
DESIGN AND IMPLEMENTATION OF ENERGY USAGE
MONITORING AND CONTROL SYSTEMS USING

MODULAR IIOT FRAMEWORK
by

Monil Vallabhbhai Chheta

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Indianapolis, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Stanley Yung-Ping Chien

Department of Electrical and Computer Engineering

Dr. Jie Chen

Department of Mechanical Engineering

Dr. Lingxi Li

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King, Chair

2

Dedicated To

My Parents: Heena and Vallabhbhai Chheta

Sister: Kruti Chheta

and

Dr. Paridhi Gupta

For their Love and constant support

3

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Stanley Yung-Ping Chien

for his patience, motivation, and constant guidance throughout my masters education and

research. Besides my advisor, I would like to thank Dr. Jie Chien and Dr. Ali Razban

for constantly driving me and for valuable advice and stimulating sleepless discussion for

the best outcome of the given opportunity. My sincere thanks to the Industrial Assessment

Center and Department of Electrical and Computer Engineering, who provided access to the

laboratory and research facilities. Special thanks to Sherrie and Dr. Brian King for their

constant support and motivation throughout my time at IUPUI. I would like to thank and

acknowledge, US Department of Energy for believing and supporting the IUPUI Center for

continued research. Last but not the least, I would like to thank my sister Parita Radadiya,

brother-in-law Dr. Pragneshkumar Radadiya, my friends Vidish Poojari, Saumya Upadhyay,

Tanmay Zantye, Dewant Katare, Durvesh Pathak and Akash Gaikwad for supporting me

throughout my journey.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABBREVIATIONS . 14

ABSTRACT . 15

1 INTRODUCTION . 16

1.1 Challenges . 16

1.2 Problem Statement . 18

1.3 Expected Contribution . 20

1.4 Objectives . 21

1.5 Document Structure . 23

2 BACKGROUND AND LITERATURE SURVEY 24

2.1 Background . 24

2.2 What are IOT and IIoT? . 28

2.3 Sensors . 29

2.4 Database . 30

2.5 Web . 31

2.6 Summary . 32

3 SYSTEM ARCHITECTURE . 33

3.1 System Components . 33

3.1.1 Factory . 34

3.1.1.1 Equipment . 34

3.1.1.2 Sensors and Actuators . 34

3.1.1.3 Sensor Box . 34

3.1.1.3.1 Microcontroller . 35

3.1.1.3.2 Wi-Fi Module . 36

3.1.1.3.3 Power Supply . 36

3.1.1.3.4 Sensor Interfacing Connectors 36

3.1.1.3.5 Relay Interface Connectors 36

5

3.1.2 Cloud . 37

3.1.2.1. Database . 37

3.1.2.2 Webserver . 38

3.1.3 User . 38

3.2 Operational Capabilities of the System . 38

3.2.1 Sensor Configuration . 40

3.2.2 Data Acquisition . 40

3.2.3 Sensor Failure Detection . 41

3.2.4 Data Processing . 43

3.2.5 Wi-Fi Connection . 44

3.2.6 Internet Failsafe and Offline Logging 45

3.2.7 Store Data in Cloud . 46

3.2.8 Retrieve Data to Matlab . 47

3.2.9 Store Legacy Data . 48

3.2.10 Privilege Based Login . 49

3.2.11 View Real-Time and Legacy Data 50

3.2.12 Control Connected Equipment Remotely 51

4 SMART SENSOR DESIGN . 53

4.1 Hardware . 53

4.1.1 Sensor Interface Circuits . 54

4.1.1.1 Signal Conversion Circuit . 55

4.1.1.1-a 0-2.5V Conversion Circuit 55

4.1.1.1-b 0-5V Conversion Circuit 56

4.1.1.1-c 0-10V Conversion Circuit 57

4.1.1.1-d 0-20mA Conversion Circuit 57

4.1.1.2 Sensor Connector . 58

4.1.1.3 Interface Selection Circuit . 59

4.1.1.4 Sensor System . 60

4.1.2 Actuator Circuit . 61

4.1.3 Power Supply Circuit . 62

6

4.1.3.1 Power Supply . 63

4.1.4 Microcontroller Circuit . 63

4.1.5 SD Card . 64

4.1.6 Wi-Fi . 65

4.1.7 PCB . 66

4.2 Embedded Software . 68

4.2.1 Configuration . 69

4.2.2 Connection . 71

4.2.3 Read Raw Data from Sensors in Real-time and Convert to Standard
Units . 72

4.2.4 Send Data to Webserver . 73

4.2.5 Actuator . 76

4.2.6 Backup to SD Card . 78

5 DATABASE . 84

5.1 Database Design . 84

5.1.1 Information Tables . 85

5.1.2 Operating Table . 89

5.1.3 Application Function Tables . 91

5.2 Database Usage . 93

5.3 Implementation . 96

6 WEB SERVER . 98

6.1 Establishing and Closing Connection from the Microcontroller to Cloud . . . 100

6.1.1 Establishing a Connection from Microcontroller 101

6.1.2 Closing Connection from the Microcontroller 102

6.2 PHP . 103

6.3 Sending Board Startup Specifications from Microcontroller to Cloud 103

6.3.1 Sending Board Startup Specifications From Microcontroller to Web
Server . 104

6.3.2 Storing Received Data From Webserver to Database 106

6.4 Sending Sensor Values from Microcontroller to Cloud 109

7

6.4.1 Send Sensor Values from Microcontroller to Web Server 110

6.4.2 Storing Received Data From Webserver to Database 112

6.5 Web Pages for Users . 114

7 TESTING . 117

7.1 Monitoring Test . 117

7.2 Monitoring and Control Test . 119

7.3 Demonstration of SD Data Storage during Network Failure and the Data
Recovery after the Restoration of the Network Connection 123

8 CONCLUSION . 129

9 FUTURE WORK . 130

REFERENCES . 131

A APPENDIX . 132

A.1 Design and Implementation Requirements 132

A.2 Computation and Communication Components 134

A.3 Sensor List . 134

A.4 Power Supply . 135

A.5 Sensor-Board Interface Circuit . 136

A.6 Sensor Connection . 136

A.7 Actuator Circuit . 137

A.8 Logging to Database . 138

A.9 Computation and Communication Board . 138

A.10 Data Storage . 139

B APPENDIX . 141

B.1 Component List . 141

C APPENDIX . 144

C.1 Accessing Database from Matlab Command Line 144

Sample of the Entire Code . 147

D APPENDIX . 148

D.1 Using MySQL Workbench . 148

8

LIST OF TABLES

2.1 Comparison Table of Current Services and IAC Energy Box 26

3.1 Capabilities of the System . 35

4.1 Sensor List . 59

5.1 Sample Questions along with the Queries . 93

A.1 System Requirements . 132

A.2 Sensor List . 134

A.3 Sensor Output List . 135

B.1 Component List . 141

9

LIST OF FIGURES

1.1 Power Outline of Energy Usage in United States in 2017 17

1.2 Overall Structure of the System . 22

2.1 Energy Consumption in 2018 by Sectors . 25

2.2 IoT Enterprise Functions . 30

3.1 Operational Context Diagram . 33

3.2 Components in the Cloud . 37

3.3 Operational Capabilities . 39

3.4 Configure Sensor Scenario . 40

3.5 Data Acquisition Scenario . 41

3.6 Sensor Failure Detection . 42

3.7 Data Processing Scenario . 44

3.8 Wi-Fi Capable Scenario . 45

3.9 Internet Fail-safe Scenario . 46

3.10 Send and Store Data in Cloud Scenario . 47

3.11 Retrieve Data to Matlab Scenario . 48

3.12 Store Legacy Data Scenario . 49

3.13 Level Based Login Scenario . 50

3.14 View Real-Time and Legacy Data Scenario 51

3.15 Control Remote Equipment Scenario . 52

4.1 Hardware Diagram . 54

4.2 Interface Board Block Diagram . 55

4.3 0-5V Conversion Circuit . 56

4.4 0-10V Conversion Circuit . 57

4.5 0-20mA Conversion Circuit . 58

4.6 Sensor Connector Pin Layout . 58

4.7 Conversion Selection Block Diagram . 60

4.8 Sensory System . 61

4.9 Actuator Circuit . 62

10

4.10 Power-Microcontroller Interface Circuit . 63

4.11 Microcontroller Circuit . 64

4.12 SD Card Connection . 65

4.13 Wireless Connection . 65

4.14 PCB Layout . 67

4.15 Software Block Diagram . 68

4.16 Cloud Connection and Data Upload Sequence Diagram 72

4.17 Client-Server Messaging . 75

4.18 Microcontroller Code to Send Data to the Web Server 76

4.19 Actuator Request Handling . 77

4.20 Server Response with Relay Status . 78

4.21 Backup to SD Card Activity Diagram . 79

4.22 Backup to SD Card . 80

4.23 Send Backup Data to Server . 81

4.24 Senddta Function . 82

4.25 Screen Shot of how Backup Data is Saved 82

4.26 Delete the Data Sent to Server . 83

5.1 Information Table E-R Diagram . 87

5.2 Database Table Containing Information Regarding Companies 87

5.3 Database Table Containing Contact Information 88

5.4 Database Table for Appliance . 88

5.5 Database Table for Information on Appliance Port 88

5.6 Database Table Containing Information Regarding Board 88

5.7 Database Table Containing Information about Company Appliance 89

5.8 Database Table Containing Information about Sensors 89

5.9 Database Table Containing Information Regarding Zone 89

5.10 Operating Table E-R Diagram . 90

5.11 Board Startup Specifications Table in the Database 90

5.12 Database Sensor Readings Table . 91

5.13 Application Function Table E-R Diagram . 92

11

5.14 Air Compressor Forecast Database Table . 92

6.1 Edge-Server Communication . 99

6.2 Front Rnd Web Pages Sequence Diagram . 100

6.3 The getreply Function . 101

6.4 TCP_Establish_Connection Function . 102

6.5 Close TCP/IP Connection . 102

6.6 Board Specification Communication . 104

6.7 Board Specification Code Snippet . 105

6.8 PHP Program Flow Chart for Board Startup Specifications 107

6.9 PHP Page Receiving Information from the Microcontroller 108

6.10 PHP Code Establishing a Connection to the Database 108

6.11 PHP Code Storing Values to the Database 109

6.12 Sensor Readings Communications . 110

6.13 PHP Program Flow Chart for Sensor Values 111

6.14 Microcontroller Preparing Data Frame to Send to Webserver 112

6.15 Web Server PHP Program Receives Data from the Microcontroller 112

6.16 PHP Program Connecting to Database . 113

6.17 PHP Page Storing Data to Database . 113

6.18 PHP Program Acknowledging Microcontroller Request and Replying with
Relay Status . 114

6.19 Sensor Readings Displayed Real-time on the Web 115

6.20 Webpage to Control Relays . 116

7.1 CTV-C Current Sensor . 118

7.2 Current Usage of Supply and Return Fan Between February 14, 2019 12:00
AM – February 15, 2019 12:00 AM . 118

7.3 Current Usage of Supply and Return Fan Between February 13, 2019 – Febru-
ary 18, 2019 . 119

7.4 Demo Station . 121

7.5 Front-end Application Demand Forecast . 123

7.6 Motor Current Usage Based on User Control 124

7.7 Data from the System with Network Failure 125

12

7.8 Equipment Turned On . 126

7.9 Backup Mode . 126

7.10 Internet Turned On . 127

7.11 Backup Data Sent . 127

A.1 Power Outline . 135

A.2 Sensor-Board Interface Outline . 136

A.3 Sensor Connection Outline . 137

A.4 Actuator Circuit Outline . 137

A.5 Board Outline . 139

A.6 Log Outline . 140

13

ABBREVIATIONS

SEU Significant Energy Usage

IoT Internet of Things

IIOT Industrial Internet of Things

IAC Industrial Assessment Center

AHU Air Handling Unit

Php Hypertext Preprocessor

HTML Hypertext Markup Language

CSS Cascading Style Sheets

SQL Structured Query Language

TCP/IP Transmission Control and Internet Protocol

14

ABSTRACT

This project aims to develop a cloud-based platform that integrates sensors with business

intelligence for real-time energy management at the plant level. It provides facility managers,

an energy management platform that allows them to monitor equipment and plant-level

energy consumption remotely, receive a warning, identify energy loss due to malfunction,

present options with quantifiable effects for decision-making, and take actions, and assess

the outcomes. The objectives consist of:

1. Developing a generic platform for the monitoring energy consumption of industrial

equipment using sensors

2. Control the connected equipment using an actuator

3. Integrating hardware, cloud, and application algorithms into the platform

4. Validating the system using an Energy Consumption Forecast scenario

A Demo station was created for testing the system. The demo station consists of equip-

ment such as air compressor, motor and light bulb. The current usage of these equipment

is measured using current sensors. Apart from current sensors, temperature sensor, pres-

sure sensor and CO2 sensor were also used. Current consumption of these equipment was

measured over a couple of days. The control system was tested randomly by turning on

equipment at random times. Turning on the equipment resulted in current consumption

which ensured that the system is running. Thus, the system worked as expected and user

could monitor and control the connected equipment remotely.

15

1. INTRODUCTION

Internet of things is gaining more and more popularity each day. Numerous companies are

providing IoT solutions. As a part of this trend, the Industrial Assessment Center at IUPUI

(Indiana University Purdue University Indianapolis) has taken up the challenge of coming up

with a Smart Manufacturing platform. This platform integrates the existing manufacturing

systems with an IoT device developed in-house. The Smart Manufacturing platform is a low-

cost tool, requires low power to operate, and can be readily deployed. The edge IoT device

integrates the system with existing sensors at minimal effort. The platform is created to

monitor the parameters such as Temperature, Pressure, Current, etc., from these sensors in

Real-Time. This platform also has actuation capabilities, which can turn on/off machinery

manually or by an automated program. The data from these sensors can be used to analyze

energy usage and predict trends. Based on the predictions, automated programs like peak

shaving algorithms can be used. The platform has been made as generic as possible. Even

though the platform is generic, it is highly customizable to tailor companies’ requirements.

1.1 Challenges

Lawrence Livermore National Laboratory[3], a federal research facility funded by DOE

(Department of Energy) and University of California, Berkley, prepares a Sankey diagram

that shows the generated energy from different sources, utilized by various sectors and the

energy wasted. Figure 1.1 is the Sankey diagram for the year 2017.

Figure 1.1 uses quads as unit of measurement. Each quad is equal to a quadrillion BTUs

(British Thermal Unit). The units in the graph are equivalent as follows:

1. Gasoline - 8,007,000,000 gallons (US)

2. Electricity - 293,071,000,000 kilowatt-hours (kWh)

3. 36,000,000 tons of coal

4. Natural Gas - 970,434,000,000 cubic feet

5. Oil - 25,200,000 tons

16

Figure 1.1. Power Outline of Energy Usage in United States in 2017

6. TNT - 252,000,000 tons

7. Uranium-235 - 13.3 tons

The total amount of energy used by the US was 97.7 quadrillion BTUs.

As we can see from Figure 1.1, two-thirds of the energy wasted. This number is quite

high. More than half is rejected energy. The challenge is to save energy at every level possible

in order to make more efficient use of the resources.

Energy is an essential asset for the economic development of any country. Household

requires energy for heating, cooling, lighting, and appliances. Transportation requires energy

in fuel for cars, trucks, planes, trains, and ships. The industrial sector requires energy for

factories, industry complexes, Research and Development divisions, trades, etc. Health

education and welfare activities require energy for administration, water supply, sewage and

trash disposal, military forces, schools, and hospitals. IAC focuses on helping the industrial

sector save energy by auditing the manufacturing plants, analyzing the inefficient usage

17

of energy, and recommending improvements to save energy and, hence, lower energy bills.

According to an article by Constellation[1], An Exelon Company, the following are six ways

Manufacturers can reduce industrial costs

1. Develop an Energy Management Team

2. Conduct an Energy Audit

3. Strategically Schedule Machinery Use

4. Schedule Shut-Downs and Start-Ups

5. Optimize Air Compressors

6. Conduct an HVAC Audit

To fulfil the challenge of minimizing energy waste and saving energy, the steps mentioned

above can be useful and fulfilled with a system having IoT services. To fulfil method 3, 4 and

5, data is required to analyze the machinery’s usage pattern. To collect data, audits need to

be performed. Using this system allows the auditor to install the sensors at the plant with

ease, collect real-time data, and control the machinery.

This system’s end goal is to use IoT as a tool to manage the energy consumption of a plant

using algorithms like peak shaving, which would require a lot of legacy data.

