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ABSTRACT

Almakhdhub, Naif Saleh Ph.D., Purdue University, May 2020. Internet of Things
Systems Security: Benchmarking and Protection. Major Professor: Saurabh Bagchi
and Mathias Payer.

Internet of Things (IoT) systems running on Microcontrollers (MCUS) have be-

come a prominent target of remote attacks. Although deployed in security and safety

critical domains, such systems lack basic mitigations against control-flow hijacking

attacks. Attacks against IoT systems already enabled malicious takeover of smart

phones, vehicles, unmanned aerial vehicles, and industrial control systems.

The thesis introduces a systemic analysis of previous defense mitigations to secure

IoT systems. Building off this systematization, we identify two main issues in IoT

systems security. First, efforts to protect IoT systems are hindered by the lack of

realistic benchmarks and evaluation frameworks. Second, existing solutions to protect

from control-flow hijacking on the return edge are either impractical or have limited

security guarantees. This thesis addresses these issues using two approaches.

First, we present BenchIoT, a benchmark suite of five realistic IoT applications

and an evaluation framework that enables automated and extensible evaluation of

14 metrics covering security, performance, memory usage, and energy. BenchIoT

enables evaluating and comparing security mechanisms. Using BenchIoT, we show

that even if two security mechanisms have similarly modest runtime overhead, one

can have undesired consequences on security such as a large portion of privileged user

execution.

Second, we introduce Return Address Integrity (RAI), a novel security mechanism

to prevent all control-flow hijacking attacks targeting return edges, without requiring

special hardware. We design and implement µRAI to enforce the RAI property. Our
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results show µRAI has a low runtime overhead of 0.1% on average, and therefore is a

practical solution for IoT systems.

This thesis enables measuring the security IoT systems through standardized

benchmarks and metrics. Using static analysis and runtime monitors, it prevents

control-flow hijacking attacks on return edges with low runtime overhead. Combined,

this thesis advances the state-of-the-art of protecting IoT systems and benchmarking

its security.
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1. INTRODUCTION

1.1 Motivation

Embedded and IoT systems are deployed in security and privacy critical applica-

tion such as health-care, industrial, Unmanned Ariel Vehicles (UAVs), or smart-home

systems. Estimates project the number of IoT devices to exceed 22 billion devices by

2025 [1]. Unfortunately, this rapid growth is coupled with an alarming number of at-

tacks against IoT devices. Such attacks caused some of the largest Distributed Denial

of Service (DDoS) attacks to date (e.g., Mirai [2] and Hajime [3]), enabled tampering

of critical infrastructure data [4], and allowed malicious takeover of UAVs [5,6] among

others.

This thesis focuses on benchmarking the security of microcontroller-based IoT

systems (IoT-MCUS) and protecting them from remote memory corruption attacks.

Microcontroller systems (MCUS) are a significant portions of deployed IoT devices.

UAVs, smart locks, Engine Control Unit (ECU) gateways, and WiFi System-on-Chip

(SoC) are examples of such systems. MCUS are resource constrained systems: (1)

they have few MBs of Flash and hundreds of KBs of RAM; (2) they run a single stat-

ically linked binary image; (3) they run either with a lightweight Operating System

(OS), or as bare-metal (i.e., without an OS). The single binary image is responsible

for application logic, security configuration, and accessing peripherals. As a result

of their limited resources (e.g., hardware constraints), MCUS cannot use the same

mechanisms from general desktop systems to deploy well known defenses such as

randomization-based defenses (e.g., Address Space Layout Randomization–ASLR),

or stack canaries [7]. However, even if such defenses are deployed, they offer weaker

guarantees. The problem is exacerbated by the poor security practices of MCUS ven-

dors and developers (e.g., not enforcing Data Execution Prevention or W⊕X [8–10]).
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MCUS can be stand-alone devices, or a component of a larger system. Thus, vul-

nerabilities on MCUS are not confined to the device itself, but can risk the security

of the entire system. For example, hijacking the control of a WiFi SoC can lead to

malicious control of the underlying application processor of a smart phone as shown

by Google’s Project Zero [11]. These attacks gain arbitrary code execution on MCUS

by hijacking the control-flow of the firmware.

As on desktop systems, control-flow hijacking attacks on MCUS originate from

a memory corruption vulnerability violating memory safety or type safety. These

attacks occur by corrupting a code pointer either on the forward edge (i.e., function

pointers, and virtual table pointers) or backward edge (i.e., return addresses). How-

ever, unlike desktop systems, MCUS lack essential control-flow hijacking defenses

as mentioned above. The absence of essential defense mechanisms, combined with

their limited resources caused MCUS to become a prominent target for control-flow

hijacking attacks.

This thesis introduces a systemic analysis of defense mitigations to secure IoT-

MCUS. Building off this systematization, we find that despite the multiple proposed

solutions to protect IoT-MCUS [8, 9, 12–18], such efforts suffer from two limitations.

First, the lack of standardized and automated evaluation of security mechanisms.

Second, existing solutions are either impractical (e.g., high runtime overhead) or

have limited security guarantees.

First, IoT-MCUS lack a representative benchmarking suite of its IoT applications.

Benchmarks from the server world [19, 20] or the embedded world [21–23] either are

not applicable to IoT-MCUS (e.g., the require large memory) or do not represent

the characteristics of IoT applications such as network connectivity and rich inter-

actions with peripherals (e.g., sense, actuate). As a results, security evaluation on

IoT-MCUS became limited and ad-hoc. This made comparisons between security

techniques infeasible, as each are evaluated using different case studies or with differ-

ent benchmarks that do not represent realistic IoT-MCUS applications. The problem

is exacerbated by the tedious and manual evaluation process.
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Second, current defenses to mitigate control-flow hijacking attacks on MCUS have

limited security guarantees, incur high runtime overhead, or require extra hardware.

The majority of MCUS lack special hardware features such as an additional processor,

or Trusted Execution Environment (TEE). Moreover, many require adhering to strict

real-time requirements. Thus, defenses relying on hardware extensions such as TEE

(e.g., TrustZone [24]) or incurring high runtime overhead are not applicable to a large

portion of MCUS. As a results, control-flow hijacking attacks such as Return Oriented

Programming (ROP) remain a threat for MCUS.

1.2 Thesis statement

This dissertation addresses the limitation of benchmarking IoT systems and pro-

tecting them from remote control-flow hijacking attacks. Our first objective is to

standardize the evaluation process of IoT-MCUS with realistic benchmark applica-

tions and metrics. The second objective is to prevent control-flow hijacking attacks

on IoT-MCUS even in the presence of memory corruption vulnerabilities by using

static analysis and runtime monitors.

The thesis statement is:

The creation of standardized benchmarks and metrics enables the mea-

surement of security properties on heterogeneous embedded IoT systems.

Customized static analysis and runtime monitors can prevent control-flow

hijacking attacks on return edges at low runtime overhead.

We prove the thesis statement using two approaches.

1.2.1 BenchIoT: A security benchmark for the Internet of Things

We achieve the first objective with BenchIoT, a set of five realistic IoT-MCUS

applications and an evaluation framework to address the limitations of evaluating

IoT-MCUS security. BenchIoT uses a software based approach to enable portable

and extensible evaluation without relying on additional hardware extensions. The
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BenchIoT benchmarks mimic realistic application by enabling rich interactions with

peripherals (i.e., sense, process, and actuate). When such interactions require an

external event (e.g., pushing a button), BenchIoT enables repeatable execution of

such events without variation by triggering them at specific points in software.

The evaluation framework enables collecting 14 static and dynamic metrics cover-

ing security, performance, memory and energy. BenchIoT provides its evaluation with

modest overhead of 1.2%. It enables comprehensive evaluation of security defenses,

demonstrating unreported effects such as even though two defense mechanisms can

have similar runtime overhead, one can have an adverse effect on energy consumption

or have large portions of privileged user execution.

1.2.2 µRAI: Securing Embedded Systems with Return Address Integrity

To achieve our second objective, we introduce Return Address Integrity, a novel

security mechanism to prevent all control-flow hijacking attacks targeting the return

edges. We design and implement µRAI to enforce the Return Address Integrity

property. To achieve its goals, µRAI removes return addresses from writable memory.

Instead, µRAI resolves the correct return location using a combination of a single

general purpose that is never spilled and a jump table in readable and executable

only memory. We evaluate µRAI against the different control-flow hijacking attacks

scenarios (i.e., buffer overflow, arbitrary write, and stack pivot) targeting the return

edges and demonstrate µRAI prevents them all. Our results show µRAI enforces all

its protections without requiring special hardware, and with low runtime overhead of

0.1%. Thus, it is both a practical and secure solution for IoT-MCUS.

1.3 Contributions and Work Publication

This thesis is mostly drawn from work which have been peer reviewed and pub-

lished in high-quality security conferences. Our benchmarking framework BenchIoT [10]

appeared at the 49th IEEE/IFIP International Conference on Dependable Systems
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and Networks (DSN) 2019. Our control-flow hijacking protection mechanism, µRAI,

appeared at the 27th Internet Society Network and Distributed System Security Sym-

posium (NDSS) 2020 [25]. Our survey will be submitted to the 42nd IEEE Symposium

on Security and Privacy (Oakland) 2021. To summarize our contributions are:

• Systematization of existing work to protect IoT-MCUS. We categorize prior

work in terms of hardware requirements, security guarantees, and performance.

More importantly, we discuss main issues in IoT-MCUS for future research.

• Design, implementation, and evaluation of BenchIoT, a set of five realistic IoT-

MCUS benchmarks and an automated evaluation framework. BenchIoT enables

measuring 14 metrics covering security, performance, memory usage, and energy

consumption. We demonstrate BenchIoT effectiveness by evaluating three IoT-

MCUS defense mechanisms and show although two defense mechanisms can

have similar runtime overhead, one can have undesired consequences such a

large portion of privileged user execution or susceptibility to code injection.

• Design of Return Address Integrity, a novel security mechanism to prevent all

control-flow hijacking attacks targeting return edges. We implement µRAI to

enforce the Return Address Integrity property, and demonstrate its effective-

ness in preventing all control-flow hijacking attacks while maintain a negligible

runtime overhead.

1.4 Summary and outline

This dissertation advances the state-of-the-art in securing IoT systems in two

folds. First, it presents the design and implementation of a benchmarking framework

to automate the evaluation and comparison of security mechanisms for IoT systems.

Second, it presents a novel security mechanism enforcing the Return Address Integrity

Property (RAI) that prevents all control-flow hijacking attacks on return edges with

low runtime overhead, thus combining security and practicality.
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The remainder of this thesis is organized as the following: Chapter 2 presents a

systemic analysis of prior work to protect IoT systems form remote attacks. Chapter 3

presents BenchIoT, a benchmarking framework to evaluate and compare security

mechanisms for IoT systems. In Chapter 4, we present the design, implementation,

and evaluation of µRAI, a novel security mechanism enforcing the Return Address

Integrity property on IoT systems. Chapter 5 concludes this dissertation.
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2. THE LANDSCAPE OF MCUS SECURITY

2.1 Introduction

Memory corruptions are a well-known class of vulnerabilities that have plagued

computer systems for decades [26]. The adoption of exploit mitigation techniques such

as stack canaries [7] and, Address Space Layout Randomization (ASLR) enhanced the

posture of security in general-purpose system. However, memory corruption attacks

remain a threat despite the deployment of existing mitigations. As a result, memory

exploitation mitigation remains an active research area.

Networked embedded systems, manifested in the Internet of Things (IoT), share

the same risks of memory corruption vulnerabilities as in general-purpose systems.

IoT systems are deployed in a multitude of applications, ranging from privacy-sensitive

scenarios such as healthcare and smart home systems, to safety and security crit-

ical applications such as Industrial Control Systems (ICS), satellite systems, and

autonomous vehicles. Unfortunately, IoT systems lack the basic hardening tech-

niques already available in general-purpose systems due to a combination of con-

strained resources and implementation challenges to deploy the same exploit miti-

gation techniques. Consequently, an alarming number of attacks are targeting IoT

systems [2,3,5,11,27], with some resulting in high-profile impacts such as power grid

blackouts [28].

Micro-controller systems (MCUS) constitute a large portion IoT devices. However,

MCUS are not only present as stand-alone devices in an IoT setting, but are often

used as a part of a larger system. Thus, they can jeopardize the entire underlying

system. For example, MCUS can be a WiFi System-on-Chip (SoC) on a smart phone

or the Engine Control Unit (ECU) gateway in a vehicle, both have been used enable

malicious takeover of the underlying system [11,27].
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MCUS are a prominent target of attacks due to their limited resources and use

of memory unsafe languages (e.g., C/C++). The problem is exacerbated by the poor

security practices of MCU vendors. For example, deployed MCUS often lack Data Ex-

ecution Prevention (DEP), a standard defense for over two decades to defend against

code injection. As a result, MCUS are not only susceptible to memory corruption vul-

nerabilities, but also lack essential mitigations to defend against such vulnerabilities.

Attackers leverage these vulnerabilities to hijack the control-flow of the application

and gain arbitrary execution. Control-flow hijacking occurs by corrupting an indi-

rect control-flow transfer (i.e., function pointer, virtual dispatch, or return address)

towards the attacker malicious code. Alternatively, attackers can corrupt sensitive

data to launch a Denial of Service (DoS) attack. In a Cyber-Physical System (CPS),

this can cause the device to become unresponsive [12] leading to physical and safety

hazards.

Memory corruption bugs on both general-purpose systems and MCUS originate

from bugs that violate memory safety or type safety. However, MCUS are constrained

systems lacking the same resource used to deploy many of the defenses on general-

purpose systems. MCUS utilize a few MBs of Flash for code, and hundreds of KBs of

RAM for data. MCUS lack virtual addressing (i.e., Memory Management Unit–

MMU), and instead utilize a single flat physical address space. The application

running on MCUS is a single binary image comprised of the application, libraries,

and a lightweight OS (e.g., ARM’s Mbed [29] or Amazon’s FreeRTOS [30]) in a single

address space. MCUS can also run as bare-metal without using a lightweight OS. As

a result, MCUS need different defense mechanisms fitting their unique characteristics

or an alternate design and implementation of existing defenses in order to be deployed

on MCUS.

The vitality of securing MCUS, coupled with their susceptibility to memory cor-

ruption vulnerabilities has led to a large body of research to enhance their protection.

This chapter systematizes the existing work to protect MCUS against memory cor-

ruption exploitation. We taxonomize existing defenses, and analyze their security
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guarantees, hardware requirements, and performance. More importantly, we identify

open problems in securing MCUS for future research.

2.2 Scope and Background

The scope of this chapter focuses on prior work protecting MCUS’ software from

memory corruption exploitation [26] at runtime, or ones applicable to MCUS. It is not

our goal to discuss memory corruption attacks and defenses in general, which have

been surveyed by Szekers et al. [26]. In addition, detecting an already compromised

device via static properties methods [31,32], or via network protocols [33,34] are out

of scope as they are not the focus of this work.

Our goal is to compare MCUS defenses in terms of security guarantees, hardware

requirements, and runtime performance. In order to achieve our goal, we first define

the scope of our targeted system. We present a background of MCUS and discuss

basic capabilities we assume on general MCUS along with ones we assume require

special hardware or software features.

2.2.1 Scope

Embedded systems cover a vast and diverse space of devices, with varying degree

of capabilities and processor speed. The focus of this work is on micro-controller

based embedded systems (MCUS). These are different from high-end embedded sys-

tems (e.g., ARM Cortex-A [35, 36]), which have clock speeds in GHz, use a Memory

Management Unit (MMU), and have large storage space in GBs. Although these sys-

tems are special-purpose systems, they use a general-purpose OS (e.g., Linux) with

retrofitted user space libraries (e.g., busybox). Many high-end embedded systems

are already protected with the same defenses from general-purpose systems, such as

ASLR [37], since they are equipped with the needed resources to enforce them (i.e.,

MMU). In contrast, MCUS are more constrained systems that do not posses the

required resources to enforce similar mitigations, or cannot enforce them using the
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same mechanisms. For example, MCUS (e.g., STM32F479I [38] FRDM-K64F [39]),

lack an MMU, and have small memory that is insufficient to enforce ASLR.

We define MCUS as an embedded system combining a micro-controller and stan-

dard peripherals, which can include network connectivity, on the same device. They

run as bare-metal (i.e., without an OS) or can utilize a lightweight Real Time Oper-

ating System (RTOS) for multi-threaded applications. In either case, MCUS combine

the application, libraries, and the OS into a single monolithic firmware image running

on the device. In addition, MCUS use physical addressing. They enforce read, write,

and execute permission by using a Memory Protection Unit (MPU), instead of an

MMU. Thus, unlike high-end embedded systems, MCUS lack the memory isolation

between the OS and application. The processor speed of MCUS have clock speeds

of a few hundreds of MHz at most (e.g., ARM Cortex-M [40], ARM Cortex-R [41],

AVR32 [42]). In terms of storage, higher-end MCUS utilize a few MBs of Flash and

a few hundreds KBs of RAM.

Our discussion in remaining sections of this chapter are general to any MCUS

architecture (e.g., ARMv7-M [40], AVR32 [42]). However, some architectural related

background are needed when discussing some of the defenses and clarify some vul-

nerabilities of MCUS. In such case, we restrict our discussion to the ARMv7-M [40]

as it is the most common architecture for 32-bit MCUS [43,44].

2.2.2 Background and Target System

MPU and privilege levels: We assume the MPU present on the MCUS is capable

of supporting two privilege level (i.e., privileged and unprivileged). This assumption

is consistent with existing defenses for MCUS [8,9, 12–16,18,45–47].

Trusted Execution Environment (TEE): Code present in a TEE runs with higher

privileges than the OS or user code (i.e., hypervisor). Using a TEE can enable new

methods of protecting or attesting MCUS. However, these have only been available

recently (e.g., TrustZone [24]) for some MCUS. The majority of MCUS do not pro-
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vide a TEE. In addition, existing TEE lack software support for MCUS (e.g., OS

and library support). Thus, we assume requiring a TEE as an additional hardware

requirement.

2.3 Defenses

While proposed defenses for MCUS are applied to various systems with varying

capabilities and goals, these defenses can be divided into two parts: (1) remote defense

and; (2) local defenses. Remote defenses require a remote trusted party in addition

to the device itself to enforce their protection. Local defenses are self-contained pro-

tections that only apply the instrumentation to MCUS. In the following subsections,

we describe each type separately along with the mechanisms they enforce.

2.3.1 Remote Defenses

Remote defenses are primarily attestation-based defenses that aim to detect an

already compromised device. Attestation uses a challenge-response mechanism, where

the prover (i.e., MCU) answers the challenge from the verifier (i.e., a trusted entity).

The verifier considers the prover as trustworthy (i.e., not compromised) if the response

is correct. The verifier uses a nonce value to ensure the response is fresh (i.e., the

attacker is not using an old response to deceit the verifier).

Attestation mechanisms rely on a trust anchor on the prover to ensure the integrity

of the prover’s response. This can be done through software-based attestation [31],

hardware-based attestation [48], or hybrid of both [16, 17]. Attestation schemes has

been applied to a wide range of systems, many of which are not applicable to MCUS.

Thus, we focus our discussion to literature relating protecting MCUS from runtime

memory corruption exploitation as mentioned in subsection 2.2.1.

Control-flow attestation: To detect control-flow hijacking attacks (e.g., code

reuse attacks) at runtime, control-flow attestation mechanisms [14,49] use a runtime

tracer as its trust anchor. To attest the device, the runtime tracer computes a hash
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chain of each control-flow transfer during the prover’s response. The verifier checks

the hash with a correct pre-computed hash (i.e., pre-computed in an offline phase)

to verify the trustworthiness of the prover. C-FLAT [14] placed its runtime tracer in

a TEE, and instrumented each control-flow transfer in the firmware. However, this

leads to high-overhead and can break the compatibility of legacy code. Alternatively,

LO-FAT [49] uses a special hardware extension that records control-flow transfer

instruction in parallel with the processor to reduce the overhead of instrumenting

each control-flow transfer. However, both are susceptible to Time of Check Time of

Use (TOCTOU) attacks. That is, an attacker with physical access can alter devices

memory between the time of attestation and time of execution. To overcome this lim-

itation, ATRIUM [50] attests control-flow transfers in parallel with the processor. In

general, control-flow attestation are targeted to detect control-flow hijacking attacks,

but they can also detect cases of non-control data attacks (i.e., in case they alter the

pre-computed control-flow). However, they do not detect non-control data where the

control-flow is not altered.

Data-flow attestation: To detect all non-control data attacks (i.e., generalized

by Data-Oriented Programming–DOP [51, 52]), LiteHAX [18] extends its hardware

extensions to record all control-flow and data-flow events. However, such mechanism

assumes a one-to-one attestation relation between the verifier and the prover, which

might not be practical for collaborative MCUS such as autonomous systems or swarm

robotics. Thus, DIAT [53] reduces the overhead of attesting all events by using

modular attestation. That is, DIAT [53] relies on architecture support to ensure the

underlying software is partitioned into isolated modules, and only attests control-flow

and data-flow events between the isolated modules.

2.3.2 Local Defenses

In contrast to remote defenses, local defenses aim to mitigate memory corruption

exploits rather than detect them. While many of the proposed policies are inspired
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from general purpose system, applying them to MCUS require different mechanisms

and offer different guarantees than on general-purpose systems as discussed in the

following.

Information hiding: Information hiding [54] techniques are probabilistic miti-

gations that aim at mitigating control-flow hijacking attacks by hiding the location

of code pointers at randomized locations. Alternatively, these techniques randomize

the code layout to break code reuse attacks such as Return Oriented Programming

(ROP) [55], where the attacker chains snippets of instructions ending with a return to

launch a control-flow hijacking attack. A primary example from general-purpose sys-

tems is ASLR, where the base address of each section is randomized at each run. How-

ever, MCUS use a single static binary image residing in Flash (see subsection 2.2.1).

Thus, MCUS defenses [8,46,47,56] can only randomize the firmware layout once. The

firmware is diversified either during compilation or through binary rewriting [56], but

it will remain the same after the firmware is loaded to the MCU.

An alternative method to apply information hiding is encrypting the code on the

MCU to protect Intellectual Property (IP). SCFP [15] uses a hardware extension to

between the CPU’s fetch and decode stage to decrypt the firmware and execute it.

