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ABSTRACT

Ghanbarpour Ghouchani, Ahmadreza. Ph.D., Purdue University, May 2021. Applications

of Deep Neural Networks in Computer-aided Drug Design. Major Professor: Markus A. Lill.

Deep neural networks (DNNs) have gained tremendous attention over the recent years

due to their outstanding performance in solving many problems in different fields of science

and technology. Currently, this field is of interest to many researchers and growing rapidly.

The ability of DNNs to learn new concepts with minimal instructions facilitates applying

current DNN-based methods to new problems. Here in this dissertation, three methods

based on DNNs are discussed, tackling different problems in the field of computer-aided

drug design.

The first method described addresses the problem of prediction of hydration properties

from 3D structures of proteins without requiring molecular dynamics simulations. Water

plays a major role in protein-ligand interactions and identifying (de)solvation contributions

of water molecules can assist drug design. Two different model architectures are presented

for the prediction the hydration information of proteins. The performance of the methods

are compared with other conventional methods and experimental data. In addition, their

applications in ligand optimization and pose prediction is shown.

The design of de novo molecules has always been of interest in the field of drug discovery.

The second method describes a generative model that learns to derive features from protein

sequences to design de novo compounds. We show how the model can be used to generate

molecules similar to the known for the targets the model have not seen before and compare

with benchmark generative models.

Finally, it is demonstrated how DNNs can learn to predict secondary structure propensity

values derived from NMR ensembles. Secondary structure propensities are important in

identifying flexible regions in proteins. Protein flexibility has a major role in drug-protein

binding, and identifying such regions can assist in development of methods for ligand binding

prediction. The prediction performance of the method is shown for several proteins with two

or more known secondary structure conformations.
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1. INTRODUCTION

1.1 Machine learning in computer-aided drug design (CADD)

Machine learning and its subcategories are algorithms that are automatically learned

aiming to find patterns in data. The idea of finding patterns in data in the field of drug

discovery and rational drug design is not something new, and goes back to early regression

methods that were used by Hammet to find associations in reaction rates and equilibrium

constants in benzene derivatives [1 ]. Since then, more complex algorithms have been devel-

oped and applied in the field of drug design to find non-linear relationships as well as linear

ones, notably, support vector machines (SVM) [2 ], random forests (RF) [3 ] and artificial

neural networks [4 ]. All these methods, have their own pros and cons and have their own

appropriate uses for suitable problems. In recent years, with the improvement in technology

and the availability of high-performance hardware, more complex variants of neural networks

have been developed. Especially deep neural networks – neural networks with multiple layers

between input and output layers, have gained tremendous amount of attention due to the

significant performance gain to solve many problems in science and technology [5 ].

1.2 Artificial neural networks (ANNs)

ANNs are a collection of interconnected processing units dubbed as artificial neurons

(Figure 1.1 ). Each artificial neuron can be considered as a function which maps input vector

X = [x1...xn] to output y, by multiplying each element xi of the input vector by weights

wi, adding the bias b and finally passing the output through an activation function f(z). In

mathematical terms:

y = f

(
n∑

i=1
wixi + b

)
(1.1)

Neurons can be stacked as layers and each layer receives the output of the previous layer

as input. In the most common case, every output from each neuron from a layer is passed

to every neuron in the next layer, forming a fully connected neural network (see Section:

Common neural network types). The networks ultimately will output a label (classification)

or one or more scalar properties (regression), (Figure 1.2 ).
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As the name implies, in machine learning methods an algorithm is learned to carry out

some specific tasks. In neural networks, the weights in neurons are tuned by optimizing a

loss function, which usually measures the error between predicted and actual values of the

desired output of the network. In backpropagation the gradient of the loss function with

respect to the weights is computed and the weights are changed according to this gradient.

Specific optimizing algorithm, e.g. stochastic gradient decent or Adam [6 ], are utilized in

training the ANN. The goal is to tune the weights so that the loss function over the samples

during training is minimized.

Figure 1.1. Structure of an artificial neuron. Each input is multiplied by a
weight, the weighted inputs are summed, and a bias term is usually added.
The sum is inputted to the activation function to yield the output.

1.2.1 Common types of neural networks layers

Fully-connected layer

As mentioned before, in fully-connected layers each neuron is connected to each neuron

in the next layer (Figure 1.2 ). These type of layers can be used as general purpose layers in

different architectures. However, since every connection has its own weight and every neuron

is connected to every other neuron in the next layer, the number of trainable weights can
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Figure 1.2. A deep neural network with n inputs and m hidden layers. There
is a connection from each neuron in each layer to each neuron in the next layer,
but not among neurons in the same layer.

rapidly become large, making the training computationally very expensive and the model

prone to overfitting. This makes such layers inefficient for processing inputs such as images.

Convolutional layer

Convolutional layers are usually used to process image or image-like data representations

[7 ] (Figure 1.3 ). The convolution operation (I ⊗ K) where I is a single-channel 2D image

and K is a convolution kernel with dimensions (k1, k2) is linear and can be written for the

image pixel position (i, j) as:

(I ⊗ K)ij =
k1∑

m=1

k2∑
n=1

Km,nIi+m,j+n (1.2)

A 2D convolutional layer has length, width and depth parameters, where length and width

describe the dimensions of its receptive field (kernel) and depth relating to the number of

different input channels. For example a depth of three is used for images with RGB color

values. In 3D convolution layers kernels with 4-dimensional weight tensors are required. The

use of kernels with small number of weights in convolutional layers greatly reduce the number

of weight parameters that need to be optimized compared to fully connected layers. This
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approach reduces training time and improves convergence speed. Furthermore, translational

and to a certain extent rotational invariance is achieved by the convolution mechanism, i.e.

feature detection does not rely on where in the input image the feature appears [8 ].

Figure 1.3. Convolutional layers. The convolution operation generates fea-
ture maps by sliding a kernel over the input. Feature maps can vary in number
depending on the number of kernels used.

Recurrent layers

Recurrent layers are designed to process sequential data, such as time-series, text, protein

sequence, simplified molecular input line entry specification (SMILES) sequence, etc. While

most common neural networks work in a feed-forward fashion, that is the direction of data

flow is always from input to output, recurrent layers enable the flow of data in both directions,

by introducing loops (Figure 1.4 ), and hence, making the output not only dependent on the

input of the directly connected layer but also layers before that. In other words, they enable

the network to have a “memory” of past inputs. An recurrent layer is composed of multiple

cells for each time step of the sequence of inputs being processed. A cell at time step t receives
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information from the previous cell state cellt−1 in addition to the input xt to calculate an

output. In other words, cell state cellt is computed as:

cellt = f
(
Wxt + Ucellt−1

)
(1.3)

where f is the activation function, W is the weight matrix for the input and U is the weight

matrix parameterizing hidden-state to hidden-state connections. RNNs may be unable to

handle long-term dependencies in data [9 ]. To address the issue, architectures such as long

short-term memory (LSTM) [10 ] and gated recurrent unit (GRU) [11 ] were developed.

Figure 1.4. A RNN cell shown in both rolled and unrolled form. W is the
weight matrix of the input, while U is the weight matrix for the hidden-state
to hidden-state connections.

1.2.2 Building models

The first step in building models is to clearly explain the problem of interest. Next

steps are usually preparing the data, designing the neural network architecture, training and

finally, evaluation. Designing architectures should be done not only with consideration of

the input data representation, but also the desired output in mind. In terms of output, the

model is aimed to either make predictions about the input, which is done by a discrimina-

tive/predictive model, or to generate new data similar to the input data which is carried out

by using a generative model (see Section: Generative models). In discriminative/predictive

tasks, the goal is usually to classify or to predict one or more values for each input sam-
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ple. The output in these cases is usually a one-dimensional vector containing class labels

or/and predicted values. However, in generative models, the output can vary. In the field of

drug discovery, the generated output as well as the input can be image-like, text-like (e.g.

sequence of characters), or graph-like.

In modern deep neural networks approaches, the goal is to automatically extract features

by the model, rather than explicitly define features before model building. This allows the

the model to detect hidden patterns in data, not obvious to the human eye. The advantages

of such models is the automatic feature extraction and data abstraction [12 ]. Using this

approach requires one to convert the data to commonly used data representations for neural

networks. Some common types of representations are discussed below.

1.2.3 Building models based on data representations

Visual representations

Structural information is of high value in tasks related to structure-based drug design.

Macromolecular and small molecule 3D structures can be described using voxels, so that

essential and useful structural information is extracted during learning, without much human

interaction. Convolutional neural networks (CNNs) are usually used for processing image-like

data. CNNs can be fully convolutional or a combination of convolutional and fully-connected

layers. To convert structures to 3D image-like data, initially the 3D structure of molecules,

that is, the coordinates of the atoms has to be voxelized. In order to reduce the sparsity of

3D grids, sometimes Gaussian smearing is used, which applies a Gaussian function with the

atom coordinate as the center [13 ]. Multiple grids may be generated for multiple atom types,

and may be provided to the neural networks as different input channels. The drawbacks of

this approach are: First, the grids can only be generated in a fixed predefined image size,

which is sub-optimal for proteins or ligands that can adapt largely variable size. Thus, a

whole molecule may not fit into the grid. Second, the grids are not transformation and

rotation invariant, so the orientation of the molecule affects the training and prediction. To

mitigate this problem, data augmentation is used, i.e. providing the same structure in a

variety of orientations and transformations during the training.
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Many works have used CNNs to process protein and molecular structures. For example,

3D convolutions have been used for protein’s binding site similarity prediction [14 ], protein-

ligand binding affinity prediction [15 ], protein’s binding site detection [16 ] and classification

[17 ], ligand’s pose prediction in binding [13 ].

Sequential representations

Proteins and genes have long been represented as sequence of their building blocks namely,

amino acids and base pairs. Similarly, small molecules structures can be written as a se-

quence of characters describing the atoms and the bonding among them, commonly using

SMILES language. Representing data as a sequence of characters enables application of

methods originally developed for natural language processing (NLP) tasks to to biological

and chemical data. Recurrent neural networks (RNNs) are commonly used to process this

type of data (see Section: Generative models: Recurrent neural networks).

Graph representations

Graph representations are natural to chemicals but have also been previously used to

model and analyze proteins [18 ]. In recent years neural network methods have been developed

to process graph data. 2D or 3D structures of small molecules and proteins are encoded as

graphs. Typically, the atoms or amino acids are the nodes and edges represent the bonds or

distances. Atom and bond types can be passed on to the network as node and edge features.

Here, the data represented is rotation and transformation invariant due to the data being

a graph instead of images. Graph convolutions combined with fully-connected layers may

be used to process graphs and extract features. Works such as [19 ] generate graph-based

fingerprints of small molecules to be used in downstream tasks, graphs have also been used

in protein design [20 ] and generative models (See Section: Generative models).

1.2.4 Generative models

Unlike predictive models which aim to predict some target value based on input data,

the generative models seek to learn the true distribution of the data they are trained on,
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so to generate new data with features learned from the training set. In other words, gen-

erative models aim to learn a function that estimates the true distribution of the data [21 ].

Currently, in the field of drug design and discovery, generative models have been used to

generate de novo molecules (see sections on model types), where usually molecules are rep-

resented as SMILES strings, or molecular graphs. Also, generative models have been used

for protein modelling and design, where proteins were represented as their distance matrices

[22 ]. Different variants of generative models are as follows:

Recurrent neural networks

Inspired by their successful applications in NLP tasks [23 ], RNNs have been used to

generate text that represent molecules as SMILES sequences, for de novo molecule generation

[24 ]–[26 ]. The ability of RNN to hold internal states enables such networks to maintain a

memory of previous characters, hence making them suitable for processing sequential data.

Therefore, in order to train such networks data must be represented as a sequence. For this

reason, molecules are usually represented using the SMILES language, which uses a specific

grammar to represent 2D structures of molecules. Newer variants of RNNs, namely LSTMs

and GRUs has shown improved performance over simple RNNs [27 ]. Once a network is

trained on a series of molecules represented as SMILES strings, it is able to generate new

and valid molecules that did not appear in the training data. However, given that SMILES

strings are very sensitive to errors, there can be a large fraction of invalid strings that do

not produce a valid structure.

Autoencoder-based models

Autoencoders are a type of neural network architecture which learn a mapping from

input data to latent representation and back to a reconstruction of the input data, us-

ing an encoder and decoder network. Autoencoders are not generally used as generative

models. However, their variants, namely, variational autoencoders (VAE) and adversarial

autoencoders (AAE) [28 ] (Figures 1.5 and 1.6 , respectively) are able to generate new data.

Autoencoders are composed of two compartments, an encoder and decoder. The encoder
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reduces the high-dimensional input data to a low dimensional representation or embedding

z, while the decoder reconstructs the data from the embedding. With P (z) as the prior

distribution of z, let Q(z|X) and P (X|z) be probabilities of encoding and decoding dis-

tributions. Q(z|X) and P (X|z) can be estimated by training the VAE [29 ]. In AAE, an

additional discriminator network is introduced to add additional constraints on the training.

Both architectures have been used mainly for compound generation [28 ].

Figure 1.5. Architecture of a VAE.

Generative adversarial networks (GANs)

A GAN model is composed of two neural networks: The generator and the discriminator

that compete with each other in an adversarial fashion (Figure 1.7 ). Both networks are

trained in parallel. In its simplest form, the generator learns the mapping of an embed-

ding to some output which resembles the training data, and the discriminator evaluates the

generator’s performance by deciding whether the generated samples are real or fake. The

discriminator itself is trained by learning to distinguish between the real data in the training

set and the generated (fake) data sampled from the generator. Finally, the trained generator

is used to generate new data after the training is completed, usually when the loss function

of generator and the discriminator do no longer decreases in value [30 ]. GANs have been

used broadly in image generation due to their impressive performance, however, training
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Figure 1.6. Architecture of an AAE. In this design, a discriminator is added
to the autoencoder.

GANs is more challenging than other models since the adversarial balance should always

be maintained between the generator and the discriminator during the training, otherwise

problems such as mode collapse can occur [31 ]. If mode collapse happens, the generator

only generates more or less the same output which has poor diversity making the model not

useful for generating new data. Methods such as MolGan [32 ] and ORGANIC[33 ] employ

GAN models for de novo molecule generation.

Reinforcement learning (RL)

Generative models can be further tuned using reinforcement learning. Initially developed

to make decision making possible in uncertain environments, reinforcement learning can

guide the molecular generation toward molecules with desired properties. In reinforcement

learning, external scoring functions can be used in order to reward the model to find a policy

toward maximizing the reward, i.e. by finding the best actions through trial and error.
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Figure 1.7. Structure of a GAN. The network is composed of two networks,
the generator and the discriminator. Both networks are trained in an adver-
sarial fashion simultaneously.

Reinforcement learning has been used in conjugation with other generative approaches to

guide the generative process [32 ], [34 ]–[36 ].

1.3 Promises and strengths

Automatic feature extraction

A very useful property of deep neural networks is automatic feature extraction. Feature

engineering is a time-consuming process and requires expert knowledge of the field. Auto-

matic feature extraction enables the model to extract essential, sometimes complex or hidden

features from the data for the task at hand without being informed about them beforehand.

Such advantage enables building machine learning models faster and more efficient. There-

fore, the data can be provided as is, images, text, etc with minimal preprocessing required.
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Generative power

Another important advantage of deep neural networks which is not so common in other

machine learning approaches is their ability to generate new data. Generative models can

be useful in protein and peptide design, de novo design of small molecules, etc.

Reinforcement learning

A very useful characteristic of deep neural networks is their ability to be combined with

reinforcement learning algorithms which gives rise to a new set of methods known as deep

reinforcement learning. Reinforcement learning algorithms are useful in finding policy in

uncertain environments, that is, when the goal is not to predict a specific target value, but

rather to identify an overall optimal policy. These algorithms may be used in situations

where the scoring function is unknown or there is no differentialable loss function that can

be used for backpropagation. For example, in the case of generating compound in a specific

Log P range, the target compounds are not known. However, the model output can be scored

by a scoring function to direct the network in finding a policy which generates compounds

within the desired Log P range.

1.4 Challenges and caveats

The black box and interpretability problem

Over the past years many machine learning models have emerged that were able to solve

complex problems in a variety of fields [5 ]. However, these models have typically been a black

box to the users and even developers and the exact inner workings of them are unknown.

The lack of “interpretability” may makes these models less reliable, especially in sensitive

tasks, since unknown errors may occur and the reliability of predictions is not exactly known.

This is particular true when they are unintentionally trained on erroneous data, or data not

representative of the real-world data. Without the knowledge of the inner working of the

black box, it is difficult to reliably assess if the model has learned a concept or the training
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occurred by chance. Therefore, to address such issues, there should be mechanisms to assess

the model’s learning and making the model more interpretable.