Cloud computing, along with IoT is a contribution towards industry 4.0. It is slowly

adding values to industries and becoming an essential part of industrial processes. More

and more industries are adopting IoT. This has caused aggressive development efforts by the

enterprise community.

1.2 Problem Statement

At IUPUI, Industrial Assessment Center [6] conducts energy usage audits at industries

and manufacturing plants. The data collected from the audits are analyzed, and energy-

saving solutions are proposed.

Audits have the following steps involved:

18

1. Client interaction – At this stage, the client interacts with the auditing organization.

The organization acquires necessary details such as types of equipment used, power

usage pattern and production requirements.

2. The auditing organization requests utility bills such as gas, electricity, etc. A mini-

mum of one-year of utility bills is required.

3. The organization then does a background study of the plant. It determines speci-

fications of the equipment used by the plant. They decide on what equipment and

sensors they need to carry to the plant to measure the useful data.

4. The auditor and team visits the plant. They make preliminary observations and try

to identify potential energy-saving opportunities.

5. Sensors are attached to the equipment where there is a potential to save energy. At

this stage, if the audit level is ASHRAE level 3, the auditor requires a minimum

of two months of heating data and two months of cooling data to study the usage

pattern.

6. After acquiring data, the auditor analyzes the pattern.

7. Cost calculations are made for the identified energy-saving opportunities.

8. A report is handed out to the client organization, which includes recommendations

for potential energy savings.

In this process, step 5, data collection, is critical. Currently, the method used at IAC

is based on leaving the sensors at the plant. The data would be collected locally and not

available until collection devices are connected to the computer and transferred. It will be

challenging to determine if the data collection process is running correctly unless frequent

visits to the plant are made to ensure this. If the logger is spoilt due to human or system

error, data for the season would be lost, and the auditor will have to wait until next season

to collect data, hence costing a lot of time. The system mentioned in this thesis will allow

the auditing organization to ensure that the data collection process is running correctly. It

is available in real-time remotely.

19

1.3 Expected Contribution

The project in this thesis is referred to as a smart manufacturing platform. The idea to

save energy using an algorithm requires a platform to deploy to prove it is working. To build

this platform, designing appropriate hardware that can work in the industry is required.

Considering the information and sensors provided by IAC, the system was designed with

capabilities like generic interface for different kinds of sensors, internet capabilities, data

logging, equipment control, certain fail-safe features, etc. The system is generic yet highly

configurable.

The following are the requirements:

1. The system shall have Hardware for data collections – sensors installed on SEU and

data acquisition.

2. The system shall provide Data storage for collected sensor data.

3. The system shall provide Database services for storing and sharing converted data.

4. The system shall have a Data analytic module for extracting useful information

from the data, which includes predicting energy demand peaks, recommendations

with predicted effects using the current and legacy information, such as effects of

varying pressure setting on the production, re-scheduling, etc.

5. The system shall provide a Knowledge base for storing the information as the legacy

information – an energy-saving decision needs to be made based on multiple factors,

including weather, production needs, shift, occupants, etc. The historical records of

these factors are needed for model validation, accurate prediction, and assessment.

6. The system shall have a User Interface with a dashboard tailored for the opera-

tors, which will enable the operators to monitor plant performance, get warnings on

malfunctions, present options with predicted benefits, and send commands to the

controller.

7. The system shall have Controller, which will implement actions on the SEUs either

automatically or manually from the mobile device.

20

8. The system shall have algorithms for fail-safe ensuring reliability.

1.4 Objectives

This project aims to develop a cloud-based platform[11] that integrates sensors with

business intelligence for real-time energy management at the plant level. The platform

provides facility managers an energy management tool to monitor equipment and plant level

energy consumption remotely, receive a warning, identify energy loss due to malfunction,

present them options with quantifiable effects for decision-making, take actions, and assess

the outcomes. Specifically, the objectives of this project consist of:

1. Developing a generic platform for the system

2. Integrating sensing communication and control hardware, data models, and control

algorithms into the platform

3. The ability to monitor the energy usage and demonstrate through web-based GUI

4. The ability to store the real-time data in a database

5. The ability to retrieve the data from the database

6. The ability to write to the database

7. The ability to control the machine remotely

8. The ability to deploy energy-efficient algorithms via Matlab and Web Applications

9. Validating the system using various energy-saving scenario

A previous group had worked on the project. Their work formed the starting point for this

project. Several components were already selected, which consists of several subsystems

modules comprising of: power supply, sensor output interface, actuator circuit, microcon-

troller, WiFi module, SD card, logging, sleep, filtering, and self-diagnostics. The description

of each of the subsystem can be found in Appendix A. The result should be proven to satisfy

the overall project requirements as previously specified. Specifically, the goal includes the

21

requirement of sensor selections, data acquisition interface to all sensors satisfy the sensor

selection requirements, models of significant energy use (SEU) equipment, integrated energy

consumption model at the plant level, data warehouse, data analytics module, knowledge

base module, mobile communication, and controller for energy management actions. The

data storage and computations will be handled in the Cloud, with encrypted data for cyber-

security. The overall structure of the system is described in Figure 1.2.

Figure 1.2. Overall Structure of the System

22

1.5 Document Structure

The rest of the thesis is organized as follows.

Chapter 2 consists of the literature survey regarding the topic that is concerned. De-

scription regarding the components and technology used for overcoming the issue has been

mentioned.

Chapter 3 describes the system architecture. This chapter shows the top-level view of

the system with the components collaboration and the underlying technology used.

Chapter 4 provides the design and implementation of the Hardware System. A Hardware

system consists of various components such as a microcontroller, Wi-Fi, sensor connection,

Actuator. To run the system, microcontroller firmware is required to operate. The structure

of the firmware is explained in this section.

Chapter 5 demonstrates the database design and the use of the database. The data

acquired from sensors mentioned in Chapter 4 needs to be stored. Since there is a limit on

data stored locally on the memory card, database service has been used. This way, the data

is readily available to the user and can be used for further processing.

Chapter 6 describes data processing on the cloud end when the hardware sends it to the

cloud. This section also provides information on how users can interact with the system.

Web services are also required for front end users who can visualize, manipulate, and make

decisions. This service also makes sure the system data and control are readily available

from anywhere. Internet and browser are sufficient to access the system.

Chapter 7 consists of the implementation and testing of the system. The Demo board

was built, and all software was developed. All the sub-systems mentioned in the earlier

chapter were integrated, on which testing and validation are performed.

Chapter 8 is the discussion and conclusion from the efforts made to develop the system.

Chapter 9 suggests improvements and future work that can be done to make the system

perform better.

23

2. BACKGROUND AND LITERATURE SURVEY

The leading IoT platform providers are Amazon AWS, Microsoft Azure, Mathworks Things-

peak[8], etc. These platforms provide a robust service and easy installation. However, the

devices using these platforms need to be compatible with the service providers. They have

a list of devices they support and also provide development packages for the same. In this

project, the hardware and the software are developed by IAC. It allows interfacing almost all

the industrial sensors found in the manufacturing plant, a part of design consideration and

compatibility. Provisions have been made to make minimal changes to the manufacturing

plant hardware. The platform also collects legacy data and predicts pattern that is later

used to make a smart decision, for example, usage of lighting, the power consumption of

heater, air compressor, and other energy consumption devices. Currently, an algorithm is

under the testing phase to predict peak energy demands and make smart decisions to shave

the peak. This kind of dedicated environment is currently not provided by the services

mentioned above.

2.1 Background

Energy conservation is an important concern in today’s world. Industry uses several

kinds of energy sources like Electricity, Petroleum products, Natural Gas, etc. The naturally

occurring resources like Petroleum products, natural gas, coal, etc., are converted to electric

energy so that it can be used to drive the equipment. According to the Center for sustainable

systems, the University of Michigan Energy Fact-sheet[10], the figure shown below, in 2018,

the highest amount of energy utilized was by the industrial sector. If the given trend con-

tinues, fossil fuels, which are primary contributors to energy generation, will be exhausted

in the next 20 years.

The energy monitoring system would play a vital role in the conservation of energy.

This thesis focuses on building such a platform, which can monitor energy consumption,

real-Time, using different kinds of sensors. The system is also compatible with controlling

Significant Energy consumption units.

24

Figure 2.1. Energy Consumption in 2018 by Sectors

Table 2.1 provides a comparison of various commercial services[7]. At the end of the

table, it can be seen that IAC Energy Box provides all-round support compared to the

current services.

25

T
ab

le
2.

1.
C
om

pa
ris

on
Ta

bl
e
of

C
ur
re
nt

Se
rv
ic
es

an
d

IA
C

En
er
gy

B
ox

Io
T
So

ftw
ar
eP

la
t-

fo
rm

D
ev
ic
e

m
an

-

ag
em

en
t?

In
te
gr
at
io
n

Pr
ot
oc
ol
s
fo
r
da

ta
co
l-

le
ct
io
n

Ty
pe

s
of

an
al
yt
ic
s

V
isu

a-

liz
at
i-

on
s?

IA
C

En
er
gy

B
ox

Ye
s

R
ES

T
A
PI

H
T
T
P,

H
T
T
PS

,

T
C
P/

IP

R
ea
l-T

im
e

M
on

ito
rin

g

an
d
pr
ed
ic
tio

n

Ye
s

2l
em

et
ry

(A
W

S)
Ye

s
Sa

le
sf
or
ce
,

H
er
ok

u,

T
hi
ng

W
or
x
A
PI

s

M
Q
T
T
,C

oA
P

R
ea
l-t
im

e
an

al
yt
ic
s

N
o

A
pp

ce
le
ra
to
r

N
o

R
ES

T
A
PI

M
Q
T
T
,H

T
T
P

R
ea
l-t
im

e
an

al
yt
ic
s

Ye
s

AW
S

Io
T

pl
at
-

fo
rm

Ye
s

R
ES

T
A
PI

M
Q
T
T
,H

T
T
P1

.1
R
ea
l-t
im

e
an

al
yt
ic
s

Ye
s

B
os
ch

Io
T

Su
ite

Ye
s

R
ES

T
A
PI

M
Q
T
T
,

C
oA

P,

A
M
Q
P,

ST
O
M
P

*U
nk

no
w
n

Ye
s

Er
ic
ss
on

Ye
s

R
ES

T
A
PI

C
oA

P
*U

nk
no

w
n

N
o

26

T
ab

le
2.

1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

EV
RY

T
H
N
G

N
o

R
ES

T
A
PI

M
Q
T
T
,

C
oA

P,
W
eb
-

So
ck
et
s

R
ea
l-t
im

e
an

al
yt
ic
s

(R
ul
es

En
gi
ne
)

Ye
s

IB
M

Io
T

Ye
s

R
ES

T
an

d
R
ea
l-t
im

e

A
PI

s

M
Q
T
T
,H

T
T
PS

R
ea
l-t
im

e
an

al
yt
ic
s

Ye
s

Pa
rS
tr
ea
m

N
o

R
,U

D
X

A
PI

M
Q
T
T

R
ea
l-t
im

e
an

al
yt
ic
s

Ye
s

PL
AT

.O
N
E

Ye
s

R
ES

T
A
PI

M
Q
T
T
,S

N
M
P

*U
nk

no
w
n

Ye
s

T
hi
ng

W
or
x

Ye
s

R
ES

T
A
PI

M
Q
T
T
,

A
M
Q
P,

X
M
PP

,
C
oA

P,
D
D
S,

W
eb
So

ck
et
s

Pr
ed
ic
tiv

e
an

al
yt
ic
s,

R
ea
l-t
im

e
an

al
yt
ic
s

Ye
s

X
iv
el
y

N
o

R
ES

T
A
PI

H
T
T
P,

H
T
T
PS

,

So
ck
et
s/

W
eb
so
ck
et
,

M
Q
T
T

*U
nk

no
w
n

Ye
s

*
T
he

ce
lls

m
ar
ke
d
w
ith

U
nk

no
w
n
in
di
ca
te
st

ha
tt

he
re
le
va
nt

in
fo
rm

at
io
n
co
ul
d
no

tb
ef

ou
nd

fro
m

th
ea

va
ila

bl
ed

oc
um

en
ta
tio

n.

27

2.2 What are IOT and IIoT?

According to Oracle[13], The Internet of Things (IoT) describes the network of physi-

cal objects—“things”—that are embedded with sensors, software, and other technologies to

connect and exchange data with other devices and systems over the internet. These devices

range from ordinary household objects to sophisticated industrial tools. With more than

7 billion connected IoT devices today, experts expect this number to grow to 10 billion by

2020 and 22 billion by 2025. Oracle defines Industrial IoT as, application of IoT technology

in industrial settings, especially with respect to instrumentation and control of sensors and

devices that engage cloud technologies. Recently, industries have used machine-to-machine

communication (M2M) to achieve wireless automation and control. However, with the emer-

gence of cloud and allied technologies (such as analytics and machine learning), industries

can achieve a new automation layer and create new revenue and business models. IIoT is

sometimes called the fourth wave of the industrial revolution, or Industry 4.0.

The following are some common uses for IIoT:

• Smart manufacturing

• Preventive and predictive maintenance

• Smart power grids

• Smart cities

• Connected and smart logistics

• Smart digital supply chains

Having technology like cloud computing, big data, low-cost computing, analytics, and

mobile technology, enables physical objects (or things) to collect and transmit data without

human interaction. With such a network of connected systems, it is possible to monitor,

capture, and take action between things. Internet is widely available in today’s era, and the

cost of connection is decreasing drastically. Almost every device we use today has internet

connectivity, from our cell phones, laptops to TVs and refrigerators. Lately, modern sensors

28

are being developed which have Wi-Fi capabilities. Since the technology cost is going down,

the use of such Wi-Fi enabled devices is sky-rocketing.

2.3 Sensors

Traditional sensors sense physical conditions or change in physical conditions such as

temperature, pressure, occupancy, etc. and sends the signal to other electronic devices such

as microcontrollers. The microcontroller then performs suitable actions if programmed to do

so. On the other hand, smart sensors are Wi-Fi enabled. They are connected to the network

and sends data wirelessly to the cloud or other computing devices. This enables the data to be

available to humans. In this project, traditional sensors are connected to the microcontroller,

and the microcontroller is Wi-Fi enabled. Therefore, the sensors’ measurements are sent to

the microcontroller, and the microcontroller sends the data to the cloud. Any suitable

action required by the cloud program will be sent to the microcontroller, and it will actuate

the requested device. The use of the traditional sensor is to make the system low cost.

Industries already have established systems with sensors installed. The energy box needs to

be installed and interfaced with existing sensors to make it smart, making installation an

easy and low-cost process. Wi-Fi enabled sensors have been around before 2010. However,

the term IoT was coined later. Nowadays, manufacturing companies are trying to enable

Wi-Fi capabilities in anything possible. Hence, the IIoT sensors have come into existence.

IIoT sensors are beneficial to the management for monitoring the production line, detecting

faults, and scheduling maintenance. Researchers use this data to analyze and improve the

efficiency of the production machinery. Sensors can provide many data like Temperature,

Humidity, Current, Pressure, Power consumption, CO2 levels, occupancy, etc. Earlier in

the days, the sensors were not wifi enabled. The standard industry sensors are used in this

thesis project and patched to connect to a microcontroller, which is wifi enabled so the data

can be sent to the cloud. This mechanism allows installing an IIoT device with minimum

investment and replacement of sensors. Figure 2.1 below shows an enterprise View of the

IoT. The essential function of sensors is to provide measurements and provide the enterprise

data using wired/wireless protocol. The control commands are sent from the enterprise

29

to the controller using the same protocol. These sensors and controllers can be integrated

into various domains like industrial, office, medical, etc. Figure 2.2, from ZDNet[4], defines

various business functions that IoT can cater to. Several protocols can help build a network

of systems such as Wi-Fi, Bluetooth, Zigbee, etc. Using these protocols, sensing of sensors

and actuation of controllers such as light sensor, HVAC control, humidity sensor, etc., can be

done wirelessly. There are various domains like industry, medical center, vehicle, etc., where

IoT can be applied and used. In this project, the protocols used are WiFi and TCP/IP.

Sensors used are temperature, pressure, CO2, Current, etc., targeted towards the industrial

domain.

Figure 2.2. IoT Enterprise Functions

2.4 Database

A database is a structured collection of data. Several Database Management Sys-

tems (DBMS) are available, handling the data, transactions, and problems relating to the

database. There are two major types of DBMS:

1. Relational DBMS - This uses a structured query language and is the traditional

system

30

2. Non-Relational DBMS also known as NoSQL - This does not have a structured query.

SQL Database follows a relational data model in which the data is stored in tabular

form in rows and columns. Some widely available relational database services are MySQL,

MicrosoftSQL, Oracle, etc. NoSQL uses a non-relational data model. This does not require

schema for the storage of data. It stores data in forms like documents, graphs, etc.