Execute-only memory (XoM): To overcome information hiding, attackers re-

sort to information leakage to disclose the code layout [57, 58]. An additional layer

of mitigation is to place code in XoM. While MCUS lack hardware support for XoM,

it can be applied in software [45] by means of Software-Fault Isolation (SFI) tech-

niques [59,60]. However, such technique when applied to MCUS lead to higher over-

head [46]. To enable a more efficient XoM implementation for MCUS, uXoM [46] uses

a load instruction variant of the Cortex-M [40] architecture that can only read unpriv-

ileged memory, even if the device is executing in privileged mode. Thus, uXoM [46]

sets the code in privileged memory and transforms all load instruction into this special

variant.

Stack canary: As on general-purpose systems, stack canaries [7] are deployed

to mitigate stack buffer overflows. However, using the same mechanism directly on
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MCUS can lead to synchronization errors [47] since MCUS use a single address space

and lack privilege separation. As discussed in subsection 2.2.1, even MCUS with an

OS supporting multiple threads can share the same code. The task of identifying

which code is shared, and which specific to a single thread becomes non-trivial. As

a result, µArmor [47] proposes a single global canary to avoid synchronization errors

between threads.

Safe stack: Safe stack [61] splits the normal stack into two stacks: unsafe stack

and regular stack. It uses static analysis to identify potentially unsafe local variables

(e.g., array which might be indexed out of bounds), and places them into the unsafe

stack. Return addresses and other local data are placed into the regular stack. Safe

stack separation prevents stack buffer overflow vulnerabilities. However, adopting

it to MCUS requires some changes. Safe stack relied on large address space or the

segment register when applied to general-purpose systems in order to split the two

stacks. Such features are not available on MCUS. To overcome these limitations,

EPOXY [8] placed the regular and unsafe stacks at opposite ends of RAM, with each

growing in opposite directions. In addition, EPOXY [8] placed an unmapped region

to capture any stack buffer overflow vulnerability. EPOXY relies on randomization

to protect the regular stack. A more secure design of safe stack is to isolate it using

SFI, however this can lead to high overhead.

Shadow stack: The goal of a shadow stack [62, 63] mechanism is to prevent

control-flow hijacking on the return edge (i.e., return addresses). To achieve this, a

shadow stack isolates return addresses or duplicates them in a separated and protected

stack (i.e., shadow stack). To enforce a shadow stack on MCUS, RECFISH places the

shadow in a privileged region protected by the MPU. Thus, each return executes a

system call to access the privileged shadow stack. This however leads to high runtime

overhead (i.e., higher than 10% [26]). More importantly, it remains vulnerable to

code executing in privileged mode as it can access the shadow stack. An alternative

design is to use a TEE for the shadow stack [13]. While this prevents the attacks, it
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introduces high overhead to MCUS [13] as it requires switching into the TEE secure

context at each return.

Control-Flow Integrity (CFI): CFI [64, 65] aims to mitigate control-flow hi-

jacking attacks by restricting indirect control-flow transfers (i.e., indirect calls and

returns) to a pre-computed valid target set that do not deviate from the application’s

Control-Flow Graph (CFG). That is, any indirect control-flow transfer that does not

adhere to the CFG is considered malicious. However, generated CFGs are not fully

precise to the aliasing problem [66]. Thus, the strength of CFI implementations de-

pends of the precision of the CFG the pre-computed target sets. While the target set

can enforced statically or dynamically, dynamic enforcement are not suited for MCUS

as they incur high-overhead or require advanced hardware features [67] that are not

commonly available for MCUS. While enforcing CFI can be applied to both forward

edges (i.e., indirect calls) and backward edges (i.e., return addresses), it is more suit-

able to protect the forward edges. This is because the target set of backward edges are

typically larger than those of forward edges [63,65] since a backward edge CFI would

consider all possible call sites within the valid target set. A coarse-grained CFI is sus-

ceptible to control-flow bending attacks [68]. Thus, existing techniques [9,13,15,56,69]

use static analysis to compute the valid target sets to enforce CFI for forward edges.

We discuss their implementation and precision in section 2.4.

Memory isolation: Memory isolation is a common and effective mechanisms

to secure general-purpose systems, where kernel memory and individual processes’

memory are isolated from each other. The single address space, lack of privilege

separation, strict runtime requirement, and limited resources of MCUS renders the

mechanisms to enforce memory isolation on general-purpose systems to be impractical

when applied to MCUS. For example, enforcing kernel memory isolation, or requiring

a system call at each access to Memory Mapped IO (MMIO) can break the real-time

constraints on MCUS [12].

To overcome these limitations, Minion [12] uses static analysis (e.g., code reacha-

bility and data reachability from entry points in the firmware) to isolate code, data,
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and peripherals used by each thread to create thread level isolated partitions. At

runtime, Minion’s [12] memory view switcher dynamically configures the MPU ac-

cording the currently executed thread. That is, each thread can only access its code,

data, and peripherals. Other isolated threads are protected by the view switcher (i.e.,

using the MPU access permissions). Minion [12] controls the context switch handler

and is the only code executing is privileged mode, thus it is the only one accessing

the MPU. Note that unlike general-purpose systems, a thread can directly access its

designated MMIO, without a system call transitioning to an isolated OS. However,

Minion [12] requires an OS for its isolation. For bare-metal MCUS, ACES [9] en-

ables intra-thread isolation by using Program Dependency Graph (PDG) to create

isolated compartments of code, data, and peripherals. The policy used to create these

compartments are flexible and can be defined by the developer.

Memory safety: Enforcing memory safety enables preventing memory corrup-

tion bugs. However, traditional methods [70–75] are not suitable for MCUS as it

requires heavy checking for each pointer derefence. That is, it validates spatial mem-

ory safety by validating that the derefrence is within the valid bounds of the object.

In addition, the object must be valid at the time of use (i.e., temporal safety). This

leads to high overhead both in runtime and memory on MCUS.

To reduce this overhead, nesCheck [76] uses both static and dynamic analysis to

identify memory accesses to check. Safe accesses that are proven to be safe stati-

cally are not instrumented. For other memory accesses, nesCheck [76] conservatively

checks ones that can lead to memory corruption, but excludes ones can only lead to

memory access errors. That is, nesCheck [76] provides sound memory safety. How-

ever, nesCheck [76] is only applicable to TinyOS [77], an operating system for wireless

sensor networks and its C programming dialect nesC.
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2.4 Analysis

The defenses discussed in section 2.3 offer various guarantees with different re-

quirements. This discussion aims to systematically analyze these defenses across four

dimensions: (1) hardware and defense requirements; (2) security guarantees of remote

and local defenses; (3) performance overhead; (4) effectiveness against control-flow

hijacking ; and (5) evaluation type and platform. Table 2.1 shows a summary of the

defenses across the various dimensions.

2.4.1 Hardware and Defense Requirements

Hardware requirements: For a defense to be widely adopted, it must limit the

overhead needed to apply it [26]. This overhead can be either in runtime or resources

required for the defense. In addition, it is preferable for a defense to be portable.

That is, it does not rely on features specific to a single architecture. This is especially

true for MCUS, which are low cost constrained systems.

However, a large portion of existing defense rely on special hardware features

that are not available on widely available on currently deployed MCUS. This case

is especially evident for remote defenses. As discussed in subsection 2.2.2, a TEE

is not widely adopted on currently deployed MCUS. While it is better to minimize

the hardware requirements of a defense, a TEE will be incorporated in newer MCUS

architectures (e.g., TrustZone [24] in ARMv8-M [78]). Thus, requiring a TEE should

become less of an issue in long term.

In contrast, requiring customized hardware extension significantly reduces the

chances of wide adoption of a defense. These defenses require physical changes to the

actual devices or replacing the device itself. Thus, they incur high cost for deployment.

In addition, MCUS deploy diverese architetures, thus such defenses are not easily

integrated with existing MCUS without significant engineering and integration efforts.

Defense assumptions: While some defenses show promising results and provide

various protections (e.g., control-flow attestation), we argue that these are built on
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unrealistic assumptions. Particularly, remote attestation techniques [14,18,49] assume

a powerful verifier, able to compute and track all dynamic control-flow traces. There

is no guarantee that such a verifier exists.

In addition, some defenses relying on information hiding [56] assume no versions

of the same diversified firmware exists. This does not guarantee their security as even

diversified firmware can share a ROP payload across different versions [8, 47]. More-

over, such assumption are not easily integrated into deployed systems since vendors

have to keep track of each diversified version (i.e., for code signing and verification).

2.4.2 Security Guarantees of Remote and Local Defenses

The security guarantees of each mechanism depends mainly on its type (i.e., re-

mote or local). The two types can be complemented with each other as each serves

a different goal. Local defenses mitigate or protect an attack even the presence of

memory corruption vulnerabilities. Remote defense only detect an attack, thus they

offer weaker guarantees. That is, the attack can always happen with remote defenses.

These defenses only notify the trusted verifier of a compromised device.

Remote defenses can detect a wider range of attacks by leveraging a more powerful

remote verifier and customized or special hardware features. For example, remote

defenses enable detecting control-flow bending attacks [68] since they trace all control-

flow transfer (i.e., assuming the verifier pre-computed all dynamic control-flow traces).

Some defenses use hardware extensions to track data-flow events [18].

However, the security guarantees of some remote defenses are not necessarily re-

flected in the actual implementation or evaluation. For example, rather than attesting

the entire application, C-FLAT [14] attested critical parts of some of the firmware

used in the evaluation. This opens a larger attack surface that will not be detected

by such defenses. The actual guarantees of such defenses are not verified.

We argue the reason for such variance between the assumed design and actual

implementation is the complexity introduced in remote defenses (e.g., tracking all
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transfers for any possible control-flow hijacking attack requires unrealistic verifier

capabilities). We also argue that these can reduced by leveraging the proposed local

defenses.

Local defenses can mitigate, and even prevent a wide range on attacks. The local

defenses shown in Table 2.1 offer sound security guarantees, and many are applicable

to existing MCUS without any special hardware requirements. A remote defense can

therefore be complemented with a local defense. For example, a remote attestation

mechanism can rely on a shadow stack mechanism such as CFI-CaRE [13] to prevent

control-flow hijacking attacks. A remote attestation mechanism can be complemented

with such mechanism to reduce the overhead of tracking backward edges, and instead

focus on attesting the forward edges of the control-flow, or explicitly trace annotated

sensitive data. That is, local defenses should be a base for remote defenses to build

upon.

2.4.3 Performance Overhead

Table 2.2 shows the average runtime overhead of defenses as reported by each

defense. We limit our comparison to local defenses as remote defenses depend on the

frequency of attestations (e.g., once every minute), and the portion of protected code.

These defenses reported the relation (e.g., linear [14, 53]) of attested firmware (e.g.,

with respect to number of control-flow transfer). In addition, we exclude defenses

not evaluated on MCUS (e.g., LR2 [45]) since the reported overhead does not neces-

sarily apply when evaluated on MCUS as was shown by uXoM [46]. For ACES [9],

the runtime overhead depends on the used policy for compartmentalization. ACES

evaluated three separate policies with overheads ranging between 0% to over 400%.

Overall, with the exception CFI-CaRE [13] and RECFISH [69], proposed defenses

demonstrate a practical average runtime overhead lower than 10%. However, these

defenses offer weaker guarantees against control-flow hijacking attacks on the return

edge compared CFI-CaRE [13] and RECFISH [69] as shown in Table 2.1. In the
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Table 2.2.
A summary of theaverage runtime overhead for local MCUS defenses as a
% over the baseline. These results shown here are the ones reported from
the each paper respectively.

Legend

: Higher than 100%. : Higher than 10%, but below 50%. : Lower than 10%.

Defense Runtime Overhead

SCFP [15]

CFI CaRE [13]

Minion [12]

ACES [9] (overhead depends on application and applied policy)

EPOXY [8]

µArmor [47]

RECFISH [69]

uXoM [46]

following section, we discuss the effectiveness of each defense in mitigating control-

flow hijacking attacks.

2.4.4 Effectiveness Against Control-Flow Hijacking Attacks

As mentioned in subsection 2.4.2, remote defenses only detect an attack. That

is, an attack can occur as in a normal application. Remote defenses also rely on the

attestation frequency and time, making them vulnerable to TOCTOU attacks [79],

with the exception of ATRIUM [50]. In addition, if the attack is detected, remote

attacks only notify the trusted verifier. The verifier can then take additional measures

(e.g., reset the device or disable it), these however are our of scope of this work. Our

focus is on the strength of a mechanism to mitigate or prevent an attack, thus for

our purpose remote attacks offer weaker guarantees than local defenses. Overall, the

proposed mitigations shown in Table 2.1 improve the security of MCUS, however they

do not prevent control-flow hijacking on MCUS.
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Information hiding techniques, including ones relying on XoM, have been shown

to be vulnerable on general-purpose systems to various information disclosure [57,58]

and profiling attacks [80]. MCUS defenses using similar techniques [8, 15, 46, 47, 56]

are even more susceptible to such attack as they have much lower entropy due to the

small memory available. The same applies for applying a stack canary for MCUS [47],

which is a weaker version of stack canaries applied on general-purpose systems.

Memory isolation mechanisms [9, 12] only confine the vulnerability to the cur-

rent isolated memory region. That is, the attacker can still divert the control-flow

anywhere within the current isolated memory region.

Some defenses provide stronger guarantees against certain control-flow hijacking

scenarios. EPOXY [8] adoption of a safe stack eliminates stack based buffer overflow

exploitation on the return edge. It remains however vulnerable to other attack sce-

narios (e.g., arbitrary write). RECFISH [69] eliminates such attacks in unprivileged

mode by placing a shadow stack in a privileged region. CFI-CaRE relies on a TEE to

prevent attacks on the return edge both in privileged and privileged mode. However,

both incur high runtime overhead as was shown in Table 2.2.

For forward edge protection, existing defenses support a coarse-grained CFI. For

example, CFI-CaRE [13] allows indirect calls to target any function entry. Sym-

biote [56] randomly checks a portion of indirect calls. The most precise forward edge

CFI is applied by ACES [9], which enforces a type-based CFI across isolated memory

regions. Finally, nesCheck [76] offers promising guarantees, however its results were

simulated and have not been verified on actual MCUS. Furthermore, it is specific to

TinyOS [77] and the nesC programming language, which specific to wireless sensor

network systems. MCUS however predominately use C.

2.4.5 Evaluation Type and Platform

Although the defenses shown in Table 2.1 target MCUS, the evaluation used for

some defenses reveals a subtle issue. First, some defenses while applicable to MCUS,
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did not use an MCU platform to evaluate the defense [13], or used a platform lacking

a required feature for the defense [53]. Thus, a conclusive judgement of the defense’s

performance cannot be made since the difference in evaluation platform can alter the

performance of the defense. For example, uXoM [46] showed that applying a software-

based XoM [81] resulted in significantly higher runtime overhead when evaluated on

MCUS (i.e., 22.7% on MCUS compared to 5.0% on general-purpose systems [46]).

More importantly, the evaluation type (i.e., software application) is not stan-

dardized between the various defenses. A large number of defenses used customized

applications, without any benchmark. Even for defenses using a benchmark, they of-

ten utilize different benchmarks. Furthermore, these benchmark are often simple, and

do not reflect a realistic applications of IoT-MCUS (i.e., MCUS in an IoT setting).

We discuss this in further detail in subsection 2.5.1.

2.5 Discussion and Future Research

Following our analysis of proposed defenses, we identify two main issues in MCUS

security. We provide a discussion of each and our proposed suggestion for future

research.

2.5.1 Benchmarking and Evaluation Frameworks

Experimental evaluation is essential for the progress of any field. However, existing

MCUS defense evaluation suffers from multiple limitations. First, the evaluation

process is tedious, relying heavily on hardware extensions and underlying boards, thus

hindering researchers efforts. Second, existing benchmarks are too simple to evaluate

the security guarantees of proposed defenses. Realistic MCUS applications in an IoT

setting interact with a rich set of sensors and actuators. However, existing benchmarks

remove such interactions with peripherals to ensure portability since peripherals are

mapped differently in memory between different MCU manufacturers. Furthermore,

the software APIs are different between the different MCUS board vendors. That is,
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an application must be written separately for each vendor, thus requiring significant

engineering effort. This resulted in an ad-hoc evaluation of MCUS defenses, and a

quantitative comparison between the different defense mechanisms became infeasible.

We propose developing an evaluation framework following a software-based ap-

proach. That is, it can be used by any MCUS sharing the same architecture. In

addition, we propose that such a framework incorporate standardized metrics cover-

ing both security and performance metrics for MCUS. Developing such a framework

to automate the evaluation process would enable researchers to effectively evaluate

and compare the proposed defenses. Lastly, we propose developing a standardized

benchmark applications mimicking IoT-MCUS, with rich interactions with periph-

erals and demonstrating networking capability as assumed in an IoT setting. The

benchmarks must be built to be portable across various board manufactures with

limited engineering efforts.

2.5.2 Control-Flow Hijacking Protection

Overall, the mitigations discussed in subsection 2.4.4 have a trade-off between

performance and stronger security guarantees. That is, proposed defenses are either

impractical or have limited security guarantees. Although proposed defenses enhance

the state of MCUS security, they are still vulnerable to control-flow hijacking attacks.

For forward edge protection, a starting step is to utilize more precise analysis

for CFI implementations. MCUS architectures are not supported by known CFI

implementations [82], thus proposed defenses used a course-grained CFI (e.g., all

function entries are in the allowed target set). Future research can apply stronger

and more precise analysis [83] to reduce the target set of CFI implementations. Since

MCUS have smaller code than general-purpose systems, the valid target set should

be smaller, thus resulting in strong guarantees for the forward edge.

Protecting backward edges (i.e., return addresses) is more challenging for MCUS.

Although some state-of-the-art solutions have been adopted to MCUS, they remain
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vulnerable to attacks or are impractical. Return addresses are more prevalent and are

a more vulnerable target without strong defenses. Since MCUS demonstrate unique

characteristics (e.g., rare use of recursion), a proposed defense might utilize such

characteristics in designing specific defenses for MCUS to prevent attacks on return

edges while maintaining low overhead.

2.6 Conclusion

Embedded and IoT system running MCUS are deployed in security critical do-

mains. Unfortunately, MCUS are vulnerable to memory corruption attacks due the

combination of constrained resources, use of low level languages, and lack strong secu-

rity mechanisms. We surveyed proposed defenses for MCUS, and identified two main

issues for MCUS security. First, the lack of standardized benchmarks and evaluation

frameworks. Second, proposed defenses either impose substantial runtime overhead or

have limited security guarantees against control-flow hijacking attacks on the return

edge. In the following chapters, we address both concerns.
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3. BENCHIOT: A SECURITY BENCHMARK FOR THE

INTERNET OF THINGS

Attacks against IoT systems are increasing at an alarming pace. Many IoT systems

are and will be built using low-cost micro-controllers (IoT-MCUS). Different security

mechanisms have been proposed for IoT-MCUS with different trade-offs. To guarantee

a realistic and practical evaluation, the constrained resources of IoT-MCUS require

that defenses must be evaluated with respect to not only security, but performance,

memory, and energy as well.

Evaluating security mechanisms for IoT-MCUS is limited by the lack of realistic

benchmarks and evaluation frameworks. This burdens researchers with the task of

developing not only the proposed defenses but applications on which to evaluate

them. As a result, security evaluation for IoT-MCUS is limited and ad-hoc. A

sound benchmarking suite is essential to enable robust and comparable evaluations

of security techniques on IoT-MCUS.

This chapter introduces BenchIoT, a benchmark suite and evaluation framework

to address pressing challenges and limitations for evaluating IoT-MCUS security. The

evaluation framework enables automatic evaluation of 14 metrics covering security,

performance, memory usage, and energy consumption. The BenchIoT benchmarks

provide a curated set of five real-world IoT applications that cover both IoT-MCUS

with and without an OS. We demonstrate BenchIoT’s ability by evaluating three

defense mechanisms. All benchmarks and the evaluation framework is open sourced

and available to the research community 1.

1https://github.com/embedded-sec/BenchIoT
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3.1 Introduction

Experimental evaluation is integral to software systems research. Benchmarks play

a pivotal role by allowing standardized and comparable evaluation of different software

solutions. Successful benchmarks are realistic models of applications in that particular

domain, easy to install and execute, and allow for collection of replicable results.

Regrettably, there is no compelling benchmark suite in the realm of Internet of Things

(IoT) applications, specifically in those that run on low-end platforms with either

no operating system as a single binary image or with a lightweight OS like ARM’s

Mbed-OS [29]. As IoT applications become more ubiquitous and are increasingly

used for safety-critical scenarios with access to personal user data, security solutions

will take center stage in this domain. Therefore, IoT benchmarks will also be needed

to evaluate the strength of the security provided by the security solutions.

The IoT domain that we target has some unique characteristics, which make it

challenging to directly apply existing benchmarks either from the server world or

even the embedded world, to our target domain. These IoT systems run on low-

end micro-controllers (MCUS), which have frequencies of the order of tens to a few

hundreds of MHz’s, e.g., ARM’s 32-bit Cortex-M series. They have limited memory

and storage resources, of the order of hundreds of KBs and a few MBs respectively.

These applications typically have tight coupling with sensors and actuators that may

be of diverse kinds, but using standard interfaces such as UART and SPI. Finally, the

applications have the capability for networking using one or more of various protocols.

In terms of the software stack that runs on these devices, it is either a single binary

image that provides no separation between application and system level (and thus is a

“bare-metal” or no OS system) or has a light-weight real time OS (e.g., ARM’s Mbed-

OS), which supports a thin application-level API. We refer to our target domain for

the remainder of the chapter as IoT-MCUS.

Existing benchmarks from the server world are not applicable because they do

not reflect applications with characteristics mentioned above and frequently rely on
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functionality not present on IoT-MCUS. For example, SPEC CPU2006 [19] targets

desktop systems and requires e.g., standardized I/O. Many IoT applications on the

other hand have non-standard ways of interacting with IO devices such as through

memory-mapped IO. In addition, their memory usage is in the range of hundreds

of MBs [84]. Several benchmarks [21–23, 85] are designed specifically for comparing

performance on MCUS. However, they do not exercise the network connectivity and

do not interact with the physical environment in which the devices may be situated

(i.e., they do not use peripherals). Moreover, these benchmarks lack the complexity

and code size of realistic applications and as result make limited use of relatively

complex coding constructs (e.g., call back event registration and triggering). From a

security perspective, control-flow hijacking exploits rely on corrupting code pointers,

yet these benchmarks make limited use of code pointers or even complex pointer-based

memory modification. Thus, they do not realistically capture the security concerns

associated with IoT-MCUS.

