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ABSTRACT

In this era of data deluge with real-time contents continuously generated by distributed

sensors, intelligent neuromorphic systems are required to efficiently deal with the massive

amount of data and computations in ubiquitous automobiles and portable edge devices.

Spiking Neural Networks (SNNs), often regarded as third generation neural networks, can

be highly power-efficient and have competitive capabilities to deal with numerous cognitive

tasks. However, the typical shallow spiking network architectures have limited capacity for

expressing complex representations while training a very deep spiking network has not been

successful so far.

The first part of this thesis explores several pathways to effectively train deep SNNs

using unsupervised, supervised and semi-supervised schemes, and neuron model analysis.

First, we present a layer-wise unsupervised Spike-Timing-Dependent-Plasticity (STDP) for

training deep convolutional SNNs. Second, we propose an approximate derivative method

to overcome the discontinuous and non-differentiable nature of spike generation function

and to enable training deep convolutional SNNs with input spike events using supervised

spike-based backpropagation algorithm. Third, we develop a pre-training scheme using bio-

logically plausible unsupervised learning, namely STDP, in order to better initialize the net-

work parameters prior to supervised spike-based backpropagation. In addition, we present

a comprehensive and comparative analysis between neuron models with and without leak to

analyze the impacts of leak on noise robustness and spike sparsity in deep SNNs.

The later part of this thesis explores the combination between SNNs and event camera

that provides highly temporal information in the form of spike streams. Event-based cam-

eras display great potential for a variety of tasks such as high-speed motion detection and

navigation in low-light environments where standard frame-based cameras suffer critically.

However, conventional computer vision methods as well as deep Analog Neural Networks

(ANNs) are not compatible in their native form with the asynchronous and discrete nature

of event camera outputs. In this regard, SNNs serve as ideal paradigms to directly handle

event camera outputs. However, deep SNNs suffer in terms of performance due to the spike

vanishing phenomenon. To overcome these issues, we present Spike-FlowNet, a deep hybrid
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neural network architecture integrating SNNs and ANNs for efficiently estimating optical

flow from sparse event camera outputs without sacrificing the performance. Furthermore,

we propose Fusion-FlowNet, a sensor/architecture fusion framework for accurately estimat-

ing dense optical flow. In essence, we leverage the complementary characteristics of event-

and frame-based sensors as well as ANNs and SNNs.
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1. INTRODUCTION

1.1 Biologically Inspired Computing: Spiking Neural Networks

Over the last few years, deep learning has made tremendous progress and has become a

prevalent tool for coping with various cognitive tasks such as object detection, speech recogni-

tion and reasoning. Various deep learning techniques [1 ]–[3 ] enable the effective optimization

of deep Analog Neural Networks (ANNs1
 ) by constructing multiple levels of feature hierar-

chies and show remarkable results, which occasionally outperform human-level performance

[4 ]–[6 ]. To that effect, deploying deep learning is becoming necessary not only on large-scale

computers, but also on edge devices (e.g. phone, tablet, smartwatch, robot, etc.). However,

the ever-growing complexity of the state-of-the-art deep neural networks together with the

explosion in the amount of data to be processed, place significant energy demands on cur-

rent computing platforms. For example, typical deep ANN models require the unprecedented

amount of computing hardware resources that often necessitate huge computing power of

cloud servers and significant amount of time to train.

Biologically inspired neuromorphic computing models are widely being explored in an

effort to mimic the computational efficiency of the human brain in performing classifica-

tion, recognition, and decision making among other tasks. Spiking Neural Networks (SNNs),

which is often regarded as the third generation of neural networks [7 ], have garnered signif-

icant research interest because of their ability to closely emulate certain facets of computa-

tions performed by the human brain. The high bio-fidelity and intrinsic sparse event-driven

processing capability render SNNs an ideal neuromorphic-computing paradigm for realizing

energy-efficient hardware [8 ]–[10 ] with on-chip intelligence for classification and recognition

applications. The recent works [11 ], [12 ] have shown that these properties make SNNs sig-

nificantly more attractive for deeper networks in the case of hardware implementation. This

is because the spike signals become significantly sparser as the layer goes deeper, such that

the number of required computations significantly reduces.
1↑ We refer to the conventional deep learning networks as ANNs, owing to their analog nature of inputs and
computations. This nomenclature helps to distinguish them from Spiking Neural Networks (SNNs), which
perform spike-based computations.
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Till now, two-layered (shallow) fully-connected SNN architectures have been widely ex-

plored for classification and recognition tasks [13 ]–[15 ]. However, they necessitate the large

number of trainable parameters to attain competitive classification accuracy, which con-

strains their scalability for solving complex tasks. In recent times, several developments on

multi-layer SNNs, composed of an input layer followed by two or more hidden layers and

an output layer, address the scalability issue [16 ]–[19 ]. These multi-layer neural networks

essentially allow the systems to hierarchically classify the complex input patterns by build-

ing feature hierarchies. The early layer detects elementary representations of input patterns

while the subsequent layers capture the higher-level concepts comprising elementary features.

Nevertheless, the training of deeper SNNs remains an intricate and challenging problem.

1.2 Contributions

In this thesis, we address this scalability challenge, improve the accuracy, energy-efficiency

and robustness, and implement SNNs on novel applications. The key contributions of this

thesis are summarized as follows,

• We explore novel learning algorithms that allow deep SNNs to achieve competitive ac-

curacy, energy-efficiency and robustness. In regard to this, we present unsupervised,

supervised and semi-supervised spike-based learning algorithms to develop the SNN

frameworks for image classifications. Further, we show a comprehensive and compar-

ative analysis between neuron models with and without leak to analyze the impacts of

leak on noise robustness and spike sparsity in deep SNNs.

• Event cameras, such as Dynamic Vision Sensors (DVS) [20 ], are new types of bio-inspired

vision sensors that asynchronously detect logarithmic brightness changes rather than

sampling intensities to form synchronous frame-based images as in traditional cameras.

This working principle grants promising advantages, namely high temporal resolution,

high dynamic range and low power consumption. However, conventional computer vision

methods as well as deep ANNs are no longer compatible in their native form with the

asynchronous and discrete nature of event camera outputs. In regard to this, we demon-

strate a great promise of SNNs for directly handling event-camera outputs. Furthermore,
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we show that SNNs can effectively exploit the inherent sparsity of event streams by per-

forming efficient event-based computations, carrying out operations only at the arrival

of the input events.

1.3 Thesis Outline

The initial four chapters of this thesis explore several pathways to effectively train deep

SNNs using unsupervised, supervised and semi-supervised schemes, and analyze the different

neuron models. In the last two chapters of this thesis, we explore the match between SNNs

and event camera that provides highly temporal information in the form of spike streams.

More specific overview of chapters are as follows,

In chapter 2, we train convolutional kernels layer-by-layer in an unsupervised manner

using Spike Timing Dependent Plasticity (STDP) that enables them to self-learn character-

istic features making up the input patterns. In order to further improve the feature learning

efficiency, we propose using smaller 3×3 kernels trained using STDP-based synaptic weight

updates performed over a mini-batch of input patterns.

In chapter 3, we address the challenges to directly train deep SNNs with supervised

backpropagation algorithm using input spike events due to the discontinuous and non-

differentiable nature of spike generation function. To overcome these challenges, we pro-

pose an approximate derivative to enable training deep convolutional SNNs with input spike

events using spike-based backpropagation algorithm. Our experiments show the effectiveness

of the proposed spike-based learning strategy on state-of-the-art deep networks (VGG and

Residual architectures) by achieving the best classification accuracies in MNIST, SVHN and

CIFAR-10 datasets compared to other SNNs trained with spike-based learning at the time

of writing this thesis.

In chapter 4, we propose a pre-training scheme using biologically plausible unsupervised

learning, namely STDP, in order to better initialize the parameters in multi-layer systems

prior to supervised learning. We train the deep SNNs in two phases wherein, first, convolu-

tional kernels are pre-trained in a layer-wise manner with unsupervised learning followed by

fine-tuning the synaptic weights with supervised spike-based backpropagation. Our exper-
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iments on digit recognition demonstrate that the STDP-based pre-training with gradient-

based optimization provides improved robustness, faster (∼ 2.5×) training time and better

generalization compared with purely gradient-based training without pre-training.

In chapter 5, we investigate the questions regarding the justification of leak and the pros

and cons of using leaky behavior. We present a comprehensive and comparative analysis

between neuron models with and without leak. Our experimental results reveal that leaky

neuron model provides improved robustness and better generalization compared to models

with no leak. However, leak decreases the sparsity of computation contrary to the common

notion. Through a frequency domain analysis, we demonstrate the effect of leak in eliminat-

ing the high-frequency components from the input, thus enabling SNNs to be more robust

against noisy spike-inputs.

In chapter 6, we present Spike-FlowNet, a deep hybrid neural network architecture in-

tegrating SNNs and ANNs for efficiently estimating optical flow from sparse event camera

outputs. In addition, we present an input representation that efficiently encodes the se-

quences of sparse outputs from event cameras over time to preserve the spatio-temporal

nature of spike events. The network is end-to-end trained with self-supervised learning

on multi-vehicle stereo event camera dataset. Spike-FlowNet outperforms its correspond-

ing ANN-based method in terms of the optical flow prediction capability while providing

significant computational efficiency.

In chapter 7, we propose Fusion-FlowNet, a sensor/architecture fusion framework for

accurately estimating dense optical flow. Accordingly, we leverage the complementary char-

acteristics of event- and frame-based sensors as well as ANNs and SNNs. Our method

generalizes well across distinct environments (rapid motion and challenging lighting condi-

tions) and demonstrates state-of-the-art optical flow estimation performances. Furthermore,

our network offers substantial savings in terms of the number of network parameters, com-

putational energy and memory cost.
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2. DEEP SPIKING CONVOLUTIONAL NEURAL NETWORK

TRAINED WITH UNSUPERVISED SPIKE TIMING

DEPENDENT PLASTICITY

2.1 Introduction

Spike-Timing-Dependent-Plasticity (STDP), one of the prominent mechanisms of learn-

ing in mammalian brains [21 ], is typically used for the unsupervised training of Spiking

Neural Neworks (SNNs). SNNs, that have been widely explored for unsupervised pattern

recognition, consist of input neurons fully-connected by plastic synapses to a layer of ex-

citatory (output) neurons [13 ]–[15 ]. However, the two-layered SNN topology necessitates

significantly larger number of excitatory neurons to attain competitive classification accu-

racy. In order to build an intelligent machine with improved scalability and reduced trainable

parameters, it is imperative to devise a hierarchical SNN topology capable of extracting high-

level features embedded in an image pattern and sharing learned features across different

classes of patterns.

To this effect, we propose a deep Spiking Convolutional Neural Network (SpiCNN) com-

posed of an input layer followed by a hierarchy of stacked convolutional layers for input fea-

ture extraction, a spatial-pooling layer for dimensionality reduction, and a fully-connected

layer for final classification. Our proposal is inspired by the deep learning networks that

exhibit state-of-the-art classification accuracies across a wide range of pattern recognition

tasks while occasionally surpassing human performance [5 ], [6 ]. We train the convolutional

weight kernels interconnecting consecutive layers in a sequential manner using STDP for

self-learning distinctive features contained in the input patterns. The learned information is

embedded in the average spiking rate of the neurons constituting the convolutional feature

maps. We use the Poisson-distributed spike encoding mechanism for converting the average

spiking rate of the neurons forming the input and convolutional feature maps to spike trains

for training successive layers of SpiCNN. The chosen spike encoding scheme necessitates non-

linear spiking neuronal model for competitive feature learning. Hence, we use the biologically

plausible Leaky-Integrate-and-Fire (LIF) model [22 ] for the spiking neurons that offers rich
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non-linear behavior. However, recent efforts on training deep spiking networks using STDP

explored temporal rank-order spike encoding scheme, where pixel intensity is represented by

the relative order of incoming spikes in a network of integrate-and-fire neurons [17 ], [23 ]–

[25 ]. We note that Poisson-distributed spike encoding is more robust to intrinsic neuronal

noise in comparison with the temporal rank-order scheme [26 ]. Moreover, rank-order coding

incurs hardware overhead to modulate the weighted input spikes based on the respective

order of firing. Poisson-distributed encoding, on the other hand, precludes this overhead

since the individual spikes are statistically independent and information is encoded in the

average neuronal firing rate. Further, the advances in nanotechnology have resulted in the

emergence of neuro-mimetic devices capable of inherently mimicking dynamics of biological

neurons and synapses [27 ]–[30 ]. We believe that the bio-inspired algorithms implemented

using such emerging device technologies could pave the way for getting closer to the energy

efficiency of the human brain.

The application of STDP learning to a network of LIF neurons using Poisson-distributed

spike encoding scheme has thus far been limited to shallow SNN topologies due to the

challenge associated with propagating spikes across multiple levels of hierarchy that is critical

for feature learning. In this chapter, we stack multiple convolutional layers and demonstrate

effective feature learning by precisely modulating the network hyper-parameters including

the LIF neuronal and STDP learning parameters. In an effort to minimize the sensitivity of

SpiCNN to various hyper-parameters and improve the feature learning capability, we propose

using smaller convolutional weight kernels (for instance, 3×3 as opposed to the commonly

used 5×5 or 7×7 kernel sizes) and training them using STDP-based mini-batch weight

updates. The reduction in the number of trainable parameters offered by smaller kernel

sizes together with STDP-based mini-batch weight updates enables the convolutional kernels

to learn generalized features characterizing different input patterns. Our analysis indicates

that smaller kernels learn prominent features and distributed internal representations across

different layers, leading to improved classification accuracy. We comprehensively validate

the efficacy of SpiCNN and the associated training methodology across different network

topologies and kernel configurations using handwritten digits from the MNIST dataset [31 ]

and natural images from the Caltech dataset [32 ].
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Next, we provide the LIF neuron model, the proposed deep SpiCNN architecture and

STDP-based unsupervised learning methodology. We subsequently outline the simulation

framework and present experimental evidence illustrating the feature learning capability

and robustness of SpiCNN. Finally, we highlight the benefits and trade-offs offered by our

approach against recent works on deep SNNs.

Figure 2.1. The operation of a Leaky Integrate and Fire (LIF) neuron.

2.2 SNN Fundamental: Leaky-Integrate-and-Fire Neuron Model

We first introduce the concept of Leaky-Integrate-and-Fire (LIF) neuron model [33 ] that

is a fundamental and biologically plausible computational element for emulating the dy-

namics of biological neuronal functionalities. The sub-threshold dynamics of a LIF spiking

neuron can be formulated as

τm
dVmem

dt
= −Vmem + I(t) (2.1)

where Vmem is the post-neuronal membrane potential and τm is the time constant for mem-

brane potential decay. The input current, I(t), is defined as the weighted summation of

pre-spikes at each time step as given below.

I(t) =
nl∑

i=1
(wi

∑
k

θi(t− tk)) (2.2)
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where nl indicates the number of pre-synaptic weights, wi is the synaptic weight connecting

ith pre-neuron to post-neuron. θi(t− tk) is a spike event from ith pre-neuron at time tk, which

can be formulated as follows,

θ(t− tk) =


1, if t = tk

0, otherwise
(2.3)

where tk is the time instant that kth spike occurred. Fig.2.1 illustrates LIF neuronal dynam-

ics. The impact of each pre-spike, θi(t − tk), is modulated by the corresponding synaptic

weight (wi) to generate a current influx to the post-neuron. Note, the units typically do not

have bias term. The input current is integrated into the post-neuronal membrane potential

(Vmem) that leaks exponentially over time with time constant (τm). When the membrane

potential exceeds a threshold (Vth), the neuron generates a spike and resets its membrane

potential to initial value (zero).

Figure 2.2. Architecture of the proposed deep SpiCNN consisting of the input
layer, stacked convolutional layers for feature extraction, spatial-pooling layer
for dimensionality reduction, and a final fully-connected layer for inference.

2.3 Proposed SNN Architecture and Learning Methodology

2.3.1 Deep Spiking Convolutional Neural Network (SpiCNN)

Our proposed SpiCNN (shown in Fig. 2.2 ) is composed of a hierarchy of stacked convolu-

tional (C) layers followed by a spatial-pooling (S) layer and a final fully-connected (FC) layer.
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The convolutional layers hierarchically extract characteristic features from the complex in-

put image patterns. For instance, the first convolutional layer detects low-level features like

edges and corners while the successive layers extract high-level features from the activation

(feature) maps of the preceding layer. This is accomplished by training the shared weight

kernels using the presented unsupervised convolutional STDP learning methodology. The

learned information is embedded in the average spiking activity of the neurons forming the

convolutional feature maps.

Figure 2.3. Illustration of the operation of the convolutional, spatial-pooling,
and fully-connected layers. The input feature maps are convolved with the
weight kernels to produce the respective output feature maps. The convolu-
tional feature maps are then pooled spatially using max-pooling technique to
achieve dimensionality reduction with minimal loss of spike information. The
neurons in the max-pooled feature maps are unrolled and fully-connected to
the output layer, which is augmented with competitive lateral inhibition for
improved recognition capability.

Next, we have a spatial-pooling layer whose operation is detailed using a fixed 2×2 kernel

with a stride of 2 pixels at a time. Spatial-pooling operation reduces the dimension of the

convolutional feature maps while preserving the local correlation between the constituent

pixels. In this chapter, we use average-pooling, which comprises each kernel weight of 1 and

threshold of 0.25. During every stride of the kernel over a convolutional feature map, an

output spike is fired by the corresponding neuron in the pooled feature map if any of the 4

input pixels spikes. This, in effect, reduces the dimension of the convolutional feature map by

a factor of two with minimal loss of spike information. Note that the weight kernel used for

spatial-pooling is not trainable and is fixed a priori. Spatial-pooling has the following two-
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fold advantages. First, it enhances the computational efficiency by reducing the dimension of

the convolutional feature maps. Second, it renders the network invariant to slight distortions

and translation in the input patterns.

Finally, we have a fully-connected (output) layer containing as many neurons as the

number of classes for a given recognition task. Each output neuron is fully-connected to

the neurons constituting the feature maps in the preceding spatial-pooling layer, and is

trained to infer the input patterns based on the extracted high-level representations. A test

pattern is predicted to belong to the class represented by the output neuron with the highest

spike-count during the presentation interval. In order to further the recognition capability

of the fully-connected layer, we incorporate competitive lateral inhibition among the output

neurons during inference as shown in Fig. 2.3 . When an output neuron fires, membrane

potentials of all other output neurons decrease with a constant inhibition factor. These

inhibitory connections restrain the spiking activity of the neurons that have learned to infer

input patterns sharing common features with the presented test pattern, thereby improving

the recognition capability of SpiCNN.

Figure 2.4. (a) Weight-dependent STDP rule used for capturing the temporal
correlation between a pair of pre- and post-synaptic spikes. (b) Illustration
of the non-linear dependence of synaptic weight update on the current weight
given Wmax=1, Wmin=−1.
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2.3.2 Synaptic Plasticity

The strength of the synapses interconnecting a pair of pre- and post-neurons is modulated

using STDP, which postulates that the synaptic strength (weight) varies exponentially with

the degree of timing correlation between the respective spike patterns. In this chapter, we

use the weight-dependent positive-STDP rule that is illustrated in Fig. 2.4 (a) and formulated

below.

∆W = η(e
tpre−tpost

τ − χoffset)(Wmax −W )(W −Wmin) (2.4)

where ∆W is the change in the synaptic weight, η is the learning rate governing the amount

of weight update, tpre and tpost are respectively the time instant of a pair of pre- and post-

neuronal spikes, τ is the decay time constant, W is the current synaptic weight, and Wmax

(Wmin) is the maximum (minimum) bound imposed on the synaptic weight. As depicted in

Fig. 2.4 (a), the presented positive-STDP learning rule uses only the positive timing window

to measure the pre-post spike timing difference. The synaptic weights are potentiated/de-

pressed by comparing the spike timing difference with a threshold (i.e. χoffset). Synaptic

potentiation is carried out for strong temporal correlation between a pair of pre- and post-

spikes, i.e., if a pre-spike immediately causes the post-neuron to fire as determined by χoffset.

On the contrary, synaptic depression is carried out for larger spike-time differences. The

weight updates are applied only at the time instants of post-synaptic spike and no weight

change occurs at the time instants of pre-synaptic spike. The change in synaptic weight has

a non-linear dependence on the current weight, constrained between Wmin of −1 and Wmax

of +1, to achieve a gradual rise (decline) towards the maximum (minimum) bound. The

non-linear factor, specified by the product of (Wmax−W ) and (W −Wmin) that simplifies to

(1−W 2) and lies between 0 and 1, modulates the STDP-driven synaptic weight update given

by (e
tpre−tpost

τ − χoffset). As illustrated in Fig. 2.4 (b), the non-linear factor ensures maximal

STDP-driven update if the current weight is closer to zero and minimal STDP-driven update

if the current weight is closer to the minimum or maximum bound.
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Unsupervised Convolutional STDP Learning Methodology

We train the convolutional weights interconnecting successive pairs of layers of SpiCNN in

a greedy layer-wise and unsupervised manner using STDP learning. At every time-step, the

pre-neuronal spikes from the input feature maps are convolved with the respective weight

kernels to generate a resultant current into the neurons constituting the output feature

maps as depicted in Fig. 2.3 . In the event of a post-neuronal spike, STDP-based updates are

applied to the corresponding kernel weights. If several neurons making up an output feature

map spike, as is typically observed, an average update is carried out on the shared kernel

weights based on the respective pre- and post-neuronal spike times. In order to achieve

efficient unsupervised learning, we propose uniform threshold adaptation across all neurons

in a feature map as explained below. Whenever few neurons in a particular feature map

fire, we increase the firing thresholds of all the neurons in the feature map by a constant

value (ε) while decaying them exponentially over time. The proposed uniform threshold

adaptation scheme effectively prevents few kernels from dominating learning and facilitates

the weight kernels housed in the remaining feature maps to learn different features from

other input patterns. In SpiCNN, we allow the kernels to have both positive and negative

weights as illustrated in Fig. 2.3 for regulating the spiking activity of the neurons within

a feature map. This precludes the need for explicit lateral inhibitory synaptic connections

within a feature map that are typical in SNNs using only positive weights as demonstrated

in [13 ], [17 ]. Even though negative weights are not biologically plausible, we incorporate

them to achieve a reduction in the network complexity. These mechanisms collectively

enable the weight kernel to self-learn unique input features. After one layer is trained,

adjusted convolutional weights are frozen and firing thresholds of feature map are scaled by

a constant factor (β) in order to increase spiking activities in the output feature map. We

estimate the nonlinear transformation of input by feeding spikes from input through trained

layers. Accordingly, following layer is trained by passing through regenerated spike events of

nonlinear transformation of input pattern. This process is repeated until all the layers are

trained.
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The proposed greedy layer-wise unsupervised training methodology ensures that each

layer receives sufficient input spikes to achieve efficient learning, thereby mitigating the issue

of gradual decrease in spiking activity across layers that is inherent in deep SNNs [16 ]. How-

ever, extracting general characteristics of input patterns and sensitivity to hyper-parameters

are a couple of key challenges that need to be addressed to achieve efficient learning. To this

effect, we propose employing smaller 3×3 weight kernels instead of commonly used 5×5 or

7×7 kernels for deep SNNs. Our experimental analysis shows that smaller kernels trained

using STDP-based mini-batch weight updates self-learn general input representations, which

causes them to extract prominent characteristic features across successive convolutional lay-

ers. This leads to learn distributed internal representations compared to larger kernels across

hidden convolutional layers of SpiCNN, which enhances the recognition capability of the final

fully-connected layer. Furthermore, the decrease in the number of trainable parameters as

a result of using smaller kernels together with performing mini-batch weight updates ren-

ders the feature learning efficiency less sensitive to the various network hyper-parameters.

In mini-batch training, we compute the STDP-based weight updates individually for each

input pattern in a randomly selected mini-batch of input patterns. We subsequently mod-

ify the kernels using weight updates averaged over the chosen mini-batch. Performing an

average weight update (over a mini-batch) enables each kernel to extract features common

to different classes of input patterns. Mini-batch training, in essence, causes general feature

learning using fewer weight updates.

Supervised STDP Learning Methodology for Final Layer

Finally, we train the fully-connected layer in a supervised manner using the positive-

STDP rule formulated in equation (2.1). For a given training pattern, the STDP-based

weight updates are carried out on the output neuron that is pre-assigned to learn the par-

ticular input class. The firing thresholds of the remaining output neurons are momentarily

raised to a high enough value that effectively prevents them from firing. The neuron that is

supposed to learn the presented input pattern is guaranteed to spike at the beginning of the

training period since it is initialized to a threshold of zero. Every time the neurons spike, we
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increase their threshold by a small amount while exponentially decaying over time in order

to maintain spiking activities during a course of the training period. Threshold adaptation

ensures that the frequency of synaptic weight updates is high at the beginning of the training

period and is gradually lowered, leading to efficient learning. When more than one output

neuron fire in the final layer, the gradual threshold adaptations and competitive inhibitions

take place together to regulate spiking activities and accentuate them between the output

neurons.

2.4 Results

2.4.1 Simulation Framework

We evaluated the proposed SpiCNN using a MATLAB-based custom simulation frame-

work. We pre-processed the original input image using the Laplacian of Gaussian (LoG)

filter [34 ] to extract the contrasts among the image pixels and accentuate the edges. We

truncated the LoG-filtered image pixels between 0 and 1, and subsequently converted them

to Poisson-distributed spike trains whose firing rates are constrained between 0 and 400Hz

for training the convolutional layers. We used a reduced maximum Poisson firing rate of

200Hz for training the final fully-connected layer. These input spike trains are kept active

for a time period of 25msec during training and 300msec during inference assuming a simu-

lation time-step of 1msec. The synaptic weights are initialized randomly following a uniform

distribution as formulated below.

Wj,j+1 ∈ U [−
√

6
nj + nj+1

,

√
6

nj + nj+1
] (2.5)

where Wj,j+1 is the synaptic weight matrix interconnecting layers j and j + 1, U [ − k, k]

denotes a normal distribution in the interval between −k and k, and nj and nj+1 are the

number of neurons in layers j and j + 1 respectively. Note that this weight initialization

scheme is typically used in deep networks for breaking the symmetry between the units in

each layer [35 ]. The neurons in the convolutional and fully-connected layers are modeled

using Leaky-Integrate-and-Fire dynamics [22 ]. The STDP-based update on the synapse in-
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terconnecting a pair of pre- and post-neurons is implemented by generating an exponentially

decaying trace integrating the pre-spikes, and sampling it at the instant of a post-spike to

update the synaptic weight. We trained the shared weight kernels using the presented unsu-

pervised convolutional STDP learning methodology and validated its efficacy by evaluating

the classification accuracy on an independent testing dataset. For a given test pattern, we

accumulate the spike-count of the output neurons over a period of 300msec and predict the

test pattern to belong to the class represented by the output neuron with the highest spike

count.

Figure 2.5. Few samples from the MNIST and Caltech datasets and the
respective Laplacian of Gaussian (LoG) filtered binary and grayscale images.

Table 2.1. SpiCNN simulation parameters.
Parameters Values
STDP Type Nearest STDP
Synaptic Weight Range [-1, 1]
Minimum Simulation Time-Step 1 msec
Decay Time Constant of Membrane Potential 100 msec
Decay Time Constant for Positive-STDP 1.5 msec
Decay Time Constant for Threshold 1000 msec
Training Duration 25 msec
Inference Duration 300 msec
Maximum Input Spiking Rate for Training 200 Hz – 400 Hz
Maximum Input Spiking Rate for Inference 200 Hz
Mini-batch Size 200 images
Convolutional Kernel Stride 1
Pooling Layer Stride 2
Neuronal Threshold Increase when Firing 1.5
Threshold Scaling Factor (β) 1.5
Lateral Inhibition Factor at Final Layer 0 – 5
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2.4.2 MNIST Digit Recognition

We demonstrate the unsupervised feature extraction capability of deep SpiCNN by train-

ing it to infer handwritten MNIST digits [31 ]. The MNIST dataset consists of 60K training

images and 10K testing images, each 28x28 in dimension and encoded in grayscale format.

We LoG-filtered the original MNIST image and subsequently converted it to a binary im-

age using a pre-defined pixel threshold. The LoG-filtered pixel intensities lower than the

threshold including the negative values are truncated to 0 while those above the threshold

are clipped to 1. Fig. 2.5 shows few samples from the input datasets and the respective LoG-

filtered binary and grayscale images. It is important to note that the presented convolutional

STDP learning methodology is capable of self-learning features both from the grayscale and

binary images. Nevertheless, we begin our analysis by using binary images to determine the

optimal network topology including the kernel size, number of kernels within a layer, and

number of layers. We then train the optimal SpiCNN topology with both the grayscale and

binary images, and present insights on how the choice of input encoding and spike encoding

schemes impact the feature learning efficiency.

Figure 2.6. (a) Features self-learned by kernels of different sizes making up
a 1C-1S-FC SpiCNN, composed of a single convolutional layer followed by
a spatial-pooling layer and a fully-connected layer, trained for MNIST digit
recognition. (b) Classification accuracy of 1C-1S-FC SpiCNN against the num-
ber of convolutional kernels for different kernel sizes. (c) Classification accu-
racy of various deep SpiCNN configurations with 16 feature maps per layer for
different kernel sizes.

In our first experiment, we trained a shallow 1C-1S-FC SpiCNN, which is composed of a

single convolutional layer (C) followed by a spatial-pooling (S) layer and a fully-connected
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(FC) layer, across a range of kernel sizes and number of kernels making up the convolutional

layer using the parameters listed in Table 2.1 . Fig. 2.6 (a) illustrates the general features in-

cluding the horizontal, vertical, and diagonal edges acquired by the shared kernels, which is

a testament to the efficacy of the presented convolutional learning methodology performing

STDP-based mini-batch synaptic weight updates. We used a mini-batch size of 200 training

images for enabling the convolutional kernels to self-learn shared features across different

classes of input patterns. Our results (shown in Fig. 2.6 (b)) indicate that the classification

accuracy of the 1C-1S-FC SpiCNN, in general, increases with the number of kernels. Fur-

thermore, we found that the larger 5×5 or 7×7 kernels outperform the 3×3 kernels by up

to 2.0% in classification accuracy. This can be attributed to the ability of larger kernels

to encode more features in such shallow topologies. The 1C-1S-FC SpiCNN with 36 5×5

kernels achieved a maximum classification accuracy of 89.5% on the MNIST testing dataset.

Figure 2.7. Feature maps at the output of every layer of a 2C-1S-FC SpiCNN
for different kernel sizes.

In an attempt to further enhance classification accuracy, we stacked multiple convolu-

tional layers to form a deep SpiCNN. We explored a couple of deep SpiCNN configurations,

namely, 2C-1S-FC and 3C-1S-FC SpiCNN, consisting of two and three stacked convolutional

layers respectively with 16 feature maps per layer. Our experimental analysis showed that

deep SpiCNN with 3×3 kernels yielded improved classification accuracy over the one with

5×5 kernels while also performing significantly better than that with the larger 7×7 kernels

as illustrated in Fig. 2.6 (c). This is in stark contrast to the trend observed for shallow SpiC-
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NNs (refer to Fig. 2.6 (b)). The improved recognition capability of deep SpiCNN using 3×3

kernels stems from their ability to learn prominent features and distributed internal repre-

sentations across successive convolutional layers and the ensuing increase in hidden spiking

activity, as illustrated in Fig. 2.7 and Fig. 2.8 . The smaller 3x3 kernels can learn generalized

representations of input data as a result of having fewer trainable parameters, while larger

kernels with a greater number of trainable parameters learn specific features that are less

common to overall classes of input patterns. Given χoffset is a threshold that is compared

with the spike timing difference at the time instant of postsynaptic spikes, there is an opti-

mal χoffset value depending on kernel size to determine the sharpness of kernel shape and

retain a certain amount of spiking activity. If χoffset is set high, the convolutional kernel

learns a sharper shape to incur a drastic decrease in spiking activity at the output feature

map since they only detect a particular pattern. The inherent characteristic of the smaller

kernel to learn generalized representations of input patterns allows the increase χoffset to

extract prominent features prevalent among different classes of input data. Conversely, a

larger kernel should have lower χoffset since it learns the specific features that produce a less

discernable output feature maps which drastically decreases the spiking activity across suc-

cessive layers. Given that a certain amount of spiking activity at the input feature maps of

fully-connected layer is needed to reasonably infer the class of the input patterns, we adjusted

χoffset as illustrated in Table 2.2 in order to match the output spiking activity of successive

convolutional layers by considering the kernel sizes and depth of network configurations.

