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ABSTRACT 

Obesity and nutrition-related non-communicable diseases continue to be major challenges 

that are increasing in severity worldwide. Science-centered carbohydrate dietary strategies may be 

a viable approach to help address such challenges. Recent reports from our laboratory indicate that 

certain carbohydrates with slow digestion profiles have the ability to trigger the gut-brain axis and 

reduce food intake and to slow gastric emptying and potentially affect appetite. Slow carbohydrate 

digestion may have other impacts on energy metabolism that have not been explored. In the current 

investigations, we sought to better understand the delayed gastric emptying profile of pearl millet-

based foods as well as to understand how altering carbohydrate digestion rate impacts substrate 

utilization for energy. 

In the first study, the physical breakdown of pearl millet couscous particles in a simulated 

gastric environment (Human Gastric Simulator) was studied compared to wheat couscous matched 

in particle size, and select physicochemical properties of each type of couscous were characterized. 

Because we previously showed that pearl millet couscous had a marked delay in gastric emptying 

compared to white rice, boiled potatoes, and pasta in a human study in Mali, the objective of the 

first investigation was to test the hypothesis that pearl millet couscous was more resistant to 

breakdown in the stomach than wheat couscous and would take longer to empty. Our findings 

indicated that pearl millet couscous instead broke down into smaller, more numerous particles than 

wheat couscous. However, pearl millet had a slower starch hydrolysis property compared to wheat 

couscous per unit surface area. Pearl millet also had a smaller amylose chain length (839-963 DP) 

compared to wheat (1225-1563 DP), which may enable a denser packing of millet starch molecules 

that hinders hydrolysis. We also visually observed that the pearl millet particles formed a paste 

while breaking down that could reasonably generate viscosity in the stomach to potentially delay 

gastric emptying.  

Based off the findings from simulated gastric digestion, we next conducted a human study 

(n=14) in the U.S. to test the hypothesis that pearl millet-based foods (couscous – commercial and 

self-made, thick porridge) would reduce glycemic response, increase satiety, and delay gastric 

emptying compared to wheat couscous and white rice. We complemented this human study with 

additional in vitro work using an advanced gastrointestinal digestion system (TIMagc) to 

determine if the viscosity of pearl millet couscous particles as they were breaking down in the 
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stomach was contributing to a decrease in gastric emptying. Our findings indicated that all the 

pearl millet-based foods and wheat couscous had lower overall glycemic response than white rice, 

but only the self-made millet couscous showed higher satiety through subjective appetitive 

response ratings. Surprisingly, there were no differences in gastric emptying among the foods. 

Additionally, the half-emptying times for these foods were all ~3 h, which is similar to the 

comparably low half-emptying times observed for white rice, boiled potatoes, and pasta in the 

previous Mali study. We now hypothesize that there may be diet-induced changes in gut-brain axis 

signaling when slowly digestible carbohydrates are consumed repeatedly over time, perhaps 

through modulating the number or sensitivity of small intestinal L-cells. We also found that millet 

couscous did not exhibit high viscosity in the TIMagc, suggesting that viscosity was not impacting 

its rate of gastric emptying. We conclude that at least some pearl millet-based foods possess a slow 

digestion property that may act to trigger the gut-brain axis or ileal brake to increase feelings of 

satiety or slow gastric emptying, but the discrepancy between U.S. and Malian populations 

requires further study.  

In the final investigation, we examined how altering carbohydrate digestion affected 

partitioning of carbohydrate versus fat for oxidation as well as the efficiency of switching 

oxidation between these two substrates (termed “metabolic flexibility”) in mice. Metabolic 

flexibility has been associated with good health related to decreased adipose tissue in the body and 

improved insulin sensitivity and may have implications on weight management. Carbohydrate 

digestion was adjusted by: (1) testing mice that lacked a complete set of enzymes by knocking out 

maltase-glucoamylase (Mgam; null) for moderating starch digestion versus testing wild-type mice; 

(2) using diets in these two groups of mice to moderate starch digestion that had different levels 

of resistant starch (53%, 35%, and 18%), had only raw corn starch or sucrose, or were high in fat; 

and (3) providing a supplement of fungal amyloglucosidase (AMG) to the mice treatment groups 

to increase starch digestion. Respiratory exchange ratio (RER) was measured through indirect 

calorimetry and mathematical modeling was used to characterize the diurnal shifts in RER (sine 

equation) as well as carbohydrate versus fat oxidation and metabolic flexibility (percent relative 

cumulative frequency [PRCF] with Weibull and Mixed Weibull Cumulative Distribution 

functions). Our results suggest that null mice lacking Mgam had somewhat increased metabolic 

flexibility than wild-type mice despite exhibiting minimal to no effects on carbohydrate oxidation. 

Intriguingly, the raw corn starch diet increased fat oxidation and generally promoted metabolic 
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flexibility, although it did not increase carbohydrate oxidation relative to the other carbohydrate-

predominant diets. Increasing carbohydrate digestion through AMG supplementation increased 

carbohydrate oxidation, and generally prompted earlier shifts to carbohydrate oxidation than 

without AMG supplementation. These findings provide a basis for better understanding the 

metabolic consequences of altering carbohydrate digestion and establish novel tools that can be 

utilized in future investigations. Overall, we propose that moderating carbohydrate digestion 

provides the ideal combination of balancing carbohydrate and fat oxidation while promoting 

metabolic flexibility.  

In conclusion, a slow digestion property may enable some types of pearl millet to trigger 

the ileal brake and gut-brain axis feedback systems to decrease glycemic response and increase 

satiety. Moreover, consuming carbohydrates with slow digestion may optimize substrate 

utilization for energy by the body. In addition to triggering the ileal brake and gut-brain axis, 

modulating carbohydrate digestion to more effectively switch between carbohydrate and fat for 

oxidation may be beneficial for weight management and metabolic disease prevention. 

 

 



 

 

25 

 INTRODUCTION 

1.1 Introduction 

Dietary carbohydrates constitute the main source of energy from the average human diet 

(Shan et al., 2019) and are broadly categorized as digestible (e.g. starch, sugar) and indigestible 

(e.g. fiber). The increasing prevalence of obesity worldwide indicates a widespread impairment in 

the regulation of food intake and energy balance (Abarca-Gómez et al., 2017; Hales et al., 2020). 

Strategies to prevent or help treat obesity and associated nutrition-related non-communicable 

diseases are becoming increasingly imperative. 

Consumption of digestible carbohydrates is often viewed unfavorably due to purported 

negative effects of such carbohydrates on health (Kroemer et al., 2018). For example, 

epidemiological evidence from 18 countries across five continents indicated a high intake of 

carbohydrates (>70% of total daily energy) was associated with increased risk of total mortality 

(Dehghan et al., 2017), and diets with a high ratio of carbohydrate-to-cereal fiber and starch-to-

cereal fiber were associated with increased risk for incident coronary heart disease in U.S. men 

and women (AlEssa et al., 2018). However, results from a different epidemiological study showed 

that moderate intake of carbohydrates (50-55% of total daily energy) was associated with 

decreased risk of mortality in U.S. men and women (Seidelmann et al., 2018), indicating the 

importance of consuming an intermediate level of carbohydrates.  

Although carbohydrates have been associated with negative health effects (AlEssa et al., 

2018; Dehghan et al., 2017), certain types of carbohydrates can have beneficial impacts on health. 

Not all carbohydrates are the same, even within digestible carbohydrates. Classification systems, 

such as the glycemic index (Jenkins et al., 1981) and Englyst assay system (i.e. designations of 

rapidly digestible starch, slowly digestible starch, and resistant starch) (Englyst et al., 1992), have 

been developed to differentiate carbohydrates based on their digestibility. Carbohydrates that are 

more slowly digestible may have positive effects on the body (Zhang et al., 2015; Zhang & 

Hamaker, 2009). In fact, emerging evidence from our lab group has indicated that starch entrapped 

microspheres, a form of slowly digestible carbohydrate, trigger the gut-brain axis to decrease food 

intake (Hasek et al., 2018) and incrementally slow gastric emptying rate (Hasek et al., 2020) in 
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rats. These findings indicate use of certain slowly digestible carbohydrates may be a potential 

strategy to help address the pandemic proportions of obesity worldwide. 

1.2 Specific objectives and research hypotheses 

In order to make strides in determining how carbohydrates could potentially be used to 

help combat obesity, we first focused on studying the digestive properties of pearl millet, a 

purported slowly digestible carbohydrate, that relate to satiety and the control of food intake 

through in vitro experiments and an in vivo human study. We then explored the metabolic 

consequences of altering the digestibility of carbohydrates in mice and how they relate to 

metabolic flexibility, which is a marker of good health (Goodpaster & Sparks, 2017; Muoio, 2014). 

Pearl millet (Pennisetum glaucum) is an ideal crop for regions such as the dry, semi-arid 

West African Sahel, because it is sturdy and drought-resistant (Chand et al., 2017; Lemgharbi et 

al., 2016; Yadav et al., 2016). However, pearl millet has benefits beyond efficient growth and 

production, for many consumers of pearl millet in this region anecdotally report that eating pearl 

millet makes them feel “full” for extended periods of time. These individuals prefer to consume 

pearl millet in order to go for long periods of time without feeling the need to eat. From an ingestive 

behavior standpoint, these anecdotal reports indicate that pearl millet foods promote satiety. Indeed, 

previous researchers have found that pearl millet has a nutritionally beneficial in vitro slow 

digestion property (Annor et al., 2015, 2017). However, the relationship between the anecdotal 

satiety property and apparent slow digestion property of pearl millet had not been explored until 

recently, when previous work from our group indicated that pearl millet foods in the form of 

couscous and thick porridge substantially delayed gastric emptying rate compared to white rice, 

boiled potatoes, and well-cooked pasta in a Malian population (Cisse et al., 2018). This study 

established a potential physiological basis for the satiety property of pearl millet, as slower gastric 

emptying is related to satiety (Halawi et al., 2017; Hellström & Näslund, 2001). Yet, the 

mechanism was unknown. Through a series of in vitro and in vivo experiments, we have explored 

potential mechanisms for the satiety property of pearl millet and provided further evidence for its 

slow digestion. We hypothesized that a slow carbohydrate digestion property of pearl millet (and 

not the food physical properties of particle breakdown or viscosity) was the basis of its slow gastric 

emptying and high satiety, as well as that we would observe consistent gastric emptying and satiety 
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responses in a U.S. population compared to the Malian population in the previous study (Cisse et 

al., 2018).  

In our third experimental study for this thesis, we examined the partitioning between 

carbohydrate and fat as substrates for energy metabolism (i.e. oxidation) in response to different 

dietary conditions in mice that were lacking the maltase-glucoamylase (Mgam) enzyme and wild-

type mice. This allowed us to gain insight into metabolic flexibility, or the efficiency of the body 

to freely switch between using carbohydrate and fat for energy (Muoio, 2014). Metabolic 

flexibility has generally been studied in relation to type 2 diabetes (Meex et al., 2010; van de 

Weijer et al., 2013), adipose tissue in the body (Sparks et al., 2009), exercise and insulin sensitivity 

(Malin et al., 2013), energy use governed by neurons in the brain (Bernier et al., 2020; Reichenbach 

et al., 2018), and even cancer (Kreuzaler et al., 2020; Woolbright et al., 2019). To our knowledge, 

it has not been well-studied related to different diets with the exception of two studies, which found 

that saturated fat-based diets reduced metabolic flexibility compared to polyunsaturated fat-based 

diets (Duivenvoorde et al., 2015), as well as that female mice (but not male) had improved 

metabolic flexibility for a resistant starch-based diet (i.e. high-amylose) fed for 3 weeks 

immediately after weaning compared to a rapidly digestible carbohydrate diet (i.e. 100% 

amylopectin) (Fernández-Calleja et al., 2018); however, for both of these studies metabolic 

flexibility was assessed for a challenge meal during fasting and re-feeding, while in our approach 

we fed mice ad libitum. In our study, we altered carbohydrate digestion by using mice that lacked 

the Mgam enzyme (vs. wild-type mice with a full set of enzymes), feeding diets with different 

carbohydrate digestibilities, and providing an amyloglucosidase supplement. Additionally, we 

devised and employed innovative mathematical modeling approaches to better assess metabolic 

flexibility from respiratory exchange ratio (RER) data. We hypothesized that the Mgam knockout 

(null) mice would have reduced RER and higher metabolic flexibility compared to wild-type mice, 

that reduced carbohydrate digestion would reduce RER and lead to greater metabolic flexibility, 

and that supplementation with AMG to increase carbohydrate digestion would result in higher 

RER and decreased metabolic flexibility. 

1.3 Significance of work 

This research helps reveal steps toward a better understanding of how carbohydrates with 

different digestibilities may act to affect gastric emptying rate and satiety, which have implications 
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on the ileal brake and gut-brain axis signaling systems to influence food intake, as well as alter 

substrate oxidation for energy and metabolic flexibility. Specifically, understanding the underlying 

basis for the slow gastric emptying of pearl millet-based foods may lead to greater insight into 

their anecdotal satiety property. As pearl millet is an existing food, better knowledge of the 

reason(s) for its beneficial properties may help identify strategies that can be implemented to 

design new carbohydrate-based foods with similar benefits. Additionally, insights gained about 

substrate oxidation and metabolic flexibility will reveal ways in which carbohydrates affect 

metabolism that relate to energy expenditure, which is beneficial from a ‘whole body’ level of 

weight management. The findings from this work may also have implications on reducing the risk 

of developing or perhaps even helping treat obesity and type 2 diabetes.  

1.4 Thesis organization 

This thesis is organized into six chapters as follows: 

Chapter 1 is an introduction of the project background, hypotheses, and significance. 

Chapter 2 is a literature review of the structure and digestion of digestible (starch-based) 

carbohydrates; the post-ingestive processes in the body as they relate to such carbohydrates, 

including gastric emptying, the ileal brake, and gut-brain axis; key concepts of substrate oxidation 

and glycemic response in metabolism; and select approaches using in vitro, in vivo, and 

mathematical modeling for studying carbohydrates in these collective areas. 

Chapter 3 is an experimental chapter exploring the breakdown profile of pearl millet 

couscous in a simulated gastric environment and its physicochemical properties compared to wheat 

couscous (matched in particle size). The goal of this chapter was to determine if either particle 

breakdown or a slow starch digestion property was contributing to the delayed gastric emptying 

rate observed for pearl millet couscous in humans in Mali in Cisse et al. (2018).  

Chapter 4 is an experimental chapter investigating the subjective satiety, glycemic response, 

and gastric emptying for pearl millet in the forms of couscous and thick porridge compared to 

wheat couscous and white rice in a U.S. population as well as examining the viscosity of these 

foods in the stomach using an in vitro advanced gastrointestinal digestion system. The objective 

of this chapter was to determine how the pearl millet foods would perform relative to wheat 

couscous (matched in particle size to one type of the millet couscous), because this had not been 
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tested previously, as well as to reveal if viscosity or a slow carbohydrate digestion property were 

contributing to delayed gastric emptying. 

Chapter 5 is a final experimental chapter focused on improving our understanding of how 

alterations in carbohydrate digestion affect utilization of carbohydrate for energy (i.e. substrate 

oxidation) as well as the body’s ability to switch between using carbohydrate and fat for energy. 

This chapter involves new mathematical modeling tools to advance our understanding of metabolic 

flexibility, which has not been well-studied related to carbohydrate digestion. 

Chapter 6 is an overall summary of the key findings from this thesis work as well as 

recommendations for future research. 

Additionally, Appendix Chapter B describes an experimental investigation of how altering 

the structure of starch (i.e. fragmenting amylopectin chains through extrusion) impacts staling of 

breads and cakes, and is a published study that was conducted during this thesis period.  
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 LITERATURE REVIEW 

2.1 Abstract 

The rising prevalence of obesity and nutrition-related non-communicable diseases 

worldwide is indicative of a widespread disruption in the balance of food intake and body weight, 

which broadly involves energy consumed and expended. As starch-based carbohydrates are the 

primary source of energy for most diets, they are uniquely positioned to serve as a strategy to help 

address or prevent such rising levels of overweight and obesity and disease. The purpose of this 

review is to provide a general context for improving understanding of starch-based carbohydrates 

and their roles in health. This will be achieved by examining: (1) the structure and digestion of 

starch-based carbohydrates; (2) the post-ingestive processes in the body as they relate to starch-

based carbohydrates; (3) key aspects of carbohydrate oxidation and glycemic response in 

metabolism; and (4) select in vitro, in vivo, and mathematical modeling approaches for studying 

carbohydrates related to these areas. Although carbohydrates are often associated only with 

glycemic response, they may influence physiological and neurobiological responses with impacts 

on health outcomes related to food intake and body weight. 

2.2 Introduction 

Carbohydrates are the primary source of energy for an average human diet (Shan et al., 

2019). Carbohydrates provide an estimated 4 kcal per gram, and a key energy-delivering 

component of diets is starch. Before starch can be used for energy, it must be digested into glucose 

and absorbed. Subsequent blood glucose levels are generally highly regulated to maintain glucose 

homeostasis. Among the general public, starch-based carbohydrates are often negatively perceived 

because of their potential, with over-consumption, to promote weight gain and type 2 diabetes 

(Kroemer et al., 2018). These are generally fast digesting carbohydrates that lead to high glycemic 

response. Less widely recognized among the general population, is the fact that there are starches 

that have the capability to slow down or evade the body’s digestion and absorption processes. 

Recent research indicates that certain starch-based carbohydrates with a slow digestion property 

can elicit specific beneficial physiological and neurobiological responses (Cisse et al., 2017, 2018; 

Hasek et al., 2018, 2020; Komuro et al., 2019; E.-S. Lee et al., 2018; Martinussen et al., 2019). 
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This includes the potential to control of food intake (Hasek et al., 2018; E.-S. Lee et al., 2018). 

Thus, carbohydrates with a slow digestion property may help address or even prevent one of the 

pandemics afflicting the world: obesity. Obesity is associated with a host of nutrition-related non-

communicable diseases, such as metabolic disease, type 2 diabetes, hypertension, coronary artery 

disease, and stroke (Kopelman, 2007). Our ultimate research goals are to better understand (1) how 

dietary carbohydrates affect physiological systems related to the gut-brain axis and ileal brake, and 

(2) how carbohydrates can be designed or utilized to prevent or help reduce the damaging effects 

of obesity and related non-communicable diseases. This review examines the structure and 

digestion of starch-based carbohydrates; their post-ingestive processes in the body; key aspects of 

carbohydrate oxidation and glycemic response in metabolism; and select in vitro, in vivo, and 

mathematical modeling approaches for studying carbohydrates related to these areas. Together, 

these subjects establish a framework for enhancing the understanding of starch-based 

carbohydrates and their implications on health.  

2.3 Carbohydrate structure and digestion 

Structurally, starches are units of glucose bonded covalently by either α-1,4 or α-1,6 

glycosidic linkages to form polymers. The α-1,4 linkages form linear chains that constitute the 

long chain lengths of the smaller amylose and shorter chain lengths of very large amylopectin, and 

the α-1,6 form branch points that are few in amylose and frequent in amylopectin. The patterns of 

these two types of linkages in a starch molecule give rise to fine structural features that can have 

important impacts on the functionality and digestibility of starch (Benmoussa et al., 2007; Bertoft 

et al., 2016; Matalanis et al., 2009; Roman et al., 2020; Vamadevan & Bertoft, 2015; Zhang et al., 

2008). Notably, amylopectin with a much lower or higher amount of the short-chain fraction to 

long-chain fraction weight ratio (<13 DP or ≥ 17 DP) contributes to a greater proportion of starch 

with a slow digestion property (Zhang et al., 2008). Starch that is physically entrapped 

(Venkatachalam et al., 2009) or has a propensity to form intermolecular associations after 

gelatinization (Martinez et al., 2018) are other key characteristics leading to slowly digestible 

starch. A thorough discussion of all the structural features and specific physicochemical properties 

contributing to different starch functionalities and digestion profiles are beyond the scope of this 

review, but they are important to recognize. Additionally, it is central to understand the processes 
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occurring in the body once foods are consumed in order to discern how some starches are more 

slowly digested than others.  

Before being used for energy by the body, starch must undergo digestion to glucose 

(glucogenesis) and absorption in the small intestine. The α-linked glucose units comprising starch 

differentiate digestible starch from β-linked indigestible fiber because the starch digesting 

enzymes in the body can act on α-linkages but not β-linkages (BeMiller, 2007; B.-H. Lee et al., 

2013). However, some types of starch are resistant to digestion by passing through the upper 

gastrointestinal tract and traveling into the large intestine to be fermented by certain gut bacteria. 

Additionally, some starches are more susceptible to rapid enzymatic digestion, while others are 

more slowly digested. Rapidly digestible starches result in large fluctuations in glycemic response 

within the body concurrent with substantial demands on insulin function, which can be detrimental 

to health, while slowly digestible starches result in a slow and prolonged release of glucose, which 

is thought to be better for health by moderating glycemic and insulin responses, among other 

factors (Miao et al., 2015; Zhang & Hamaker, 2009).  

To account for these different impacts on glycemic response, the glycemic index was 

proposed as a means to classify carbohydrate-containing foods according to their effects on 

postprandial glycemia (Jenkins et al., 1981). The glycemic index is defined as the incremental area 

under the blood glucose curve during the first 2-hours after consumption of a standard amount of 

carbohydrate from a test food compared to either white bread or glucose (Jenkins et al., 1981; 

Ludwig, 2002). Another widely recognized classification is that of glycemic load, which is the 

weighted average glycemic index of a specific food multiplied by its percentage of dietary energy 

consumed as carbohydrate (Ludwig, 2002); that is, glycemic load integrates glycemic response 

and the amount of carbohydrate consumed.  

Although these forms of classification have been widely adopted, they are limited in their 

ability to describe starches with different digestion profiles, and they do not account for differences 

in starch properties and preparation (e.g. structure; botanical sources; particle size; matrix effects; 

retrogradation, or the reassociation of amylose and amylopectin helices after gelatinization 

[heating in excess water]; food form). There are conflicting reports in the literature regarding 

whether consumption of low glycemic carbohydrate foods improves biomarkers for glucose 

homeostasis. Several studies in humans have found that consumption of slowly digestible 

carbohydrates (e.g. “biscuits” produced using a rotary-molding technology) had favorable impacts 
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on glycemic response compared to rapidly digestible carbohydrates (e.g. extruded flakes), such as 

reduced postprandial glycemia, decreased plasma exogenous glucose appearance, and improved 

glycemic control at a subsequent meal (Nazare et al., 2010; Péronnet et al., 2015; Vinoy et al., 

2013).  Alternatively, results from a 5-week randomized crossover-controlled feeding trial 

published in 2014 showed that low glycemic index diets did not improve insulin sensitivity, lipid 

levels, or systolic blood pressure compared to high glycemic index diets (Sacks et al., 2014); 

however, the diets used in this trial were based on the dietary approaches to stop hypertension 

(DASH) diet and not an average U.S. diet. Another crossover study found that slowly and rapidly 

digestible starch-based foods had similar glycemic responses (Eelderink et al., 2012), but their 

results also indicated the slowly digestible starch-based foods had slower intestinal glucose uptake 

concomitant with lower postprandial insulin and glucose-dependent insulinotropic polypeptide 

(GIP) levels than the rapidly digestible starch-based foods. Therefore, the lack of difference in 

glycemic responses was attributed to a slower glucose clearance rate for the slowly digestible 

starch-based foods than the rapidly digestible versions. The authors of this study concluded that 

the glycemic index may not adequately identify starch-based foods with slow digestion properties 

(Eelderink et al., 2012).  

To identify and characterize starches or starch fractions according to their digestion rate 

using an in vitro approach, Englyst et al. (1992) developed a classification system based on an 

assay involving the in vitro hydrolysis of starch using the enzymes pancreatin and 

amyloglucosidase. Rapidly digestible starch (RDS) is hydrolyzed to glucose within 20 min, slowly 

digestible starch (SDS) is hydrolyzed to glucose from 20-120 min, and resistant starch (RS) is the 

starch remaining unhydrolyzed after 120 min. The Englyst assay has been studied extensively and 

validated with in vivo glycemic response (H. N. Englyst et al., 1992; K. N. Englyst et al., 1999, 

2003, 2018), and it is now widely adopted by food researchers as a means to characterize 

nutritionally relevant starch fractions. Starch ingredients usually contain all three of these classes 

(RDS, SDS, RS) which cannot be easily isolated from one another because this classification 

system is based on a time-dependent experimental outcome, not a distinct chemical or structural 

feature (Zhang & Hamaker, 2009). The Englyst assay involves the use of a fungal 

amyloglucosidase, which differs in its enzymatic property related to α-linkage hydrolysis 

compared to the mammalian -glucosidases (B.-H. Lee et al., 2016; Lin et al., 2016; Shin et al., 

2019). These limitations speak to the need for better approaches to examine and classify starches 
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according to their digestibility, and some promising advancements in this area have been recently 

described (Martinez, 2021). Altogether, emphasis should be placed on understanding the 

limitations and constraints of a particular method or approach instead of forgoing its use. For the 

purpose of this review, we will use the term slowly digestible carbohydrate to refer to 

carbohydrates with a slow digestion property as a differentiation from the SDS classification term. 

In order to better understand the limitations of existing approaches in classifying and 

characterizing starch-based carbohydrates according to their digestibility, we must take a deeper 

look at the process of digestion itself within the body. Starch digestion begins in the mouth by the 

action of salivary α-amylase and continues in the small intestine by the action of pancreatic α-

amylase and the small intestinal α-glucosidases. Both salivary and pancreatic α-amylases act on 

internal linear segments of α-1,4 linked glucose units and are thus termed endoglycosidases (Fujii 

& Kawamura, 1985; Robyt & French, 1967). Products of the action of these enzymes are maltose, 

maltotriose, maltotetraose, and the branched α-limit dextrins (mostly in the oligosaccharide size 

range). Importantly, little free glucose is generated and therefore additional enzymatic digestion 

by the α-glucosidases is required. The two small intestinal α-glucosidases, sucrase isomaltase (SI) 

and maltase glucoamylase (MGAM), both have N-terminal and C-terminal domains (Dahlqvist & 

Telenius, 1969; Nichols et al., 2003; Sauer et al., 2000; Sim et al., 2008). SI is only expressed in 

the intestine, while MGAM is also expressed in other tissues such as the kidney, bone marrow, 

spleen, and stomach (Fagerberg et al., 2014). Both enzymes are anchored to the luminal surface of 

small intestinal enterocytes and are found concentrated in lipid rafts, with the N-terminal subunits 

located near the membrane and the C-terminal subunits as the second enzymes extending into the 

intestinal lumen (Figure 1) (Dahlqvist & Telenius, 1969; Sim et al., 2008). The body has a 

coordinated, complex response to digest starch, such that the activities of the α-glucosidases are 

amplified by the products of α-amylase digestion (Chegeni et al., 2018; Sim et al., 2008). 

Intriguingly, in the human infant, α-amylase secretion is developmentally delayed until weaning 

(McClean & Weaver, 1993), but the mucosal α-glucosidases are present in their mature form at 

birth (Auricchio et al., 1965). The four maltase activities of the α-glucosidases (2 maltase activities 

from SI and 2 maltase activities from MGAM) have been well-studied in vitro and independently 

characterized (Dahlqvist & Telenius, 1969; Frandsen et al., 2002; Frandsen & Svensson, 1998; 

Nichols et al., 2003; Stoffer et al., 1993). All have the ability to hydrolyze maltose and maltosides 

from the non-reducing end as α-exoglucosidases, yet each domain has unique substrate 
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specificities. Specifically, the N-terminal of the SI, isomaltase, has a strong affinity for α-1,6 

linkages, which comprise the branched structure of amylopectin, and the C-terminal of SI, sucrase, 

has a strong affinity for α-1,2 linkages, as can be found in sucrose (non-starch carbohydrate). As 

for MGAM, its N-terminal has hydrolytic activity for α-1,4 linkages in short glucose oligomer 

chains and also is most adept at hydrolyzing α-1,2 and α-1,3 linkages (B.-H. Lee et al., 2016), 

while its C-terminal has a strong affinity for all α-1,4 linkages in glucose oligomers and longer 

linear α-glucans including intact starch polymers (hence its name “glucoamylase”). The catalytic 

sites of each of these maltase enzymes have been characterized by crystallography to confirm their 

congruency with the substrate specificities (Dahlqvist, 1962; Dahlqvist & Borgstrom, 1961; 

Dahlqvist & Telenius, 1969; Frandsen et al., 2002).  

Results from in vitro experimentation have informed the hypothesized concept that the four 

specific mucosal maltase activities complement each other and interact with the activity of secreted 

α-amylase. For one, activity of secreted α-amylase has been found to amplify the activity of 

MGAM 2-fold and SI 10-fold, and, in return, increased concentrations of maltase can suppress α-

amylase activity (Quezada-Calvillo, Robayo-Torres, Opekun, et al., 2007). Suppression of MGAM 

glucoamylase activity occurs with increased concentrations of maltotriose, maltotetraose, and 

maltosides; however, there is no evidence to support that SI activities are regulated by substrate 

availability (Quezada-Calvillo, Robayo-Torres, Ao, et al., 2007). Therefore, it appears that 

MGAM is sensitive to substrate availability, while SI is not. It is also notable that the activities of 

all the α-glucosidases vary according circadian rhythms (e.g. increase in mice during their 

nocturnal feeding cycle) (Saito, 1972; Santos et al., 1992; Stevenson et al., 1975). Although these 

advancements from in vitro experiments have improved our understanding of the enzymatic 

system of starch α-glucogenesis, more work in vivo is needed. Notably, as mentioned above, recent 

findings indicate differences in enzymatic properties of enzymes from fungal and mammalian 

sources (B.-H. Lee et al., 2016; Shin et al., 2019). 

Following digestion of starch through the coordinated action of α-amylase and α-

glucosidases, the final digestion product of glucose is finally ready to be absorbed through 

enterocytes lining the small intestine. Such absorption involves the action of the sodium-glucose 

cotransporter 1 (Na+-D-glucose cotransporter 1; SGLT1) and glucose transporter 2 (GLUT2) 

(Uldry & Thorens, 2004; Wright et al., 2011). SGLT1 actively transports the uptake of low 

concentrations of glucose across the brush-border membrane, whereas GLUT2 typically mediates 
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facilitated glucose transport across the basolateral membrane. (Note that there are other types of 

glucose transporters located in various areas of the body (Uldry & Thorens, 2004), but a discussion 

of them is beyond the scope of this review.) Following high loads of glucose (e.g. a meal high in 

starch), some GLUT2 migrates to the brush-border membrane, but this was found to have only a 

minor impact on glucose absorption in the small intestine in a mouse study (Gorboulev et al., 2012). 

However, in the same mouse study, some evidence suggested that, in the contexts of continuous 

feeding of sugar-rich diets or having diabetes, the influence of GLUT2 in glucose absorption may 

become substantial (Gorboulev et al., 2012). Regardless, following transport across the brush-

border and basolateral membranes, glucose passes into the bloodstream to affect blood glucose 

levels (glycemia) and be taken up into the liver and muscle tissues to be used for energy or stored.  

2.4 Gastric emptying, the ileal brake, and the gut-brain axis 

 In addition to the chemical breakdown of starch through starch-digesting enzymes and 

absorption of glucose through the brush-border and basolateral membranes of the small intestine, 

glucose and other starch digestion products are sensed by enteroendocrine cells to affect various 

processes in the body, including processes that are physiological, hormonal, or neurological in 

nature. The key aspects of focus are largely related to gastric emptying, the ileal brake, and the 

gut-brain axis.  

 Gastric emptying describes how quickly or slowly stomach contents pass into the small 

intestine. Numerous methods exist for measuring gastric emptying in vivo, including scintigraphy 

(the gold standard method) (Ma et al., 2015; Spiegel et al., 1994), 13C breath tests (Ghoos et al., 

1993; Sanaka & Nakada, 2010), magnetic resonance imaging (Marciani, 2011), and the 

paracetamol absorption test (Medhus et al., 2001; Willems et al., 2001). Before reaching the 

stomach, mastication and saliva in the mouth facilitate initial physical and chemical breakdown of 

food. Upon being swallowed and traveling through the esophagus to the stomach, a bolus of food 

then undergoes continued physical breakdown through the action of the stomach. The acidic 

environment coupled with active pepsin and lipase secreted from the lining of the stomach 

facilitate protein hydrolysis and softening of food texture. From an engineering perspective, the 

stomach has been described as a tank, mixer, grinder, and sieve (Bornhorst & Paul Singh, 2014; 

Meyer, 1980). Essentially, the stomach prepares food for later digestion in the rest of the 

gastrointestinal tract. The physical properties of foods can affect how much “processing” they need 
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to undergo in the stomach as well as at what rate they are emptied into the small intestine. More 

specifically, factors such as food physical form (Collins et al., 1996; Hellmig et al., 2006; 

Santangelo et al., 1998), composition (Giezenaar, Lange, et al., 2018; Moore et al., 1981), viscosity 

(Marciani et al., 2001; Sirois et al., 1990; Zhu et al., 2013), particle size (Meyer, 1980; Sirois et 

al., 1990), and caloric content (Calbet & MacLean, 1997; Camps et al., 2016; McHugh & Moran, 

1979; Moore et al., 1981) affect gastric emptying rate. On the macronutrient level, the ileal brake 

system has long been known to slow or brake gastric emptying rate (Spiller et al., 1984). Protein 

and fat have been most studied to delay gastric emptying, though a number of studies also show 

that carbohydrate also triggers the ileal brake (Burn-Murdoch et al., 1978; Giezenaar et al., 2017; 

Giezenaar, Lange, et al., 2018; Giezenaar, Van Der Burgh, et al., 2018). In the majority of these 

studies, glucose was used as the carbohydrate, indicating that no digestion was required for the 

carbohydrate component being examined. Yet, in a different trial that did compare glucose to 

protein (gelatin) in beverages, glucose tended to  delay gastric half-emptying  to a greater extent 

than protein (P = 0.06) (Karamanlis et al., 2007). Furthermore, previous research from our group 

has shown that starch-based carbohydrates with decreasing digestibilities, that locationally 

digested starch into the ileum, incrementally decreased gastric emptying rate according to the level 

of slowly digestible carbohydrate (Hasek et al., 2020). The mechanism behind this delayed gastric 

emptying is hypothesized to be related to post-ingestive feedback signals from digestion and 

absorption – specifically the ileal brake and perhaps the gut-brain axis. 

 As nutrients pass from the stomach and into the small intestine for digestion and absorption, 

they are sensed by specialized enterocytes lining the intestinal epithelium called enteroendocrine 

cells. Although these cells constitute only 1% of the cell population in the intestinal epithelium, 

they secrete a variety of hormones and neurotransmitters that regulate glucose homeostasis, gut 

motility, epithelial proliferation, and appetite (Reimann et al., 2012; Spreckley, 2015). There are 

at least 11 different types of enteroendocrine cells, each found in different abundances within the 

gastrointestinal tract and proposed to secrete specific peptide hormones (Figure 2) (Engelstoft et 

al., 2013; Rindi et al., 2004). Although the distinctions among enteroendocrine cells is blurred by 

evidence suggesting co-expression of hormones beyond those originally proposed for one type of 

cell (Grigoryan et al., 2012), in general, L-cells found in the small intestine secrete the peptide 

hormone glucagon-like peptide-1 (GLP-1), and L-cells in the distal small intestine and large 

intestine secrete a combination of GLP-1 and peptide YY (PYY) (Engelstoft et al., 2013; Habib et 
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al., 2012). Both of these hormones are implicated in the control of food intake. Among other 

outcomes, GLP-1 stimulates insulin secretion, inhibits glucagon secretion, slows gastric emptying, 

and reduces hepatic glucose metabolism (Diakogiannaki et al., 2012; Holst, 2007; Sandoval & 

D’Alessio, 2015). GLP-1 is secreted in a locational gradient, and it is thought that defects in GLP-

1 secretion and/or signaling may contribute to overeating in obesity (Robert E. Steinert et al., 2017). 

GLP-1 has been targeted for numerous pharmaceutical applications largely due to its incretin effect 

and connection to type 2 diabetes (Daoudi et al., 2011; Yu et al., 2010). Meanwhile, studies have 

shown that PYY may aid in glycemic control by: 1) improving insulin sensitivity, at least under 

some conditions (Van Den Hoek et al., 2004), 2) tonically stimulating islet-cell proliferation and 

inhibiting β-cell apoptosis in mice (Persaud & Bewick, 2014; Sam et al., 2012), or 3) decreasing 

gastric emptying via the ileal brake mechanism and thus reducing glycemia. Considering these 

positive health effects, modulated rise in L-cell number and distribution could result in increased 

release of GLP-1 and PYY, along with improved glucose tolerance and control of food intake. In 

accordance with this concept, some researchers have hypothesized that endogenous GLP-1 

production can be increased or controlled through adaptation of L-cells or their gene transcription 

(Daoudi et al., 2011). However, little is known about the mechanism controlling L-cell number 

and distribution. A compelling hypothesis holds that dietary exposure can impact not only L-cells, 

but also other enteroendocrine cells. 

 The interest in L-cells is closely tied to their ability to secrete GLP-1 and a cascade of 

events in the body that have potential implications on food intake, namely two phenomena known 

as the ileal brake and gut-brain axis. The ileal brake has been described as a “nutrient-triggered, 

neurohormonally-mediated, primary inhibitory feedback mechanism” (Barreto et al., 2017) that 

occurs due to the presence of nutrients in the distal small intestine (the ileum). It results in 

inhibition of upper gastrointestinal tract motility (i.e. delayed gastric emptying rate) and is 

implicated in satiation (i.e. short-term signals and processes that lead to cessation of food intake 

within a meal) and satiety (i.e. longer-term signals and processes occurring between meals that 

prevent the initiation of eating). The main mechanism underlying this braking effect is thought to 

be GLP-1, as it acts locally as well as on the vagus nerve to transmit signals to the brain to slow 

gastric emptying (Abbott et al., 2005; Hayes et al., 2011; Kanoski et al., 2011; Labouesse et al., 

2012) and can travel through the blood to cross the blood-brain barrier and directly act on the brain 

(Kanoski et al., 2011; Labouesse et al., 2012) (however, this latter part may occur to a lesser extent 
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because GLP-1 is quickly cleaved by dipeptidyl peptidase-4 [DPP-4] and converted into an 

inactive form). These actions either directly or indirectly act on the stomach to delay gastric 

emptying in a dose-dependent manner (Nauck et al., 1997; Schirra et al., 1996; Schirra & Göke, 

2005). The potential of GLP-1 to help treat obesity and control food intake has been recently 

reviewed (Grill, 2020; Krieger, 2020; R. E. Steinert et al., 2016), and its relationship to the ileal 

brake has also been described (Barreto et al., 2017; Schirra & Göke, 2005). Recent findings show 

that slowly digestible carbohydrates (i.e. isomaltodextrin, isomaltulose) selectively increased 

GLP-1 secretion in both rats (Komuro et al., 2019) and humans (Martinussen et al., 2019), 

suggesting that carbohydrates with a slow digestion property offer potential to trigger the ileal 

brake and associated beneficial effects on food intake. 

 Likely even more influential than the ileal brake, the gut-brain axis is another mechanism 

by which slowly digestible carbohydrates are proposed to affect appetite, food intake, and body 

weight. The gut-brain axis is the bidirectional communication between the gastrointestinal tract 

and the brain through neurological, metabolic, and humoral signals (Hussain & Bloom, 2013; Soty 

et al., 2017; Weltens et al., 2018). Although it is often associated with the microbiome, by which 

it is purported to have an additional role in mental health and mental disorders (de Vadder & 

Mithieux, 2018; Mason, 2017; Treisman, 2017), it also encompasses nutrient sensing in the upper 

gastrointestinal tract (Beutler et al., 2017; Soty et al., 2017). Despite advancements made in recent 

years, the exact mechanism(s) and associated pathways composing this bidirectional 

communication system are incompletely understood. The vagus nerve and enteroendocrine cells, 

such as L-cells, are important in this system, yet evidence for changes in vagal afferent signaling 

(Al Helaili et al., 2020; de Lartigue & Xu, 2018) or L-cell population (Cani et al., 2007; Kaji et al., 

2011; Richards et al., 2016) due to dietary exposure blur the lines of exactly how gut-brain 

dynamics ultimately affect the control of food intake and body weight. This is further obscured by 

the numerous other factors that can affect food intake, such as social norms related to eating and 

food reward (at least in humans). However, some of these factors can at least be partially 

distinguished by studying the brain, as different regions of the brain have been identified to play 

roles in specific functions in the body or in behavioral actions. Namely, the hypothalamus has long 

been known as the “feeding center” of the brain (Anand & Brobeck, 1951), and the area postrema 

and nucleus of the solitary tract have for many years been recognized for their roles in receiving 

and transmitting food intake-related signals (Hyde & Miselis, 1983). Within the hypothalamus, 
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agouti-related peptide (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone 

(MCH) have been identified as orexigenic (appetite-stimulating) neuropeptides; and 

proopiomelanocortin (POMC), cocaine-and amphetamine-regulated transcript (CART), and 

corticotropin-releasing hormone (CRH) have been identified as anorexigenic (appetite-reducing) 

neuropeptides (Hussain & Bloom, 2013). Alterations in expression of these neuropeptides are 

thought to serve as an indication of gut-brain axis signaling. In a previous study in diet-induced 

obese Sprague Dawley rats, our group found that feeding a high-fat diet containing slowly 

digestible carbohydrate in the form of fabricated starch-entrapped microspheres for 12 weeks 

significantly decreased the expression of the orexigenic neuropeptides NPY and AgRP as well as 

decreased food intake relative to feeding a high-fat diet containing rapidly digestible carbohydrate 

in the form of pregelatinized high-amylopectin corn starch (Hasek et al., 2018). This study serves 

as a “proof-of-concept” to support the capability of slowly digestible carbohydrates to have marked 

effects on the control of food intake with implications for obesity.  

Intriguingly, more recent evidence supports that the hippocampus is also involved in what has been 

widely recognized as homeostatic control of food intake – in addition to its identified roles in food 

seeking, memory, and reward – among other aspects that can influence food intake (Davidson et 

al., 2007; Hsu et al., 2015; Suarez et al., 2020). How consumption of carbohydrates with different 

digestibilities impacts gut-brain axis signaling related to these different brain regions may be a 

promising area for future research. 

2.5 Carbohydrate metabolism – oxidation and metabolic flexibility 

 After glucose is sensed in the small intestine and absorbed into the bloodstream, it is 

eventually drawn into cells through the action of insulin. Within cells, it can finally be used for 

energy through the action of mitochondria. The overall chemical breakdown of glucose can be 

summarized in the following chemical equation [Equation 1]: 

𝐶6𝐻12𝑂6 + 6 𝑂2 → 6 𝐶𝑂2 + 6 𝐻2𝑂                                                 [1] 

For each molecule of glucose metabolized, a net total of 36 ATP molecules are produced. 

Glycolysis, the citric acid cycle, and oxidative phosphorylation (the electron transport chain) are 

all summarized in this chemical equation (Lodish et al., 2000). Other carbohydrate metabolic 

processes include gluconeogenesis (converting non-carbohydrate molecules into glucose), 

glycogenolysis (breaking down glycogen [stored carbohydrate in bodily tissues]), glycogenesis 
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(synthesizing glycogen, or storing carbohydrate as glycogen in the body), fructose metabolism 

(metabolizing fructose instead of glucose, which involves different steps), and galactose 

metabolism (metabolizing galactose instead of glucose or fructose). The metabolism of 

carbohydrates (e.g. glucose) can be measured relative to the metabolism of fats via indirect 

calorimetry. This technique allows for the measurement of the type and rate of substrate utilization 

for metabolism based on the gas exchange measurements of oxygen (O2) consumption and carbon 

dioxide (CO2) production (Ferrannini, 1988). This is possible because each type of “fuel” 

(carbohydrate, fat, protein) generally requires a certain amount of O2 in order to produce a specific 

amount of CO2 (Table 1). To more clearly describe these differences, the respiratory exchange 

ratio (RER) can be calculated as follows [Equation 2]: 

𝑅𝐸𝑅 =  
𝑉𝐶𝑂2

𝑉𝑂2
                                                                   [2] 

 Where 𝑉𝐶𝑂2 is the volume of carbon dioxide gas produced in the indirect calorimetry chamber 

system, and 𝑉𝑂2  is the volume of oxygen gas consumed in the indirect calorimetry chamber 

system. When applied to the different macronutrients, carbohydrate is characterized by an RER of 

approximately 1.00, fat by 0.70-0.71, and protein by 0.80. There is a continuum of ranges in RER 

values observed in vivo because foods with different mixtures of macronutrient compositions are 

consumed. Thus, RER is generally used to only differentiate carbohydrate oxidation from fat 

oxidation (and not protein oxidation). RER is sometimes used synonymously with respiratory 

quotient (RQ), yet there is a subtle but important difference between these two parameters: RER 

is a measurement of 𝑉𝐶𝑂2 and 𝑉𝑂2 gas volumes in respired air and does not involve invasive 

measures, while RQ is a measurement of 𝑉𝐶𝑂2 and 𝑉𝑂2 at the tissue level (and thus more invasive 

procedures, such arterial and venous catheters, are required) (Deuster & Heled, 2008; Patel et al., 

2020). Because carbohydrates produce more CO2 per mole O2 consumed than fat, the RER (and 

RQ) representing carbohydrate oxidation is higher than the RER (and RQ) representing fat 

oxidation. (This can also be inferred by the RER values of 1.00 for carbohydrate and 0.70-0.71 for 

fat.) In this sense, RER (and RQ) can be used as an indication of substrate partitioning for energy. 

However, it is worthy to note that different fatty acids have been shown to result in different RER 

metabolic responses in humans (Polley et al., 2018), indicating that RER may vary within different 

types of fats. One study in mice found increased carbohydrate oxidation in females, but not males, 

when a diet with low starch digestibility (high in amylose) was compared to a highly digestible-

starch diet (high in amylopectin) (Fernández-Calleja et al., 2019), suggesting there may also be 
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variations in RER for starches with different digestibilities. However, to our knowledge, this area 

is largely unexplored and may be a promising area for future research. 

 In addition to measuring substrate oxidation for metabolism, indirect calorimetry can also 

serve as a means to measure metabolic flexibility. Broadly defined, metabolic flexibility is “the 

ability of an organism to respond or adapt according to changes in metabolic or energy demand as 

well as the prevailing conditions or activity” (Goodpaster & Sparks, 2017). More specifically 

related to oxidation, metabolic flexibility can be considered the ability to “toggle” or switch 

between carbohydrate and fat as substrates for oxidation. First used to describe the ability of 

helminths (parasitic worms) to respond and adapt to changes in their environment (Kohler, 1985), 

lack of metabolic flexibility was later found to be associated with obesity, insulin resistance, and 

type 2 diabetes (Kelley & Mandarino, 2000; Meex et al., 2010; Sparks et al., 2009; Stull et al., 

2010). In essence, metabolic flexibility is the response by the body to address a nutritional or 

environmental challenge (e.g. high-carbohydrate meal, fasting, intense activity, oxygen restriction); 

to optimally address the challenge at hand, the body must switch metabolic substrates efficiently 

(Duivenvoorde et al., 2015). Possessing metabolic flexibility is a marker of good health, while 

having metabolic inflexibility is a marker of poor health. For example, individuals with obesity 

may have impaired metabolic flexibility (Kelley et al., 1999). Although RER can be an indicator 

of metabolic flexibility by describing time-specific RER values, it does not readily characterize 

the toggling between carbohydrate oxidation and fat oxidation. To address this, some researchers 

have used an approach called Percent Relative Cumulative Frequency (PRCF) (Riachi et al., 2004). 

This approach can be used for analyzing RER as well as energy expenditure values collected over 

time and is reportedly capable of detecting subtle differences in energy metabolism. In the same 

study reporting sex-related differences in RER for lowly versus highly digestible-starch diets 

described above, there were also sex-based differences in metabolic flexibility (Fernández-Calleja 

et al., 2019). A diet high in saturated fatty acids was found to result in poorer metabolic flexibility 

in mice compared to a diet high in polyunsaturated fatty acids (Duivenvoorde et al., 2015). 

Metabolic flexibility has been widely studied in relation to aspects of body composition, notably 

skeletal muscle and adipose tissue, but, aside from the aforementioned studies by Fernandez-

Calleja et al. (2019) and Duivenvoorde et al. (2015), to our knowledge it has not been studied 

related to different dietary carbohydrate or fat compositions (or digestibilities).    
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2.6 In vitro, in vivo, and mathematical modeling approaches related to starch digestion, 

gastric emptying, and metabolism 

 There are many methods, tools, and approaches to study and characterize food digestion 

and metabolism. As already described, the glycemic index, glycemic load, and Englyst assay 

classification systems specifically characterize carbohydrates. RER and RQ more broadly describe 

carbohydrate, fat, and protein macronutrients. In order to better understand different approaches 

and techniques applied in the investigations for this thesis, we will visit some key relevant details 

here. 

 Beyond the Englyst assay classification system to characterize starch as RDS, SDS, and 

RS, there are increasing numbers of in vitro digestion systems being developed. Namely, currently 

existing systems include the TIM gastrointestinal digestion system (and its various iterations) 

(Bellmann, Gorissen, et al., 2016; Bellmann, Lelieveld, et al., 2016; Minekus et al., 1995), which 

is a sophisticated, multi-compartmental digestion system that mimics the stomach and small 

intestine (and one iteration involves the large intestine) (Figure 3, TIM with an advanced gastric 

compartment [TIMagc]); the Human Gastric Simulator (HGS; and its later iterations) (Figure 4), 

which is an advanced system that specifically mimics the peristaltic motion of the stomach as it 

breaks down food (Kong & Singh, 2010); a Human Gastric Digestion Simulator, which is another 

advanced system focusing on digestive processes in the stomach (Kozu et al., 2016); SoGut, a 

stomach-based system that takes a unique approach to mimic the peristaltic muscle movements of 

the stomach (Dang et al., 2020); and the Gastric Simulation Model (GSM), which was created to 

reproduce the geometry and motility of the human stomach in a sophisticated way (Li et al., 2019); 

among others. Some of these systems have been reviewed relatively recently (Dupont et al., 2019; 

Kozu, 2015). The experiments in Chapter 3 of this dissertation involved the use of the HGS, and 

the experiments in Chapter 4 involved the use of the TIMagc. In addition to these models, there 

are numerous less complex in vitro digestion methods that more simply involve a shaking water 

bath or are static. The plethora of model systems has led to inconsistencies in methodology and 

endpoint measurements, and thus a coordinated effort among researchers has resulted in the 

development of the INFOGEST protocol (and a refined iteration) (Brodkorb et al., 2019; Minekus 

et al., 2014). Although it is specific to static in vitro digestion methods, this protocol promotes 

harmonization within the field of general in vitro digestion. In terms of all the different dynamic 
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models, researchers should strive to select the appropriate approach according to their project 

objectives and hypotheses.  

 To study gastric emptying in vivo, methods of scintigraphy (the gold standard method) (Ma 

et al., 2015; Spiegel et al., 1994), 13C breath tests (Ghoos et al., 1993; Sanaka & Nakada, 2010), 

magnetic resonance imaging (Marciani, 2011), and the paracetamol absorption test (Medhus et al., 

2001; Willems et al., 2001) are used. Each method has its own set of constraints and limitations, 

and these should inform which is the most suitable to use for a specific project.  

Our lab has used the 13C octanoic acid breath test to examine potential differences in gastric 

emptying for different solid carbohydrate-based foods in humans (Cisse et al., 2017, 2018; Pletsch 

& Hamaker, 2018). The basis of this method lies in the fact that the rate-limiting step for an orally 

consumed tracer to appear in the breath is how quickly it empties from the stomach. In this method, 

a standard amount of 13C octanoic acid is added to each carbohydrate-based test meal, which 

participants then consume. 13C sodium acetate has also been used. Breath samples are collected at 

15-min intervals for the first 2 h postprandially, and then at 30-min intervals from 2 to 4 h 

postprandially. These breath samples are then analyzed using a specialized spectrophotometer (e.g. 

POCone breath analyzer, Otsuka Electronics Co., Ltd., Osaka, Japan) compared to a baseline 

breath sample collected before the participant consumed the test meal. The 13CO2/
12CO2 ratio of a 

breath sample compared to the ratio for baseline breath is recorded as 13CO2 delta over baseline 

(DOB, ‰). Given these values, the percent dose 13C recovery (PDR) per hour and cumulative 

percent dose 13C recovery (CPDR) can be calculated (Sanaka & Nakada, 2010) and are then 

normalized for each participant’s body surface area (Haycock et al., 1978) to model gastric half-

emptying time and lag phase for the test meal using the following two equations [Equations 3 and 

4]: 

y = 𝑎𝑡𝑏𝑐−𝑐𝑡                                                                    [3] 

Where y = PDR per hour (%), t = time (h), and a, b, and c = constants. 

                                                         y = 𝑚(1 − 𝑒−𝑘𝑡)𝛽                                                              [4] 

Where y = CPDR over time (%), t = time (h), and m, k, and β = constants (where m = total 

cumulative dose recovery when time is infinite). 