The lack of security benchmarks for IoT applications inhibits disciplined evalua-

tion of proposed defenses and burdens researchers with the daunting task of devel-

oping their own evaluation experiments. This has resulted in ad-hoc evaluations and

renders comparison between different defenses infeasible as each defense is evaluated

according to different benchmarks and metrics. Table 3.1 compares the evaluations

of several recent security mechanisms for IoT-MCUS, and only two of them use the

same benchmarks to evaluate their defenses, and even these two target different ar-

chitectures, making a comparison hard. Out of all the defenses, only four used any

benchmarks at all and they were from the embedded world and not representative

of IoT applications as identified above. The other solutions relied solely on micro-

benchmarks and case studies. These are unique to the individual papers and often

exercise only a single aspect of a realistic application (e.g., writing to a file).

Requirements for IoT benchmarks.

Benchmarks for IoT-MCUS must meet several criteria. First, the applications must

be realistic and mimic the application characteristics discussed above. While an
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Table 3.1.
A summary of defenses for IoT-MCUS with the evaluation type.

Defenses
Evaluation Type

Benchmark Case Study

TyTan [16] X

TrustLite [17] X

C-FLAT [14] X

nesCheck [76] X

SCFP [15] Dhrystone [22] X

LiteHAX [18] CoreMark [85] X

CFI CaRE [13] Dhrystone [22] X

ACES [9] X

Minion [12] X

EPOXY [8] BEEBS [23] X
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individual benchmark need not satisfy all characteristics, the set of benchmarks in a

suite must cover all characteristics. This ensures security and performance concerns

with real applications are also present in the benchmarks. IoT devices are diverse,

therefore the benchmarks should also be diverse and cover a range of factors, such as

types of peripherals used, and being built with or without an OS. Finally, network

interactions must be included in the benchmarks.

Second, benchmarks must facilitate repeatable measurements. For IoT applica-

tions, the incorporation of peripherals, dependence on physical environment, and

external communication make this a challenging criterion to meet. For example, if

an application waits for a sensed value to exceed a threshold before sending a com-

munication, the time for one cycle of the application will be highly variable. The

IoT-MCUS benchmarks must be designed to both allow external interactions while

enabling repeatable measurements.

A third criterion is the measurement of a variety of metrics relevant to IoT applica-

tions. These include performance metrics (e.g., total runtime cycles), resource usage

metrics (e.g., memory and energy consumption), and domain-specific metrics (e.g.,

fraction of the cycle time the device spends in low-power sleep mode). An important

goal of our effort is to enable benchmarking of IoT security solutions and hence the

benchmarks must enable measurement of security properties of interest. There are of

course several security metrics very specific to the defense mechanism but many mea-

sures of general interest can also be identified, such as the fraction of execution cycles

with elevated privilege (“root mode”) and number of Return-Oriented Programming

(ROP) gadgets.

Our Contribution: BenchIoT

This chapter introduces the BenchIoT benchmark suite and evaluation framework

that fulfills all the above criteria for evaluating IoT-MCUS. Our benchmark suite is

comprised of five realistic benchmarks, which stress one or more of the three funda-

mental task characteristics of IoT applications: sense, process, and actuate. They also

have the characteristics of IoT applications introduced above. The BenchIoT bench-
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Fig. 3.1. An overview of the evaluation workflow in BenchIoT.

marks enable deterministic execution of external events and utilize network send and

receive. BenchIoT targets 32-bit IoT-MCUS implemented using the popular ARMv7-

M architecture. Each BenchIoT benchmark is developed in C/C++ and compiles both

for bare-metal IoT-MCUS, and for ARM Mbed-OS. Our use of the Mbed API (which

is orthogonal to the Mbed-OS) enables realistic development of the benchmarks since

it comes with important features for IoT-MCUS such a file system.

BenchIoT enables repeatable experiments while including sensor and actuator

interactions. It uses a software-based approach to trigger such events. The software-

based approach enables precise control of when and how the event is delivered to the

rest of the software without relying on physical environment. This approach has been

used previously for achieving repeatability as a means to automated debugging [86,87].
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BenchIoT’s evaluation framework enables automatic collection of 14 metrics for se-

curity, performance, memory usage, and energy consumption. The evaluation frame-

work is a combination of a runtime library and automated scripts. It is extensible

to include additional metrics to fit the use of the developer and can be ported to

other applications that use the ARMv7-M architecture. An overview of BenchIoT

and the evaluation framework is shown in Figure 3.1. The workflow of running any

benchmark in BenchIoT is as follows: (1) The user compiles and statically links the

benchmark with a runtime library, which we refer to as the metric collector library, to

enable collecting the dynamic metrics ¶; (2) The user provides the desired configura-

tions for the evaluation (e.g., number of repetitions) ·; (3) To begin the evaluation,

the user starts the script that automates the process of running the benchmarks to

collect both the dynamic ¸ and static ¹ metrics; (4) Finally, the benchmark script

produces a result file for each benchmark with all its measurements º.

To summarize, this chapter makes the following contributions: (1) This is the first

realistic benchmark suite for security and performance evaluation of IoT-MCUS. It

enables the evaluation of IoT-MCUS with realistic benchmarks representing charac-

teristics of IoT applications such as connectivity and rich interactions with peripher-

als; (2) It enables out-of-the-box measurements of metrics for security, performance,

memory usage, and energy consumption; (3) It provides a deterministic method to

simulate external events enabling reproducible measurements; (4) It demonstrates

the effectiveness of BenchIoT in evaluating and comparing security solutions where

we apply three standard IoT security defenses to the benchmarks and perform the

evaluation. Our evaluation brings out some hitherto unreported effects, such as, even

though defense mechanisms can have similarly modest runtime overhead, they can

have significantly different effects on energy consumption for IoT-MCUS depending

on their effect on sleep cycles. The benchmark suite along with the evaluation scripts

is open sourced and available to the research community [88].



33

BenchIoT Benchmark

Mbed RTOS
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HAL Library
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Board dependent (API not portable)

Microcontroller Hardware

Fig. 3.2. Illustration of software layers used in developing BenchIoT
benchmarks. BenchIoT provides portable benchmarks by relying on the
Mbed platform.

3.2 Scoping and Background

3.2.1 Scoping and Target Systems

The goal of this work is to enable security evaluation and comparison for different

security defenses on IoT-MCUS devices through: (1) comprehensive, automatically

measured metrics and (2) benchmark suite representing realistic IoT applications. It

is not the goal of this work to propose new security mechanisms. However, we believe

that our benchmark suite will be vital for continued innovation and reproducibility

of security research on IoT-MCUS.

We define an IoT-MCU device as an embedded system that executes software

on a microcontroller (µC), and has network connectivity. That is, the notion of

device includes the µC and the standard peripherals packaged on the same board.

As such, all of BenchIoT’s benchmarks utilize IP communication. MCUS have clock

speeds of a few MHz topping out under 200MHz, unlike higher-end embedded systems
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(e.g., ARM Tegra 2) which operate at clock speeds in the range of GHz. Our target

systems have a few hundreds KBs of RAM and few MBs of Flash. These constraints

mean they have limited software executing on them. It is common practice to have

these devices run a single application in a dedicated mode and therefore all our

benchmarks also provide a single functionality. They operate either with a light-

weight Real Time Operating System (RTOS), enabling multiple threads of execution,

or a single threaded application without an OS (i.e., bare-metal). In both cases, a

single statically linked binary is the only code that executes on the system.

The MCUS typically lack security hardware commonly available on server-class

systems (e.g., MMUs). However, they commonly have a Memory Protection Unit

(MPU) [89]. A MPU enforces read, write, and execute permission on physical memory

locations but does not support virtual memory. The number of regions an MPU

supports is typically quite small (8 in the ARM v7-M architectures). MPUs in general

support two privilege levels (i.e., privileged and unprivileged). These differences in

capabilities and software development make many security mechanisms for desktop

systems inapplicable for IoT-MCUS (e.g., ASLR). ASLR relies on virtual memory to

randomize the layout of the application.

To implement the benchmarks and demonstrate rich and complex IoT-MCUS

applications, BenchIoT targets 32-bit IoT-MCUS using the ARM Cortex-M(3,4,7)

µCs, which are based on the ARMv7-M architecture [40]. ARM Cortex-M is the

most popular µC for 32-bit MCUS with over 70% market share [43,44]. This enables

the benchmarks to be directly applicable to many IoT devices being built today. As

shown in Figure 3.2, hardware vendors use different HAL APIs depending on the

underlying board. Since ARM supplies an ARM Mbed API for the various hardware

boards, we rely on that for portability of BenchIoT to all ARMv7-M boards. In

addition, for applications requiring an OS, we couple those with Mbed’s integrated

RTOS—which is referred to as Mbed-OS. Mbed-OS allows additional functionality

such as scheduling, and network stack management. To target other MCUS, we

will have to find a corresponding common layer or build one ourselves—the latter
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is a significant engineering task and open research challenge due to the underlying

differences between architectures.

3.2.2 Background

Cortex Microcontroller Software Interface Standard: The Cortex Microcontroller

Software Interface Standard [90] (CMSIS) is a standard API in C provided by ARM

to access the Cortex-M registers and low level instructions. CMSIS is portable across

Cortex-M processors and is the recommended interface by ARM. Note that unlike

Mbed, CMSIS does not cover peripherals (e.g., UART). Mbed however uses CMSIS

to access Cortex-M registers.

Privilege modes: ARMv7-M supports two privilege levels: (1) privileged mode,

where all memory regions are accessible and executable. Exception handlers (e.g., in-

terrupts, system calls) always execute in privileged mode. (2) user mode, where only

unprivileged regions are accessible depending on the MPU access control configura-

tion. To execute in privileged mode, unprivileged code can either execute Supervisor

call (SVC), a system call in ARMv7-M, or be given elevated privileges through the

system’s software.

Software Trigger Interrupt Register: The STIR register provides a mechanism to

trigger external interrupts through software. An interrupt is triggered by writing the

interrupt number to the first nine bits of STIR. BenchIoT utilizes the STIR register to

ensure reproducibility of experiments and avoid time variations of external interrupts

arrival.

Data Watchpoint and Trace Unit: ARM provides the Data Watchpoint and Trace

(DWT) unit [40] for processor and system profiling. It has a 32-bit cycle counter

that operates at the system clock speed. Thus, BenchIoT uses it for making runtime

measurements in the system.
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3.3 Benchmark Metrics

The goal of the BenchIoT metrics is to enable quantifiable evaluation of the secu-

rity and practicality of proposed defenses for IoT-MCUS. While security defenses are

diverse and use various metrics to evaluate their effectiveness, the metrics proposed

by BenchIoT are chosen based on the following criteria: (1) enable evaluating estab-

lished security principles for IoT-MCUS (e.g., principle of least privilege); (2) enable

evaluating performance effects of defenses on IoT-MCUS.

BenchIoT provides 14 metrics spanning four categories, namely: (1) Security; (2)

Performance; (3) Memory; (4) Energy. Figure 3.3 shows a summary of the metrics.

We note that metrics cannot cover all attack and security aspects. BenchIoT is

designed to provide a generalized framework for researchers. Thus, we avoid metrics

specific to a security technique.

3.3.1 Security Metrics

Total privileged cycles: An important challenge in securing IoT-MCUS is re-

ducing the number of privileged cycles. Privileged execution occurs during (1) Excep-

tion handlers and (2) User threads with elevated privileges. By default, applications

on IoT-MCUS execute completely in privileged mode. We measure the total number

of execution cycles in privileged mode. A lower number is better for the security of

the system.

Privileged thread cycles: Though measuring total privileged cycles can help

assess the security risks of the system, they include exception handlers that are asyn-

chronous and may not always be executable directly by a malicious adversary. How-

ever, a malicious user can exploit privileged thread cycles as these occur during the

normal execution of the user code. Thus, this metric is a direct quantification of

security risks for normal application code.
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Fig. 3.3. A summary of the BenchIoT metrics.
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SVC cycles: We single out SVC cycles (i.e., system call cycles) from other

exception handlers as these are synchronous and can be called by unprivileged threads

to execute privileged code, therefore is a possible attack surface.

Maximum code region ratio: Control-flow hijacking like code reuse attacks

depend on the available code to an attacker to reuse. Memory isolation limits an

attacker’s capabilities by isolating segments of code within the application. This

metric aims to measure the effectiveness of memory isolation by computing the size

ratio of the maximum available code region to an attacker with respect to the total

code size of application binary. A lower value is better for security.

Maximum global data region ratio: Another attack vector are data-only

attacks [51, 52]. Such attacks target sensitive data of the application rather than

hijacking the control-flow. These sensitive data can be security critical and lead to

command injection or privilege escalation (e.g., by setting a boolean is admin to

true). This metric aims to measure the effectiveness of data isolation by computing

the size ratio of the maximum available global data region to an attacker with respect

to the total data section size of the application binary. A lower value is again better

for security.

Data Execution Prevention: DEP is a well-known defense mechanism to stop

code injection attacks by making memory regions either writable (data) or executable

(code), but not both. Unfortunately, DEP is not commonly deployed in IoT-MCUS [8,

12]. As a result, DEP has been added to the BenchIoT evaluation framework to

raise awareness of such an important defense for IoT-MCUS developers. This metric

requires using the BenchIoT API when changing the MPU configuration to validate

DEP is always enforced (i.e., every MPU region always enforces W ⊕ X).

Number of available ROP gadgets: Return Oriented Programming (ROP) [55]

is a type of code reuse attack used to hijack the control-flow of the application. It

is performed by exploiting a memory corruption vulnerability to chain existing code

snippets–that end with a return instruction (i.e., ROP gadgets)–together to perform

arbitrary execution. Hence, reducing the number of possible ROP gadgets reduces
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the attack surface available to the attacker, and helps quantify the effectiveness of

defense mechanisms such as randomization or CFI. The number of ROP gadgets is

measured using the ROPgadget compiler [91] on the benchmark binary.

Number of indirect calls: Control-flow hijacking occurs through corrupting in-

direct control-flow transfers. ROP resiliency covers control-flow hijacking of backward

edges (i.e., function returns). Another attack scenario is using indirect calls (i.e., for-

ward edges). Thus, reducing the number of indirect calls (e.g., function pointers) or

protecting them through control-flow hijacking defenses like Control-Flow Integrity

(CFI) [65] is a desired security property. We measure the number of indirect calls by

parsing the benchmark binary.

3.3.2 Performance Metrics

Total runtime cycles: This metric measures the total runtime of a benchmark

from establishing a remote connection to the end. Including execution cycles prior to

establishing a connection results in variance in measuring the benchmarks (e.g., wait

for client) and thus they are excluded. While many IoT-MCUS run forever, defining

a start and an end to a benchmark is important to enable analyzing the impact of

security mechanisms on the overall performance.

Sleep cycles: Popular embedded OSes [29, 30] use a sleep manager that au-

tomates entering sleep mode to minimize energy consumption of IoT-MCUS. For

example, the application can enter sleep mode while blocking on network receive or

writing a file to uSD card. Since energy consumption during sleep mode is typically

two to three orders of magnitude lower compared to active or idle mode [92], many

IoT applications spend a large portion of their execution in sleep mode. A security

technique can reduce sleep cycles and this is important to capture to measure the

effects on energy conservation.
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3.3.3 Memory and Energy Metrics

Total Flash usage: Measures the application code and read-only data.

Stack and heap usage: This metric enables analyzing the overhead of memory

used at runtime. The obtained measurement is the maximum usage of the stack and

the heap.

Total RAM usage: In addition to the stack and heap usage, this metric measures

the statically allocated data sections by parsing the benchmark binary image.

Total energy consumption: This metric is measured physically (e.g., with a

logic analyzer) and is the only metric in BenchIoT that depends on external hardware.

The user connects a current sensor to the micro-controller power supply in series to

measure the power. The energy is calculated by multiplying the average power with

total runtime. A General Purpose Input Output (GPIO) signal is instrumented to

signal the beginning and the end of the measurement.

3.4 Benchmark Design

To develop a realistic benchmarking suite for IoT-MCUS, we designed BenchIoT

to satisfy the following criteria: (1) Enables deterministic execution of external events;

(2) Performs different types of tasks to increase coverage of application behaviors and

domains; (3) Utilizes various peripherals; (4) Maximizes portability and reproducibil-

ity across hardware vendors; (5) Minimizes the effect of surrounding environment on

network connectivity. In the next sections, we provide the explanation and need for

each dimension.

3.4.1 Deterministic Execution Of External Events

Including external events (e.g., user pushing a button) is necessary to represent

realistic IoT-MCUS applications. However, these external events lead to a wide vari-

ance across benchmarks, thus rendering the evaluation non-repeatable. An important
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aspect in the design of BenchIoT is that it allows deterministic execution of external

events. We define external events as any interrupt caused by an action not performed

by the underlying device. For example, sending a pin code for a smart locker appli-

cation from a nearby PC is considered an external event. Note that this mechanism

does not cover network functionality (e.g., send, recv) since these must demonstrate

actual connection with a remote client to represent an IoT application.

External events execute as interrupt requests, thus, BenchIoT leverages the STIR

register to trigger the interrupt at specific points in the benchmark. The Interrupt

Request (IRQ) is triggered by writing the IRQ number to the STIR register at specific

points of the benchmark. Thus, instead of having a variance in the waiting time to

enter a pin code, the interrupt is triggered at a specific point, enabling reproducibility.

Triggering the interrupt in software allows the BenchIoT benchmarks to control

the IRQ execution and the input dataset. The device may execute the IRQ on the

hardware and after finishing, the benchmark overwrites the provided value with the

read value from the dataset that is being used to drive the experiment. For example,

developers may use different temperature sensors in different settings. After the trig-

gered IRQ executes, BenchIoT replaces the measured value with the read temperature

to make the benchmark execution independent of the physical environment.

3.4.2 Application Characteristics

To increase the coverage of IoT-MCUS application domains, the BenchIoT bench-

marks were designed to have characteristics typical of IoT applications. The charac-

teristics can be categorized into three classes: (1) Sensing: the device actively records

sensory data from one or more on-board sensors; (2) Processing: the device performs

some computation or analysis (e.g., authentication); (3) Actuation: the device per-

forms some action based on sensed data and local processing or remote processing.

A benchmark may perform one or more of these task types.
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The attack surface is influenced by the type of the task. For example, applications

with sensing tasks (e.g., smart meter) often sample physical data, and thus their

communication might be limited since they act as sensor nodes to a more powerful

server that aggregates and analyzes their data. However, data tampering becomes

a prominent attack vector in such applications. An example of such an attack is

tampering smart meter data to reduce electricity bills [4]. An attack on an application

with actuation can impose a cyber-physical hazard. For example, an attack hijacking

the control-flow of an industrial robot poses physical risks to humans [93].

3.4.3 Peripherals

The BenchIoT benchmarks are designed to include various peripherals to represent

realistic interactions of IoT-MCUS. In addition, peripherals can increase the attack

surface for an application [94, 95], and thus their security evaluations differ. For

example, attacks against autonomous vehicles target vulnerabilities in the Controller

Area Network (CAN) bus [96]. The runtime performance is also effected by these

peripherals. For example, a µSD that uses the Secure Digital Input Output (SDIO)

results in faster data transfer than the Synchronous Peripheral Interface (SPI) since

SDIO utilizes more data lines.

While BenchIoT is designed to stress as many peripherals as possible, we focus

on the most commonly available peripherals across different hardware targets to al-

low portability. These are; UART/USART, SPI, Ethernet, timers, GPIO, Analog-to-

Digital Converter (ADC), Real-time Clock (RTC), and Flash in-application program-

ming (IAP). In addition, in case a non-common peripheral is used in a benchmark

(e.g., Display Serial Interface (DSI)) and such peripheral is not present on the de-

veloper targeted board, BenchIoT allows the developer to configure and still run the

main benchmark while excluding the missing peripheral.
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3.4.4 Portability

BenchIoT aims to enable security evaluation for IoT-MCUS across a wide set of

hardware platforms. Since IoT-MCUS cover both systems with and without an OS,

we develop BenchIoT to support both. Therefore, the BenchIoT benchmarks were de-

veloped in C/C++ using the popular Mbed platform [29,97]. Unlike other RTOSs [98],

Mbed is integrated with essential features for the IoT “things” (e.g., networking,

cryptographic library) and allows developing benchmarks for systems with an RTOS

as well as bare-metal systems. As shown earlier in Figure 3.2, Mbed provides an

abstraction layer above each vendor’s HAL library, thus allowing benchmarks to be

portable across the various ARMv7-M targets supported by Mbed.

3.4.5 Network Connectivity

In keeping with the fundamental characteristic of IoT applications that they per-

form network communication, we design our benchmarks to do network send and

receive. However, wireless communication can introduce significant non-determinism

in the execution of a benchmark. Therefore, BenchIoT uses Ethernet as its commu-

nication interface since it maintains the application’s IoT-relevant characteristic to

remain unchanged, while minimizing noise in the measurements.

3.5 Benchmark Applications

In this section we describe the BenchIoT benchmarks and highlight the notable

features of IoT applications that each demonstrates. Table 3.2 shows the list of Ben-

chIoT benchmarks with the task type and peripherals it is intended to stress. While

the bare-metal benchmarks perform the same functionality, their internal implemen-

tation is different as they lack OS features and use a different TCP/IP stack. For

the bare-metal applications, the TCP/IP stack operates in polling mode and uses a
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Table 3.2.
A summary of BenchIoT benchmarks and their categorization with respect
to task type, and peripherals.

Benchmark
Task Type

Peripherals
Sense Process Actuate

Smart Light X X X Low-power timer, GPIO, Real-time clock

Smart Thermostat X X X Analog-to-Digital Converter (ADC), GPIO, µSD card

Smart Locker X X Serial(UART/USART), Display, µSD card, Real-time clock

Firmware Updater X X Flash in-application programming

Connected Display X X Display,µSD card

different code base. As a result the runtime of bare-metal and OS benchmarks are

different.

