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ABSTRACT 

Functional imaging data of the brain using Magnetic Resonance Imaging (MRI) – fMRI data 

exhibits complex but structured patterns. This fMRI data has opened a new venue for 

understanding the brain system at the whole-brain scale. However, the underlying origins of fMRI 

data are unclear and entangled. In this dissertation, I establish a variational auto-encoder, a 

generative model trainable with an unsupervised learning algorithm, to disentangle the unknown 

sources of fMRI activity. After being trained with large fMRI data in cooperation with a new 

reformatting strategy of input fMRI data, the model has learned the representations of cortical 

activity using latent variables. In Chapter 3, I found that the latent representation and its trajectory 

represented the spatiotemporal characteristics of fMRI activity under resting state. The latent 

variables reflected the principal gradients of the latent trajectory and drove activity changes in 

cortical networks. Latent representations were clustered by both individuals and brain states. 

Representational geometry captured as the covariance between latent variables, rather than cortical 

connectivity, was used as a more reliable feature to accurately identify subjects from a large group, 

even if only a short period of data was available per subjects. In Chapter 4, I further applied the 

VAE model pretrained with fMRI data in the resting state to new fMRI data from subjects watching 

naturalistic movies.  I further validated that my VAE model was highly generalizable to fMRI data 

under different brain conditions and different scanning parameters. Additionally, I showed the 

task-evoked brain activity and spontaneous brain activity could be linearly separable in the VAE-

derived latent space. Task-evoked latent representations and trajectory were employed to 

understand the dynamics of brain networks during naturalistic movie stimuli. I found that the 

principal gradients of the task-evoked latent trajectory were related to many aspects of the movie 

stimuli: low-, middle-, high-level video features. Cortical mapping of principal gradients showed 

the interactions between distributed cortical networks spanning from low-level sensory to high-

level cognitive. Taken together, the VAE model proposed in this dissertation is a novel and 

effective tool that can potentially be used for understanding cortical dynamics in different brain 

conditions and disease conditions.   
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 INTRODUCTION 

1.1 Defining the Problem 

For centuries, the way the human brain receives, processes, and reacts to sensory information 

from the real world has been of great interest. Thanks to recent advancements in recording and 

imaging modalities e.g., Electroencephalogram (EEG), Magnetoencephalogram (MEG), 

intracranial EEG (iEEG), and Magnetic Resonance Imaging (MRI), it now has been revealed that 

the human brain is a sophisticated network consisting of interareal communications spanning from 

micro-scale (e.g. neural microcircuit), to meso-scale (e.g. cortical layers), and to macro-scale (e.g. 

sensory systems) (Gilbert and Li, 2013; Hirabayashi et al., 2013; Rauschecker and Scott, 2009; 

Van Kerkoerle et al., 2014). Despite the numerous advances that have been made by painstaking 

efforts from great scientists, there are still many gaps that remain to be filled in understanding the 

systematic mechanism of the brain. 

Of other modalities for brain activity, functional MRI has been favored as a primary 

imaging tool to investigate brain activity due to its full brain coverage with millimeter-scale 

(Glover, 2011). A seminal fMRI study done by (Biswal et al., 1995) has shown how brain regions 

remotely located in the anatomical cortical space exhibited synchronized brain activities – 

considered as functionally “wired”. Followed by, imaging studies have shown canonical wiring 

patterns – Functional Connectivity (FC), and those are observable under different brain states such 

as awake (Damoiseaux et al., 2006; Horovitz et al., 2008; Smith et al., 2009; Vincent et al., 2007), 

sleep (Curtis et al., 2016; Larson-Prior et al., 2009), and even under the anesthetized state 

(Hutchison et al., 2013b; Kiviniemi et al., 2000; Vincent et al., 2007). Naturally, the “functional 

connectivity” analysis of fMRI data has been a major analysis technique.  

The underlying assumption of functional connectivity is a collinearity of measured signals 

between remote brain regions by ignoring the non-linearity between cortical sources and observed 

activity from fMRI modality, and the possible non-linearity of the brain functionality. There has 

been increasing evidence that the measured response of fMRI modality can be highly non-

linear due to the complex hemodynamic relationship between neural activity and blood-

oxygen-level-dependent signal that is used in fMRI modality (Friston et al., 1998; Liu et al., 

2010; Sheth et al., 2004). Therefore, an advanced analytical technique that acknowledges the 
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evident non-linear nature of fMRI activity is demanded to improve our understanding of the brain 

system. 

1.2 Source of fMRI Activity 

Now, we know the underlying sources of the BOLD signal in fMRI primarily result from 

synaptic inputs to neurons (Logothetis, 2002; Logothetis et al., 2001). The synaptic activity also 

causes local metabolic and hemodynamic changes observable with fMRI sensitized to blood-

oxygenation-level-dependent (BOLD) contrast (Buxton, 2009; Metea and Newman, 2006). The 

neurovascular coupling acts as a temporally low-pass filter, limiting the temporal resolution and 

specificity of fMRI.  

This notion is supported by the evidence obtained with simultaneously recorded neural and 

fMRI signals (Arthurs and Boniface, 2002; Goense and Logothetis, 2008; Logothetis et al., 2001). 

The BOLD fMRI signal accompanies, but lags behind, changes in local field potentials (LFP) that 

reflect synaptic input to neuronal ensembles (Buzsáki et al., 2012). The LFP-fMRI coupling is not 

confined to a single frequency band, but applies to many, if not all, frequency components of 

neural activity (Goense and Logothetis, 2008). The fMRI signal is also coupled with 

electrocorticography (ECoG) and EEG in a similar fashion (Goldman et al., 2002; Goncalves et 

al., 2006; Mukamel et al., 2005; Niessing et al., 2005; Wan et al., 2006; Yuan et al., 2010). Such 

a non-linear, complex relationship between neural activity and fMRI signal has been modeled 

through several studies (Friston et al., 2000; Lindquist et al., 2009; Logothetis et al., 2001; Martin 

et al., 2006), called as a hemodynamic response function. While hemodynamic response models 

can be useful for fMRI data under simple experimental designs e.g., a block-design, it does not 

apply to fMRI data with no or limited behavioral models.  

1.3 Functional Connectivity of Brain 

Functional Connectivity (FC) captures a linear dependency between different brain regions 

and/or between networks. As correlation analysis is purely data-driven, model-free, and 

conceptually simple, it has been one of the most widely used techniques to characterize the 

functional organization of the brain under task-free conditions e.g., resting-state (van den Heuvel 

and Hulshoff Pol, 2010). As FC stems from the anatomical “hard” wiring (Honey et al., 2009), FC 
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patterns observable during resting-state are repeatedly observed not only during performing 

behavioral tasks (Elliott et al., 2019; Shah et al., 2016; Yuan et al., 2015) but also across different 

states of alertness, sleep states, and even anesthetized states (Curtis et al., 2016; Fukunaga et al., 

2006; Horovitz et al., 2009; Horovitz et al., 2008; Hutchison et al., 2013b; Kaufmann et al., 2006; 

Kiviniemi et al., 2000; Larson-Prior et al., 2009; Martuzzi et al., 2010; Sämann et al., 2011; 

Vincent et al., 2007; Zhao et al., 2008). Yet, FC can be effectively altered by different brain states 

or different disease progressions. Given such characteristics, various applications have shown the 

possibility of FC patterns as an accurate classifier of behavioral states (Gonzalez-Castillo et al., 

2015), neural “fingerprinting” (Finn et al., 2015), and predictors of disease progression (Drysdale 

et al., 2017; Zeng et al., 2012; Zhou et al., 2010).  

