
APPROXIMATE COMPUTING:
FROM CIRCUITS TO SOFTWARE

by

Younghoon Kim

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Anand Raghunathan, Chair

School of Electrical and Computer Engineering

Dr. Cheng-Kok Koh

School of Electrical and Computer Engineering

Dr. Kaushik Roy

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitri Peroulis

2

ACKNOWLEDGMENTS

My long journey for a Ph.D. degree would have not been possible without the help of

great people around me. Firstly, I’d like to express my sincerest gratitude to my advisor,

Prof. Anand Raghunathan, for all the support and guidance on my research. I could

learn all aspects of research from him — defining the right problem, setting up technically

sound experiments, and writing the paper with a fresh angle. On the personal side, he has

helped me endure physical and mental hardships by showing benevolence as well as providing

motivation. It was such an honor being able to work with him.

Besides my advisor, I would like to thank my committee members — Prof. Cheng-Kok

Koh, Prof. Kaushik Roy, and Prof. Vijay Raghunathan — for their valuable comments that

helped my thesis to be in a better shape.

Special thanks to Dr. Swagath Venkataramani, who has been involved in all my research

projects and always revised the paper to perfection. I admire his relentless enthusiasm for

research and his positive attitude.

I thank all ISL colleagues whom I shared my on-campus life with. A wide range of

discussions from research to culture and politics made my days in MSEE337 enjoyable.

Thanks to Ashish, Shubham, Younghyun, Sanchari, Jacob, Manik, Sarada, Shrihari, Sourjya,

Reena, Soumendu, Christin, Sanjay, Vinod, and Abinand. I wish all the best to everyone in

their future endeavors.

Thanks to all my friends in the three main groups that I have actively participated in:

ECE, PKTC, and SNUPU. May our paths cross again in the future.

Last but not the least, I’d like to thank my family: My parents and my sister for sup-

porting me both financially and spiritually. Suyeon, my dear wife, for staying by my side

through the endless Ph.D. study. Jiseob and Jiin, my lovely children, for being a better

creation than any of my thesis chapters.

3

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABBREVIATIONS . 12

ABSTRACT . 13

1 INTRODUCTION . 16

1.1 Approximate Computing . 17

1.2 Thesis Contributions . 19

1.2.1 Approximate Circuit Design using Clock Overgating 19

1.2.2 Value Similarity Extensions for Approximate Computing in General-

Purpose Processors . 20

1.2.3 Data Subsetting: A Data-Centric Approach to Approximate Computing 21

1.3 Thesis Organization . 22

2 RELATED WORK . 23

2.1 Circuit Design Techniques for Approximate Computing 23

2.2 Architectures for Approximate Computing 23

2.3 Software Techniques for Approximate Computing 24

3 APPROXIMATE CIRCUIT DESIGN USING CLOCK OVERGATING 25

3.1 Introduction . 25

3.2 Comparison to Related Work . 27

4

3.3 Background . 28

3.3.1 Power Dissipation in Sequential Circuits 28

3.3.2 Clock Gating . 29

3.4 Design Approach . 30

3.4.1 Clock Overgating: Concept . 30

3.4.2 Clock Overgating: Design Space . 31

3.5 Design Methodology . 35

3.5.1 Approximate Design using Clock Overgating 35

3.5.2 Identifying Clock Overgating Candidates 37

3.6 Experimental Setup . 38

3.6.1 Benchmarks . 38

3.6.2 Quality and Power Evaluation . 38

3.7 Experimental Results . 39

3.7.1 Energy-Quality Tradeoff . 39

3.7.2 Comparison with Precision Scaling 41

3.7.3 Effectiveness of FF Grouping . 41

3.7.4 Illustration of Clock Overgating in Action 43

3.8 Summary . 43

4 VALUE SIMILARITY EXTENSIONS FOR APPROXIMATE COMPUTING IN

GENERAL-PURPOSE PROCESSORS . 45

5

4.1 Introduction . 45

4.2 Comparison to Related Work . 47

4.3 Value Similarity: Sources, Opportunities and Challenges 48

4.4 VSX: Value Similarity Extensions for General-Purpose Processors 49

4.4.1 VSX: Overview . 50

4.4.2 Program Annotations and Compiler Techniques for VSX 51

4.4.3 Instruction Skipping & Result Reuse 52

4.4.4 VSX: Microarchitecture . 53

4.4.5 Iteration Fast-Forwarding . 55

4.5 Experimental Setup . 56

4.6 Results . 58

4.6.1 Speedup-Accuracy Tradeoff . 58

4.6.2 Skip Rate Analysis . 59

4.6.3 Speedup Across Different Spatial Distribution of Similarity 59

4.6.4 VSX vs. Load Value Approximation 60

4.7 Summary . 61

5 DATA SUBSETTING: A DATA-CENTRIC APPROACH TO APPROXIMATE

COMPUTING . 63

5.1 Introduction . 63

5.2 Comparison to Related Work . 65

6

5.3 Data Subsetting . 66

5.3.1 Data Subsetting: Concept . 66

5.3.2 Data Subsetting: Challenges . 67

Subset Selection . 67

Access Approximation through Redirection 68

5.3.3 Data Subsetting: Optimizations . 69

Subset Buffer . 70

Eliminating Redundant Computations 71

5.4 Realizing Data Subsetting in Software . 72

5.4.1 SubsettableTensor Data Structure . 72

5.4.2 Illustration: K-means Clustering . 73

5.5 Experimental Setup . 74

5.5.1 Benchmarks . 74

5.5.2 Performance Evaluation . 75

5.6 Results . 75

5.6.1 Performance Benefits . 75

5.6.2 Comparison with Loop Perforation 76

5.6.3 Choice of Access Redirection Function 77

5.6.4 Dynamic Modulation of Subset Size 78

5.7 Summary . 79

7

6 CONCLUSION . 81

REFERENCES . 83

VITA . 93

8

LIST OF TABLES

3.1 Benchmark applications . 39

4.1 Benchmark applications . 57

4.2 Gem5 system configuration . 57

5.1 Machine learning benchmark applications . 75

5.2 System configuration used in experiments . 75

9

LIST OF FIGURES

1.1 Modern applications producing good-enough answers 17

1.2 Approximate computing across the layers of abstraction [3] 18

3.1 Different types of clock gating logic . 29

3.2 Clock overgating concept . 31

3.3 Design space of clock overgating configurations 32

3.4 Functional grouping of FFs . 33

3.5 Energy improvements for various quality constraints 40

3.6 Energy breakdown analysis . 41

3.7 Energy benefits using clock overgating vs. precision scaling 42

3.8 Runtime vs. optimality tradeoff analysis . 43

3.9 Clock overgating status over time . 44

4.1 VSX overview . 50

4.2 Instruction skip & result reuse example . 52

4.3 VSX microarchitecture . 53

4.4 Iteration skipping example . 55

4.5 Modified Instruction Skip Unit and VSB Save & Feed Unit for iteration fast-
forwarding . 56

4.6 Speedup-accuracy tradeoff . 58

4.7 Skip rates for instructions & iterations . 59

4.8 Speedup vs. similarity analysis . 60

4.9 Iso-accuracy speedup comparison for VSX vs. LVA 61

5.1 Data subsetting: Concept . 66

5.2 Different forms of subset selection . 68

5.3 Access Redirection Functions . 69

5.4 Memory bandwidth reduction by using subset buffer 71

5.5 Speedup obtained within different quality constraints 76

5.6 Data subsetting vs. loop perforation . 77

5.7 Impact of ARF choice on accuracy . 78

10

5.8 Data subsetting applied to K-Means clustering 79

11

ABBREVIATIONS

AxC Approximate Computing

RTL Register Transfer Level

FF Flip-Flop

COT Clock Overgating Target

COE Clock Overgating Enable

MSB Most Significant Bit

LSB Least Significant Bit

VSX Value Similarity eXtensions

IF Instruction Fetch

SB Subset Buffer

ARF Access Redirection Function

FLOP Floating-Point OPeration

ML Machine Learning

DNN Deep Neural Network

GPP General Purpose Processor

VSX Value Similarity eXtensions

12

ABSTRACT

Many modern workloads such as multimedia, recognition, mining, search, vision, etc. pos-

sess the characteristic of intrinsic application resilience — the ability to produce acceptable-

quality outputs despite their underlying computations being performed in an approximate

manner. Approximate computing has emerged as a paradigm that exploits intrinsic applica-

tion resilience to design systems that produce outputs of acceptable quality with significant

performance/energy improvement. The research community has proposed a range of ap-

proximate computing techniques spanning across circuits, architecture, and software over

the last decade. Nevertheless, approximate computing is yet to be incorporated into main-

stream HW/SW design processes largely due to the deviation from the conventional design

flow and the lack of runtime approximation controllability by the user.

The primary objective of this thesis is to provide approximate computing techniques

across different layers of abstraction that possess the two following characteristics: (i) They

can be applied with minimal change to the conventional design flow, and (ii) the approxima-

tion is controllable at runtime by the user with minimal overhead. To this end, this thesis

proposes three novel approximate computing techniques — clock overgating which targets

HW design at the Register Transfer Level (RTL), value similarity extensions which enhance

general-purpose processors with a set of microarchitectural and ISA extensions, and data

subsetting which targets SW executing for commodity platforms.

Clock Overgating. The thesis first explores clock overgating, which extends the concept

of clock gating — a conventional low-power technique that turns off the clock to a Flip-Flop

(FF) when the value remains unchanged. In contrast to traditional clock gating, in clock

overgating the clock signals to selected FFs in the circuit are gated even when the circuit

functionality is sensitive to their state. This saves additional power in the clock tree, the

gated FFs and in their downstream logic, while a quality loss occurs if the erroneous FF states

propagate to the circuit outputs. This thesis develops a systematic methodology to identify

an energy-efficient clock overgating configuration for any given circuit and quality constraint.

Towards this end, three key strategies for efficiently pruning the large space of possible

overgating configurations are proposed — significance-based overgating, grouping FFs into

13

overgating islands, and utilizing internal signals of the circuit as triggers for overgating.

Across a suite of 6 machine learning accelerators, energy benefits of 1.36× on average are

achieved at the cost of a very small (<0.5%) loss in classification accuracy.

Value Similarity Extensions. The thesis also explores value similarity extensions, a set

of lightweight micro-architectural and ISA extensions for general-purpose processors that

provide performance improvements for computations on data structures with value similarity.

The key idea is that programs often contain repeated instructions that are performed on very

similar inputs (e.g., neighboring pixels within a homogeneous region of an image). In such

cases, it may be possible to skip an instruction that operates on data similar to a previously

executed instruction, and approximate the skipped instruction’s result with the saved result

of the previous one. The thesis provides three key strategies for realizing this approach

— identifying potentially skippable instructions from user annotations in SW, obtaining

similarity information for future load values from the data cache line currently being accessed,

and a mechanism for saving & reusing results of potentially skippable instructions. As

a further optimization, the thesis proposes to replace multiple loop iterations that produce

similar results with a specialized instruction sequence. The proposed extensions are modeled

on the gem5 architectural simulator, achieving speedup of 1.81× on average across 6 machine-

learning benchmarks running on a microcontroller-class in-order processor.

Data Subsetting. Finally, the thesis explores a data-centric approach to approximate

computing called data subsetting that shifts the focus of approximation from computations

to data. The key idea is to restrict the application’s data accesses to a subset of its el-

ements so that the overall memory footprint becomes smaller. Constraining the accesses

to lie within a smaller memory footprint renders the memory accesses more cache-friendly,

thereby improving performance. This thesis presents a C++ data structure template called

SubsettableT ensor — which embodies mechanisms to define an accessible subset of data and

redirect accesses away from non-subset elements — for realizing data subsetting in SW. The

proposed concept is evaluated on parallel SW implementations of 7 machine learning appli-

cations on a 48-core AMD Opteron server. Experimental results indicate that 1.33×–4.44×

performance improvement can be achieved within a <0.5% loss in classification accuracy.

14

In summary, the proposed approximation techniques have shown significant efficiency

improvements for various machine learning applications in circuits, architecture and SW,

underscoring their promise as designer-friendly approaches to approximate computing.

15

1. INTRODUCTION

The development and wide-spread adoption of various computing devices that generate data,

from mobile phones to Internet-of-Things (IoT) devices, have led to the emergence of ap-

plications that analyze and process large amounts of data to produce human-interpretable

outputs. These emerging applications which include multimedia processing, machine learn-

ing, search and data analytics among others pervade into our everyday lives. While the

evolution of these emerging applications demands more and more computing power to pro-

duce better-quality outputs within a reasonable time, the efficiency improvement due to

technology scaling has been diminishing [1]. The challenge of this efficiency gap has forced

both academia and industry to explore new directions for computing system performance

and energy efficiency improvement.

Meanwhile, these prevalent emerging workloads possess a unique characteristic called in-

trinsic application resilience which enables them to produce an acceptable-quality output —

a degradation in output quality which the user doesn’t notice or can tolerate — despite their

underlying computations being performed in an approximate manner. Intrinsic application

resilience is associated with certain attributes of these applications, such as:

• A golden output doesn’t exist, as is often the case in web search.

• Self-healing nature of iterative algorithms where an error introduced in one iteration

eventually gets cancelled out during subsequent iterations.

• The fact that these applications — including Deep Neural Networks (DNNs) — are

built to be robust to noisy and redundant real-world inputs.

• Limited capabilities of human perception, which allows some quality degradation with-

out the user noticing it.

From the user’s perspective, the expected result of these applications is not a unique

golden numerical answer. Rather, the user expects a result of sufficient quality — in other

words, an output that is “good-enough” — as depicted in Fig. 1.1 . The fact that the users of

these applications are satisfied with good-enough results, along with the intrinsic application

16

resilience possessed by these applications, has led to an emerging design paradigm called

approximate computing.

Recognition

Mining

Video/Graphics Gaming

Search

“Good enough” answers OK!

Figure 1.1. Modern applications producing good-enough answers

1.1 Approximate Computing

Approximate computing has risen as a new design paradigm that seeks the source of

efficiency from designing SW/HW computing platforms in a way that they require just the

minimum amount of effort (in terms of time, energy, or area) in order to produce “good

enough” results. Approximate computing exploits intrinsic application resilience [2] by in-

tentionally relaxing the notion of “exactness” or “correctness” on selected computations so

that they are executed in a more efficient manner. Fig. 1.2 shows how approximate com-

puting can be integrated into the traditional design process, which maps the functional

specification of an application into software and the underlying hardware across multiple

layers of design abstraction (e.g., architecture, circuit and layout). While the traditional

design process requires exact Boolean equivalence between the implementations in different

layers of abstraction, approximate computing allows relaxation of the exactness requirement

17

so that a more efficient implementation is possible as long as the final output quality meets

the given quality specification.

ImplementationGolden
Implementation

Approximate
Implementation

Software Architecture Circuit Layout

Exact
Equivalence

Relaxed
Equivalence

Application

Quality
Specifications

Quality
Met?

Figure 1.2. Approximate computing across the layers of abstraction [3]

Over the last decade, approximate computing has gained a significant interest among the

research community due to the ample opportunity for efficiency improvement it provides.

As a result, a large volume of approximate computing techniques spanning circuits, archi-

tecture, and software have been proposed. Despite the surge of approximation techniques,

approximate computing is yet to be incorporated into mainstream HW/SW design practices.

This thesis finds two main disadvantages of most existing approximate computing techniques

that hinder them from being widely adopted:

Deviation from the conventional design flow. In case of HW design, most prior efforts

have focused on approximation at the circuit or logic level of abstraction [4]–[15]. However,

Register Transfer Level (RTL) is the most common layer of abstraction at which HW designs

are specified and application-level output quality is addressed. In case of architecture design,

many previous efforts have targeted specialized architectures such as domain-specific pro-

cessors [16], GPUs [17], or custom accelerators [18], [19]. However, from the SW designer’s

point of view, utilizing specialized architectures itself requires a significant transformation

18

of the existing code with architectural knowledge. In case of SW design, many existing

techniques require specialized HW and custom compilers making them difficult to adopt in

practice [20]–[23].

Lack of runtime approximation controllability by the user. The user may often

require the ability to take control over the degree or extent of approximation during runtime.

However, most HW techniques hardwire approximations to the circuit implementation so

that the degree of approximation is fixed [4]–[14]. SW techniques that rely on this type of

underlying approximate HW also lack runtime controllability [20]–[23].

1.2 Thesis Contributions

The contribution of this thesis lies in exploring approximate computing techniques across

different layers of abstraction that overcome the aforementioned limitations of prior works.

Specifically, this thesis focuses on developing techniques that can be applied with minimal

change to the conventional design flow, and are runtime configurable by the user with minimal

overhead. This thesis suggests that re-thinking approximate computing from this perspective

has a potential to take it closer to the mainstream. Towards this end, the thesis proposes

three novel approximate computing techniques — clock overgating, which targets HW design

at the Register Transfer Level (RTL), value similarity extensions, which enhances general-

purpose processors with a set of microarchitectural and ISA extensions, and data subsetting,

which targets SW design for commodity platforms.