Smart Light: This benchmark implements a smart light that is controlled re-

motely by the user. The user can also send commands to automate the process of

switching the light on and off to conserve energy. Moreover, the smart light periodi-

cally checks if a motion was detected, and if no motion is detected it turns the light off

to conserve energy. Conversely, it will turn on once a motion is detected. From a per-

formance prescriptive, the benchmark demonstrates an event-driven application that

will spend large portion of cycles in sleep mode, wake up for short periods to perform

a set of tasks. It is important to measure the energy overhead, which may happen

due to reduction of the sleep cycle duration. From a security perspective, attacks on

smart light can spread to other smart lights and cause widespread blackout [99].

Smart Thermostat: The smart thermostat enables the user to remotely control

the temperature and inquire about the current temperature of the room. In addition,

the device changes temperature when the desired temperature is requested through

a UART peripheral, with the display showing the responses from the application.

Temperature monitoring is a common part of industrial applications (e.g., industrial

motors monitoring [100, 101]). Attacks on a smart thermostat can target corrupting
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sensitive data (e.g., temperature value), thus leading to physical risks (e.g., overheat-

ing motor) or can use the compromised device as a part of botnet [102].

Smart Locker: This benchmark implements a smart mail locker, such as for

large residential buildings. The benchmark demonstrates delivering and picking up

the mail from various lockers. Upon delivering a package to one of the lockers, a

random pin is generated and is sent to the server to notify the user. The device only

saves the hash of the random pin to compare it upon picking up a package. Moreover,

the benchmark maintains a log file of actions (i.e., pickup/drop package). The server

also sends commands to inquire if the smart locker contain a certain package. The

user uses the serial port to enter the input (e.g., random pin), and the application

uses a display (if present) to communicate with the user. In addition, the benchmark

uses a cryptographic library and stores sensitive data (e.g., hashes of generated pins).

This is an event-driven benchmark.

Firmware Updater: This benchmark demonstrates a remote firmware update.

On power up, the firmware updater starts a receiver process. It receives the firmware

size followed by the firmware, after writing the firmware to flash it is executed. Prac-

tical security mechanisms need to be compatible with firmware updates, as vulnera-

bilities targeting firmware updates have been a target of attacks [103].

Connected Display: The connected display receives a set of compressed images

from a remote server. It decompresses the images and shows them on the display.

It also saves each image to file. The large code present in such application (e.g.,

networking library, image compression library) makes measuring the maximum code

region ratio and ROP resiliency more relevant.

3.6 Evaluation Framework

The goal of the evaluation framework is: (1) to enable measuring the metrics

explained in section 3.3; (2) to automate the evaluation process of the BenchIoT

benchmarks.
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Automating the evaluation of IoT-MCUS is important since evaluating IoT-MCUS

is often a tedious task as it relies on manual measurements. Another option is the

use a commercial hardware debugger. To avoid the limitations of both options, the

BenchIoT framework follows a software based approach to collect its metrics. That

is, BenchIoT does not require any extra hardware to collect its metrics (except for the

energy measurement). This is achieved by only relying on the ARMv7-M architecture.

The BenchIoT evaluation framework consists of three parts: (1) a collection of

Python scripts to automate running and evaluating the benchmarks; (2) a collection

of Python scripts to measure the static metrics; (3) a runtime library—which we refer

to hereafter as the metric collector library—written in C, that is statically linked to

every benchmark to measure the dynamic metrics.

3.6.1 Static Metrics Measurements

We collect the static metrics explained in Figure 3.3 by parsing the binary image

of each benchmark. To collect static RAM usage and Flash usage we use the size

utility and the results are measured according to the address space and name of the

region.

Unlike the previous static metrics, security static metrics require different tools.

First, for the number of ROP gadgets we use the ROP gadget compiler [91]. For

the second static security metric, the number of indirect calls, we parse the output

of objdump and count the static number of indirect branch instructions (i.e., BX and

BLX). However, in the ARMv7-M architecture the same instruction can be used for

a return instruction (i.e., backward edges) by storing the return address in the link

register (LR). Thus, to measure the indirect calls (i.e., forward edges) we count branch

instructions that use a register other than the link register.
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3.6.2 Metric Collector Runtime Library

The goal of the metric collector library is to allow transparent and automatic

measurement of dynamic metrics to the user. That is, it should not limit the resources

available to the user (e.g., using a timer) or limit the functionality of the system. The

metric collector uses the DWT unit cycle counter to measure the execution cycles for

dynamic metric in Figure 3.3, such as the total privileged cycles or the sleep cycles.

The DWT cycle counter provides precise measurement since it runs at the system

clock speed. The metric collector library uses a global data structure that contains

a dedicated variable for each of its collected metrics. Each variable is updated by

reading the DWT cycle counter.

In order to provide transparent evaluation for the developer, the static library

remaps some of the CMSIS library functionality to the BenchIoT library. The

remapped CMSIS functions are instrumented to collect the metrics automatically

at runtime. As an example, since the WFI instruction puts the processor to sleep till

it is woken up by an interrupt, the remapped function intercepts the WFI call to track

sleep cycles. A user can call the CMSIS functions normally, and the metric collector

library will transparently collect the metrics. Another option for such instrumenta-

tion is to use a binary re-writer [104]. However, such a method relies on commercial

non-open source software (i.e., IDA-Pro) and is thus not compatible with the goals

of BenchIoT.

The second goal for the metric collector library is to automatically measure dy-

namic metrics such as the total privileged cycles. To achieve this, the metric collector

automatically tracks: (1) privileged thread cycles; (2) all cycles of exception handlers.

Measuring privileged thread cycles is done by instrumenting the set CONTROL()

CMSIS call to track changes between privileged and unprivileged user modes. Mea-

suring execution cycles of exception handlers poses several challenges.

First, while some exception handlers like SVC (i.e., system calls) can be measured

by manual instrumentation to the SVC handler, other exception handlers like inter-
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rupt requests vary in the number of handler present and API used depending on the

underlying hardware. Hence, they cannot be manually instrumented. Second, the

hardware handles exception entry and exit, and there is no software path that can be

instrumented. When an exception occurs, the hardware looks up the exception han-

dler from the vector table, pushes the saved stack frame, and redirects execution to

the exception handler. When the exception finishes, the hardware handles returning

using the saved stack frame and special values stored in the link register LR.

To overcome these limitations, the metric collector library controls the vector table

in order to track exception handlers. As shown in Figure 3.4, before the main applica-

tion the metric collector library switches the vector table to point to the one controlled

by itself. With this setup, when an exception occurs (e.g., Exception Handler100),

the hardware will redirect the execution to the BenchIoTTrampoline function ¶.

To remember the special value for exception exit, BenchIoTTrampoline saves the

value of LR. Next, it resolves the actual handler by reading the Interrupt Control and

State Register (ICSR). It initiates the measurement and redirects the execution to

the original handler ·, which invokes Exception Handler100 ¸. After the original

handler has finished, execution returns to BenchIoTTrampoline ¹, which ends the

measurement and returns normally by using the saved LR value. The dynamic met-

rics measured by the metric collector are sent at the end of the benchmark through

a UART to the user’s machine. These are received automatically by the evaluation

framework and stored to a file.

3.7 Evaluation

To demonstrate how the metrics described in section 3.3 enable evaluation of

proposed security defenses, we evaluated the BenchIoT benchmarks with three defense

mechanisms. We also compare the complexity of our benchmarks to that of existing

embedded benchmarks.
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Fig. 3.4. Exception handlers tracking with BenchIoT.



50

3.7.1 Defense Mechanisms

The first defense is ARM’s Mbed-µVisor [105]. The µVisor is a hypervisor that en-

forces the principle of least privilege by running all application code in non-privileged

mode. Only µVisor’s code and parts of the OS run in privileged mode.

The second is a remote attestation mechanism drawn from well established at-

testation defenses [14, 106–108], and is purposed to authenticate the integrity of the

code residing on the device. The remote attestation mechanism uses a real-time task

that runs every 25ms in a separate thread to read the code in blocks, hash it, then

send the hashed block to the server to verify the code integrity. At initialization, the

remote attestation configures the MPU to save the code for reading and hashing the

application in a special region in flash that is only accessible in privileged mode.

The final defense mechanism is a data integrity mechanism we draw from [12,105,

109,110] that provides data integrity through memory isolation. Our implementation

moves sensitive data from RAM to a SECURE DATA REGION in Core Coupled RAM

(CCRAM) at compile time. CCRAM is an optional memory bank that is isolated

from RAM. It provides faster access to its data than RAM but has smaller size. The

secure data region is accessible in privileged mode only. It is enabled before accessing

the sensitive data and is disabled afterwards. The sensitive data depends on the

underlying benchmark (e.g., Flash IAP in firmware updater). It is important to note

that the goal of our security evaluation is to demonstrate how BenchIoT metrics

can help evaluate existing defense mechanisms with respect to security benefits and

performance overhead. It is not to propose new security mechanisms. The BenchIoT

benchmarks are built with the standard configuration of IoT-MCUS and popular

OSes to reflect real security challenges of current systems. For example, the baseline

is evaluated using the default configuration of Mbed-OS, which means the MPU is

not enabled and DEP is not supported.

We evaluated both the baseline and defense mechanisms on the STM32F479I-

Eval [38] board. Measurements were averaged over five runs for each benchmark.
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Note that since Mbed-µVisor and remote attestation require an OS (i.e., remote

attestation requires a separate thread), it was only evaluated for the OS benchmarks.

3.7.2 Performance and Resource Usage Evaluation

Figure 3.5 shows the performance evaluation. For the OS benchmarks, the total

runtime shows a modest runtime overhead for all mechanisms. The highest overhead

occurs for remote attestation at 2.1% for firmware updater. Thus, from the viewpoint

of runtime overhead, all the security mechanisms appear feasible for all the bench-

marks running on IoT platforms. However, the story is more nuanced when we look

at the effect of the security mechanisms on sleep cycles. The µVisor has no sleep

cycles, which has an adverse effect on energy consumption. The µVisor disables sleep

because of incompatibility issues [111] since implementation of sleep function differs

depending to the underlying hardware (i.e., HAL library). Some HAL implementa-

tions break the privilege separation enforced by the µVisor, and as a result the µVisor

goes into idle loop instead of entering sleep mode. The remote attestation mecha-

nism decreases sleep cycles since it runs in a separate thread with a real-time task

every 25ms, thus, the OS will run the remote attestation mechanism instead of en-

tering sleep mode. On the other hand, the data integrity mechanism shows negligible

change for sleep cycles.

Note that the reduction in runtime overhead for the connected display benchmark

with µVisor occurs because the benchmark was configured to exclude the display.

Porting the display functionality to the µVisor is a manual effort and is orthogonal

to our goals of evaluating the security characteristics of the µVisor. Thus, to limit

our efforts we utilize the option available by BenchIoT to run a benchmark without

the Display Serial Interface (DSI) as mentioned in subsection 3.4.3.

For the bare-metal benchmarks, the data integrity mechanism shows similar over-

head for the total runtime cycles as its OS counterpart. Moreover, in all bare-metal
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benchmarks, there is no sleep cycles because it is lacking the sleep manager provided

by the Mbed-OS.

In order to collect the metrics in Figure 3.5 and all other dynamic results, the

evaluation framework used the metric collector runtime library. As shown in Fig-

ure 3.5(c), the metric collector library has a low average overhead of 1.2%.

Figure 3.6 shows a comparison of the memory usage overhead. The µVisor and

remote attestation mechanisms show an increase in memory usage overall. The remote

attestation shows a large increase heap and stack usage (over 200%) since it requires

an additional thread with a real-time task. However, it shows less than 30% increase

in RAM since the larger portion of of RAM usage is due to the global data and bss

regions. The µVisor requires additional global data and thus show a larger increase in

RAM. Both require additional code and thus increase Flash usage. The data integrity

mechanism for both the OS and bare-metal benchmarks change some local variables

to globals and moves them to CCRAM. Thus, they show negligible effect on memory

overall. Notice that data integrity mechanism is different between the bare-metal and

the OS benchmarks. The bare-metal benchmarks are consistently smaller than their

OS counterparts. As mentioned earlier in section 3.5, the bare-metal benchmarks

differ in their implementation although they provide the same functionality. These

differences are also manifested in the Flash metrics.

3.7.3 Security Evaluation

Minimizing privileged execution: Minimizing privileged execution is a desired

security property (subsection 3.3.1). However, as shown in Figure 3.7, the remote

attestation and data integrity mechanisms (for both OS and bare-metal) share the

risk of over-privileged execution that are present in the insecure baseline, since they

do not target minimizing privileged execution. Even with these defenses applied,

almost the entire application runs in privileged mode (e.g., 98.9% for Smart-light

using remote attestation in Figure 3.7(a)). The µVisor, however, shows the highest
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Fig. 3.5. Summary of BenchIoT performance metrics for µVisor, Remote
Attestation, (RA) and Data Integrity (DI) defense mechanisms overhead
as a % of the baseline insecure applications. BM: Bare-Metal.
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Table 3.3.
Summary of BenchIoT memory isolation and control-flow hijacking met-
rics for Mbed-µVisor, Remote Attestation (RA) and Data Integrity (DI)
defense mechanisms overhead as a percentage of the baseline insecure ap-
plications. BM: Bare-metal

Defense Type Benchmark
Metric

Max. Code

Reg. ratio

Max. Data

Reg. ratio
# ROP gadgets # Indirect calls DEP

µVisor (OS)

Smart-light 0.0% 0.0% 10,990 (29.9%) 207 (14.4%) 7

Smart-thermostat 0.0% 0.0% 12,087 (31.1%) 199 (11.8%) 7

Smart-locker 0.0% 0.0% 12,318 (28.6%) 211 (13.4%) 7

Firmware Updater 0.0% 0.0% 10,364 (32.8%) 190 (11.8%) 7

Connected display 0.0% 0.0% 11,478 (-4.3%) 198 (-63.5%) 7

RA (OS)

Smart-light -0.2% 0.0% 8,833 (4.4%) 195 (7.7%) X

Smart-thermostat -0.2% 0.0% 9,765 (5.9%) 197 (10.7%) X

Smart-locker -0.2% 0.0% 10,408 (8.6%) 205 (10.2%) X

Firmware Updater -0.2% 0.0% 8,556 (9.7%) 189 (11.2%%) 7

Connected display -0.1% 0.0% 12,603 (5.1%) 561 (3.5%) X

DI (OS)

Smart-light 0.0% -0.1% 8,398 (-0.8%) 181 (0.0%) 7

Smart-thermostat 0.0% -0.1% 9,231 (0.1%) 178 (0.0%) 7

Smart-locker 0.0% -0.8% 9,567 (-0.1%) 186 (0.0%) 7

Firmware Updater 0.0% -0.01% 7,878 (1.0%) 170 (0%) 7

Connected display 0.0% -1.8% 12,082 (0.8%) 542 (0%) 7

DI (Bare-metal)

Smart-light 0.0% -0.1% 6,040 (0.4%) 103 (0.0%) 7

Smart-thermostat 0.0% -0.2% 6,642 (1.0%) 98 (0.0%) 7

Smart-locker 0.0% -1.1% 7,015 (0.3) 108 (0.0%) 7

Firmware Updater 0.0% -0.01% 5,332 (0.4%) 90 (0.0%) 7

Connected display 0.0% -2.6% 9,697 (2.2%) 462 (0.0%) 7

reduction in privileged execution. For example, only 1.4% of Smart-light runs in

privileged mode. The Firmware-updater shows the lowest reduction for µVisor (i.e.,

55.4%) since it requires privileges to execute correctly (i.e., writing to Flash and

running the new firmware). However, the µVisor still reduces the total privilege cycles

by 44%. These improvements are expected since the µVisor runs all-application code

in non-privileged mode, except for the µVisor and OS code. The increase in SVC

cycles in all defenses is because they utilize system calls to execute their code. For
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example, the highest increase in SVC cycles is remote attestation that uses an SVC

every 25ms to hash the firmware. Since the Smart-light application is the longest-

running benchmark, it will intuitively have the largest increase in SVC cycles (i.e.,

2,173.7%). The percentage of the increase is not shown in bare-metal benchmarks

since the baseline does not use SVC calls.

Enforcing memory isolation: The insecure baseline application allows access

to all code and data, thus its maximum code region ratio and maximum data region

ratio are both 1.0. Enforcing memory isolation reduces both ratios. The remote

attestation mechanism isolates its own code in a separate region using the MPU.

Thus, the maximum code region is the rest of the application code other than the

remote attestation code—the improvement in the maximum code region ratio is 0.2%

in Table 3.3. Similarly, the data integrity mechanism improves the maximum data

region ratio. However, for both mechanisms 99% of the code and data is still always

accessible to the normal application. The µVisor enables manual data isolation be-

tween threads using special API calls. However, we did not use this feature since we

aim to evaluate the general characteristics of defenses and not develop our own.

Control-flow hijacking protection: As shown in Table 3.3, none of the mech-

anisms reduce the attack surface against code reuse attacks (i.e., ROP gadgets and

indirect calls). The µVisor and remote attestation mechanisms increase the code size

of the application, intuitively they will increase the number of ROP gadgets and indi-

rect calls. The largest increase in the number of ROP gadgets occurs with the µVisor

at an average of 23.6% for the five benchmarks since it requires larger code to be

added. The data integrity mechanism on the other hand only instruments the bench-

mark with small code to enable and disable the secure data region, and thus causes

limited increase in the number of ROP gadgets and indirect calls. The reduction in

the number of ROP gadgets and indirect calls for the connected display application of

the µVisor is because the display driver was disabled, and thus its code was not linked

to the application. An option to improve these defenses against code reuse attacks

is to couple them with established mechanisms such as CFI. Moreover, an important
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Fig. 3.7. Summary of BenchIoT comparison of minimizing privileged ex-
ecution cycles for Mbed-µVisor, Remote Attestation (RA) and Data In-
tegrity (DI) defense mechanisms as a % w.r.t the total runtime execution
cycles. The overhead as a % of the baseline insecure applications is shown
above each bar. BM: Bare-Metal

aspect in defending against control-flow hijacking is enabling DEP. However, only the

remote attestation configures the MPU to enforce DEP. The µVisor does not enforce

DEP on heap. A similar observation was made by Clements et al. [9]. The data

integrity mechanism enables all access permissions to the background region (i.e., all

the memory space) then configures the MPU for various regions it is interested in.

However, regions that are not configured remain with the writable and executable

permissions, thus breaking DEP.

3.7.4 Energy Evaluation

Now we look at the energy implication of the benchmarks (Figure 3.8). While

all mechanisms showed similar runtime overhead, the energy consumption for the
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µVisor mechanism increases significantly for the Smart-light benchmark. The Smart-

light benchmark spends large amounts of time in its sleep cycle, and since the µVisor

disables sleep cycles, the increase is pronounced in this application. Since the µVisor

disables sleep cycles, it consistently has an adverse effect on energy consumption for

all applications and this correlates to a drop in sleep cycles as shown in Figure 3.5.

Even if security mechanisms provide similar runtime overhead (e.g., data integrity

and µVisor for Smart-light), the difference in energy consumption can vary widely,

with an increase of 20% for µVisor. Such a conclusion cannot be obtained simply

from the metric of the total runtime overhead, but only when used in conjunction

with our metric of sleep cycles or energy consumed.

For the bare-metal benchmarks, the lack of an OS results in a lack of the sleep

manager, and thus the device keeps polling and drawing the same average power all

throughout. This can be noticed by the lack of sleep cycles in Figure 3.5 for the bare-

metal benchmarks. Thus, difference in energy consumption is caused by the increase

in total runtime due to the defense mechanism.

3.7.5 Code Complexity Comparison to BEEBS

To measure the complexity of BenchIoT benchmarks, we measure the cyclomatic

complexity [112] and compare to the BEEBS [23] benchmarks. BEEBS has been used

for security evaluation in embedded systems by EPOXY [8] and for energy evaluation

by many prior works [113–115]. We exclude HAL libraries from the measurements

for both benchmark suites as they differ based on the vendor and the hardware as

discussed in subsection 3.4.4. This provides a consistent comparison without the

influence of the underlying hardware.

Table 3.4 shows the comparison by computing the minimum, maximum, and me-

dian cyclomatic complexity and lines of code across all benchmarks. BenchIoT shows

much larger numbers—median complexity is higher by 162X (bare-metal) and 343X

(Mbed OS). The results are expected since BEEBS is designed to evaluate the energy
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Table 3.4.
Comparison of code complexity between BenchIoT and BEEBS.

Benchmark Suite
Cyclomatic Complexity Lines of Code

Minimum Maximum Median Minimum Maximum Median

BEEBS 3 1,235 16 22 6,198 97

BenchIoT (Bare-metal) 2,566 3,997 2,607 17,562 23,066 17,778

BenchIoT (OS) 5,456 6,887 5,497 31,828 37,331 32,038

efficiency of the architecture, and not meant to provide stand-ins to real IoT applica-

tions. For example, BEEBS excludes peripherals and does not incorporate network

functionality.

3.8 Related Work

Numerous benchmarking suites have been proposed by the systems research com-

munity. However we focus our discussion on benchmarks targeting MCUS and IoT-

MCUS. Table 3.5 shows a comparison between BenchIoT and other benchmarks.

Desktop benchmarks: Soteria [118] is a static analysis system targeting IoT plat-

forms (e.g., Samsung’s SmartThings market), which are assumed to be connected to

the cloud. IoTAbench [119] and RIoTBench [120] are benchmarks for large-scale data

analysis of IoT applications. BenchIoT however targets IoT-MCUS.

High-end embedded systems benchmarks: Mibench [21] is a set of 35 general pur-

pose applications targeting embedded systems that are deigned to evaluate the per-

formance of the system. The benchmarks are user-space applications, with some of

the benchmarks assuming the presence of an OS and file system. ParMiBench [121]

is an extension of Mibench targeting multi-core embedded processors. Other bench-

marks target specific applications of embedded systems. MediaBench [122] targets

multimedia applications. DSP-stone [123] evaluates compilers for Digital Signal Pro-

cessing (DSP) applications for embedded systems. BenchIoT benchmarks differ from
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Table 3.5.
A Comparison of benchmarks and their categorization with respect to task
type, networking communication, and peripherals between BenchIoT and
other benchmarking suites.