Several labs including our lab have questioned whether such alternation introduced by the 

differences in brain conditions will be linearly additive (or deductive) (Bianciardi et al., 2009a; 

Churchland et al., 2010; He, 2013; Monier et al., 2003; Ponce-Alvarez et al., 2013). Contrary to 

popular belief, task-evoked brain activity is not independent of spontaneous ongoing brain activity. 

Rather, engaging to tasks suppresses spontaneous brain activity – named as the negative task-rest 

interaction. On top of the complex, non-linear relation between observed fMRI signal and neural 

activity, the existence of complex task-rest interaction suggests there is a significant amount of 

non-linear information of fMRI data, which has been overlooked by conventional linear analysis. 

Thus, I design a new unsupervised machine-learning model capable of capturing meaningful 

representations not only from linear information but also from non-linear information of fMRI 

data, leading to the systematic understanding of the brain mechanism (Chapter 2). 

1.4 Brain Decoding and Encoding Using Deep Learning 

Since the remarkable success of deep learning in the computer vision field (Krizhevsky et al., 

2017), there have been enormous efforts attempted to utilize deep learning models to accelerate 

our understanding of the brain. The deep learning models mimicking human perception to visual 

and auditory input have provided deep insights into how the brain receives and processes sensory 

information, and reacts to the real world – brain encoding (LeCun et al., 2015; Schmidhuber, 2015). 

To name a few, the Convolutional Neural Network (CNN) model trained to classify static natural 

images has shown that the human vision is a hierarchical cascade of non-linear yet simple 

processors (Khosla et al., 2019c; Richards et al., 2019; Yamins and DiCarlo, 2016). The Recurrent 
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Neural Network (RNN) model that incorporate the temporal information of animated images has 

further broaden our knowledge that the human vision system stores dynamics of the movie, named 

as the temporal receptive window, by processing through recurrences between brain hierarchies 

(Güçlü and van Gerven, 2017; Hardy and Buonomano, 2018; Shi et al., 2018). Recently, deep 

learning models directly implementing the predictive coding theory further improved the object 

recognition performance under the same computational resources as the CNN model, suggesting 

the human vision system is composed of bottom-up feedforward and top-down feedback system 

(Han et al., 2018; Wen et al., 2018b), backed by electrophysiology studies (Bastos et al., 2015; 

Bubic et al., 2010; Fries, 2015; Kawato, 1999; Klink et al., 2017; Mejias et al., 2016; Michalareas 

et al., 2016; Pickering and Clark, 2014; Rauschecker and Scott, 2009; Scheeringa et al., 2016; Van 

Kerkoerle et al., 2014).  

As opposed to brain encoding using deep learning models, there has been another lane of 

studies directly utilizing deep learning models to analyze the brain signal – brain decoding 

(Naselaris et al., 2011). Most decoding models employed supervised learning that was trained to 

perform specific tasks given the input of brain signals. Based on their objectives, previous brain 

encoding studies can be divided roughly into two categories, characterizing unique traits of healthy 

individuals, or predicting disease phenotypes. As applications detecting unique traits of individuals, 

deep learning studies tried to identify individuals among the population (Chen and Hu, 2018; Wang 

et al., 2019a), and to characterize different brain conditions (Jang et al., 2017; Koppe et al., 2019; 

Li and Fan, 2018; Oota et al., 2019; Qiao et al., 2019; Vu et al., 2020; Wang et al., 2020), age 

(Gadgil et al., 2020; Wen et al., 2020; Xia et al., 2019), sex (Fan et al., 2020; Gadgil et al., 2020), 

cognitive traits (Fan et al., 2020), and emotion (Kim et al., 2019). As clinical applications of brain 

encoding, significant efforts were made in finding phenotypes of Alzheimer’s disease (Ebrahimi-

Ghahnavieh et al., 2019; Feng et al., 2020; Goceri, 2019; Kam et al., 2019; Liu et al., 2020a; 

Meszlényi et al., 2017; Qureshi et al., 2019; Suk et al., 2016; Wang et al., 2019b; Yang et al., 2019) 

and autism spectrum disorder (Ahmed et al., 2020; Bengs et al., 2020; D’Souza et al., 2019; 

Dvornek et al., 2018a; El-Gazzar et al., 2019; Guo et al., 2017; Sharif and Khan, 2019), as well as 

Attention Deficit Hyperactivity Disorder (ADHD) (Riaz et al., 2020), schizophrenia (Chen et al., 

2020; Matsubara et al., 2019; Yan et al., 2019), and Parkinson’s Disease (Zhang et al., 2018).  It 

is noteworthy that there are ongoing efforts that are trying to model hemodynamic response models 

(Cui et al., 2019), or to segment brain networks such as the default mode network (Zhao et al., 
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2018) or hippocampus (Liu et al., 2020a), in a data-driven fashion. Lastly, instead of fMRI data, 

there are also deep learning studies using other brain signals such as EEG (Dubreuil-Vall et al., 

2020; Gao et al., 2020b; Jang et al., 2018; León et al., 2020; Zeng et al., 2020) or functional near-

infrared spectroscopy (Ho et al., 2019; Xu et al., 2020), to predict brain condition, identify 

individual’s traits, or identify disease phenotypes. Among them, the deep learning application 

using the EEG signal as a seizure predictor is of interest since fMRI activity might fail to capture 

useful information of seizure prediction due to the poor temporal resolution (Zeng et al., 2020).  

However, labels or behavioral information that are central to the supervised learning regime 

are commonly limited compared to the spatial dimension of input i.e., fMRI data. To alleviate such 

limitation, most studies compressed the input i.e., fMRI data at the region-of-interest level (Chen 

and Hu, 2018; Dvornek et al., 2018b; Koppe et al., 2019; Matsubara et al., 2019; Suk et al., 2016; 

Wang et al., 2019a; Wang et al., 2020), or at the network level (D’Souza et al., 2019; Fan et al., 

2020; Kawahara et al., 2017; Kim and Lee, 2016; Riaz et al., 2020; Seo et al., 2019; Venkatesh et 

al., 2019; Yang et al., 2019; Zhao et al., 2018). Nevertheless, it is uncertain how much information, 

especially non-linear information of fMRI data, will remain after the linear data dimension 

reduction. Therefore, it has been debated whether supervised deep neural networks are superior to 

conventional and simpler machine-learning methods (He et al., 2020). 