Table 2.2. The learning parameter χoffset.
Network Topology 1C-1S-FC 2C-1S-FC 3C-1S-FC
Kernel Size 3×3 5×5 7×7 3×3 5×5 7×7 3×3 5×5 7×7
MNIST 0.27 0.26 0.23 0.23 0.17 0.15 0.225 0.16 0.14
Caltch (Face/Motorbike) 0.32 0.27 0.23 0.27 0.22 0.21 0.28 0.21 0.2

As depicted in Fig. 2.8 , the output spiking activities after the successive convolutional

layers are similar for all 2C-1S-FC SpiCNN configurations, but the spiking activities at the

output of the first convolutional layer depends on the convolutional kernel sizes. The re-

sults show that 3x3 and 5x5 kernels produces higher spiking activities than the 7x7 kernels

at the output of the first convolutional layer, which indicates the degree of resultant fea-

39



Figure 2.8. Normalized Spiking activity of feature maps at the output of
every layer of a 2C-1S-FC SpiCNN for different kernel sizes for (a) MNIST
handwritten digit and (b) Caltech (Face/Motorbike) datasets.

tures captured from the input patterns. In other words, the smaller kernel learns prominent

features that are common to overall output classes and constructs distributed internal rep-

resentations across successive layers as illustrated in Fig. 2.7 . Note that researchers in [36 ]

have validated the efficacy of smaller 3×3 kernels in the traditional deep learning networks.

Hence, the 2C-1S-FC SpiCNN with 3×3 kernels across both the convolutional layers con-

taining the same number of feature maps offered the highest accuracy of 91.1%. Last, we

note that the classification accuracy degrades by stacking an additional convolutional layer

(refer to 3C-1S-FC SpiCNN in Fig. 2.6 (c)). This is common in deep networks, where the

optimal network depth depends on the target application. For MNIST digit recognition, we

experimentally determined 2C-1S-FC SpiCNN (with 3×3 kernels and 16 feature maps per

layer) as the optimal SpiCNN topology. Our analysis, shown in Fig. 2.6 , further reveals that

1C-1S-FC SpiCNNs have improved the robustness for randomly initialized weights as the

number of kernel increases across 5 simulation runs. On the other hand, networks with more

hidden layers are comparatively sensitive to weight initialization with a standard deviation

of 1.3%, 2.4%, and 3.8% respectively in classification accuracy for SpiCNN composed of one,

two and three stacked convolutional layers.

Finally, we trained the 2C-1S-FC SpiCNN using grayscale images instead of binary images

used for the previous analysis. We note that a grayscale image intrinsically encodes more

information compared to its binary counterpart, which can be translated to the spiking
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domain effectively using the Poisson-distributed spike encoding scheme. However, our results

indicated nearly 5% degradation in the classification accuracy using grayscale images relative

to that achieved with binary images. We hypothesize that this could be an artifact of the

input dataset, where the precise location of the edges in the MNIST data carries more

significance than the absolute pixel intensities at the respective locations. As mentioned

earlier, all the edge pixels carry equal significance in the binary image irrespective of the

absolute intensities (contained in the grayscale image), which is effectively translated to the

spiking domain by using the same Poisson firing rate for all the edge pixels. Thus, the

attributes of the input dataset determine which image type between binary and grayscale

yields better classification accuracy. In order to validate our hypothesis, we demonstrate the

utility of rich grayscale inputs and Poisson-distributed spike encoding scheme using natural

real-world images in the subsequent analysis.

2.4.3 Caltech Image Recognition

We used a subset of 1226 images from the Caltech dataset[32 ] spanning two different

object categories, namely, Face and Motorbike, for further illustrating the applicability of

the proposed SpiCNN and the unsupervised convolutional STDP learning methodology. We

randomly chose 200 images from each object category for training and the remaining for

testing SpiCNN. Each individual Caltech image, originally encoded in high dimensional

RGB colorspace, was LoG-filtered to obtain a single channel grayscale image with edges

accentuated. The resultant grayscale image was resized and converted to a binary image of

reduced dimension (28x36). We similarly use the binary images for determining the optimal

topology, and finally highlight the benefits of directly training with the grayscale images for

such real-world images.

We initially trained a 1C-1S-FC SpiCNN for different kernel sizes and number of kernels

making up the convolutional layer. We observed that the feature representations acquired

by certain kernels (for instance, the horizontal, vertical, and diagonal features in Fig. 2.9 (a))

are similar to those learned from the MNIST digits (refer to Fig. 2.7 (a)). This highlights the

general feature learning capability of the presented convolutional STDP learning methodol-
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Figure 2.9. (a) Features self-learned by kernels of different sizes making up
a 1C-1S-FC SpiCNN trained for Caltech image recognition. (b) Classification
accuracy of 1C-1S-FC SpiCNN against the number of convolutional kernels
for different kernel sizes. (c) Classification accuracy of various deep SpiCNN
configurations with 16 feature maps per layer for different kernel sizes.

ogy. Our results (shown in Fig. 2.9 (b)) indicate that the classification accuracy increases

with the number of kernels with a kernel size of 7×7 yielding the highest accuracy of 95.6%.

In an effort to achieve improved classification accuracy in a scalable manner, we explored

the deep 2C-1S-FC and 3C-1S-FC SpiCNN configurations with 16 feature maps per layer.

Our experimental analysis offered the following twin insights. First, the smaller 3×3 kernels

performed better than the larger 5×5 and 7×7 kernels for deep SpiCNNs (as illustrated in

Fig. 2.9 (c)) owing to extract prominent features and construct distributed representation

across successive hierarchical layers as shown in Fig. 2.8 . Second, the 2C-1S-FC SpiCNN

was found to be the optimal topology with a classification accuracy of 96.0% for the chosen

Caltech image recognition task.

In our final experiment, we trained the optimal 2C-1S-FC SpiCNN directly using the

grayscale images and achieved an improved accuracy of 97.6%. This is contrary to the trend

we observed for MNIST dataset and essentially corroborates our hypothesis regarding the

usefulness of the rich grayscale information for self-learning distinctive features from complex

natural images. It is important to note that the chosen Poisson-distributed spike encoding

scheme is capable of efficiently translating the grayscale information into spike trains, leading

to improved feature learning by deep SpiCNN.
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2.5 Discussion and Comparison with Related Works

Our proposed deep SpiCNN achieves competitive classification accuracy across different

datasets using fewer trainable parameters in comparison with typical fully-connected (shal-

low) SNNs. For instance, SpiCNN composed of two convolutional layers with 16 feature

maps per layer provided a classification accuracy of 91.1% for MNIST digit recognition. On

the other hand, the fully-connected SNN presented in [13 ] required 1600 excitatory (out-

put) neurons amounting to 50× more trainable parameters to attain an equivalent accuracy.

Furthermore, the fully-connected SNN was trained with a unit batch size to enable every

excitatory neuron to learn a complete representation of a unique input pattern. Conversely,

we used mini-batch learning that achieves feature learning with fewer synaptic weight up-

dates and facilitates every convolutional kernel to self-learn features shared across different

classes of input patterns. Furthermore, mini-batch learning help the network avoid drastic

changes because of the individual training data that is far from generality. To these effect,

the mini-batch learning renders convolutional kernels to efficiently learn better features that

contain the generalized characteristics. Hence, SpiCNN yields competitive accuracy with

fewer synaptic weight updates.

Table 2.3. Classification accuracy of 2C-1S-FC SpiCNN on the MNIST train-
ing and testing dataset.

Kernel Size 3×3 5×5 7×7
Training Accuracy 90.5% 84.3% 80.6%
Testing Accuracy 91.1% 85.0% 82.4%

Deep SNNs varying in degrees of bio-fidelity have been proposed in the literature. In

[37 ] and [38 ], a deep SNN is proposed which is trained offline using the backpropagation

algorithm as an Analog Neural Network (ANN). The ANN-to-SNN conversion merely ex-

ploits the event-driven processing capability of SNNs for achieving energy efficiency during

inference while trading off the on-chip learning capability. Furthermore, mapping the trained

weights of an ANN to the corresponding SNN leads to a loss in the classification accuracy.

Researchers in [16 ], [18 ], [19 ] directly trained deep SNNs through spike events using neuronal
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spiking rate-based and membrane potential-based error backpropagation algorithm, respec-

tively. Nevertheless, the computational complexity incurred during training hinders on-chip

implementation. Our deep SpiCNN is trained using bio-inspired STDP-based unsupervised

learning that harnesses the event-driven processing and on-chip learning capabilities. Fur-

thermore, as depicted in Table 2.3 , estimated training accuracies of 2C-1S-FC SpiCNN are

not higher than testing accuracies on handwritten digit (MNIST) datasets. SpiCNNs trained

by greedy layer-wise unsupervised STDP learning are less subjective to an overfitting phe-

nomenon, which is commonly observed in supervised backpropagation algorithm.

Table 2.4. Classification accuracy of SNNs for Caltech (Face/Motorbike).
SNN topology Architecture Spike Encoding Scheme Learning Rule #Trainable Parameters Accuracy

SDNN [17 ] Convolutional Rank-order encoding STDP + SVM 25480 99.1%
Spiking CNN [25 ] Convolutional Rank-order encoding STDP + RBF 20480 97.7%
Spiking CNN [39 ] Convolutional Rank-order encoding Reinforcement STDP 23120 98.9%

SpiCNN (This work) Convolutional Poisson-distributed spike encoding STDP 25488 97.6%

Table 2.5. Classification accuracy of SNNs for MNIST digit recognition.
SNN topology Architecture Spike Encoding Scheme Learning Rule #Trainable Parameters Accuracy

Two-layer SNN [13 ] Fully-connected Poisson-distributed spike encoding STDP 5017600 95%
SDNN [17 ] Convolutional Rank-order encoding STDP + SVM 76500 98.4%

Spiking CNN [40 ] Convolutional Poisson-distributed spike encoding Sparse Coding + STDP + SVM 590642 98.3%
SpiCNN (This work) Convolutional Poisson-distributed spike encoding STDP 25488 91.1%

Recent works have explored the use of STDP for training multi-layer SNNs. In [25 ], an

illustration of the applicability of STDP-based visual feature learning on SNNs with single

convolutional layer is shown while reference [17 ] successfully trained SNNs with multiple

convolutional layers. Both [25 ] and [17 ] used temporal rank-order spike encoding scheme

in a network of integrate-and-fire neurons and trained convolutional layers for input fea-

ture extraction using STDP and ANN-based classifier of Support Vector Machine or Radial

Basis Function, respectively, to evaluate the effectiveness of extracted features. Our work

differs from that presented in [25 ] and [17 ] in the following respects. First, we use Poisson-

distributed spike encoding scheme that requires non-linear Leaky-Integrate-and-Fire (LIF)

dynamics for better regulating the neuronal spiking activity. The chosen spike encoding

scheme is implementation friendly since the individual spike events are uncorrelated, which

requires the LIF neurons to simply integrate the weighted sum of incoming spikes. How-
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ever, the rank order spike encoding scheme necessitates hardware overhead to account for

the relative order of spikes emitted by the individual neurons. This is illustrated in [23 ],

which shows a feed-forward SNN with inhibitory inter-neurons that reduce the effectiveness

of the input spikes feeding the excitatory neurons based on the respective order of firing.

Additionally, temporal rank-order spike encoding scheme is sensitive to variability in spike

timings caused by intrinsic neuronal noise typical in custom hardware realizations using

analog-CMOS or emerging technologies [26 ]. Second, we demonstrate the ability of smaller

3×3 kernels in all the convolutional layers containing the same number of feature maps to

learn generalized prominent features as a result of having fewer trainable parameters. Last,

we perform mini-batch learning that leads to general feature learning using fewer synap-

tic weight updates. Table 2.4 shows that SpiCNN offers comparable classification accuracy

for Caltech (Face/Motorbike) image recognition. However, the classification accuracy of

SpiCNN is lower than that reported in [17 ] and [40 ] for MNIST digit recognition as shown in

Table 2.5 . However, related works [17 ], [40 ] used ANN-based readout for final classification

upon training the convolutional layers with STDP while we train all the layers of SpiCNN

including the final classification layer using greedy layer-wise STDP through direct spike

events. It is important to note that SpiCNN offers competitive classification accuracy with

fewer trainable parameters as illustrated in Table 2.5 . Future works could explore enhanced

learning mechanisms like reward-modulated STDP to further improve the performance of

multi-layer SNNs without using external classifiers as demonstrated in [39 ], [41 ], [42 ].

2.6 Conclusion

The application of STDP-based unsupervised learning has been primarily limited to

shallow fully-connected SNN topologies, which necessitates a large number of trainable pa-

rameters to achieve competitive classification accuracy. In this chapter, we propose SpiCNN

composed of a hierarchy of stacked convolutional layers followed by a spatial-pooling layer

and a fully-connected layer for self-learning input features using fewer trainable parame-

ters. We hierarchically train the shared synaptic weight kernels interconnecting succes-

sive convolutional layers using STDP for unsupervised feature extraction. Furthermore, we
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demonstrate improved feature learning using smaller 3×3 kernels trained with STDP-based

mini-batch synaptic weight updates. We validate the efficacy of the presented unsupervised

convolutional STDP learning methodology by training deep SpiCNN to effectively recognize

handwritten MNIST digits and natural Caltech images. The reduction in the number of

trainable parameters (for smaller 3×3 kernels) and the frequency of synaptic weight up-

dates (as a result of mini-batch training) coupled with the use of robust Poisson-distributed

spike encoding scheme (for layer-wise training) render SpiCNN amenable for energy-efficient

neuromorphic hardware implementations.
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3. ENABLING SPIKE-BASED BACKPROPAGATION IN

STATE-OF-THE-ART DEEP NEURAL NETWORK

ARCHITECTURES

3.1 Introduction

Spiking Neural Networks (SNNs) has recently emerged as a prominent neural computing

paradigm. However, the typical shallow spiking network architectures have limited capacity

for expressing complex representations, while training a very deep spiking network has not

been successful so far. Diverse methods have been proposed to get around this issue such

as converting off-line trained deep Analog Neural Networks (ANNs) to SNNs. However,

ANN-SNN conversion scheme fails to capture the temporal dynamics of a spiking system.

On the other hand, it is still a difficult problem to directly train deep SNNs using input spike

events due to the discontinuous and non-differentiable nature of spike generation function.

To overcome this problem, we propose an approximate derivative method that accounts for

leaky behavior of LIF neuron. This method enables to train deep convolutional SNNs with

input spike events using spike-based backpropagation algorithm. Our experiments show the

effectiveness of the proposed spike-based learning strategy on state-of-the-art deep networks

(VGG and Residual architectures) by achieving the best classification accuracies in MNIST,

SVHN and CIFAR-10 datasets compared to other SNNs trained with spike-based learning.

The main contributions of this work are specified as follows.

• First, we develop a spike-based supervised gradient descent BP algorithm that exploits

a conditionally differentiable approximated activation function of LIF neuron.

• In addition, we leverage the key idea of the successful deep ANN models such as LeNet5

[1 ], VGG [36 ] and ResNet [5 ] for efficiently constructing state-of-the-art deep SNN net-

work architectures. We also adapt dropout [2 ] technique in order to better regularize

deep SNN training.

• Next, we demonstrate the effectiveness of our methodology for visual recognition tasks

on standard character and object datasets (MNIST, SVHN, CIFAR-10) and a neuro-
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morphic dataset (N-MNIST). To the best of our knowledge, this work achieves the best

classification accuracy in MNIST, SVHN and CIFAR-10 datasets through training deep

SNNs.

• Lastly, we expand our efforts to quantify and analyze the advantages of spike-based BP

algorithm compared to ANN-SNN conversion techniques in terms of inference time and

energy consumption.

The rest of this chapter is organized as follows. First, we provide the background on the

architectures of deep convolutional SNNs. Second, we detail the spike-based gradient descent

backpropagation learning algorithm and describe the spiking version of dropout technique

used for this work. Next, we describe the experiments and report the simulation results,

which validate the efficacy of spike-based BP training for MNIST, SVHN, CIFAR-10 and N-

MNIST datasets. Subsequently, we discuss the proposed algorithmin comparison to relevant

works. Then, we analyze the spike activity, inference speedup and complexity reduction of

direct-spike trained SNNs and ANN-SNN converted networks. Finally, we summarize and

conclude the work.

3.2 Deep Convolutional Spiking Neural Network

3.2.1 Building Blocks

In this chapter, we develop a training methodology for convolutional SNN models that

consist of an input layer followed by intermediate hidden layers and a final classification

layer. In the input layer, the pixel images are encoded as Poisson-distributed spike trains

where the probability of spike generation is proportional to the pixel intensity. The hidden

layers consist of multiple convolutional (C) and spatial-pooling (P) layers, which are often

arranged in an alternating manner. These convolutional (C) and spatial-pooling (P) layers

represent the intermediate stages of feature extractor. The spikes from the feature extractor

are combined to generate a one-dimensional vector input for the fully-connected (FC) layers

to produce the final classification. The convolutional and fully-connected layers contain

trainable parameters (i.e. synaptic weights) while the spatial-pooling layers are fixed a
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Figure 3.1. Illustration of the simplified operational example of (a) convolu-
tional, (b) spatial-pooling layers (assuming 2-D input and 2-D weight kernel)
over three time steps. At each time step, the input spikes are convolved with
the weight kernel to generate the current influx, which is accumulated in the
post-neuron’s membrane potential, Vmem. Whenever the membrane potential
exceeds the firing threshold (Vth), the post-neuron in the output feature map
spikes and Vmem resets. Otherwise, Vmem is considered as residue in the next
time step while leaking in the current time step. For spatial-pooling, the kernel
weights are fixed, and there is no membrane potential leak.

priori. Through the training procedure, weight kernels in the convolutional layers can encode

the feature representations of the input patterns at multiple hierarchical levels. Fig. 3.1 (a)

shows the simplified operational example of a convolutional layer consisting of LIF neurons

over three time steps (assuming 2-D input and 2-D weight kernel). On each time step, each

neuron convolves its input spikes with the weight kernel to compute its input current, which is

integrated into its membrane potential, Vmem. If Vmem > Vth, the neuron spikes and its Vmem

is set to 0. Otherwise, Vmem is considered as residue in the next time step while leaking in the

current time step. Fig. 3.1 (b) shows the simplified operation of a pooling layer, which reduces

the dimensionality from the previous convolutional layer while retaining spatial (topological)

information.

There are various choices for performing the spatial-pooling operation in the ANN do-

main. The The two major operations used for pooling are max and average. Both have been
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used for SNNs, e.g., max-pooling [12 ] and average-pooling [37 ], [43 ]. We use average-pooling

due to its simplicity. In the case of SNNs, an additional thresholding is used after averaging

to generate output spikes. For instance, a fixed 2×2 kernel (each having a weight of 0.25)

strides through a convolutional feature map without overlapping and fires an output spike at

the corresponding location in the pooled feature map only if the sum of the weighted spikes

of the 4 inputs within the kernel window exceeds a designated firing threshold (set to 0.75).

Otherwise, the membrane potential remains as a residue in the next time step. Fig. 3.1 (b)

shows an example spatial-pooling operation over three time steps (assuming 2-D input and

2-D weight kernel). The average-pooling threshold need to be carefully set so that spike

propagation is not disrupted due to the pooling. If the threshold is too low, there will be too

many spikes, which can cause loss of spatial location of the feature that was extracted from

the previous layer. If the threshold is too high, there will not be enough spike propagation

to the deeper layers.

(a) (b)

Figure 3.2. The basic building blocks of the described convolutional SNN
architectures. (a) Spiking VGG Block. (b) Spiking ResNet Block.
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3.2.2 Deep Convolutional SNN architecture: VGG and Residual SNNs

Deep networks are essential for recognizing intricate input patterns so that they can

effectively learn hierarchical representations. To that effect, we investigate popular deep

neural network architectures such as VGG [36 ] and ResNet [5 ] in order to build deep SNN

architectures. VGG [36 ] was one of the first neural networks, which used the idea of using

small (3×3) convolutional kernels uniformly throughout the network. Using small kernels

enables effective stacking of convolutional layers while minimizing the number of parameters

in deep networks. In this chapter, we build deep convolutional SNNs (containing more

than 5 trainable layers) using ‘Spiking VGG Block’s, which contain stacks of convolutional

layers using small (3×3) kernels. Fig. 3.2 (a) shows a ‘Spiking VGG block’ containing two

stacked convolutional layers, each followed by a LIF neuronal layer. The convolutional layer

box contains the synaptic connectivity, and the LIF neuronal box contains the activation

units. Next, ResNet [5 ] introduced the skip connections throughout the network that had

considerable successes in enabling successful training of significantly deeper networks. In

particular, ResNet addresses the degradation (of training accuracy) problem [5 ] that occurs

while increasing the number of layers in the standard feedforward neural network. We

employ the concept of skip connection to construct deep residual SNNs with 7-11 trainable

layers. Fig. 3.2 (b) shows a ‘Spiking Residual Block’ containing non-residual and residual

paths. The non-residual path consists of two convolutional layers with an intermediate LIF

neuronal layer. The residual path (skip connection) is composed of the identity mapping

when the number of input and output feature maps are the same, and 1×1 convolutional

kernels when the number of input and output feature maps differ. The outputs of both the

non-residual and residual paths are integrated to the membrane potential in the last LIF

neuronal activation layer (LIF Neuron 2 in Fig. 3.2 (b)) to generate output spikes from the

‘Spiking Residual Block’. Within the feature extractor, a ‘Spiking VGG Block’ or ‘Spiking

Residual Block’ is often followed by an average-pooling layer. Note, in some ‘Spiking Residual

Blocks’, the last convolutional and residual connections employ convolution with a stride of

2 to incorporate the functionality of the spatial-pooling layers. At the end of the feature
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extractor, extracted features from the last average-pooling layer are fed to a fully-connected

layer as a 1-D vector input for inference.

3.3 Supervised Training of Deep Spiking Neural Network

3.3.1 Spike-based Gradient Descent Backpropagation Algorithm

The spike-based BP algorithm in SNN is adapted from standard BP [44 ] in the ANN

domain. In standard BP, the network parameters are iteratively updated in a direction to

minimize the difference between the final outputs of the network and target labels. The

standard BP algorithm achieves this goal by back-propagating the output error through

the hidden layers using gradient descent. However, the major difference between ANNs

and SNNs is the dynamics of neuronal output. An analog neuron (such as sigmoid, tanh,

or ReLU ) communicates via continuous values whereas a spiking neuron generates binary

spike outputs over time. In SNNs, spatiotemporal spike trains are fed to the network as

inputs. Accordingly, the outputs of spiking neuron are spike events, which are also discrete

over time. Hence, the standard BP algorithm is incompatible with training SNNs, as it

can not back-propagate the gradient through a non-differentiable spike generation function.

In this chapter, we formulate an approximate derivative for LIF neuron activation, making

gradient descent possible. We derive a spike-based BP algorithm that is capable of learning

spatiotemporal patterns in spike-trains. The spike-based BP can be divided into three phases,

forward propagation, backward propagation and weight update, which we describe in the

following sections.

Forward Propagation

In forward propagation, spike trains representing input patterns are presented to the net-

work for estimating the network outputs. To generate the spike inputs, the input pixel values

are converted to Poisson-distributed spike trains and delivered to the network. The input

spikes are multiplied with synaptic weights to produce an input current that accumulates in

the membrane potential of post neurons as in equation (1.1-1.3). Whenever its membrane

potential exceeds a neuronal firing threshold, the post-neuron generates an output spike and
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resets. Otherwise, the membrane potential decays exponentially over time. The neurons of

every layer (excluding output layer) carry out this process successively based on the weighted

spikes received from the preceding layer. Over time, the total weighted summation of the

pre-spike trains (i.e., net) is described as follows,

netl
j(t) =

nl−1∑
i=1

(wl−1
ij xl−1

i (t)), where xl−1
i (t) =

∑
t

∑
k

θl−1
i (t− tk) (3.1)

where netl
j(t) represents the total current influx integrated to the membrane potential of jth

post-neuron in layer l over the time t, nl−1 is the number of pre-neurons in layer l-1 and

xl−1
i (t) denotes the sum of spike train (tk ≤ t) from ith pre-neuron over time t. The sum of

post-spike trains (tk ≤ t) is represented by al
j(t) for the jth post-neuron.

al
j(t) =

∑
t

∑
k

θl
j(t− tk) (3.2)

Clearly, the sum of post-spike train (al(t)) is equivalent to the sum of pre-spike train (xl(t))

for the next layer. On the other hand, the neuronal firing threshold of the final classification

layer is set to a very high value so that final output neurons do not spike. In the final layer,

the weighted pre-spikes are accumulated in the membrane potential while decaying over

time. At the last time step, the accumulated membrane potential is divided by the number

of total time steps (T) in order to quantify the output distribution (output) as presented by

equation (3.3).

output = V L
mem(T )

number of timesteps
(3.3)

Backward Propagation and Weight Update

Next, we describe the backward propagation for the proposed spike-based backpropaga-

tion algorithm. After the forward propagation, the loss function is measured as a difference

between target labels and outputs predicted by the network. Then, the gradients of the

loss function are estimated at the final layer. The gradients are propagated backward all
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Figure 3.3. Illustration of the forward and backward propagation phase of
the proposed spike-based BP algorithm in a multi-layer SNN comprised of LIF
neurons.

the way down to the input layer through the hidden layers using recursive chain rule, as

formulated in equation (3.4). The following equations (3.4 - 3.24) and Fig. 3.3 describe the

detailed steps for obtaining the partial derivatives of (final) output error with respect to

weight parameters.

The prediction error of each output neuron is evaluated by comparing the output distri-

bution (output) with the desired target label (label) of the presented input spike trains, as

shown in equation (3.5). The corresponding loss function (E in equation (3.6)) is defined as

the sum of squared (final prediction) error over all output neurons. To calculate the ∂E
∂aLIF

and ∂aLIF

∂net
terms in equation (3.4), we need a defined activation function and a method to

differentiate the activation function of a LIF neuron.

∂E

∂wl
= ∂E

∂aLIF

∂aLIF

∂net
∂net
∂wl

(3.4)
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F inal output error, ej = outputj − labelj (3.5)

Loss function, E = 1
2

nL∑
j=1

ej
2 (3.6)

In SNN, the ‘activation function’ indicates the relationship between the weighted summa-

tion of pre-spike inputs and post-neuronal outputs over time. In forward propagation, we

have different types of neuronal activation for the final layer and hidden layers. Hence, the

estimation of neuronal activations and their derivatives are different for the final layer and

hidden layers. For the final layer, the value of output in equation (3.3) is used as the neuronal

activation (aLIF ) while considering the discontinuities at spike time instant as noise. Hence,
∂E

∂output
is equal to the final output error, as calculated in equation (3.7).

∂E

∂output
= ∂

∂output

1
2(output− label)2 = output− label = e (3.7)

During back-propagating phase, we consider the leak statistics of membrane potential in

the final layer neurons as noise. This allows us to approximate the accumulated membrane

potential value for a given neuron as equivalent to the total input current (i.e. net) received

by the neuron over the forward time duration (T) (V L
mem,j(T ) ≈ ∑nL−1

i=1 (wijxi(T )) = netL
j (T )).

Therefore, the derivative of post-neuronal activation with respect to net for final layer

(∂output
∂net

≡ ∂V L
mem(T )/T

∂net
= ∂netL(T )/T

∂net
= 1

T
) is calculated as 1

T
for the final layer.

For the hidden layers, we have post-spike trains as the neuronal outputs. The spike

generation function is non-differentiable since it creates a discontinuity (because of step

jump) at the time instance of firing. Hence, we introduce a pseudo derivative method for

LIF neuronal activation (aLIF (net)) for the hidden layers, for back-propagating the output

error via the chain rule. The purpose of deriving aLIF (net) is to approximately estimate the
∂aLIF

∂net
term in equation (3.4) for the hidden layers only. To obtain this pseudo derivative of

LIF neuronal activation with respect to total input current (i.e., net), we make the following

approximations. We first estimate the derivative of an Integrate and Fire (IF) neuron’s

activation. Next, with the derivative of IF neuron’s activation, we estimate a leak correctional

term to compensate for the leaky effect of membrane potential in LIF activation. Finally,

we obtain an approximate derivative for LIF neuronal activation as a combination of two
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estimations (i.e., derivative for IF neuron and approximated leak compensation derivative).

If a hidden neuron does not fire any spike, the derivative of corresponding neuronal activation

is set to zero.

Figure 3.4. (a,b) The illustration of the spike generation function of (a)
IF and (b) LIF neuron models, respectively. The x-axis represents the total
summation of input currents over time, and y-axis indicates the membrane
potential (black) and output (red). The IF neuron generates a post-spike when
the input currents accumulated in membrane potential overcome the firing
threshold (because of no leaky effect in the membrane potential). However,
LIF neuron needs more input currents to cross the firing threshold (because
of leaky effect in the membrane potential). Hence, the effective threshold of
LIF neurons is considered to be larger compared to the case of IF neurons. (c)
The illustration of the estimation of the ratio (β) between the total membrane
potential (V total

mem ) of LIF and IF neurons. If the LIF and IF neuron received the
same amount of total input current, the ratio of the total membrane potential
of LIF and IF neuron would be estimated as 1:β where β is greater than 1.

The spike generation function of IF neuron is a hard threshold function that generates

the output signal as either +1 or 0. The IF neuron fires a post-spike whenever the input

currents accumulated in membrane potential exceed the firing threshold (note, in case of IF

neuron, there is no leak in the membrane potential). Hence, the membrane potential of a

post-neuron at time instant t can be written as,

Vmem(t) ≈
n∑

i=1
(wixi(t))− VthaIF (t) (3.8)

where n denotes the number of pre-neurons, xi(t) is the sum of spike events from ith pre-

neuron over time t (defined in equation (3.1)) and aIF (t) represents the sum of post-spike
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trains over time t (defined in equation (3.2)). In equation (3.8), ∑n
i=1(wixi(t)) accounts for

the integration behavior and VthaIF (t) accounts for the fire/reset behavior of the membrane

potential dynamics. If we assume Vmem as zero (using small signal approximation), the acti-

vation of IF neuron (aIF (t)) can be formulated as the equation (3.9). Then, by differentiating

it with respect to net (in equation (3.10)), the derivative of IF neuronal activation can be

approximated as a linear function with slope of 1
Vth

as the straight-through estimation [45 ].

aIF (t) ≈ 1
Vth

n∑
i=1

(wixi(t)) = 1
Vth

net(t) (3.9)

∂aIF

∂net
≈ 1

Vth

1 = 1
Vth

(3.10)

The spike generation function of both the IF and LIF neuron models are the same, namely

the hard threshold function. However, the effective neuronal thresholds are considered to be

different for the two cases, as shown in Fig. 3.4 a,b. In the LIF neuron model, due to the leaky

effect in the membrane potential, larger input current (as compared to IF neuron) needs to

be accumulated in order to cross the neuronal threshold and generate a post-spike. Hence,

the effective neuronal threshold becomes Vth + ε where ε is a positive value that reflects the

leaky effect of membrane potential dynamics. Now, the derivative of LIF neuronal activation

(∂aLIF

∂net
) can be approximated as a hard threshold function (similar to IF and equation (3.10))

and written as 1
Vth+ε

. Clearly, the output of a LIF neuron depends on the firing threshold

and leaky characteristics (embodied in ε) of the membrane potential whereas the output of

an IF neuron depends only on the firing threshold. Next, we explain the detailed steps to

estimate the ε and in turn calculate the derivative of LIF neuronal activation (∂aLIF

∂net
).