1.2.1 Approximate Circuit Design using Clock Overgating

Clock overgating extends the concept of conventional clock gating into an approximate

computing context. Clock gating is a low-power technique that turns off the clock to a

Flip-Flop (FF) when the FF state remains unchanged. It is widely used in industry design

practices and supported by most EDA tools which detect clock-enable conditions from the

RTL code. While the traditional clock gating condition is confined in order to ensure the

identical circuit functionality, clock overgating relaxes the gating condition to the point where

the circuit functionality can be affected by the erroneous FF state. This saves switching

19

power in the clock tree, the target FF, and its downstream combinational logic at the cost

of a possible quality loss in case the erroneous FF state propagates to the circuit output.

The proposed technique enables approximation by modifying the clock gating conditions

in the circuit’s RTL description. This allows seamless integration into the existing design

flow which typically starts from the RTL. In addition, approximation can be controlled in

runtime by selecting the gating condition from multiple candidates. This thesis provides

a systematic methodology to identify an energy-efficient clock overgating configuration for

any given circuit and quality constraint is developed. The main challenge in identifying

an optimal clock overgating configuration is that the number of candidate configurations

to be evaluated grow exponentially with respect to the circuit size. In order to address

this challenge, 3 key strategies for efficiently pruning the large space of possible overgating

configurations are proposed — significance-based overgating, grouping FFs into overgating

islands, and utilizing internal signals of the circuit as triggers for overgating. For a suite of

6 machine learning accelerators, energy benefits of 1.36× on average is achieved at the cost

of a negligible (<0.5%) loss in classification accuracy.

1.2.2 Value Similarity Extensions for Approximate Computing in General-Purpose
Processors

VSX (Value Similarity eXtensions for general-purpose processors) provides a set of mi-

croarchitectural and ISA extensions that exploits value similarity present in data structures

for performance improvement. The key idea behind VSX is to dynamically detect and skip

instructions that produce similar results to a previous one. In order to realize this approach,

VSX must be able to identify potentially skippable instructions, dynamically detect an in-

struction result’s similarity before execution, and approximate skipped instruction’s result

with a previous one. Towards this end, this thesis develops 3 key strategies for VSX — iden-

tifying potentially skippable instructions from user annotation in SW, obtaining similarity

information for future load values from the data cache line currently being accessed, and

providing a mechanism for saving & reusing results of potentially skippable instructions. As

a further optimization, this thesis proposes iteration fast-forwarding, wherein multiple loop

iterations producing similar results are substituted by a specialized sequence of instructions.

20

This thesis models VSX microarchitectural extensions on the gem5 simulator and runs 6

machine-learning benchmarks with real-word datasets on a low-end in-order processor plat-

form. Speedups of 1.19×-3.84× (1.81× on average) are achieved across the benchmarks

within a tight output quality constraint (<0.5%) while incurring a small HW area overhead

(2.13%).

1.2.3 Data Subsetting: A Data-Centric Approach to Approximate Computing

The third body of work in this thesis shifts the focus of approximation from computa-

tions to data, and proposes a data-centric approach to approximate computing called data

subsetting. The key idea is to modulate the application’s data accesses in a manner that

reduces off-chip traffic. Specifically, all accesses to data elements outside the selected subset

are redirected to a subset element so that the overall memory footprint is reduced. Con-

straining the accesses to lie within a smaller memory footprint renders the memory accesses

more cache-friendly, thereby improving performance. This approach allows approximations

(access redirections) to be applied to the target SW code which eliminates the need for an

approximate HW and a custom compiler. In addition, the degree of approximation can

be dynamically reconfigured by adjusting the size and the redirection policy. This thesis

presents a C++ data structure template called SubsettableT ensor which can be used for

realizing data subsetting in SW design. SubsettableT ensor embodies mechanisms to define

an accessible subset of data and redirect accesses to non-subset elements. As a further opti-

mization, the thesis observes that data subsetting may cause some computations to become

redundant and propose a mechanism for application software to identify and eliminate such

computations. The proposed technique is evaluated by applying SubsettableT ensor to par-

allel SW implementations of 7 machine learning applications on a 48-core AMD Opteron

server. Experimental results indicate that 1.33×–4.44× performance improvement can be

achieved within a <0.5% loss in classification accuracy.

21

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents a brief overview of the

prior efforts in approximate computing classified into their target layers of abstraction. Chap-

ter 3 describes the concept of clock overgating and the proposed systematic methodology for

design approximate circuits using clock overgating. Chapter 4 describes how VSX exploits

value similarity for performance improvement and the details of the micro-architectural and

ISA extensions. Chapter 5 describes the concept of data subsetting and how it is applied to

existing SW code for real-world applications. Finally, Chapter 6 concludes this thesis.

22

2. RELATED WORK

Approximating computing is a vibrant area of research and prior efforts have proposed

approximation techniques spanning the different layers of the computing stack [1], [24], [25].

This chapter presents an overview of such efforts and highlight the key distinguishing features

of the thesis.

2.1 Circuit Design Techniques for Approximate Computing

Research on approximate circuits began with manual designs of basic arithmetic compo-

nents such as adders [4]–[8], [26]–[31] and multipliers [8], [9]. Approximate design techniques

such as voltage overscaling [10], [11], [32]–[34], truncating carry chains [6], and input operand

partitioning [7] were proposed in this context. Modifying the Boolean function realized by

the circuit to reduce logic complexity was proposed as an approach to approximate circuit

design in [12]. Subsequent efforts broadened this concept to the approximate design of arbi-

trary circuits using techniques such as redundancy propagation [13], path pruning [14], and

don’t care based simplification [15], substitution [35], logic isolation [36] among others. [37]

provides error modeling and analysis on the approximate circuits. All of the above efforts

operate at the logic level of abstraction, and target the design of approximate combinational

circuits. How such approximate circuit blocks should be composed to form larger designs re-

mains an open challenge. Chapter 3 proposes an approximate circuit design methodology at

RTL, which is a higher level of abstraction targeting larger circuits with both combinational

and sequential logic.

2.2 Architectures for Approximate Computing

At the architecture level, research efforts build approximate architectures both in the

context of application-specific designs and programmable processors. Means of approxima-

tion came from various sources as operating at sub-threshold voltage [38], stochastic pro-

cessing [39], underlying approximate HW [20], [22], [40]–[60] or quality-configurable vector

processing unit [16] where compiler support is provided for mapping variables/operations in

23

SW to their corresponding approximate HW storage/computation components. While the

majority of existing techniques target only the execution pipeline stage, Chapter 4 proposes

a technique which increases the efficiency of instruction fetch and decode as well.

2.3 Software Techniques for Approximate Computing

The majority of SW works in approximate computing have focused on providing pro-

gramming language/compiler support for approximating internal computations/functions,

that are categorized as compute-centric approaches. One branch of compute-centric ap-

proach maps computations/functions onto approximate HW[20]–[22], [41], [61]–[66], neu-

ral network[23], user-defined approximate loops/functions[67], approximate kernels for com-

monly used data parallel computation patterns[68], piecewise polynomial approximation of

the target function[69], or a computational model which increases the output quality over

time[70]. Another branch of compute-centric approach judiciously skips loop iterations[71],

[72], atomic instructions[73], tasks[74] or critical sections[75]. In contrast to the aforemen-

tioned compute-centric approaches, Chapter 5 proposes a data-centric approach to AxC.

As opposed to approximating computations, Chapter 5 targets modulating data structure

accesses in a manner that reduces memory bandwidth, thereby speeding-up applications

executed on memory-bound platforms.

Another category of approximate SW work targets multi-threaded programs and achieve

approximation by relaxing dependencies or synchronization constraints. [76] immediately

terminates the current phase on all processors when the majority of them are in idle condition.

[77] forces the threads in a SIMD execution to take the same control path or read from the

same memory block. [75], [78] proposes a parallelizing compiler and runtime which provides

control knobs for relaxing inter-loop dependencies and synchronizations. While these works

are orthogonal to the approach proposed in Chapter 5 , the proposed approach for mitigating

memory bottleneck is especially effective in multi-threaded environments, thus can be used

in complementary to each other.

24

3. APPROXIMATE CIRCUIT DESIGN USING CLOCK

OVERGATING

3.1 Introduction

Many prevalent and emerging application domains such as multimedia, recognition, min-

ing, data analytics, search and vision among others, possess the characteristic of intrinsic

application resilience, which enables them to produce outputs of acceptable quality, despite

approximations to some of their computations. Intrinsic application resilience arises from

several factors: algorithms are designed to be robust to noise, input data contains redundan-

cies, applications only need to produce an acceptable output rather than a unique golden

result, etc. [24], [79]. Approximate computing leverages intrinsic application resilience and

relaxes the need for strict correctness in the execution of computations to improve energy

and/or performance.

Over the last decade, several research efforts have developed techniques for approximate

computing in both software [24], [71] and hardware [4]–[15], [80]–[83]. Approximate hardware

may be realized by operating circuits under overscaled conditions [10], [11] (e.g., lowering the

voltage to a point where timing errors occur), or by designing hardware that contains fewer

transistors or gates but deviates to a limited extent from the specification [4]–[9], [12]–[15],

[80], [81]. A vast majority of approximate hardware design techniques are at the circuit or

logic levels of abstraction. It is desirable to explore approximate design at the higher levels

of abstraction, since from the designer’s point of view, quality is most naturally defined

and evaluated at the application level. For example, it is much more natural to talk about

classification accuracy or image quality than to specify accuracy or error constraints at the

outputs of individual adders or multipliers within a circuit.

The Register Transfer Level (RTL) remains the most common level of abstraction at

which hardware designs are specified in the industry. In addition to inherent advantages in

terms of faster simulation and analysis times, RTL descriptions contain higher-level semantic

information (data types, bit positions, operators, etc.) that can be leveraged in the process

of approximation.

25

Very few research efforts have previously investigated approximate computing at the

RTL. Notably, Axilog [83] proposes Verilog HDL extensions that designers can use to specify

which signals and operations in the RTL code can be subject to approximations. In con-

trast, this chapter’s objective is to develop a new approximate design technique, and hence

Axilog [83] is complementary to this chapter’s proposal. Another effort, ABACUS [82],

generates approximate designs from behavioral/RTL descriptions by applying pre-specified

approximation transformations to individual operations or operands. A key drawback of this

approach is that the approximations are fixed at design time and hardwired into the circuit

implementation. This is an issue in practice, since the same hardware may be used to execute

computations that can tolerate different levels of approximation, or the application context

may dictate the use of different accuracies for the same computation. These considerations

strongly suggest that the approximations employed should be reconfigurable at runtime.

This chapter proposes a new approximation technique called clock overgating for the

design of approximate hardware. Clock gating is one of the most widely adopted low-power

techniques, in which clock signals to sequential elements (flip-flops or latches) in the circuit

are suppressed to reduce power, provided that doing so preserves the exact functionality of

the circuit. This chapter extends this concept to propose clock overgating, where the clock

signal to a Flip-Flop (FF) is gated even when doing so may affect the circuit outputs. Clock

overgating may result in incorrect outputs when an FF is supposed to change state but

incorrectly retains its previous state, and this error propagates to the circuit outputs. In

return, switching power is saved in the clock tree, the FF itself, and the fanout logic cone of

the FF. Note that these power savings are over-and-above the savings due to conventional

clock gating and other low-power techniques.

Clock overgating has the following desirable properties: (i) It is easily reconfigurable,

i.e., the clock overgating signal to each FF can be modulated dynamically in a fine-grained

manner, (ii) it preserves the structure of the circuit and is hence minimally-intrusive, and

(iii) it leverages the wide support for clock gating that is present in commercial EDA tools

and design flows.

Given the RTL description of a circuit, an input testbench and an output quality con-

straint, this chapter proposes a systematic methodology to identify where (in which FFs)

26

and when (in which clock cycles) to perform overgating. The search space for overgating,

defined by all possible FFs and all possible execution cycles, is extremely large (e.g., 210000

for a circuit with 100 FFs that operates for 100 cycles), and is even more challenging in cases

when designs take a variable number of cycles to complete execution. Rather than explicitly

search through this prohibitively large space, the proposed methodology utilizes internal sig-

nals from the circuit to trigger clock overgating. Doing so restricts the search space, and also

has the added benefit of incurring minimal overhead in the logic that realizes the overgating

conditions. Further, FFs in a circuit are grouped into clock overgating islands based on their

location in the circuit and how they impact the overall application output. FFs in each over-

gating island are constrained to have the same overgating condition, greatly reducing the

search space without significantly affecting the energy savings from overgating. Then a gra-

dient descent search is performed to identify the set of clock overgating island–trigger signal

combinations that maximize the improvement in energy for the specified quality constraint.

In summary, the key contributions of this work are as follows:

• This chapter proposes clock overgating, a new technique to design approximate circuits

at the RTL, in which sequential elements in the circuit are clock gated even when doing

so may affect the circuit outputs.

• This chapter develops a systematic methodology to determine the clock overgating

conditions for sequential elements in any given circuit. The proposed methodology

groups sequential elements into overgating islands and uses internal circuit signals as

overgating triggers to efficiently prune the space of possible overgating configurations.

• This chapter applies clock overgating to develop approximate versions of accelerators

for 6 machine learning applications, and demonstrate 1.36× average improvement in

energy for <0.5% loss in quality at the application-level.

3.2 Comparison to Related Work

Section 2.1 presented various research efforts on approximate circuit design and empha-

sized their limitations where the approximation target is restricted to combinational circuits

27

and performs approximation at the logic level of abstraction. In contrast to the aforemen-

tioned efforts, this chapter focuses on a higher level of abstraction, viz. RTL, where very few

efforts have explored approximate computing. Axilog [83] provides Verilog HDL extensions,

which can be used to specify and identify portions of the design that are safe to approximate.

Axilog is complementary to this work as this work’s objective is to develop new approximate

design techniques that can be applied to the identified parts. ABACUS [82] applies prede-

fined approximate transformations (e.g., scaling bitwidth, strength reduction) to operators

in the RTL description. However, a key limitation of [82] is that the approximations are

hardwired into the circuit implementation, and cannot be changed at runtime. In practice,

hardware needs to be re-used in different application contexts, operate on different inputs,

or execute different operations within an application; all these scenarios require the ability

to modulate the degree of approximation at runtime. Clock overgating is inherently quality

configurable, since one can enable overgating in different subsets of FFs to realize distinct

energy vs. quality tradeoffs. Furthermore, it has other desirable attributes such as pre-

serving the overall structure of the circuit and can be easily integrated into existing design

flows. Finally, recent work has explored High-Level Synthesis (HLS) of approximate circuits

through precision scaling [81]. Notwithstanding significant advances in HLS, it is noted that

hardware is often still designed at the RTL in the industry, hence this chapter focuses on the

complementary problem of approximating any given RTL design in a quality-configurable

manner.

3.3 Background

3.3.1 Power Dissipation in Sequential Circuits

The average power dissipated in a sequential circuit can be broken down into is major

components as:

Paverage = Pleakage + Pdynamic (3.1)

Pleakage mainly comes from sub-threshold currents and they contribute to the average

power dissipation even when there are no switching activities. The portion of Pleakage with

28

respect to Paverage increases as the transistor size becomes smaller. On the other hand,

Pdynamic is caused by switching activities of each node, where the load capacitance needs to

be charged. Pdynamic can be represented as:

Pdynamic = α · CL · VDD
2 · f (3.2)

Where α being the fraction of the circuit that is switching switching, ·CL being the load

capacitance, VDD being the supply voltage, and f being the operation frequency. The part

of a circuit where Pdynamic becomes dominant is the clock tree, where the input clock is

constantly switching while the circuit is powered on.

3.3.2 Clock Gating

D Q

FF

D Q

FF

D Q

FF

CLK
CLK
EN EN D Q

CLK

(a) (b) (c)

Figure 3.1. Different types of clock gating logic

As mentioned in Section 3.3.1 , clock power occupies a significant fraction of the total

dynamic power dissipation since the clock is fed to every circuit block where sequential logic

elements (e.g., flip-flops) are present. Clock gating is a wide-spread lower-power techinique

which targets clock power. The key concept of clock gating is to turn off the clock to a

Flip-Flop (FF) when the FF state does not change. Gating conditions can be explicitly

specified by the user (explicit load-enable condition), or can be derived by comparing the

next cycle’s input to the current state (XOR-based approach). Fig. 3.1 shows different types

29

of clock gating logics which are widely used. In contrast to Fig. 3.1 (a) where the CLK

signal is directly fed to the target FF, Fig. 3.1 (b) gates CLK with an EN signal and an

AND gate so that the input clock to the FF doesn’t switch when EN is low. Fig. 3.1 (c) is an

advanced type of clock gating logic (latch-based) where glitches to EN does not affect the

functionality of the target FF. Clock overgating technique presented in Chapter 3 extends

the conventional duration of EN so that the clock remains gated for a longer amount of

time while the FF state becomes erroneous. The selection of EN for each FF is judiciously

made through a systematic methodology so that each FF is gated longer while minimizing

the effect on the final output.