From these equations, lag phase (Tlag) and gastric half-emptying time (T1/2) are calculated 

using Equations 5 and 6 as follows:  

Tlag = (𝑙𝑛𝛽)/𝑘                                                                 [5] 
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(T1/2) = (−
1

𝑘
) × ln (1 − 2

−
1

𝛽)                                                      [6] 

Where β and k are constants calculated from Equation 5. In this approach, lag phase (Tlag) 

specifically represents the time required for the 13CO2 excretion rate to attain its maximal level, 

which is used as an indicator of the time it takes for a food to break down within the stomach, and 

gastric half-emptying time (T1/2) is the time necessary for half of the 13C dose to be metabolized, 

which is used to represent the time for half of the test meal food to empty from the stomach (Perri 

et al., 2005; Sanaka & Nakada, 2010). Although an assumption made with this approach is that the 

tracer is evenly distributed within the test meal food and thus empties from the stomach at the same 

rate as the food, it is not as invasive as many of the other approaches to assess gastric emptying 

and has been widely used.   

From a whole-body perspective, there are a number of comprehensive approaches to model 

dynamics in in vivo energy metabolism as they relate to body weight, body composition, and 

activity (Alpert, 1979; Antonetti, 1973; Guo & Hall, 2009; Hall, 2012a, 2012b). A discussion of 

such approaches is beyond the scope of this review, but they do bring into question how 

adaptations in metabolism may contribute to whole-body energy regulation.  

In Chapter 5 of this thesis, we attempt to model a specific aspect of metabolism related to 

substrate utilization for oxidation, which involves the concepts of RER and metabolic flexibility 

discussed above. In our investigation, we devise and apply new modeling approaches to our 

percent relative cumulative frequency (PRCF) analysis of RER to gain insight into metabolic 

flexibility. To do this, we employ the Weibull Cumulative Distribution function (Figure 5) as well 

as the Mixed Weibull Cumulative Distribution function (Figure 6) (Rinne, 2008). The Weibull 

Distribution is extensively used in many different fields–from biology to engineering to 

economics–and is rooted in statistics. When fit to empirical data, it benefits from defined 

parameters that can be interpreted according to the conditions of the experiment. The main 

distinction between these two Weibull-based functions is that the (normal) Weibull Cumulative 

Distribution function represents a unimodal distribution, while the Mixed Weibull Cumulative 

Distribution represents a bimodal distribution. When considering our application of these 

distributions to RER and PRCF, the Weibull Cumulative Distribution function is given as Equation 

7 and the Mixed Weibull Cumulative Distribution function is given as Equation 8, both below: 

𝑦 = 1 − 𝑒𝑥𝑝 (− [
𝑥

𝑥50
]

𝑏

ln (2))                                                         [7] 
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𝑦 = 𝛼 (1 − 𝑒𝑥𝑝 (− [
𝑥

𝑥50_1
]

𝑏_1

)) + (1 − 𝛼) (1 − 𝑒𝑥𝑝 (− [
𝑥

𝑥50_2
]

𝑏_2

))                    [8] 

Where for Eq. 7: 

y = percent relative cumulative frequency (PRCF; 0 to 100%); 

𝑥50 = median respiratory exchange ratio (median RER); 

𝑏 = distribution breadth constant (dimensionless), indicative of slope; 

And for Eq. 8: 

y = percent relative cumulative frequency (PRCF; 0 to 100%); 

𝛼 = mixing weight parameter that represents the proportion of the first mode; 

𝑥50_1 = median respiratory exchange ratio (median RER) for the first mode; 

𝑏_1 = distribution breadth constant for first mode (dimensionless), indicative of slope for 

the first mode; 

𝑥50_2 = median respiratory exchange ratio (median RER) for the second mode; 

𝑏_2 = distribution breadth constant for the second mode (dimensionless), indicative of 

slope for the second mode. 

In addition to these proposed modeling approaches to examine the toggling between 

carbohydrate oxidation and fat oxidation, for the investigation in Chapter 5 we also employ 

modeling of RER over time using the sine equation [Equation 9].  

𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑                                                          [9] 

Where a indicates the amplitude, b indicates the period (breadth or width), c indicates the 

horizontal shift on the x-axis, and d indicates the vertical shift on the y-axis for the sinusoidal curve. 

We have taken this approach in order to better characterize the diurnal patterns in RER, with the 

idea that we can gain insight into metabolic flexibility by this alternative means.  

 Although the in vitro, in vivo, and mathematical modeling approaches related to starch 

digestion, gastric emptying, and metabolism discussed here are by no means comprehensive, a 

general familiarity with them may be beneficial for developing improved techniques and tools to 

improve our understanding of carbohydrate consumption and health. 
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2.7 Conclusions 

 In this review, we have explored a number of key aspects that are important for the 

connection between carbohydrates and health. Carbohydrates with different digestibilities are 

often thought of specifically in relation to glycemic response, but they can impact or be associated 

with many other physiological responses, neurobiological responses, and health-related outcomes. 

Considering the high and growing levels of obesity and nutrition-related non-communicable 

diseases worldwide, pursuits to prevent and help treat these diseases will remain relevant and 

impactful. Slowly digestible carbohydrates may play a role in such endeavors.  
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Table 2.1 Approximate oxidation characteristics for carbohydrate, fat, and protein and 

corresponding respiratory exchange ratio (RER) values. Based off Ferrannini (1988). 

Macronutrient (g) 
Oxygen consumed 

(L/g) 

Carbon dioxide 

produced (L/g) 

Respiratory 

exchange ratio 

(RER, unitless) 

Carbohydrate 0.83 0.83 1.00 

Fat 2.02 1.42 0.70a 

Protein 0.97 0.77 0.80 

aCan also be designated as 0.71.  
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Figure 2.1 Representation of the protein organization of the MGAM and SI complexes. Both 

MGAM and SI have a small cytosolic domain (~26 residues), and transmembrane domain (~20 

residues), an O-glycosylated linker (~55 residues), and two homologous catalytic subunits 

(NtMGAM, CtMGAM, NtSI, CtSI; each ~900 residues). Percentages shown indicate the 

proportion of sequence identities between the catalytic subunits. Originally published in Sim et 

al. (2008), used with permission. CtMGAM, C-terminal maltase glucoamylase; CtSI, C-terminal 

sucrase isomaltase; MGAM, maltase glucoamylase; NtMGAM, N-terminal maltase 

glucoamylase; NtSI, N-terminal sucrase isomaltase; O-link, O-glycosylated linker; SI, sucrase 

isomaltase; TMD, transmembrane domain. 
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W-type 

Peptide hormone / 
monoamine 

Stomach 
Small Intestine Large Intestine 

Proximal Distal Proximal Distal 

Pan GI-
tract EE 

cell types 

D-cell Somatostatin      

ECcell Substance-P/5-HT      

Gastric 
EE cell 
types 

ECLcell 
? 
peptide/histamine 

     

G-cell Gastrin      

X/A-like Ghrelin  (+Motilin)    

Intestinal 
EE cell 
types 

S-cell Secretin    mRNA mRNA 

K-cell* GIP      

I-cell CCK      

L-cell* GLP-1/GLP-2      

N-cell Neurotensin      

(L-cell) PYY      

Figure 2.2 Enteroendocrine cell types divided into pan-GI-tract (throughout the gastrointestinal 

tract), gastric-selective, and intestinal-selective cells. For each of the cell types, the main 

secretory product and the original Wiesbaden nomenclature (W-type) are indicated. The lighter 

maroon color indicates that some of the peptides are less expressed in these segments. *Some 

enteroendocrine cells have been shown to co-express GIP and GLP-1 (Grigoryan et al., 2012). 

Adapted from Engelstoft et al. (2013), used with permission. CCK, cholecystokinin; EE, 

enteroendocrine; GIP, glucose-dependent insulinotropic peptide; GLP-1, glucagon-like peptide 

1; GLP-2, glucagon-like peptide 2; PYY, peptide YY; W-type, Wiesbaden nomenclature. 
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Figure 2.3 Photo of the TIM system with an advanced gastric compartment (TIMagc). 

Developed by TNO in the Netherlands and now commercialized with The TIM Company. 
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Figure 2.4 Photos of the Human Gastric Simulator (HGS). Initially developed by Kong and 

Singh (2010) at the University of California, Davis, and later refined to the current version in the 

laboratory of Dr. Gail Bornhorst at the University of California, Davis. Entire system when not 

in use (A) and close-up of the gastric compartment while in use (B). 
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Figure 2.5 Representation of the Weibull Cumulative Distribution function fit to data. PRCF, 

percent relative cumulative frequency; RER, respiratory exchange ratio. 
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Figure 2.6 Representation of the Weibull Cumulative Distribution function fit to data. PRCF, 

percent relative cumulative frequency; RER, respiratory exchange ratio. 
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 PEARL MILLET (PENNISETUM GLAUCUM) 

COUSCOUS BREAKS DOWN FASTER THAN WHEAT COUSCOUS IN 

THE HUMAN GASTRIC SIMULATOR, THOUGH HAS SLOWER 

STARCH HYDROLYSIS 

Reprinted with permission. Full citation: 

Hayes, A. M. R., Swackhamer, C., Mennah-Govela, Y. A., Martinez, M. M., Diatta, A., Bornhorst, 

G. M., & Hamaker, B. R. (2020). Pearl millet (Pennisetum glaucum) couscous breaks down faster 

than wheat couscous in the Human Gastric Simulator, though has slower starch hydrolysis. Food 

& Function, 11(1), 111-122. doi: 10.1039/c9fo01461f. 

3.1 Abstract 

Consumption of traditional West African pearl millet (Pennisetum glaucum) couscous 

delayed gastric emptying in our recent human study compared to other starch-based foods (white 

rice, boiled potatoes, pasta). The objective of this study was to determine whether physical 

properties of pearl millet couscous affect particle breakdown and starch hydrolysis during 

simulated gastric digestion to understand the basis of the slow gastric emptying. Starch fine 

structure and viscosity were analyzed for initial millet and wheat couscous samples by high 

performance size-exclusion chromatography and the Rapid Visco Analyzer, respectively. 

Couscous samples were subjected to simulated gastric digestion using the Human Gastric 

Simulator (HGS), a dynamic model of human gastric digestion. Digesta was collected from the 

HGS at 30 min intervals over 180 min. Particle size and percent starch hydrolysis of couscous in 

the digesta were evaluated at each time point. The number of particles per gram of dry mass 

substantially increased over digestion time for millet couscous (p<0.05), while changed little for 

the wheat couscous samples. Millet couscous showed lower starch hydrolysis per unit surface area 

of particles than wheat couscous (p<0.05). Slower starch hydrolysis was associated with smaller 

(p<0.05) amylose chain length for millet (839-963 DP) than for wheat (1225-1563 DP), which 

may enable a denser packing of millet starch molecules that impedes hydrolysis. We hypothesize 

that the slow gastric emptying rate of millet couscous observed in humans may be explained by its 

slow starch hydrolysis property that could activate the ileal brake system, independent of high 

particle breakdown rate in the stomach. 

  



 

 

71 

3.2 Introduction 

Increasing prevalence of obesity is indicative of dysregulation in the control of appetite 

and energy homeostasis. Thus, there is a need for foods with satiating properties that can better 

promote health. Slow gastric emptying is associated with increased satiety (Halawi et al., 2017; 

Hellström & Näslund, 2001). Our recent human study showed that couscous made from pearl 

millet (Pennisetum glaucum), a traditional West African food, substantially delayed gastric 

emptying rate compared to foods typically consumed as part of the Western diet (white rice, boiled 

potatoes, and pasta) (Cisse et al., 2018). However, the underlying cause of the observed difference 

was not well understood. Previous research has identified the importance of rate of food 

breakdown in the stomach and suggested that foods which resist breakdown have a slower gastric 

emptying rate (Bornhorst, Chang, et al., 2013; Bornhorst, Kostlan, et al., 2013; Bornhorst, Roman, 

et al., 2013; Bornhorst, Ströbinger, et al., 2013). It is also hypothesized that a slow starch 

hydrolysis property of pearl millet-based foods, including couscous, plays a role in their slow 

gastric emptying through activation of the ileal brake feedback mechanism in the body (Fardet, 

2015). 

The emptying of food from the stomach is a complex process, as it depends on food 

breakdown, physical properties of digesta, and physiological regulation (Gallier et al., 2014; 

Gopirajah et al., 2016; G. Zhang et al., 2015).  It has been found that food particles larger than 

approximately 2 mm in size are retained by the pyloric valve through a phenomenon called gastric 

sieving, which contributes to longer stomach retention times for foods that resist particle 

breakdown (Guo et al., 2015). Accordingly, foods which break down more slowly in the stomach 

have been found to delay gastric emptying (L. Marciani et al., 2001). However, gastric emptying 

rate is also controlled by the presence of macronutrients, including starch and partially hydrolysed 

starch in the distal small intestine, triggering the ileal brake feedback response (Hasek et al., 2018; 

Poppitt et al., 2017; Schirra et al., 1996). 

The objective of this work was to determine how pearl millet couscous, which will 

hereafter be referred to as millet couscous, breaks down in a simulated gastric environment and 

whether it is resistant to breakdown; and to determine starch hydrolysis rate related to potential 

ileal brake activation. In both procedures, millet was compared to wheat couscous. Three types of 

millet couscous (self-made with large and small final particle sizes as well as a commercial type 

from Senegal) were studied along with two types of wheat couscous (self-made small and a 
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commercial type). Initial flour particle size was controlled and the final couscous particle size was 

matched in three types of couscous so that effects due to the differences in particle breakdown, 

and not differences in flour or initial particle size, could be elucidated. Starch fine structural 

features and rheological properties of initial couscous samples were analyzed. 

3.3 Materials and Methods 

3.3.1 Raw material preparation 

Couscous materials 

Whole grain pearl millet (Pennisetum glaucum) grain was obtained as intact kernels (Alif 

Group, Dakar, Senegal) to be made into couscous. Commercially prepared millet couscous from 

Dakar, Senegal was also acquired and evaluated to represent couscous typically consumed in 

Western Africa (Mme. Deme of Free Work Services, Dakar, Senegal). Wheat flour was obtained 

from a commercial source (Bob’s Red Mill, Milwaukie, OR, USA) and was made into wheat 

couscous. Commercial wheat couscous was purchased as a comparator (Riviana Foods Inc., 

Houston, TX, USA). 

Couscous pre-processing 

Millet grain was decorticated using an abrasive decorticator (15% loss in mass, resulting 

in bran removal). The kernels and bran were separated using a sieve shaker (Smico Corp., 

Oklahoma City, OK, USA) such that particles greater than approximately 1 mm were retained as 

decorticated kernels and were milled to flour using a pin mill operated at 5.5 rpm (Alpine, 160 Z, 

Augsburg, Germany). The millet flour was then separated into different particle size fractions 

using a sieve shaker (Model RX-24, W.S. Tyler Inc., Mentor, OH, USA). Millet flour particles 

between 300-495 µm were used to make the millet couscous. 

Flour for wheat couscous was obtained commercially, so no decortication or milling was 

necessary. Wheat flour was separated into the same particle size fractions as the millet flour using 

the procedure described above. Wheat flour particles between 300-495 µm were used to make the 

wheat couscous. 
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Couscous preparation  

Couscous was prepared according to a traditional West African method with the expertise 

of a Senegalese native with more than 15 years of experience preparing couscous. Briefly, flour 

(500 g wet weight) was weighed and water (283 ± 11 mL) was gradually added as the mixture was 

rolled continuously by hand into small couscous particulate spheres. These spheres were then 

passed through a 1.70 mm or 2.36 mm sieve to constitute the small and large couscous samples, 

respectively. All retained couscous spheres were sieved again before being steamed in a 

couscoussier for 14 min over boiling water (100-120⁰C). For uniformity and storage, samples were 

dried at 50°C for 240 min following steaming. Prior to simulated gastric digestion, all couscous 

samples were hydrated with water (2.5:1 g couscous: mL water, wet basis) and steamed 10 min, 

after which they were immediately used for simulated digestion. In total, five types of couscous 

were used in this study (Table 3.1). 

3.3.2 Couscous characterization 

Rapid Visco Analyzer analysis 

Pasting profiles of couscous (small and large millet couscous combined, small wheat 

combined with an additional large wheat couscous treatment) without the second steaming step, 

and raw flours, were determined using a Rapid Visco Analyzer (RVA; model RVA-4, Perten 

Instruments Instrumentvägen 29, SE-126 53 Hägersten, Sweden) using the Standard 1 protocol 

supplied with the instrument. This protocol consists of holding at 50°C for 1 min, heating at a rate 

of 12°C/min to 95°C, equilibrating at 95°C for 2.5 min, cooling at a rate of 12°C/min to 50°C, and 

holding at 50°C for 2 min. The RVA mixing paddle speed was 960 rpm for the first 10 s and then 

160 rpm for the remainder of the experiment. Slurries were made for each sample (3 g dry basis) 

with water (25 mL for millet flour and wheat flour; 15 mL for millet couscous and wheat couscous). 

Starch fine structure 

Molecular size and unit chain length distribution of amylose and amylopectin (starch 

structure) were characterized for all couscous samples along with the flour starting materials for 

the self-made couscous by high performance size-exclusion chromatography (HPSEC) following 

the procedure of Roman et al. (Roman et al., 2017). 
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Light microscopy 

Light microscopy was also performed as in Roman et al. (Roman et al., 2017) for all initial 

flour and couscous samples. 

3.3.3 Simulated oral and gastric digestion 

Simulated saliva formulation 

Simulated saliva was prepared according to Bornhorst and Singh(Bornhorst & Singh, 

2013). Briefly, mucin (1 g/L, Sigma-Aldrich, St. Louis, MO, USA), α-amylase (from Bacillus 

subtilis, 1.18 g/L, MP Biomedicals, Catalog Number 100447, 160000 BAU/g activity, Santa Ana, 

CA, USA), NaCl (0.117 g/L, Avantor Performance Materials, Radnor, PA, USA), KCl (0.149 g/L, 

ThermoFisher Scientific, Waltham, MA, USA) and NaHCO3 (2.10 g/L, ThermoFisher Scientific, 

Waltham, MA, USA) were mixed in deionized water. The concentration of α-amylase was set to 

reflect its activity in vivo (Mackie & Pangborn, 1990). 

Simulated gastric juice formulation 

Simulated gastric juice was prepared according to Mennah-Govela and Bornhorst 

(Mennah-Govela et al., 2015). Mucin (1.5 g/L, Sigma-Aldrich, St. Louis, MO, USA), NaCl (8.78 

g/L, Sigma-Aldrich, St. Louis, MO, USA), and pepsin from porcine pancreas (1.0 g/L, Sigma-

Aldrich, St. Louis, MO, USA) were mixed in deionized water (acidified to pH 1.8 using 3 M HCl). 

After all components were dissolved, pH was adjusted to 1.8 using 3 M HCl. Pepsin concentration 

was chosen to provide an activity of 2,000 U/mL in simulated gastric juice (Capuano et al., 2018; 

Minekus et al., 2014), and pH was set to 1.8 to simulate the fasted pH of gastric juice (Sams et al., 

2016). 

Simulated oral and gastric digestion procedure 

Following steaming, 300 g cooked couscous was weighed, and 60 mL of simulated saliva 

was added (0.2 mL/g) and mixed for 30 s to represent the oral phase (Ozvural & Bornhorst, 2018). 

Simulated gastric digestions were conducted using the HGS to simulate the peristaltic movement 

of the human stomach (Figure 3.1). The HGS has been described in detail previously (Dupont et 
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al., 2019; Phinney, 2013). Briefly, the HGS utilizes rollers to apply a simulated peristaltic wave (3 

contractions/minute) to the food and simulated gastric juice (Hocke et al., 2009; L. Marciani et al., 

2001; Swackhamer et al., 2019), which are contained in a flexible plastic bag. The temperature is 

maintained at 37°C. 

Simulated gastric digestions were initiated immediately after the oral phase by placing the 

test meal into the HGS which was preloaded with 75 mL gastric juice preheated to 37°C. A 

peristaltic pump (Model 13-876-2, ThermoFisher Scientific, Waltham, MA, USA) was used to 

continuously secrete simulated gastric juice at 2.5 mL/min (Guo et al., 2014, 2015). Simulated 

gastric digestions were carried out for 180 min, with 90 mL samples of digesta (approximately 100 

g wet weight) collected from the simulated pyloric valve every 30 min. The simulated pyloric 

valve consisted of a small opening (1 cm) in the antral region of the simulated stomach chamber, 

which released the sample at each predetermined time point. Due to the small initial size of the 

couscous particles (1.70-2.36 mm), the pyloric valve did not prevent the passage of larger particles. 

After collection, samples of digesta were analyzed for moisture content, pH, particle size, and 

reducing sugar content. Digestions were conducted in triplicate except for small millet couscous 

which was done in quadruplicate. 

3.3.4 Moisture content 

Digesta was collected at each time point and 3 g, weighed into pre-dried aluminum pans, 

was dried in a vacuum oven (Lindberg Blue M, Thermo Scientific, Waltham, MA, USA) for 20 h 

at 120°C (AACCI Method 44-40.01). 

3.3.5 pH measurement 

Digesta from each time point was placed in a 50 mL conical tube for pH measurement (IQ 

Scientific IQ150-77 ISFET, Cole-Parmer, Vernon Hills, IL, USA). 

3.3.6 Particle size analysis 

Image analysis was used to determine the size distribution of couscous particles in the 

digesta according to a previously described method with minor modifications (Gebauer et al., 

2016). Following collection of digesta from the HGS, an aliquot of 0.48 ± 0.01 g was dispersed 
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into several petri dishes, each containing 20 mL deionized water. Multiple dishes were used for 

each sample in order to minimize particle overlap. Lugol’s iodine solution (5-10 µL) was added to 

each petri dish to enhance the contrast between the light field and the particles. Petri dishes were 

illuminated from underneath using a lightbox (AGPtek HL0163, Brooklyn, NY, USA; color 

temperature 6000 K). A reference object (ABFO No. 2 photomacrographic standard reference 

scale) was included in all images for spatial calibration. One image of each dish was captured 

using a Canon EOS Rebel SL1 digital camera (18 Mega Pixels, APS-C CMOS sensor, Canon USA, 

INC. San Jose, CA, USA) that was fixed to a vertical support and triggered using a computer 

interface. The camera settings were: no flash, 35 mm focal length, aperture F8.0, ISO 100, and 

shutter speed 0.1 s. Images were analyzed using MATLAB (MathWorks, Natick, MA, USA) to 

determine the total number of particles in each image and the area of each particle. Particles per 

gram of dry mass was defined as the number of particles in a sample of digesta divided by the dry 

mass of the sample, as determined by moisture content analysis. The particle size distribution was 

analyzed by fitting the cumulative area percentage of the particles in each sample to the Rosin-

Rammler model (Rosin & Rammler, 1933): 

𝐶𝑎𝑟𝑒𝑎 = 1 − exp (− (
𝑥

𝑥50
)

𝑏

ln (2))                             [1] 

Where Carea is the cumulative area percentage of each particle (0 to 100%), 𝑥50 is the median 

particle area (mm2), and b is the distribution breadth constant (dimensionless). Smaller b values 

represent a broader distribution spread. This model has been used by previous researchers to 

describe the size changes of solid food particles during oral and gastric digestion using image 

analysis (Bornhorst, Kostlan, et al., 2013; Gebauer et al., 2016; Hedjazi et al., 2013). 

3.3.7 Starch hydrolysis analysis 

Aliquots of digesta samples from each time point were centrifuged at 1000 × g, upon which 

the supernatant was mixed with 0.3 M sodium carbonate (200 µL) and stored until analysis was 

performed. Reducing sugar content was then quantified using the dinitrosalicylic acid (DNS) 

method (G. L. Miller, 1959) and expressed as percent starch hydrolysis. Due to differences in 

surface area resulting from the different particle breakdown profiles observed during the simulated 

digestion experiments, percent starch hydrolysis at each time point was then divided by the total 

area of couscous particles from image analysis to obtain a value of starch hydrolysis per unit area 
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of digested particles (% 𝑠𝑡𝑎𝑟𝑐ℎ ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠/𝑚𝑚2), similar to the approach used by Ratanpaul et 

al. (Ratanpaul et al., 2018). 

3.3.8 Relative gastric emptying of solids from the HGS 

Samples of digesta were subjected to gravimetric moisture content analysis as described 

above to determine the solid matter content. The relative gastric emptying of solids was expressed 

as the remaining dry matter in the HGS at each time point divided by the initial dry matter. Since 

the overall emptying rate of digesta (90 mL every 30 min) was held constant for all types of 

couscous, the relative gastric emptying of solids reflected the solids content of digesta samples 

that were withdrawn from the HGS. For each type of couscous, the curve of relative gastric 

emptying of solids was fit to a modified power-exponential model used by previous researchers to 

fit gastric emptying data (Bornhorst, Chang, et al., 2013; Siegel et al., 1988; Urbain et al., 1989): 

𝑦(𝑡) =  1 − (1 − 𝑒−𝑘𝑡)𝛽                                    [2] 

Where 𝑦(𝑡) is the percent of initial dry matter retained in the HGS at time t, t is digestion time 

(min), k is the emptying rate parameter (min-1), and β is the extrapolated y-intercept from the 

terminal portion of the curve (dimensionless). The fit was conducted using nonlinear least squares 

in MATLAB (MathWorks, Natick, MA, USA). The half-time for relative gastric emptying of 

solids was estimated using Equation 3: 

𝑡1/2 =  
𝑙𝑛(1−0.51/𝛽)

−𝑘
                                        [3] 

Where 𝑡1/2 is the estimated time at which 50% of the dry mass present at time zero was emptied 

from the HGS (min), and the parameters k and β were from Equation 2. 

3.3.9 Statistical analysis 

Statistical analysis was conducted using SAS Enterprise Guide 7.1 (SAS Institute, Cary 

NC, USA). Initial properties of couscous were analyzed using a single factor ANOVA with type 

of couscous as the factor. Variables that were measured at each time point during simulated gastric 

digestion (median particle area, particles per gram, moisture content, pH, and starch hydrolysis per 

unit area) were analyzed using a two factor ANOVA with repeated measures (PROC MIXED). If 

the F value of the overall model was significant (p< 0.05), post hoc tests were conducted using 

Tukey’s HSD and significance was taken at p<0.05.   
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3.4 Results 

3.4.1 Couscous properties 

Rapid Visco Analyzer analysis 

To determine if initial material properties (i.e., viscosity) of couscous could help explain 

their behavior during simulated gastric digestion, analysis using the Rapid Visco Analyzer (RVA) 

was conducted. Viscosity profiles obtained using the RVA are shown in Figure 3.2. Wheat 

couscous exhibited an initial increase in viscosity before heating (0-250 s), referred to as cold 

swelling, while millet couscous did not. Peak viscosity (at ~320 s and 95°C) was lower for millet 

couscous than wheat couscous (2791 ± 51 cP and 4084 ± 137 cP, respectively, p<0.01). The final 

viscosity measured during RVA was 8206 ± 116 cP for wheat couscous, 2761 ± 28 cP for wheat 

flour, 5793 ± 22 cP for millet couscous, and 3887 ± 11 cP for millet flour. All final viscosity values 

were statistically different from each other (p<0.01). 

Starch fine structure 

Starch fine structure was analyzed using HPSEC (Table 3.2). No significant differences 

were observed in amylose hydrodynamic radius, amylopectin hydrodynamic radius, or 

amylopectin chain lengths between wheat and millet samples. However, there were statistically 

significant differences in amylose chain length between the wheat and millet flours and couscous 

[degree of polymerization (DP), p<0.05]. Notably, wheat flour had the highest amylose chain 

length as represented by DP (1563.3 ± 38.5 DP), while small and large millet couscous samples 

had the lowest amylose chain lengths (839.0 ± 42.2 DP and 865.8 ± 24.9 DP, respectively). All 

millet samples had smaller amylose chain lengths than wheat samples, although statistically 

significant differences were not observed across all samples (Table 3.2). 

Light microscopy 

Light micrographs of initial wheat and millet flour and couscous samples showed intact 

cell structures within the particles (Figure 3.3). Average millet cell diameter was estimated to be 

~0.4 mm; wheat cells differed more in shape but were of a similar dimension. 
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3.4.2 Particle size analysis 

The Rosin-Rammler model (Equation 1) was fit to the cumulative distribution of particle 

areas as measured using image analysis. It was found that the Rosin-Rammler function provided a 

good fit to the data as evidenced by a high coefficient of determination, with a minimum 𝑅2 of 

0.945 across all types of couscous and gastric sampling time points, and the average 𝑅2 across all 

treatments of 0.980. Median particle area, as represented by Rosin-Rammler 𝑥50  (mm2), was 

significantly influenced by digestion time (p<0.01), type of couscous (p<0.01), and their 

interaction (p<0.01). The particle area of couscous experienced a large and statistically significant 

decrease throughout the simulated digestion for all types of couscous (p<0.05; Table 3.3). For 

example, 𝑥50 of commercial millet after 30 s of simulated oral phase was 1.62 mm2 and decreased 

to 0.2 mm2 for the sample that underwent 180 min of simulated gastric digestion in the HGS. 

The spread of the particle size distribution is represented by Rosin-Rammler b 

(dimensionless), where a smaller value of b indicates a wider distribution of particle sizes and a 

larger value of b indicates a narrower distribution of particle sizes. Rosin-Rammler b was 

significantly influenced by digestion time (p<0.01), type of couscous (p<0.01), and their 

interaction (p<0.01; Table 3.3). Post-hoc tests showed that statistically significant differences in 

the value of b between different types of couscous were only present during the first two time 

points (after 30 s oral phase, and after 30 s oral phase followed by 30 min gastric digestion, 

respectively). This suggests that the spread of the particle size distribution was different between 

types of couscous at the beginning of simulated digestion, but that after 60 min of simulated 

digestion in the HGS the differences in distribution spread between different types of couscous 

were no longer significant. 

Particle size analysis also allowed for quantification of the number of particles per gram of 

dry mass in the digesta. Particles per gram of dry mass in the digesta was significantly influenced 

by digestion time (p<0.01), type of couscous (p<0.01), and their interaction (p<0.01) (Figure 3.4). 

For all types of millet couscous there was a large and statistically significant increase in particles 

per gram of dry mass during simulated digestion. For example, small millet couscous had 7.0 × 

103 particles per gram after 30 s of simulated oral phase, but after 180 min in the HGS had 88.8 × 

103 particles per gram (p<0.05). Results showed that higher particle breakdown occurred during 

simulated gastric digestion of millet couscous leading to a substantial and statistically significant 
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increase in the number of particles per gram dry mass, whereas in wheat couscous there was not a 

statistically significant increase in the number of particles per gram of dry mass. 

3.4.3 Starch hydrolysis in the HGS 

Reducing sugar content in the HGS was measured in the liquid phase of centrifuged digesta 

over the course of the simulated digestion and the percent of starch hydrolysis was divided by the 

total area of particles at the same time point; the resulting values were expressed as percent starch 

hydrolysis per unit area of digested particles. Expressing this data on a unit area basis was 

necessary due to the differences in surface area resulting from particle breakdown during simulated 

digestion. The percent starch hydrolysis values (without being expressed per unit area) are 

included in Table 3.4. Starch hydrolysis per unit area in the HGS was significantly influenced by 

digestion time (p<0.01) and type of couscous (p<0.01), but not their interaction (p>0.05) (Figure 

3.5). There was a significant increase in percent starch hydrolysis in the total digestion time per 

unit area of digested particles for all types of couscous (p<0.05), except for small millet couscous 

(p>0.05). At the final time point of the simulated gastric digestion (180 min), percent starch 

hydrolysis per unit area for large millet couscous (16.8 ± 5.0 ×10-3 %/𝑚𝑚2) and for small millet 

couscous (11.8 ± 1.9 ×10-3 %/𝑚𝑚2) were significantly lower (p<0.05) than for commercial wheat 

couscous (26.3 ± 3.9 × 10-3 %/𝑚𝑚2). 

3.4.4 Moisture content 

Moisture content (dry basis) was significantly influenced by digestion time (p<0.01), but 

not by type of couscous (p>0.05) (Table 3.5). Moisture content of digesta was not significantly 

different between the five types of couscous from oral phase up to 150 min of simulated gastric 

digestion. Moisture content of digesta after 180 min ranged from 4.09 ± 0.58 g moisture/g dry 

mass (wheat small) to 7.62 ± 1.79 (millet small) g moisture/g dry mass. 

3.4.5 pH 

pH of digesta was significantly influenced by digestion time (p<0.01), but not by type of 

couscous (p>0.05) (Table 3.5). The pH of digesta decreased throughout the simulated digestion 

due to the secretion of additional gastric juice. For example, the pH of small millet couscous was 



 

 

81 

6.29 ± 0.09 after 30 s of simulated oral phase and decreased to 2.91 ± 0.32 after 180 min simulated 

gastric digestion. 

3.4.6 Relative gastric emptying of solids from the HGS 

Relative gastric emptying of solids in the HGS was fit to Equation 2, and results are shown 

in Figure 3.6. The model provided a good fit to the data as evidenced by high coefficient of 

determination (𝑅2 minimum = 0.997) (Table 3.6). The emptying rate parameter, 𝑘 (min-1), was 

significantly influenced by couscous type (p<0.05). Large millet couscous had a significantly 

higher k value than commercial wheat couscous (p<0.05). The extrapolated y-intercept from the 

terminal portion of the curve, β, was not significantly influenced by type of couscous (p>0.05). 

The half-emptying time 𝑡1/2 (min) was significantly influenced by type of couscous (p<0.01). The 

highest half-emptying times were for commercial wheat couscous and small wheat couscous (240 

min and 189 min, respectively). This reflects the slower emptying of solids from the HGS during 

simulated gastric digestions of commercial wheat couscous and small wheat couscous. It is 

important to note that these results indicate the emptying of solids as the overall gastric emptying 

rate of digesta was held constant at 3 mL/min for all types of couscous. The more rapid emptying 

of solids from millet couscous coincided with a greater degree of breakdown as described in the 

previous section, indicating that the HGS measures gastric emptying based on particle breakdown. 

3.5 Discussion 

In this study, the Human Gastric Simulator was used to quantify the physical and chemical 

breakdown of couscous samples during simulated gastric digestion. Previously, other starch-based 

carbohydrates, such as white and brown rice, have been studied for their physicochemical 

breakdown properties during gastric digestion (Bornhorst, Ferrua, et al., 2013; Bornhorst, 

Ströbinger, et al., 2013; Drechsler & Bornhorst, 2018). Millet couscous and other products made 

from millet have previously shown slow gastric emptying and digestion properties in vivo (Alyami, 

Ladd, et al., 2019; Cisse et al., 2018) and in vitro (Annor et al., 2015; Sandhu & Siroha, 2017), yet 

there is a lack of knowledge of the basis of this response. The objective of this work was to 

determine how pearl millet couscous breaks down in a simulated gastric environment and quantify 

the starch hydrolysis of the gastric breakdown products. 
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Initial properties of couscous samples and flour (for self-made couscous) were 

characterized by RVA analysis and HPSEC. RVA analysis is a rheological method to characterize 

suspensions containing starch and water during heating and cooling (Walker et al., 1988). Notable 

factors with impact on peak viscosity include the extent of amylose leaching, amylose-lipid 

complex formation, starch granule swelling, friction between swollen granules, and competition 

for free water between leached amylose and remaining ungelatinized granules (Almeida-

Dominguez et al., 1997; Fitzgerald et al., 2003). For the current study, lower water amount was 

used for couscous samples than for flour samples (25 mL for flours, 15 mL for couscous), because 

couscous samples were pregelatinized and thus did not absorb water and swell like the intact starch 

granules in flours. Furthermore, millet couscous did not show a cold swelling property, which 

could be indicative of either immediate breakdown in the RVA or incomplete gelatinization of 

starch in millet couscous after the initial 14 min steaming period of preparation. However, it is 

important to note that for simulated digestions, all couscous samples were steamed an additional 

10 min immediately prior to experimentation. Final viscosities from RVA results were compared 

due to relevance to foods prepared for consumption. Previous researchers found final viscosity to 

be the most sensitive measurement of intermolecular interactions in maize starch (Juhász & Salgó, 

2008). Results indicated that final viscosity was higher for millet flour than for wheat flour (3887 

± 11 vs. 2761 ± 28 cP, p<0.01). Given its higher viscosity, starch granules in millet flour exhibited 

greater amylose retrogradation than those in wheat flour (Juhász & Salgó, 2008). No significant 

amylose-lipid complex formation was evident for any of the samples as determined by differential 

scanning calorimetry (data not shown), so this would not have impacted the RVA profiles. In 

contrast to flour samples, wheat couscous exhibited higher final viscosity than millet couscous 

(8206 ± 116 vs. 5793 ± 22 cP, p<0.01), indicating higher breakdown of millet couscous to smaller 

particles. Accordingly, millet couscous appeared paste-like, whereas wheat couscous particles 

remained intact.  

HPSEC was used to determine starch fine structural features, as it was hypothesized that 

they could help explain the slower starch hydrolysis rate that was found for millet samples. Millet 

samples had smaller amylose chain length (839-963 DP) than wheat samples (1225-1563 DP; 

p<0.05; Table 3.2). Amylose of intermediate chain length (667 DP) was previously shown to 

exhibit a higher propensity to form intermolecular interactions (Jane & Chen, 1992). Although the 

amylose chain lengths measured for millet samples were somewhat larger than 667 DP, it can be 
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hypothesized that they also could exhibit increased intermolecular interactions, causing denser 

matrices that impede starch hydrolysis (B. Zhang et al., 2015). To the authors’ knowledge, starch 

fine structural characteristics have not been previously elucidated for the particular type of pearl 

millet studied (grown in Senegal), however, the characteristics for wheat are similar to those found 

by Martinez et al. (Martinez et al., 2018).  

Along with initial property measurements of couscous, the particle size of couscous in 

digesta emptied from the HGS was assessed. It was found that all types of couscous experienced 

a statistically significant reduction in particle size throughout simulated digestion, however, 

breakdown of millet couscous was substantial and significantly (p<0.05) higher than that of wheat 

couscous. For example, after 180 min simulated gastric digestion, large millet couscous particles 

had a median size of 0.17 mm2, whereas commercial wheat couscous particles had a median size 

of 1.06 mm2 (p<0.05). A range of diameters of 0.37 to 0.59 mm was found for small, large, and 

commercial millet couscous after back-calculation from the obtained particle areas, assuming 2D 

circles, from 60 to 180 min in the HGS. This was similar to the initial millet cell diameter estimated 

from the light micrographs to be about 0.4 mm, suggesting that the simulator reduced the size of 

the millet couscous to that of individual cells. Additionally, the differences between breakdown of 

millet couscous and wheat couscous may be due to the presence of gluten in wheat (Delcour et al., 

2012), which acts to provide structure in many gluten-containing foods, and may help wheat-based 

foods resist breakdown. Previous research has shown a decrease in particle size of white and brown 

rice during gastric processing in vitro (Kong & Singh, 2010) and in vivo (Bornhorst, Kostlan, et 

al., 2013). To the authors’ knowledge, the particle breakdown of couscous has not previously been 

studied in vitro or in vivo. 

Starch hydrolysis per unit area of digested particles increased over time for all types of 

couscous (p<0.05). To control for increases in surface area that occurred due to particle breakdown 

in the HGS, starch digestion was reported as percent starch hydrolysis per unit area of digested 

particles. Percent starch hydrolysis per unit area at the final time point in digestion was 

significantly lower (p<0.05) for large millet couscous (16.8 ± 5.0 ×10-3 %/𝑚𝑚2) and small millet 

couscous (11.8 ± 1.9 ×%/𝑚𝑚2) than for commercial wheat couscous (26.3 ± 3.9 ×10-3 %/𝑚𝑚2). 

Interestingly, starch hydrolysis per unit area increased by only 4% in the final hour of simulated 

gastric digestion for commercial wheat couscous, whereas there was an 88% increase over the 

same time period for large millet couscous and 85% increase for commercial millet couscous. This 
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suggests that the millet starch became more susceptible to hydrolysis in the last hour of digestion, 

whereas the wheat couscous starch was fully accessible by the end of the second hour of digestion. 

This finding suggests that changes to millet couscous resulting in an increased rate of starch 

hydrolysis occur only after two hours of simulated digestion. Previous researchers have found that 

millet has a slow starch hydrolysis property (Alyami, Ladd, et al., 2019; Annor et al., 2015; Sandhu 

& Siroha, 2017), lending support for the current results. Since pH profiles were not significantly 

different among the types of couscous, differences in hydrolysis between different types of 

couscous cannot be attributed to differences in residual salivary α-amylase activity during 

simulated gastric digestion.  

Differences in starch hydrolysis could have been due to retention of intact cells in millet 

couscous after breakdown as well as differences in chemical and/or structural composition of the 

couscous. The integrity of cell wall structure is a factor that could influence starch hydrolysis. 

Previous researchers have shown using wheat and sorghum that intact cells slow enzymatic 

hydrolysis to the inside starch due to hindered transport of enzyme through the cell walls (Bhattarai 

et al., 2018; Korompokis et al., 2019). Given that the millet couscous particle sizes obtained from 

60 to 180 min of simulated digestion were in a similar size range as the initial intact cell, it seems 

plausible that the lower millet hydrolysis was affected by cell walls. However, cell wall structures 

were also observed in wheat flour particles that could affect starch hydrolysis. It is possible that 

millet cell wall structures are more rigid than wheat, thus impeding starch hydrolysis more. 

Another possibility is that intermediate amylose chain lengths (841-970 DP) for millet samples 

could have allowed for increased intermolecular interactions (Jane & Chen, 1992) which might 

have promoted the formation of denser matrices that are more resistant to hydrolysis (B. Zhang et 

al., 2015). Previous researchers have proposed that microstructural and starch granule features of 

starchy foods can influence starch hydrolysis (Roman, Sahagun, et al., 2019).  

pH of the digesta decreased over time for all types of couscous due to the secretion of 

gastric juice during simulated digestion. Due to the constant secretion rate of gastric juice, the lack 

of significant differences in pH between the different couscous samples indicates that they had 

similar buffering capacity. The relatively high pH values (highest value among treatments at 30 

min = 6.48; highest value at 180 min = 4.21) throughout gastric digestion create an environment 

where activity of salivary α-amylase could be partially retained.  
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Relative gastric emptying of solids was greater for millet couscous than wheat couscous, 

as analyzed by calculating the percentage of initial dry matter that remained in the HGS at each 

time point. Since the overall emptying rate was held constant at 3 mL/min, differences in relative 

gastric emptying of solids reflected the solids content of samples withdrawn from the HGS and 

the relative breakdown of particles that occurred. It is hypothesized that the more rapid breakdown 

of millet couscous in comparison to wheat couscous led to increased packing density in the antral 

region of the simulated stomach chamber, allowing a greater amount of solids from millet couscous 

to be emptied at each time point. Curves representing relative emptying of solids were fit to a 

modified power-exponential model (Equations 2 and 3) which was used to describe the emptying 

profile in terms of a kinetic value, k (min-1), an extrapolated y intercept, β, and an emptying half-

time, 𝑡1/2 (min). It was found that large millet couscous emptied the most rapidly, with k value of 

7.03 min-1 and 𝑡1/2 of 122 min. Commercial wheat couscous emptied more slowly than large millet 

couscous, with k value of 2.97 min-1 and 𝑡1/2of 146 min (p < 0.05). Gastric emptying half-times 

in this study (122-240 min) were comparable in magnitude to those reported by previous 

researchers for in vivo gastric emptying of brown and white rice meals using the growing pig as a 

model for the adult human (229 and 227 min, respectively) (Bornhorst, Chang, et al., 2013).  In 

our recent human study conducted in Mali, we found that millet couscous had very slow gastric 

half-emptying time (5.3 h) (Cisse et al., 2018). It appears that the discrepancy between gastric 

emptying times of millet couscous measured in vivo and in the HGS reflects that gastric emptying 

in vivo is affected by factors other than particle breakdown solely. In the HGS, millet couscous 

broke down into smaller, more numerous particles than wheat couscous and had a more rapid 

gastric emptying rate of solids. However, physiological feedback and control mechanisms of 

gastric emptying in vivo are not reproduced by current in vitro models. Thus, the results of this 

study lend support to the hypothesis that physiological controls of gastric emptying may better 

explain the slow gastric emptying of millet couscous in vivo, and that hydrolysis-resistant particles 

of millet couscous reaching the distal small intestine may activate the ileal brake. The ileal brake 

mechanism has been shown to delay gastric emptying rate in a dose-dependent manner (L. J. Miller 

et al., 1981) and when administered as a preload (Cisse et al., 2017). Of note, higher delay in 

gastric emptying has been related to greater length of small intestine exposure to glucose (Lin et 

al., 1989). In this study, percent starch hydrolysis of couscous was expressed per unit surface area 

of particles, and demonstrated that increased surface area by greater particle breakdown of millet 
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couscous still did not increase starch hydrolysis. Thus, millet particles exiting the stomach could 

reach the distal small intestine, potentially activating the ileal brake and contributing to the long 

gastric emptying times for these foods (Cisse et al., 2018). It is also possible that millet couscous, 

which broke down into smaller particles, could have experienced strong particle-particle 

interactions, forming a viscous paste in the stomach that slowed gastric emptying in the human 

study, but was not measured in the HGS. Meals higher in viscosity have been shown to delay 

gastric emptying rate in vivo (L Marciani et al., 2001; Luca Marciani et al., 2000). An area of future 

research is the measurement of viscosity of foods in the stomach as they undergo breakdown. This 

study indicates there are future opportunities to understand the mechanisms of gastric emptying 

and the means by which it is controlled by the body, which could be investigated using a 

combination of in vivo and in vitro methods. 

3.6 Conclusions 

In this study, three types of millet couscous and two types of wheat couscous were digested 

using the Human Gastric Simulator, a device which simulates the peristaltic motion, continuous 

secretion of gastric juice, and intermittent emptying of the human stomach. It was found that millet 

couscous broke down into smaller and more numerous particles than wheat couscous. Millet 

couscous samples also showed lower percent starch hydrolysis per unit area of digested particles. 

It is hypothesized that the slow gastric emptying rate of millet couscous observed in humans may 

be explained by slow hydrolysis in the small intestines that activates the ileal brake mechanism. It 

was suggested that densely packed starch matrices with intact cell wall structure exist in gastric 

processed millet couscous particles that are slowly digesting to reach the ileum. This study 

provides new understanding of the slow gastric emptying of millet couscous, which could provide 

strategies to make processed foods with this quality for appetite control and extended nutrient 

(energy) delivery to the body after food consumption. 
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Table 3.1 Types of couscous. Source of each couscous is given in addition to its initial (before 

digestion, dry) particle size as determined by sieving. 

Couscous type Source 
Initial particle 

size (mm) 

Wheat small 
Flour from Bob’s Red Mill, Milwaukie, OR, USA 

Couscous self-made at Purdue University, IN, USA 
0.60 - 1.70 

Wheat commercial Riviana Foods Inc., Houston, TX, USA 0.60 - 2.36 

Millet small 
Grain from Alif Group, Dakar, Senegal 

Couscous self-made at Purdue University, IN, USA 
0.60 - 1.70 

Millet large 
Grain from Alif Group, Dakar, Senegal 

Couscous self-made at Purdue University, IN, USA 
1.70 - 2.36 

Millet commercial Mme. Deme of Free Work Services, Dakar, Senegal 0.30 - 2.36 
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Table 3.2 Starch structural characterization of initial (undigested) couscous as well as for flour starting materials used for self-made 

couscous types. Values in each column that do not share a letter (abc) represent significant differences (p<0.05) between different 

types of couscous or flour. DP = degree of polymerization. If no letter is shown, there were no statistically significant differences. 

 
Amylose 

hydrodynamic 

radius (nm) 

Amylopectin 

hydrodynamic 

radius (nm) 

Amylopectin 

short chain 

length (DP) 

Amylopectin 

long chain 

length (DP) 

Amylose 

chain length 

(DP) 

Molar ratio 

of long to 

short 

amylopectin 

chains 

Amylose 

ratio (%) 

Wheat flour 43.1 ± 3.7 131.5 ± 0.4 13.1 ± 0.1 38.8 ± 0.5 
1563.3 ± 

38.5a 

0.541 ± 

0.012 
33.5 ± 2.6 

Millet flour 28.9 ± 3.8 131.2 ± 1.1 14.7 ± 0.1 38.9 ± 0.2 
962.6 ± 

26.5bc 

0.532 ± 

0.002 
29.9 ± 2.7 

Small wheat 

couscous 
33.5 ± 0.4 130.1 ± 6.7 13.3 ± 0.2 39.1 ± 0.5 

1224.9 ± 

105.7b 

0.550 ± 

0.004 
34.7 ± 0.2 

Commercial 

wheat couscous 
27.5 ± 0.0 133.1 ± 0.0 16.1 ± 3.0 37.2 ± 2.4 

1250.5 ± 

123.2ab 

0.593 ± 

0.042 
35.6 ± 0.3 

Small millet 

couscous 
26.3 ± 7.0 131.9 ± 5.9 14.9 ± 0.1 38.7 ± 0.1 

839.0 ± 

42.2c 

0.540 ± 

0.009 
33.8 ± 4.1 

Large millet 

couscous 
25.0 ± 4.6 132.3 ± 7.4 14.9 ± 0.1 39.1 ± 0.3 

865.8 ± 

24.9c 

0.533 ± 

0.004 
32.6 ± 3.2 

Commercial millet 

couscous 
27.1 ± 0.5 128.2 ± 6.9 14.6 ± 0.2 38.0 ± 1.6 

939.0 ± 

47.1bc 

0.598 ± 

0.122 
38.2 ± 9.3 

 

  



 

 

 

9
4
 

 

 

Table 3.3 Median particle size, quantified by Rosin-Rammler 𝑥50 (Equation 1), and particle size distribution spread parameter, 

quantified by Rosin-Rammler b (Equation 1), for particles in digesta withdrawn from the HGS at different time points and for 

different types of couscous. All values are means of multiple runs in the HGS (n=3 runs, except for millet small which was n=4) ± 

standard deviation. Values in each column that do not share a letter (abc) represent significant differences (p<0.05) within a certain 

type of couscous across different digestion times. Values in each row that do not share a letter (zyx) represent significant differences 

(p<0.05) within a certain time point across different types of couscous. If no letter is shown, there were no statistically significant 

differences. 

 𝒙𝟓𝟎(𝒎𝒎𝟐) 𝒃 (dimensionless) 

Digestion 

time 

(min) 

Wheat 

small 

Wheat 

commercial 

Millet 

small 

Millet 

large 

Millet 

commercial 

Wheat 

small 

Wheat 

commercial 

Millet 

small 

Millet 

large 

Millet 

commercial 

0.5  
2.09 ± 

0.73a,yx 

3.77 ± 

0.11a,z 

1.45 ± 

0.09a,w 

2.39 ± 

0.30a,y 

1.62 ± 

0.52a,xw 

1.33 ± 

0.03a,yx 

1.72 ± 

0.36a,z 

1.47 ± 

0.12a,zy 

1.06 ± 

0.26,x 

1.09 ± 

0.21,x 

30  
0.75 ± 

0.19b,y 

2.27 ± 

0.63bc,z 

0.15 ± 

0.02b,y 

0.16 ± 

0.02b,y 

0.42 ± 

0.10b,y 

1.10 ± 

0.15ab,z 

0.82 ± 

0.02b,zy 

1.03 ± 

0.05b,zy 

0.99 ± 

0.04,zy 

0.79 ± 

0.01y 

60  
0.56 ± 

0.06b,y 

1.53 ± 

0.41de,z 

0.14 ± 

0.02b,y 

0.15 ± 

0.03b,y 

0.25 ± 

0.05b,y 

1.08 ± 

0.14ab 

0.84 ± 

0.07b 

1.09 ± 

0.01b 

1.10 ± 

0.05 

0.88 ± 

0.03 

90  
0.59 ± 

0.03b,y 

1.61 ± 

0.65ce,z 

0.16 ± 

0.03b,y 

0.14 ± 

0.03b,y 

0.23 ± 

0.04b,y 

1.07 ± 

0.07ab 

0.90 ± 

0.17b 

1.02 ± 

0.04b 

1.11 ± 

0.03 

0.90 ± 

0.04 

120  
0.57 ± 

0.09b,y 

2.50 ± 

0.34b,z 

0.13 ± 

0.03b,y 

0.12 ± 

0.03b,y 

0.19 ± 

0.01b,y 

1.11 ± 

0.10ab 

0.86 ± 

0.11b 

1.03 ± 

0.05b 

1.10 ± 

0.05 

0.92 ± 

0.05 

150  
0.76 ± 

0.21b,y 

1.80 ± 

0.84bcde,z 

0.27 ± 

0.15b,y 

0.11 ± 

0.03b,y 

0.19 ± 

0.04b,y 

1.01 ± 

0.10ab 

0.92 ± 

0.33b 

0.90 ± 

0.12b 

1.09 ± 

0.08 

0.89 ± 

0.04 

180  
0.85 ± 

0.19b,zy 

1.06 ± 

0.76de,z 

0.18 ± 

0.12b,x 

0.17 ± 

0.07b,x 

0.20 ± 

0.09b,yx 

0.98 ± 

0.06b 

0.81 ± 

0.08b 

1.02 ± 

0.25b 

0.95 ± 

0.09 

0.85 ± 

0.08 
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Table 3.4 Percent starch hydrolysis (%) of digesta withdrawn from the HGS at different time 

points and for different types of couscous (not expressed per unit area). All values are means of 

multiple runs in the HGS (n=3 runs, except for millet small which was n=4) ± standard 

deviation. Values in each column that do not share a letter (abc) represent significant differences 

(p<0.05) within a certain type of couscous across different digestion times. Values in each row 

that do not share a letter (zyx) represent significant differences (p<0.05) within a certain 

timepoint across different types of couscous. If no letter is shown, there were no statistically 

significant differences. 