Overfitting and related issues

All machine learning models are susceptible to overfitting and deep neural networks are

no different. Overfitting can occur due to small training data size or poor design of the model.

Being a black box, it may be hard to distinguish if a model can generalize, if validation and

test sets are not chosen carefully. For a model to generalize, the training, validation and

test data should be diverse and representative of the real world data. Lacking diversity can

cause the model have bias and may be only performing well on a small set of data. It’s also

important to prevent data leakage from poor preprocessing or train/test-set splits. There are

measures used to mitigate the problem of overfitting, namely data augmentation methods,

which increases the dataset size by slightly modifying copies of the samples in the dataset,

or transfer learning, which uses a model already trained on a larger, similar dataset and

subsequently continue the training of the model on the specific dataset of the problem at

hand; often only a subset of parameters are optimized throughout this final training process.

Finding causal relations

The well-known phrase: “Correlation does not imply causation” has been used in the

field of statistics to refer to the inability to interpret a cause-and-effect relationship between

variables on the basis of their association. Machine learning methods tend to find correlations

and associations in data, rather than causal relations, therefore the interpretation of the

results should be done with caution. Some features may just happen to co-occur in the data,

which may cause the model to associate them while it does not mean that those features

explain the concept the model is trying to learn. Subsequently, the model may make a

wrong decision or prediction by the observed association in the training data. In recent

years, there have been studies to develop methods to find causal relations between features

and predictions [37 ].
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1.5 Future directions

Deep neural networks have greatly impacted research in drug discovery. However, chal-

lenges still remain. As mentioned previously, many methods deploying deep neural networks

for drug design were originally designed for image and text processing. While the methods

can be applied with minimal changes to solve the problems in drug discovery, their corre-

sponding input data representations may pose some issues. Proteins represented as voxels

do not convey any information regarding bonding. Image transformations and rotations

may alter model performance and image sizes are fixed in convolutional networks, posing

problems in representing proteins with different sizes. Text representations sometimes suffer

from typing errors that cause the model’s output to be invalid molecular structures. On

the other hand, graph representations can be used to represent bonds and atoms, and the

lengths of the graphs can be variable, hence there is no such concerned of fixed input size.

Graphs have been used to represent proteins as well as small molecules [19 ], [20 ], and seems

to be the better approach compared to images or text.

Another challenge, is the availability of problem-specific data. Generating experimental

data used for machine learning tasks is expensive. Labeling data is another expensive process

that is not always available. Without high-quality data, even the best algorithms can fail.

One solution for such problems are to move toward models that can perform with small

dataset sizes, or models that can auto-label data or perform in unsupervised manner, that

is being able to make predictions using unlabeled data. Recently, there have been works in

auto-labeling data, and also self-supervised and unsupervised learning in text and image-

classification [38 ]–[40 ]. Similar approaches may be used in biological and chemical data to

develop models.

The community should also move forward to address the black box problem in machine

learning models. There have been approaches known as saliency methods that use different

techniques to find regions in image data that contain the prominent features the model

performs based on. However, the explanations derived using such methods can sometimes

be unreliable if they are sensitive to variables that do not affect the model’s prediction [41 ].

Explainable models can not only do the task, but also may improve our understanding of
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the hidden biology and chemistry in data. Such models will be more robust, reliable and

less prone to errors. Explainable models can minimize the adverse effects of faulty data

and human error in the process and may also be used as knowledge discovery tools, while

performing for the task they are designed to carry out.

1.6 Scope of the present study

In this dissertation, I present three applications of deep neural networks in drug discovery,

each addressing a specific problem, using different approaches and data representations. I

show how automatic feature extraction and data abstraction in deep neural networks enables

the models to yield reasonable results, both in predictive and generative types. Chapter 2

describes two deep learning methods to predict protein hydration data, one of which is used

to also predict thermodynamic information of water molecules. Each model uses its own

data representation: The first model uses image-like input data generated from proteins,

while the second uses spherical harmonics expansion to describe the protein environment. In

chapter 3 a generative model is described, which designs de novo molecules conditioned by

protein sequences, using the features derived by unsupervised learning via another model.

The model is then modified using reinforcement learning to increase diversity and novelty.

Finally, chapter 4 shows how a network can learn to predict protein disorder solely from

sequences, by directly being provided the sequences as text and the disorder values.
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2. INSTANTANEOUS GENERATION OF PROTEIN

HYDRATION PROPERTIES FROM STATIC STRUCTURES

2.1 Introduction

The prediction of thermodynamic properties of biochemical systems such as Gibbs free

energies is critical in understanding and quantifying essential biological process such as pro-

tein folding, protein-ligand and protein-protein binding. Resource intensive molecular sim-

ulations are routinely used to sample atomistic configurations of the dynamic biochemical

system in order to calculate thermodynamic properties. Recently, machine learning methods

have been explored to accelerate and improve configurational sampling of protein systems in

comparison to molecular dynamics (MD) simulations [42 ]–[49 ]. This acceleration is achieved

by machine learning concepts that learn collective variables from MD trajectories [44 ], [45 ],

[48 ], [49 ] or that generate new atomistic configurations in a statistically independent man-

ner [42 ], [46 ], [47 ]. The focus of these methods lies in the thermodynamic characterization

for structural studies of proteins. Application of these machine learning approaches to in-

vestigate the thermodynamic properties of biochemical processes such as protein-ligand or

protein-protein binding is still to be explored.

(De)Solvation of protein and ligand is typically a driving force for such association pro-

cesses. The thermodynamic properties of water molecules around protein moieties depend

strongly on the formation and dynamics of hydrogen-bond networks in a heterogeneous

protein environment. Several methods [50 ] have been devised to identify water molecules

adjacent to proteins’ surfaces which includes knowledge-based methods such as WaterScore

[51 ] or AcquaAlta [52 ], statistical and molecular mechanics approaches such as 3D-RISM [53 ]

or SZMAP [54 ], Monte-Carlo methods such as grand-canonical Monte Carlo (GCMC) sim-

ulations [55 ], and MD methods such as WATCLUST [56 ], WaterMap [57 ], [58 ] or WATsite

[59 ]–[61 ]. GCMC- and MD-based hydration-site prediction is accurate and widely accepted

as gold-standard to compute the likely water-positions in the binding sites of proteins, and

the enthalpy and entropy contribution of a replaced water molecule to binding free energies.

This statement was confirmed in a recent analysis on the structure-activity relationships for

different target systems which demonstrated the superiority of simulation-based water pre-
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diction compared to other commercial methods such as SZMAP, WaterFLAP and 3D-RISM

[62 ].

Hydration information can be used to estimate the desolvation free energy contribu-

tions to a ligand’s binding affinity or the potential for water-mediated interactions [58 ], [63 ],

[64 ]. Grid-based adaptations of the inhomogeneous solvation theory (IST) [65 ], for example

GIST [66 ], have been developed for direct inclusion of the hydration information in docking

algorithms.

In addition to water replacement and reorganization, ligand binding typically also in-

volves conformational changes of the protein [67 ]. Recently, we demonstrated the influence

of conformational changes of the protein on hydration site positions and thermodynamics

[68 ], [69 ]. These studies concluded that hydration site prediction on flexible proteins needs

to be performed on alternative protein states. Furthermore, we recently demonstrated the

general importance of water networks around the bound ligand for forming enthalpically

favorable complexes [70 ]. Thus, it is indispensable to re-calculate hydration information in

an efficient manner for each bound ligand or even binding pose during docking.

Hydration-site prediction based on GCMC- and MD-simulations is accurate but also

rather time-consuming. Utilization of these concepts in a real-world compound-design project

on flexible proteins and large sets of ligands with alternative binding poses is therefore dif-

ficult to attain with current computer hardware and therefore currently impractical. A

significantly more efficient method for hydration profiling is necessary, that would allow its

incorporation in virtual screening to dynamic and flexible protein entities. In this study, we

provide evidence that modern machine learning approaches may present a realistic solution

for obtaining thermodynamic hydration information in an efficient manner; we present the

first deep learning methods that instantaneously predict the thermodynamics of hydration

data (Figure 2.1 ).

First, we demonstrate that simple machine learning methods based on local descriptors

that characterize the direct interaction between protein and a potential water molecule at

a specific position in the binding site are insufficient to predict hydration information. The

reason for this observation is that interactions among water molecules are critical for stabi-

lizing the hydration pattern in binding sites, forming energetically favorable water networks
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Figure 2.1. Overall idea of WATsiteOnTheFly. A neural network is trained
to generate thermodynamic hydration data based on static protein structure.
This allows efficient calculation of (de)solvation data without performing MD
simulations.
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Figure 2.2. Network of water molecules in binding sites. Example of crys-
tallographic water molecules in the binding site of the apo structure of HSP90
(PDB (Protein Data Bank)-id: 1uyl). As water molecules in the binding
site are stabilized by hydrogen-bond interactions, models that rely purely on
protein-water interactions fail to represent the thermodynamic state and there-
fore to predict position, enthalpy and entropy of water molecules.

(Figure 2.2 ). The importance of multi-body effects for the prediction of thermodynamic

properties of hydration was also emphasized in previous studies [71 ]. To correctly model and

predict hydration data, more complex machine learning methods need to be designed that

include potential water interactions. We have designed two different machine learning con-

cepts based on deep neural networks that include those multi-body effects which are critical

determining the positions and thermodynamic properties of water networks (Figure 2.3 ).

Based on convolutional neutral networks (CNN), the first approach aims to predict hy-

dration information of all grid points in the binding site in a single calculation. First,

interactions are computed between protein and multiple atomistic probes placed on a 3D

grid encompassing the binding site. Those interaction grids, called molecular interaction

fingerprints (MIF), are then used as input to the CNN to predict hydration occupancy. Due

to the use of spatial kernels in CNN, correlations between neighboring grid points are incor-

porated. This allows to implicitly include water-water interactions in the machine learning

model.
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Figure 2.3. Overall procedure of prediction of WATsite data using neural
networks. (a) WATsite simulation are used to generate hydration data. Data
is used as output layer for training of neural networks. (b) Direct prediction of
complete 3D hydration image using U-Net approach. (c) Point-wise prediction
using simple fully-connected neural network.
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In contrast, the second model predicts hydration information for each grid point sepa-

rately using spherical-harmonics local descriptors. Again, interactions between protein and

atomistic probes are mapped on a 3D grid. Spherical-harmonics expansions of those inter-

action maps around each grid point then encode the local environment of a potential water

molecule which includes protein-water and water-water interactions.

Both models are trained on a large data set of thousands of protein structures. For

each protein structure, MD simulation is performed. Subsequent WATsite analysis predicts

hydration density and thermodynamic profiles on a 3D grid. This hydration data on the grid

functions as ground truth throughout the training and validation of the neural network (NN)

models. After the model has been trained it can be applied to any static protein structure

without the need to prepare and run any MD simulations.

2.2 Methods

2.2.1 Water prediction on proteins

Here, hydration site data was generated for several thousand protein systems using WAT-

site (Figure 2.4 ). The recently published protocol combining 3D-RISM, GAsol and WATsite

(Figure 2.4 ) was used to achieve convergence for hydration site occupancy and thermody-

namics predictions for solvent-exposed and occluded binding sites [61 ]. Using 3D-RISM

site-distribution function [72 ]–[74 ] and GAsol [75 ] for initial placement of water molecules,

WATsite then performs explicit water MD simulations of each protein. Finally, explicit water

occupancy and free energy profiles of each hydration site (i.e. high water-occupancy spot) in

the binding site are computed. This hydration data is distributed on a 3D grid that encom-

passes the binding site and is used as output layers for the neural networks to be trained on.

Details on WATsite simulations and analysis can be found in the Supplementary Methods

section.

2.2.2 Neural networks for WATsite prediction

Two different types of neural networks have been designed to predict hydration informa-

tion (Figure 2.3 a). In both approaches, input descriptors were generated for each grid point
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Figure 2.4. Overall procedure of WATsite. Overall procedure of WATsite
combining (a) initial placement of water molecules using 3D-RISM and GAsol,
and (b) subsequent MD simulation with explicit water molecules and WATsite
analysis to generate water occupancy, enthalpy and entropy grids (adapted
from [70 ]).
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representing the spatial and physicochemical environment of that potential water location.

In the first approach, the complete 3D input grid was translated into a 3D output grid

representing the hydration information using a semantic segmentation approach (Figure 2.3 

b). In the second approach, the hydration information of each individual point is predicted

based on input descriptors (Figure 2.3 c).

Neural networks for semantic segmentation

In the first approach, to predict hydration data, we adapted deep neural network concepts

commonly used in semantic image segmentation. Semantic image segmentation is the task

to identify the pixels in an image that belong to a specific class or category, for example a

specific object in an image. The great advantage of such networks is that they are able to be

trained end-to-end by creating a mapping from the input layers to the output images. The

resulting output is an image or a grid with the same dimensions as the input layers. Among

the various architectures used for this task, U-Net has been demonstrated to often produce

superior segmentation performance with smaller training sets compared to other methods

[76 ]. Here, we used different forms of U-Nets but extended the segmentation task to multi-

class segmentation. The multiple classes represent the occupancy of water molecules above

various threshold values in different moieties along the protein surface.

Generation of descriptors

We used the ”refined set v.2016” from the PDBind database [77 ], [78 ] consisting of 4057

protein-ligand complexes. Hydration site data was generated using WATsite as described in

[70 ] (see also Supplementary Methods). The ligands were removed from their binding site for

WATsite calculations but used to define the center of the hydration grids where the center

of the grid is aligned to the ligand centroids in the X-ray structure.

All PDB files were processed by removing ions, water molecules, ligands and other het-

eroatoms. No proteins with cofactors in the binding site were used in this study. Preparation

scripts available in WATsite’s docker image bundle were used to further process the proteins:

PROPKA [79 ], [80 ] was used for protonation state prediction and LEAP (part of the Amber-
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tools package [81 ]) for assignment of Amber14 force field parameters. The prepared protein

was used as input for WATsite and for the fully connected network (to generate features

with spherical harmonics expansion method).

For the CNN-based approach molecular interaction fields (MIF) with different atomistic

probes distributed on a 3D grid are used as input. MIFs are generated by first placing

a fictitious probe molecule on each point of a 3D grid that encompasses the binding site.

The interaction value between probe and protein is calculated at each grid point under the

assumption of a rigid protein structure. Instead of providing an image of the protein, this

approach rather generates a negative image of it and provides data for the binding site

regions of the protein unoccupied by protein atoms but accessible to water molecules.

Molecular interaction fields (MIF) with different atomistic probes distributed on a 3D

grid are computed using FLAP [82 ], [83 ] and are fed as input descriptors for the CNN.

FLAP uses the GRID forcefield and its own atom types. The internal program GRIN [84 ],

[85 ] is used to preprocess the protein. Additional details can be found in the Supplementary

Methods section. The descriptor grids were aligned and interpolated to the WATsite grids

by use of the MDAnalysis package [86 ], [87 ]. The process for selecting relevant chemical

probes for FLAP is further explained in Section Probe selection. FLAP occasionally failed

to generate output for one or two probes for some proteins due to an internal program issue.

As this is a commercial software, it was not possible to correct this error. PDB files for

which FLAP failed to generate an output were removed. Finally, 3421 PDBs were used for

training and testing of the neural network models (Supplementary Data 2 and 3).

Probe selection

In FLAP, MIFs between protein and 78 different chemical probes are generated. To

reduce the number of input layers for the CNN model, we performed k-means clustering of

the FLAP grids of three randomly selected protein systems. The distance matrix used during

clustering was based on Pearson correlation coefficients between the interaction values on

the 3D FLAP grids of a pair of probes. In detail, the distance between two interaction probe

types was defined as one minus the Pearson correlation coefficient. The number of clusters
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was chosen to be 12. One representative probe type from each cluster was used to finally

generate a set of 12 representative probes with largest diversity between their interaction

grids, i.e. smallest Pearson correlation coefficient. These grids represent 12 input channels

to the neural network. Increasing the number of channels (probe types) did not lead to

significant improvement of the network and only increased the training time.

Processing of hydration occupancy data

Initially, the generated neural network models were designed to generate regression mod-

els to predict continuous occupancy values. These models, however, failed due to significant

imbalance between low and high occupancy values (Supplementary Figure 1). Alternatively,

we proceeded with a multi-class segmentation model with six output channels. Each of

those channels represents the water occupancy above a chosen threshold. In detail, WATsite

occupancy values were transformed into labels based on the threshold values that were se-

lected for the network. The threshold values were 0, 0.02, 0.03, 0.045, 0.06 and 0.07. Input

data grids from FLAP were clipped at -20 and 20 kcal mol-1 and scaled to be within -1

and 1, to remove the rare, extreme values. This range covers more than 99 % of all points

(Supplementary Figure 2).

