation. In the HTBP-HMX systems the maximum temperature increase is less than 2

K. In the Sylgard-HMX systems, the average increase reaches 20 K. The temperature rises

earlier in the poor quality surface particle. However, the stresses are larger in the high

quality surface particle increasing the frictional heat rate.
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(a) HTPB binder (b) Sylgard binder

Figure 2.14. Maximum temperature in the domain for compressive loading
and Gi

c ≥30 J/m2.

2.4.4 Tensile loading

Finite element simulations with a tensile velocity of 10 m/s are performed using the

domain and boundary conditions shown in Figure 2.8 with HTPB and Sylgard binders, and

high and poor quality surface particles shown in Figures 2.9 (c) and (d).

HTPB binder

Figure 2.15 shows the time evolution of the damage and the volumetric stress for the

high and poor quality surface particles with Gi
c= 30 J/m2 in a HTPB binder. No debonding

is observed in the high quality surface particle, Figures 2.15 (a)-(b). Debonding in the poor

quality surface particle, Figures 2.15 (c)-(d) starts at 20 µs. When the surface energy of the

particle/binder interface is reduced to Gi
c= 10 J/m2 debonding is observed also for the high

quality surface particle, see Figure 2.16 at time t = 30µs. The results in Figures 2.15 (a)

and (b) are similar to the experiments in Figure 2.4 , this suggest that Gc ≥30 J/m2 in the

experiments.
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(a) t = 20 µs (b) t = 30 µs

(c) t = 20 µs (d) t = 30 µs

Figure 2.15. Volumetric stress and damage evolution for the tensile load-
ing condition in a HTPB-HMX system and Gi

c =30 J/m2, (a-c) high quality
surface, and (d-f) poor quality surface.

(a) t = 30 µs (b) t = 30 µs

Figure 2.16. Volumetric stress and damage field for the tensile loading con-
dition in a HTPB-HMX system at t=30 µs with Gi

c=10 J/m2, (a) high quality
surface, and (b) poor quality surface.

Sylgard binder

Figure 2.17 shows the time evolution of damage for poor and high quality surface particles

in a Sylgard binder with Gi
c= 10 J/m2. Similarly to compressive loading in the HMX-Sylgard
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system, simulations with Gi
c >10 J/m2 render the same damage field and are is not shown

here. However, the particle surface quality affects the results with debonding observed only

when the particle surface quality is poor, Figures 2.17 (c) and (d). The experiment in

Figure 2.5 shows only debonding, this suggests that Gi
c should be lower than 10 J/m2 in this

experiment. On the other hand, cracks developing inside the particle in Figure 2.17 agree

with the experiment in Figure 2.6 .

(a) t = 3.75 µs (b) t = 5 µs

(c) t = 3.75 µs (d) t = 5 µs

Figure 2.17. Volumetric stress and damage evolution for the tensile load-
ing condition in a Sylgard-HMX system and Gi

c=10 J/m2, (a-b) high quality
surface, and (c-d) poor quality surface.

Temperature evolution

Similar to the tensile simulations, the change in temperature the HTPB-HMX system is

negligible. Figure 2.18 shows the temperature field for the Sylgard-HMX system at 7.5 µs.

The location of the maximum temperature is in the particle/binder interface in all the cases

due to the relative sliding of the polymer and the particle where debonding occurs.
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(a) High quality surface. (b) Poor quality surface.

Figure 2.18. Temperature field at t=7.5µs for tensile loading in Sylgard-
HMX system with Gi

c= 10 J/m2.

Figure 2.19 shows the temporal evolution of the average temperature of the region with

radius R = 8µm, where the maximum temperature is achieved. For the HTPB binder a

slight increase of temperature is predicted for the poor quality surface particle in the region

where debonding occurs. The Sylgard-HMX system shows a larger temperature increase of

up to 14 K. In agreement with the compressive simulations, the temperature in the Sylgard-

HMX system increases earlier in the poor quality surface. Due to the higher stresses in

the high quality surface particle system, the rate of heat generated by friction is larger and

therefore a higher temperature is reached.

2.5 Conclusions

The response of single HMX particles inside HTPB and Sylgard binders is studied with

combined experiments and simulations to understand the effect of the mechanical properties

of the matrix, the adhesive properties, and the surface quality of the particle on fracture and

temperature evolution.

The experiments show that crystal-binder interfacial debonding and crystal damage via

cracking occurred under both, compressive and tensile, loading conditions with Sylgard

binder. However, delamination predominated over cracking in the tensile trials. In the

tensile experiments with HTPB, debonding and cracking rarely occurred. HTPB-HMX sys-
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(a) HTPB binder (b) Sylgard binder

Figure 2.19. Maximum temperature in the domain for tensile loading and Gi
c ≥30 J/m2

tems under compressive loading, in some cases showed cracking in the crystal, as opposed to

crystal-binder debonding, while other cases showed neither cracking nor debonding. More

tensile experiments would be helpful to gain further insight. Cracks likely initiated at surface

defects or from internal voids, and future work should address the initial crystal conditions

by µ-CT characterization of the crystals beforehand and through the use of recrystallized,

low-defect HMX crystals with better surface morphology and low porosity.

Experiments and simulations show that HMX particles inside Sylgard are more sensitive

to damage than in HTPB. A quantitative comparison of the simulations with experiments

is difficult due to the complex geometry of the HMX particles. However, a qualitative

comparison of the crack patterns and surface debonding in tension and compression indicates

that the surface energy of the HTPB-HMX interface may be Gi
c ≥ 30 J/m2. At lower strain

rates, Walters et al. [16 ] calculated that Gi
c ∼ 3-10 J/m2

The simulations for the HMX-Sylgard system in tension and compression render similar

results for the range of Gi
c analyzed here (10 to 90 J/m2). Extensive damage in the particle

and limited amount of debonding is obtained for the compression simulations. While the

tensile simulations show debonding and crack growth in the particle interior. Comparison
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of the simulations with the experiments in Figure 2.5 where only debonding is observed

suggests that Gi
c ≤ 10 J/m2. However, the experiment in Figure 2.6 shows vertical cracks

and debonding in agreement with Figure 2.17 with Gi
c =10 J/m2. As expected, lower values

of surface energy lead to more prominent debonding.

Due to the higher stiffness of Sylgard, crack propagation is more likely in the particles

inside the Sylgard binder than in HTPB. In both systems, initial cracks intersecting the

particle/binder interface are the precursors for cracks propagating inside the particle. How-

ever, lower heat rates are predicted in the poor quality surface particle as a result of smaller

stresses due to the extensive damage.

In summary, the combination of experiments and simulations like the one presented here,

can be used to guide the choice of binders and surface quality in PBX. Even thought the

results are quantitative, it is observed that binders with lower stiffness are less sensitive to

crack propagation under non-shock conditions.

42



3. PBX MICROSTRUCTURE UNDER VIBRATION

Note: A version of this chapter has been accepted as a manuscript in Computational Ma-
terials Science with title ’Effect of particle proximity and surface properties on the response
of PBX under vibration’

3.1 Introduction

Polymer bonded explosives (PBXs) are composite materials containing energetic particles

in a polymeric binder that are designed to react under a controlled stimulus. Accidental

ignition followed by initiation may occur when a PBX sample is subjected to mechanical

impact or vibration [2 ]. The microstructure of PBX including binder properties, particle

size distributions and volume fraction can be optimized to control the sensitivity of the

composite to stimulus and subsequently initiation [1 ].

Several efforts focused on discrete particles to understand the causes of hot-spots for-

mation during periodic excitation [54 ]–[59 ]. These references show that delamination of the

particles from the binder, the amplitude of the excitation and the distance among particles

play a prominent role in the nucleation of hot-spots. However, it is still not clear why un-

der similar conditions hot-spots form in only some particles. For example, HMX-Sylgard

samples were prepared using a production-grade β-HMX particle and a pre-delaminated

production-grade-β-HMX crystal inside Sylgard binders [59 ]. When the samples were sub-

jected to at 210.5 kHz frequency the temperature rise rates observed for the bonded particles

were smaller than for the debonded particles.

It is also clear that the amplitude of the vibration is of key importance. A 44 µm

amplitude resulted in a temperature rise rate of 22×103 K/s in sucrose crystals coated with

polyethylene glycol inside PDMS [56 ]. The same experiments with an amplitude of 27 µm

showed a slower temperature rise rate of 1.5×103 K/s.

Systems with three particles in contact showed intense heating and a temperature rise

of 13 K after 4 seconds [58 ]. Particles with an average edge-to-edge separation of 380 µm,

showed a temperature rise below 4 K after 4 seconds.