1.5 Brain Encoding Using Unsupervised Deep Learning 

Given the limitation of supervised learning models, an unsupervised learning strategy is a 

reasonable alternative for fMRI data. There have been many unsupervised deep learning methods 

and their models were tested in different tasks e.g., a short-time prediction of fMRI data (Brown 

et al., 2020; Huang et al., 2017; Kashyap and Keilholz, 2020; Khosla et al., 2019a; Ravi et al., 

2019), predicting brain conditions (Huang et al., 2017; Oota et al., 2019; Zhao et al., 2019), 

identifying disease phenotypes (Gao et al., 2020a; Guo et al., 2017; Liu et al., 2020b; Lostar and 

Rekik, 2020; Matsubara et al., 2019; Oh et al., 2019; Ravi et al., 2019; Saeed et al., 2019; Seo et 

al., 2019; Suk et al., 2015; Suk et al., 2016; Zhao et al., 2020), or predicting demographic traits 

(Wen et al., 2020; Xia et al., 2019). Same as supervised deep learning studies, however, most of 

the abovementioned studies limited their input by manually compressing fMRI data at the region-

of-interest level or at the FC level, leading to the same concern as supervised methods. It is 

noteworthy that there are a couple of unsupervised deep learning studies that used the raw 3D 
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volumetric fMRI data as their input, but those studies had to limit the depth of their deep learning 

models due to the heavy computational load coming from the input size (Brown et al., 2020; Liu 

et al., 2020b). Different from natural images, cortical morphology is very convoluted including 

several layers of gyrus and sulcus, requiring enough depth to address the distinction between the 

brain anatomy and the brain functionality. Therefore, I sought to design a new input format of 

fMRI data that can balance between the information of fMRI data for being a useful application 

and the size of input for being a practical application (Chapter 2).  

Most of the existing unsupervised deep learning methods are based on the “auto-encoder” 

strategy consisting of two compartments: 1) an encoder; compressing complex, high-dimensional 

input to simple, low-dimensional space i.e., latent space, and 2) a decoder; reconstructing input 

from representations in latent space. On top of the “auto-encoder” strategy, additional constraints 

can be added, yielding various models with different behaviors. Among them, the Variational 

AutoEncoder (VAE) model became one of the most widely used deep generative models thanks 

to its simple yet powerful theoretical concept and the reliable stability against diverse applications. 

Additionally, the superior interpretability of latent space defined by VAE has been an attractive 

property of VAE model. Given that, in Chapter 2, I designed a VAE model (Higgins et al., 2017; 

Kingma and Welling, 2013), for the first time, specialized to learn representations of rsfMRI 

spatial patterns. I also designed a new reformatting strategy of input of VAE – fMRI data, instead 

of conventional compressing methods. Through exploring the hyperparameters of β-VAE, I 

determined the model architecture and hyperparameters, and the VAE model was trained and 

validated using the population-level fMRI data under the resting state.  

In Chapter 3, As a starting example of the VAE model for fMRI data, I applied the VAE 

model to fMRI data under resting state. I characterized the time-evolving trajectory of latent 

representations and factorized its gradients by principal components. I also visualized the 

representational gradients, clusters, and geometries within and across individuals, as a way to 

characterize brain networks and their dynamic interactions. Lastly, I tested the use of this model 

for characterizing individual variations and identifying individuals from the population. 

In Chapter 4, I further tested the generalizability of the VAE model pretrained in Chapter 3 

on fMRI under different brain conditions and different recording parameters. I found the VAE 

model was highly generalizable to fMRI data when subjects were watching naturalistic movies. 

Additionally, I found generative factors of task-evoked brain activity and generative factors 
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responsible for spontaneous ongoing brain activity were delineated in the latent space. Based on 

that, I showed that the trajectory of task-evoked brain activity was dependent on scenic changes in 

movie stimuli. Lastly, I showed that the positive and negative interactions between brain networks 

were the principal bases forming the reorganization of the brain during watching movies.  
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 BETA VARIATIONAL AUTOENCODER 

2.1 Motivation 

The central concept of the unsupervised generative model can be viewed as “a task 

reconstructing the input can be used to understand the generative factors underlying the input”. In 

VAE, implementation of this idea was done by coupling two parametrized models: an encoder (or 

recognition model) and a decoder (or generative model). These two models reinforce each other; 

the encoder tries to pass good approximations of input in terms of latent variables to the decoder, 

whereas the decoder tries to learn meaningful representations of data under given latent variables 

(Higgins et al., 2017; Kingma and Welling, 2013). As in the original paper (Kingma and Welling, 

2013), the objective of VAE can be simplified as minimizing reconstructing error of input under 

the constraint making latent variables independent to each other. The defining difference of VAE 

compared to other autoencoder models comes from this constraint, leading to better interpretability 

of learned latent variables. Similar to VAE, β-VAE also employs the same objective but adds a 

hyperparameter (called as β originally) emphasizing the importance of better interpretability over 

the reconstruction performance (Burgess et al., 2018; Higgins et al., 2017). β-VAE has proved its 

excellent interpretability of latent variables representing underlying generative factors of simple 

images (Higgins et al., 2017), and complex images (Burgess et al., 2019) while to our best 

knowledge, there has been no study utilizing β-VAE as a tool for brain encoding. Thus, we chose 

β-VAE as our base model of unsupervised representational learning of fMRI cortical patterns.  

2.2 Input Structure of β-VAE Model 

Instead of limiting the input data to activity at the Region of Interest (ROI) level or network 

level, we converted the rsfMRI data from 3-D cortical surfaces to 2-D grids in order to structure 

the rsfMRI pattern as an image to ease the application of convolutional neural networks. As 

illustrated in Figure 2.1, we inflated each hemisphere to a sphere by using FreeSurfer (Fischl, 

2012). For each location on the spherical surface, we used cart2sph.m in MATLAB to convert its 

cartesian coordinates (x, y, z) to spherical coordinates (a, e), which reported the azimuth and 

elevation angles in a range from -π to π and from -π/2 to π/2, respectively. We defined a 192×192 

grid to resample the spherical surface with respect to azimuth and sin(elevation) such that the 
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resampled locations were uniformly distributed at approximation (Figure 2.2). We used the 

nearest-neighbor interpolation to convert data from the 3-D surface to the 2-D grid, and vice versa. 

2.3 Model Architecture 

We designed a β-VAE model to learn representations of rsfMRI. This model included an 

encoder and a decoder (Figure 2.3). The encoder converted an fMRI map to a probabilistic 

distribution of 256 latent variables. Each latent variable was a Gaussian random variable with a 

mean and a standard deviation. The decoder sampled the latent distribution to reconstruct the input 

fMRI map or generate a new map, which appeared similar to what would be observable with fMRI. 

The encoder stacked five convolutional layers and one fully connected layer. Every convolutional 

layer applied linear convolution and rectified its output (Nair and Hinton, 2010). The first layer 

applied 8×8 convolution separately to the input from each hemisphere and concatenated its output. 

To the feature maps concatenated across both hemispheres, the 2nd through 5th layers applied 4×4 

convolution. Since a spherical pattern is circularly continuous with respect to the azimuth, we 

applied circular padding to the boundaries of the azimuth for the flattened 2-D map but applied 

zero paddings to the boundaries of elevation. Such padding was intended to avoid artifacts when 

applying convolution near those boundaries. The fully connected layer applied linear weighting 

and yielded the mean and standard deviation that described the normal distribution of each latent 

variable. The decoder used nearly the same architecture as the encoder but it connected the layers 

in the reverse order for transformation from the latent space back to the input space. Figure 2.3 

illustrates the model architecture.  