 
Percent starch hydrolysis (%) in HGS 

Digestion 

time (min) 

Wheat 

small 

Wheat 

commercial 

Millet 

small 

Millet 

large 

Millet 

commercial 

30 1.80 ± 0.11d 1.64 ± 0.11d 1.68 ± 0.01c 1.75 ± 0.35e 1.73 ± 0.06d 

60 2.39 ± 0.07d 2.01 ± 0.34cd 1.86 ± 0.22c 1.87 ± 0.15de 2.30 ± 0.12d 

90 3.00 ± 0.17cd 3.10 ± 0.57bc 2.22 ± 0.07c 2.41 ± 0.25de 2.78 ± 0.06cd 

120 3.94 ± 0.31bc 3.62 ± 0.18ab 2.69 ± 0.11bc 3.01 ± 0.05cd 3.74 ± 0.06bc 

150 4.44 ± 0.28abc 4.55 ± 0.33a 3.79 ± 0.60ab 4.47 ± 0.45ab 4.77 ± 0.18ab 

180 5.63 ± 0.00ab,zy 4.74 ± 0.34a,zy 4.23 ± 0.22a,y 4.98 ± 1.24a,zy 5.75 ± 0.24a,z 
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Table 3.5 Moisture content (dry basis, g water/g dry mass) and pH of digesta withdrawn from the HGS at different time points and for 

different types of couscous. All values are means of multiple runs in the HGS (n=3 runs, except for millet small which was n=4) ± 

standard deviation. Values in each column that do not share a letter (abc) represent significant differences (p<0.05) within a certain 

type of couscous across different digestion times. Values in each row that do not share a letter (zyx) represent significant differences 

(p<0.05) within a certain time point across different types of couscous. If no letter is shown, there were no statistically significant 

differences. 

 Moisture content (g moisture/g dry mass) pH 

Digestion 

time (min) 

Wheat 

small 

Wheat 

commercial 

Millet 

small 

Millet 

large 

Millet 

commercial 

Wheat 

small 

Wheat 

commercial 

Millet 

small 

Millet 

large 

Millet 

commercia

l 

0.5  
0.84 ± 

0.09b 

0.82 ± 

0.03b 

0.80 ± 

0.09b 

0.90 ± 

0.10c 0.89 ± 0.05c 6.38 ± 

0.51a 

6.44 ± 

0.32a 

6.29 ± 

0.09a 

6.48 ± 

0.05a 

5.83 ± 

0.17a 

30  
2.66 ± 

0.35ab 

2.93 ± 

0.22ab 

1.80 ± 

0.04b 

1.81 ± 

0.04c 1.86 ± 0.08c 4.88 ± 

0.17bc 

5.01 ± 

0.15bc 

5.35 ± 

0.13b 

5.23 ± 

0.09bc 

4.98 ± 

0.06ab 

60  
2.36 ± 

0.11ab 

2.83 ± 

0.23ab 

1.70 ± 

0.06b 

1.68 ± 

0.05c 1.74 ± 0.12c 5.36 ± 

0.16b 

5.14 ± 

0.26b 

5.63 ± 

0.10ab 

5.63 ± 

0.11ab 

5.29 ± 

0.07ab 

90  
2.51 ± 

0.18ab 

3.01 ± 

0.09ab 

1.93 ± 

0.60b 

1.76 ± 

0.11c 1.66 ± 0.07c 5.30 ± 

0.43b 

4.92 ± 

0.32bc 

5.63 ± 

0.24ab 

5.62 ± 

0.06ab 

5.36 ± 

0.10a 

120  
2.92 ± 

0.12ab 

3.45 ± 

0.10ab 

2.26 ± 

0.45b 

2.03 ± 

0.20c 2.41 ± 1.08c 4.76 ± 

0.80bcd 

4.58 ± 

0.19bcd 

5.37 ± 

0.22b 

5.43 ± 

0.14bc 

4.96 ± 

0.48ab 

150  
3.61 ± 

0.21ab 

4.21 ± 

0.11a 

5.15 ± 

1.83a 

3.24 ± 

0.44c 

3.21 ± 

0.31bc 

4.69 ± 

0.38bcd 

4.18 ± 

0.11cd 

3.88 ± 

0.94c 

4.49 ± 

0.41c 

4.37 ± 

0.24b 

180  
4.09 ± 

0.58a,y 

5.16 ± 

0.29a,zy 

7.62 ± 

1.79a,z 

7.53 ± 

1.82b,z 

6.14 ± 

1.53ab,zy 

4.21 ± 

0.25cd 

3.84 ± 

0.25d 

2.91 ± 

0.32d 

2.87 ± 

0.39d 

3.24 ± 

0.32c 
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Table 3.6 Parameters of the modified power-exponential model (Equations 2 and 3) for gastric 

emptying. Values in each column that do not share a letter (abc) represent significant differences 

(p<0.05) between different types of couscous. 

 𝒌 × 𝟏𝟎𝟑(𝒎𝒊𝒏−𝟏) 𝜷 𝒕𝟏/𝟐 (𝒎𝒊𝒏) 𝑹𝟐 

Wheat small 4.20 ± 0.59ab 1.14 ± 0.07 189 ± 25ab 0.999 ± 0.00 

Wheat commercial 2.97 ± 0.86bc 0.99 ± 0.07 240 ± 49a 0.999 ± 0.00 

Millet small 5.28 ± 2.12ab 1.06 ± 0.19 146 ± 29bc 0.997 ± 0.003 

Millet large 7.03 ± 0.60a 1.25 ± 0.06 122 ± 6bc 0.998 ± 0.001 

Millet commercial 5.76 ± 1.09ab 1.13 ± 0.15 137 ± 10bc 0.998 ± 0.001 

 

 

 

  



 

 

98 

 

 

 

 

 

 

 

Figure 3.1 Diagram of the Human Gastric Simulator (HGS). 
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Figure 3.2 RVA profiles of wheat couscous (●), wheat flour (▲), millet couscous (♦), and millet 

flour (★). Error bars represent the standard deviation of two runs and in some cases may be too 

small to be seen. Viscosity was recorded every 4 seconds, but for clarity a symbol has been 

placed on every fifth data point (every 20 s). 
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Figure 3.3 Light micrographs (A-H) of the initial flour and couscous samples: millet flour (A), small millet couscous (B), large millet 

couscous (C), commercial millet couscous (D), wheat flour (E), small wheat couscous (F), large wheat couscous (G), commercial 

wheat couscous (H).

A B C D 

E F G H 



 

 

101 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Particles per gram dry matter of for digesta of small wheat couscous ( ), commercial 

wheat couscous ( ), small millet couscous ( ), large millet couscous ( ), and commercial 

millet couscous ( ) during vitro gastric digestion (initial = no digestion; oral = 30 s simulated 

oral digestion; 30-180 min = corresponding simulated gastric digestion time). Error bars 

represent standard deviation of either three or four digestions in the HGS. 
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Figure 3.5 Percent starch hydrolysis per unit area of particles in the HGS for small wheat 

couscous (●), commercial wheat couscous (▲), small millet couscous (⁕), large millet couscous 

(■), and commercial millet couscous (★). Error bars represent the standard error of three runs 

except for millet small (four runs). 

  



 

 

103 

 

 

 

 

 

 

 

 

 

Figure 3.6 Relative solids remaining in the HGS (%), representative of relative gastric emptying, 

for small wheat couscous (●), commercial wheat couscous (▲), small millet couscous (⁕), large 

millet couscous (■), and commercial millet couscous (★). Error bars represent the standard 

deviation of three digestions except for small millet couscous (four digestions). Lines represent 

the model fit (Equation 2). 
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 SOME PEARL MILLET-BASED FOODS PROMOTE 

SATIETY OR REDUCE GLYCEMIC RESPONSE IN A CROSSOVER 

TRIAL 

Reprinted with permission. Full citation: 

Hayes, A. M. R., Gozzi, F., Diatta, A., Gorissen, T., Swackhamer, C., Bellmann, S., & Hamaker, 

B. R. (2020). Some pearl millet-based foods promote satiety or reduce glycaemic response in a 

crossover trial. British Journal of Nutrition. doi: 10.1017/S0007114520005036. 

4.1 Abstract 

In a previous trial in Mali, we showed traditional pearl millet couscous and thick porridge 

delayed gastric emptying (~5 h half-emptying times) in a normal weight population compared to 

non-traditional carbohydrate-based foods (pasta, potatoes, white rice; ~3 h half-emptying times), 

and in a gastric simulator we showed millet couscous had slower digestion than wheat couscous. 

In light of these findings, we tested the hypothesis in a normal weight U.S. population (n=14) that 

millet foods would reduce glycemic response (continuous glucose monitor), improve appetitive 

sensations (Visual Analog Scale ratings), as well as reduce gastric emptying rate (13C octanoic 

acid breath test). Five carbohydrate-based foods (millet couscous – commercial and self-made, 

millet thick porridge, wheat couscous, white rice) were fed in a crossover trial matched on 

available carbohydrate basis. Significantly lower overall glycemic response was observed for all 

millet-based foods and wheat couscous compared to white rice (p≤0.05). Millet couscous (self-

made) had significantly higher glycemic response than millet couscous (commercial) and wheat 

couscous (p<0.0001), but as there were no differences in peak glucose values (p>0.05) an extended 

glycemic response was indicated for self-made couscous. Millet couscous (self-made) had 

significantly lower hunger ratings (p<0.05) and higher fullness ratings (p<0.01) than white rice, 

millet thick porridge, and millet couscous (commercial). A normal gastric emptying rate (<3 h 

half-emptying times) was observed for all foods, with no significant differences among them 

(p>0.05). In conclusion, some traditionally prepared pearl millet foods show the potential to reduce 

glycemic response and promote satiety. 

 

Trial registration identifier: NCT03630458 (ClinicalTrials.gov). 
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4.2 Introduction 

In the Sahelian region of West Africa, it is anecdotally known that people who consume 

foods made from pearl millet (Pennisetum glaucum) feel especially “full”, allowing them to go for 

a long period of time without feeling the need to eat. Thus, these millet foods appear to affect 

ingestive behavior by prolonging satiety. We previously conducted a human trial in Mali, West 

Africa, to assess the gastric emptying rate of traditional Sahelian West African foods (couscous 

and thick porridges made from millet and sorghum) compared to non-traditional carbohydrate 

foods (white rice, boiled potatoes, pasta) to determine if gastric emptying might be a physiological 

basis for this apparent satiety property (Cisse et al., 2018). Traditional viscous and non-viscous 

millet and sorghum foods [millet and sorghum thick porridges, and millet couscous (precooked 

agglomerated flour particles)] had markedly longer gastric half-emptying times compared to the 

Western foods (~5 vs. ~3 h, respectively). Viscosity might be one explanation for the slow gastric 

emptying times of the thick porridges, as high viscosity pudding in one study (Zhu et al., 2013) 

and a high viscosity locust bean gum paste in another (L Marciani et al., 2001) were shown to slow 

gastric emptying rate. For millet couscous, we further investigated the reason behind its slow 

gastric emptying rate using the Human Gastric Simulator, a dynamic model of human gastric 

digestion (Hayes et al., 2020). Breakdown and digestion properties of millet and wheat couscous 

were determined in relation to their physicochemical characteristics. Contrary to our thinking that 

millet couscous particles would be resistant to stomach breakdown and, in turn, slow gastric 

emptying, they instead broke down into smaller and more numerous particles than wheat couscous 

and produced a paste-like consistency, perhaps even generating viscosity in the stomach that could 

delay gastric emptying rate (Hayes et al., 2020). Moreover, the remaining smaller millet couscous 

particles were found to exhibit lower starch digestibility per unit surface area than wheat couscous 

particles, supporting that millet has a slow digestion property and may digest locationally into the 

distal small intestine to trigger the ileal brake (Jain et al., 1989; Poppitt et al., 2017). Related to 

this, we have found that slowly digestible carbohydrates activated the gut-brain axis and reduced 

food intake in rats (Hasek et al., 2018). Either one or both of these special properties of millet 

foods could explain the slower gastric emptying rates observed in the Mali trial.  

Here, we examined the potential satiety and glycemic aspects of pearl millet in a U.S. 

population by testing primary outcomes of glycemic response and gastric emptying rate, and 

secondary outcomes of appetitive response and breath hydrogen following consumption of millet 
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couscous versus wheat couscous matched for particle size, along with millet thick porridge and 

white rice. We gained insight on the role of real-time viscosity of millet couscous in the stomach 

using the TIM-1 gastrointestinal digestion system equipped with the advanced gastric 

compartment (TIMagc). Our hypothesis tested, in a U.S. population, was whether millet couscous 

and/or millet thick porridge modulates postprandial glycemia and produces a satiety response, as 

well as slows gastric emptying rate.           

4.3 Methods 

4.3.1 Participants and study design 

Participants were recruited from the Purdue University area (West Lafayette, IN, USA). 

Inclusion criteria were as follows: between 18 and 50 y in age, normal weight (18.5 kg/m² ≤ BMI 

≤ 25.0 kg/m²), and normal fasting blood glucose (<100 mg/dL). Participants were excluded if they 

had any of the following: diabetes (any type); allergy to millet, wheat, and/or gluten allergy or 

sensitivity; history of or currently experiencing gastrointestinal diseases/disorders; or if pregnant 

or nursing. Interested potential participants underwent prescreening. Those that fit the inclusion 

criteria and agreed to participate gave written informed consent to be enrolled in the study. 

Participant recruitment and study participation proceeded as shown in Figure 4.1.  

Following recruitment, enrolled participants participated in a crossover trial with five 

treatment arms, with one arm taking place per week to allow for a 5-7 day washout period. The 

order of the treatment arms was randomized to form one sequence, and all participants received 

the same sequence [millet couscous (self-made), white rice, wheat couscous, millet couscous 

(commercial), millet thick porridge]. Each arm consisted of two consecutive days. On day one, the 

continuous glucose monitors were equilibrated and, on day two, one test meal food was consumed 

as the morning meal with glycemic response, appetitive sensations, gastric emptying, and breath 

hydrogen measured over 4 h postprandially. The five test meal foods (one per arm) were millet 

couscous that had been self-made at Purdue University, a commercially available millet couscous 

from Senegal, wheat couscous that had been self-made at Purdue University, millet thick porridge, 

and white rice. Couscous were self-made to match for particle size. While participants’ familiarity 

with the test meal foods was not formally assessed, it can be reasonably assumed that all were 

more familiar with rice and wheat couscous and less familiar with millet thick porridge and millet 
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couscous. Approximately 5-7 day washout periods were implemented between arms, and the order 

in which arms were assigned was determined using a random number generator (Microsoft Excel, 

version 1808). Neither participants nor experimenters were blinded due to the difficulty in masking 

the nature of the foods. This study was conducted according to the guidelines laid down in the 

Declaration of Helsinki and procedures involving human participants were approved by the 

Institutional Review Board at Purdue University under protocol #1706019348. Written informed 

consent was obtained from all participants. The study was registered at ClinicalTrials.gov with 

identifier NCT03630458.  

4.3.2 Pre-preparation of test meals foods 

Descriptions of the test meal foods are provided in Table 4.1. Whole millet grain 

(Pennisetum glaucum) as intact kernels and commercially available refined millet couscous were 

obtained from Senegal (grain from Alif Group, Dakar, Senegal; couscous from Mme. Deme of 

Free Work Services, Dakar, Senegal). Refined wheat flour (Bob’s Red Mill, Milwaukie, OR, USA) 

and medium grain white rice (Nishiki Brand Rice, JFC International Inc., Los Angeles, CA, USA) 

were obtained commercially. The self-made millet and wheat couscous foods were processed and 

prepared as in Hayes et al. (2020), with minor modifications.  

Briefly, for self-made millet couscous, millet grain was decorticated (15% mass removal 

by wet weight, indicating removal of bran) using an abrasive decorticator. The resulting kernels 

were milled into flour using a pin mill (6.5 rpm, Alpine, 160 Z, Augsburg, Germany). Millet flour 

particles between 0.3 and 0.5 mm were collected using a sieve shaker (Model RX-24, W.S. Tyler 

Inc., Mentor, OH, USA). Self-made millet couscous was prepared from the resulting flour as in 

Hayes et al. (2020), with the exception that couscous particles were made in the size range of 1.0 

and 2.4 mm. Couscous was prepared via rolling and steaming, dried at 50°C for 4 h, vacuum sealed, 

and stored at -20°C until test day preparation. 

Millet thick porridge was made from millet flour particles between 0.3 and 0.5 mm 

obtained from the same processing and collection techniques described above for self-made millet 

couscous. This resulting flour was reserved, vacuum sealed, and stored at -20°C until test day 

preparation. 

For self-made wheat couscous, flour particles (obtained commercially) between 0.3 and 

0.5 mm were collected via sieve shaker separation, and couscous (1.0 and 2.4 mm) was prepared 
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as described above for self-made millet couscous. Commercial millet couscous and white rice were 

acquired and stored until test day preparation. Available carbohydrate for each test meal food was 

based on total starch determination using an assay kit [Total Starch Assay Kit (AA/AMG), K-

TSTA-50A, Megazyme, Wicklow, Ireland]. 

4.3.3 Test day preparation of test meal foods 

On the morning of the second test day of each arm, the final preparation steps were carried 

out for each test meal food. For all couscous samples, pre-hydration (0.9 g dry weight couscous:1 

mL water) was achieved by gradual incorporation of water with mixing. Couscous samples were 

then steamed in a couscoussier for 14 min over boiling water (100°C) from a gas stove and weighed 

into individual portions.  

Millet thick porridge was prepared from millet flour according to a traditional method 

(Cisse et al., 2018; Scheuring et al., 1981). Specifically, one portion of flour (690 g dry weight) 

was added to water (933 mL) and mixed to make a homogeneous slurry. The slurry was then 

gradually added to boiling water (2,555 mL; 100°C) on a gas stove and heated for 8 min with 

continuous stirring at reduced heat to make a thin porridge, traditionally referred to as “bouillie”. 

A portion (~500 g wet weight) of the resulting thin porridge was removed and reserved. Another 

portion of flour was gradually added to the remaining thin porridge with continuous stirring until 

completely incorporated, yielding thick porridge that was paste-like. Intermittent additions of the 

reserved thin porridge were also made as the dry flour was being added until it was all re-

incorporated, in order to ensure the resulting porridge did not become too dry to mix. The final 

porridge was covered, cooked for 30 min, and then weighed into individual portions.  

For the rice preparation, white rice (1116 g dry weight) and water (1674 mL) were placed 

in a pressure cooker (NESCO PC8-25, Two Rivers, WI, USA) and cooked for 10 min. Cooked 

rice was weighed into individual portions.  

All test meals were served at 55-65°C. Total moisture content was held constant across all 

test meals by adjusting the amount of water served (130-150 mL) according to estimates of final 

moisture contents of cooked test meals (~290 mL total water content). Test meal sizes were based 

on 124 g dry weight available carbohydrate to approximately match the carbohydrate amount in 

the Mali study (Cisse et al., 2018). A small amount (0.5 g) of butter was added to each test meal 

before serving to increase palatability. The nutrient and caloric contents of the test meals are shown 
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in Table 4.1. 13C-octanoic acid (100 mg) was mixed into each test meal immediately prior to 

serving as a tracer for gastric emptying assessment. 

4.3.4 Test day procedures  

Participants arrived at the testing facilities at 8:00-8:30 a.m. on both consecutive test days 

per arm. On the first test day, a continuous glucose monitor (CGM) sensor (G4 Platinum, Dexcom, 

San Diego, CA, USA) was first inserted on the lower left abdomen of each participant. The CGM 

transmitter (G4 Platinum, Dexcom, San Diego, CA, USA) was then installed and the CGM 

receiver (G4 Platinum, Dexcom, San Diego, CA, USA) was turned on for an initial equilibration 

period during which participants were free to leave the testing facilities. Approximately 2 h later 

(10:00 a.m.), participants returned and two blood finger pricks (Microlet lancing device, Contour 

glucometer, and Contour blood glucose test strips; Ascensia Diabetes Care, Parsippany, NJ, USA; 

ReliOn Lancets, San Jose, CA, USA) were taken to calibrate the CGM. Participants were then free 

to leave the testing facilities for the remainder of the day. No test meal foods were provided on the 

first test day. Participants were instructed to consume similar foods that were low in fibre the 

evening of the first test day for each of the study arms as well as to maintain a consistent exercise 

level for the duration of the study.  

On the second test day, participants arrived at the testing facilities after an overnight fast 

(>10 h). One finger prick blood sample was collected from each participant for CGM calibration. 

Thereafter, baseline breath samples for gastric emptying (two - 1.5 L bags, Cambridge Isotope 

Laboratories, Tewksbury, MA, USA) and breath hydrogen (one - 0.25 L bag, QuinTron Instrument 

Company, Inc., Milwaukee, WI, USA) were collected for each participant and each completed a 

baseline appetitive sensation survey (Visual Analog Scale [VAS], described below). Following 

completion of all initial steps, participants were provided one test meal and water, prepared as 

described above, according to the assigned arm of the study. Participants were instructed to 

consume the test meal in entirety within 20 min. No other food or drink was allowed for the 

remainder of the test session. Following test meal consumption, participants completed the 

following: 1) breathed into 0.30 L bags (Cambridge Isotope Laboratories, Tewksbury, MA, USA) 

every 15 min in the initial 2 h postprandial period and every 30 min in the 2-4 h postprandial period 

for assessment of gastric emptying, 2) breathed into 0.25 L bags (QuinTron Instrument Company, 

Inc., Milwaukee, WI, USA) every 15 min in the initial 2 h postprandial period and every 30 min 
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in the 2-4 h postprandial period for assessment of breath hydrogen, and 3) completed appetitive 

sensation surveys (VAS) every 30 min for the entire 4 h postprandial period. Glucose level was 

measured every 5 min by the CGM. Following completion of all breath collections and 

assessments during the 4 h postprandial period, CGMs were removed and participants were free 

to leave the testing facilities. 

4.3.5 Glycemic response 

Postprandial interstitial glycemia was measured as a primary outcome by CGM (G4 

Platinum, Dexcom, San Diego, CA, USA) to represent glycemic response (Hall et al., 2019; Li et 

al., 2019). Glucose values during the 4 h postprandial period were corrected by subtracting each 

participant’s baseline glucose value on test day 2 (for each study arm) from the following values 

to obtain change in glucose (ΔGlucose) and then also expressed as glucose incremental area under 

the curve (iAUC, mg×min/dL, including values below baseline). Glycemic response 

characteristics of peak glucose values (mg/dL; ΔPeak glucose value) and time of peak glucose 

value (min) were also calculated. 

4.3.6 Appetitive sensations 

VAS scales were used to assess participants’ subjective feelings of hunger and fullness (in 

mm, secondary outcome) at baseline and every 30 min in the 4 h postprandial period using an 

online questionnaire (Qualtrics, Provo, Utah, USA). Participants were sent an email link to the 

questionnaire at each timepoint, which they promptly completed on the same interface (i.e. 

personal laptop or cell phone) for all arms of the study. 

4.3.7 Gastric emptying 

The 13C octanoic acid breath test was used to assess gastric emptying rate as has been 

previously done in our group (Cisse et al., 2018; Pletsch & Hamaker, 2018) according to the 

method from previous researchers (Braden et al., 1999; M Sanaka et al., 2007; Masaki Sanaka & 

Nakada, 2010; Schadewaldt et al., 1997; Schoeller et al., 1980), with adjustment for body surface 

area calculations from Haycock et al. (1978). Breath samples collected for gastric emptying 

assessment were analyzed within 48 h of collection using a 13CO2 breath analyser (POCone, 
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Otsuka Electronics Co., Ltd., Osaka, Japan). Gastric half-emptying time, the time required for half 

of the 13C dose to be metabolized (Perri et al., 2005), was calculated as a primary outcome.  

Because millet is a C4 plant, it has a higher 13C to 12C ratio and possesses more endogenous 

13C than C3 plants (e.g. wheat and rice) (Sage & Monson, 1999). Additional testing proceeded 

with a subgroup of participants (n=4) to determine a corrective factor for 13C inherent to millet in 

a similar manner as in Cisse et al. (2018). On three separate test days, participants came to the 

testing facilities after an overnight fast (>10 h) and consumed one of three test meals (self-made 

millet couscous, self-made wheat couscous, white rice) that did not contain tracer. Breath samples 

for gastric emptying were collected in the same manner as above. The resulting values obtained 

from the breath samples for gastric emptying represented endogenous 13C in the foods at each 

timepoint. These values were averaged for the subgroup and subtracted from the corresponding 

timepoint values for each participant for test meals of the same grain source during the study (Table 

4.2). Thereafter, the corrected values representing 13C at each timepoint were used for modelling 

percent dose recovery and cumulative percent dose recovery of the tracer, which were then used 

to calculate gastric half-emptying time (Figure 4.2, example of modelling). 

Data for modelling the percent dose recovery and cumulative percent dose recovery of 13C 

(corrected for endogenous 13C) are shown in Table 4.3. An R2 of 0.80 for the model fit for percent 

dose recovery of the 13C octanoic acid tracer was considered acceptable for data to be included. 

Lag phase and gastric emptying coefficient values were also calculated for the test meals (Table 

4.4). 

4.3.8 Analysis of relationship between gastric emptying and glycemic response 

The relationships between gastric half-emptying time and three different glycemic 

response characteristics (glucose iAUC0-120 min, ΔPeak glucose value, and time of peak glucose 

value) were analyzed using one-way ANOVA with repeated measures per participant (PROC 

MIXED, SAS version 9.4, SAS Institute, Cary, NC, USA). 

4.3.9 Breath hydrogen 

Breath samples collected at baseline and in the 4 h postprandial period on test day 2 were 

analyzed for breath hydrogen within 24 h as in Pletsch and Hamaker (2018). A BreathTracker 
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Digital Microlyzer (Quintron Instrument Company, Milwaukee, WI, USA) was used to determine 

the hydrogen content (ppm), a secondary outcome, in each breath sample. 

4.3.10 In vitro gastric compartment pressure profiles 

To complement the trial in humans, in vitro experiments were performed using a multi-

compartmental, computer-controlled gastrointestinal digestion system, TIM-1 (Minekus et al., 

1995), equipped with the advanced gastric compartment (TIMagc) (Bellmann et al., 2016). 

Pressure profiles over time, related to real-time viscosity within the gastric compartment, were 

measured for millet couscous (self-made), millet thick porridge, wheat couscous, and white rice. 

Experiments for test meals (44 g dry weight available carbohydrate, based on a three-times down-

scale) were conducted in duplicate for 6 h. Test meals were prepared immediately prior to 

experimentation in a similar manner as above. Experimental procedures followed those used by 

Bellmann et al. (2019).  

4.3.11 Statistical analysis 

A power calculation to determine sample size was conducted based on iAUC for glycemic 

response, because the calculated sample size was larger than for the gastric half-emptying time. 

The minimum detectable difference was set at 600 mg/dL with 414 mg/dL standard deviation as 

observed by Wolever et al. (2016). For five treatment arms and power of 0.8, it was determined 

that a minimum of 13 participants was required (n=13). 

Statistical analysis was conducted using SAS version 9.4 (SAS Institute, Cary, NC, USA). 

Two-way ANOVA (PROC MIXED) with test meal as a fixed effect and participant as a random 

effect was used to determine statistical significance of differences in glycemic response 

characteristics and gastric emptying parameters (iAUC0-120min, iAUC0-240min, ΔPeak glucose value, 

time of peak glucose value, gastric half-emptying time, gastric lag phase, gastric emptying 

coefficient). Two-way ANOVA with repeated measures (PROC MIXED) with meal and time as 

fixed effects was conducted for glycemic response (ΔGlucose), appetitive sensations (hunger and 

fullness), and breath hydrogen. For all repeated measures analyses (ΔGlucose, hunger, fullness, 

breath hydrogen), baseline values were included as a covariate in the model according to Blundell 

et al. (2010). Residuals of all models were plotted and visually assessed for homoscedasticity and 
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normality using histograms and quantile-quantile plots. Breath hydrogen was not normally 

distributed and was transformed using Box-Cox (λ=-0.04). All other data did not require 

transformation. Significance was considered at p<0.05, and Tukey’s post hoc test for multiple 

comparisons were conducted when the overall model was significant (p<0.05 for F value).  

4.4 Results 

4.4.1 Participant characteristics 

Sixteen healthy participants were originally enrolled in the trial, and one participant 

withdrew after initial assignment to treatment arms, leaving 15 participants. Baseline participant 

characteristics (n=15) are shown in Table 4.5. One enrolled male participant no longer wished to 

participate in the study after the third treatment and thus was withdrawn; this participant’s data 

from the three completed treatment arms was included in the analyses. In the end, 14 participants 

(7 males, 7 females) completed the full trial (Figure 4.1). 

4.4.2 Glycemic response 

Glycemic response was expressed as mean changes in glucose from baseline over different 

timepoints in 5 min increments as assessed by CGM (ΔGlucose; Figure 4.3). Statistical analysis 

revealed ΔGlucose was significantly influenced by both time and test meal (p<0.001) but not their 

interaction (p=0.90). Overall, for the main effect of test meal, all millet foods as well as wheat 

couscous had significantly lower glycemic response than white rice [p<0.0001 for millet couscous 

(commercial), millet thick porridge, wheat couscous vs. white rice; p=0.05 for millet couscous 

(self-made) vs. white rice]. Millet thick porridge was also significantly lower than both types of 

millet couscous (commercial and self-made; p=0.01 and p<0.0001, respectively) and wheat 

couscous (p<0.0001). The significantly higher glycemic response of millet couscous (self-made) 

compared to millet couscous (commercial) and wheat couscous (p<0.0001) may be explained by 

its visually blunted and extended ΔGlucose profile (Figure 4.3), although a treatment-by-time 

interaction was not observed. 

Glycemic response characteristics are shown in Table 4.6. For incremental area under the 

curve (iAUC) in the 0-240 min postprandial period (iAUC0-240 min), millet thick porridge was 

significantly lower than white rice (4755.7 vs. 6943.7 mg×min/dL; p=0.03). iAUC between 0-120 
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min in the postprandial period (iAUC0-120 min) was also analyzed and significant differences were 

observed between test meal foods (p=0.03). Again, millet thick porridge had significantly lower 

iAUC0-120 min than white rice (2296.3 vs. 4353.0 mg×min/dL; p=0.02). Change in peak glucose 

values (ΔPeak glucose) and mean peak times were also calculated for each test meal food (Table 

4.6). For mean ΔPeak glucose value, significant differences emerged between test meal foods 

(p=0.03), with millet thick porridge exhibiting a significantly lower ΔPeak glucose value than 

white rice (52.8 vs. 69.9 mg/dL; p=0.02). For mean peak times, no statistically significant 

differences were observed between different test meal foods (p=0.24). 

4.4.3 Appetitive sensations 

Appetitive sensations were expressed as VAS ratings (Figures 4.4-4.5). Hunger was 

significantly influenced by both time and test meal food (p<0.0001; Figure 4.4), but not their 

interaction (p=0.91). Additionally, there were statistically significant differences between mean 

values of hunger in the postprandial period for different test meals (main effects). Notably, millet 

couscous (self-made) had significantly lower overall hunger ratings than white rice (p<0.0001), 

wheat couscous (p=0.02), millet thick porridge (p=0.008), and millet couscous (commercial) 

(p=0.002). Fullness was significantly influenced by both time and test meal foods (p<0.0001; 

Figure 4.5), but not their interaction (p=0.90). Statistically significant differences between mean 

values of fullness for different test meal foods in the postprandial period were also observed. 

Specifically, millet couscous (self-made) had significantly higher overall fullness ratings than 

white rice (p<0.0001), millet thick porridge (p=0.0004), and millet couscous (commercial) 

(p<0.0001). 

4.4.4 Gastric emptying 

Of the 73 13C octanoic acid breath tests measured, there were four gastric half-emptying 

times that were unusually high and did not work well with the established modelling approach 

(Braden et al., 1999; M Sanaka et al., 2007; Masaki Sanaka & Nakada, 2010; Schadewaldt et al., 

1997) (modelling parameters shown in Table 4.3). In one other instance, the R2 model fit for 

percent dose recovery was lower than the 0.80 cut-off (R2=0.69), and thus the accompanying 

gastric half-emptying value was not included in subsequent analysis. With this value excluded, the 
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average R2 for the model fit to percent dose recovery was 0.94±0.04, and the average R2 for the 

model fit to cumulative percent dose recovery was 0.9997±0.0003. When examined as a box-plot, 

a range in half-emptying times per test meal food was apparent (Figure 4.6). Gastric half-emptying 

times visualized by participant and averaged across all test meal foods revealed four instances of 

very long gastric half-emptying times (12.0, 13.8, 16.5 and 34.7 h) in a subset of three participants 

(Figure 4.7). These four instances were deemed to be outliers, because the percent dose recovery 

of the 13C tracer plateaued and did not decrease by more than 1% of its peak value during the 

monitoring period. Even though the model fit was good (R2≥0.93 for percent dose recovery), the 

sustained elevation of 13C percent dose recovery resulted in an overestimation of gastric half-

emptying times (see Figure 4.8 for an example of acceptable compared to excluded percent dose 

recovery curves).  

In the end, no significant differences were found among mean gastric half-emptying times 

for the different test meal foods with outliers removed (p=0.18; Figure 4.9). No significant 

differences were found for lag phase (p=0.89). Millet thick porridge had a significantly higher 

gastric emptying coefficient than white rice (p=0.01) and wheat couscous (p=0.02). The gastric 

emptying coefficient parameter is an overall indicator of gastric emptying, though it is worth 

noting that it lacks a meaningful definition (Masaki Sanaka & Nakada, 2010). 

4.4.5 Analysis of relationship between gastric emptying and glycemic response 

No significant effects of gastric half-emptying time on glycemic response characteristics 

(iAUC0-120min, ΔPeak glucose value, and time of peak glucose value) were observed, both with and 

without outliers included (without outliers: p=0.37, p=0.38, p=0.69, respectively; with outliers: 

p=0.39, p=0.40, p=0.73, respectively; Figure 4.10). 

4.4.6 Breath hydrogen 

Breath hydrogen, as an indicator of fermentation of indigestible carbohydrates in the large 

intestine (Simren & P-O, 2006), was measured during the postprandial period to determine if 

carbohydrate fermentation occurred, which could affect glycemic response and gastric emptying. 

As breath hydrogen values never rose above baseline for any of the treatments, it was concluded 

that fermentability was not a confounding factor in the study (Figure 4.11). 
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4.4.7 In vitro gastric compartment pressure profiles 

Gastric pressure profiles from in vitro experiments using the TIMagc showed millet 

couscous had an initial increase in pressure (~2.5 bar) that was reduced to nearly 0 bar within the 

first 1 h (Figure 4.12). Millet thick porridge exhibited high pressure (exceeding 10 bar at certain 

times) at later times than other test meal foods. Pressure profiles for wheat couscous and white rice 

showed slight initial increases in pressure and remained somewhat elevated (~1 bar) until about 

1.5 and 2 h, respectively. All samples exhibited negligible pressure after 2.5 h, because the gastric 

compartment emptied over time. Pressure values are reflective of viscosity in the stomach. 

4.5 Discussion 

Pearl millet foods had moderately low glycemic response compared to white rice, and 

millet couscous (self-made) had comparably high satiety relative to the other foods, with the 

exception of not having different fullness ratings from wheat couscous. This was despite a lack of 

difference in gastric half-emptying times that had been an original hypothesis of the study, since 

our previous work had shown very slow gastric emptying in millet foods in Malian participants. 

Nevertheless, millet foods may be a viable source of slowly digestible carbohydrates to moderate 

postprandial glycaemia and possibly food intake.          

In the current trial, all millet-based foods and wheat couscous had significantly lower 

glycemic response than white rice (p≤0.05). Our initial thinking was that high viscosity itself was 

the cause of the lower postprandial glycemia values for the two types of millet products, because 

the millet porridge was a thick, viscous one and, as mentioned above, millet couscous was shown 

in a gastric simulator to break down quickly and form a kind of paste. However, glycemic effects 

for viscous starchy foods like the millet thick porridge are different from the low glycemic 

response effect shown by other researchers for viscous soluble fibres (Repin et al., 2017, 2018), as 

starch is degraded fairly rapidly in the small intestine with a parallel drop in viscosity. Mlotha et 

al. (2016) indeed showed that thick maize porridge in Malawi had a high glycemic index. Thus, 

thick starchy porridges do not necessarily have low glycemic response. For the millet couscous, 

our postulate that its rapid breakdown in the stomach may result in formation of a viscous paste to 

slow starch digestion was not borne out in experiments using the TIMagc gastric compartment, 

where millet couscous had lower pressure at later timepoints than the other foods. Also, the idea 
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that thick pastes in the stomach would delay gastric emptying rate thereby lowering postprandial 

glycemia was not supported. We conclude that viscosity was unlikely to be the cause for the lower 

glycaemia of millet foods, and reasoned that it was caused by a slow carbohydrate digestion 

property, which has been reported in some millet foods related to retention of intact millet cell wall 

structures (Hayes et al., 2020), increased intermolecular interactions leading to formation of denser 

matrices (Hayes et al., 2020; Jane & Chen, 1992; B. Zhang et al., 2015), or the presence of phenolic 

compounds (Bora et al., 2019). Furthermore, previous studies have found that meal volume can 

affect gastric emptying rate (Doran et al., 1998; Hunt et al., 1985). Although not measured in this 

study, from observation, the couscous and rice samples were of a similar volume and the porridge 

had slightly less volume (though contained more water).  

Notably, millet couscous (self-made) had overall lower hunger and higher fullness ratings 

compared to the other test meal foods (Figures 4.4 and 4.5), which supports the anecdotal feelings 

of “fullness” reported in West African populations consuming millet foods. However, why millet 

foods did not consistently promote higher satiety compared to other starchy foods matched in 

available carbohydrate remains unclear. Related to the anecdotal feeling of promoted satiety 

reported among individuals in the West African Sahel, it is possible that habitual consumption of 

millet impacts feelings of satiety through a physiological adaptation or cultural expectation of 

satiety.  

No significant differences in gastric half-emptying times were observed among treatments, 

which was in contrast to our previous study in Mali showing millet couscous and thick porridge 

had much slower gastric emptying than non-traditional carbohydrate-based foods including white 

rice (Cisse et al., 2018) (Figure 4.9). Millet foods have been reported to have a slow carbohydrate 

digestion property (Annor et al., 2015; Hayes et al., 2020; Sandhu & Siroha, 2017), and we recently 

linked slow and ileal digestion of carbohydrates to slowed gastric emptying rate in rats (Hasek et 

al., 2020). Furthermore, we showed ileal digesting carbohydrate activated gut-brain axis signalling 

to decrease food intake in rats (Hasek et al., 2018). Although the digestive systems of rodents and 

humans differ in some ways (Dolenšek et al., 2015; Kararli, 1995), the small intestine has common 

structure and function features for the perception, digestion, and absorption of nutrients (Furness 

et al., 2015; Hryn et al., 2018). It was an unexpected result that millet foods did not have long 

gastric half-emptying times, even though this was a primary outcome hypothesis of the study. It is 

notable that half-emptying times for foods in the current trial were approximately 3 h, which is 
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comparable to times for white rice, potatoes, and pasta in the Mali study (Cisse et al., 2018). This 

suggests that the Malian population had the same “baseline” response to foods, but was more 

sensitive or prone to respond to millet. We speculate that usual consumption of millet-based foods 

may condition the body to respond by delaying gastric emptying rate, perhaps through a 

proliferation of ileal enteroendocrine L-cells, as has been observed in the colon in response to 

fermentable carbohydrates (Cani et al., 2007).  

Our findings differ to some degree from two recent studies conducted with pearl millet 

porridge by Alyami et al. (2019; 2019) in populations in the United Kingdom. Notably, we 

observed differences in glycemic response but not gastric half-emptying time for pearl millet foods, 

whereas these previous studies did not find differences in glycemic response but instead observed 

differences in gastric volume as assessed by magnetic resonance imaging (MRI). However, both 

studies by Alyami et al. (2019; 2019) incorporated porridges with particle sizes that were not 

matched, while our study also involved couscous matched for particle size [millet couscous (self-

made), wheat couscous (self-made)]; these differences may contribute to our different findings for 

glycemic response, as particle size of starch-based meals has been shown to affect postprandial 

glucose levels (Heaton et al., 1988). Lower hunger was reported in one of the previous pearl millet 

studies (Alyami, Ladd, et al., 2019), which aligns with our present findings. Intriguingly, Alyami 

et al. (2019) observed a marked decrease in glucose-dependent insulinotropic polypeptide for pearl 

millet porridge compared to oat porridge; investigating the hormonal responses for millet couscous 

may be a promising area of future research. 

Our study had some strengths as well as limitations. We precisely controlled the 

preparation of the test meal foods in terms of matching particle sizes of couscous, and cooking and 

time of cooling prior to serving. Test meal were matched on the amount of available carbohydrate. 

We also did in vitro experiments to gain insight to the potential role of viscosity within the stomach. 

However, we did not collect blood to measure hormone levels (e.g. glucagon-like peptide 1; GLP-

1) that would directly indicate whether or not the ileal brake or gut-brain axis feedback systems 

were triggered, and we also did not measure insulin. From the food side, although we were unable 

to obtain commercial millet couscous from exactly the same grain source as used for the self-made 

millet couscous, both millets were grown locally in Senegal and used in the Dakar market. Still, 

these different millet grain sources could have somewhat influenced differences in glycemic 

responses and appetitive sensations. The test meals differed in contents of fat, protein, and energy, 
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but these did not impact gastric half-emptying times. Other potential limitations include lack of 

blinding, randomization, and palatability measurements. Lastly, for the 13C octanoic acid breath 

test, an assumption made is that the tracer is emptying from the stomach at the same rate as the 

test meal. 

In conclusion, pearl millet-based foods and wheat couscous had lower glycemic responses 

than white rice in a healthy normal weight U.S. population. In addition, millet couscous (self-made) 

had lower overall hunger ratings than white rice, millet thick porridge, millet couscous 

(commercial), and wheat couscous; as well as higher fullness ratings than white rice, millet thick 

porridge, and millet couscous (commercial). These findings demonstrate the potential of some 

millet-based foods to enhance satiety and aid in the control of blood glucose. Gastric half-emptying 

times did not differ among these foods, which was contrary to our previous finding that millet 

couscous and thick porridge markedly delayed gastric emptying rate in a Malian population (Cisse 

et al., 2018), and warrants further investigation. Overall, millet-based foods appear to be a source 

of slowly digestible carbohydrate. 
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Table 4.1 Test meal foods. 

Test meal 

food 
Source 

Initial 

particle 

size (mm) 

Test meal 

size (g, wet 

weight) 

Protein per 

test meal 

(g, dry 

weight) 

Fat per test 

meal (g, 

dry 

weight)1 

Energy per 

test meal 

(kcal)2 

Available 

carbohydrate 

per test meal 

(g, dry 

weight) 

White rice 

Nishiki Brand Rice, JFC 

International Inc., Los 

Angeles, CA, USA 

Medium 

grain (~5-6 

mm in 

length) 

250.4 10.9 0.7 547.7 124.2 

Millet thick 

porridge 

Grain from Alif Group, 

Dakar, Senegal 

Processed to flour (0.300-

0.495 mm) at Purdue 

University, IN, USA 

0.300-

0.495 
281.1 17.0 7.2 633.9 124.2 

Millet 

couscous 

(self-made) 

Grain from Alif Group, 

Dakar, Senegal 

Couscous self-made from 

flour (0.300-0.495 mm) at 

Purdue University, IN, USA 

1.70-2.36 253.4 15.9 6.5 623.3 124.2 

Millet 

couscous 

(commercial) 

Mme. Deme of Free Work 

Services, Dakar, Senegal 
<2.36 253.4 16.9 4.7 617.2 124.2 

Wheat 

couscous 

(self-made) 

Flour from Bob’s Red Mill, 

Milwaukie, OR, USA 

Couscous self-made from 

flour (0.300-0.495 mm) at 

Purdue University, IN, USA 

1.00-2.36 260.6 27.0 1.0 616.1 124.2 

1Including 0.5 g butter. 2Including kcal from 0.5 g butter. 
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Table 4.2 Values used for correction of endogenous 13C for percent dose recovery per timepoint 

for gastric emptying assessment of millet-based meals. Values are means from testing with a 

subgroup of 4 participants (n=4). Values shown were used for the millet thick porridge, millet 

couscous (self-made), and millet couscous (commercial) test meals. Endogenous 13C for white 

rice and wheat couscous were nearly negligible. 

Time (min) 
Millet 13C 

(DOB, ‰) 

0 -0.16 

15 0.46 

30 0.66 

45 1.06 

60 0.84 

75 1.04 

90 1.62 

105 2.02 

120 2.62 

150 3.22 

180 3.80 

210 3.56 

240 3.92 

DOB, delta over baseline. 
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Table 4.3 Parameters from modelling percent dose recovery (PDR) and cumulative percent dose 

recovery (CPDR) of 13C (corrected for endogenous 13C) for each participant. These parameters 

were used for calculating gastric half-emptying time, lag phase, and gastric emptying coefficient. 

Test meal  

Partici-

pant 

number 

PDR model CPDR model  

a b c R2 m k β R2 tHalf (h) 

White rice 

19 15.66 0.62 0.48 0.88 45.65 0.42 1.77 1.00 2.70 

20 18.40 0.70 0.40 0.97 80.39 0.32 1.75 1.00 3.51 

32 12.41 0.68 0.25 0.95 142.61 0.16 1.66 1.00 6.57 

39 16.57 0.01 0.38 0.95 40.67 0.45 1.25 1.00 1.89 

43 19.51 0.54 0.58 0.91 39.29 0.53 1.74 1.00 2.09 

48 17.75 0.60 0.61 0.97 34.18 0.53 1.73 1.00 2.09 

56 21.16 0.57 0.55 0.95 48.72 0.47 1.71 1.00 2.34 

61 19.41 0.17 0.47 0.99 40.15 0.53 1.41 1.00 1.80 

65a 6.89 0.16 0.00 0.93a 566.58 0.02 1.25 1.00 34.69a 

71 16.99 0.32 0.48 0.96 37.76 0.50 1.54 1.00 2.05 

80 15.34 0.44 0.32 0.93 62.33 0.33 1.61 1.00 3.14 

85 20.90 0.65 0.42 0.90 79.53 0.35 1.77 1.00 3.18 

93 18.27 0.32 0.37 0.98 56.72 0.39 1.50 1.00 2.56 

95 16.40 0.52 0.45 0.97 50.58 0.37 1.60 1.00 2.80 

Millet thick 

porridge 

19 58.77 2.19 1.53 0.99 37.98 0.88 3.41 1.00 1.92 

20 33.34 0.93 0.76 0.99 55.39 0.57 2.00 1.00 2.16 

25 14.95 0.43 0.32 0.98 67.53 0.29 1.52 1.00 3.50 

32 15.68 0.52 0.27 0.91 117.36 0.21 1.57 1.00 5.01 

39 26.52 0.63 0.73 0.91 38.83 0.66 1.88 1.00 1.78 

43 39.54 1.37 1.62 0.96 15.04 1.24 2.82 1.00 1.23 

48 24.44 0.69 0.63 0.96 47.16 0.54 1.84 1.00 2.14 

56 21.20 1.16 0.95 0.98 26.48 0.66 2.23 1.00 2.00 

65 10.62 0.47 0.20 0.89 95.71 0.19 1.59 1.00 5.41 

71 10.25 0.75 0.81 0.97 13.82 0.65 1.89 1.00 1.82 

80 30.64 1.02 0.83 0.95 46.55 0.60 2.11 1.00 2.12 

85 23.00 1.56 0.88 0.94 48.33 0.53 2.53 1.00 2.70 

93 17.44 0.36 0.35 0.90 64.59 0.33 1.49 1.00 3.02 

95 27.00 0.53 0.59 0.99 53.48 0.52 1.67 1.00 2.09 

Millet 

couscous 

(self-made) 

19 19.17 0.64 0.55 0.96 46.57 0.45 1.72 1.00 2.47 

20 17.94 0.83 0.42 0.96 85.91 0.31 1.88 1.00 3.75 

25 19.66 0.44 0.43 0.89 57.25 0.40 1.58 1.00 2.59 

32a 9.64 0.16 0.01 0.93a 344.40 0.05 1.30 1.00 16.54a 

43a 10.20 0.10 0.00 0.94a 275.75 0.06 1.25 1.00 13.79a 

48 15.90 0.53 0.36 0.94 69.32 0.31 1.63 1.00 3.47 
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Table 4.3 continued 

 56 22.42 0.47 0.44 0.98 63.63 0.41 1.63 1.00 2.55 

61 24.53 0.70 0.80 0.89 31.96 0.71 1.98 1.00 1.72 

65 12.73 0.25 0.31 0.94 47.29 0.32 1.40 1.00 2.92 

71 18.01 0.55 0.47 0.94 51.60 0.41 1.67 1.00 2.64 

80 15.08 0.50 0.38 0.85 54.27 0.36 1.67 1.00 2.97 

85 17.09 0.91 0.56 0.94 51.92 0.42 2.00 1.00 2.92 

93b 17.32 0.22 0.29 0.69b 66.18 0.33 1.43 1.00 2.91b 

95 18.37 0.40 0.37 0.96 61.64 0.37 1.55 1.00 2.78 

Millet 

couscous 

(commercial) 

19 21.09 0.73 0.67 0.86 40.46 0.53 1.86 1.00 2.22 

20 18.78 1.01 0.52 0.97 76.10 0.35 2.01 1.00 3.49 

25 15.90 0.51 0.35 0.94 66.15 0.33 1.65 1.00 3.28 

32 18.82 0.62 0.44 0.99 62.82 0.37 1.72 1.00 2.95 

39 19.72 0.51 0.44 0.92 59.05 0.40 1.65 1.00 2.68 

43 18.86 0.75 0.57 0.95 45.35 0.47 1.87 1.00 2.48 

48 20.70 0.60 0.46 0.97 63.15 0.39 1.70 1.00 2.78 

56 22.50 0.59 1.21 0.96 14.07 1.16 2.00 1.00 1.06 

65a 8.64 0.22 0.07 0.93a 191.60 0.07 1.29 1.00 11.98a 

71 8.40 0.38 0.60 0.98 14.77 0.57 1.58 1.00 1.81 

80 21.02 0.55 0.98 0.92 19.53 0.81 1.72 1.00 1.35 

85 26.56 0.74 0.63 0.98 53.71 0.53 1.88 1.00 2.24 

93 33.10 1.24 0.97 0.96 40.33 0.69 2.37 1.00 2.00 

95 18.92 0.81 0.49 0.96 64.53 0.39 1.90 1.00 3.06 

 

 

Wheat 

couscous 

(self-made) 

19 19.82 0.56 0.46 0.91 55.99 0.43 1.73 1.00 2.58 

20 15.23 0.64 0.36 0.98 76.39 0.29 1.70 1.00 3.82 

25 9.40 0.48 0.39 0.89 31.65 0.39 1.69 1.00 2.79 

32 11.35 0.39 0.16 0.95 116.80 0.16 1.50 1.00 6.03 

39 20.27 0.45 0.37 0.96 74.45 0.35 1.60 1.00 3.00 

43 26.27 0.87 0.76 0.84 39.46 0.64 2.06 1.00 1.94 

48 16.65 0.65 0.48 0.97 50.30 0.41 1.77 1.00 2.78 

56 19.43 0.52 0.80 0.99 23.76 0.70 1.67 1.00 1.54 

61 25.15 0.45 0.87 0.97 25.56 0.87 1.76 1.00 1.30 

65 12.25 0.37 0.21 0.93 89.10 0.21 1.50 1.00 4.75 

71 18.22 0.52 0.61 0.93 32.31 0.58 1.72 1.00 1.90 

80 15.83 0.50 0.48 0.91 39.42 0.47 1.69 1.00 2.34 

85 17.87 0.82 0.55 0.90 50.52 0.44 1.95 1.00 2.76 

93 22.75 0.37 0.51 0.95 49.08 0.51 1.59 1.00 2.04 

95 14.33 0.45 0.29 0.93 79.42 0.25 1.55 1.00 4.04 

CPDR, cumulative percent dose recovery; PDR, percent dose recovery; tHalf, gastric half-emptying time. aInstances 

in which the PDR did not decrease by more than 1% of its peak value during the monitoring period and thus these 

values were deemed outliers. btHalf value excluded from further analyses because R2 for PDR was less than 0.80.  
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Table 4.4 Mean lag phase and gastric emptying coefficient values (n=14)a. 