To compute ε, the ratio (β) between the total membrane potential (V total
mem (t)) of IF and

LIF neurons is estimated at the end of forward propagation time (T) as shown in Fig. 3.4 c.

Here, V total
mem (t) represents the hypothetical total membrane potential with accumulated input

current without reset mechanism until time step (t). Suppose both the IF and LIF neurons

received the same amount of total input current (i.e. net(T )), the total membrane potential

of LIF neuron is expected to be lower than the total membrane potential of IF neuron

(V total,LIF
mem (T ) : V total,IF

mem (T ) = 1 : β where β > 1). Hence, by comparing the total membrane
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potential values of IF and LIF neurons in Fig. 3.4 c, the relation of ε and β can be obtained

as follows,

Vth + ε = βVth (3.11)

where Vth + ε represents the total membrane potential of IF neuron (point A in Fig. 3.4 c)

and Vth indicates the total membrane potential of LIF neuron (point B in Fig. 3.4 c) when

both neurons received the same amount of net inputs. Based on this assumption, we now

estimate the ratio (β) by using the relation of the spike output evolution (∂a(t)
∂t

) and the total

membrane potential evolution (∂V total
mem (t)

∂t
) over time as described in equation (3.13-3.17). As

mentioned previously, the total input current (i.e. net(t)) and total membrane potential

(V total
mem (t)) are estimated similar to that of IF neuron (because of no leaky effect) so that

equation (3.12) can be derived from equation (3.9). By differentiating equation (3.12) with

respect to time, we get the relation of the spike output evolution (∂aIF (t)
∂t

) and the membrane

potential evolution (∂V total,IF
mem (t)

∂t
) over time for IF neuron as described in equation (3.13).

aIF (t) ≈ 1
Vth

net(t) ≈ 1
Vth

V total,IF
mem (t) (3.12)

∂aIF (t)
∂t

≈ 1
Vth

∂V total,IF
mem (t)

∂t
(3.13)

Hence, in IF neuron case, the evolution of membrane potential over time (∂V total,IF
mem (t)

∂t
) can

be represented by the multiplication of firing threshold (Vth) and the spike output evolution

(∂aIF (t)
∂t

) in equation (3.14). Note, the evolution of membrane potential over time (∂V total,IF
mem (t)

∂t
)

indicates the integration component due to the average input current over time. We consider

aIF (t) as homogeneous spike trains where spike firing rates are constant, so that the ∂aIF (t)
∂t

can be replaced with the post-neuronal firing rate (rate(t)). The homogeneous post-neuronal

firing rate, rate(t), can be represented by a(t)
t

where a(t) is the number of post-spikes and

t means the given forward time window. In LIF neuron case, however, the evolution of

membrane potential (∂V total,LIF
mem (t)

∂t
) can be expressed as the combination of average input

current (integration component) and leaky (exponential decay) effect as shown in equation

(3.15). To measure the leaky effect in equation (3.15), we estimate the low-pass filtered
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output spikes (tk ≤ t) that leak over time using the function Vthf(t) (depicted in equation

(3.16)), and differentiate it with respect to time at t → t+
k (from the right-sided limit).

The Vthf(t), as a post-synaptic potential, contains the total membrane potential history

over time. The time constant (τm) in equation (3.16) determines the decay rate of post-

synaptic potential. Essentially, the main idea is to approximately estimate the leaky effect

by comparing the total membrane potential and obtain the ratio (β) between both cases (i.e.

IF and LIF neurons).
∂V total,IF

mem (t)
∂t

≈ Vth
∂aIF (t)

∂t
≈ Vthrate(t) (3.14)

∂V total,LIF
mem (t)

∂t
≈ Vthrate(t) + Vth

∂f(t)
∂t

(3.15)

f(t) =
∑

k

exp(−t− tk

τm

) (3.16)

∂aIF (t)
∂t

≈ 1
Vth

∂V total,IF
mem (t)

∂t
= β

1
Vth

∂V total,LIF
mem (t)

∂t
(3.17)

By solving the equation (3.14-3.17), the inverse ratio ( 1
β
) is derived as follows in equation

(3.18),
1
β

= 1 + 1
rate(t)

∂f(t)
∂t

(3.18)

where the first term (unity) indicates the effect of average input currents (that is observed

from the approximate derivative of IF neuron activation, namely the straight-through es-

timation) and the second term ( 1
rate(t)

∂f(t)
∂t

) represents the leaky (exponential decay) effect

of LIF neuron for the forward propagation time window. Then, by using the relations of

ε and β in equation (3.11), the derivative of LIF neuronal activation can be obtained as
∂aLIF

∂net
= 1

Vth+ε
= 1

βVth
. In this chapter, to avoid the vanishing gradient phenomena during the

error back-propagation, the leaky effect term ( 1
rate(t)

∂f(t)
∂t

) is divided by the size of the forward

propagation time window (T). Hence, the scaled time derivative of this function, 1
γ
f(t), is

used as the leak correctional term where γ denotes the number of output spike events for

a particular neuron over the total forward propagation time. As a result, we obtain an ap-

proximate derivative for LIF neuronal activation (in hidden layers) as a combination of the

straight-through estimation (i.e., approximate derivative of IF neuron activation) and the
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leak correctional term that compensates leaky effect in the membrane potential as described

in equation (3.19). Please note that, in this work, input and output spikes are not exponen-

tially decaying, the leak only happens according to the mechanism of membrane potential.

Moreover, f(t) is not a part of the forward propagation phase, and rather it is only defined

to approximately measure the leaky effect during the backward propagation phase by differ-

entiating it with respect to time. The function f(t) is a time-dependent function that simply

integrates the output spikes (tk ≤ t) temporally, and the resultant sum is decayed over time.

It is evident that f(t) is continuous except where spikes occur and the activities jump up

[16 ]. Therefore, f(t) is differentiable at t → t+
k (from the right-sided limit). Note that, to

capture the leaky effect (exponential decay), it is necessary to compute the derivative of f(t)

at the points in between the spiking activities, not at the time instant of spiking.

∂aLIF

∂net
= 1

Vth + ε
= 1

βVth

≈ 1
Vth

(1 + 1
γ

f(t)) = 1
Vth

(1 + 1
γ

∑
k

− 1
τm

e− t−tk
τm ) (3.19)

In summary, the approximations applied to implement a spike-based BP algorithm in SNN

are as follows:

• During the back-propagating phase, we consider the leaks in the membrane potential of

final layer neurons as noises so that the accumulated membrane potential is approximated

as equivalent to the total input current (V L
mem ≈ net). Therefore, the derivative of post-

neuronal activation with respect to net (∂output
∂net

) is calculated as 1
T
for the final layer.

• For hidden layers, we first approximate the activation of an IF neuron as a linear function

(i.e., straight-through estimation). Hence, we are able to estimate its derivative of IF

neuron’s activation [45 ] with respect to total input current.

• To capture the leaky effect of a LIF neuron (in hidden layers), we estimate the scaled time

derivative of the low-pass filtered output spikes that leak over time, using the function

f(t). This function is continuous except for the time points where spikes occur [16 ].

Hence, it is differentiable in the sections between the spiking activities.

• We obtain an approximate derivative for LIF neuronal activation (in hidden layers) as

a combination of two derivatives. The first one is the straight-through estimation (i.e.,
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approximate derivative of IF neuron activation). The second one is the leak correctional

term that compensates the leaky effect in the membrane potential of LIF neurons. The

combination of straight-through estimation and the leak correctional term is expected

to be less than 1.

Based on these approximations, we can train SNNs with direct spike inputs using a

spike-based BP algorithm.

At the final layer, the error gradient, δL, represents the gradient of the output loss with

respect to total input current (i.e., net) received by the post-neurons. It can be calculated

by multiplying the final output error (e) with the derivative of the corresponding post-

neuronal activation (∂output
∂netL ) as shown in equation (3.20). At any hidden layer, the local

error gradient, δl, is recursively estimated by multiplying the back-propagated gradient from

the following layer ((wl)T r ∗ δl+1) with derivative of the neuronal activation, aLIF (netl), as

presented in equation (3.21). Note that element-wise multiplication is indicated by ‘.’ while

matrix multiplication is represented by ‘*’ in the respective equations.

δL = ∂E

∂output

∂output

∂netL
= e 1

T
= e

T
(3.20)

δl = ((wl)T r ∗ δl+1).aLIF (netl) (3.21)

The derivative of net with respect to weight is simply the total incoming spikes over time

as derived in equation (3.22). The derivative of the output loss with respect to the weights

interconnecting the layers l and l + 1 (4wl in equation (3.23)) is determined by multiplying

the transposed error gradient at l + 1 (δl+1) with the input spikes from layer l. Finally, the

calculated partial derivatives of loss function are used to update the respective weights using

a learning rate (ηBP ) as illustrated in equation (3.24). As a result, iterative updating of

the weights over mini-batches of input patterns leads the network state to a local minimum,

thereby enabling the network to capture multiple-levels of internal representations of the

data.
∂net
∂wl

= ∂

∂wl
(wl ∗ xl(t)) = xl(t) (3.22)
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4wl = ∂E

∂wl
= xl(t) ∗ (δl+1)T r (3.23)

wl
updated = wl − ηBP4wl (3.24)

Algorithm 1 Forward propagation with dropout at each iteration in SNN
1: Input : Poisson-distributed input spike train (inputs), Dropout ratio (p), Total number

of time steps (#timesteps), Membrane potential (Vmem), Time constant of membrane
potential (τm), Firing threshold (Vth)

2: Initialize SNN l.Vmem ← 0 ∀l = 2, ..., #SNN.layer
3: // Define the random subset of units (with a probability 1− p) at each iteration
4: for l← 1 to #SNN.layer − 1 do
5: maskl ← generate_random_subset(probability = 1− p)
6: for t← 1 to #timesteps do
7: // Set input of first layer equal to spike train of a mini-batch data
8: SNN1.spike[t]← inputs[t];
9: for l← 2 to #SNN.layer do

10: // Integrate weighted sum of input spikes to membrane potential
11: SNN l.Vmem[t] ← SNN l.Vmem[t-1] + SNN l−1forward(SNN l−1.spike[t]). ∗

(maskl−1/(1-p));
12: // If Vmem is greater than Vth, post-neuron generate a spike
13: if SNN l.Vmem[t] > SNN l.Vth then
14: // Membrane potential resets if the corresponding neuron fires a spike
15: SNN l.spike[t]← 1
16: SNN l.Vmem[t]← 0
17: else
18: // Else, membrane potential decays over time
19: SNN l.spike[t]← 0
20: SNN l.Vmem[t]← e− 1

τm ∗ SNN l.Vmem[t]

3.3.2 Dropout in Spiking Nerual Network

Dropout [2 ] is one of the popular regularization techniques while training deep ANNs.

This technique randomly disconnects certain units with a given probability (p) to avoid

units being overfitted and co-adapted too much to given training data. There are prior

works [46 ]–[48 ] that investigated the biological insights on how synaptic stochasticity can

provide dropout-like functional benefits in SNNs. In this chapter, we employ the concept

of dropout technique in order to regularize deep SNNs effectively. Note, dropout technique
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is only applied during training and is not used when evaluating the performance of the

network during inference. There is a subtle difference in the way dropout is applied in SNNs

compared to ANNs. In ANNs, each epoch of training has several iterations of mini-batches.

In each iteration, randomly selected units (with dropout ratio of p) are disconnected from the

network while weighting by its posterior probability ( 1
1−p

). However, in SNNs, each iteration

has more than one forward propagation depending on the time length of the spike train. We

back-propagate the output error and modify the network parameters only at the last time

step. For dropout to be effective in our training method, it has to be ensured that the set of

connected units within an iteration of mini-batch data is not changed, such that the neural

network is constituted by the same random subset of units during each forward propagation

within a single iteration. On the other hand, if the units are randomly connected at each

time-step, the effect of dropout will be averaged out over the entire forward propagation

time within an iteration. Then, the dropout effect would fade-out once the output error

is propagated backward and the parameters are updated at the last time step. Therefore,

we need to keep the set of randomly connected units for the entire time window within

an iteration. In the experiment, we use the SNN version of dropout technique with the

probability (p) of omitting units equal to 0.2-0.25. Note that the activations are much

sparser in SNN forward propagations compared to ANNs, hence the optimal p for SNNs

needs to be less than a typical ANN dropout ratio (p=0.5). The details of SNN forward

propagation with dropout are specified in Algorithm 1 .

3.4 Experimental Setup and Result

3.4.1 Experimental Setup

The primary goal of our experiments is to demonstrate the effectiveness of the proposed

spike-based BP training methodology in a variety of deep network architectures. We first

describe our experimental setup and baselines. For the experiments, we developed a custom

simulation framework using the Pytorch deep learning package [49 ] for evaluating our pro-

posed SNN training algorithm. Our deep convolutional SNNs are populated with biologically

plausible LIF neurons (with neuronal firing thresholds of unity) in which a pair of pre- and

63



post- neurons are interconnected by plastic synapses. At the beginning, the synaptic weights

are initialized with Gaussian random distribution of zero-mean and standard deviation of√
κ
nl (nl: number of fan-in synapses) as introduced in [50 ]. Note, the initialization constant κ

differs by the type of network architecture. For instance, we have used κ = 2 for non-residual

network and κ = 1 for residual network. For training, the synaptic weights are trained with a

mini-batch spike-based BP algorithm in an end-to-end manner, as explained in section 3.3.1 .

For static datasets, we train our network models for 150 epochs using mini-batch stochastic

gradient descent BP that reduces its learning rate at 70th, 100th and 125th training epochs.

For the neuromorphic dataset, we use Adam [51 ] learning method and reduce its learning

rate at 40th, 80th and 120th training epochs. Please, refer to Table 3.1 for more implemen-

tation details. The datasets and network topologies used for benchmarking, the input spike

generation scheme for event-based operation and determination of the number of time-steps

required for training and inference are described in the following sub-sections.

Table 3.1. Parameters used in the experiments
Parameter Value
Time Constant of Membrane Potential (τm) 100 time-steps
BP Training Time Duration 50-100 time-steps
Inference Time Duration Same as training
Mini-batch Size 16-32
Spatial-pooling Non-overlapping Region/Stride 2×2, 2
Neuronal Firing Threshold 1 (hidden layer), ∞ (final layer)
Weight Initialization Constant (κ) 2 (non-residual network), 1 (residual network)
Learning rate (ηBP ) 0.002 - 0.003
Dropout Ratio (p) 0.2 - 0.25

Benchmarking Datasets

We demonstrate the efficacy of our proposed training methodology for deep convolutional

SNNs on three standard vision datasets and one neuromorphic vision dataset, namely the

MNIST [1 ], SVHN [52 ], CIFAR-10 [53 ] and N-MNIST [54 ]. The MNIST dataset is composed

of gray-scale (one-dimensional) images of handwritten digits whose sizes are 28 by 28. The

SVHN and CIFAR-10 datasets are composed of color (three-dimensional) images whose sizes
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are 32 by 32. The N-MNIST dataset is a neuromorphic (spiking) dataset that is converted

from static MNIST dataset using Dynamic Vision Sensor (DVS) [55 ]. The N-MNIST dataset

contains two-dimensional images that include ON and OFF event stream data whose sizes are

34 by 34. The ON (OFF) event represents the increase (decrease) in pixel bright changes.

The details of the benchmark datasets are listed in Table 3.2 . For evaluation, we report

the top-1 classification accuracy by classifying the test samples (training samples and test

samples are mutually exclusive).

Table 3.2. Benchmark Datasets
Dataset Image #Training Samples #Testing Samples #Category
MNIST 28× 28, gray 60,000 10,000 10
SVHN 32× 32, color 73,000 26,000 10
CIFAR-10 32× 32, color 50,000 10,000 10
N-MNIST 34× 34× 2, ON and OFF spikes 60,000 10,000 10

Network Topologies

We use various SNN architectures depending on the complexity of the benchmark datasets.

For MNIST and N-MNIST datasets, we used a network consisting of two sets of alternating

convolutional and spatial-pooling layers followed by two fully-connected layers. This network

architecture is derived from LeNet5 model [1 ]. Note that Table 3.3 summarizes the layer

type, kernel size, the number of output feature maps and stride of SNN model for MNIST

dataset. The kernel size shown in the table is for 3-D convolution where the 1st dimension is

for number of input feature-maps and 2nd-3rd dimensions are for convolutional kernels. For

SVHN and CIFAR-10 datasets, we used deeper network models consisting of 7 to 11 train-

able layers including convolutional, spatial-pooling and fully-connected layers. In particular,

these networks consisting of beyond 5 trainable layers are constructed using small (3 × 3)

convolutional kernels. We term the deep convolutional SNN architecture that includes 3× 3

convolutional kernel [36 ] without residual connections as ‘VGG SNN’ and with skip (resid-

ual) connections [5 ] as ‘Residual SNN’. In Residual SNNs, some convolutional layers convolve

kernel with the stride of 2 in both x and y directions, to incorporate the functionality of

spatial-pooling layers. Please, refer to Table 3.3 and Table 3.4 that summarize the details
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of deep convolutional SNN architectures. In the results section, we will discuss the benefit

of deep SNNs in terms of classification performance as well as inference speedup and energy

efficiency.

Table 3.3. The deep convolutional spiking neural network architectures for
MNIST, N-MNIST and SVHN datasets

4 layer network VGG7 ResNet7
Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride
Convolution 1×5×5 20 1 Convolution 3×3×3 64 1 Convolution 3×3×3 64 1

Average-pooling 2×2 2 Convolution 64×3×3 64 2 Average-pooling 2×2 2
Average-pooling 2×2 2

Convolution 20×5×5 50 1 Convolution 64×3×3 128 1 Convolution 64×3×3 128 1
Average-pooling 2×2 2 Convolution 128×3×3 128 2 Convolution 128×3×3 128 2

Convolution 128×3×3 128 2 Skip convolution 64×1×1 128 2
Average-pooling 2×2 2

Convolution 128×3×3 256 1
Convolution 256×3×3 256 2

Skip convolution 128×1×1 256 2
Fully-connected 200 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10

Table 3.4. The deep convolutional spiking neural network architectures for a
CIFAR-10 dataset

VGG9 ResNet9 ResNet11
Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride
Convolution 3×3×3 64 1 Convolution 3×3×3 64 1 Convolution 3×3×3 64 1
Convolution 64×3×3 64 1 Average-pooling 2×2 2 Average-pooling 2×2 2

Average-pooling 2×2 2
Convolution 64×3×3 128 1 Convolution 64×3×3 128 1 Convolution 64×3×3 128 1
Convolution 128×3×3 128 1 Convolution 128×3×3 128 1 Convolution 128×3×3 128 1

Average-pooling 2×2 2 Skip convolution 64×1×1 128 1 Skip convolution 64×1×1 128 1
Convolution 128×3×3 256 1 Convolution 128×3×3 256 1 Convolution 128×3×3 256 1
Convolution 256×3×3 256 1 Convolution 256×3×3 256 2 Convolution 256×3×3 256 2
Convolution 256×3×3 256 1 Skip connection 128×1×1 256 2 Skip convolution 128×1×1 256 2

Average-pooling 2×2 2
Convolution 256×3×3 512 1 Convolution 256×3×3 512 1
Convolution 512×3×3 512 2 Convolution 512×3×3 512 1

Skip convolution 256×1×1 512 2 Skip convolution 512×1×1 512 1
Convolution 512×3×3 512 1
Convolution 512×3×3 512 2

Skip convolution 512×1×1 512 2
Fully-connected 1024 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10

ANN-SNN Conversion Scheme

As mentioned previously, off-the-shelf trained ANNs can be successfully converted to

SNNs by replacing ANN neurons (ReLU) with Integrate and Fire (IF) spiking neurons and

adjusting the neuronal thresholds with respect to synaptic weights. In the literature, several

methods have been proposed [11 ], [12 ], [37 ], [38 ], [56 ] for balancing appropriate ratios be-

tween neuronal thresholds and synaptic weights of spiking neuron in the case of ANN-SNN

conversion. In this chapter, we compare various aspects of our direct-spike trained models

with two prior ANN-SNN conversion works [11 ], [38 ], which proposed near-lossless ANN-

SNN conversion schemes for deep network architectures. The first scheme [11 ] balanced the
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neuronal firing thresholds with respect to corresponding synaptic weights layer-by-layer de-

pending on the actual spiking activities of each layer using a subset of training samples. The

second scheme [38 ] balanced the neuronal firing thresholds with the consideration of ReLU

activations in the corresponding ANN layer. Basically, we compare our direct-spike trained

model with converted SNNs on the same network architecture in terms of accuracy, inference

speed and energy-efficiency. Please note that there are a couple of differences on the network

architecture between the conversion networks [11 ], [38 ] and our scheme. First, the conver-

sion networks always use average-pooling to reduce the size of previous convolutional output

feature-map, whereas our models interchangeably use average pooling or convolve kernels

with a stride of 2 in the convolutional layer. Next, the conversion networks only consider

identity skip connections for residual SNNs. However, we implement skip connections using

either identity mapping or 1× 1 convolutional kernel.

Spike Generation Scheme

For the static vision datasets (MNIST, SVHN and CIFAR-10), each input pixel intensity

is converted to a stream of Poisson-distributed spike events that have equivalent firing rates.

Specifically, at each time step, the pixel intensity is compared with a uniformly distributed

random number (in the range between 0 and 1). If pixel intensity is greater than the random

number at the corresponding time step, a spike is generated. This rate-based spike encoding

is used to feed the input spikes to the network for a given period of time during both training

and inference. For color image datasets, we use the pre-processing technique of horizontal

flip before generating input spikes. These input pixels are normalized to represent zero mean

and unit standard deviation. Thereafter, we scale the pixel intensities to bound them in the

range [-1,1] to represent the whole spectrum of input pixel representations. The normalized

pixel intensities are converted to Poisson-distributed spike events such that the generated

input signals are bipolar spikes. For the neuromorphic version of the dataset (N-MNIST),

we use the original (unfiltered and uncentered) version of spike streams to directly train and

test the network in the time domain.
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Time-steps

As mentioned in section 3.4.1 , we generate a stochastic Poisson-distributed spike train

for each input pixel intensity for event-based operation. The duration of the spike train is

very important for SNNs. We measure the length of the spike train (spike time window)

in time-steps. For example, a 100 time-step spike train will have approximately 50 random

spikes if the corresponding pixel intensity is half in a range of [0,1]. If the number of time-

steps (spike time window) is too less, then the SNN will not receive enough information

for training or inference. On the other hand, a large number of time-steps will destroy the

stochastic property of SNNs and get rid of noise and imprecision at the cost of high latency

and power consumption. Hence, the network will not have much energy efficiency over ANN

implementations. For these reasons, we experimented with the different number of time-

steps to empirically obtain the optimal number of time-steps required for both training and

inference. The experimental process and results are explained in the following subsections.
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Figure 3.5. Inference performance variation due to (a) #Training-Timesteps
and (b) #Inference-Timesteps. T# in (a) indicates number of time-steps
used for training. Fig. (a) shows that inference accuracy starts to saturate
as #training-timesteps increase. In Fig. (b), the zoomed version on the in-
set shows that the SNN trained with the proposed scheme performs very well
even with only 30 time-steps while the peak performance occurs around 100
time-steps.

68



Optimal #time-steps for Training

A spike event can only represent 0 or 1 in each time step, therefore usually its bit precision

is considered 1. However, the spike train provides temporal data, which is an additional

source of information. Therefore, the spike train length (number of time-steps) in SNN can

be considered as its actual precision of neuronal activation. To obtain the optimal #time-

steps required for our proposed training method, we trained VGG9 networks on CIFAR-10

dataset using different time-steps ranging from 10 to 120 (shown in Fig. 3.5 (a)). We found

that for only 10 time-steps, the network is unable to learn anything as there is not enough

information (input precision too low) for the network to be able to learn. This phenomenon is

explained by the lack of spikes in the final output. With the initial weights, the accumulated

sum of the LIF neuron is not enough to generate output spikes in the later layers. Hence,

none of the input spikes propagates to the final output neurons and the output distributions

remain 0. Therefore, the computed gradients are always 0 and the network is not updated.

For 35-50 time-steps, the network learns well and converges to a reasonable point. From 70

time-steps, the network accuracy starts to saturate. At about 100 time-steps, the network

training improvement completely saturates. This is consistent with the bit precision of the

inputs. It has been shown in [57 ] that 8 bit inputs and activations are sufficient to achieve

optimal network performance for standard image recognition tasks. Ideally, we need 128

time-steps to represent 8 bit inputs using bipolar spikes. However, 100 time-steps proved

to be sufficient as more time-steps provide marginal improvement. We observe a similar

trend in VGG7, ResNet7, ResNet9 and ResNet11 SNNs as well while training for SVHN and

CIFAR-10 datasets. Therefore, we considered 100 time-steps as the optimal #time-steps for

training in our proposed methodology. Moreover, for MNIST dataset, we used 50 time-steps

since the required bit precision is only 4 bits [57 ].

Optimal #time-steps for Inference

To obtain the optimal #time-steps required for inferring an image utilizing a network

trained with our proposed method, we conducted similar experiments as described in section

3.4.1 . We first trained a VGG9 network for CIFAR-10 dataset using 100 time-steps (optimal
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according to experiments in section 3.4.1 ). Then, we tested the network performances with

different time-steps ranging from 10 to 4000 (shown in Fig. 3.5 (b)). We observed that the

network performs very well even with only 30 time-steps while the peak performance occurs

around 100 time-steps. For more than 100 time-steps, the accuracy degrades slightly from

the peak. This behavior is very different from ANN-SNN converted networks where the

accuracy keeps on improving as #time-steps is increased (shown in Fig. 3.5 (b)). This can

be attributed to the fact that our proposed spike-based training method incorporates the

temporal information well into the network training procedure so that the trained network

is tailored to perform best at a specific spike time window for the inference. On the other

hand, the ANN-SNN conversion schemes are unable to incorporate the temporal information

of the input in the trained network. Hence, the ANN-SNN conversion schemes require much

higher #time-steps (compared to SNN trained using the proposed method) for the inference

in order to resemble input-output mappings similar to ANNs.

3.4.2 Results

In this section, we analyze the classification performance and efficiency achieved by the

proposed spike-based training methodology for deep convolutional SNNs compared to the

performance of the transformed SNN using ANN-SNN conversion scheme.

The Classification Performance

Most of the classification performances available in the literature for SNNs are for MNIST

and CIFAR-10 datasets. The popular methods for SNN training are ‘Spike Time Dependent

Plasticity (STDP)’ based unsupervised learning [13 ], [15 ], [58 ], [59 ] and ‘spike-based back-

propagation’ based supervised learning [16 ], [60 ]–[63 ]. There are a few works [17 ], [64 ]–[66 ]

which tried to combine the two approaches to get the best of both worlds. However, these

training methods were able to neither train deep SNNs nor achieve good inference perfor-

mance compared to ANN implementations. Hence, ANN-SNN conversion schemes have been

explored by researchers [11 ], [12 ], [37 ], [38 ], [56 ]. Till date, ANN-SNN conversion schemes

achieved the best inference performance for CIFAR-10 dataset using deep networks [11 ], [12 ].
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Classification performances of all these works are listed in Table 3.5 along with ours. To

the best of our knowledge, we achieved the best inference accuracy for MNIST using LeNet

structured network compared to our spike based training approaches. We also achieved ac-

curacy performance comparable with ANN-SNN converted network [11 ], [43 ] for CIFAR-10

dataset while beating all other spike-based training methods.

Table 3.5. Comparison of the SNNs classification accuracies on MNIST, N-
MNIST and CIFAR-10 datasets.

Model Learning Method Accuracy
(MNIST)

Accuracy
(N-MNIST)

Accuracy
(CIFAR-10)

Hunsberger et al.[56 ] Offline learning, conversion 98.37% – 82.95%
Esser et al.[67 ] Offline learning, conversion – – 89.32%
Diehl et al.[38 ] Offline learning, conversion 99.10% – –
Rueckauer et al.[12 ] Offline learning, conversion 99.44% – 88.82%
Sengupta et al.[11 ] Offline learning, conversion – – 91.55%
Kheradpisheh et al.[17 ] Layerwise STDP + offline SVM classifier 98.40% – –
Panda et al.[19 ] Spike-based autoencoder 99.08% – 70.16%
Lee et al.[16 ] Spike-based BP 99.31% 98.74% –
Wu et al.[61 ] Spike-based BP 99.42% 98.78% 50.70%
Lee et al.[66 ] STDP-based pretraining + spike-based BP 99.28% – –
Jin et al.[60 ] Spike-based BP 99.49% 98.88% –
Wu et al.[68 ] Spike-based BP – 99.53% 90.53%
This work Spike-based BP 99.59% 99.09% 90.95%

For a more extensive comparison, we compare the inference performances of trained

networks using our proposed methodology with the ANNs and ANN-SNN conversion scheme

for same network configuration (depth and structure) side by side in Table 3.6 . We also

compare with the previous best SNN training results found in the literature that may or

may not have the same network depth and structure as ours. The ANN-SNN conversion

scheme is a modified and improved version of [11 ]. We are using this modified scheme since

it achieves better conversion performance than [11 ] as explained in section 3.4.1 . Note that

all reported classification accuracies are the average of the maximum inference accuracies for

3 independent runs with different seeds.

After initializing the weights, we train the SNNs using a spike-based BP algorithm in an

end-to-end manner with Poisson-distributed spike train inputs. Our evaluation of MNIST

dataset yields a classification accuracy of 99.59%, which is the best compared to any other

SNN training scheme and also identical to other ANN-SNN conversion schemes. We achieve
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∼96% inference accuracy on SVHN dataset for both trained non-residual and residual SNN.

Inference performance for SNNs trained on SVHN dataset has not been reported previously

in the literature. We implemented three different networks, as shown in Table 3.4 , for classi-

fying CIFAR-10 dataset using a proposed spike-based BP algorithm. For the VGG9 network,

the ANN-SNN conversion schemes provides a near lossless converted network compared to

baseline ANN implementation while our proposed training method yields a classification ac-

curacy of 90.45%. For ResNet9 network, the ANN-SNN conversion schemes provide inference

accuracy within 0.5-1% of baseline ANN implementation. However, our proposed spike-based

training method achieves inference accuracy that is within ∼1.5% of baseline ANN imple-

mentation. In the case of ResNet11, we observe that the inference accuracy improvement is

marginal compared to ResNet9 for baseline ANN implementation and ANN-SNN conversion

schemes. However, our proposed SNN training shows improvement of ∼0.5% for ResNet11

compared to ResNet9. Overall, our proposed training method achieves comparable inference

accuracies for both ResNet and VGG networks compared to baseline ANN implementation

and ANN-SNN conversion schemes.