In our case, the objective of the VAE model aimed to maximize the marginal log-likelihood 

of the observed fMRI data combined across the left and right hemispheres 𝑥 over the ground-truth 

generative factors of 𝑧: 

maxϕ,θ 𝔼𝑞ϕ(𝒛|𝒙)[log 𝑝θ (𝒙|𝒛)],  (1) 

where, ϕ  and θ  stand for the learnable parameters of the encoder and the decoder, 

respectively. As desire that inferred latent factors 𝑞ϕ(𝒛|𝒙)  are informative (or disentangled), 

additional constraint with adjustable hyperparameter 𝛽 is introduced to force 𝑞ϕ(𝒛|𝒙) to match to 

be isotropic unit Gaussian 𝑁(0, 𝐼). In short, the objective can be re-written as: 

 𝐿(𝑥) = ‖𝑥 − 𝑥′‖2
2 + 𝛽 ∙ 𝐷𝐾𝐿[𝑁(𝜇𝑧, 𝜎𝑧) ∥ 𝑁(0, 𝐼)],  (2) 
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where 𝑥 is the, 𝑥′ is the reconstructed input, 𝑁(𝜇𝑧 , 𝜎𝑧) is the posterior normal distribution 

of the latent variables, 𝑧 , with their mean and standard deviation denoted as 𝜇𝑧  and 𝜎𝑧 , 𝐷𝐾𝐿 

measures the Kullback-Leibler (K-L) divergence between the posterior and prior distributions.  

Part of the medial cortical surface that corresponds to the corpus callosum (i.e. white matter) 

was excluded from training such that the learned model was intended to merely represent the 

activity of cortical gray matter. 

2.4 Data and Training 

Here, we used rsfMRI data consisting of 150 healthy subjects randomly chosen from the 

Q2 release by HCP (Van Essen et al., 2013). For each subject, we used two sessions of rsfMRI 

data acquired from different days with either the right-to-left or left-to-right phase encoding. Each 

session included 1,200 time points separated by 0.72s. The imaging protocol of rsfMRI data were 

followed: gradient-echo echo-planar imaging (EPI) sequence with the following parameters: 

repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip angle = 52 deg, field of view (FOV) 

= 208 x 180 mm, matrix = 104 x 90, spatial resolution = 2.0mm3, number of slices = 72, multiband 

factor = 8, echo spacing = 0.58 ms, bandwidth = 2290 Hz/Px. Following minimal preprocessing 

(Glasser et al., 2013) and automatic denoising with ICA (or the ICA-FIX) (Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014), we applied voxel-wise detrending (regressing out a 3rd-order 

polynomial function), bandpass filtering (from 0.01 to 0.1 Hz), and normalization (to zero mean 

and unitary variance). We further separated the data into two sets, including 100 or 50 subjects for 

training and validating the VAE model, respectively. The validation dataset was used to determine 

the hyperparameters used in the VAE model. To train the model, we used stochastic gradient 

descent (batch size=128, initial learning rate=10-4, and 100 epochs) and Adam optimizer (Kingma 

and Ba, 2014) implemented in PyTorch (v1.2.0). The learning rate was decayed by a factor of 10 

every 20 epochs. See Table. 2.1 for the training algorithm.   

2.5 Model Parameter 

We determined the hyperparameters by exploring and testing different parameter settings 

with the validation dataset. Specifically, we explored four values (1, 5, 10, 15) for β and chose 

β=10 to balance the reconstruction performance vs. the disentanglement (or independence) of 
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latent variables (Figure 2.4) – the two terms in the loss function shown in Eq. (2). We also explored 

several options for the number of layers (# of layers = 6 and 8; full model: 12). Since shallower 

models were not able to reduce reconstruction loss when 𝛽=10, we set 𝛽=1 and compared the 

validation loss as a function of epochs only for the comparison purpose. As expected, shallower 

models had poorer reconstruction performance compared to one obtained using the full model 

(Figure 2.5). Moreover, only VAE model with 12 layers was able to reduce both reconstruction 

loss and 𝐷𝐾𝐿 when 𝛽=10. Collectively, this result suggested the current model architecture having 

12 layers is a reasonable choice. Lastly, we explored three values of learning rate (10-3, 10-4, and 

10-5) as a trend of validation loss over the progression of training epochs. Given the current setting, 

we found when the learning rate is too high (=10-3), the model was not able to be converged 

whereas too low learning rate (=10-5) was stuck in local minima. Therefore, we chose the learning 

rate as 10-4 in the subsequent analysis.  

 

 

 

Figure 2.1. Geometric reformatting. The cortical distribution of fMRI activity is converted into a 

spherical surface and then to an image by evenly resampling the spherical surface with respect to 

sin(e) and a, where e and a indicate elevation and azimuth, respectively. 
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Figure 2.2. Grayordinates (# = 29,696) in the left hemisphere (left panel) is projected into 2D 

space (middle panel) based on their azimuth- and elevation levels. Each color stands for different 

brain atlas based on the literature (Glasser et al., 2016). The imbalance in data density along the 

varying elevation level (upper in right panel) is alleviated by further applying elevation to Sine 

function (bottom in right panel). 
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Figure 2.3. Architecture of VAE. Simplified block diagram of VAE model (upper panel in B). 

An encoder network samples latent variables given an input image under the inference model 

while a decoder network generates a genuine input image from under the generative model. 

Details of VAE model (bottom panel in B). Both encoder and decoder network contain 5 

convolutional layers. In the encoder network, the size of output image of each layer (from left to 

right) is 96×96×64 (32 channels per hemisphere), 48×48×128, 24×24×128, 12×12×256, and 

6×6x×56; for the decoder network, 6×6×256, 12×12×256, 24×24×128, 48×48×128, and 

96×96×64 (32 channels per image), from left to right. The dimension of latent variables is 256. 

The convolution operations are defined as: 1: convolution (kernel size=8, stride=2, padding=3) 

with rectified nonlinearity, 2-5: convolution (kernel size=4, stride=2, padding=1) with rectified 

nonlinearity, 6: fully-connected layer with re-parametrization, 7: fully-connected layer with 

rectified nonlinearity, 8-11: transposed convolution (kernel size=4, stride=2, padding=1) with 

rectified nonlinearity, 12: transposed convolution (kernel size=8, stride=2, padding=3). Blue and 

red boxes stand for the input images from left and right hemispheres, respectively.  
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Figure 2.4. Validation error of VAE at varying beta values. Trade-off between reconstruction 

loss and Kullback–Leibler divergence is visualized for different beta values. Red color stands for 

the value we used for analysis. 
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Figure 2.5. Validation curve of VAE at different layers. (a) Layer 6; Both encoder and decoder 

network contain 2 convolutional layers. In the encoder network, the size of output image of each 

layer (from left to right) is 48x48x128 (64 channels per hemisphere), and 12x12x256; for the 

decoder network, 12x12x256, and 48x48x128 (64 channels per image), from left to right. Layer 

8; 3 convolutional layers for encoder and decoder networks. The size of output image of each 

encoder layer is 96x96x64 (32 channels per image), 24x24x128, and 6x6x256; decoder network: 

6x6x256, 24x24x128, and 96x96x64 (32 channels per image), from left to right. (b) The 

validation curve as a function of training epochs.  
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Figure 2.6. Validation curve of VAE at varying learning rate 
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Table 2.1. Algorithm of 𝛽-VAE for learning the representation of fMRI data 
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 REPRESENTATIONAL LEARNING OF RESTING STATE FMRI 

WITH VARIATIONAL AUTOENCODER 

* Modified and formatted for dissertation from the article that have been submitted for review with 

NeuroImage. 