Experiments to understand the effect of the debonding of the binder were performed on

single particle HMX-Sylgard samples using an ultrasonic transducer at 210.5 kHz frequency
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[59 ]. Samples were prepared using a production-grade β-HMX particle and a pre-delaminated

production-grade-β-HMX crystal inside Sylgard binders. The production-grade β-HMX par-

ticle showed a β-to-δ phase transition within 2.34 seconds and gas formation within 0.42

seconds. Given that the β to δ transition occurs at 433 K [60 ] while the decomposition

occurs at 573 K [61 ], the temperature rise rates observed in these experiments are between

68-715 K/s. The pre-delaminated β HMX crystals showed similar behavior, although, in less

amount of time. Finite elements simulations on a single HMX crystal inside Sylgard binder

under vibration with 2-4 µm amplitude and 190-210 kHz frequency give further evidence of

the importance of friction at cracks and delamination sites as heat sources under periodic

loading [57 ]. These simulations showed temperature rise rates as high as 36×103 K/s for a

bonded HMX crystal while 109×103 K/s for a partially debonded HMX crystal.

Another experimental study suggests that the distance among particles plays an impor-

tant role in the formation of hot spots. Particles in close proximity with each other show

a larger temperature increase [58 ] than particles located at an average distance 400 µm.

However, these experiments show that the polymer binder adhesion is more important to

reduce heating at frequencies 100-1000 kHz.

Unfortunately, the measurement of temperature in experiments makes difficult to de-

termine the of hot-spots location and its source. Understanding the mechanisms of heath

generation is important to improve the design PBXs that remain safe under periodic load-

ing. In this work we focus on the prediction of local temperature in a PBX microstructure

and in individual particles during periodic mechanical loading. Finite element simulations

that include fracture dynamics and thermal transport are performed. The source of heat

is the friction at cracks and particle-polymer debonded surfaces. Section 3.2 contains the

mechanical, fracture and thermal transport models used in the simulations. In Section 3.3 ,

the details of the geometry used in the simulations and results of microstructure and two

particle simulations are reported. The findings are summarized in Section 3.4 .
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3.2 Methods

3.2.1 Phase field damage model

The phase field damage model (PFDM) is used to represent crack evolution in the mate-

rial using a continuous variable, c(x), ranging from 0 to 1 [23 ], [30 ], [32 ]. In this case, c = 0

is undamaged while c = 1 represents a completely damaged material. The crack surface, Γ

is described as a diffuse-delta function γ(c) [20 ], [33 ], [34 ],

γ (c) = 1
2l0

(
c2 + l20 |∇c|2

)
(3.1)

In Equation 3.1 , l0 is a characteristic length that determines the transition from the damaged

to undamaged region [31 ]. The characteristic length l0 governs the crack thickness and it

is represented in Figure 3.1 . The dashed lines are the slope of the phase field curve at the

intersection with the y axis [32 ].

Figure 3.1. 1D representation of phase-field crack

The energy required to create new crack surfaces is calculated using the surface energy

Gc following the Griffith’s theory of fracture in brittle materials [24 ].

Wf =
∫

Γ
GcdΓ =

∫
V
Gcγ (c) dV (3.2)
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where the integral over the crack area is approximated by the integral over the entire domain

(V ) using the diffuse-delta function.

The rate of fracture work needs to be positive to be thermodynamically consistent. This

is achieved by imposing [30 ], [32 ],

Ẇf =
∫

V
Gcγ̇(c,∇c)dV =

∫
V
Gcδcγ · ċ dV ≥ 0 (3.3)

Equation 3.3 is reduced to the conditions: δcγ ≥ 0 and ċ ≥ 0, where the term, δcγ =

∂cγ − ∇ · ∂∇cγ is the functional derivative of γ(c,∇c) with respect to c.

The evolution of the phase field is obtained From the Euler-Lagrange equations of the

Lagrangian:

L (u̇, ε, c) = K (u̇) − A (ε, c) −Wf (c) (3.4)

where K is the kinetic energy and A is the strain energy. The kinetic energy is calculated

by integrating the kinetic energy density over the domain,

K (u̇) =
∫

V

1
2ρ |u̇|2 dV (3.5)

where ρ is the density and u̇ is the velocity. Similarly, the strain energy is given in terms of

strain energy density a (ε, c),

A (ε, c) =
∫

V
a (ε, c) dV (3.6)

where ε is the strain.

The strain energy density is split in two terms, with one term, a+, being degraded with

the damage:

a (ε, c) =
[
(1 − c)2 + kr

]
a+ (ε) + a− (ε) (3.7)

where kr is a residual stiffness whose value is chosen to make the numerical scheme stable

[31 ], [32 ]. Different variations of the PFDM are proposed based on how the strain energy is
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separated into these two components [30 ], [32 ]. For HMX, the strain energy that is associated

with the damage includes the positive volumetric and shear components [20 ]:

a+ (ε) = λ

2 〈εv〉2 + µ
(
〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2

)
(3.8)

where ε1, ε2, and ε3 are the principal strains, λ = Eν

(1 + ν) (1 − 2ν) and µ = E

2 (1 + ν) are

Lame’s parameters, and εv = ε1 +ε2 +ε3 is the volumetric strain. The operator 〈x〉 is defined

as,

〈x〉 =

 x if x ≥ 0

0 if x < 0
(3.9)

The second term of the strain energy density is:

a− (ε) = λ

2 (εv − 〈εv〉)2 + µ
(
(ε1 − 〈ε1〉)2 + (ε2 − 〈ε2〉)2 + (ε3 − 〈ε3〉)2

)
(3.10)

The strain energy split used for the polymer considers that the damage occurs only under

positive volumetric strain [7 ], [20 ], then,

a+ (ε) = 1
2

(
λ+ 2µ

3

)
〈εv〉2 (3.11)

and

a− (ε) = 1
2

(
λ+ 2µ

3

)
(εv − 〈εv〉)2 + µεd : εd (3.12)

where εd is the deviatoric strain tensor given by,

εd = ε − εv

3 I (3.13)

Here, I is the identity tensor. The stress is obtained by differentiating the strain energy

expression:

σ = ∂a (ε, c)
∂ε

=
[
(1 − c)2 + kr

] ∂a+ (ε)
∂ε

+ ∂a− (ε)
∂ε

(3.14)

Equation 3.14 indicates how the stiffness of the damaged material is reduced by the phase

field parameter.

47



The Euler-Lagrange equations are derived from equation 3.4 and result in

∇ · σ = ρ
∂2u

∂t2
(3.15)

and the rate of change of phase field variable with respect to time is given by [33 ],

ċ = 1
η

〈
l0∆c+ 2(1 − c)a

+(ε)
Gc

− c

l0

〉
, (3.16)

where η is a coefficient that controls the relaxation of the system towards equilibrium. This

model represents a rate independent behavior when η → 0 [35 ]. The finite element framework

MOOSE (Multiphysics Object Oriented Simulation Environment) [33 ], [36 ] is used to solve

these equations. The velocity and acceleration terms in the numerical process are calculated

using the Newmark time integration scheme [62 ].

ün+1 = un+1 − un

β∆t2 − u̇n

β∆t + β − 0.5
β

ün (3.17)

u̇n+1 = u̇n + (1 − γ) ∆tün + γ∆tün+1 (3.18)

where β and γ are the integration parameters. The parameters chosen are l0 = 40 µm, η =

0.1 s/m, ∆t = 5 ns, β = 0.3025, γ = 0.6 and kr = 1 × 10−6 [22 ].

3.2.2 Heat generation by frictional sliding

Along with the mechanical problem, the integral form of the thermal transport equation

is solved in the domain. The only heat source is the frictional heating at cracks, thus, the

volumetric heat source density, q̇, is considered zero.

∫
V
ρC

∂T

∂t
dV = −

∫
∂S

h · ndA (3.19)
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where C is the specific heat, T is the temperature, h = −k∇T is the heat flux per unit area

across the surface ∂S with normal n, and k is the thermal conductivity. The frictional heat

flux at the cracks is given by [7 ], [22 ]:

h · n = −µf 〈−tn〉 vs (3.20)

where µf is the friction coefficient, tn is the normal component of the traction at the crack

surface, and vs is the tangential component of the velocity jump across the crack surfaces.