Table 3.6. Comparison of classification performance
Inference Accuracy

Dataset Model ANN ANN-SNN ANN-SNN SNN SNN
(Diehl et al. [43 ]) (Sengupta et al. [11 ]) (Previous Best) (This Work)

MNIST LeNet 99.57% 99.55% 99.59% 99.49%[60 ] 99.59%
N-MNIST LeNet – – – 99.53%[68 ] 99.09%

SVHN VGG7 96.36% 96.33% 96.30% – 96.06%
ResNet7 96.43% 96.33% 96.40% – 96.21%

CIFAR-10
VGG9 91.98% 91.89% 92.01%

90.53%[68 ]
90.45%

ResNet9 91.85% 90.78% 91.59% 90.35%
ResNet11 91.87% 90.98% 91.65% 90.95%

Accuracy Improvement with Network Depth

In order to analyze the effect of network depth for SNNs, we experimented with networks

of different depths while training for SVHN and CIFAR-10 datasets. For SVHN dataset,

we started with a shallow network derived from LeNet5 model [1 ] with 2 convolutional

and 2 fully-connected layers. This network was able to achieve inference accuracy of only

92.38%. Then, we increased the network depth by adding 1 convolutional layer before the
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2 fully-connected layers and we termed this network as VGG5. VGG5 network was able to

achieve significant improvement over its predecessor. Similarly, we tried VGG6 followed by

VGG7, and the improvement started to become very small. We have also trained ResNet7

to understand how residual networks perform compared to non-residual networks of similar

depth. The results of these experiments are shown in Fig. 3.6 (a). We carried out similar

experiments for CIFAR-10 dataset as well. The results show a similar trend as described

in Fig. 3.6 (b). These results ensure that network depth improves the learning capacity of

direct-spike trained SNNs similar to ANNs. The non-residual networks saturate at a certain

depth and start to degrade if network depth is further increased (VGG11 in Fig. 3.6 (b)) due

to the degradation problem mentioned in [5 ]. In such a scenario, the residual connections in

deep residual ANNs allow the network to maintain peak classification accuracy utilizing the

skip connections [5 ], as seen in Fig. 3.6 (b) (ResNet9 and ResNet11).
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Figure 3.6. Accuracy improvement with network depth for (a) SVHN and (b)
CIFAR-10 dataset. In Fig. (a), inference accuracy improves with an increase
in network depth. In Fig. (b), the non-residual networks saturate at a certain
depth and start to degrade if network depth increases further. However, the
residual blocks in deep residual ANNs allow the network to maintain peak
classification accuracy (ResNet9 and ResNet11).
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3.5 Discussion

3.5.1 Comparison with Relevant Works

In this section, we compare our proposed supervised learning algorithm with other re-

cent spike-based BP algorithms. The spike-based learning rules primarily focus on directly

training and testing SNNs with spike-trains, and no conversion is necessary for applying in

real-world spiking scenario. In recent years, there are an increasing number of supervised gra-

dient descent method in spike-based learning. The [19 ] developed a spike-based auto-encoder

mechanism to train deep convolutional SNNs. They dealt with membrane potential as a dif-

ferentiable signal and showed recognition capabilities in standard vision tasks (MNIST and

CIFAR-10 datasets). Meanwhile, [16 ] followed the approach using differentiable membrane

potential to explore a spike-based BP algorithm in an end-to-end manner. In addition, [16 ]

presented the error normalization scheme to prevent exploding gradient phenomena while

training deep SNNs. Researchers in [60 ] proposed hybrid macro/micro level backpropa-

gation (HM2-BP). HM2-BP is developed to capture the temporal effect of the individual

spike (in micro-level) and rate-encoded error (at macro-level). The reference [69 ] employed

exponential function for the approximate derivative of neuronal function and developed a

credit assignment scheme to calculate the temporal dependencies of error throughout the

layers. [70 ] has trained recurrent spiking networks by replacing the threshold with a gate

function and employing BPTT technique [71 ]. While BPTT technique has been a popular

method to train recurrent analog and spiking recurrent networks, [72 ] points out the storing

and retrieving past variables and differentiation them through time in biological neurons

seems to be impossible. Recently, e-prop [73 ] presented an approximation method to bypass

neuronal state savings for enhancing the computational efficiency of BPTT. In temporal

spike encoding domain, [63 ] proposed an interesting temporal spike-based BP algorithm by

treating the spike-time as the differential activation of neuron. Temporal encoding based

SNN has the potential to process the tasks with the small number of spikes. All of these

works demonstrated spike-based learning in simple network architectures and has a large gap

in classification accuracy compared to deep ANNs. More recently, [68 ] presented a neuron

normalization technique (called NeuNorm) that calculates the average input firing rates to
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adjust neuron selectivity. NeuNorm enables spike-based training within a relatively short

time-window while achieving competitive performances. In addition, they presented an input

encoding scheme that receives both spike and non-spike signals for preserving the precision

of input data.

There are several points that distinguish this work from others. First, we use a pseudo

derivative method that accounts for leaky effect in membrane potential of LIF neurons.

We approximately estimate the leaky effect by comparing total membrane potential value

and obtain the ratio between IF and LIF neurons. During the back-propagating phase, the

pseudo derivative of LIF neuronal function is estimated by combining the straight through

estimation and leak correctional term as described in equation (3.19). Next, we construct

our networks by leveraging frequently used architectures such as VGG [36 ] and ResNet [5 ].

To the best of our knowledge, this is the first work that demonstrates spike-based supervised

BP learning for SNNs containing more than 10 trainable layers. Our deep SNNs obtain the

superior classification accuracies in MNIST, SVHN and CIFAR-10 datasets in comparison

to the other networks trained with the spike-based algorithm. In addition, as opposed

to complex error or neuron normalization method adopted by [16 ] and [68 ], respectively,

we demonstrate that deep SNNs can be naturally trained by only accounting for spiking

activities of the network. As a result, our work paves the effective way for training deep

SNNs with a spike-based BP algorithm.

3.5.2 Spike Activity Analysis

The most important advantage of event-based operation of neural networks is that the

events are very sparse in nature. To verify this claim, we analyzed the spiking activities of the

direct-spike trained SNNs and ANN-SNN converted networks in the following subsections.

Spike Activity per Layer

The layer-wise spike activities of both SNN trained using our proposed methodology,

and ANN-SNN converted network (using scheme 1) for VGG9 and ResNet9 are shown in

Fig. 3.7 (a) and Fig. 3.7 (b), respectively. In the case of ResNet9, only the first average
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pooling layer’s output spike activity is shown in the figure as for the direct-spike trained

SNN, the other spatial-poolings are done by stride 2 convolutions. In Fig. 3.7 , it can be seen

that the input layer has the highest spike activity that is significantly higher than any other

layer. The spike activity reduces significantly as the network depth increases.

We can observe from Fig. 3.7 (a) and Fig. 3.7 (b) that the average spike activity in a

direct-spike trained SNN is much higher than ANN-SNN converted network. The ANN-

SNN converted network uses a higher threshold compared to 1 (in case of direct-spike trained

SNN) since the conversion scheme applies layer-wise neuronal threshold modulation. This

higher threshold reduces spike activity in ANN-SNN converted networks. However, in both

cases, the spike activity decreases with increasing network depth.
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Figure 3.7. Layer-wise spike activity in direct-spike trained SNN and ANN-
SNN converted network for CIFAR-10 dataset: (a) VGG9 (b) ResNet9 net-
work. The spike activity is normalized with respect to the input layer spike
activity, which is the same for both networks. The spike activity reduces sig-
nificantly for both SNN and ANN-SNN converted network towards the later
layers. We have used scheme 1 for ANN-SNN conversion.

#Spikes/Inference

From Fig. 3.7 , it is evident that average spike activity in ANN-SNN converted networks

is much less than in the direct-spike trained SNN. However, for inference, the network has

to be evaluated over many time-steps. Therefore, to quantify the actual spike activity for

an inference operation, we measured the average number of spikes required for inferring one

image. For this purpose, we counted the number of spikes generated (including input spikes)
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Table 3.7. #Spikes/Image inference and spike efficiency comparison between
SNN and ANN-SNN converted networks for benchmark datasets trained on
different network models. (For each network, the 1st row corresponds to iso-
accuracy and the 2nd row corresponds to maximum-accuracy condition.)

Dataset Model Spike/Image Spike Efficiency Compared to
SNN ANN-SNN [43 ] ANN-SNN [11 ] ANN-SNN [43 ] ANN-SNN [11 ]

MNIST LeNet 5.52E+04 3.4E+04 2.9E+04 0.62x 0.53x
7.3E+04 1.32x

SVHN
VGG7 5.56E+06 3.7E+06 1.0E+07 0.67x 1.84x

1.9E+07 1.7E+07 3.40x 2.99x

ResNet7 4.66E+06 3.9E+06 3.1E+06 0.85x 0.67x
2.4E+07 2.0E+07 5.19x 4.30x

CIFAR-10

VGG9 1.24E+06 1.6E+06 2.2E+06 1.32x 1.80x
8.3E+06 9.6E+06 6.68x 7.78x

ResNet9 4.32E+06 2.7E+06 1.5E+06 0.63x 0.35x
1.0E+07 7.8E+06 2.39x 1.80x

ResNet11 1.53E+06 9.7E+06 1.8E+06 6.33x 1.17x
9.2E+06 5.99x

for classifying the test set of a particular dataset for a specific number of time-steps and

averaged the count for generating the quantity ‘#spikes per image inference’. We have used

two different time-steps for ANN-SNN converted networks; one for iso-accuracy comparison

and the other for maximum accuracy comparison with the direct-spike trained SNNs. Iso-

accuracy inference requires less #time-steps than maximum accuracy inference, hence has

a lower number of spikes per image inference. For few networks, the ANN-SNN conversion

scheme always provides accuracy less than or equal to the direct-spike trained SNN. Hence,

we only compare spikes per image inference in maximum accuracy condition for those ANN-

SNN converted networks while comparing with direct-spike trained SNNs. For the analysis,

we quantify the spike-efficiency (amount reduction in #spikes) from the #spikes/image in-

ference. The results are listed in Table 3.7 , where the 1st row corresponds to iso-accuracy

and the 2nd row corresponds to maximum-accuracy condition for each network. As shown

in Table 3.7 , the direct-spike trained SNNs are more efficient in terms of #spikes/inference

compared to the ANN-SNN converted networks for the maximum accuracy condition. For

an iso-accuracy condition, only deep SNNs (such as VGG9 and ResNet11) are more efficient

in terms of #spikes/inference compared to the ANN-SNN converted networks.

Fig. 3.8 shows the relationship between inference accuracy, latency and #spikes/infer-

ence for ResNet11 networks trained on CIFAR-10 dataset. We can observe that #spikes/in-

77



101 102 103

#Time-steps (Latency)

0

20

40

60

80

100
In

fe
re

nc
e 

Ac
cu

ra
cy

 (
%

)

Proposed SNN ANN-SNN(Sengupta et al., 2019) ANN-SNN(Diehl et al., 2015)

0.0

0.2

0.4

0.6

0.8

1.0

#
Sp

ik
es

/In
fe

re
nc

e

1e8Inference Performance of ResNet11

Proposed SNN ANN-SNN(Sengupta et al., 2019) ANN-SNN(Diehl et al., 2015)

Figure 3.8. The comparison of ‘accuracy vs latency vs #spikes/inference’
for ResNet11 architecture. In this figure, the solid lines are representing infer-
ence accuracy while the dashed lines are representing #spikes/inference. The
slope of #spikes/inference curve of the proposed SNN is larger than ANN-SNN
converted networks. However, since proposed SNN requires much less time-
steps for inference, the number of spikes required for one image inference is
significantly lower compared to ANN-SNN. The required #time-steps and cor-
responding #spikes/inference are shown using highlighted points connected by
arrows. Log scale is used for x-axis for easier viewing of the accuracy changes
for lower number of time-steps.

ference is higher for direct-spike trained SNN compared to ANN-SNN converted networks

at any particular latency. However, SNN trained with spike-based BP requires only 100

time-steps for maximum inference accuracy, whereas ANN-SNN converted networks require

3000-3500 time-steps to reach maximum inference accuracy. Hence, under maximum accu-

racy condition, direct-spike trained ResNet11 requires much fewer #spikes/inference com-

pared to ANN-SNN converted networks, while achieving comparable accuracy. Even under

iso-accuracy condition, the direct-spike trained ResNet11 requires fewer #spikes/inference

compared to the ANN-SNN converted networks (Table 3.7 ).
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3.5.3 Inference Speedup

The time required for inference is linearly proportional to the #time-steps (Fig. 3.8 ).

Hence, we can also quantify the inference speedup for direct-spike trained SNNs compared

to ANN-SNN converted networks from the #time-steps required for inference, as shown

in Table 3.8 . For example, for VGG9 network, the proposed training method can achieve

8× (5×) speedup for iso-accuracy and up to 36× (25×) speedup for maximum accuracy

in inference compared to respective ANN-SNN converted networks (i.e., scheme 1 [11 ] and

scheme 2 [38 ]). Similarly, for ResNet networks, the proposed training method can achieve

6× speedup for iso-accuracy and up to 35× speedup for maximum accuracy condition in

inference. It is interesting to note that direct-spike trained SNN is always more efficient

in terms of time-steps compared to the equivalent ANN-SNN conversion network, but not

in terms of the number of spikes, in some cases. It will require a detailed investigation to

determine if ANN-SNN methods used higher firing rates, whether they would be able to

classify quickly as well, while incurring a lower number of spike/inference.

Table 3.8. Inference #time-steps and corresponding speedup comparison be-
tween SNN and ANN-SNN converted networks for benchmark datasets trained
on different network models. (For each network, the 1st row corresponds to
iso-accuracy and the 2nd row corresponds to maximum-accuracy condition.)

Dataset Model Timesteps SNN Inference Speedup Compared to
SNN ANN-SNN [43 ] ANN-SNN [11 ] ANN-SNN [43 ] ANN-SNN [11 ]

MNIST LeNet 50 180 200 3.6x 4x
500 10x

SVHN
VGG7 100 500 1600 5x 16x

2500 2600 25x 26x

ResNet7 100 500 400 5x 4x
3000 2500 30x 25x

CIFAR-10

VGG9 100 500 800 5x 8x
2500 3600 25x 36x

ResNet9 100 800 600 8x 6x
3000 3000 30x 30x

ResNet11 100 3500 600 35x 6x
3000 30x
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3.5.4 Complexity Reduction

Deep ANNs struggle to meet the demand of extraordinary computational requirements.

SNNs can mitigate this effort by enabling efficient event-based computations. To compare

the computational complexity of these two cases, we first need to understand the operation

principle of both. An ANN operation for inferring the category of a particular input requires

a single feed-forward pass per image. For the same task, the network must be evaluated over

a number of time-steps in the spiking domain. If regular hardware is used for both ANN

and SNN, then it is evident that SNN will have computation complexity in the order of

hundreds or thousands more compared to an ANN. However, there are specialized hardware

that account for the event-based neural operation and ‘computes only when required’ for

inference. SNNs can potentially exploit such alternative mechanisms of network operation

and carry out an inference operation in the spiking domain much more efficiently than an

ANN. Also, for deep SNNs, we have observed the increase in sparsity as the network depth

increases. Hence, the benefits from event-based neuromorphic hardware are expected to

increase as the network depth increases.

An estimate of the actual energy consumption of SNNs and comparison with ANNs is

outside the scope of this work. However, we can gain some insight by quantifying the compu-

tational energy consumption for a synaptic operation and comparing the number of synaptic

operations being performed in the ANN versus the SNN trained with our proposed algorithm

and ANN-SNN converted network. We can estimate the number of synaptic operations per

layer of a neural network from the structure for the convolutional and linear layers. In

an ANN, a multiply-accumulate (MAC) computation is performed per synaptic operation.

While a specialized SNN hardware would perform simply an accumulate computation (AC)

per synaptic operation only if an incoming spike is received. Hence, the total number of

AC operations in a SNN can be estimated by the layer-wise product and summation of the

average neural spike count for a particular layer and the corresponding number of synaptic

connections. We also have to multiply the #time-steps with the #AC operations to get total

#AC operation for one inference. For example, assume that there are L layers each with Nl

neurons, Sl synaptic connections and al average spiking activity where l is the layer number.
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Then, the total number of synaptic operations in a layer is Nl×Sl×al. The Nl×Sl is equal to

the ANN (#MAC) operations of a particular layer. Therefore, the total number of synaptic

operations in a layer of an SNN becomes #MACl × al. The total number of AC operations

required for an image inference is the sum of synaptic operations in all layers during the

inference time-window. Hence, #AC/inference=(∑l(#MACl × al)) × #timesteps. This

formula is used for estimating both ANN-SNN AC operations and SNN AC operations per

image inference. On the other hand, the number of ANN (MAC) operation per inference

becomes simply, #MAC/inference=∑L
1 (#MACl). Based on this concept, we estimated

the total number of MAC operations for ANN, and the total number of AC operations

for direct-spike trained SNN and ANN-SNN converted network, for VGG9, ResNet9 and

ResNet11. The ratio of ANN-SNN converted networks’ (scheme1-scheme2) AC operations

to direct-spike trained SNN AC operations to ANN MAC operations is (28.18-25.60):3.61:1

for VGG9 while the ratio is (11.67-18.42):5.06:1 for the ResNet9 and (9.6-10.16):2.09:1 for

ResNet11 (for maximum accuracy condition).
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Figure 3.9. Inference computation complexity comparison between ANN,
ANN-SNN conversion and SNN trained with spike-based backpropagation.
ANN computational complexity is considered as a baseline for normalization.

However, a MAC operation usually consumes an order of magnitude more energy than

an AC operation. For instance, according to [74 ], a 32-bit floating point MAC operation con-

sumes 4.6pJ and a 32-bit floating point AC operation consumes 0.9pJ in 45nm technology

node. Hence, one synaptic operation in an ANN is equivalent to ∼5.1 synaptic operations

in a SNN. Moreover, 32-bit floating point computation can be replaced by fixed point com-
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putation using integer MAC and AC units without losing accuracy since the conversion is

reported to be almost loss-less [75 ]. A 32-bit integer MAC consumes roughly 3.2pJ while

a 32-bit AC operation consumes only 0.1pJ in 45nm process technology. Considering this

fact, our calculations demonstrate that the SNNs trained using the proposed method will be

7.81×-7.10× and 8.87× more computationally energy-efficient for inference compared to the

ANN-SNN converted networks and an ANN, respectively, for the VGG9 network architec-

ture. We also gain 4.6×-4.87× (2.31×-3.64×) and 15.32× (6.32×) energy-efficiency, for the

ResNet11 (ResNet9) network, compared to the ANN-SNN converted networks and an ANN,

respectively. The Fig. 3.9 shows the reduction in computation complexity for ANN-SNN

conversions and SNN trained with the proposed methodology compared to ANNs.

It is worth noting here that as the sparsity of the spike signals increases with an in-

crease in network depth in SNNs. Hence, the energy-efficiency is expected to increase almost

exponentially in both ANN-SNN conversion network [11 ] and SNN trained with proposed

methodology compared to an ANN implementation. The depth of network is the key fac-

tor for achieving a significant increase in the energy efficiency for SNNs in neuromorphic

hardware. However, the computational efficiency does not perfectly align with the overall ef-

ficiency since the dominant energy consumption can be the memory traffic on von-Neumann

computing hardware. The dataflows in asynchronous SNNs are less predictable and more

complicated. Hence, a detailed study is required to estimate the overall efficiency of SNNs

accurately.

Table 3.9. Iso-spike comparison for optimal condition. SNN time-steps cor-
responds to the latency to reach accuracy within �1% of maximum accuracy.
ANN-SNN time-steps corresponds to the latency required for same number of
spike/inference as SNN to occur. SNN and ANN-SNN accuracies are accura-
cies corresponding to respective latency.

Dataset Model Time-steps Accuracy (%)
SNN ANN-SNN [43 ] ANN-SNN [11 ] SNN ANN-SNN [43 ] ANN-SNN [11 ]

MNIST LeNet 20 62 75 99.36 99.19 88.62

SVHN VGG7 30 235 235 95.00 95.34 88.13
ResNet7 30 200 200 95.06 95.63 95.48

CIFAR-10
VGG9 50 228 260 89.33 69.53 61.08
ResNet9 50 390 490 89.52 89.51 90.06
ResNet11 50 307 280 90.24 82.75 73.82
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3.5.5 Iso-spike Comparison for Optimal Condition

In section 3.4.3, we observe that SNNs trained with proposed method achieve significant

speed-up in both max-accuracy and iso-accuracy condition. However, in section 3.4.2.2, we

found that the proposed method is in some cases (in an iso-accuracy condition) not more

efficient than ANN-SNN conversions in terms of #spike/inference. The reason behind it

is that an iso-accuracy condition may not be optimal for the SNNs trained with proposed

method. In an iso-accuracy case, we have used max-accuracy latency (50 time-steps for

MNIST and 100 time-steps for other networks) for direct-spike trained SNN, whereas most

of the conversion networks used much less latency than the max-accuracy condition. In view

of this, there is a need to determine the circumstances where our proposed method performs

as well as or better than the SNN-ANN conversion methods on spike count, time steps, and

accuracy. Consequently, in this section we analyze another interesting comparison.

In this analysis, we compare our proposed method and ANN-SNN conversion methods

[11 ], [43 ] under the optimal condition at equal number of spikes. We define the ‘optimal

#time-steps’ for SNNs trained with our proposed method as the #time-steps required to

reach within ∼1% of peak accuracy (when the accuracy starts to saturate). Based on this

definition, we observed that the optimal #time-steps for MNIST, SVHN, CIFAR10 networks

are 20, 30, and 50, respectively. For this comparison, we recorded the achieved accuracy

and #spike/inference of the SNNs trained with our proposed method for the corresponding

optimal #time-steps. Then, we ran ANN-SNN networks for a length of time such that they

use the similar number of spikes. In this iso-spike condition, we recorded the accuracy of

the ANN-SNN networks (for both conversion methods) and the number of time-steps they

require. The results are summarized in Table 3.9 .

For comparatively shallower networks such as LeNet, VGG7 (VGG type) and ResNet7,

ResNet9 (Residual type), the ANN-SNN conversion networks achieve as good as or slightly

better accuracy at iso-spike condition compared to the SNNs trained with our proposed

method. However, these ANN-SNN conversion networks require 3x-10x higher latency for

inference. On the other hand, for deeper networks such as VGG9 and ResNet11, the ANN-

SNN conversion networks achieve significantly lower accuracy compared to SNNs trained
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with our proposed method even with much higher latency. This trend indicates that for

deeper networks, SNNs trained with our proposed method will be more energy-efficient than

the conversion networks under an iso-spike condition.

3.6 Conclusion

In this chapter, we propose a spike-based backpropagation training methodology for

popular deep neural network architectures. This methodology enables deep SNNs to achieve

competitive classification accuracies on standard image recognition tasks. Our experiments

show the effectiveness of the proposed learning strategy on deeper SNNs (7-11 layer VGG

and ResNet network architectures) by achieving the best classification accuracies in MNIST,

SVHN and CIFAR-10 datasets among other networks trained with spike-based learning till

date. The performance gap in terms of quality between ANN and SNN is substantially

reduced by the application of our proposed methodology. Moreover, significant computa-

tional energy savings are expected when deep SNNs (trained with the proposed method) are

employed on suitable neuromorphic hardware for the inference.
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4. TRAINING DEEP SPIKING CONVOLUTIONAL NEURAL

NETWORKS WITH STDP-BASED UNSUPERVISED

PRE-TRAINING FOLLOWED BY SUPERVISED

FINE-TUNING

4.1 Introduction

Given the deep hierarchical SNN models, it is still unclear which learning algorithm

(i.e. unsupervised or supervised) is suitable for training the systems. Both the STDP and

spike-based BP learning have been demonstrated to capture hierarchical features in SNNs

[16 ]–[19 ], [25 ], [76 ], [77 ], but the insufficient classification performance of standalone STDP-

trained networks, overfitting issues and unstable convergence behaviors of BP algorithm are

a couple of obstacles toward efficient learning.

In this chapter, we propose a pre-training scheme using biologically plausible unsuper-

vised learning, namely Spike-Timing-Dependent-Plasticity (STDP), in order to better initial-

ize the parameters in multi-layer systems prior to supervised optimization. The multi-layer

convolutional neural networks comprising of the convolutional and pooling layers followed

by successive fully-connected layers are populated with bio-plausible leaky integrate-and-fire

spiking neurons [33 ] to deal with sparse Poisson-distributed spike trains that encodes the

pixel intensity in its firing rate. The proposed pre-training scheme trains the convolutional

kernels using STDP algorithm in a layer-wise manner that enables them to self-learn features

from input spike patterns. The pre-training enforces inductive bias to network parameters in-

cluding the synaptic weights and neuronal thresholds, which provides a better starting point

compared to random initialization. After finishing the pre-training, gradient descent BP

algorithm fine-tunes the synaptic weights across all the layers leading toward the optimum

local minima. The proposed strategy of using both the unsupervised and supervised learn-

ing algorithm can be referred to as ‘semi-supervised learning’. We believe that biologically

plausible unsupervised learning and state-of-the-art supervised deep learning algorithms can

pave ways to jointly optimize the hierarchical SNNs for achieving efficient and competitive

performance at the level of human brain.
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The rest of the chapter is organized as follows. First, we explain the architecture of

deep convolutional SNNs. Next, we describe the proposed semi-supervised training method-

ology, which includes the STDP-based unsupervised pre-training and BP-based supervised

fine-tuning algorithms. Subsequently, we present the simulation results, which validate the

efficacy of the semi-supervised training methodology for MNIST handwritten digit recogni-

tion. Then, we discuss the contributions of the proposed method and investigate how the

pre-training helps the gradient-based optimization procedure.

Figure 4.1. Architecture of the multi-layer convolutional spiking neural net-
work consisting of an input layer, alternating convolutional and spatial-pooling
layers, and final fully-connected layers for inference.

4.2 Multi-layer Convolutional Spiking Neural Network Topology

The recognition of high-dimensional input patterns necessitates multi-layer network topolo-

gies that can effectively learn hierarchical representations from input stimuli. In this chapter,

we use a convolutional neural network model that consists of an input layer followed by in-

termediate hidden layers and the final output layer as illustrated in Fig.4.1 . The input

layer encodes the images as Poisson-distributed spike trains where the probability of spike

generation is proportional to the pixel intensity. The hidden layers composed of alternat-

ing convolutional (C) and spatial-pooling (P) layers represent the intermediate stages of

feature hierarchies. The spikes from the hidden layers are combined sequentially for final

classification by the fully-connected (FC) layers. The convolutional and fully-connected lay-

ers consist of trainable parameters while the spatial-pooling layers are fixed a priori. The

86



weight kernels constituting the convolutional layers encode the feature representations at

multiple hierarchical levels. The adapted convolutional kernels can appropriately detect the

spatially correlated local features in the input patterns as a result of convolution, which

inherently renders the network invariant to translation (shift) in the object location. Next,

the spatial-pooling layer downscales the dimension of the feature maps produced by the pre-

vious convolutional layer while retaining the spatial correlation between neighborhood pixels

in every feature map. For instance, a fixed 2×2 kernel (each having a weight of 0.25) strides

through a convolutional feature map without overlapping and fires an output spike at the

corresponding location in the pooled feature map if the summed spikes of the 4 input pixels

within the window exceeds a threshold of 0.8. The pooling operation offers the following key

benefits. First, it provides small amount of additional network invariance to input transfor-

mations while reducing the dimension of the convolutional feature maps. Furthermore, the

pooling operation, by the virtue of downscaling the feature maps, enlarges the effective size

of convolutional kernels in the subsequent layer. This helps successive convolutional layers

to efficiently learn hierarchical representations from low to high levels of abstractions. The

number of pooled feature maps is equal to the number of convolutional feature maps. The

feature maps of the final pooling layer are unrolled into a 1−D vector that is fully-connected

to the output layer which produces inference decisions. The fully-connected layer acts as a

classifier to effectively incorporate the composition of features resulting from the alternating

convolutional and pooling layers into the final output classes.

4.3 Proposed Semi-Supervised Learning Methodology

The proposed semi-supervised learning methodology is comprised of unsupervised pre-

training followed by supervised fine-tuning using a spike-based gradient descent BP algo-

rithm in a global fashion. The concept of unsupervised pre-training was introduced in [78 ]

to efficiently train analog deep belief nets, a generative model comprising several stacked re-

stricted Boltzmann machines, using a fast greedy layer-wise training algorithm. In [79 ]–[81 ],

the authors employed unsupervised learning mechanisms such as contrastive divergence and

de-noising auto-encoder to hierarchically pre-train successive layers of deep belief nets. In
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spiking domain, [17 ], [19 ], [64 ], [65 ], [76 ], [82 ] have explored semi-supervised learning to train

deep SNNs, with layer-wise unsupervised learning using spike-based auto-encoder/sparse-

coding/STDP-based methods followed by supervised learning at the final classification layer.

However, we use STDP-based unsupervised pre-training to discover useful characteristics and

underlying structures of data to appropriately condition and initialize the synaptic weights

and neuronal firing thresholds for a given pattern recognition task. After pre-training the

network, we use the spike-based gradient descent BP algorithm to fine-tune the synaptic

weights end-to-end in a manner that minimizes discrepancy between the actual outputs

and target labels. We now describe the individual STDP-based unsupervised and BP-based

supervised learning mechanisms.

Unsupervised Pre-training using Spike-Timing-Dependent-Plasticity

Spike-Timing-Dependent-Plasticity (STDP) is a biologically plausible unsupervised learn-

ing mechanism that self-learns synaptic weights based on the degree of temporal correlations

between the pre- and post-synaptic spike events. As shown in Fig.2.4 (a), the pre-synaptic

trace resets to 1 when pre-synaptic spike arrives and exponentially decays over time. Hence,

the pre-synaptic trace encodes the timing correlation between pre- and post-neuronal spikes

in the positive timing window. The strength (weight) of synapse is potentiated if a pre-

synaptic spike triggers the post-neuron within a period of time that is determined by a

threshold, namely χoffset. The synaptic weight is depressed for larger spike timing differ-

ences. The STDP weight updates are applied to the synapses only at the time instances

of post-synaptic firing. Specifically, we use the weight-dependent positive-STDP rule whose

characteristic is formulated as follows.

∆w = ηST DP (e
tpre−tpost

τpre − χoffset)(wmax − w)(w − wmin) (4.1)

where ∆w is the change in the synaptic weight, ηST DP is the learning rate, tpre - tpost is the

timing difference between pre- and post-synaptic spikes, τpre is the time constant controlling

the length of the STDP timing window, and wmax (wmin) is the maximum (minimum) bound

on the synaptic weight. The amount of weight change has a nonlinear dependence on the
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current weight (w), which is specified by the product of (wmax-w) and (w-wmin). Smaller

the absolute value of the current weight, larger is the ensuing weight change and vice versa

as illustrated in Fig. 2.4 (b). Such nonlinear weight-dependent updates ensure a gradual

increase (decrease) of the synaptic weight towards the maximum (minimum) bound, thereby

improving the efficiency of synaptic feature learning. Note that the synaptic weights are

locally updated in an unsupervised way based on the spiking behaviors of pre-/post-neurons

at adjacent layers.