The three factors on which the database for this project was selected are

1. Scalability – SQL databases are vertically scalable, whereas NoSQL is horizontally

scalable. Vertical scalability means that a single node’s performance can be increased

by adding resources like memory or processors to the same node. Horizontal Scaling

means the number of nodes or servers can be increased to share the system load.

Every development has a scope of future expansion. In this case, the best-suited

option is SQL database because the system is expected to be expanded vertically.

2. Data Retrieval – Data retrieval is faster in NoSQL since the data is stored in ob-

jects containing all the related information. In SQL, the tables are linked together;

therefore, JOIN statements are required, which are time-consuming.

3. System Maturity – SQL is a technology that has been around for quite some time.

Most of the issues have been resolved. Several features are present in SQL, such as

data confidentiality, integrity, and authentication. These features are yet to come

to NoSQL. IoT system requires a robust database system; hence SQL is a suitable

choice for this IIoT thesis project.

Since SQL is a suitable choice, MySQL DBMS has been selected for this project.

2.5 Web

The data from the sensors need to be processed. The business logic, database access,

and the reply to the user require a service. Since the IoT device does not directly access

the database service, it usually consists of data like sensor ID, reading value, etc. Using this

data, it uses a web API to send the data to the database. This API collects the information

31

sent by the edge device and stores it in the database in the appropriate schema and table.

As shown in the image above, the database’s communication is done through a component

called a server. Apart from storing the data from the edge device, Web services are also

used for front end display and control of the devices. Database access should not be given

to everyone due to security concerns. Therefore using the web services, we make certain

information accessible and manipulatable by the user. Webservices are an essential part of

the modern IoT devices.

2.6 Summary

In this chapter, the components used for development has been described at a high

level. An IoT system has been developed for monitoring of industry energy usage and

other parameters like CO2 levels, pressure, temperature etc. The edge device consists of

a microcontroller device NXP FRDM K64f with Wi-Fi module ESP 8266. Various sensors

mentioned in the table 1 have been integrated and tested. MySQL database is used for

storing the data generated by the sensors. A web service, which hosts a website, has been

used for handling the data from the sensors and pushing it to database. Additionally, this

service is also used for displaying the data from the tables and it also handles requests for

controlling equipment like air compressor, boiler, chiller etc. connected to the system.

32

3. SYSTEM ARCHITECTURE

The real-time energy monitoring system consists of a smart sensing and actuation component

and a cloud-based computation component. The sensing and actuation component is placed

in a factory or manufacturing plant with energy consumption equipment such as Air com-

pressor, Motor, Lights, etc., for monitoring their energy consumptions. The smart sensing

and actuation component contains various types of sensors and a microcontroller-based data

acquisition system. This component allows the smart sensor to pre-process and log data and

push the data to the cloud, where the data are stored systematically. The smart sensing

and actuation component also enables controlling the equipment by making use of actuation

relays. The cloud-based computation component comprises a web server, a database, data

processing software, and user interface software. The data sent by the sensing and actuation

component to the cloud are processed and stored in the cloud database. Section 3.1 describes

the system components, and section 3.2 shows the Operational Capabilities of the System.

3.1 System Components

The Operational Context diagram of the system shown in Figure 3-1 depicts the oper-

ational entities and operational actors involved with the system. The system involved is a

factory under which the sensing and actuation component and equipment are subsystems of

the factory entity.

Figure 3.1. Operational Context Diagram

33

3.1.1 Factory

A factory is a collection of machines, which are used for manufacturing goods. These

machines consume high amounts of energy that costs the company a significant amount of

money. A factory contains several such machines that work in series or parallel to produce

finished goods.

3.1.1.1 Equipment

A factory contains machines such as air compressors, motors, hydraulics, etc., called

equipment. This equipment run for long hours and consume a significant amount of elec-

tricity. This thesis focuses on monitoring the energy usage of this equipment and controlling

them to save energy.

3.1.1.2 Sensors and Actuators

Many types of sensors can be directly or indirectly used for energy usage monitoring.

Table 1.2 lists sensors widely found in industries and have been made compatible with

the system built. These sensors are used for testing and verification in this thesis work.

For the actuator control, a power relay of CB1A-P 12V is used. The microcontroller and

an intermediate circuit control this relay. As the user or the code sends a command, the

appropriate action is taken to turn on/off the relay.

3.1.1.3 Sensor Box

The sensor box consists of a microcontroller device, Wi-Fi module, power jack, sensor

interfacing connectors and relay interface connectors.

The operational capabilities identified from the requirements are shown in Table 3.1.

34

Table 3.1. Capabilities of the System

ID Capability Fulfilled by

1 Sensor Configuration Sensors

2 Data Acquisition Sensor Box

3 Sensor Failure Detection Sensor Box

4 Data Processing Sensor Box

5 Wi-Fi connection Sensor Box

6 Offline Logging for Internet Failsafe Sensor Box

7 Store Data in Cloud Cloud

8 Retrieve Data to Matlab Cloud

9 Store Legacy Data Cloud

10 Level Based Login User/Operator, Supervisor, Manager,

Web-Server

11 View Real-Time and Legacy Data Cloud, User/Operator, Supervisor,

Manager

12 Control Connected Equipment Remotely Supervisor, Manager, Cloud

3.1.1.3.1 Microcontroller

The microcontroller is the brain of the hardware system. It is responsible for Sensor

configuration, Data Acquisition, Communication, preparing data to be pushed to the cloud,

and handling errors. As shown in Table 3.1.1-3, the microcontroller is responsible for fulfilling

almost half the entire system’s capabilities.

35

3.1.1.3.2 Wi-Fi Module

The microcontroller acquires and processes data from the sensors. It then prepares data

to be sent to the cloud. Wi-Fi module is responsible for the communication between the

microcontroller and the cloud. It establishes a TCP/IP connection using Wi-Fi, sends data

prepared by the microcontroller device, and returns the server’s response to the microcon-

troller.

3.1.1.3.3 Power Supply

For the functioning of the microcontroller and sensors, it requires power. Since sensors

require 24V DC to operate, a DC adapter providing 24 Volts is used for the system. The

microcontroller requires 5V to operate; therefore, a voltage regulator is used to supply 5V

to the microcontroller. Some sensors such as Temperature sensors, CO2 sensors require a 24

V DC supply to operate. This power jack supplies 24 volts of power to the sensors too.

3.1.1.3.4 Sensor Interfacing Connectors

There are various types of sensors available in the market, which have different output

ranges and connectors. To interface different types of sensors and sensor connectors, the

system uses a sensor interfacing connector. Patching of sensor wires is required to make

it compatible with the system. The sensors are patched with an RJ-45 cable using the

appropriate wires mentioned in later chapters. This allows the system to support a set of

commonly used sensors for energy measurements.

3.1.1.3.5 Relay Interface Connectors

A power relay is used to control equipment remotely. The microcontroller in the sensor

box controls this relay. Remotely control the relay allows the implementation of energy-

efficient algorithms that can turn on or turn off equipment determined by the algorithm.

Relay interfacing is done using a 3.5mm adapter attached to the sensor box. The relay box

consists of power lines going through the relay, and the control terminals of the relay are

36

attached to a 3.5mm cable. Control of the relay is done through a microcontroller using the

3.5mm adapter.

3.1.2 Cloud

Cloud computing refers to the processing and storing of data in a remote computer

known as a server. This is required since the smart sensors have memory and processing

constraints. For example, the Sensor Box in this system has a microcontroller device with

limited computation power and limited memory. Cloud services are used to make the system

providing fast computation and last data storage. Cloud computing is also practically useful

when the data or services need to be accessed by multiple users (shared access). A system

shown in Figure 3.2 is a cloud under which the database and web-server are subsystems.

The operational actors interacting with these systems are User/Operator, Supervisor, and

Manager.

Figure 3.2. Components in the Cloud

3.1.2.1. Database

Database refers to a structured set of data held in a computer. In this system, we store

the sensor readings in a structured manner in database tables. In this study, MySQL is the

database service used for storing data. The database is also used to store legacy/historical

data. Authorized users can access the database.

37

3.1.2.2 Webserver

The webserver is a cloud hosting server where several PHP and HTML scripts are stored.

Each script is intended to perform a dedicated task. The webserver also helps restrict access

to the database, allowing users to view or modify certain parts of data.

3.1.3 User

There can be several types of users in this system. As shown in Figure 3.1, the most

common types of users are Operator, Supervisor, and Manager. The type of user determines

the level of access privilege that the user has. Determining the user type is a critical com-

ponent because giving unauthorized access to the system may result in the manufacturing

process’s failure. For example, an operator can only view data and not remotely turn on/off

the equipment, whereas a supervisor and manager can. The supervisor may not have access

to legacy data, but the manager may have to observe trends. Giving access to legacy data

to unauthorized users can also hurt the business.

3.2 Operational Capabilities of the System

The Operational capabilities (OC) of the system is shown in Figure 3.3. Each capability

is fulfilled by a system, subsystem, actors or combinations. It also shows which actors are

involved with the capabilities.

38

Figure 3.3. Operational Capabilities

Capabilities are described in detail by Scenarios. These scenarios determine the steps or

instructions to follow to fulfill the capability. The following diagrams show how capabilities

are fulfilled.

39

3.2.1 Sensor Configuration

Sensor configuration is a process (Figure 3.4) which includes the following steps:

1. Find all connected sensors

2. Determine electrical signal type and range of the sensor output

3. Switch the corresponding signal selector depending on the signal type

4. Determine the unit conversion if the sensor does not exist in the pre-defined list

5. Multiplication factors, Wi-Fi credentials and sensor information stored in a look up

table in the firmware

These steps are done by a technician or engineer familiar with the system, and this process

falls under the installation part of the system.

Figure 3.4. Configure Sensor Scenario

3.2.2 Data Acquisition

Figure 3.5 describes the data acquisition process from sensors by the microcontroller.

• Initialize Microcontroller ports - This step configures microcontroller ports as an

input mode, allowing the microcontroller to read signals from the sensors.

40

• The read function allows the microcontroller to read the sensor’s current value/status

using the port defined and activated in the previous step.

• According to the configuration, the data can either be sent as is read or averaged for

5 seconds and then sent to the cloud. The sampling time is currently hard coded.

However, provisions are made to make it remotely configurable.

This process is programmed in the microcontroller firmware, and the second step is

executed periodically without human interaction. The frequency of reading is determined

by the sampling time selected by the developer as per requirement. For example, if the user

requires a 5 seconds interval, the microcontroller will keep reading the data for 5 seconds

and then send it. Since the microcontroller reads very fast, around 25,000 samples are read

in 5 seconds and then averaged before sending.

Figure 3.5. Data Acquisition Scenario

3.2.3 Sensor Failure Detection

Figure 3.6 defines the process for detection of sensor failure. This process is not imple-

mented in this version of the firmware. However, a different group working on this project

41

had previously implemented this part and can be merged in future update of the firmware.

If the microcontroller reads ambiguous values that are not in the sensor’s range, it will warn

the monitoring data user. Since the range of sensors can be defined in prior and stored in

the system, it becomes easier for the code developer to recognize such ambiguity. The steps

include are as follows:

1. Check if the sensor data value is in the predefined range stored in the lookup table in

firmware. The predefined ranges are determined by the developer when developing

the system. The sensors provided to integrate are used for determining these ranges

and store in a look-up table. If a new sensor is to be added, the developer will need

to calibrate and store new values in the lookup table,

2. Display warning on debugging terminal to the user if the values are not in range. A

Debug terminal is an application on a computer that connects to the microcontroller

and debugging the firmware.

Figure 3.6. Sensor Failure Detection

42

3.2.4 Data Processing

The signals from the sensor to the microcontroller are analog and converted to digital

values between 0-1. These are not in the standard unit and need to be converted by multiply-

ing them to multiplication factors. These multiplication factors are obtained by calibrating

by testing. The read values can either be sent as they are read or be averaged for 5 seconds

based on requirements. The current version of the firmware reads raw sensor values, converts

to standard units (psig, Ampere, ppm etc.) and sends it to the server. Since microcontroller

has ten sensor ports, the delay between reading each port is set to 1.5 seconds using the

“wait” command. Therefore, the values for all sensors in use, are uploaded to the server in

approximately 15-16 seconds. To optimize the required delay, future development may make

use of an RTOS timer. Note. The wait command is only executed if there is no backup data

(see section 4.2.6, explanation for Figure 4.23). If backup data exists, the wait command

will not be executed, and one reading of backup data is sent to the server.

Figure 3.7 shows the data processing scenario which includes the following steps:

1. The microcontroller firmware converts each input port’s raw value to pre-determined

units based on the type of sensor connected to the port (defined in the sensor con-

figuration part).

2. Firmware applies filter if it is selected (such as averaging) to the multiplied value.

3. The firmware then prepares TCP/IP packets with the data appended to the payload

to be sent to the cloud to store in the database.

43

Figure 3.7. Data Processing Scenario

3.2.5 Wi-Fi Connection

The internet is required to send data to the cloud. For this reason, the Wi-Fi module is

integrated with a microcontroller to enable internet connectivity. Figure 3.8 shows that the

system is Wi-Fi capable. The steps include as follows:

1. Initialize the sensor box and microcontroller.

2. It reads configuration file from SD card and generates a table containing multiplica-

tion factors, and also sets Wi-Fi credentials.

3. Once the connection is established, it starts reading sensor values.

4. It converts raw data and prepares to send the data to the cloud by preparing a

TCP/IP packet.

5. It then sends the packet to the webserver using a Wi-Fi internet connection, and the

webserver later stores it in the database.

44

Figure 3.8. Wi-Fi Capable Scenario

3.2.6 Internet Failsafe and Offline Logging

Suppose the system is unable to connect to the cloud due to internet failure or any other

anomaly. In that case, the fail-safe mechanism allows the system to temporarily store the

sensor data into an SD card attached to the microcontroller (Figure 3.9). Several errors

listed below were recognized during system testing and error handling mechanisms defined

within the firmware to keep the system robust.

1. Server busy

2. Server not responding

3. Unable to connect

4. Hardware failure (like Wi-Fi module wire broken, etc.)

If the system failed to send data to the cloud, it will temporarily store the data and attempt

to reconnect to the internet and reconfigure itself. This process belongs to the sensor box

component of the system. For detailed explanation, see Section 4.2.6.

45

Figure 3.9. Internet Fail-safe Scenario

3.2.7 Store Data in Cloud

Figure 3.10 shows the process for storing sensor data from hardware to the cloud. It

includes the following steps:

1. The microcontroller prepares and sends the TCP/IP packet to webserver. Each

packet contains one sample of data read from the sensor. The packet also contains

the timestamp when the value was read.

2. The web server part of the cloud receives the TCP/IP packet from the microcon-

troller. Since sending takes more time than reading, this system’s fastest data sending

time is 1 second per packet

3. It arranges and attaches a timestamp to each packet of TCP/IP data when it was

received. Then it generates a query to store the data along with a time stamp. The

system has two timestamps. One is appended by a PHP page that uses internet

time, the other being the Real-time clock implemented in the microcontroller.

4. Once the query is executed, it stores the data in appropriate table and query returns

success.

46

Preparing and uploading data to the cloud is done at the microcontroller end, whereas

pushing values to the database and storing it is done at the web server’s cloud end. This

process will be described in Chapter 4 in detail.

Figure 3.10. Send and Store Data in Cloud Scenario

3.2.8 Retrieve Data to Matlab

Figure 3.11 describes the steps to access the database from a Matlab function. This

feature is available to the authorized user, such as a data analyst, manager, or developer.

The user needs to download a Database explorer add-on for Matlab and download a JDBC

connector from the MySQL website. After installing the required tools, the user can see the

example code shown in Appendix C, which shows the commands to establish a connection

to the database. Once the connection is established, the user can either use the MySQL

queries or inbuilt functions to retrieve data and store in Matlab variables and later be used

for analysis. Using these tools, users can also perform operations other than retrieving data,

like alter table, delete table, etc. The details can be found in Appendix C

47

Figure 3.11. Retrieve Data to Matlab Scenario

3.2.9 Store Legacy Data

Legacy data is the historical data generated by the cloud system over a long period. A

large amount of data is required To understand the trend of energy consumption of a factory.