Equation 3.20 ensures that heat can only be generated when the traction is negative. The

tangential component of the velocity jump across the crack surfaces is given by the gradient

of the velocity in the direction normal to the crack.

v+ − v− = (∇v · n̂) l0 (3.21)

where the approximate distance between the crack surfaces is assumed to be equal to the

characteristic length, l0, and the gradient of the phase field renders the normal to the crack

surface [39 ].

n̂ = − ∇c
|∇c|

(3.22)

3.3 Results

In most PBXs the energetic material particles account for 85-95% of the volume compo-

sition. The response of the microstructure is dominated by the individual components and

their interfaces that cause large heterogeneities in the deformation, stress and temperature

fields. To identify the mechanisms of hot-spot formation in these type of microstructures

under periodic loading, the response of a complex microstructure as well as simplified config-

urations are investigated. The simplified configurations consist of two particles with different

arrangements to explore the effect of relative particle size, particle-particle distance and rel-

ative location.
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3.3.1 Material properties

Micro-indentation experiments on HMX have shown the surface energy to be 0.06 J/m2

[25 ]. However, the critical energy release rate also includes plastic dissipation at the crack

tip. Thus, the value of Gc is increased 2 J/m2 to incorporate the effect of plasticity at the

crack tip [22 ], [39 ]. The energy release rates for various amorphous polymers have been

shown to be in the range of 200-400 J/m2 [41 ], [42 ], Gc= 400 J/m2 is chosen for Sylgard.

The thermal conductivity is degraded when the material is damaged. The loss in con-

ductivity is incorporated using the damage phase field as [35 ],

k (c) = (1 − c)2 ku (3.23)

where ku is the conductivity of the undamaged material. The material properties used in

the simulations are listed in Table 3.1 .

Table 3.1. Material properties and numerical parameters used in the simulations [43 ]–[48 ]

Property HMX Sylgard
E [GPa] 15 0.15

ν 0.35 0.48
ρ [kg/m3] 1903 1030
Gc [J/m2] 2 400
ku [W/m·K] 0.31 0.18
C [J/kg·K] 1200 1100

µf 1 1

3.3.2 Initial crack distribution

The particles used in PBXs contain defects that will be included in the simulations as

initial cracks. These are represented with an initial distribution of the damage phase field

[33 ]:

c (r, t = 0) = cmaxe− |r|
l0 (3.24)

50



where r is the distance perpendicular to the crack line and cmax is the value of the phase field

at the center of the crack. Random initial cracks are created with cmax following a uniform

distribution with range (0.8,1). The initial crack length and crack orientations are chosen

according to Gaussian distributions with a mean 100µm, and a standard deviation 35µm

and mean 0◦ and a standard deviation 45◦ with respect to the horizontal axis, respectively.

The cracks are located only in the particles following a uniform distribution.

3.3.3 PBX simulations

The geometry used in the simulations, shown in Figure 3.2 is adapted from a PBX

sample in reference [63 ]. In Figure 3.2 the HMX covers 78% of the area. The mesh used

in the simulations consists of approximately 90,000 triangular elements with an average size

of 4µm. The initial cracks are shown in white where the value of the phase field variable

is c>0.6. An intermediate level of porosity in HMX-based PBX is considered to be 4-20%

[64 ]. In this study, an initial crack density of 5% is considered in the HMX and there are no

cracks in the Sylgard matrix. A periodic loading with an amplitude of 4 µm and a frequency

of 210.5 kHz is applied to the bottom boundary while the other three boundaries are free.

The initial temperature in the domain is 300 K and the heat flux is zero at the boundaries.

Figure 3.2. Microstructure domain
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Figure 3.3 shows the contour plot of the volumetric stress and the damage evolution for

approximately 5 loading cycles. Compressive and tensile volumetric stresses of up to 30 MPa

(a) t=2µs (b) t=4µs (c) t=10µs

(d) t=15µs (e) t=20µs (f) t=27.5µs

Figure 3.3. Volumetric stress and damage evolution in a PBX microstructure
under vibration with an initial crack density of 5%. The damage is shown in
white for values of c > 0.9.

are observed in the microstructure. The large particles near the bottom boundary, where the

displacement is applied, show damage propagation earlier than any other particles. Most of

the small particles close to the loading boundary damage completely.

The distance among the particles in this microstructure varies from 10 µm to 100 µm.

Larger volumetric stresses are observed where the particles are closer, where new cracks

nucleate and the existing cracks propagate. As expected, more damage is observed in the

larger particles. In agreement with previous simulations [7 ], [22 ], the initial cracks located

near the particle-polymer interface propagate earlier than the cracks in the interior of the

particles . Debonding is also observed at particle-polymer interfaces.
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The temperature field in the microstructure after t=27.5µs is shown in Figure 3.4 . Larger

temperatures are observed in the regions near the bottom of the sample where the periodic

displacement is applied. The temperature increase in the small particles depends strongly

on their location and proximity to the large particles.

Figure 3.4. Temperature field at t=27.5µm

Four particles are labeled to compare their temperature evolution, the maximum local

temperature in each particle is presented in Figure 3.5 . This temperature is calculated as an

average over a region of radius 8µm where the temperature reaches the largest value. The

crack surfaces in particle 1 show the highest temperature. Particle 2 lies between the loading

boundary and Particle 1, it is completely damaged and shows a temperature rise of almost

12 K. Particle 3 lies between particle 1 and another large particle on top and shows partial

damage and a temperature rise of 3 K. Whereas particle 4 with no initial damage shows no

crack development and thus, no temperature increase. The local maximum temperature rise

rate is 7.3× 105 K/s in particle 1, while there is no temperature increase in other particles.

The presence of multiple particles makes it difficult to understand the local effects, such

as stress concentrations, particle size and distance between two adjacent particles on the

damage and temperature evolution. In order to understand these details, simulations with

only two particles with different arrangements are presented in the following section.
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Figure 3.5. Local temperature evolution in the particles

3.3.4 Two particles simulations

The samples in Figure 3.6 are subjected to the same vibration loading used in the previous

section. The effect of the relative location of the small particle as well the distance to the

large particle are studied. The large particle is approximately 800 µm in height and 500 µm in

width whereas the small particle has an approximate diameter of 100 µm. Figure 3.6 (a) will

be referred as parallel configuration, and Figure 3.6 (b) will be called shielded configuration.

In both configurations, the distance between the particles is varied, with d = 40, 100 and

200 µm. The domain is discretized using triangular mesh elements with an average size of

10 µm. All the material properties given in Table 3.1 are used in the simulations. A random

initial crack distribution is chosen for the large particle with a density of 8.6%. The small

particle contains only a crack intersecting its surface.

Figure 3.7 shows the volumetric stress and the damage at t=30µs. Stress concentrations

at the crack tips are visible in Figure 3.7 (f). The damage evolution in the large particle is

similar in all the figures with crack propagation and debonding from the bottom interface.

In the shielded configuration, the small particle does not show any damage evolution for any

of the distances considered. The shielding effect of the large particle on the small particle
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(a) Parallel configuration (b) Shielded configuration

Figure 3.6. Two particle domain used in the simulations

is also observed in the simulations of the microstructure in Figure 3.3 . In the parallel

configuration, Figure 3.7 (d)-(f), the initial crack in the small particle propagates. When the

distance between the particles decreases the damage rate increases and the small particle is

damaged earlier.

Initially the maximum temperature occurs in the large particle near the bottom inter-

face facing the incident vibration loading, see Figure 3.8 . The large particle damage starts

increasing at around 5 µs with crack propagation and debonding from the bottom surface.

The crack in the small particle begins to propagate after t=25µs, see Figure 3.9 (a). The

evolution of the temperature, see Figure 3.9 (b), follows the damage evolution. The temper-

ature in the small particle decreases for increasing distances between the two particles. In

the shielded configuration the temperature and damage evolution in the large particle are

similar to the one in the parallel configuration. On the other hand, the small particle in the

shielded configuration does not show any damage and therefore, no temperature increase.

To explain the effect of the particle distance we also look at other factor that affect the

heat generation due to friction at the cracks: the traction at the crack surface. Figure 3.10 

shows the evolution of the average volumetric stress in the small particle for both configu-

rations at different distances. In the shielded configuration the stress oscillates between -4

and 3 MPa. Initially, the response in the parallel configuration is similar bur after 25 µs
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(a) d=40µm (b) d=100µm (c) d=200µm

(d) d=40µm (e) d=100µm (f) d=200µm

Figure 3.7. Volumetric stress and damage in HMX-Sylgard at t=30µs, (a-
c) shielded configuration, and (d-f) parallel configuration. The white regions
correspond to a damage field c>0.9.

the stresses are only compressive due to the particle damage. When the crack penetrates

the whole particle, it only can sustain compressive stresses. The increase in the compressive

stress is due to the debonding of the interface between the large particle and the polymer in

the region close to the small particle, shown in Figure 3.11 .

The periodic loading causes lateral waves in the domain, when a wave passes from the

polymer to the large particle, part of wave is reflected. As the debonded region between the

large particle and the polymer increases, more of the compressive stress is reflected back in to

the polymer and eventually to the small particle increasing the compressive stress [65 ]–[68 ].

The compressive stress amplitude increases in the small particle and is expected to reach a
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Figure 3.8. Temperature field at t=30 µs .