Network architecture and model building

Our neural network architecture was based on the work in [88 ], with the difference that

in our implementation, the network contained six output channels. In detail, a modified ver-

sion of a U-Net neural network was used which contains Residual connections and Inception

blocks. Residual connections were first introduced in ResNets [89 ]. They have the advan-

tage of preserving the gradient throughout a deep neural network addressing the vanishing

gradient problem of those networks.

Another issue is the optimization of the kernel size of the convolutional filters. Sub-

optimal kernel sizes can lead to overfitting or underfitting of the network. Inception blocks

have been designed to overcome this issue, whereby the Inception blocks contain convolu-

tional layers with different kernel sizes running in parallel. Throughout the training process,
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Figure 2.5. Network architectures. (a) Baseline U-Net and (b) Incep-
tion+Residual U-Net architecture used for multi-classification model for hy-
dration density prediction.

the network learns to use the layers with convolutional kernel size that best fits the input

data which results in better training process [90 ].

The U-Net that we used as a baseline model for our experiments consists of 6 encoder

and 5 decoder layers (Figure 2.5 a and Supplementary Figure 3a). Each layer has a 3D

convolutional layer with kernel size 2, stride size of 2 and zero padding. The number of

filters for layers 1-6 is 32, 64, 128, 256, 512, and 512, respectively. Each convolutional layer

was followed by a Batch Normalization layer, a Dropout layer and LeakyReLU activation.

Each decoding layer consists of an Upsampling3D layer with size 2 followed by a convolutional

layer, Batch Normalization layer, Dropout, and concatenation layer (which provided the skip

connections in the U-Net) and ReLU activation. The number of filters for layers 7-10 is 512,

256, 128, and 64, respectively. The last layer consists of six filters (for the classification of 6

thresholds).

The Inception+Residual U-Net that we used resembles a U-Net, with the exception that

each convolutional layer is replaced by an Inception block and the skip-connections contain

a Residual block (Figure 2.5 b and Supplementary Figure 3b). Inception and Residual

blocks and convolutional layers are followed by ReLU activation. The network has 5 encoder

layers and 4 decoder layers. All Inception blocks are followed by a Dropout layer. Each
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decoder layer has an Upsampling3D layer prior to the Inception block. The last layer is a

convolutional layer with filter number of 6 and kernel size 1.

As discussed above, regions in the grid with high water occupancy are sparse by nature,

resembling a significant imbalance between number of low-occupancy and high-occupancy

grid points. This makes the prediction of higher occupancy grid points difficult, as commonly

used loss functions such as mean squared error will not work properly for such imbalanced

data. The sparsity of the dense regions causes the network to predict low or zero values for all

grid points even for high occupancy points. This problem also occurs in image segmentation

tasks, where the object of interest is small compared to the whole image being analyzed,

for example in the detection of small tumors in brain images [91 ]. One of the loss functions

that has been designed to train such imbalanced data is the Dice loss, which is a modified,

differentiable form of the Dice coefficient [92 ]. We used the generalized form of the Dice loss

(GDL) [91 ] which assigns higher weights to the sparser points:

GDL = 1 − 2
∑6

l=1 wl

∑
n

rlnpln∑6
l=1 wl

∑
n

(rln+pln)

with label weights wl = 1/(∑N
n=1 rln)2 proportional to the inverse of their populations

squared. rln and pln are the reference and predicted label (l) values at a grid point n,

respectively [93 ]. This loss function will strongly penalize sparse grid points, enforcing the

learning algorithm to more precisely predict those values in addition to the large number of

low-occupancy grid points.

Adam optimizer [6 ] with learning rate of 0.001 and a batch size of 16 was used for training

the model. Learning was performed for 100 epochs using Keras [94 ] with Tensorflow [95 ]

back-end. Once trained, the six output channels of the network are combined to obtain a

grid with a range of values which represent the likeliness of hydration.

Neural networks for point-wise prediction using spherical harmonics expansion

In the second approach, the hydration information of each individual point is predicted

based on the input descriptors specifying water-protein interactions at this location and

the environment of this water location. The approach consists of two subsequent models,
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a classifier to separate grid point with water occupancy from those without, and a second

regression model only for grid points classified as ”with occupancy” in the first model. In

this regression model occupancy values and free energies of desolvation are computed. In

classification and regression model, parameters for the protein atoms such as van der Waals

radius and partial charge are directly taken from the coordinate and topology file prepared

for WATsite simulations.

Classification model to identify grid points with water occupancy

For each grid point, the spatial environment and flexibility of surrounding atoms is com-

puted. In detail, the distance from grid point k to all atoms i in the neighborhood of the

grid point are computed and the van der Waals radius of the protein atom σi is subtracted:

r̃ik = |Ri − rk| − σi. (2.1)

All r̃ik values up to 6 Å are distributed onto a continuous 25-dimensional vector using the

Gaussian distribution function, where the value at bin i is

pk,i = exp
(

−
(
r̃ik −

(
i · w − 1 Å

))2
/(2 · w2)

)
(2.2)

with w = 7 Å/25. All values are finally scaled using tanh (pk,i/5) to limit values to the range

[0;1].

Separate vectors are computed in the same manner for hydrogen-bond donor and acceptor

atoms. The motivation for this additional descriptors are that shorter distances between

water and hydrogen-bonding groups are observed compared to hydrophobic contacts.

Despite the applied harmonic restraints, dynamic fluctuations of the protein atoms are

observed throughout the WATsite MD simulations. These fluctuations can have impact on

the accessibility of water molecules to different locations in the binding site. To incorporate

those atomic fluctuations in the neural network predictions of occupancy, we designed a

simple flexibility descriptor for the side-chain atoms (backbone atoms are considered rigid in

this analysis). The shortest topological distance ti of a side-chain atom i to the corresponding
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Cα atom is translated using fi = 2 · tanh (ti/4). The distance between this atom and grid

point k is then distributed to an additional 25-dimensional vector using a modified Gaussian

distribution

qk,i = fi · exp
(

−
(
r̃ik −

(
i · w − 1 Å

))2
/(2 · w2)

)
(2.3)

Subtracting this vector qk,i from the unmodified vector pk,i generates a vector that measures

the flexibility of the environmental atoms around grid point k.

All four vectors are concatenated which generates a 100-dimensional input vector to the

neural network for classification.

In addition to the input layer, the neural network architecture consists of a fully-connected

hidden layer with 1024 nodes with leaky-ReLU activation and dropout layer with dropout

probability of 0.5, followed by a second fully-connected hidden layer with 512 nodes with

leaky-ReLU activation and a final output layer with sigmoid activation to classify each grid

point as either occupied (1) or unoccupied (0). A threshold occupancy value of 10−5 in the

input was used to separate occupied from unoccupied grid points.

Adam optimizer [6 ] with learning rate of 0.001 and a batch size of 250 was used to train

the model. Learning was performed for 50 epochs using Tensorflow [95 ].

Regression model

For each grid point, first the direct interactions between water probe and protein atoms

is computed. In detail, electrostatic fields of the protein atoms i at location Ri with partial

charge Qi are computed on each grid point rk

Eelst
k =

∑
i

Qi

|Ri − rk|
. (2.4)

Steric contacts of water probe with protein atoms i at location Ri with van der Waals radius

σi and well-depth εi is computed using a soft alternative of the van der Waals equation

Esterics
k =

∑
i

√
εiεp

( σip

|Ri − rk|

)4

−
(

σip

|Ri − rk|

)2
 . (2.5)
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with σip = σi + σp (probe σp = 1.6 Å) and well-depth of probe εp = 0.012 kcal mol-1. Protein

parameters from the Amber14 force field are used.

Hydrophobic contacts are computed [96 ] using

Ehphob
k =

∑
i



1 if s ≤ −1

0.25 · s3 − 0.75 · s + 0.5 if −1 < s < 1

0 if 1 ≤ s.

(2.6)

with

s = 2.0 · (|Ri − rk| − σip − 2.0) /3.0. (2.7)

Hydrogen-bond interactions between water probe and protein acceptor/donor heavy

atoms i are computed using

EHBond−Acc
k =

∑
i

exp
(
−|Ri − rk − R0|2

)
(2.8)

and

EHBond−Don
k =

∑
i


− exp (−|Ri − rk − R0|2) · cos (αiHk) if cos (αiHk) < 0

0 if cos (αiHk) ≥ 0
(2.9)

respectively (R0 = 1.94 Å).

Each interaction term is then scaled and transformed by a hyperbolic tangent function

to the range [0; 1]

Ẽproperty
k = tanh(Eproperty

k ) (2.10)

with the exception of the electrostatic interaction term which is scaled to be within [ −

1; 1] (small negative van der Waals interaction values are clipped off at zero). Each scaled
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Figure 2.6. Input of neural network. Generation of input vector for neural
network for point-wise prediction of hydration data. (a) For each grid point,
the interaction fields from the protein are computed. Nearby grid points within
a spherical shell around the grid point are identified. (b) The interaction field
distribution of those grid points are represented by spherical harmonics ex-
pansion. (c) The moments of this expansion generate an environment vector.
(d) The environment vectors of spherical shells with increasing radius are con-
catenated together with the direct interaction fields at this grid point. This
final vector is used as input for the neural network.

interaction term is finally transformed into a continuous vector of size 20 using Gaussian

distribution functions, where the value at each bin i is determined by

pproperty
k,i = exp

(
−
(
Ẽproperty

k − (i · w + min
(
Ẽproperty

))2
/(2 · w2)

)
(2.11)

(bin width of w = 2/20 and w = 1/20 for electrostatic interactions and all other interac-

tions, respectively). The five 20-dimensional vectors are concatenated to generate a 100-

dimensional input vector to the neural network.

The stability of water molecules not only depends on the protein environment but also

on the surrounding network of additional water molecules. Thus, the environment of the

51



water probe needs to be quantified as well. Here, we use a spherical harmonics expansion

of the interaction fields on surrounding grid point as additional descriptors. In detail, seven

spherical shells with increasing radius are defined to identify neighboring grid points with

increasing distance to probe location: [−ε; 1 Å+ ε], [0.5 Å-ε; 1.5 Å+ ε], . . ., [3 Å-ε; 4 Å+

ε] (ε is small value to include grid points with distance at the boundary of interval) (Figure

2.6 ). The grid points in each shell are projected onto a unit sphere and the interaction values

of those grid points are used to compute the coefficient of the spherical harmonics up to a

certain order lmax:

Ẽproperty
neighbors of k(θ, φ) ≈

lmax∑
l=0

l∑
m=−l

am
l Y m

l (θ, φ) (2.12)

The sum over the degrees of the L2-norm of the coefficients

ãl =
l∑

m=−l

||am
l || (2.13)

is computed, transformed using tanh(ãl) and distributed onto continuous 5-dimensional vec-

tors by a Gaussian distribution function (Equation 2.11 ). The vectors of direct interactions

(Equation 2.11 ) are finally concatenated with the different coefficient vectors for the different

l and different interaction types to generate the final input vector to the neural network.

The neural network architecture consists in addition to the input layer a fully-connected

hidden layer with 2048 nodes with leaky-ReLU activation and dropout layer with dropout

probability of 0.5, followed by a second fully-connected hidden layer with 1024 nodes with

leaky-ReLU activation and a final output layer with occupancy and free energy values.

Adam optimizer [6 ] with learning rate of 0.001 and a batch size of 250 was used for

training the model. Learning was performed for 125 epochs using Tensorflow [95 ].

2.2.3 Hydration site prediction

Clustering of occupancy grids to identify hydration sites

To compare hydration occupancy predictions with crystallographic water data and other

hydration site prediction methods, occupancy grids obtained from the two neural network

methods were clustered to predict hydration sites. Two different clustering method were
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selected for this purpose. For the Inception+U-Net model, a modified DBSCAN clustering

methods was utilized (see Supplementary Algorithm 1). For the point-wise prediction model

using spherical harmonics, quality threshold (QT) clustering algorithm was used with the

following parameters: Maximum cluster diameter: 1.9 Å; minimum number of grid points

in a cluster: 5.

Evaluation of prediction performance: Comparison with experimental data and
other hydration site prediction methods

To evaluate and compare the ability of our methods to reproduce water locations in X-ray

data, we chose four apo systems from data from Rudling et al. [97 ]: Acetylcholinesterase,

heat shock protein 90-alpha, trypsin I and fatty acid binding protein adipocyte with PDB-ids

1ea5, 1uyl, 1s0q, and 3q6l. All four systems are not part of our training set. The binding

site center was defined by superposing the holo form of the same proteins (with ligand

present) onto the apo form and using the centroid of the aligned ligand as the center of

the grids. We compared the performance of our method with two other methods: WATsite

[59 ] (MD-based method) and hydration site prediction generated from GAsol’s clustering

method on 3D-RISM grids [75 ] (grid-based method). All crystallographic water molecules

and ions were removed as part of the protein preparation process. The proteins were prepared

automatically by the scripts available in the WATsite 3.0 package for 3D-RISM and WATsite.

Both methods were run using their default parameters. The spatial deviation of predicted

hydration sites from crystallographic water locations observed in the PDB files was measured.

The distance of each crystallographic water molecule to the closest predicted hydration site

was measured. Only X-ray water molecules within 5 Å of any ligand and protein atom were

considered.
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2.3 Results

2.3.1 Neural network for semantic segmentation

Performance in prediction of water occupancy grids

To incorporate the context of a grid point in the neural network, we utilized CNNs based

on the computed MIFs. This approach predicts the water occupancy on a grid point by

incorporating spatial context from surrounding grid points during the convolutional feature

abstraction process. The CNN network architecture (Supplementary Figure 3) down-samples

the input layer identifying features important for the prediction of water occupancy. The

final layers up-sample the grid to the desired occupancy grid. Similar architectures have

been used for many applications such as semantic segmentation and generative models.

More specifically, we use U-Net as the network architecture. U-Nets are commonly used for

semantic segmentation tasks. For image segmentation tasks, a U-Net can rapidly learn to

pass critical information such as the outlines of an object, which is similar between input

and output layers. This process makes the learning more efficient. Similarly, for the task of

water prediction, the surface of the protein is quickly captured by the U-Net from the input

data. Our tests showed that without skip connections, it would be difficult for the network

to capture the protein surface, or the solvent accessible surface with the same efficiency.

Initially, we attempted to generate regression models that aimed to predict the actual

occupancy value of each pixel or grid point. The resulting models showed poor prediction

performance, which can be largely attributed to the highly imbalanced nature of the water

grids, i.e. most grid points in a water grid have low or zero occupancy. Alternatively, the

water prediction task using 3D CNNs can be tackled as a segmentation problem, detecting

dense areas where water is more likely to have high occupancy. We have formulated the

problem of predicting water occupancy as a multi-class segmentation problem allowing to

identify regions with different levels of water occupancy, here predicting occupancy levels

with threshold values of 0, 0.02, 0.03, 0.045, 0.06 and 0.07 (see Supplementary Methods

section for details on calculation of occupancy values). The threshold of >0 classifies regions

that are generally accessible to water molecules. The threshold of 0.02 represents approx-

imately bulk water density. Occupancy values above this threshold represent regions with
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increased water density (= hydration sites). Most hydration sites are formed by densities

with values between 0.045 to 0.06. Values above 0.07 are rather rare.

To evaluate the neural network’s performance, 5-fold cross-validation was used. The set

of proteins was first divided into five groups (Supplementary Data 1). Then, the network

was trained on four groups and tested on the one group left out, generating a set of five

models. Given the similarity among the proteins in the refined set, we chose not to use

random assignment to the five groups. For proper validation of the procedure, we instead

minimized the similarity among the different groups by clustering the whole set of proteins

based on binding site similarity. This guarantees that during cross-validation, the test set is

always the least similar to the training set. To equalize the size of the clusters, samples were

removed from larger clusters, resulting in 223 protein systems contained in each cluster. The

similarity was calculated using the FuzCav program [98 ] and the structures were clustered

using the k-modes clustering algorithm [99 ], [100 ] on the feature vector generated by FuzCav.

For the purpose of data augmentation, the training samples were rotated randomly on-the-fly

along the coordinate axes.

Figure 2.7 shows visualization of the predicted water occupancy for two example proteins

at different isovalues representing different thresholds of occupancy. At low thresholds, the

quality of predicting occupancies is excellent; predicted and reference occupancy grids largely

overlap. As the threshold is increased, the prediction quality drops due to the sparsity of

the grid points with high occupancy, demonstrating that even with generalized form of the

Dice loss (GDL; see Methods for details)[91 ] the problem of imbalance in the data set was

not completely resolved. We further observed that the network fails to correctly predict the

regions close to the boundaries of the grid. A possible explanation for this problem is that

for these grid points the network does not receive the full context (MIFs of surrounding grid

points) as those neighboring grid points would lie beyond the boundary of the grid box.