In convolutional SNNs, the weight kernels locally inter-connecting the successive layers

stride over the pre-neuronal maps to construct the output feature maps at every time step. In

the event of a post-spike, the time difference between corresponding pre- and post-neuronal

spikes is used to conduct individual STDP update on the convolutional weights. In case of

multiple post-neuronal spikes in an output feature map, averaged STDP updates are applied

to the kernel weights. Accordingly, the STDP learning enables the weight kernels to self-learn

useful features from the complex input patterns. In addition to performing STDP updates on

the weight kernels, we modulate the firing threshold of the units in the corresponding feature

map to enable kernels (among the feature maps in a convolutional layer) to learn different

representations of input patterns. In the event of a post-neuronal spike in a convolutional

feature map, we uniformly increase the firing threshold of all the post-units constituting the

feature map. In the period of non-firing, the firing threshold of the feature map exponentially

decays over time. Such threshold adaptation, referred as homeostasis [83 ], balances the firing

threshold with respect to the strength of kernel weights and effectively prevents convolutional

kernels in a feature map from dominating the learning. In addition, the negative synaptic

weights preclude the need for lateral inhibitory synaptic connections among feature maps in a

layer (by regulating spiking activities of units within feature map) that is otherwise essential

for competitive feature learning. In previous studies, STDP learning has been demonstrated

to self-learn convolutional kernels layer-by-layer for training multi-layer convolutional SNNs

[17 ], [76 ]. In this chapter, we exploit the unsupervised feature learning capabilities of STDP

learning for appropriately initializing the convolutional weights and corresponding neuronal

firing thresholds in multi-layer systems. We greedily pre-train each convolutional layer one

at a time using the unsupervised STDP learning and uniform threshold adaptation scheme.
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We begin by training the first convolutional layer that enables the weight kernels to discover

low-level characteristic features from input patterns in an unsupervised manner. At every

time step, the convolutional kernels slide over the input maps to detect the characteristic

features and construct output feature maps. The unit in output feature maps fires when the

convolutional kernel captures the characteristic features, and the weight kernel is updated

with STDP and the threshold adaptation mechanism. After the first convolutional layer is

trained, the adjusted weight kernels and neuronal firing thresholds are frozen to feed the

input again for estimating the average firing rate of units in the output feature maps. The

generated feature maps of first convolutional layer (the nonlinear transformations of inputs)

are spatially pooled and passed to the next convolutional layer to extract the higher-level

representations in hierarchical models. This process is repeated until all convolutional layers

are pre-trained. Note that we do not modify the synaptic weights of the fully-connected

layer (or the classifier) during the pre-training procedure. Therefore, the unsupervised pre-

training mechanism, in essence, initially finds out unique features and underlying structures

of input patterns for the task at hand prior to supervised fine-tuning.

Supervised Fine-tuning using Spike-based Backpropagation

In this section, we first discuss the standard supervised backpropagation (BP) learning

that is a widely used first-order gradient descent algorithm for ANN [44 ], and subsequently

detail its spike-based adaptation used in this chapter. The standard BP algorithm involves

forward propagation and error back-propagation. During the forward propagation, an input

pattern and its output (target) label are respectively presented to measure the corresponding

loss function, which is a function of discrepancy between target labels and predicted outputs

from the current network parameters. The error backpropagation is thereafter used to com-

pute the gradients of the loss function with respect to each synaptic weight for determining

their contributions to the final output loss. The synaptic weights are modified based on the

individual gradient in the direction to minimize the output loss. The above steps are itera-

tively applied over mini-batches of input patterns to obtain the optimal network parameters,

which facilitate the training loss to converge to a local minima. In this chapter, the standard
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Figure 4.2. Illustration of spike forward and backward propagation of a
multi-layer SNN consisting of LIF neurons. In forward pass, the spiking neu-
ron integrates the input current (net) generated by the weighted sum of the
pre-neuronal spikes with the interconnecting synaptic weights and produces
an output spike train. In backward pass, the derivatives of designated loss
function with respect to each synaptic weight are calculated from chain-rule.

BP technique is adapted for SNNs by taking into account the event-driven characteristics

for optimizing the weights directly using the spike input signals. It is important to note that

the primary difference between ANNs and SNNs lies in the dynamics of the output produced

by the respective neuron models. The spiking neurons communicate over time by means of

spike pulses that are discrete and non-differentiable signals. This is in stark contrast with the

differentiable continuous (scalar) values from the analog neurons such as sigmoid, tanh and

ReLU functions [4 ], [84 ]. In spike-based BP algorithm, we low-pass filtered the post-spike

trains to obtain a pseudo derivative by creating differentiable activation function (explained

below). This allows the final output loss to be propagated backward to hidden layers for

updating the associated synaptic weights suitably.

During the forward propagation, the input pixel values are converted to Poisson-distributed

spike trains and directly fed to the SNN. The sum of Dirac-delta pulses (denoted by xi for
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the ith input neuron) are weighted by inter-connecting synaptic weights (wl
ij) to be integrated

to post-neurons as illustrated in Fig. 4.2 and formulated as equation (4.2).

netl+1
j (t) =

nl∑
i=1

wl
ij ∗ xi(t), where xi(t) =

t∑
k=1

θi(t− tk) (4.2)

where netl+1
j is the resultant current received by the jth post-neuron at (l + 1)th layer, nl

denotes the number of neurons in lth layer, tk represents the time instant at which pre-neuron

spikes. The post-neurons fire output spikes when the respective membrane potentials exceed

a definite neuronal firing threshold, after which the potentials are reset and the spikes are

broadcast to the subsequent layer. This process is successively carried out by the post-

neurons in every layer based on the incoming spikes received from the preceding layer to

produce spike trains over time as shown in Fig. 4.2 . The differentiable activation of the

spiking neuron, which defines the highly non-linear relationship between the weighted pre-

neuronal spikes and post-spike firing rate, is generated by low-pass filtering the individual

post-spike train as formulated below.

Activation of neuron, aj(t) =
t∑

k=1
exp(−t− tk

τp

) (4.3)

F inal output error, ej =
aL

j

max(aL) − labelj (4.4)

Loss function, E = 1
2

nL∑
j=1

e2
j (4.5)

The activation, aj, of an LIF neuron is computed by integrating the unit’s spikes (at time

instants tk in equation (4.3)) and decaying the resultant sum in the time period between

successive spikes. The time constant (τp), which determines the rate of decay of the neuronal

activation, accounts for the non-linear membrane potential decay and reset mechanisms that

influence the spiking dynamics of the post-neuron. The activation of the output neurons in

the fully-connected layer (classifier) is normalized to obtain a probability distribution over all

final class predictions for a given input pattern. The final error (ej) for each output neuron

is evaluated by comparing the normalized output activation with the target label (labelj)
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of the presented input as shown in equation (4.4). The corresponding loss function (E in

equation (4.5)) is defined as the mean square of the final error over all the output neurons.

Next, we detail the gradient descent backpropagation algorithm that is used to minimize

the output loss in SNNs. We first estimate the gradients of the output loss with maximum

likelihood at the final output layer and back-propagate the gradients all the way down

through the network using recursive chain rule [44 ]. The gradient with respect to the weights

of hidden layers are obtained as described by the following equations.

δL = e.a(netL) (4.6)

a(netL) = a(t) + 1 =
t∑

k=1
(− 1

τp

e− t−tk
τp ) + 1 (4.7)

δh = ((wh)T ∗ δh+1).a(neth) (4.8)

The quantity, δL, henceforth referred as the ‘error gradient’, represents the gradient of the

output loss with respect to the net input current received by the post-neurons in the final

output layer. It can readily be computed (as shown in equation (4.6)) by multiplying the

final output error (e in equation (4.4)) with the derivative of the corresponding post-neuronal

activation (a(netL)) in equation (4.7)). Note that ‘.’ denotes element-wise multiplication

while ‘*’ indicates matrix multiplication in the equations (4.2 – 4.9). The neuronal activation

(as described in equation (4.3)) is non-differentiable with respect to input current because

of discrete time series output signals. To overcome this, we obtain a pseudo-derivative of

post-neuronal activation by adding a unity value to the time derivative of the corresponding

activation as formulated in equation (4.7). The time derivative of neuronal activation reflects

highly non-linear (leaky) characteristics of LIF neuron model and adding a unity value

facilitates ignoring the discontinuity (step jump) that arises at each spike time. The error

gradient, δh, at any hidden layer is recursively estimated by back-propagating the error

gradient from the successive layer ((wh)T ∗ δh+1) and multiplying it with the derivative of

neuronal activation (a(neth)) as formulated in equation (4.8). It is worth mentioning here

that the presented spike-based BP algorithm mitigates the vanishing gradient phenomena,
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because the derivatives of the spiking neuronal activation (shown in equation (4.7)) do not

saturate unlike saturating activation functions.

4wl = al

max(al) ∗ (δl+1)T (4.9)

wl = wl − ηBP4wl (4.10)

The derivative of the output loss with respect to the weights interconnecting the layers l and

l + 1 (Owl in equation (4.9)) is determined by multiplying the transposed error gradient at

l + 1 (δl+1) with the normalized activation of the neurons in layer l. In case of convolutional

neural networks, we back-propagate the error in order to get the partial derivatives of the

loss function with respect to the given output feature map. Then, we average the partial

derivatives over the output map connections sharing the particular weight to account for

the effective updates of kernel weights. Finally, the calculated partial derivatives of loss

function are used to update the respective weights using a learning rate (ηBP ) as illustrated

in equation (4.10). Iteratively updating the weights over mini-batches of input patterns leads

the network state to a local minimum, thereby enabling the network to capture hierarchical

internal representations of the data.

4.4 Results

We demonstrate the capability of the proposed semi-supervised learning strategy on the

handwritten digit MNIST dataset [31 ] using a MATLAB-based custom simulation frame-

work. The MNIST dataset contains 60k training and 10k testing (grayscale) images belong-

ing to 10 categories. For the experiments, we implement relatively shallow and deep multi-

layer convolutional SNN topologies, which comprise of 28×28 input image, convolutional (C)

layers using 5×5 sized weight kernels, spatial-pooling (P) layers with 2×2 non-overlapping

pooling regions followed by successive fully-connected (FC) layers. The detailed multi-layer

neural network topologies are as follows: the shallow network is 28×28−36C5−2P −10FC

and the deep network is 28 × 28 − 20C5 − 2P − 50C5 − 2P − 200FC − 10FC. The ini-

tial synaptic weights are randomly assigned at each layer following the weights initialization
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scheme [16 ]. The neuronal firing thresholds (vth) are set proportional to the strength of the

synaptic distribution as shown below.

wl ∈ U [−
√

3
nl

,

√
3
nl
], vth = α

√
3
nl

, α > 0 (4.11)

where wl denotes the synaptic weight matrix connecting layers l and l+1, U [−k, k] indicates

the uniform distribution in the interval between k and k, and nl is the size of the lth layer.

Table 4.1. Parameters used in the experiments
Parameter Value
STDP Type Positive STDP
Decay Constant of Membrane Potential (τm) 10 ms
Decay Constant of Synaptic Trace (τpre) 1.5 ms
Decay Constant of Post-neuronal Activation Function (τp) 100 ms
Training Time Duration (STDP, BP) 25, 100, 50 ms
Inference Time Duration 200 ms
Mini-batch Size 100
Maximum Input Rate (STDP, BP, Inference) 200 , 500, 500 Hz
Convolutional Kernel Size/Stride 5×5, 1
Spatial-pooling Non-overlapping Region/Stride 2×2, 2
Threshold Initialization Constant (α) for,C, FC Layer without Pre-training 5, 3

We train the multi-layer convolutional SNNs using the proposed semi-supervised learning

strategy, which comprises initial unsupervised pre-training and subsequent supervised fine-

tuning (or spike-based BP) procedures using the parameters listed in Table 4.1 . In every

iteration of training, a subset (mini-batch) of randomly sampled training images are fed

to the system such that the static inputs are converted stochastically into spike events,

wherein the firing rate encodes the pixel intensity. During the unsupervised pre-training,

we present a fraction of training data to the network for 25 ms (assuming a simulation

time-step of 1 ms) and adjust each convolutional layer one at a time. After the layer-

wise pre-training of convolutional layers, the kernel weights with respect to the neuronal

firing threshold are appropriately initialized and conditioned for further fine-tuning. Next,

we conduct gradient-based BP learning, which evaluates the gradients of a loss function

with respect to the synaptic weights through forward and backward propagations. During

supervised fine-tuning, we present all training samples (excluding the ones used for pre-

training) for 100 ms in the first epoch and full-training samples for 50 ms in subsequent
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epochs. Note that passing the full training examples once through a network denotes an

epoch, which consists of 600 iterations in case of MNIST dataset given the mini-batch size

of 100. The learning rate is kept constant throughout the unsupervised and the supervised

learning, respectively.

Table 4.2. Learning rate and mean standard deviation of classification errors
in shallow and deep multi-layer networks

Network Topology Shallow Multi-layer Network Deep Multi-layer Network
Model (Corresponding
Models in Fig. 4.3 )

Without Pre-training
(Red)

With Pre-training
(Blue)

Without Pre-training
(Red)

With Pre-training
(Blue)

With Pre-training
(Yellow)

Learning Rate 0.4 0.4 0.18 0.18 0.35
Variance (Mean STD) 10.57% 0.083% 0.146% 0.110% 0.099%

Figure 4.3. The classification accuracies (in log scale) on (a) shallow and
(b) deep multi-layer convolutional spiking neural networks of pre-trained and
supervised model starting from different states of randomly initialized synaptic
weights.

First, we discuss the effectiveness of our semi-supervised learning methodology by evaluat-

ing the classification performance of the shallow and deep multi-layer networks on the MNIST

test dataset. We compare our proposed semi-supervised training strategy (i.e. pre-trained

model) against standalone gradient-based supervised optimization without pre-training (i.e.

purely supervised model) for both shallow and deep networks. The spike-based gradient de-

scent training follows an identical criterion in both pre-trained and purely supervised models
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with the exception of parameter initialization (i.e., unsupervised STDP-based pre-training

vs random initialization). Fig. 4.3 (a) shows the classification error comparison between the

two scenarios for shallow multi-layer network, which started from 10 different initialization

of the weight state. Note, the learning rate across the 10 different cases for both pre-trained

(blue) and purely supervised (red) models, in Fig. 4.3 (a), is identical. The optimization

procedure is greatly influenced by the learning rate, which should be kept within a moderate

range to enable stable convergence without overshooting from the minima and diverging.

As shown in Fig. 4.3 (a), the purely supervised models (for certain weight initializations)

get stuck in poor local minima, thereby yielding high variance (or standard deviations) on

classification error. In contrast, the pre-trained models mostly enter the appropriate conver-

gence routes without being trapped in poor local minima consistently yielding lower error

with increasing number of iterations. Among the supervised models that did not get stuck

in bad local minima, the pre-trained models still outperform them in terms of classification

performance. We conduct a similar comparison as that of Fig. 4.3 (a) for the deep network

topology as illustrated in Fig. 4.3 (b). We observe similar results with the pre-trained model

(blue) yielding a lower classification error than a purely supervised model (red). In fact, the

pre-trained model converges to a lower classification error with fewer number of iterations,

which establishes the effectiveness of the STDP-based pre-training procedure. It is notewor-

thy to mention that deep networks (in case of purely supervised training) do not get stuck in

poor local minima for different initializations due to the enriched parameter space available

for optimization. This enriched parameter space also allows us to use a higher learning rate

without overfitting. We observed that increasing the learning rate significantly lowers the

classification error achieved with the pre-trained model (yellow in Fig. 4.3 (b)). Additionally,

the classification error of pre-trained model shows lower variance than the purely supervised

networks that started independently from different initialized weights as described in Table

4.2 . Thus, we can infer that STDP-based pre-training improves the robustness of the overall

learning procedure.

To further quantify the benefits of the STDP-based pre-training method, we plotted

the classification errors with respect to training efforts for both the purely supervised and

pre-trained models that have identical weight initialization in the beginning of training.
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Table 4.3. Comparison of the SNNs classification accuracies on MNIST digit
recognition task.

Model Architecture Learning Method Accuracy
Esser et al.[85 ] Deep Fully-connected Offline learning, conversion 99.42%
Hunsberger et al.[56 ] Deep Fully-connected Offline learning, conversion 98.37%
Diehl et al.[38 ] Deep Convolutional Offline learning, conversion 99.1%
Diehl et al.[13 ] Two-layer Fully-connected Unsupervised STDP 95.0%
Kheradpisheh et al.[17 ] Deep Convolutional Layerwise STDP + SVM classifier 98.4%
Panda et al.[19 ] Deep Convolutional Convolutional Autoencoder 99.05%
Lee et al.[16 ] Deep Convolutional Backpropagation 99.31%
Semi-supervised Learning (This work) Deep Convolutional STDP-based Pretraining + Backpropagation 99.28%

Figure 4.4. The plots show the classification accuracies on (a) shallow and (b)
deep multi-layer convolutional spiking neural network as the semi-supervised
optimization runs. The x-axis is the number of iterations (in log scale) and
y-axis is classification accuracies (in log scale) on testing data.

We quantify training effort as the total number of training iterations required for error

convergence. The plots in Fig. 4.4 illustrate the classification performance of the pre-trained

model (blue, yellow) with respect to the purely supervised model (red). We observe that the

pre-trained model (yielding very high error during the unsupervised pre-training stage) starts

to outperform the purely supervised model with supervised fine-tuning yielding consistently

lower error for both the shallow and deep topologies. Note, the classification error remains

high initially (∼90%) in case of a pre-trained model, because the fully-connected layers are

not trained during the STDP-based pre-training phase. Besides lower error rate, the proposed
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Figure 4.5. The weight kernels of (a) purely supervised and (b) pre-trained
model in first convolutional layer.

semi-supervised training also yields faster training convergence. Specifically, the convergence

time (in which the shallow multi-layer network reaches 2% classification error) with STDP-

based pre-training (1200 iterations) is significantly lower than that of purely supervised

case (3000 iterations). Similarly, the pre-trained deep network achieves 1% classification

error after 4800 iterations, whereas the randomly initialized network with spike-based BP

takes 10200 iterations. Essentially, the speed of optimization to reach certain amount of

testing error improves by ∼ 2.5× for both shallow and deep multi-layer network with STDP

pre-training as compared to purely supervised gradient BP. The boosted performance of

gradient-based supervised fine-tuning provides an insight that the efficient unsupervised

feature learning prior to the fine-tuning phase significantly reduces the training effort to

facilitate convergence. We believe that unsupervised initialization helps to mitigate the

difficult highly non-convex optimization problem by better initializing and conditioning the

network parameters. Eventually, the classification accuracies of shallow multi-layer network

saturates at the amount of lowest error rates of 1.20% (purely supervised model) and 1.23%

(pre-trained model) averaged over 130-150 (78000-90000) training epochs (iterations). The

classification errors of purely supervised model and pre-trained model for training deep multi-

layer networks saturate at the 0.77% and 0.72%, respectively. The classification results

shown are comparable to the state-of-the-art results as compared in Table 4.3 . Fig. 4.5 
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shows the adjusted weight kernels in first convolutional layer for purely supervised (a) and

pre-trained (b) model after 150 training epochs. The weight kernels of the pre-trained model

in Fig. 4.5 (b) indicate more definite shapes of pattern characteristics compared to those from

the purely supervised model in Fig. 4.5 (a).

Table 4.4. Mean standard deviation of classification errors that are initialized
with different weight initialization schemes in deep multi-layer networks

Model (Corresponding Models in Fig. 4.6 ) Without Pre-training (Red) With Pre-training (Blue) With Pre-training (Yellow)
Lee Initialization [16 ] 0.146% 0.110% 0.099%
Glorot initialization [35 ] 0.171% 0.131% 0.116%

Figure 4.6. The classification accuracies (in log scale) on the deep multi-layer
convolutional spiking neural networks of pre-trained and supervised model
starting from (a) Lee initialization (b) Glorot initialization.

Lastly, lets try to answer the following question: Does the STDP-based pre-training also

provide the benefits when the network is initialized with different random initialization?

To address this question, we perform an experiment that initializes the parameters of deep

multi-layer SNNs with another initialization scheme (’Glorot initialization’ [35 ]) and train

with the proposed semi-supervised learning strategy. We use unsupervised STDP to pre-train

the SNNs (initialized with Glorot initialization) and measure the classification performances

(that started from 10 different states of random weights) while fine-tuning the networks with

gradient descent backpropagation algorithm. The classification performance shows faster
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training convergence (1800 iterations to reach 2% error) and improved robustness compared

to the networks without STDP-based pre-training (3000 iterations to reach 2% error). Note

that pre-trained models (initialized with Glorot initialization) show slightly slower training

convergence time compared to Lee Initialization [16 ] pre-trained models (1200 iterations to

reach 2% error). Fig. 4.6 shows the classification performances with respect to training

efforts for the purely supervised and pre-trained models of each initialization scheme ((a)

Lee initialization versus (b) Glorot initialization). Fig. 4.6 (b) and Table. 4.4 depict similar

trends: pre-trained models achieve better classification performances and lower variances

(measured from 10 different states of random weights) compared to purely supervised models.

Therefore, we infer that STDP-based pre-training also helps to better initialize and condition

the network parameters in different initialization scheme such as Glorot initialization.

4.5 Discussion

Our proposal of STDP-based unsupervised pre-training is demonstrated to achieve im-

proved robustness and significant speed-up in training procedure. Conceptually, the benefits

of the semi-supervised learning strategy come from the inherent attributes of two different

learning mechanisms. First, the unsupervised STDP learning automatically determines the

useful features from high-dimensional input patterns that strengthens the connections be-

tween strongly correlated neurons. Hence, the quick and simple modifications are facilitated

so that the nonlinear representations are simply extracted based on the degree of correlation

between neurons in adjacent layers. Moreover, the nature of unsupervised STDP learning

is less prone to the overfitting problem than the supervised learning [17 ]. These peculiari-

ties allow the unsupervised STDP mechanism to be an effective initializer for directing the

network to an optimal starting point in the parameter space at the beginning of gradient

descent optimization. On the other hand, supervised BP learning is a complex, global and

gradient-based algorithm, which adjusts the synaptic weights proportional to the degree of

their contributions to the final loss in the direction of minimizing the errors. The gradi-

ent descent algorithm is susceptible to the initial condition of network parameters, which

causes variable convergence and necessitates large number of training data to generalize the
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network well. Note that there are numerous studies to appropriately initialize the network

parameters in the domain of ANN [35 ], [50 ], [81 ]. In SNNs, the conversion from adapted

ANN to SNNs [11 ], [12 ], [37 ], [38 ], [56 ] is one popular methodology to take advantage of

state-of-the-art deep learning algorithms and techniques. The conversion technique shows

remarkable classification performances, nevertheless there are issues that prevent them from

becoming universal. It is inevitable to avoid the classification accuracy degradation due to

ANN-to-SNN conversion, which becomes higher when dealing with real sensory data from

event-driven dynamic vision sensors [86 ], [87 ]. The weight-normalization scheme, which ef-

fectively converts the network parameters, is still an active research field. In addition, the

privacy issues can not be overlooked in case of disclosing, sharing and destroying the personal

(credential) data generated from edge devices for ANN training in cloud services (or data

centers). Consequently, all-spiking neural network systems, which efficiently train and test

the deep SNNs by direct input spike events, allow to protect privacy and increase the avail-

ability of private data to the artificial intelligence systems. As mentioned before, the initial

conditions of SNN are pre-defined based on the network parameters, which are the synaptic

weights and firing threshold of spiking neurons. However, it is still not evident how to ini-

tialize the multi-layer SNN systems in an optimal way. In this chapter, we leverage STDP

unsupervised learning to appropriately initialize the network parameters in a data-driven

manner prior to the supervised gradient descent BP learning.

Table 4.5. Final testing and training NLL costs (averaged out over 130-150
epochs) in shallow and deep multi-layer networks

Network Topology Shallow Multi-layer Network Deep Multi-layer Network
Model (Corresponding
Models in Fig. 4.7 )

Without Pre-training
(Red)

With Pre-training
(Blue)

Without Pre-training
(Red)

With Pre-training
(Blue)

With Pre-training
(Yellow)

Final Testing NLL 0.1317 0.1266 0.0658 0.0627 0.0659
Final Training NLL 0.0894 0.0861 0.0234 0.0169 0.0118

We performed an additional experiment to investigate how the proposed STDP-based

unsupervised pre-training helps the subsequent gradient-based supervised fine-tuning com-

pared to purely supervised training from random weight initialization. We hypothesize that

unsupervised pre-training effect helps either optimize or generalize the systems. In this

context, the optimization helps to locate the network to a better starting point in the pa-
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Figure 4.7. The plots show the NLL cost on (a) the shallow and (b) deep
multi-layer convolutional spiking neural network. The horizontal and verti-
cal axis indicate the NLL costs (in log scale) on training and testing data,
respectively.

rameter space, which induces lower training error. On the other hand, the generalization

effect prevents the network from overfitting too closely to training sample, which results in

lowering the errors on data that are not seen during the training. We trained shallow and

deep multi-layer networks over 150 epochs with and without pre-training and evaluated the

component sum of negative-log-likelihood (NLL) costs on testing and training data to high-

light the performance gap between the two scenarios. The negative-log-likelihood function

is formulated below.

Negative Log Likelihood =
nL∑
i=1

xi log pi(x) + (1− xi) log (1− pi(x)) (4.12)

where nL represents the size of final layer, x is the output target labels and p(x) denotes

the normalized firing rate of final output neurons. Fig. 4.7 presents the testing NLL cost

with respect to the training NLL cost for both shallow and deep network optimization.

Table 4.5 shows the testing and training NLL costs averaged over 130-150 epochs. During

the supervised BP learning, the pre-trained model yields a lower training NLL cost with
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the same training effort (representative of faster convergence) and the final training NLL

cost of the pre-trained model saturates at a lower range than the purely supervised model

as depicted in Table 4.5 . This trend indicates that the unsupervised initialization induces

the systems to be rapidly optimized and achieves better training error. The unsupervised

pre-training, in effect, initially deploys the network to a parameter space where the initial

point is closer to the local optima. In addition, we analyzed the test cost with respect to

the training cost to measure the generalization effect of unsupervised pre-training. As the

optimization proceeds toward the end, the testing NLL cost value saturates or starts to

slightly increase because of overfitting, whereas the training NLL cost continually decreases

as shown in Fig. 4.7 . However, we observe that the overfitting phenomenon occurs at the

stage of lower training NLL cost in case of pre-trained models (for both shallow and deep

cases) in comparison to the purely supervised training. The inset in Fig. 4.7 (b) highlights

this effect wherein we observe that the pre-trained models saturates to lower convergence

region (testing NLL cost) while delaying the overfitting phenomena. Note, overfitted neural

network systems perform worse on test data (or data unseen during the training). Therefore,

we infer that the pre-trained model can generalize better than the purely supervised model by

means of pre-conditioning of the network parameters such that overfitting issue is mitigated.

In essence, the STDP-based unsupervised initialization scheme provides an equivalent effect

of classic regularization techniques such as early stopping [88 ], L1/L2 weight decay [89 ] and

dropout [2 ], which explicitly constrain the training model like adding penalty to the loss

function or adding restriction on parameters.

4.6 Conclusion

Recent efforts in spiking neural networks have been focused toward building multi-layer

systems to hierarchically represent highly nonlinear and complex functions. However, train-

ing hierarchical systems remains a difficult problem because of their inherent high dimen-

sionality and non-convexity. In this chapter, we have shown that the convolutional spiking

neural network comprising multiple hidden layers can be pre-trained with layer-wise unsu-

pervised STDP learning and fine-tuned with supervised gradient descent BP algorithm. The
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unsupervised pre-training extracts the underlying structures from high dimensional input

patterns in order to better initialize the parameters and supervised gradient-based BP algo-

rithm takes the hierarchical system to optimal local minima. The proposed semi-supervised

strategy benefits the training procedure to be more invariant to randomly assigned initial

parameters, yields faster training and better generalization compared to purely supervised

optimization without pre-training. We believe that STDP-based unsupervised initialization

scheme coupled with state-of-the-art deep learning backpropagation algorithm can pave the

way toward effectively optimizing deep spiking neural networks.
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5. TOWARDS UNDERSTANDING THE EFFECT OF LEAK IN

SPIKING NEURAL NETWORKS

5.1 Introduction

A spiking neuron integrates the inputs over time and fires a spike-output whenever the

membrane potential exceeds a threshold. Computational models for spiking neurons use a

Leaky Integrate and Fire (LIF) model, which has a built-in leaky behavior in the membrane

potential, or use simpler Integrate and Fire (IF) with no leak in the membrane potential [90 ].

Since biological neuron models have been reported to contain leak in the membrane potential

[91 ], it would be important to quantitatively analyze the advantages and disadvantages of

using leaky behavior.

To that end, we focus on two aspects of the leak effect on SNN models: robustness and

spiking sparsity. Ideally, the neural network models are expected to predict reliable outcomes

for unseen or even noisy data under sparse spiking events. In addition, compared to ANNs,

the main advantage of SNNs is the energy-efficient event-based computing capability, in

which the synaptic operations occur only when spike-inputs arrive. To that effect, the

computational efficiency of SNNs considerably improves as spike signals become sparser for

specialized SNN hardware platforms such as TrueNorth [92 ] and Loihi [93 ].

Although various models have been proposed that resemble realistic biological neuronal

mechanisms [94 ]–[96 ], they are often too complex from a computational point of view. Also,

there is a lack of understanding of how each of the factors determining the biological neuronal

response can be effectively used in learning. Hence, we investigate the general and simple

IF and LIF neuron models [90 ] that are analytically tractable. We present a comprehensive

and comparative analysis between models with and without leak to delve deeper into the

role that leak plays in learning.

The main contributions of this chapter are as follows,

• A theoretical analysis of the first-order phenomenological LIF neuron model is introduced

to investigate its low-pass filtering effect. As a step toward this goal, from frequency

domain analyses, we show that the presence of leak helps to cut-off some of the input
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components beyond a certain frequency, thereby aiding the networks to predict more

robust outcomes for noisy spike-inputs.

• We examine the effect of leak on computational requirements in multi-layered SNNs.

Compared to SNNs with IF model, the ones with LIF model converges with decreased

sparsity of spike signals when trained with surrogate-gradient based backpropagation,

resulting in reduced computational efficiency.

• We conduct experiments to validate the robustness of multi-layered SNNs with IF and

LIF neuron models using popular vision datasets including SVHN and CIFAR-10. Fur-

thermore, we analyze the improved performance of LIF models by investigating the

frequency spectrum of spikes and how well the network generalizes to previously unseen

data.

5.2 Spiking Neural Network Fundamentals

5.2.1 Spiking Neuron Model

The spiking neurons (generally modeled as IF or LIF) are fundamental units in SNNs.

The sub-threshold dynamics of an LIF neuron is governed by,

τm
dU

dt
= −(U − Urest) + RI, U ≤ Vth (5.1)

Figure 5.1. An LIF neuron, (a) a schematic connection between three pre-
neurons to one post-neuron, (b) temporal dynamics of membrane potential in
the post-neuron, (c) equivalent circuit model of the LIF neuron.
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where U is the membrane potential, I denotes the input current that represents the weighted

summation of spike-inputs, τm indicates the time constant for membrane potential decay,

R represents membrane leakage path resistance and Urest is resting potential. Fig. 5.1 de-

picts the dynamics of LIF neuron and an equivalent circuit model. The input current is

accumulated in the membrane potential that decays exponentially over time. The degree of

exponential decay is determined by the membrane time constant (τm). When the membrane

potential exceeds the firing threshold (Vth), the neuron is triggered to emit an output-spike

and resets the membrane potential to the resting state. The spike-output can be represented

as,

O[t] =

 1, if U [t] > Vth

0, otherwise
(5.2)

where O[t] and U [t] denote the spike-output and the membrane potential, respectively, at

time instant t. The neuronal dynamics in equation (A.1) can be represented by an equivalent

RC circuit model [97 ] as illustrated in Fig. 5.1 (c). The parallel RC branch acts as a low-pass

filter [98 ], which has the membrane time constant (τm) as RC where C is the membrane ca-

pacitance. The analysis of neuronal responses with respect to various frequency components

stimulates the following discussion in the next subsection.