(a) Average damage field. (b) Maximum temperature evolution.

Figure 3.9. (a) Average damage field in the particles in the parallel configu-
ration. (b) Evolution of the maximum temperature. Solid lines represent the
large particle and dashed lines the small particle.

constant value after complete debonding of the region of the large particle. The amplitude of

the compressive volumetric stress decreases with increasing distance between the particles.

Thus, the closer to the large particle the higher the temperature rise.

Viscoelastic dissipation in the polymer is suggested to be another source of heat [4 ], [54 ].

Considering that all viscoelastic energy dissipated under cyclic loading is transformed to

heat, the maximum temperature rise in the polymer can be estimated as ∆Tmax = π〈ε〉2Gf∆t
ρcv
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(a) Shielded configuration (b) Parallel configuration

Figure 3.10. Average volumetric stress in small particle with interfacial crack

Figure 3.11. Volumetric stress and damage in the parallel configuration with
d=40µm at t=40µs. The while region corresponds to a damage field of c > 0.9.

[69 ] where 〈ε〉 is the shear strain, G is the shear loss modulus, f is the frequency and ∆t is

the time.

Figure 3.12 shows the average shear strain in the area between the two particles in the

parallel configuration. When the distance between the particles is d=40µ, a maximum value

of the shear strain, 〈ε〉2 = 0.0012 is obtained. Assuming the shear loss modulus to be 1 kPa

[70 ], the maximum temperature rise in the polymer due to viscoelastic heat generation could
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Figure 3.12. Average shear strain in the polymer between the two particles
in the parallel configuration.

be estimated to be, ∆Tmax ≤2.8×10−5 K after t=40µs which is five orders of magnitude

smaller than the temperature increase due to frictional heat generation.

3.4 Conclusions

The response of a PBX microstructure under of a periodic excitation with 210.5 kHz

frequency and 4µm amplitude is studied to understand the formation of hot spots. The

individual particles of the composite are examined to understand the effect of distance,

relative location, and size. Given that the loading boundary is rigid, larger particles closer

to the loading boundary damage earlier. This agrees with results that show that higher

density of packing decreases the sensitivity of the PBX [71 ]. A maximum local temperature

increase of 21 K after 27.5 µs over an area with radius 8 µm is observed due to frictional

heating at crack surfaces. In comparison the average temperature increase over the whole

sample is 1.7 K in 27.5 µs.

The response of two HMX particles inside a Sylgard binder is examined to identify the

mechanisms of nucleation of hot spots. Two configurations are used, one with the two

particles arranged parallel to the incident wave and another with the small particle shielded

by the large particle. The small particle fully damages after 25 µs in the parallel configuration

and remains undamaged in the shielded configuration at 40 µs. Therefore, there is a negligible
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increase of temperature in the shielded configuration compared to the parallel configuration.

In agreement with the experiments by Roberts et al. [58 ] the increase in temperature is

larger when the particles are closer. The stress in the binder near the particles increases

when the particles are closer to each other. However, the heat generation due to viscoelastic

heating is unimportant compared to friction during the initial stages.

In the large particles surface cracks advance to the interior and debonding starts at

the bottom and later propagates to the sides in both configurations. Initially, the local

temperature increase is higher in the large particle due to the presence of longer cracks and

delaminated surfaces that act as heat sources. However, the temperature may increase later

in the smaller at a larger rate, see Figure 3.9 (b).

Heating rates as high as 22×103 K/s have been observed in the experiments by You et al.

[56 ] with sucrose crystals inside PDMS under periodic vibration with an amplitude 44 µm.

The experiments by Roberts et al. [59 ] have shown temperature rise rates in the range of

68-715 K/s in an HMX particle. The simulations predict the maximum rate of temperature

rise in the parallel configuration when the distance between the particles is d=40µm. The

average temperature rate obtained is 15×103 K/s in the large particle and 33.75×103 K/s

in the small particle, which is in the same order of magnitude observed in the experiments.

This work gives further evidence that friction at cracks and delamination sites are im-

portant sources of heating in these composite materials in agreement with previous results

[55 ]–[59 ]. Furthermore, delamination also contributes to an increase in compressive stress

at neighboring particles supplying a gain in the fictional heating source. This suggest that

binder adhesion is key to mitigate heating in PBXs under periodical excitation.
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4. ANISOTROPIC FRACTURE IN HMX

4.1 Introduction

Most of the energetic materials are anisotropic in nature. The HMX possess an anisotropic

elasticity tensor and several cleavage planes [72 ], [73 ]. Weaker bonds between the atoms in

the crystal forms the cleavage planes. Crack propagation is preferred along weakest cleavage

plane as compared to other cleavage planes as less energy is required to cause the damage.

To understand the effect of anisotropy on the damage evolution, and consequent temperature

rise, anisotropic fracture model is implemented in MOOSE framework. Simulations are run

to verify the implementation and results are discussed.

The temperature dependency of pressure in the material is described by equation of state.

So far in this study, only low velocity impact and vibrations with amplitude in the order of

few microns were considered as the loading conditions on PBX. Thus, the effect of equation

of state was negligible. As the velocity of impact increases, non-linear effects of pressure-

temperature relation become important. Mie-Gruneisen equation of state is implemented in

MOOSE framework for small strain formulation which is coupled with anisotropic fracture

code. Preliminary simulation of HMX-Sylgard at impact velocity of 100 m/s are presented

that show the effect of equation of state on damage evolution.

4.2 Methods

4.2.1 Anisotropic damage model

Anisotropy in the damage model is associated with the cleavage planes and elastic proper-

ties of the material [37 ], [73 ]–[75 ]. Crack propagation along weak cleavage plane is preferred

over other planes when a penalty is introduced on the other planes using an artificial pa-

rameter. The model implementation is explained in the following subsection.
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Crack propagation along weak cleavage plane

The phase field damage model explained in section 2.2 considers the isotropic crack

propagation where the crack surface density γ(c) is given as [32 ],

γiso (c,∇c) = 1
2l0

(
c2 + l20 |∇c|2

)
= 1

2l0
c2 + l0

2 I : (∇c⊗ ∇c) (4.1)

where the subscript iso denotes crack surface density function for isotropic material. The

anisotropic damage model is constructed as a modification of the isotropic damage model

by using a tensor ω [74 ].

γtotal (c,∇c) = 1
2l0

c2 + l0
2 ω : (∇c⊗ ∇c) (4.2)

where ω is defined as [74 ],

ω = I + β (I − n ⊗ n) (4.3)

Here, n denotes the unit normal of the weakest or preferred cleavage plane whereas β intro-

duces a penalty for cleavage planes that are not normal to n. The limit β = 0 would render

isotropic damage.

Implementation

The MOOSE implementation of isotropic damage includes use of isotropic crack surface

density function, γiso. The effect of anisotropy is implemented in MOOSE in a form of

derived class from isotropic damage. In this case, the contribution of anisotropic damage is
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calculated separately. Thus, the anisotropic term is defined as, γaniso = γtotal − γiso which is

simplified as follows,

γtotal (c,∇c) = 1
2l0

c2 + l0
2 [I + β (I − n ⊗ n)] : (∇c⊗ ∇c)

= 1
2l0

c2 + l0
2 I : (∇c⊗ ∇c) + βl0

2 (I − n ⊗ n) : (∇c⊗ ∇c)

= γiso (c,∇c) + βl0
2 (I − n ⊗ n) : (∇c⊗ ∇c) (4.4)

Thus the contribution of anisotropy is given as,

γaniso = βl0
2 (I − n ⊗ n) : (∇c⊗ ∇c) (4.5)

The work dissipated in friction is calculated using equation 2.1 which is then used in

energy minimization. MOOSE implementation involves calculation of variational derivative

and weak form integral. The weak form integral is solved to find residual of equation which

is used as a marker of convergence. The variational derivative is given as,

δγaniso = −βl0
(
∇2c− n ⊗ n : ∇∇c

)
(4.6)

Using ψ as test function, the contribution of γaniso to the weak form residual Raniso is derived

as follows:

Raniso =
∫

Ω

[
−βl0

(
∇2c− n ⊗ n : ∇∇c

)]
ψdV

= −βl0
∫

Ω

(
∇2c− n ⊗ n : ∇∇c

)
ψdV

= βl0

[
−
∫

Ω
ψ
(
∇2c

)
dV +

∫
Ω
ψ (n ⊗ n : ∇∇c) dV

]
(4.7)
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The first integral term in equation 4.7 can be simplified as,

−
∫

Ω
ψ
(
∇2c

)
dV = = −

∫
Ω

[
∇ · (ψ∇c) − ∇ψ · ∇c

]
dV

= −
∫

Ω
∇ · (ψ∇c) dV +

∫
Ω

(∇ψ · ∇c) dV

= −
��������:0∫

∂Ω
ψ∇c · ndS +

∫
Ω

(∇ψ · ∇c) dV (4.8)

The first term in the expression 4.8 cancels out as the flux of scalar field going out of domain

is zero. The second integral in equation 4.7 can be simplified as,

∫
Ω
ψ (n ⊗ n : ∇∇c) dV =

∫
Ω

[
∇ · (ψn (n · ∇c)) − (n · ∇ψ) (n · ∇c) − (ψ∇ · n) (n · ∇c)

]
dV

=
∫

Ω
∇ · (ψn (n · ∇c)) dV −

∫
Ω

(n · ∇ψ) (n · ∇c) dV

−
∫

Ω
(ψ∇ · n) (n · ∇c) dV

=
������������:0∫

∂Ω
ψn (n · ∇c) · ndS −

∫
Ω

(n · ∇ψ) (n · ∇c) dV

−
∫

Ω

(
ψ����:0∇ · n

)
(n · ∇c) dV (4.9)

The first term in the expression 4.9 cancels out as the flux of phase field going out of domain

is zero while the last term cancels out as the divergence of a constant vector field is zero.