This failure to correctly predict the occupancy of boundary grid point, however, does not

create a serious issue for the purpose of predicting hydration information in the binding site,

as the grid points on the boundary of the box lie outside of the binding pocket volume. A

mitigation for this problem is to remove the prediction in the boundary regions of the grid

box after model generation. Therefore, we focused our analysis on the relevant region in the
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Figure 2.7. Accuracy of U-Net method. Visual comparison between ground
truth (red) and neural-network predicted (blue) water occupancy for adipocyte
lipid-binding protein (PDB-code: 1adl) and HIV-1 protease (4a6b). Predic-
tions were performed using U-Net. Isosurfaces at four different threshold values
(0.0, 0.02, 0.045, and 0.07) are shown. The task of predicting areas with higher
occupancy becomes challenging for the network due to the sparsity of those
points (at thresholds 0.045 and 0.07). The regions closer to the corners of the
grid are more difficult to predict as information of the context of those grid
points is missing.
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Table 2.1. Performance of different U-Net architectures. Various metrics for
the performance of a baseline U-Net and a U-Net using Inception and Residual
blocks. Performance on the validation sets are displayed (shown as mean ±
standard deviation of cross-validation trials). Metrics are shown for the grids
covering the whole binding site and for the sub-grids focusing on the area
within 5 Å of the ligand center. The results show that the Inception+Residual
U-Net surpasses the baseline model’s performance.

Network Distance
from
Ligand

General-
ized Dice
Loss

Dice
overlap
(smoothed)

Baseline U-Net Full grid 0.44 ± 0.08 0.40 ± 0.20
<5 Å from
center

0.35 ± 0.06 0.51 ± 0.17

Inception+ Full grid 0.29 ± 0.04 0.79 ± 0.04
Residual U-Net <5 Å from

center
0.24 ± 0.02 0.84 ± 0.02

Table 2.2. Precision and recall of convolutional neural network. Precision
and recall values for prediction of WATsite occupancy using fully convolutional
neural network at five different levels of occupancy threshold values.

Occupancy threshold Precision Recall
0.02 0.86 ± 0.03 0.87 ± 0.03
0.03 0.79 ± 0.02 0.81 ± 0.03
0.045 0.73 ± 0.01 0.62 ± 0.03
0.06 0.72 ± 0.01 0.56 ± 0.01
0.07 0.70 ± 0.01 0.54 ± 0.00

vicinity of the bound ligand, i.e. all grid points with a maximum distance of 5 Å around the

co-crystalized ligand.

Tables 2.1 and 2.2 show different metrics for the prediction quality of the model obtained

from the cross-validation. Only data for the left-out systems are used in the statistical

analysis. In Table 2.1 we used smoothed Dice overlap [92 ] to measure the overlap between

the reference and the predicted grids. In this metric the confidence of prediction of a label

is included. For each metric both the quality of the full grid and for the area within 5 Å

from the ligand is displayed. Table 2.2 displays precision and recall values for the water

occupancy in the area within 5 Å from the ligand.
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Figure 2.8. Accuracy of U-Net method focused on binding site. Visual com-
parison between group truth (red) and neural-network predicted (blue) water
occupancy for adipocyte lipid-binding protein (PDB-code: 1adl) and HIV-1
protease (4a6b) within 5 Å of the co-crystallized ligand. Note that the lig-
ands were not included either in the water simulations to produce the ground
truth or in the generation of input MIF grids. They were added for visualiza-
tion purpose only. Predictions were performed using U-net. Isosurfaces at a
threshold value of 0.045 are shown.
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Figure 2.8 shows an overlay of reference and predicted water occupancies within 5 Å

of the co-crystalized ligand to demonstrate the prediction quality in the proximity of the

ligand. For applications of the model to drug design, we are interested in this particular

region to identify how hydration might enhance, diminish or interfere with ligand binding at

the binding site.

Importance of probes

We further analyzed which input MIF grids contributed most to the prediction perfor-

mance. To compute the feature importance we used the Mean Decrease Accuracy (MDA) or

permutation importance method [101 ]. This method measures how the absence of a feature

decreases the performance of a trained estimator. This method can be directly applied to the

validation set without the need of retraining for each feature removal. A feature is replaced

with random noise with the same distribution as the original input. One simple way is to

shuffle the values of a grid randomly, so that it no longer contains useful information. As

expected, the probes which are most influential for the prediction quality were either water

probes (OH2) or probes which mediate hydrogen bonding. It should be noted that although

water probes from Flap are designed to indicate the water affine areas, they do not linearly

correlate with WATsite occupancy, namely, the Pearson correlation coefficient between those

MIFs and WATsite occupancy is close to zero. Table 2.3 shows the performance drop with

shuffling of each input grid on the validation sets (sorted by importance of probe).

2.3.2 Neural networks for point-wise prediction using spherical harmonics ex-
pansion

Classification model

In contrast to the segmentation model, in the point-wise model each individual grid

point represents a sample that can be used for training and testing of the model. Thus, the

size of the data set is significantly increased and allows to design a more aggressive testing

protocol compared to the segmentation method. For the point-wise prediction, the same
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Table 2.3. Importance of probe grids. Dice overlap value for the cross-
validation sets after shuffling of grid point value for each of the 12 MIF grids.
The larger the change in value, the more important the probe grid is for the
prediction. Important probe grids are displayed in bold. The un-shuffled dice
overlap values are shown in Table 1 for all grid points and grid points around
ligand.

Probe Dice overlap Dice overlap (<5 Å from ligand)
C1= 0.56 ± 0.06 0.58 ± 0.04
OH2 0.51 ± 0.04 0.56 ± 0.03
CRY 0.62 ± 0.04 0.67 ± 0.04
I 0.63 ± 0.12 0.64 ± 0.09
O- 0.71 ± 0.04 0.73 ± 0.02
DRY 0.71 ± 0.07 0.79 ± 0.05
N+ 0.77 ± 0.04 0.83 ± 0.02
H 0.75 ± 0.06 0.79 ± 0.02
F3 0.78 ± 0.05 0.83 ± 0.03
OC2 0.79 ± 0.05 0.84 ± 0.02
I-H 0.78 ± 0.05 0.81 ± 0.02
NA+ 0.75 ± 0.03 0.81 ± 0.03

5-fold splitting procedure of the data set was used. In contrast to the segmentation model,

only one-fifth was used for training and four-fifth for testing.

For the classification model, i.e. separating grid points between those with and without

water occupancy, the normalized confusion matrix over the test set was computed (Figure

2.9 ). 94% of occupied grid points and 96% of unoccupied grid points were correctly classified.

The precision values of 0.97/0.92 and recall values of 0.96/0.94 for occupied/unoccupied data

signifies the accuracy of the classification model in identifying moieties in the binding site

that have been observed to be occupied by water molecules throughout WATsite simulations.

Regression model

Whereas the classification model allows to identify regions with likely water occupancy

with high accuracy, a rather small occupancy threshold of 10−5 was used. In practice it

is desirable to identify regions in the binding site with high water densities and occupancy

peaks that resemble hydration sites. Therefore, a regression model was designed to identify

those high density among low density regions. Using descriptors encoding only the direct
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Figure 2.9. Confusion matrix for classification model. Normalized confusion
matrix for classifying grid points with and without water occupancy using
neural network model.
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Figure 2.10. Accuracy of regression model. Regression coefficient r for cor-
relating occupancy and free energy values of neural network predictions with
original WATsite data.

interactions with the protein at the specific grid point location (no inclusion of nearby grid

points), a mediocre correlation between predicted and ground truth water occupancy was

identified (r = 0.52) (Figure 2.10 ). Using only the radial distribution of interaction profiles of

nearby grid points (l=0) increases the regression coefficient to r = 0.82. Increasing the depth

of the spherical harmonics (l=1) only slightly increases the regression coefficient further to

r = 0.85. Further addition of angular functions to represent the environmental grid points

(l=2) does not further improve the regression between ground truth and predicted occupancy

values. Consequently, we used the regression model with l=1 for subsequent analysis (see

below).

The same trend, although weaker in magnitude, was observed in the regression outcome

for the free energy of desolvation at the grid points with occupancy. A maximum r value of

0.83 was achieved.

For further evaluation of the neural network performance, 5-fold cross-validation was

used. Again, only a fifth of the data set was used for training in each cross-validation step

and four-fifth were used for testing the model. All five models exhibited very similar test set

performance. For occupancy the r values ranged between 0.85 and 0.86 (standard deviation

of 0.004), for free energy it ranged between 0.83 and 0.84 (standard deviation of 0.0044).
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Figure 2.11. Accuracy of regression model. Visual comparison between
group truth (red) and neural-network predicted (blue) water occupancy for
adipocyte lipid-binding protein (PDB-code: 1adl) and endothiapepsin (1epo).
Predictions were performed using regression neural network. Isosurfaces at
four different occupancy values (10−4, 0.02, 0.045, and 0.07) are shown.

This highlights the robustness of the model, independent of the specific protein systems used

for training.

Figure 2.11 shows the comparison of predicted and ground truth water occupancy at

isolevels of 10−4, 0.02, 0.045 and 0.07 for two different protein systems. Excellent overlap

between predicted water occupancy and ground truth was observed with slight deterioration

in accuracy for the highest density maps at 0.07. This visual observation can be quantified

by measuring the precision and recall values at different classification threshold values of

0.02, 0.03, 0.045, 0.06 and 0.07 (Table 2.4 ). Relatively unchanged precision and recall values
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were observed up to an occupancy threshold of 0.045. Lower accuracy was observed for

occupancy values of 0.06 and 0.07. This observation is consistent with previously discussed

imbalance between large number of low-occupancy and small number of high-occupancy grid

points.

Table 2.4. Precision and recall of regression neural network. Precision and
recall values for prediction of WATsite occupancy using regression neural net-
work at five different levels of occupancy threshold values.

Occupancy threshold Precision Recall
0.02 0.79 ± 0.03 0.79 ± 0.06
0.03 0.79 ± 0.04 0.77 ± 0.06
0.045 0.78 ± 0.04 0.76 ± 0.06
0.06 0.75 ± 0.04 0.66 ± 0.06
0.07 0.75 ± 0.04 0.66 ± 0.06

Similar trends were observed for the prediction of free energy values (Figure 2.12 ). Here

infrequent negative desolvation values were less accurately predicted compared to positive

values. Even regions containing high positive desolvation values were predicted with rela-

tively high quality.

2.3.3 Comparison with other machine learning approaches

Failure of machine learning based on protein density descriptors

Protein densities distributed on a 3D grid have been used as input descriptors for docking

applications [13 ]. Here, we tested if a similar approach could be used to predict hydration

information in the binding site. In detail, an atom is distributed on a 3D grid according to

its atom type using a Gaussian distribution function centered on the atom center. Using

this Gaussian smearing reduces the sparsity of the input data which would result in poor

learning in neural networks since the gradients propagated throughout the network will be

sparse as well [102 ]. Furthermore, Gaussian smearing better represents the spatial extension

of the protein and therefore local accessibility of water to the protein surface.

Whereas these input data show good performance for binding pose prediction of chem-

icals binding to proteins [13 ], no significant learning was observed in the context of water
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Figure 2.12. Accuracy of regression model. Visual comparison between group
truth (red) and neural-network predicted (blue) desolvation free energy for
adipocyte lipid-binding protein (PDB-code: 1adl) and endothiapepsin (1epo).
Predictions were performed using regression neural network. Isosurfaces at
three different free energy values (-1 kcal mol-1, 2 kcal mol-1, and 5 kcal mol-1)
are shown.
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occupancy prediction (data not shown). This failure can be interpreted by the lack of mod-

eling of long-range protein-water interactions and water-water interactions. CNNs based on

protein density would allow modeling of local correlation between protein shape/properties

and adjacent water occupancy. The stability of water molecules in protein binding sites,

however, is strongly influenced by long-range electrostatic interactions and by the formation

of hydrogen-bonding water networks [103 ], [104 ]. Both contributions are difficult to model

using localized features extracted by the layers of the CNN.

Failure of point-to-point correlations using MIFs

In an another alternative approach, we represented the protein indirectly using molecular

interaction fields (MIFs) data [105 ]. MIFs were generated as described previously. As de-

scribed in Methods:Probe selection, 12 probes were selected to generate 12 different channels

for the input layer. Neural networks were designed for simple point-to-point correlations,

where the different MIF input channels were correlated with WATsite occupancy. In our

tests, however, neural networks or other machine learning algorithms were unsuccessful in

finding any significant point-to-point correlations. From this observation, we concluded that

even the MIFs generated with a water probe differ significantly from the WATsite predic-

tions. This can be explained by the fact that the MIFs only represent direct protein-probe

interactions and therefore lack the incorporation of water-water interactions. Thus, the in-

teraction value with a probe at a given point does not provide enough information for a

network to infer water occupancy. For example, a grid point in an occluded space buried

deep inside a protein may have a similar interaction profile with the protein in context of

the MIFs to another grid point in a solvent exposed area. The former point, however, may

have lower occupancy due to the lack of stabilizing water-water interactions.

WATsite in contrast includes water-water network interactions explicitly. Furthermore,

it explicitly includes entropic contributions, as the water distribution is sampled from a

canonical statistical ensemble during the MD simulation. To predict water occupancy at

a certain location, the neural network requires not only the interaction information on the

corresponding grid point, but also the context of the grid point, i.e. interaction with other
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water-molecules. Those interactions can be represented either by directly including informa-

tion of neighboring grid points or by the explicit design of input descriptors that include en-

vironmental information. The latter approach was described in the section ”Neural networks

for point-wise prediction using spherical harmonics expansion”, the former was discussed in

the section ”Neural network for semantic segmentation”.

2.3.4 Applications

The two NN approches for the generation of hydration information were applied to three

different topics, i.e. the prediction of hydration site locations in X-ray structures, the qual-

itative and quantitative analysis of structure-activity relationships (SAR) data, and the

improvement of CNN-based pose ranking in docking applications.

Prediction of hydration site locations

In the first application, we tested the potential of both NN approaches to reproduce

the position of crystallographic water molecules in the binding site of four protein systems:

Acetylcholinesterase (1ea5), heat shock protein 90-alpha (1uyl), trypsin I (1s0q) and fatty

acid binding protein adipocyte (3q6l) (Figure 2.13 ). Both of our methods were compared

to WATsite [59 ] and GAsol (3D-RISM) [75 ]. It should be noted that WATsite had been

previously tested to reproduce X-ray water molecules [59 ], [61 ], [68 ]. We show the predic-

tion performance of finding hydration sites within 1.0 Å, 1.5 Å and 2.0 Å distance to the

corresponding X-ray water location. Hydration sites with distances greater than 2 Å to

the corresponding X-ray water locations are considered as failed predictions. WATsite is

the most accurate of all methods (Figure 2.13 ), in particular considering small spatial de-

viations. Both neural networks-based methods either perform equally well or better than

GAsol (3D-RISM) and approximate WATsite performance for most systems at a deviation

of 1.5 Å or 2 Å.

It should be noted that a comparison between X-ray water molecules and hydration sites

has overall its limitations: First, fit of water positions into electron density obtained from

X-ray experiments is not free of errors. Second, X-ray structures are typically resolved at low
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temperatures underestimating entropic effects. Third, crystal effects may have an influence

on water networks, in particular if the binding site is partially or fully solvent exposed.

Fourth, the identified hydration sites depend on cluster algorithm and settings, thus adding

additional inaccuracies to the grid-based prediction of hydration density. In light of those

arguments, we believe the hydration site predictions using both NN are reasonably accurate,

considering their significantly higher efficiency compared to running MD simulations.

Figure 2.13. Reproducing hydration sites observed in X-ray crystal struc-
tures. Comparison among Inception+U-Net, deep neural network (DNN)
based on spherical-harmonics expansion, GAsol/3D-RISM and WATsite. “Not
detected” means no hydration site within 2 Å of X-ray water molecule.

Structure-activity relationships guided by hydration analysis

Hydration site prediction using MD-based methods such as WaterMAP or WATsite have

been utilized in many recent medicinal chemistry projects to understand ligand binding
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and structure-activity relationships(SAR), as well as for the guidance of lead optimization.

Recently, Bucher et al. demonstrated the superiority of simulation-based water prediction

using WaterMAP compared to other commercial methods SZMAP, WaterFLAP and 3D-

RISM [62 ] for the analysis of the structure-activity relationships of lead series of different

target systems. To demonstrate that the instantaneous prediction of thermodynamic hydra-

tion information based on our neural networks can be used with similar confidence in lead

optimization projects, we performed three retrospective SAR analyses on heat shock protein

90 (HSP90), beta-secretase 1 (BACE-1) and major urinary protein (MUP).