The energy trend differs from season to season as well. This system keeps collecting data for

a long time and generating legacy data for analysts who can help save energy. Figure 3.12

is the process that runs in a loop from the time system is started. Since it keeps collecting

data in real-time and uploading it to the server, this data is jammed historic data over a

long time.

48

Figure 3.12. Store Legacy Data Scenario

3.2.10 Privilege Based Login

The level-based login feature is proposed in Figure 3.13. Whenever a user is given access

to the system, their roles are defined. Based on the role and management hierarchy, the

access privilege of the user can be controlled. If a manager or a team leader accesses the

system, they will have permission to view the current data, legacy data, and equipment

control. If a data analyst accesses the system, they might have access to the legacy data and

may not control equipment connected to the system.

49

In the diagram below, two of the scenarios are described in the alternate loop, which

shows that the user may access either one or both of the system’s features. The feature is

not yet implemented on the front end web, but provisions have been made in the database

for level based login. This capability must be implemented by front-end developer.

Figure 3.13. Level Based Login Scenario

3.2.11 View Real-Time and Legacy Data

The process in Figure 3.14 shows the steps to view real-time data. The system must

have a web-based user interface, which allows the authorized company personnel such as

operator/manager/developer to log in to the system and monitor real-time data. Steps

include logging in to the database, selecting the sensor box system to view data in chart or

table form. This feature should be implemented by a web developer.

50

Figure 3.14. View Real-Time and Legacy Data Scenario

3.2.12 Control Connected Equipment Remotely

Figure 3.15 shows the steps for remotely controlling the equipment connected to the

system. This is a combination of the sensing component and cloud processing component.

The system will only show boxes belonging to the particular company the employee belongs

to. Following are the steps involved to control connected equipment remotely:

1. The user with the proper privilege first needs to login to the system website

2. The user selects the specific sensor box that he has the privilege to see.

3. Out of the four available relays (controllers), the user can select to turn on/off any

one or more relays and click on submit. The equipment attached to the relay can be

found in another table in the database called equipment info. All relays need not be

used—the information regarding which equipment connected to what relay is stored

in the database.

51

4. The state of the respective relay is changed in the database system.

5. Sensor box firmware receives the command to change the status.

6. The microcontroller takes appropriate action as requested by the user and turns

on/off the equipment.

Figure 3.15. Control Remote Equipment Scenario

52

4. SMART SENSOR DESIGN

Hardware is a very important part of the system. Hardware is responsible for interfacing

various sensors to collect data such as temperature, pressure and current from the concerning

environment, for sending configuration information and sensor data to cloud where it is

stored into database table, and for interfacing various actuators that are used for turning

the appliances on or off.

4.1 Hardware

Figure 4.1 is the top-level block diagram of the hardware. The hardware consists of

various components as listed below:

1. The sensor interface circuit (Conversion Circuit and Patch connector)

2. Actuator circuit

3. Power supply circuit (24V Power Supply and Regulator)

4. Microcontroller circuit

5. SD Card

6. Wi-Fi module

7. PCB

Each of these components has been explained in detail in the following subsections.

53

Figure 4.1. Hardware Diagram

4.1.1 Sensor Interface Circuits

The sensor interface circuits consist of conversion circuits and patch connectors. The

sensor circuits are designed to enable the data acquisition system’s connection to various

types of commonly available sensors. The system is designed to interface 4 types of sensor

output. The sensors have a binary output of 0-5v or 0-12v or analog output in various ranges.

This study only considers 4 types of commonly used sensor analog outputs in industrial

equipment: 0-2.5V, 0-5V, 0-10V, 0-20mA.

The microcontroller can take input of 0-3.3V. Any input above that would cause damage

to the microcontroller. Therefore, interface circuits are required to covert the sensor output to

0-3.3 digital microcontroller input. A special sensor computer interface circuit was developed

to make the system easily connect to any of the sensors. Figure 4.2 shows the prototype

interface board containing 4 interface circuits for each microcontroller input port.

54

Figure 4.2. Interface Board Block Diagram

The circuit has the following components:

1. Signal Conversion circuit

(a) 0-2.5V Conversion Circuit

(b) 0-5V Conversion Circuit

(c) 0-10V Conversion Circuit

(d) 0-20mA Conversion Circuit

2. Connector

3. Interface Selection Circuit

4. Sensor ports

4.1.1.1 Signal Conversion Circuit

4.1.1.1-a 0-2.5V Conversion Circuit

Since the microcontroller can take input signal up to 3.3 Volts, no circuit is required to

step down the voltage. Therefore, this kind of input is directly connected to the microcon-

troller device.

55

4.1.1.1-b 0-5V Conversion Circuit

The design uses a voltage divider to drop the voltage from 0-5V to 0-3.3V (see Figure

4.3). These values of resistors are obtained using the voltage divider formula, as shown in

Equation 4.1.

Vout = V s × R2
R1 + R2 (4.1)

Since the microcontroller can only take 3.3V input, the output from the sensor will not

exceed 5V. The resistors used for input of 5V are 1.7k ohms and 3.3k ohms.

VS is the source voltage, measured in volts (V),

R1 is the resistance of the 1st resistor, measured in Ohms (Ω).

R2 is the resistance of the 2nd resistor, measured in Ohms (Ω).

Vout is the output voltage, measured in volts (V),

Figure 4.3. 0-5V Conversion Circuit

56

4.1.1.1-c 0-10V Conversion Circuit

The design uses a voltage divider to drop the voltage from 0-10V to 0-3.3V (see Figure

4.4). For this calculation, the value of Vout is taken as 3.3V. The resistors used for input of

10V are 2k ohms and 985 ohms in Equation 4.1.

Figure 4.4. 0-10V Conversion Circuit

4.1.1.1-d 0-20mA Conversion Circuit

The 0-20mA convention circuit is shown in Figure 4.5. As V is taken as 3.3 and I is taken

as 20 mA, R is 165 Ohm according to Equation 4.2.

V = I × R (4.2)

• V is a voltage signal that goes to the microcontroller

• I is the current from the current source

• R is the resistance value required to obtained the desired V value

As V is taken as 3.3 and I is taken as 20 mA, R is 165 Ohm according to Equation 4.2.

57

Figure 4.5. 0-20mA Conversion Circuit

4.1.1.2 Sensor Connector

An 8 line patch cable was chosen to provide a standard connection to the system. The

patch cable initially used for the network provides 8 lines in a standard form factor. The

patch standard chosen was T568A. The pin layout is used to select the conversion circuit in

an interface and provide the sensor’s power/ground. Figure 4.6 shows the diagram, which

defines the pins to be connected for the chosen sensor. For example, if the sensor chosen

produces a maximum of 5 volts, the sensor’s output will be connected to pin 2. Also, if

the sensor requires power to operate, pin 7 and pin 6 will provide 24 volts and ground,

respectively. Note, Only pin 6 should be used as ground for power supply. Pin 3 is sensor

ground.

Figure 4.6. Sensor Connector Pin Layout

58

Table 4.1 lists the pins to be connected for 4 types of sensor output.

Table 4.1. Sensor List

Pin Wire Color Input Example Sensor

0 Green/White 0-2.5V CTV-C, CTV-E

1 Green 0-10V C7232A1008

2 Orange/White 0-5V TOAV22, T-ASH-G1-200, HE-67S3-

0N0BT

3 Blue Sensor GND

4 Blue/White unused unused

5 Orange 0-20mA CDI-5200

6 Brown/White 24V GND

7 Brown 24V Power Supply

4.1.1.3 Interface Selection Circuit

The patch pin switch is needed to select the correct conversion circuit. An sp4t switch is

used to select the input type to demultiplex the circuit to a single connection. This completes

the path to the K64F port. The block diagram in Figure 4.7 shows that the output will be

directed to the 0-5V conversion circuit by switching to pin 0. The patch connection also can

provide the sensor with 24V power and ground. Note that pin 3 ground is the sensor signal

ground, and pin 6 is the AC power ground. They are not connected directly.

59

Figure 4.7. Conversion Selection Block Diagram

4.1.1.4 Sensor System

Figure 4.8 shows the prototype sensor system design with 10 ports.

60

Figure 4.8. Sensory System

4.1.2 Actuator Circuit

The actuator circuit shown in Figure 4.9 turns off a 5V system when supplied a 3.3

voltage signal. The circuit uses a relay and a bipolar junction transistor. The actuator

circuit was tested off the board but implemented on the PCB design. A signal needs to be

output from a port to test the actuator circuit. The relay used in this system is CB1A-

P-12V.

61

Figure 4.9. Actuator Circuit

4.1.3 Power Supply Circuit

The conversion from the 24V power supply to the 5V microcontroller is done with a

linear regulator shown in Figure 4.10. This resistive type regulator heats during sustained

load and requires a heatsink. The implementation uses a KA7805AETU 5V regulator and

a TO-220/TO-202 heatsink. The microcontroller should have consistent power from the

circuit. The heatsink should also be able to dissipate the heat generated quickly enough to

prevent overheating.

62

Figure 4.10. Power-Microcontroller Interface Circuit

4.1.3.1 Power Supply

The power supply supplies 24V to the board. The connection is done with a DC power

jack connector plug. For the implementation, a Wsdcam DC Power Jack Adapter Connector

Plug pair was used.

4.1.4 Microcontroller Circuit

Figure 4.11 shows the microcontroller block diagram. 10 ports are connected to the

Analog input pins of the microcontroller. The microcontroller converts these analog signals

to digital signals using an Analog to Digital Converter (ADC). 4 relays are also connected

to the microcontroller’s digital output pins. When the output pin is set to 0, the relay turns

off (open); when it is set to 1, the relay turns on (close). Microcon- troller also has a Wi-Fi

module connected to it. A 5 volts power is supplied to the microcontroller.

63

Figure 4.11. Microcontroller Circuit

4.1.5 SD Card

The system can log at least 48 hours of data, which would add up to around 10 MB.

Any SD card with more than 12 MB should work. The model used in this development is an

8GB microSDHC UHS-I by Sandisk. It connects to the MicroSD slot on the K64F board.

Figure 4.12 shows the SD card used to mount on the microcontroller device and the adapter

to connect the SD card to the computer.

64

Figure 4.12. SD Card Connection

4.1.6 Wi-Fi

Wi-Fi module (ESP 8266) is connected to the microcontroller using 4 wires, Power (3.3V),

Ground, Transmit, and Receive, as shown in Figure 4.13. Transmit wire is used to transmit

data from the microcontroller to the module. Receive wire is used to receive a response

from the cloud and convey the same to the microcontroller. Transmit and Receive pins use

UART (Universal Asynchronous Receiver Transmitter) protocol. The module connects to

the internet and is used to send data to the Cloud.

Figure 4.13. Wireless Connection

65

4.1.7 PCB

The PCB design shown in Figure 4.14 was designed with AutoDesk Eagle, version 8.1.1.

The design had 10 ports and 4 actuator circuits. The PCB design has been designed to have

FRDM K64F microcontroller and ESP8266 boards be plugged directly into the board. Using

this design, five PCBs were manufactured for testing. The component list is in Appendix B.

66

Figure 4.14. PCB Layout

67

4.2 Embedded Software

Software is needed to instruct the hardware to perform the desired tasks. The software

includes acquiring data, pushing data to the cloud, actuating the equipment, performing fail-

safe mechanisms, etc. Figure 4.15 shows the overall block diagram of the software. It consists

of various functions, which will be explained individually in the following subsections.

Figure 4.15. Software Block Diagram

68

The software consists of the following functions

1. Configuration

2. Connection

3. Read raw data from sensors in real-time and convert to standard units

4. Send Data to Webserver

5. Actuation

6. Backup to SD Card

4.2.1 Configuration

On startup, the software will go into setup mode. In this mode, it first parses the con-

figuration file from the SD card named “IAC Config.txt” and then enters into configuration

mode. The configuration file is in a csv format. The configuration file is divided into two

sections. The first section is the system information. System info contains the information

to connect to the Wi-Fi and Board ID. The lines starting with the ‘#’ symbol indicates a

comment. These lines are not executed by the firmware and are for information purpose

only.

The second section is the sensor connection information. This section contains the set

of streams that the system will run. It contains the port ID with the associated sensor ID

and switch positions. This helps the microcontroller determine which sensor is attached

to what port number, and hence appropriately convert raw values using the appropriate

multiplication factor. The multiplication factors are hardcoded in microcontroller code and

is the value used for multiplying the raw data from the sensor (ADC value) to convert

into standard units. If the sensor to be used is selected from the list in configuration file,

microcontroller code does not need to be changed. However, if new sensor is to be added

69

which is not present in the list, microcontroller code will need to be changed accordingly.

The multiplication factors have been calibrated manually. For example, a current sensor

was attached to a heat gun. At the same time a digital multimeter was also attached to the

heat gun. The current sensor logged analog values in the microcontroller. Concurrently the

reading from the digital multimeter was read and compare to the analog output of the current

sensor. Based on several such readings, a multiplication factor is determined which would

give the correct reading in standard unit (Amperes). The configuration file also contains

information regarding which Relay controls what equipment. This version of firmware does

not send the relay information to the server. However, future update of the firmware may

support sending the relay information to the server. Note: For attaching the current sensor,

this system uses a line splitter which has 2 ports which are 1x and 10x. 1x gives actual

reading where as 10x gives ten times the actual reading. Current sensor may be attached to

any of the two ports. The multiplication factors are calibrated to give actual readings (1x).

However, if 1x port does not work (out of lower range), 10x port can be used and the current

value can be divided by 10 on the front end (web) program. Microcontroller code need not

be changed.

70

In this mode, the firmware extracts all information from the configuration file to get

sensor information, port information, Board ID, and Wi-Fi credentials and store them into

appropriate variables. The microcontroller is rebooted every time when the internet fails

or when sensors are changed. When the microcontroller reboots, it sends data from the

configuration file to the webserver. The web server stores the information in the database.

It is advised to turn off the microcontroller before changing any sensors or configurations.

However, if the microcontroller reboots often, such anomaly can be detected in the database

table. Once the setup is complete, it proceeds to the next function, Connection.

4.2.2 Connection

Once the configuration process starts, it uses the config file information to connect to the

mentioned Wi-Fi connection using the credentials mentioned in the config file. In this step, as

shown in Figure 4.16, the firmware establishes the internet connection using the credentials

71

obtained from the configuration file and using the Wi-Fi module. Once the connection is

established, it moves to the next functions, Data Read. Best upload speed for this system

is 1 second per sensor reading.

Figure 4.16. Cloud Connection and Data Upload Sequence Diagram

4.2.3 Read Raw Data from Sensors in Real-time and Convert to Standard Units

This function reads real-time data from all sensors. The configuration file has information

regarding which of the ports have sensors attached and which sensors are attached. Using

that information, the firmware creates a lookup table in the microcontroller memory itself.

The function then reads values from the ports with sensors connected. It then converts

the raw values to standard units by multiplying with the multiplication factors stored in a

lookup table. This function reads raw sensor values and converts to standard units. “Wait”

command is used to obtained desired delay. Wait command is executed when backup data

does not exist. If backup data exists, wait command will not be executed and that time will

be used to send one reading of backup data to the server. Once the data is converted to

72

standard units, the program moves to the next function, which sends the data to the cloud.

The standard units are defined in the configuration file as follows:

1. Celsius for Temperature

2. PPM for CO2

3. PSIG for pressure

4. Ampere for current

Also, to make the system fail-safe, the following errors were observed to handle by the

firmware:

1. ERROR

2. Busy

3. 404 Not Found

If the firmware detects these errors as a server response, it will attempt to reconnect to

the internet. This ensures internet failures and server errors can be handled.

4.2.4 Send Data to Webserver

This function is responsible for sending the read data to the cloud. This function prepares

a TCP/IP frame that contains the server address, packet size, board ID, port ID and the

sensor value read in the Data Read function. As shown in Figure 4.17, it then sends the

frame to the server and waits for the response. The detailed description of the frame is

explained in Chapter 6. Microcontroller can get one of the two responses,

1. Relay status: This response indicates that the server has received the data. It sends

the on/off status of the four relays attached to that board from which data was

sent. If any change in the relay status is detected, the program goes to the Actuator

function. The information regarding which relay controls which appliance can be

found in an information table in the database called Appliance. The last 4 lines in

the config file will define equipment connected to the relay.

73

2. Error: This response indicates that the data has not been sent to the cloud suc-

cessfully. In this case, the program goes to the Offline logging function and then

attempts to reconnect to the internet using the Connection function.