Thus, the residual term that needs to be implemented into the solver becomes,

Raniso = βl0

 ∫
Ω

(∇ψ · ∇c) dV −
∫

Ω
(n · ∇ψ) (n · ∇c) dV

 (4.10)

The matrix system of equations is solved using Newton-Raphson method [36 ] where

gradient of the residual is used to find more accurate solution in the subsequent iterations.

The gradient of residual J is calculated in MOOSE framework using expression,

Jij (ch) = ∂Ri (ch)
∂cj

(4.11)
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where Jij (ch) denotes ()th
ij element of J matrix at hth nodal point in the mesh. The derivative

of phase field and its gradient at hth node with respect to jth node is calculated using trial

function φ as follows [36 ]:

∂ch

∂cj
=
∑

k

∂

∂cj
(ckφk) = φj (4.12)

∂ (∇ch)
∂cj

=
∑

k

∂

∂cj
(ck∇φk) = ∇φj (4.13)

Thus, the gradient of residual corresponding to additional anisotropic term is given in terms

of test and trial function as,

Janiso = βl0

 ∫
Ω

(∇ψ · ∇φj) dV −
∫

Ω
(n · ∇ψ) (n · ∇φj) dV

 (4.14)

Equations 4.10 and 4.14 are implemented in MOOSE framework. The above implemented

code is contributed to MOOSE framework with the name ”ACInterfaceCleavageFracture”.

This code is added in appendix A .

The implemented model is verified using mode-I crack propagation over a rectangular

domain, shown in figure 4.1 . The cleavage plane normal used is (-0.707,0.707,0) which is at

45o from X-axis. The effect of penalty parameter β is shown in figure 4.2 .

Figure 4.1. Domain for mode-I crack simulation
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(a) β=0, t=0.45ns (b) β=100, t=0.325ns

Figure 4.2. Effect of penalty parameter β. Crack propagation along 45o

Anisotropic stiffness tensor

The phase field damage model explained in section 2.2 considers the eigendecomposi-

tion of strain to define the strain energy density based on isotropic stiffness tensor. In case

of anisotropic stiffness tensor, the eigendecomposition of stress is used to define the strain

energy. The positive part of the stress is calculated using positive projection eigendecompo-

sition tensor,

σ+ = P+ : σ (4.15)

while negative part of stress is given as,

σ− = σ − σ+ (4.16)

where P+ is the positive projection tensor given by [76 ],

P+ =
3∑

a=1
da · (Ma ⊗ Ma) +

3∑
a=1

3∑
b6=a

θab · (Gab + Gba) (4.17)
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The variables used in equation 4.17 are given below as,

da =


1 if σa > 0

0 if σa ≤ 0
(4.18)

Ma = na ⊗ na (4.19)

θab =


1
2

(
〈σa〉 − 〈σb〉
σa − σb

)
if σa 6= σb

1
4 (da + db) otherwise

(4.20)

Gijkl
ab = M ik

a M
jl
b +M il

aM
jk
b

Gijkl
ba = M ik

b M
jl
a +M il

b M
jk
a (4.21)

where,

〈σa〉 =


σa if σa > 0

0 if σa ≤ 0
(4.22)

The eigendecomposition of stress gives,

σ =
[
n1 n2 n3

]

σ1 0 0

0 σ2 0

0 0 σ3




nT

1

nT
2

nT
3

 (4.23)
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where σ1, σ2 & σ2 are principle stresses and n1, n2 & n3 are corresponding eigenvectors. By

definition the original matrix is constructed from eigenvalue as,

σ =
3∑
a

σa (na ⊗ na) =
3∑
a

σaMa (4.24)

Thus, the first term in equation 4.17 denotes that the positive principle stress entirely con-

tributes to the positive part of the stress calculated using positive projection eigendecompo-

sition tensor. By definition, the partial derivative of eigenvector and its outer product with

respect to original matrix is given by [76 ],

2∂na

∂σ
=

3∑
b6=a

1
σa − σb

nb ⊗ (na ⊗ nb + nb ⊗ na) (4.25)

2∂Ma

∂σ
=

3∑
b 6=a

1
σa − σb

(Gab + Gba) (4.26)

Thus, comparing the above equation with equation 4.17 , the second term in equation 4.17 

denotes the projection of one eigenvector in the direction of another eigenvector. This pro-

jection, if positive, also contributes to the positive part of the stress.

Thus, in this way, the anisotropic stress calculation is used to calculate strain energy

density using,

a+ (σ) = 1
2σ+ : ε (4.27)

a− (σ) = 1
2σ− : ε (4.28)

while stress and strain energy is degraded using function,

σ =
[(

1 − c2
)

+ kr

]
σ+ + σ− (4.29)

a =
[(

1 − c2
)

+ kr

]
a+ + a− (4.30)

This code is implemented in MOOSE framework to incorporate elastic anisotropy in HMX.
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Examples using projection tensor

The fourth order positive projection tensor is constructed using positive eigenvalues of

a second order tensor. In this subsection, some examples are given to understand the con-

struction. For a given stress tensor, eigenvalues σa, eigenvectors na and outerproduct of

eigenvector Ma are calculated. The quantities da and θab are calculated using Equation 4.18 

and Equation 4.20 respectively. Using the eigenvectors and corresponding matrix Ma, the

positive part of stress tensor is calculated as using Equation 4.15 . The matlab code used to

calculate positive part of stress is attached in appendix B .