 Mean gastric emptying parameter 

Test meal Lag phase GEC 

White rice 1.29 ± 0.18 2.86 ± 0.04b 

Millet thick porridge 1.36 ± 0.12 3.12 ± 0.13a 

Millet couscous (self-made) 1.33 ± 0.09 2.89 ± 0.05ab 

Millet couscous (commercial) 1.25 ± 0.11 2.97 ± 0.09ab 

Wheat couscous (self-made) 1.36 ± 0.13 2.83 ± 0.07b 

a ± SEM, Standard error of the mean. GEC, gastric emptying coefficient. Means (with outliers 

removed) not sharing the same letter are significantly different (p<0.05). No statistically 

significant differences were found for lag phase (p=0.89). 
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Table 4.5 Participant baseline characteristics (n=15)a. 

Characteristic  Mean ± SEMb 

Age (y) 26.6 ± 1.2 

Height (m) 1.7 ± 0.0 

Weight (kg) 67.6 ± 2.9 

Body mass index (kg/m2) 22.8 ± 0.7 

Fasting blood glucose (mg/dL) 87.3 ± 2.9 

Sexc 8 Md; 7 F 

aOne participant withdrew after completion of the third treatment arm, but this participant’s 

characteristics have still been included.  

bSEM, Standard error of the mean.  

cM, male; F, female.  

dOne male participant withdrew after completion of the third treatment arm, leaving a final of 7 

males completing the entire trial.
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Table 4.6 Glycemic response characteristicsa. 

Test meal food 

Mean glucose 

iAUC0-240 min       

(mg×min/dL) 

Mean glucose 

iAUC0-120 min       

(mg×min/dL) 

Mean ΔPeak 

glucose value 

(mg/dL) 

Mean peak 

glucose time (min) 

White rice 6943.7 ± 779.9a 4353.0 ± 400.8a 69.9 ± 5.9a 61.3 ± 3.8a 

Millet thick 

porridge 
4755.7 ± 546.8b 2296.3 ± 302.0b 52.8 ± 4.5b 66.1 ± 3.9a 

Millet couscous 

(self-made) 
5912.0 ± 997.7ab 3596.3 ± 479.2ab 59.5 ± 5.8ab 62.5 ± 4.4a 

Millet couscous 

(commercial) 
5535.7 ± 708.4ab 3740.9 ± 492.4ab 58.6 ± 6.0ab 59.3 ± 4.0a 

Wheat couscous 

(self-made) 
5686.1 ± 397.1ab 3399.8 ± 263.0ab 56.4 ± 3.9ab 56.4 ± 2.9a 

a ± SEM, Standard error of the mean. iAUC, incremental area under the curve; ΔPeak glucose 

value, change in peak glucose value from baseline. Means not sharing the same letter are 

significantly different (p<0.05). 
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Figure 4.1 Participant recruitment and participation flow diagram. 
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Figure 4.2 Example percent dose recovery (PDR) and 

cumulative percent dose recovery (CPDR) graphs and 

modelling for determining gastric half-emptying times of the 

different test meal foods for one participant. A: White rice. B: 

Millet thick porridge. C: Millet couscous (self-made). D: Millet 

couscous (commercial). E: Wheat couscous. All figures labelled 

1 show PDR, while all figures labelled 2 depict CPDR. 

 

A1 A2 B1 B2 

C1 C2 D1 D2 

E1 E2 
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Figure 4.3 Mean glucose expressed as mean ΔGlucose (glucose difference from baseline) for 

carbohydrate-based test meals. Error bars represent standard error of the mean (SEM). Means not 

sharing the same letter are significantly different (p<0.05) in main effects: All millet foods and 

wheat couscous had significantly lower glycemic response than white rice [p<0.0001 for millet 

couscous (commercial), millet thick porridge, wheat couscous vs. white rice; p=0.05 for millet 

couscous (self-made) vs. white rice]. Millet thick porridge had significantly lower glycemic 

response than both types of millet couscous (commercial and self-made; p=0.01 and p<0.0001, 

respectively) and wheat couscous (p<0.0001). Millet couscous (self-made) also had significantly 

higher glycemic response than millet couscous (commercial) and wheat couscous (p<0.0001). A 

significant effect for time was also evident (p<0.0001). 
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Figure 4.4 Mean hunger ratings (Visual Analog Scale) immediately prior to and 4 h following 

consumption of carbohydrate-based test meal foods. Error bars represent standard error of the 

mean (SEM). Means not sharing the same letter are significantly different (p<0.05) in main 

effects: Millet couscous (self-made) was significantly lower than white rice (p<0.0001), wheat 

couscous (p=0.02), millet thick porridge (p=0.008), and millet couscous (commercial) (p=0.002). 

A significant effect for time was also evident (p<0.0001). 
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Figure 4.5 Mean fullness ratings (Visual Analog Scale) immediately prior to and 4 h following 

consumption of carbohydrate-based test meal foods. Error bars represent standard error of the 

mean (SEM). Means not sharing the same letter are significantly different (p<0.05) in main 

effects: Millet couscous (self-made) was significantly higher than white rice (p<0.0001), millet 

couscous (commercial) (p<0.0001), and millet thick porridge (p=0.0004). A significant effect for 

time was also evident (p<0.0001). 
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Figure 4.6 Mean gastric half-emptying times for each carbohydrate-based test food displayed as 

a box-plot, with either all values (A) or outliers removed (B) (n=14). No statistically significant 

differences were found (p=0.15). Circles represent values from individual participants per test 

meal. Central red marks indicate the median. Bottom and top edges of the blue box represent the 

25th and 75th percentiles, respectively. Note that instances for which the percent dose recovery of 

the tracer did not decrease by more than 1% of its peak value during the monitoring period were 

deemed outliers (4 values greater than 10 h). 
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Figure 4.7 Gastric half-emptying times by participant averaged across all test meal foods (n=15, 

includes participant 61 who withdrew during the study). Exploratory data visualization, so no 

statistical analysis was conducted. Circles represent values for individual test meal foods per 

participant. Central red mark indicates the median. Bottom and top edges of the blue box 

represent the 25th and 75th percentiles, respectively. Note that instances for which the percent 

dose recovery of the tracer did not decrease by more than 1% of its peak value during the 

monitoring period were deemed outliers (4 values greater than 10 h). 
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Figure 4.8 Example of included (A) and excluded (B) percent dose recovery (PDR) modelling 

curves for gastric half-emptying time. Excluded modelling curves (and therefore gastric half-

emptying times) did not decrease by more than 1% of their peak value during the monitoring 

period, such as the curve seen in (B), were deemed outliers. 
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Figure 4.9 Mean gastric half-emptying time for each carbohydrate-based test food (excluding 4 

outlier values) as determined using the 13C octanoic breath test. Error bars represent ± standard 

error of the mean (SEM). No statistically significant differences were found (p=0.18). 
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Figure 4.10 Relationship between gastric half-emptying time (h) and glucose incremental area 

under the curve from 0-120 min (iAUC0-120min; mg×min/dL; A, D), ΔPeak glucose value (mg/dL; 

B, E), and peak glucose time (min; C, F) (n=14). Analyses in two instances of inclusion of 

gastric half-emptying time values are shown. A-C: no values removed. D-F: outliers removed. 

Note that instances in which the percent dose recovery of the tracer did not decrease by more 

than 1% of its peak value during the monitoring period were deemed outliers.   
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Figure 4.11 Mean breath hydrogen during the 4 h postprandial period for each test meal (n=14, 

excluding one participant due to outlier values and one additional outlier value) as a general 

indicator of potential fermentation of the test meals. As breath hydrogen values never rose above 

baseline for any of the treatments, it was concluded that fermentability was not a confounding 

factor in the study. 
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Figure 4.12 Mean pressure values within the gastric compartment during in vitro gastrointestinal 

experiments for white rice, millet thick porridge, millet couscous (self-made), and wheat 

couscous. Means represent values from duplicate runs from experiments lasting 6 h. 
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 MODERATING CARBOHYDRATE DIGESTION 

PROMOTES FAT OXIDATION AND MAY ENHANCE METABOLIC 

FLEXIBILITY 

5.1 Abstract 

The impact of carbohydrate digestion rate on its utilization for energy by the body is 

incompletely understood but may have implications on insulin sensitivity, adipose tissue 

deposition, and weight status as they influence overall health. In this study, we investigated dietary 

conditions with different degrees of carbohydrate digestion and specific metabolic consequences 

that relate to energy expenditure. A key focus was on metabolic flexibility, or the ability of the 

body to efficiently switch between carbohydrate and fat oxidation. Our overall hypothesis was that 

reduced carbohydrate digestion rate decreases the utilization of carbohydrate as a substrate for 

energy (i.e. carbohydrate oxidation) and increases metabolic flexibility. Respiratory exchange ratio 

(RER), representing the ratio of carbohydrate oxidation to fat oxidation, was measured during  four 

24 h cycles through indirect calorimetry in mice lacking the mucosal maltase-glucoamylase 

enzyme (null) [n=8] and wild-type mice [n=8] fed six different diets (53% Conventional starch 

[raw corn starch], 53% Resistant starch [high-amylose corn starch, Novelose 260], 35% Resistant 

starch [Novelose 260], 18% Resistant starch [Novelose 260], 65% Sucrose, and High-fat [42% 

fat]). During the final two cycles in the chamber for each diet, fungal amyloglucosidase (AMG, 

0.5%) was supplemented in drinking water to increase carbohydrate digestion in both the null and 

wild-type mice treatment groups. Characteristics of RER were determined through modeling using 

the sine equation as well as percent relative cumulative frequency (PRCF) analyses coupled with 

modeling using the Weibull and Mixed Weibull Cumulative Distribution functions. Results 

showed that null mice did not consistently exhibit lower carbohydrate oxidation than wild-type 

mice, but they tended to have higher metabolic flexibility (𝑏_2). The Conventional starch diet 

promoted greater fat oxidation (𝑥50_1 ) in both null and wild-type mice but did not increase 

carbohydrate oxidation (𝑥50_2) compared to the other diets, yet it tended to promote metabolic 

flexibility (sine c, 𝑏_1), suggesting slow carbohydrate digestion (as seen with raw corn starch) has 

greater effect on these aspects of metabolism than low carbohydrate digestion (as seen with high-

amylose corn starch). The Sucrose diet had the highest carbohydrate oxidation and the High-fat 

diet had the lowest carbohydrate oxidation (p<0.05 for 𝑥50_2), validating the modeling approaches 
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employed, and dysregulated metabolism was suggested for the High-fat diet (sine a, c, 𝑥50_1, 𝑥50_2, 

𝑏_2). AMG generally increased carbohydrate oxidation for all but the Sucrose and High-fat diets 

(𝑥50_2) and caused more rapid shifts to carbohydrate oxidation (sine c, 𝑏_2), yet it blunted fat 

oxidation (𝑥50_1). The application of the novel approaches used in this study may help reveal how 

diets can have distinct effects on substrate oxidation and energy metabolism despite lack of 

differences in energy expenditure. Overall, given these findings, we propose that moderating 

carbohydrate digestion provides the ideal combination of balancing carbohydrate and fat oxidation 

while promoting metabolic flexibility.  

5.2 Introduction 

As the prevalence of obesity and type 2 diabetes continues to increase worldwide, there are 

persistent concerns about dietary carbohydrates and public health (Kroemer et al. 2018; AlEssa et 

al. 2018). Dietary carbohydrates constitute the main source of energy in most diets (Shan et al. 

2019), and thus determining how carbohydrates can be used to help prevent or reduce the 

detrimental side effects of obesity and type 2 diabetes, or complications thereof, could be key for 

combating these public health challenges. The issue is carbohydrate quality. Basic differences in 

the types of carbohydrates – such as sugar (sucrose), starch, and fiber – are widely recognized. Yet 

– within these types – not all sugars, starches, or fibers are the same. For starches, differences in 

botanical source (E.-S. Lee et al. 2018; Martinez et al. 2018); macro-, micro-, or fine structure 

(Roman et al. 2017; Zhang, Venkatachalam, and Hamaker 2006; Ao et al. 2007; Roman et al. 

2020); food form (Li et al. 2019; Barkeling et al. 1995); processing and preparation (Wu et al. 

2019; Borah, Deka, and Duary 2017; Vinoy et al. 2013); and other factors can give rise to different 

post-ingestive (acute) effects on the body, which may lead to other impacts in the long term 

(Ludwig and Ebbeling 2018; Santiago et al. 2015; AlEssa et al. 2018). These mainly relate to starch 

digestion rate and location of digestion in the small intestine (Zhang and Hamaker 2009; Zhang et 

al. 2015; B.-H. Lee et al. 2013). 

The digestion of starch-based glucose polymers to absorbable free glucose is termed α-

glucogenesis (Diaz-Sotomayor et al. 2013), involving six starch-degrading enzymes: salivary α-

amylase, pancreatic α-amylase, two types of maltase-glucoamylase (Mgam; N-terminal and C-

terminal), and two types of sucrase-isomaltase (Si; N-terminal and C-terminal). A general 

proposition is that these six enzymes complement each other and may be adaptive to evolutionary 
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and cultural variations in food and feeding. Substantial research has been conducted to better 

understand the catalytic sites, activities, and substrate specificities of these enzymes from humans 

and other animal species (Diaz-Sotomayor et al. 2013; Simsek et al. 2015; Quezada-Calvillo, 

Robayo-Torres, Opekun, et al. 2007; Nichols et al. 2009; Brás et al. 2018; Quezada-Calvillo, 

Robayo-Torres, Ao, et al. 2007; Lin, Hamaker, and Nichols 2012; Chegeni et al. 2018; Frandsen 

and Svensson 1998; Santos, Goda, and Koldovsky 1992). However, it remains incompletely 

understood how α-glucogenesis related to differences in starch digestion rate and amount impacts 

carbohydrate metabolism and energy partitioning.  

One key question surrounding carbohydrates, digestion, and health is how consumption of 

carbohydrates ultimately affects body weight. Although body weight is affected by many complex 

factors, in a basic sense it is the interchange between the amount of energy consumed and the 

amount of energy expended. Different foods can affect both sides of this interchange, and the rate 

and extent of digestion may play a pivotal role. In the present study, we investigated specific 

metabolic consequences that relate to energy expenditure of diets containing carbohydrates with 

different digestibilities. For the carbohydrates of focus, we selected a starch that is in part resistant 

to digestion in the small intestine (Novelose 260, high-amylose corn starch) and a conventional 

starch that is more digestible (normal corn starch). Resistant starch passes into the large intestine 

to undergo fermentation, producing short chain fatty acids (SCFAs), while conventional starch is 

digested and absorbed in the small intestine to more directly affect glycemic response and 

carbohydrate metabolism. Our study is focused on oxidation, but implicit to this is a “toggling” 

between oxidation of absorbed glucose and fermentation for resistant starch generating SCFAs, 

which requires further investigation. We also studied diets that contained sucrose (highly available 

carbohydrate (Sun and Empie 2012)) and that were high in fat (low in carbohydrate) as 

comparators. Intriguingly, our initial findings showed that mice fed the carbohydrate-based diets 

did not exhibit differences in energy expenditure (Supplementary Figure A.1). These findings were 

surprising because the extents of carbohydrate digestibility differed markedly among the diets, and 

thus suggest that the mice possessed some form of metabolic adaptability. Such adaptability likely 

involves changes in utilization of carbohydrate vs. fat as substrates for energy and thus relates to 

metabolic flexibility, or the ability of an organism to adjust substrate oxidation (i.e. fat or 

carbohydrate) according to its availability (J. M. S. Fernández-Calleja, Bouwman, Swarts, Oosting, 

et al. 2019). Having poor metabolic flexibility (i.e. metabolic inflexibility) is thought to be rooted 
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in a rigidity in mitochondrial substrate selection, such that mitochondria have hindered ability to 

freely switch fuel choice according to nutritional circumstances (Muoio 2014). Having a high 

degree of metabolic flexibility is associated with good health and, conversely, a low degree of 

metabolic flexibility is linked with poor health, such as the obese state and type 2 diabetes 

(Goodpaster and Sparks 2017; Muoio 2014; Meex et al. 2010; van de Weijer et al. 2013). Although 

good health and proper weight balance are not the same, they are often linked. Metabolic flexibility 

has generally been studied in the context of disease states (Stull et al. 2010; Kelley and Mandarino 

2000; van de Weijer et al. 2013), exercise (Meex et al. 2010; Malin et al. 2013), and fasting 

(Reichenbach et al. 2018; van de Weijer et al. 2013), though very few studies relate to diet (Begaye 

et al. 2020; Duivenvoorde et al. 2015; Gribok et al. 2016) and even further to carbohydrate 

digestibility (J. Fernández-Calleja et al. 2018). 

Given our findings that energy expenditure was the same for carbohydrates differing in 

digestion characteristics, we hypothesized that dietary carbohydrates with different digestibilities 

would have distinct effects on the utilization of absorbed glucose as a substrate for energy (i.e. 

carbohydrate oxidation) and the ability to switch between utilization of carbohydrate versus fat for 

metabolism (i.e. metabolic flexibility). Namely, we reasoned that dietary carbohydrates with 

slower digestion would decrease the utilization of carbohydrate as a substrate for energy (i.e. 

carbohydrate oxidation) and increase metabolic flexibility. To thoroughly probe these hypotheses, 

we altered carbohydrate digestibility/digestion in three ways and examined the impacts of these 

alterations on respiratory exchange ratio (RER), or the ratio of carbohydrate oxidation to fat 

oxidation, in mice. These three alterations were as follows: 

1) Eliminating a starch-degrading enzyme complex through use of Mgam knockout 

(null) mice 

2) Feeding diets with different in vitro carbohydrate digestion profiles 

3) Supplementing a starch-degrading enzyme (amyloglucosidase, AMG) (Warren et al. 

2015) that is key to digesting starch; this restored the missing Mgam activity in null 

mice 

Effectively, we decreased carbohydrate digestion through Mgam knockout (null) mice and diets 

with different levels of resistant starch, and we increased carbohydrate digestion by providing 

AMG in efforts to determine how carbohydrate digestion impacts the utilization of carbohydrates 
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for energy (i.e. substrate partitioning and metabolic flexibility). In alignment with the three means 

of altering carbohydrate digestion, we hypothesized the following: 

1) Mgam knockout (null) mice would have reduced RER and higher metabolic 

flexibility compared to wild-type mice 

2) Reduced carbohydrate digestion rate would reduce RER and lead to greater metabolic 

flexibility  

3) Supplementation with AMG to increase carbohydrate digestion would result in higher 

RER and decreased metabolic flexibility 

 To test these hypotheses, we measured RER as a primary outcome through indirect 

calorimetry, which represents the ratio of carbohydrate oxidation to fat oxidation. However, the 

existing approaches for analyzing RER data did not allow for optimal conclusions to be drawn 

about substrate partitioning and metabolic flexibility. Therefore, we developed two new 

approaches for examining specific characteristics of carbohydrate oxidation through RER:  

1) Modeling with the sine equation to describe diurnal patterns of RER and gain insight 

to metabolic flexibility 

2) Percent relative cumulative frequency (PRCF) analysis as proposed by Riachi et al. 

(2004), plus modeling with the Weibull and Mixed Weibull Cumulative Distribution 

function to differentiate carbohydrate vs. fat oxidation as well as impacts on 

metabolic flexibility 

These approaches involve parameters that describe specific characteristics of RER which enable 

more insights to be gained, especially related to carbohydrate vs. fat oxidation and the efficiency 

of switching between these two oxidation modes. The application of such approaches for the 

present study and in future research may help reveal how very different diets can have distinct 

effects on carbohydrate oxidation, especially despite lack of differences in energy expenditure. 

5.3 Materials and Methods 

 This study was performed in Mgam knockout and wild-type mice. All study procedures 

were conducted with full approval from the Baylor College of Medicine Institutional Animal Care 

and Use Committee (IACUC; protocol AN-1577).  



 

 

148 

5.3.1 Animals 

 Equal groups of Mgam knockout (null) and wild-type mice were used (n=8 per group; 8 

males in null group, 7 males and 2 females in wild-type group). Both groups were Sv/129 mice 

(The Jackson Laboratory, Bar Harbor, ME). For the null mice, the Mgam gene was ablated as 

reported previously (Quezada-Calvillo, Robayo-Torres, Opekun, et al. 2007) and genotyping 

proceeded using quantitative polymerase chain reaction (PCR) of tail DNA as described in Nichols 

et al. (2009). For the wild-type mice, the Mgam gene was not ablated. All mice were weaned at 

least 42 days before initiation of experimentation. Mice were housed in rooms maintained at 22 ± 

2ºC with a 12:12 h dark:light cycle (18:00-06:00 dark).  

5.3.2 Experimental diets 

 Mice were fed six different diets ad libitum over time in the following sequence: 1) 53% 

Conventional starch diet (Envigo-Teklad TD.01629; Envigo, Indianapolis, IN), 2) 53% Resistant 

starch diet (Envigo-Teklad TD.02130), 3) 65% Sucrose diet (Envigo-Teklad TD.02129), 4) 35% 

Resistant starch diet (Envigo-Teklad TD.02129), 5) 18% Resistant starch diet (Envigo-Teklad 

TD.02130), 6) High-fat diet (21.2% fat, or 42% kcal from fat; Envigo-Teklad TD.88137). With 

the exception of the High-fat diet, the only difference among the diets was in the carbohydrate 

portion (Table 5.1). Novelose 260 was donated and used as the resistant starch in the three resistant 

starch-based diets (Ingredion, Westchester, IL). The % kcal and % by weight from protein, 

carbohydrate, and fat were matched for all but the High-fat diet. Further, all diets had an energy 

density of 3.6 kcal/g with the exception of the High-fat diet, which had 4.5 kcal/g. When the mice 

were not on an experimental diet, they were fed a chow lab diet (PicoLab Rodent Diet 20, 5053; 

62% kcal from carbohydrate, 25% kcal from protein, 13% kcal from fat; LabDiet, St. Louis, MO). 

Total starch in each diet was determined using a total starch analysis kit (amyloglucosidase/alpha-

amylase method; Total Starch Assay Kit [AA/AMG], K-TSTA-50A, Megazyme, Wicklow, 

Ireland). Starch and moisture contents of all diets are shown in Table 5.2. Amounts of rapidly 

digestible starch, slowly digestible starch, and resistant starch were determined using the Englyst 

assay (H. N. Englyst, Kingman, and Cummings 1992; K. N. Englyst et al. 1999), and percent 

amylose within the carbohydrate component of each diet was calculated (considering that normal 

corn starch contains 28% amylose and Novelose 260 contains 70% amylose). Furthermore, food 
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quotients (macronutrient oxidation ratio for food or, in this case, for different diets) were calculated 

for all of the diets assuming a quotient of oxidation of 1.0 for carbohydrates, 0.70 for fats, and 

0.825 for proteins. According to IACUC requirements, diets were stored for no longer than 6 weeks 

before being provided to animals. 

For experimentation, animals were initially subjected to the diets and indirect calorimetry 

chambers for 4 cycles (24 h per cycle) prior to data collection as a means of acclimation (Figure 

5.1). Due to the nature of these experiments, one animal was housed per chamber/cage. Following 

these 4 cycles, data collection proceeded for 4 more cycles (24 h per cycle) in the indirect 

calorimetry chambers as described below. Animals were weighed before and after being housed 

in the chambers. At least 10 day/night cycles served as a washout period between diets. Mice were 

also given free access to drinking water at all times (either with or without AMG supplementation 

for data collection, see section 5.2.3).  

5.3.3 Amyloglucosidase (AMG) supplementation 

 During the latter two cycles of the data collection period in the indirect calorimetry 

chambers (cycles 3 and 4), each animal’s drinking water was replaced by drinking water 

supplemented with 0.5% amyloglucosidase (AMG) from Aspergillus niger (2 mL AMG/400 mL 

drinking water; AMG 300 L, AMP30095, activity 300 U/mL; Novo Nordisk BioChem, North 

America, Inc., Franklinton, NC). This supplementation level was determined considering a 

standard AMG activity of 0.2 U/g digestible starch in mice, and by assuming animals would 

consume 2.5 g starch/d; taken together, these factors indicated a level of 0.5 U/d was desired, 

which was then incorporated with the activity level of the AMG per mL (3000 U/mL) to indicate 

2 mL AMG per 400 mL drinking water was required (0.5%). Following the termination of cycle 

4 for each diet data collection period, the drinking water was switched back to the unsupplemented 

version. 

5.3.4 Indirect calorimetry – Respiratory Exchange Ratio (RER) 

 The respiratory exchange ratio (RER) of each mouse for the 4-cycle data collection period 

was determined using an open-circuit indirect calorimeter (version 5.61, Oxymax, Columbus 

Instruments, Columbus, OH) designed to measure consumption of oxygen (VO2) and production 
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of carbon dioxide (VCO2). This 4-cycle data collection period was initiated following the 4-cycle 

acclimation period (Figure 5.1). With 16 separate chambers, this system had the capacity to house 

16 mice simultaneously. Calibration of the VO2 and VCO2 sensors as well as flow meters was 

performed immediately prior to the data collection period for each diet. Sampling of inlet air from 

each chamber ensued every 43 min during the data collection period, with a 30 s measure time and 

120 s settle time (referencing method 2, interval 1). Using equations derived from mass balance 

across the chamber, VO2 and VCO2 were calculated. The Weir equation (Weir 1949) was used to 

internally calculate energy expenditure for each mouse, with adjustments made for individual 

mouse body weight (before being placed in indirect calorimetry chamber for each diet) and RER. 

RER values were averaged per 24 h separately for cycles 2 and 3 per treatment group (factors: diet 

× genotype × cycle), as well as analyzed and modeled for pooled treatment groups overall or per 

individual mice as described below (sections 5.2.5-5.2.7). 

5.3.5 Modeling of RER using sine equation 

 To more readily characterize the impact of starch digestion on RER, the RER data for 

individual mice was fit to curves using the sine equation (Eq. 1):  

𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑     [1] 

Where a indicates the amplitude, b indicates the period (breadth or width), c indicates the 

horizontal shift on the x-axis, and d indicates the vertical shift on the y-axis for the sinusoidal curve. 

We would expect that smaller a value for amplitude (smaller range in RER), smaller b value for 

period (less swift fluctuation in RER), and smaller value for d (lower RER values overall) would 

be indicative of less carbohydrate oxidation. Meanwhile, smaller/more negative c value would 

represent increased susceptibility to carbohydrate oxidation, or greater metabolic flexibility, 

because this indicates an earlier rise in RER. Modeling was conducted by first converting time 

from hh:min to numeral form (using the VALUE function in Excel; Microsoft Corporation, 

Redmond, WA) and then converting it to fraction of day by subtracting the integer from each 

number (using the INT function in Excel). This allowed for comparison of RER values per 24 h 

cycle. Furthermore, RER values were transformed by subtracting the minimum value observed in 

cycles 2 and 3 per mouse by the range in RER values for that same mouse and time period. 

Essentially, this “stretched” the y-axis so that values ranged from 0 to 1, which helped create better 

curve fitting to the sine equation (otherwise, the range in untransformed RER values was very 
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small, which did not work well with the sine curve fitting). Following transformation, the 24 h 

periods for cycle 2 (without AMG) and cycle 3 (with AMG) were modeled using the “fit” function 

with nonlinear least squares method option in MATLAB (R2020a, Update 5, 9.8.0.1451342, The 

MathWorks, Inc., Natick, MA). Each cycle in this analysis began at 18:00 because this was the 

beginning of the dark period. Cycles 2 and 3 were selected for analysis in order to capture the exact 

transition from without AMG supplementation to with AMG supplementation.  

5.3.6 Calculation of Percent Relative Cumulative Frequency (PRCF) of RER 

Untransformed RER data for individual mice was used to calculate RER percent relative 

cumulative frequency (PRCF) per mouse genotype, diet, and cycle (cycle 2 [without AMG] vs. 

cycle 3 [with AMG]) according to the method of Riachi et al. (2004). Briefly, this involved the 

following steps: (1) the RER data was sorted in ascending order, (2) an interval of increment was 

selected (i.e. 0.01), (3) the frequency of observations per interval within the range of all values 

was calculated, (4) the cumulative frequency was calculated, and (5) the cumulative frequency was 

expressed as a percentile curve. The analysis was performed for individual mice per diet, genotype, 

and cycle, as well as for pooled data from all mice per diet, genotype, and cycle. 

5.3.7 Modeling of PRCF 

Following calculation of PRCF, plots of RER (ascending order) vs. PRCF were fit to the 

Weibull Cumulative Distribution function (Eq. 2) and the Mixed Weibull Cumulative Distribution 

function (Eq. 3). The key difference between these two model functions is that the Weibull 

Cumulative Distribution function (Eq. 2) represents a unimodal distribution, whereas the Mixed 

Weibull Cumulative Distribution function represents a bimodal distribution (Eq. 3). 

𝑦 = 1 − 𝑒𝑥𝑝 (− [
𝑥

𝑥50
]

𝑏

ln (2))     [2] 

𝑦 = 𝛼 (1 − 𝑒𝑥𝑝 (− [
𝑥

𝑥50_1
]

𝑏_1

)) + (1 − 𝛼) (1 − 𝑒𝑥𝑝 (− [
𝑥

𝑥50_2
]

𝑏_2

))     [3] 

Where for Eq. 2: 

y = percent relative cumulative frequency (PRCF; 0 to 100%); 

𝑥50 = median respiratory exchange ratio (median RER); 

𝑏 = distribution breadth constant (dimensionless), indicative of slope; 
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And for Eq. 3: 

y = percent relative cumulative frequency (PRCF; 0 to 100%); 

𝛼 = mixing weight parameter that represents the proportion of the first mode; 

𝑥50_1 = median respiratory exchange ratio (median RER) for the first mode; 

𝑏_1 = distribution breadth constant for first mode (dimensionless), indicative of slope for 

the first mode; 

𝑥50_2 = median respiratory exchange ratio (median RER) for the second mode; 

𝑏_2 = distribution breadth constant for the second mode (dimensionless), indicative of 

slope for the second mode. 

 Modeling was done using the “fitnlm” function with the nonlinear least squares method 

option in MATLAB (R2020a, Update 5, 9.8.0.1451342, The MathWorks, Inc., Natick, MA). The 

Weibull Cumulative Distribution function (Eq. 2) was used as in Hayes et al. (2020) and 

Swackhamer et al. (2019) (although in these papers it was referred to by an alternative name, the 

“Rosin-Rammler Distribution”), whereas the Mixed Weibull Cumulative Distribution function (Eq. 

3) was used as in Drechsler and Ferrua (2016). Bounds were placed on the 𝑥50 , 𝑥50_1 , and 

𝑥50_2 model parameters to restrict them to the range of RER values for each individual dataset, and 

𝛼 was restricted to the range of 0 to 1. An iterative modeling approach was used in which 5 initial 

“best guess” fits were attempted in order to achieve the best fit per each parameter for each curve. 

An F-test using the F ratio for goodness of fit was used as in Ludden et al. (1994) to assess how 

using the simpler Weibull Cumulative Distribution compared to using the more complex Mixed 

Weibull Cumulative Distribution for each individual curve (for curves representing RER from 

individual mice and pooled from all mice). Examples of the model comparison for two curves 

from individual mice are shown in Supplementary Figure A.2.  

5.3.8 Mean RER per 24 h 

 Mean RER per 24 h cycle was calculated for each group (diet × genotype × cycle 

[without/with AMG]) by taking averages of the RER values for cycles 2 and 3. 
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5.3.9 Body weight 

 The body weight of each mouse was measured prior to its placement into the indirect 

calorimetry chamber for each diet acclimation/experimental period for adjustment of the RER 

calculation (i.e. 6 times total, once before for each of the 6 diets). Additionally, body weight of 

each mouse was measured at the termination of each diet experimental period in the indirect 

calorimetry chamber system (i.e. after cycle 4).  

5.3.10 Ex vivo assay of jejunal enzyme activities 

 Following experimentation with all the diets, a subset of null and wild-type mice were 

subjected to one of 6 dietary conditions for 4 additional 24 h cycles (n=4 per condition per 

genotype): 1) Conventional starch diet, 2) 53% Resistant starch diet, 3) Conventional starch diet 

with AMG, 4) Conventional starch diet containing 0.5 g/kg acarbose [enzyme inhibitor], 5) 

Sucrose diet, or 6) fasting [for 12 h only]. Following these exposures, mice were euthanized by 

decapitation at 24:00 for all conditions except fasting (which was done at 12:00). The abdomen of 

each mouse was opened and the small intestine was dissected. The intestinal lumen was flushed 

immediately with 0.01% CaCl3 in PBS at 4ºC (10 mmol/L phosphate, 0.15 mol/L NaCl, pH 6.8) 

in order to clean and chill the luminal tissue. The intestine was transferred to a chilled glass plate 

and mid-jejunal segments were isolated, placed into capped tubes, snap frozen in liquid nitrogen, 

and stored at -70ºC until assaying. Jejunal enzyme activities were assessed for sucrase and α-

glucosidase using the Dahlqvist method (Dahlqvist and Borgstrom 1961; Dahlqvist 1962; 

Dahlqvist and Telenius 1969). Briefly, sucrase activity involved 60-min incubations at 37ºC with 

16 mmol/L sucrose as substrate. Assay of α-glucosidase activity followed procedures previously 

reported (Quezada-Calvillo, Robayo-Torres, Opekun, et al. 2007; Quezada-Calvillo, Robayo-

Torres, Ao, et al. 2007; Nichols et al. 2009) with 20 g/L maltodextrin as substrate. International 

enzyme units (U/g protein; 1 U = 1 μmol glucose released/min reaction) were used to express 

activity.  

5.3.11 Statistical analysis 

 To determine the appropriate sample size of mice to use (diet × genotype × cycle; 24 

treatment groups total [with 6 diets, 2 genotypes, and 2 cycles]), a power calculation was conducted 



 

 

154 

based on average RER over a 24 h period (G*Power v.3.1.9.7) (Faul et al. 2007). The effect size 

was set at 0.34 (effect size F, ratio of population standard deviations) using the G*Power built-in 

determination tool by inputting the results of Fernández-Calleja et al. (2018) for RER over a 24 h 

period. For six diets split into 24 treatment groups and power of 0.8, it was determined that a 

minimum of 5 mice was required per treatment group (n=5). Eight mice were used per treatment 

group (n=8). Note that, because each mouse received each treatment, a total of 16 mice were used. 

SAS version 9.4 (SAS Institute, Cary, NC) was used to conduct all statistical analyses. 

Three-way ANOVA (PROC MIXED) with diet, mouse genotype, and cycle (with or without AMG) 

as fixed effects was used to determine differences in sine equation parameters (i.e. a, b, c, d) as 

well as in Weibull and Mixed Weibull function parameters (i.e. 𝑥50 and 𝑏 for Weibull; 𝛼, 𝑥50_1, 

𝑏_1, 𝑥50_2, and 𝑏_2 for Mixed Weibull). Residuals of all models were plotted and visually assessed 

for homoscedasticity and normality using histograms and quantile-quantile plots. Statistically 

significant differences were considered at p<0.05, and Tukey’s post hoc test for multiple 

comparisons was performed when the overall model was significant (p<0.05 for F value).  

For the pooled PRCF analyses, the data from all mice was pooled together and thus there 

were no replicates. For statistical analysis of this data, 95% confidence intervals were determined 

for the Weibull and Mixed Weibull parameters (i.e. 𝑥50, 𝑏, 𝛼, 𝑥50_1, 𝑏_1, 𝑥50_2, 𝑏_2), an approach 

that has been used previously with modeling (Gardner and Altman 1986; Kreutz, Raue, and 

Timmer 2012). If the confidence intervals did not overlap, the parameter estimates were considered 

significantly different at p<0.05. 

5.4 Results and Discussion 

5.4.1 Starch digestibility, percent amylose, and food quotient of experimental diets 

According to the results from the Englyst assay, the Conventional starch diet had the 

highest amount of rapidly digestible starch and a negligible amount of resistant starch relative to 

the other diets (Table 5.3). The Resistant starch diets contained incrementally increasing amounts 

of resistant starch according to the level of Novelose 260 inclusion in each (18%, 35%, and 53% 

Resistant starch diets had 10.2, 15.3, and 28.5% resistant starch, respectively; Table 5.3). It is 

important to note that Novelose 260 is not entirely comprised by resistant starch, which accounts 

for the discrepancies between the Novelose 260 inclusion levels and actual amounts of resistant 
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starch in these diets. Additionally, Novelose 260 contains a fraction of pre-treated/pre-gelatinized 

starch that is likely very highly digestible. Although technically the diets containing Novelose 260 

had lower percentages of rapidly digestible starch compared to the Conventional starch diet, the 

rapidly digestible starch they did contain may have been very highly digestible in vivo – in such a 

manner that is not accurately reflected in vitro. This speaks to one of the limitations of the Englyst 

assay (Zhang and Hamaker 2009). The Sucrose, High-fat, and PicoLab (non-experimental) diets 

contained negligible amounts of resistant starch. The PicoLab diet contained the highest amount 

of slowly digestible starch among all the diets, which may be attributed to the inclusion of ground 

raw corn in this diet instead of corn starch (as was used for the experimental diets). Additionally, 

the corn starch used in the experimental diets was in the raw state. Raw corn starch has a well-

characterized slow digestion property (Zhang, Ao, and Hamaker 2006), and, accordingly, the 

Conventional starch diet had a relatively high amount of slowly digestible starch according to the 

Englyst assay.    

The 42% fat diet was designed to mimic the average U.S. adult human diet in terms of 

macronutrient percentage and general composition. Its inclusion in these experiments not only 

served as a means to “calibrate” our results but also to add context for other studies using this diet.  

 A portion of maltodextrin was included in each of the diets because it improved their 

pelletization. This contributed to the fairly large fractions of rapidly digestible starch (55.1% to 

74.0%, dry starch basis; Table 5.3) in the diets. Additionally, the High-fat diet contained more 

sucrose than starch (341.5 g/kg vs. 150 g/kg) and no maltodextrin; sucrose improves pelletization 

of the diet as well and thus no maltodextrin was required in the High-fat diet. 

 When percent amylose within the digestible carbohydrate component of each diet was 

calculated, the diets fell in the following order based on highest to lowest amylose percentage: 53% 

Resistant starch diet > 35% Resistant starch diet > 18% Resistant starch diet > Conventional starch 

diet > PicoLab diet (non-experimental) > High-fat diet > Sucrose diet (Table 5.3). The spread in 

amylose percentages ranged from 0 to 57% of the carbohydrate component, and it is worth noting 

that not all amylose constitutes resistant starch (Cairns et al. 1995), as there are numerous other 

chemical, structural, and physical factors that affect resistant starch content.  

Food quotients were calculated based on the percent of each macronutrient by weight in 

each of the diets and were very similar among the diets, ranging from 0.73 to 0.79 (Table 5.3). 

These calculations are solely based on macronutrient compositions (i.e. percentages of 
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carbohydrate, protein, and fat) and thus were similar for all the diets. Such quotients may benefit 

from factoring in additional aspects of the diets, such as carbohydrate digestibility. 

5.4.2 Effect of diet, genotype, and AMG supplementation on RER 

 The mean parameters a, b, c, and d from the sine equation curve fitting for individual mice, 

along with the corresponding R2 values as indications of goodness of fit, are shown in Table 5.4. 

Because of variations observed in mice activity level (though not measured quantitatively), values 

that were 2 standard deviations from the mean (±2 standard deviations) were excluded in 

calculating the means per parameter (note that this was not done for the means for R2 though). 

Statistical analyses were conducted both with and without outliers. Figures 5.2-5.7 show the mean 

parameter equations per group plotted as smooth curves per diet. Figures 5.8 and 5.9 depict the 

mean parameter equations plotted as smooth curves per null and wild-type mice, respectively. 

Figures 5.10 and 5.11 illustrate mean parameter equations plotted as smooth curves for both 

genotypes but with AMG only and without AMG only, respectively. Figure 5.12 shows the mean 

parameter equations split by diet. A sine function visualization tool may aid the reader in 

interpreting these results (e.g. https://www.geogebra.org/m/znb4GNk7).  

Results from three-way ANOVA showed that there was a main effect of diet for the a and 

c parameters (p<0.0001 for both). Post hoc tests revealed that the High-fat diet had significantly 

lower a parameter than all the other diets (Tables 5.4 and 5.5; Figure 5.12), which suggests such 

diet had lower metabolic flexibility because the fluctuation in RER values (indicated by the 

amplitude, a) was smaller (Muoio 2014). This also corroborates previous research indicating that 

high-fat diets impair the diurnal rhythm of RER (Small et al. 2019). For the c parameter, the High-

fat diet had significantly higher values (i.e. values that were less negative) than all the other diets, 

and the 53% Resistant starch diet had significantly higher values than the 18% Resistant starch 

diet. In other words, RER values for the High-fat diet shifted to the right and had a less swift rise 

in RER, signifying a slower transition to carbohydrate oxidation. The 53% Resistant starch diet 

had a less swift shift to carbohydrate oxidation than the 18% Resistant starch diet, potentially due 

to lower digestion, and thus higher fermentation, of the high amount of resistant starch and ensuing 

fatty acid oxidation. In general, RER for all the carbohydrate diets became higher earlier in time 

compared to the High-fat diet, which corresponds with the higher amount of carbohydrate in these 

diets. Furthermore, higher digestible carbohydrate amount resulted in an earlier shift to 

https://www.geogebra.org/m/znb4GNk7
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carbohydrate oxidation. This effect was also observed for the c parameter when outliers were 

included (p=0.0002). This novel finding suggests a more efficient switch to carbohydrate oxidation 

for carbohydrates that are more digestible, though it is important to note that the Conventional 

starch diet contained raw corn starch and had a high proportion of slowly digestible starch. We 

postulate that moderating carbohydrate digestion by feeding slowly digestible starch may optimize 

the efficiency of switching between fat and carbohydrate oxidation. 

An intriguing pattern can be observed in Figure 5.12A for null mice fed the Conventional 

starch diet and all three resistant starch-based diets: there is an incremental shift of the c parameter 

according to the level of resistant starch. Namely, the curves appear to shift according to their c 

parameter values in the following order: Conventional starch diet (-10.47), 18% Resistant starch 

diet (-10.30), 35% Resistant starch diet (-10.07), [Sucrose diet is next for an unknown reason (-

9.56)], and 53% Resistant starch diet (-9.04). A smaller (i.e. more negative) c value represents an 

earlier rise in carbohydrate oxidation and, although only significant differences in c were observed 

between the 53% Resistant starch diet and 18% Resistant starch diet, a later shift toward 

carbohydrate oxidation was observed by increasing the resistant starch content in the diet. An 

exploratory linear regression analysis of this data revealed that there were trending direct 

relationships between both amylose percentage and resistant starch amount (separately) vs. the c 

parameter from the sine equation curve fitting for the three resistant starch diets and the 

Conventional starch diet (r=0.91, p=0.09 for amylose percentage vs. c; r=0.94, p=0.06 for resistant 

starch amount vs. c; Figure 5.13). Lower percent amylose and resistant starch amount were 

associated with earlier rise in RER (i.e. earlier shift to carbohydrate oxidation as indicated by lower 

c value). No other relationships or trending relationships were found for null mice with AMG or 

wild-type mice either with or without AMG (p>0.05), which suggests Mgam has larger influence 

over digesting resistant starches than Si. These results suggest that faster and higher carbohydrate 

digestion promotes earlier switching to carbohydrate oxidation and thus may indicate enhanced 

metabolic flexibility. However, in this case, the Conventional starch diet also contained a 

substantial amount of slowly digestible starch and thus further investigation is needed to determine 

if the more efficient switching is due to rapidly digestible starch or slowly digestible starch. 

There was only an effect of genotype for the d parameter, such that null mice had higher d 

than wild-type (p=0.01; Tables 5.4 and 5.5; Figures 5.8 and 5.9), which may mean that 

carbohydrate oxidation was increased in null mice (because higher d indicates RER values were 
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shifted higher on the y-axis). This finding was surprising because we expected the null mice to 

have reduced carbohydrate oxidation compared to the wild-type mice because they were lacking 

Mgam enzyme activity. However, this effect was not observed when outliers were included in the 

analysis (p=0.21).  

As for the effect of AMG supplementation, statistical analysis showed that there was a 

main effect of cycle (i.e. with vs. without AMG) for the parameters a, c, and d, such that a was 

lower with AMG (p=0.03), c was lower with AMG (p<0.0001), and d was higher with AMG 

(p<0.0001) (Table 5.5; Figures 5.10 and 5.11). This effect for the c parameter was also observed 

when outliers were included (p=0.04; Table 5.5). These results show that AMG made the 

amplitude of the curve smaller, shifted the curve to the left (on the x-axis), and shifted the curve 

up (on the y-axis). Fundamentally, they demonstrate that AMG increased the affinity for and 

utilization of carbohydrate for oxidation, which further supports that notion that increased 

carbohydrate digestion promotes carbohydrate oxidation (d parameter) and switch to carbohydrate 

oxidation (c parameter). Yet, the lower a parameter in the context of a high d parameter signifies 

a blunted lower range of RER values, which may be detrimental because this suggests less fat 

oxidation was occurring. We propose that moderated carbohydrate digestion may allow for better 

switching between both high carbohydrate oxidation and high fat oxidation (i.e. high RER and low 

RER).  

5.4.3 Effect of diet, genotype, and AMG supplementation on PRCF of RER 

Data analyzed per individual mice  

PRCF of RER was analyzed per individual mice and fit to both the Weibull Cumulative 

Distribution (Eq. 2) and Mixed Weibull Cumulative Distribution (Eq. 3). An F-test was conducted 

to examine which model would be superior to use for each individual mouse per diet, genotype, 

and cycle (n=190 total); this analysis indicated that the Weibull was only superior to the Mixed 

Weibull in one instance (p=0.09), whereas the Mixed Weibull was better for all 189 others 

(p<0.05), noting that only 10 instances had F-tests with p-values between 0.0001 and 0.0500 and 

the rest were lower than 0.0001. For the purposes of this investigation, we decided to move forward 

using the Mixed Weibull Cumulative Distribution for analyzing the PRCF data of individual mice. 

We included the one instance that technically had a better fit to the Weibull Cumulative 
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Distribution by the F-test (with p=0.09) because its R2 was still high (R2=0.99 for the Mixed 

Weibull Cumulative Distribution). In a similar manner to what was done with the sine equation 

parameters, we excluded values that were 2 standard deviations from the mean (±2 standard 

deviations) in calculating the means for each parameter (𝛼, 𝑥50_1, 𝑏_1, 𝑥50_2, 𝑏_2) per treatment 

group. Statistical analyses were conducted excluding these outliers. All mean parameter estimates 

are shown in Table 5.6, with 𝑥50_1 and 𝑥50_2 also shown in Figure 5.14, and 𝑏_1 and 𝑏_2 also 

shown in Figure 5.15.  

To aid in interpretation of the parameters from both the Weibull Cumulative Distribution 

(even though we are not reporting the data from this analysis) and the Mixed Weibull Cumulative 

Distribution, visual representations of each with theoretical curves are included in Supplementary 

Figures A.3 and A.4 for the Weibull and in Supplementary Figures A.5-A.9 for the Mixed Weibull. 

In each of these figures, one parameter is altered while all others are held constant in order to 

examine how one parameter affects the shape of the curve and therefore relates to RER.  

The PRCF curves of the RER data generally appeared bimodal, with one mode generally 

ranging from approximately 0.65 to 0.85 RER and the other mode ranging from approximately 

0.95 to 1.03 RER. Because an RER of 0.70 indicates fat is being used as the predominant fuel 

source, and an RER of 1.00 indicates carbohydrate is being used as the predominant fuel source, 

we propose that the two modes in our PRCF curves represent fat oxidation and carbohydrate 

oxidation, respectively. Using this interpretation, the 𝑥50_1  value is suggested to represent the 

median RER of the fat oxidation mode, and the 𝑥50_2 value is suggested to represent the median 

RER of the carbohydrate oxidation mode. Furthermore, the 𝑏_1 and 𝑏_2 values describe the fat 

oxidation and carbohydrate oxidation modes, respectively. 

Using the Mixed Weibull Cumulative Distribution, three-way ANOVA indicated a main 

effect of diet for the 𝑥50_1 , 𝑥50_2 , and 𝑏_2  parameters (p<0.0001, p<0.0001, and p=0.01, 

respectively; Table 5.6, Figures 5.14 and 5.15). Post-hoc analyses revealed that the Conventional 

starch and 18% Resistant starch diets had significantly lower 𝑥50_1  values than 53% Resistant 

starch, Sucrose, and High-fat diets, indicating that this diet had lower median RER values for the 

first mode, which we propose is the mode representing fat oxidation. A lower RER value for the 

fat oxidation mode suggests greater degree of fat oxidation. The explanation as to why the 

Conventional starch and 18% Resistant starch diets would have greater fat oxidation than diets 

containing larger amounts of resistant starch is unclear, but the greater amount of raw corn starch 
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in these diets likely had a slow digestion property and may have played a role (Zhang, Ao, and 

Hamaker 2006). Furthermore, oxidation of fat within the body is generally not driven by the 

amount of fat consumed but instead by the lack of carbohydrate consumed (i.e. displacement of 

carbohydrate consumed); this is further affected by body weight, body composition, and level of 

activity (Flatt 1995; Kevin D. Hall 2012; Longo et al. 2010). In our case, the mice were similar in 

body weight (see “Body Weight” section below) and body composition (data not shown); however, 

we did not measure their activity. The High-fat diet had higher 𝑥50_1 than anticipated, but it is 

important to note that this diet also contained a relatively high amount of sucrose. Specific to the 

null mice, these mice have been shown to have enhanced activity of sucrase-isomaltase (Si) as 

partial compensation for the lack of Mgam (Quezada-Calvillo, Robayo-Torres, Opekun, et al. 

2007), and this Si may have a preferential ability to hydrolyze sucrose and thereby affect RER. 

For 𝑥50_2, diets ranked as follows (highest to lowest 𝑥50_2, or median RER for the second mode): 

Sucrose diet > 53% Resistant starch diet = 18% Resistant starch diet > 35% Resistant starch diet 

= Conventional starch diet > High-fat diet (Table 5.6; Figure 5.14). Because 𝑥50_2 represents the 

median RER of the second mode, which we propose describes carbohydrate oxidation, these 

findings suggest greater carbohydrate oxidation was observed for the carbohydrate-predominant 

diets compared to the High-fat diet. Specifically, the Sucrose diet contained a large portion of 

readily available carbohydrate (and note the different absorption pathway for fructose (Sun and 

Empie 2012) that contributes to carbohydrate oxidation), and thus it had the highest carbohydrate 

oxidation, with mean values of 1.11-1.12. Because de novo lipogenesis may increase RER 

(Crescenzo et al. 2013; Glamour et al. 1995), such values suggest carbohydrates were being 

oxidized and stored as fat for the Sucrose diet feeding. The 53% Resistant starch diet may have 

had a portion of very rapidly digestible carbohydrate from the Novelose 260 to drive carbohydrate 

oxidation, as described above. The reason the 18% Resistant starch diet had similar mean 

carbohydrate oxidation to the 53% Resistant starch diet is rather perplexing, but it may also be that 

the 35% Resistant starch diet has an optimized ratio of resistant starch to raw corn starch to exert 

an effect on RER. The meaning of the effect size of these differences (values from 1.04-1.08 for 

53% Resistant starch diet compared to 1.00-1.04 for 35% Resistant starch diet) is also worthy of 

consideration. As the Conventional starch diet also had relatively low 𝑥50_2  (carbohydrate 

oxidation) compared to the other carbohydrate-dominant diets, the raw corn starch in this diet 

could have been more slowly delivered to the body to affect carbohydrate oxidation or processes 
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that ultimately impact carbohydrate oxidation. Most of the in vivo work on slowly digestible 

carbohydrates to date has focused on glycemic response or physiological/hormonal responses, and 

the work on resistant carbohydrates has generally focused on glycemic response, fermentation, and 

the gut microbiome. Aside from one study by Fernández-Calleja et al. (2018) showing a more 

pronounced carbohydrate oxidation response in female mice compared to male mice fed a high-

amylose diet (diet with 60% of carbohydrate component from amylose), to our knowledge little is 

known about how the amount or type of slowly digestible or resistant carbohydrate can affect 

metabolism and partitioning of carbohydrate for energy. Sophisticated tools have been developed 

that allow for simultaneous, continuous, and prolonged measurement of RER, 13CO2, and 

fermentation indicators (i.e. H2 and CH4) using an enhanced indirect calorimetry system (J. M. S. 