Figure 4.17 shows the interaction diagram between the client/Microcontroller and the

server. The microcontroller prepares a packet and requests to open a TCP/IP connection

using the ESP8266 Wi-Fi module. The Wi-Fi module sends out the request, and the server

responds back to the module. Then the microcontroller sends the data size and then the

data. Once the one packet data is sent, the connection is closed.

74

Figure 4.17. Client-Server Messaging

Figure 4.18 shows the microcontroller code’s snippet, which is used to send data to the

server. The variable “sz1” uses the function “strlen” to compute the length of the frame. The

command “SendCMD” sends the size of the frame containing the values to the webserver.

The command “getreply” receives the response from the server. The variable “text” stores

the frame containing data to be sent. The command “SendCMD” is used again to send the

actual frame containing data.

75

Figure 4.18. Microcontroller Code to Send Data to the Web Server

4.2.5 Actuator

This function is used to actuate relays on the boards. Once the data frame is sent by the

microcontroller to the web-server, as shown in Figure 4.19, the command “getreply” in the

microcontroller code is used to get a response from the webserver. The web server responds

with the on/off status of each relay. The snippet in Figure 4.19 is the microcontroller code,

which checks the status of each relay received by the microcontroller from the server.

76

Figure 4.19. Actuator Request Handling

The microcontroller receives the command to the relay from the cloud upon acknowledg-

ing the successful reception of the sensor data by the server, as shown in Figure 4.20. The

response of the status is such as “Relay 1 = on”. If there is a change from the actuator’s

current state, the microcontroller performs the requested actuation. After the actuation, the

program goes back to the Data read function.

77

Figure 4.20. Server Response with Relay Status

4.2.6 Backup to SD Card

Figure 4.21 shows how the data is backed up into an SD card. This function is triggered

when the Data Send function gets an error while sending the data to the cloud. If data fails

to send, the firmware stores the converted to standard units data into an SD card on the

microcontroller. It then attempts to reconnect to the internet using the connect function.

Once the connection is established, the Data Send function sends the data logged into the

SD card while the system was offline. The data is stored in the format as Timestamp, Board

ID, Port ID, and Value. This stored data are sent to the cloud. This helps in the quick

upload of data to the server once the connection is established.

78

Figure 4.21. Backup to SD Card Activity Diagram

The function shown in Figure 4.22 stores the data into SD card in a file named Backup.txt.

When sending data to server fails, the data in character array format is passed to this

function.

• The first line is function name and argument. The function receives a character array

as an argument called “text”.

• The second line of the function ensures that the file is closed using “fclose” command.

• Using “if” statement in the fourth line, the program then attempts to open the file

using “fopen” command in append mode “a”. If the file cannot be opened, the pointer

returns “NULL”.

– If the pointer returns NULL, the program will close the file using “fclose”

command in the 6th line.

– In the 7th line, the program will attempt to create a “Backup.txt’ file in SD

card using “fopen” command in write “w” mode.

– After creating file in write mode, the file is closed using “fclose” command in

8th line.

79

• Again, the file is opened in append mode outside if block on 11th line.

• The data received by the function in character array “text” is appended to this file

using fprintf command on 12th line.

• Once the data is appended in the “Backup.txt” file, the file is closed on 14th line

using fclose command.

Note: When file is opened in write mode “w”, the program will start writing content

from the beginning of the file. However, when a file is opened in append mode “a”, the data

will be appended to the existing file content.

Figure 4.22. Backup to SD Card

When the microcontroller is able to send data to the server, the Function shown in Figure

4.23 will check if backup data exists.

• In the 4th line, the function will open file using “fopen” command in read “r” mode.

• In the 5th line, the function then reads data from the file using “fgets” command

and checks if the length of the data is less than 10 characters. It can be any number

greater than 1 and less than 90. Actual length of the one data frame is around 90

characters (bytes) but this function has not been tested using 1. The program checks

the length of the read string to ensure that Backup data exists. If the length is less

than 10 characters, it means that backup data does not exist.

80

– If the backup data does not exist, the program will close the file using fclose

command on 7th line.

– Wait command is executed on line 8. This ensures that 1.5 second of delay

is obtained before exiting this function and reading next sensor value.

• If backup data exists the program in else block will be executed from 10th line.

– The program opens the Backup.txt file using fopen command on line 13.

– Using the fgets command on line 14, the program reads one line from the

Backup.txt file.

– The program will then send the read data from the file to the server using

“Senddta” function on line 17. Note, each line has one reading, therefore this

function will read the first line and send it to the server.

– Once the data is passed to Senddta function, the file is closed on line 18 using

fclose command.

Figure 4.23. Send Backup Data to Server

The “Senddta” function gets character array as an argument which is the data to be

sent to the server. The function establishes connection to the server, sends the data (from

character array) to the server, and closes the connection. The function is shown in Figure

81

4.24. Note: In this function, sending failures are not handled and may be implemented in

future development.

Figure 4.24. Senddta Function

Figure 4.25 shows the sample of the “Backup.txt” file. My approach stores the data in

format which is used to send to the server(see Section 6.4.2 for detailed information). Saving

the data in this format reduces the time required to prepare the frame to send to the server.

For example, the first line stores data for IAC_Board1, Port_2 whose value is 10.87. The

MCTime is the Unix/epoch time format used in computer engineering field.

Figure 4.25. Screen Shot of how Backup Data is Saved

The code shown in Figure 4.26 shows the process of deleting the backup data which is

sent to the server. The data sent from the backup file is then deleted as follows:

82

1. Open “Backup.txt” file and another empty “temp.txt” file.

2. Read data from “Backup.txt” file line by line and store in “temp.txt” except for the

first line (since we already sent that data).

3. Once all data, except first line, is copied to “temp.txt”, delete “Backup.txt” file.

4. Rename “temp.txt” file as “Backup.txt”. (This is done because we want to delete

sent data. “Temp.txt” file contains all data of “Backup.txt” file except the one that

is already sent).

Figure 4.26. Delete the Data Sent to Server

83

5. DATABASE

The primary goal of energy management is to utilize energy efficiently. This means reducing

wasted energy. To save energy, one needs to analyze the usage. As a result of this analysis,

one can determine the usage pattern and hence provide suggestions on how to save energy.

Energy analysis requires a lot of historical data to build a hypothesis on usage patterns. The

database is used to structure and organize such data to use that data to realize the energy

usage trend and predict future energy usage. Collaborating IoT with a database helps to

collect and store data into a database from the sensors. The purpose of the Internet of things

is to collect and exchange data to understand a system better. This is accomplished by

using network-connected devices like sensors that can measure and collect relevant data. An

incredible amount of data is generated over time. To organize the collected data, the selection

and design of the database are critical. The database service should handle and process large

amounts of data efficiently and provide high availability and excellent performance.

5.1 Database Design

As mentioned earlier, to understand the energy trend, a huge amount of data is required.

For example, several years of energy consumption data is needed for analyzing energy usage

over different seasons. This system makes use of IoT to collect this data regularly. IoT helps

collect data at specified intervals (e.g., Every 5 seconds) and stores it into a database. Using

IoT makes sure that data is saved in the cloud and does not run out of local memory like

data loggers. Database design is critical for a successful IoT system. It is the element, which

stores data

84

1. Information Tables - These tables store information about the company, such as the

board ID’s the company is using, sensors connected, etc. Most of the information in

these tables is static and will be required to change if there is a technical change in

the board or companies.

2. Operating Tables - In these tables, the data gathered from the microcontroller and

sensors is stored, and the relay status helps to control onboard equipment remotely

(turn on/off).

3. Application Function Tables - These tables are created based on the application

function supported. Using the data from information and operating tables, the

application function developer might want to produce meaningful results and store

them in the database.

5.1.1 Information Tables

Figure 5-1 shows all tables designed for this project and the Entity-Relationship (E-R)

diagrams, which show how the tables are linked to one another to extract useful information

required by the company. As shown in diagram 5-1, in each table, the first row represents the

key. The arrows connecting different table is cardinality. Cardinality in this context means

the entity occurs in more than one table. For example, company id occurs in company table,

contact table, board table, zone table and company appliance table. Using company id,

information can be extracted from any of these tables.

The tables in the static information part of the database are as follows:

1. Appliance – This table contains information regarding appliances or equipment that

use a significant amount of energy. The key for this table is appliance ID

2. Company – This table contains necessary information like company ID as a key,

company name, and company address.

3. Contact – This table contains information about the company, such as contact ID

as a key, company name, contact person, contact number, email, company ID, etc.

85

4. Zone – Manufacturing plant may be divided into several zones. This table contains

information about the zones, such as zone ID as a key, company ID, and address.

5. Company Appliance – This relation table contains company ID as a key, Zone ID,

and appliance ID. This helps to determine which appliance belongs to a particular

company and which zone it belongs to.

6. Sensor – This table provides information regarding the sensors used to monitor ap-

pliance energy consumption. This table lists the sensor ID as key, name, model,

sensor output range and electric signal ranges.

7. Board – Sensor box is the hardware part of the system, which needs to be attached

to appliances. There can be several sensor boxes in the manufacturing plant. There-

fore, it needs identification. This table provides information like board ID as a key,

company ID, which shows which company the sensor box is installed, and zone ID,

which provides information regarding which zone of the plant is sensor box installed

in.

8. Appliance Port – Each sensor box has ten ports. This table provides information

regarding which sensor is connected to which board (sensor box) and what appliance.

The key for this table is Port ID.

86

Figure 5.1. Information Table E-R Diagram

The information tables hold all the essential information as the design depicted in the

E-R diagram. Figure 5.2 is the Company table, which holds information such as Company

name and Address.

Figure 5.2. Database Table Containing Information Regarding Companies

Figure 5.3 is the Contact table consisting of information about the company contact

person, contact number, email, etc.

87

Figure 5.3. Database Table Containing Contact Information

Figure 5.4 is the Appliance table, which holds information regarding the appliances used

at the company. Various companies can have similar appliances.

Figure 5.4. Database Table for Appliance

Figure 5.5 is the Appliance Port table, which holds information regarding sensors con-

nected to the particular appliance. This table also provides information on which sensor is

connected to which board and which appliance it is connected to.

Figure 5.5. Database Table for Information on Appliance Port

Figure 5.6 is the Board table, which contains information on which board belongs to

which company and in which Zone of the company it is installed in.

Figure 5.6. Database Table Containing Information Regarding Board

Figure 5.7 is the Company Appliance table, which provides information about a particular

appliance installed in a specific company zone.

88

Figure 5.7. Database Table Containing Information about Company Appliance

The database table in Figure 5.8 is the Sensors table, which holds information on differ-

ent kinds of sensors compatible with the system. It also provides specifications like units,

electrical signal, model, etc.

Figure 5.8. Database Table Containing Information about Sensors

The database table in Figure 5.9 is the Zone table, which provides addresses for each

zone of a company since a large company may have more than one zone and address.

Figure 5.9. Database Table Containing Information Regarding Zone

5.1.2 Operating Table

Figure 5.10 shows the E-R Diagram for operating tables, which are Board Startup Spec-

ifications and Sensor Readings. Here, the Board Startup Specifications contains information

regarding the Board ID, the boot time of the microcontroller, and the sensors connected to

each board’s port. The sensor readings table stores the sensor readings from the microcon-

troller. Each row contains a timestamp, Board ID, Port ID, and value. Timestamp signifies

precisely at what date and time the value was read. The Board ID provides information on

which Board is the sensor reading coming from. Port ID provides information on which port

of the board is the value coming from. the Value is the actual sensor Value. Using board

89

ID from Sensor Readings table, it can be determined from the Board Startup Specifications

table as to which port is connected to which sensor. The diagram also shows the relation of

the operating tables to information tables. The board ID enables one to find which company

and zone the board is installed. Conversely, using a given company’s board ID makes it easy

to find which sensors are connected to that board.

Figure 5.10. Operating Table E-R Diagram

The database table in Figure 5.11 is an implementation of the operating table called

Board startup specifications. It logs the microcontroller boot time and the information about

the kind of sensor attached to each port. This table is updated in case of microcontroller

reboot when sensors are changed, and data from the new configuration file is uploaded to

the server.

Figure 5.11. Board Startup Specifications Table in the Database

The database table in Figure 5.12 is one of the most important tables of the system. This

table stores the actual sensor data from the hardware. It has 4 fields, Timestamp, Board

ID, Port ID, Value. Timestamp displays information regarding when the data was sent by

the microcontroller and stored in the database. THE board ID column provides information

regarding from which board does the data belong. Port ID provides information regarding

90

which Port (or Sensor) of the given Board ID the data comes from. Value is the actual sensor

value. This table continuously logs data from several Boards installed. Details regarding

how the microcontroller sends data to the server and how data is stored in the database are

explained in Chapter 6.

Figure 5.12. Database Sensor Readings Table

5.1.3 Application Function Tables

Figure 5.13 is the Entity-Relationship Diagram for an Application Function Table, which

is the Forecast Data table. Using values from a particular Board ID and Port ID, the

application function developer can generate meaningful results and store them in the Forecast

Data table. The Forecast Data table contains columns such as TimeStamp, Board ID, Port

ID, Appliance ID, Company ID, Zone ID, and kW Value. Timestamp stores the date and time

the kilowatt (kW) value is predicted for. The diagram also shows the Application Function

table’s relation to the information table and operating table-Sensor Readings. Board ID

and Port ID provides information on which board and which port of the board is the value

related to. Appliance ID provides the information regarding which appliance the prediction

is made for. Company ID and Zone ID provide information on which company and which

company’s zone is the predicted value for.

91

Figure 5.13. Application Function Table E-R Diagram

For example, the application function developer used data from Sensor Readings and

values corresponding to Board 3 and Port 9. Port 9 is the current sensor attached to Air

Compressor, which is Appliance ID =1. Using the current readings, the application function

developer calculated the kilowatt (kW) usage by Air Compressor. Using a prediction algo-

rithm, the application function developer generated forecast data that predicts future usage

by the Air Compressor and stored into a database table shown in Figure 5.14. Appendix C

shows the procedure to connect Matlab to the database. Connecting to the database allows

the application function developer to execute MySQL queries and retrieve Matlab’s data

for processing. The developer can also store forecast and prediction data into the database

tables.

Figure 5.14. Air Compressor Forecast Database Table

92

5.2 Database Usage

Table 5.1 gives examples of what query the design can support. During the development

phase, the developer tries to understand what kind of queries the user might have. While

working with the users and supervisors of this project, the system’s questions can be answered

by the given queries. This does not cover all possible questions, but only example questions

that may be asked. Queries can be modified for different requirements.

Table 5.1. Sample Questions along with the Queries

S.

No.

Question Query User

1 Which company is board 3 in-

stalled in?

Select Company_name

from board_info where

Board_ID=’IAC_Board3’

User

2 What is the address of a com-

pany?

Select Address from com-

pany_info where Com-

pany_Name=’Industrial Audit

Centre’

User

3 Which room is the board in-

stalled in?

Select Room from

board_info where

Board_ID=’IAC_Board2’

User

4 Who is the contact person of a

company?

Select User_name from

user_info WHERE com-

pany_id=’1’

User

5 What is the email address of a

person?

Select Email from user_info

WHERE (company_id=’2’ and

Position=’Advisor’)

User

6 What is the contact email of a

company?

Select Email from user_info

WHERE company_id=’2’

User

93

Table 5.1 continued from previous page

7 What is the contact number of a

person?

Select Contact_Number

from user_info WHERE

user_name=’Dr.Jie Chen’

User

8 What is the contact number of a

company?

Select Contact_Number from

user_info WHERE (Com-

pany_ID=’1’ and position=’Di-

rector’)

User

9 Which sensor is connected to

port2 in board 1?

Select Sensor_Type

from port_info where

Port_ID=’Port_2B1’

User

10 What is the output type of tem-

perature sensor?

Select Distinct Sensor_Out-

put_Type from port_info

where Sensor_Type=’Tempera-

ture’

User

11 What is the range of Current

sensor?

Select Distinct Sensor_Range

from port_info where Sen-

sor_Type=’Current’

User

12 Which sensors are connected

Boiler on Board 1?

Select Sensor_Type from

port_info where (Ap-

pliance=’Boiler’ AND

Board_ID=’IAC_Board1’)

User

13 Which sensors are connected

Chiller on Board 2?

Select Sensor_Type from

port_info where (Ap-

pliance=’Chiller’ AND

Board_ID=’IAC_Board2’)

User

14 How many boards are installed

in a company?

Select count(*) from board_info

where Company_Name=’In-

dustrial Audit Centre’

User

94

Table 5.1 continued from previous page

15 Join tables company info and

board info using company ID

and display together

Select company_info. Com-

pany_Name, company_info.