Example-1: Pure volumetric

σ =


1 0 0

0 1 0

0 0 1

 σa =


1

1

1

 da =


1

1

1



n1 =


1

0

0

 M1 =


1 0 0

0 0 0

0 0 0



n2 =


0

1

0

 M2 =


0 0 0

0 1 0

0 0 0



n3 =


0

0

1

 M3 =


0 0 0

0 0 0

0 0 1


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θab =


0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

 σ+ =


1 0 0

0 1 0

0 0 1


Example-2: Uniaxial stress

σ =


1 0 0

0 0 0

0 0 0

 σa =


0

0

1

 da =


0

0

1



n1 =


0

1

0

 M1 =


0 0 0

0 1 0

0 0 0



n2 =


0

0

1

 M2 =


0 0 0

0 0 0

0 0 1



n3 =


1

0

0

 M3 =


1 0 0

0 0 0

0 0 0



θab =


0 0 0.5

0 0 0.5

0.5 0.5 0.5

 σ+ =


1 0 0

0 0 0

0 0 0


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Example-3

σ =


1 0 0

0 −1 0

0 0 −1

 σa =


−1

−1

1

 da =


0

0

1



n1 =


0

1

0

 M1 =


0 0 0

0 1 0

0 0 0



n2 =


0

0

1

 M2 =


0 0 0

0 0 0

0 0 1



n3 =


1

0

0

 M3 =


1 0 0

0 0 0

0 0 0



θab =


0 0 0.25

0 0 0.25

0.25 0.25 0.5

 σ+ =


1 0 0

0 0 0

0 0 0


Example-4: Compression in plane

σ =


−1 0 0

0 −1 0

0 0 0

 σa =


−1

−1

0

 da =


0

0

0


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n1 =


1

0

0

 M1 =


1 0 0

0 0 0

0 0 0



n2 =


0

1

0

 M2 =


0 0 0

0 1 0

0 0 0



n3 =


0

0

1

 M3 =


0 0 0

0 0 0

0 0 1



θab =


0 0 0

0 0 0

0 0 0

 σ+ =


0 0 0

0 0 0

0 0 0


Example-5: Pure shear

σ =


1 0 0

0 −0.5 0

0 0 −0.5

 σa =


−0.5

−0.5

1

 da =


0

0

1



n1 =


0

1

0

 M1 =


0 0 0

0 1 0

0 0 0


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n2 =


0

0

1

 M2 =


0 0 0

0 0 0

0 0 1



n3 =


1

0

0

 M3 =


1 0 0

0 0 0

0 0 0



θab =


0 0 0.33

0 0 0.33

0.33 0.33 0.5

 σ+ =


1 0 0

0 0 0

0 0 0


Example-6: Pure shear

σ =


0 1 0

1 0 0

0 0 0

 σa =


−1

0

1

 da =


0

0

1



n1 =


−0.707

0.707

0

 M1 =


0.5 −0.5 0

−0.5 0.5 0

0 0 0



n2 =


0

0

1

 M2 =


0 0 0

0 0 0

0 0 1


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n3 =


0.707

0.707

0

 M3 =


0.5 0.5 0

0.5 0.5 0

0 0 0



θab =


0 0 0.25

0 0 0.5

0.25 0.5 0.5

 σ+ =


0.5 0.5 0

0.5 0.5 0

0 0 0



4.2.2 Equation of State

The Mie-Gruneisen equation of state [77 ] is used to calculate pressure,

peos =
K0η

(
1 − Γ

2 η
)

(1 − sη)2 + Γρ0Cv (T − T0) (4.31)

where, K0 denotes bulk modulus, v denotes specific volume, Γ denotes Gruneisen parameter,

s denotes slope of Us − Up line and subscript 0 denotes reference state. For small strain

formulation, the parameter η is given by,

η = 1 − v

v0
= 1 − (1 + tr (ε)) = −tr (ε) (4.32)

The pressure is used to calculate the component of stress coming from equation of state as

follows:

σeos = −peosI (4.33)

which is then used to calculate the total stress as follows:

σtot = σeos + σcpl (4.34)

74



Here the subscript cpl denotes coupling term, which is the part of stress tensor not

accounted by the equation of state and is calculated by differentiating the coupling part of

strain energy density by strain [73 ]. The coupling strain energy is calculated by subtracting

p-v energy from the total strain energy.

σcpl = ∂ψcpl

∂ε

= ∂

∂ε

[1
2ε : C : ε − 1

2K0δ
2
]

= C : ε − ∂

∂ε

[1
2K0δ

2
]

= C : ε −K0
∂

∂mε

[1
2δ

2
]

= C : ε −K0δ
∂δ

∂ε

= C : ε −K0δI (4.35)

The total stress calculated is then split into a positive part and a negative part as required

by the damage model. The positive part is given by,

σ+ = σ+
eos + P+ : σcpl (4.36)

while the negative part is given by,

σ− = σ − σ+ = σ−
eos +

(
σcpl − P+ : σcpl

)
(4.37)

The calculation of strain energy density is based on energy from equation of state and

the coupling part. The energy from equation of state is calculated from p-v energy while the

coupling part is calculated using mechanical strain energy relation. Thus, the positive part

of strain energy density is given as,

a+ =


∫ v

v0
1 peos d

(
v

v0

)
+ 1

2 (P+ : σcpl) : ε if v

v0
≥ 1

1
2 (P+ : σcpl) : ε if v

v0
< 1

(4.38)
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while the negative part is given as,

a− =


1
2 (σcpl − P+ : σcpl) : ε if v

v0
≥ 1∫ v

v0
1 peos d

(
v

v0

)
+ 1

2 (σcpl − P+ : σcpl) : ε if v

v0
< 1

(4.39)

The p-v part of strain energy can be simplified using pressure equation 4.31 as,

∫ v
v0

1
peos d

(
v

v0

)
=
∫ v

v0

1


K0η

(
1 − Γ

2 η
)

(1 − sη)2 + Γρ0Cv (T − T0)

 d
(
v

v0

)
(4.40)

=
∫ v

v0

1


K0η

(
1 − Γ

2 η
)

(1 − sη)2

 d
(
v

v0

)
+
∫ v

v0

1
Γρ0Cv (T − T0) d

(
v

v0

)
(4.41)

where the second integral term is given as,

∫ v
v0

1
Γρ0Cv (T − T0) d

(
v

v0

)
= Γρ0Cv (T − T0)

(
v

v0
− 1

)
(4.42)

while the first integral term is calculated by parts as,

∫ v
v0

1


K0η

(
1 − Γ

2 η
)

(1 − sη)2

 d
(
v

v0

)
= A

s− s2
(

1 − v

v0

)

−
B log

[
1 − s

(
1 − v

v0

)]
s

+ C
(

1 − v

v0

)
− A

s

(4.43)
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where A, B and C are coefficients of integration by parts defined as,

A = K0

[
Γ
( 1

2s2 + 1
2 − 1

s

)
− 1

]
B = K0

[
Γ
(1
s

− 1
2

)
+ 1

]
C = −K0Γ

2s2

Spurious oscillations are introduced in stress values at the wave front in dynamic com-

putation due to numerical artifact [78 ]. To reduce these, artificial viscosity term is added in

the stress calculation in terms of pressure, which is given as [78 ],

pav = ρLe
(
C0Le (tr(D))2 − C1c (tr(D))

)
(4.44)

where ρ is density of material, Le is the element size, c is the sound speed and tr(D) denotes

the trace of the strain rate tensor. Here, C0 and C1 are method parameters.

Validation of equation of state

A cube of unit length is compressed at various specific volumes and resulting pressure

from simulation is compared with experimental values from literature [37 ], [79 ]–[83 ] to verify

the implementation of Mie-Gruneisen equation of state in MOOSE framework. Figure 4.3 

shows the implementation is reasonable.

4.3 Results

4.3.1 Simulation setup

Impact simulations are run on a domain shown in figure 4.4 . The slab of HMX is sand-

wiched between two layers of Sylgard layer to allow lateral expansion of HMX and accelerate

damage behavior. The top and bottom boundaries of Sylgard are set to be periodic while

right boundary is fixed in X-direction. The impact of 100 m/s is applied on left boundary as

displacement boundary condition. An initial crack of length 100 µm is introduced in HMX

at an orientation angle of 45o from horizontal.
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Figure 4.3. Mie-Gruneisen equation of state verification

Figure 4.4. HMX-Sylgard domain for high velocity impact

Material properties

The HMX is considered to be anisotropic elastic material with stiffness tensor coefficients

as given in table 4.1 . Other constants used are detailed in table 2.1 . The HMX is oriented

in such a way that the impact is applied in (100) direction. The cleavage plane is oriented

in the direction of (0,1,1) with respect to the orientation of HMX [73 ]. The value of penalty

parameter β = 10 is used in this simulation. Equation of state is used to calculate pressure

that is dependent on temperature. Coupling term is incorporated as explained in section

4.2 . The material constants used in equation of state are given in table 4.2 .
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Table 4.1. Elastic constants of HMX [84 ]

Coefficient Value [GPa]
C11 25.1
C12 9.7
C13 12.8
C15 -1.3
C22 22.3
C23 11.8
C25 4.6
C33 21.8
C35 1.4
C44 9.7
C46 3.18
C55 11.036
C66 8.66

Table 4.2. Equation of state coefficients for HMX [84 ]

Property HMX
Gruneisen parameter, Γ 0.7

Slope of Us − Up line 2.29
Viscosity parameter, C0 0.1
Viscosity parameter, C1 1.0
Sound speed, s [km/s] 2.77

Reference temperature T0 [K] 300.0

4.3.2 Impact on HMX-Sylgard

Figure 4.5 shows the volumetric stress while figure 4.6 shows deviatoric stress in the

HMX-Sylgard domain at an impact velocity of 100 m/s. The damaged region, c > 0.9,

is denoted in white. Only the left half of the domain (500µm) is shown in the figures as

the wave has not reached the right half and it remains in the zero stress state. The wave

reaches the right side of domain around 300 ns. During compression, the horizontal plane

in the middle is expected to have the maximum tensile stress in the vertical direction due

to presence of Sylgard on top and bottom of HMX. The periodic boundary conditions are

imposed on the top boundary of top layer of sylgard and bottom boundary of bottom layer

of sylgard. Thus, the crack is expected to propagate in the horizontal direction for β = 0. In
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(a) t=25ns (g) t=25ns

(b) t=50ns (h) t=50ns

(c) t=75ns (i) t=75ns

(d) t=100ns (j) t=100ns

(e) t=125ns (k) t=125ns

(f) t=150ns (l) t=150ns

Figure 4.5. Volumetric stress in HMX-Sylgard under impact at 100 m/s,
(a-f) without equation of state, and (g-l) with equation of state
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(a) t=25ns (g) t=25ns

(b) t=50ns (h) t=50ns

(c) t=75ns (i) t=75ns

(d) t=100ns (j) t=100ns

(e) t=125ns (k) t=125ns

(f) t=150ns (l) t=150ns

Figure 4.6. Deviatoric stress in HMX-Sylgard under impact at 100 m/s, (a-f)
without equation of state, and (g-l) with equation of state
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this case, the value of β = 10 is used and, the results show that this value is not enough to

show crack propagation along weak cleavage plane. New simulations with β = 0 are needed

for complete comparison.