5.2.2 Frequency Domain Analyses

In this subsection, the response of an LIF neuron model is analyzed in relation to the

membrane time constant (τm). We investigate the role of leaks in filtering out some of the

signal components in the high-frequency range when driven by white Gaussian noise. In

order to quantify the low-pass filtering effect, we employ the coherence function, C(ω) which

is a commonly used metric in signal processing [99 ] to estimate the power transfer from the

input to the output. When the input to a system is s(t) and the corresponding output is

x(t), the coherence between them is defined as,

Cx,s(ω) = |Sx,s(ω)|2
Sx,x(ω)Ss,s(ω) , (5.3)
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where Sx,s(ω) is the cross-spectrum of output (x) with input (s), Sx,x(ω) and Ss,s(ω) are

the autopower spectrum of x(t) and s(t), respectively. To study the response of the neuron

model described by equation (A.1), we measure the coherence as a function of frequency. We

model the inputs to the neuron as white Gaussian noise current and derive the corresponding

coherence between the noise input and the output spike train. The resulting coherence

function Cx,s(ω) is as follows:

Cx,s(ω) = 2Dst

D

r0ω2

1 + ω2

∣∣∣Diω−1
(

µ−Vth√
D

)
− e∆Diω−1

(
µ−Urest√

D

)∣∣∣2∣∣∣Diω
(

µ−Vth√
D

)∣∣∣2 − e2∆
∣∣∣Diω

(
µ−Urest√

D

)∣∣∣2 , (5.4)

where Dst is the intensity of the white noise stimulus, D is total noise intensity (for our

case D=Dst), r0 is the output firing rate, D(x) is a parabolic cylinder function, µ is a

parameter denoting DC part of the input (defined in appendix section 5.6.1 ) and ∆ =
U2

rest−V 2
th+2µ(Vth−Urest)

4D
. The detailed derivation of equation (5.4) starting with equation (5.1)

is provided in the appendix section 5.6 .

Figure 5.2. Illustration of frequency response for IF and LIF neuron mod-
els. The horizontal and vertical axes represent the frequency components and
coherence function, respectively.

To analyze the frequency responses of the neuron model, the coherence functions of the

IF and the LIF models with high and low leak cases in relation to frequency (ω) are plotted

in Fig. 5.2 . This figure shows that the IF model (green) transmits all input components

to the outputs across the entire frequency spectrum. On the other hand, for LIF models

(red and blue), the coherence function decreases as the frequency increases, thereby cutting-
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off the high-frequency components propagating to the output. Hence, contrary to the IF

model, the LIF model can negate the noise input components beyond a certain frequency

limit. Similar low-pass filtering of information for LIF neurons has been reported in [98 ],

[100 ]. The authors in [101 ] also discussed similar characteristics of LIF neurons from a

neuroscience perspective. Drawing inspirations from such phenomenon, our next goal is

to explore whether the low-pass filtering effect can enable multi-layered SNNs with leaky

neuron models to be more robust against noisy inputs. The following subsections focus first

on the training methodology adopted in this chapter, followed by the noisy input generation

methods and corresponding experiments.

5.2.3 Gradient Descent Learning in SNNs

The gradient-based method, namely backpropagation (BP) learning [44 ], is a widely

employed method for training traditional deep ANNs. While ANN neuron models with

continuous functions (such as sigmoid, tanh or ReLU) are compatible with the gradient-

based learning, it has been a challenge to directly train SNNs with BP method in their native

form. This is due to the spike-output being binary-valued (i.e., zero or one), which renders

the spike generation function non-differentiable and discontinuous. To get around this issue,

standard BP has been adapted for the spike-based learning domain which we refer to as

‘spike-based backpropagation’. The spike-based BP method overcomes the discontinuous

spiking functionality by approximately estimating the surrogate gradient of spike generation

function. Several surrogate gradient methods have been introduced in the literature [16 ],

[63 ], [70 ]. In this chapter, we employ the LIF neuronal surrogate gradient function that

accounts for the leaky behavior as proposed in [102 ].

The training procedure is composed of two phases (e.g., forward and backward). In

the forward phase, the hidden layer neurons accumulate the weighted sum of spike-inputs

in the membrane potential. When this potential exceeds the threshold, the neuron fires

a spike-output and resets the potential to the resting state (zero). Otherwise, membrane

potential decays exponentially. The final layer neurons do not generate spike output and

decay over time, accumulating a weighted sum of spike-inputs. At the last time step, the final
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prediction outcomes are estimated by dividing the final layer membrane potential (UL[T ])

by the total number of time-steps (T ). Then, the final errors are evaluated by comparing the

final prediction outcomes with the ground truth (label). The loss function (Loss) is obtained

by computing the summation of squared error as shown below,

Loss = 1
2(UL[T ]

T
− label)2,

∂Ol[t]
∂Ul[t]

= 1
Vth + ε

(Ol[t] > 0), (5.5)

Algorithm 2 Procedure of spike-based backpropagation learning for an iteration.
1: Input: pixel-based inputs (inputs), total number of time steps (#timesteps), number of

layers (L), weights (W ), membrane potential (U), membrane time constant (τm), firing
threshold (Vth)

2: Initialize: Ul[t] = 0, ∀l = 1, ..., L
3: // Forward Phase
4: for t← 1 to #timesteps do
5: // generate Poisson spike-inputs of a mini-batch data
6: O1[t] = Poisson(inputs);
7: for l← 2 to L− 1 do
8: // membrane potential integrates weighted sum of spike-inputs
9: Ul[t] = Ul[t− 1] + WlOl−1[t]

10: if Ul[t] > Vth then
11: // if membrane potential exceeds Vth, a neuron fires a spike
12: Ol[t] = 1, Ul[t] = 0
13: else
14: // else, membrane potential decays exponentially
15: Ol[t] = 0, Ul[t] = e− 1

τm ∗ Ul[t]
16: // final layer neuron does not fire
17: UL[t] = e− 1

τm ∗ UL[t− 1] + WLOL−1[t]
18: // Backward Phase
19: for t← #timesteps to 1 do
20: for l← L− 1 to 1 do
21: // evaluate partial derivatives of loss with respect to weight by unrolling the

network over time
22: 4Wl[t] = ∂Loss

∂Ol[t]
∂Ol[t]
∂Ul[t]

∂Ul[t]
∂Wl[t]

where UL[T ]
T

is the final prediction outcome. In the backward phase, the final errors are prop-

agated backward while unrolling the network in time using the surrogate gradient method.

This procedure is often regarded as Backpropagation Through Time (BPTT) [71 ]. The sur-
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rogate gradient of LIF neuronal function is computed by combining the straight through

estimation [45 ] and leak correctional term (ε) as given by the second equation in equa-

tion (5.5). Here, the straight-through estimation (i.e., 1
Vth

) calculates the derivative of IF

neuronal function and ε compensates the leaky effect of the membrane potential. Finally,

the network parameters are updated based on the partial derivatives of the loss with respect

to weights for all discrete time steps. The trained SNNs can incorporate temporal and leak

statistics from direct spike-inputs over time. The pseudo-code of the spike-based BP learning

is given in Algorithm 2 .

5.3 Poisson Spike Generation under Noisy Environments

In section 5.4.2, the spike-inputs with external random noise are used for experimentally

evaluating the noise robustness (i.e., the capability of maintaining a certain prediction accu-

racy under stochastic perturbations) of multi-layered SNNs. Keeping that goal in mind, here

we explain the noisy spike-input generation methods used in this chapter. Specifically, two

different sources of random noise are considered, namely Gaussian noise and Impulse noise

[103 ]. Under each noise source, two noise injection scenarios are introduced for producing

the noisy spike-inputs. Each noisy spike-input generation procedure is depicted in Algorithm

3 . In our analysis, clean spike-inputs refer to homogeneous Poisson spikes where spike-firing

probability remains constant in the entire period of input generation. Therefore, inter-spike-

intervals (ISI) of such homogeneous Poisson spikes conform to Poisson statistics.

For scenario 1, an independent random noise is added to an image pixel at each time

step. The combination of pixel input and noise is compared with an uniformly distributed

random number to generate Poisson-distributed spike-inputs. Hence, for a given period of

time, the stream of spike-inputs incorporates the noise over time. In this case, the firing

probability varies at every time step, which results in inhomogeneous Poisson spikes with

randomly varying firing probability every time step. Here, what varies is the ISI distribution.

For scenario 2, an independent random noise is added (at each time step) to the Poisson

spike trains generated from the original image pixels. The major difference between two

scenarios is whether the random noise is added before or after comparing with a random
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Algorithm 3 Poisson spike generation scheme under noise
1: Input: pixel-based inputs (inputs), total number of time steps (#timesteps), external

random noise (ξ), uniform random number (X )
2: Output: spike-based inputs (O1[t])
3: for t← 1 to #timesteps do
4: if Scenario 1 then
5: // External noise (ξ) is added to input pixel
6: inputsc = inputs + ξ
7: // If noisy input (inputsc) is greater than uniform random number, a spike-input

(O1[t]) is generated
8: if inputsc > X then
9: O1[t] = 1

10: else
11: O1[t] = 0
12: if Scenario 2 then
13: // External noise (ξ) is added to input channel
14: if inputs > X then
15: O1[t] = 1 + ξ
16: else
17: O1[t] = ξ

number (Poisson spike generation process). Note, in scenario 1, spikes are generated as a

post-process of adding noise to image pixels, making the input spike train strictly binary-

valued, but in scenario 2, noise is added directly to the spikes, so the resultant noisy spikes

contain perturbations around their clean spike values (0 or 1). Since the spikes are generated

from the Poisson process in scenario 2, the ISI distribution remains identical to that of clean

spike-inputs. Instead, the amplitude of each spike varies. The random noise injection process

is performed in the input layer only.

5.4 Experiments

5.4.1 Experimental Setup

We examine the robustness of multi-layered SNNs against noisy spike-inputs on two

standard vision benchmarks, namely SVHN and CIFAR-10, which are composed of color

(three-dimensional) inputs. We experiment with multi-layered SNN models, which comprise

of 32×32 color inputs, convolutional (C) layers with 3×3 weight kernels, average-pooling (P)
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layers with fixed 2×2 kernel followed by fully-connected (FC) layers. The details of the cho-

sen SNN models are as follows: model used for CIFAR-10 is (32×32-64C3-64C3-2P-128C3-

128C3-2P-256C3-256C3-256C3-2s-1024FC-10o) and model used for SVHN is (32×32-64C3-

64C3-2P-256C3-256C3-256C3-2s-1024FC-10o). We follow the training protocols as described

in [102 ]. Each network model with different membrane time constant is independently trained

with clean training data. Note, the membrane time constant is not considered as a trainable

parameter and remains fixed during training and testing. All network models are trained

with mini-batch spike-based BP for 150 epochs with a batch size of 64, while decreasing the

learning rate at 70th and 100th epoch. After normalizing each image sample to zero mean

and scaling to the range [-1, 1], Poisson spike trains are generated for 100 time-steps during

training and testing. The reported results are the average score from three independently

trained networks. We implemented the multi-layered SNNs using Pytorch deep learning

package.

Figure 5.3. Classification accuracy at each level of noise severity. The hor-
izontal and vertical axes present the input noise severity and classification
accuracy, respectively. (a,b,c,d) Results from noisy input generation scenario
1. (e,f,g,h) Results from noisy input generation scenario 2.
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Table 5.1. Comparison between the network models with different leak
amounts. The first row corresponds to baseline accuracy. The second and
the third rows correspond to the sum-squared errors averaged over 130–150
epochs for testing and training data, respectively. The fourth and the fifth
rows correspond to average spiking activity and the total number of synaptic
operations, respectively.

Dataset CIFAR-10 SVHN
τm 30 100 inf 30 100 inf
Accuracy (%) 89.65 90.19 90.3 96.12 96.32 96.32
SSET est 2.93 3.45 3.83 0.72 0.75 0.82
SSET rain 1.88 1.92 2.2 1.26 1.4 1.6
Spikes (%) 9.45 5.26 4.94 14.07 12.09 11.85
#Synaptic Ops 1.59E9 7.92E8 7.18E8 3.99E9 3.88E9 3.79E9

5.4.2 Robustness against Noisy Spike-inputs

First, we compare the noise robustness results with different membrane time constants

(e.g, τm= 30, 100 and inf inity). The LIF neuron models are associated with relatively smaller

membrane time constants (e.g., τm= 30 and 100) compared to IF neuron model with an

infinitely large membrane time constant (e.g., τm= inf inity). The robustness of each SNN

model is measured in terms of the stability of the classification accuracy against noisy spike-

inputs. The performances of SNNs are scored across eight severity levels with each noise

type (e.g., Gaussian noise and Impulse noise). The severity level indicates the strength of

input noise.

In both benchmark datasets (CIFAR-10, SVHN), the baseline testing accuracy is almost

the same under different leak parameters as presented in the first row of Table 5.1 . Fig. 5.3 

shows the accuracy results with increasing level of noise severity across different benchmarks

(first row: noisy spike generation scenario 1, second row: noisy spike generation scenario 2).

For both the noisy spike generation scenarios, SNNs with LIF neurons (blue, red) achieve

improved noise robustness whereas the ones with IF neurons (green) suffer from severe

accuracy degradation for high noise severity levels as displayed in Fig. 5.3 . We would like

to mention here that all network models are trained on clean spike-inputs, but tested with

noisy ones. The models trained with the highest amount of leak (blue) retain the baseline

accuracy to a greater extent compared to a non-leaky model. The LIF model with τm= 100
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shows relatively higher accuracy degradation compared to one with τm= 30. However, both

models show improved robustness compared to the IF model. These trends hold true for

all noisy spike-input generation scenarios. In our experiments, we observed that training

loss diverges when the chosen membrane time constant is too small (τm < 30). In this case,

the spiking activities decrease severely due to extremely high leak while passing through

the layers, causing convergence issues in multi-layered SNN training [102 ]. However, for

converged network models, SNNs with leaky neurons exhibit better stability against noisy

spike-inputs.

Figure 5.4. Histogram of the spectrum of spike trains per image for clean
and noisy (Gaussian noise) inputs with corresponding distribution curves.

5.4.3 Spectrum Analysis

To analyze the improved noise robustness of LIF models, we perform a spectrum analysis

of inputs and the corresponding network outputs for both clean and noisy data. In general,

the noise spectrum contains components over a wide frequency band. The single-sided spec-

tra of input-spike trains (averaged over test samples) for the clean and the noisy cases are

shown in Fig. 5.4 . It can be observed that the mean spectrum distribution with noisy spike-

inputs remains roughly the same compared to the clean case. However, this spectrum of

noisy data spreads over a wider band, resulting in more components in higher frequency

bands. These changes in the spectrum distribution can significantly alter the spike patterns

propagating through the layers compared to the clean input. As previously explained in sec-

tion 5.2.2, the leaky neuron models only pass inputs with low-frequency components. Hence,

116



the leaky neuron models can eliminate some of the high-frequency noise components, thus

helping to maintain the baseline performance. However, the low-frequency noise components

pass through the LIF and IF models in a similar way. Thus, the accuracy degradation due

to such components remains alike for both leaky and non-leaky neurons.

Next, let us consider the spectrum of the target output neuron (node corresponding to

the ground truth label) in the final layer, since the changes concerning this output neuron

largely determine the correct or wrong classification. For each image, we measure the average

spectrum of the target output neuron and calculate the critical frequency up to which the

significant power (70%) of the total spectrum resides. This critical frequency distribution is

examined over all the samples and plotted in Fig. 5.5 (a,b,c). Interestingly, with an increasing

amount of leak, we found that the mean spectrum shifts towards the left. We anticipate this

shift towards the lower frequency band is owing to the inherent low-pass filtering effect of leak.

The normalized mean critical frequency components for the target neuron corresponding to

τm= inf inity, 100 and 30 are 0.345, 0.317 and 0.255 respectively, for the clean testing samples,

while for the noisy inputs (for noise severity level of five), the same frequency components

become 0.35, 0.33 and 0.298, respectively. These outcomes along with Fig. 5.5 (a,b,c) clearly

indicate that frequency components of target neuron’s output response become higher with

noisy spike-inputs compared to the clean input case. As IF neurons have much wider pass-

band, the higher frequency components are not filtered out as shown in Fig. 5.5 (a), thus

making the network more prone to have noise errors. In contrast, for the LIF models, most

of the high-frequency components are eliminated through the low-pass filtering effect, as

demonstrated in Fig. 5.5 (b,c) which results in maintaining the baseline accuracy.

5.4.4 Analyses of Generalization

In order to ascertain the improved noise robustness from another perspective, we extend

our analysis to generalization. We hypothesize that leaky neuron models enable SNNs to

better generalize to previously unseen examples, and examine the impact of leak on general-

ization. While training multi-layered SNNs over 150 epochs, we recorded the sum of squared

error (SSE) on the testing and the training samples to highlight the performance differences.
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Figure 5.5. Histogram of average normalized critical frequency components
of target output neuron for (a) τm = inf inity, (b) τm = 100 and (c) τm = 30.
The sum-squared errors of test data with respect to the ones of training data
on (d) CIFAR-10 and (e) SVHN benchmarks. The horizontal and vertical axes
present the sum-squared error (in log scale) on train and test data, respectively.

As training progresses towards the end, we found that SNNs with LIF models yield lower

testing SSE with the same training effort and reach lower final testing and training SSE than

the ones with IF models. The second and the third rows of Table 5.1 present the testing

and training SSE averaged over 130–150 epochs. We also analyze the testing SSE attained

as a function of the training SSE. Fig. 5.5 (d,e) shows the testing SSE with respect to the

training SSE for different membrane time constants. We found that at the same training

SSE, LIF models (blue, red) yield lower testing SSE than IF models (green), hinting towards

better generalization. Notably, the advantage of better generalization is the mitigation of

overfitting in large neural networks [66 ], [104 ].

5.4.5 Input Activity Analysis

While the enhanced robustness achieved through leaky neuron models is advantageous,

it is also pivotal to consider the associated computations and energy costs of using LIF and

IF models. To infer an output class, SNNs need the spike-inputs to be fed over a number

of times steps, performing event-based synaptic operations that take place only when spike-

inputs arrive. In this respect, the total number of synaptic operations is typically considered
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as a metric for benchmarking the computational costs in neuromorphic hardware [8 ], [93 ].

This subsection explores the impact of leaky neuron models on the spiking sparsity and

the number of computations, two critical factors that directly determine the computational

efficiency of SNNs. In Table 5.1 , the fourth and fifth rows present the average spike activities

and the total synaptic operations, respectively, for different leak parameters. We found that

the overall spiking activities increase with a higher leak, thereby resulting in more synaptic

computations. An important insight from here is that, with respect to the degree of leak,

there exists a trade-off between noise robustness and compute requirements.

Figure 5.6. Layer-wise Euclidean norm of the weighted sum of spike-inputs
of multi-layered SNNs for (a) CIFAR-10 and (b) SVHN datasets.

To investigate the reason behind the increased spiking activities with higher leak, we

measure the Euclidean norm of the weighted sum of spike-inputs (referred to as ‘ENWSI’

subsequently) over time for each hidden layer. We would like to note that ENWSI is rep-

resentative of a combination of spiking activities and weights that determine the net input

information to the corresponding layers. Fig. 5.6 illustrates the ENWSI for different mem-

brane time constants (e.g., τm= 30, 100 and inf inity). We found that SNNs with LIF neurons

(blue, red) receive higher ENWSI across the layers than those with IF neurons (green). The

model with the largest leak (blue) receives the highest ENWSI compared to the other models

under consideration as evidenced in Fig. 5.6 .

It is widely understood that if IF and LIF neurons were to receive the same weighted sum

of inputs, the LIF neurons would produce comparatively lesser outputs due to their inherent

leak. However, that would lead the LIF models not to have enough spikes in the deeper

layers due to the layerwise gradual reduction in spiking activities. Hence, the resultant
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network would fail to converge with acceptable accuracy. To overcome the leak effect and to

have sufficient spiking activities for proper training, spike-based BP training tailors the LIF

models to increase the weighted sum of hidden layer input activities beyond what is needed

for IF models. Consequently, LIF models converge to configurations with increased spiking

activities, allowing for sufficient weighted sum of input activities in the deeper layers.

5.5 Discussion and Conclusion

In the neuroscience literature, the existence of leak in biological neurons has been reported

in the context of sodium ion channels [91 ], [105 ], synaptic transmission in visual cortex [106 ],

[107 ], etc. SNN models take the bio-plausibility of leak into account through the leaky neuron

models [94 ]–[96 ]. In those models, the leak acts as a hyperparameter that controls the decay

of membrane potentials in the neurons over time. However, the effect of leak in learning and

the resultant neuronal responses have not been studied comprehensively, to the best of our

knowledge. Recognizing this gap, in this chapter, we investigate IF and LIF neuron models

to analyze the role that leak plays in learning and their impact on noise robustness and

spiking sparsity. It is to be noted that there are opportunities to further explore the effect of

leak, especially in terms of other more complicated neuron models closer to biological ones

(e.g., Hodgkin-Huxley [94 ] and exponential integrate-and-fire [96 ]). However, till date, there

exists a lack of suitable methodologies for training deep SNNs for complex learning tasks

with acceptable accuracy using such sophisticated neuron models. Therefore, the study of

leak in the context of such models has not been considered in this chapter.

As regards to studying the consequences of leak, we first focused on the robustness of

SNNs to common corruptions, which has been a significant concern in neural networks and

motivated a number of recent works. Data augmentation [56 ], [103 ], [108 ] and quantiza-

tion [109 ], [110 ] have been shown to achieve robust performance in both SNNs and ANNs.

However, data augmentation-based techniques usually do not generalize well to other types

of noise than those used during training, necessitating expensive iterative training efforts

using diverse augmented samples. Moreover, the input and weight quantization techniques

are reported to be susceptible to error amplification due to enlarged quantization noise in
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multi-layered networks [111 ], leading to considerable loss of accuracy. Our work is pertinent

in this respect, since the experimental results show that the leaky neuron models enable im-

proved robustness against random noise, without the need for costly re-training procedures

or error amplification. We attribute this enhanced robustness to the better generalization

and low-pass filtering effects of the LIF neuron models.

However, introducing the leak in the SNN models (while training with backpropagation)

comes at the expense of higher spiking activities compared to the IF models. To that ef-

fect, with respect to the usage of leaky neuron models, there is a trade-off between noise

robustness and computational efficiency. At τm= 100, SNNs with LIF neurons achieve sub-

stantially improved robustness compared to the ones with IF neurons while maintaining

reasonable spiking sparsity. Training with higher leak (τm= 30) further improves the ro-

bustness; however, the spiking activities also increase considerably. It would be interesting

to further validate our findings on large-scale datasets such as Imagenet [112 ], however it

has remained a challenging problem to train SNNs on Imagenet type of datasets satisfacto-

rily without using ANN-SNN conversion techniques. But in those conversion methods, the

learning mainly occurs in the ANN domain and hence the effect of leak in the context of

SNN domain learning would not be obvious. Since our concentration is not proposing a new

learning paradigm, rather exploring the impact of leak parameter in SNN models, we focus

on training the SNNs using spike-based backpropagation from scratch and use relatively

smaller datasets.

As we analyze the impacts of leak on robustness and sparsity, we expect our study to be

particularly useful for designing resource-constrained edge applications in noisy environments

(e.g., self-driving vehicles in adverse weather and rescue robots in disasters etc). Considering

that leak is an essential bio-plausible element in SNN models, we believe a better understand-

ing of its effects will help to design improved bio-inspired architectures by making optimal

choices concerning the involved trade-offs. Furthermore, an efficient algorithm-hardware co-

design considering the leak impacts would be of interest for future research directions. To

conclude, the understanding of leak provides another knob for designing SNNs, enabling

us to obtain a robustly trained network without sacrificing compute-efficiency significantly.
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Our anticipation is that the findings of this work will contribute towards bridging the two

seemingly disparate fields of neuroscience and machine learning.

5.6 Appendix: Detailed Formulation of Coherence Function

In this section, we present the derivations of the coherence function, C(ω) between the

input stimulus for the Leaky Integrate and Fire (LIF) neuron and output spike train, guided

by [113 ] and [114 ]. The discussion is divided into two parts: first we formulate the equation

describing the neuron model in subsection 5.6.1 , next using this formulated model, we derive

equations to calculate coherence in subsection 5.6.2 .

5.6.1 LIF Model Equation

The dynamics of an LIF neuron is modeled as follows:

τm
dU

dt
= −(U − Urest) + RI, U ≤ Vth (A.1)

where U is the membrane potential, I denotes the input current, τm indicates the membrane

time constant, R represents membrane resistance and Urest is the resting potential. Note, an

equivalent parallel resistor-capacitor (RC) circuit model of the LIF neuron is illustrated in

Fig. 5.1 (c) in the main manuscript.

Let us consider the case where the input I(t) to the model described in equation (A.1 ) is

a white Gaussian noise with a constant mean value 〈I〉 and a correlation function 〈(I(t) −

〈I〉)(I(t)− 〈I〉)〉 = 2DIδ(t− t) (here, we denote the mean of a parameter H as 〈H〉). Let us

make the following variable changes:

v = U − Urest

Vth − Urest

, t −→ t

τm

. (A.a)

When the membrane potential is U , the input current through the resistance branch of the

RC circuit model becomes (U − Urest)/R. We denote the opposite of this input current
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as Imodel(U) = −(U − Urest)/R. Taking the variable changes from (A.a) into account and

differentiating v with respect to time, we get:

dv

dt
= v̇ = τm

Vth − Urest

dU

dt
. (A.b)

In addition, using the scaling property of the delta function [99 ], the correlation function

of I(t) becomes 2DI

τm
δ(t − t) (since δ(τmt) = 1

τm
δ(t)). Accordingly, we denote input I(t) as

follows:

I(t) = 〈I〉+
√

2DI

τm

ξ(t), (A.c)

where ξ(t) is a zero-mean white Gaussian noise with 〈ξ(t)ξ(t)〉 = δ(t− t). Using the relations

from (A.b) and (A.c) and dividing both sides by (Vth − Urest) in equation (A.1), we obtain

the following equation:

v̇ = −(U − Urest)
Vth − Urest

+ R

Vth − Urest

〈I〉+ R

Vth − Urest

√
2DI

τm

ξ(t). (A.2)

Considering v = U−Urest

Vth−Urest
, we acquire (Vth − Urest)v + Urest = U . Therefore, we can get:

Imodel((Vth − Urest)v + Urest) = Imodel(U) = −U − Urest

R
(A.3)

Based on equation (A.3), the first term on the right-hand side in equation (A.2) can be

written as:

R

Vth − Urest

−(U − Urest)
R

= R

Vth − Urest

[Imodel((Vth − Urest)v + Urest)]

= R

Vth − Urest

[Imodel((Vth − Urest)v + Urest)− Imodel(Urest)]

+ R

Vth − Urest

[Imodel(Urest)].

Next, by merging the time-invariant term, R
Vth−Urest

[Imodel(Urest)] with the R
Vth−Urest

〈I〉 term

on the right-hand side in equation (A.2), we can define the fmodel(v), µ and D as-

fmodel(v) = R

Vth − Urest

[Imodel((Vth − Urest)v + Urest)− Imodel(Urest)], (A.d)
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µ = R

Vth − Urest

[〈I〉+ Imodel(Urest)], (A.e)

and

D = DIR2

τm(Vth − Urest)2 . (A.f)

Here, µ and D are input parameters that represent the mean and the intensity of the fluc-

tuating input in our model, respectively. Using the definitions from (A.d), (A.e) and (A.f),

equation (A.2) can be further written as follows:

v̇ = fmodel(v) + µ +
√

2Dξ(t). (A.4)

Now, Imodel(Urest) = −(Urest − Urest)/R = 0. Therefore, from equation (A.d), fmodel(v) for

the LIF model can be transformed as follows:

fLIF = fmodel(v) = R

Vth − Urest

[Imodel((Vth − Urest)v + Urest)− Imodel(Urest)]

= R

Vth − Urest

[Imodel((Vth − Urest)v + Urest)]; [ ∵ Imodel(Urest) = 0]

= R

Vth − Urest

−(U − Urest)
R

; [using equation (3)]

= −(U − Urest)
Vth − Urest

= −v; [from(a)],

Therefore, equation (A.4) becomes as follows:

v̇ = −v + µ +
√

2Dξ(t), (A.5)

which is the formalism also used in [113 ] and will be followed for the remaining discussions

in this study.

5.6.2 Coherence Function

Our analysis is based on the parallel RC circuit model of the LIF neuron [97 ] as depicted

by equation (A.1). Here, the membrane capacitance C integrates the input currents over
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time and the resistance branch R represents the leakage path of membrane potential. For

IF neuron model, since there is no leak path, the R branch is considered as an open cir-

cuit. Hence, in this case, Imodel = −(U−Urest)
R

= 0 and the RC circuit model only contains

the capacitor C path. This implies that, for the IF model, R becomes infinity, and corre-

spondingly the membrane time constant τm, which is equal to RC, also becomes infinity.

On the other hand, for LIF neuron model, the R branch plays a role as the leakage path of

membrane potential. When the leakage current through the resistance path increases, the

resistance value R and the membrane time constant τm gradually decrease. Furthermore,

the parameters µ and D (= DIR2

τm(Vth−Urest)2 = DIR
C(Vth−Urest)2 ) become proportional to R according

to equation (A.e) and (A.f), respectively. Therefore, for the LIF neuron models, D and µ

gradually decrease with the increase in leak amount.

The author in [113 ] considered D = Dbg + Dst in equation A.5, where Dbg is the back-

ground noise intensity, Dst is the intensity of the stimulus (Gaussian white noise input) and

D is the total noise intensity. For our analysis, by assuming Dbg = 0, we get D = Dst (note,

a similar consideration was made in [113 ] for the results and analysis). Now, let us consider

the output spike train of the model described by equation (A.5) is x(t) = ∑
δ[t−tk], where tk

is the kth instant of spike timing, when the input stimulus (s) is Gaussian white noise input.

We quantify the information transmission of the spiking model by means of the spectral co-

herence function. To that end, the Fourier transform of x(t) in a time window [0, T ] becomes

as follows: x̃T (ω) =
∫ T

0 x(t)ejωtdt. The cross-spectrum of output spike train (x) and input

stimulus (s) is given as [99 ]: Sx,s(ω) = limT →∞
〈x̃(ω)s̃∗(ω)〉

T
, and the spike train power spectrum

is defined as: Sx,x(ω) = limT →∞
〈x̃(ω)x̃∗(ω)〉

T
. The coherence function is formally defined as the

squared correlation coefficient between the input and output as follows:

Cx,s(ω) = |Sx,s(ω)|2
Sx,x(ω)Ss,s(ω) . (A.6)

The coherence function Cx,s(ω) generates an output number between 0 and 1 at each mea-

surement frequency. The amount of information transmission at each frequency is propor-

tional to the coherence at that particular frequency, with 1 and 0 denoting full and null
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transmission, respectively. For a system acting as a low-pass filter, the coherence output

under white-noise stimulation decreases in the high-frequency domain.

Next, we analyze the low-pass filtering effect of the LIF neuron model as described by

equation (A.5). The analytical expression for Sx,s(ω) is given as follows [113 ], [115 ], [116 ]:

Sx,s(ω) = 2Dst√
D

r0iω
iω − 1

Diω−1
(

µ−Vth√
D

)
− e∆Diω−1

(
µ−Urest√

D

)
Diω

(
µ−Vth√

D

)
− e∆eiωτrDiω

(
µ−Urest√

D

) , (A.7)

where ∆ = U2
rest−V 2

th+2µ(Vth−Urest)
4D

, τr is the refractory period and D(x) is the parabolic cylinder

function. In our case, we follow the same assumptions as in [113 ] where Urest = 0, τr = 0

and Vth = 1. The firing rate r0 is given by calculating the following [113 ]:

r0 =
[
τr +

√
π

∫ µ−Urest√
2D

µ−Vth√
2D

dzez2erfc(z)
]−1

.