Address, board_info.

Board_ID,board_info. Room

From company_info Inner join

board_info on company_info.

Company_ID=board_info.

Company_ID

Developer

16 The average value of 240 latest

samples of port 4 of board 2

”SELECT Avg(Value)

as avg FROM Sen-

sor_Readings WHERE

Board_ID=’IAC_Board2’

AND Port_ID=’Port_4’ OR-

DER BY TIMESTAMP desc

LIMIT 240”

Developer

17 Inserts user-defined data into

sensor config table

INSERT INTO sensor_configu-

ration (Board, Port, Category,

Name, System_Requirement)

VALUES (’$value1’, ’$value2’,

’$value3’, ’$value4’, ’$value5’)

Developer

18 Delete the user-defined name in

the sensor config table

DELETE FROM sen-

sor_configuration WHERE

Board=’$value1’ AND

Port=’$value2’

Developer

19 Select certain value from sensor

config

SELECT Port as p FROM

sensor_configuration WHERE

Name=’{$_GET[’sensor’]}

Developer

95

Table 5.1 continued from previous page

20 Update user-defined values UPDATE Demand_Control

SET Value=’{$value}’ WHERE

Sensor={$relay}’

Developer

21 Find the sum of the last 60 en-

tries for ports 3, 9 and 10

SELECT SUM(VALUE)

AS value FROM (SELECT

TIMESTAMP, VALUE FROM

sensor_readings WHERE

(Port_ID = ’Port_9’ OR

Port_ID = ’Port_10’ OR

Port_ID = ’Port_3’) and

Board_ID = ’{$board}’) sen-

sor_readings GROUP BY

TIMESTAMP ORDER BY

TIMESTAMP DESC LIMIT 60

Developer

5.3 Implementation

The database design has been implemented in the MySQL database service hosted in a

virtual machine server provided by IUPUI. Several factors were taken into consideration for

choosing this service.

MySQL is one of the most preferred and popular database services. It is used in a

wide variety of commercial as well as scientific applications. The database server has been

implemented into a Linux Red Hat server hosted and managed by Indiana University. The

server consists of 16 GigaBytes of RAM, 2 Terabytes of hard disk, and an Intel Xeon Gold

processor with 2 cores. This is a virtual machine. The address to this server is in-engr-

iac.engr.iupui.edu. The webserver is hosted on the same server as the database server.

96

The advantages of using MySQL and IU supported server are as follows:

1. Free to use Open Source

2. Data Security

3. On-Demand Scalability

4. High Performance

5. Round-the-clock Uptime

6. Comprehensive Transactional Support

7. Complete Workflow Control

8. Reduced Total Cost of Ownership

9. The flexibility of Open Source

97

6. WEB SERVER

Monitoring and controlling industry equipment in real-time is the fundamental goal of this

project. A web server can serve the Graphical User Interface (GUI) on edge devices. It can

implement REST API services, a significant factor of the system designed in this project.

REST APIs enable the development of web applications to perform operations on data like

create, retrieve, update, and delete using methods such as GET, POST, PUT, DELETE,

and PATCH. Asynchronous WebSocket communication and telemetry data exchange are

also essential for the system to be successful. The web server also allows remote access to

authorized users. Hence a web server is required to provide a user interface to the users. Since

directly accessing the database can breach database security, some accesses to the database

should not be given to all users. Therefore, preset queries with user input flexibility are

essential, so an unauthorized person cannot alter that database. Figure 6.1 demonstrates

the ideal working of the system. It shows the communication between the microcontroller

edge board, server, and database.

98

Figure 6.1. Edge-Server Communication

Figure 6.2 shows the sequence diagram[2] when a user is browsing the web pages in the

webserver. The user uses a client browser such as Microsoft Edge, Google Chrome, or Safari,

to access a website. The web server receives the client browser’s request and requests the

scripts and application to generate a page to show to the user in the client browser. Suppose

the user’s request is a dynamic page, such as view data for a specified time period or view

data for a particular appliance. The scripts will need to execute SQL queries to get data

from the database. Once the script has the user’s data via the web server, the script will

generate a dynamic page containing the data.

99

The web server will then respond to the client browser with the dynamically generated

page, and the user will be able to view this page in the browser. This sequence diagram

for front-end web pages is used when the user wants to view the sensors’ data or want to

perform actuation to the appliances.

Figure 6.2. Front Rnd Web Pages Sequence Diagram

6.1 Establishing and Closing Connection from the Microcontroller to Cloud

Web servers are designed to handle client requests. Here, the microcontroller is the

client that initiates the connection. If the webserver is ready to handle the microcontroller

requests, it acknowledges the microcontroller request, and the connection is established. If

the webserver is unable to handle requests, it responds as busy. If the connection is successful,

the microcontroller sends some data to the webserver to handle. Once the microcontroller

sends its request, the connection needs to be closed so other clients/microcontroller can use

the webserver to process its requests. One of the main functions is the getreply function.

This function is used to get a response from the webserver to the microcontroller and check

if the connection is established between the microcontroller and webserver or whether the

microcontroller received acknowledgment from the webserver. The code snippet in Figure 6.3

shows this function and error checking. Function “getreply” also stores the server’s response

100

in a buffer variable called “buf”. The getreply function then checks if the response contains

any of the errors such as:

1. ERROR

2. Busy

3. 404 Not Found

If one of these errors appears in the response, it means the connection failed, or acknowl-

edgment was not received. Then the getreply function tries to reconnect to the internet

using the function “ESP_Config”.

Figure 6.3. The getreply Function

6.1.1 Establishing a Connection from Microcontroller

To upload data from the microcontroller to the webserver and store it in the database, the

microcontroller needs to establish a connection to the webserver. TCP Establish Connection

commands shown in Figure 6.4 is defined in the microcontroller firmware to establish the

connection to the server. Figure 6.4 is the microcontroller firmware code snippet, which using

AT commands, defines the type of connection (TCP) followed by the IP of the webserver

followed by the webserver port number we are trying to access. Firmware stores the command

to start the connection in a string variable called “snd.” The firmware then sends this

101

command out to the webserver using the command “SendCMD” and waits for the web

server’s response whether the connection has been established. Getreply function is used to

get a response from the webserver to the microcontroller, and this function also checks for

errors. If there are errors in the server response to the microcontroller, the microcontroller

will reconnect to the internet. Further commands will be executed after a connection is

established. Firmware has a defined timeout so that microcontroller does not wait for infinite

time to get a response from the server. If the connection is not successful, the firmware exits

this function and tries to reconnect to the internet. The function TCP_DataSend will be

executed again by the main function once the connection is established.

Figure 6.4. TCP_Establish_Connection Function

6.1.2 Closing Connection from the Microcontroller

Closing the Established TCP/IP connection is important so that the webserver can serve

requests from other sensor boxes. The microcontroller initiates the closing procedure. Once

the data is sent and the microcontroller firmware has received an acknowledgment, the

TCP/IP connection is closed by the microcontroller firmware using the commands shown

in Figure 6.5. The web server acknowledges the request to close the connection by the

microcontroller.

Figure 6.5. Close TCP/IP Connection

102

6.2 PHP

According to php.net[12], Hypertext Preprocessor (php) is a general-purpose scripting

language widely used for web development. Php scripts are executed on the server-side, and

results can be returned to the web browser. Php supports text, HTML, CSS, JavaScript

too. Php is used to

• Generate static or dynamic page content

• Open, read, write, create or delete files on the server

• Collect data filled on an online form

• Perform database operations like add, delete or modify

• Encrypt data

• Control user access

• Output files like images, pdf or flash movies

6.3 Sending Board Startup Specifications from Microcontroller to Cloud

To store data into the database, the microcontroller must establish a TCP/IP connec-

tion with the server. It is also important to store information regarding which sensors are

connected to the board. To do so, the microcontroller establishes a TCP/IP connection

with the webserver (see section 6.1). Once the connection is established, it prepares the

frame containing information regarding the connected sensors. It then sends the prepared

frame’s packet size to the server, so the server knows how much data is to be received.

Once the webserver receives the packet size, the webserver will send an acknowledgment to

the microcontroller. The microcontroller then sends the board specification packet to the

server. The web server receives the packet, extracts information from the packet, and stores

it into a database table. After storing the data in the database, the webserver sends an

acknowledgment to the microcontroller. The Block diagram in Figure 6.6 demonstrates the

communication process between the microcontroller, web server, and the database.

103

Figure 6.6. Board Specification Communication

6.3.1 Sending Board Startup Specifications From Microcontroller to Web Server

After establishing the connection (see section 6.1), microcontroller firmware prepares the

data frame to be sent to the webserver. The microcontroller firmware then prepares to send

the board configuration details to the webserver. The board configuration details include:

1. Board ID

2. Global IP of the router the microcontroller is connected to.

3. Local IP of the Microcontroller

4. The sensors connected to each port of the board.

Once the above data is prepared, the size of the data is calculated. The data’s size is sent

to the webserver first so that the webserver knows how much data is to be received. Figure

6.7 shows the code’s snippet, which prepares the data frame to be sent and calculates the

prepared frame’s size. The firmware then sends the size of the frame to the webserver. The

first word ‘GET’ instructs the php program on server to extract information from the sent

frame. The next field “/Meuser/IACBoardSpecs _DataLoad.php” is the path of the php

104

program on the web server. The question mark “?” is a query string for the php program

indicating that the next field is the data which the php program needs to extract and store

into the database. In the program shown in Figure 6.7, the third line computes the string to

be sent to the webserver. The ‘GET’ command is used, then the path of the php program

is specified. Then the query string is appended after ‘?’. The query string consists of the

Board ID and Port 1 to 10 Sensor information. Port 1 to 10 sensor information consists

information regarding the sensor connected to each port for example,

1. Port_1: Temperature(0-50)Degree-Celsius

2. Port_2: Current(0-50)Amps

3. Port_3: Carbondioxide(ppm)

4. Port_4: Pressure(PSIG)

5. Port_7: Null

6. Port_8: Current(0-20)Amps

7. Port_9: Null

8. Port_10: Temperature(0-50)Degree-Celsius

Here, the parameters define the sensor type, range, and unit. If no sensor is attached, the

firmware sends Null. The information regarding the the sensor type, range and units is

derived from the configuration file. For example here, Port 2 has current sensor attached

to it and measures current ranging from 0-50 Ampere (See Figure 5.11 for reference). This

information is sent over to webserver using TCP/IP protocol.

Figure 6.7. Board Specification Code Snippet

105

Once the firmware receives the server’s response using the “getreply” command, the frame

containing board and port information is sent. If there is an error in receiving the response,

the getreply function will attempt to reconnect.

Command - “GET /MEuser/IAC_Board_Specs.php?” is used to access the web server’s

PHP page. Everything after “?” is handled by the PHP code shown in Figure 6.9 on the

server. In this case, the frame has Board ID, Global IP, Local IP, Port information. PHP

handles all this data. It will read in the values passed by the microcontroller and store it in

the appropriate database table. If the webserver fails to store data into the database, the

webserver will respond to the microcontroller with the error.

6.3.2 Storing Received Data From Webserver to Database

Figure 6.8 shows the flow chart of the PHP program handling microcontroller re-quest.

The web server receives the data from the microcontroller. The program then extracts data

and stores it in a variable. It then establishes a connection with the database. Once the

connection is established, the PHP program generates an SQL query. Upon successfully

executing the query, the data is stored in the database, and the PHP program replies to the

microcontroller with an acknowledgment. If, for any reason, the connection to the database

fails or the PHP program is unable to store data to the database, the PHP program will

respond to the microcontroller with the error. The microcontroller will store data in the SD

card and attempt to reconnect to the internet, as mentioned in chapter 4.

106

Figure 6.8. PHP Program Flow Chart for Board Startup Specifications

The following PHP page developed on the webserver is triggered by the microcontroller

request. As shown in the code, all data after “?” is taken care of by this page. E.g., board,

wifiIP, Port1Sensor, etc., If the microcontroller cannot establish a connection, the PHP code

will not be triggered. In this case, the microcontroller will log the sensor readings in the

SD Card (see Chapter 4). Figure 6.9 is the PHP code executed at the webserver end. Once

the code in Figure 6.9 reads the microcontroller’s data using the command “$_GET”, it

establishes a connection to the database server. It will ensure that it is connected to the

database where the above-received data will be stored.

107

Figure 6.9. PHP Page Receiving Information from the Microcontroller

Command “Mysqli,” shown in Figure 6.10 runs at the web server end, and the command

establishes a connection to the database. The parameters passed to that function are HOST

IP (with Port Number), Username, Password, and database name.

Figure 6.10. PHP Code Establishing a Connection to the Database

The code in Figure 6.11 also runs at the webserver end and it stores the received data

along with the time stamp in the IAC_Board_Specs table on the database.

108

Figure 6.11. PHP Code Storing Values to the Database

6.4 Sending Sensor Values from Microcontroller to Cloud

Section 6.2 sends the information regarding the sensors attached to the microcontroller.

In this section, the actual sensor readings are sent from the microcontroller to the web

server, and from the web server, it is stored in the database. One of the main features of this

system is to store sensor readings into a database. To do so, the microcontroller establishes

a TCP/IP connection with the webserver. Once the connection is established, it prepares

the frame containing sensor readings. It then sends the prepared frame’s packet size to the

server, so it knows how much data is to be received. Once the web server receives packet size,

the microcontroller sends the sensor readings packet to the server. The web server receives

the packet, extracts information from the packet, and stores the readings into the database.

The block diagram in Figure 6.12 demonstrates the communication process between the

microcontroller, web server, and database. If the microcontroller fails to send data to the

server , the microcontroller will receive an error and will store the backup data to SD card

and send it later.

109

Figure 6.12. Sensor Readings Communications

6.4.1 Send Sensor Values from Microcontroller to Web Server

Figure 6.13 shows the flow chart of the PHP program handling microcontroller request.

The web server receives the data from the microcontroller. The program then extracts

data and stores it in a variable. It then establishes a connection with the database. Once

the connection is established, the PHP program generates an SQL query. Upon successful

execution of the query, the data is stored in a database. The PHP program then fetches the

relay status from the database and replies to the microcontroller with an acknowledgment

and the fetched relay status. If, for any reason, the connection to the database fails or the

PHP program is unable to store data to the database, the PHP program will respond to the

microcontroller with the error.

110

Figure 6.13. PHP Program Flow Chart for Sensor Values

Once the connection is established between the microcontroller and the webserver (see

Section 6.1), the microcontroller firmware receives an acknowledgment, it prepares the frame

(Payload). The frame consists of the value to be sent for each port. Once the data is prepared,

the size of the data is calculated. The data’s size is sent first to the server by the firmware

so that the server knows how much data is to be received. Once the response is received

from the server, the firmware sends the frame containing board and port information. The

code snippet for this is shown in Figure 6.14.

111

Figure 6.14. Microcontroller Preparing Data Frame to Send to Webserver

6.4.2 Storing Received Data From Webserver to Database

Command “GET /Sensor_readings.php?” is used to access the PHP page on the IAC

database. Everything after “?” is handled by the PHP code on the webserver. In this case

we have Board ID, Port ID, and Sensor Values. All this data is handled by PHP. The PHP

program will read in the values passed by the microcontroller and store it in the appropriate

database table. Each board is given a unique board ID so that the data can be identified

from the board it came from. For testing purpose board 2 was used to send the data to cloud.

Its SD card has a configuration file where its Board ID is specified. The PHP command in

Figure 6.15 is hit by the microcontroller. As shown in the code, all data after “?” is taken

care by this page. Eg. Value for Sensor, Board ID, Port ID etc.

Figure 6.15. Web Server PHP Program Receives Data from the Microcontroller

Once the PHP page in Figure 6.15 reads the microcontroller’s data, it establishes a

connection to the database server, as shown in Figure 6.16. It will ensure that it is connected

112

to the database where the above-received data will be stored. Mysqli command establishes

the connection. The parameters passed to that function are HOST IP (with Port Number),

Username, Password, and database name.

Figure 6.16. PHP Program Connecting to Database

The web server code shown in Figure 6.17 stores the received data and the time stamp

to the database boardID table.

Figure 6.17. PHP Page Storing Data to Database

Every time a value is sent to the web server, the server responds back to the micro-

controller with that board’s relay status, as shown in Figure 6.18. Users can use an automated

program or web UI to control the equipment connected to the board. The user needs to

toggle the relay status on or off. Once the request is sent to the database, the relay status

in the database will change. Once the microcontroller sends any value to the database,

the PHP code will read the status change return the acknowledgment changes. Then the

microcontroller acts.