Benchmark
Task Type Network

Connectivity
Peripherals

Sense Process Actuate

BEEBS [23] X

Dhrystone [22] X

CoreMark [85] X

IoTMark [116] X X partially (bluetooth only) only I2C

SecureMark [117] X

BenchIoT X X X X X
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the above since we focus on IoT benchmarks, enabling security evaluations of IoT-

MCUS, and incorporating networking.

MCUS Benchmarks : The Worst-Case Execution Time (WCET) [124] evaluates

the worst execution time for real-time systems. Dhrystone [22] is a synthetic bench-

mark to evaluate integer performance. BEEBS [23] is a collection of benchmarks from

Mibench, WCET, DSP-stone, and the Livermore Fortran kernels [125] to evaluate en-

ergy consumption for bare-metal systems. CoreMark [85] targets evaluating processor

performance. However, all target a specific metric, do not utilize peripherals, and do

not show most of the characteristics of IoT applications. In contrast, BenchIoT is

aimed to enable security evaluation, it incorporates IoT application characteristics,

and covers both bare-metal and OS benchmarks.

IoT-MCUS benchmarks : IoTMark [116] evaluates the energy overhead of wireless

protocols such as Bluetooth. SecureMark [117] measures performance and energy for

implementing TLS on IoT edge nodes, it does not however demonstrate connectivity.

BenchIoT on the other hand demonstrates TCP/IP connectivity as well as security,

performance, memory, and energy evaluation.

3.9 Discussion

Extending BenchIoT: The flexible design of BenchIoT enables users to extend it

with their customized metrics or benchmarks. For example, a user interested in cycles

spent executing function foo can extend the global data structure of the metric col-

lector library, instrument foo with the BenchIoT API at the beginning and at the end

of foo, and add the metric to the result collection interface. Only 10 LoC are needed

for this customized metric. Moreover, users can evaluate their customized bench-

marks using the BenchIoT evaluation framework. The users customized benchmark

can use external peripherals (e.g., BLE) that were not included in core BenchIoT

benchmarks. We note that the reason for excluding external peripherals from the five

benchmarks is portability. For example, to add BLE users will need to buy an addi-
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tional hardware module for BLE and use its non-portable software libraries. Thus,

external peripherals were excluded from the core benchmark suite. Since users can

easily add their own applications and evaluate them, we leave the choice of adding

external peripherals to the users. More details are available at [88].

Portability of BenchIoT: We believe BenchIoT can be extended to ARMv8-M, as

it shares many of the characteristics of ARMv7-M (i.e., include the TrustZone ex-

ecution). ARMv8-M however is a fairly new architecture, and a limited number of

boards are available at the time of writing. We leave this as future work. For other

architectures, the concepts of BenchIoT are applicable. However, since BenchIoT fol-

lows a software-based approach, the main task is porting the metric collector runtime

library, since it handles exception entry and exit. These are architecture dependent

(e.g., calling conventions, registers) and require architecture dependent implementa-

tion.

3.10 Conclusion

Benchmarks are pivotal for continued and accelerated innovation in the IoT do-

main. Benchmarks provide a common ground to evaluate and compare the different

security solutions. Alternatively, the lack of benchmarks burdens researchers with

measurements and leads to ad-hoc evaluations. For IoT-MCUS, the problem is exac-

erbated by the absence of commonly measured evaluation metrics, the tedious mea-

surement process, and the multi-dimensional metrics (performance, energy, security).

Concerned by the rising rate of attacks against IoT devices and the ad-hoc evalua-

tion of its defenses, we developed BenchIoT, a benchmarking suite and an evaluation

framework for IoT-MCUS to enable evaluating and comparing security solutions.

The suite is comprised of five representative benchmarks, that represent salient IoT

application characteristics: network connectivity, sense, compute, and actuate. The

applications run on bare-metal or a real-time embedded OS and are evaluated through

four types of metrics—security, performance,memory usage, and energy. We illustrate
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how the evaluation metrics provide non-trivial insights, such as the differing effects

of different defenses on consumed energy, even though both show a similar runtime

overhead. BenchIoT benchmarks are open sourced freely available to the research

community [88].
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4. µRAI: SECURING EMBEDDED SYSTEMS WITH

RETURN ADDRESS INTEGRITY

Embedded systems are deployed in security critical environments and have become

a prominent target for remote attacks. Microcontroller-based systems (MCUS) are

particularly vulnerable due to a combination of limited resources and low level pro-

gramming which leads to bugs. Since MCUS are often a part of larger systems,

vulnerabilities may jeopardize not just the security of the device itself but that of

other systems as well. For example, exploiting a WiFi System on Chip (SoC) allows

an attacker to hijack the smart phone’s application processor.

Control-flow hijacking targeting the backward edge, such as Return-Oriented Pro-

gramming (ROP) remains a threat for MCUS. Current defenses are either susceptible

to ROP-style attacks or require special hardware such as a Trusted Execution Envi-

ronment (TEE) that is not commonly available on MCUS.

We present µRAI 1, a compiler-based mitigation to prevent control-flow hijacking

attacks targeting backward edges by enforcing the Return Address Integrity (RAI)

property on MCUS. µRAI does not require any additional hardware such as TEE,

making it applicable to the wide majority of MCUS. To achieve this, µRAI intro-

duces a technique that moves return addresses from writable memory, to readable

and executable memory. It re-purposes a single general purpose register that is never

spilled, and uses it to resolve the correct return location. We evaluate against the

different control-flow hijacking attacks scenarios targeting return addresses (e.g., arbi-

trary write), and demonstrate how µRAI prevents them all. Moreover, our evaluation

shows that µRAI enforces its protection with negligible overhead.

1https://github.com/embedded-sec/uRAI
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4.1 Introduction

Network connected embedded systems, which include the Internet of Things (IoT),

are used in healthcare, industrial IoT, Unmanned Aerial Vehicles (UAVs), and smart-

home systems [1]. Although these devices are used in security and privacy critical

applications, they are vulnerable to an increasing number of remote attacks. At-

tacks on these systems have caused some of the largest Distributed Denial-of-Service

(DDoS) attacks [2, 3], hijacked the control of UAVs [5, 6], and resulted in power grid

blackouts [28] among others.

A significant, yet particularly vulnerable portion of embedded devices are micro-

controller -based embedded systems (MCUS). MCUS run a single binary image either

as bare-metal (i.e., with no OS), or are coupled with a light-weight OS (e.g., Mbed-OS

or FreeRTOS [29, 30]). Existing solutions to protect MCUS [8, 9, 12–18, 46, 47, 126],

are still not deployed as they either require special hardware extensions, incur high

overhead, or have limited security guarantees. So far, deployed MCUS lack essential

protections that are available in their desktop counterparts [8, 9, 12], such as Data

Execution Prevention (DEP), stack canaries [7], and Address Space Layout Random-

ization (ASLR). More importantly, vulnerabilities of these systems are not confined

to the device itself, but can be a prominent attack vector to exploit a more powerful

system. For example, a WiFi System-on-Chip (SoC) can be used to compromise the

main application processor of a smart phone as shown by Google’s P0 [11]. These

attacks gain arbitrary code execution by hijacking the control-flow of the application.

Control-flow hijacking on MCUS and desktop systems originates from memory

safety or type safety violations that corrupt indirect control-flow transfers. This can

be through the forward edges (i.e., function pointers, and virtual table pointers) or

backward edges (i.e., return addresses). On MCUS, Control-Flow Integrity (CFI) [65]

can be applied to protect forward edges as was done in desktop systems [64, 127].

These mechanisms reduce the attack surface of forward edges since the target set

of indirect calls for CFI is much smaller on MCUS (i.e., the highest is five in our
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evaluation). In contrast, return addresses remain prime attack targets for adversaries

on MCUS. This is because return addresses are plentiful in any application, easier to

exploit, and more abundant than forward edges. When DEP is enforced, attackers

leverage Return-Oriented Programming (ROP) [55] to launch attacks. ROP is a code

reuse attack targeting backward edges, allowing an attacker to perform arbitrary

execution. ROP remains a viable attack vector even in presence of other defenses

such as stack canaries [7, 47], and randomization [8].

Protecting MCUS from control-flow hijacking attacks targeting backward edges,

imposes unique challenges compared to desktop systems. MCUS have constrained

resources (i.e., a few MBs Flash and hundreds of KBs RAM) and lack essential

features required to enforce standard desktop protections. For example, desktop

randomization-based defenses (e.g., ASLR) rely on the OS to randomize the location

of the stack and code layout for each run of the application . However, MCUS use

a single static binary image that is responsible for controlling the application logic,

configuring hardware (e.g., setting read, write, and execute permissions), and en-

forcing security mechanisms. This single binary image—containing the application,

all libraries, and a light-weight OS—is loaded once onto the device and has a single

address space. Changing the stack location for each run is not possible without re-

flashing the firmware to the device. Even then, the stack is located in RAM which

only has tens to hundreds of KBs of physical memory, as opposed to GBs of virtual

memory on a desktop system. Thus, an attacker can have at least approximate prior

knowledge of the device’s physical address space.

While researchers proposed several techniques to improve MCUS security, existing

techniques cannot prevent control-flow hijacking attacks on all backward edges unless

they incur prohibitive runtime overhead. Current defenses protect from control-flow

hijacking through randomization [8,46,47], memory isolation [9,12,46], or CFI [13,14].

However, these defenses only reduce the attack surface, but remain bypassable by

ROP style attacks [57, 68, 128–130]. For example, applying CFI for backward edges

limits the attacker’s ability to divert the control-flow to an over-approximated target
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set, but is still vulnerable to control-flow bending style attacks [68]. An alternative

approach is to rely on information hiding. However, information hiding based de-

fenses [8, 46, 47] are vulnerable to information disclosure [57, 58] and profiling [80]

attacks. Ultimately, the security guarantees of information hiding remain limited

by the small amount of memory available on MCUS. For example, randomizing the

location of a safe-stack [8, 61] only results in a few bits of entropy. A safe stack pro-

tected through Software Fault Isolation (SFI) [59,60] removes the need for information

hiding, but will incur high overhead [63].

Defenses also limit their applicability by requiring special hardware extensions

that are not available for the wide majority of MCUS such as a Trusted Execution

Environment (TEE) [47]. In order to enforce stronger guarantees to protect return

addresses one option is to use a shadow stack [62, 63]. However, a shadow stack

requires hardware isolation to protect it from information disclosure [63, 131]. One

option is using the Memory Protection Unit (MPU), and thus require a system call

to access the protected shadow stack region at each function return [69]. The other

option is to rely on a TEE such as ARM’s TrustZone [13,24]. Both will result in high

overhead (e.g., 10–500% [13]). More importantly, TEEs are not commonly available

on MCUS [47]. The most common architecture currently and for the foreseeable

future is ARMv7-M, which does not provide a TEE. Moreover, ARMv7-M is still

actively used and deployed in new MCUS designs [132–136], requiring protections via

software updates [43, 44]. Without such protections, control-flow hijacking attacks

such as ROP remain a threat to the vast majority of MCUS.

In order to prevent ROP style attacks against many currently deployed MCUS, a

defense must enforce the Return Address Integrity (RAI) property without relying on

extra hardware (e.g., TEE) or incurring large overhead. The RAI property ensures

that return addresses are never writable except by an authorized instruction. All

control-flow hijacking attacks targeting backward edges require corrupting the return

address by overwriting it. Enforcing RAI eliminates all such attacks since return

addresses are never writeable by an attacker. This is different from existing defenses
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such as CFI implementations [65], randomization, or stack canaries. These defenses

do not enforce RAI since return addresses remain writable. Such defenses only limit

the use of a corrupted return address, and thus remain vulnerable to ROP.

Enforcing the RAI property on MCUS without a TEE is challenging as return

addresses reside in writable memory (e.g., pushed to or popped from a stack). This

leads to three options to enforce RAI on MCUS and protect return addresses. The

first is enforcing SFI or allocating a protected privileged region of return addresses

(e.g., shadow stack [69]) for the entire execution of the application. However, this

requires isolating large parts of memory and results in high runtime overhead (i.e.,

5–25% [63, 69, 81]). If SFI is used within the application, it should be limited. An

alternative option is to keep return addresses in a reserved register that is never

spilled to memory or modified by unauthorized instructions. The reserved register

cannot be corrupted directly since it is not memory mapped. However, folding the

entire control-flow chain at runtime within a single register is challenging. The final

option is to remove the need for return addresses by inlining the entire code (i.e.,

since code is in R+X memory). However, this will lead to code size explosion and

require determining all execution paths statically.

Contribution: This chapter presents µRAI, a mechanism that prevents all control-

flow hijacking attacks targeting backward edges by enforcing the RAI property on

MCUS, with a low runtime overhead. µRAI only requires an MPU and the exclusive

use of a general purpose register, both of which are readily available on modern

MCUS. µRAI inserts a list of direct jumps in the code region of each function (i.e.,

in R+X memory), where each jump corresponds to a possible return target (i.e., a

call site) for the function. All functions have a finite set of call sites, and thus have

a finite set of possible return targets. By adding the set of possible return targets

for each function as direct jumps (i.e., in R+X memory, rather than writable stack

memory), a function can return by using the correct direct jump according to the

program execution.
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SR = C

SR ⊕ key2

SR ⊕ key3

func2main
SR ⊕ key1

func1

SR = C ⊕ key1 SR = C ⊕ key1 ⊕ key2

SR = C ⊕ key1 ⊕ key3

SR is initialized to C

Functions read
 SR to resolve
 the correct 

return location

Fig. 4.1. Illustration of encoding SR through an XOR chain. Arrows in-
dicate a call site in the call graph. SR is XORed each time an edge is
walked.

The key to enforce the RAI property is to resolve the correct return target from

the appended list of direct jumps during runtime. At runtime, µRAI provides each

function a uniquely encoded ID (e.g., a hash value) each time the function is exe-

cuted. This ID value is unique and corresponds only to one of the possible return

targets. A function returns by reading the provided ID, and executing the direct

jump corresponding to the given ID. Intuitively, the unique ID µRAI provides must

also be protected by the RAI property (i.e., the ID is only readable), as an attacker

can modify the provided ID to divert the execution of the application. Moreover, it

must be encoded efficiently without incurring high runtime overhead.

µRAI provides each function with its ID by re-purposing and encoding a general

purpose register—hereafter known as the State Register (SR). As shown in Figure 4.1,

the SR is encoded through an XOR chain with hard-coded keys before each call and

XORed again with the same hard-coded key after returning from each call to restore

its previous value. SR is a dedicated register to µRAI only and is never spilled. By

our design an adversary can have full knowledge of what the used keys are, yet cannot

corrupt the SR.

Moreover, µRAI enforces the RAI property even within the execution context

of exception handlers (i.e., system calls and interrupts). Exception handlers exe-

cute in privileged mode, and can execute asynchronously (i.e., interrupts). As shown
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Fig. 4.2. Illustration µRAI’s protections. µRAI prevents exploiting a vul-
nerable function (e.g., func8) to corrupt the return address or disable the
MPU in privileged execution by coupling its SR encoding with exception
handler SFI.
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LLVM: Compile Source

μRAI
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state register.
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Binary

1

LLVM IR

Source code

Fig. 4.3. An overview of µRAI’s workflow.

in Figure 4.2(a), enforcing the RAI property for a function called within an excep-

tion handler requires more than just protecting return addresses. For example, an

attacker can exploit an arbitrary write during an exception to disable the MPU, thus

eliminating any defense relying on the MPU (e.g., DEP). To overcome this limitation,

µRAI enforces SFI on sensitive privileged Memory Mapped I/O (MMIO) such as the

MPU, in addition to encoding SR as shown in Figure 4.2(b). Enforcing SFI within an

exception handler context only has negligible overhead since these are only a limited

portion of the entire application, unlike applying SFI for the entire application.

As shown in Figure 4.3, we implement µRAI as an LLVM extension that takes the

unprotected firmware and produces a hardened binary that enforces the RAI property.

While our prototype focuses on attacks targeting backward edges, we also couple our

implementation with a type-based CFI [82,137,138] to demonstrate its compatibility

with techniques protecting forward edges. µRAI can ensure its security guarantees

and reason about the complete state of application at compile time since it targets

MCUS that have a smaller code size compared to their desktop counter parts. We

evaluate µRAI on five representative MCUS applications and the CoreMark bench-

mark [85]. µRAI shows an average overhead of 0.1%. In summary, our contributions

are:
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• Return Address Integrity property: We propose the RAI property as a

fundamental invariant to protect MCUS against control-flow hijacking attacks

targeting backward edges. The RAI property ensures absence of such attacks

without requiring special hardware extensions.

• Exception handler context protection: We enforce the RAI property even

for privileged and asynchronous executions of interrupts without special hard-

ware extension by coupling SFI with our SR encoding mechanism.

• µRAI: We design and implement a prototype that enforces the RAI property

on MCUS. We evaluate our implementation on CoreMark [85], representative

MCUS applications, and proof-of-concept attacks. Our results show that µRAI

enforces the RAI property with a runtime overhead of 0.1%.

4.2 Threat Model

We assume an attacker with arbitrary read and write primitives aiming to hijack

the control-flow (e.g., via ROP [55]) of the execution and gain control of the underlying

device. Unlike information hiding techniques, we also assume the attacker knows the

code layout. We target MCUS as our underlying system, which execute a single

statically linked binary image. We assume the application is compiled and loaded to

the underlying system safely, i.e., the application is buggy, but not malicious. We

do not assume the presence of any randomization-based techniques (e.g., ASLR) or

stack canaries, due to their shortcomings in our target class of devices as mentioned

above. We assume the device has an MPU enforcing DEP (i.e., Write ⊕ eXecute)

and supports two privilege levels of execution (i.e., privileged and unprivileged).

We complement our prototype with a type-based CFI [82, 137, 138] to protect

forward edges and show our technique is compatible with forward-edge defense mech-

anisms, however, our focus is on protecting backward-edges. The attacker’s aim is to

corrupt a backward-edge to divert control flow. We assume µRAI controls the entire

system (i.e., the application is compiled with µRAI). Since we protect against attacks
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targeting code-pointers, attacks targeting non-control data such as Data-Oriented

Programming (DOP) are out of scope [51].

4.3 Background

MCUS use different architectures with different registers and calling conventions.

However, to understand the implementation of µRAI, we focus our discussion on our

target architecture, the ARMv7-M [40]. ARMv7-M is applied to Cortex-M (3,4,7)

processors, the most widely-deployed processor family for 32-bit MCUS [43,44].

Memory layout: As shown in Figure 4.4, ARMv7-M uses a single physical address

space for all code, data, and peripherals. It uses MMIO to access peripherals and

external devices. The memory model defines 4GB (32bit) physical address space,

however, devices are only equipped with a small portion of it. A high-end Cortex-

M4 [38] has only 2MB Flash for its code region, and only 320KB for RAM.

Memory Protection Unit: To enforce access controls (i.e., read, write, and execute)

on memory regions, ARMv7-M uses an MPU. Unlike the Memory Management Unit

(MMU) present in desktop systems, an MPU does not support virtual addressing,

but rather enforces permissions of physical address ranges. Moreover, MPUs only

support enforcing a limited number of regions (e.g., eight in ARMv7-M [40]).

Privilege modes: ARMv7-M supports two modes of execution: privileged and user

mode. Exception handlers (i.e., interrupts and system calls) are always executed in

privileged mode. User mode can execute in privileged mode by executing a Supervisor

call (SVC), the ARMv7-M system call. In both privileged and user (i.e., unprivileged)

mode, the accessible memory regions can be configured by the MPU. One exception

to the MPU configuration is the System Control Block (SCB), which is only accessible

in privileged mode and remains writable even if the MPU sets the permissions as read

only. The MPU and Vector Table offset Register (VTOR) both reside in the SCB,

and thus remain writable in privileged mode.
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0x60000000

0xE0000000

0xE0100000

Fig. 4.4. ARMv7-M memory layout.

Core registers: ARMv7-M provides 16 core registers. Registers R0–R12 are general

purpose registers. The remaining three registers are special purpose registers. Reg-

ister 13 is the Stack Pointer (SP). Register 14 is the Link Register (LR), and register

15 is the Program Counter (PC). LR is used to store the return address of functions

and exception handlers. If a function does not require pushing the return address to

the stack (i.e., has no callees), the program can use LR to return directly from the

function. This method is more efficient than pushing and popping the return address

from the stack. Since LR is initially reserved for return addresses by ARMv7-M, µRAI

uses it as its choice for the state register, SR.

Call instruction types: A call instruction in ARMv7-M has four possible types,

shown in Table 4.1. Both direct and indirect calls can automatically update LR to

hold the return address (i.e., the instruction following the call site) by using any of

the branch and link instructions in Table 4.1. Subsequent functions push LR on the

stack to store the return address in case they use another branch and link instruction

to call another function.

4.4 Design

µRAI enforces the RAI property by removing the need to spill return addresses

to the stack (i.e., writable memory). Instead, µRAI uses direct jump instructions

in the code region (i.e., R+X only memory) and the SR to determine the correct
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Table 4.1.
A summary of call instructions in ARMv7-M.

Description Instruction

Direct branch b <Label>

Direct branch and link bl <Label>

Indirect branch bx <Register>

Indirect branch and link blx <Register>
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return location. Both the direct jump instructions and the SR are not writable,

and therefore cannot be corrupted by an attacker. This protects against control-flow

hijacking attacks that corrupt return addresses (e.g., ROP [139,140]), even if the code

or its layout is completely disclosed to an adversary.

µRAI achieves this by modifying the program at the function level. Each function

will always have a finite set of possible return targets within the whole application.

Such a target set is obtained through analyzing the firmware’s call graph [141] stati-

cally. At runtime, a function can only have one unique correct return location from

the collected target set corresponding to a given call in the control flow. µRAI adds

a list of direct jumps to the possible return targets as part of the function itself at

compile time. At runtime, the unique return location from the list is resolved by

using the SR.

A key insight in designing µRAI is that no matter how large the list of pos-

sible return targets, µRAI still provides the same security guarantee. This is in

contrast to CFI mechanisms [65], where the security guarantees are reduced by over-

approximating the valid target set. There is no known method to statically compute

a fully precise target sets for CFI [65], while dynamic methods [67] require special

hardware extensions that are not available on MCUS. Thus, an attacker can perform

a control-flow bending style attack by over-writing the return address with a return

target within the over-approximated target set and divert the control-flow [68, 142].