3.1 Introduction 

The brain is active even at rest, showing complex activity patterns measurable with resting 

state fMRI (rsfMRI) (Fox and Raichle, 2007). It is widely recognized that rsfMRI activity is shaped 

by how the brain is wired, or the brain connectome (Sporns et al., 2005). Inter-regional correlations 

of rsfMRI activity are often used to report functional connectivity (Biswal et al., 1995) and map 

brain networks for individuals (Finn et al., 2015) or populations in various behavioral (Smith et 

al., 2009) or disease states (Fox et al., 2014). However, it remains largely unclear where rsfMRI 

activity comes from (Leopold and Maier, 2012; Lu et al., 2019), whereas understanding its origins 

is critical to interpretation of any rsfMRI pattern or dynamics (Winder et al., 2017).  

Prior findings suggest a multitude of sources (or causes) for rsfMRI activity (Bianciardi et al., 

2009b), including but not limited to fluctuations in neurophysiology (Mantini et al., 2007), arousal 

(Chang et al., 2016), unconstrained cognition (Chou et al., 2017), non-neuronal physiology (Birn 

et al., 2008), head motion (Power et al., 2014) etc. These sources only partially account for rsfMRI 

activity and may be entangled not only among themselves but also with other sources that are left 

out simply because they are hard to specify or probe in a task-free state (Leopold and Maier, 2012). 

An inclusive study would benefit from using a data-driven approach to uncover and disentangle 

all plausible but hidden sources from rsfMRI data itself, without having to presume the sources to 

whatever are experimentally observable. To be effective, such an approach should be able to infer 

sources from rsfMRI data and generate new rsfMRI data from sources, while being able to account 

for complex and nonlinear relationships between the sources and the data.   

These requirements lead us to deep learning, or representation learning with deep neural 

networks (LeCun et al., 2015), as a nonlinear method for blind source separation, in contrast to its 

linear counterparts, e.g. independent component analysis (Beckmann and Smith, 2004; Calhoun et 

al., 2001; Smith et al., 2012). For brain research, deep learning models has provided testable 

models of the brain in terms of neural computation for sensory and language processing (Han et 
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al., 2019; Kell et al., 2018; Khaligh-Razavi and Kriegeskorte, 2014; Richards et al., 2019; Wen et 

al., 2018a; Yamins and DiCarlo, 2016; Zhang et al., 2020). Deep learning has also been 

increasingly used as a generic family of machine learning tools to learn features from fMRI data. 

See (Khosla et al., 2019c) for a review. Most applications are in the regime of supervised learning. 

Typically, a neural network takes an fMRI-based input data and is trained to generate an output 

that optimally matches the ground truth for a task, such as individual identification (Chen and Hu, 

2018; Wang et al., 2019a), prediction of gender, age, or intelligence (Fan et al., 2020; Gadgil et 

al., 2020; Plis et al., 2014), disease classification (Seo et al., 2019; Suk et al., 2016; Wang et al., 

2020; Yang et al., 2019; Zou et al., 2017). The labels required for supervised learning are often 

orders of magnitude smaller in size than the fMRI data itself, which has a high dimension in both 

space and time. As a result, the prior studies often limit the model capacity by using a shallow 

network and/or limit the input data to activity at the region of interest (ROI) level (Chen and Hu, 

2018; Dvornek et al., 2018b; Koppe et al., 2019; Matsubara et al., 2019; Suk et al., 2016; Wang et 

al., 2019a; Wang et al., 2020) or reduce it to functional connectivity (D’Souza et al., 2019; Fan et 

al., 2020; Kawahara et al., 2017; Kim and Lee, 2016; Riaz et al., 2020; Seo et al., 2019; Venkatesh 

et al., 2019; Yang et al., 2019; Zhao et al., 2018). It is also uncertain to what extent representations 

learned for a specific task would be generalizable to other tasks. It is further debatable whether 

deep neural networks with supervised learning are currently superior to more conventional and 

simpler methods (He et al., 2020) 

For these considerations, unsupervised learning is more preferable for uncovering the 

underlying causes that drive intrinsic brain activity regardless of any task or disease. We choose 

to use the Variational Auto-Encoder (VAE) (Higgins et al., 2017; Kingma and Welling, 2013), for 

unsupervised learning of the increasing “big data” in rsfMRI without requiring any label or 

narrowly focusing on any downstream task. Unlike auto-encoder, VAE is a generative model 

capable of synthesizing new data similar to the training data, and it regularizes the latent space 

with a priori spherical Gaussian distributions. These properties allow the representation learned to 

be expressed in terms of latent variables that encode the disentangled causes of the data. Our 

emphasis on disentangling latent representations sets this work apart from several prior work based 

on the auto-encoder implemented in various forms of deep neural networks (Cui et al., 2019; 

Huang et al., 2017; Liu et al., 2020a; Makkie et al., 2019; Suk et al., 2016; Zhao et al., 2018). 

Briefly in this study, we designed and trained a VAE model to represent rsfMRI data in terms of 
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its latent sources and tested its ability to explain and generate rsfMRI data. We characterized the 

time evolving trajectory of latent representation and factorized its gradients by principal 

components. We also visualized the representational gradients, clusters, and geometries within and 

across individuals, as a way to characterize brain networks and their dynamic interactions. Lastly, 

we tested the use of this model for characterizing individual variations and identifying individuals 

from their rsfMRI data (Finn et al., 2015)as a starting example of its applications. 

3.2 Methods and Materials 

3.2.1 Testing Data 

We used rsfMRI data from 500 healthy subjects randomly chosen from the Q2 release by 

HCP (Van Essen et al., 2013). For each subject, we used two sessions of rsfMRI data acquired 

from different days with either the right-to-left or left-to-right phase encoding. Each session 

included 1,200 time points separated by 0.72s. The imaging protocol of rsfMRI data were followed: 

gradient-echo echo-planar imaging (EPI) sequence with the following parameters: repetition time 

(TR) = 720 ms, echo time (TE) = 33.1 ms, flip angle = 52 deg, field of view (FOV) = 208 x 180 

mm, matrix = 104 x 90, spatial resolution = 2.0mm3, number of slices = 72, multiband factor = 8, 

echo spacing = 0.58 ms, bandwidth = 2290 Hz/Px. Following minimal preprocessing (Glasser et 

al., 2013) and automatic denoising with ICA (or the ICA-FIX) (Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014), we applied voxel-wise detrending (regressing out a 3rd-order polynomial 

function), bandpass filtering (from 0.01 to 0.1 Hz), and normalization (to zero mean and unitary 

variance). The testing data were neither seen nor used by the model during training or validation. 

This held-out data was used to test the generalizability of the model across different datasets. For 

an exploratory analysis, we additionally tested the model with rsfMRI data that did not go through 

denoising with ICA-FIX to evaluate the model performance against presumably noisier rsfMRI 

data. 

3.2.2 Synthesizing Resting State fMRI Functional Connectivity 

We used the trained VAE to synthesize rsfMRI data from random samples of latent 

variables. To synthesize a vector in the latent space, we drew a random sample of every latent 

variable independently from a standard normal distribution. The synthesized vector passed through 
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the decoder in VAE, generating a cortical pattern. Repeating this process, we synthesized 12,000 

cortical patterns as data used for seed-based correlation analysis. As examples, we explored three 

seed locations within primary visual cortex (V1), intraparietal sulcus (IPS), and posterior cingulate 

cortex (PCC) and calculated the functional connectivity to each seed based on the Pearson 

correlation coefficient. The MNI coordinates of the seed in V1, IPS, and PCC were (7, -83, 2), (26, 

-66, 48), and (0, 57, 27), respectively (Jarrett, 2009). In addition, we performed a similar analysis 

without limiting to the seed locations. Instead, we calculated the functional connectivity between 

each pair of parcels as defined in a 360-parcel atlas of the whole cortex (Glasser et al., 2016).  