3.4 Design Approach

Given a hardware design described at the RTL and a quality constraint specified at its out-

puts, this chapter’s objective is to design an approximate version through clock overgating

that is as energy-efficient as possible, while meeting the specified quality constraints. This

section describes the basic concepts behind clock overgating, the challenges involved in ap-

plying it to the design of approximate circuits, and this chapter’s approach to addressing

these challenges.

3.4.1 Clock Overgating: Concept

Clock gating is a popular low-power design technique that is widely used to reduce

dynamic power dissipation. In clock gating, additional logic is embedded in the clock tree of

the circuit, which suppresses the clock signal transitions from reaching one or more sequential

elements (FFs or latches) in the circuit under certain conditions. Since the clock signal is

suppressed, the target FFs cannot switch states and therefore switching power is saved in the

clock tree leading to the FFs, the FFs themselves and their fanout logic cones. To preserve

functionality, clock gating is performed only when an FF’s state is guaranteed not to switch,

or if it can be proven that the circuit’s outputs are insensitive to the FF’s inputs in the gated

execution cycles.

30

FF

FF

FF

FF

FF

CLK

Overgating

signals

Clock tree

Overgated FFs

Primary

Inputs
Primary

Outputs

Power benefits

Downstream logic

Error propagation

Overgating

logic

C
lo

ck
 t

re
e

Figure 3.2. Clock overgating concept

This chapter proposes clock overgating, whose concept is illustrated in Fig. 3.2 . In clock

overgating, selected FFs in the circuit are gated even when doing so may result in an incorrect

circuit output. In other words, local errors are introduced in the circuit due to incorrect FF

states, and they may propagate to the circuit output, potentially causing the output quality

to degrade. In return, since FFs are being gated for additional execution cycles beyond

conventional clock gating, it results in improved dynamic power and energy. Thus, clock

overgating presents designers with a means to tradeoff energy vs. quality. The key question

that arises, which will be discussed next, is how to utilize clock overgating to achieve the

best energy benefit for a given output quality?

3.4.2 Clock Overgating: Design Space

Identifying a clock overgating configuration involves defining: (i) which FFs in the circuit

should be overgated, and (ii) when (during which clock cycles) the selected FFs should be

overgated, or in other words, what conditions should be used to trigger overgating for the

selected FFs. This chapter refers to the FFs that are candidates for overgating as Clock

Overgating Targets (COTs), and the signals used to trigger clock overgating in them as

Clock Overgating Enables (COEs). Fig. 3.3 shows the design space for clock overgating.

31

If M is the number of FFs in a circuit, which operates for N cycles, then each FF can

be either gated or active in each cycle, leading to a total of 2M∗N overgating configurations.

Clearly, a brute force search of all possible overgating configurations is infeasible for practical

designs. Therefore, efficient heuristics are key to exploring this very large design space and to

identifying the clock overgating configuration that is most energy-efficient for a given output

quality constraint (QC).

FF1
PIs

POs

FF2

CLK

CE1

CE2

FFMCEM

0 1 0 1
0 0 1 0

1 1 0 1…

…
…

…

⋮ ⋮ ⋮ ⋮ ⋮
⋮

…

t1 t2 t3 tN…

Quality

Energy QC

Optimal
configuration

Example
configuration

Original configuration
(maximum quality)

2MN possible
configurations

Figure 3.3. Design space of clock overgating configurations

To address the above challenge, this chapter adopts 3 strategies that leverage the se-

mantic information available at the RTL to significantly reduce the number of COTs as well

as the number of possible COEs for each COT. Although these strategies do not guaran-

tee optimality, i.e., they may result in a suboptimal overgating configuration, this chapter’s

experimental results demonstrate that they work well in practice and yield significant im-

provements in energy even for very tight quality constraints.

Significance constrained overgating: In general, each FF in the circuit can be regarded

as a COT and overgated independently. However, in practice, multiple FFs are semantically

grouped into registers that together store/represent multi-bit data. This chapter extracts

this information from the RTL description of the circuit and exploits the bit significance

of individual FFs in their respective registers to constrain the sequence in which they are

overgated. In typical circuits, errors in the LSBs of registers impact the output quality by

32

an exponentially smaller amount relative to the MSBs. Further, the LSBs typically have the

most switching activity and fan out to larger cones of logic; hence, they can lead to higher

energy savings when overgated. Therefore, identification of COEs for FFs in a given register

is proceeded in the order of their bit significance, i.e., COEs for the LSBs are identified first

before considering the MSBs for overgating. In summary, the first strategy prunes the search

space by associating FFs with registers specified at the RTL, and constraining the manner

in which they are overgated based on bit-significance.

B

C

A

X

Y

D

X = f(A,B,C)
Y = g(C,D)

Group
A,B,X

CLK
COE

FF X overgated using COE

B

C

A

X

Y

D

CLK
COE

FFs X,A,B overgated using COE

! QFF-X = QFF-XAB
! EFF-X > EFF-XAB

Energy
benefit

Group
A,B,C,X

B

C

A

X

Y

D

CLK
COE

FFs X,A,B,C overgated using COE

" QFF-X = QFF-XAB > QFF-XABC
! EFF-X > EFF-XAB > EFF-XABC

Energy
benefit

Error

Figure 3.4. Functional grouping of FFs

Functional grouping of FFs: In this strategy, this chapter reduces the number of COTs by

grouping multiple FFs into overgating islands, and overgating all FFs in an island together.

This is achieved by leveraging the functional relationship between FFs that can be easily

identified at the RTL. Fig. 3.4 illustrates the opportunity for FF grouping. Consider a

scenario where clock overgating in FF X is triggered by signal COE. This enables energy

savings in X and in its downstream logic. Now, as shown in Fig. 3.4 , X is functionally

related to FFs A, B and C i.e. X changes state only in response to a change in A, B or C.

Also, note that FFs A and B exclusively fan out to X, whereas C also fans out to other FFs

in the circuit. In this case, the key observation is that when COE is used to clock overgate

FFs A and B in the cycle before X is overgated, it results in no additional quality loss at

the circuit outputs, as any errors introduced at A and B propagate only to X, which itself

33

is overgated in the next cycle. However, this results in additional energy savings in the FFs

A and B, and in the combinational logic connecting FFs A and B with X. Therefore, this

chapter groups FFs X, A and B into a single overgating island, and uses the same signal

(COE) to overgate all of them. Note that when grouped, the overgating signal to X is

delayed by one clock cycle, as the values in A and B propagate to X only after a cycle.

The above strategy can be extended to include an FF in a group even when some of

its fanouts lie outside the group. In this case, grouping may result in additional quality

degradation, as errors introduced in the FFs due to overgating can propagate to the circuit

outputs through its fanouts that lie outside the island. In the example shown in Fig. 3.4 , if

C is grouped along with X, A and B, the error introduced in C impacts its fanouts other

than X, leading to an additional degradation in quality. This additional quality degradation

needs to be compared against the net energy benefits to decide if it is favorable to add an

FF to an overgating island. A detailed description of how FFs are grouped into overgating

islands is presented in Section 3.5 .

Using internal signals as COEs: The final strategy addresses the large space of possible

COE candidates that could be used to trigger overgating in each COT. Since logic to generate

COEs needs to be added to the circuit, a key constraint in picking COEs is that they should

incur low overhead. To reduce the search space, while also minimizing the energy overheads

in the logic that generates COEs, this chapter proposes to use internal signals already present

within the circuit as COEs. In addition, to ensure that the timing constraints on the gating

signal are satisfied, and that no glitches are introduced on the gated clock signals, this chapter

further restricts COEs to be the outputs of FFs in the circuit and their complements. While

this restriction greatly prunes the design space, this chapter’s experiments suggest that it

still enables a rich and favorable energy-quality tradeoff. This chapter suggests that in

practice, circuits contain control states such as address counters, FSM state variables etc.

that naturally predict which registers in the circuit are active and likely to affect the output

the most.

In summary, this chapter proposes clock overgating, an RTL approximation technique

in which clock signals to FFs in a circuit are gated even when the circuit outputs may be

34

affected, thereby resulting in a tradeoff between energy and output quality. This chapter

also proposes three key strategies to prune the space of possible overgating configurations,

enabling clock overgating to be applied to any given input circuit while meeting the desired

quality constraint.

3.5 Design Methodology

This section presents a systematic methodology for clock overgating that realizes the

design approach described in Section 3.4 .

3.5.1 Approximate Design using Clock Overgating

Algorithm 1 Approximate design using clock overgating
Input: Original circuit Cktorig,

Application dataset AppData, Quality constraint QC
Output: Approximate circuit Cktapp

1: COTList = form_COTs(Cktorig)
2: COTsubList = select COTs in LSB position from COTList

3: COEList = FFs and their complements in Cktorig
4: Cktopt = Cktorig with COE=0 ∀ COT s in COTList

5: do
6: Cktapp = Cktopt; FOMopt = 0
7: COT -COEList={<T ,E> | T∈COTsubList, E∈COEList}
8: for each <COT ,COE> in COT -COEList do
9: Ckttmp=assign COE as ovg. signal for COT in Cktapp

10: ∆E = Eorig - get_energy(Ckttmp,AppData)
11: ∆Q = Qorig - get_quality(Ckttmp,AppData)
12: FOM = ∆E/∆Q
13: if (∆E>0 and ∆Q<QC and FOM>FOMopt) then
14: COTopt = COT ; COEopt = COE
15: Cktopt = Ckttmp; FOMopt = FOM
16: end if
17: end for
18: remove COTopt from COTsubList

19: COTsubList = add COT containing next significant bit
of COTopt from COTList

20: while (Cktapp 6= Cktopt)
21: return Cktapp

35

Algorithm 1 shows the pseudocode of the proposed methodology. Given the original cir-

cuit (Cktorig), an input dataset (AppData), and a constraint on the output quality (QC), the

algorithm produces an energy-efficient approximate version (Cktapp) that is clock overgated

and satisfies the specified quality constraint. First, a list of possible clock overgating targets

(COTList) and clock overgating enables (COEList) are formed by employing the different

design space pruning strategies described in Section 3.4 (lines 1-3). To this end, the FF

grouping strategy is first used to form the COTList (line 1). The details of this process are

explained in Algorithm 2 . Next, the significance constrained overgating strategy is used to

further reduce the list of COTs (resulting in COTsubList). In this case, only the COTs that are

in the least significant bit positions in their corresponding registers are chosen from COTList,

and added to COTsubList (line 2). Next, since only FF outputs and their complements are

considered as possible clock gating enables, COEList is initialized with all FFs and their

complements in the circuit (line 3).

Despite significantly reducing the design space using the various strategies, trying out

all possible COT-COE combinations becomes computationally expensive for larger circuits.

Therefore, this chapter adopts a gradient descent approach (lines 5-20), where in each itera-

tion the COT-COE pair that yields the best energy vs. quality tradeoff without violating QC

is selected. To this end, this chapter first initializes the COE for each COT to logic 0, which

corresponds to no overgating (line 4). Then, this chapter forms a list of all possible COT-

COE pairs (COT -COEList) by pairing each COT in COTsubList with each COE in COEList

(line 7). Next, for each COT-COE pair this chapter forms a candidate overgated circuit by

assigning the COE under consideration as the overgating signal for the COT (line 9). Sub-

sequently, this chapter evaluates the energy benefits (line 10) and the corresponding quality

loss (line 11). Note that COT-COE pairs that cause unacceptable quality degradation are

captured during quality evaluation and filtered out from further COT -COEList formations.

This chapter then computes a figure of merit (FOM) for each COT-COE pair, which is given

by the ratio of energy saved to quality lost (line 12). This chapter identifies the COT-COE

pair that has the best FOM (lines 13-16) and updates the approximate circuit by “commit-

ting” the COE to the COT (line 15). The committed COT is removed from COTsubList (line

36

18), and the COT containing the next significant bit position is added to COTsubList (line

19). This process is repeated until no COT-COE pair yields further improvements in energy

without violating QC (line 20), at which point the algorithm terminates and returns the

approximate circuit (line 21).

3.5.2 Identifying Clock Overgating Candidates

Algorithm 2 Identify overgating candidates
Input: Original circuit Ckt, Application dataset AppData
Output: Clock overgating candidate list: COTList

1: COTList = FFs in Ckt
2: G = create_FF_connection_graph(Ckt)
3: W = get_RTL_simulation_waveform(Ckt,AppData)
4: TSC(FF1,FF2): temporal correlation between FF1&FF2 in W

5: do
6: for each COT in COTList do
7: for each COTIn in fan-in(COT ,G) do
8: for each COTIn−out in fan-out(COTIn,G) do
9: TSCtmp = TSC(COTIn,COTIn−out)

10: ∆Elocal += TSCtmp × fan-out-size(COTIn,COTIn−out)
11: if (COTIn−out 6= COT) then ∆Qlocal += TSCtmp

12: end for
13: if (∆Elocal/∆Qlocal > η) then
14: COTList = merge(COT ,COTIn)
15: end if
16: end for
17: end for
18: while (COTList modified?)
19: return COTList

Algorithm 2 presents the methodology used to obtain the list of clock overgating candi-

dates in line 1 of Algorithm 1 . Algorithm 2 essentially implements the FF grouping strategy

presented in Section 3.4 . First, COTList is initialized to contain all the FFs in Ckt (line 1).

Then COTList is reduced by grouping FFs whose switching activities are highly correlated

(lines 2-18). To this end, a FF connection graph (G), whose vertices represent the FFs and

whose edges represent a combinational path between two FFs, is constructed from the RTL

code (line 2). Then, the circuit RTL is simulated with the given dataset, and the switching

37

activity of each FF is recorded (line 3). Subsequently, the degree of 1-cycle temporal switch-

ing correlation (TSC) between FF pairs that have an edge connecting them in G is computed

(line 4). This chapter denotes two FFs to be temporally correlated if they are likely to switch

in successive cycles. Next, for each COT and its fan-in (COTIn), this chapter computes the

local energy savings expected in all the fan-outs of COTIn if it is overgated along with COT

(line 10). Similarly, this chapter evaluates the local errors expected in the fan-outs of COTIn

that are not contained within COT , assuming that COTIn is overgated along with COT

(line 11). This chapter merges COTIn with COT if the ratio of the local energy savings

to the local error induced is greater than a threshold η (lines 13-15). In this chapter’s im-

plementation, the value of η is determined empirically as discussed in Section 3.7.3 . This

process is repeated until no pair of candidates in COTList can be merged (line 18), and the

final COTList is produced (line 19).

3.6 Experimental Setup

This section describes the experimental setup used to evaluate clock overgating.

3.6.1 Benchmarks

The benchmark circuits consist of algorithm-specific hardware accelerators for 6 popular

machine learning applications listed in Table 5.1 . Classification accuracy, or the fraction of

application inputs correctly classified, was used as the measure of output quality for all the

benchmarks. Separate datasets were used for training and testing/validation, and the same

testing dataset was used to evaluate the original and approximate circuits.

3.6.2 Quality and Power Evaluation

The design methodology and heuristics described in Section 3.5 were implemented as a

custom script that executes the following design flow. First, a custom RTL parser extracts

necessary information from the input RTL code and produces an approximate version. The

output quality (classification accuracy) of the approximate circuit is obtained by RTL sim-

ulation with the testing dataset using Mentor Graphics ModelSim. RTL simulation also

38

Table 3.1. Benchmark applications
Algorithm Application Dataset FFs/Gates
GLVQ Eye detection (EYE) Image set from

NEC labs
183 / 3100

KNN Optical digit classification (OPT) OCR digits 344 / 4128
Webpage classification (W5A) LIBSVM 422 / 7348

SVM Text classification (TEXT) Reuters 480 / 27760

ANN Digit classification (DIGT) MNIST 398 / 29833
Face detection (FACE) YUV faces 394 / 31428

produces the switching activity information that is used for power estimation. Power is

estimated by synthesizing the approximate circuit to IBM 45nm technology using Synop-

sys Design Compiler, and estimating the circuit power including the clock tree power using

Synopsys PrimeTime. This chapter notes that the most aggressive optimization options

available by Synopsys Design Compiler (conventional clock gating, gate sizing, use of low

leakage cells, etc.) were applied to create well-optimized baselines for comparison.

3.7 Experimental Results

This section presents the results of various experiments that demonstrate the benefits of

clock overgating and underscores the effectiveness of the proposed strategies in exploring the

large design space of overgating configurations.

3.7.1 Energy-Quality Tradeoff

Fig. 3.5 shows the energy reduction obtained using clock overgating for various output

quality constraints. Note that output quality constraints are expressed in terms of classifi-

cation accuracy degradation with reference to the baseline, and the energy consumption of

each approximate circuit is normalized to the energy consumption of its baseline implemen-

tation. As shown in Fig. 3.5 , clock overgating provides significant energy benefits between

1.07×–1.80× (1.36× on average) at the application level with virtually no loss (<0.5%) in

classification accuracy. When the quality constraints are relaxed to <2% and <5%, the

39

energy benefits increase to 1.10×–1.80× (1.43× on average) and 1.12×–1.80× (1.50× on

average), respectively.

0.4

0.6

0.8

1

EYE OPT W5A TEXT DIGT FACE Avg.