In a study of Kung et al.[106 ], a series of HSP90 inhibitors were synthesized and tested

(Figure 2.14 ). The design of the molecules was guided by replacing water molecules resolved

in the X-ray structure of HSP90. We performed hydration profiling on the X-ray structure

3rlp of HSP90 with the co-crystallized ligand removed using the point-wise neural network

model. Water density with high positive (unfavorable) desolvation free energy (Figure 2.14 c,

red surface, isolevel for ∆G=7.5 kcal mol-1) is located around the phenyl ring of compound

A (Figure 2.14 b). Subsequent substitution of hydrophobic groups on the phenyl ring at

positions R1, R2 and R3 increases the affinity of the compound from 22 µM to 0.14 µM

by replacing an increasing number of energetically unfavorable water molecules. Additional

water density with unfavorable free energy is located adjacent to the pyrimidine ring of the

initial scaffold. Extending the pyrimidine scaffold to a pyrrolo-pyrimidine group and adding

substituent at Q1 and Q2 position replaces those additional unfavorable water molecules

which increases the affinity by almost 10-fold to 15 nM.

Quantitative regression analysis was performed with the aim to correlate desolvation

free energy obtained from the point-wise NN with experimental binding affinities. For each

ligand atom, the desolvation free energy is computed by trilinear interpolation based on

the hydration free energies on the eight grid points that surround the atom. All atomistic

desolvation free energies are summed up. Linear regression between desolvation and binding

free energy yielded a regression coefficient of r2=0.70 (Figure 2.14 e).

A similar retrospective analysis was performed on BACE-1 (Figure 2.15 ). Focusing on the

R-group of the terminal phenyl ring (Figure 2.15 b), density with unfavorable free energy is

found adjacent to the R-group (Figure 2.15 a, red surface on the right). Methoxy substitution
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Figure 2.14. SAR of HSP90 inhibitors. SAR of HSP90 inhibitors guided by
gain in desolvation free energy based on point-wise neural network model. (a)
Co-crystalized compound 5 in PDB structure with ID 3rlp. (b) SAR table of
15 inhibitors with substituents replacing water density with unfavorable free
energy (c/d: isolevel: 7.5 kcal mol-1). (d) Compound 8 from X-ray structure
3rlr. (e) Linear regression between predicted desolvation and experimental
binding free energy for SAR series (r2=0.70).
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Figure 2.15. SAR of BACE-1 inhibitors. SAR of BACE-1 inhibitors guided
by gain in desolvation free energy based on point-wise neural network model.
(a) Co-crystalized compound 4 in PDB structure with ID 4fm8. (b) SAR table
of eight inhibitors with substituents replacing water density with unfavorable
free energy (a: isolevel: 7.5 kcal mol-1). (c) Water-mediated protein-ligand
interactions overlap with water density with favorable enthalpy (d: isolevel:
-3 kcal mol-1). (e) Linear regression between predicted desolvation and exper-
imental binding free energy for SAR series (r2=0.78).
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Figure 2.16. SAR of MUP inhibitors. SAR of MUP inhibitors guided by
gain in desolvation free energy based on point-wise neural network model.
(a) Co-crystalized compound 5 in PDB structure with ID 1i06 with water
density with unfavorable free energy (isolevel: 8 kcal mol-1). (b) SAR table
of 12 inhibitors with three different scaffolds and substituents replacing water
density with unfavorable free energy. (c) Compound 11 from X-ray structure
1qy2. (d) Compound 12 from X-ray structure 1qy1. (e) Linear regression
between predicted desolvation and experimental binding free energy for SAR
series (r2=0.77). Compounds 1-5 are displayed as black spheres, compounds
6-10 as red diamonds, and compounds 11-12 as blue triangles.
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(Compound 2) is not able to replace the water density, highlighted by a decrease in affinity.

Elongated substituents such as O-ethyl (3) and O-isopropyl (4) spatially overlap with the

unfavorable water density, replacing those water molecules. This results in significant affinity

increase from 21 µM to 1.3 µM. For BACE-1, two regions with favorable water enthalpy were

observed (Figure 2.15 d, blue surface) that coincides with X-ray water molecules (Figure

2.15 c) which mediate interactions between protein and ligand. Replacement of those water

molecules should be considered with great care, as it may lead to a decrease in binding

affinity.

Quantitative regression analysis between desolvation and binding free energy was per-

formed for a congeneric series of eight ligands (Figure 2.15 e). An excellent correlation was

obtained with a regression coefficient of r2=0.78. A similar linear regression study on the

exact same dataset was previously performed using MD-simulation based hydration site anal-

ysis with WaterMap [107 ]. This analysis achieved an r2 value of 0.82. This demonstrates that

our NN-based efficient thermodynamic profiling of desolvation is able to generate thermody-

namic profiles for hydration comparable to the time-consuming hydration analysis based on

MD simulations.

Retrospective analysis was performed on major urinary protein (MUP) (Figure 2.16 )

[108 ], [109 ]. The series consists of twelve compounds with three different scaffolds. Figure

2.16 a shows compound 5 in its X-ray structure 1i06. The two terminal methyl groups of the

sec−butyl substituent overlaps with water density with highly unfavorable hydration free

energy. Increasingly smaller substituents display decreasing overlap with positive desolvation

free energy grids in agreement with reduced binding affinity. Figures 2.16 c and d display

compounds 11 and 12 in their corresponding X-ray structures 1qy2 and 1qy1, respectively.

Compound 12 has larger overlap with water density with the most positive desolvation free

energy. This results in higher binding free energy compared to compound 11.

Interestingly, quantitative regression analysis between desolvation and binding free energy

revealed that not only an excellent regression within a congeneric series (black spheres:

compounds 1-5; red diamonds: compounds 6-10; blue triangles: compounds 11-12) could

be obtained but also among all 12 compounds that contain three different scaffolds (Figure

2.16 e). An excellent correlation was obtained with a regression coefficient of r2=0.77. A
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similar linear regression study on the exact same dataset was previously performed using

MD-simulation based hydration site analysis with WATsite [61 ]. This analysis achieved an

r2 value of 0.63. This analysis also demonstrates that our NN-based efficient thermodynamic

profiling of desolvation is able to generate thermodynamic profiles for hydration similar to

the time-consuming hydration analysis based on MD simulations.

These three examples highlight the potential of our neural network approach to guide

SAR-series expansion by incorporating critical desolvation information including the replace-

ment of unfavorable water molecules and enthalpically favorable molecules which mediate

critical protein-ligand interactions.

Improved CNN-based pose prediction

In the second application we investigated if the hydration data instantaneously generated

by the U-Net neural network model can be utilized to guide ligand pose prediction. It has

been shown previously, that solvent site information generated from MD simulations can

assist in detecting protein-ligand interactions and improve docking [110 ]. Built on these

findings, the method AutoDock Bias uses such information to modify and bias the energy

terms in order to achieve better performance in docking [111 ]. Similarly, in our previous

study [70 ] we showed significant improvement in pose prediction accuracy by adding WATsite

occupancy grids as additional input layers to a classification CNN model based on Gnina

software [13 ]. The major issue with this approach is that generating water occupancy grids for

a large dataset of protein systems using WATsite or any MD-based water prediction program

is computationally expensive. Here, the idea was to investigate if water grids generated via

our CNN model can replace the data produced by WATsite to enhance the performance of

Gnina.

In Gnina, protein and ligand density are distributed on a 3D grid that encompasses

the binding site. For this distribution, a Gaussian distribution function centered on each

heavy atom centroid is used. For each atomic element, a separate distribution is computed

for protein and ligand. This ensemble of occupancy grids is used as different channels of

the input layer of a CNN that classifies native-like poses (RMSD < 2 Å) from decoy poses
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(RMSD > 4 Å). Water occupancy grids predicted by our CNN model was used as additional

input channel to the Gnina CNN.

To provide water occupancy data for Gnina, we retrained the water predictor network

using 2288 and 1133 PDBs for training and test set, respectively. The training and test

sets were based on the reduced set from Ragoza et al.[13 ]. However, we increased the

number of bad poses for a more realistic scenario. For each target protein, only one native-

like pose with RMSD < 2 Å was selected. Since we aimed to utilize the Gnina CNN

with and without hydration information for pose reranking, systems with no good poses

were removed. The final data set consists of 1394 and 593 protein targets for training and

test, respectively. The training was performed for 10000 iterations. We used the default

parameters and the reference model for pose prediction which is made available on Gnina’s

Github page (https://github.com/gnina/gnina).

Here, we evaluated the performance of Gnina+water against Gnina alone and Vina/Smina.

The results for Vina were obtained from Ragoza et al. [13 ].

As it can be seen in Figure 2.17 , inclusion of hydration occupancy from our neural network

model into Gnina significantly increased the performance of Gnina on the test set.

2.4 Conclusion

Hydration is a key player for biochemical association processes such as protein-ligand and

protein-protein binding. The binding partners and the association process itself influence

hydration patterns and thermodynamic properties. In order to accurately model hydration

in tasks such as flexible protein-ligand or protein-protein docking, the hydration data needs

to be computed in an efficient manner without performing time-consuming simulations. In

this paper, we demonstrate that instantaneous prediction of thermodynamic properties of

biochemical systems is possible due to the development of machine learning algorithms and

due to our ability to generate large amount of thermodynamic data. Here, we present the

very first deep learning methods to instantaneously predict thermodynamic hydration data,

thus providing an efficient alternative to time-consuming MD simulations for the calculation

of those properties.
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Figure 2.17. Ranking of docking poses. Percentage of protein systems with
native pose (RMSD < 2 Å) in the test set within the top-1, top-3, and top-5
ranked poses using different scoring functions: Vina (blue), CNN with protein
and ligand information (orange), and CNN with protein, ligand and WATsite
occupancy information generated by U-Net model (grey).
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We have developed two alternative deep learning approaches. One method predicts

the complete binding site hydration information in a single network calculation in form of

U-Net neural networks. The second method relies on descriptors that include potential

protein-water and water-water interactions calculated on each grid point. The networks

were able to generate precise hydration occupancy and, in case of the point-wise model, also

thermodynamics data.

Application of the predicted hydration information to SAR analysis and binding-mode

prediction demonstrated the potential of these methods for structure-based ligand design.

Future applications include the marriage of protein flexibility and desolvation data in ensem-

ble docking. Due to the efficiency of the methods, precise hydration data could be computed

for alternative protein structures, different ligands and their binding poses in modest com-

putation time, which has been an unfeasible task until now. The routine inclusion of explicit

desolvation, water-mediated interactions and enthalpically stable hydration networks around

the protein-ligand complex [70 ] may become possible in structure-based ligand design in the

near future.
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3. SEQ2MOL: AUTOMATIC DESIGN OF DE NOVO

MOLECULES CONDITIONED BY THE TARGET PROTEIN

SEQUENCES THROUGH DEEP NEURAL NETWORKS

3.1 Introduction

De novo design of molecules is an important approach for the discovery and development

of drugs. In recent years, artificial intelligence-based methods, in particular deep learning-

based methods, have been employed to facilitate this process and open new possibilities for

the design of new molecules. Many generative types of architectures have been used for the

task of de novo molecule generation, such as autoencoder-based models, generative adversar-

ial neural networks (GANs), recurrent neural networks (RNNs) and models combined with

reinforcement learning [112 ]. Those approaches have been focused on the generation of com-

pounds based on a pool of training compounds and have been mostly focused on engineering

molecules with specific physicochemical properties. Whereas most approaches display in-

herent structural similarity of the generated molecules to the original “seeds”, some newer

approaches aim to increase the diversity of generate molecules compared to the training set

[33 ]. In the context of drug design, current approaches aim to generate novel compounds

that resemble features (e.g. physicochemical properties or pharmacophore features) from

already known binders to a specific target. A major drawback to this approach is that in

many instances, e.g. when a target is newly discovered, there is no known ligand for the

specific target. Therefore, no known pharmacophore elements or physicochemical features of

known compounds can guide the de novo molecule generation process. Even if compounds

for a target are known they are often limited in number, making a target specific training

without overfitting unlikely. Therefore, there is a need for methods to be able to condition

the generative process on the biochemical features of the target.

Our method for the generation of de novo compounds is conditioned on the sequence of

a target protein. The concept is based on the “Show and Tell” image captioning method

developed by Vinyals et al [113 ]. The question is, what do image captioning and de novo

molecule design have in common? To answer this question, we take a closer look of how the
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”Show and Tell” image captioning method functions. In image captioning, the task is to

generate a sentence with the following two essential properties: First, it should be relevant

to the image, and second it should be grammatically correct and meaningful. In image

captioning, essential features of a given image are extracted, e.g. using a neural network.

The embedding vector is then used to generate a meaningful sentence which describes the

image. Similarly, in de novo compound generation essential features of the target protein

are extracted (’image features’) and molecules are generated in form of SMILES strings

(’caption’). The target protein is represented by its sequence. A neural network learns

embeddings that should represent the features of the target essential for ligand binding.

These features are linked to their corresponding ’caption’, that is, the characters of the

SMILES strings representing the chemical compound. The caption generator network also

tries to learn to generate valid and meaningful sentences with the correct grammar, which

is also critical in the task of SMILES generation to obtain chemically valid molecules.

In this work, we use protein sequence embeddings generated using a pre-trained bi-

directional language model ELMo, and use an LSTM model combined with reinforcement

learning to generate SMILES strings of de novo compounds for two important target families:

GPCR and Tyrosine Kinases. Protein-ligand datasets published in BindingDB are used for

training and validation of the model [114 ].

3.2 Methods

3.2.1 Datasets

We used the dataset from the work by Karimi et al [115 ] which originates from Bind-

ingDB [114 ]. The original dataset which contains all IC50-labeled ligand-target pairs from

BindingDB was reduced to protein-ligand pairs with IC50-values of less than 1 mM. The

data was directly taken from “BindingDBAll2018m8.tsv.zip” file provided by BindingDB,

which contains protein sequences as well as their corresponding 2D compounds structure

in SMILES. For correct and independent validation of the resulting model on two families

of protein targets, GPCRs and Tyrosine Kinases, any protein-ligand pair matching one of

those two classes was removed from the training based on records from the Uniprot database
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[116 ]. Also, any compound that existed both in training set and test sets (even when bound

to a different target than GPCR or Tyrosine Kinases) was removed from the test sets. This

resulted in a training set of 127546 entries and test sets for GPCR and Tyrosine Kinases

with 276 and 109 target proteins and 37749 and 25578 binding molecules, respectively.

3.2.2 General workflow

Figure 3.1 shows the overall workflow of the method described in this paper. Our method

takes advantage of the embedding generator network developed by Heinzinger et al [117 ]

which generates the embeddings of protein sequences. Then the embeddings are used as

inputs to the molecule generator network for the initial training. Subsequently, the model is

retrained using reinforcement learning to increase the diversity and novelty of the generated

compounds.

Figure 3.1. Overall workflow of de novo compound generation method using
deep neural networks. First, sequence embeddings are generated using the
network from Heinzinger et al [117 ]. Then the compound generator is trained
using the embeddings as input. After the initial training, the network is re-
trained using a reinforcement learning scheme using the dissimilarity to the
training set as reward to get more diverse compounds.
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3.2.3 Fingerprint generation

We used Morgan fingerprints available in RDKit library [118 ] to analyze similarities

between compounds. A radius of 4 and the bit vector length of 2048 was used to generate

the fingerprints. We used Tanimoto distance (1 - Tanimoto similarity) to report the similarity

in our studies, with a value of zero measuring exact identity while a value of one indicating

complete dissimilarity of molecules.

3.2.4 Random molecule set generation

To measure the target specificity of the molecules generated with our neural network,

those compounds were compared with randomly selected compounds. The latter molecules

were selected from the emolecules database www.emolecules.com using the following criteria:

Molecules were only selected if their log P value and molecular weight is similar to the

corresponding values of known GPCR and Tyrosine Kinase binders, respectively. In detail,

only compounds with log P values and molecular weight are selected that deviate by less

than the standard deviation from the mean of the corresponding values of the known binders

for the two target families. All properties were calculated using the RDKit package. This

selection process guarantees to test the model for its ability to generate target-specific ligands

and not just compounds with similar physicochemical properties as known binders.