For comparison, we similarly calculated seed-based or parcel-to-parcel functional connectivity 

with experimental rsfMRI data concatenated across a varying number (1, 5, 10, 50, and 100) of 

subjects in HCP. We compared the functional connectivity pattern observed with synthesized and 

experimental data and repeated the comparison 20 times. At each time, we generated a different 

set of synthesized data while using experimental data from a different subset of subjects. The 

comparison was thus randomly repeated. 

3.2.3 Defining a Principal Basis Set in the Latent Space 

By our design, the VAE model encodes the spatial pattern of fMRI activity and does not 

represent the temporal dynamics explicitly. The distribution of every latent variable is constrained 

to be close to a standard normal distribution independent of one another, for the K-L divergence 

term in the loss function in Eq. (2). This implies that the latent variables in the VAE model are not 

unique. An arbitrary rotation of a tentative set of latent variables would arrive at a new set of latent 

variables that span the same latent space and satisfy the same learning objective.  

To identify a unique set of latent variables, we exploited the trajectory of the latent 

representation. Specifically, for the fMRI data in the testing set (concatenated across 500 subjects), 

we encoded the fMRI pattern observed at every time into a point (or vector) embedded in the latent 

space. As time progressed, this point moved in the latent space along a trajectory that represented 

the temporal dynamics of fMRI activity.  

In a first-order differential analysis, we evaluated the displacement (or difference) of the 

latent representation from every time point to its next. To this time-difference vector (or the latent 

gradient), we further applied singular vector decomposition and used the singular vectors to define 

a unique basis set of the latent space. As such, each singular vector was a re-defined latent variable, 
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while the corresponding singular value indicated its importance in explaining the latent gradient 

of cortical activity. In other words, the trajectory was more likely to move along the direction 

represented by a singular vector with a larger singular value than that with a smaller singular value. 

We further interpreted and visualized the top-10 latent variables defined as the singular 

vectors with the largest 10 singular values. For this purpose, we decoded each of these latent 

variables onto the cortical surface by using the decoder in the VAE model. Note that the latent 

variables were related to cortical patterns through nonlinear functions. We evenly sampled each 

latent variable of interest from -5 to 5, while keeping other latent variables to zero. We mapped 

the decoded cortical pattern and characterized its variation due to the variation of a single latent 

variable. We quantified the variation separately for each cortical location in terms of the standard 

deviation multiplied by a sign. The sign of standard deviation map was determined by measuring 

the sign of Pearson correlation coefficient between the decoded values of each cortical location 

and the samples of the given latent variable. 

3.2.4 Clustering in the Latent Space 

We encoded the rsfMRI spatial pattern at every time point for 500 testing subjects, yielding 

600,000 vectors in the latent space. We used k-means clustering with 1-cosine distance (based on 

“kmeans” in Matlab) to group those vectors to 21 clusters. The choice of k=21 was empirical but 

made intentionally to be consistent to a prior study with a similar motivation (Smith et al., 2012). 

This choice was within a reasonable range for the number of resting state networks as reported in 

literature (Smith et al., 2009; Yeo et al., 2011). Beyond this single choice, we explored other 

numbers of clusters to ensure that k=21 was a reasonable choice for the distribution of latent 

representation. Specifically, we varied k from 1 to 100. Given each choice, we ran the k-means 

clustering for the testing data (n=500 subjects), identified the clusters, calculated the centroid of 

each cluster, and summed the distance to the centroid within every cluster. We further plotted the 

sum of distance as a function of k and ensured that k=21 was around the “elbow” of the plot, as a 

useful, but not strict, rule of thumb.  

Given k-means clustering with k=21, we re-ordered individual time points by their cluster 

membership and compared the distance between time points within and between clusters. We also 

evaluated the relationships among different clusters by calculating the distance between the 
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centroids of individual clusters and we further grouped clusters into super-clusters organized in a 

multi-level hierarchy visualized as a dendrogram (by using “linkage” in Matlab).  

To visualize and interpret each cluster, we further converted the cluster centroid to a 

corresponding cortical pattern by using the VAE’s decoder. The resulting cortical pattern was 

scaled such that its maximal absolute value equaled 1. This pattern was considered as a functional 

cortical network. To further evaluate how each cortical network changed its activity in time, we 

defined and evaluated the cluster-wise activity as the cosine affinity between the centroid of each 

cluster and the latent representation of fMRI activity at every time. As such, a cluster increased its 

activity when the latent representation moved toward the centroid of that cluster or decreased its 

activity when the representation moved away from that centroid but towards the centroid of 

another cluster. After this analysis was done separately for each session and subject, we averaged 

the cluster-wise activity across subjects. Then we compared the group-level activity between 

sessions and across clusters, and tested the statistical significance with a non-parametric 

permutation test (false discovery rate q<0.01), for which the time points were randomly shuffled 

for 10,000 trials to yield a null distribution. 

3.2.5 Individual Variation 

To evaluate the individual variation, we compared the latent representations of the fMRI 

data from different individuals. In an exploratory analysis, we randomly selected a small (n=20) 

subset of subjects. We chose 20 subjects to ease visualization and intuitive demonstration, before 

scaling up the analysis to 500 subjects. For each of the 20 subjects, we converted the fMRI 

activities, instance by instance, to the representations in the latent space. To visualize and compare 

subject-wise representations, we used the t-distributed Stochastic Neighbor Embedding (t-SNE) 

method to visualize the 256-dimensional latent representations (color-coded by subjects) in a two-

dimensional space. We calculated the Silhouette index to measure how similar the latent 

representation was within the same subject vs. between different subjects. 

3.2.6 Subject Identification 

After the exploratory analysis above, we evaluated the individual variation across n=500 

subjects. For the distribution of subject-wise latent representation, the first moment was the mean 
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and the second moment was the covariance, which indicated the location and geometry of the 

subject-wise latent representation, respectively. We tested the use of the first moment (mean) or 

the second moment (covariance) as the subject-identifying feature.  

In the testing data set, every individual had rsfMRI data acquired for two separate sessions. 

From the first session, we extracted the feature from every subject and stored it as the subject-

identifying key in a database that included a population of 500 subjects. Given this database, we 

tested the accuracy of retrieving any subject’s identity by using the feature extracted from the 

second session as a query to match against all keys in the database. The goodness of match was 

evaluated as the cosine similarity or the Pearson correlation coefficient when the query and the 

key were based on the first moment (mean) or the second moment (covariance) of the subject-wise 

representation, respectively. The accuracy of individual identification was evaluated as the 

percentage by which the correct identity was retrieved as one of the best 1, 5, or 10 matches, 

yielding the namely top-1, 5, or 10 accuracy.  