N
o

rm
.

en
er

g
y

Original < 0.5 % < 2 % < 5 %

Figure 3.5. Energy improvements for various quality constraints

The graph shown in Fig. 3.6 breaks down the energy from Fig. 3.5 into 3 key components:

(i) leakage (static) power, (ii) dynamic power in the registers and the clock tree, and (iii)

dynamic power in the combinational logic. This section only presents the <5% quality

constraint case here, but the observations hold for other cases as well. Again, all the energy

components are normalized to the baseline implementation. First, this chapter finds that

the overhead due to the increase in leakage power is negligible (0.21% on average). This

suggests that the overhead for clock overgating was kept minimal (cell area increased by

0.28% on average) by using the internal signals as COEs. Next, it is observed that clock

overgating reduces the power dissipated in the clock tree, the FFs’ internal power, as well as

the dynamic power consumed by the combinational logic. A general trend shown in Fig. 3.6

is that the power improvements are more pronounced in the combinational logic than in

the clock tree and the FFs. This is due to the fact that only a small fraction (16.9% on

average) of the total FFs are clock overgated in the design, and further, these overgated FFs

are dominated by LSBs. The parts of the combinational logic that process LSBs typically

40

exhibit higher switching activity and therefore overgating the corresponding FFs results in

considerable dynamic power savings without a significant impact on output quality.

0

0.2

0.4

0.6

0.8

1

N
o

rm
.

en
er

g
y

: Leakage: Dynamic (reg. + clk tree): Dynamic (comb. logic)

Orig.

EYE OPT W5A TEXT DIGT FACE Avg.

Over-

gated

Figure 3.6. Energy breakdown analysis

3.7.2 Comparison with Precision Scaling

The graph shown in Fig. 3.7 compares the energy benefits achieved by clock overgating

and precision scaling for various target quality constraints. In the case of precision scaling,

different numbers of LSBs were clock gated in all data path registers, throughout the evalua-

tion of the circuit. It can be clearly seen that clock overgating outperforms precision scaling

in terms of energy benefits; for example, 1.36× vs. 1.19× on average for a quality constraint

of <0.5%. This is due to the fact that clock overgating allows for a more fine-grained control

over which FFs should be gated in which execution cycles.

3.7.3 Effectiveness of FF Grouping

As described in Section 3.4 , this chapter groups multiple FFs into overgating islands,

which significantly cuts down the search space of overgating configurations. However, this

renders clock overgating to be more coarse grained, potentially impacting the energy effi-

ciency of the overgated circuit. Fig. 3.8 quantifies this tradeoff for 2 benchmarks by varying

the number of COTs into which the FFs of the circuit are grouped, and observing the runtime

41

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6

N
o

rm
.

en
er

g
y

Quality Constraint (%)

Overgating

Pr. Scaling

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6

N
o

rm
.

en
er

g
y

Quality Constraint (%)

Overgating

Pr. Scaling

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6

N
o

rm
.

en
er

g
y

Quality Constraint (%)

Overgating

Pr. Scaling

EYE TEXT AVG

Figure 3.7. Energy benefits using clock overgating vs. precision scaling

of the methodology as well as the energy efficiency of the resulting overgated circuit. Note

that, in Fig. 3.8 , energy is normalized to that of the baseline circuit. A quality constraint of

<5% classification accuracy was used in these experiments; however, the conclusions hold for

other quality constraints as well. It is observed that the runtime increases with an increase

in the number of COTs. In the case of energy, the benefits of clock overgating are very small

when FFs are aggressively grouped. The energy efficiency of the overgated circuit improves

drastically once the number of COTs crosses a threshold. However, beyond a point, the

benefits saturate and very fine grained overgating does not yield additional improvements.

Thus, if carried out to the right extent, FF grouping can achieve significant improvements

in overall runtime, without a significant loss in the energy benefits. For instance, in the case

of EYE, when its 183 FFs are grouped to form 129 COTs (using η=3.5 in Algorithm 2), the

runtime reduces by 5.8× at the cost of a mere 1.8% decrease in energy savings. The result

of this experiment shows that η values of 3.2–3.5 work well for all circuits. Note that by

combining the strategies described in Section 3.4 , the total runtime was reduced substan-

tially to <4 hours for a circuit size of ∼30K gates. While this chapter argues that this is

a reasonable runtime for this chapter’s proof-of-concept implementation, it can be consider-

ably reduced by utilizing static techniques (vs. simulation) for switching activity estimation,

and parallelizing across multi-cores (for example, the loop over COT-COE combinations in

Algorithm 1 can be parallelized) to ensure scalability for larger circuits.

42

(a) EYE (b) TEXT

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

63 102 120 126 141 171

COCList size

Norm. runtime Norm. energy

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

312 342 356 370 408 456

COCList Size

Norm. runtime Norm. energy

Figure 3.8. Runtime vs. optimality tradeoff analysis

3.7.4 Illustration of Clock Overgating in Action

Fig. 3.9 visually illustrates clock overgating in action by plotting the activity of FFs

during around 1000 cycles of execution of the EYE application. In Fig. 3.9 , each point on

the Y axis corresponds to a distinct FF, while the X axis represents execution cycles. The

color at each (x, y) coordinate indicates the status of FF y at cycle x. In a given cycle,

an FF can be either active, clock gated or clock overgated, marked by blue, green and red

colors respectively. Also, the length of the segment in the Y axis corresponding to each FF is

proportional to the energy benefits possible by gating the FF. Therefore, the area in Fig. 3.9

occupied by the overgated regions roughly corresponds to the overall energy benefits. It is

observed that only 12% of the FFs (FF index 162–183) are overgated in the circuit, but since

they and the combinational logic that they feed contribute up to 50% of the total energy,

∼40% improvement in energy is achieved.

3.8 Summary

The intrinsic resilience in emerging applications provides new opportunities for optimiz-

ing hardware through approximate computing. This chpater proposes clock overgating, an

RTL approximation technique. The key idea behind clock overgating is to suppress the

clock signal to selected FFs in the circuit even when the circuit functionality is affected as

43

Cycles

FF index : Overgated : Gated : Ungated

1

49

162

183

…
…

1 500 1000

Figure 3.9. Clock overgating status over time

a result, thereby creating a trade-off between energy and quality. A systematic methodol-

ogy is developed which identifies an energy-efficient clock overgating configuration given any

arbitrary circuit and output quality constraint. The methodology employs three key strate-

gies that leverage the semantic information available at the RTL to efficiently explore the

large space of overgating configurations. The results across hardware implementations for a

range of machine learning algorithms suggest that clock overgating is a promising approach

to approximate hardware design and that it enables favorable tradeoffs between energy and

output quality.

44

4. VALUE SIMILARITY EXTENSIONS FOR APPROXIMATE

COMPUTING IN GENERAL-PURPOSE PROCESSORS

4.1 Introduction

In the previous decade, Approximate Computing (AxC) has emerged as a popular design

paradigm that leverages the intrinsic ability of applications to tolerate approximations in

some of their computations to boost compute efficiency [24], [84]. A significant fraction

of prior efforts in AxC have focused on specialized architectures such as domain-specific

processors [16], GPUs [17], or custom accelerators [84]–[86], while relatively limited effort has

been devoted towards General-Purpose Processors (GPPs). However, modern applications

that benefit from AxC are still widely executed on GPPs for various reasons, ranging from

their easy programmability to stringent cost/area budgets precluding the use of custom

accelerators. For example, the majority of Facebook’s inference workloads run on CPUs

within edge devices [87]. Hence, leveraging AxC to improve the efficiency of GPPs is of

significant interest.

AxC in GPPs. A key challenge in approximating GPPs is that their execution units

contribute only a small fraction of total energy. Hence, AxC in GPPs has been predomi-

nately achieved through software-level approximations such as function approximation, loop

skipping, and relaxed synchronization [24], [71], [84]. The few efforts that propose hardware

approximations for GPPs employ approximations either within the execution units through

memoization [88], [89] and voltage scaling [39], [90], or in the memory sub-system through

load value prediction [91]. The benefits from these approaches are limited by the energy

expended in the parts that are not approximated, such as instruction fetch, decode, control,

etc.

AxC through Value Similarity. This chapter proposes a holistic approach to AxC in

GPPs that encompasses compute, memory and control front-ends. This chapter leverages

the application property of value similarity, i.e., input operands to computations that occur

close-in-time take similar values, thereby producing results that are similar. An analysis

on six representative Machine Learning (ML) workloads indicates that value similarity is

45

broadly prevalent, impacting as much as 80% of the computations executed. This provides

an opportunity to pre-detect similar computations and skip fetch-decode-execute of entire

instruction sequences, while substituting their results with those of previously executed com-

putations, benefiting both performance and energy. To this end, this chapter proposes VSX,

a set of lightweight micro-architectural and ISA extensions to leverage value similarity in

GPPs. This chapter also presents compiler techniques that leverage user annotations to

benefit from VSX in the context of common ML kernels.

A key trade-off in the design of VSX is balancing the window-of-opportunity i.e., the

span of computations across which similarity is exploited vs. the complexity of the imple-

mentation and overheads incurred. To ease the pressure on the memory-subsystem, GPP

applications are structured to maximize access locality to elements within a cache-line. This

chapter leverages this observation in VSX and pre-detect similar values among elements

of a cache-line when performing a load (the similarity threshold is defined by software).

The pre-detected similarity information is passed to the instruction fetch unit, which skips

instructions even before they enter the pipeline by appropriately controlling the program

counter.

VSX provides maximum flexibility to the compiler to define which instructions are skip-

pable under what conditions. This is critical as the impact of approximations on the overall

quality cannot be solely ascertained in hardware. To this end, the micro-architecture con-

tains a programmable Similarity Based Skip Table that is configured before entering a code

region where value similarity can be exploited. Based on programmer annotations in the

code, the compiler generates the skip information for common ML kernels such as GEMM,

Conv2D etc. As a further optimization, VSX also supports iteration fast-forwarding, i.e.,

when operands to a set of loop iterations are similar to a previous one, the entire itera-

tion set is skipped and replaced by a shorter specialized instruction sequence to produce an

approximate output.

In summary, the key contributions of this chapter are:

46

• This chapter proposes a holistic approach to AxC in GPPs, targeting benefits in com-

pute, memory and control front-ends, by leveraging value similarity in input operands

across computations that occur close-in-time.

• This chapter proposes a set of lightweight micro-architectural and ISA extensions called

VSX that enable dynamic pre-detection of similar computations to conditionally skip

the fetch-decode-execute of entire instruction sequences. VSX also includes the ability

for iteration fast-forwarding, wherein a set of loop iterations are replaced by a small,

specialized sequence of instructions.

• This chapter develops compiler techniques that are guided by user-annotations and

transform common application kernels to exploit value similarity and benefit from

VSX.

VSX is implemented within a RISC-V in-order processor in RTL and synthesized to

commercial 45nm technology. With an area overhead of 2.13%, VSX achieves 1.19×-3.84×

speedup with <0.5% accuracy loss on 6 ML benchmarks.

4.2 Comparison to Related Work

Prior efforts on approximate computing that exploit value similarity as the source of

efficiency improvement can be grouped into the following categories.

Approximate memoization. One way of exploiting value similarity is to save computation

results for commonly occurring inputs and reuse them upon seeing similar inputs. This idea

has been explored in the SW domain [69], the GPP domain [88], [89], [92], and the custom

accelerator domain [18], [19]. This chapter’s approach differs from these works by being

more holistic, i.e., not restricted to the execution units, and by eliminating the need for

large memoization buffers.

Approximate load value prediction. Another line of work targeting value similarity

focuses on similar values being loaded by GPPs [91] and GPUs [93]. They use the history

of loaded values to predict the current load value in case of a cache miss. This approach

effectively hides cache miss penalties in memory-bound situations where multiple processor

47

cores fetch data. On the contrary, this chapter’s approach entirely skips loads as well as

computes and other control instructions for data elements that have already been brought

up to the L1 cache, thereby being more broadly applicable, including in compute-bound

applications.

GPU-specific approximations. Prior efforts that exploit value similarity in GPUs include

sharing an adjacent thread’s result [73], or dynamically detecting inputs with similarity and

computing a representative result for them [17]. This chapter’s approach differs significantly

due to the focus on GPPs. As mentioned earlier, workloads that can benefit from AxC

often run on CPUs, especially in resource-constrained platforms where using a GPU is not

a feasible option.

Input sampling. Exploiting value similarity among neighboring data elements, prior efforts

redirect access to neighbor elements [94], or sample inputs such as pixels to reduce the number

of loads [68]. In contrast to these pure SW techniques that apply approximation statically by

assuming that neighboring elements are similar, the proposed HW approach detects similar

values on-the-fly and approximates them so that the impact on output quality is minimized.

4.3 Value Similarity: Sources, Opportunities and Challenges

Value similarity refers to the presence of numerically similar values in neighboring ele-

ments of a data-structure. The two main sources of value similarity are: i) redundancy in

real-world inputs, e.g., homogeneous regions within an image, and ii) nature of the compu-

tation itself, e.g., sorting algorithms placing similar values nearby or saturating activation

functions in DNNs. Across the 6 ML benchmarks considered in this chapter’s experiments,

78% of scalar values accessed are similar to within 20% of another element inside a window

of 8 nearby elements. The incidence of similar values remains high even at tighter thresholds,

or across smaller windows.

A large number of compute kernels access successive elements of their data-structures

(e.g., activation and weight arrays in DNNs) and perform the same operation (e.g., multiply-

and-accumulate) on them across multiple loop iterations. The presence of value similarity

in these data-structures can thus lead to load instructions loading similar values and feeding

48

them to compute instructions (e.g., addition, multiplication, etc.), which in turn produce

similar results across consecutive loop iterations. Accordingly, some of these instructions

can be skipped and their results can be approximated with that of a previous instruction

to achieve execution time savings. However, realizing this approach in a GPP involves

overcoming the following key challenges:

• Identifying potentially skippable instructions. Dynamically identifying instructions that

produce similar results and are thus skippable, involves detecting and storing the sim-

ilarity information of executed instructions. This can lead to a large overhead if done

indiscriminately.

• Detecting similarity before instruction execution. For maximizing execution time sav-

ings, the skipped instructions need to be identified before even being fetched into the

pipeline, thereby avoiding the introduction of bubbles. This demands the knowledge

of an instruction’s similarity information ahead of its execution.

• Saving & reusing instruction results. When an instruction is skipped, subsequent

instructions using its result should be able to receive an approximated value. Thus, a

mechanism for saving previous results and reusing them in place of skipped instructions

is needed.

This chapter overcomes the above challenges through lightweight micro-architectural and

ISA extensions to a GPP core that are described in the next section.

4.4 VSX: Value Similarity Extensions for General-Purpose Processors

This chapter proposes Value Similarity eXtensions (VSX), a set of low-overhead and

minimally intrusive micro-architectural and ISA extensions, for exploiting value similarity

in GPPs. This section presents the key ideas of VSX and illustrates in detail how they can

be integrated within an in-order processor pipeline.

49

HW/SW interface

User
annotated

similar
data

structures

- Potentially skippable instructions
caused by value similarity identified

- Necessary information for
instruction skipping (PC, buffer
location, etc.) generated

VSX Microarchitecture

P
C

IF/ID

ID
/EX

EX
/M

EM

M
EM

/W
B

Application
Program

(C/ C++)

ID EXIF MEM WB

Instruction
Skip Unit

VSB Generator

Result Save &
Reuse Unit

VSB Save &
Feed Unit

Processor Pipeline

Stores VSBs & feeds VSB
corresponding to the

next instruction

VSB
augmented
DCacheData array Tag array

Extracts similarity
information in the

form of VSBs

Saves results of potentially
skippable instructions and
reuses them when skipped

Skips instructions
based on skip

condition & VSB
value

Software support for VSX

Figure 4.1. VSX overview

4.4.1 VSX: Overview

Figure 4.1 presents an overview of the proposed VSX extensions. These extensions help

overcome the challenges listed in Section 4.3 through HW/SW co-design.

Identifying potentially skippable instructions from user annotations in software. This pro-

posal provides a pragma that allows users to annotate data-structures with value similarity

in a C/C++ program. From this annotation, a list of potentially skippable instructions are

inferred at compile time to avoid the overhead of analyzing similarity of every instruction.

This instruction list, along with their skip conditions, are stored in an Instruction Skip Unit

50

Code 4.1User annotation in SW

1 float *a, *b;
2 init(a, b, ARRAY_SIZE);
3 float dp = 0;
4 #pragma vsx(a,TH1,b,TH2) // by user
5 for (int i=0; i<ARRAY_SIZE; i++)
6 dp += a[i] * b[i];

(ISU) using a custom instruction. Before fetching every instruction, the ISU looks up this

information to decide whether it can be skipped, in a similar way to [95].

Extracting similarity information from the data cache. This proposal augments the data

cache with a VSB Generator that generates bit-flags called Value Similarity Bits (VSBs),

indicating whether each element in the cache-line is similar to the first element. When an

application kernel traversing an array loads the first data element of a cache-line containing

N elements, VSBs for the next N − 1 elements are produced by the VSB Generator. These

VSBs are transferred to the core and saved in a VSB Save & Feed Unit, which selects

the appropriate VSB for a future load instruction and thereby identifies its similarity to a

previous load. The similar loads are subsequently skipped by the ISU.