The power spectrum of the output spike train is given by [117 ], calculated as follows:

Sx,x(ω) = r0

∣∣∣Diω
(

µ−Vth√
D

)∣∣∣2 − e2∆
∣∣∣Diω

(
µ−Urest√

D

)∣∣∣2∣∣∣Diω
(

µ−Vth√
D

)
− e∆eiωτrDiω

(
µ−Urest√

D

)∣∣∣2 , (A.8)

and the noise input spectrum becomes [113 ]:

Ss,s(ω) = 2Dst. (A.9)

Taking the magnitude square of the quantity in equation (A.7), we derive the following,

|Sx,s(ω)|2 = 4D2
st

D

r2
0ω2

1 + ω2

|Diω−1
(

µ−Vth√
D

)
− e∆Diω−1

(
µ−Urest√

D

)
|2

|Diω
(

µ−Vth√
D

)
− e∆eiωτrDiω

(
µ−Urest√

D

)
|2

. (A.10)

Finally, plugging the values of Sx,x(ω), Ss,s(ω) and |Sx,s(ω)|2 into equation (A.6), we

obtain the resultant coherence function as follows:

Cx,s(ω) = 2Dst

D

r0ω2

1 + ω2

∣∣∣Diω−1
(

µ−Vth√
D

)
− e∆Diω−1

(
µ−Urest√

D

)∣∣∣2∣∣∣Diω
(

µ−Vth√
D

)∣∣∣2 − e2∆
∣∣∣Diω

(
µ−Urest√

D

)∣∣∣2 . (A.11)
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6. SPIKE-FLOWNET: EVENT-BASED OPTICAL FLOW

ESTIMATION WITH ENERGY-EFFICIENT HYBRID

NEURAL NETWORKS

6.1 Introduction

The dynamics of biological species such as winged insects serve as prime sources of inspi-

ration for researchers in the field of neuroscience, machine learning as well as robotics. The

ability of winged insects to perform complex, high-speed maneuvers effortlessly in cluttered

environments clearly highlights the efficiency of these resource-constrained biological sys-

tems [118 ]. The estimation of motion patterns corresponding to spatio-temporal variations

of structured illumination - commonly referred to as optical flow, provides vital information

for estimating ego-motion and perceiving the environment. Modern deep Analog Neural

Networks (ANNs) aim to achieve this at the cost of being computationally intensive, placing

significant overheads on current hardware platforms. A competent methodology to replicate

such energy efficient biological systems would greatly benefit edge-devices with computa-

tional and memory constraints

Over the past years, the majority of optical flow estimation techniques relied on images

from traditional frame-based cameras, where the input data is obtained by sampling intensi-

ties on the entire frame at fixed time intervals irrespective of the scene dynamics. Although

sufficient for certain computer vision applications, frame-based cameras suffer from issues

such as motion blur during high speed motion, inability to capture information in low-light

conditions, and over- or under-saturation in high dynamic range environments.

Event-based cameras, often referred to as bio-inspired silicon retinas, overcome these

challenges by detecting log-scale brightness changes asynchronously and independently on

each pixel-array element [20 ], similar to retinal ganglion cells. Having a high temporal res-

olution (in the order of microseconds) and a fraction of power consumption compared to

frame-based cameras make event cameras suitable for estimating high-speed and low-light

visual motion in an energy-efficient manner. However, because of their fundamentally differ-

ent working principle, conventional computer vision as well as ANN-based methods become

127



no longer effective for event camera outputs. This is mainly because these methods are

typically designed for pixel-based images relying on photo-consistency constraints, assuming

the color and brightness of object remain the same in all image sequences. Thus, the need

for development of handcrafted-algorithms for handling event camera outputs is paramount.

SNNs can naturally encapsulate the event-based asynchronous processing capability across

layers, leading to energy-efficient computing on specialized neuromorphic hardware such as

IBM’s TrueNorth [8 ] and Intel’s Loihi [119 ]. However, recent works have shown that the

number of spikes drastically vanish at deeper layers, leading to performance degradations in

deep SNNs [120 ]. Thus, there is a need for an efficient hybrid architecture, with SNNs in the

initial layers, to exploit their compatability with event camera outputs while having ANNs

in the deeper layers in order to retain performance.

In regard to this, we propose a deep hybrid neural network architecture, accommodating

SNNs and ANNs in different layers, for energy efficient optical flow estimation using sparse

event camera data. To the best of our knowledge, this is the first SNN demonstration to

report the state-of-art performance on event-based optical flow estimation, outperforming

its corresponding fully-fledged ANN counterpart.

The main contributions of this work can be summarized as:

• We present an input representation that efficiently encodes the sequences of sparse out-

puts from event cameras over time to preserve the spatio-temporal nature of spike events.

• We introduce a deep hybrid architecture for event-based optical flow estimation referred

to as Spike-FlowNet, integrating SNNs and ANNs in different layers, to efficiently process

the sparse spatio-temporal event inputs.

• We evaluate the optical flow prediction capability and computational efficiency of Spike-

FlowNet on the Multi-Vehicle Stereo Event Camera dataset (MVSEC) [121 ] and provide

comparison results with current state-of-the-art approaches.

The following contents are structured as follows. In Section 2, we elucidate the related

works. In Section 3, we present the methodology, covering essential backgrounds on the

spiking neuron model followed by our proposed input event (spike) representation. This sec-
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tion also discusses the self-supervised loss, Spike-FlowNet architecture, and the approximate

backpropagation algorithm used for training. Section 4 covers the experimental results, in-

cluding training details and evaluation metrics. It also discusses the comparison results with

the latest works in terms of performance and computational efficiency.

6.2 Related Work

In recent years, there have been an increasing number of works on estimating optical flow

by exploiting the high temporal resolution of event cameras. In general, these approaches

have either been adaptations of conventional computer vision methods or modified versions

of deep ANNs to encompass discrete outputs from event cameras.

For computer vision based solutions to estimate optical flow, gradient-based approaches

using the Lucas-Kanade algorithm [122 ] have been highlighted in [123 ], [124 ]. Further, plane

fitting approaches by computing the slope of the plane for estimating optical flow have

been presented in [125 ], [126 ]. In addition, bio-inspired frequency-based approaches have

been discussed in [127 ]. Finally, correlation-based approaches are presented in [128 ], [129 ]

employing convex optimization over events. In addition, [130 ] interestingly uses an adaptive

block matching technique to estimate sparse optical flow.

For deep ANN-based solutions, optical flow estimation from frame-based images has

been discussed in Unflow [131 ], which utilizes a U-Net [132 ] architecture and computes a

bidirectional census loss in an unsupervised manner with an added smoothness term. This

strategy is modified for event camera outputs in EV-FlowNet [133 ] incorporating a self-

supervised loss based on gray images as a replacement for ground truth. Other previous

works employ various modifications to the training methodology, such as [134 ], which imposes

certain brightness constancy and smoothness constraints to train a network and [135 ] which

adds an adversarial loss over the standard photometric loss. In contrast, [136 ] presents an

unsupervised learning approach using only event camera data to estimate optical flow by

accounting for and then learning to rectify the motion blur.

All the above strategies employ ANN architectures to predict the optical flow. However,

event cameras produce asynchronous and discrete outputs over time, and SNNs can naturally
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capture their spatio-temporal dynamics, which are embedded in the precise spike timings.

Hence, we posit that SNNs are suitable for handling event camera outputs. Recent SNN-

based approaches for event-based optical flow estimation include [137 ]–[139 ]. Researchers in

[137 ] presented visual motion estimation using SNNs, which accounts for synaptic delays in

generating motion-sensitive receptive fields. In addition, [138 ] demonstrated real-time model-

based optical flow computations on TrueNorth hardware for evaluating patterns including

rotating spirals and pipes. Authors of [139 ] presented a methodology for optical flow estima-

tion using convolutional SNNs based on Spike-Time-Dependent-Plasticity (STDP) learning

[13 ]. The main limitation of these works is that they employ shallow SNN architectures,

because deep SNNs suffer in terms of performance. Besides, the presented results are only

evaluated on relatively simple tasks. In practice, they do not generally scale well to complex

and real-world data, such as that presented in MVSEC dataset [121 ]. In view of these, a

hybrid approach becomes an attractive option for constructing deep network architectures,

leveraging the benefits of both SNNs and ANNs.

6.3 Method

6.3.1 Spiking Input Event Representation

An event-based camera tracks the changes in log-scale intensity (I) at every element in

the pixel-array independently and generates a discrete event whenever the change exceeds a

threshold (θ):

‖ log(It+1)− log(It)‖ ≥ θ (6.1)

A discrete event contains a 4-tuple {x, y, t, p}, consisting of the coordinates: x, y; timestamp:

t; and polarity (direction) of brightness change: p. This input representation is called Address

Event Representation (AER), and is the standard format used by event-based sensors.

There are prior works that have modified the representations of asynchronous event

camera outputs to be compatible with ANN-based methods. To overcome the asynchronous

nature, event outputs are typically recorded for a certain time period and transformed into

a synchronous image-like representation. In EV-FlowNet [133 ], the most recent pixel-wise

timestamps and the event counts encoded the motion information (within a time window) in
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Figure 6.1. Input event representation. (Top) Continuous raw events be-
tween two consecutive grayscale images from an event camera. (Bottom) Ac-
cumulated event frames between two consecutive grayscale images to form the
former and the latter event groups, serving as inputs to the network.

an image. However, fast motions and dense events (in local regions of the image) can vastly

overlap per-pixel timestamp information, and temporal information can be lost. In addition,

[136 ] proposed a discretized event volume that deals with the time domain as a channel

to retain the spatio-temporal event distributions. However, the number of input channels

increases significantly as the time dimensions are finely discretized, further aggravating the

computation and parameter overheads.

In this chapter, we propose a discretized input representation (fine-grained in time) that

preserves the spatial and temporal information of events for SNNs. Our proposed input

encoding scheme discretizes the time dimension within a time window into two groups (former

and latter). Each group contains N number of event frames obtained by accumulating

raw events from the timestamp of the previous frame till the current timestamp. Each

of these event frames is also composed of two channels for ON/OFF polarity of events.

Hence, the input to the network consists of a sequence of N frames with four channels (one

frame each from the former and the latter groups having two channels each). The proposed
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input representation is displayed in Fig. 6.1 for one channel (assuming the number of event

frames in each group equals to five). The main characteristic of our proposed input event

representation (compared to ANN-based methods) are as follows:

• Our spatio-temporal input representations encode only the presence of events over time,

allowing asynchronous and event-based computations in SNNs. In contrast, ANN-based

input representation often requires the timestamp and the event count images in separate

channels.

• In Spike-FlowNet, each event frame from the former and the latter groups sequentially

passes through the network, thereby preserving and utilizing the spatial and temporal

information over time. On the contrary, ANN-based methods feed-forward all input

information to the network at once.

6.3.2 Self-Supervised Loss

The DAVIS camera [140 ] is a commercially available event-camera, which simultaneously

provides synchronous grayscale images and asynchronous event streams. The number of

available event-based camera datasets with annotated labels suitable for optical flow estima-

tion is quite small, as compared to frame-based camera datasets. Hence, a self-supervised

learning method that uses proxy labels from the recorded grayscale images [133 ], [134 ] is

employed for training our Spike-FlowNet.

The overall loss incorporates a photometric reconstruction loss (Lphoto) and a smoothness

loss (Lsmooth) [134 ]. To evaluate the photometric loss within each time window, the network

is provided with the former and the latter event groups and a pair of grayscale images, taken

at the start and the end of the event time window (It, It+dt). The predicted optical flow

from the network is used to warp the second grayscale image to the first grayscale image.

The photometric loss (Lphoto) aims to minimize the discrepancy between the first grayscale

image and the inverse warped second grayscale image. This loss uses the photo-consistency
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assumption that a pixel in the first image remains similar in the second frame mapped by

the predicted optical flow. The photometric loss is computed as follows:

Lphoto(u, v; It, It+dt) =
∑
x,y

ρ(It(x, y) − It+dt(x + u(x, y), y + v(x, y))) (6.2)

where, It, It+dt indicate the pixel intensity of the first and second grayscale images, u, v are

the flow estimates in the horizontal and vertical directions, ρ is the Charbonnier loss ρ(x) =

(x2 + η2)r, which is a generic loss used for outlier rejection in optical flow estimation [141 ].

For this work, r = 0.45 and η =1e-3 show the optimum results for the computation of

photometric loss.

Furthermore, a smoothness loss (Lsmooth) is applied for enhancing the spatial collinearity

of neighboring optical flow. The smoothness loss minimizes the difference in optical flow

between neighboring pixels and acts as a regularizer on the predicted flow. It is computed

as follows:

Lsmooth(u, v) = 1
HD

H∑
j

D∑
i

(‖ui,j − ui+1,j‖+ ‖ui,j − ui,j+1‖+ ‖vi,j − vi+1,j‖+ ‖vi,j − vi,j+1‖)

(6.3)

where H is the height and D is the width of the predicted flow output. The overall loss is

computed as the weighted sum of the photometric and smoothness loss:

Ltotal = Lphoto + λLsmooth (6.4)

where λ is the weight factor.

6.3.3 Spike-FlowNet Architecture

Spike-FlowNet employs a deep hybrid architecture that accommodates SNNs and ANNs

in different layers, enabling the benefits of SNNs for sparse event data processing and ANNs

for maintaining the performance. The use of a hybrid architecture is attributed to the fact

that spike activities reduce drastically with growing the network depth in the case of full-
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Figure 6.2. Spike-FlowNet architecture. The four-channeled input images,
comprised of ON/OFF polarity events for former and latter groups, are se-
quentially passed through the hybrid network. The SNN-block contains the
encoder layers followed by output accumulators, while the ANN-block contains
the residual and decoder layers. The loss is evaluated after forward propagat-
ing all consecutive input event frames (a total of N inputs, sequentially taken
in time from the former and the latter event groups) within the time window.
The black arrows denote the forward path, green arrows represent residual
connections, and blue arrows indicate the flow predictions.

fledged SNNs. This is commonly referred to as the vanishing spike phenomenon [142 ], and

potentially leads to performance degradation in deep SNNs. Furthermore, high numeri-

cal precision is essentially required for estimating the accurate pixel-wise network outputs,

namely the regression tasks. Hence, very rare and binary precision spike signals (in input

and intermediate layers) pose a crucial issue for predicting the accurate flow displacements.

To resolve these issues, only the encoder block is built as an SNN, while the residual and

decoder blocks maintain an ANN architecture.

Spike-FlowNet’s network topology resembles the U-Net [132 ] architecture, containing

four encoder layers, two residual blocks, and four decoder layers as shown in Fig. 6.2 . The

events are represented as the four-channeled input frames as presented in Section 6.3.1 ,

and are sequentially passed through the SNN-based encoder layers over time (while being
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downsampled at each layer). Convolutions with a stride of two are employed for incorporating

the functionality of dimensionality reduction in the encoder layers. The outputs from encoder

layers are collected in their corresponding output accumulators until all consecutive event

images have passed. Next, the accumulated outputs from final encoder layer are passed

through two residual blocks and four decoder layers. The decoder layers upsample the

activations using transposed convolution. At each decoder layer, there is a skip connection

from the corresponding encoder layer, as well as another convolution layer to produce an

intermediate flow prediction, which is concatenated with the activations from the transposed

convolutions. The total loss is evaluated after the forward propagation of all consecutive

input event frames through the network and is applied to each of the intermediate dense

optical flows using the grayscale images.

Algorithm 4 Backpropagation Training in Spike-FlowNet for an Iteration
1: Input: Event-based inputs (inputs), total number of discrete time-steps (N), number of

SNN/ANN layers (LS/LA), SNN/ANN outputs (o/oA) membrane potential (V ), firing
threshold (Vth), ANN nonlinearity (f)

2: Initialize: V l[n] = 0, ∀l = 1, ..., LS

3: // Forward Phase in SNN-blocks
4: for n← 1 to N do
5: o1[n] = inputs[n]
6: for l← 2 to LS − 1 do
7: V l[n] = V l[n− 1] + wlol−1[n]//weighted spike-inputs are integrated to V
8: if V l[n] > Vth then
9: ol[n] = 1, V l[n] = 0 //if V exceeds Vth, a neuron emits a spike and reset V

10: oLS
A = V LS [n] = V LS [n− 1] + wLS oLS−1[n] //final SNN layer does not fire

11: // Forward Phase in ANN-blocks
12: for l← LS + 1 to LS + LA do
13: ol

A = f(wlol−1
A )

14: // Backward Phase in ANN-blocks
15: for l← LS + LA to LS do
16: 4wl = ∂Ltotal

∂ol
A

∂ol
A

∂wl

17: // Backward Phase in SNN-blocks
18: for n← N to 1 do
19: for l← LS − 1 to 1 do
20: //evaluate partial derivatives of loss w.r.t. wS by unrolling the SNN over time
21: 4wl[n] = ∂Ltotal

∂ol[n]
∂ol[n]
∂V l[n]

∂V l[n]
∂wl[n]
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6.3.4 Backpropagation Training in Spike-FlowNet

The spike generation function of an IF neuron is a hard threshold function that emits

a spike when the membrane potential exceeds a firing threshold. Due to this discontinu-

ous and non-differentiable neuron model, standard backpropagation algorithms cannot be

applied to SNNs in their native form. Hence, several approximate methods have been pro-

posed to estimate the surrogate gradient of spike generation function. In this chapter, we

adopt the approximate gradient method proposed in [16 ], [120 ] for back-propagating errors

through SNN layers. The approximate IF gradient is computed as 1
Vth

, where the threshold

value accounts for the change of the spiking output with respect to the input. Algorithm 4 

illustrates the forward and backward pass in ANN-block and SNN-block.

In the forward phase, neurons in the SNN layers accumulate the weighted sum of the spike

inputs in membrane potential. If the membrane potential exceeds a threshold, a neuron emits

a spike at its output and resets. The final SNN layer neurons just integrate the weighted

sum of spike inputs in the output accumulator, while not producing any spikes at the output.

At the last time-step, the integrated outputs of SNN layers propagate to the ANN layers to

predict the optical flow. After the forward pass, the final loss (Ltotal) is evaluated, followed

by backpropagation of gradients through the ANN layers using standard backpropagation.

Next, the backpropagated errors (∂Ltotal

∂oLS
) pass through the SNN layers using the approxi-

mate IF gradient method and BackPropagation Through Time (BPTT) [71 ]. In BPTT, the

network is unrolled for all discrete time-steps, and the weight update is computed as the sum

of gradients from each time-step. This procedure is displayed in Fig. 6.3 where the final loss

is back-propagated through an ANN-block and a simple SNN-block consisting of a single

input IF neuron. The parameter updates of the lth SNN layers are described as follows:

4wl =
∑

n

∂Ltotal

∂ol[n]
∂ol[n]
∂V l[n]

∂V l[n]
∂wl

, where ∂ol[n]
∂V l[n]

= 1
Vth

(ol[n] > 0) (6.5)

where ol represents the output of spike generation function. This method enables the end-

to-end self-supervised training in the proposed hybrid architecture.
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Figure 6.3. Error backpropagation in Spike-FlowNet. After the forward pass,
the gradients are back-propagated through the ANN block using standard
backpropagation whereas the backpropagated errors pass through the SNN
layers using the approximate IF gradient method and BPTT technique.

6.4 Experimental Results

6.4.1 Dataset and Training Details

We use the MVSEC dataset [121 ] for training and evaluating the optical flow predictions.

MVSEC contains stereo event-based camera data for a variety of environments (e.g., indoor

flying and outdoor driving) and also provides the corresponding ground truth optical flow.

In particular, the indoor and outdoor sequences are recorded in dissimilar environments

where the indoor sequences (indoor_flying) have been captured in a lab environment and

the outdoor sequences (outdoor_day) have been recorded while driving on public roads.

Even though the indoor_flying and outdoor_day scenes are quite different, we only use

outdoor_day2 sequence for training Spike-FlowNet. This is done to provide fair comparisons

with prior works [133 ], [136 ] which utilized only outdoor_day2 sequence for training. During

training, input images are randomly flipped horizontally and vertically (with 0.5 probability)

and randomly cropped to 256 × 256 size. Adam optimizer [51 ] is used, with the initial

learning rate of 5e-5, and scaled by 0.7 every 5 epochs until 10 epoch, and every 10 epochs

thereafter. The model is trained on the left event camera data of outdoor_day2 sequence for

100 epochs with a mini-batch size 8. Training is done for two different time windows lengths

(i.e, 1 grayscale image frame apart (dt = 1) and 4 grayscale image frames apart (dt = 4)).

The number of event frame (N) and weight factor for the smoothness loss (λ) are set to 5,
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10 for a dt = 1 case and 20, 1 for a dt = 4 case, respectively. The threshold of the IF neurons

are set to 0.5 (dt = 4) and 0.75 (dt = 1) in SNN layers.

6.4.2 Algorithm Evaluation Metric

The evaluation metric for optical flow prediction is the Average End-point Error (AEE),

which represents the mean distance between the predicted flow (ypred) and the ground truth

flow (ygt). It is given by:

AEE = 1
m

∑
m
‖(u, v)pred − (u, v)gt‖2 (6.6)

where m is the number of active pixels in the input images. Because of the highly sparse

nature of input events, the optical flows are only estimated at pixels where both the events

and ground truth data is present. We compute the AEE for dt = 1 and dt = 4 cases.

6.4.3 Average End-point Error (AEE) Results

During testing, optical flow is estimated on the center cropped 256 × 256 left camera

images of the indoor_flying 1,2,3 and outdoor_day 1 sequences. We use all events for the in-

door_flying sequences, but we take events within 800 grayscale frames for the outdoor_day1

sequence, similar to [133 ]. Table 6.1 provides the AEE evaluation results in comparison with

the prior event camera based optical flow estimation works. Overall, our results show that

Spike-FlowNet can accurately predict the optical flow in both the indoor_flying and out-

Table 6.1. Average Endpoint Error (AEE) comparisons with Zhu et al. [136 ]
and EV-FlowNet [133 ].

dt=1 frame dt=4 frame
indoor1 indoor2 indoor3 outdoor1 indoor1 indoor2 indoor3 outdoor1

Zhu et al. [136 ] 0.58 1.02 0.87 0.32 2.18 3.85 3.18 1.30
EV-FlowNet [133 ] 1.03 1.72 1.53 0.49 2.25 4.05 3.45 1.23
This work 0.84 1.28 1.11 0.49 2.24 3.83 3.18 1.09

* EV-FlowNet also uses a self-supervised learning method, providing the the fair
comparison baseline compared to Spike-FlowNet.
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Figure 6.4. Optical flow evaluation and comparison with EV-FlowNet. The
samples are taken from (top) outdoor_day1 and (bottom) indoor_day1. The
Masked Spike-FlowNet Flow is basically a sparse optical flow computed at
pixels at which events occurred. It is computed by masking the predicted
optical flow with the spike image.

door_day1 sequences. This demonstrates that the proposed Spike-FlowNet can generalize

well to distinctly different environments. The grayscale, spike event, ground truth flow and

the corresponding predicted flow images are visualized in Fig. 6.4 where the images are

taken from (top) outdoor_day1 and (bottom) indoor_day1, respectively. Since event cam-

eras work based on changing light intensity at pixels, the regions having low texture produce

very sparse events due to minimal intensity changes, resulting in scarce optical flow pre-

dictions in the corresponding areas such as the flat surfaces. Practically, the useful flows

are extracted by using flow estimations at points where significant events exist in the input

frames.

Moreover, we compare our quantitative results with the recent works [133 ], [136 ] on

event-based optical flow estimation, as listed in Table 6.1 . We observe that Spike-FlowNet

outperforms EV-FlowNet [133 ] in terms of AEE results in both the dt = 1 and dt = 4

cases. It is worth noting here that EV-FlowNet employs a similar network architecture

and self-supervised learning method, providing a fair comparison baseline for fully ANN

architectures. In addition, Spike-FlowNet attains AEE results slightly better or comparable

to [136 ] in the dt = 4 case, while underperforming in the dt = 1 case. The authors in [136 ]
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presented an image deblurring based unsupervised learning that employed only the event

streams. Hence, it seems to not suffer from the issues related to grayscale images such as

motion blur or aperture problems during training. In view of these comparisons, Spike-

FlowNet (with presented spatio-temporal event representation) is more suitable for motion

detection when the input events have a certain minimum level of spike density.

6.4.4 Ablation Study

Next, we present the ablation studies to explore the optimal design choices of hybrid

networks, input data representation and weight factor (λ) of the smoothness loss in the loss

function.

Hybrid Network

In addition to the described architecture (denoted Spike-FlowNet), we train additional

network topologies to test different hybrid design options. We use two more networks in

which residual blocks are composed of SNN layers: one where only first residual block is

converted to SNN (Spike-FlowNet_1R), and second where both residual blocks are con-

verted to SNN (Spike-FlowNet_2R). Note, results for a fully ANN architecture are given in

EV-FlowNet [133 ]. We do not consider converting the decoder layers to construct a fully

SNN architecture, as they use analog inputs from intermediate optical flows and output

accumulators.

Table 6.2. Analysis for Spike-FlowNet in terms of the mean spike activity,
the total and normalized number of SNN operations in an encoder-block, the
encoder-block and overall computational energy benefits.

indoor1 indoor2 indoor3 outdoor1
dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4

Encoder Spike Activity (%) 0.33 0.87 0.65 1.27 0.53 1.11 0.41 0.78
Encoder SNN # Operation (×108) 0.16 1.69 0.32 2.47 0.26 2.15 0.21 1.53

Encoder Normalized # Operation (%) 1.68 17.87 3.49 26.21 2.81 22.78 2.29 16.23
Encoder Compute-energy Benefit (×) 305 28.6 146.5 19.5 182.1 22.44 223.2 31.5
Overall Compute-energy Reduction (%) 17.57 17.01 17.51 16.72 17.53 16.84 17.55 17.07
* For an ANN, the number of synaptic operations is 9.44× 108 for the encoder-block and

5.35× 109 for overall network.
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Rows 1-3 in Table 6.3 show the AEE results for the different network topologies. We

find that AEE results degrade as more layers are transferred to SNNs for both dt = 1 and

dt = 4. This is because the spike vanishing phenomenon aggravates with the network depth,

leading to the degradation in the quality of predicted optical flow. The best AEE results are

achieved by Spike-FlowNet case which is advocated throughout the manuscript.

Input Representation

We validate the influence of the number of groups (N) in input representation. In the

case of N = 3 and N = 4, AEE results are provided in rows 4-5 in Table 6.3 . Note, Spike-

FlowNet represents N = 2 case. With the increase in the number of input groups (N), the

results show that dt = 1 case achieves worse AEE while dt = 4 converges to a reasonably

accurate flow estimate. This is because each input group requires to have a certain number

of events for proper training, and we find that N = 2 case provides optimal results for both

dt = 1 and dt = 4.

Table 6.3. Average Endpoint Error (AEE) for ablation studies with different
design choices

dt=1 frame dt=4 frame
indoor1 indoor2 indoor3 outdoor1 indoor1 indoor2 indoor3 outdoor1

Spike-FlowNet 0.84 1.28 1.11 0.49 2.24 3.83 3.18 1.09
Spike-FlowNet_1R 0.88 1.55 1.31 0.51 2.73 4.46 3.66 1.15
Spike-FlowNet_2R 0.90 1.56 1.29 0.56 2.75 4.61 3.76 1.19

N=3 0.92 1.34 1.18 0.50 2.34 4.05 3.29 1.12
N=4 1.07 1.76 1.57 0.60 2.27 3.81 3.10 1.15
λ=1 0.91 1.38 1.23 0.50 2.24 3.83 3.18 1.09
λ=10 0.84 1.28 1.11 0.49 2.42 4.22 3.44 1.18
λ=100 0.84 1.30 1.14 0.49 2.50 4.01 3.28 1.19

Loss Function

To find the optimal ratio between photometric and smoothness losses, we train networks

with a variety of weight factors (λ) over the range [1, 100]. Rows 6-8 in Table 6.3 highlight

AEE results for λ = 1, 10, 100. We observe that λ = 10, 100 cases converge to more accurate

flow estimate for dt = 1 while λ = 1 case works better for dt = 4. This is because inputs
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are greatly sparse in dt = 1, hence its corresponding flow outputs have more scarce and

discontinuous structures, requiring a higher degree of smoothness.

6.4.5 Computational Efficiency

To further analyze the benefits of Spike-FlowNet, we estimate the gain in computational

costs compared to a fully ANN architecture. Typically, the number of synaptic operations

is used as a metric for benchmarking the computational energy of neuromorphic hardware

[8 ], [12 ], [120 ]. Also, the required energy consumption per synaptic operation needs to be

considered. Now, we describe the procedures for measuring the computational costs in SNN

and ANN layers.

In a neuromorphic hardware, SNNs carry out event-based computations only at the

arrival of input spikes. Hence, we first measure the mean spike activities at each time-step

in the SNN layers. As presented in the first row of Table 6.2, the mean spiking activities

(averaged over indoor1,2,3 and outdoor1 sequences) are 0.48% and 1.01% for dt = 1 and

dt = 4 cases, respectively. Note that the neuronal threshold is set to a higher value in dt = 1

case; hence the average spiking activity becomes sparser compared to dt = 4 case. The

extremely rare mean input spiking activities are mainly due to the fact that event camera

outputs are highly sparse in nature. This sparse firing rate is essential for exploiting efficient

event-based computations in SNN layers. In contrast, ANNs execute dense matrix-vector

multiplication operations without considering the sparsity of inputs. In other words, ANNs

simply feed-forward the inputs at once, and the total number of operations are fixed. This

leads to the high energy requirements (compared to SNNs) by computing both zero and

non-zero entities, especially when inputs are very sparse.

Essentially, SNNs need to compute the spatio-temporal spike images over a number of

time-steps. Given M is the number of neurons, C is number of synaptic connections and F

indicates the mean firing activity, the number of synaptic operations at each time-step in the

lth layer is calculated as Ml×Cl×Fl. The total number of SNN operations is the summation

of synaptic operations in SNN layers during the N time-steps. Hence, the total number

of SNN and ANN operations become ∑
l(Ml × Cl × Fl) × N and ∑

l Ml × Cl, respectively.
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Based on these, we estimate and compare the average number of synaptic operations on

Spike-FlowNet and a fully ANN architecture. The total and the normalized number of SNN

operations compared to ANN operations on the encoder-block are provided in the second

and the third row of Table 6.2, respectively.

Due to the binary nature of spike events, SNNs perform only accumulation (AC) per

synaptic operation. On the other hand, ANNs perform the multiply-accumulate (MAC)

computations since the inputs consist of analog-valued entities. In general, AC computation

is considered to be significantly more energy-efficient than MAC. For example, AC is reported

to be ∼ 5.1× more energy-efficient than a MAC in the case of 32-bit floating-point numbers

(45nm CMOS process) [143 ]. Based on this principle, the computational energy benefits of

encoder-block and overall Spike-FlowNet are obtained, as provided in the fourth and the

fifth rows of Table 6.2, respectively. These results reveal that the SNN-based encoder-block

is 214.2× and 25.51× more computationally efficient compared to ANN-based one (averaged

over indoor1,2,3 and outdoor1 sequences) for dt = 1 and dt = 4 cases, respectively. The

number of time-steps (N) is four times less in dt = 1 case than in dt = 4 case; hence, the

computational energy benefit is much higher in dt = 1 case.

From our analysis, the proportion of required computations in encoder-block compared to

the overall architecture is 17.6%. This reduces the overall energy benefits of Spike-FlowNet.

In such a case, an approach of interest would be to perform a distributed edge-cloud im-

plementation where the SNN- and ANN-blocks are administered on the edge device and

the cloud, respectively. This would lead to high energy benefits on edge devices, which are

limited by resource constraints while not compromising on algorithmic performance.