Unlike CFI implementations, µRAI does not allow diverting the control-flow. For

µRAI, corrupting the control-flow requires either: (1) over-writing the direct jump

µRAI uses to return, which is not possible as the direct jump is in R+X memory; or

(2) corrupting the SR. This is again not possible as the SR is never spilled, but only

modified through XOR instructions using hard-coded values in R+X memory.

For µRAI, minimizing the possible return targets only affects the memory over-

head. µRAI encodes SR with a unique value for each possible return target. Each

function adds a direct jump corresponding to each unique value of the SR when the

function is entered as shown in Figure 4.5. Over-approximating the target set in-
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creases the list direct jump instructions for the function. However, the direct jumps

from over-approximation are never executed since, during execution, the SR will never

be encoded with their corresponding values. In the following sections, we describe in

detail how the SR uniquely encodes each return target.

4.4.1 µRAI Terminology

Before discussing the details of µRAI’s design, we first define its main components,

which are illustrated in Figure 4.5.

Function Keys (FKs): These are hard-coded values to encode the value of the

SR at runtime. The SR is XORed with the key before the call to encode the call

location, and after the call to retrieve the previous value of the SR.

Function IDs (FIDs): These are the possible valid encoded values of the SR

when entering each function. Each FID value corresponds only to a single return

target in the application. A function cannot have two FIDs with the same value

corresponding to different return locations. The FID values depend on which FKs we

embed in the code (i.e., FID = SR ⊕ FK).

Function Lookup Table (FLT): FLT is the list of possible FIDs for the function

and their respective return targets.

Target Lookup Routine (TLR): TLR is the policy used to resolve the correct

return location. TLR must be designed with care to maintain negligible runtime

overhead.

4.4.2 Encoding The State Register

A central component in designing µRAI is the use of the SR to enforce the RAI

property. As shown in Figure 4.5, within each function, every FID in the FLT is

associated with a direct jump to a return target. At runtime, a function resolves the

correct return location by reading the value of the SR, and executing the direct jump

where FID = SR. At the beginning of the application, µRAI initializes the SR to a
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known value (i.e., C at ¶). For the rest of the application, µRAI dynamically encodes

the SR according to two methods.

The first is with an XOR chain at each call site. Before the call site, the SR is

XORed with a hard-coded key (·) to provide each function a list of unique values of

the SR (i.e., FIDs), where each FID corresponds to a direct jump to the correct return

location (SR = C ⊕ key1 1 at ¸). To return from a function, the application reads

the current value of the SR and uses the direct jump associated with it (FID = C ⊕

key1 1 → Jump func1 1 at ¹). After returning, the SR is XORed again with the

same hard-coded key (º) to restore its previous value (i.e., C). The same process is

done for the following call sites, and the callee function can resolve the correct return

location by only reading the value or the SR. For example, if SR = C ⊕ key1 2 at ¹,

then func2 was called from the second call site. Thus, func1 2 is the correct return

location and µRAI executes the Jump func1 2 instruction.

The second use of the SR is a special case when handling recursive functions.

Recursive calls may cause a collision in the values of the SR (i.e., FIDs) inside the

recursive function. For example, func2 in Figure 4.5 is a recursive function. Assume

func2 is called from the first call site in func1 (i.e., SR = C ⊕ key1 1). Then, func2

calls itself twice at » (i.e., SR = C ⊕ key1 1 ⊕ any key ⊕ any key), the value of

the SR will be C ⊕ key1 1, thus colliding with the existing FID, and func2 is not able

to distinguish between the call at · and ». Thus, µRAI reserves some predetermined

bits in the SR that serve as a recursion counter. µRAI identifies recursive call sites,

and adjusts its instrumentation. Instead of an XOR instruction, µRAI increments

the recursion counter bits in the SR before the call (»). After the returning from the

call, µRAI decrements the recursion counter (¼). When the recursion counter reaches

zero, the recursive function can return normally using the FLT. Otherwise, it means

the function is still in a recursive call, and returns to itself to decrement the recursion

counter in the SR. We note that recursion is generally avoided in MCUS since they

have fixed memory, and should only occur with a known maximum bound [8, 69].
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µRAI allows bits reserved for the recursion counter to be adaptable according to the

underlying application.

Using the SR as a single value however is prone to path-explosion and thus large

increases in the FLT. It also cannot handle corner cases for recursive calls (e.g.,

indirect recursion). µRAI resolves these issues by partitioning the SR.

4.4.3 SR Segmentation

To encode the SR, µRAI needs to determine the possible call sites (i.e., return

targets) of each function. Thus, the first step in µRAI’s workflow (i.e., Figure 4.3)

is to construct the firmware’s call graph [141]. µRAI uses the call graph to obtain

the possible return targets for each function in the FLT. As mentioned previously

in section 4.4, over-approximating the possible return targets because of imprecisions

in the call graph does not affect the security guarantees of µRAI.

The number of return targets for the function in the call graph provides a minimum

limit for the size of the function’s FLT. That is, if a function is called from three

locations, its FLT can be greater or equal to three, but never less than three. However,

the actual FLT (i.e., FIDs) can be larger than the actual possible call sites of a function

because of path-explosion. Consider the simple call graph in Figure 4.6(a), func3 is

called from two locations (i.e., func1 and func2). Ideally, func3 would have only

two possible values of the SR (i.e., FIDs), and thus an FLT size of two. However,

the FLT size is four in Figure 4.6(a), since it can be reached by multiple paths (i.e.,

two paths from main→func1 or two paths from main→func2). While this does not

affect the security guarantees of µRAI, it affects the memory overhead.

To generate efficient FLTs and minimize the effects of path-explosion, µRAI di-

vides the SR into multiple segments. As shown in Figure 4.6(b), the SR is divided

into two segments. Each function only uses its specified segment. All functions use

segment Enc1, while func3 uses Enc2. Thus, when either func1 or func2 call func3,
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Recursion Counter(s)
(Higher N bits)

Encoded value(s)
(Lower 32-N bits)

Segment 1 …. Segment K Segment M …. Segment 1

Fig. 4.7. Illustration segmenting the state register.

only the second segment (i.e., Enc2) is encoded. This reduces the size of func3’s FLT

to two, as opposed to four without segmentation.

Segmenting SR also enables µRAI to resolve the correct return location in case

of multiple recursive functions in a call path, as each function can use a segment

as a separate recursion counter. In addition, it allows handling other special cases

for recursion (e.g., functions with multiple recursive calls). As mentioned in subsec-

tion 4.4.2, recursion is rare in MCUS [8,69]. Since recursion is discouraged on MCUS,

we provide the details for handling special cases of recursion in Appendix A.

Figure 4.7 shows an overview of the SR. Each part can be divided to multiple

segments. µRAI automatically enables the number and size of segments to be adapt-

able depending on the underlying application. In the next sections, we will use the

encoded value for our discussion as it is the more general case in MCUS. The concepts

however cover both cases.

4.4.4 Call Graph Analysis and Encoding

µRAI performs several analyses on the call graph to: (1) calculate the number and

size of the SR segments; (2) generate the FKs for each call site to populate the FLTs

with its FIDs. To calculate the size and number of segments needed, µRAI uses a

pre-defined value of the maximum possible FLT size within an application—which we

refer to hereafter as FLTMax. This value can be set by the user or is a limit defined

by the underlying architecture. Since each segment in the SR can be equal to or lower

than FLTMax, µRAI divides the SR into equal segments each log2(FLTMax) bits.
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To assign each function a segment in the SR, µRAI performs a Depth First Search

(DFS) of possible call paths for the application to calculate the FLT size for each

function without segmentation. When µRAI finishes the DFS analysis, it checks the

FLT size for each function. Functions with an FLT size < FLTMax are assigned to

the first segment of the SR. Other functions with FLT ≥ FLTMax are marked to use

the next segment, and DFS is repeated only on marked functions and their callees to

calculate their new FLT size when using the second segment. As shown in Figure 4.6,

segmentation reduces the size of the FLT in marked functions (i.e., 50% for func3’s

FLT). When the DFS analysis completes, the FLT size for each marked functions is

rechecked. Marked functions with an FLT size < FLTMax are assigned to the second

segment, and other functions are marked for the next iteration of DFS. The analysis

is repeated until all functions are assigned to a segment and each function has an

FLT size < FLTMax.

However, since the number of segments in the SR is ultimately limited, it is

possible that some call graphs will require more segments than is available in the SR.

Consider the call graph illustrated in Figure 4.8, both func10 and func11 require

additional segments in the SR, or an FLT with size > FLTMax. To overcome this

limitation, µRAI partitions the call graph. µRAI instruments calls to these functions

with an inlined system call to: (1) save the current SR to a privileged and isolated

region—which we call hereafter as the safe region; (2) reset the SR to its initial value.

The system call only occurs when calling into func10 and func11, however callees

of func10 and func11 do not require a system call, and are instrumented normally.

When returning to the prior partition, another system call restores the previous SR

to enable func7 and func8 to return correctly. Thus, µRAI can scale to any call

graph, regardless of path explosion. However, it is desirable to minimize such system

call transitions in order to maintain a low overhead.

Next, µRAI generates the FKs and populates the FLT for each function with its

FIDs. Each FID results from XORing the SR with an FK before the call site to

encode the SR. The FID values for each function must be unique (i.e., no collisions).
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Therefore, FKs are chosen to avoid repeating FIDs within each function. However,

collisions are allowed across functions. For example, if key1 1 is chosen as zero

in Figure 4.5, func1 and func2 can have the same FID value of C (i.e., func2 will

have FIDs of C and C ⊕ key1 2). These FIDs correspond to different return targets

within each function.

To generate the FKs and FIDs efficiently, µRAI uses a modified Breadth First

Search (BFS). µRAI records the possible depths of each function in the call graph

(e.g., root functions have a depth of zero) from its previous DFS analysis. It traverses

each function in the call graph once by ordering functions according to their maximum

call depth. Starting from root functions (i.e., depth zero), µRAI generates the FKs

for each call site such that the result will not cause a collision. Once the FKs for all

functions in the current depth level are generated, µRAI generates the FKs for the

next level until all the FKs and FID are generated. Using our method is more efficient

than performing DFS again to generate the FKs and FIDs. Applying DFS to generate

the FKs and FIDs can cause large delays in compile time, since once a collision occurs,

DFS must be performed recursively starting from the violating call site to update all

its callees (i.e., until reaching the call graph’s leaves). However, using our modified

BFS, any collision is directly resolved between the caller and callee functions, without

the need for a costly updating process. Since applications on MCUS are smaller in

size, our analysis explores the possible states of the call graph.

4.4.5 Securing Exception Handlers and The Safe Region

An important aspect for defense mechanisms targeting MCUS is enabling protec-

tions for exception handlers. Interrupts execute asynchronously, making their protec-

tion more challenging than regular code. An interrupt can execute during any point

in the application, thus it is not possible to find a particular caller for an interrupt.

However, this makes interrupts, and exception handlers in general appear as root

functions in the call graph, since there is no exact call location in the call graph, but
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rather they execute responding to an external event (e.g., a user pushing a button).

Consider Figure 4.8; root functions other than main are exception handlers.

At exception entry, µRAI saves the SR to the safe region, and resets the SR to

its initial value. Thus, at any time the exception handler executes, it will always

have the same SR value (i.e., the initial SR value). Callees of exceptions handlers are

then instrumented the same way regular functions are instrumented. At exception

exit, µRAI restores the saved SR value from the safe region so that code prior to the

exception executes correctly, and exits the exception context normally as defined by

the underlying architecture.

However, in order for µRAI to enforce the RAI property for exception handlers,

it needs to ensure the safe region is never corrupted within an exception handler.

The safe region resides in a privileged region, and thus cannot be corrupted in user

(i.e., unprivileged) mode. However, protecting the safe region during exception han-

dlers (i.e., privileged) requires additional measures since an arbitrary write within an

exception handler can access the safe region.

To protect the safe region, µRAI marks exception handler functions and any

function that can be called within an exception handler context. µRAI then masks

every store instruction in the marked functions to enforce SFI [59, 60] of the safe

region (e.g., clear most significant bit of the destination). This makes the safe region

only accessible at exception entry and exit, which are handled by µRAI. An attacker

cannot divert the control-flow to µRAI’s exception entry and exit instructions that

access the safe region since exception execution is protected by µRAI through the SR

and type-based CFI. As shown in Figure 4.8, functions called within an exception

handler amounts to only a limited portion of the functions in the application. This

is because interrupts must execute quickly and in fixed time, so that the application

can return to the normal execution prior to the interrupt for correct functionality.

Enforcing SFI for every store can degrade the performance. However, enforcing SFI of

the safe region for only functions called within an exception handler context, enables
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func2

func3

func8

func5

func7

func4

func1

main

func11

Exception_handler1

Exception_handler2

func6

func14

func13
func10

func9

: Regular function : Root function

: Function called in exception handler context

: Requires reseting the SR

Fig. 4.8. Conceptual illustration of µRAI’s call graph analysis.

an efficient implementation and limit the effect on the runtime overhead since many

of the instrumented functions execute for a limited portion of application.

4.4.6 Instrumentation

µRAI ensures the RAI property by instrumenting the application in six steps.

First, it instruments the call sites with an XOR instruction before the call instruction

to encode the SR, and after it to decode its previous value. In the case of recursion, it

increments the recursive counter before the call and decrements it afterwards. Second,
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it reserves the SR so that other instructions previously using the SR will use a different

register. Third, it adds the FLT and TLR policy to resolve the correct return target

to each function. Fourth, it replaces any return instruction with the direct jumps

to the TLR. Fifth, it instruments exception handlers with µRAI’s entry and exit

routines. Finally, it instruments store instructions for functions callable in exception

handler context with masking instruction to protect the safe region. As discussed

in subsection 4.4.3, path-explosions affects the FLT size depending on the function

call sites and its depth in the call graph. Without carefully choosing suitable TLR

policy, the performance overhead of resolving the correct return location can become

prohibitive.

4.4.7 Target Lookup Routine Policy

Enforcing the RAI property is important, however, it is equally important to

maintain an acceptable performance overhead [26]. One simple TLR policy to resolve

the correct return location is to use a switch statement and compare the value of the

SR sequentially to the FID values in the FLT, and return once a match is found.

While this policy enforces the RAI property, it has unbounded, and possibly high

performance overhead for large FLTs.

An important aspect of µRAI is it ensures low, and deterministic overhead that is

independent of the FLT size. Therefore, µRAI uses a relative-jump policy to resolve

the correct return location using two instructions: (1) the first instruction in the TLR

is a relative jump (i.e., jump PC+SR); (2) a direct jump to the correct return location.

The relative-jump policy uses the SR as an index of a jump table, where the direct

jump pointing to the correct return location is at a distance equal to the SR (i.e.,

FID) from the first relative jump. Both instructions are impossible to modify by an

attacker since they reside in R+X memory. In addition, the attacker cannot modify

the SR in the first relative jump since it is never spilled. In case of SR segmentation,

only the specified segment is used for the first relative jump instruction.
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Figure 4.9 illustrates an example of the relative-jump TLR. Consider func3 and

assume the PC points to the current location and each instruction size is 1—so that

PC+1 will lead to the next instruction. If SR = 3 at func3, then jump PC+SR will

jump to jump func2 1 which jumps to the correct return location (i.e., after the call

in func2). We can also conclude that the call path was main→ func2→ func3. For

func3, there is no FID = 2, and thus a jump ERROR was placed at index 2. This

is needed to ensure the correct return instructions are always at the correct distance

from the first relative jump. No matter how large the FLT size for a function is, the

performance overhead should be deterministic. However, to minimize the memory

overhead, it is better to have the SR as small as possible since the FLT size is equal

to the largest possible FID value (e.g., if we have SR=[1, 1024] we need to fill the

remaining 1022 with jump ERROR). Controlling the SR is done by minimizing the

values of the FKs. Thus, at each call site, µRAI chooses the FK that will minimize

the maximum FID value.

4.5 Implementation

µRAI is comprised of four components (see Figure 4.3). The first component

constructs the call graph of the application. The second component uses the call graph

to generate the encoding (i.e., FKs and FIDs) for each function. The third component

instruments the application with the generated FKs and FIDs. The fourth component

is a runtime library that secures saving the SR and restoring it from the safe region.

The call graph analysis and instrumentation are implemented as additional passes to

LLVM 7.0.1 [143]. The encoder is implemented as a Python script to leverage the

graph libraries [144]. We provide a Makefile package that automates the compilation

process of all four components. We implement µRAI to enforces the RAI property for

the ARMv7-M architecture, enabling it to protect a wide range of deployed MCUS.

As the Link Register (LR) in normally used to store return addresses, we use it as the

SR, and prohibit its use in any other operation.
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SR[Enc] = 1

Address <func2>:
… …
… SR = SR ⊕2
…         call func3
func2_1 SR = SR ⊕2
… …
… …
… jump PC+SR 
… jump  main_2 

SR[Enc] = 1

Address <func1>:
… …
… SR = SR ⊕0
…         call func3
func1_1 SR = SR ⊕0
… …
… …
… jump PC+SR
… jump  main_1 

Address  <func3>:
…        …
…        …
…        …
…        jump PC+SR   // ← PC value 
…        jump func1_1 // FID = 1  
…        jump ERROR   // No FID at 2
…        jump func2_1 // FID = 3 
…        …

 SR[Enc] = [
 1, # func1_1
 3, # func2_1
           ]

Address <main>:
… …
… SR = SR ⊕1
…         call func1
main_1 SR = SR ⊕1
… …
… SR = SR ⊕1
…         call func2
main_2 SR = SR ⊕1
… …

SR[Enc] = 0

Fig. 4.9. Illustration µRAI’s relative-jump TLR policy.
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4.5.1 Call Graph Analyzer

The call graph analyzer constructs the call graph of the application, and is im-

plemented as an IR pass in LLVM. For each call site it identifies all possible targets,

and for each function it generates a list of callers and callees. For direct calls, the

call graph analyzer determines the exact caller and callee relation. While µRAI’s

primary goal is to protect the backward edges of control-flow transitions (i.e., return

addresses), we complement it with a type-based forward-edge CFI to provide an end

to end protection against control-flow hijacking along both the forward and backward

edge. Thus, the call graph analyzer uses a type-based alias analysis [145] to deter-

mine the possible callees from indirect call sites. That is, we identify any function

matching the type-signature of any indirect call site within the current function as a

valid transition in the call graph. Thus, we generate an over-approximated call graph

(see Appendix subsection 4.8.1 for details). Finally, the call graph analyzer exports

the call graph to the encoder, which uses the call graph to generate the FKs and

FIDs.

4.5.2 Encoder

The encoder generates the hard-coded FKs for each call site and populates the

FLT of each function with its FIDs. It first calculates the possible limits of the

FLT in the application (i.e., minimum and maximum). These limits are then used

to configure and optimize the number and size of segments in the SR. FLTMax in

ARMv7-M is 4095 bytes [40]. The minimum limit of the FLT is the log2 of highest

number of return targets for any function. For example, if a function is called from

eight locations its FLTMin must use at least eight FIDs. Thus, each SR segment must

at least have log2(8) = 3 bits.

Using both limits, the encoder then searches for the SR segment size configuration

that will minimize the memory overhead (i.e., FLTMin ≤ 2segment size < FLTMax).

Not all options are possible to support. For example, the SR segment size can be set
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to 16 bits, but it will require using three segments (i.e., 48 bits). Since registers have

only 32 bits, such a solution is not possible without using an additional register to

serve as additional segments for the SR. An alternative option is saving the SR to

the safe region as discussed in subsection 4.4.4. For µRAI, we limit the SR to only

one register to minimize the effect on the system resources, and limit using a system

call transition to save the SR in the safe region to only one transition within a call

path. However, these are configurable and can be changed by the user. To estimate

the memory overhead of the possible configurations for the SR segments, the encoder

performs a DFS search for the possible call paths over the call graph to calculate the

FLT size for each function, and calculates the total summation of FLTs. The process

is repeated using each configuration. The configuration with the least summation of

FLT sizes for all the functions will be used since it minimizes the added instructions

for the application. The DFS search also assigns a segment for each function in the

call graph (subsection 4.4.4).

The encoder uses the chosen SR segment size to: (1) calculate the initial value of

LR; (2) generate the FKs and FIDs for each function. As discussed in subsection 4.4.4,

µRAI uses a modified BFS to generate the FKs. The generated FKs only affect

the segment assigned to the callee function at the call site. FKs must satisfy three

conditions. First, the largest value allowed for FKs is 2segment size−1, since any larger

value will overflow to the next SR segment. Second, FKs must generate FIDs that

will result in an aligned FLT. For ARMv7-M, a direct jump is equivalent to a branch

instruction (section 4.3). Since the size of branch instruction for ARMv7-M is four

bytes, each FID in the FLT need be at a distance of four. Third, the generated

FIDs must not cause a collision in the callee’s FLT. Each generated FID is a result

of encoding the SR with an FK at a call site (i.e., FID = SRat call site ⊕ FK). Since

FIDs cannot repeat within an FLT, the chosen FK must not result in a collision.

µRAI searches through the valid FKs, and chooses the FK value that will result in

lowest possible FID. A large FID value can result in a sparse FLT (subsection 4.4.7),

thus increasing the memory overhead.
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1 eor l r , #FK ; Encode LR

2 b func ; Di rec t c a l l to func

3 eor l r , #FK ; Decode LR

Fig. 4.10. µRAI instrumentation for call instructions.

1 ; check the counter b i t s do not over f l ow be f o r e increment ing

2 add l r ,#0x01000000 ; increment counter

3 b func ; d i r e c t c a l l to func

4 sub l r ,#0x01000000 ; decrement counter

Fig. 4.11. An example of µRAI’s instrumentation for recursive call sites.
The recursion counter shown uses the higher eight bits of LR.

4.5.3 Instrumentation

The generated encoding is then used to produce the binary enforcing the RAI

property. Instrumenting the application is done in three steps: (1) instrument each

call site to enable encoding LR with the generated FKs; (2) reserve LR to be used by

µRAI only; (3) add the TLR and FLT generated from the encoder for each function.

These are done by modifying and adding a pass to LLVM’s ARM backend. In the

following we provide a detailed description for each instrumentation step.