Saving & reusing instruction results in hardware. The proposed instruction skipping

strategy requires instructions loading the first data element of each cache-line to complete

execution, as VSBs are generated upon execution of those loads. The results of such loads

are saved and then reused in place of a skipped load’s result using a Result Save & Reuse

Unit (RSRU). Thus, compute instructions consuming a skipped load’s result are guaranteed

to receive a value similar to the actual one.

4.4.2 Program Annotations and Compiler Techniques for VSX

Code 4.1 shows how user annotation in SW can be done for a simple loop that computes

a dot-product of two vectors. The programmer inserts a pragma right before the kernel

of interest — the for loop in this example — that specifies the data-structures with value

similarity (a, b) and the difference threshold for similarity evaluation (TH1, TH2). When the

for loop in Code 4.1 is compiled to an assembly code shown in Figure 4.2 , instructions LD1

51

and LD2 are identified to be potentially skippable as they load data with value similarity.

Compute instruction MUL also becomes skippable when LD1 and LD2 are both skipped.

These skip conditions for different instructions are transferred to the ISU using a custom

instruction, SBST-LD, before executing the application kernel.

4.4.3 Instruction Skipping & Result Reuse

Iteration 0 Iteration 1 Iteration 2PC Instructions

4008 LD r0,[p0] (LD1)

400C ADD p0,p0,#4 (PT1)

4010 LD r1,[p1] (LD2)

4014 ADD p1,p1,#4 (PT2)

4018 MUL r3,r1,r0 (MUL)

401C ADD r2,r2,r3 (ACC)

4020 ADD r4, r4, #1 (IDX)

4024 BNE r4,#N,4008 (BRN)

Example assembly code
(dot product)

VSBLD1 ←11…
BufLD1 ← r0

VSBLD2 ←01…
BufLD2 ← r1

BufMUL ← r3 r0 ← BufLD1

Executed instructions Skipped instructions

r3 ← BufMUL

Instruction skipping and result reuse
using VSB (cache line size = 8)

Figure 4.2. Instruction skip & result reuse example

Figure 4.2 illustrates instruction skipping & result reuse across multiple iterations of an exam-

ple dot-product assembly code. As mentioned in Section 4.4.2 , instructions LD1, LD2, and

MUL are potentially skippable. In iteration 0, it is assumed that both LD1 & LD2 access the

first element of a cache-line and the VSB Generator produces 7 VSBs each (VSBLD1/VSBLD2)

for the next 7 data elements (assuming a cache-line size of 8). Results of LD1 & LD2 are

saved in their respective buffer slot (BufLD1/BufLD2) within the RSRU to be reused whenever

LD1 or LD2 is skipped in the future. Result of MUL is also saved to BufMUL since it can be

skipped as well. In iteration 1, LD1 is skipped as its corresponding VSBLD1 equals 1. When

MUL requires the result of LD1 in the same iteration, the saved result BufLD1 is used in

52

place of operand register r0. In iteration 2, both LD1 & LD2 are skipped as both VSBLD1

and VSBLD2 equals 1. MUL is also skipped and ACC uses the value of BufMUL in place of

its operand register r3 as indicated.

4.4.4 VSX: Microarchitecture

Figure 4.3 shows the proposed micro-architectural extensions integrated within a 5-stage

in-order processor pipeline. The details of each extension are presented below.

P
C

Next
PC

ID TYPE REG
/RS

DEP
/RT

Skip
Cond

Skip

4008 0 LD 0 N/A SRF[0] 1

4010 1 LD 1 N/A SRF[1] 1

4018 2 CP 0 1 SST[0] &
SST[1]

1

401C 3 CP N/A 2 N/A 0

Similarity Based Skip Table (SBST)

ID Skipped

0 1

1 1

2 1

Skip Status
Table (SST)

REG Base
Addr

Offset

1 2 3 4 5 6 7

0 0x1000 1 1 0 1 0 1 1

1 0x2000 0 0 1 1 1 0 1

2

VSB Table (VSBT)

REG VSB

0 1

1 0

2

Similarity Register
File (SRF)

ID Result

0 0.1f

1 0.2f

2 0.02f

Result Buffer (RB)

Instruction Skip Controller

I-Cache IF/ID RF

ID
/EX

EX
/M

EM

M
EM

/W
B

SaveResultIter
Bit

Result Save ControllerResult Reuse
Controller

NextPC

VSB
Selector

VSB
Save

&
Feed
Unit

Instruction
Skip Unit

Result Save & Reuse Unit

1

VSB
augmented

D-Cache

Data Tag

…
.

.…

d[0:N-1]
VSB

Generator

V
SB

[1
:N

-1
]

Figure 4.3. VSX microarchitecture

VSB Generator resides inside the data cache and generates VSBs for future load values.

It performs a similarity check whenever a potentially skippable load instruction (identified by

the ISU) accesses the first element of a cache-line. For a cache-line of N data elements (d[0:N-

1]), N −1 VSBs (VSB[1:N-1]) indicating each data element’s similarity to d[0] are generated.

The value difference is compared with the user-defined threshold from Section 4.4.2 in order

to evaluate similarity.

53

VSB Save & Feed Unit consists of a VSB Table (VSBT), a VSB Selector, and a

Similarity Register File (SRF). The VSBT is a register file storing the VSBs generated by

the VSB Generator for different cache-line addresses (BaseAddr). It is indexed using pointer

registers (REG). Whenever a pointer register is updated, the VSB Selector uses the updated

memory address to select the appropriate VSB from the VSBT and stores it in the SRF.

The ISU refers to the SRF to obtain the similarity information for the next load instruction.

Instruction Skip Unit (ISU) consists of a Similarity Based Skip Table (SBST), a

Skip Status Table (SST), and an Instruction Skip Controller (ISC). The SBST stores the

information necessary to identify skippable instructions, generated from user annotations

described in Section 4.4.2 . The individual entries correspond to different instruction regions,

identified using the NextPC field, which become skippable whenever the conditions within

the SkipCond field are met. For every instruction in the IF stage of the pipeline, the SBST

is looked up with the NextPC value. If there’s a match, the corresponding SkipCond is

evaluated by the ISC and the PC is advanced by the value of the #Skip field. For a load

instruction (SBST.TYPE equals LD), SBST.REG — index of the pointer register containing

its target address — is used to access its corresponding VSB in the SRF while evaluating

SkipCond. The ISC further records the result of this skip condition in the SST to allow

skip condition evaluations of future instructions. For a compute instruction (SBST.TYPE

equals CP), the SBST.ID of instructions producing its operands are used to access the SST

for evaluating the skip condition.

Result Save & Reuse Unit consists of a Result Buffer (RB), a Result Save Controller

(RSC), a Result Reuse Controller (RRC), and a SaveResultIter Bit. The RB saves the results

of potentially skipped instructions in different entries indexed using their SBST.IDs. The

RSC in the MEM pipeline stage controls the write-enable condition of the RB. The result

of a load instruction is allowed to be written to the RB if it corresponds to the first element

of a cache-line. On the other hand, the result of a compute instruction is allowed to be

written to the RB only if the SaveResultIter Bit is set. The SaveResultIter Bit is asserted

whenever a load saves its result to the RB, indicating that a new value will be produced, and

is cleared at the end of the loop iteration by the branch instruction (i.e., BRN in Figure 4.2).

It is ensured that all data-structures associated with potentially skippable loads are aligned

54

to the base address of a cache-line through standard C/C++ library macros. Finally, the

RRC, in the ID stage of the pipeline, allows an instruction’s operands to be replaced by the

saved values in the RB. For any instruction, if the skip record of its operands (SBST.RS or

SBST.RT) is set in the SST, the value of the corresponding operand is accessed from the

RB instead of the register file.

4.4.5 Iteration Fast-Forwarding

Example Assembly Code (DP)

PC Instructions

4008 LD r0,[p0] (LD1)

400C ADD p0,p0,#4 (PT1)

4010 LD r1,[p1] (LD2)

4014 ADD p1,p1,#4 (PT2)

4018 MUL r3,r1,r0 (MUL)

401C ADD r2,r2,r3 (ACC)

4020 ADD r4,r4,#1 (IDX)

4024 BNE r4,#N,4008 (BRN)

FF2

FF6

FF7

…

PC Instructions

4050 ADD p0,p0,#28

4054 ADD p1,p1,#28

4058 MUL r3,r3,#7

405C ADD r2,r2,r3

4060 ADD r4,r4,#7

4064 JMP 4024

Fast Forward (FF) routines

Figure 4.4. Iteration skipping example

In addition to the VSX microarchitecture shown in Figure 4.3 for skipping and reusing

results of individual instructions, this chapter develops another optimization strategy based

on two key observations. First, VSBs provide similarity information for multiple future

iterations. For example, assuming that both loads (LD1, LD2) in the dot-product loop from

Figure 4.4 have generated VSBs of 1111111, it is known that the next 7 loop iterations will

produce similar MUL results. Second, multiple loop iterations producing similar results can

be substituted with a specialized instruction sequence. For example, the next 7 iterations

in the previous example can be substituted with a separate instruction sequence FF7 that

produces an identical output. This chapter proposes a systematic approach — iteration fast-

forwarding — for detecting and substituting loop iterations that produce similar results.

First, the run-length of VSBs for all loads is calculated upon each VSB generation. The

55

Fast-Forward Routine Table (FFRT)

Instruction Skip Controller

SBST SST

Next
PC

TargetAddr

Routine3 ∙∙∙ Routine7

4020 4050 ∙∙∙ 4080

If the 7 VSBs for both LDs are 1s, jump to PC 4080

VSB Run-Length
Detector

VSB Table (VSBT)

REG Base Addr VSBs

VSB
Selector

SRF

Detects run-length
of simultaneously

asserted VSBs

To PC

From VSB
Generator

VSB Save & Feed Unit

Instruction Skip Unit

Figure 4.5. Modified Instruction Skip Unit and VSB Save & Feed Unit for
iteration fast-forwarding

run-length information is then used to jump to the corresponding specialized sequence called

Fast-Forward Routine (FFR) that substitutes multiple loop iterations and jumps back to the

original instruction stream. Figure 4.5 shows the additional HW units for realizing iteration

fast-forwarding. The VSB Run-Length Detector attached to the VSB Save & Feed Unit from

Figure 4.3 detects the run-length of asserted VSBs for all entries in the VSBT. The ISU is

now equipped with an FFR Table: A table storing the starting PCs of FFRs for different

VSB run-lengths. Finally, the ISC modifies the PC to jump to an FFR corresponding to

the VSB run-length.

4.5 Experimental Setup

Evaluation. This chapter implements VSX for a low-power single-core in-order RISC-V

processor running at 200MHz. Details of the architecture are listed in Table 4.1 . VSX is

implemented in RTL (Register Transfer Level) using SystemVerilog HDL and synthesized to

a commercial 45nm technology using Synopsys Design Compiler. The cache power and area

56

Table 4.1. Benchmark applications
Algorithm Application Dataset # Inputs
GLVQ Eye detection (EYE) Image set from

NEC labs
1465

KNN Digit classification (DGT) MNIST 1000
Digit classification (DGT2) Gissete 1000

SVM Text classification (TXT) Reuters 598

DNN AlexNet (conv2, fc6) ImageNet 1000
VGG16 (conv1_2, fc6) 1000

were obtained using CACTI [96]. Compared to the baseline core and caches, VSX exhibits

2.13% area and 1.15% power overhead. The minimal overhead of VSX clearly enables

its adoption in resource-constrained systems.

The proposed VSX microarchitecture is modeled using the gem5 [97] cycle-accurate ar-

chitectural simulator. All benchmarks except DNNs were implemented in C++ and run

directly on the gem5 simulator to obtain performance measurements as well as output accu-

racy. In case of DNNs, Caffe [98] — a widely-used deep learning framework — was coupled

with gem5 in a manner that allowed performance measurement using gem5 and accuracy

measurement using Caffe. Inputs & weights of the target layer were offloaded from Caffe to

gem5 where matrix computations were performed, and their outputs were fed back to Caffe

as the input of the next layer. All experiments were run in system-emulation mode.

Table 4.2. Gem5 system configuration

CPU Single-core in-order RISC-V w/ FPU
200MHz clock speed

CACHE
L1D: 64KB 2-way SA (w/ prefetcher)
L1I: 16KB 2-way SA
1-cycle hit latency, 32B lines

MEM 1GB LPDDR3

Benchmarks. To evaluate VSX, this chapter uses a benchmark suite consisting of 6

ML applications utilizing 4 different classification algorithms, listed in Table 4.2 . For DNN

benchmarks, VSX is applied to only the largest convolution and fully-connected layers viz.

57

conv2/fc6 for AlexNet, and conv1_2/fc6 for VGG16, respectively. Classification accuracy

i.e., fraction of inputs classified correctly, is used as the quality metric.

4.6 Results

This section presents the results of this chapter’s experiments to evaluate the effectiveness

of VSX.

4.6.1 Speedup-Accuracy Tradeoff

1

1.5

2

2.5

3

3.5

4

Sp
ee
d
u
p

LD Compute Iteration

EYE DGT DGT2 TXT
AlexNet VGG16

AVE

<0.5%
<2%

fc6fc6 conv2 conv1_2

Figure 4.6. Speedup-accuracy tradeoff

Figure 4.6 shows the speedup achieved by VSX for different output quality constraints.

The speedup is broken down into different components based on the type of instruction

skipped: load, compute, or full iteration. For a negligible loss (<0.5%) in output quality,

skipping loads results in a speedup of 1.15×-1.42× (average: 1.24×). Skipping compute in-

structions corresponding to the skipped loads increases the speedup to 1.17×-1.59× (average:

1.31×).

Finally, skipping iterations based on the run-length of asserted VSBs further increases

the speedup to 1.19×-3.84× (average: 1.81×). For a relaxed quality constraint of <2%, the

achieved speedup increases to 1.19×-1.42× (average: 1.28×) by skipping loads, 1.21×-1.59×

58

(average: 1.39×) by skipping loads and computes, 1.25×-3.84× (average: 1.97×) by skipping

iterations as well.

4.6.2 Skip Rate Analysis

0

20

40

60

80

100

Sk
ip

 r
at

e
(%

)

LD Compute Iteration

EYE DGT DGT2 TXT AlexNet VGG16 AVE

<0.5% <2%

fc6fc6 conv2 conv1_2

Figure 4.7. Skip rates for instructions & iterations

Figure 4.7 shows the skip rates for load/compute instructions and iterations under dif-

ferent output quality constraints. Under a tight quality constraint (<0.5%), skip rates range

between 36.8%-86.6% (61.1% on average) for loads, 15.4%-85.9% (48.0% on average) for

computes, and 1.6%-71.4% (31.4% on average) for iterations. When the quality constraint

is relaxed to <2%, skip rates increase to 44.5%-86.6% (67.6% on average) for loads, 22.9%-

85.9% (55.6% on average) for computes, and 4.1%-71.5% (35.2% on average) for iterations.

TXT shows the highest skip rate possible for real-world inputs due to its extreme sparsity

(>99%), while convolution layers of DNNs show low skip rate due to lack of similarity in

their weights.

4.6.3 Speedup Across Different Spatial Distribution of Similarity

Figure 4.8 illustrates the effect of different spatial distributions of similarity on instruction

& iteration skipping. This subsection varies the amount of similarity in the input data-

59

VSB distribution: ContiguousVSB distribution: Random

Data1

Data2

1

2

3

4

0 50 100

Sp
ee

d
u

p

Similarity match (%)

LD1 only LD+CP LD+CP+ITER

1

2

3

4

0 50 100

Sp
ee

d
u

p
Similarity match (%)

LD1 only LD+CP LD+CP+ITER

Data1

Data2

LD1 skip LD2 skip CP skip ITER skip

Figure 4.8. Speedup vs. similarity analysis

structures of a dot-product kernel and considers two different spatial distributions, viz.,

random and contiguous.

Contiguous distribution maximizes compute and iteration skipping through the highest

possible run-length of VSBs across all loads. The speedups observed for both distributions

are similar at low similarity level (low probability of finding VSBs for all loads asserted) and

at extremely high similarity level (almost all VSBs are asserted). However, at intermediate

similarity levels, the speedup gap between them can be significant (e.g., 1.78× for random

vs. 2.74× for contiguous at 60% similarity).

4.6.4 VSX vs. Load Value Approximation

This subsection compares the speedup benefits of VSX with that of Load Value Approxi-

mation [91] (LVA) for <2% quality loss in Figure 4.9 . LVA is an AxC technique that reduces

the cache miss latency in GPPs by predicting a load value from previous load values (this

subsection uses the average of 4 previous values). Every prediction is evaluated afterwards

60

1

1.2

1.4

1.6

1.8

2

Sp
ee

d
u

p

VSX VSX (Limited to LD) LVA

EYE DGT DGT2 TXT fc6 conv2 conv1_2fc6 AVE
AlexNet VGG16

2.42 3.84 2.55

Figure 4.9. Iso-accuracy speedup comparison for VSX vs. LVA

by checking if the predicted value falls within a user-defined confidence window of the actual

value. This confidence window in turn serves as a knob for modulating performance-accuracy

trade-off. Since LVA targets only load instructions, this subsection also shows the speedups

achieved by VSX when skipping is limited to only load instructions in Figure 4.9 . It is ob-

served that the average speedup for VSX in default mode (1.97×) and VSX limited to loads

(1.28×) is significantly higher than LVA (1.04×).