The crack propagation begins around 100 ns when the equation of state is considered

while crack propagation takes place around 300 ns without the equation of state. Figure 4.7 

shows the volumetric stress while figure 4.8 shows the deviatoric stress in the HMX-Sylgard

domain at an impact velocity of 100 m/s when the equation of state is not considered. The

white region denotes phase field value, c > 0.9. The crack propagation starts earlier in time

(a) t=300ns

(b) t=400ns

Figure 4.7. Volumetric stress in HMX-Sylgard under impact velocity of 100
m/s without equation of state

with the equation of state as seen in figures 4.5 and 4.6 . Also, a wider crack is produced

with equation of state.

The positive part of strain energy density contributes to the damage as given in Equation

2.11 . With consideration of equation of state the positive part of strain energy density is

calculated using the Equation 4.38 . In this case, due to compression loading, only the

positive projection of coupling stress would contribute to damage. The coupling stress is

calculated by removing linear volumetric component of total stress as given in equation 4.35 .

The coupling stress is equivalent to deviatoric stress in case of isotropic material and can be
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(a) t=300ns

(b) t=400ns

Figure 4.8. Deviatoric stress in HMX-Sylgard under impact velocity of 100
m/s without equation of state

considered equivalent for the analysis. The deviatoric stress in HMX is as high as 0.62 GPa

with the equation of state while it is as high as 0.67 GPa without the equation of state. In

the compression state, in case of negative values of components of coupling stress, the lower

magnitude of individual components of the coupling stress is expected to produce lower value

of deviatoric stress. Lower the magnitude of individual negative components of the coupling

stress, it can be expected to have more number of positive eigenvalues in the decomposition

and thus, more number of non-zero components in the positive projection matrix of coupling

stress. Thus, using Equation 4.38 would give more contribution to damage. A complete

quantitative analysis is difficult for the given complex stress state and further investigation

is needed.

From figure 4.5 , it can be seen that the pressure is higher in HMX when the equation of

state is considered. The pressure in HMX reaches as high as 0.4 GPa without equation of

state but it reaches up to 0.45 GPa with equation of state. Thus, the HMX with equation

of state would expand more in vertical direction and displace the HMX-Sylgard interface

more than HMX without equation of state. Thus, this behavior is expected to render higher

positive strain in vertical direction and, consequently, higher positive part of strain energy
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density. Due to involvement of forth order tensors, it is difficult to quantitatively compare

the individual energy contributions and further quantitative investigation is needed.

The pressure calculation without considering equation of state comes from the bulk elastic

response of material which is given by p = K0η where K0 is the bulk modulus while η is the

volumetric strain. When compared with Equation 4.31 , the first term in pressure calculation

from equation of state non-linearly depends on η as well as slope of Us −Up curve and sound

speed. The pressure also depends on the temperature as given by second term in Equation

4.31 . Figure 4.9 shows the comparison between pressure with and without consideration of

equation of state. Pressure is calculated in a HMX block of 2 nm loaded with 100 m/s in

Figure 4.9. Comparison of pressure with and without equation of state in an
HMX block under impact of 100 m/s

X-direction while the strain in Y and Z direction is constrained to zero.

The temperature rise in the HMX slab after 400 ns is shown in figure 4.10 . This temper-

Figure 4.10. Temperature rise in the HMX slab under impact of 100 m/s
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ature rise is contributed by only frictional heating at crack.

Heating due to shock and molecular jetting

When considering the equation of state, the temperature rise due to shock needs to be

considered. The temperature rise due to shock is incorporated using the term ∆T = βvσv :

εv + ρT ∂2Ψ
∂T ∂ε

: ε̇ [84 ]. Here, βv = 0.4 is the proportion of viscous dissipation converted into

heat energy. The MD simulations have shown molecular jetting inside a crack in HMX under

impact at velocities between 0.5 to 2.5 km/s. The jet of molecules impacting opposite crack

surface contributes to the temperature rise as well [85 ]. The effect of shock is incorporated

in the heat generation equation but the effect of molecular jetting is difficult to consider

in continuum mechanics simulations with phase field crack. To understand the effect of

molecular jetting and possible incorporation of additional heat generation term, a domain

equivalent to MD simulations is chosen, as shown in figure 4.11 .

Figure 4.11. HMX block for high velocity impact

The MD results are available for a crack with normal in (100) at five impact velocities,

0.5, 1, 1.5, 2 and 2.5 km/s. The results are also available at impact velocity of 2 km/s for

crack orientations (010) and (1̄10). The initial crack with normal in (100) direction is shown

in figure 4.11 with a red vertical line. In the preliminary simulations, the domain shown in

figure 4.11 is impacted with velocities from 0.5 to 2.5 km/s. The contours of pressure and
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temperature rise in the domain at t=20ps are shown in figure 4.12 . The temperature and

(a) Temperature (b) Pressure

Figure 4.12. Temperature and pressure in HMX under impact at 2.5 km/s at t=20ps

pressure along a line from bottom boundary to top boundary is shown in figure 4.13 . The

(a) Temperature profile (b) Pressure profile

Figure 4.13. Temperature and pressure in HMX under shock impact along
vertical direction

temperature and pressure profile is shown when the wave in the system reaches the top of the

crack. The jump in the temperature and pressure across the shock observed in simulations

86



differs by approximately 10% from the results of molecular dynamic simulations [85 ] which

is shown in figure 4.14 .

(a) Temperature jump across shock (b) Pressure jump across shock

Figure 4.14. Comparison of jump in temperature and pressure across shock
with molecular dynamic simulations

The maximum temperature rise is found at the top crack tip and the time variation is

shown in figure 4.15 . The highest temperature temperature found in finite element simula-

Figure 4.15. Time evolution of temperature in the domain where highest
temperature is located

tions is compared with the same from molecular dynamic simulations and the comparison is

shown in figure 4.16 . The highest temperature from the finite element simulations is observed
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Figure 4.16. Comparison of highest temperature in FE and MD simulations

to be approximately 190 K lesser as compared to MD simulations at an impact velocity of

0.5 km/s while the it is approximately 7060 K lesser than MD simulations at an impact

velocity of 2.5 km/s. This is a limitation of the phase field damage model in a continuum

finite element framework. Heating source due to molecular jetting could be considered as a

term that depends on the impact velocity.

4.4 Conclusions

The anisotropic nature of energetic materials adds to the complexity of the crack prop-

agation. The cleavage planes exist due to weak bonds between atoms in the crystal lattice.

Crack propagation is preferred along the weakest cleavage plane. Thus, a penalty is intro-

duced on the cleavage planes other than the weakest. The penalty parameter is an artificially

introduced in the formulation and is, thus, variable, depending on the material and domain.

The pressure in the domain non-linearly depends on the temperature and this effect is

captured by using Mie-Gruneisen equation of state. At low impact velocities, the effect of

equation of state is negligible. However, at high impact velocities, it has to be considered.

Mie-Gruneisen equation of state is implemented in small strain formulation and is coupled

with anisotropic damage model. Simulations of HMX under impact velocity of 100 m/s

suggests that the equation of state could have large impact on the shape and direction of

crack propagation. The temperature rise due to friction at crack surfaces is found to be
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underestimated in FE simulations as compared to MD simulations which show heating due

to impact of molecular jet inside cracks. The temperature rise due to shock is implemented.

The temperature rise due to molecular jetting could be implemented using a term that

depends on the impact velocity.
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5. Summary

The hot-spot formation in PBX microstructure is investigated considering dynamic crack

propagation and corresponding frictional heat generation in order to assess safety of PBXs

while manufacturing, handling or transport when PBXs can be subjected to low velocity

impacts or vibrations. The only heating mechanism considered in this research is the friction

at crack surfaces. The focus of this research is on HMX as energetic material and Sylgard

or HTPB as polymeric binder. Analysing microstructure behavior can be very complex and,

thus, simplified system of EM particle embedded in polymeric binder is analyzed in some

cases.