For comparison, we compared the performance of individual identification based on the above 

latent-space feature vs. the similar feature evaluated in the cortical space. The cortical-space 

features extracted with a similar method as previously reported in (Finn et al., 2015). Specifically, 

the FC between brain regions (or connectome) was calculated as features for individual 

identification. It is worth noting that the cortical connectome and covariance of latent 

representation, although they are nominally different terms, can both be viewed as the 

representational geometry of brain activity in the cortical space (for the connectome) or the latent 

space (for the covariance of latent representation). In addition, we may also cast both notions as 

the functional connectivity profile in the cortical space or the latent space. Given such conceptual 

connections, we evaluated the FC between every pair of 360 cortical parcels defined in an 

established atlas (Glasser et al., 2016) and used the FC-based connectome as the feature for 

individual identification (Finn et al., 2015). We compared the connectome-based identification 

accuracy with that based on the FC profile (or representational geometry) in the latent space for a 

varying population size (from n=5 to 500 subjects) or a varying length of data per subject (from 9 

to 180 s). We repeated the above analysis 100 times, each time with a different subset of the testing 

data and averaged the identification accuracy across the repeated tests. 
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3.2.7 Comparison with Linear Latent Space 

The VAE model described herein provided nonlinear mapping from the cortical space to 

the latent space (through the encoder) and in reverse (through the decoder). Such reversible 

mapping could be conventionally done through linear matrix operations, such as the principal 

component analysis (PCA) and independent component analysis (ICA). Hence, we compared the 

distribution and geometry of the rsfMRI representation in the nonlinear latent space obtained with 

VAE vs. the linear latent space obtained with PCA or ICA. For such comparison, we used PCA or 

ICA trained with the training data to represent rsfMRI data in the testing dataset, while keeping 

the linear latent space of the same (256) dimension as its nonlinear counterpart. We compared the 

performance of reconstructing fMRI patterns from their latent representations (see results in Figure 

3.2). In addition, we also compared PCA or ICA vs. VAE for characterizing individual variation 

or performing individual identification by using the representation in the PCA or ICA-derived 

linear latent space for the same analyses as used for the representation in the VAE-based nonlinear 

latent space (see results in Figs. 3.6 and 3.8). 

3.3 Results 

3.3.1 VAE Compressed Resting State fMRI Maps 

Inspired by its success in artificial intelligence (Higgins et al., 2017; Kingma and Welling, 

2013), we designed a VAE model in order to disentangle the generative factors underlying rsfMRI 

activity. The model was trained to represent and reconstruct rsfMRI data with a set of latent 

variables that were constrained to be as independent as possible. The hyper-parameter, β, which 

expressed the weighting of independence among latent variables in the overall learning objective, 

was initially explored for different values (1, 5, 10, 15) before being finalized to β=10 – a setting 

that led to a reasonable trade-off of the model performance vs. constraint as demonstrated with the 

validation dataset (Figure 2.4).  

The model used a pair of convolutional and deconvolutional neural networks in an encoder-

decoder architecture (Figure 2.3). The encoder transformed any rsfMRI pattern, formatted as an 

image on a regular 2D grid (Figure 2.1), to the probability distributions of 256 latent variables. 

The decoder used samples of the latent variables to reconstruct or generate an fMRI map. Using 
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data from HCP (WU-Minn HCP Quarter 2) (Van Essen et al., 2013), we first trained the model 

with rsfMRI maps from 100 subjects and then tested it with rsfMRI data from 500 other subjects. 

 After being trained, the model could compress any fMRI map to a low-dimensional latent 

space and restore the map from the latent representation separately for every time point (Figure 

3.1). The compression resulted in spatial blurring comparable to the effect of spatial smoothing 

with 4-6 mm full width at half maximum (FWHM) (Figure 3.2). Given fMRI data spatially 

smoothed to a varying extent (FWHM from 1 to 10 mm), VAE showed either comparable or better 

performance of reconstruction than its linear counterparts (PCA and ICA), when VAE, PCA, and 

ICA all used the same dimension (256) for their latent spaces (Figure 3.2.a). The difference in 

reconstruction performance between VAE and PCA or ICA was marginal but statistically 

significant (repeated measures ANOVA followed by post-hoc paired t-test, false discovery rate 

q<0.05), for all smoothing levels except FWHM=1 mm (Figure 3.2.b). These results suggest that 

the latent representation obtained with VAE preserved the spatial and temporal characteristics of 

rsfMRI, despite a modest but acceptable loss in spatial resolution and specificity. 

3.3.2 VAE Synthesized Correlated fMRI Activity 

We asked whether the decoder in the VAE, as a generative model of fMRI activity, had 

learned the putative mechanisms by which rsfMRI activity patterns arise from brain networks. To 

address this question, we randomly sampled every latent variable from a standard normal 

distribution and used the decoder to synthesize 12,000 rsfMRI maps (equivalent to 10 subjects at 

1,200 time points per subject). 

We calculated the seed-based correlations by using the VAE-synthesized data and 

compared the resulting maps of correlations with those obtained with rsfMRI data concatenated 

across a different number of subjects. Figure 3.3.a shows three examples with the seed region in 

the primary visual cortex (V1), intraparietal sulcus (IPS), or posterior cingulate cortex (PCC). For 

each of the three seed locations, the synthesized fMRI data showed a similar correlational map as 

that based on length-matched rsfMRI data obtained from 10 subjects (Figure 3.3.a), and the 

correlational map was consistent with the literature (Yeo et al., 2011). The measured FC patterns 

were more similar to the synthesized FC patterns, when the measured FC was based on data from 

increasingly more subjects, regardless of whether the FC was evaluated and compared with respect 

to a specific seed location (Figure 3.3.b) or across all cortical parcels (Figure 3.3.c). These results 
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suggest that the VAE provided a computational account for the generative process of resting state 

activity and could synthesize realistic rsfMRI activity patterns and preserve inter-regional 

correlations as are experimentally observable at a group or population level. However, it is worth 

mentioning that the temporal ordering of the synthesized data is not meaningful, since the VAE 

model does not explicitly model the temporal dynamics. 

3.3.3 Latent Variables Reflected Network Dynamics 

We also examined the time-evolving trajectory of the latent representation and re-defined 

the latent variables such that they reflected the dynamic changes of fMRI activity. We first 

evaluated the displacement of the latent representation from every time point to its next. Then we 

applied singular value decomposition and used the resulting singular vectors to redefine the latent 

variables as a new basis set that spanned the latent space. These redefined latent variables, ranked 

in a descending order by their singular values, represented the principal directions in which the 

instantaneous latent representation tended to move along its time-evolving trajectory.   

We chose the top-10 latent variables for further visualization and interpretation. For each 

latent variable, we uniformly sampled its value in a range from -5 to 5 and visualized each sample 

by decoding it to a cortical pattern. We found that as the latent variable increased its value linearly, 

the decoded cortical pattern changed in a non-linear way that differed across cortical locations (see 

illustrative examples in Figure 3.4.b). To visualize how each latent variable controlled the activity 

at each cortical location, we calculated the standard deviation of the voxel-wise activity change 

given an increasing value for the given latent variable and multiplied by a sign (+1 or -1) depending 

on whether the activity tended to increase or decrease as the latent variable increased. For example, 

the 1st latent variable was visualized as a cortical pattern that resembled the default mode network 

(Figure 3.4.a). Using the same visualization method, we found that the 2nd through 10th latent 

variables all corresponded to distinct but partially overlapping cortical patterns (Figure 3.4.d). 