For a slow single-core processor used in this chapter’s experimental setup — along with

the application kernels showing high spatial locality — cache miss rate is already too low

(4.02%) for LVA to optimize. On the contrary, VSX is able to skip a wide range of instructions

once the current cache-line is brought up to the L1 data cache, which effectively translates

to speedups.

4.7 Summary

Approximate computing in General-Purpose Processors (GPPs) requires a holistic ap-

proach targeting benefits in compute, memory and the control front-ends. This chapter pro-

poses VSX (Value Similarity eXtensions) — a set of lightweight micro-architectural and ISA

extensions for GPPs — that exploits value similarity within data-structures for performance

improvement. The key idea is to pre-detect similar values in the granularity of a cache-line

61

and use that information to skip fetch-decode-execute of instruction sequence and/or loops,

and approximate their result with a previously saved one. This chapter presents compiler

techniques to transform common Machine-Learning (ML) kernels to use VSX. This chapter

evaluates VSX on a low-end in-order RISC-V processor platform and shows 1.19×-3.84×

speedup across a set of ML benchmarks at the cost of a 2.13% area overhead, highlighting

its applicability to edge platforms.

62

5. DATA SUBSETTING: A DATA-CENTRIC APPROACH TO

APPROXIMATE COMPUTING

5.1 Introduction

Emerging workloads related to machine learning and data analytics occupy a signifi-

cant fraction of execution cycles across the entire spectrum of computing platforms from

mobile devices to the cloud. These workloads process large amounts of data and thereby

place immense demands on the memory sub-systems of modern computing platforms. With

the growing processor-memory performance gap (exacerbated by many-core processors and

hardware accelerators with thousands of cores), the ability of the memory sub-system to feed

data to the processing cores has become the key determinant of overall system performance.

Approximate Computing (AxC) is an emerging design paradigm that leverages intrinsic

resilience to improve efficiency [1], [24]. Over the years, AxC techniques spanning various

levels of design abstraction — software, architecture and circuits — have demonstrated

significant improvements in performance and energy across a broad range of applications. A

vast majority of prior efforts in AxC have focused only on approximating computations [5], [9],

[15], [16], [20], [21], [23], [71], [73], [75], [90], [99]. However, recent work suggests that applying

it to other system components has a potential to result in additional improvements [91], [93],

[100]–[103]. This work explores AxC as an approach to alleviating the memory bandwidth

bottleneck.

This chapter proposes a data-centric approach to approximate computing that can be

used to improve the performance of software on off-the-shelf computing platforms (without

any hardware changes). The key idea is to modulate accesses to data structures so as to

shape the memory traffic such that the overall memory bandwidth requirement is reduced.

Specifically, a technique called data subsetting is proposed, wherein accesses to the data

structure are restricted to a subset of its elements. Constraining the data structure accesses

to lie within a smaller foot-print renders the resulting memory traffic more cache-friendly,

thereby enhancing performance.

This chapter identifies two key challenges with data subsetting. First, a subset of elements

that are representative of the entire data structure needs to be identified. The size of the

63

subset and the elements constituting the subset need to be selected based on application

and data characteristics. These choices could vary from program-to-program, across data

structures within the same program, and even for the same data structure over the course

of execution of a program. The second challenge pertains to how the data accesses are

approximated. When the application program attempts to access data that falls outside

the chosen subset, the access needs to be redirected to a location within the subset. To

address both these challenges in a manner that is transparent to hardware while requiring

only minimal changes to the application program, this chapter defines a new templated data

structure called SubsettableTensor. A SubsettableTensor is associated with an Access

Redirection Function (ARF) through which the application program specifies the portion of

the data structure that can be accessed and how accesses to other parts of the data structure

are handled.

To extract maximum performance benefits from data subsetting on off-the-shelf comput-

ing platforms, the following optimizations are incorporated. First, to exploit spatial locality,

caches are accessed at the granularity of cache lines where each cache line could store multiple

elements from the data structure. If all elements present within the cache line are not part

of the accessible subset, then the benefits of data subsetting are not fully realized, as some

bandwidth is wasted in fetching elements that will never be accessed. To avoid this, Subset

Buffer is proposed into which all the elements in the accessible subset are copied. During

execution, accesses to the data structure are translated to a location within the subset buffer.

Also, since data subsetting redirects many accesses to the same location in memory, some

of the computations could be rendered redundant. This chapter provides a mechanism for

the application software to identify and eliminate these redundant computations to further

enhance performance benefits.

In summary, the key contributions of this work are:

• Proposes a data-centric approach to approximate computing, which shifts the focus

of approximations from computations to data by modulating accesses to data struc-

tures so as to reduce memory bandwidth. Presents an approximation technique called

64

data subsetting, wherein accesses are limited to a subset of the data structure, which

enhances performance by making the memory traffic more cache-friendly.

• Realizes data subsetting in a manner that is minimally intrusive to application software

through extensions to data structures. Specifically, develops a templated data structure

called SubsettableTensor. This approach enables the application program to fully

control which elements of the data structure are part of the accessible subset and how

accesses to other elements are handled.

• Improves the performance of data subsetting on off-the-shelf platforms through the

use of a subset buffer, which enhances spatial locality among elements in the accessible

subset. Also enables application software to eliminate computations that are rendered

redundant as a result of data subsetting.

Data subsetting is applied to parallel software implementations of 7 machine learning

applications. On a 48-core AMD Opteron server, a performance improvement of 1.33×-

4.44× was achieved with negligible loss in output quality.

5.2 Comparison to Related Work

Section 2.3 presented approximate SW design techniques which are mostly compute-

centric – which means that their focus is on performing computations in an efficient manner.

Recent work has begun to recognize the merits of applying approximations to other system

components [103]. Specifically, a few recent efforts have applied AxC to the memory sub-

system. These include reducing DRAM refresh rate [100], [104], storing/accessing data in

a compressed format [102], and speculating on the results of loads [91], [93], among others.

Data subsetting is qualitatively different from the above techniques, which approximate the

value of the data accessed (through skipped refreshes, compression, etc.) as opposed to

approximating the memory location that is being accessed. Further, all the above methods

require changes in hardware to carry out approximations. On the other hand, data subsetting

is realized using off-the-shelf hardware and with minimal changes to application software.

65

5.3 Data Subsetting

The goal of this work is to improve the performance of memory-bound applications on

off-the-shelf computing platforms using approximate computing. The key idea is to use a

data-centric approach, wherein the memory traffic is shaped by modulating data accesses

in a manner that renders them more cache friendly. This is achieved by proposing a new

approximation technique called data subsetting. This section begins by describing the key

concepts behind data subsetting and outline the key challenges in its realization. Finally, op-

timizations that enhance the benefits of data subsetting on off-the-self computing platforms

are described.

5.3.1 Data Subsetting: Concept

Figure 5.1 illustrates the concept behind data subsetting. The key idea is to approximate

the accesses to the elements of a given data structure. Consider a data structure D, which is

a set of elements stored in memory. Let Dsubset be a subset of elements in the data structure.

When the application attempts to access (read or write) an element of D, data subsetting

approximates the access so as to ensure that it falls within Dsubset. If the element to be

accessed is already within Dsubset, then no approximation occurs. If the element lies outside

Dsubset, then the access is redirected to a different element that falls within Dsubset. In the

case of a read request, an incorrect value is returned, whereas in the case of a write, an

incorrect memory location is written.

Program
……

Get(x1,y1,z1)
……
…..

Get(x2,y2,z2)

DSUBSET: Subset of
elements in D that

are accessible

D: Original
Data-structure

(x1,y1,z1) ∈
DSUBSET ⇒

Ret. D[x1,y1,z1]
(x2,y2,z2) ∉

DSUBSET

Redirect access to
(x3,y3,z3) ∈ DSUBSET

Ret. D[x3,y3,z3]

Figure 5.1. Data subsetting: Concept

66

Benefits. By limiting accesses to a subset of elements in the data structure, data

subsetting results in the following benefits: (i) Since data subsetting limits the foot-print

of data accesses, it reduces the size of the application’s working set. This leads to fewer

accesses to lower levels of the memory hierarchy, and in the extreme, could result in the

entire working set fitting in on-chip cache, leading to substantial performance improvements.

(ii) As accesses are redirected to fewer memory locations, it fundamentally increases locality

and the FLOPs/Byte ratio of the application and reduces its total bandwidth requirement.

(iii) Finally, since data subsetting returns the same value for many different reads and/or

overwrites the same location for many different writes, some of the computations in the

application are rendered redundant. Such computations can be identified and eliminated to

further boost the overall performance (Section 5.3.3).

5.3.2 Data Subsetting: Challenges

This subsection describes the challenges in realizing data subsetting in practical applica-

tions.

Subset Selection

The first challenge lies in identifying the subset of data that is representative of the entire

data structure. Naturally, subset selection is a strong function of the type of data processed

by the application and the context in which they are used. For example, for data elements

that are spatially correlated (e.g., image pixels) or temporally correlated (e.g., audio samples,

video frames), a subset identified by periodic selection of elements often works well as it takes

advantage of the locality in values. Different data strctures may exhibit spatial/temporal

correlations at different granularities, which influences the subset selection. Figure 5.2 (a)

illustrates subset selection at the granularity of pixels (darker pixels are in the subset),

exploiting the fact that computation results on neighboring pixels are similar. In contrast,

Figure 5.2 (b) shows a coarser-grained selection of a subset of images from a set of reference

images (images with darker lines are in the subset), exploiting similarity across images. In

67

the case of data structures with unordered data elements, as shown in Figure 5.2 (c), random

subset selection may be desirable since it preserves the statistics of the data.

(a) Fine-grained subset selection

(c) Random Subset modified dynamically(b) Coarse-grained subset selection

{ }: Element ∈ accessible subset

Figure 5.2. Different forms of subset selection

In some applications, the choice of the subset for a given data structure may vary dynam-

ically through the course of program execution. For instance, iterative algorithms (K-Means

clustering, Stochastic Gradient Descent for Deep Neural Network (DNN) training, etc.) com-

pute the output by iterating over the same data multiple times, producing a more refined

output in each iteration. In such cases, the initial iterations could be executed on a small

subset of the data to compute an approximate value of the output. As the iterations progress,

the size of the subset could be gradually increased, allowing the algorithm to refine the final

value of the output.

Access Approximation through Redirection

Once the subset is identified, the second challenge lies in identifying how accesses to other

parts of the data structure are approximated to fall within the subset. In this case, an Access

Redirection Function (ARF) is defined, which is a many-to-one function that maps an index

to an element in the data structure to an approximate index that falls within the subset.

68

Figure 5.3 illustrates ARF in the context of a 1D-tensor (D), where the subset (Dsubset) is

constructed by periodically sampling D at an interval K. Accesses are approximated such

that all accesses between indices i ∗ K to i ∗ (K + 1) − 1, where i ∈ {0, 1, . . . , |D|/K}, are

redirected to index i ∗ K. In this case, the ARF is a staircase function with K being the

height of each step. This can be mathematically expressed as ARF (i) = K ∗ bi/Kc.

ARF(x)

N0
0

N

subset access with i

normal access with i
Ai

AARF(i)

A
AN-1

A0x

Figure 5.3. Access Redirection Functions

The objective of this chapter is to realize data subsetting with no changes to the hard-

ware, while minimizing changes to the application software. This is achieved by building a

templated data structure called SubsettableTensor, which is described in Section 5.4 . A

SubsettableTensor provides in-built implementations of commonly used ARFs, but also

allows application software to specify any arbitrary ARF. The ARF may be modified over

the course of program execution.

5.3.3 Data Subsetting: Optimizations

To maximize the performance benefits from data subsetting on off-the-shelf computing

platforms, this chapter proposes 2 additional optimizations viz. subset buffer and redundant

computation elimination, which are described in the following subsections.

69

Subset Buffer

In general-purpose systems, to exploit spatial locality in accesses, the cache hierarchy

is accessed at the granularity of cache lines. It is possible for each cache line to store

multiple elements of a data structure. This adversely impacts data subsetting when all

elements present in a given cache line are not part of the accessible subset. This is because

an access request to a subset element fetches the entire cache line (including out-of-subset

elements) from lower in the memory hierarchy, amounting to wasted memory bandwidth.

For example, as shown in Figure 5.4 , consider a 1D-tensor with 8B data elements. Suppose

the subset is constructed by periodically selecting one in every four elements. If each cache

line is comprised of 8 data elements (64B), accessing a subset element would fetch all the

non-subset elements surrounding it, which results in no bandwidth reduction.

To address this issue, once the subset elements are identified, a different space in memory

called the subset buffer is allocated and it is filled with elements that are only part of

the subset. Then, instead of accesses being redirected to subset elements within the data

structure, they are redirected to a location within the subset buffer. For example, the ARF

for periodic selection is modified as: ARFsb(i) = ARF (i)/K = bi/Kc. The cache lines that

store the subset buffer are comprised only of subset elements, and no bandwidth is wasted.

The performance overhead of populating the subset buffer for the first time is negligible, as

the cost is amortized over several accesses to each location within the subset buffer.

Besides boosting performance, the use of subset buffers has other indirect benefits. Since

subset elements are copied to a different location in memory, their values can be modified to

better represent the data structure. For instance, consider a neighborhood average subsetting

scheme, wherein the subset selection is periodic (period = K), but instead of picking every

Kth element, the average value of the data elements within that period is used. In this case,

both the access as well as the value are approximated together. Also, the use of subset buffers

makes it easier to utilize optimized libraries (e.g., BLAS) that expect their inputs to be laid

out contiguously, by simply passing them a pointer to the subset buffer.

70

T D

Cache

Memory

Original Data SB

(8 elements) x 8B
= 64B

(32 elements) x 8B
= 256B

T D

…

: subset elements : non-subset elements

Copy subset elements

Figure 5.4. Memory bandwidth reduction by using subset buffer

Eliminating Redundant Computations

In data subsetting, since accesses to non-subset elements are redirected to subset ele-

ments, the computations that use the non-subset elements could be rendered redundant.

For example, if the application computes the maximum value of all elements in the data

structure, under data subsetting, iterating over the entire data structure (with access redi-

rection) vs. iterating only over the subset elements would produce identical results. In many

other cases, iterating just over the subset elements may produce an incorrect answer, but can

be easily compensated to compute the correct result. For instance, computing the sum of all

elements in the data structure under periodic data subsetting can be achieved by computing

the sum over the subset and multiplying the result by the subsetting period.

One broad approach to enable applications to skip computations pertaining to non-

subset elements is to provide a mechanism that iterates only through the data elements in

the subset. To this end, this chapter develops a custom iterator for the SubsettableTensor

data structure, which loops over the data elements presently in the subset. The application

can use the iterator to compute only on the subset elements (with/without compensation at

the end), further improving performance.

71

Code 5.1SubsettableTensor data structure

1 template <class T> class SubsettableTensor {
2 T *original_; vec<int> shape;
3 T *SB_;
4 // Type of ARF: (i) Periodic , (ii) Random ,
5 // (iii) Neighbor -average , (iv) User -defined
6 string ARFtype; vec<int> ARFparam;
7 int *userARF(int); // Func.ptr to custom ARF
8
9 SubsettableTensor(T* data , vec<int> shape);

10 Subset(ARFtype , ARFparam , int(&usrARF)(int));
11 int ARF(int index)
12 { /* Execute pre/user -defined ARF */ }
13 T& operator[] (const int index)
14 { return SB_[ARF(index)]; }
15 }
16 #define for_subset(ST, INDEX) \
17 /* iterate through subset indexes */

5.4 Realizing Data Subsetting in Software

Recognizing that applications in the domains of interest ubiquitously utilize multi-dimensional

arrays or tensors to represent data, this chapter develops SubsettableTensor, a new tem-

plated data structure that application programs can use to realize data subsetting. This

section describes the SubsettableTensor data structure and illustrates its use through a

sample application.