Fernández-Calleja et al. 2018; J. Fernández-Calleja et al. 2018; J. M. S. Fernández-Calleja, 

Bouwman, Swarts, Billecke, et al. 2019; J. M. S. Fernández-Calleja, Bouwman, Swarts, Oosting, 

et al. 2019), which makes investigations of carbohydrate partitioning for oxidation as well as 

metabolic flexibility promising areas for future research. For 𝑏_2 , the High-fat diet had 

significantly higher values than the Sucrose diet, but all other diets did not differ (Table 5.6; Figure 

5.15). This finding suggests there was a narrower spread in RER values for the second mode 

(representing carbohydrate oxidation) for the High-fat diet than for the Sucrose diet 

(Supplementary Figure A.8). A key concept in metabolic flexibility is how substrate utilization 

changes during the transition from fed to fasted states (Goodpaster and Sparks 2017). A narrowing 

in the range of RER values in either the carbohydrate or fat oxidation modes could be indicative 

of a swift and more complete change in substrate utilization (as opposed to a gradual change, as 

would be characteristic of a wider range of values in the mode). From this perspective, a narrower 

range of RER values, or higher 𝑏_1  or 𝑏_2  values, may be indicative of enhanced metabolic 

flexibility. 

A main effect of genotype was observed for the 𝑥50_1 and 𝑏_2 parameters (p=0.0004 and 

p=0.02, respectively), such that null mice had significantly higher 𝑥50_1 and 𝑏_2 than wild-type 

mice (Table 5.6, Figures 5.14 and 5.15). The higher 𝑥50_1 (representing the fat oxidation mode) 

for null mice suggests that altered ability to digest carbohydrate also reduced fat metabolism, 

aligning with the concept that fat oxidation levels change more as a function of carbohydrate intake 

and energy expenditure (Flatt 1995); however, in this line of thinking, hindered or slowed 

carbohydrate digestion (as is the case for null mice) would theoretically lead to increased fat 



 

 

162 

oxidation instead of the decreased oxidation observed, so this requires further investigation. Yet, 

this finding corroborates the increased d values observed for null mice from the sine equation 

approach. Considering that null mice likely had increased levels of resistant starch due to their lack 

of Mgam, it appears that slow carbohydrate digestion (but not low carbohydrate digestion as seen 

for resistant starch) promotes fat oxidation. The higher 𝑏_2 suggests that null mice had a narrow 

spread in RER values for the second mode (representing carbohydrate oxidation), which suggests 

a more complete switch to carbohydrate oxidation and thus increased metabolic flexibility. In the 

end, null mice burned less fat as fuel compared to wild-type mice, yet null mice had a higher degree 

of metabolic flexibility in the carbohydrate oxidation mode. These differences were overall minor 

compared to what we anticipated for mice lacking a complete set of enzymes, but they support the 

previous findings that Si is able to handle the digestion of most types of starch, such as those used 

here, while Mgam has wider versatility for hydrolyzing more difficult to digest starches and other 

-glucans (B.-H. Lee et al. 2016). 

Regarding AMG supplementation, there was a main effect of cycle (i.e. with AMG vs. 

without AMG) for the 𝑥50_1 , 𝑥50_2 , and 𝑏_2  parameters (p=0.002, p<0.0001, and p=0.03, 

respectively; Table 5.6, Figures 5.14 and 5.15). For 𝑥50_1, values were significantly higher with 

AMG compared to without AMG, which suggests that adding AMG had an impact on the fat 

oxidation mode despite AMG acting on carbohydrates [aligning with the carbohydrate 

displacement theory of Flatt (1995)]. These results agree with the sine equation results described 

above, and we reason that the apparent lower degree of fat oxidation observed with AMG 

supplementation may be undesirable. For 𝑥50_2 , adding AMG also increased 𝑥50_2 values, 

signifying supplementation of the diets with AMG increased median RER of the second mode 

(representing carbohydrate oxidation). This suggests AMG increased partitioning of carbohydrates 

to be used for metabolism and energy use or storage. AMG supplementation also somewhat 

increased 𝑏_2, indicating that it decreased the spread of RER values in the second (carbohydrate 

oxidation) mode and increased metabolic flexibility. However, it appears that the effect was most 

pronounced for the High-fat diet, though the diet × cycle interaction was not significant. These 

findings do not support our hypothesis related to AMG. Yet, the blunted fat oxidation observed 

with AMG (generally higher 𝑥50_1  values) may not be ideal, and we speculate that rapidly 

digestible carbohydrates may similarly impede fat oxidation. It is intriguing to note that the 

Conventional starch and 18% Resistant starch diets, both which have greater amounts of slowly 
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digestible starch, had lower 𝑥50_1 values (Figure 5.14), suggesting that slowly digestible starch 

may have optimal digestibility to enable a greater amount of fat oxidation.  

An interaction effect was found for 𝛼 such that genotype × cycle was significant (p=0.03), 

but post hoc tests corrected for multiple comparisons revealed there were no statistically significant 

differences between any genotype × cycle treatment groups (there was only a trending difference 

between wild-type mice without AMG and wild-type mice with AMG, p=0.10). No other 

interactions were significant (p>0.05).      

Data analyzed as pooled from all mice 

Weibull Cumulative Distribution 

For the pooled PRCF analysis, the Weibull Cumulative Distribution yielded a good fit for 

the 24 treatment groups (minimum R2 of 0.94, mean R2 of 0.97 ± 0.00), but the Mixed Weibull 

Cumulative Distribution significantly improved the fit for 19 of the 24 groups (p<0.05 for F-test 

comparing the two models, mean R2 of 0.99 ± 0.00). We examined the data using both approaches 

and included all 24 treatment groups in both.  

PRCF curves of the pooled data are depicted separately per diet in Figure 5.16, split by 

genotype in Figure 5.17, and split by cycle (with AMG vs. without AMG) in Figure 5.18. Because 

these analyses were of pooled data and no measures of variation could be calculated from the data 

itself, 95% confidence intervals were determined through modeling and used to identify 

statistically significant differences among parameters. Weibull parameters of 𝑥50 and 𝑏 are shown 

in Tables 5.7 and 5.8, respectively. Mixed Weibull parameters of 𝛼, 𝑥50_1, 𝑏_1, 𝑥50_2, and 𝑏_2 are 

shown in Tables 5.9-5.13, respectively. The tables include arrows in separate columns for genotype 

and AMG to more readily visualize the effects of these two factors within each diet. 

For 𝑥50  from the Weibull Cumulative Distribution, the Sucrose diet was significantly 

highest with the exception that wild-type mice consuming this diet with AMG did not significantly 

differ from wild-type mice consuming the 53% Resistant starch diet with AMG (Table 5.7). This 

is consistent with the previous PRCF approach (Mixed Weibull with curve fitting for data from 

individual mice) and the idea that greater carbohydrate oxidation is observed for diets containing 

more highly available carbohydrate (e.g. sucrose). As mentioned above, the relatively high 

carbohydrate oxidation for the 53% Resistant starch diet could possibly be related to the supposed 
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fraction of very highly digestible carbohydrate in Novelose 260, also noting that the raw crystalline 

regions of high-amylose corn starch are digested simultaneously with the amorphous regions (Man 

et al. 2012; Zhang, Ao, and Hamaker 2006). The null and wild-type mice fed Conventional starch 

diet without AMG had the lowest values overall, with null mice fed the High-fat diet having a 

similarly low value. Because the effect observed for the Conventional starch diet was lost when 

AMG was provided, it appears that the corn starch in this diet may have exerted an effect due to a 

slow digestion property, which appears to be beneficial for optimizing the switching between fat 

oxidation and carbohydrate oxidation, although this requires further investigation. Low 𝑥50 for the 

High-fat diet can be expected because this diet had a lower percentage of carbohydrate. The 

remaining diets' 𝑥50  values fell between the Sucrose and High-fat/Conventional starch diets 

(without AMG). Genotype differences emerged for the 53% Resistant starch and High-fat diets, 

with additional minor differences for the 35% and 18% Resistant starch diets fed to null mice with 

AMG (Table 5.7). A lower 𝑥50 for null mice than wild-type mice fed the 53% Resistant starch diet 

suggests hindered carbohydrate oxidation overall, as fermentation of the high amount of resistant 

starch was likely occurring in the large intestine to a greater degree in the null mice than wild-type 

mice because they lacked Mgam. The lower 𝑥50 for null mice compared to wild-type mice when 

fed High-fat diet may seem surprising because of the large portion of fat in this diet compared to 

the other diets. However, as noted above, the High-fat diet contained a relatively high amount of 

sucrose, and the enhanced activity of Si in null mice may have partially compensated for the lack 

of Mgam (Quezada-Calvillo, Robayo-Torres, Opekun, et al. 2007) to hydrolyze sucrose and 

increase RER. AMG supplementation generally increased 𝑥50 when both null and wild-type mice 

were fed the Conventional starch and 53% Resistant starch diets, and only null mice when fed the 

35% Resistant starch and 18% Resistant starch, and High-fat diets. These findings suggest 

increasing carbohydrate digestion through AMG supplementation resulted in increased 

carbohydrate oxidation. Overall, instances that increased 𝑥50 suggest that the median RER shifted 

toward more carbohydrate oxidation (Supplementary Figure A.3). However, this approach 

involves only the overall median RER and thus distinctions in the distribution of the first and 

second RER modes were not captured using this set of analyses (see Figure 5.16A-E, for 

visualization of the bimodal distributions for most of the groups per diet). 

For 𝑏 from the Weibull Cumulative Distribution, only subtle differences were observed. 

The key difference was that the High-fat diet caused 𝑏 values to increase relative to the other diets, 
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and this is readily apparent in comparing Figure 5.16F to Figure 5.16A-E, as well as in Figures 

5.17 and 5.18. According to the rationale described above, this may signify enhanced metabolic 

flexibility for the High-fat diet compared to the other diets. However, the High-fat diet also had a 

blunted upper limit of RER, suggesting the High-fat diet enhanced switching of RER for a lower 

range of values, which is not beneficial (Muoio 2014). We propose that the High-fat diet caused a 

dysregulation of RER as opposed to improved metabolic flexibility. The Sucrose and 18% 

Resistant starch diets had the lowest overall 𝑏 values, ranging between 6.36 and 7.28, but they 

were not consistently significantly different from the other diets. Such low 𝑏 values indicate wider 

spread of RER values (Supplementary Figure A.4), which could be interpreted as decreased 

metabolic flexibility. For the effect of genotype, null mice fed the High-fat diet without AMG had 

significantly higher 𝑏 value than wild-type mice fed the same diet without AMG, but, this effect 

was not observed when AMG was supplemented. Because a higher 𝑏 value signifies a narrower 

spread of RER values, this suggests null mice had higher metabolic flexibility, and this effect was 

likely due to limited carbohydrate digestion because supplementation with AMG negated the effect. 

Overall, the higher 𝑏 values for the High-fat diet show a narrower spread of RER values was 

observed for this diet compared to the other diets (Supplementary Figure A.3, Figures 5.16-5.18), 

while genotype and AMG had minimal effect on the spread of RER according to this approach.  

Mixed Weibull Cumulative Distribution 

The Mixed Weibull Cumulative Distribution is advantageous over the Weibull Cumulative 

Distribution in that it can more readily characterize the bimodal distributions that were observed 

for a majority of the PRCF curves for RER (e.g. Figure 5.16). In the Mixed Weibull Cumulative 

Distribution, the 𝛼 parameter is an indicator of relative partitioning between fat and carbohydrate 

oxidation, as it designates the split between the two modes (note that we propose the first mode 

represents fat oxidation and the second mode represents carbohydrate oxidation, as described in 

section 5.3.3.1). A smaller 𝛼  indicates more of the distribution is partitioned to carbohydrate 

oxidation, and a larger 𝛼  indicates more of the distribution is partitioned to fat oxidation 

(Supplementary Figure A.5). Using the pooled data approach with 95% confidence intervals for 

the mean parameter values, in general the three resistant starch diets had larger 𝛼 values than the 

Conventional starch diet (Table 5.9 and Figure 5.19), which is reasonable considering resistant 

starch is not as easily digested and absorbed in the small intestine and may prompt greater fatty 
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acid oxidation as it passes into the large intestine where it is fermented to produce short chain fatty 

acids. This would limit the amount of carbohydrate available for digestion, absorption, and 

metabolism. Oddly, the High-fat diet had 𝛼 values that varied greatly (from 0.126 to 0.712), which 

suggests dysregulated metabolism and may be partially attributed to the fact that the RER data for 

this diet visually appeared to be more unimodal rather than bimodal (Figure 5.16). Yet, the F-test 

indicated the Mixed Weibull Cumulative Distribution significantly improved the fit compared to 

the Weibull Cumulative Distribution for the High-fat diet using this pooled data approach. There 

were inconsistencies in the impact of genotype. Namely, there were no differences between null 

and wild-type mice for the Conventional starch or 18% Resistant starch diets, but there were 

differences for the 53% Resistant starch diet with AMG, the Sucrose diet without AMG, the High-

fat diet without AMG, and the 35% Resistant starch diet both with and without AMG (Table 5.9 

and Figure 5.19). In the 53% Resistant starch diet with AMG and Sucrose diet without AMG, null 

mice had lower 𝛼 than wild-type mice. These results suggest greater partitioning of carbohydrates 

for energy when: (1) the diet with the greatest amount of resistant starch (least digestible starch) 

was given in combination with the AMG to increase digestion and (2) the diet with the most 

amount of sucrose was provided, potentially indicating overexpression of Si in null mice. For the 

High-fat diet without AMG, the null mice had higher 𝛼 than wild-type mice, which may be due to 

the lower/slower ability of null mice to digest starch in combination with the low portion of 

carbohydrate in the diet. Within the 35% Resistant starch diet, null mice had higher 𝛼 than wild-

type when they were not given the AMG supplement, but with AMG the effect switched – the null 

mice had lower 𝛼 than wild-type mice. This switch in impact suggests the combination of 35% 

Resistant starch diet and AMG gave null mice an increased affinity to oxidize carbohydrate 

compared to wild-type mice. Regardless, AMG either decreased 𝛼  or had no effect for both 

genotypes for all diets. It had the most pronounced effect for the 53% Resistant starch diet. This 

effect of AMG supports that a smaller 𝛼  signifies more of the distribution is partitioned to 

carbohydrate oxidation because AMG increases carbohydrate digestion. However, it is curious 

that this effect was not observed using the Mixed Weibull approach with curve fitting to individual 

mice. 

The 𝑥50_1 parameter ranged from 0.739 to 0.876 RER among the 24 treatment groups (diet 

× genotype × cycle; Table 5.10). Wild-type mice consuming the High-fat diet with AMG had the 

highest 𝑥50_1 value overall (0.876 RER; Figure 5.18B), which was significantly higher than all 
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other groups (p<0.05; Table 5.10). Null mice under the same conditions had the second highest 

value (0.849 RER), although this was not significantly different from the null mice fed the Sucrose 

diet (both with and without AMG). These findings seem to suggest that lower oxidation of fat was 

observed – at least in the fat oxidation RER mode – when mice were fed a High-fat diet, regardless 

of whether or not Mgam was present, which may suggest that mice fed this diet were experiencing 

smaller alterations in fat oxidation and storage than when fed the other diets. In a previous study, 

blunted RER values (values going both not very high or very low) were observed for mice fed a 

normal chow diet for 17 wk and then fed a high-fat diet for 4 days compared to lean mice fed the 

normal chow diet the entire study, and this effect was further blunted for mice fed a high-fat diet 

for 17 wk (Longo et al. 2010). Previous research has shown that high-fat diets impair the diurnal 

rhythm of RER (Small et al. 2019), and in the present study aberrations in RER are apparent 

through the sine equation approach (Table 5.4; Figures 5.7-5.12) as well as PRCF approaches 

(Figures 5.16-5.18), especially for the α parameter calculation for pooled data noted above. Both 

null and wild-type mice fed the Conventional starch diet without AMG had the lowest 𝑥50_1 values 

among the groups, although these did not differ from null mice fed 53% Resistant starch without 

AMG or wild-type mice fed 18% Resistant starch without AMG (Table 5.10). As stated above, we 

hypothesize that the slowly digestible starch present in the raw corn starch for this diet may have 

enabled more efficient switching to low RER values, promoting greater fat oxidation. The null 

mice fed 53% Resistant starch without AMG were expected to have a low 𝑥50_1 value (i.e. greater 

fat oxidation) because this diet contained the largest amount of resistant starch (which would pass 

into the large intestine to undergo fermentation and fatty acid oxidation), the mice lacked the 

Mgam enzyme, and no supplement was given to increase carbohydrate digestion; in essence, this 

treatment group had the lowest level of possible carbohydrate digestion among the carbohydrate-

predominant diets. As for genotype, there was a genotype effect for the 53% Resistant starch, 

Sucrose, and High-fat diets, although it was inconsistent among them (e.g. null mice had 

consistently lower 𝑥50_1  than wild-type mice for the 53% Resistant starch diet both with and 

without AMG, but they had consistently higher 𝑥50_1 for the Sucrose diet; Figure 5.17). A lower 

𝑥50_1 for null mice fed the 53% Resistant starch diet suggests greater fat oxidation; in this treatment 

group, less carbohydrate digestion would be occurring due to the high amount of resistant starch, 

and such resistant starch may be more readily fermented because of the lack of Mgam enzyme. 

Conversely, the higher 𝑥50_1 for null mice fed the Sucrose diet may have resulted in part because 
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sucrase-isomaltase is upregulated to partially compensate for the lack of Mgam in these mice 

(Quezada-Calvillo, Robayo-Torres, Opekun, et al. 2007); higher sucrose digestion prompted by Si 

could increase carbohydrate oxidation and in turn reduce fat oxidation. AMG significantly 

increased 𝑥50_1 for both genotypes of mice fed the Conventional starch diet, 53% Resistant starch 

diet, and High-fat diet, but AMG only increased 𝑥50_1 for null mice fed the 35% Resistant starch 

diet (Figure 5.18). It appears that inhibiting the activity of a small intestinal α-glucosidase enzyme 

(i.e. knocking out Mgam) may decrease fat oxidation for starch-dominant diets, or adding a 

carbohydrate-degrading enzyme (i.e. providing AMG) may increase fat oxidation. This supports 

that slower (but not lower) starch digestion may help promote fat oxidation, which suggests 

enhanced ability to shift between carbohydrate and fat oxidation. 

Although 95% confidence intervals indicated statistically significant differences in the 𝑏_1 

parameter among diets, there did not appear to be a consistent clustering per diet type, with the 

exception that the Sucrose diet generally had intermediate-low values (14.3-19.6, unitless) 

considering the overall range (12.3-42.0, unitless; Table 5.11; Figure 5.16E). Null mice fed the 53% 

Resistant starch diet without AMG had higher 𝑏_1 than wild-type mice under the same conditions, 

and null mice fed the 35% Resistant starch diet with AMG had lower 𝑏_1 than wild-type mice 

(Figure 5.17). Such results suggest metabolic flexibility (i.e. the spread in RER values for the fat 

oxidation mode) was enhanced for null mice compared to wild-type mice at the lowest level of 

carbohydrate digestion (i.e. 53% Resistant starch diet [lowest digestibility], without AMG to 

augment digestion]. Aside from these differences, there were no other effects of genotype on 𝑏_1. 

As for effects of AMG, although not always significantly different, AMG tended to decrease 𝑏_1. 

The only exceptions to this were that AMG increased 𝑏_1 for wild-type mice fed the 53% Resistant 

starch and the 35% Resistant starch diets (Table 5.11).  These results should be interpreted with 

caution because there were no differences in the 𝑏_1 values using the Mixed Weibull approach 

with curve fitting for individual mice. 

The spread in 𝑥50_2 values, which represent the median RER for the carbohydrate oxidation 

mode, was 0.945-1.12 RER (Table 5.12). The Sucrose diet groups had significantly larger 𝑥50_2 

than all other groups (1.11-1.12 RER; Figures 5.16-5.18), which is consistent with the other PRCF 

approaches and could be expected because this diet provided the most readily available 

carbohydrate among all the diets. The 𝑥50_2 for the High-fat diet groups was generally very low, 

with the exception of the wild-type mice fed the High-fat diet with AMG; this group had a median 
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RER (𝑥50_2) of 1.00 RER, while the values for the other 3 High-fat diet groups ranged from 0.945-

0.978 RER. These findings build upon previous evidence indicating high-fat diet blunts the diurnal 

patterns of RER and decreases carbohydrate oxidation (Small et al. 2019), yet it is unclear why the 

of High-fat diet with AMG in wild-type mice would differ from other High-fat diet treatment 

groups (or at least the null mice fed the High-fat diet with AMG). Interestingly, the null and wild-

type mice fed the Conventional starch diet without AMG had considerably low 𝑥50_2 values (both 

0.988 RER); this could also be related to the raw corn starch in the Conventional starch diet. 

However, it may be that a value above 1.0 RER is less desirable because it suggests de novo 

lipogenesis (Crescenzo et al. 2013; Glamour et al. 1995). A previous study with human participants 

that were either healthy or had type 2 diabetes found a decrease in total carbohydrate oxidation in 

the participants with type 2 diabetes when 50 g of a slowly digestible starch (46:54 ratio of raw 

tapioca and maize starches) was fed compared to 50 g of a more rapidly digestible starch (raw 

maize starch), although no effect was found in healthy participants (Seal et al. 2003); such findings 

suggest that slowly digestible starches impact carbohydrate metabolism but also that factors such 

as insulin sensitivity/action should also be considered. Related to the present study, the null mice 

(Mgam knockout) had impaired insulin action due to the lack of Mgam (Nichols et al. 2009), but 

the wild-type mice reportedly had proper insulin action. Further investigations of the relationship 

among slowly digestible starch and resistant starch, insulin action, and carbohydrate oxidation are 

needed to elucidate the mechanism(s) at play, especially because insulin resistance has been linked 

with impaired metabolic flexibility (Muoio 2014; Goodpaster and Sparks 2017; Stull et al. 2010). 

As for an effect of genotype, null mice had significantly lower 𝑥50_2 than wild-type mice when fed 

the 53% Resistant starch diet, the 18% Resistant starch diet without AMG, and the High-fat diet, 

and (Figure 5.17). However, the AMG supplement increased 𝑥50_2  for null mice fed the 35% 

Resistant starch diet compared to the other 35% Resistant starch diet groups, and null mice fed the 

18% Resistant starch diet with AMG had higher 𝑥50_2  than wild-type mice under the same 

conditions. Such findings suggest AMG compensated for the lack of Mgam in null mice to increase 

their propensity to oxidize carbohydrate for these diets. As for a generalized effect of AMG, this 

supplement increased 𝑥50_2 for mice fed the Conventional starch, 53% Resistant starch, and High-

fat diets (Figure 5.18). AMG increased 𝑥50_2  in null mice only when they were fed the 18% 

Resistant starch and Sucrose diets. These findings suggest that providing a starch digesting enzyme 

can directly influence carbohydrate oxidation and at least partially compensate for the lack of 
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Mgam in the null mice. We initially thought that the AMG may have had some sucrase activity, 

which could partially account for the shift observed in the sine c parameter and the increase in 

𝑥50_2 for the null mice, yet an analysis of enzyme activity for this supplement indicated there was 

very minimal sucrase activity (0.5 U/mL sucrose-degrading activity vs. 979.7 U/mL maltodextrin-

degrading activity; other data not shown). Overall, greater carbohydrate availability/digestion 

appeared to result in higher carbohydrate oxidation, and slowly digestible starch (i.e. raw corn 

starch in the Conventional starch diet) may enable a moderate carbohydrate oxidation. 

𝑏_2  represents the spread of data within the second mode (describing carbohydrate 

oxidation; Supplementary Figure A.8). Using the pooled data approach, diets did not have 

consistent effects on 𝑏_2 (Table 5.13). For example, the wild-type mice fed the High-fat diet 

without AMG had the lowest 𝑏_2 value (10.6, unitless), which we propose is indicative of poor 

metabolic flexibility, but for the same diet with AMG, wild-type mice had the highest value among 

all the groups, which would represent improved metabolic flexibility (33.3, unitless; Table 5.13; 

Figure 5.16). As for the effect of genotype, null mice tended to have higher 𝑏_2 values for all but 

the 53% Resistant starch and High-fat diets, suggesting that they had increased metabolic 

flexibility in the circumstances when they had more non-resistant starch or carbohydrate available 

to digest, respectively. As such, null mice had significantly higher 𝑏_2 values than wild-type when 

fed the 35% Resistant starch diet with AMG, 18% Resistant starch diet with AMG, Sucrose diet 

without AMG, and High-fat diet without AMG, but they had lower 𝑏_2 value than wild-type mice 

when fed the 53% Resistant starch diet (suggesting decreased metabolic flexibility within the 

carbohydrate oxidation mode for this diet) (Figure 5.17). As for the impact of AMG, AMG 

decreased 𝑏_2 for wild-type mice fed the 53% Resistant starch diet, but increased 𝑏_2 for wild-

type mice fed the High-fat diet (Figure 5.18). As increases in 𝑏_2 indicate decreased spread of 

RER values (narrowed spread) within the carbohydrate oxidation mode, these results demonstrate 

a generally narrower spread for the High-fat diet compared to the carbohydrate-based diets 

(Figures 5.16-5.18). When visually examining the pooled PRCF curves split by cycle (Figure 5.18), 

it appears that AMG supplementation (i.e. cycle 3) tended to make the curves for carbohydrate-

based diets more similar (especially in the second mode) compared to no AMG (i.e. cycle 2). This 

suggests that PRCF curves of the RER distribution for carbohydrate-based diets with that are more 

digestible may approach a distinct shape. It is worth noting that the pooled data analysis with 95% 

confidence intervals does not allow for the use of statistical approaches, such as general linear or 
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mixed models, that would otherwise more readily reveal the potential role(s) of certain fixed 

effects (e.g. diet, genotype) and interactions. 

Notable differences among PRCF approaches 

Three different approaches were reported to examine the RER data analyzed with PRCF: 

(1) Mixed Weibull Cumulative Distribution modeling for data from individual mice, (2) Weibull 

[not Mixed Weibull] Cumulative Distribution modeling for data pooled from all mice, and (3) 

Mixed Weibull Cumulative Distribution modeling for data pooled from all mice. As described 

above, the statistical assessments for these approaches differed. However, several consistent 

findings suggested through each approach allow us to gain deeper insight into the metabolic 

consequences of carbohydrate digestion and lend support to the potential use of these three 

approaches. For one, the differences among treatment groups were similar for the 𝑥50_1, 𝑥50_2, and 

𝑏_2 values from the Mixed Weibull approaches. Notably, consistencies were evident in both by 

the relatively high 𝑥50_1 values for the High-fat diet, relatively low 𝑥50_1 and 𝑥50_2 values for the 

Conventional starch diet, relatively low 𝑥50_1 values for the 53% Resistant starch diet, high 𝑥50_2 

values for the Sucrose diet, low 𝑥50_2 values for the High-fat diet, non-incremental effects for the 

3 resistant starch diets (inconsistent effects for the 35% Resistant starch diet), effects of genotype 

on 𝑏_2, and general increases in 𝑥50_1, 𝑥50_2, and 𝑏_2 observed for AMG with most diets. One 

notable difference between these two Mixed Weibull approaches is that the pooled data approach 

revealed large differences in 𝛼, while the individual mouse approach did not yield any differences 

at all. The reason(s) for this are unknown, but we can speculate that there was high variability in 

the estimates for this term among individual mice that, upon pooling the data, were diminished to 

reveal an overall effect. With this in mind, it is important to note that the pooled data approach 

does not allow for statistical adjustments for multiple comparisons, which may inflate the 

likelihood of type II errors (i.e. false positives), and may be evident by the statistical differences 

observed for 𝛼 and 𝑏_1 using this approach that were not observed for the other Mixed Weibull 

approach. Regarding the Weibull approach, this may be useful for determining overall differences 

in RER, but it suffers from poorer fits to the data and does not characterize the two modes that we 

propose represent carbohydrate and fat oxidation. However, this type of model may be useful for 

analyzing unimodal data as originally described by Riachi et al. (2004). 
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As an additional consideration, in the originally proposed PRCF approach by Riachi et al. 

(2004), the need for 1000 RER data points was specified in order to achieve the representative 

“metabolic signature” of the group of mice being studied. For one, Riachi et al. (2004) emphasized 

that 1000 RER data points are required in order to achieve a “smooth curve” with an R2 that 

exceeds 0.98 using their curve fitting equation (which is a different equation from the Weibull and 

Mixed Weibull Cumulative Distribution equations we used). Secondly, Riachi et al. (2004) stated 

that at least 1000 data points are required in order to achieve a normally distributed dataset. In our 

analyses, we had only 272-280 RER data points for each PRCF analysis of pooled data from all 

mice and only 34-35 RER data points for each PRCF analysis of data for individual mice. However, 

given the approaches we took to analyze the PRCF data with the Weibull and Mixed Weibull 

Cumulative Distribution functions, we believe these numbers of data points were still adequate, 

especially considering such functions have been used with as few as 20 data points (Rinne 2008; 

Razali and Al-Wakeel 2013). Furthermore, using our Weibull and Mixed Weibull approaches, the 

R2 values were very high: for the Mixed Weibull approach with curve fitting per individual mice, 

the mean overall R2 was 0.99 ± 0.00; for the Weibull approach with data pooled from all mice, the 

mean overall R2 was 0.97 ± 0.00; and for the Mixed Weibull approach with data pooled from all 

mice, the mean overall R2 was 0.997 ± 0.00. Although our R2 for the Weibull approach with pooled 

data is lower than the 0.98 cutoff proposed by Riachi et al. (2004), we have noted the limitations 

in using this type of distribution above and we do feel that the Mixed Weibull approach is superior. 

As for the concern about a normal distribution, we believe it is possible that the RER distribution 

from in vivo data is in fact bimodal due to the values of 0.70 and 1.00 for fat vs. carbohydrate 

oxidation, respectively; a large number of data points (>1000) may be needed to obtain a normally 

distributed dataset merely due to this bimodal distribution. In the end, we propose that our 

approaches with at least the Mixed Weibull Cumulative Distribution are a means to describe the 

partitioning between oxidation of carbohydrate and fat as substrates and to characterize metabolic 

flexibility with as few as 34 data points. Additionally, our approach for curve fitting per individual 

mice allows more robust statistical analyses to be conducted, which would otherwise be 

challenging if 1000 data points were required for each mouse. 
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5.4.4 Mean RER per 24 h 

 Three-way ANOVA conducted on the mean RER values per 24 h cycle for the groups (diet 

× genotype × cycle [without/with AMG]) revealed main effects for diet and cycle (p<0.0001 for 

both). The interaction term for diet × genotype × cycle was also significant (p=0.0001), so post 

hoc comparisons were made among the 24 groups (Table 5.14). Sucrose diet had the highest mean 

RER values, with null mice (both with and without AMG) having significantly higher RER than 

all other groups and wild-type mice having significantly higher RER than all other groups except 

the wild-type mice fed the 53% Resistant starch diet when given AMG and the null mice fed the 

Sucrose diet. This suggests that the Sucrose diet yielded a greater extent of carbohydrate oxidation, 

as also concluded from the PRCF approaches. As mentioned above, the relatively high amount of 

rapidly digestible carbohydrate contributed by Novelose 260 may have given rise to the high mean 

RER for the 53% Resistant starch diet, and the relatively high amount of slowly digestible 

carbohydrate contributed by raw corn starch may have resulted in the low mean RER for the 

Conventional starch diet. AMG supplementation also had a clear effect for both genotypes fed the 

Conventional starch diet and the null mice fed the 53% Resistant starch diet, which is in agreement 

with the sine and PRCF analyses.  

5.4.5 Body weight 

 Mice maintained stable body weight during their periods in the indirect calorimetry 

chambers for each diet (p=0.87; data not shown), which indicates that weight gain or loss were not 

contributing to differences in RER. There are a number of previous studies and reviews that take 

thorough approaches to modeling metabolism and body weight dynamics in mice and humans 

(Guo and Hall 2009; K.D. Hall 2010; K. D. Hall, Bain, and Chow 2007). For the current study, we 

decided to reduce the scope to specifically examine RER as an indication of substrate utilization 

in the body, especially given body weight did not change during the experimental periods. 

5.4.6 Ex vivo assay of jejunal enzyme activities 

 Maltodextrin and sucrose substrate-induced jejunal enzyme activities are shown in Table 

5.15 for six different dietary conditions in both null and wild-type mice. This subset of experiments 

was conducted to determine if the null and wild-type mice exhibited differences in enzyme 
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activities (as a form of validation). The results showed that there were robust differences between 

maltodextrin-induced enzyme activities in null and wild-type mice under the Fasting, 

Conventional starch diet, 53% Resistant starch diet, Conventional starch diet with AMG, and 

Sucrose diet conditions (p=0.001, p=0.013, p=0.005, p=0.004, and p<0.0001, respectively). There 

was a trending difference for the Conventional starch diet with acarbose (p=0.063). Therefore, the 

lack of Mgam enzyme in null mice clearly inhibited the ability of these mice to digest starch 

degradation products (partially digested starch). Conversely, there was only a statistically 

significant difference in sucrose substrate-induced enzyme activity between null and wild-type 

mice for the 53% Resistant starch diet (p<0.0001), although there was also a borderline difference 

for the Conventional starch diet (p=0.05). These findings suggest the null mice, which lacked 

Mgam, generally had adequate sucrase activity (with the exception of the 53% Resistant starch 

diet condition). However, we only measured enzyme activities in the jejunum and it is possible 

that α-glucosidase activities may have varied to a greater degree in the duodenum or ileum. It is 

also curious that despite these differences in enzyme activities, there were minimal differences in 

RER for null and wild-type mice.  This suggests Si is a more dominant starch digesting enzyme 

than Mgam, which is in agreement with previous research (Diaz-Sotomayor et al. 2013; Quezada-

Calvillo, Robayo-Torres, Ao, et al. 2007; Nichols et al. 2017). 

5.4.7 Strengths and potential limitations 

This study took novel approaches to examine how alterations in carbohydrate digestion 

affected carbohydrate oxidation in mice. Diets incorporating carbohydrate components with 

varying digestibilities were used, mice lacking one of the α-glucosidases that hydrolyzes starch 

degradation products were used (compared to wild-type mice that possessed the complete set of 

starch digestion enzymes), and AMG was used to augment starch digestion. Including an 

acclimation period (four 24-h cycles) to the diet and indirect calorimetry chamber for each diet 

treatment ensured any differences observed were not due to initial exposure to the experimental 

conditions imposed. Integrating previously proposed approaches for analyzing RER with new 

approaches has provided an innovative means to study dynamics in RER to examine the effects of 

different conditions on metabolism.  

As for limitations, one notable constraint is that food intake was not measured. However, 

previous studies found that mice food intake in home cages vs. indirect calorimetry chambers did 
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not differ (Duivenvoorde et al. 2015), and in a previous experiment the food intake between the 

same type of null mice in this study (Mgam knockout) and wild-type mice did not differ for a 

carbohydrate-predominant diet (data not shown). It is possible that mice consumed more food for 

certain diets (e.g. Sucrose diet, High-fat diet) than others (e.g. 53% Resistant starch diet) because 

of diet palatability or appetite. We also did not measure activity level of the mice while they were 

in the indirect calorimetry chambers (the system used was not equipped to do so). We believe 

differences in activity level for individual mice may have contributed to some of the variation 

observed within treatment groups, and to partially account for this we excluded values that were 

±2 standard deviations from the mean for certain analyses as described above (i.e. sine parameter 

estimates, Weibull and Mixed Weibull parameter estimates for data modeled per individual mouse). 

Two assumptions tied into our interpretation of these experimental findings are that there were no 

changes in mitochondrial number or function for the different treatments and that the mouse is an 

appropriate model for human starch digestion. As indicated in the Methods and Results sections 

above, another limitation in this work is that we did not feed a treatment of gelatinized starch, 

especially considering that humans regularly consume gelatinized starch as opposed to raw starch. 

As the diets tested contained substantial amounts of slowly digestible and resistant carbohydrate, 

incorporating a diet containing a greater proportion of rapidly digestible carbohydrate (e.g. 

maltodextrin) would also strengthen future research. Furthermore, additional research is required 

to better understand the “toggling” between oxidation and fermentation, which may be especially 

relevant for resistant starch and the null mice (Mgam knockout). 

5.5 Conclusion 

The objective of this study was to determine how altering carbohydrate digestion affects 

the utilization of carbohydrate as a substrate for energy and the ensuing impact on metabolic 

flexibility between oxidation of carbohydrate and fat. We devised and carried out novel 

applications of mathematical modeling approaches to help explore this objective. 

Although null mice exhibited PRCF distributions of RER that had more pronounced visual 

spread than wild-type mice, they generally did not have lower carbohydrate oxidation (as would 

have been shown through low 𝑥50_2  values), which did not support the first part of our first 

hypothesis. They also had higher 𝑥50_1 values, suggesting lower fat oxidation, than wild-type mice. 

Given this finding, we reason that slower, but not lower, carbohydrate digestion promotes fat 
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oxidation. AMG supplement appeared to at least partially restore digestion to increase 

carbohydrate oxidation in null mice. Null mice did appear to have increased metabolic flexibility 

as signified by higher 𝑏_1 and 𝑏_2 values, which supported the second part of our first hypothesis. 

Furthermore, in null mice a greater level of amylose and resistant starch in the diet was associated 

with slower shift to carbohydrate oxidation (sine c) – a relationship not observed for wild-type 

mice. There was some evidence that sucrase-isomaltase may have been upregulated in null mice, 

perhaps as compensation for the lack of maltase-glucoamylase. Despite these findings, the 

observed differences between null and wild-type mice were minor overall, considering that the 

null mice lacked a complete set of starch digesting enzymes. Because the null mice with only 

sucrase-isomaltase generally performed as well as wild-type mice, this suggests sucrase-

isomaltase is a more dominant starch digesting enzyme than maltase-glucoamylase, which 

corroborates previous research (Diaz-Sotomayor et al. 2013; Quezada-Calvillo, Robayo-Torres, 

Ao, et al. 2007; Nichols et al. 2017). 

As for diet-related differences, although the extents of carbohydrate oxidation were 

inconsistent for the diets containing three different levels of high-amylose corn starch (53%, 35%, 

and 18% Resistant starch diets), it appears that the Conventional starch diet, which had the highest 

amount of slowly digestible starch among the experimental diets, had superior ability to promote 

fat oxidation (lower 𝑥50_1) and may have enhanced metabolic flexibility to a relatively high degree. 

This supports our second hypothesis (that reduced carbohydrate digestion rate would result in 

lower RER and greater metabolic flexibility), and it is apparent that slow digestion, but not reduced 

digestion, had the greatest impact. The Conventional starch diet did not promote carbohydrate 

oxidation (i.e. increase 𝑥50_2), although it is possible that the high 𝑥50_2 values observed for the 

other diets may be detrimental because they exceeded 1.00 RER. In addition, the Sucrose diet had 

the highest carbohydrate oxidation and the High-fat diet had the lowest carbohydrate oxidation, 

lending support for this idea and helping to validate our modeling approaches. Hindered metabolic 

flexibility was suggested for the High-fat diet by a high 𝑏_2 (narrowed spread in RER for the 

carbohydrate oxidation mode) compared to the Sucrose diet, and other metabolic perturbations 

were suggested by results from the sine equation curve fitting for the High-fat diet (sine a and c).  

AMG generally increased carbohydrate oxidation, as indicated by 𝑥50_2 values, for all but 

the Sucrose and High-fat diets, which supported the first part of our third hypothesis – that 

supplementation with AMG to increase carbohydrate digestion would result in higher RER (i.e. 
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greater carbohydrate oxidation). AMG caused more rapid shifts to carbohydrate oxidation as 

shown by higher c parameter values from the sine equation curve fitting, which appear to suggest 

increased shift to carbohydrate oxidation. In agreement with this, the results from PRCF suggested 

AMG somewhat increased metabolic flexibility in the carbohydrate oxidation mode (represented 

by increased 𝑏_2), though this was more pronounced and consistent for the High-fat diet, which 

also had a blunted level of carbohydrate oxidation. Additionally, results from the PRCF approach 

for pooled data from all mice (but not the PRCF approach for data from individual mice) showed 

AMG increased the partitioning of substrate utilization from fat to carbohydrate for the three 

resistant starch diets (except wild-type mice fed the 35% Resistant starch diet) as well as null mice 

fed the High-fat diet. One potential concern with the AMG supplement is that it seemed to shift 

substrate utilization toward carbohydrate, but not back toward fat (as indicated by the higher 𝑥50_1 

values and lack of differences in 𝑏_2). 

 In the end, the results of this study generally support that moderated or slow carbohydrate 

digestion, as observed for the Conventional starch diet tested here, promotes fat oxidation and may 

enable an optimal ability to switch between high carbohydrate oxidation and high fat oxidation. 

This improvement in metabolic flexibility between utilization of substrates may have implications 

on deposition of adipose tissue, insulin sensitivity, and mitochondrial function in the body 

(Goodpaster and Sparks 2017; Muoio 2014), even in the absence of differences in energy 

expenditure, and indicates a new potential role of slowly digestible carbohydrates in the control of 

weight management.  
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Table 5.1 Experimental diet compositions. 

Component 

Conventional 

starch 

TD.01629 

53% 

Resistant 

starch 

TD.02130 

35% 

Resistant 

starch 

TD.02130 

18% 

Resistant 

starch  

TD.02129 

Sucrose 

TD.02129 

High-fat 

TD.88137 

 g/kg 

Casein 200 200 200 200 200 195 

DL-

Methionine 
3 3 3 3 3 3 

Maltodextrin 120 120 120 120 0 0 

Corn starch 530 0 177 353 0 150 

Resistant 

starch 

(Novelose 260) 

0 530 353 177 0 0 

Sucrose 0 0 0 0 650 342 

Anhydrous 

milkfat 
0 0 0 0 0 210 

Cholesterol 0 0 0 0 0 1.5 

Soybean Oil 50 50 50 50 50 0 

Cellulose 50 50 50 50 50 50 

Mineral mixa 35 35 35 35 35 35 

Calcium 

carbonate 
0 0 0 0 0 4 

Vitamin mixb 10 10 10 10 10 10 

Choline 

bitartrate 
2.5 2.5 2.5 2.5 2.5 0 

TBHQ 

(antioxidant) 
0.01 0.01 0.01 0.01 0.01 0 

Ethoxyquin 0 0 0 0 0 0.04 

 % kcal 

Protein 19.6 19.6 19.6 19.6 19.6 15.2 

Carbohydrate 67.4 67.4 67.4 67.4 67.4 42.7 

Fat 13.0 13.0 13.0 13.0 13.0 42.0 

 % by weight 

Protein 17.7 17.7 17.7 17.7 17.7 17.3 

Carbohydrate 60.9c 60.9c 60.9 60.9 60.9 48.5 

Fat 5.2 5.2 5.2 5.2 5.2 21.2 

Energy density 

(kcal/g) 
3.6 3.6 3.6 3.6 3.6 4.5 
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Footnotes for Table 5.1 

aMineral mix composition (g/kg; AIN-93G-MX, TD.94046): calcium carbonate, 357.0; potassium 

phosphate (monobasic), 196.0; potassium citrate (monohydrate), 70.78; sodium chloride, 74.0; 

potassium sulfate, 46.6; magnesium oxide, 24.3; ferric citrate, 6.06; zinc carbonate, 1.65; 

manganous carbonate, 0.63; cupric carbonate, 0.31; potassium iodate, 0.01; sodium selenate, 

0.0103; ammonium paramolybdate (tetrahydrate), 0.008; sodium meta-silicate (nonahydrate), 1.45; 

chromium potassium sulfate (dodecahydrate), 0.275; lithium chloride, 0.0174; boric acid, 0.0815; 

sodium fluoride, 0.0635; nickel carbonate hydroxide (tetrahydrate), 0.0318; ammonium meta-

vanadate, 0.0066; sucrose (fine ground), 220.7. Note that these values are the g/kg amounts within 

the mineral mix, and only 35 g/kg of this mix was used within the diet. 

bVitamin mix composition (g/kg; AIN-93-VX, TD.94047): niacin, 3.0; calcium pantothenate, 1.6; 

pyridoxine hydrochloric acid, 0.7; thiamin (81%), 0.6; riboflavin, 0.6; folic acid, 0.2; biotin, 0.02; 

vitamin B12 (0.1% in mannitol), 2.5; vitamin E (DL-alpha tocopheryl acetate, 500 IU/g), 15.0; 

vitamin A palmitate (500,000 IU/g), 0.8; vitamin D3 (cholecalciferol, 500,000 IU/g), 0.2; vitamin 

K1 (phylloquinone), 0.075; sucrose (fine ground), 974.7. Note that these values are the g/kg 

amounts within the mineral mix, and only 10 g/kg of this mix was used within the diet. 

c53% of which was experimental carbohydrate (Conventional starch [corn starch], 53% Resistant 

starch [Novelose 260]). 
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Table 5.2 Starch contents in different dietsa. 

Diet Moisture (%) Starch content (%, d.w.b.) 

Conventional starch diet 10.4 ± 0.1 51.8 ± 0.6 

53% Resistant starch diet 10.5 ± 0.1 54.1 ± 1.3 

35% Resistant starch diet 12.3 ± 0.1 51.6 ± 1.1 

18% Resistant starch diet 10.6 ± 0.2 56.1 ± 0.6 

Sucrose diet 3.5 ± 0.1 0.0 ± 0.0 

High-fat diet n.d. n.d. 

PicoLab diet 5053 (non-experimental) 11.0 ± 0.8 32.6 ± 1.1 

d.w.b., dry weight basis; n.d., not determined. 

aAnalyzed using a total starch analysis kit (amyloglucosidase/alpha-amylase method; Total Starch 

Assay Kit [AA/AMG], K-TSTA-50A, Megazyme, Wicklow, Ireland).  
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Table 5.3 Contents of rapidly digestible, slowly digestible, and resistant starches in different 

diets (%, dry starch basis).a Mean values shown with ± standard deviation as applicable. 

Diet 

Rapidly 

digestible 

starch (%) 

Slowly 

digestible 

starch (%) 

Resistant 

starch (%) 

Percent 

amyloseb 

(%) 

Food 

quotientc 

Conventional starch 

diet 
74.0 ± 4.8 26.9 ± 5.4 -0.9 23 0.79 

53% Resistant starch 

diet 
55.1 ± 2.8 16.4 ± 3.0 28.5 57 0.79 

35% Resistant starch 

diet  
59.5 ± 3.7 25.2 ± 6.5 15.3 46 0.79 

18% Resistant starch 

diet  
64.7 ± 2.7 25.1 ± 2.4 10.2 34 0.79 

Sucrose dietd 32.2b 32.7b 0.0 0 0.79 

High-fat diet n.d. n.d. n.d. 9 0.78 

PicoLab diet 5053 

(non-experimental) 
58.7 ± 4.7 43.7 ± 3.1 -2.4 18 0.73 

n.d., not determined. 

aAnalyzed using the Englyst assay (K. N. Englyst et al. 1999; H. N. Englyst, Kingman, and 

Cummings 1992). 

bCalculated as percent of amylose within the digestible carbohydrate component of each diet, 

considering normal corn starch contains 28% amylose and Novelose 260 contains 70% amylose. 

cFood quotient of oxidation per diet: calculated according to macronutrient ratio by weight, 

assuming a quotient of oxidation of 1.0 for carbohydrates, 0.70 for fats, and 0.825 for proteins. 

dGlucose contents of the sample incubated after 20 and 120 min were 32.2 and 32.7%, respectively. 

This is due to the invertase in the Englyst assay, noting that the other carbohydrate components of 

this diet are fructose and cellulose and thus would not be detected using the Englyst assay. 
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Table 5.4 Sine equation parameters for curve fitting of respiratory exchange ratio (RER) for individual mice, per diet type, per cycle 

(with vs. without AMG). Value are means ± standard error the mean. Groups not sharing the same letters or symbols are significantly 

different (p<0.05). 

Group a b c d R2 

Conventional starch | Null | without AMG 0.37 ± 0.01a,x 6.53 ± 0.20 -10.47 ± 0.30bc,x 0.48 ± 0.02†,y 0.80 ± 0.03 

Conventional starch | Wild-type | without AMG 0.37 ± 0.01a,x 6.05 ± 0.24 -10.40 ± 0.36bc,x 0.45 ± 0.02‡,y 0.83 ± 0.02 

Conventional starch | Null | with AMG 0.39 ± 0.02a,y 5.83 ± 0.29 -15.56 ± 0.84bc,y 0.57 ± 0.02†,x 0.81 ± 0.03 

Conventional starch | Wild-type | with AMG 0.37 ± 0.03a,y 5.88 ± 0.36 -15.82 ± 1.06bc,y 0.54 ± 0.02‡,x 0.75 ± 0.05 

53% Resistant starch | Null | without AMG 0.47 ± 0.08a,x 5.41 ± 0.51 -9.04 ± 0.98b,x 0.47 ± 0.01†,y 0.84 ± 0.02 

53% Resistant starch | Wild-type | without AMG 0.41 ± 0.04a,x 5.49 ± 0.43 -9.27 ± 0.83b,x 0.46 ± 0.04‡,y 0.80 ± 0.04 

53% Resistant starch | Null | with AMG 0.41 ± 0.02a,y 5.26 ± 0.39 -13.88 ± 1.11b,y 0.56 ± 0.03†,x 0.83 ± 0.02 

53% Resistant starch | Wild-type | with AMG 0.39 ± 0.03a,y 5.32 ± 0.52 -14.27 ± 1.53b,y 0.56 ± 0.03‡,x 0.76 ± 0.03 

35% Resistant starch | Null | without AMG 0.44 ± 0.01a,x 5.89 ± 0.10 -10.07 ± 0.19bc,x 0.50 ± 0.02†,y 0.86 ± 0.04 

35% Resistant starch | Wild-type | without AMG 0.42 ± 0.03a,x 6.14 ± 0.25 -10.47 ± 0.46bc,x 0.48 ± 0.03‡,y 0.81 ± 0.03 

35% Resistant starch | Null | with AMG 0.43 ± 0.02a,y 5.25 ± 0.33 -13.86 ± 0.98bc,y 0.52 ± 0.02†,x 0.84 ± 0.02 

35% Resistant starch | Wild-type | with AMG 0.39 ± 0.02a,y 6.03 ± 0.37 -16.08 ± 1.09bc,y 0.50 ± 0.02‡,x 0.78 ± 0.04 

18% Resistant starch | Null | without AMG 0.39 ± 0.02a,x 6.08 ± 0.33 -10.30 ± 0.62c,x 0.48 ± 0.02†,y 0.82 ± 0.03 

18% Resistant starch | Wild-type | without AMG 0.42 ± 0.02a,x 6.32 ± 0.18 -10.84 ± 0.31c,x 0.50 ± 0.01‡,y 0.86 ± 0.03 

18% Resistant starch | Null | with AMG 0.43 ± 0.01a,y 5.72 ± 0.27 -17.05 ± 0.93c,y 0.52 ± 0.02†,x 0.86 ± 0.03 

18% Resistant starch | Wild-type | with AMG 0.41 ± 0.01a,y 6.05 ± 0.18 -17.57 ± 1.02c,y 0.50 ± 0.01‡,x 0.85 ± 0.02 
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Table 5.4, continued. 

Group a b c d R2 

Sucrose | Null | without AMG 0.43 ± 0.02a,x 5.69 ± 0.44 -9.56 ± 0.84bc,x 0.50 ± 0.02†,y 0.79 ± 0.03 

Sucrose | Wild-type | without AMG 0.43 ± 0.03a,x 5.60 ± 0.54 -9.38 ± 1.02bc,x 0.46 ± 0.04‡,y 0.76 ± 0.02 

Sucrose | Null | with AMG 0.38 ± 0.03a,y 5.35 ± 0.66 -14.15 ± 1.98bc,y 0.52 ± 0.03†,x 0.70 ± 0.05 

Sucrose | Wild-type | with AMG 0.43 ± 0.05a,y 5.26 ± 0.71 -14.55 ± 2.30bc,y 0.46 ± 0.04‡,x 0.70 ± 0.07 

High-fat | Null | without AMG 0.32 ± 0.02b,x 7.06 ± 0.32 -7.75 ± 0.66a,x 0.52 ± 0.01†,y 0.60 ± 0.09 

High-fat | Wild-type | without AMG 0.35 ± 0.02b,x 5.47 ± 0.98 -4.80 ± 1.83a,x 0.49 ± 0.01‡,y 0.69 ± 0.08 

High-fat | Null | with AMG 0.23 ± 0.09b,y 5.61 ± 0.82 -9.66 ± 1.77a,y 0.56 ± 0.03†,x 0.63 ± 0.06 

High-fat | Wild-type | with AMG 0.12 ± 0.11b,y 5.77 ± 0.97 -10.47 ± 2.25a,y 0.49 ± 0.04‡,x 0.61 ± 0.09 

AMG, amyloglucosidase.  

abcSuperscript letters a-c indicate statistically significant differences among diets.  

xySuperscript letters x and y indicate statistically significant differences between cycles 2 and 3 (without vs. with AMG). 