µRAI transforms each call site by inserting XOR instructions before and after each

call site to encode and decode LR (our SR), respectively. In case the call is a recursive

call, the instrumentation increments the designated recursion counter segment before

the call, and decrements it afterwards. If the call site uses a (bl or blx) instruction,

µRAI transforms it to a (b or bx) instruction (see Table 4.1). A detailed disassembly

is shown in Figure 4.10 and Figure 4.11.

To ensure LR is only used by µRAI, we modify LLVM’s backend to reserve LR

so it cannot be used as general purpose register. Moreover, µRAI transforms any
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1 add pc , l r ; F i r s t r e l a t i v e jump

2 b r e t u r n l o c a t i o n 1 ; F i r s t FID

3 b r e t u r n l o c a t i o n 2 ; Second FID

Fig. 4.12. TLR instrumentation without SR segmentation.

instruction using LR, so that it will not use LR. For example, transforms push {R7,LR}

to push {R7}.

Finally, µRAI adds the TLR and FLT for each function. Since functions can have

multiple return locations, µRAI replaces any return instruction with a trampoline

to the beginning of the inserted TLR. The exact TLR depends on the application

and whether it uses SR segmentation or not (see Figure 4.12 and Figure 4.13 for a

detailed disassembly of both cases). Many applications for MCUS have a small code

size, and can be instrumented without segmenting the SR. For ARMv7-M, a relative

jump with PC is achieved by using (ADD PC,<register>). Thus, µRAI uses it for its

first relative jump in TLR with LR as the offset for the relative jump (i.e., as ADD

PC,LR). To add the FLT, µRAI uses direct branches, with each direct branch at a

distance equal to its pre-calculated FID. In case of segmentation, µRAI requires three

instructions for its TLR. The first instruction copies the function designated segment

along with segments in lower order bits from LR to R12, which is a scratch register in

ARMv7-M. Next, µRAI clears any lower order bits that are not part of the function

designated segment from R12. Thus, only the needed bits that form a segment are

in the lower bits of R12. This enables using the relative jump instruction as before.

Using R12 with a segmented SR does not affect the security guarantees of µRAI. The

value used is only read inline from LR, which is not writable by an attacker.
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1 ; N = 32 − f unc t i on s h i f t − segment b i t s i z e

2 mov r12 , l r , l s l #N ; r12 = l r<<N

3 ; M = 32 − segment b i t s i z e

4 mov r12 , r12 , l s r #M ; r12 = r12>>M

5 add pc , r12 ; F i r s t r e l a t i v e jump

6 b r e t u r n l o c a t i o n 1 ; F i r s t FID

7 b r e t u r n l o c a t i o n 2 ; Second FID

8 . . .

Fig. 4.13. TLR with SR segmentation. N and M are constants calculated
depending on the function and the start of its segment.
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xPSR
PC
LR
R12
R3
R2
R1
R0

(a) Default (b) μRAI

Safe
region

xPSR

R12
R3
R2
R1
R0

PC
…
LR
…SP

Fig. 4.14. Illustration of exception stack frame for ARMv7-M.

4.5.4 Runtime Library

The runtime library: (1) configures the MPU to enforce DEP at the beginning

of the application execution; (2) sets the initial value of LR (i.e., the state register);

(3) secures transitions of exception handlers entry and exit. At the start of the

application, the runtime library initializes LR to the defined value by the encoder

in subsection 4.5.2. In addition, the runtime library configures the MPU to support

DEP automatically. The code region is set as readable and executable, while data

regions are set readable and writable. The safe region is configured as readable and

writable in privileged mode only to protect it from unprivileged code. Protecting the

safe region requires additional mechanisms within exception handlers context, which

we describe in subsection 4.5.5.
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1 ; rd = de s t i n a t i on r e g i s t e r

2 ; rx = any av a i l a b l e r e g i s t e r other than rd

3 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 ; Condit ion f l a g s are saved p r i o r

5 movw rx ,#0xE000 ; Higher word o f MPURNR

6 movt rx ,#0xED98 ; Lower word o f MPURNR

7 sub rx , rd , rx ; rx = rd − MPURNR ( unsigned )

8 cmp rx ,#8 ; I f with in MPU r e g i s t e r s

9 b l s ERROR ; ERROR i f l e s s or equal

10 cmp rx , #0xd90 ; I f po in t s to VTOR

11 beq ERROR ; ERROR i f equal

12 b i c rd , rd , 0x10000000 ; Sa fe r eg i on mask

13 ; r e s t o r e cond i t i on f l a g s and perform s t o r e

Fig. 4.15. µRAI’s exception handler SFI protection. The MPU Region
Number Register (MPU RNR) is middle address of the MPU.
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4.5.5 Securing Interrupts and System Calls

Securing the execution of exception handlers (i.e., interrupts and systems calls)

requires overcoming limitations of the architecture. First, entering and exiting ex-

ceptions is handled by the hardware in ARMv-M. When an exception occurs, the

underlying hardware pushes the registers from the user mode to the stack. As shown

in Figure 4.14(a), the stack frame includes PC and LR. The hardware also sets LR to

a special value called EXC RETURN. To return from the exception, the hardware uses

the saved stack frame it pushed when entering the exception and loads EXC RETURN

to PC or executes a bx instructions with a register holding the EXC RETURN value.

While we can still use our TLR for the rest of the exception handler execution, the

restriction of using EXC RETURN to exit exception handlers prohibits using our TLR to

exit exception handlers. Thus, µRAI instruments interrupt handlers entry and exit

with special routines that moves the pushed values of PC and LR from the stack to

the safe region, as shown in Figure 4.14(b). It also moves the special value stored in

LR to the safe region. It then clears the locations of PC and LR from the exception

stack frame.

Since exception handlers are root functions in the call graph, the runtime library

sets LR to the initial value specified by the encoder. Functions are then instrumented

using the regular TLR and FLT instrumentation. When an exception handler exits,

µRAI restores the previously saved values of PC and LR from the safe region to their

location on the stack frame. It also sets LR to the special value required by the

hardware. Thus, enabling the exception to exit correctly.

This instrumentation enables correct execution, but alone fails to enforce the

RAI property. As exception handlers execute in privileged mode, an attacker can

corrupt the saved PC or LR in the safe region to force the exception exit to return

to a different location. Alternatively, an attacker can relocate the vector table by

overwriting the VTOR (see section 4.3). Finally, an attacker can disable the MPU

or alter its permissions to allow code injection. Simply setting VTOR and MPU as
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read only is not effective and the MPU registers remain writable within exception

handlers. We verified this in our experiments.

To protect the above resources against these attacks, µRAI applies SFI only to

store instructions that can execute within exception handler context. The MPU reg-

isters are mapped within a contiguous address range (i.e., 16 bytes), while VTOR is

mapped separately. For the MPU and VTOR, we verify that the destination does not

point to within the MPU address range or VTOR. To protect the safe region, µRAI

places the safe region in a separate region. One option is to protect the safe region

the same way as the MPU. A more efficient approach is to leverage Core Coupled

RAM (CCRAM), which starts at a different address and is smaller than normal RAM

(e.g., 64KB compared to 320KB RAM in our board [38]). Placing the safe region in

CCRAM enables efficient protection through bit-masking the destination of store in-

structions to ensure it does not point to the safe region [59]. For our evaluation,

we leverage this more efficient bit-masking approach. See Figure 4.15 for a detailed

disassembly.

Our exception handler SFI routine can degrade performance if instrumented for

every store instruction in the application. However, we only instrument store instruc-

tions for functions that can be called within an exception handler context. These are

a small fraction of the entire application, and thus limits the effect of of the verifica-

tion routine. Furthermore, some exception handlers (i.e., SysTick, which increments

a fixed global) do not require the SFI instrumentation since the store performed is

always to a fixed address. Similarly, store instructions using SP for its destination are

not instrumented with SFI since instructions assigning SP use a bit-masking instruc-

tion to ensure it points to the stack region. Coupling the SR encoding with exception

handler SFI enforces the RAI property for exception handlers.
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4.6 Evaluation

Our evaluation aims to answer the following questions:

1) Can µRAI fully prevent control-flow hijacking attacks targeting backward-edges?

2) What are the security benefits compared to CFI?

3) What is the performance overhead of µRAI?

4) What is the memory overhead of µRAI?

We evaluate the effectiveness of µRAI using five representative MCUS applications

(PinLock, FatFs-RAM, FatFs-uSD, LCD-uSD, and Animation) and the CoreMark

benchmark [85]. PinLock demonstrates a smart-lock receiving a user entered pin over

a serial port. The pin is hashed and compared against a precomputed (i.e., correct)

hash. If the comparison succeeds, the application sends an IO signal to mimic opening

the lock. Otherwise, the door remains locked. FatFs-uSD demonstrates a FAT file

system on an SD card, while FatFs-RAM mounts the file system in the device’s RAM.

Both applications perform similar functionality (i.e., accessing the FAT file system)

however their internals (e.g., Hardware Abstract Layer libraries) are different. LCD-

uSD reads multiple bitmap pictures from an SD card and displays them on the LCD

display. Animation demonstrates the animations effect on the LCD by displaying

multiple layers of bitmap images. All application are provided by STMicroelectronics

except PinLock, thus they represent realistic applications used for deployed MCUS.

CoreMark is a standardized benchmark developed by EEMBC [85] to measure MCUS

performance. The evaluation is performed using the STM32f479-EVAL [38] board and

includes the cost of type-CFI.

4.6.1 Security Analysis

In order to evaluate µRAI’s protections, we implement three control-flow hijack-

ing attacks on backward edges. The goal of these experiments is not to investigate

whether µRAI can protect from certain attack cases such as [146–148], but rather
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to demonstrate µRAI’s ability to prevent any control-flow hijacking attack targeting

backward edges even in the presence of memory corruption vulnerabilities.

Control-flow hijacking attacks targeting backward edges must start from one of

three types of memory corruption vulnerabilities. First, a buffer overflow [149], where

an attacker leverages this vulnerability to overwrite the return address with the at-

tackers desired value. However, the attacker also corrupts all sequential memory

locations between the vulnerable buffer and the return address. Second, an arbi-

trary write (e.g., format string [150]), where the attacker directly over-writes the

return address, without needing to corrupt other memory locations. Third, a stack

pivot [151], where instead of over-writing the return address, the attacker controls the

stack pointer in this scenario. To launch the attack, the attacker sets the value of the

stack pointer to a buffer controlled by the attacker. Thus, when the application pops

the return address from the stack, it will pop the value from the attacker controlled

buffer.

Our experiments demonstrate the three types of attacks based on the PinLock

application. We assume these vulnerabilities exist in the application in the function

receiving the pin from the user, namely rx from uart. A successful attack uses the

underlying vulnerability to directly execute the unlock function to unlock the smart-

lock without entering the correct pin. As discussed in section 4.2, we assume the

attacker is aware of the entire code layout.

Buffer overflow: This attack assumes the return address is available in a sequentially

writable memory from the vulnerable buffer (e.g., on the stack). However, µRAI

uses R+X memory in Flash and an inaccessible SR. Both are not modifiable and the

attacker cannot modify the instructions that update the SR. The vulnerability here

only corrupts data available on the stack, but the return address is not affected. The

control flow is not diverted and µRAI successfully prevents the attack.

Arbitrary write: While the attacker is capable of writing to any available memory

for user code, such a vulnerability cannot be used to launch a successful attack.

The attacker cannot write directly to the SR (i.e., LR register) since it is not memory
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mapped. Furthermore, the attacker cannot use µRAI’s return sequence in Figure 4.12

or Figure 4.13, as these only read the SR and never write to it. Modifying the

instructions is also not possible as the MPU configures them as only readable and

executable. A final option is to corrupt the saved PC or LR in the safe region from an

interrupt context entry in order to divert the return from the interrupt. When the

attack is attempted in unprivileged mode, it causes a fault since the safe region is

protected by the MPU. If the attack occurs during privileged execution, the safe region

is protected through our exception handler SFI mechanism. Thus, µRAI prevents the

attack.

Stack Pivot: Even when the attacker changes the stack pointer, this attack relies on

popping the return address from the stack. Since µRAI only uses the SR and the

instructions in Figure 4.12 or Figure 4.13, the attacker controlled buffer can corrupt

the function’s data, but is never used to return from the function. As a results, µRAI

successfully prevents control-flow hijacking through stack pivoting. Note that µRAI

does not prevent stack pivoting from occurring, but prevents using a stack pivot to

corrupt the return addresses.

4.6.2 Comparison to Backward-edge CFI

To understand the benefits of µRAI’s protections, we analyze the possible attack

surface compared to an alternative backward-edge CFI mechanism. With such a

mechanism, the function can return to only specific locations in the application.

These locations define the function’s target set. The target set is comprised of the set

of possible return sites for each function, enumerating the addresses of all instructions

immediately after a function call. For example, if function foo is called from three

different locations, the three instructions right after the return from the function call

are in the target set for foo. For indirect calls, we identify any call site matching the

function type signature of any indirect call within the current function to be a possible

call site [82,138,142]. We build our prototype on top of ACES’ [9] type-based CFI as
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Table 4.2.
Analysis of the target set sizes for backward edge type-based CFI.

App
Type-based CFI Target Set

Min. Median Max. Ave.

PinLock 1 2 8 3

FatFs uSD 1 6 94 21

FatFs RAM 1 5 94 27

LCD uSD 1 5 49 11

Animation 1 4 49 11

CoreMark 1 3 52 12

it provides a more precise target set than other existing work for MCUS. Intuitively,

the chance of a control-flow bending style attack [68] increases as the function target

set size increases. That is, an attacker can still divert the control-flow to any location

within the target set.

Table 4.2 shows the minimum, median, maximum, and average target set sizes

for the functions within each application. Many applications share the same libraries

and Hardware Abstraction Layers (HALs). As these are called most frequently, the

worst case scenario for the applications (i.e., maximum target set size) can be shared

between applications sharing these libraries of HALs (e.g., FatFs-uSD and FatFs-

RAM). Averaged across all the applications in Table 4.2, a backward edge CFI will

have an average target set of 14 possible return locations. However, the effect of

imprecision on CFI are clearer when considering the maximum target set for each

application in Table 4.2. Averaged across all applications, an attacker will have a

target set of 58 possible return locations. In contrast to existing CFI implementation,

µRAI eliminates this remaining attack surface since it does not allow corrupting the

return address, rather than focusing on minimizing the target set, which is ultimately

limited to imprecisions [65].
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4.6.3 Runtime Overhead

For defense mechanisms to be deployable, they must result in low performance

overhead [26]. This is highly relevant for MCUS, where they can have a real-time

constraint as well. To evaluate the performance overhead, we modify the applications

to start the runtime measurement at the beginning of main and stop at the end of

the application. For PinLock, we stop the application after receiving 1000 pins that

alternate between incorrect pins, a correct pin, and a locking command that requests

the pin again. For CoreMark, we used its own performance reporting mechanism to

collect the measurement. The results are averaged across 20 runs.

Figure 4.16 compares the performance of the baseline, µRAI, and applying SFI

to all store instructions in the application—which we denote full-SFI. µRAI results

in an average overhead of 0.1%, with the highest overhead for CoreMark with 8.1%.

µRAI shows an improvement of 8.5% for FatFs RAM. This is not an inherent fea-

ture of µRAI but an effect of changing code layout and register usage (reserving

the LR register) in a hot loop in the application. Particularly, the baseline calls

aeabi memclr eight times to clear 64 bytes during each iteration. For µRAI, the

compiler optimized this to one call to clear 512 bytes at each iteration. To confirm

this, we evaluated an intermediate binary that uses the compiler changes without

applying any instrumentation. The optimization appeared and the intermediate bi-

nary showed an improvement of 14.4%. Compared to this intermediate binary, µRAI

has an overhead of 6.9%. Considering this effect µRAI yields an average overhead of

2.6%. In other applications, no improvement in runtime was observed between the

baseline and intermediate binaries. µRAI is efficient since it only adds three to five

cycles per call-return (see Table 4.3 for details). Return instructions are not a large

part of the application, thus µRAI yields a low overhead.

An alternative to µRAI is to apply a safe stack. Safe stack only prevents buffer

overflow attacks. To prevent other attack vectors (e.g., arbitrary write), a safe stack

must be coupled with SFI since information hiding offer limited guarantees on MCUS.
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Table 4.3.
Analysis of µRAI transformations and its effect on runtime overhead. N:
Number of registers used in the instruction. P: Pipeline refill. P can be
between 1–3 cycles.

Instruction
Baseline µRAI

# of cycles Effect # of cycles

push {..,lr} 1 + N Remove lr N

pop {..,pc} 1 + N + P Remove pc N

eor Add 2 2

mov Add 2 2

add pc,<reg> Add 1 1 + P

b <label> Add 1 1 + P

Total 2 + 2 N + P 4 + 2 N + 2 P

µRAI Overhead 2 + P

We use full-SFI to mimic protecting the safe stack by instrumenting all store instruc-

tions with a single bit-masking instruction except ones using SP (i.e., we assume SP

is verified at the point of assignment instead). The average overhead for full-SFI was

130.5%. In contrast to full-SFI, µRAI remains efficient since it limits SFI to functions

that can be called within an exception handler context, which are a small portion of

the application. Table 4.4 shows both the number of instrumented store instructions

both statically and dynamically. On average, µRAI statically instruments only 4.9%

of all store instructions in the baseline firmware.

4.6.4 FLT Encoding Analysis

A central component of µRAI is its encoder (see subsection 4.5.2) and how effi-

ciently it configures and populates the FLTs to reduce the effects of path explosion

on the memory overhead. As discussed in subsection 4.5.2, the encoder searches the

possible FLT sizes between FLTMin (i.e., the function with the highest number of

call sites in the application) and FLTMax (i.e., the highest possible FLT as defined by

the architecture) and chooses the configuration that will provide the lowest possible
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Table 4.4.
Summary of exception handler SFI protection for store instructions. %
shows the percentage of statically protected instructions w.r.t the total
baseline instructions.

App
# of Store instruction

Static Total % Dynamic

PinLock 56 516 10.9 7

FatFs uSD 99 1,802 5.5 906K

FatFs RAM 7 1,116 0.6 7

LCD uSD 99 2,814 3.5 48K

Animation 99 2,760 3.6 66K

CoreMark 56 1,024 5.5 7

memory overhead. Intuitively, the closer the encoder’s FLT is to FLTMin, the lower

the memory overhead is due to FLTs, since a larger FLT indicates FID collisions

in the FLT due to path explosion. Thus, to evaluate our encoder, we compare its

configured FLT size and SR segment size to the application FLTMin. Table 4.5 shows

FLTMin and µRAI’s configured FLT (i.e., FLTµRAI). µRAI’s FLT can only be at

powers of two since it partitions the SR’s bits into several segments, where each seg-

ment is log2(FLTµRAI) + 2. The additional two bits are because the size of each FID

in the FLT is a four byte branch instruction. µRAI consistently chooses the closest

power of two to FLTMin, and thus it is close to the best possible FLT configuration.

A key mechanism for µRAI’s encoder to achieve these results is partitioning the

SR into several segments where each function only uses a designated segment as

discussed in subsection 4.4.3. To demonstrate this effect, we show the FLT sizes

both with and without segmentation in Table 4.6. Averaged across all applications,

segmentation reduces FLT sizes by 78.1%. Intuitively, PinLock can be instrumented

without segmentation. As mentioned in subsection 4.5.3, many MCUS applications

use small code size and thus can be instrumented without segmentation. However, it

is segmented by µRAI since segmentation will result in lower memory overhead.
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Table 4.5.
Summary of µRAI’s Encoder FLT and SR segment configuration com-
pared to FLTMin of each application.

Application FLTMin FLTµRAI
SR Segment

Size (bits)

PinLock 8 8 5

FatFs uSD 94 128 9

FatFs RAM 94 128 9

LCD uSD 49 64 8

Animation 49 64 8

CoreMark 52 64 8
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Table 4.6.
Summary of the segmentation effect on FLT size.

App
Without Segmentation Segmented Ave.

ReductionMin. Max. Ave. Min. Max. Ave.

PinLock 1 12 3 1 8 2 33.3%

FatFs uSD 1 8,650 699 1 106 21 97.0%

FatFs RAM 1 632 86 1 105 20 76.7%

LCD uSD 1 11,898 727 1 59 12 98.3%

Animation 1 11,570 683 1 59 12 98.2%

CoreMark 1 352 23 1 52 8 65.2%

4.6.5 Encoder Efficiency Discussion

We further evaluate µRAI’s encoder and whether it populates the FLTs efficiently.

µRAI’s TLR requires the correct branch to be at a distance equal to the SR in FLT.

Thus, unused FIDs in the FLT are filled with JUMP ERROR to ensure the FLT is cor-

rectly aligned as was shown in Figure 4.9. Table 4.7 shows the FLT efficiency for each

application. We compute the FLT efficiency as the percentage of used FLT indices

over the total FLT size. If the FLT is sparse (i.e., a large number of FIDs are filled

with JUMP ERROR), then the efficiency is lower. Note that the encoder uses the infor-

mation extracted by the call graph analyzer (i.e., subsection 4.5.1). The call graph

analyzer is implemented as an LLVM IR pass. LLVM further optimizes the applica-

tion after this pass. Such optimization may remove call sites (e.g., due to inlining)

before µRAI instruments the firmware using its back-end pass (see subsection 4.5.3).

As a result, some portions of the encoder’s estimated FLT are unused. For example,

if the encoder estimated FLT contains a branch instruction to a function that has

been removed then this branch is ultimately replaced by a JUMP ERROR. This results

in lower efficiency in the final binary when compared to the encoder generated FLT

(e.g., 98.2% and 90.1% for average FLT efficiency in Animation). Averaged across

all the applications, the encoder and binary demonstrate a high FLT efficiencies as

98.3% and 93.8%, respectively.
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Table 4.7.
Summary of µRAI FLT Efficiency Evaluation.

App
Encoder Binary

Min. Max. Ave. Min. Max. Ave.