5.4.1 SubsettableTensor Data Structure

Code 5.1 describes the SubsettableTensor data structure. It contains a pointer to

the original data (original_) and a vector describing the shape of the tensor (line 2). It

also contains a pointer to the subset buffer (SB_), which is populated when a subset is con-

structed. The data structure allows the application program to choose one of the pre-defined

ARFs (ARFtype and ARFparam), or provide a custom ARF through a function pointer

(userARF) (lines 4-7). This chapter’s implementation supports 3 pre-defined ARFs viz. pe-

riodic, random and neighbor-average that were described in Section 5.3.1 . The selection of

72

Code 5.2Data subsetting applied to K-Means clustering

1 int in[VEC][FEA], cent[K][FEA], assign[VEC];
2 SubsettableTensor<int> insub(in,{VEC,FEA});
3 insub.Subset(Random,{initSubsetRatio,1},NULL);
4 do {
5 int assign_old [VEC] = assign;
6 for_subset(insub, int i) {
7 int dist[K] = 0;
8 for(int j=0; j<K; j++) {
9 dist[j]=CalcDist(in[i,:], cent[j,:]);

10 int closest=FindClosestCluster(dist , j); }
11 fracReassigned = diff(assign_old , assign)/VEC;
12 newSubRatio = getSubRatio(fracReassigned)
13 insub.Subset(Random,{newSubRatio,1},NULL);
14 CalculateCentroid(in, cent , assign);
15 } while (fracReassigned > 0 && newSubRatio == 1)

ARF is achieved through a member function called Subset (line 10), which also allocates

and fills in the subset buffer. Every access to a given index of the data structure is first

passed through the ARF (lines 11-12), which computes an approximated index. The subset

buffer is accessed using the approximated index and the value is returned (lines 13-14). Fi-

nally, to enable redundant computation skipping, SubsettableTensor provides an iterator

(for_subset), which loops through the subset indices.

5.4.2 Illustration: K-means Clustering

This subsection illustrates how SubsettableTensor can be used in a practical application

by using K-Means clustering as an example. In K-Means, given a set of points (represented

as vectors), the objective is to group them into K clusters. K-Means is an iterative algorithm,

where in each iteration, the distances between all points and the centroids of the K clusters

are computed. Each point is assigned to the cluster to whose centroid it is closest. Each

cluster’s centroid is recomputed by averaging the points assigned to it. This process is

repeated until convergence (e.g., no point changes clusters).

Code 5.2 shows the pseudo-code for K-Means clustering with data subsetting (changes

made for data subsetting are highlighted in boldface). In this case, the input points (in) are

73

defined as a SubsettableTensor – insub (line 2). First, a subset is constructed by randomly

selecting a fraction (initSubsetRatio) of the input points (line 3). Each iteration processes

the chosen subset of points (line 6), computes the distances with each cluster centroid (lines

7-9), and assigns each point to the cluster whose centroid is closest to (line 10). Then the

fraction of inputs whose clusters were reassigned (fracReassigned in line 11) is computed,

based on which a new subset ratio (newSubRatio in line 12) is computed. When only a

small fraction of inputs are reassigned, it is ascertained that the centroids have stabilized

and therefore the size of the subset is increased to consider more points. This is achieved by

calling the Subset function on insub with newSubRatio (line 13). The algorithm terminates

when there are no reassignments and the subset ratio is 1 i.e., clusters have been assigned

to all input points (line 15).

Thus, data subsetting can be realized using SubsettableTensor with minimal changes

to the original program.

5.5 Experimental Setup

This section describes the experimental setup for evaluating data subsetting on a com-

modity platform.

5.5.1 Benchmarks

To evaluate data subsetting, this chapter considers a benchmark suite comprising of 7

machine learning applications listed in Table 5.1 . The benchmarks use 5 different classifica-

tion and clustering algorithms. In the case of the Deep Neural Network (DNN) benchmarks,

data subsetting is applied only to the largest convolutional and fully connected layer viz.

conv2 and fc6 for AlexNet, and conv1_2 and fc6 for VGG16 respectively. For the classifi-

cation benchmarks, classification accuracy i.e., fraction of inputs classified correctly, is used

as the quality metric. In the case of K-Means clustering, quality is measured as the average

distance between all data points and their corresponding cluster centroids.

74

Table 5.1. Machine learning benchmark applications
Algorithm Application Dataset # Inps Data (MB)
GLVQ Eye detection (EYE) Image set from

NEC labs
1465 64

KNN Digit classification (DGT) MNIST 1000 180
Digit classification (DGT2) Gissete 1000 115

SVM Text classification (TXT) Reuters 598 34

DNN
AlexNet ImageNet 1000 3.9 (conv2)

146 (fc6)

VGG16 ImageNet 1000 110 (conv1_2)
397 (fc6)

KMEANS K-means clustering (KMS) Volcanoes 128 512

5.5.2 Performance Evaluation

All the benchmarks were implemented in C++ and parallelized using OpenMP. This

chapter also developed data-subsetted versions of the benchmarks by implementing the

SubsettableTensor data structure in C++. This chapter’s experiments were conducted

on a 48-core server platform, whose parameters are shown in Table 5.2 .

Table 5.2. System configuration used in experiments
CPU AMD Opteron, 48 cores, 2.3GHz

CACHE L1 64KB, L2 512KB, L3 20MB, 64B lines
BUS 42.7 GB/s peak bandwidth

MEM 190GB, DDR3-1333MHz, 8 channels

5.6 Results

This section evaluates the effectiveness of data subsetting using various experiments.

5.6.1 Performance Benefits

Figure 5.5 shows the speedup achieved with data subsetting for different application-level

quality constraints. Across all benchmarks, the speedup ranges between 1.33×-4.44× (2.31×

75

TXT DGT DGT2 EYE AlexNet VGG16 Ave

<0.5% <2%

0

1

2

3

4

5

6
Sp

ee
d

u
p

add. speedup due to removing redundant computes

Figure 5.5. Speedup obtained within different quality constraints

on average) for a negligible loss (<0.5%) in quality. When the quality constraint is relaxed

to <2%, the speedup increases to 2.47×-5.06× (4.05× on average). Figure 5.5 also highlights

the performance gain due to skipping computations rendered redundant by data subsetting.

Since the applications were primarily memory-bound, a significant fraction of the benefits

stem from bandwidth reduction as opposed to computation skipping, which was effective

only for TXT and on average yielded 7% additional performance gain.

5.6.2 Comparison with Loop Perforation

This subsection compares the performance of data subsetting with a well-known compute-

centric approximation technique called loop perforation [71], wherein iterations of loops are

periodically or randomly skipped from execution. Figure 5.6 shows the speedup achieved

with increasing subsetting/perforation ratio (which varies inversely with the subset size or

loop iterations executed). Computations on non-subset elements were eliminated using the

for_subset iterator for data subsetting. First, in the case of data subsetting, as the subset-

ting ratio is increased, a steady improvement in performance is achieved. In some cases, the

performance improvement is super-linear (e.g. subsetting ratio of 3 yields 3.5× performance

benefits), as data structures begin to fit within levels of the memory hierarchy.

76

0

1

2

3

4

0 1 2 3 4 5

Sp
e

ed
u

p

Subsetting/Perforation Ratio

Speedup (w/ SB) Speedup (LoopPerf)

0

1

2

3

4

5

0 1 2 3 4 5

AlexNet VGG16

Loop perforationData-subsetting

Figure 5.6. Data subsetting vs. loop perforation

In the case of loop perforation, the speed-ups are significantly lower. Although loop

perforation eliminates both computations and data accesses present in the skipped loop iter-

ations, it does not necessarily translate into memory bandwidth reduction since the adjacent

data elements in the same cache line are being fetched despite being unused. Moreover,

skipping computations reduces the time the processor works on a cache line, shortening the

interval between cache line fetches and thus putting even more pressure on the memory sub-

system. Since data subsetting utilizes a subset buffer, out-of-subset data elements are not

fetched. This result underscores the effectiveness of data-centric approaches in the context

of memory-bound applications.

5.6.3 Choice of Access Redirection Function

This subsection studies the impact of ARF choice on application quality (classification

accuracy). To this end, this subsection considers 2 ARFs – periodic vs. neighborhood-

average. In periodic subsetting, every Kth is selected to be part of the subset. Neighborhood-

average also picks one in every K elements, but places the average of all elements in each

interval of K in the subset buffer. Figure 5.7 shows the degradation in output quality as

the degree of subsetting is increased from 1 to 4. In all cases, a degradation in quality

is observed as the subsetting period is increased. However, neighborhood-average incurs

77

75

80

85

90

1 2 3 4

Ac
cu

ra
cy

 (%
)

92

94

96

98

1 2 3 4
90
92
94
96
98

1 2 3 4

DIGT DIGT2EYE

Subsetting Ratio à

Neighbor-AveragePeriodic

Figure 5.7. Impact of ARF choice on accuracy

very little quality degradation compared to periodic ARF since it accounts for out-of-subset

elements. Therefore, it is useful for datasets that exhibit lower spatial locality.

5.6.4 Dynamic Modulation of Subset Size

A desirable feature of SubsettableTensor is the ability to modulate the subset size

during execution. This can be leveraged in the context of iterative algorithms such as K-

Means clustering (Section 5.4.2). This is demonstrated in action in Figure 5.8 , which plots

how the quality metric (average distance between data points and their cluster centroids)

converges over time when iterations are begun with different sizes of subsets. It is shown

that the original algorithm (blue line: R = 1) takes the longest time to converge since each

iteration takes longer. When clustering starts on only half of the data elements which are

randomly picked (orange line: R = 2), it is shown that the algorithm converges quicker, but

converges to a sub-optimal solution at a higher average distance. At this point, the subset

size is increased to include all elements in the data structure, which enables it to converge

to the same average distance as the original algorithm, while achieving 1.62× performance

improvement. A similar behavior is observed when the algorithm begins with even smaller

subset sizes (R = 3, 4), but beyond a point no further performance improvements can be

seen, as the subset sizes are too small to move the cluster centroids in the correct direction.

78

20000

40000

60000

80000

0 2000 4000 6000 8000

A
ve

. d
is

ta
n

ce

Time (ms)

R=1.0 (Org) R=2.0 R=3.0 R=4.0

insub.Subset(NULL, {1, 1}, NULL);

insub.Subset(Random, {R, 1}, NULL);

Figure 5.8. Data subsetting applied to K-Means clustering

5.7 Summary

Optimizing memory bandwidth is key to the efficiency of emerging data-intensive appli-

cations on modern computing platforms. This chapter addresses this challenge using ap-

proximate computing, wherein a data-centric approach is adopted. Specifically, this chapter

proposes an approximation technique called data subsetting, which approximates accesses

to a data structure by redirecting them to fall within a pre-defined subset of elements. This

enhances performance as the foot-print of the application’s memory accesses is significantly

reduced. This chapter realizes data subsetting through a templated data structure called

SubsettableTensor, which allows application software to specify and dynamically modify

which elements constitute the accessible subset, and how access to other parts of the data

structure are redirected. Additionally, this chapter proposes optimizations such as the use of

a subset buffer, and identifying and skipping redundant computations to enhance the benefits

of data subsetting on commercial systems. Finally, this chapter evaluates data subsetting

79

on parallel software implementations of 7 machine learning applications and demonstrate

1.33×-4.44× improvement in performance.

Optimizing memory bandwidth is key to the efficiency of emerging data-intensive applica-

tions on modern computing platforms. This chapter addresses this challenge using approxi-

mate computing, wherein a data-centric approach is adopted. Specifically, an approximation

technique called data subsetting is proposed, which approximates accesses to a data structure

by redirecting them to fall within a pre-defined subset of elements. This enhances perfor-

mance as the foot-print of the application’s memory accesses is significantly reduced. Data

subsetting is realized through a templated data structure called SubsettableTensor, which

allows application software to specify and dynamically modify which elements constitute

the accessible subset, and how accesses to other parts of the data structure are redirected.

Additionally, optimizations such as the use of a subset buffer, and identifying and skipping

redundant computations to enhance the benefits of data subsetting are proposed. Data sub-

setting is evaluated on parallel software implementations of 7 machine learning applications

and demonstrate 1.33×-4.44× improvement in performance.

80

6. CONCLUSION

Approximate computing has emerged as a new design paradigm for trading off perfor-

mance/energy improvement with a tolerable quality degradation by taking advantage of

the application’s intrinsic resistance to internal computational errors. In order to expedite

a wide-spread adoption of approximate computing by designers, this thesis proposes three

techniques for approximate computing across the stack which requires a minimal change to

the conventional design flow and are runtime controllable. First, clock overgating targets the

Register Transfer Level (RTL) which is the most widely used level of abstraction for HW

design. Clock overgating extends the duration of traditional clock gating to selected Flip-

Flops (FFs) in the circuit so that dynamic power in the clock tree and their downstream logic

can be saved while allowing chances for errors in the FF values to affect the final output.

This thesis provides a systematic methodology for identifying an optimal clock overgating

configuration based on the given RTL design and quality constraint. Experimental results

show that the proposed methodology can produce more power-efficient approximate circuits

compared to conventional precision scaling while searching through the exponentially large

design space within a reasonable time using a gradient descent approach. Second, Value

Similarity eXtensions (VSX) enhances general-purpose processors by exploiting value sim-

ilarity among neighbor elements of data structures. VSX dynamically detects and skips

instructions that are expected to produce similar result to a previous one. High performance

benefits can be expected by avoiding such instructions from entering the processor pipeline.

This thesis provides strategies for realizing the proposed approach such as identifying po-

tentially skipped instructions from user annotation in SW, extracting similarity information

from the data cache, and saving & reusing previous instruction results in place of a skipped

instruction. In addition, multiple loop iterations that produce similar results are replaced

by a separate group of instructions to enable further speedup. Experimental results show

that the proposed micro-architectural extensions skip a large portion of loads, computes,

and iterations while incurring a small area overhead. Finally, data subsetting offers a new

way of approximation through restricting accesses to a subset of data, which can be ap-

plied to software design for commodity platforms while ensuring minimal deviation from

81

the conventional coding practice. By redirecting all data accesses to a subset of data, over-

all memory footprint is decreased and thus memory-intensive applications can benefit from

reduced memory bandwidth. This thesis provides SubsettableT ensor, a software template

which guides programmers to identify an appropriate subset of data and perform access redi-

rections in a cache-friendly manner. Experimental results show that the proposed approach

outperforms conventional loop perforation by effectively reducing the memory bandwidth,

and can be dynamically reconfigured in an advantageous way for certain type of applications

such as iterative algorithms. In summary, the hardware and software techniques for approxi-

mate computing proposed in this thesis show an adequate potential for pushing approximate

computing paradigm towards the mainstream design practice.

82

REFERENCES

[1] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approximate
computing and the quest for computing efficiency,” in Design Automation Conference,
Jun. 2015, pp. 1–6.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and char-
acterization of inherent application resilience for approximate computing,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013, pp. 1–9.

[3] S. Venkataramani, “Approximate computing: An integrated cross-layer framework,”
PhD thesis, 2016, p. 198, isbn: 9781369641103.

[4] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and synthesis of quality-
energy optimal approximate adders,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2012, pp. 728–735.

[5] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “IMPACT: Im-
precise adders for low-power approximate computing,” in IEEE/ACM International
Symposium on Low Power Electronics and Design, Aug. 2011, pp. 409–414.

[6] N. Zhu et al., “An enhanced low-power high-speed adder for error-tolerant applica-
tion,” in Proc. ISIC, 2009, pp. 69–72.

[7] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic
designs,” in Design Automation Conference, 2012, pp. 820–825.

[8] J. Huang et al., “A methodology for energy-quality tradeoff using imprecise hard-
ware,” in Design Automation Conference, 2012, pp. 504–509.

[9] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an un-
derdesigned multiplier architecture,” in 2011 24th Internatioal Conference on VLSI
Design, Jan. 2011, pp. 346–351.

[10] P. K. Krause and I. Polian, “Adaptive voltage over-scaling for resilient applications,”
in Design, Automation and Test in Europe, Mar. 2011.

[11] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via algorithmic
noise-tolerance,” in IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), San Diego, California, USA: ACM, 1999, pp. 30–35.

[12] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant applica-
tions,” in 2010 Design, Automation and Test in Europe, Mar. 2010, pp. 957–960.

83

[13] D. Shin and S. K. Gupta, “A new circuit simplification method for error tolerant
applications,” in 2011 Design, Automation and Test in Europe, Mar. 2011, pp. 1–6.

[14] A. Lingamneni, C. Enz, J. Nagel, K. Palem, and C. Piguet, “Energy parsimonious
circuit design through probabilistic pruning,” in 2011 Design, Automation and Test
in Europe, 2011, pp. 1–6.

[15] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan, “SALSA:
Systematic logic synthesis of approximate circuits,” in Design Automation Conference
2012, Jun. 2012, pp. 796–801.

[16] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Quality programmable vector processors for approximate computing,” in Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, 2013,
pp. 1–12.

[17] D. Wong, N. S. Kim, and M. Annavaram, “Approximating warps with intra-warp
operand value similarity,” in 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2016, pp. 176–187.

[18] A. Raha and V. Raghunathan, “qLUT: Input-aware quantized table lookup for energy-
efficient approximate accelerators,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s,
Sep. 2017.

[19] M. Riera, J. Arnau, and A. Gonzalez, “Computation reuse in DNNs by exploiting in-
put similarity,” in 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA), 2018, pp. 57–68.

[20] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“EnerJ: Approximate data types for safe and general low-power computation,” in Pro-
ceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2011, pp. 164–174.

[21] C. Rubio-Gonzállez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H.
Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning assistant for floating-point
precision,” in 2013 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2013, pp. 1–12.

[22] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability- and
accuracy-aware optimization of approximate computational kernels,” in Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, 2014.

84

[23] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” in 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2012, pp. 449–460.