†‡Symbols † and ‡ indicate statistically significant differences between genotypes (null vs. wild-type). 
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Table 5.5 Statistical analysis for sine equation parameters for curve fitting of respiratory exchange ratio (RER) for individual mice, per 

diet type, genotype (null vs. wild-type), per cycle (with vs. without AMG). 

 p-value 

Factor a b c d 
a – no 

outliersa 

b – no 

outliersa 

c – no 

outliersa 

d – no 

outliersa 

Diet  0.9985 0.7487 0.0002* 0.9726 <0.0001* 0.1661 <0.0001* 0.5246 

Genotype  0.1641 0.4824 0.1484 0.2056 0.3969 0.8993 0.5523 0.0098* 

Cycle  0.1967 0.0360* <0.0001* 0.2141 0.0262* 0.0655 <0.0001* <0.0001* 

 Interaction p-values 

Diet × genotype 0.0916 0.0211* 0.8510 0.1202 0.8640 0.5928 0.9324 0.6297 

Diet × cycle 0.2123 0.6544 0.7707 0.1353 0.0355* 0.9953 0.5229 0.0406* 

Genotype × cycle 0.6018 0.0535 0.2292 0.6658 0.5002 0.2252 0.3297 0.5174 

Diet × genotype × 

cycle 
0.9194 0.5270 0.5370 0.9401 0.5767 0.8088 0.9544 0.9680 

aOutliers determined as > 2 standard deviations from the mean for each group (diet × mouse genotype × cycle). 

*Statistically significant. 
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Table 5.6 Mixed Weibull Cumulative Distribution parameter estimates (𝛼, 𝑥50_1, 𝑏_1, 𝑥50_2, 𝑏_2) for respiratory exchange ratio (RER) 

from individual percent relative cumulative frequency (PRCF) analyses. R2 is also shown as an indicator of goodness of fit. Values are 

means ± standard error of the mean. Groups not sharing the same letters or symbols are significantly different (p<0.05). 

Group 𝛼* 𝑥50_1 𝑏_1 𝑥50_2 𝑏_2 R2 

Conventional starch | Null | 

without AMG 
0.53 ± 0.04 0.80 ± 0.02d,y† 18.23 ± 2.88 0.99 ± 0.01c,y 24.43 ± 3.11bc,y† 0.99 ± 0.00 

Conventional starch | Wild-type | 

without AMG 
0.41 ± 0.07 0.74 ± 0.01d,y‡ 27.82 ± 5.24 0.99 ± 0.01c,y 23.76 ± 2.88bc,y‡ 0.99 ± 0.00 

Conventional starch | Null | with 

AMG 
0.46 ± 0.07 0.78 ± 0.01d,x† 32.55 ± 6.42 1.02 ± 0.01c,x 26.25 ± 5.62bc,x† 0.99 ± 0.00 

Conventional starch | Wild-type | 

with AMG 
0.57 ± 0.08 0.79 ± 0.01d,x‡ 19.12 ± 1.79 1.02 ± 0.01c,x 23.69 ± 2.27bc,x‡ 0.99 ± 0.00 

53% Resistant starch | Null | 

without AMG 
0.56 ± 0.07 0.83 ± 0.03abc,y† 17.77 ± 4.16 1.02 ± 0.01b,y 31.59 ± 7.55bc,y† 0.99 ± 0.00 

53% Resistant starch | Wild-type 

| without AMG 
0.52 ± 0.07 0.78 ± 0.02abc,y‡ 27.90 ± 3.64 1.04 ± 0.01b,y 22.06 ± 2.75bc,y‡ 0.99 ± 0.00 

53% Resistant starch | Null | 

with AMG 
0.51 ± 0.07 0.86 ± 0.03abc,x† 18.85 ± 5.04 1.06 ± 0.01b,x 31.78 ± 9.04bc,x† 0.99 ± 0.00 

53% Resistant starch | Wild-type 

| with AMG 
0.62 ± 0.05 0.80 ± 0.01abc,x‡ 22.21 ± 3.93 1.07 ± 0.01b,x 21.62 ± 2.69bc,x‡ 0.99 ± 0.00 

35% Resistant starch | Null | 

without AMG 
0.59 ± 0.06 0.78 ± 0.01cd,y† 24.39 ± 3.84 1.01 ± 0.01c,y 25.60 ± 5.01bc,y† 0.99 ± 0.00 

35% Resistant starch | Wild-type 

| without AMG 
0.50 ± 0.07 0.79 ± 0.01cd,y‡ 27.43 ± 3.40 1.01 ± 0.01c,y 20.50 ± 3.65bc,y‡ 0.99 ± 0.00 

35% Resistant starch | Null | 

with AMG 
0.47 ± 0.05 0.83 ± 0.02cd,x† 21.77 ± 5.82 1.04 ± 0.00c,x 33.13 ± 7.03bc,x† 0.99 ± 0.00 

35% Resistant starch | Wild-type 

| with AMG 
0.54 ± 0.07 0.78 ± 0.01cd,x‡ 18.13 ± 2.70 1.00 ± 0.01c,x 25.63 ± 3.50bc,x‡ 0.99 ± 0.00 
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Table 5.6, continued. 

Group 𝛼* 𝑥50_1 𝑏_1 𝑥50_2 𝑏_2 R2 

18% Resistant starch | Null | 

without AMG 
0.47 ± 0.07 0.76 ± 0.01d,y† 32.64 ± 4.20 1.02 ± 0.01b,y 22.19 ± 2.87bc,y† 0.99 ± 0.00 

18% Resistant starch | Wild-type 

| without AMG 
0.42 ± 0.03 0.75 ± 0.01d,y‡ 23.15 ± 5.42 1.04 ± 0.01b,y 21.63 ± 2.96bc,y‡ 0.99 ± 0.00 

18% Resistant starch | Null | 

with AMG 
0.52 ± 0.06 0.79 ± 0.02d,x† 16.95 ± 2.36 1.06 ± 0.01b,x 39.62 ± 6.84bc,x† 0.99 ± 0.00 

18% Resistant starch | Wild-type 

| with AMG 
0.58 ± 0.05 0.77 ± 0.01d,x‡ 14.64 ± 1.48 1.04 ± 0.01b,x 21.97 ± 2.83bc,x‡ 0.99 ± 0.00 

Sucrose | Null | without AMG 0.47 ± 0.06 0.84 ± 0.02abc,y† 18.69 ± 3.59 1.12 ± 0.00a,y 26.14 ± 4.97c,y† 0.99 ± 0.00 

Sucrose | Wild-type | without 

AMG 
0.56 ± 0.07 0.81 ± 0.01abc,y‡ 18.99 ± 1.84 1.11 ± 0.01a,y 15.58 ± 1.97c,y‡ 0.99 ± 0.00 

Sucrose | Null | with AMG 0.45 ± 0.09 0.83 ± 0.01abc,x† 21.80 ± 3.12 1.11 ± 0.01a,x 15.24 ± 1.57c,x† 0.99 ± 0.00 

Sucrose | Wild-type | with AMG 0.54 ± 0.06 0.82 ± 0.01abc,x‡ 16.03 ± 2.30 1.11 ± 0.01a,x 20.99 ± 3.57c,x‡ 0.99 ± 0.00 

High-fat | Null | without AMG 0.55 ± 0.07 0.82 ± 0.02a,y† 23.08 ± 2.85 0.96 ± 0.01d,y 30.48 ± 3.89ab,y† 0.99 ± 0.00 

High-fat | Wild-type | without 

AMG 
0.53 ± 0.10 0.81 ± 0.02a,y‡ 21.60 ± 4.15 0.98 ± 0.02d,y 23.22 ± 4.01ab,y‡ 0.99 ± 0.00 

High-fat | Null | with AMG 0.55 ± 0.08 0.86 ± 0.01a,x† 19.73 ± 2.18 0.97 ± 0.02d,x 40.00 ± 7.46ab,x† 0.99 ± 0.00 

High-fat | Wild-type | with AMG 0.59 ± 0.08 0.85 ± 0.02a,x‡ 27.77 ± 7.85 0.98 ± 0.01d,x 42.65 ± 

13.07ab,x‡ 0.99 ± 0.00 

abcSuperscript letters a-d indicate statistically significant differences among diets.  

xySuperscript letters x and y indicate statistically significant differences between cycles 2 and 3 (without vs. with AMG). 

†‡Symbols † and ‡ indicate statistically significant differences between genotypes (null vs. wild-type). 

*An interaction effect was found for 𝛼 such that genotype × cycle was significant (p=0.03), but post hoc tests revealed no differences.      
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Table 5.7 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase (AMG) 

effects for median respiratory exchange ratio (𝑥50 RER) from pooled percent relative cumulative frequency (PRCF) using the Weibull 

Cumulative Distribution function. 

Group 
Median 

(𝑥50) 

Median (𝑥50) 

confidence 

interval 

Median 

(𝑥50) 

statistical 

groupings 

Genotype AMG 

Conventional starch | Null | without AMG 0.890 [0.880, 0.899] ij ↔ ↓ 

Conventional starch | Wild-type | without 

AMG 
0.890 [0.880, 0.899] ij ↔ ↓ 

Conventional starch | Null | with AMG 0.933 [0.925, 0.940] def ↔ ↑ 

Conventional starch | Wild-type | with AMG 0.935 [0.928, 0.941] d ↔ ↑ 

53% Resistant starch | Null | without AMG 0.918 [0.911, 0.926] efg ↓ ↓ 

53% Resistant starch | Wild-type | without 

AMG 
0.949 [0.939, 0.960] cd ↑ ↓ 

53% Resistant starch | Null | with AMG 0.964 [0.958, 0.970] c ↓ ↑ 

53% Resistant starch | Wild-type | with AMG 0.980 [0.972, 0.988] b ↑ ↑ 

35% Resistant starch | Null | without AMG 0.917 [0.908, 0.927] fgh ↔ ↔ 

35% Resistant starch | Wild-type | without 

AMG 
0.916 [0.910, 0.923] gh ↔ ↔ 

35% Resistant starch | Null | with AMG 0.933 [0.925, 0.942] de ↑ ↑ 

35% Resistant starch | Wild-type | with AMG 0.912 [0.905, 0.918] gh ↔ ↔ 
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Table 5.7, continued. 

Group Weibull 𝑥50 

Weibull 𝑥50 

confidence 

interval 

Weibull 𝑥50 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 0.918 [0.908, 0.927] efgh ↔ ↓ 

18% Resistant starch | Wild-type | without 

AMG 
0.917 [0.907, 0.928] efgh ↔ ↔ 

18% Resistant starch | Null | with AMG 0.942 [0.931, 0.953] d ↑ ↑ 

18% Resistant starch | Wild-type | with AMG 0.919 [0.911, 0.927] efg ↔ ↔ 

Sucrose | Null | without AMG 1.005 [0.996, 1.015] a ↔ ↔ 

Sucrose | Wild-type | without AMG 1.000 [0.992, 1.009] a ↔ ↔ 

Sucrose | Null | with AMG 1.005 [0.997, 1.012] a ↔ ↔ 

Sucrose | Wild-type | with AMG 0.996 [0.988, 1.003] ab ↔ ↔ 

High-fat | Null | without AMG 0.887 [0.884, 0.891] j ↓ ↓ 

High-fat | Wild-type | without AMG 0.909 [0.906, 0.912] gh ↑ ↔ 

High-fat | Null | with AMG 0.900 [0.896, 0.904] i ↓ ↑ 

High-fat | Wild-type | with AMG 0.907 [0.904, 0.910] h ↑ ↔ 

AMG, amyloglucosidase. 
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Table 5.8 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase (AMG) 

effects for the distribution breadth constant (b) of respiratory exchange ratio (RER) from pooled percent relative cumulative frequency 

(PRCF) using the Weibull Cumulative Distribution function. 

Group Weibull b 
Weibull b 

confidence interval 

Weibull b 

statistical 

groupings 

Genotype AMG 

Conventional starch | Null | without AMG 7.069 [6.359, 7.780] cdefgh ↔ ↔ 

Conventional starch | Wild-type | without 

AMG 
7.069 [6.359, 7.780] cdefgh ↔ ↔ 

Conventional starch | Null | with AMG 8.156 [7.406, 8.907] bcdf ↔ ↔ 

Conventional starch | Wild-type | with AMG 8.062 [7.480, 8.644] bc ↔ ↔ 

53% Resistant starch | Null | without AMG 7.577 [6.929, 8.225] cdefg ↔ ↔ 

53% Resistant starch | Wild-type | without 

AMG 
7.511 [6.632, 8.391] cdefgh ↔ ↔ 

53% Resistant starch | Null | with AMG 7.872 [7.316, 8.428] cdefg ↔ ↔ 

53% Resistant starch | Wild-type | with AMG 7.894 [7.175, 8.614] bcdfg ↔ ↔ 

35% Resistant starch | Null | without AMG 7.724 [6.902, 8.546] bcdefg ↔ ↔ 

35% Resistant starch | Wild-type | without 

AMG 
7.797 [7.220, 8.374] cdefg ↔ ↔ 

35% Resistant starch | Null | with AMG 8.060 [7.258, 8.862] bcdfg ↔ ↔ 

35% Resistant starch | Wild-type | with AMG 7.637 [7.076, 8.197] cdefg ↔ ↔ 
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Table 5.8, continued. 

Group Weibull b 
Weibull b 

confidence interval 

Weibull b 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 6.874 [6.199, 7.548] cdefgh ↔ ↔ 

18% Resistant starch | Wild-type | without 

AMG 
6.269 [5.668, 6.870] h ↔ ↔ 

18% Resistant starch | Null | with AMG 6.733 [6.012, 7.454] fgh ↔ ↔ 

18% Resistant starch | Wild-type | with AMG 6.364 [5.860, 6.867] h ↔ ↔ 

Sucrose | Null | without AMG 6.701 [6.072, 7.331] gh ↔ ↔ 

Sucrose | Wild-type | without AMG 6.819 [6.275, 7.363] defgh ↔ ↔ 

Sucrose | Null | with AMG 7.281 [6.757, 7.805] cdefgh ↔ ↔ 

Sucrose | Wild-type | with AMG 6.784 [6.300, 7.268] efgh ↔ ↔ 

High-fat | Null | without AMG 11.388 [10.743, 12.034] a ↑ ↔ 

High-fat | Wild-type | without AMG 8.829 [8.499, 9.159] b ↓ ↔ 

High-fat | Null | with AMG 11.461 [10.732, 12.189] a ↔ ↔ 

High-fat | Wild-type | with AMG 11.126 [10.566, 11.687] a ↔ ↔ 

AMG, amyloglucosidase. 
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Table 5.9 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase (AMG) 

effects for the 𝛼 parameter from modeling of respiratory exchange ratio (RER) from pooled percent relative cumulative frequency 

(PRCF) using the Mixed Weibull Cumulative Distribution function. 

Group 
Mixed 

Weibull 𝛼 

Mixed Weibull 𝛼 

confidence interval 

Mixed 

Weibull 𝛼 

statistical 

groupings 

Genotype AMG  

Conventional starch | Null | without AMG 0.341 [0.326, 0.357] f ↔ ↔ 

Conventional starch | Wild-type | without 

AMG 
0.341 [0.326, 0.357] f ↔ ↔ 

Conventional starch | Null | with AMG 0.322 [0.305, 0.399] gh ↔ ↓ 

Conventional starch | Wild-type | with AMG 0.329 [0.300, 0.357] fh ↔ ↔ 

53% Resistant starch | Null | without AMG 0.736 [0.714, 0.758] a ↔ ↑ 

53% Resistant starch | Wild-type | without 

AMG 
0.698 [0.680, 0.716] abc ↔ ↑ 

53% Resistant starch | Null | with AMG 0.217 [0.194, 0.240] j ↓ ↓ 

53% Resistant starch | Wild-type | with AMG 0.276 [0.262, 0.289] i ↑ ↓ 

35% Resistant starch | Null | without AMG 0.666 [0.643, 0.688] bcd ↑ ↑ 

35% Resistant starch | Wild-type | without 

AMG 
0.333 [0.306, 0.360] fh ↓ ↔ 

35% Resistant starch | Null | with AMG 0.301 [0.280, 0.322] hi ↓ ↓ 

35% Resistant starch | Wild-type | with AMG 0.409 [0.352, 0.465] ef ↑ ↔ 
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Table 5.9, continued. 

Group 
Mixed 

Weibull 𝛼 

Mixed Weibull 𝛼 

confidence interval 

Mixed 

Weibull 𝛼 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 0.657 [0.638, 0.675] d ↔ ↑ 

18% Resistant starch | Wild-type | without 

AMG 
0.646 [0.625, 0.668] d ↔ ↑ 

18% Resistant starch | Null | with AMG 0.343 [0.322, 0.363] f ↔ ↓ 

18% Resistant starch | Wild-type | with AMG 0.367 [0.345, 0.390] ef ↔ ↓ 

Sucrose | Null | without AMG 0.636 [0.610, 0.661] d ↓ ↓ 

Sucrose | Wild-type | without AMG 0.694 [0.680, 0.708] bc ↑ ↔ 

Sucrose | Null | with AMG 0.694 [0.678, 0.711] bc ↔ ↔ 

Sucrose | Wild-type | with AMG 0.697 [0.682, 0.712] bc ↔ ↔ 

High-fat | Null | without AMG 0.712 [0.642, 0.781] ab ↑ ↑ 

High-fat | Wild-type | without AMG 0.126 [0.096, 0.155] k ↓ ↓ 

High-fat | Null | with AMG 0.476 [0.366, 0.586] e ↔ ↓ 

High-fat | Wild-type | with AMG 0.369 [0.285, 0.453] efg ↔ ↓ 

AMG, amyloglucosidase. 
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Table 5.10 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase 

(AMG) effects for the median RER (𝑥50_1) parameter from modeling of respiratory exchange ratio (RER) from pooled percent relative 

cumulative frequency (PRCF) using the Mixed Weibull Cumulative Distribution function. 

Group 

Mixed 

Weibull 

𝑥50_1 

Mixed Weibull 

𝑥50_1  confidence 

interval 

Mixed 

Weibull 

𝑥50_1  

statistical 

groupings 

Genotype  AMG  

Conventional starch | Null | without AMG 0.739 [0.735, 0.744] j ↔ ↓ 

Conventional starch | Wild-type | without 

AMG 
0.739 [0.735, 0.744] j ↔ ↓ 

Conventional starch | Null | with AMG 0.787 [0.782, 0.792] f ↓ ↑ 

Conventional starch | Wild-type | with AMG 0.800 [0.793, 0.808] de ↑ ↑ 

53% Resistant starch | Null | without AMG 0.747 [0.741, 0.753] j ↓ ↓ 

53% Resistant starch | Wild-type | without 

AMG 
0.765 [0.756, 0.774] hi ↑ ↓ 

53% Resistant starch | Null | with AMG 0.770 [0.762, 0.779] gh ↓ ↑ 

53% Resistant starch | Wild-type | with AMG 0.794 [0.788, 0.800] ef ↑ ↑ 

35% Resistant starch | Null | without AMG 0.770 [0.763, 0.776] gh ↔ ↔ 

35% Resistant starch | Wild-type | without 

AMG 
0.782 [0.775, 0.789] fg ↔ ↔ 

35% Resistant starch | Null | with AMG 0.820 [0.801, 0.839] cd ↑ ↑ 

35% Resistant starch | Wild-type | with AMG 0.775 [0.771, 0.779] g ↓ ↔ 
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Table 5.10, continued. 

Group 

Mixed 

Weibull 

𝑥50_1 

Mixed Weibull 

𝑥50_1 confidence 

interval 

Mixed 

Weibull 

𝑥50_1 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 0.760 [0.755, 0.766] hi ↔ ↔ 

18% Resistant starch | Wild-type | without 

AMG 
0.750 [0.744, 0.756] ij ↔ ↓ 

18% Resistant starch | Null | with AMG 0.768 [0.760, 0.775] h ↔ ↔ 

18% Resistant starch | Wild-type | with AMG 0.770 [0.764, 0.777] gh ↔ ↔ 

Sucrose | Null | without AMG 0.835 [0.825, 0.846] b ↑ ↔ 

Sucrose | Wild-type | without AMG 0.813 [0.808, 0.818] d ↓ ↔ 

Sucrose | Null | with AMG 0.830 [0.824, 0.836] bc ↑ ↔ 

Sucrose | Wild-type | with AMG 0.810 [0.805, 0.816] d ↓ ↔ 

High-fat | Null | without AMG 0.805 [0.796, 0.813] de ↑ ↓ 

High-fat | Wild-type | without AMG 0.765 [0.759, 0.771] hi ↓ ↓ 

High-fat | Null | with AMG 0.849 [0.838, 0.861] b ↓ ↑ 

High-fat | Wild-type | with AMG 0.876 [0.863, 0.888] a ↑ ↑ 

AMG, amyloglucosidase. 



 

 

 

2
0
1
 

Table 5.11 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase 

(AMG) effects for the median RER 𝑏_1 parameter from modeling of respiratory exchange ratio (RER) from pooled percent relative 

cumulative frequency (PRCF) using the Mixed Weibull Cumulative Distribution function. 

Group 
Mixed 

Weibull 𝑏_1 

Mixed Weibull 𝑏_1  

confidence interval 

Mixed 

Weibull 𝑏_1  

statistical 

groupings 

Genotype  AMG  

Conventional starch | Null | without AMG 25.0 [20.6, 29.4] abce ↔ ↔ 

Conventional starch | Wild-type | without 

AMG 
25.0 [20.6, 29.4] abce ↔ ↔ 

Conventional starch | Null | with AMG 24.2 [20.6, 27.7] abce ↔ ↔ 

Conventional starch | Wild-type | with AMG 18.3 [15.5, 21.1] efghij ↔ ↔ 

53% Resistant starch | Null | without AMG 29.3 [22.1, 36.6] abc ↑ ↔ 

53% Resistant starch | Wild-type | without 

AMG 
13.2 [10.8, 15.5] jk ↓ ↓ 

53% Resistant starch | Null | with AMG 23.0 [16.6, 29.3] abcdeghi ↔ ↔ 

53% Resistant starch | Wild-type | with AMG 18.2 [15.7, 20.7] efghi ↔ ↑ 

35% Resistant starch | Null | without AMG 25.6 [19.6, 31.6] abcde ↔ ↑ 

35% Resistant starch | Wild-type | without 

AMG 
19.8 [16.5, 23.0] bcdeghi ↔ ↓ 

35% Resistant starch | Null | with AMG 12.3 [9.5, 15.1] k ↓ ↓ 

35% Resistant starch | Wild-type | with AMG 30.0 [25.0, 34.9] a ↑ ↑ 
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Table 5.11, continued. 

Group 
Mixed 

Weibull 𝑏_1 

Mixed Weibull 𝑏_1 

confidence interval 

Mixed 

Weibull 𝑏_1 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 23.4 [19.3, 27.5] abcde ↔ ↔ 

18% Resistant starch | Wild-type | without 

AMG 
23.7 [19.0, 28.4] abcdeg ↔ ↔ 

18% Resistant starch | Null | with AMG 22.5 [17.4, 27.6] abcdegh ↔ ↔ 

18% Resistant starch | Wild-type | with AMG 17.1 [14.8, 19.5] fghijk ↔ ↔ 

Sucrose | Null | without AMG 14.3 [11.9, 16.6] ijk ↔ ↔ 

Sucrose | Wild-type | without AMG 17.3 [15.3, 19.2] fghij ↔ ↔ 

Sucrose | Null | with AMG 16.3 [14.4, 18.2] hijk ↔ ↔ 

Sucrose | Wild-type | with AMG 19.6 [17.0, 22.2] cdegh ↔ ↔ 

High-fat | Null | without AMG 22.6 [18.3, 26.8] abcdeg ↔ ↔ 

High-fat | Wild-type | without AMG 42.0 [22.6, 61.3] ab ↔ ↑ 

High-fat | Null | with AMG 18.5 [16.5, 20.6] dfghi ↔ ↔ 

High-fat | Wild-type | with AMG 15.4 [14.1, 16.7] ijk ↔ ↓ 

AMG, amyloglucosidase. 
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Table 5.12 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase 

(AMG) effects for the median RER (𝑥50_2) parameter from modeling of respiratory exchange ratio (RER) from pooled percent relative 

cumulative frequency (PRCF) using the Mixed Weibull Cumulative Distribution function. 

Group 

Mixed 

Weibull 

𝑥50_2 

Mixed Weibull 

𝑥50_2  confidence 

interval 

Mixed 

Weibull 

𝑥50_2  

statistical 

groupings 

Genotype  AMG  

Conventional starch | Null | without AMG 0.988 [0.985, 0.991] j ↔ ↓ 

Conventional starch | Wild-type | without 

AMG 
0.988 [0.985, 0.991] j ↔ ↓ 

Conventional starch | Null | with AMG 1.020 [1.017, 1.023] h ↔ ↑ 

Conventional starch | Wild-type | with AMG 1.026 [1.021, 1.030] gh ↔ ↑ 

53% Resistant starch | Null | without AMG 1.003 [0.999, 1.006] i ↓ ↓ 

53% Resistant starch | Wild-type | without 

AMG 
1.036 [1.033, 1.039] ef ↑ ↓ 

53% Resistant starch | Null | with AMG 1.042 [1.038, 1.046] e ↓ ↑ 

53% Resistant starch | Wild-type | with AMG 1.065 [1.062, 1.067] c ↑ ↑ 

35% Resistant starch | Null | without AMG 1.009 [1.005, 1.013] i ↔ ↔ 

35% Resistant starch | Wild-type | without 

AMG 
1.009 [1.005, 1.013] i ↔ ↔ 

35% Resistant starch | Null | with AMG 1.029 [1.023, 1.035] fg ↑ ↑ 

35% Resistant starch | Wild-type | with AMG 1.002 [0.999, 1.005] i ↔ ↔ 
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Table 5.12, continued. 

Group 

Mixed 

Weibull 

𝑥50_2 

Mixed Weibull 

𝑥50_2 confidence 

interval 

Mixed 

Weibull 

𝑥50_2 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 1.023 [1.020, 1.027] gh ↓ ↓ 

18% Resistant starch | Wild-type | without 

AMG 
1.036 [1.032, 1.041] ef ↑ ↔ 

18% Resistant starch | Null | with AMG 1.051 [1.047, 1.056] d ↑ ↑ 

18% Resistant starch | Wild-type | with AMG 1.040 [1.036, 1.044] e ↓ ↔ 

Sucrose | Null | without AMG 1.122 [1.118, 1.127] a ↑ ↑ 

Sucrose | Wild-type | without AMG 1.108 [1.105, 1.110] b ↔ ↔ 

Sucrose | Null | with AMG 1.107 [1.104, 1.110] b ↔ ↔ 

Sucrose | Wild-type | with AMG 1.105 [1.102, 1.108] b ↔ ↔ 

High-fat | Null | without AMG 0.945 [0.938, 0.952] l ↓ ↓ 

High-fat | Wild-type | without AMG 0.964 [0.960, 0.968] k ↑ ↓ 

High-fat | Null | with AMG 0.978 [0.966, 0.990] jk ↓ ↑ 

High-fat | Wild-type | with AMG 1.003 [0.995, 1.012] i ↑ ↑ 

AMG, amyloglucosidase. 
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Table 5.13 Parameter estimates, confidence intervals, statistical groupings, and visualization of genotype and amyloglucosidase 

(AMG) effects for the median RER 𝑏_2 parameter from modeling of respiratory exchange ratio (RER) from pooled percent relative 

cumulative frequency (PRCF) using the Mixed Weibull Cumulative Distribution function. 

Group 
Mixed 

Weibull 𝑏_2 

Mixed Weibull 𝑏_2  

confidence interval 

Mixed 

Weibull 𝑏_2  

statistical 

groupings 

Genotype  AMG  

Conventional starch | Null | without AMG 18.4 [16.9, 19.9] bce ↔ ↔ 

Conventional starch | Wild-type | without 

AMG 
18.4 [16.9, 19.9] bce ↔ ↔ 

Conventional starch | Null | with AMG 18.7 [17.2, 20.1] bc ↔ ↔ 

Conventional starch | Wild-type | with AMG 16.6 [14.9, 18.4] cdfg ↔ ↔ 

53% Resistant starch | Null | without AMG 14.4 [13.1, 15.6] fgh ↓ ↔ 

53% Resistant starch | Wild-type | without 

AMG 
21.3 [19.5, 23.2] ab ↑ ↑ 

53% Resistant starch | Null | with AMG 13.5 [12.4, 14.5] h ↓ ↔ 

53% Resistant starch | Wild-type | with AMG 17.9 [16.8, 19.0] ce ↑ ↓ 

35% Resistant starch | Null | without AMG 19.5 [17.2, 21.8] bc ↔ ↔ 

35% Resistant starch | Wild-type | without 

AMG 
16.5 [14.8, 18.2] cdfg ↔ ↔ 

35% Resistant starch | Null | with AMG 25.1 [19.4, 30.8] ab ↑ ↔ 

35% Resistant starch | Wild-type | with AMG 14.0 [13.0, 15.1] gh ↓ ↔ 
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Table 5.13, continued. 

Group 
Mixed 

Weibull 𝑏_2 

Mixed Weibull 𝑏_2 

confidence interval 

Mixed 

Weibull 𝑏_2 

statistical 

groupings 

Genotype AMG 

18% Resistant starch | Null | without AMG 17.0 [15.4, 18.6] cdf ↔ ↔ 

18% Resistant starch | Wild-type | without 

AMG 
15.3 [13.7, 17.0] defgh ↔ ↔ 

18% Resistant starch | Null | with AMG 18.5 [16.3, 20.7] bcd ↑ ↔ 

18% Resistant starch | Wild-type | with AMG 14.7 [13.3, 16.1] fgh ↓ ↔ 

Sucrose | Null | without AMG 19.4 [17.0, 21.8] bc ↑ ↑ 

Sucrose | Wild-type | without AMG 15.3 [14.4, 16.2] dfgh ↓ ↔ 

Sucrose | Null | with AMG 15.6 [14.6, 16.6] dfg ↔ ↔ 

Sucrose | Wild-type | with AMG 14.3 [13.4, 15.2] gh ↔ ↔ 

High-fat | Null | without AMG 17.2 [14.6, 19.8] cdfg ↑ ↔ 

High-fat | Wild-type | without AMG 10.6 [10.0, 11.3] i ↓ ↓ 

High-fat | Null | with AMG 20.9 [15.0, 26.8] abc ↔ ↔ 

High-fat | Wild-type | with AMG 33.3 [22.2, 44.5] a ↔ ↑ 

AMG, amyloglucosidase. 
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Table 5.14 Mean RER per 24 h for each group (diet × genotype × cycle [without/with AMG]). 

Mean values shown with ± standard error of the mean. Values not sharing the same letter are 

significantly different (p<0.05; diet × genotype × cycle was significant [p=0.0001], so post hoc 

comparisons were made among the 24 groups). Arrows in columns for genotype and AMG 

breakdown the effects of these two factors within each diet. 

Diet 
Mean RER  

per 24 h 
Genotype AMG 

Conventional starch | Null | without AMG 0.883 ± 0.007f ↔ ↓ 

Conventional starch | Wild-type | without AMG 0.886 ± 0.007f ↔ ↓ 

Conventional starch | Null | with AMG 0.925 ± 0.007de ↔ ↑ 

Conventional starch | Wild-type | with AMG 0.929 ± 0.007de ↔ ↑ 

53% Resistant starch | Null | without AMG 0.910 ± 0.007ef ↔ ↓ 

53% Resistant starch | Wild-type | without AMG 0.935 ± 0.008cde ↔ ↔ 

53% Resistant starch | Null | with AMG 0.954 ± 0.008bcd ↔ ↑ 

53% Resistant starch | Wild-type | with AMG 0.967 ± 0.008abc ↔ ↔ 

35% Resistant starch | Null | without AMG 0.911 ± 0.007ef ↔ ↔ 

35% Resistant starch | Wild-type | without AMG 0.912 ± 0.007ef ↔ ↔ 

35% Resistant starch | Null | with AMG 0.927 ± 0.007de ↔ ↔ 

35% Resistant starch | Wild-type | with AMG 0.910 ± 0.007ef ↔ ↔ 

18% Resistant starch | Null | without AMG 0.912 ± 0.008ef ↔ ↔ 

18% Resistant starch | Wild-type | without AMG 0.912 ± 0.009ef ↔ ↔ 

18% Resistant starch | Null | with AMG 0.934 ± 0.008cde ↔ ↔ 

18% Resistant starch | Wild-type | with AMG 0.916 ± 0.008def ↔ ↔ 

Sucrose | Null | without AMG 0.994 ± 0.009a ↔ ↔ 

Sucrose | Wild-type | without AMG 0.990 ± 0.009ab ↔ ↔ 

Sucrose | Null | with AMG 0.996 ± 0.008a ↔ ↔ 

Sucrose | Wild-type | with AMG 0.989 ± 0.009ab ↔ ↔ 

High-fat | Null | without AMG 0.884 ± 0.005f ↔ ↔ 

High-fat | Wild-type | without AMG 0.906 ± 0.007ef ↔ ↔ 

High-fat | Null | with AMG 0.898 ± 0.005ef ↔ ↔ 

High-fat | Wild-type | with AMG 0.905 ± 0.005ef ↔ ↔ 

AMG, amyloglucosidase; RER, respiratory exchange ratio.
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Table 5.15 Effect of dietary condition and genotype on ex vivo jejunal enzyme activities (U/gm protein) for maltodextrin and sucrose 

substrates sampled by military time (MT), n=4 per group. Mean values are shown ± standard error of the mean. p-values indicate 

statistical comparisons between genotype per diet for the two substrates. 

 
Maltodextrin substrate-induced enzyme 

activity (U/gm protein) 

 Sucrose substrate-induced enzyme activity 

(U/gm protein) 

Condition MT Wild-type Null p 
 

Wild-type Null p 

Fasting 12:00 
180.35 ± 

8.37 

87.12 ± 

9.41 
0.001 

 
116.7 ± 6.82 153.4 ± 17.6 0.147 

Conventional starch 

diet 
24:00 230.7 ± 25.5 

68.93 ± 

3.30 
0.013 

 
145.2 ± 18.7 87.12 ± 9.41 0.050 

53% Resistant starch 

diet 
24:00 193.3 ± 16.2 77.1 ± 12.2 0.005 

 
117.47 ± 3.71 68.93 ± 3.3 0.000 

Conventional starch 

with AMG 
24:00 

159.40 ± 

6.01 

70.86 ± 

8.44 
0.004 

 
108.87 ± 4.55 94.94 ± 8.9 0.235 

Conventional starch 

with acarbose 
24:00 96.00 ± 2.01 

92.31 ± 

5.74 
0.063 

 
104.2 ± 18.4 99.78 ± 7.81 0.845 

Sucrose diet 24:00 
187.52 ± 

8.14 
90.7 ± 11.3 0.000 

 
158.24 ± 6.85 142.59 ± 3.85 0.117 

AMG, amyloglucosidase; MT, military time. 
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Figure 5.1 Diagram of indirect calorimetry experiments protocol per diet. Figure made using 

BioRender. AMG, amyloglucosidase.  
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Figure 5.2 Modeled respiratory exchange ratio (RER) for Conventional starch diet. AMG, 

amyloglucosidase. 
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Figure 5.3 Modeled respiratory exchange ratio (RER) for 53% Resistant starch diet. AMG, 

amyloglucosidase. 
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Figure 5.4 Modeled respiratory exchange ratio (RER) for 35% Resistant starch diet. AMG, 

amyloglucosidase. 

  



 

 

213 

 

 

 

 

 

Figure 5.5 Modeled respiratory exchange ratio (RER) for 18% Resistant starch diet. AMG, 

amyloglucosidase. 
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Figure 5.6 Modeled respiratory exchange ratio (RER) for Sucrose diet. AMG, amyloglucosidase. 

  



 

 

215 

 

 

 

 

 

Figure 5.7 Modeled respiratory exchange ratio (RER) for High-fat diet. AMG, 

amyloglucosidase. 
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Figure 5.8 Sine curves for average sine parameters from RER data fit for all null mice per diet 

(diet × mouse genotype [null] × cycle). AMG, amyloglucosidase. 
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Figure 5.9 Sine curves for average sine parameters from RER data fit for all wild-type mice per 

diet (diet × mouse genotype [wild-type] × cycle). AMG, amyloglucosidase. 

  



 

 

218 

 

 

Figure 5.10 Sine curves for average sine parameters from RER data fit for all mice per diet (diet 

× mouse genotype × cycle), illustrated without AMG only [cycle 2]. AMG, amyloglucosidase.  

 

  



 

 

219 

 

 

Figure 5.11 Sine curves for average sine parameters from RER data fit for all mice per diet (diet 

× mouse genotype × cycle), illustrated with AMG only [cycle 3]. AMG, amyloglucosidase. 
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Figure 5.12 Sine 

curves for average 

sine parameters from 

RER data fit for all 

mice per diet (diet × 

mouse genotype × 

cycle). Split per 

genotype and cycle: 

null cycle 2 [without 

AMG] (A), null cycle 

3 [without AMG] (B), 

wild-type cycle 2 

[without AMG] (C), 

wild-type cycle 3 

[with AMG] (D). 

AMG, 

amyloglucosidase. 

A B 

C D 
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Figure 5.13 Relationships between carbohydrate components and c parameter values from sine 

equation curve fitting for null mice fed the Conventional starch diet, 53% Resistant starch diet, 

35% Resistant starch diet, and 18% Resistant starch diet, all without the amyloglucosidase 

(AMG) supplement. Correlation between amylose percentage and c (A). Correlation between 

resistant starch amount and c (B). Correlation coefficients and p-values from linear regression 

are shown for both analyses.   
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Figure 5.14 Median RER values from the bimodal PRCF distributions of RER modeled for 

individual mice using the Mixed Weibull Cumulative Distribution function. 𝑥50_1 represents the 

median RER for the first mode, while 𝑥50_2 represents the median RER for the second mode. 

Error bars indicate ± standard error of the mean. Groups not sharing the same letters within each 

parameter are significantly different in main effect for diet (p<0.05). Statistically significant 

main effects for cycle (with vs. without AMG) and genotype (null vs. wild-type) were observed 

for the 𝑥50_1 parameter (p<0.05), and a statistically significant main effect for cycle (with vs. 

without AMG) was observed for the and 𝑥50_2 parameter (p<0.05). AMG, amyloglucosidase.  
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Figure 5.15 Distribution breadth constants (slopes) from the bimodal PRCF distributions of RER 

modeled for individual mice using the Mixed Weibull Cumulative Distribution function. 𝑏_1 

represents the median RER for the first mode, while 𝑏_2 represents the median RER for the 

second mode. Error bars indicate ± standard error of the mean. Groups not sharing the same 

letters within each parameter are significantly different in main effect for diet (p<0.05). 

Statistically significant main effects for cycle (with vs. without AMG) and genotype (null vs. 

wild-type) were observed for the 𝑏_2 parameter (p<0.05). AMG, amyloglucosidase. 
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Figure 5.16 Percent relative cumulative frequency (PRCF) curves for pooled RER data from all mice per diet (diet × mouse genotype × 

cycle). Split per diet: Conventional starch (A), 53% Resistant starch (B), 35% Resistant starch (C), 18% Resistant starch (D). 
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Figure 5.16, continued. 

 

 

 

 

 

 

 

 

Figure 5.16 (continued). Percent relative cumulative frequency (PRCF) curves for pooled RER data from all mice per diet (diet × 

mouse genotype × cycle). Split per diet: Sucrose (E), High-fat (F). AMG, amyloglucosidase. 
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Figure 5.17 Percent relative cumulative frequency (PRCF) curves for pooled RER data from all 

mice per diet (diet × mouse genotype × cycle). Split by genotype: null (A), wild-type (B). AMG, 

amyloglucosidase.  
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Figure 5.18 Percent relative cumulative frequency (PRCF) curves for pooled RER data from all 

mice per diet (diet × mouse genotype × cycle). Split by cycle: without AMG (A), with AMG (B). 

AMG, amyloglucosidase. 
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Figure 5.19 Median 𝑎 values from the bimodal PRCF distributions of RER modeled for pooled 

data from all mice using the Mixed Weibull Cumulative Distribution function. Error bars 

indicate ± standard error of the mean. Groups not sharing the same letters within each parameter 

are significantly different (p<0.05). AMG, amyloglucosidase. 
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 CONCLUSION 

6.1 Summary and overall conclusions 

Evidence indicating the potential benefits of some slowly digestible carbohydrates and 

moderated starch digestion on the control of food intake and body weight regulation is growing. 

However, the specific characteristics of digestible carbohydrates that give rise to such effects in 

vivo are incompletely understood. In this work, we have examined the physicochemical and in 

vitro digestive properties of pearl millet couscous compared to wheat couscous; the satiety effects, 

gastric emptying rate, and glycemic response of pearl millet-based foods compared to wheat 

couscous and white rice in humans; and substrate utilization for metabolism as well as metabolic 

flexibility of resistant starch (high-amylose corn starch) diets compared to conventional starch 

(raw corn starch), sucrose, and high-fat diets in mice. Summaries of these investigations and 

considerations for future work to further advance our understanding of slowly digestible 

carbohydrate-related enhancements in the regulation of food intake and body weight are described 

below. 

The first experimental chapter, Chapter 3, examined how pearl millet couscous particles 

broke down in a simulated gastric environment compared to wheat couscous. Specific focus was 

placed on whether physicochemical properties of the couscous affected particle breakdown and 

starch hydrolysis in order to better understand the slow gastric emptying of pearl millet couscous 

in a Malian population. The particle size of flour starting material and initial couscous particle size 

was controlled. Our results showed that millet couscous broke down into small, more numerous 

particles than wheat couscous, regardless of initial controlled particle size, but millet couscous had 

a slower starch hydrolysis (digestion) property per unit surface area. From this investigation, we 

reason that the slow starch digestion property of pearl millet may enable it to activate the ileal 

brake and in turn delay gastric emptying, independent of its particle breakdown in the stomach. 

This work was published in Food and Function (Hayes, Swackhamer, et al., 2020). 

The second experimental chapter, Chapter 4, investigated the subjective satiety, gastric 

emptying, and glycemic response of pearl millet-based foods compared to wheat couscous and 

white rice in a U.S. population. This complemented the previous trial in Mali (Cisse et al., 2018), 

by controlling flour and couscous particle sizes for the self-made treatments, comparing couscous 
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from two different grain sources (pearl millet and wheat), examining glycemic response, and 

testing effects in a U.S. population. An additional part of this investigation was the utilization of 

an advanced gastrointestinal digestion system to study if viscosity of these foods in the stomach 

was potentially affecting gastric emptying. Some of the results from this work were unexpected, 

as the pearl millet-based foods did not delay gastric emptying compared to white rice and wheat 

couscous. However, one type of pearl millet-based food (self-made millet couscous) promoted 

satiety and all millet-based foods (and wheat couscous) had lower glycemic response than white 

rice. We also found that viscosity in the simulated stomach was quite low and thus we propose, as 

in the previous study, that the slow digestion property of pearl millet is the cause of its benefits. 

The difference in gastric emptying between the U.S. and Malian populations requires further study, 

but we propose that there may be diet-induced changes affecting ileal brake and/or gut-brain axis 

signaling to alter how the body responds to slowly digestible carbohydrates. This work was 

published in British Journal of Nutrition (Hayes, Gozzi, et al., 2020). 

The third experimental chapter, Chapter 5, focused on how altering carbohydrate digestion 

– through using mice lacking maltase-glucoamylase (versus wild-type), feeding diets with 

different levels of carbohydrate digestibility, and providing amyloglucosidase supplement – 

impacted the ability of the body to oxidize carbohydrate vs. fat for energy and to switch between 

using carbohydrate and fat (i.e. metabolic flexibility). This research ties more closely into whole-

body energy metabolism and thus has implications for body weight regulation that are somewhat 

peripheral to the control of food intake. Regardless, they may have implications on deposition of 

adipose tissue (Sparks et al., 2009), insulin sensitivity (Malin et al., 2013), and even neuronal fuel 

use in the brain (Bernier et al., 2020; Reichenbach et al., 2018). In this investigation, we also 

devised and employed new approaches to assess metabolic flexibility using mathematical 

modeling of patterns in respiratory exchange ratio (i.e. substrate metabolism). Our results indicated 

that increasing carbohydrate digestion rate generally increased carbohydrate oxidation, but that 

moderated carbohydrate digestion promoted fat oxidation and metabolic flexibility. We propose 

that slow or moderated carbohydrate digestion may allow for a good balance between carbohydrate 

and fat oxidation that enhances metabolic flexibility. These findings expand our understanding of 

slowly digestible carbohydrates and reveal their potential advantages on substrate utilization by 

the body. 
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6.2 Future directions 

 Establishing a better understanding of the potential benefits of slowly digestible 

carbohydrates is no easy endeavor. Studies that are carefully designed to control for different 

carbohydrate factors can help advance our efforts in this area. 

 Our findings from Chapter 3 indicate the slow gastric emptying rate of pearl millet 

couscous observed in Mali (Cisse et al., 2018) is unlikely to be due to the resistance of particle 

breakdown in the stomach. Instead, our evidence suggests pearl millet has a slow digestion 

property which may be related to its content of amylose with an intermediate chain length. 

However, starch fine structural properties, intact cellular structure, or the phenolic content of pearl 

millet may also be contributing factors, and thus this warrants further exploration. This study did 

reveal that millet couscous types with different initial particle sizes broke down into particles of 

similar size during gastric simulation, which informed the design of our subsequent human study. 

Additional research pursuits to identify physicochemical characteristics of slowly digestible 

carbohydrates with established in vivo benefits (i.e. ability to trigger the ileal brake or gut-brain 

axis) would be worthwhile, for these characteristics could then be used to design carbohydrates 

with similar desirable effects. 

 The results from Chapter 4 perhaps complicate our understanding of the ability of slowly 

digestible carbohydrates to trigger the ileal brake and perhaps also the gut-brain axis, as pearl 

millet-based foods did not delay gastric emptying rate in the U.S. population tested, as we had 

shown that they did in a Malian cohort. Despite the lack of difference in gastric emptying, the self-

made millet couscous had lower hunger ratings and higher fullness ratings, and all the pearl millet-

based foods (as well as the wheat couscous) had lower glycemic response than white rice. We 

observed that the overall gastric half-emptying times for the foods in our study was approximately 

3 h, which is similar to the half-emptying times observed for white rice, boiled potatoes, and well-

cooked pasta in the Mali study (Cisse et al., 2018). Because we reason that the Malian population 

generally consumes pearl millet-based foods on a regular basis while the U.S. population does not, 

we hypothesize that there could be diet-induced changes in enteroendocrine L-cell signaling to 

affect the gut-brain axis and ileal brake that alter the sensitivity of the body to respond to slowly 

digestible carbohydrates. Adaptation of small intestinal L-cells may be one potential mechanism 

for these changes. One way to test this hypothesis would be to compare gastric emptying rates, 

appetitive responses, and glycemic responses following prolonged consumption of a slowly 
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digestible carbohydrate compared to a rapidly digestible carbohydrate in a Malian population. 

Additional studies in mice could help reveal the mechanism(s) for these proposed changes (e.g. L-

cells, hormones, neuronal signaling). A further insight gained from this investigation was that 

viscosity did not appear to impact the gastric emptying of pearl millet couscous. Mechanistic work 

in mice to evaluate mechanoreceptor activation during gastric emptying of highly viscous foods 

such as pearl millet thick porridge may provide additional clarification on this topic. 

 In the experiments of Chapter 5, we discovered that higher carbohydrate digestion 

increased carbohydrate oxidation, which seems logical, but this in turn decreased fat oxidation, 

which may not be most ideal for metabolism. Furthermore, our evidence suggested that moderated 

carbohydrate digestion, such as the use of slowly digestible carbohydrate, increased fat oxidation 

and increased metabolic flexibility. Because previous work on metabolic flexibility has largely 

focused on its connection with conditions such as type 2 diabetes, exercise, and energy use directed 

by brain neurons, among others, there appears to be great potential to further study the connection 

between metabolic flexibility and diets with different degrees of carbohydrate digestion. In our 

study, we focused more specifically on raw corn starch (slowly digestible starch) and high-amylose 

corn starch (resistant starch), leaving comparisons between rapidly digestible and slowly digestible 

carbohydrates for further exploration. It may also be beneficial to measure insulin sensitivity and 

body weight change after longer periods of diet exposure and to relate them back to metabolic 

flexibility using the approaches we proposed, as this would more directly connect the outcomes to 

disease. It is also worthy to note that future experiments in this area should include measurements 

of food intake and activity level while the animals are housed within the indirect calorimetry 

chambers. A further area of study is to examine how altering carbohydrate digestion affects the 

toggling between substrate oxidation and fermentation in mice, which is especially relevant for 

resistant starches such as the one we used. A sophisticated system has been developed that would 

be a beneficial tool for such investigations (Fernández-Calleja et al., 2018). 

 With highly complex, multi-faceted challenges such as obesity in our midst, the need for 

multidisciplinary approaches to overcome such obstacles becomes increasingly apparent. In this 

dissertation work, we utilized in vitro, in vivo, and modeling approaches to make strides to better 

understand how carbohydrates with slow digestion may promote targeted effects on the body, 

ranging from gastric emptying to postprandial glycemia to metabolism. However, there are 

numerous other disciplines that may eventually be integrated with future pursuits in this area in 
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order to generate a more comprehensive understanding of the functions of slowly digestible 

carbohydrates, such as neuroscience, endocrinology, and gastroenterology. This is especially 

important for studying the control of food intake, as the circumstances surrounding food 

consumption involve reward, memory (Suarez et al., 2020; Zheng et al., 2009), and cultural 

practices/societal norms (Bu & Go, 2008; Syrjälä et al., 2017) along with homeostatic signaling 

(Beutler et al., 2017; Morton et al., 2006) to control eating. Much work remains to be done in 

connecting fundamental food characteristics to these areas.   
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APPENDIX A. SUPPLEMENTARY MATERIALS 

 

 

 

 

 

 

 

Supplementary Figure A.1 Energy expenditure split by 12-h periods (day/night) for null and 

wild-type mice fed 6 different diets (n=8 each group). Error bars represent ± standard error of the 

mean (SEM). 
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Supplementary Figure A.2 Examples of model curves for percent relative cumulative frequency 

(PRCF) of respiratory exchange ratio (RER) for individual mice. Example 1 (A and B): Weibull 

Cumulative Distribution function curve fit (A) and Mixed Weibull Cumulative Distribution 

function curve fit (B) for data from a wild-type mouse consuming the Conventional starch diet 

without amyloglucosidase; in this scenario, the Mixed Weibull Cumulative Distribution function 

(more complex model) had a better fit because the F ratio was less than 0.0001, and the R2 was 

greatly improved using this model (0.847 for Weibull vs. 0.994 for Mixed Weibull). Example 2 

(C and D): Weibull Cumulative Distribution function curve fit (C) and Mixed Weibull Cumulative 

Distribution function curve fit (D) for data from a wild-type mouse consuming the High-fat diet 

with amyloglucosidase; in this scenario, the Weibull Cumulative Distribution function (simpler 

model) was had a better fit because the F ratio was greater than 0.0001, and the R2 was very similar 

between the two models (0.992 for Weibull vs. 0.995 for Mixed Weibull). Vertical red lines in A 

and C represent 𝑥50 (median RER). Vertical red and blue lines in B and D represent 𝑥50_1and 𝑥50_2 

(median RER values for the two “modes”). respectively. Note that the PRCF values on the y-axis 

have been divided by 100 so that they range from 0 to 1 instead of 0 to 100. PRCF, percent relative 

cumulative frequency; RER, respiratory exchange ratio.  
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Supplementary Figure A.3 Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝑥50 but the same 𝑏. 

Probability distribution function indicating theoretical non-cumulative distributions of data with 

three different 𝑥50 values (A). Cumulative distribution function [Weibull Cumulative Distribution 

function] for the same 𝑥50 values (B). Smooth curves indicate curves of distribution. Dotted lines 

indicate 𝑥50 RER values, which are the median RER values of the respective distributions. As 

shown in the figure, greater 𝑥50 shifts the curve to the right, indicating higher RER. au, arbitrary 

unit; PRCF, percent relative cumulative frequency; RER, respiratory exchange ratio. 
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Supplementary Figure A.4 Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝑏 but the same 𝑥50. 

Probability distribution function indicating theoretical non-cumulative distributions of data with 

three different 𝑏 values (A). Cumulative distribution function [Weibull Cumulative Distribution 

function] for the same 𝑏 values (B). Smooth curves indicate curves of distribution. Dotted green 

line indicates 𝑥50 RER value, which is the median RER and is the same each distribution because 

each has the same 𝑥50. As shown in the figure, greater 𝑏 causes the curves to be steeper for a 

narrower region, indicating a greater proportion of RER values fall within the selected narrowing 

range (narrower spread). au, arbitrary unit; PRCF, percent relative cumulative frequency; RER, 

respiratory exchange ratio. 
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Supplementary Figure A.5 Mixed Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝛼 but the same 𝑥50_1, 

𝑥50_2 , 𝑏_1 , and 𝑏_2 . Probability distribution function indicating theoretical non-cumulative 

distributions of data with three different 𝛼 values (A). Cumulative distribution function [Mixed 

Weibull Cumulative Distribution function] for the same 𝛼 values (B). Smooth curves indicate 

curves of distribution. Note that the Mixed Weibull can be used for a bimodal distribution, while 

the Weibull (normal, non-mixed version) is more suitable for a unimodal distribution. Related to 

RER, the first mode represents fat oxidation and the second mode represents carbohydrate 

oxidation. As shown in the figure, greater 𝛼 causes a greater proportion of the distribution to be 

allocated to the first mode and consequently a lesser proportion of the distribution constitutes the 

second mode. In practical terms, this means a greater 𝛼 shifts RER toward increased fat oxidation. 

au, arbitrary unit; PRCF, percent relative cumulative frequency; RER, respiratory exchange ratio. 
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Supplementary Figure A.6 Mixed Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝑥50_1 but the same 𝛼, 

𝑥50_2 , 𝑏_1 , and 𝑏_2 . Probability distribution function indicating theoretical non-cumulative 

distributions of data with three different 𝑥50_1 values (A). Cumulative distribution function [Mixed 

Weibull Cumulative Distribution function] for the same 𝑥50_1 values (B). Smooth curves indicate 

curves of distribution. Dotted lines indicate 𝑥50_1 RER values, which are the median RER values 

of the respective distributions. Note that the Mixed Weibull can be used for a bimodal distribution, 

while the Weibull (normal, non-mixed version) is more suitable for a unimodal distribution. 