The response of single HMX particle inside HTPB and Sylgard binders is studied with

simulations, and compared with experiments. The effect of the mechanical properties of

the binder, the adhesive properties of interface, and the surface quality of the EM particle

is considered on fracture and temperature rise. The results show that the HMX particles

inside Sylgard are more likely to damage than HTPB. A qualitative comparison of the crack

patterns and surface debonding in tension and compression indicates that the surface energy

of the HTPB-HMX interface may be Gi
c ≥ 30 J/m2. While the tensile simulations show

debonding and crack growth in the interior of the particle, compression simulations show

extensive damage in the particle and limited amount of debonding. Comparison of the

simulations with the experiments suggests Gi
c ≤ 10 J/m2 for HMX-Sylgard interface. Initial

cracks intersecting the particle/binder interface are likely to propagate as compared to the

cracks in the interior. Quantitative results suggests that binders with lower stiffness are less

sensitive to crack propagation under non-shock conditions.

The effect of particle-particle distance, relative location and size is investigated in a

representative PBX microstructure under of a periodic excitation with 210.5 kHz frequency

and 4µm amplitude. Larger particles in the microstructure are found to be damaged earlier.

Maximum local temperature increase of 21 K after 27.5 µs is found over an area with radius

8 µm is observed. Further investigation is done on a simplified system of two HMX particles

inside Sygard binder in an expectation to get better understanding. The two particles are

considered in two configurations: (i) shielded where the large particle shields the smaller
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particle, and (ii) parallel where the two particles in parallel position to the incident wave. The

shielded configuration shows no damage in the small particle for any initial damage while the

parallel configuration shows completely damaged smaller particle with an initial interfacial

crack. Thus, the shielded configuration shows negligible temperature rise compared to the

parallel configuration. The large particles show interfacial cracks growing in the interior and

debonding starts near the loading boundary which later propagates to the sides. Heating

rate as high as 15×103 K/s is observed in the large particle and 33.75×103 K/s in the small

particle which are in the same order of magnitude as experiments. This work supports

experimentally obtained results that friction at cracks and delamination sites are important

sources of heating in these composite materials. Furthermore, delamination is also found to

contribute to an increase in compressive stress at neighboring particles supplying a gain in

the fictional heating source. This suggest that binder adhesion is key to mitigate heating in

PBXs under periodical excitation.

Anisotropic material properties of constituent materials show effect on the damage evo-

lution and corresponding frictional heating in the material. When impact velocities increase,

effect of temperature dependence on pressure needs to be taken into account. Model with

anisotropic fracture and Mie-Gruneisen equation of state in small strain formulation is used

to simulate HMX under impact velocity of 100 m/s. Simulations of HMX slab sandwiched

between Sylgard layers showed considerable difference in the damage behavior with and

without equation of state. The simulations suggests that the equation of state could affect

the crack propagation time and the width of the crack. Temperature rise due to shock is

implemented and is in accordance with MD results. The effect of molecular jetting is difficult

to capture in continuum simulations and could be incorporated by using a term depending

on impact velocity.
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A. ACINTERFACECLEAVAGEFRACTURE

Header file: ACInterfaceCleavageFracture.h

/// Considers cleavage plane anisotropy in the crack propagation
#pragma once
#include "ACInterface.h"

class ACInterfaceCleavageFracture : public ACInterface
{
public:
static InputParameters validParams();

ACInterfaceCleavageFracture(const InputParameters & parameters);

protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();

/// term with beta penalty
Real betaNablaPsi();

/// penalty for damage on planes not normal to the weak
/// (favoured) cleavage plane (Clayton & Knap, 2015)
const Real _beta_penalty;

/// Plane normal to the weak cleavage plane:
/// M in (Clayton & Knap, 2015)
const RealVectorValue _cleavage_plane_normal;

};

Code file: ACInterfaceCleavageFracture.C

/// Considers cleavage plane anisotropy in the crack propagation
#include "ACInterfaceCleavageFracture.h"
registerMooseObject("PhaseFieldApp", ACInterfaceCleavageFracture);

InputParameters
ACInterfaceCleavageFracture::validParams()
{
InputParameters params = ACInterface::validParams();
params.addClassDescription("Gradient energy Allen-Cahn Kernel where "

crack propagation along weak cleavage plane is preferred");
params.addRequiredParam<Real>("beta_penalty", "penalty to penalize "

"fracture on planes not normal to one cleavage plane normal "
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"which is normal to weak cleavage plane. Setting beta=0 "
"results in isotropic damage.");

params.addRequiredParam<RealVectorValue>("cleavage_plane_normal",
"Normal to the weak cleavage plane");

return params;
}

ACInterfaceCleavageFracture::ACInterfaceCleavageFracture
(const InputParameters & parameters)
: ACInterface(parameters),

_beta_penalty(getParam<Real>("beta_penalty")),
_cleavage_plane_normal(getParam<RealVectorValue>

("cleavage_plane_normal"))
{
}

Real
ACInterfaceCleavageFracture::betaNablaPsi()
{
return _beta_penalty * _L[_qp] * _kappa[_qp] * (_grad_u[_qp] *

_cleavage_plane_normal) * (_grad_test[_i][_qp] *
_cleavage_plane_normal);

}

Real
ACInterfaceCleavageFracture::computeQpResidual()
{
return (1 + _beta_penalty) * _grad_u[_qp] * kappaNablaLPsi() -

betaNablaPsi();
}

Real
ACInterfaceCleavageFracture::computeQpJacobian()
{
/// dsum is the derivative \f$ \frac\partial{\partial \eta}
/// \left( \nabla (L\psi) \right) \f$
RealGradient dsum = (_dkappadop[_qp] * _L[_qp] + _kappa[_qp] *

_dLdop[_qp]) * _phi[_j][_qp] * _grad_test[_i][_qp];

/// compute the derivative of the gradient of the mobility
if (_variable_L)
{

RealGradient dgradL = _grad_phi[_j][_qp] * _dLdop[_qp] +
_grad_u[_qp] * _phi[_j][_qp] * _d2Ldop2[_qp];
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for (unsigned int i = 0; i < _n_args; ++i)
dgradL += (*_gradarg[i])[_qp] * _phi[_j][_qp] *
(*_d2Ldargdop[i])[_qp];

dsum += (_kappa[_qp] * dgradL + _dkappadop[_qp] *
_phi[_j][_qp] * gradL()) * _test[_i][_qp];

}

return (1 + _beta_penalty) * _grad_phi[_j][_qp] * kappaNablaLPsi() +
_grad_u[_qp] * dsum - _beta_penalty * _L[_qp] * _kappa[_qp] *
(_grad_u[_qp] * _cleavage_plane_normal) * (_grad_phi[_j][_qp] *
_cleavage_plane_normal);

}
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B. POSITIVE PROJECTION EIGENDECOMPOSITION
% Function definition to calculate inner product of matrices
function Splus = innerProduct(P,S)
Splus = zeros(3,3);
for i=1:3

for j=1:3
for k=1:3

for l=1:3
Splus(i,j) = Splus(i,j) + P(i,j,k,l)*S(k,l);

end
end

end
end
end

% Function definition to calculate outer product of matrices
function C = outerProduct(A,B)
C = zeros(3,3,3,3);
for i = 1:3

for j = 1:3
for k = 1:3

for l = 1:3
C(i,j,k,l) = A(i,j) * B(k,l);

end
end

end
end
end

% Function definition to calculate G tensor
function G = additionG(Ma,Mb)
Gab = zeros(3,3,3,3);
for i = 1:3

for j = 1:3
for k = 1:3

for l = 1:3
Gab(i,j,k,l) = Ma(i,k)*Mb(j,l) + Ma(i,l)*Mb(j,k);

end
end

end
end
Gba = zeros(3,3,3,3);
for i = 1:3

for j = 1:3
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for k = 1:3
for l = 1:3

Gba(i,j,k,l) = Mb(i,k)*Ma(j,l) + Mb(i,l)*Ma(j,k);
end

end
end

end
G = Gab + Gba;
end

% Input matrix
S = [-1 0 0; 0 -1 0; 0 0 0];

% Eigen decomposition
[N,D] = eig(S);
s = zeros(3,1);
d = zeros(3,1);
M = cell(3);
for a=1:3

s(a) = D(a,a);
if s(a)>0

d(a) = 1;
end
M{a} = N(:,a)*N(:,a)';

end

theta = zeros(3);
for a=1:3

for b=1:3
if s(a)~=s(b)

theta(a,b) = 0.5 * (d(a)*s(a)-d(b)*s(b)) / (s(a)-s(b));
else

theta(a,b) = 0.25 * (d(a)+d(b));
end

end
end

P = zeros(3,3,3,3);
for a=1:3

P = P + d(a) * outerProduct(M{a},M{a});
end

for a=1:3
for b=1:3
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if b~=a
G = additionG(M{a},M{b});
P = P + theta(a,b) * G;

end
end

end

Splus = innerProduct(P,S);
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