6.5 Conclusion

In this chapter, we propose Spike-FlowNet, a deep hybrid architecture for energy-efficient

optical flow estimations using event camera data. To leverage the benefits of both SNNs

and ANNs, we integrate them in different layers for resolving the spike vanishing issue in

deep SNNs. Moreover, we present a novel input encoding strategy for handling outputs

from event cameras, preserving the spatial and temporal information over time. Spike-
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FlowNet is trained with a self-supervised learning method, bypassing expensive labeling.

The experimental results show that the proposed architecture accurately predicts the optical

flow from discrete and asynchronous event streams along with substantial benefits in terms

of computational efficiency compared to the corresponding ANN architecture.
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7. FUSION-FLOWNET: ENERGY-EFFICIENT OPTICAL

FLOW ESTIMATION USING SENSOR FUSION AND DEEP

FUSED SPIKING-ANALOG NETWORK ARCHITECTURES

7.1 Introduction

Frame-based or event sensors themselves can not efficiently capture all the relevant in-

formation in the scenes. The limited applicability of each individual camera gives rise to the

need for an optimal sensor-fusion technique enabling the sensors to complement the limita-

tions of each other. Such a technique would provide a practical solution towards accurately

estimating the dense pixel motion in challenging scenarios such as high dynamic range and

rapid motion environments.

When considering event-based cameras, conventional computer vision and ANN-based

methods turn out to be incompatible at handling the discrete and asynchronous event streams

in their native form. This is due to the fact that these methods are generally designed for

frame-based images, assuming brightness consistency over frames. In this regard, Spiking

Neural Networks (SNNs) show great promise for directly handling event-camera outputs.

Furthermore, SNNs perform efficient event-based computations by carrying out operations

only at the arrival of the input events, exploiting the inherent sparsity of spatio-temporal

event streams, and thus, enabling energy-efficient computations on specialized neuromorphic

hardware such as Intel’s Loihi [119 ] and IBM’s TrueNorth [8 ].

However, recent works have shown a noticeable drawback – the number of spikes dras-

tically reduce in the deeper layers of SNNs, termed as the “spike vanishing” phenomenon.

This hinders learning, leading to performance degradation. Such issues can be efficiently

addressed by fusing SNNs and ANNs in a network where SNNs form the initial layers en-

abling efficient event stream handling [144 ]. While the later layers are ANNs, addressing the

“spike vanishing” problem and helping to retain performance. To that effect, we propose

Fusion-FlowNet, a deep fused spiking-analog architecture for estimating optical flow that

uses sensors of different modalities (standard frame-based image and event stream). The
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proposed architecture achieves state-of-the-art optical-flow estimation performance on the

Multi-Vehicle Stereo Event Camera (MVSEC) dataset [121 ].

The main contributions of this work are as follows:

• We propose Fusion-FlowNet architecture composed of a fusion of SNNs and ANNs, for

simultaneously processing event streams and frame-based images, respectively, leveraging

their complementary sensing capabilities.

• We present a Signed Integrate-and-Fire (S-IF) neuron model for SNNs which can generate

spike outputs with both positive and negative polarity. The S-IF model coupled with a

surrogate gradient method, enables backpropagation based training in SNNs.

• We evaluate the optical flow predictability of Fusion-FlowNet on the large scale event-

camera dataset (MVSEC) and provide comparisons with corresponding state-of-the-art

methods. We also analyze the benefits of Fusion-FlowNet in terms of network parameter

reduction, computational energy and memory costs.

The remainder of our paper is organized as follows. First, we discuss the related works.

Second, we introduce the concepts related to individual sensors and sensor-fusion for gen-

erating inputs. Third, we explain the analog and spiking neuron models employed in this

work, and we propose the Fusion-FlowNet architecture consisting of SNNs and ANNs. Next,

we describe the surrogate gradient-based backpropagation algorithm to enable end-to-end

unsupervised training. Finally, we analyze the experimental results, including comparisons

with other recent works accompanied by various ablation studies.

7.2 Related Works

Over the past few years, there have been major advancements towards optical flow es-

timation using event-cameras. Conventional computer vision algorithms have been adapted

to encompass discrete outputs from event cameras in [125 ], [126 ], [129 ]. Recently, several

works for handling asynchronous event streams using the ANN- and SNN-based approaches

have gained immense popularity.
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In ANN-based approaches, the asynchronous events are essentially accumulated for fixed

time intervals to generate synchronous frames. In EV-FlowNet [133 ], the recent event counts

as well as pixel-wise last timestamp information is encoded in a frame-based representation.

However, this approach greatly suffers during rapid motions and dense localized events re-

sulting in loss of rich temporal information. Researchers in [136 ] further extended this to

a 3D input representation that considers time domain as a channel and uses an input in-

terpolation scheme for retaining the spatio-temporal event distributions. Nevertheless, this

approach still suffers at predicting dense pixel-wise outputs in regions where events are ex-

tremely sparse.

Among SNN-based approaches, Spike-FlowNet [144 ] introduced an input encoding scheme

that transformed the raw event stream into two groups consisting of multiple discretized

event frames. This scheme allowed for encoding the presence of events over time, preserving

the spatio-temporal information and enabled event-based computations in SNNs. However,

since only the event stream is used as input, the predictions are accurate only where events

are present, thereby limiting dense motion prediction.

Meanwhile, [145 ] presents an optimization based optical flow estimation method by jointly

using a set of events and a single frame-based image. It uses a variational approach to

recover a sharp image from these inputs. Contrary to this, our method utilizes all available

event streams as well as frame-based images within a time window. This enables accurate

flow estimations for longer time windows. Furthermore, we explore a neural network-based

approach and directly handle event streams and frame-based images.

7.3 Sensors and Input Representation

7.3.1 Frame-based Images

Frame-based images have been widely popular for computer vision applications. They

provide highly accurate pixel-wise intensity information as frames over regular time intervals.

This intensity frame information is pivotal in numerous applications such as face and object

recognition tasks [146 ]. Likewise, for ANN-based optical flow estimation, the consecutive
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frame-based images are passed as inputs in separate channels to the network. In this chapter,

we utilize this input representation for the ANN part of Fusion-FlowNet.

7.3.2 Stream of Events

Event-based cameras are bio-inspired vision sensors that provide a stream of events as

an outcome of tracking intensity changes (I) at each pixel element. Whenever the logarith-

mic intensity change surpasses a specified threshold (θ), a discrete event is asynchronously

generated as follows:

‖ log(It+1)− log(It)‖ ≥ θ (7.1)

Event cameras output data in Address Event Representation (AER) format which incorpo-

rates a tuple {x, y, t, p}, composed of the pixel address (x and y coordinates), timestamp

(t), and polarity of the intensity change (p). The polarity can have values “ON” or “OFF”

corresponding to the increase or decrease in intensity of that pixel. This four-dimensional

data format, referred to as address event representation (AER), is able to encapsulate asyn-

chronous event data with high temporal resolution and is the standard communication pro-

tocol used by event sensors.

Event cameras may not be generally suited for tasks which require dense input informa-

tion such as face recognition [146 ], where frame-based cameras dominate. However, event

cameras promise colossal benefits in challenging conditions such as high-speed motion detec-

tion and environments with high dynamic range in addition to having low power consump-

tion. Thus, the task of optical flow estimation can greatly benefit from the usage of event

cameras in terms of high temporal resolution, robustness to high dynamic range scenes and

energy-efficiency.

For providing the inputs to SNN part of Fusion-FlowNet, we transform the raw event

stream into the groups of discretized event frames and predict optical flow between frames

belonging to these groups. The input to the SNN encoder-branch consists of a sequence

of event frames with four channels, each from the ON/OFF polarity of event frames from

the former and the latter groups. This scheme preserves the temporal information in the
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event stream to display the superior algorithmic performance and promising energy-efficiency.

Fig. 6.1 depicts the employed input representation for event data.

7.3.3 Sensor-fusion

Interestingly, numerous sensors such as the Dynamic and Active Vision Sensor (DAVIS) [140 ]

are capable of simultaneously generating the asynchronous events as well as synchronous

grayscale frames at fixed intervals, simplifying the hardware costs of sensor-fusion. In addi-

tion, since there is a single camera coordinate system for both data modalities, the require-

ment for expensive transformation and synchronization between multiple coordinate systems

is eliminated. We therefore employ the DAVIS sensor for our purpose.

For this work, the frame-based images serve two purposes. First, they are provided

as network inputs and allow for dense optical flow predictions. Second, they are used for

computing the unsupervised loss required for training, as proposed in [134 ]. On the other

hand, the event stream is only provided as network input and enables sparse optical flow

prediction in aforementioned challenging scenes. In this regards, the proposed sensor fusion

framework would therefore allow computing dense optical flow at high-speed in challenging

environments

7.4 Neuron Models

The primary difference between ANN and SNN operations is the notion of time. While

ANNs feed-forward the dense analog-valued inputs at once, SNNs process the sparse binary

inputs as a function of time. Accordingly, different neuron models are employed in ANNs

and SNNs.
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7.4.1 LeakyReLU Model

In ANNs, the LeakyReLU [147 ] replaces the negative part of the popular ReLU model

by a linear function with a relatively small slope as below:

y =


x, if x > 0

αx, otherwise
(7.2)

where α is typically set to 0.01-0.1. This concept fixes the “dead neuron” problem that some

neurons get stuck in the negative side and play no role in discriminating between inputs.

LeakyReLU model has been reported to be useful especially for hard regression tasks such

as motion estimations, predicting pixel-wise and high-resolution outputs. In this chapter,

we therefore employ the LeakyReLU model for the ANN parts of Fusion-FlowNet.

Figure 7.1. Dynamics of Signed Integrate-and-Fire (S-IF) neuron model.
Whenever the membrane potential crosses either positive- or negative-
threshold, the neuron fires a signed spike and resets its membrane potential.

7.4.2 Signed Integrate-and-Fire (S-IF) Model

Spiking neurons are inspired by biological models that emulate efficient event-based op-

erations in the human brain. In the literature, the Integrate-and-Fire (IF) neuron model

[27 ] is commonly used for building SNNs because of its simplicity. In an IF neuron, input

spikes are modulated by weight (w) and accumulated in an internal state of the neuron,

called membrane potential over time. Whenever the membrane potential (v) crosses a firing
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threshold, the neuron emits a binary output (1 or 0) and resets the membrane potential as

follows,

vl[n + 1] = vl[n] + wlol−1[n] (7.3)

where ol−1[n] indicates the spike output from the l-1th layer at time-step n. However, the IF

neuron too suffers from the “dead neuron” problem as discussed previously. Thus, in this

chapter, we present a signed integrate-and-fire (S-IF) neuron model that can generate signed

spike outputs. The S-IF neuron model contains positive- and negative-thresholds that play

a role in generating positive- and negative-valued spike outputs, respectively. This operation

is illustrated in Fig. 7.1 and formulated as follows:

ol =



+1, if vl > vth,pos

−1, elif vl < vth,neg

0, otherwise

(7.4)

However, the discontinuous S-IF’s spike generation function poses a challenge for gradient-

based training. To overcome this challenge, we propose a surrogate gradient method for

enabling an end-to-end backpropagation training which will be discussed in a later section.

7.5 Fusion-FlowNet Architecture

Fusion-FlowNet incorporates a deep fused network architecture that supports the end-to-

end training as illustrated in Fig. 7.2 . It is built upon the U-Net architecture [132 ], containing

four encoder layers, two residual blocks, and four decoder layers. The distinctions in this

chapter involve the addition of dual pathways starting at the encoder, namely the SNN-

and ANN-based branches. Each branch is composed of narrow convolution layers (similar to

grouped convolution used in AlexNet [4 ]) containing half the number of intermediate feature

maps, compared to original wide convolution layers in U-Net. This is possible because of the

usage of different modalities of input data, leading to reduction in network parameters with-

out compromising performance. The branches merge later to together generate an optical

flow map.
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Figure 7.2. The detailed illustration of the Fusion-FlowNetEarly. The net-
work contains the SNN- and ANN-based encoder-branches to extract features
from event streams and grayscale images, respectively. The rest of networks,
involving residual and decoder blocks, are composed of ANN layers. The colors
represent the types of layers.

In the SNN-based encoder-branch, the four-channeled input event frames sequentially

pass through the narrow convolution layers consisting of S-IF neurons over time while being

downsampled at each layer. At every time-step, the weighted spike outputs from each layer

are integrated into the corresponding output accumulator. After passing all consecutive

event images, the output accumulator outcome becomes the part of input to the subsequent

ANN layers.

In the ANN-based encoder-branch, the consecutive frame-based images in the time-

window pass through the narrow ANN layers at once. Each ANN layer comprises of a

convolution and a batch-norm layer [3 ] before the LeakyReLU activation layer. Here too,

the feature maps are downsampled at each layer.

After completing forward propagation in both encoder-branches, the final outputs are

fused before passing through the rest of the network, namely the residual and the decoder

blocks composed of standard wide ANN layers. To fuse the hierarchical features from the en-

coders, the intermediate activations are concatenated at the same spatial locations from both
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the SNN and ANN branches. The fused activations pass through two residual blocks, and

then through the four decoders layers which upsample them using transposed convolutions.

At each decoder layer, skip connections from the corresponding encoder layers and another

convolution layer produce a multi-scale dense optical flow prediction, which is concatenated

with the activations from transposed convolution layers. Finally, a full-scale optical flow

having the same dimension as the input frames are predicted at the output.

7.6 Unsupervised Training Method

Due to the limited availability of event-camera datasets containing ground-truth labels,

we adopt an unsupervised approach to train unsupervised optical flow [134 ]. Fusion-FlowNet

is trained using unlabeled sequences, utilizing frame-based images to act as proxy labels for

computing the loss. The overall loss functions are composed of two parts:

ltotal = lphoto + λlsmooth (7.5)

where lphoto represents a photometric loss, lsmooth indicates the smoothness loss, and (λ)

denotes the weight factor between the two loss.

7.6.1 Photometric Loss

Photometric loss helps realize the motion of pixels in an image over time by tracking the

pixel intensities between images. The network is provided with start and end-frame grayscale

images (It, It+dt). A spatial transformer inversely warps the last frame-based image with

the current estimated optical flow to compute an image prediction. Then, the photometric

loss (lphoto) aims to minimize the discrepancy between the first frame-based image and this

image prediction. Photometric loss is computed as follows:

lphoto =
∑
x,y

ρ(It(x, y) − It+dt(x + u, y + v)) (7.6)
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where, It (It+dt) indicate the pixel intensity of the first (last) frame-based images, u, v are

the flow estimates in the x, y directions, ρ is the robust Charbonnier loss ρ(x) = (x2 + η2)r ,

used for outlier rejection [141 ]. We set r = 0.45 and η =1e-3 as they show optimum results

in prior works [133 ], [144 ].

7.6.2 Smoothness Loss

Smoothness loss (lsmooth) is applied to reduce optical flow deviations between neighboring

pixels by adding a regularizing effect on the predicted flow. It is computed as follows:

lsmooth =
∑

j

∑
i

(‖ui,j − ui+1,j‖ + ‖ui,j − ui,j+1‖ + ‖vi,j − vi+1,j‖ + ‖vi,j − vi,j+1‖) (7.7)

7.7 Backpropagation in Fusion-FlowNet

After the forward propagation, the final loss (ltotal) is evaluated, followed by the backward

propagation of gradients.

Figure 7.3. The illustrations of activation function and its derivative (left)
LeakyReLU neuron (right) S-IF neuron.

In ANN layers, the LeakyReLU is a differentiable activation that can be represented by

the linear functions where the slope differs in positive and negative parts of input. The

derivative of LeakyReLU activation (∂f(x)
∂x

) is unity when input is positive and α when input

is negative, and zero otherwise. Hence, standard backpropagation can calculate the gradient
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of the loss function with respect to each weight using chain rule. The parameter updates for

the lth ANN layer are described as follows:

4wl
ANN = ∂loss

∂f(xl)
∂f(xl)

∂ol

∂ol

∂wl
(7.8)

On the other hand, the spike generation mechanism of S-IF neuron results in a hard

threshold function making it discontinuous and non-differentiable. Thus, standard back-

propagation cannot be applied to SNNs in its native form. To overcome this impediment,

we present a surrogate gradient method, similar to [16 ], [120 ], for approximately estimating

the S-IF neuronal spike generation function. The surrogate gradient of S-IF model is herein

computed as follows:

∂o[n]
∂v[n]

=



1
Vth,pos

, if vl > vth,pos.

1
Vth,neg

, if vl < vth,neg.

0, otherwise.

(7.9)

where each threshold (Vth,pos, Vth,neg) accounts for the change in the signed spike outputs

with respect to the inputs. During the backward pass, the errors (∂ltotal

∂ol ) are backpropagated

through the SNN layers using the surrogate gradient above and BackPropagation Through

Time (BPTT) [71 ]. In BPTT, the network is unrolled for all time-steps, and the weight

update is assessed as the sum of gradients over each time-step. The parameter updates of

the lth SNN layer are described as follows:

4wl
SNN =

∑
n

∂loss
∂ol[n]

∂ol[n]
∂vl[n]

∂vl[n]
∂wl

(7.10)

7.8 Experiments

7.8.1 Dataset and Training Details

We train Fusion-FlowNet on the MVSEC dataset [121 ] which contains events as well as

grayscale frames recorded using the DAVIS346 camera [140 ] in multiple environments. The

indoor_flying sequences were collected with a drone flying indoors and the outdoor_day

sequences were recorded from a car driving on public roads. We employ the outdoor_day2
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sequence as well as use two different time-window lengths (i.e, 1 (dt=1) and 4 (dt=4))

grayscale images apart, to provide fair comparisons with prior works [133 ], [136 ], [144 ].

The events and frame-based images from left-camera images are used for training and are

randomly cropped to 256×256 size, flipped horizontally and vertically (with 0.5 probability).

The learning rate is scaled by 0.7 every 5 epochs until 20 epoch, and every 10 epochs

thereafter. The number of event frames in each group (N) are set to 5 for the dt = 1 case

and 20 for the dt = 4 case. In ANN layers, LeakyReLU model is employed with an α of 0.1.

In the SNN layers, the positive and negative thresholds of the S-IF neuron are set to 0.75

and 7.5, respectively. The weight factor between losses λ is set to 0.0003.

Table 7.1. AEEevent comparison with previous works (lower is better).
dt=1 frame dt=4 frame

AEEevent ind1 ind2 ind3 out1 ind1 ind2 ind3 out1
Zhu et al.’19 0.58 1.02 0.87 0.32 2.18 3.85 3.18 1.30
EV-FlowNet 1.03 1.72 1.53 0.49 2.25 4.05 3.45 1.23
Spike-FlowNet 0.84 1.28 1.11 0.49 2.24 3.83 3.18 1.09
Fusion-FlowNet 0.56 0.95 0.76 0.59 1.68 3.24 2.43 1.17

7.8.2 Evaluation of Optical Flow

The center cropped images of 256 × 256 size are taken from indoor_flying1,2,3 and

outdoor_day1 sequences. We take all events for indoor_flying, but use the event stream

within 800 grayscale frames for the outdoor_day1 sequence, as suggested in [133 ], [144 ]. For

quantitative estimation results, we calculate the standard Average End-point Error (AEE),

which is the mean Euclidean distance between the predicted flow (ypred) and the provided

ground-truth (ygt). In this chapter, we measure two types of AEE results: over all pixels

(AEEall) and over pixels only where events are present within the time-window (AEEevent):

AEE = 1
m

∑
m
‖(u, v)pred − (u, v)gt‖2 (7.11)

where m indicates the count of active pixels in the event frames for AEEevent and every pixels

of images for AEEall.
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Figure 7.4. Predicted optical flow compared with Spike-FlowNet and Full-
fledged ANN. The samples are taken from (top) outdoor_day1 and (bottom)
indoor_flying2. Best viewed in color.

Table 7.2. Average endpoint error (AEE) results for ablation studies (lower is better)

indoor1 indoor2 indoor3 outdoor1
dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4

event all event all event all event all event all event all event all event all
Fusion-FlowNetEarly 0.56 0.62 1.68 1.81 0.95 0.89 3.24 2.90 0.76 0.85 2.43 2.46 0.59 1.02 1.17 3.06
Fusion-FlowNetLate 0.57 0.63 1.71 1.89 0.99 0.92 3.26 2.93 0.79 0.87 2.46 2.54 0.55 1.00 1.34 3.48

FusionEarly [IF model] 0.56 0.62 1.72 1.93 0.97 0.90 3.36 3.07 0.78 0.87 2.51 2.63 0.58 1.04 1.37 3.52
FusionLate [IF model] 0.57 0.64 1.71 1.90 1.00 0.93 3.41 3.08 0.80 0.88 2.56 2.64 0.55 0.99 1.38 3.53

Spike-FlowNet 0.84 0.91 2.24 2.94 1.28 1.23 3.83 4.09 1.11 1.20 3.18 3.92 0.49 1.42 1.09 3.28
Full-fledged ANN 0.60 0.68 1.73 1.90 1.00 0.97 3.35 3.03 0.83 0.97 2.52 2.62 0.83 1.53 1.27 3.19

7.8.3 Results

We compare the performance of Fusion-FlowNet with corresponding state-of-the-art im-

plementations [133 ], [136 ], [144 ] in terms of the AEEevent metric as discussed above. The rel-

evant results are listed in Table 7.1 . Only AEEevent results are compared here since the other

works do not provide AEE values for dense optical flow. We observe that Fusion-FlowNet

outperforms other implementations in almost all scenarios. The outdoor_day1 sequence is

known to have suffered from certain issues with its grayscale images during dataset creation,

leading to anomalous results for AEEevent as well as AEEall. Fig. 7.4 visualizes the predicted

flows for Spike-FlowNet [144 ] which uses only event-inputs, fully-ANN architecture which

uses only grayscale images and Fusion-FlowNet which uses both.
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7.8.4 Ablation studies

Architectural Variations

We evaluate another architecture where the dual pathway branches are extended to

residual blocks. We denote the first architecture as Fusion-FlowNetEarly and this second

architecture as Fusion-FlowNetLate. Rows 1−2 in Table 7.2 highlight the optical flow pre-

diction capability of both the architectures. We find that Fusion-FlowNetEarly outperforms

Fusion-FlowNetLate in predicting accurate optical flow outputs. Fusion-FlowNetEarly contains

a large number of parameters and fuses the intermediate features from the branches in early

layers, leading to better AEE results. On the other hand, Fusion-FlowNetLate has promising

advantages in further reducing the network parameters and computational costs, as will be

discussed in Table 7.3 .

Figure 7.5. The architectures of (left) Fusion-FlowNetEarly and (right)
Fusion-FlowNetLate.

Neuron Model Choice

For investigating the benefits of S-IF neuron model, we compare variations of Fusion-

FlowNet, consisting of S-IF and IF neuron models for SNN blocks. Rows 3−4 in Table 7.2 

provide the AEE results for Fusion-FlowNet with IF neurons in the SNN layers. The results

show that networks with S-IF neuron model can predict more accurate flow outputs, com-

pared to networks with IF neuron model. Thus, the S-IF model helps mitigate the “dead

neuron” problem in deep SNN layers similar to the LeakyReLU model.
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Table 7.3. Comparison of number of parameters and computational energy
cost for different architectures for dt=1 and dt=4 cases.

#Parameters (×106) #OPSANN(×109) Spiking Activity (%) #OPSSNN(×106) ETotal(mJ) Improvement

dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4
Full-fledged ANN 13.044 13.046 5.339 5.367 – – – – 24.536 24.666 1.00× 1.00×
Spike-FlowNet 13.039 13.039 4.409 4.409 0.480 1.008 15.81 195.99 20.296 20.458 1.21× 1.21×

Fusion-FlowNetEarly 12.269 12.270 4.648 4.648 0.173 0.174 1.03 4.18 21.381 21.384 1.15× 1.15×
Fusion-FlowNetLate 7.549 7.550 2.849 2.849 0.147 0.179 5.24 6.44 13.113 13.114 1.87× 1.88×

* Results averaged over all indoor and outdoor1 sequences

Sensor Fusion

We perform a study to verify the usefulness of our sensor fusion approach against each

type of single sensor approach using inputs as either the event streams or frame-based images.

For event only approach, we investigate Spike-FlowNet [144 ] which is a hybrid neural archi-

tecture where the initial layers are composed of SNNs and the deeper layers are composed of

ANNs. Note, Spike-FlowNet utilizes an equivalent event-based input representation scheme

and unsupervised learning method, providing a fair comparison baseline. For frame-based

image only approach, we implement a custom full-fledged ANN architecture that resembles

the U-Net [132 ], and train it with an equivalent unsupervised method using the same input

representation as Fusion-FlowNet.

Rows 5−6 of Table 7.2 summarize the results on the single sensor approaches. Unsurpris-

ingly, both Fusion-FlowNetEarly and Fusion-FlowNetLate achieve better AEE performances in

dt=1 and dt=4 scenarios, compared to single sensor approach. This verifies that our fusion

approach benefits from utilizing the complementary characteristics of event- and frame-based

images, leading to better performance in both slow- and fast-motion scenarios. Furthermore,

in comparison to prior works as listed in Table 7.1 , both fusion options provide superior re-

sults, establishing a new state-of-the-art optical flow estimation framework.

7.8.5 Computational Efficiency

We evaluate the computational efficiency of Fusion-FlowNet in terms of the number of

network parameters, energy and memory cost for inference.
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We see that both Fusion-FlowNetEarly and Fusion-FlowNetLate contain fewer number of

parameters compared to a full-fledged ANN architecture and Spike-FlowNet (Row1 in Ta-

ble 7.3 ). This is due to the usage of narrow convolution layers, which greatly reduce the

number of parameters and computations. In particular, Fusion-FlowNetLate contains the

least number of network parameters (∼ 58% compared to full-fledged ANN), as the resid-

ual blocks contain the majority of the parameters and migrating them to utilize narrow

convolutional layers helps reduce the total network parameters drastically.

For computing the energy cost for the different architectures, we briefly look into how

computations in SNNs and ANNs differ from each other. SNNs perform highly sparse asyn-

chronous accumulate (AC) operations over time. These synaptic operations are executed only

at the arrival of input spikes due to the nature of binary-valued inputs. On the other hand,

ANNs perform expensive multiply-and-accumulate (MAC) operations for computing dense

matrix-vector multiplications (MVMs). Based on the findings in [143 ], a MAC operation

requires a total of EMAC=4.6pJ of energy, while an AC operation requires only EAC=0.9pJ

for a 32-bit floating-point computation (45nm CMOS technology). This leads to the AC

operation being ∼ 5.1× more energy-efficient compared to the MAC operation. We utilize

this result along with the methodology to calculate the number of synaptic operations as

described in [144 ] for estimating the energy cost.

We initially calculate the total number of synaptic operations for every layer. In SNN

layers, the number of synaptic operations are obtained by multiplying the pre-spike activities,

number of synaptic connections and time-steps. Also, the computational energy of AC and

MAC computations are taken into considerations for SNNs and ANNs, respectively. The

energy cost computation can be formalized as:

#OPSSNN = N
∑

l

MlClFl, #OPSANN =
∑

l

MlCl (7.12)

ETotal = #OPSSNN × EAC + #OPSANN × EMAC (7.13)

where M is the number of neurons, C is the number of synaptic connections, F represents

the mean spiking activity, N is the number of timesteps, #OPSSNN and #OPSANN indicate
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the number of operations for SNN and ANN portions, respectively and ETotal denotes the

total energy cost.

Row 5 in Table 7.3 provides the total energy cost. It is observed that Fusion-FlowNetLate

demonstrates the highest improvement in terms of energy cost (∼ 1.88×) compared to full-

fledged ANN. This is because more layers utilize narrow convolutions, leading to reduction

in the number of parameters and consequently reduction in the energy cost. Furthermore,

SNN pathway contributes negligibly towards increasing the energy cost when compared to

ANN pathway.

The number of memory accesses can be estimated by the sum of total ANN and SNN

operations. The ANN portion dominates the memory cost as #OPSANN are much greater

than #OPSSNN, as depicted in Table 7.3 . Both Fusion-FlowNet models show significant

reduction in #OPSANN compared to full-fledged ANN, thereby leading to lower memory

costs. Again, Fusion-FlowNetLate requires a fraction of (∼ 53%) memory accesses compared

to full-fledged ANN.

7.9 Conclusion

In this chapter, we propose a sensor/architecture fusion framework for accurately estimat-

ing optical flow. We leverage the complementary characteristics of event- and frame-based

sensors as well as ANNs and SNNs. Our framework (Fusion-FlowNet) reports state-of-

the-art optical flow prediction results, while substantially reducing network parameters and

computational costs. This work contributes two different deep fused architectures (Fusion-

FlowNetEarly and Fusion-FlowNetLate), having different applications of interest. Fusion-

FlowNetEarly provides highly accurate dense optical flow, proving to be appropriate for

safety-critical applications. While, Fusion-FlowNetLate promises immense benefits in terms of

computational efficiency, making it suitable for the edge applications on resource-constrained

hardware.
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8. SUMMARY AND FUTURE WORK

In recent times, SNNs have been explored toward realizing robust and energy-efficient ma-

chine intelligence guided by the cues from neuroscience experiments [148 ]. However, the

typical shallow spiking network architectures have limited capacity for expressing complex

representations, while training a very deep spiking network has not been successful.

This thesis proposes the spike-based learning algorithms that enable deep SNNs to achieve

competitive accuracy, energy-efficiency and robustness for image classifications. First, we

propose a layer-wise unsupervised STDP for training deep convolutional SNNs (chapter 2).

Second, we develop an approximate derivative method to overcome the discontinuous and

non-differentiable nature of spike generation function and to enable training deep convo-

lutional SNNs with input spike events using the supervised spike-based backpropagation

algorithm (chapter 3). Third, we present a pre-training scheme using biologically plausible

unsupervised STDP learning in order to better initialize the network parameters prior to

supervised spike-based backpropagation (chapter 4). In addition, we analyze the neuron

models with and without leak to investigate the impacts of leak on noise robustness and

spike sparsity in deep SNNs (chapter 5).

Moreover, this thesis explores the event-based vision applications where SNNs outperform

the corresponding ANNs in terms of output quality while providing significant computational

efficiency. Event-based camera shows promising advantages, namely high temporal resolu-

tion, high dynamic range and low power consumption. However, conventional computer

vision methods as well as deep ANNs are no longer compatible in their native form with the

asynchronous and discrete nature of event camera outputs. We show the great potential of

SNNs for directly handling event-camera outputs. Furthermore, we demonstrate that SNNs

can effectively exploit the inherent sparsity of event streams by performing efficient event-

based computations, carrying out operations only at the arrival of the input events (chapter

6). Finally, we propose Fusion-FlowNet, a sensor/architecture fusion framework, leveraging

the complementary characteristics of event- and frame-based sensors as well as ANNs and

SNNs (chapter 7).
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In the future, there will be several interesting pathways in this research field. First,

there is a need to further explore novel SNN applications that can take full advantage of

asynchronous and sparse event-based computation capability. Such ideal applications would

largely contain the temporal and sequential data processing that necessitate huge deep ANNs

or computationally intensive recurrent networks. One promising SNN application would be

to estimate emotion detection using an electroencephalogram (EEG) which records the se-

quential electrical activity in the brain. Next, while the computational energy benefit of

SNNs has been demonstrated in theoretical analysis, SNNs have yet to be tightly integrated

into the neuromorphic hardware. The recent efforts of neuromorphic community have re-

sulted in the realization of the specialized hardware such as IBM’s TrueNorth and Intel’s

Loihi. Accordingly, we will need to integrate SNNs for those hardware to fully exploit the

asynchronous event-based computations and thus efficiently deliver them to challenging real-

world application such as flying drones or autonomous driving.
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