PinLock 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

FatFs uSD 83.3% 100.0% 97.1% 38.9% 100.0% 90.9%

FatFs RAM 83.3% 100.0% 97.6% 75.0% 100.0% 95.8%

LCD uSD 81.6% 100.0% 98.1% 44.4% 100.0% 94.0%

Animation 75.0% 100.0% 98.2% 22.2% 100.0% 90.1%

CoreMark 87.7% 100.0% 98.5% 43.9% 100.0% 92.0%

4.6.6 Scalability Analysis

µRAI scales its encoding scheme for larger applications by partitioning the call

graph whenever no satisfying keys are found as shown in Figure 4.8. This frees up

the SR to be reused, but results in some overhead since each transition between

partitions requires a system call. For our experiments, partitioning the call graph

was not needed. Table 4.8 shows the number of call sites in our evaluation, as well as

the number of nodes and edges handled by the encoder in the call graph. The number

of nodes does not equal the number of functions as many are optimized by inlining in

LLVM. In addition, the number of edges is different than the number of call sites as

a result of imprecisions in the call graph. Our evaluation uses applications compare

to and exceed the complexity of existing benchmarks (e.g., Animation compared to

CoreMark).

4.6.7 Memory Overhead

µRAI requires adding the instrumentation for encoding and decoding the SR at

each call site, adding the FLTs, instrumenting exception handler SFI, and using its

runtime library. In addition, we couple µRAI with a type-based CFI for forward

edges. This however increases the total utilized memory. Figure 4.17(a) shows the
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Table 4.8.
Summary of the number of call sites instrumented by µRAI, number of
nodes, and edges in the call graph for each application.

App
# of Call sites

# of Nodes # of Edges
Direct Indirect

PinLock 26 0 22 26

FatFs uSD 111 97 37 473

FatFs RAM 29 94 25 373

LCD uSD 157 52 44 343

Animation 152 52 46 349

CoreMark 91 0 21 94

overhead of µRAI in RAM. For LCD-uSD and animation applications, µRAI incurs

negligible overhead. This is expected since the majority of µRAI’s instrumentation

utilizes Flash. Averaged across all applications, µRAI shows an increase of 15.2% for

RAM.

The Flash increase of µRAI’s instrumentation, exception handler SFI (EH-SFI),

and type-based CFI is shown in Figure 4.17(b). The majority of µRAI’s instrumen-

tation occurs in Flash, thus it is expected for µRAI to have a higher overhead for

Flash than for RAM. Averaged across all applications, µRAI shows an overhead of

34.6% for its instrumentation and FLT, and 9.5% for EH-SFI. Our type-based CFI

implementation shows an average increase of 10%. Combined, the average is 54.1%

for Flash. µRAI adds at most 22.4KB (i.e., Fats uSD). The increase is large for small

applications (e.g., PinLock), as any change can drastically affect their size. How-

ever, µRAI performs better for larger application (e.g., 22.7% for LCD uSD). That

is, µRAI overhead does not grow as the application size increases. We note that Flash

is available in larger sizes (i.e., MBs) than RAM (i.e., hundreds of KBs).
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4.7 Related Work

Vast related work exists in the area of control-flow hijacking attacks and defenses.

However, not all are applicable to MCUS. Thus, our discussion focuses on related

work that targets MCUS or is applicable to it. We refer to the relevant surveys [26,

54,55,65,152–154] for readers interested in the general area of control-flow hijacking

attacks and defenses.

Remote attestation: Remote attestation use a challenge-response protocol to es-

tablish the authenticity and integrity of MCUS to a trusted server (i.e., verifier).

Remote attestation requires using a trust anchor on the prover (e.g., MCUS) to re-

spond the verifier’s challenge. C-FLAT [14] attests the integrity of the control-flow

by calculating a hash chain of the executed control-flow. LiteHAX [18] attests the

integrity of both the control-flow and the data-flow. DIAT enables on-device attesta-

tion by relying on security architectures that provide isolated trusted modules for the

program. Overall, remote attestation defenses require additional hardware (e.g., TEE

or additional processor). In addition, they only detect the occurrence of an attack.

µRAI prevents control-flow hijacking on backward edges without requiring hardware

extensions.

Memory isolation: Minion [12] enables partitioning the firmware into isolated

compartments on a per-thread-level, thus limiting a memory corruption vulnerabil-

ity to affect a single compartment and not the entire system. ACES [9] automates

compartmentalizing the firmware on a finer-grained intra-thread level. TyTan [16]

and TrustLite [17] enforce memory isolation through hardware extensions. Memory

isolation techniques can enable integrity and confidentiality between different com-

partments. However, they only confine the attack surface to a part of the firmware,

while µRAI focuses on preventing ROP style attacks against the entire firmware.

Information hiding: LR2 [45] uses SFI-based execute only memory (XoM) and

randomization to hide the location of code pointers. However, its implementation is

inefficient on MCUS as was shown by uXOM [46] which enables efficient implemen-
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tation of XoM for Cortex-M processors. EPOXY [8] uses a modified and randomized

location of a SafeStack [61] to protect return addresses against buffer overflow style

attacks. µArmor protects from the same attack using stack canaries. Both EPOXY

and µArmor enforce essential defenses for MCUS efficiently and apply code random-

ization to hinder ROP attacks and produce different randomized binaries per device

to probabilistically mitigate scaling such attacks to a large number of devices. In

general, information hiding techniques remain bypassable and do not prevent attacks

with an arbitrary write primitive. µRAI however enforces the RAI property to prevent

ROP, and extends its protections to exception handlers.

CFI protections: SCFP [15] uses a hardware extension between the CPU’s fetch

and decode stage to enforce control-flow integrity and confidentiality of the firmware.

SCFP only mitigates attacks on backward edges (i.e., it does not prevent control-flow

bending style attacks [68]). CFI-CaRE [13] enforces CFI on forward-edges and a

hardware isolated shadow-stack to protect the backward edges. CFI-CaRE provides

strong protections against ROP style attacks, however, it requires using a TrustZone,

thus is not usable by a wide range of MCUS. RECFISH [69] applies CFI and a shadow

stack to MCUS binaries, without requiring source code. However, it places shadow

stack in a privileged region, thus requiring a system call to return from a function.

Thus, both CFI-CaRE and RECFISH incur a high overhead (e.g., 10-500% [13,69]).

µRAI enforces the RAI property without requiring a TEE and with a modest runtime

overhead.

4.8 Discussion

4.8.1 Imprecision and Irregular Control-Flow Transfers

µRAI handles imprecisions through separate encoding keys for each possible target

in the target set of its type-CFI. For example, if a target set contains {func1, func2}

and the indirect call is pointing to func1. Then µRAI will branch to the encoding

routine specific func1. If the target is a recursive function then a recursive encoding
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is used. This ensures the function will always return to its exact caller and reduce the

effect of complexity since we find a satisfying key for each target individually instead

of the entire target set.

Our type-CFI implementation, although imprecise, has a maximum target set of

five functions for an indirect call on our evaluation. µRAI is evaluated on C. Using

C++ code results in two challenges. The first is larger target set for type-CFI, thus

larger FLT sizes. The second are attacks targeting the virtual table pointer such as

COOP style attacks [155]. These however are an orthogonal problem to stack safety

and may be protected through, e.g., OTI [156].

Supporting irregular control-flow transfers such as setjmp and longjmp requires

custom system calls. For setjmp, the system call stores the return location along

with the current SR value in the safe region. When executing longjmp, a system call

restores the return location and SR from the safe region. This mechanism also enables

the use of pre-compiled objects (e.g., newlib) since µRAI requires source code.

4.8.2 Miscellaneous

Protecting privileged user code: Protecting sensitive resources (e.g., MPU) require

the confinement of store instructions within a privileged execution of user code, where

the developer provides privileges for restricted operations for the given application.

Identifying these restricted operations automatically is non-trivial since they are ap-

plication specific as shown by previous work [8]. For our evaluation, these operation

occur during initialization. An attacker cannot divert the control-flow to these opera-

tions again (i.e., since µRAI enforces the RAI property and type-based CFI). However,

to enable flexible use of µRAI we enable developers to apply our SFI mechanism to

their privileged operations through annotation as was done by EPOXY [8].

Corrupting indirect calls: µRAI enables preventing attacks targeting backward

edges and within exception handler contexts. To protect the forward edge, µRAI
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leverages a state-of-the art forward edge type-based CFI mechanism. We acknowledge

the limitations of forward edge CFI.

Limiting the overhead of SFI: Interrupts are designed to be short and execute in

deterministic time on MCUS [157]. While µRAI efficiently restricts SFI to exception

handlers, SFI may still result in higher overhead in some cases. An alternative to SFI

is formal verification of exception handlers which we leave for future work.

Applicability to ARMv8-M and systems with an OS: We demonstrated µRAI on

bare-metal systems and ARMv7-M to show its applicability to most constrained sys-

tems. Since ARMv8-M is backward compatible, we believe µRAI is extensible to it.

Moreover, µRAI can utilize the TrustZone provided in ARMv8-M for its safe region.

Extending µRAI to systems with an OS requires modifying the context switch han-

dler to save and restore the SR per each thread. In addition, µRAI require restricting

the use of the register chosen as the SR. If such changes are made, µRAI can apply

its defenses to systems with a lightweight OS.

4.9 Conclusion

MCUS are increasingly deployed in security critical applications. Unfortunately,

even with proposed defenses, MCUS remain vulnerable against ROP style attacks.

We propose µRAI, a security mechanism able to prevent control-flow hijacking attacks

targeting backward edges by enforcing the RAI property on MCUS. µRAI does not re-

quire any special hardware extensions and is applicable to the majority of MCUS. We

apply µRAI on five realistic MCUS applications and show that µRAI incurs negligible

runtime overhead of 0.1%. We evaluate µRAI against various scenarios of control-

flow hijacking attacks targeting return addresses, and demonstrate its effectiveness in

preventing all such attacks.
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5. CONCLUSION

Internet of Things systems are omnipresent, ranging smart home systems and smart

cities, to critical infrastructure such as industrial control systems. Although deployed

in security and safety critical domains, such systems lack basic mitigations against

control-flow hijacking attacks. As a result, IoT systems have become a prominent

target of remote attacks, causing some of the largest Distributed Denial-of-Service

attacks, and resulting in power grid blackouts.

To improve the security posture of IoT systems, we survey previous defense mit-

igations to secure IoT systems in Chapter 2. Building off our survery, We identify

two main issues in IoT systems security. First, efforts to protect IoT systems are

hindered by the lack of realistic benchmarks and evaluation frameworks. Second,

existing solutions to protect from control-flow hijacking on the return edge are either

impractical or have limited security guarantees.

This thesis address the first issue in Chapter 3. We present BenchIoT, a bench-

mark suite of five realistic IoT applications and an evaluation framework that enables

automated and extensible evaluation of 14 metrics covering security, performance,

memory usage, and energy. BenchIoT enables automated evaluation and comparison

of security mechanisms.

Chapter 4 introduces µRAI, a compiler mitigation enforce the Return Address

Integrity property. µRAI prevents all control-flow hijacking attacks on the return

edges with negligible runtime overhead. µRAI does not require special hardware

extensions and thus is practical and secure solution for IoT systems.

This thesis demonstrates that standardized benchmarks and metrics enable mea-

suring security properties on heterogeneous embedded IoT systems. Moreover, it

proves the effectiveness of customized static analysis and runtime monitors in prevent-

ing control-flow hijacking attacks on return edges at low runtime overhead. Combined,
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this thesis advances the state-of-the-art of protecting IoT systems and benchmarking

its security.
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A. HANDLING SPECIAL RECURSIVE FUNCTIONS

Special cases of recursion such as functions with multiple recursive calls require ad-

ditional instrumentation. In the following we discuss two possible designs to support

the RAI property. The first provides flexible handling of recursion by mainly utilizing

the safe region for special cases of recursion. However, this results in overhead since

each access to the safe region requires a system call. Thus, we provide a sketch of

a second design that uses function cloning to reduce the performance overhead of

transitioning to the safe region. In the following we describe both options.

Safe Region Recursion: The goal of this design is to provide flexible support of

special recursion cases (e.g., indirect recursion between two functions) while using the

minimum number of bits in the SR. Instead of reserving a recursion counter for each

recursive call, e.g., in case of multiple recursion as in Figure A.1(a), this design only

reserves the highest order bit of the SR to indicate the occurrence of special recursive

calls. In addition, it reserves a special recursion stack in the safe region, where the

bottom of the stack has a known value. Each special recursive call is instrumented

with a system call. The system call sets the special recursive bit and stores the return

address on the recursion stack. The subsequent recursive call is transformed into a

direct call (i.e., to ensure it does not use LR, our SR) and is executed normally.

The special recursive function TLR is instrumented in the beginning to check if

the state of the special recursion bit. If set, it executes a system call that will pop

the saved return address from the recursion stack and return to it. In addition, it

will reset the special recursion bit if the popped return address is at the end of the

recursion stack. In essence, this technique implements a shadow stack for special

recursion. An advantage of this design is its efficiency in utilizing the SR bits. It also

does not limit the recursion limits the SR size. It is a more portable option for other
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architectures that do not share the pre-assumption of MCUS of defining the recursion

limits a priori. Thus, µRAI implements this design for its prototype.

Handling Special Recursion Using Function Cloning: This method aims

to handle special cases of recursion while limiting the reliance of the safe region,

and mainly utilize the recursion counters of SR through function cloning. Consider

Figure A.1(a), the original function is transformed by creating separate clones of

the function. Each clone corresponds to one of the recursive calls in the original

function. Each recursive call is directed to its corresponding clone, which uses a

distinct segment of the recursion counter. This enables each clone to check only its

respective recursion segment as shown in Figure A.1(b). Without re-directing each

recursive call to a separate clone of the recursive function, it is not possible to resolve

which of the recursive calls is the correct return target. Function cloning solves a

general case when the recursive calls within a function execute in any ascending order

(e.g., func clone1 calls func clone2 in ¶). To return, a clone decrements its counter

and returns to itself until its recursive SR segment reaches zero (e.g., func clone2

will return to clone2 2 in ·). For a clone[i] to return to its caller, it then checks the

non-zero recursive counters in the SR as these indicate which previous clone is the

caller of the current clone (i.e., clone[i] checks all SRRec[j < i] where). The clone with

the highest index in SRRec is the correct caller, and clone[i] return to the instruction

following the call site of clone[i] in the resolved caller (i.e.,¸ will return to clone1 2

at ¹) .

However, whenever multiple recursion executes out-of-order, as in call func clone1

in function func clone2 (º), cloning alone cannot distinguish how many increments

in SRRec happened before or after the descending (i.e., to a clone with lower index)

recursive call in (º). Thus, any descending recursive call requires a system call to:

(1) save the current recursive SR in the safe region; (2) reset the recursive SR. Upon

returning, each clone function will check the safe region for saved recursive counters

(» and ¼). Checking the safe region triggers a system call that will check the saved

recursive counters and find clones with SRRec > 0. Again, the highest index in SRRec
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Algorithm 1 Multiple indirect recursion call procedure
1: procedure Indirect call[i] out of N indirect calls

2: if SRRec[i] ≥ SRRec[j], where SRRec[i] 6= 0 and SRRec[j] 6= 0, for any j > i then

3: Save the SR and reset SRRec

4: end if

5: SRRec[i] = SRRec[i] + 1

6: Execute indirect call

7: SRRec[i] = SRRec[i] − 1

8: if All SRReccounters = 0 and Safe region contains saved SR then

9: Restore saved SR

10: end if

11: end procedure

is the correct caller, and clone[i] returns to the instruction following the descending

call site of clone[i] in the resolved caller in (i.e.,¼ will return to º). In general, a

function with N recursive calls is transformed to into N cloned functions forming a

complete digraph. Ascending edges are handled by incrementing the respective re-

cursions counter and decrementing it afterwards. A descending edge (i.e., red-dashed

edges in Figure A.1(c)), are system calls to reset the recursive SR counters. A call

graph representation of transforming a function with three recursive calls is shown

in Figure A.1(c). The first function (i.e., clone1) will use the TLR of clone[1] (½),

while other nodes will use the TLR clones > 1 (¾).

Indirect recursion is another special case that requires additional care. To under-

stand the difference of indirect recursion, consider the conceptual call graph illustra-

tion shown in Figure A.2(a). Indirect recursion causes a cycle in the call graph, as

demonstrated by func1 and func2. In such a case, it is not possible to handle indi-

rectly recursive functions using XOR encoding as it results in FID collisions. Indirect

recursion is handled by using the maximum recorded depth of each function in the

call graph (see subsection 4.4.4). When a call forms a cycle at the callee, this will

always be a call from a function with higher maximum depth to a function with lower
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Algorithm 2 Multiple indirect recursion return procedure
1: procedure Resolving correct return target of out of N indirect calls

2: // Check recursion counters in descending order

3: if SRRec[N ] ≥ 0 then

4: Return after indirect recursive call N

5: end if

6: if SRRec[N−1] ≥ 0 then

7: Return after indirect recursive call N-1

8: end if

9: // Inline the check until the lowest index of recursion counters

10: // ...

11: // After inlining all checks

12: if All SRRec equal 0 then

13: //All indirect recursion have been resolved

14: Use the regular TLR

15: end if

16: end procedure

maximum depth, and identifies an indirect recursion. In such a case, the call causing

the indirect recursion uses a recursion counter segment. However, the check for the

recursive counter is done at the callee.

Consider the illustration shown in Figure A.2(b), the call from func1 to func2

use the XOR encoding since it is from a lower depth to a higher depth (¶). However,

the call from func2 to func1 uses one of the recursion counter segment to increment

and decrement the counter before and after the call, respectively (·). Checking

the recursion counter however, is done in func1 instead of func2 (¸). Note that

this requires iterating through the cycle between func1 and func2 until reaching a

fixed set of the possible FIDs for both functions that result from the XOR encoding

between func1 and func2. To identify its caller, func1 first checks its recursion

counter. In case, it is greater than zero (¸), it returns to the call site causing the



136

(a
) 

(b
) 

(c
) 

  

A
d
d
r
e
s
s

<
f
u
n
c
1
>
:

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

S
R
[
E
n
c
]
 
=
 
S
R
[
E
n
c
]
⊕
K
e
y
1

.
.
.

c
a
l
l
 
f
u
n
c
2

f
u
n
c
1
_
1

S
R
[
E
n
c
]
 
=
 
S
R
[
E
n
c
]
⊕
K
e
y
1

.
.
.

I
F
 
S
R
[
R
e
c
]
 
>
 
0

.
.
.

 
 
 
j
u
m
p
 
f
u
n
c
2
_
1

.
.
.

E
l
s
e
 

.
.
.
 
 
 

 
 
 
U
s
e
s
 
n
o
r
m
a
l
 
T
L
R

.
.
.
 
 
 
 
 
 
 
 
 
 
a
n
d
 
F
L
T

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
 

A
d
d
r
e
s
s

<
f
u
n
c
2
>
:

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

S
R
[
R
e
c
]
+
+

.
.
.

c
a
l
l
 
f
u
n
c
1

f
u
n
c
2
_
1

S
R
[
R
e
c
]
­­
­

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
 
 
 

.
.
.

.
.
.
 
 
 
 
 
 
 
.
.
.

.
.
.

U
s
e
s
 
n
o
r
m
a
l
 
T
L
R

.
.
.
 
 
 
 
 
 
 
a
n
d
 
F
L
T

.
.
.
 
 
 

.
.
.

.
.
.

.
.
.

1
2

5

3 4

f
u
n
c
1

f
u
n
c
2

C
a
lle

d
 f

o
rm

 
a
n

o
th

e
r 

fu
n
ct

io
n

S
R
[
R
e
c
]
+
1

S
R
[
E
n
c
]
⊕
K
e
y
1

R
e
st

 o
f 

th
e
 

ca
ll 

g
ra

p
h

f
u
n
c
1

f
u
n
c
2

C
a
lle

d
 f

o
rm

 
a
n

o
th

e
r 

fu
n
ct

io
n S
R
[
R
e
c
]
+
1

S
R
[
E
n
c
]
⊕
K
e
y
3

R
e
st

 o
f 

th
e
 

ca
ll 

g
ra

p
h

f
u
n
c
4

f
u
n
c
3

SR[Enc]⊕Key1

SR[Enc]⊕Key4

F
ig

.
A

.2
.

Il
lu

st
ra

ti
on

of
h
an

d
li
n
g

in
d
ir

ec
t

re
cu

rs
io

n
.

F
ig

.(
a)

sh
ow

s
a

ca
ll

gr
ap

h
of

tw
o

in
d
ir

ec
t

re
cu

rs
iv

e
fu

n
ct

io
n
s.

F
ig

(b
)

sh
ow

s
a

p
se

u
d
o

co
d
e

of
in

st
ru

m
en

ti
n
g

in
d
ir

ec
t

re
cu

rs
iv

e
fu

n
ct

io
n
s.

F
ig

(c
)

il
lu

st
ra

te
s

a
cy

cl
e

of
fo

u
r

fu
n
ct

io
n
s.

F
u
n
ct

io
n
s
f
u
n
c
1

an
d
f
u
n
c
2

ar
e

h
an

d
le

d
in

th
e

sa
m

e
m

et
h
o
d

as
th

e
fi
rs

t
ca

se
in

(a
).



137

indirect recursion, otherwise it uses the regular TLR policy ¹. For func2, it uses

the TLR policy directly (º) as all FIDs are from the XOR encoding chain. Note

that the same transformation is used for a cyclic call (i.e., call causing a cycle in

the call graph). For example, func1 and func2 are handled in the same method

in Figure A.2(c).

Finally, in case of indirect recursion with multiple call sites, each call site uses a

segment counter, as shown in 1. In addition, each call site is given an index in the

order they appear in the function. A check is inserted before each indirect recursive

call ensure the indirect recursive calls execute in ascending order (i.e., line two in

Algorithm 1). As discussed in above, in case of calls executing out-of-order (e.g.,

indirect recursive call[2] executes after indirect recursive call[3] has already executed),

a system call is needed to save the SR to the safe region and reset the recursion

counters. The callee of the indirect recursive calls checks each segment counter in

descending order (i.e., to enforce the return to the call sites ascending order), as

shown in Algorithm 2. This enables returning correctly to the correct call site in the

caller (i.e., func2). Function func2 checks the value of all recursion counters after

returning from each call site. In case all recursion counters are zero, it checks the safe

region for a saved SR, and rosters the SR value (i.e., line eight in 1). The process

repeats until no saved SR is found in the safe region, at which no indirect recursion

is left and the function can return normally using its TLR.
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