113

Figure 6.18. PHP Program Acknowledging Microcontroller Request and
Replying with Relay Status

6.5 Web Pages for Users

Some prototype web pages where users can monitor and control the sensor box is shown

in Figure 6.19. The page[9] in Figure 6.19 auto-refreshes every 5 seconds since the database

receives a reading every 5 seconds. It shows the real-time readings from the sensor box.

This is a prototype to demonstrate that it is possible to develop a GUI for the system and

can show real-time data remotely from anywhere in the world. Handheld or Computer with

internet can be used to access this web-site.

114

Figure 6.19. Sensor Readings Displayed Real-time on the Web

Figure 6.20 is a snapshot of the web page[5], which allows you to control relays remotely

from the web. As mentioned earlier, upon selecting the relays to alter, once the submit

button is clicked, it changes to the database table holding relay status. The microcontroller

will read these changes and toggle appropriate relays hence controlling the equipment. The

best capable latency for this application was determined to be 1 second.

115

Figure 6.20. Webpage to Control Relays

116

7. TESTING

For any system to be deployed, testing is essential. There can be many factors that can

play in, which can cause a system failure. The implemented system must be tested for an

extended period.

7.1 Monitoring Test

A test was conducted in the Emerson building at IUPUI campus for monitoring the

energy consumption of the HVAC system in that building. HVAC stands for heating, venti-

lation, and air conditioning. As the name suggests, the HVAC system is responsible for the

heating, ventilation, and cooling of apartments or buildings. The HVAC system has various

components. Two components of the HVAC system, called supply fan and return fan, were

used to monitor this test’s electrical current usage. The supply fan is responsible for supply-

ing fresh air into the rooms. Return fan is responsible for extracting exhaust air out of the

room. Two electric current sensors (shown in Figure 7.1) were attached to the supply and

return fans’ power supply of the HVAC system during the end of winter 2019 to observe a

change in energy consumption during the transition from winter to summer. These sensors

are clamped around the supply and return fans’ power wire and connected to two ports of a

sensor box. A portable Wi-Fi device was connected with the Sensor Box so the system can

have connectivity to upload data to the cloud. Once the sensors are connected and Wi-Fi

is set up, the sensor box is switched on, and data is logged into the cloud. The purpose of

this experiment is to test the monitoring of current usage. This test proves that system is

able to use the provided sensors, read real-time data from sensors and store it into database

using cloud.

117

Figure 7.1. CTV-C Current Sensor

Figure 7.2 is the graph for current consumption (in Amperes) of supply and return fan

for l day starting from February 14, 2019, 12:00 AM to February 15, 2019, 12:00 AM. The

orange line in the graph represents current consumption in Amperes for the Supply fan, and

the blue line corresponds to the current consumption in Amperes for the return fan. As

shown in Figure 7.2, the supply and return fans are turned on and use electricity. After 7:15

PM, the supply and return fans are turned off, so the current consumption goes down to 0.

At around 11 PM, the fans are turned on again, and the electrical current usage spikes up.

Figure 7.2. Current Usage of Supply and Return Fan Between February 14,
2019 12:00 AM – February 15, 2019 12:00 AM

118

While Figure 7.2 is the graph for current consumption (in Amperes) by supply and

return fans for 1 day, Figure 7.3 is the graph for current consumption (in Amperes) by

supply and return fans for 6 days. Figure 7.3 is the graph for supply and return fan’s energy

consumption for February 13, 2019 – February 18, 2019. The orange line in the graph

represents current consumption in Amperes for Supply fan, and the blue line corresponds to

the current consumption in Amperes for return fan. The spikes represent the turn off/on of

the fans.

Figure 7.3. Current Usage of Supply and Return Fan Between February 13,
2019 – February 18, 2019

7.2 Monitoring and Control Test

The demo station showed in Figure 7.4 was developed to mimic a manufacturing facility.

This demo board can demonstrate applications like the future forecast of energy consumption

by equipment and implementation of (energy efficient algorithm) peak shaving algorithms

using Matlab. An analyst has implemented energy prediction based on the data logged by

this demo station. The peak shaving algorithm is still under development. This board is

tested to run for 3 months without human interruption. Using the data logged by the demo

station, an analyst can perform analysis on collected data and make predication (manually

or using a program) on future energy usage by the connected equipment. It has various

components such as an air compressor, a light bulb which acts as a heater, a CO2 sensor for

119

occupancy, pressure relief valve. Current is monitored for the Air Compressor, Light bulb

(heater), and a Motor to carry out tests. Air compressor, motor, light bulb, and pressure

relief valve can be turned on/off using the actuating mechanism remotely. Each sensor

uses one port, and the sensors can be connected to any port of the board. The purpose of

creating the demo station is to monitor energy, control connected equipment, retrieve data

from database to matlab and apply energy efficient algorithm based on real-time and historic

data.

The Demo Station consists of the following components (as labeled in Figure 7.4):

1. Microcontroller PCB

2. Monitor to display data

3. Compressor

4. Air tank

5. Air tank Release Valve

6. Light bulb enclosed in a case

7. Current sensor for Air compressor (with Actuator)

8. Air tank pressure sensor

9. Current sensor for the light bulb (with Actuator)

10. Heater Temperature sensor

11. CO2 sensor

12. Air Release actuator

120

Figure 7.4. Demo Station

Figure 7.5 shows the front-end application that displays the energy consumption of an Air

Compressor, a Light bulb, and a Motor connected to the dashboard. Energy consumption

is calculated by using the data from the Sensor Readings in the database operating table.

121

The sensor readings table provides the current consumption in Amperes. The equipment

is connected to a 120 Volt AC supply. Based on the current value and voltage value, power

(in Watts) can be computed using the formula

P = V × I

This gives the power in wattage. The watt-hour usage is computed by multiplying the

power by 24 since the data is for 24 hours. The watt-hour usage is then converted to

kilowatt-hour. The formula for kilowatt-hour is

Usage in kWh = (Watts × Hour)
1000

Using data from the Sensor Readings operating table, an analyst makes a prediction [14]

(may calculate manually or using a program) on future energy usage by the equipment (as

shown by the Light blue line) and stores it in the Application Function Table called Forecast.

The front-end developer uses the operating and Application function table to generate the

graph shown in Figure 7.6. The page also displays the current status of equipment, whether

it is on or off, and gives the user the ability to turn it on or off. As seen in the graph of Figure

7.5, the peaks are repetitive. This pattern is called the duty cycle, where the machines are

turned on at a particular time and turned off once the machine is done. The peaks in the

graph depict that the equipment is turned on and consuming energy. The red line shows

total energy consumption by all connected equipment combined. The page in Figure 7.5

shows that using the existing hardware, database and webserver, such front-end applications

can be developed and using the data from the sensors, applications such as demand forecast

or prediction algorithm can be implemented.

122

Figure 7.5. Front-end Application Demand Forecast

7.3 Demonstration of SD Data Storage during Network Failure and the Data
Recovery after the Restoration of the Network Connection

This scenario is used to test the sensor monitoring module, equipment control module

and network failure module. For this testing scenario, the demo station mentioned in Section

7.2 is used. In this setup, the system is started, and the data is being read by the sensor

box and sent to the cloud. From a website, shown in Figure 6.20, the user sends a command

to turn on the motor. The current usage goes up as shown in Figure 7.6. The user again

commands to stop the motor for few minutes and again turns it on. The current usage shown

in Figure 7.6 shows that the control module works, and the current usage goes up only when

the motor is turned on.

123

Figure 7.6. Motor Current Usage Based on User Control

This experiment proves that the monitoring and control module works as desired. Testing

the network failure module includes disconnecting the internet connection to which the sensor

box is connected. The sensor box should attempt to reconnect and also store data into SD

card which can be sent to the server later when connection is reestablished. Figure 7.7 is

the screen shot of the website where user can see incoming data. The column Timestamp

indicates the time when data is received by the server and the column MCTime indicates

the time at which the microcontroller read the data. As seen in the red box in Timestamp

column, the network was cut off and reconnected after a few minutes. During this time,

microcontroller senses that it is not able to send the data to cloud, so it stores this data into

the SD card and attempts to reconnect to the internet. Once the connection is established

and the microcontroller is able to send the data to cloud, it will check the SD card for back

up data. If there is backup data, it will send it to the server and continue reading and

sending real time data. The blue boxes in MCTime column show that the data was actually

read earlier compared to the time the server received it.

124

This data proves that in case of network failure, the sensor box is able to back up data

to SD card and reconnect to the server. Once it reconnects to the server, it will send the

back up data to the server.

Figure 7.7. Data from the System with Network Failure

Figure 7.8 - Figure 7.11 show the graphical representation of back up feature. The purple

line indicates usage of a 75 watt light bulb. The brown line shows the usage of a 750 watt

heater fan. The red line shows usage of the air compressor. and the blue line indicates the

total usage by all the equipment. For this experiment, light bulb and heater fan is used. The

light bulb and the fan were turned on. After 2-3 minutes, the internet was disconnected to

prevent the microcontroller from sending the data to the server. Figure 7.8 shows the light

bulb and the fan turned on.

125

Figure 7.8. Equipment Turned On

After 2-3 minutes of turning on the equipment, the internet is disconnected. Therefore,

no new data will be pushed into the database. The graph detects no new data hence, as

shown in Figure 7.9, the graph will keep moving but no new data will be plotted. The orange

circle in Figure 7.9 shows that no new data has been received by the server hence, no data

is plotted.

Figure 7.9. Backup Mode

The internet cut-off is detected by the microcontroller and it starts storing the data to

the SD card. After around 11 minutes, the internet is turned on again and the light bulb

and fan are turned off. The graph detects latest data and starts plotting again. This time,

the equipment are turned off, so the usage drops to 0 as shown in Figure 7.10. However, the

126

actual use time of the equipment is shown in Figure 7.11 after the backup data is received

by the server.

Figure 7.10. Internet Turned On

When the microcontroller is able to send the data to the server, it will start sending

backup data too. Once, all the backup data is sent, the actual equipment usage is shown

in the graph as shown in Figure 7.11. The orange circle in Figure 7.11 indicates the backup

data received by the server.

Figure 7.11. Backup Data Sent

127

The purpose of this experiment is to demonstrate the backup feature of the system. When

microcontroller fails to send data to server, the data is stored in SD card as backup data and

once it reestablishes connection to the server, it will send real-time data and backup data so

there is no loss of data.

128

8. CONCLUSION

Given the project’s requirements, the system seems to have fulfilled most, if not all, the

requirements. The system designed can read data from sensors, convert to standard units,

and upload to a web server. The web server stores the data into database tables. The

microcontroller is also capable of logging offline in case of internet failure. The system can

turn the connected equipment on or off based on user request or an automated program.

After rigorous testing and improvements, it can be concluded that the system is reliable

and can be ushered to the next stage of development. The framework and architecture

foundation is laid strong, and many of the probable deficiencies have been taken care of. It

can be deployed into actual factories to monitor the manufacturing process. However, the

GUI is in the preliminary stage; therefore, it could take a little effort to understand the

features.

129

9. FUTURE WORK

The system has a great scope for expansion. Though the framework is present, a lot of effort

is required to gather legacy data. The end goal of the system is to make smart decisions

based on legacy data. The architecture, too, has a lot of scope for improvements. Below

listed are some of the improvements that are suggested for better functioning of the system:

1. Real-Time Operating System

Using Real-Time Operating System will add more time-sensitive functionalities.

There are areas in the code where it has to wait for a certain instructions to be

executed in the current modular programming. However, using RTOS, the waiting

period can be utilized to perform other waiting tasks.

2. GUI

The current User Interface is good for demonstration purposes. However, a lot of

front end work needs to be done to make the system commercial and convenient.

3. PCB redesign

The current PCB design uses a large area and also has many circuit errors. For the

prototype, jump wires were used to correct the connections. However, a much better

design and smaller form factor can make the sensor box look neat and professional.

4. Remote Configuration

The current model uses an SD card to read the configuration file and set up the

microcontroller sensors to read. However, a remote configuration system can be

made where the sensors can be input or changed by the user using a UI on the web.

Also, remotely configurable sampling time can be added.

130

REFERENCES
[1] 6 Ways Manufacturers Can Reduce Industrial Energy Costs. Nov. 2020. url: https:

//blogs.constellation.com/energy-management/6-ways-to-reduce-industrial-energy-
costs/ .

[2] S. Elbaum et al. “Leveraging user-session data to support Web application testing”.
In: IEEE Transactions on Software Engineering 31.3 (Mar. 2005), pp. 187–202. doi:
10.1109/tse.2005.36 .

[3] Energy Flow Charts. url: https://flowcharts.llnl.gov/ .
[4] Dion Hinchcliffe. Is the Internet of Things strategic to the enterprise? May 2014. url:

https://www.zdnet.com/article/is-the-internet-of-things-strategic-to-the-enterprise/ .
[5] IAC Board 3 Relay Control. url: http://in-engr- iac .engr. iupui .edu/login/IAC_

Board3_Relay_Control.php .
[6] IAC: Indiana University-Purdue University. url: https://iac.university/center/IP .
[7] Dayarathna Miyuru. Comparing 11 IoT Development Platforms - DZone IoT. July

2019. url: https://dzone.com/articles/iot-software-platform-comparison .
[8] Amirfardad Salami and Alireza Yari. “A framework for comparing quantitative and

qualitative criteria of IoT platforms”. In: 2018 4th International Conference on Web
Research (ICWR) (2018), pp. 34–39. doi: 10.1109/icwr.2018.8387234 .

[9] Sensor Readings Display. url: http :// in - engr - iac . engr . iupui . edu/ login/Sensor_
Readings_Display.php/ .

[10] U.S. Energy System Factsheet. url: http://css.sites.uofmhosting.net/factsheets/us-
energy-system-factsheet .

[11] Alex Vakaloudis and Christian Oleary. “A framework for rapid integration of IoT Sys-
tems with industrial environments”. In: 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT) (2019), pp. 601–605. doi: 10.1109/wf-iot.2019.8767224 .

[12] What is PHP? url: https://www.php.net/manual/en/intro-whatis.php .
[13] What is the Internet of Things (IoT)? url: https://www.oracle.com/internet-of-

things/what-is-iot/ .
[14] Da-Chun Wu et al. “Air compressor load forecasting using artificial neural network”.

In: Expert Systems with Applications 168 (2021), p. 114209. doi: 10.1016/j.eswa.2020.
114209 .

131

https://blogs.constellation.com/energy-management/6-ways-to-reduce-industrial-energy-costs/
https://blogs.constellation.com/energy-management/6-ways-to-reduce-industrial-energy-costs/
https://blogs.constellation.com/energy-management/6-ways-to-reduce-industrial-energy-costs/
https://doi.org/10.1109/tse.2005.36
https://flowcharts.llnl.gov/
https://www.zdnet.com/article/is-the-internet-of-things-strategic-to-the-enterprise/
http://in-engr-iac.engr.iupui.edu/login/IAC_Board3_Relay_Control.php
http://in-engr-iac.engr.iupui.edu/login/IAC_Board3_Relay_Control.php
https://iac.university/center/IP
https://dzone.com/articles/iot-software-platform-comparison
https://doi.org/10.1109/icwr.2018.8387234
http://in-engr-iac.engr.iupui.edu/login/Sensor_Readings_Display.php/
http://in-engr-iac.engr.iupui.edu/login/Sensor_Readings_Display.php/
http://css.sites.uofmhosting.net/factsheets/us-energy-system-factsheet
http://css.sites.uofmhosting.net/factsheets/us-energy-system-factsheet
https://doi.org/10.1109/wf-iot.2019.8767224
https://www.php.net/manual/en/intro-whatis.php
https://www.oracle.com/internet-of-things/what-is-iot/
https://www.oracle.com/internet-of-things/what-is-iot/
https://doi.org/10.1016/j.eswa.2020.114209
https://doi.org/10.1016/j.eswa.2020.114209

A. APPENDIX

A.1 Design and Implementation Requirements

The IAC provided following requirements for the smart manufacturing platform.

Table A.1. System Requirements

ID Requirement Type Level

1 The subsystem shall provide power to the board. Function Threshold

2 The subsystem shall provide power to any connected

sensor(s).

Function Threshold

3 The subsystem shall connect to a 240-volt wall outlet. Function Threshold

4 The subsystem shall have an conversion circuit. Function Threshold

5 The subsystem shall have a power management circuit. Function Threshold

6 The selected board is the FRDM-K64F Constraint None

7 The sensor list must be accounted for. Constraint None

8 The subsystem shall connect to the board A to D head-

ers.