Related to RER, the first mode represents fat oxidation and the second mode represents 

carbohydrate oxidation. As shown in the figure, greater 𝑥50_1 shifts the curve representing the first 

mode to the right, which signifies a higher median RER value in the fat oxidation mode. au, 

arbitrary unit; PRCF, percent relative cumulative frequency; RER, respiratory exchange ratio. 
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Supplementary Figure A.7 Mixed Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝑏_1 but the same 𝛼, 

𝑥50_1 , 𝑥50_2 , and 𝑏_2 . Probability distribution function indicating theoretical non-cumulative 

distributions of data with three different 𝑏_1 values (A). Cumulative distribution function [Mixed 

Weibull Cumulative Distribution function] for the same 𝑏_1 values (B). Smooth curves indicate 

curves of distribution. Note that the Mixed Weibull can be used for a bimodal distribution, while 

the Weibull (normal, non-mixed version) is more suitable for a unimodal distribution. Related to 

RER, the first mode represents fat oxidation and the second mode represents carbohydrate 

oxidation. As shown in the figure, greater 𝑏_1 steepens the curve representing the first mode, 

which signifies a smaller spread of RER values in the fat oxidation mode. We interpret this to 

suggest more efficient switching to fat oxidation and thus enhanced metabolic flexibility. au, 

arbitrary unit; PRCF, percent relative cumulative frequency; RER, respiratory exchange ratio. 
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Supplementary Figure A.8 Mixed Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝑥50_2 but the same 𝛼, 

𝑥50_1 , 𝑏_1 , and 𝑏_2 . Probability distribution function indicating theoretical non-cumulative 

distributions of data with three different 𝑥50_2 values (A). Cumulative distribution function [Mixed 

Weibull Cumulative Distribution function] for the same 𝑥50_2 values (B). Smooth curves indicate 

curves of distribution. Dotted lines indicate 𝑥50_2 RER values, which are the median RER values 

of the respective distributions. Note that the Mixed Weibull can be used for a bimodal distribution, 

while the Weibull (normal, non-mixed version) is more suitable for a unimodal distribution. 

Related to RER, the first mode represents fat oxidation and the second mode represents 

carbohydrate oxidation. As shown in the figure, greater 𝑥50_2 shifts the curve representing the 

second mode to the right, which signifies a higher median RER value in the carbohydrate oxidation 

mode. au, arbitrary unit; PRCF, percent relative cumulative frequency; RER, respiratory exchange 

ratio. 
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Supplementary Figure A.9 Mixed Weibull parameter exploration for percent relative cumulative 

frequency (PRCF) analysis of respiratory exchange ratio (RER): different 𝑏_2 but the same 𝛼, 

𝑥50_1 , 𝑥50_2 , and 𝑏_1 . Probability distribution function indicating theoretical non-cumulative 

distributions of data with three different 𝑏_2 values (A). Cumulative distribution function [Mixed 

Weibull Cumulative Distribution function] for the same 𝑏_2 values (B). Smooth curves indicate 

curves of distribution. Note that the Mixed Weibull can be used for a bimodal distribution, while 

the Weibull (normal, non-mixed version) is more suitable for a unimodal distribution. Related to 

RER, the first mode represents fat oxidation and the second mode represents carbohydrate 

oxidation. As shown in the figure, greater 𝑏_2 steepens the curve representing the second mode, 

which signifies a smaller spread of RER values in the carbohydrate oxidation mode. We interpret 

this to suggest more efficient switching to carbohydrate oxidation and thus enhanced metabolic 

flexibility. au, arbitrary unit; PRCF, percent relative cumulative frequency; RER, respiratory 

exchange ratio. 
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Supplementary Figure A.10 Institutional Review Board Approval for the human study described 

in Chapter 4. 
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Supplementary Figure A.11 Institutional Animal Care and Use Committee general protocol 

information for the mouse study described in Chapter 5. 
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APPENDIX B. INVESTIGATING THE POTENTIAL OF SLOW-

RETROGRADING STARCHES TO REDUCE STALING IN SOFT 

SAVORY BREAD AND SWEET CAKE MODEL SYSTEMS 

Reprinted with permission. Full citation: 

Hayes, A. M. R., Okoniewska, M., Martinez, M. M., Zhao, B., & Hamaker, B. R. (2020). 

Investigating the potential of slow-retrograding starches to reduce staling over time in soft 

savory bread and sweet cake model systems. Food Research International, 138, 109745. doi: 

10.1016/j.foodres.2020.109745.  

B.1 Abstract 

The potential anti-staling property of starches with slow-retrograding amylopectin was studied in 

soft wheat bread and cake model systems. Normal rice, waxy rice, and wheat starches were 

processed by drum drying or extrusion, and native starch was used as a comparator. Extrusion 

processing causing amylopectin fragmentation can reduce intermolecular retrogradation of rice 

starch. Starches were incorporated into model breads and cakes as partial replacements for flour 

on a dry weight basis (3 and 6% for cakes, 5 and 15% for breads). Starches pregelatinized by 

extrusion had moderate molecular fragmentation, as indicated by RVA and HPSEC-MALLS-RI. 

Starches previously shown to have lower intermolecular retrograding amylopectin (normal rice, 

waxy rice) resulted in minor to moderate reductions in hardness and other textural properties as 

indicated by texture profile analysis (TPA) in breads and cakes upon storage for up to 12 wk. A 

higher degree of starch fragmentation is suggested to produce lower staling. Incorporation of 

normal and waxy rice starches resulted in softer breads and cakes than wheat starch, which could 

be attributed to the shorter external and internal amylopectin chains of rice starch. Higher inclusion 

(15%) of slow-retrograding waxy rice in the bread model system showed the most potential for 

anti-staling property. 
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B.2 Introduction 

Staling results in loss of quality for baked goods in terms of harder texture. Although 

staling has posed challenges and has been studied extensively over the years, it remains a key issue 

in many baked products. The most widely used indicator of staling is measurement of the increase 

in crumb firmness (Gray & BeMiller, 2003). The staling process is complex and incompletely 

understood. Despite the lack of consensus regarding the mechanism of staling, amylopectin 

retrogradation is known to be a major contributor (Fadda et al., 2014; Gray & BeMiller, 2003).  

Retrogradation, which is a reassociation of starch molecules after gelatinization as driven 

by formation of double-helices, may occur both intra- and intermolecularly (Jane & Chen, 1992; 

Martinez et al., 2018; Matalanis et al., 2009; Ring et al., 1987). For staling, amylopectin 

retrogradation presumably involves intermolecular associations forming large aggregates that 

change crumb hardness (Ribotta et al., 2004). Matalanis et al. (2009) showed that some starches 

(e.g. sorghum and maize) have a high tendency to form intermolecular double helices that impact 

texture, while other starches do not (e.g. rice). Degree of retrogradation, as measured by enthalpy 

of the endotherm for the melting of amylopectin double helices, was independent of whether intra- 

or intermolecular associations among amylopectin chains were formed, though a rheological 

method measured a decrease in the storage modulus (G’) in the temperature range of melting of 

retrograded amylopectin double helices, revealing differences in intermolecular associations. 

Recently, we showed that starches with external amylopectin A and B1 chain populations with 

degree of polymerization (DP) of peak maximum exceeding 15.5 glucose units interact via double 

helical formations and exhibit high propensity to form intermolecular associations (Martinez et al., 

2018). Conversely, from this work it was inferred that starches with short external amylopectin 

chains (less than 14 DP) form fewer intermolecular interactions and thus may exhibit fewer 

textural changes and at a slower rate, and Matalanis et al. (2009) showed that rice starch, in 

particular, with shorter amylopectin linear chains neither formed appreciable intermolecular 

double helices nor changed gel texture over 7 d of cold storage.  

Altered intermolecular associations are also related to reduction in overall molecular size 

of amylopectin resulting from processing, such as using high-shear extrusion (Bindzus et al., 2002; 

Colonna et al., 1984; Davidson et al., 1984; Roman et al., 2018; Roman, Campanella, et al., 2019). 

Notably, typical increases in G’ over a 7-d storage period were diminished for extruded rice, wheat, 

and maize flours with fragmented amylopectin compared to the gelatinized flour counterparts, 
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indicative of decreased formation of intermolecular associations (Roman et al., 2018). However, 

the type of starch also must be considered, as amylopectin fragmentation imparted through 

extrusion of banana starch was found to increase intermolecular associations in a banana starch-

water gel system (Roman, Campanella, et al., 2019). Here, we thought a combination of the 

appropriate starch and high-temperature high-shear extrusion to fragment amylopectin could serve 

as an approach to reduce staling in baked products. 

Our aim was to use slow-retrograding amylopectin to retard staling in bread and cake 

model systems. We reasoned that incorporation of starch to reduce retrogradation through a 

decrease in intermolecular associations could be a mechanism by which starches can improve 

texture and reduce staling during product storage. The objectives were two-fold. Firstly, the effect 

of partial flour replacement with starches possessing amylopectin with previously identified slow 

intermolecular retrogradation properties was tested to reduce staling/textural changes in breads 

and cakes. We hypothesized that starches with amylopectin structures that form fewer 

intermolecular interactions during retrogradation (i.e. have shorter external and internal chains) 

would impede or slow staling/textural changes. Secondly, the impact of the same starches with 

extrusion processing to fragment starch (compared to drum-dried pregelatinized starches where 

there is no fragmentation) was tested to further reduce staling/textural changes. We hypothesized 

that extrusion to pregelatinize and molecularly fragment starches would result in fewer 

intermolecular interactions during retrogradation and thus would produce highly dispersed starch 

suspensions that would impede or slow staling/textural changes. Due to their shorter external 

(DP<14) and internal amylopectin chains, rice and waxy rice starches were selected to retard 

retrogradation and wheat starch with longer chains was used as a more rapidly retrograding 

comparator. Ultimately, we sought to identify a means to reduce staling in baked products. 

B.3 Methods 

B.3.1 Materials 

Normal rice (PenPure 30, PP30) and waxy rice (PenPure 37, PP37) starch samples were 

purchased from Ingredion, and wheat starch (Aytex P) was purchased from Archer Daniels 

Midland Company (ADM).  
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B.3.2 Processing treatments 

A portion of each type of starch was drum-dried by Custom Drying Solutions (Valparaiso, 

IN) using a commercial double drum dryer. Starch-water slurries (15.6% solids) were mixed in an 

agitator for 5 min and pumped onto drum dryer rollers at 30 rpm using a peristaltic pump (Leeson 

Speedmaster, Regal, Beloit, WI). The drum dryer rollers were maintained at 329°C with a 0.203 

mm gap. 

Another portion of each starch was extruded at Purdue University using a 30 kg/h small-

scale single-screw extruder with restrictions on the screw (Technochem International, Inc., Boone, 

IA, USA). Prior to extrusion, raw starch samples were hydrated with water (37.5% m.c.) using a 

Hobart mixer (H600, Planetary mixer, floor model, 60 L capacity, HOBART GmbH, Offenburg, 

Germany) and then equilibrated at 7°C for 14 h. Samples were allowed to equilibrate at room 

temperature for 2 h immediately prior to extrusion. An Accu-Rate Bulk Solids Metering feeder 

(Accu-Rate Inc., Whitewater, WI, USA) was used to control the feed rate into the extruder at 80%. 

Extrusion conditions were a screw speed of 880-900 rpm and barrel temperature of 130-135°C. 

Following extrusion, samples were tray-dried in a convection oven at 50°C for 36 h. A summary 

of samples and processing treatments is shown in Table B.1. 

B.3.3 Sample preparation post-processing 

Drum-dried and extruded samples were reduced to flour by milling. For drum-dried 

samples, a pin mill (Alpine, 160 Z, Augsburg, Germany) operated at 5.5 rpm was used for milling, 

and then a portable sieve shaker (Model Rx-24, W.S. Tyler Inc., Mentor, OH, USA) was used to 

collect the particle size fraction between 53-180 µm for experimentation. For extruded samples, a 

hammer mill (Eberbach E3703 Heavy Duty Variable Speed Cutting Mill, Eberbach, Belleville, MI, 

USA) was used at speed 900 rpm to initially mill samples to pass through a 0.50 mm mesh screen. 

Samples were then milled in the same pin mill as above (Alpine, 160 Z, Augsburg, Germany), and 

the same portable sieve shaker was used to collect the particle size fraction between 53-180 µm 

for experimentation. One portion of starch was also kept in its initial native state and used for 

experimentation.  
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B.3.4 Starch structural characterization 

In order to obtain relative values of starch fragmentation due to processing, molecular 

weight distributions of native and processed starches were determined using high-performance 

size-exclusion chromatography with multi-angle laser light scattering and refractive index 

detection (HPSEC-MALLS-RI). Previous methods (Moussa et al., 2011) were followed with slight 

modification. Briefly, 1.5 mL dimethylsulfoxide (DMSO, 90%) was added to 6 mg starch and 

heated at 80°C for 24 h with agitation at 350 rpm (Eppendorf ThermoMixer C, Eppendorf, 

Hauppauge, NY, USA). Samples were then centrifuged at 4000 × g and starch in supernatants was 

precipitated with 10 mL ethanol (200 proof), resuspended, and precipitated twice more followed 

by drying under vacuum. From the resulting dry starch pellets, 2 mg were weighed and mixed with 

boiling water to obtain a 2 mg/mL concentration; these samples were maintained at 95°C for ≥ 6 

h to fully disperse the starch prior to injection. Samples were filtered through 5.0 µm nylon syringe 

filters immediately prior to being injected on a Sephacryl S500-HR column (Amersham 

Bioscience, Piscataway, NJ, USA) with filtered purified water containing 0.02% sodium azide 

used as the eluent. An HPLC pump (Shimadzu LC-10AP pump, Shimadzu Scientific Instruments, 

Inc., Kyoto, Japan) was used, and chromatograms were obtained using MALLS (WREX-10, Dawn 

DSP-F, Wyatt Technology Corp., Santa Barbara, CA, USA) and refractive index (Optilab 903 

Interferometric Refractometer, Wyatt Technology Corp., Santa Barbara, CA, USA) detectors. Data 

collection and analysis was done using Astra software version 4.90.08. A Berry plot was used for 

curve fitting, and molecular weights were determined using a dn/dc value of 0.146.    

B.3.5 Starch rheological characterization 

A Rapid Visco Analyzer (RVA; RVA-4, Perten Instruments Instrumentvägen 29, SE-126 

53 Hägersten, Sweden) was used to determine pasting profiles for each starch sample. Starch-water 

slurries were prepared with 8% solids. With the exception of extruded starch samples, all samples 

were analyzed using the Standard 1 protocol supplied with the instrument. This protocol consisted 

of holding at 50°C for 1 min, heating at a rate of 12°C/min to 95°C, equilibrating at 95°C for 2.5 

min, cooling at a rate of 12°C/min to 50°C, and holding at 50°C for 2 min. For the first 10 s, the 

RVA mixing paddle speed was 960 rpm, and thereafter the speed was 160 rpm for the remainder 
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of the experiment. For the extruded samples, a 15 min mixing period at 960 rpm and 50°C was 

added to the beginning of the protocol to facilitate proper dispersion.  

B.3.6 Baking 

Proprietary bread and cake formulations provided by a global consumer packaged goods 

company were used as savory and sweet model intermediate moisture systems, respectively. For 

the bread model system, 5% and 15% starch replacements for flour (dry weight basis) were 

evaluated. For the cake model system, 3 and 6% starch replacements for flour (dry weight basis) 

were evaluated. These different inclusion levels were determined through preliminary trials to 

maximize percentage of starch inclusion without adversely affecting initial hardness after baking. 

Control breads and cakes, which had no starch replacement for flour, were also prepared. Breads 

and cakes were baked in one batch per inclusion level (e.g. breads with 5% starch inclusion were 

baked in one batch, breads with 15% starch inclusion were baked in one batch, cakes with 3% 

starch inclusion were baked in one batch). A Commercial KitchenAid mixer (8 quart, NSF-

certified commercial stand mixer, KitchenAid Commercial, Benton Harbor, MI, USA) was used 

for all baking trials.  

The bread model consisted of bread flour, treatment starch (5 and 15%, for non-control 

breads), salt, sugar, a proprietary blend, water (30°C), canola oil, and glycerin. These ingredients 

were made into dough, proofed, and baked according to a proprietary method. For this model 

system, the breads were the size of mini-buns (approximately 5 cm width × 4 cm height). Breads 

were then placed in barrier pouches composed of PAKVF4 material with a water vapor 

transmission rate of < 0.0005 gr/100 in2/24 h and O2 transmission rate of 0.001/cc/m2/24 h 

(SorbentSystems.com), and promptly sealed. All bread samples were kept at ambient temperature 

(23-25°C) for the duration of storage. Samples for measurement at different timepoints were stored 

in separate pouches. 

In initial method development for the cake model, levels of starch incorporation used in 

breads (5 and 15%) were found not suitable, as they produced substantially higher initial hardness 

than Control cakes. Therefore, levels were set at 3 and 6%. The cake formulation consisted of flour, 

treatment starch (3 and 6%, for non-control cakes), sucrose, sodium acid pyrophosphate, sodium 

bicarbonate, salt, water, eggs, glycerin, oil, and lecithin. Cakes were prepared according to a 

proprietary method and then placed in barrier pouches composed of PAKVF4 material (same as 
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above for breads, SorbentSystems.com), which were promptly sealed. For this model system, the 

cakes were the size of cupcakes (approximately 6 cm width × 4.5 cm height). Cake samples were 

kept at ambient temperature (23-25°C) for the duration of storage. Note: for cakes with 3% starch 

replacement for flour, the Control cakes were not used because they were not baked on the same 

day as the test cakes. 

Bread and cake samples were analyzed at 0, 1, 4, and 12 wk timepoints (Figure B.1). 

B.3.7 Texture analysis 

Texture analysis was conducted using a TA-XT2i Texture Analyzer (5 kg load cell) 

equipped with a Peltier control unit (Stable Micro Systems Ltd., Godalming, Surrey, UK) to 

control temperature conditions while testing. Temperature conditions of 23 and 80°C within the 

heating unit were used, with the high temperature used to measure texture melting of amylopectin 

double helices caused by retrogradation. Breads and cakes were cut into rectangular cuboids (3.7 

cm × 3.7 cm × 1.7 cm) using a bread knife, exposing the crumb and removing all crusts. Samples 

of this dimension were used to maximize the size tested for each bread and cake.  

For samples measured at 23°C, each bread and cake were prepared immediately prior to 

testing to minimize loss of moisture before being subjected to texture analysis. For samples 

measured at 80°C, breads and cakes were prepared as follows: After cutting, each sample was 

wrapped in aluminum foil and placed in a drying and heating chamber with forced convection that 

was pre-heated to 95°C (Binder Model FD 23, Binder Inc., Bohemia, NY, USA). Samples were 

heated until reaching an internal temperature of 69-74°C, which was 15 min for breads and 20 min 

for cakes, as determined through initial method development trials. Pre-heating allowed samples 

to be brought to appropriate temperature while minimizing losses of moisture and heat (that would 

otherwise occur if samples were heated in the Peltier control unit). 

Prepared samples were analyzed by conducting a double compression Texture Profile 

Analysis (TPA) test using a TA-3 probe (2.54 cm diameter). For all analyses, the test speed was 

2.00 mm/s, and compressions proceeded to 50% strain with a 5 × g trigger force. Samples tested 

at 80°C were evaluated 30 s after removal from the oven. Random sample internal temperature 

measurements were made using a thermocouple immediately following as a quality check to 

ensure internal temperatures were maintained at ≥ 69°C during testing. The texture analyzer was 

calibrated with a 2000 g standard weight prior to use on each testing day. 
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B.3.8 Water activity 

Bread and cake samples were ground using a small-scale commercial grinder (Mr. Coffee, 

Model IDS77-RB, Cleveland, OH, USA). Water activity of freshly ground samples was measured 

in duplicate using a water activity meter (Aqua Lab 4TE, Pullman, WA, USA) operated at 25ºC 

and calibrated with 0.500, 0.760, and 0.920 standards immediately before each use.  

B.3.9 Moisture content 

Moisture content was measured according to AACC International Method 44-15.02 

(gravimetric moisture loss), using 5 g ground samples and pre-dried aluminum pans. 

B.3.10 Image characterization 

Photomacrographic images were captured of bread and cake cross-sections (1 cm thick) 

within a light cube using the camera function on a Samsung Galaxy S7 mobile device (Seoul, 

South Korea) with no magnification. Standardized distance (7 cm) was maintained between the 

camera and the sample for image captures. 

B.3.11 Statistical analysis 

One-way analysis of variance (ANOVA) was used to determine statistically significant 

differences between means for all parameters measured. Tukey’s test was used to evaluate all 

pairwise differences between factor level means at the 5% significance level for post hoc tests 

when the model was significant (p<0.05). All analyses were conducted using SAS version 9.4 

(SAS Institute Inc., Cary, NC, USA).  

B.4 Results and Discussion 

B.4.1 Starch structural characterization 

Starch fine structural features have previously been shown to drive the formation of intra- 

versus intermolecular associations (Martinez et al., 2018; Matalanis et al., 2009), which may 

ultimately affect the rate and extent of staling. Here, we were specifically interested in reducing 

intermolecular associations by utilizing starches with shorter internal and external amylopectin 
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chains (i.e. normal and waxy rice starches) compared to the somewhat longer chains of wheat 

starch; Table B.1), as well as by molecularly fragmenting amylopectin through extrusion. We 

hypothesized that these strategies would lead to slower staling rate when applied in bread and cake 

model systems as indicated by reduced hardness. To characterize the extent of molecular 

fragmentation of starches caused through extrusion, HPSEC-MALLS-RI was performed to 

compare starch molecular weight distributions. All extruded starches had a lower peak molecular 

weight fraction than drum-dried and native starches (extruded samples ranging from 0.85 × 108 to 

1.18 × 108 g/mol; native and drum-dried samples ranging from 1.94 × 108 to 2.71 × 108 g/mol; 

p<0.001; Table B.2). Differences were statistically significant with the exception of Waxy Rice – 

Extruded and Wheat – Drum dried. Lower molecular weights observed for extruded samples 

indicated that starch fragmentation occurred (Davidson et al., 1984; Roman et al., 2018; Sagar & 

Merrill, 1995).   

B.4.2 Starch rheological characterization 

To characterize functionality of the starches before utilizing them in the baked model 

systems, RVA was performed. As mentioned in Section B.3.5 of the Methods, extruded samples 

were more difficult to disperse and required gradual addition of water to starch plus a 15 min 

mixing time in the RVA. Therefore, native and drum-dried (DD) samples are shown in graphs with 

the same time scale (Figure B.2), while extruded samples are shown in separate graphs with a 

different time scale (Figure B.3). As seen in Figure B.2, native starches showed pasting 

temperatures corresponding to gelatinization, while drum-dried starches exhibited initial increases 

in viscosity that are consistent with pregelatinization (Figure B.2; Juhász & Salgó, 2008). Extruded 

starches showed minimal initial increases in viscosity, which is indicative of starch fragmentation 

(Figure B.3; Robin, Théoduloz, & Srichuwong, 2015). The peaks in viscosity at approximately 

1100 s for Normal Rice – Extruded and at 1250 s for Wheat – Extruded may be due to a small 

amount of ungelatinized starch remaining in the processed samples (Figure B.3B) (Juhász & Salgó, 

2008). Final viscosity values were higher for native starches and lower for drum-dried and 

extruded starches, with extruded starches having slightly lower values than drum-dried starches 

(Figures B.2-B.3), likely due to greater starch disruption and fragmentation of the extruded 

starches (Robin et al., 2011, 2015). 
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B.4.3 Staling measurement through texture analysis of breads and cakes 

As the indicator of staling, Texture Profile Analysis (TPA) was conducted over storage 

times (0, 1, 4, 12 wk) for bread and cake model systems, with 5 and 15% starch replacement for 

flour in breads and 3 and 6% starch replacement for flour in cakes. The 0 wk timepoint was 

approximately 36 h after baking. The TPA parameters calculated included hardness, springiness, 

cohesiveness, chewiness, and resilience. Difference in hardness between 23 and 80°C (termed 

hereafter as “ΔHardness”) was assessed as an indicator of intermolecular associations measured 

as hardness difference due to the melting of retrograded amylopectin helices. This was confirmed 

because the internal temperature of the breads and cakes (≥69ºC) surpassed the conclusion 

temperature of endotherms for melting retrograded amylopectin helices (<70ºC) (Roman et al., 

2018). ΔHardness values are discussed, while values for the other TPA parameters are simply 

reported in Tables B.3-B.18. 

B.4.3.1 Starch performance in breads 

For breads with 5% starch replacement for flour, breads with normal and waxy rice starch 

treatments, as well as Control breads, generally exhibited both lower ΔHardness and hardness than 

breads with wheat starch at all timepoints, but with statistical significance only reached between 

all rice treatments and Wheat – Extruded at the 12 wk timepoint (p<0.001; Figures B.4 and B.5). 

This is indicative of a moderately lower amount of retrograded amylopectin for normal and waxy 

rice starches, which supports our first hypothesis that starches with shorter internal and external 

amylopectin chains, which form fewer intermolecular associations, have slower retrogradation 

during bread storage.  

Somewhat larger effects and differences among treatments emerged overall for breads 

incorporating 15% starch replacement for flour. Results for ΔHardness at 23 and 80°C showed 

Waxy Rice – Extruded breads consistently trended with lowest ΔHardness over time and, in 

general, drum-dried starches trended higher (Figure B.6). Waxy rice – Extruded has significantly 

lower ΔHardness at 0 wk than all other treatments and Control breads except for Waxy rice – Drum 

Dried (p<0.05). These results provide some evidence to support our second hypothesis that 

extrusion to molecularly fragment starch results in fewer intermolecular interactions that in turn 

slows staling in bread. For hardness values alone, Waxy Rice – Extruded and Waxy Rice – Drum 
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dried showed significantly lower hardness at 0 wk (1531.2 ± 58.3 g and 1732.4 ± 68.9 g, 

respectively) compared to other treatments and Control breads (Figure B.7). Waxy and normal rice 

samples tended to have lower hardness values over time, again supporting the postulate that 

starches with shorter external and internal chains form fewer intermolecular associations and thus 

reduce staling.  

B.4.3.2 Starch performance in cakes 

Changes in TPA characteristics occurred in different manners for cakes (Figures B.8-B.11) 

compared to breads (Figures B.4-B.7). ΔHardness (g) of cakes with 3% starch inclusion level were 

not large in magnitude (Figure B.8). However, extruded starches tended to exhibit lower 

ΔHardness overall, with significant differences emerging at 12 wk (p<0.05). For hardness, 

although overall values among treatment groups were also not great in magnitude, cakes with 

Wheat – Extruded starch exhibited significantly lower hardness at 12 wk than cakes with Normal 

Rice – Drum dried (p<0.05, Figure B.9).  

For cakes with 6% starch replacement for flour, there were no reductions in ΔHardness for 

rice starches compared to wheat (Figure B.10). Control cakes as well as cakes incorporating native 

and extruded starches tended to have lower ΔHardness than drum-dried starches, regardless of 

starch botanical source (Figure B.10). For hardness alone, although differences were not large in 

magnitude, Waxy Rice – Native cakes had the lowest value at 0 wk (1968.5 ± 72.1 g), which was 

significantly different from Wheat – Drum Dried, Wheat – Extruded, Waxy Rice – Extruded, and 

Normal Rice – Drum Dried at the same timepoint (Figure B.11). Batters for drum-dried treatments 

were denser (visually observed), which may have contributed to the harder texture of drum-dried 

cakes. 

B.4.3.3 Overall starch performance in breads and cakes 

Moderate, but in many cases significant, reductions in hardness were observed for breads 

and cakes with inclusion of normal and waxy rice starches. Rice starch possesses shorter internal 

and external linear chain amylopectin that forms fewer intermolecular associations and is slow 

retrograding (Martinez et al., 2018; Matalanis et al., 2009; Vamadevan & Bertoft, 2018). As 

indicated by HPSEC-MALLS-RI, extrusion processing caused a moderate amount of starch 
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fragmentation (Table B.2), and a notable reduction in hardness over storage time in the bread 

model system was observed with 15% extruded starch replacement for flour. We reason that a 

greater extent of starch fragmentation, which would be achieved using twin-screw extrusion, could 

result in starches with even greater anti-staling potential. 

One factor that we did not examine is the potential effect of amylose on staling in the breads 

and cakes. Through gelatinization during baking, a portion of amylose leaches from starch granules 

(Fadda et al., 2014; Hug-Iten et al., 1999; Keetels et al., 1996). During cooling after baking, 

amylose reverts back to an ordered state within a short period of time (minutes to hours), 

contributing to the initial firmness of baked products (Hug-Iten et al., 1999, 2003). Amylopectin 

reordering instead takes place slowly over time, occurring on the order of days to months (Ribotta 

et al., 2004; Ribotta & Le Bail, 2007). Presently, the general consensus is that amylose 

retrogradation contributes to initial rigidity of starch-containing baked products, while 

amylopectin retrogradation contributes to the gradual loss of textural quality in such products. An 

additional point to consider is whether amylose in the pregelatinized state, as was the case for our 

drum-dried and extruded starch treatments, undergoes retrogradation at a different rate and extent 

as amylose that was originally in the native state; this could be an area of future investigation. 

B.4.4 Water activity and moisture content 

Because staling is also associated with changes in water of baked products (Bosmans et al., 

2013), we examined water activity and moisture content at each timepoint for all breads and cakes. 

B.4.4.1 Changes in water activity for bread and cake model systems 

Water activity of breads and cakes generally decreased over storage time, with the 

exception that there were no differences in water activity at 4 and 12 wk timepoints among breads 

with 5% starch inclusion (Table B.19) or at 1 wk among cakes with 3 and 6% starch inclusion 

(Table B.20). For the bread model system with 5% starch inclusion, Control breads had the highest 

water activity values at 0 and 1 wk (p<0.05), however Waxy rice – Drum dried and Wheat – 

Extruded did not differ from the Control at 0 wk, and differences did not persist at 4 and 12 wk 

(Table B.19). In breads with 15% starch inclusion, treatments with processed starches (drum-dried 

and extruded) tended to have lower water activity values over storage time, especially at 0 and 1 
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wk timepoints, where differences were more pronounced (p<0.05). This was likely due to the fact 

that these starches were pregelatinized and absorbed water (Gopirajah & Muthukumarappan, 2018; 

Rodríguez-Miranda et al., 2011).  

Water activity of cakes did not decrease over time as much as water activity of breads, 

likely because cakes had sugar, which helps retain moisture, as well as lower initial water activity 

than breads. Water activity values for waxy rice treatments trended lower in cakes with 3% starch 

inclusion level, with significance in difference at the 4 and 12 wk timepoints (p<0.05; Table B.20). 

For the 6% starch inclusion cakes, Waxy rice – Drum Dried, Waxy rice – Extruded, Wheat – 

Native, and Wheat – Drum Dried trended lower than the other treatments, with significance 

reached at 12 wk compared to Normal rice – Extruded, Waxy rice – Native, and Control (p<0.05).  

B.4.4.1 Changes in moisture content for bread and cake model systems 

Moisture content level differed between bread and cake model systems (Tables B.21 and 

B.22). Breads with both starch inclusion levels (5 and 15% replacements for flour) experienced 

reductions in moisture content by 1-2% over time (Table B.21). Waxy rice treatments tended to 

have lower moisture content (Waxy Rice – Native was an exception), with differences that became 

more pronounced over time, reaching statistical significance in some cases at 0, 1, and 4 wk 

(p<0.05; Table B.21). This is notable because, despite the greater extent of moisture loss over time, 

the waxy rice treatments generally had lower hardness, indicative of slower staling. Wheat – Native 

treatments at both inclusion levels showed decreased moisture content over time that was similar 

in magnitude to the waxy rice starch treatments.  

Waxy rice treatments for cakes with 3% starch inclusion level trended lower in moisture 

content, with significance reached at the 12 wk timepoint (p<0.05; Table B.22). At 6% starch 

inclusion, Control cakes had higher moisture content than all treatments (Table B.6), with 

statistically significant differences achieved at 12 wk between Control and all treatments, other 

than Normal rice – Drum Dried and Normal rice – Extruded (p<0.05). Cakes tended to fluctuate 

above and below their initial moisture content at the follow-up timepoints (1, 4, and 12 wk), which 

may be indicative of moisture redistribution upon storage.  

Overall, although there were some significant differences among samples at certain 

timepoints, the moisture content and water activity data demonstrate that there was not a large 

amount of moisture loss from samples over storage (changes of <0.03 in water activity and <2% 
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in moisture content), which is notable as otherwise the textural changes could be attributed to 

drying of the samples. 

B.4.5 Image characterization 

Examples of bread and cake images are included in Figures B.12-B.15. The pores in bread 

and cake crumbs became smaller over storage time, and cake crumbs also seemed to fade in color 

over time.  

B.5 Conclusion 

In summary, inclusion of normal and waxy rice starches resulted in moderate reductions in 

ΔHardness from 23 to 80°C, as a measurement of degree of retrogradation, by TPA in bread and 

cake model systems in storage for up to 12 wk. In general, normal and waxy rice starches tended 

to exhibit more favorable anti-staling effects than wheat starch, which supported the hypothesis 

that shorter external and internal amylopectin chains of rice starch slows amylopectin 

retrogradation through fewer intermolecular associations. Furthermore, single-screw extrusion of 

normal and waxy rice starches to fragment amylopectin had an additional effect of lessened extent 

of staling in breads and cakes, supporting the idea that amylopectin fragments of starches that 

initially have relatively short amylopectin internal and external chains form fewer intermolecular 

associations. Given that the extruder used in this study produced only moderate amylopectin 

fragmentation, a higher degree of starch fragmentation obtained by twin-screw extrusion could 

further reduce retrogradation, producing better anti-staling property. Altered water molecular 

dynamics upon storage of the different starch treatments may be another factor affecting staling, 

as 5% and 15% waxy rice starch inclusion in the bread model system tended to result in breads 

with lower moisture content over time. Interestingly, despite their greater moisture loss over time, 

the waxy rice treatments generally had lower staling, as indicated by lower ΔHardness. Overall, 

higher inclusion of  low intermolecular-retrograding waxy rice in the bread model system (15% 

starch replacement for flour) showed the most reduction in staling and may, with further starch 

fragmentation, have anti-staling potential to provide more acceptable, softer stored breads and 

cakes.   
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Table B.1 Starch samples and processing treatments. 

Starch 

type 
Rationale Processing Ingredient, Source 

Normal 

rice  

Shorter internal and external 

amylopectin chains 

(formation of fewer 

intermolecular interactions 

during retrogradation) 

Native PenPure 30 (PP30), Ingredion 

Drum-dried 
PP30, prepared by Custom Drying 

Solutions (Valparaiso, IN) 

Extruded 
PP30, prepared at Purdue 

University 

Waxy rice  

Shorter internal and external 

amylopectin chains 

(formation of fewer 

intermolecular interactions 

during retrogradation), 

little/no amylose (decreased 

hardness) 

Native PenPure 37 (PP37), Ingredion 

Drum-dried 
PP37, prepared by Custom Drying 

Solutions (Valparaiso, IN) 

Extruded 
PP37, prepared at Purdue 

University 

Wheat  

Comparator, longer internal 

and external amylopectin 

chains  

Native Aytex P (hard wheat), ADM 

Drum-dried 
Aytex P, prepared by Custom 

Drying Solutions (Valparaiso, IN) 

Extruded 
Aytex P, prepared at Purdue 

University 
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Table B.2 Starch molecular weight (Mw, g/mol). Different letters indicate statistically significant 

differences between treatments (p<0.05). 

Starch treatment 
Peak molecular weight (Mw, g/mol) 

× 108 

Normal rice - Native 2.26 ± 0.26ab 

Normal rice - Drum dried 2.71 ± 0.02a 

Normal rice - Extruded 0.93 ± 0.11d 

Waxy rice - Native 1.99 ± 0.31ab 

Waxy rice - Drum dried 2.65 ± 0.11ab 

Waxy rice - Extruded 1.18 ± 0.02cd 

Wheat - Native 1.97 ± 0.15ab 

Wheat - Drum dried 1.94 ± 0.02bc 

Wheat - Extruded 0.85 ± 0.02d 
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Table B.3 Springiness TPA values (unitless) – bread model system with 5% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Springiness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

5% Normal 

rice - Native 
0.769 ± 0.020a 0.675 ± 0.010b 0.754 ± 0.029a 0.617 ± 0.002b 

5% Normal 

rice - Drum 

dried 

0.796 ± 0.002a 0.678 ± 0.013ab 0.749 ± 0.034a 0.620 ± 0.029b 

5% Normal 

rice - Extruded 
0.782 ± 0.007a 0.700 ± 0.020ab 0.745 ± 0.038a 0.607 ± 0.006b 

5% Waxy rice 

- Native 
0.779 ± 0.009a 0.719 ± 0.020ab 0.763 ± 0.058a 0.607 ± 0.003b 

5% Waxy rice 

- Drum dried 
0.792 ± 0.013a 0.680 ± 0.022ab 0.785 ± 0.032a 0.620 ± 0.008b 

5% Waxy rice 

- Extruded 
0.790 ± 0.006a 0.705 ± 0.002ab 0.775 ± 0.036a 0.643 ± 0.026b 

5% Wheat - 

Native 
0.804 ± 0.016a 0.736 ± 0.013ab 0.679 ± 0.018a 0.740 ± 0.001a 

5% Wheat - 

Drum dried 
0.823 ± 0.003a 0.754 ± 0.021ab 0.718 ± 0.043a 0.659 ± 0.021ab 

5% Wheat - 

Extruded 
0.822 ± 0.010a 0.758 ± 0.016a 0.769 ± 0.055a 0.678 ± 0.028ab 

Control 0.803 ± 0.017a 0.731 ± 0.008ab 0.718 ± 0.019a 0.632 ± 0.016b 
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Table B.4 Cohesiveness TPA values (unitless) – bread model system with 5% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Cohesiveness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

5% Normal 

rice - Native 
0.577 ± 0.006d 0.485 ± 0.007c 0.457 ± 0.004a 0.428 ± 0.007a 

5% Normal 

rice - Drum 

dried 

0.589 ± 0.008bcd 0.493 ± 0.002bc 0.453 ± 0.016a 0.426 ± 0.007a 

5% Normal 

rice - Extruded 
0.602 ± 0.012abcd 0.494 ± 0.002abc 0.452 ± 0.003a 0.436 ± 0.005a 

5% Waxy rice 

- Native 
0.590 ± 0.003abcd 0.507 ± 0.008abc 0.477 ± 0.009a 0.443 ± 0.009a 

5% Waxy rice 

- Drum dried 
0.590 ± 0.005abcd 0.488 ± 0.004bc 0.473 ± 0.006a 0.439 ± 0.003a 

5% Waxy rice 

- Extruded 
0.583 ± 0.002cd 0.506 ± 0.005abc 0.464 ± 0.009a 0.433 ± 0.003a 

5% Wheat - 

Native 
0.601 ± 0.003abcd 0.513 ± 0.008abc 0.466 ± 0.004a 0.435 ± 0.003a 

5% Wheat - 

Drum dried 
0.613 ± 0.006abc 0.510 ± 0.009abc 0.464 ± 0.007a 0.444 ± 0.005a 

5% Wheat - 

Extruded 
0.618 ± 0.005ab 0.522 ± 0.004a 0.486 ± 0.001a 0.441 ± 0.002a 

Control 0.622 ± 0.009a 0.515 ± 0.001ab 0.494 ± 0.015a 0.450 ± 0.006a 
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Table B.5 Chewiness TPA values (g) – bread model system with 5% starch inclusion. Average 

values ± standard error. Different letters indicate statistically significant differences at the same 

timepoint among treatments (down columns; p<0.05). 

Chewiness (g) Week 0 Week 1 Week 4 Week 12 

5% Normal 

rice - Native 
932.5 ± 34.6abc 838.6 ± 27.1c 730.0 ± 91.6a 603.0 ± 30.5c 

5% Normal 

rice - Drum 

dried 

876.0 ± 31.9bc 864.4 ± 24.7c 795.2 ± 12.1a 620.1 ± 22.3c 

5% Normal 

rice - Extruded 
923.6 ± 88.3abc 936.3 ± 9.5bc 806.9 ± 40.1a 641.4 ± 20.3bc 

5% Waxy rice 

- Native 
865.5 ± 47.1bc 897.4 ± 8.5bc 813.2 ± 81.9a 589.1 ± 7.7c 

5% Waxy rice 

- Drum dried 
899.3 ± 22.9bc 840.3 ± 34.1c 805.8 ± 104.6a 652.6 ± 15.0bc 

5% Waxy rice 

- Extruded 
866.7 ± 44.0bc 776.3 ± 53.6c 780.2 ± 67.7a 670.5 ± 41.0bc 

5% Wheat - 

Native 
982.6 ± 114.3abc 1050.7 ± 57.9ab 755.8 ± 25.4a 949.8 ± 15.5a 

5% Wheat - 

Drum dried 
1102.6 ± 53.0ab 1044.7 ± 41.9ab 826.7 ± 36.5a 765.5 ± 25.2b 

5% Wheat - 

Extruded 
1214.1 ± 63.2a 1149.4 ± 5.4a 1049.8 ± 152.2a 1036.7 ± 54.9a 

Control 728.9 ± 16.1c 858.5 ± 13.6c 697.5 ± 37.3a 670.9 ± 7.0bc 
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Table B.6 Resilience TPA values (unitless) – bread model system with 5% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Resilience 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

5% Normal 

rice - Native 
0.220 ± 0.004e 0.177 ± 0.004cd 0.155 ± 0.001bc 0.144 ± 0.003b 

5% Normal 

rice - Drum 

dried 

0.235 ± 0.007cde 0.183 ± 0.003bcd 0.151 ± 0.002c 0.143 ± 0.003b 

5% Normal 

rice - Extruded 
0.241 ± 0.005cd 0.181 ± 0.000bcd 0.153 ± 0.001bc 0.148 ± 0.001ab 

5% Waxy rice 

- Native 
0.226 ± 0.001cde 0.184 ± 0.004bcd 0.158 ± 0.002abc 0.150 ± 0.004ab 

5% Waxy rice 

- Drum dried 
0.229 ± 0.004cde 0.172 ± 0.001d 0.153 ± 0.003bc 0.144 ± 0.002b 

5% Waxy rice 

- Extruded 
0.224 ± 0.002de 0.183 ± 0.003bcd 0.154 ± 0.002bc 0.139 ± 0.002b 

5% Wheat - 

Native 
0.235 ± 0.002cde 0.190 ± 0.003abc 0.158 ± 0.001abc 0.148 ± 0.001ab 

5% Wheat - 

Drum dried 
0.261 ± 0.003ab 0.196 ± 0.005ab 0.163 ± 0.002abc 0.149 ± 0.003ab 

5% Wheat - 

Extruded 
0.267 ± 0.003a 0.204 ± 0.003a 0.170 ± 0.002a 0.151 ± 0.001ab 

Control 0.245 ± 0.012bc 0.189 ± 0.002bc 0.165 ± 0.001ab 0.157 ± 0.001a  
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Table B.7 Springiness TPA values (unitless) – bread model system with 15% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Springiness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

15% Normal 

rice - Native 
0.725 ± 0.005de 0.711 ± 0.017bc 0.598 ± 0.003b 0.598 ± 0.003b 

15% Normal 

rice - Drum 

dried 

0.750 ± 0.009cde 0.675 ± 0.015cd 0.606 ± 0.004b 0.626 ± 0.048ab 

15% Normal 

rice - Extruded 
0.771 ± 0.005bcd 0.675 ± 0.006cd 0.585 ± 0.013b 0.716 ± 0.026ab 

15% Waxy 

rice - Native 
0.707 ± 0.017e 0.629 ± 0.017d 0.722 ± 0.056a 0.758 ± 0.064a 

15% Waxy 

rice - Drum 

dried 

0.820 ± 0.008ab 0.727 ± 0.007abc 0.630 ± 0.011ab 0.657 ± 0.033ab 

15% Waxy 

rice - Extruded 
0.796 ± 0.015abc 0.721 ± 0.012abc 0.612 ± 0.013b 0.654 ± 0.018ab 

15% Wheat - 

Native 
0.803 ± 0.016ab 0.776 ± 0.005a 0.667 ± 0.018ab 0.639 ± 0.008ab 

15% Wheat - 

Drum dried 
0.823 ± 0.008ab 0.723 ± 0.012abc 0.629 ± 0.017ab 0.658 ± 0.029ab 

15% Wheat - 

Extruded 
0.841 ± 0.003a 0.740 ± 0.002ab 0.632 ± 0.012ab 0.589 ± 0.006b 

Control 0.772 ± 0.010bcd 0.694 ± 0.007bc 0.624 ± 0.019ab 0.602 ± 0.000b 
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Table B.8 Cohesiveness TPA values (unitless) – bread model system with 15% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Cohesiveness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

15% Normal 

rice - Native 
0.572 ± 0.007def 0.501 ± 0.003ab 0.437 ± 0.001abc 0.413 ± 0.005ab 

15% Normal 

rice - Drum 

dried 

0.559 ± 0.004ef 0.457 ± 0.004d 0.412 ± 0.004c 0.392 ± 0.010b 

15% Normal 

rice - Extruded 
0.585 ± 0.001cde 0.474 ± 0.003cd 0.420 ± 0.002bc 0.417 ± 0.014ab 

15% Waxy 

rice - Native 
0.545 ± 0.006f 0.477 ± 0.004bcd 0.457 ± 0.001a 0.435 ± 0.016a 

15% Waxy 

rice - Drum 

dried 

0.591 ± 0.004cd 0.478 ± 0.001bcd 0.423 ± 0.008abc 0.400 ± 0.006ab 

15% Waxy 

rice - Extruded 
0.593 ± 0.004cd 0.485 ± 0.009abc 0.430 ± 0.008abc 0.402 ± 0.006ab 

15% Wheat - 

Native 
0.611 ± 0.009bc 0.506 ± 0.004a 0.454 ± 0.010ab 0.396 ± 0.007ab 

15% Wheat - 

Drum dried 
0.635 ± 0.007ab 0.488 ± 0.008abc 0.444 ± 0.013abc 0.421 ± 0.003ab 

15% Wheat - 

Extruded 
0.643 ± 0.007a 0.495 ± 0.002abc 0.454 ± 0.008ab 0.418 ± 0.002ab 

Control 0.572 ± 0.005def 0.481 ± 0.005bcd 0.435 ± 0.004abc 0.417 ± 0.002ab 
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Table B.9 Chewiness TPA values (g) – bread model system with 15% starch inclusion. Average 

values ± standard error. Different letters indicate statistically significant differences at the same 

timepoint among treatments (down columns; p<0.05). 

Chewiness (g) Week 0 Week 1 Week 4 Week 12 

15% Normal 

rice - Native 
910.8 ± 21.3cde 979.7 ± 54.5cd 716.9 ± 7.8bc 675.0 ± 4.3b 

15% Normal 

rice - Drum 

dried 

1267.7 ± 14.5b 1091.3 ± 35.7bc 836.3 ± 17.6abc 954.2 ± 45.4ab 

15% Normal 

rice - Extruded 
1008.7 ± 27.4cd 1030.2 ± 9.8cd 715.7 ± 57.4bc 858.4 ± 57.5ab 

15% Waxy 

rice - Native 
779.1 ± 42.1ef 840.0 ± 33.5d 804.6 ± 60.6abc 939.7 ± 126.2ab 

15% Waxy 

rice - Drum 

dried 

840.1 ± 35.0def 942.6 ± 33.7cd 648.0 ± 10.3c 716.4 ± 67.3ab 

15% Waxy 

rice - Extruded 
723.4 ± 28.3f 943.9 ± 23.2cd 635.3 ± 17.1c 687.3 ± 22.3b 

15% Wheat - 

Native 
1068.6 ± 12.8c 1276.9 ± 42.6ab 933.4 ± 27.2a 917.0 ± 70.2ab 

15% Wheat - 

Drum dried 
1445.9 ± 34.5a 1393.2 ± 86.4a 933.7 ± 49.5a 862.6 ± 69.3ab 

15% Wheat - 

Extruded 
1331.8 ± 69.9ab 1332.3 ± 29.8a 898.1 ± 60.7ab 1028.0 ± 72.4a 

Control 1070.4 ± 23.9c 1032.5 ± 72.3cd 769.7 ± 43.2abc 766.0 ± 11.6ab 
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Table B.10 Resilience TPA values (unitless) – bread model system with 15% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Resilience 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

15% Normal 

rice - Native 
0.205 ± 0.005d 0.176 ± 0.001b 0.153 ± 0.000bcd 0.140 ± 0.001bc 

15% Normal 

rice - Drum 

dried 

0.224 ± 0.002bcd 0.169 ± 0.003bc 0.151 ± 0.001cd 0.141 ± 0.003bc 

15% Normal 

rice - Extruded 
0.230 ± 0.002bc 0.173 ± 0.001b 0.148 ± 0.001d 0.137 ± 0.001c 

15% Waxy 

rice - Native 
0.180 ± 0.004e 0.159 ± 0.002c 0.145 ± 0.001d 0.141 ± 0.006bc 

15% Waxy 

rice - Drum 

dried 

0.229 ± 0.003bc 0.170 ± 0.001bc 0.146 ± 0.003d 0.135 ± 0.002c 

15% Waxy 

rice - Extruded 
0.225 ± 0.003bcd 0.173 ± 0.004b 0.149 ± 0.002d 0.136 ± 0.002c 

15% Wheat - 

Native 
0.244 ± 0.007b 0.192 ± 0.003a 0.169 ± 0.004ab 0.144 ± 0.003abc 

15% Wheat - 

Drum dried 
0.285 ± 0.004a 0.194 ± 0.004a 0.166 ± 0.002abc 0.153 ± 0.002ab 

15% Wheat - 

Extruded 
0.294 ± 0.007a 0.198 ± 0.001a 0.174 ± 0.001a 0.155 ± 0.001a 

Control 0.214 ± 0.004cd 0.171 ± 0.004bc 0.154 ± 0.001bcd 0.146 ± 0.001abc 
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Table B.11 Springiness TPA values (unitless) – cake model system with 3% starch inclusion. 

Average values ± standard error. No statistically significant differences were found between 

treatments at each timepoint (down columns), thus no letters indicating significance have been 

included. 

Springiness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

3% Normal 

rice - Native 
0.802 ± 0.003 0.756 ± 0.005 0.729 ± 0.003 0.695 ± 0.019 

3% Normal 

rice - Drum 

dried 

0.786 ± 0.014 0.779 ± 0.026 0.749 ± 0.016 0.717 ± 0.006 

3% Normal 

rice - Extruded 
0.803 ± 0.016 0.764 ± 0.030 0.756 ± 0.038 0.692 ± 0.013 

3% Waxy rice 

- Native 
0.777 ± 0.004 0.760 ± 0.021 0.719 ± 0.000 0.697 ± 0.017 

3% Waxy rice 

- Drum dried 
0.780 ± 0.010 0.776 ± 0.012 0.750 ± 0.010 0.700 ± 0.020 

3% Waxy rice 

- Extruded 
0.783 ± 0.013 0.730 ± 0.004 0.716 ± 0.007 0.676 ± 0.009 

3% Wheat - 

Native 
0.801 ± 0.011 0.775 ± 0.010 0.701 ± 0.005 0.690 ± 0.012 

3% Wheat - 

Drum dried 
0.786 ± 0.018 0.770 ± 0.009 0.724 ± 0.004 0.701 ± 0.012 

3% Wheat - 

Extruded 
0.774 ± 0.012 0.751 ± 0.013 0.714 ± 0.004 0.651 ± 0.019 
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Table B.12 Cohesiveness TPA values (unitless) – cake model system with 3% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences 

among treatments at the same timepoint (down columns; p<0.05). 