3.2.5 Generation of protein sequence embeddings

To generate embeddings of protein sequences we used the model provided by Heinzinger

et al [117 ]. Embedding vectors of length 1024 are generated. The network consists of one

CNN layer and two bidirectional LSTM layers, which provide context information of the

surrounding residues. For any query protein sequence, the output feature vectors of length

1024 of all three layers were summed component-wise and finally averaged over all residues

of the whole protein sequence to obtain a single vector representing a protein sequence. This

sequence-embedding vector is used as input for the molecule generator network.
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3.2.6 Compound generation from protein sequence embeddings

Architecture of generator model

The image-captioning network architecture ”Show and Tell”[113 ] based on a Keras [94 ]

implementation was used to generate molecules in form of SMILES strings. The model is a

LSTM-based sentence generator based on given embeddings. The LSTM model’s task is to

predict a new SMILES character based on previously predicted SMILES characters and the

protein’s sequence, with probability p (st|I, s0, . . . , st−1), where I is the protein’s sequence

embedding, and st is the SMILES character at position t. The model is illustrated in Figure

3.2 . For any given position t the output of the LSTM cell depends on the cell state which

is the result of the current input and previous cell state at position t − 1. Therefore, the

LSTM network keeps memory of past characters. The protein’s sequence embedding is only

used for the initiation of the LSTM cell and hidden states. Due to the recurrence of LSTM

networks the protein sequence, however, influences the cell state for subsequent character

predictions.

x−1 = ELMo(I) (3.1)

Thus the prediction of all characters is influenced by the conditioning from the protein’s

sequence.

Each possible character in the SMILES string S at position t, st, is tokenized and repre-

sented as one-hot vectors. Every sequence begins with a special character representing the

start of the string at position t = 0 and ends with an end character token (position t = N).

Each character token passes through an embedding layer (We) prior to being input to the

LSTM cell.

xt = West, t ∈ {0 . . . N − 1} (3.2)

The LSTM cell predicts the probability for a character at position t + 1 by

p(st+1) = LSTM (xt) , t ∈ {0 . . . N − 1} (3.3)
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The loss is computed by summing the negative log likelihood of each correct character

token:

L(I, S) = −
N∑

t=1
log pt (st) (3.4)

The SMILES strings of the known training compounds were tokenized in character-level

and were fed to the network for training (Figure 3.2 ). The network was trained for 50

epochs with batch size 512. The dimensions of the embedding layer (We) was set to 2048,

and the protein embeddings were simply tiled to have the same dimensions, as the character

embedding layer, i.e 2048. The dimensions of the one-hot encoding vectors were 47 × 102

which are the number of possible SMILES characters in the dataset and the maximum length

of the SMILES string, respectively.

Figure 3.2. Molecule generator network is defined by combining LSTM model
and protein sequence embedder model. The LSTM model is showed in un-
rolled form, where recurrent connections are shown as feed-forward connec-
tions. During training, target sequence tokens (st) are learned by maximizing
P (st), where t denotes the character position in the SMILES string. Each
token is passed through an embedding layer prior to LSTM.
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Generation of new molecules

The trained model can be used to generate new molecules for a given protein sequence.

The protein’s embedding and the start token are given as initial input to the network (cf.

Figure 3.2 ). Subsequently, the LSTM network is utilized to generate the characters of the

SMILES string until the end token was selected as output of the LSTM. To increase the

diversity of the generated molecules, the LSTM network is used within the framework of

a beam search. Thus, not only one character is selected at each position t but the top k

SMILES strings at position t are selected and passed on to the next LSTM iteration, keeping

the best k strings and so forth. (Figure 3.3 ). In our case, we used a value of 46 for k. This

approach allows to generate a diverse set of molecules specific to the input sequence of the

target protein. Whereas selecting only one (the most probable) character at each position

(greedy search) is the best choice for that specific position, it often results in sub-optimal

solutions when the full string is considered [113 ]. In de novo compound generation, it is

often desirable to have a diverse set of compounds generated for a target, rather than just

one compound, especially when invalid or already known compounds are obtained by using

a greedy search.

Reinforcement learning

To increase the novelty of the compounds when compared to the training set, a reinforce-

ment learning procedure was employed using a concept adapted from the work by Olivecrona

et al [35 ]. Figure 3.4 illustrates the reinforcement learning procedure. The network that was

initially trained following the procedure described in the in the previous section functions

as Prior. The Agent is instantiated by a copy of the Prior network. Thus, initially, both

the Prior and the Agent are identical. During reinforcement learning, a policy is learned by

the Agent to generate compounds with desired features, here potential binders to a target

protein but diverse to the initial training set. As described in the previous section, generated

compounds are represented by SMILES strings. Those strings are generated by sampling one

character at each LSTM step until the end token is reached. This process can be considered
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Figure 3.3. An example of beam search for generating new molecules. In each
step, character candidates are ranked based on scores (natural logarithm of
probabilities predicted by the network). Top k best candidates are considered.
At each step a path is generated from one layer to the next layer forming a
tree. Each path from the start token to the end token is considered a full
SMILES string (molecule). For simplicity and a clearer illustration, only one
path and a segment of the full tree is shown here.

as a set of actions A = a1, a2, ...aN that composes an episode of a SMILES string generation.

The likelihood for a SMILES string generated by the model is

P (A) =
N∏

t=1
π (at | xt) (3.5)

where π is the policy learned by the model and xt being the input to the LSTM at step t.

To increase the likelihood the generation of SMILES strings different to the training set,

a scoring function Σ(A) is added to the Prior log-likelihood

log P (A; θ)Augmented = log P (A; θ)Prior + σ Σ(A) (3.6)

where Σ(A) measures the diversity of the generated compound with respect to the training

set. Thus, high log P (A; θ)Augmented is achieved by the generation of SMILES with high

probability based on the Prior network and with diversity to the training set. θ are the
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trained weights of the Prior network. σ is a user-defined coefficient, which in our case was

set to 60.

Using this augmented log-likelihood the Agent’s policy π is updated from the Prior’s

policy πP rior to approximate the augmented likelihood log P (A; θ)Augmented. Thus, the weights

θ of the Agent’s network are optimized using the loss function

L(A; θ) = [log P (A; θ)Augmented − log P (A; θ)A]2 (3.7)

which measured the squared difference of the current Agent’s likelihood over a set of actions

A, log P (A)A, and the augmented likelihood.

The Agent was trained for 100 iterations with a batch size of 512.

In our case, the goal was to increase the diversity of the generated compounds compared

to the training set. To achieve this goal, Morgan fingerprints are computed for all train-

ing data and each generated molecule. The Tanimoto distances between the fingerprint of

the generated molecule (mg) and the set of fingerprints of all training molecules (Mt) are

computed. The scoring function to calculate the reward for a generated molecule is then

determined by identifying the minimum Tanimoto distance (Td):

Σ(A) = min
∀mt∈Mt

Td(mg, mt) (3.8)

Therefore, compounds with higher Tanimoto distance compared to the training data are

rewarded.

3.2.7 Benchmark

The MOSES framework [119 ] was used to compare our method with other approaches

to generate molecules. The MOSES framework provides pre-defined models and metrics

available for comparison. The metrics and models that were used to compare the performance

of our model with other models are briefly described below.
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Figure 3.4. Encouraging diversity and novelty of generated molecules through
reinforcement learning. First, the Agent network is initialized from the already
trained Prior network. The Prior likelihood is then augmented by the addition
of a score that measures the structural diversity of the generated compound
to all training molecules. This likelihood is used to train the Agent network.

Benchmark metrics

Fragment similarity

The BRICS algorithm [120 ] in RDKit is used to fragment molecules and measure the

cosine distance between fragment frequencies vectors:

Frag(G, R) = 1 − cos (fG, fR)
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fG and fR represent frequency vectors of generated and reference molecule, respectively. The

size of the fragment vocabulary of the whole data set determines the size of the frequency

vector and the elements of the vectors are the frequencies for each fragment in the molecules.

Scaffold similarity

This metric measures the cosine similarity between vectors representing the scaffold of

generated (G) and reference (R) molecules:

Scaff(G, R) = 1 − cos (sG, sR) (3.9)

The scaffolds are generated using Bemis–Murcko scaffolds algorithm [121 ] implemented in

RDKit.

Distance to the nearest neighbor

The similarity is computed by averaging over the Tanimoto similarity value (T ) between

a molecule m in the generated and reference sets. The default configurations of the MOSES

framework was used to generate Morgan fingerprints for this task.

SNN(G, R) = 1 − 1
|G|

∑
mG∈G

max
mR∈R

T (mG, mR) (3.10)

Internal diversity

This metric measures the diversity among the molecules within the generated set.

IntDiv(G) = 1 − 1
|G|2

∑
m1,m2∈G

T (m1, m2) (3.11)

Other metrics

In addition to metrics above, other commonly used metrics were used to evaluate the

quality of the generated molecules. The metrics used are the following:
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LogP: The water-octanol partition coefficient, calculated using the approach of Crip-

pen [78].

Synthetic accessibility score: [122 ] A score to estimate synthetic accessibility of

a molecules. Values closer to 1 indicate the compound is likely to be synthetically

accessible, while values closer to 10 are expected to be difficult to synthesize.

Quantitative Estimation of Drug-likeness (QED): A metric developed by Bick-

erton et al. [123 ] which addresses the drug-likeness of molecules based on the notion

of desirability and can range between 0 to 1.

Natural product-likeness score: A measure to estimate into which of the following

three categories a molecule will fall into: (1) A natural product (score between 0 and

5), (2) a synthetic product ([-5, 0]) and a drug molecule ([-3, 3]). The metric uses

several substructure descriptors to determine the score [124 ]

Molecular weight: The sum of atomic weights in a molecule.

Benchmark models and training

All models used to benchmark against our model are pure ligand-generation models

without consideration of any information about the target protein. The models generate

novel SMILES strings based on known molecules that are also represented as SMILES. We

used only the ligands (without target sequences) from our training set as training data for

the benchmark models to generate novel molecules.

Character-level recurrent neural networks (CharRNN)[125 ]:

This model considers the SMILES as a language model and treats each SMILES character

as a word. CharRNN contains three LSTM layers and each hidden is of size 768. Dropout

layer are added with dropout probability of 0.2. A Softmax function is used as the activation

function of the output layer. Adam optimizer [6 ] is used to optimize the model’s parameters

using Maximum likelihood estimation (MLE). The training is done in 80 epochs with batch
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size equal to 64 with a learning rate set to 10−3 which is halved every 10 epochs. We used

the model implemented in MOSES.

Variational Autoencoder (VAE)

This model consists of two components, an encoder and a decoder. The encoder maps

the input data to a lower-dimensional representation (embedding) and the decoder converts

it back. The encoder is a bi-directional Gated Recurrent Unit (GRU) with a linear activation

function. The decoder consists of three GRU layers with size of 512 and dropout layers with

probability of 0.2. The training is done in 100 epochs with batch size of 128 by using Adam

optimizer with learning rate set to 3 × 10−4 to minimize the loss containing reconstruction

loss between reconstructed and input SMILES strings and Kullback-Leibler (KL) divergence

in latent space. The KL term weight is linearly increased from 0 to 1 during the training.

Gradient clipping with the value set to 50 is used.

Adversarial Autoencoder (AAE)

In this architecture of autoencoder the Kullback-Leibler divergence loss is no longer

present. Instead, an adversarial loss is used to train the generator model in form of a dis-

criminator network which is trained simultaneously with the autoencoder [28 ]. The encoder

and decoder are created from a 1-layer bidirectional LSTM and a 2-layer LSTM respectively,

both with size of 512, and an embedding layer with a size of 128 which is shared by both.

The discriminator is composed of two fully connected layers with size of 640 and 256, using

Exponential Linear Unit (ELU) activation function. The model uses Adam [6 ] optimizer

trained for 120 epochs with batch size 512. Learning rate is halved every 20 epochs with the

initial value of 10−3.
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3.3 Results

3.3.1 Protein’s sequence embeddings for ligand generation

The type of ligand that can bind to a target protein depends on the topology and physico-

chemical properties of the binding site of the protein. The form and properties of the binding

site is determined by the structure of the protein, which is dictated by the sequence of the

protein. As there exist only 20 natural amino acids but many thousands of structurally

diverse protein structures, the sequence of the amino acids gives the structural ”meaning” to

the protein object. This is similar to Natural Language Processing (NLP) where an enormous

number of different sentences are constructed from a smaller library of words.

It is common to use word embeddings in the field of Natural Language Processing (NLP).

Similar words can have different contexts appearing in different sentences, represented by

different embeddings. In the same way, models used in NLP such as Embeddings from Lan-

guage Model (ELMo) can be used to generate contextualized embeddings of the sequences.

Heinzinger et al. trained such a model on the Uniref50 dataset. Using a fixed model for

sequence embedding that has been already trained on such a large dataset (33 M sequences)

provided better performance in our study compared to a network that learns the sequence

embeddings in parallel to the training of a generator network for molecules. One major rea-

son for this observance is that the existing protein-ligand binding datasets contain a much

smaller number of protein sequences compared to Uniref50. This approach was also taken

in the work ”Show and Tell”, by using embeddings generated from VGG16 trained on Ima-

geNet, one of the largest image datasets available. The actual data set, that the ”Show and

Tell” model was trained on, was much smaller. Figure 3.5 shows the separation of embed-

ding vectors for all protein sequences in our data set as generated by the SeqVec model. The

embedding vectors are projected on a reduced 2D representation using T-SNE available in

scikit-learn library [126 ].
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Figure 3.5. Sequence embeddings of protein targets in our data set generated
by SeqVec, visualized using T-SNE.

3.3.2 Encouraging compound diversity and novelty via reinforcement learning

We generated 1653 unique novel molecules targeting 109 different Tyr kinases and 1672

compounds targeting 276 different GPCRs. Figure 3.6 a displays the similarity of our gen-

erated compounds compared to known Tyr kinase ligands (Test set). The generated com-

pounds show overall a higher similarity to known Tyr kinase binders compared to the set

of training molecules or randomly selected compounds from emolecules. Figure 3.6 b, how-

ever, shows that despite reinforcement learning for diversity, the generated compounds still

show similarity with compounds from the training set that exceeds that of randomly se-

lected molecules. There are, however, also several test compounds that have high similarity

to at least one training compound. This observation is due to the fact that the training

set contains other kinases (non-Tyrosine kinases) with ligands similar to Tyrosine kinase

binders.

Similarly, compounds generated for GPCRs display a higher similarity to known GPCR

ligand compared to training compounds or randomly selected molecules (Figure 3.6 c). While

the generated compounds again have inherent similarities to some training set molecules,

this similarity is less pronounced compared to the Tyrosine kinase case (Figure 3.6 c), as the

target family of GPCRs has no similar proteins in the training set. Despite the remaining
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(a) Similarity of the generated
molecules (Gen) for Tyr kinases to
the test set (Test) that contains Tyr
kinase ligands. Higher similarity was
observed compared to the similarity
between training (Train) and test set or
randomly selected molecules (Random)
to test set.

(b) Similarity of the generated
molecules for Tyr kinases to the
training set. Several compounds show
high similarity to training compounds.
Whereas the training set lacks any
Tyr kinase ligands it still contains
compounds similar to those ligands.

(c) Similarity of the generated
molecules for GPCRs to the test set
that contains GPCR ligands.

(d) Similarity of the generated
molecules for GPCRs to the training
set that does not contain GPCR
ligands.

Figure 3.6. Similarity of the generated compounds for the Tyrosine kinase
targets compared to the Tyrosine kinase test set (a) and the training set (b).
The network generates more similar compounds for the Kinase targets than
when compounds are selected randomly. In (b) it is observed that some com-
pounds in the test set are similar to compounds of the training set. The
reason for this are the existence of other kinase targets (non-Tyr kinases) in
the training set that share similar compounds. The same plots are shown for
the generation of GPCR ligand in (c) and (d). Density graphs were smoothed
using kernel density estimation (KDE) available in the Seaborn library [127 ].

similarity between test and some training compounds, Figure 3.7 demonstrates the effects

of reinforcement learning to increase the novelty of the molecules.
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As discussed in the Material and Methods section, no member of the two target families

used for the test of the models was present in the training set. Nevertheless, it is known that

binding pockets of different protein families can share similarities in their binding pocket

topology and properties. These similarities can results in sharing the same endogeneous

ligand. For example, ATP can bind to many different target families [128 ]. Another clinical

observation of binding pocket similarity is the occurrence of side effects of drugs binding to

multiple targets, primary or secondary. This fact can also be exploited in drug repurposing.

Therefore, it is not unlikely that ligands similar to the training set are generated for the two

target families of our test set.

(a) Before reinforcement training (b) After reinforcement training

Figure 3.7. Encouraging diversity using reinforcement learning. Similarity
distributions for GPCR targets (Tanimoto measure) are shown for the gener-
ated compounds before (a) and after (b) reinforcement training (blue color).
It can be observed that without reinforcement the network generates mostly
identical or very similar compounds to the training set. With reinforcement
learning the similarity between generated and training molecules is signifi-
cantly decreased.

Figure 3.8 shows some examples of compounds generated for (a) Tyrosine kinases and (b)

GPCRs together with their most similar known binder to the corresponding targets. They

typically share a significant portion of the scaffold with known binders.