Physical Threshold

9 The subsystem shall connect to the sensors. Physical Threshold

10 The subsystem shall convert sensor output to ADC in-

put.

Function Threshold

11 The subsystem shall allow any sensor to connect to any

port.

Physical Threshold

12 The subsystem shall have a common interface. Physical Threshold

13 The subsystem shall connect to board control output. Physical Threshold

14 The subsystem shall connect to systems. Physical Threshold

15 The subsystem shall turn on the system when it receives

a cmd signal.

Function Threshold

16 The subsystem shall turn off the system when it receives

a cmd signal.

Function Threshold

132

Table A.1 continued from previous page

17 May need to boost signal. Constraint None

18 May need to isolate circuits. Constraint None

19 The system shall connect to internet Constraint None

20 The system shall have webservices Constraint None

21 The system shall have database tables to store data Constraint None

22 The system shall reconnect in case of internet failure Function Threshold

23 The subsystem shall hold the MCU. Physical Threshold

24 The subsystem shall hold the Wi-Fi module. Physical Threshold

25 The subsystem shall hold the SD card. Physical Threshold

26 The subsystem shall hold the power supply circuit. Physical Threshold

27 The subsystem shall hold the actuator circuit. Physical Threshold

28 The subsystem shall hold the conversion circuit. Physical Threshold

29 The subsystem will allow sensors to be connected. Physical Threshold

30 The Wi-Fi module is the ESP8266. Constraint None

31 The subsystem shall be connected to the MCU. Physical Threshold

32 The SD Card shall be readable and write-able. Functional Threshold

33 The subsystem shall save the sensor data to the SD card

in case it loses connection to internet.

Functional Threshold

34 The subsystem shall provide write capabilities to an

attached SD card.

Functional Threshold

35 The subsystem shall provide read capabilities to an at-

tached SD card.

Functional Threshold

36 The subsystem shall remove old data from SD Card

when SD Card is full.

Functional Threshold

133

A.2 Computation and Communication Components

The hardware components were a FRDM-K64F Evaluation Board and an ESP8266 WiFi

Module . A C/C++ software for running these hardware had been written using mbed OS2

SDK.

A.3 Sensor List

The hardware of the proposed platform consists of sensors for each type of SEU (Signif-

icant Energy Use) equipment. The interest is energy consumption, electricity demand, cost

and outputs associated with operator requirements. Thus, the data that affect these factors

need to be collected from the SEUs. The typical sensors needed are electrical current for

energy consumption, pressure, temperature, CO2, flow rate etc. The sensors need to mon-

itor the SEU’s operating conditions such as air tank capacity of compressors, occupancies

energy consumptions etc. Such sensors are generally used by auditors at IAC to log data

of manufacturing plants. Since the sensors are tried and tested by IAC for several audits,

the sensors listed in Table A.2 were selected to ensure industry standards are maintained for

development and testing. The board has a reference voltage of 0-3.3V. These sensors need

to interface with the evaluation board.

Table A.2. Sensor List

Name Type Range Input Output

CTV-C AC Current 0-100 amps No input 0-2.5 VDC

CTV-E AC Current 0-600 amps No input 0-2.5 VDC

TOAV22 Temperature 0-50C 12-30 VDC 0-5, 0-10

VDC

CDI-5200 Compressed

Air-flow

2-200 scfm 24 VDC 4-20 mA

T-ASH-G1-200 Pressure

Transducer

0-200 psig 9-36VDC 1-5 VDC

C7232A1008 CO2 0-2000 ppm 24 VDC 0-10 VDC,

134

Table A.2 continued from previous page

HE-67S3-

0N0BT

Humidity 0-100% 14-30 VDC 0-5, 0-10

VDC

The selected sensors can be powered by 24V so they can use the same power supply. All

selected sensors can generate one of the 4 common output types.

Table A.3. Sensor Output List

Type Sensor

0-5 Volt TOAV22, T-ASH-G1-200

0-10 Volt C7232A1008, HE-67S3-0N0BT

0-20mA C7232A1008, CDI-5200

0-2.5V CTV-C, CTV-E

A.4 Power Supply

The power supply provides power to the microcontroller and sensors as shown in Figure

A.1.

Figure A.1. Power Outline

135

A.5 Sensor-Board Interface Circuit

The sensor-board interface converts the various sensor outputs to the microcontroller

0-3.3V reference voltage as shown in Figure A.2.

Figure A.2. Sensor-Board Interface Outline

A.6 Sensor Connection

The system should have a common port connection. Any type of sensor should be able

to use and directly connected to any port. Figure A.3 shows the outline for connection of

the sensor to microcontroller port.

136

Figure A.3. Sensor Connection Outline

A.7 Actuator Circuit

The actuator circuit takes a command signal from the microcontroller and turns an

attached 5V system on or off. Figure A.4 shows the outline of actuator circuit connected to

the system and microcontroller and the command from microcontroller can turn on/off the

system using actuator circuit.

Figure A.4. Actuator Circuit Outline

137

A.8 Logging to Database

The system consists of wifi module, which connects to internet and sends the sensor

readings to cloud to store in database.

A.9 Computation and Communication Board

The hardware component is an essential part of the system since it acquires data from

sensors connected to physical equipment in the factory monitoring essential data and trans-

mitting it to the server component to store in database. Figure A.5 consists of the modules,

which make up the hardware of the system.

1. FRDM-K64F – The microcontroller chosen for this system is NXP FRDM-K64F.

It can be considered as the brain of the hardware since it integrates sensors to the

system, collects data and sends it to cloud via ESP8266 wifi module. It also contains

features like fail-safe, self-diagnosis etc.

2. Power Circuit – The system is powered by a 24 Volt DC adapter. This provides power

to sensors via the interface circuit and it also provides power to the microcontroller

through a voltage regulator circuit since microcontroller works on 5 V DC.

3. SD Card – The microcontroller has a slot for SD card. In this SD card, a configuration

file is stored which provides information to the microcontroller regarding the sensors

connected to the system. This SD card is also used to temporarily store data in case

there is an internet failure.

4. Actuator Circuit – The system has the capability of controlling equipment connected

to it. It can turn on/off the equipment using a relay circuit and a power outlet. This

controlling signals are received and processed by the microcontroller.

5. ESP 8266 – This is a wifi module that allows the microcontroller to connect to the

internet and send the sensor data. It also receives messages and passes it on to the

microcontroller, signals for actuation.

138

6. Interface Circuit – This is a universal connector that allows the sensors to connect to

the system. It is basically a patch cable with color codes which needs to be interfaced

to the sensor in order for it to work with the system.

7. Connection – This is the socket that allows the sensors to plug its wire into. It is an

RJ – 45 connector.

Figure A.5. Board Outline

A.10 Data Storage

The SD card is used to store the backup information of the sensor reads. The system

logs backup data to an SD card in case of internet failure. Figure A.6 represents the outline

for the back up to SD card. If data fails to send from microcontroller to Web server, the

microcontroller logs data to SD card. If data is sent successfully to the web server, the

microcontroller will check if SD card has any backup data to be sent. If data exists in SD

Card, microcontroller will send it to web server.

139

Figure A.6. Log Outline

140

B. APPENDIX

B.1 Component List

Table B.1. Component List

Qty Value Package Manufact-
urer

Manufacturer
Code

Description

10 520243-3 FARNELL MHRJJ66NFV MH CONNECTORS -
MHRJJ66NFV - RJ12
MODULAR, JACK, 6
POSITION, 1PORT

2 MA08-2 MOLEX 10-89-7161 MOLEX - 10-89-7161 -
BOARD-BOARD
CONNECTOR,
HEADER, 16 PO-
SITION, 2ROW

1 MA10-2 2213S-20G MULTICOMP
- 2213S-20G
- HEADER,
THROUGH-HOLE,
VERTICAL, 2.54MM,
20 POSITION

4 CB1A-
P-12V

CB1 ARO-
MAT/
MAT-
SUSHITA

CB1A-P-12V PANASONIC ELEC-
TRIC WORKS -
CB1A-P-12V - RE-
LAY, AUTOMO-
TIVE, SPST-NO,
14VDC, 40A

1 61000-
413321

TYCO
ELEC-
TRONICS

2-640497-4 TE CONNECTIVITY
- 2-640497-4 - PLUG
& SOCKET CON-
NECTOR, HEADER,
2 POSITION, 4.2MM

4 2N3906 TO92 2N3906 MULTICOMP -
2N3906 - BIPOLAR
TRANSISTOR, PNP,
-40V TO-92

141

Table B.1 continued from previous page

14 2K 0204/7 MFR4-2K0FI WELWYN - MFR4-
2K0FI - METAL FILM
RESISTOR, 2KOHM,
500mW, 1%

10 985 0204/7 HW210 NTE ELECTRONICS
- HW210 - RE-
SISTOR, METAL
OXIDE, 1KOHM,
500mW, 2%

10 1.7K 0204/7 MFR4-1K5FI WELWYN - MFR4-
1K5FI - METAL
FILM RESISTOR,
1.5KOHM, 500mW,
1%

10 3.3K 0204/7 FARNELL MCF 0.25W
3K3

MULTICOMP -
MCF 0.25W 3K3 -
CARBON FILM RE-
SISTOR, 3.3KOHM,
250mW, 5%

20 82 0204/7 PR0200020
8209JR500

VISHAY -
PR02000208209JR500
- METAL FILM RE-
SISTOR, 82 OHM, 2
W, 5%

4 50 0204/7 Multicomp
Passives

MC14709 MULTICOMP -
MC14709 - WIRE-
WOUND RESISTOR,
50 OHM, 5W, 1%

1 MA06-2 2213S-06G MULTICOMP
- 2213S-06G -
HEADER, 2 ROW,
VERTICAL, 6 POSI-
TION

142

Table B.1 continued from previous page
1 MA04-2 2213S-08G MULTICOMP

- 2213S-08G
- HEADER,
THROUGH-HOLE,
VERTICAL, 2.54MM,
8 POSITION

10 SLIDE
SWITCH

STS1400PC04 ALCOSWITCH - TE
CONNECTIVITY
- STS1400PC04 -
SLIDE SWITCH,
SP4T, 0.25A, 125V,
THD

5 STE-
REO
JACK

STX3100 FC68133 CLIFF ELECTRONIC
COMPONENTS -
FC68133 - STEREO
JACK, 3.5MM, 5POS,
PCB

1 step-
down

D24V6F5 POLOLU D24V6F5 https://www.pololu.-
com/ prod-
uct/2107/specs

5 ESP8266 SparkFun
Electronics

1568-WRL-
17146-ND

WIFI MODULE -
ESP8266

5 FRDM-
K64F

NXP USA
Inc.

FRDM-K64F-
ND

K24, K63, K64,
mbed-Enabled De-
velopment Freedom
Kinetis ARM® Cor-
tex®-M4 MCU 32-Bit
Embedded Evaluation
Board

143

C. APPENDIX

C.1 Accessing Database from Matlab Command Line

1. Have matlab installed.

2. Download Database Explorer toolbox from matlab add-ons.

3. Download the JDBC connector file from the given link

https://iu.box.com/s/liall8m6nppde6fa310cbb078bvsqlvp

4. Extract the file and save it in a safe place where you will not delete it.

(I saved it in downloads).

5. Open Matlab and run the command prefdir.

6. Go to the path shown in the result and create a text file named javaclasspath and

save it.

7. Navigate to the place where you stored the downloaded mysql connector file.

144

You should be able to see a path address. Copy that. In my case it is:

C: \Users \mchheta \Downloads \mysql-connector-java-5.1.46 \mysql-connector-

java-5.1.46

Edit the in javaclasspath text file in

C: \Users \(username) \AppData \Roaming \Mathworks \Matlab \R2018a.

Copy the highlighted part and paste it in javaclasspath file twice. At the end of first

line add ‘\’ and ‘mysql-connector-java-5.1.46.jar’. (without the quotes) At the end

of second line add ‘\’ and ‘mysql-connector-java-5.1.46-bin.jar’ Now the content of

the javaclasspath file should look like this

145

8. Save the file and close it.

9. To establish connection via command line enter the following commands in the com-

mand window.

10. Now the connection to the database is established and we can start fetching data.

11. For example here I am fetching data of the users who have registered and storing it

in a variable called data in workspace.

12. The fetched data will be visible in the workspace variable “data” created in step 11.

146

13. Be sure to close the connection once you are done using the command window. The

Command is

Sample of the Entire Code

Using a “.m” file, the whole code explained above, can be executed in a single “.m” file

instead of typing individually in the command window.

147

D. APPENDIX

D.1 Using MySQL Workbench

MySQL workbench software is used for database development and implementation.

In order to login, developer needs to enter information below:

1. Hostname

2. Port

3. User name

4. Password

Having this information, developer can login by filling out the details as shown in the

figure below.

1. Create table Using MySQL queries, developer can easily create tables into the

database. Example query to create a table is shown in Figure below.

148

2. View table values Using MySQL queries, developer can see the data in the database.

As shown in figure below, the query displays the information from Company Table.

Similarly, user can Update, delete or drop tables with the correct knowledge of database

queries.

149

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Challenges
	Problem Statement
	Expected Contribution
	Objectives
	Document Structure

	BACKGROUND AND LITERATURE SURVEY
	Background
	What are IOT and IIoT?
	Sensors
	Database
	Web
	Summary

	SYSTEM ARCHITECTURE
	System Components
	Factory
	3.1.1.1 Equipment
	3.1.1.2 Sensors and Actuators
	3.1.1.3 Sensor Box
	3.1.1.3.1 Microcontroller
	3.1.1.3.2 Wi-Fi Module
	3.1.1.3.3 Power Supply
	3.1.1.3.4 Sensor Interfacing Connectors
	3.1.1.3.5 Relay Interface Connectors

	Cloud
	3.1.2.1. Database
	3.1.2.2 Webserver

	User
	Operational Capabilities of the System
	Sensor Configuration
	3.2.2 Data Acquisition
	3.2.3 Sensor Failure Detection
	3.2.4 Data Processing
	3.2.5 Wi-Fi Connection
	3.2.6 Internet Failsafe and Offline Logging
	3.2.7 Store Data in Cloud
	3.2.8 Retrieve Data to Matlab
	3.2.9 Store Legacy Data
	3.2.10 Privilege Based Login
	3.2.11 View Real-Time and Legacy Data
	3.2.12 Control Connected Equipment Remotely

	SMART SENSOR DESIGN
	Hardware
	Sensor Interface Circuits
	4.1.1.1 Signal Conversion Circuit
	4.1.1.1-a 0-2.5V Conversion Circuit
	4.1.1.1-b 0-5V Conversion Circuit
	4.1.1.1-c 0-10V Conversion Circuit
	4.1.1.1-d 0-20mA Conversion Circuit

	4.1.1.2 Sensor Connector
	4.1.1.3 Interface Selection Circuit
	4.1.1.4 Sensor System

	Actuator Circuit
	Power Supply Circuit
	4.1.3.1 Power Supply

	Microcontroller Circuit
	SD Card
	Wi-Fi
	PCB

	Embedded Software
	Configuration
	Connection
	Read Raw Data from Sensors in Real-time and Convert to Standard Units
	Send Data to Webserver
	Actuator
	Backup to SD Card

	DATABASE
	Database Design
	Information Tables
	Operating Table
	Application Function Tables

	Database Usage
	Implementation

	WEB SERVER
	Establishing and Closing Connection from the Microcontroller to Cloud
	Establishing a Connection from Microcontroller
	Closing Connection from the Microcontroller

	PHP
	Sending Board Startup Specifications from Microcontroller to Cloud
	Sending Board Startup Specifications From Microcontroller to Web Server
	Storing Received Data From Webserver to Database

	Sending Sensor Values from Microcontroller to Cloud
	Send Sensor Values from Microcontroller to Web Server
	Storing Received Data From Webserver to Database

	Web Pages for Users

	TESTING
	Monitoring Test
	Monitoring and Control Test
	Demonstration of SD Data Storage during Network Failure and the Data Recovery after the Restoration of the Network Connection

	CONCLUSION

	FUTURE WORK
	REFERENCES

	APPENDIX
	Design and Implementation Requirements
	Computation and Communication Components
	Sensor List
	Power Supply
	Sensor-Board Interface Circuit
	Sensor Connection
	Actuator Circuit
	Logging to Database
	Computation and Communication Board
	Data Storage

	APPENDIX
	Component List

	APPENDIX
	Accessing Database from Matlab Command Line
	Sample of the Entire Code

	APPENDIX
	Using MySQL Workbench