Cohesiveness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

3% Normal 

rice - Native 
0.332 ± 0.014ab 0.214 ± 0.016a 0.217 ± 0.005a 0.151 ± 0.007b 

3% Normal 

rice - Drum 

dried 

0.334 ± 0.014ab 0.264 ± 0.005a 0.224 ± 0.007a 0.210 ± 0.008a 

3% Normal 

rice - Extruded 
0.366 ± 0.007a 0.205 ± 0.006a 0.203 ± 0.007a 0.174 ± 0.009ab 

3% Waxy rice 

- Native 
0.321 ± 0.003ab 0.229 ± 0.022a 0.199 ± 0.005a 0.170 ± 0.001b 

3% Waxy rice 

- Drum dried 
0.347 ± 0.018ab 0.233 ± 0.012a 0.223 ± 0.020a  0.181 ± 0.010ab 

3% Waxy rice 

- Extruded 
0.335 ± 0.008ab 0.208 ± 0.004a 0.196 ± 0.017a 0.158 ± 0.011b 

3% Wheat - 

Native 
0.333 ± 0.009ab 0.226 ± 0.014a 0.183 ± 0.009a 0.148 ± 0.005b 

3% Wheat - 

Drum dried 
0.330 ± 0.011ab 0.235 ± 0.016a 0.208 ± 0.014a 0.187 ± 0.005ab 

3% Wheat - 

Extruded 
0.328 ± 0.019ab 0.203 ± 0.011a 0.205 ± 0.011a 0.148 ± 0.010b 
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Table B.13 Chewiness TPA values (g) – cake model system with 3% starch inclusion. Average 

values ± standard error. Different letters indicate statistically significant differences among 

treatments at the same timepoint (down columns; p<0.05). 

Chewiness (g) Week 0 Week 1 Week 4 Week 12 

3% Normal 

rice - Native 
879.5 ± 54.0a 502.1 ± 98.4ab 663.6 ± 48.5a 373.8 ± 11.6bc 

3% Normal 

rice - Drum 

dried 

1075.4 ± 59.7a 891.2 ± 41.2a 628.9 ± 54.4a 715.7 ± 57.8a 

3% Normal 

rice - Extruded 
951.9 ± 72.6a 455.9 ± 31.0b 544.3 ± 66.1a 437.2 ± 59.1bc 

3% Waxy rice 

- Native 
851.4 ± 64.8ab 724.5 ± 149.7ab 517.2 ± 5.8a 471.5 ± 32.6bc 

3% Waxy rice 

- Drum dried 
951.3 ± 130.0a 629.3 ± 95.6ab 571.4 ± 87.5a 501.7 ± 94.4abc 

3% Waxy rice 

- Extruded 
722.9 ± 55.4ab 427.9 ± 40.0b 497.9 ± 110.1a 370.0 ± 30.9bc 

3% Wheat - 

Native 
796.1 ± 51.3ab 575.7 ± 81.6ab 440.2 ± 35.8a 310.0 ± 24.6c 

3% Wheat - 

Drum dried 
927.6 ± 71.6a 528.6 ± 91.0ab 541.9 ± 101.0a 575.2 ± 22.3ab 

3% Wheat - 

Extruded 
871.1 ± 103.9a 468.8 ± 40.7b 584.0 ± 75.9a 321.2 ± 28.6c 
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Table B.14 Resilience TPA values (unitless) – cake model system with 3% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences 

among treatments at the same timepoint (down columns; p<0.05). 

Resilience Week 0 Week 1 Week 4 Week 12 

3% Normal 

rice - Native 
0.121 ± 0.003a 0.093 ± 0.008a 0.098 ± 0.001a 0.067 ± 0.004b 

3% Normal 

rice - Drum 

dried 

0.129 ± 0.004a 0.114 ± 0.005a 0.098 ± 0.002a 0.096 ± 0.005a 

3% Normal 

rice - Extruded 
0.129 ± 0.002a 0.086 ± 0.003a 0.090 ± 0.002a 0.080 ± 0.004ab 

3% Waxy rice 

- Native 
0.122 ± 0.005a 0.102 ± 0.010a 0.089 ± 0.002a 0.078 ± 0.001ab 

3% Waxy rice 

- Drum dried 
0.130 ± 0.008a 0.097 ± 0.005a 0.095 ± 0.004a 0.080 ± 0.006ab 

3% Waxy rice 

- Extruded 
0.124 ± 0.003a 0.086 ± 0.003a 0.087 ± 0.006a 0.069 ± 0.005b 

3% Wheat - 

Native 
0.128 ± 0.005a 0.095 ± 0.006a 0.082 ± 0.003a 0.066 ± 0.002b 

3% Wheat - 

Drum dried 
0.128 ± 0.004a 0.095 ± 0.006a 0.093 ± 0.007a 0.086 ± 0.002ab 

3% Wheat - 

Extruded 
0.124 ± 0.007a 0.088 ± 0.004a 0.093 ± 0.005a 0.068 ± 0.005b 
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Table B.15 Springiness TPA values (unitless) – cake model system with 6% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Springiness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

6% Normal 

rice - Native 
0.821 ± 0.010ab 0.775 ± 0.003ab 0.735 ± 0.010a  0.748 ± 0.019a 

6% Normal 

rice - Drum 

dried 

0.776 ± 0.007abc 0.761 ± 0.008ab 0.742 ± 0.014a 0.729 ± 0.019a 

6% Normal 

rice - Extruded 
0.778 ± 0.011abc 0.749 ± 0.010ab 0.725 ± 0.007a 0.685 ± 0.004a 

6% Waxy rice 

- Native 
0.827 ± 0.003a 0.754 ± 0.011ab 0.750 ± 0.009a 0.731 ± 0.034a 

6% Waxy rice 

- Drum dried 
0.786 ± 0.017abc 0.782 ± 0.010a 0.755 ± 0.009a 0.759 ± 0.018a 

6% Waxy rice 

- Extruded 
0.770 ± 0.007bc 0.792 ± 0.028a 0.747 ± 0.015a 0.734 ± 0.016a 

6% Wheat - 

Native 
0.803 ± 0.019abc 0.761 ± 0.021ab 0.721 ± 0.020a 0.691 ± 0.008a 

6% Wheat - 

Drum dried 
0.770 ± 0.011bc 0.758 ± 0.003ab 0.744 ± 0.009a 0.732 ± 0.035a 

6% Wheat - 

Extruded 
0.756 ± 0.009c 0.713 ± 0.006b 0.700 ± 0.012a 0.682 ± 0.010a 

Control 0.800 ± 0.007abc 0.780 ± 0.010a 0.717 ± 0.008a 0.695 ± 0.012a 
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Table B.16 Cohesiveness TPA values (unitless) – cake model system with 6% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Cohesiveness 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

6% Normal 

rice - Native 
0.332 ± 0.008abc 0.258 ± 0.018abc 0.204 ± 0.007bc 0.184 ± 0.003abc 

6% Normal 

rice - Drum 

dried 

0.321 ± 0.010bcd 0.275 ± 0.013ab 0.221 ± 0.005abc 0.215 ± 0.005a 

6% Normal 

rice - Extruded 
0.333 ± 0.009abc 0.265 ± 0.003abc 0.208 ± 0.004abc 0.171 ± 0.004bc 

6% Waxy rice 

- Native 
0.314 ± 0.007cd 0.225 ± 0.008bc 0.202 ± 0.007bc 0.164 ± 0.009c 

6% Waxy rice 

- Drum dried 
0.356 ± 0.003ab 0.277 ± 0.005a 0.234 ± 0.011ab 0.185 ± 0.012abc 

6% Waxy rice 

- Extruded 
0.361 ± 0.004a 0.276 ± 0.004ab 0.207 ± 0.007abc 0.179 ± 0.012abc 

6% Wheat - 

Native 
0.313 ± 0.007cd 0.238 ± 0.009abc 0.196 ± 0.013bc 0.158 ± 0.012c 

6% Wheat - 

Drum dried 
0.346 ± 0.006abc 0.286 ± 0.008a 0.246 ± 0.004a 0.208 ± 0.007ab 

6% Wheat - 

Extruded 
0.324 ± 0.007abcd 0.219 ± 0.015c 0.199 ± 0.008bc 0.178 ± 0.004abc 

Control 0.290 ± 0.011d 0.261 ± 0.010abc 0.188 ± 0.005c 0.162 ± 0.008c 
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Table B.17 Chewiness TPA values (g) – cake model system with 6% starch inclusion. Average 

values ± standard error. Different letters indicate statistically significant differences at the same 

timepoint among treatments (down columns; p<0.05). 

Chewiness (g) Week 0 Week 1 Week 4 Week 12 

6% Normal 

rice - Native 
650.0 ± 45.2abc 825.5 ± 168.1ab  566.0 ± 20.3ab 581.9 ± 26.7abc 

6% Normal 

rice - Drum 

dried 

617.3 ± 37.9abc 797.7 ± 57.0ab 606.1 ± 32.5ab 703.3 ± 42.9ab 

6% Normal 

rice - Extruded 
497.0 ± 47.7c 722.6 ± 36.2ab 577.1 ± 29.6ab 471.0 ± 33.1bc 

6% Waxy rice 

- Native 
511.1 ± 27.6bc 517.4 ± 1.8b 599.3 ± 58.4ab 440.8 ± 58.1c 

6% Waxy rice 

- Drum dried 
634.5 ± 46.7abc 815.3 ± 46.6ab 679.8 ± 62.5ab 545.9 ± 52.7abc 

6% Waxy rice 

- Extruded 
668.9 ± 6.2ab 793.3 ± 45.9ab 496.3 ± 50.2b 491.7 ± 50.0bc 

6% Wheat - 

Native 
526.7 ± 30.8bc 526.3 ± 16.0b 492.6 ± 115.7b 422.4 ± 36.9c 

6% Wheat - 

Drum dried 
729.6 ± 25.2a 1037.0 ± 34.7a 820.4 ± 35.6a 755.8 ± 74.3a 

6% Wheat - 

Extruded 
623.6 ± 9.0abc 601.7 ± 106.3b 493.4 ± 65.4b 519.9 ± 42.8abc 

Control 491.2 ± 5.7c 798.6 ± 54.3ab 458.5 ± 10.8b 458.8 ± 55.1bc 
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Table B.18 Resilience TPA values (unitless) – cake model system with 6% starch inclusion. 

Average values ± standard error. Different letters indicate statistically significant differences at 

the same timepoint among treatments (down columns; p<0.05). 

Resilience 

(unitless) 
Week 0 Week 1 Week 4 Week 12 

6% Normal 

rice - Native 
0.127 ± 0.002abc 0.112 ± 0.010abc 0.095 ± 0.002ab 0.088 ± 0.002ab  

6% Normal 

rice - Drum 

dried 

0.128 ± 0.006abc 0.118 ± 0.005ab 0.096 ± 0.002ab 0.097 ± 0.003a 

6% Normal 

rice - Extruded 
0.131 ± 0.004ab 0.109 ± 0.001abc 0.092 ± 0.001ab 0.074 ± 0.002b 

6% Waxy rice 

- Native 
0.116 ± 0.003cd 0.094 ± 0.001c 0.094 ± 0.004ab 0.076 ± 0.006ab 

6% Waxy rice 

- Drum dried 
0.132 ± 0.001ab 0.113 ± 0.003abc 0.098 ± 0.004ab 0.094 ± 0.008ab 

6% Waxy rice 

- Extruded 
0.135 ± 0.001a 0.114 ± 0.001abc 0.087 ± 0.004b 0.080 ± 0.005ab 

6% Wheat - 

Native 
0.117 ± 0.002bcd 0.097 ± 0.002bc 0.087 ± 0.007b 0.073 ± 0.005b 

6% Wheat - 

Drum dried 
0.136 ± 0.002a 0.125 ± 0.003a 0.111 ± 0.002a 0.096 ± 0.005ab 

6% Wheat - 

Extruded 
0.128 ± 0.001abc 0.099 ± 0.007bc 0.089 ± 0.002ab 0.084 ± 0.002ab 

Control 0.110 ± 0.003d 0.108 ± 0.004abc 0.082 ± 0.001b 0.074 ± 0.004b 
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Table B.19 Water activity values (aw, unitless) – bread model system with 5% and 15% starch inclusions. Average values ± standard 

error of the mean. Different letters indicate statistically significant differences at the same timepoint among treatments (down 

columns; p<0.05). 

 Water activity (aw, unitless)  Water activity (aw, unitless) 

Starch treatment Week 0 Week 1 Week 4 Week 12 Starch treatment Week 0 Week 1 Week 4 Week 12 

Control 
0.848 ± 

0.000a 

0.845 ± 

0.001a 

0.834 ± 

0.000a 

0.825 ± 

0.000a 
Control 

0.839 ± 

0.000b 

0.838 ± 

0.000bc 

0.825 ± 

0.001a 

0.812 ± 

0.002bcd 

5% Normal rice - 

Native 

0.846 ± 

0.000bc 

0.843 ± 

0.000b 

0.834 ± 

0.000a 

0.826 ± 

0.000a 

15% Normal rice - 

Native 

0.836 ± 

0.001cd 

0.836 ± 

0.001cd 

0.824 ± 

0.000a 

0.811 ± 

0.001bcd 

5% Normal rice - 

Drum dried 

0.843 ± 

0.000e 

0.840 ± 

0.000de 

0.834 ± 

0.000a 

0.824 ± 

0.001a 

15% Normal rice - 

Drum dried 

0.833 ± 

0.000ef 

0.833 ± 

0.000ef 

0.823 ± 

0.000a 

0.814 ± 

0.000bcd 

5% Normal rice - 

Extruded 

0.845 ± 

0.000cde 

0.840 ± 

0.000cde 

0.830 ± 

0.001a 

0.826 ± 

0.000a 

15% Normal rice - 

Extruded 

0.835 ± 

0.000de 

0.835 ± 

0.001de 

0.826 ± 

0.001a 

0.817 ± 

0.000b 

5% Waxy rice - 

Native 

0.844 ± 

0.000cde 

0.839 ± 

0.000e 

0.830 ± 

0.001a 

0.824 ± 

0.000a 

15% Waxy rice - 

Native 

0.843 ± 

0.000a 

0.844 ± 

0.000a 

0.832 ± 

0.002a 

0.823 ± 

0.000a 

5% Waxy rice - 

Drum dried 

0.847 ± 

0.000ab 

0.842 ± 

0.001bc 

0.830 ± 

0.002a 

0.823 ± 

0.001a 

15% Waxy rice - 

Drum dried 

0.825 ± 

0.000g 

0.825 ± 

0.001g 

0.814 ± 

0.001b 

0.809 ± 

0.000d 

5% Waxy rice - 

Extruded 

0.844 ± 

0.001de 

0.839 ± 

0.000e 

0.829 ± 

0.002a 

0.823 ± 

0.000a 

15% Waxy rice - 

Extruded 

0.832 ± 

0.001f 

0.832 ± 

0.000f 

0.823 ± 

0.004ab 

0.813 ± 

0.001bcd 

5% Wheat - Native 
0.846 ± 

0.001bcd 

0.842 ± 

0.000bcd 

0.833 ± 

0.002a 

0.823 ± 

0.001a 
15% Wheat - Native 

0.837 ± 

0.000bc 

0.839 ± 

0.000b 

0.825 ± 

0.002a 

0.815 ± 

0.001bc 

5% Wheat - Drum 

dried 

0.843 ± 

0.001e 

0.841 ± 

0.000cde 

0.834 ± 

0.000a 

0.826 ± 

0.001a 

15% Wheat - Drum 

dried 

0.835 ± 

0.001cd 

0.833 ± 

0.000ef 

0.826 ± 

0.002a 

0.809 ± 

0.001cd 

5% Wheat - 

Extruded 

0.846 ± 

0.000abc 

0.843 ± 

0.001b 

0.834 ± 

0.001a 

0.828 ± 

0.000a 

15% Wheat - 

Extruded 

0.836 ± 

0.000cd 

0.837 ± 

0.000bc 

0.827 ± 

0.000a 

0.814 ± 

0.002bcd 
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Table B.20 Water activity values (aw, unitless) – cake model system with 3% and 6% starch inclusions. Average values ± standard 

error of the mean. Different letters indicate statistically significant differences at the same timepoint among treatments (down 

columns; p<0.05). 

 Water activity (aw, unitless)  Water activity (aw, unitless) 

Starch treatment Week 0 Week 1 Week 4 Week 12 
Starch 

treatment 
Week 0 Week 1 Week 4 Week 12 

Control N/A* N/A* N/A* N/A* Control 
0.731 ± 

0.000abc 

0.720 ± 

0.001a 

0.736 ± 

0.000a 

0.733 ± 

0.000a 

3% Normal rice - 

Native 

0.732 ± 

0.002abc 

0.731 ± 

0.001a 

0.729 ± 

0.000a 

0.718 ± 

0.000e 

6% Normal 

rice - Native 

0.729 ± 

0.000c 

0.729 ± 

0.002a 

0.734 ± 

0.000ab 

0.722 ± 

0.000abcd 

3% Normal rice - 

Drum dried 

0.734 ± 

0.001ab 

0.722 ± 

0.002a 

0.722 ± 

0.000cd 

0.724 ± 

0.001bc 

6% Normal 

rice - Drum 

dried 

0.729 ± 

0.002bc 

0.724 ± 

0.003a 

0.732 ± 

0.001b 

0.723 ± 

0.002abcd 

3% Normal rice - 

Extruded 

0.740 ± 

0.001a 

0.732 ± 

0.001a 

0.724 ± 

0.001bc 

0.721 ± 

0.001cd 

6% Normal 

rice - Extruded 

0.729 ± 

0.001c 

0.725 ± 

0.003a 

0.734 ± 

0.001ab 

0.728 ± 

0.003abc 

3% Waxy rice - 

Native 

0.740 ± 

0.002a 

0.730 ± 

0.000a 

0.725 ± 

0.001bc 

0.720 ± 

0.000de 

6% Waxy rice - 

Native 

0.730 ± 

0.000bc 

0.726 ± 

0.004a 

0.735 ± 

0.001ab 

0.730 ± 

0.001ab 

3% Waxy rice - 

Drum dried 

0.734 ± 

0.001ab 

0.729 ± 

0.001a 

0.720 ± 

0.001d 

0.718 ± 

0.000e 

6% Waxy rice - 

Drum dried 

0.737 ± 

0.000a 

0.730 ± 

0.002a 

0.728 ± 

0.000c 

0.718 ± 

0.001cd 

3% Waxy rice - 

Extruded 

0.724 ± 

0.003c 

0.726 ± 

0.000a 

0.727 ± 

0.001ab 

0.714 ± 

0.001f 

6% Waxy rice - 

Extruded 

0.736 ± 

0.001ab 

0.730 ± 

0.000a 

0.727 ± 

0.001c 

0.715 ± 

0.003d 

3% Wheat - Native 
0.732 ± 

0.002abc 

0.734 ± 

0.011a 

0.730 ± 

0.000a 

0.725 ± 

0.001ab 

6% Wheat - 

Native 

0.736 ± 

0.001ab 

0.731 ± 

0.002a 

0.722 ± 

0.001d 

0.715 ± 

0.004d 

3% Wheat - Drum 

dried 

0.734 ± 

0.001ab 

0.723 ± 

0.000a 

0.720 ± 

0.000d 

0.720 ± 

0.000de 

6% Wheat - 

Drum dried 

0.731 ± 

0.002abc 

0.724 ± 

0.003a 

0.735 ± 

0.001ab 

0.720 ± 

0.001bcd 

3% Wheat - 

Extruded 

0.728 ± 

0.001bc 

0.722 ± 

0.001a 

0.729 ± 

0.001a 

0.727 ± 

0.000a 

6% Wheat - 

Extruded 

0.730 ± 

0.002bc 

0.726 ± 

0.001a 

0.735 ± 

0.001ab 

0.725 ± 

0.000abcd 

*Control cakes not used because they were not baked on the same day as the test cakes with 3% starch replacement for flour. 
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Table B.21 Moisture content values (wet basis, %) – bread model system with 5% and 15% starch inclusions. Average values ± 

standard error of the mean. Different letters indicate statistically significant differences at the same timepoint among treatments (down 

columns; p<0.05). 

 Moisture content (wet basis, %)  Moisture content (wet basis, %) 

Starch 

treatment 
Week 0 Week 1 Week 4 Week 12 

Starch 

treatment 
Week 0 Week 1 Week 4 Week 12 

Control 27.1 ± 0.0ab 27.0 ± 0.1a 26.7 ± 0.1ab 26.1 ± 0.0ab Control 26.1 ± 0.0b 26.1 ± 0.1ab 25.9 ± 0.1a 24.8 ± 0.1cd 

5% Normal rice - 

Native 
26.6 ± 0.0d 27.0 ± 0.0a 26.6 ± 0.3abc 26.5 ± 0.1a 

15% Normal 

rice - Native 
25.4 ± 0.0c 25.6 ± 0.3bc 25.3 ± 0.1b 24.6 ± 0.1de 

5% Normal rice - 

Drum dried 
26.4 ± 0.0ef 26.8 ± 0.1ab 26.9 ± 0.1a 26.5 ± 0.1a 

15% Normal 

rice - Drum 

dried 

25.9 ± 0.0b 25.9 ± 0.0abc 25.9 ± 0.1a 25.2 ± 0.1abc 

5% Normal rice - 

Extruded 
26.6 ± 0.0de 26.7 ± 0.0abc 26.7 ± 0.1ab 26.4 ± 0.2a 

15% Normal 

rice - Extruded 
26.0 ± 0.0b 25.7 ± 0.0bc 26.0 ± 0.0a 25.4 ± 0.1ab 

5% Waxy rice - 

Native 
26.4 ± 0.0c 26.2 ± 0.0e 25.8 ± 0.1d 25.5 ± 0.0b 

15% Waxy rice 

- Native 
26.1 ± 0.0b 26.5 ± 0.2a 25.9 ± 0.0a 25.5 ± 0.0a 

5% Waxy rice - 

Drum dried 
27.2 ± 0.0a 26.5 ± 0.0cde 26.2 ± 0.0bcd 25.7 ± 0.1b 

15% Waxy rice 

- Drum dried 
24.9 ± 0.1d 24.8 ± 0.0d 24.5 ± 0.1c 24.1 ± 0.0f 

5% Waxy rice - 

Extruded 
26.9 ± 0.0bc 26.2 ± 0.0e 26.0 ± 0.1cd 25.7 ± 0.0b 

15% Waxy rice 

- Extruded 
25.6 ± 0.0c 25.4 ± 0.0cd 25.3 ± 0.1b 24.5 ± 0.0ef 

5% Wheat - 

Native 
26.9 ± 0.1f 26.2 ± 0.0de 26.1 ± 0.0bcd 25.7 ± 0.1b 

15% Wheat - 

Native 
25.4 ± 0.0c 25.6 ± 0.0bc 25.2 ± 0.0b 24.4 ± 0.0ef 

5% Wheat - 

Drum dried 
27.0 ± 0.0abc 26.5 ± 0.2bcd 26.5 ± 0.2abc 26.3 ± 0.3a 

15% Wheat - 

Drum dried 
26.4 ± 0.1a 26.0 ± 0.0abc 25.8 ± 0.1a 25.1 ± 0.1bc 

5% Wheat - 

Extruded 
27.1 ± 0.1ab 27.0 ± 0.0a 27.2 ± 0.2a 26.6 ± 0.0a 

15% Wheat - 

Extruded 
26.5 ± 0.0a 26.3 ± 0.0a 26.1 ± 0.1a 25.3 ± 0.1ab 
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Table B.22 Moisture content values (wet basis, %) – cake model system with 3% and 6% starch inclusions. Average values ± standard 

error of the mean. Different letters indicate statistically significant differences at the same timepoint among treatments (down 

columns; p<0.05). 

 Moisture content (wet basis, %)  Moisture content (wet basis, %) 

Starch 

treatment 
Week 0 Week 1 Week 4 Week 12 

Starch 

treatment 
Week 0 Week 1 Week 4 Week 12 

Control N/A* N/A* N/A* N/A* Control 16.3 ± 0.1bc 16.0 ± 0.0a 16.7 ± 0.1ab 16.9 ± 0.2a 

3% Normal rice - 

Native 
16.3 ± 0.0ab 16.2 ± 0.0bcd 15.7 ± 0.0bc 16.0 ± 0.1bcd 

6% Normal rice - 

Native 
15.6 ± 0.0d 16.0 ± 0.0a 16.2 ± 0.1cdef 16.2 ± 0.1bcd 

3% Normal rice - 

Drum dried 
16.3 ± 0.0ab 16.5 ± 0.0ab 15.3 ± 0.0b 16.5 ± 0.1ab 

6% Normal rice - 

Drum dried 
16.4 ± 0.1bc 16.0 ± 0.1a 16.8 ± 0.1a 16.6 ± 0.2ab 

3% Normal rice - 

Extruded 
16.4 ± 0.0a 16.7 ± 0.2a 15.3 ± 0.1c 15.7 ± 0.1a 

6% Normal rice - 

Extruded 
16.3 ± 0.1bc 15.8 ± 0.1a 16.6 ± 0.2abc 16.4 ± 0.2abc 

3% Waxy rice - 

Native 
15.9 ± 0.0c 16.6 ± 0.1ab 15.5 ± 0.0c 15.3 ± 0.0ab 

6% Waxy rice - 

Native 
16.2 ± 0.1c 15.7 ± 0.1a 16.2 ± 0.1def 15.9 ± 0.0cde 

3% Waxy rice - 

Drum dried 
16.6 ± 0.1a 16.6 ± 0.1ab 15.6 ± 0.2bc 15.3 ± 0.0ab 

6% Waxy rice - 

Drum dried 
16.7 ± 0.1ab 16.5 ± 0.2a 16.0 ± 0.0ef 15.6 ± 0.0efg 

3% Waxy rice - 

Extruded 
15.8 ± 0.1c 16.2 ± 0.1bc 16.3 ± 0.1a 15.1 ± 0.0bc 

6% Waxy rice - 

Extruded 
16.9 ± 0.1a 16.3 ± 0.3a 15.8 ± 0.0fg 15.4 ± 0.0fg 

3% Wheat - 

Native 
16.3 ± 0.0ab 15.7 ± 0.0de 16.5 ± 0.2a 15.7 ± 0.0de 

6% Wheat - 

Native 
16.2 ± 0.0c 15.9 ± 0.3a 15.4 ± 0.0g 15.3 ± 0.0g 

3% Wheat - 

Drum dried 
16.5 ± 0.1a 15.6 ± 0.0e 16.3 ± 0.1a 15.9 ± 0.1e 

6% Wheat - 

Drum dried 
16.3 ± 0.0bc 16.4 ± 0.1a 16.4 ± 0.1bcde 15.8 ± 0.1def 

3% Wheat - 

Extruded 
16.0 ± 0.1bc 15.5 ± 0.0e 16.2 ± 0.2ab 16.2 ± 0.1e 

6% Wheat - 

Extruded 
15.9 ± 0.0cd 15.8 ± 0.3a 16.5 ± 0.1abcd 16.2 ± 0.1bcd 

*Control cakes not used because they were not baked on the same day as the test cakes with 3% starch replacement for flour. 
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Figure B.1 Experimental design diagram for baking experiments. Diagram summarizes 

experiments for one inclusion level of one model system. 
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Figure B.2 Average viscosity (cP) over time for native and drum-dried starch samples from the 

Rapid Visco Analyzer. A: Profiles for native normal rice, waxy rice, and wheat starches. B: 

Profiles for drum-dried normal rice, waxy rice, and wheat starches. 
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Figure B.3 Average viscosity (cP) over time for extruded starch samples from the Rapid Visco 

Analyzer. A: Profiles for extruded normal rice, waxy rice, and wheat starches. B: Profiles with 

smaller y-axis scale for extruded normal rice, waxy rice, and wheat starches. 
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Figure B.4 ΔHardness (g) (difference in hardness from 23 to 80°C, as measurement of degree of 

retrogradation) of breads with 5% starch inclusion level measured at 0, 1, 4, and 12 wk 

timepoints. Control breads had no starch replacement for flour. Average values ± standard error 

of the mean are shown. Different letters indicate statistically significant differences among the 

treatments (starch source and processing method) at the same timepoint (p<0.05). 
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Figure B.5 Hardness (g) of breads with 5% starch inclusion level at 0, 1, 4, and 12 wk 

timepoints. Average values ± standard error of the mean. Different letters indicate statistically 

significant differences among treatments at the same timepoint (p<0.05). 
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Figure B.6 ΔHardness (g) (difference in hardness from 23 to 80°C, as measurement of degree of 

retrogradation) of breads with 15% starch inclusion level measured at 0, 1, 4, and 12 wk 

timepoints. Control breads had no starch replacement for flour. Average values ± standard error 

of the mean are shown. Different letters indicate statistically significant differences among the 

treatments (starch source and processing method) at the same timepoint (p<0.05). 
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Figure B.7 Hardness (g) of breads with 15% starch inclusion level at 0, 1, 4, and 12 wk 

timepoints. Average values ± standard error of the mean. Different letters indicate statistically 

significant differences among treatments at the same timepoint (p<0.05). 
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Figure B.8 ΔHardness (g) (difference in hardness from 23 to 80°C, as measurement of degree of 

retrogradation) of cakes with 3% starch inclusion level measured at 0, 1, 4, and 12 wk 

timepoints. Average values ± standard error of the mean are shown. Different letters indicate 

statistically significant differences among the treatments (starch source and processing method) 

at the same timepoint (p<0.05). 
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Figure B.9 Hardness (g) of cakes with 3% starch inclusion level at 0, 1, 4, and 12 wk timepoints. 

Average values ± standard error of the mean. Different letters indicate statistically significant 

differences among treatments at the same timepoint (p<0.05). 
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Figure B.10 ΔHardness (g) (difference in hardness from 23 to 80°C, as measurement of degree 

of retrogradation) of cakes with 6% starch inclusion level measured at 0, 1, 4, and 12 wk 

timepoints. Control cakes had no starch replacement for flour. Average values ± standard error of 

the mean are shown. Different letters indicate statistically significant differences among the 

treatments (starch source and processing method) at the same timepoint (p<0.05). 
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Figure B.11 Hardness (g) of cakes with 6% starch inclusion level at 0, 1, 4, and 12 wk 

timepoints. Average values ± standard error of the mean. Different letters indicate statistically 

significant differences among treatments at the same timepoint (p<0.05). 
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Figure B.12 Select images of breads with 5% starch inclusion. 

Control – baked with 5% breads at wk 0 Control – baked with 5% breads at wk 4 

5% Normal Rice – Native at wk 0 5% Normal Rice – Native at wk 4 

5% Waxy Rice – Native at wk 0 5% Waxy Rice – Native at wk 4 
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Figure B.12, continued. 

 

 

 

 

 

 

 

  

5% Wheat – Native at wk 0 5% Wheat – Native at wk 4 
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Figure B.13 Select images of breads with 15% starch inclusion. 

Control – baked with 15% breads at wk 0 Control – baked with 15% breads at wk 4 

15% Normal Rice – Extruded at wk 0 15% Normal Rice – Extruded at wk 4 

15% Waxy Rice – Extruded at wk 0 15% Waxy Rice – Extruded at wk 4 
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Figure B.13, continued. 

 

 

 

 

 

 

 

 

  

15% Wheat – Extruded at wk 0 15% Wheat – Extruded at wk 4 
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Figure B.14 Select images of cakes with 3% starch inclusion. 

3% Normal Rice – Drum dried at wk 0 3% Normal Rice – Drum dried at wk 12 

3% Waxy Rice – Drum dried at wk 0 3% Waxy Rice – Drum dried at wk 12 

3% Wheat – Drum dried at wk 0 3% Wheat – Drum dried at wk 12 
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Figure B.15 Select images of cakes with 6% starch inclusion. 

Control – baked with 6% cakes at wk 0 Control – baked with 6% cakes at wk 12 

6% Normal Rice – Extruded at wk 0 6% Normal Rice – Extruded at wk 12 

6% Waxy Rice – Extruded at wk 0 6% Waxy Rice – Extruded at wk 12 
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Figure B.15, continued. 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

6% Wheat – Extruded at wk 0 6% Wheat – Extruded at wk 12 
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10.1016/j.physbeh.2020.113051. 
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5. Roman L, Yee J, Hayes AMR, Bertoft E, Hamaker BR, Martínez MM. (2020). On the 

role of the internal chain length distribution of amylopectins during retrogradation: 

double helix lateral aggregation and slow digestibility. Carbohydrate Polymers. 

246:116633. doi: 10.1016/j.carbpol.2020.116633. 

6. Fang F, Luo X, BeMiller JN, Schaffter S, Hayes AMR, Woodbury TJ, Hamaker BR, 

Campanella OH. (2020). Neutral hydrocolloids promote shear-induced elasticity and gel 

strength of gelatinized waxy potato starch. Food Hydrocolloids. 107:105923. doi: 

10.1016/j.foodhyd.2020.105923. 

7. Hasek LY, Phillips RJ, Hayes AMR, Kinzig K, Zhang G, Powley TL, Hamaker BR. 

(2020). Carbohydrates designed with different digestion rates modulate gastric emptying 

response in rats. International Journal of Food Sciences and Nutrition. 71:839-844. doi: 

10.1080/09637486.2020.1738355. 

8. Hayes AMR, Swackhamer C, Mennah-Govela Y, Martinez MM, Diatta A, Bornhorst 

GM, Hamaker BR. (2020). Pearl millet (Pennisetum glaucum) couscous breaks down 

faster than wheat couscous in the Human Gastric Simulator, though has slower starch 

hydrolysis. Food & Function. 11:111-122. doi: 10.1039/c9fo01461f. Selected as front 

cover article for January 2020 journal issue. 

9. Veile A, Kramer K, Fiese B, Hayes A. (2018). Session 1 discussion: Time allocation 

across subsistence economies. Physiology & Behavior. 193(B):209-210. doi: 

10.1016/j.physbeh.2018.05.020. 

10. Cisse F, Erickson DP, Hayes AMR, Opekun AR, Nichols BL, Hamaker BR. (2018). 

Traditional Malian solid foods made from sorghum and millet have markedly slower 

gastric emptying than rice, potato or pasta. Nutrients. 10:124. doi: 10.3390/nu10020124. 

11. Cisse F, Pletsch EA, Erickson DP, Chegeni M, Hayes AMR, Hamaker BR. (2017). 

Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate 

of subsequent meal in humans. Nutrition Research. 45:46-51. doi: 

10.1016/j.nutres.2017.06.009. 

12. Hayes AMR, Howe SC, Burgess-Champoux TL. (2015). Enhancing whole grain, fiber, 

and iron content of pancakes: Impacts on quality attributes and adult receptivity. Journal 

of Student Research. 4(2):36-43. Accessible from 

http://www.jofsr.com/index.php/path/article/view/185.   

 

PAPER UNDER REVIEW 
 

1. Diarra M, Torres-Aguilar P, Hayes AMR, Cisse F, Nkama I, Hamaker BR. Malian thick 

porridges (tô) of pearl millet are made thinner in urban than rural areas and decrease 

satiety. Food and Nutrition Bulletin. Under review (submitted April 28, 2020). 

 

BOOK CHAPTER 
 

Hayes AMR, Jones JM. Cultural Differences in Processing and Consumption, in Encyclopedia 

of Food Grains (Second Edition), Academic Press, Oxford, 2016, p. 35-42. ISBN 

9780123947864. http://dx.doi.org/10.1016/B978-0-12-394437-5.00073-5 

 

http://www.jofsr.com/index.php/path/article/view/185
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PROFESSIONAL PRESENTATIONS 
 

1. Hayes AMR, Kingery A, Hamaker BR. (2020, July 13-15). Development and utilization 

of a semester-long product development team project for first- and second-year 

undergraduate students to promote student engagement. Institute of Food Technologists 

Annual Expo (IFT20), virtual event. (poster presentation by Hayes AMR) 

2. Hayes AMR, Hamaker BR. (2019, November 3-5). Improving understanding of pearl 

millet-based foods for satiety. Cereals & Grains 19. Cereals & Grains Association 

(formerly AACC International) Annual Meeting, Denver, CO, USA. (invited; oral 

presentation by Hayes AMR) 

3. Roman L, Yee J, Hayes AMR, Bertoft E, Hamaker BR, Martínez MM. (2019, November 

3-5). Amylose and amylopectin roles in the structurally-driven formation of slowly 

digestible starch from fully gelatinized starch. Cereals & Grains 19. Cereals & Grains 

Association (formerly AACC International) Annual Meeting, Denver, CO, USA. (oral 

presentation by Roman L) 

4. Roman L, Yee J, Hayes AMR, Bertoft E, Hamaker BR, Martínez MM. (2019, October 

31-November 2). Amylose and amylopectin roles in the structurally-driven formation of 

slowly digestible starch from fully gelatinized starch. Starch Roundtable, Denver, CO, 

USA. (oral presentation by Roman L) 

5. Hayes AMR, Gozzi F, Hamaker BR. (2019, July 9-13). Slow gastric emptying rate for 

pearl millet-based foods in Mali is not observed in a U.S. population, though shows a 

slow digestion property. Society for the Study of Ingestive Behavior Annual Meeting, 

Utrecht, Netherlands. (poster presentation by Hayes AMR) 

6. Hudson JL, Braun E, Wang Y, Hayes AMR, Hill ER, Couture SC, Douglas SM, Reister 

EJ, Hunter SR, Cheon E, McGowan B, Gunaratna NS, Mattes RD, Higgins KA. (2019, 

June 8-11). Systematic review and meta-analysis on the effect of portion size and 

ingestive frequency on energy intake and body weight among adults in randomized 

controlled trials. Nutrition 2019. American Society for Nutrition Annual Meeting, 

Baltimore, MD, USA. (poster presentation by collective group) 

7. Chegeni M, Hayes AMR, Gonzalez TD, Manderfeld MM, Menon R, Holschuh N, Lim J, 

Hamaker BR. (2018, October 21-23). Slowly digestible carbohydrates reduce gastric 

emptying in humans suggesting activation of the ileal brake. Cereals & Grains 18. AACC 

International Annual Meeting, London, UK. (poster presentation by Hayes AMR)  

8. Torres-Aguilar P, Yepez X, Hayes AMR, Martínez MM, Hamaker BR. (2018, October 

21-23). Effect of pearl millet extrusion on the formation of amylose-lipid complexes and 

their slow digestion property. Cereals & Grains 18. AACC International Meeting, 

London, UK. (oral presentation by Torres-Aguilar P/Hamaker BR)  

9. Hayes AMR, Swackhamer C, Martínez MM, Mennah-Govela YA, Bornhorst GM, 

Hamaker BR. (2018, July 15-18). Breakdown rate of couscous made from pearl millet 

versus wheat in a simulated gastric environment linked to gastric emptying. Institute of 

Food Technologists Annual Expo (IFT18), Chicago, IL, USA. (poster presentation by 

Hayes AMR) 
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10. Hayes AMR, Martínez MM, Swackhamer C, Mennah-Govela YA, Bornhorst GM, 

Hamaker BR. (2018, April 9-12). Insights to the delayed gastric emptying rate and slow 

digestibility of pearl millet couscous. Sorghum in the 21st Century, Cape Town, South 

Africa. (poster presentation by Hayes AMR) 

11. Hayes AMR, Martínez MM, Hamaker BR. (2017, October 8). Investigating the slow 

digesting property of pearl millet couscous. Cereals 17. American Association of Cereal 

Chemists International (AACCI) Annual Meeting, San Diego, CA, USA. (oral 

presentation by Hayes AMR) 

12. Martínez MM, Bertoft E, Hayes AMR, Hamaker BR. (2017, October 8). “Zipper model” 

explains intermolecular re-associations of starch molecules. Cereals 17, AACCI Annual 

Meeting, San Diego, CA, USA. (oral presentation by Martínez MM) 

13. Martínez MM, Bertoft E, Hayes AMR, Hamaker BR. (2017, October 7). “Zipper model” 

explains intermolecular re-associations of starch molecules. Starch Roundtable, San 

Diego, CA, USA. (oral presentation by Martínez MM) 

14. Hayes AMR, Mattes RD. (2017, October 2-4). The effect of snacking on lipid metabolic 

biomarkers: a review. The Pace of Life and Feeding: Health Implications. Ingestive 

Behavior Research Center (IBRC) International Conference, West Lafayette, IN, USA. 

(poster presentation by Hayes AMR) 

15. Cisse F, Erickson DP, Opekun AR, Nichols BL, Hayes AMR, Hamaker BR. (2015, 

October 18-21). Sorghum and millet exhibit slower gastric emptying than pasta, potatoes, 

and rice. American Association of Cereal Chemists International Centennial Meeting, 

Minneapolis, MN, USA. (poster display) 

16. Hayes AMR, Marquart L, Maschoff B. (2014). Fast-casual restaurant surveillance - 

Whole grain menu offerings and opportunities. Grains for Health Foundation (GHF) 

GrainUp Consortium 2014 annual meeting, Minneapolis, MN, USA. (oral presentation by 

Hayes AMR) 

17. Hayes AMR, Burgess-Champoux TL. (2014). Enhancing the nutritional quality of flour 

tortillas: An investigation of consumer receptivity to a fortified tortilla product. National 

Conference on Undergraduate Research (NCUR) 2014, Lexington, KY, USA. (oral 

presentation by Hayes AMR and NCUR Proceedings 2014 publication: 

http://www.ncurproceedings.org/ojs/index.php/NCUR2014/article/view/952/498) 

18. Hayes AMR, Burgess-Champoux TL. (2014). Enhancing the nutritional quality of flour 

tortillas: An investigation of consumer receptivity to a fortified tortilla product. St. 

Catherine University Antonian Honors Project Seminar. St. Paul, MN, USA. (oral 

presentation by Hayes AMR and St. Catherine University SOPHIA publication: 

http://sophia.stkate.edu/shas_honors/32/) 

19. Hayes AMR, Burgess-Champoux TL. (2014). Enhancing the nutritional quality of flour 

tortillas: An investigation of consumer receptivity to a fortified tortilla product. 

Minnesota Academy of Nutrition and Dietetics (MAND) 2014 annual meeting, St. Cloud, 

MN, USA. (poster presentation by Hayes AMR) 

 

http://www.ncurproceedings.org/ojs/index.php/NCUR2014/article/view/952/498
http://sophia.stkate.edu/shas_honors/32/
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20. Hayes AMR, Burgess-Champoux T. (2014). The efficacy of alternative treatments in 

maintaining metabolic control of Glycogen Storage Disease (GSD) Type I: A systematic 

review. Minnesota Academy of Nutrition and Dietetics (MAND) 2014 annual meeting, 

St. Cloud, MN, USA. (poster presentation by Hayes AMR) 

21. Hayes AMR, Howe SC, Burgess-Champoux TL. (2013). Enhancing whole grain, fiber, 

and iron content of pancakes:  Impacts on quality attributes and adult receptivity. 

Minnesota Academy of Nutrition and Dietetics (MAND) 2013 annual meeting, 

Bloomington, MN, USA. (poster presentation by Hayes AMR) 

 

AWARDS & ACCOMPLISHMENTS 
 

• Phi Tau Sigma Dr. Gideon ‘Guy’ Livingston Scholarship Recipient, 2020 

• Phi Kappa Phi Honor Society Inductee, October 2019 

o Through Phi Kappa Phi chapter at St. Catherine University to commemorate 

installation of new chapter at the University in 2019 

• Purdue Graduate Student Government Travel Grant Recipient (top tier), August 2019 

• Institute of Food Technologists (IFT) Carbohydrate Division, Outstanding Service 

Award, 2019, 2020 

• Purdue University Certificate of Practice in College Teaching, 2019 

• Cereals & Grains 18 (AACC International Annual Meeting), Nutrition Division Best 

Student Research Award, 2018 

• Institute of Food Technologists Annual Food Expo (IFT18), Poster Competition Finalist, 

2018 

• Institute of Food Technologists (IFT) Feeding Tomorrow Graduate Scholarship 

Recipient, 2018-2019 

• Phi Tau Sigma Honors Society Chapter of the Year, 2018 and 2020 

o Awarded to Hoosier Chapter at Purdue University 

o Chapter President in 2018, with lead role in completing and submitting 

nomination materials for this honor 

o Chapter Secondary Secretary in 2020, with role in completing and submitting 

nomination materials for this honor 

• Phi Tau Sigma Honors Society for Food Science and Technology Inductee, June 2015 

• Institute of Food Technologists (IFT) Feeding Tomorrow Graduate Scholarship 

Recipient, 2014-2015 

• Andrews Fellowship Recipient (2-year award), Purdue University, 2014 

• St. Catherine University Mary E. McCahill Memorial Award Recipient, May 2014 

o Most prestigious award of St. Catherine University 

o Presented to a senior student who has consistently demonstrated outstanding 

leadership, academic excellence, loyalty and service to the university throughout 

her years 

• St. Catherine University Class of 2014 Valedictorian 

• St. Catherine University Academic Dean’s List - Summa Cum Laude Latin Honors, 

September 2010-May 2014 

• St. Catherine University Antonian Honors Program Scholar, September 2010-May 2014  

• St. Catherine University Top Senior Honors Project Award Recipient, May 2014 
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• St. Catherine University Baccalaureate Student Commencement Speaker Nominee, 

March 2014 

• St. Catherine University Bonnie Jean Kelly and Joan Kelly Award for Excellence in 

Scholarly Writing – Honorable Mention, May 2014 

• Phi Beta Kappa (PBK) Liberal Arts Honor Society Inductee, March 2014 

• Kappa Gamma Pi (KGP) Catholic College Graduate Honor Society Inductee, March 

2014 

• Sigma Delta Pi (SDP) Spanish Honor Society Inductee, April 2013 

o Chapter President, April 2013-May 2014 

• Kappa Omicron Nu (KON) Human Sciences Honor Society Inductee, April 2012 

o Chapter Vice President, May 2013-2014 

• Minnesota Soybean Research & Promotion Council Scholarship Recipient, April 2013 

• Sister James Agnes Fogarty Home Economic Scholarship Recipient, April 2012 & April 

2013 

• Mayo Innovation Scholar, November 2012-April 2013 

o Mayo Innovation Scholars Program, Rochester, MN 

o Initiative of the Medtronic Foundation, Mayo Clinic, & MN Private College 

Council 

o Collaborated with a team of three other undergraduate students and one graduate 

student to conduct research on an assigned inventive topic 

o Presented conclusions in paper and presentation format to professionals at Mayo 

Clinic 

• St. Catherine University Freshman Chemistry Award Recipient, May 2011 

• Catholic Order of Foresters Scholarship Recipient, May 2010 

• Citizens Bank Minnesota Scholarship Recipient, May 2010 

 

WORK EXPERIENCE 
 

Graduate Research Assistant         August 2014-present 

Department of Food Science, Purdue University, West Lafayette, IN 

Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 

• Design and conduct food and nutrition science related experiments in the laboratory of 

Dr. Bruce Hamaker 

• Assist other students and scholars with use and organization of lab equipment 

• Note: Medical leave of absence from Fall 2015 through Summer 2016 

Graduate Teaching Instructor                          January-May 2019 

Department of Food Science, Purdue University, West Lafayette, IN 

• Designed and carried out FS 162 Introduction to Food Processing Course 

• Incorporated a mixture of lectures, laboratory activities/experiments in the Pilot Plant and 

Product Development Laboratory, guest speakers, and field trips (Conagra and Frito-Lay) 

into the course curriculum 

• Integrated a semester-long group product development project with components of 

marketing pitches, group presentations, and individual written reports 

• Earned the Certificate of Practice in College Teaching from Purdue University 

Manuscript Editor/Reviser              October 2016-April 2018 

West Lafayette, IN 
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• Reviewed and edited manuscripts, ensuring adherence to proper English grammatical 

rules and appropriate scientific style 

Science, Basic Statistics, & Physics Tutor             August 2012-May 2014  

O’Neill Center for Academic Development, St. Catherine University, St. Paul, MN  

Department of Mathematics & Physics, St. Catherine University, St. Paul, MN  

• Assisted students with coursework in general chemistry, organic chemistry, biochemistry, 

biology, psychology, basic statistics, and calculus-based physics 

• Assessed and accommodated students’ strengths/weaknesses, identified unique needs for 

help, and developed efficient strategies to help multiple students with diverse 

backgrounds 

Research & Development - Food Science Intern            May 2013-August 2013 

Michael Foods, Inc., Gaylord, MN 

• Conducted projects relating to eggs as food ingredients – liquid egg products, liquid and 

dried enzyme-modified egg products, while maintaining accurate and detailed records of 

all tasks undertaken 

• Learned and applied analytical methods for pH, free fatty acid, viscosity, salt, color, 

solids/moisture, and texture using various sample products 

• Presented a completed project to the Research & Development staff at Michael Foods 

and to students and faculty at St. Catherine University 

Inorganic Laboratory Intern              May 2011-August 2012 

Minnesota Valley Testing Laboratories, New Ulm, MN       

• Prepared potable water samples and filtered water samples for metals analyses 

• Performed analyses for moisture (vacuum oven method), fat (Mojonnier method), and 

scorched particles 

• Maintained a clean work environment, ensured calibration of lab instruments, and assisted 

others  

 

TEACHING EXPERIENCE 
 

• Introduction to Food Law and Regulations (FS 340), guest lecturer, Spring 2018, Spring 

2019, Spring 2020 

• Introduction to Food Processing (FS 162), course instructor (of record), Spring 2019 

• Cereal Chemistry and Processing (FS 455), guest lecturer, Fall 2018 

 

MENTEES 
 

• Fanny Gozzi, Undergraduate student visiting scholar from France (IUT University 

Institut of Technology of Bethune), April-July 2018 

• Katherine Franko, Undergraduate student, May-August 2018 

 

PROFESSIONAL AFFILIATIONS & COMMUNITY INVOLVEMENT 
 

Institute of Food Technologists (IFT)              September 2013-present 

• Student member; member of the Student Association, Indiana Section, and Great Plains 

Sub-Section (former member of Minnesota Section) 

• Feeding Tomorrow Graduate Scholarship Recipient, 2014-2015 & 2018-2019 

• College Bowl team member 2014-2016 
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• Student Session Monitor at IFT16 Annual Conference 

• Division Champion Team member (invited position), 2020-2021 

• Carbohydrate Division Leadership Team Volunteer 

o Secretary (2020-2021), Action Group Co-Lead (2020-2021), Newsletter Lead 

(2019-2020), Student Outreach Lead (2018-2020), Newsletter contributor (2016-

2018) 

Phi Tau Sigma Honor Society                  June 2015-present 

• Hoosier Chapter at Purdue 

o Secondary Treasurer, 2018-2020 

o President, 2017-2018 

o Vice President, 2016-2017 

• Program Committee member (national level), 2020-2021 

Institute of Food Technologists Student Association (IFTSA)         July 2018-present 

• Area Meeting Co-chair, Midwest Area, 2018-2019 

• Purdue IFTSA Chapter President, 2018-2019 

American Association of Cereal Chemists International (AACCI)         April 2015-present 

 Name changed to Cereals & Grains Association, September 2019 

• Cereals & Grains Student Association President, 2019-2020 

• AACCI/Cereals & Grains Student Association Vice President, 2018-2019 

• AACCI/Cereals & Grains Board of Directors – Student Representative, 2018-2019 

• AACCI Student Association Online Communicator, 2017-2018 

• Travel Award Recipient to Cereals 17 and Cereals & Grains 18, Annual Meetings in 

2017 and 2018 

Purdue University College of Agriculture Graduate Student Advisory Board    August 2019-2020 

• Representative for the Department of Food Science 

• Provide input on programs and activities that will enhance the graduate experience  

• Promote excellence and professionalism in graduate education for all students  

Purdue University Food Science Graduate Student Association    August 2014-present 

• President, June 2018-2019 

• Treasurer, September 2014-May 2015 

• Organize and facilitate enriching opportunities for 80+ fellow graduate students 

• Wrote successful grant to obtain funding through the Purdue Graduate Student 

Government 

• Assisted at various events – Molecular Gastronomy night, Wine & Cheese night, 

International Dinner, Holiday Party, Breakfast hours, etc. 

• Purdue University AgWeek and Spring Fest planner and volunteer 

Purdue University Ingestive Behavior Graduate Student Association   August 2014-present 

• Treasurer, September 2017-2018 

• Event Planner, May 2015-September 2017 

Purdue Graduate Student Government (PGSG)            September 2014-October 2015 

• Academic & Professional Development (APD) committee member, September 2014-

April 2015 

• APD co-chair, April 2015-October 2015 

• Planned and facilitated Public Speaking & Poster Presentation Workshops and the Next 

Generation Scholars Event for 80 middle school youth 
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• Head organizer of Etiquette Seminar for 50 graduate students (April 7, 2015) 

 

RECENT VOLUNTEERING & SERVICE 
 

• Mental Health First Aid, certified aider, November 11, 2019 

• Purdue Student Food Insecurity Committee member, May 2019-present 

• Lafayette Regional Science and Engineering Fair Judge, March 6, 2015; March 3, 2017; 

March 2, 2018; March 8, 2019; March 26, 2020 

• Purdue Extension Booth Volunteer at the Indiana State Fair, 2016 and 2017 

• Food Finders – J.P. Lisack Community Food Pantry bi-weekly volunteer, Lafayette, IN, 

June 2016-2017 

• Springification/Boiler Blast community outreach event volunteer, Purdue University, 

April 9, 2016 

• Food Finders Food Bank volunteer, Lafayette, IN, March 31, 2016 

• Project Move Out volunteer, Purdue University, May 9, 2015 

• Martin Luther King, Jr. Day of Service volunteer, Purdue University, January 19, 2015; 

January 16, 2017 

 