3.3.3 Comparison with benchmark models

To compare the quality of our model, we used three baseline models, AAE, CharRNN,

VAE as described in the MOSES framework [119 ]. Compounds were generated based on the
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same training set and evaluated against the same test sets as described above. The metrics

used in MOSES and described in the Materials and Methods section were used to evaluate

model performances (Table 1). Also the comparison of fingerprint similarity with the test set

for the models was carried out (Figure 9). Whereas the three benchmark models generate

compounds with similar fingerprint distribution to the training distribution, the compounds

generated by our model are more similar to the target compounds forming the test set,

despite the fact that those compounds or targets were never seen by the network (GPCR

or Tyrosine Kinase ligands). This discrepancy between our and the benchmark models is

encouranging but not surprising, since benchmark models produce compounds based on the

probability distribution of tokens learned from the training data. On the other hand, in our

model we bias compound generation by the protein’s sequence. An embedding of the protein

can be thought as a ”barcode” that the token probabilities are conditioned on.

Table 1 shows the comparisons of compound properties between the generated compounds

by each model and the reference sets (Tyr Kinase and GPCR). The first three metrics show

the similarity of the compounds to the reference set from different aspects. The first two

metrics show the similarity of the sets in terms of fragments and scaffolds. Our model

was able to generate compounds with smaller distance (higher similarity) in fragments for

Tyrosine Kinase and GPCR targets and smaller distance in scaffold for GPCR targets, while

scaffold distance is slightly higher for Seq2Mol model molecules. Distance to the nearest

neighbor in test sets is lower for both Tyrisine Kinase and GPCR targets generated by our

model. Benchmark models generated molecules with higher diversity. We believe this is due

to the fact that benchmark models are not biased towards specific targets, so the diversity of

their generated molecules is similar to the training set, which contains compounds for many

different protein targets (therefore, more diverse in molecular structure). Table 2 shows

metrics for basic molecular properties. It can be seen that the models were able to generate

compounds with those properties within the acceptable range.
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(a) Tyrosine Kinase

(b) GPCR

Figure 3.8. Examples of 2D similarity maps of some generated compounds
(left) with low Tanimoto distance to their most similar compounds from test
sets (right). Substructures with high similarity are highlighted as green, dis-
similar in red. Similarity maps were generated using RDKit’s similarity map
function [129 ]. 96



(a) Tyrosine Kinase (b) GPCR

Figure 3.9. Comparison of similarity between generated compounds to the
test sets for Tyrosine Kinase (a) and GPCR (b) using our model, AAE, Char-
RNN and VAE, respectively. While the benchmark models generate com-
pounds with a similarity distribution similar to the training set, our model
generates compounds more similar to the test sets, even though all models
used the same set of compounds for training.
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3.3.4 Limitations

Number of generated compounds

One limitation of the approach described in this manuscript is that the number of possible

compounds that can be generated per target is limited to the maximum size of the beam

width. One approach to enrich the pool of compounds is to use the generated compounds

as seeds for other generative models to generate similar compounds with desired properties.

Diversity versus relevance to the target

Another limitation of this approach is the ideal choice of the hyperparameters in rein-

forcement learning. The number of iterations and the amount of reward need to be carefully

balanced. Otherwise the network may generate increasingly diverse compounds that are

however no longer relevant to the target protein. In addition, pushing the model to generate

highly diverse molecules might lead to the generation of compounds which are synthetically

unfeasible. Tuning the hyperparameters and therefore the amount of diversity to the training

set may vary based on the needs of the drug design project and the target of interest.

Generation of ligands for targets with very similar sequence

There are cases that some targets can have very similar sequences (such as different

isoforms of kinases). In such cases where the targets only differ in a few residues, the embed-

dings generated for the target proteins will be very similar, and the molecules generated for

such targets will be highly similar. The reason is that the embedding of each residue over

a sequence is generated and the embeddings are averaged to gain one vector representing

the whole protein, therefore, the emebeddings for those residues does not affect the resulting

vector of the protein. In conclusion, the model will generate compounds relevant for a given

target but will be unable to differentiate small variations in protein sequence and therefore

protein-ligand interactions.
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Targets with multiple binding sites

Some targets such as kinase proteins, have multiple binding sites and therefore different

molecules with different structural properties may bind to the same target, although at

different binding sites. For some targets, the binding site, the number of additional bindings

sites or which binding site a specific compound binds to are unknown. This issue can

create challenges for any drug design approach in which the 3D structure of the target, or

the binding mode of the ligand is unknown. This is the case for a large portion of the

experimental binding data in BindingDB. This problem could be overcome if only data for

compounds with known binding site us used to train the network. In this case, it may also

be possible only to use embeddings generated from the binding site sequences of the targets.

The problem, however, is that currently no datasets large enough to train such a neural

network are available.

Table 3.1. Various metrics measured using the MOSES framework for the
generated compounds. Duplicates and invalid compounds were removed. Re-
sults for Tyrosine Kinase and GPCR targets are shown.

(a) Tyrosine Kinase

Metric Seq2Mol AAE CharRNN VAE

Fragment similarity distance 0.847 0.929 0.942 0.941
Scaffold similarity distance 0.014 0.011 0.010 0.010
Distance to the nearest neighbor 0.566 0.662 0.662 0.659
Internal diversity 0.765 0.852 0.856 0.855

(b) GPCR

Metric Seq2Mol AAE CharRNN VAE

Fragment similarity distance 0.806 0.920 0.938 0.942
Scaffold similarity distance 0.017 0.057 0.062 0.055
Distance to the nearest neighbor 0.533 0.634 0.644 0.633
Internal diversity 0.742 0.852 0.856 0.855
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Table 3.2. Various metrics measurements via MOSES framework for the
generated compounds after duplicates and invalid compounds are removed.
Results for Tyrosine Kinase and GPCR targets are shown.

(a) Reference sets and our generated compounds corresponding to each set

Metric Reference (Tyr Kinase) Seq2Mol (Tyr Kinase) Reference (GPCR) Seq2Mol (GPCR)

LogP 3.99 ± 1.46 5.17 ± 1.75 4.50 ± 1.57 5.41 ± 1.72
Synthetic accessibility 2.93 ± 0.55 2.40 ± 0.55 3.06 ± 0.68 2.27 ± 0.49
QED 0.47 ± 0.17 0.39 ± 0.18 0.48 ± 0.19 0.38 ± 0.17
Natural product-likeness −1.21 ± 0.55 −1.06 ± 0.43 −0.97 ± 0.64 −0.83 ± 0.50
Molecular weight 450.27 ± 85.20 471.77 ± 87.95 465.57 ± 95.74 464.33 ± 86.83

(b) Benchmark models

Metric AAE CharRNN VAE

LogP 2.46 ± 1.00 2.44 ± 0.98 2.47 ± 0.94
Synthetic accessibility 2.49 ± 0.47 2.47 ± 0.47 2.43 ± 0.46
QED 0.80 ± 0.10 0.80 ± 0.10 0.81 ± 0.09
Natural product-likeness −1.65 ± 0.59 −1.68 ± 0.64 −1.67 ± 0.64
Molecular weight 318.89 ± 30.91 308.50 ± 29.87 304.64 ± 28.65

3.4 Conclusion

In this work we have developed a method for the de novo generation of molecules based on

the sequence of the target. Unlike previous works in this area, our method does not need the

knowledge of already known binders to a target protein as templates for molecule generation.

The sequence of the target protein is sufficient to generate target-specific molecules instead.

We showed that the pool of compounds generated for two large and important protein target

familes, i.e. GPCRs and Tyrosine kinases, display meaningful similarity to already known

binders to these targets. With a continuous increase in number of experimentally resolved

or computationally predicted protein structures, other types of protein embeddings based

on 3D structure information may be used in the future, such as binding site embeddings

based on 3D grids or graphs describing the binding site volume or arrangement of residues.

respectively.
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4. IDENTIFICATION OF REGIONS IN PROTEIN SEQUENCE

PRONE TO STRUCTURAL CHANGES THROUGH DEEP

NEURAL NETWORKS

4.1 Introduction

The structure of a protein is important for the function the protein and changes in the

structure may be responsible for protein activation or inactivation. Such changes can be in-

trinsically driven [130 ], or be imposed by a bound ligand [131 ], another interacting protein,

or chemical reactions such as post-translational modifications, e.g. phosphorylation [132 ].

Knowing regions in proteins prone to such changes is important in understanding a pro-

tein’s function and for determining conformational changes associated with ligand binding.

Structural flexibility is of particular importance in protein-ligand binding. Throughout the

binding process proteins can take different conformations sometimes induced by the bound

ligand [133 ]. Typically, not all accessible protein conformations have been experimentally

resolved, sometimes only the apo structure is known. Identifying energetically feasible pro-

tein conformations is important for structure-based drug design methods, as methods such

as docking generate inaccurate results when the incorrect conformation of a protein is used

[134 ]. To incorporate protein flexibility in protein-ligand docking, methods such as ensem-

ble docking [135 ] and induced-fit docking [136 ] have been developed. Whereas molecular

dynamics (MD) simulations can be used to generate alternative protein structures, large

conformational changes, such as alterations of the secondary structure content, are hard to

obtain with those simulations [134 ]. Focus on specific flexible protein region may allow for

accelerated sampling of alternative conformations of the protein. Therefore, it is important

to be able to identify those regions in proteins which are prone to structural changes.

The structures of proteins can be categorized into structured (i.e. regular secondary

structure elements such as alpha-helices and beta-sheets) and unstructured elements (i.e.

lack of regular secondary structure elements including loops and disordered regions). Some-

times conformational changes in proteins are associated with structured secondary structure

elements becoming disordered and vice versa, for instance in Glycogen phosphorylases, sev-
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eral residues of the protein undergo order/disorder transformation during activation [137 ].

To understand those conformational transitions it is important to predict the propensity of

protein sequence elements towards being able to form structured and unstructured config-

urations. Whereas multiple methods have been predicted to identify sequences which form

alpha-helices or beta-sheets, and methods to predict protein disorder propensity, no method

has been focused on identifying regions that are likely to form both categories dependent on

external bias, here ligand binding.

Methods that predict protein disorder can be categorized into four categories [138 ]:

physicochemical-based methods which identify disordered regions by physical principles [139 ]–

[142 ], machine-learning-based which use machine learning algorithms to predict protein dis-

order [117 ], [143 ]–[148 ], template-based which uses homology models to identify disordered

regions [149 ], [150 ] and meta which combine various methods [150 ]–[154 ].

Furthermore, previous knowledge-based methods were trained on X-ray crystallographic

data to predict the propensity for disorder for protein sequences. Although X-ray crystal

structures provide an abundant amount of information about the 3D structure of a protein,

they are static in nature, do not reflect the dynamics of a protein and therefore do not provide

information about the structural stability of elements of the protein. On the other hand,

structures based on nucelar magnetic resonance (NMR) can provide better understanding of

the protein dynamics, as the protein’s structure is investigated in its solvent, unfrozen state.

To derive a predictive model for the characterization of a protein’s propensity for alter-

ations in secondary structure, we here present a deep neural network method trained on

NMR data which contains structured and disordered protein elements. The model is finally

tested on a series of protein system with structure elements that change between structured

and disordered character due to ligand binding. Our model demonstrates its ability in those

examples to identify the regions with high propensity of those structural changes.
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4.2 Methods

4.2.1 Secondary structure propensity values from NMR

Tamiola et al. [130 ] defined a quantity, named secondary structural propensity value

(SSP), that quantifies the propensity of a residue within a protein sequence region to form

ordered secondary structures or being in a disordered state which can range from -1 to 1.

Structural propensity values are calculated based on the difference between the observed

experimental chemical shifts and the predicted shielding constants of similar intrinsically

disordered proteins. The disordered chemical shift value of nucleus n of a residue a in a

three residue peptide sequence x − a − y is calculated as follows:

δn
calc(x, a, y) = ∆n

p (x) + δn(a) + ∆n
n(y) (4.1)

where δn(a) is the chemical shift of residue a in a disordered sequence of G − a − G where

G is Glycine. ∆n
p (x) and ∆n

n(y) are the correction values of residues x and y, which precede

and succeed residue a and n denotes the chemical shift type of atoms of the residues n ∈{
1HN , 1Hα, 13Cα, 13Cβ, 13CO, 15N

}
. The correction values are computed by minimizing the

following expression:

∆ε = min


+ | ∑N

i=1

(
δ

13Cβ (i) − δ
13Cα (i)δ13Cβ (i,α)

δ13Cα (i,α)

)
| if δ

13Cα(i) − δ
13Cβ (i) ≥ 0

+ | ∑N
i=1

(
δ

13Cα(i) − δ
13Cβ (i)δ13Cα (i,β)

δ13Cβ (i,β)

)
| if δ

13Cα(i) − δ
13Cβ (i) < 0

(4.2)

where δ
13Cα(i, α) and δ

13Cα(i, β) are the secondary chemical shift values in alpha helix and

beta sheet structures.

The chemical shift of a residue in an ordered secondary structure element, δn(a), is

calculated as follows:

δn(a) = δn
exp(a) − δn

calc(a) (4.3)

where δn
exp(a) is the experimental shift value from [155 ] .
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The chemical shifts of alpha-helical or beta-sheet structures are then calculated as follows:

δn(a, SS) = δn
SS(a) − δn

calc(a) (4.4)

where the value of δn
SS(a), the average chemical shift of the residue a in a fully-formed alpha-

helix or beta-sheet secondary structure and it is acquired from the chemical shift library

compiled by [156 ].

Finally, neighbor-corrected SSP value Ψ can be defined as the following for residue at

position k and neighborhood residue w:

Ψ(k, w) =
∑

n

∑k+w
j=k−w Cθn(SS) δn(j)

δn(j,SS)∑
n

∑k+w
j=k−w θn(SS) δn(j,SS)

σn(j,SS)

(4.5)

where δn(j) denotes type n secondary chemical shift value for residue at position j, δn(j, SS)

the chemical shift value for a fully formed secondary structure of type SS (alpha or beta),

σ(j, SS) the standard deviation of the secondary structure SS chemical shift from the

database curated by Wang et al. [156 ], θn(SS) is the parameter which indicates the rel-

ative sensitivity of the chemical shift of type n to the secondary structure type SS and is

described for each chemical shift type in [130 ]. To discriminate between secondary structure

types, constant C is used which is derived using the following equation [130 ]:

δn(j, SS) =

 δn(j, α) ∧ C = 1 if δn(j)δn(j, α) > 0

δn(j, β) ∧ C = −1 if δn(j)δn(j, β) > 0
(4.6)

4.2.2 Dataset

We used 7094 protein resonance assignments from the structural propensity database of

proteins [130 ] to train our network to predict SSP values. The data is composed of resonance

values for diverse protein systems obtained in solution and solid state at near-physiological

conditions. Each residue in a sequence can take a value between -1 and 1; -1 indicates the

sequence with beta-strand propensity, while 1 indicates alpha-helix propensity. The value of

0 means the residue is part of a disordered region of the protein. Any other values between
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these numbers represents the ratio between the folding states in the NMR structure ensemble.

For instance, a value of 0.5 indicates that the specific residue is in half of the NMR ensemble

part of a disordered region and in the other half it adopts an alpha-helix structure. For

training and testing, the protein sequences were broken down into continuous fragments of

20 residues length. 142652 and 4834 samples were used for training and testing, respectively.

The residues that did not have resonance assignments were disregarded during training for

the loss calculation.

4.2.3 Network structure and training

Figure 4.1 shows the overall workflow of the method. The fragments are represented as

one-hot encoding and passed through an initial embedding layer with dimensions (20,10)

followed by a spatialDropout1D with a rate of 0.2. Next A 1D convolutional layer with 64

filters and kernel size of 5 and zero padding is applied, followed by a 1D MaxPooling layer

with pool size of 2. Two bi-directional gated recurrent unit (GRU) [157 ] layers both with

dimension length set to 20 were applied subsequently. Finally, a Dense layer with size of

20 is applied which generates the output values. The motivation for this choice in network

architecture was that CNN layers were placed to extract the most essential features of the

sequences followed by GRU units to support sequence processing. All intermediate layers

used rectified linear unit (ReLU) activation. The last output layer is a dense layer that

outputs SSP values between -1 and 1 (Figure 4.2 ). Mean squared error (MSE) was used as

the loss function to optimize the weights of the network:

MSE = 1
n

n∑
i=1

(yi − ỹi)2 (4.7)

Where y and ỹ are experimental and predicted values of the dataset, and n is the number of

samples in the batch. The network was trained for 200 epochs with batch size set to 2048.
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Figure 4.1. Overview of method for prediction of structural propensities from
sequence. The sequence is first broken down into 20-residues long fragments.
After featurization and embedding, subsequent neural network layers predict
propensity values.