[24] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-thinking parallel
software and hardware,” in Design Automation Conference, Jun. 2010.

[25] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar, “Scal-
able effort hardware design: Exploiting algorithmic resilience for energy efficiency,”
in Design Automation Conference, 2010, pp. 555–560.

[26] D. Shin and S. K. Gupta, “A re-design technique for datapath modules in error
tolerant applications,” in Proc. ATS, Nov. 2008, pp. 431–437.

[27] L. N. Chakrapani et al., “Highly energy and performance efficient embedded com-
puting through approximately correct arithmetic: A mathematical foundation and
preliminary experimental validation,” in International Conference on Compilers, Ar-
chitecture and Synthesis for Embedded Systems (CASES), Atlanta, GA, USA: ACM,
2008, pp. 187–196.

[28] Z. Kedem, V. J. Mooney, K. K. Muntimadugu, K. V. Palem, A. Devarasetty, and
P. D. Parasuramuni, “Optimizing energy to minimize errors in dataflow graphs using
approximate adders,” in Proceedings of the 2010 International Conference on Compil-
ers, Architectures and Synthesis for Embedded Systems, ser. CASES ’10, Scottsdale,
Arizona, USA, 2010, pp. 177–186.

[29] K. Du, P. Varman, and K. Mohanram, “High performance reliable variable latency
carry select addition,” in Design, Automation and Test in Europe, 2012, pp. 1257–
1262.

[30] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented approx-
imate adder design and its application,” in 2013 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2013, pp. 48–54.

[31] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy
configurable adder,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), 2015, pp. 1–6.

[32] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for graceful
degradation under voltage overscaling,” in 2010 15th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2010, pp. 825–831.

85

[33] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approximate hardware
under joint precision and voltage scaling,” in Design, Automation and Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 187–192.

[34] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-
scalable meta-functions for approximate computing,” in 2011 Design, Automation
and Test in Europe, 2011, pp. 1–6.

[35] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify: A unified
design paradigm for approximate and quality configurable circuits,” in 2013 Design,
Automation and Test in Europe Conference Exhibition (DATE), 2013, pp. 1367–1372.

[36] S. Jain, S. Venkataramani, and A. Raghunathan, “Approximation through logic iso-
lation for the design of quality configurable circuits,” in 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), 2016, pp. 612–617.

[37] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO: Modeling and
analysis of circuits for approximate computing,” in 2011 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2011, pp. 667–673.

[38] B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth, R.
Helfand, T. Austin, D. Sylvester, and D. Blaauw, “Energy-efficient subthreshold pro-
cessor design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 8, pp. 1127–1137, 2009.

[39] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochastic proces-
sors,” in Proceedings of the Conference on Design, Automation and Test in Europe,
ser. DATE ’10, Dresden, Germany: European Design and Automation Association,
2010, pp. 335–338.

[40] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error resilient system
architecture for probabilistic applications,” in 2010 Design, Automation and Test in
Europe Conference Exhibition (DATE 2010), 2010, pp. 1560–1565.

[41] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi, L.
Ceze, and D. Burger, “General-purpose code acceleration with limited-precision ana-
log computation,” in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), 2014, pp. 505–516.

[42] A. Jain, P. Hill, S. Lin, M. Khan, M. E. Haque, M. A. Laurenzano, S. Mahlke, L. Tang,
and J. Mars, “Concise loads and stores: The case for an asymmetric compute-memory
architecture for approximation,” in 2016 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2016, pp. 1–13.

86

[43] P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das, “Exploiting
staleness for approximating loads on cmps,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 343–354.

[44] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelgänger: A cache for
approximate computing,” in 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2015, pp. 50–61.

[45] J. S. Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The bunker cache for spatio-
value approximation,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1–12.

[46] Y. Yetim, M. Martonosi, and S. Malik, “Extracting useful computation from error-
prone processors for streaming applications,” in 2013 Design, Automation and Test
in Europe Conference Exhibition (DATE), 2013, pp. 202–207.

[47] P. Guo, B. Hu, R. Li, and W. Hu, “FoggyCache: Cross-device approximate compu-
tation reuse,” in Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’18, New Delhi, India, 2018, pp. 19–34.

[48] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online quality
management system for approximate computing,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), 2015, pp. 554–566.

[49] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-Memik, and
S. Parthsarathy, “Lazy pipelines: Enhancing quality in approximate computing,” in
2016 Design, Automation and Test in Europe Conference Exhibition (DATE), 2016,
pp. 1381–1386.

[50] Y.-C. Hu, M. T. Lokhandwala, T. I., and H.-W. Tseng, “Dynamic multi-resolution
data storage,” in Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Columbus, OH, USA, 2019, pp. 196–210.

[51] K. Cho, Y. Lee, Y. H. Oh, G. Hwang, and J. W. Lee, “eDRAM-based tiered-reliability
memory with applications to low-power frame buffers,” in 2014 IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), 2014, pp. 333–
338.

[52] P. Düben, Parishkrati, S. Yenugula, J. Augustine, K. Palem, J. Schlachter, C. Enz,
and T. N. Palmer, “Opportunities for energy efficient computing: A study of inex-
act general purpose processors for high-performance and big-data applications,” in
2015 Design, Automation and Test in Europe Conference Exhibition (DATE), 2015,
pp. 764–769.

87

[53] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-based analog ap-
proximate computing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 12, pp. 1905–1917, 2015.

[54] A. Rahimi, A. Ghofrani, K. Cheng, L. Benini, and R. K. Gupta, “Approximate asso-
ciative memristive memory for energy-efficient GPUs,” in 2015 Design, Automation
and Test in Europe Conference Exhibition (DATE), 2015, pp. 1497–1502.

[55] H. Zhang, M. Putic, and J. Lach, “Low power GPGPU computation with imprecise
hardware,” in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC),
2014, pp. 1–6.

[56] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6T/8T hybrid SRAM
architecture for aggressive voltage scaling in video applications,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 21, no. 2, pp. 101–112, 2011.

[57] A. Ranjan, S. Venkataramani, Z. Pajouhi, R. Venkatesan, K. Roy, and A. Raghu-
nathan, “STAxCache: An approximate, energy efficient STT-MRAM cache,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe, ser. DATE ’17,
Lausanne, Switzerland: European Design and Automation Association, 2017, pp. 356–
361.

[58] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan, “Approximate
storage for energy efficient spintronic memories,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015, pp. 1–6.

[59] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt, “Exploiting partially-forgetful mem-
ories for approximate computing,” IEEE Embedded Systems Letters, vol. 7, no. 1,
pp. 19–22, 2015.

[60] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-state
memories,” in 2013 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2013, pp. 25–36.

[61] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxilyzer: Towards a
systematic framework for instruction-level approximate computing and its application
to hardware resiliency,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–14.

[62] A. Raha, H. Jayakumar, and V. Raghunathan, “A power efficient video encoder using
reconfigurable approximate arithmetic units,” in 2014 27th International Conference
on VLSI Design and 2014 13th International Conference on Embedded Systems, 2014,
pp. 324–329.

88

[63] A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan, “Quality config-
urable reduce-and-rank for energy efficient approximate computing,” in 2015 Design,
Automation and Test in Europe Conference Exhibition (DATE), 2015, pp. 665–670.

[64] T. M. Aamodt and P. Chow, “Compile-time and instruction-set methods for improv-
ing floating- to fixed-point conversion accuracy,” ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 3, 26:1–26:27, May 2008.

[65] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini, “A variability-aware OpenMP
environment for efficient execution of accuracy-configurable computation on shared-
FPU processor clusters,” in Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, 2013, 35:1–35:10.

[66] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: A first-order type
for uncertain data,” in Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Salt Lake City,
Utah, USA: Association for Computing Machinery, 2014, pp. 51–66.

[67] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-conscious
programming using controlled approximation,” in Proceedings of the 31st ACM SIG-
PLAN Conference on Programming Language Design and Implementation, 2010,
pp. 198–209.

[68] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-based ap-
proximation for data parallel applications,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 2014, pp. 35–50.

[69] Aurangzeb and R. Eigenmann, “HiPA: History-based piecewise approximation for
functions,” in Proceedings of the International Conference on Supercomputing, 2017,
23:1–23:10.

[70] J. S. Miguel and N. E. Jerger, “The anytime automaton,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Jun. 2016,
pp. 545–557.

[71] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing per-
formance vs. accuracy trade-offs with loop perforation,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, 2011.

[72] S. Li, S. Park, and S. Mahlke, “Sculptor: Flexible approximation with selective dy-
namic loop perforation,” in Proceedings of the 2018 International Conference on Su-
percomputing, 2018, pp. 341–351.

89

[73] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE: Self-tuning
approximation for graphics engines,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 13–24.

[74] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “ApproxHadoop: Bringing
approximations to MapReduce frameworks,” in International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2015, pp. 383–
397.

[75] R. Akram, M. M. U. Alam, and A. Muzahid, “Approximate lock: Trading off accu-
racy for performance by skipping critical sections,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), Oct. 2016.

[76] M. C. Rinard, “Using early phase termination to eliminate load imbalances at barrier
synchronization points,” in Proceedings of the 22Nd Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems and Applications, 2007.

[77] J. Sartori and R. Kumar, “Branch and data herding: Reducing control and memory di-
vergence for error-tolerant GPU applications,” in 2012 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT), Sep. 2012, pp. 427–
428.

[78] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “HELIX-UP: Relaxing pro-
gram semantics to unleash parallelization,” in Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, 2015, pp. 235–245.

[79] M. A. Breuer, “Multi-media applications and imprecise computation,” in Proc. Eu-
romicro Conf. on Digital System Design, 2005, pp. 2–7.

[80] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “ASLAN:
Synthesis of approximate sequential circuits,” in 2014 Design, Automation and Test
in Europe Conference Exhibition (DATE), Mar. 2014, pp. 1–6.

[81] Chaofan Li, Wei Luo, S. S. Sapatnekar, and Jiang Hu, “Joint precision optimization
and high level synthesis for approximate computing,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015, pp. 1–6.

[82] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for automated
behavioral synthesis of approximate computing circuits,” in 2014 Design, Automation
and Test in Europe Conference Exhibition (DATE), 2014, pp. 1–6.

90

[83] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethu-
raman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmaeilzadeh,
and K. Bazargan, “Axilog: Language support for approximate hardware design,” in
2015 Design, Automation and Test in Europe Conference Exhibition (DATE), 2015,
pp. 812–817.

[84] S. Mittal, “A survey of techniques for approximate computing,” ACM Comput. Surv.,
vol. 48, no. 4, Mar. 2016.

[85] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE
Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[86] Y. Kim, S. Venkataramani, K. Roy, and A. Raghunathan, “Designing approximate
circuits using clock overgating,” in Proceedings of the 53rd Annual Design Automation
Conference, ser. DAC ’16, Austin, Texas: Association for Computing Machinery, 2016.

[87] C. Wu et al., “Machine learning at Facebook: Understanding inference at the edge,”
in 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 331–344.

[88] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-point multi-
media applications,” IEEE Transactions on Computers, vol. 54, no. 7, pp. 922–927,
2005.

[89] Y. Sato, T. Tsumura, T. Tsumura, and Y. Nakashima, “An approximate comput-
ing stack based on computation reuse,” in 2015 Third International Symposium on
Computing and Networking (CANDAR), 2015, pp. 378–384.

[90] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for
disciplined approximate programming,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012, pp. 301–312.

[91] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,” in 2014 47th An-
nual IEEE/ACM International Symposium on Microarchitecture, Dec. 2014, pp. 127–
139.

[92] X. He, G. Yan, Y. Han, and X. Li, “ACR: Enabling computation reuse for approximate
computing,” in 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC), 2016, pp. 643–648.

[93] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and
T. C. Mowry, “RFVP: Rollback-free value prediction with safe-to-approximate loads,”
ACM Trans. Archit. Code Optim., vol. 12, no. 4, 62:1–62:26, Jan. 2016.

91

[94] Y. Kim, S. Venkataramani, N. Chandrachoodan, and A. Raghunathan, “Data subset-
ting: A data-centric approach to approximate computing,” in 2019 Design, Automa-
tion and Test in Europe Conference Exhibition (DATE), 2019, pp. 576–581.

[95] S. Sen, S. Jain, S. Venkataramani, and A. Raghunathan, “SparCE: Sparsity aware
general-purpose core extensions to accelerate deep neural networks,” IEEE Trans.
Comput., vol. 68, no. 6, pp. 912–925, Jun. 2019.

[96] HP Labs. (2021). CACTI, [Online]. Available: https://www.hpl.hp.com/research/
cacti/ .

[97] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39,
no. 2, pp. 1–7, Aug. 2011.

[98] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embedding,” in Pro-
ceedings of the 22nd ACM International Conference on Multimedia, 2014, pp. 675–
678.

[99] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel execution frame-
work for recognition and mining applications,” in Proc. IPDPS, 2009, pp. 1–12.

[100] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving DRAM
refresh-power through critical data partitioning,” in Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, 2011, pp. 213–224.

[101] A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-aware data alloca-
tion in approximate DRAM,” in International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2015.

[102] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approximate memory
compression for energy-efficiency,” in 2017 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), Jul. 2017, pp. 1–6.

[103] A. Raha and V. Raghunathan, “Towards full-system energy-accuracy tradeoffs: A case
study of an approximate smart camera system,” in Design Automation Conference,
2017, 74:1–74:6.

[104] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality configurable ap-
proximate DRAM,” IEEE Transactions on Computers, vol. 66, no. 7, pp. 1172–1187,
Jul. 2017.

92

https://www.hpl.hp.com/research/cacti/
https://www.hpl.hp.com/research/cacti/

VITA

Younghoon Kim received the bachelor’s degree in Electrical and Computer Engineering and

the master’s degree in Electrical Engineering and Computer Science from Seoul National

University, Seoul, South Korea in 2008 and 2010. He is currently pursuing a Ph.D. degree

in the School of Electrical and Computer Engineering, Purdue University, West Lafayette,

IN, USA. After his graduation, Younghoon will join Qualcomm, San Diego, CA, USA as

an SoC architect. Previously, Younghoon was a firmware engineer at COWON Systems,

a portable multimedia player manufacturer in Seoul, South Korea from 2010 to 2013. He

has also interned with the Data Center Group at Intel, Hillsboro, OR, USA during the

Summer of 2017. His primary research interests include approximate computing and high-

performance and low-power system design. Younghoon received the National Science and

Engineering Undergraduate Scholarship from Korea Student Aid Foundation. His research

on clock overgating has received a best paper nomination from DAC 2016, and his research

on data subsetting has received the best paper award from DATE 2019.

93

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Approximate Computing
	Thesis Contributions
	Approximate Circuit Design using Clock Overgating
	Value Similarity Extensions for Approximate Computing in General-Purpose Processors
	Data Subsetting: A Data-Centric Approach to Approximate Computing

	Thesis Organization

	RELATED WORK
	Circuit Design Techniques for Approximate Computing
	Architectures for Approximate Computing
	Software Techniques for Approximate Computing

	APPROXIMATE CIRCUIT DESIGN USING CLOCK OVERGATING
	Introduction
	Comparison to Related Work
	Background
	Power Dissipation in Sequential Circuits
	Clock Gating

	Design Approach
	Clock Overgating: Concept
	Clock Overgating: Design Space

	Design Methodology
	Approximate Design using Clock Overgating
	Identifying Clock Overgating Candidates

	Experimental Setup
	Benchmarks
	Quality and Power Evaluation

	Experimental Results
	Energy-Quality Tradeoff
	Comparison with Precision Scaling
	Effectiveness of FF Grouping
	Illustration of Clock Overgating in Action

	Summary

	VALUE SIMILARITY EXTENSIONS FOR APPROXIMATE COMPUTING IN GENERAL-PURPOSE PROCESSORS
	Introduction
	Comparison to Related Work
	Value Similarity: Sources, Opportunities and Challenges
	VSX: Value Similarity Extensions for General-Purpose Processors
	VSX: Overview
	Program Annotations and Compiler Techniques for VSX
	Instruction Skipping & Result Reuse
	VSX: Microarchitecture
	Iteration Fast-Forwarding

	Experimental Setup
	Results
	Speedup-Accuracy Tradeoff
	Skip Rate Analysis
	Speedup Across Different Spatial Distribution of Similarity
	VSX vs. Load Value Approximation

	Summary

	DATA SUBSETTING: A DATA-CENTRIC APPROACH TO APPROXIMATE COMPUTING
	Introduction
	Comparison to Related Work
	Data Subsetting
	Data Subsetting: Concept
	Data Subsetting: Challenges
	Subset Selection
	Access Approximation through Redirection

	Data Subsetting: Optimizations
	Subset Buffer
	Eliminating Redundant Computations

	Realizing Data Subsetting in Software
	SubsettableTensor Data Structure
	Illustration: K-means Clustering

	Experimental Setup
	Benchmarks
	Performance Evaluation

	Results
	Performance Benefits
	Comparison with Loop Perforation
	Choice of Access Redirection Function
	Dynamic Modulation of Subset Size

	Summary

	CONCLUSION
	REFERENCES
	VITA