Figure 4.2. The neural network architecture used in our approach for the
prediction of structural propensities.
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4.2.4 Case studies

Six protein systems crystallized in different conformations were chosen to exemplify our

method’s potential to study regions with propensity for structural changes: Heat shock

protein 90 (HSP90, PDB: 5j9x,1yet,5j64), chemosensory Protein (PDB: 1kx9, 1n8v), PLP-

dependent acyl-CoA synthase (PDB: 1bs0, 1dj9), beta-1,4-galactosyltransferase 1 (PDB:

1pzt, 1o0r), dehydrosqualene synthase (PDB: 2zco, 2zcq), and lipase A. (PDB: 1i6w,1r4z)

All of the mentioned structures except HSP90 were acquired from the Protein Structural

Change DataBase (PSCDB) [158 ].

4.3 Results

4.3.1 Network performance

The neural network achieved a mean absolute error of 0.35 for the training and 0.38

for the validation set. Figure 4.3 shows the error convergence plots for the model. In the

following section, we demonstrate the prediction performance in individual cases of proteins,

which show duality in secondary structures as captured by x-ray crystallography.

Figure 4.3. The model’s error convergence plots A) Model’s loss (MSE) B)
Mean absolute error (MAE) after 200 epochs.
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4.3.2 Case studies

Heat shock protein 90 (HSP 90)

Figure 4.4 shows three different conformations of HSP 90 induced or stabilized by three

different bound ligands. The protein region colored in green adopts three different confor-

mations: (A) Complete helix when interacting with N-Butyl-5-[4-(2-fluoro-phenyl)-5-oxo-4,5-

dihydro-1H-[1,2,4]triazol-3-yl]-2,4-dihydroxy-N-methyl-benzamide, (B) loop-out (interaction

with Geldanamycin) and (C) loop-in (interaction with 5-(2,4-Dihydroxy-phenyl)-4-(2-fluoro-

phenyl)-2,4-dihydro-[1,2,4]triazol-3-one). The structure propensity prediction of the green

region reveals a largely alpha-helical propensity at both ends of this region and both disor-

dered and helical propensity around residue Lys-112 in the center of the region (Figure 3

(D)). As the different co-crystal structures demonstrate this region can indeed form helical

secondary structure as well as disordered conformations depending on the type of the bound

ligand.

Chemosensory Protein

The N-terminal region of the chemosensory protein forms an alpha-helix in the unbound,

apo conformation of the protein. Upon ligand binding the helix partially unfolds and assumes

a disordered state. In one conformation the helix spans across residues 4-20, on the other

hand in another conformation, the helix half of these residues are disordered. Our method

predicts that the residues Glu-1 to Asn-12 have low propensity for alpha-helix, but the

other half (Leu-13 to Lys-19) is predicted to have a high alpha-helix propensity. This is in

agreement with the crystallized structures as shown in Figure 4.5 A and B. The SSP values

of the residues Glu-1 to Asn-12 represents the lower fraction of conformations in which

these residues are in alpha-helix, thus rather disordered, compared to the disorder values

from Leu-13 to Lys-19 which are higher, therefore exhibit alpha-helix in higher fraction of

conformations (Figure 4.5 C)
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Figure 4.4. Three ligand bound conformations (A,B and C) of HSP-90 (PDB
codes 5j9x, 1yet,and 5j64, respectively) and our SSP prediction of the 20
residue-length sub-sequence (D) between Leu-103 and Leu-122. Prediction
for Lys-112 residue shows the lowest helical propensity and it is revealed that
this region can both assume helical and disordered structure character.

PLP-dependent acyl-CoA synthase

The selected region in PLP-dependent acyl-CoA synthase (Figure 4.6 , green) shows a

conformational transition between a beta-strand structure to a loop in region (Pro-322 to

Asn-328), with subsequent alpa-helix. This transition propensity between loop and beta-

sheet is clearly reproduced by our prediction (Figure 4.6 C). The interesting observation is

that the values predicted for the beta-strand part have a low magnitude, indicating both

forms of beta-strand and disordered are possible, which is observed in the two structures

(Figure 4.6 ).
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Figure 4.5. Ligand-free (A) and ligand-bound (B) conformation of chemosen-
sory protein (PDB codes 1kx9 and 1nv8, respectively) and propensity predic-
tion of the 20 residue-long N-terminal region (C), Glu-1 to Lys-20. Note that
part of the disordered region is not crystallized in A.

Beta-1,4-galactosyltransferase 1

The region of interest in beta-1,4-galactosyltransferase 1 is a bent helix (Figure 4.7 B),

half of which is found as a loop in another structure (Figure 4.7 A). The whole selected region

takes a low alpha-helix propensity values (between 0 and 0.5), predicting the existence of

both conformations in which this region exhibit alpha-helix and in which it is a disordered

region. The crystal structures shown in Figure 4.7 A and B confirms the prediction; in one

structure (Figure 4.7 A) residues Asn-356 to Ala-364 lose the helix structure and in another

structure (Figure 6B) residues Asn-356 to Ala-364 take a bent form, not maintaining a full

helix structure. (Figure 4.7 ).
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Figure 4.6. Ligand-free (A) and ligand-bound (B) conformations of PLP-
dependent acyl-CoA synthase (PDB codes 1bs0 and 1dj9 respectively) and
the propensity prediction of the 20 residue-long region Pro-322 to Gln-341
(C).

Dehydrosqualene synthase

The selected region in dehydrosqualene synthase (Figure 4.8 ) shows a transition between

helix and loop. The helix structure can become disordered in one conformation (Figure

4.8 A) which is clearly in agreement with the disorder prediction, where the helix propensity

falls close to the loop and the residues immediately before the loop (D49-D52) have a low

helix propensity. Although the values assume small negative values for the loop region this

propensity for beta-strand character is very low.

Lipase A

Figure 4.9 shows a region of lipase A protein that consists of a disordered and a helix

structures. The prediction (Figure 8C) shows a beta-sheet propensity, however with a low

magnitude, which indicates a high propensity for a disordered structure. The second part of
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Figure 4.7. Ligand-free (A) and ligand-bound (B) conformations of beta-
1,4-galactosyltransferase 1 (PDB codes 1pzt and 1oOr respectively) and the
propensity prediction of the 20 residue-long region (C), ranging from Asn-356
to Leu-375.

this region (Phe-19 to Ser-28) has propensity for alpha-helix character. The values, however,

are also relatively low indicating likely instability of the helix. That coincides with the

observed bend in the helix in Figure 8B.

4.4 Conclusion

In this study, we showed how protein disorder data derived from NMR ensembles can be

used to train predictors to detect regions of proteins susceptible to structural change and

likely to show dual order-disorder character. We developed a deep neural network method

which uses only the sequence as features and uses them to predict propensity of protein

regions to form structured secondary or disordered structures. We tested our model in a

number of cases of apo and holo conformations of proteins, which shows excellent agreement

between predicted and experimental X-ray structure data. We believe our method can have

applications in focusing enhanced sampling techniques based on collective variables, e.g.
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Figure 4.8. Ligand-free (A) and ligand-bound (B) conformations of dehy-
drosqualene synthase (PDB codes 2zco and 2zcq respectively) and the propen-
sity prediction of the 20 residue-llong sub-sequence (C), ranging from Ala-39
to Gln-58.

metadynamics [159 ], to enforce conformational sampling of flexible proteins. Furthermore,

the method may be utilized to select regions to be treated as flexible in flexible protein

docking methods. In future, the method may be improved by adding more curated features,

such as evolutionary information or physicochemical properties of amino acids in addition

to sequences to achieve better prediction accuracy.

113



Figure 4.9. Ligand-free (A) and ligand-bound (B) conformations of Lipase
A (PDB codes 1i6w and 1r4z respectively) and the propensity prediction of
the 20 residue-long sub-sequence (C), ranging from Val-9 to Ser-28.
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5. FUTURE DIRECTIONS

In this chapter, I will discuss current limitations, potential improvements and future appli-

cations of the three methods developed throughout my thesis research.

5.1 Prediction of protein’s hydration properties

5.1.1 Possible future improvements in methodology

Training data

In this study, described in chapter 2, data used for training the neural networks were

generated by WATsite. Although this strategy made training data generation accessible and

cheaper compared to experimental data, it should be noted that training on MD-generated

data allows the model to perform as good as the MD method at best. The possibility that

neural network models can even outperform MD-based predictions using experimental data

is yet to be explored. As crystallographic hydration data is sparse, augmentation with MD-

generated data should be considered. Furthermore, the models presented in this thesis aim

to generate hydration density maps on a 3D grid, generated by WATsite. Crystallographic

data on the other hand display hydration sites as points without differences in occupancy

values. For that reason, occupancy data from WATsite may first have to be represented as

hydration sites to be mixed with crytallographic data. A model can then be trained to predict

the hydration sites as points, end-to-end, that is predicting hydration sites coordinates from

atomic coordinates of the protein as input, by representing the data as point cloud data or

graph using model concepts such as transformers [160 ].

Data representations

In chapter 2, it was shown how convolutional neural networks can be used to map molecu-

lar interaction fields grids to water occupancy grids. This approach seems reasonable because

the output data which the model was to predict was also represented as a 3D grid, making

the task a grid-to-grid mapping problem. However, as also mentioned in the same chapter,

the sparsity of high water occupancy regions was a great challenge to overcome. A loss
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function designed for sparse data was used in the fully-convolutional approach to address

the issue and it was successful to some extent. Another issue with the grid-to-grid mapping

approach was the fixed size of the grid, that is inherent with the convolution approach. The

fixed size of the grids may not contain information about long range effects of atoms and

water networks falling outside the grid, therefore not capturing the full picture and making

the model perform less optimally.

Another problem of the grid-based approach is that generating hydration sites based

on the predicted occupancy grids will depend heavily on the clustering algorithm used and

depend on the hyper parameters of the clustering algorithm. This adds another layer of

hyper-parameter optimization for the clustering algorithm to the overall prediction task.

That is another reason why future models should aim to generate hydration sites end-to-

end, without the need to use grids.

In the second approach described in chapter 2, spherical harmonics expansion was used to

generate descriptors for a fully-connected network. The design was conceived such that the

output of the network would predict the occupancy/thermodynamic properties of a point on

the protein’s surface while also receiving information regarding the surroundings by features

generated through spherical harmonics expansion. This approached removes the sparsity

problem, by allowing one to use a more balanced dataset of occupancy values, so that the

low occupancy values do not severely dominate the dataset. This approach however, relies

more on feature engineering, since the parameters for generating descriptors need to be

chosen by the user. Also, the output of the model is used to construct the occupancy grids

which again will require designing an optimal clustering algorithm.

Architecture improvements

As mentioned in the previous sections, moving away from voxelized representations and

subsequently 3D convolutions is a possible direction to move forward with the project. In

addition moving away from image-like representations may improve training time and con-

vergence, since instead of having to process so many redundant voxels, only atoms repre-

sented as nodes of a graph will be processed.. Using voxelized representations of protein
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data has a few issues: It does not contain any bond information between atoms. Also, it

may be inefficient, since many voxels are generated to cover a few number of atoms, and

the convolution operation becomes expensive as the dimensions of the data increase. In ad-

dition, orientations and transformations may negatively impact the learning and prediction

by CNN models. Furthermore, our current model’s prediction quality at the corners of the

grid is worse compared to points in the center of the grid. Using graph-based or point-cloud

based approaches may be a more natural representation of the underlying protein data and

therefore may result in improved prediction quality.

Addressing descriptor generation overhead

Whereas the neural network models require little time to predict the hydration data,

generating the descriptors is currently done by sequential programs and thus rather time

consuming. While this is more of a technical issue rather than methodological, it is important

to address the issue if the method is going to be used in downstream tasks such as docking

applications. Code optimizations and parallel programming are viable options for faster

descriptor generation.

Inclusion of the ligand

The methods presented in this thesis focus on predicting hydration properties in apo

protein structures. This has been the approach in most hydration site prediction applications,

since generating accurate thermodynamic properties is computationally too expensive to be

performed for a large number of protein-ligand pairs. Training the models with ligand

information can lead to interesting findings, such as how ligands can affect the hydration

on protein surfaces and enhance our understandings of ligand-water-protein interactions,

ultimately leading to more optimal methods in drug discovery.

5.1.2 Potential applications

As mentioned in chapter 2, instantaneous generation of thermodynamic properties of

hydration sites allows the integration of explicit (de)solvation in scoring functions for dock-
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ing application, possibly resulting in better performance. Whereas most scoring methods

rely on simplified typically implicit models of hydration, our lab recently developed an ar-

tificial intelligence model to integrate explicit (de)solvation into scoring function [70 ]. In

this method, the scoring method relies on a single conformation of the protein and gener-

ates hydration properties based on it. Although the hydration properties are the outcome

of molecular simulations, the protein’s backbone is usually restrained in these methods to

achieve convergence in hydration site profiling. Such inherent rigidity also will transfer to

the docking process. However, with our method, one could sample different conformations of

proteins during an MD simulation and use the conformations sampled for ensemble docking

and generate hydration properties instantly for all conformations. Instant generation of hy-

dration properties could be used in reverse virtual screening, where one or a small number of

compounds are screened against a library of protein targets. In this case, instead of having

to run a separate MD simulation for each target, our method can be used to generate the

data in a reasonable time. Our method can also be used in scoring poses in induced-fit

docking, assuming the overhead issue in descriptor generation is addressed.

5.2 Target-based generation of de novo molecules

5.2.1 Possible future improvements in methodology

Data embeddings

As mentioned in Chapter 3, there are limitations in using sequences as protein features for

target-specific compound generation. Whereas sequences determine the protein structure,

using them directly as features for the protien target in our model lacks a 3D representation

of the binding site. Whereas some structural information can be inferred by neural net-

work models from the sequence, directly adding structural information to the embeddings

or using structural embeddings may improve the quality of the prediction. Similar to text

embeddings, structures, whether represented as graphs or voxels, can yield embeddings by

using proper models such as autoencoders [161 ] or transformers [160 ]. The challenge in this

regards, however, is the limited size of structral data available. Experimental structures of

protein binding sites exist only for a fraction of all the targets in data sets. To partially over-
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come this limitation, transfer learning may be used, where the network learns the structural

features of proteins for one task such as binding site classification, or structure reconstruction

and then the layer outputs are used as embeddings for another task, which in this case is

molecule generation.

In our study, we used embeddings of the whole protein sequence by computing the average

over all residue embeddings. It is, however, known that the residues of the binding pocket

matter most in the context of protein-ligand interaction. Averaging over all protein residues

therefore may ”blur” the information of the key residues for protein-ligand binding. Again,

this issue is caused by the limitation in data. The 3D structures of many of the targets in the

dataset are not known, therefore no information about the interacting residues with ligand

are available. However, the binding residues could be ”guessed” by methods that detect

binding pockets. Such methods could be used to select residues to generate embeddings

from, with the non-important residues being masked.

Molecule representations

As mentioned in chapter 1 and 3, representing chemical data as SMILES strings makes

it easy to use models designed for NLP to process the data. However, the SMILES repre-

sentation or similar ones are very sensitive to typing errors and missing characters in the

string, therefore a large fraction of the generated output can be invonvertible to a molec-

ular structure. More recent approaches are trying to replace SMILES representation with

graph representations for do novo compound generation. Graph-based approaches may be

of investigated in our method as well.

Architecture improvements

The approach described for molecule generation involves utilizing two different models.

ELMo model is used to generate the contextual embeddings of the protein sequences, and a

LSTM decoder then is used to generate sequences relevant to the embeddings. Newer models

have been developed for generating contextual embeddings such as BERT [38 ] which uses
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transformer model architecture and attention mechanism along with other improvements to

generate embeddings.

Overall, any architecture modification will depend on the data representations, for exam-

ple, using graph data to represent the protein and/or the molecules will demand a different

architecture than LSTM cells which are designed to process sequential data.

5.3 Prediction of protein disorder through DNNs

5.3.1 Possible future improvements in methodology

Architecture improvements

The architecture of this model can be further improved by using state-of-the-art language

models such as BERT, pre-trained on large datasets. This way more accurate embeddings

can be generated for a sequence and performance may increase.

Model benchmarks and comparisons

The current results discussed in chapter 3 suggest the utility of the model to qualitatively

sense regions prone to structural changes. However, more investigations are needed for this

method to understand its advantages and limitations. A comparison with other prediction

methods would be beneficial. Many prediction methods rely on x-ray crystallographic data

for training and building models, a comparison between the models based on crystallographic

data and our model which is trained on NMR data would be of interest.

5.3.2 Potential applications

Prediction of protein disorder has been the interest of the scientific community. In the

context of drug design, knowing the correct conformation(s) of proteins is important in

structure-based drug design. The current method can be used for directing flexible docking

applications and reducing sampling space by focusing on the regions more likely to disor-

der. Also, it can be used to bias protein modeling programs for considering non-template
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conformations. It can be helpful in protein design, where a certain secondary structure is

desired.
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