However, the top-10 latent variables were found to be inadequate to explain the dynamics of latent 

representations. The percentage of the variance explained by each latent variable was around 1% 

or less, and the total variance collectively explained by top 10, 20, 50, and 100 latent variables 

were 9.6, 17.5, 37.6, and 62.3% (Figure 3.4.c). These results suggest that the dynamics of rsfMRI 

is complex and high-dimensional in nature. Nevertheless, the latent variables derived from the 

above analysis represent distinctive factors that drive the dynamic change in resting state activity. 
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3.3.4 Clusters in the Latent Space 

We further characterized the distribution of latent representation and attempted to identify 

clusters in the latent space. We used the VAE to encode the rsfMRI pattern observed at every time 

point from 500 subjects, clustered the time points by applying k-means clustering (k=21) to the 

latent representations, and decoded the cluster centroids to corresponding cortical maps. The 

number of clusters (k=21) was close to the “elbow” indicative of a reasonable balance between 

reducing variation within clusters and avoiding too many clusters (Figure 3.5.a). The 1-cosine 

dissimilarity between latent representations reordered by their cluster membership shows not only 

close affinity within every cluster but also a varying level of affinity between different clusters 

(Figure 3.5.b). This motivated us to hierarchically merge clusters into super-clusters (or “clusters 

of clusters”) based on the cosine affinity between cluster centroids (Figure 3.5.c).  

For each of the 21 clusters, we decoded and visualized the cluster centroid as a cortical 

pattern as shown in Figure 3.5.d. Among the 21 clusters, 5 clusters (Cluster 4, 6, 11, 12, 18) showed 

activity increase (positive) at one or multiple regions in the default mode network (Buckner et al., 

2008; Greicius et al., 2003; Raichle et al., 2001), alongside activity decrease (negative) at other 

regions.  Similarly, we found 5 clusters with activity increase in the so-called frontoparietal control 

network (Cluster 8) (Dixon et al., 2018), cingulo-opercular network (Cluster 7 and 9) (Dosenbach 

et al., 2007), cognitive control network (Cluster 1) (Cole and Schneider, 2007), and dorsal attention 

networks (Cluster 10) (Fox et al., 2006) – collectively referred to as “the task positive network” 

(Fox et al., 2005). In addition, cluster 13 and 16 showed activity decrease in the whole brain, 

thereby a signature of global signal fluctuation (Murphy et al., 2009; Schölvinck et al., 2010; Wen 

and Liu, 2016). Cluster 5 and 17 showed widespread synchrony across sensory systems. Cluster 2 

and 21 showed the networks for sensorimotor control of the limbs and of the mouth, pharynx, and 

visceral organs, respectively. Whereas most clusters were bilaterally symmetric, Cluster 15 and 3 

were unilateral to the right and left prefrontal cortex, respectively. A common observation for 

many clusters was that a cluster could highlight the positive interactions among a set of well-

defined cortical regions alongside their negative interactions with a different set of regions. Given 

the above interpretation of individual clusters, we further interpreted the three super-clusters as 

sensorimotor, default mode, and task positive networks (Figure 3.5.c). 

In addition, we evaluated the temporal dynamics of latent representation in terms of the 

dynamics of individual clusters or their corresponding cortical networks. Intuitively, we 
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considered the time-evolving trajectory of the latent representation as the movement towards or 

away from each cluster. In this regard, we expressed the cluster-wise activity as the time series of 

cosine affinity between the instantaneous latent representation and the cluster centroid. During a 

rsfMRI session, different clusters expressed similar activity levels (Figure 3.5.e), except in the 

initial period of the session. In that period of 20 seconds, clusters presumably related to task 

positive networks showed a transition from a high activity level to a lower steady state; the clusters 

related to sensorimotor networks showed a transition from a low activity level to a higher steady 

state; in contrary, clusters related to the default mode network remained roughly unchanged. These 

(somewhat incidental) observations were consistent and reproducible across individuals and 

sessions. On one hand, this result suggests that the first 20 seconds in a rsfMRI session are not 

necessarily the steady state under a resting condition. On the other hand, this exploratory analysis 

shows the feasibility of using the VAE-extracted latent representations to identify brain networks 

and reveal their individual dynamics. 

3.3.5 Individual Variation of Latent Representation 

Whereas the aforementioned analyses focused on the group-level characteristics of the 

latent representations, we further asked how the distribution and geometry of latent representation 

varied across individuals. Only for the sake of demonstration, we randomly selected 20 subjects 

in the testing dataset and visualized their individual representations in the latent space after 

reducing its dimension from 256 to 2 by using t-SNE (Figure 3.6.a). Strikingly, the latent 

representations were grouped by and separable across individuals. The clustering by individuals 

was noticeable in the nonlinear latent space obtained with VAE (Figure 3.6.a), but not in the linear 

latent space obtained with PCA (Figure 3.6.b). Such distinctions were quantitatively confirmed 

(Figure 3.6.c) by using the Silhouette value to measure the degree of clustering by individuals. The 

Silhouette value for VAE (mean ± std: s = 0.044±0.002, 50 bootstrapping trials) was significantly 

higher (p<0.001, two-sample t-test) than that for PCA (s = -0.020±0.015). Using the center of 

latent representation as the subject-identifying feature, we found that subject identity could be 

retrieved with a reasonably high accuracy when the latent representation was extracted by VAE, 

whereas the linear representation by PCA failed the same task nearly entirely (Figure 3.6.d). These 

results suggest the feasibility of using VAE to characterize and reveal individual variations of 

resting state activity in the non-linear latent space. 
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3.3.6 Individual Identification 

From the t-SNE based visualization (Figure 3.6.a), it was noticeable that subject-wise 

representations exhibited different geometries. Some were more elongated or scattered than others. 

This observation motivated us to ask whether the representational geometry (Kriegeskorte and 

Kievit, 2013) could be an individual-specific feature (or “fingerprint”) to allow for more accurate 

individual identification. Specifically, we calculated the covariance between every pair of latent 

variables and assembled the pair-wise covariance into a vector as the feature of the representational 

geometry and evaluated the similarity in this feature between two sessions within or between 

subjects. The representational geometry evaluated in this way could be interpreted as the functional 

connectivity (FC) between latent variables. This interpretation related this approach to a 

conceptually similar approach: the “connectome-based fingerprinting” (Finn et al., 2015; 

Venkatesh et al., 2020), in which the functional connectivity was evaluated between cortical 

parcels. So, we evaluated the use of either the latent-space or cortical-space FC for individual 

identification in comparison. 

As shown in Figure 3.7.a, FC between any pair of cortical areas was mostly positive (mean 

± std of z-transformed correlation: z=0.26±0.3) and highly reproducible not only within the same 

subject (r=0.66) but also between different subjects (r=0.45). On the other hand, FC between latent 

variables had both positive and negative values (mean ± std of covariance: 𝜎2=0.00±0.13) and its 

reproducibility was high only within the same subject (r=0.33) but not between different subjects 

(r=0.07). The FC profile was more distinctive across subjects when it was evaluated between latent 

variables rather than cortical areas (Figure 3.7.b). In the latent space, the FC profile was 

significantly more consistent within a subject than between subjects (two-sample t-test, 

t(249,998)=254.05, two-sided p<0.001). The distribution of within-subject correlations was in 

nearly complete separation from that of between-subject correlations (Figure 3.7.b, bottom).  

Then we compared the performance of individual identification on the basis of the FC profile in 

the latent vs. cortical space. To identify 1 out of 500 subjects, we compared a target subject’s FC 

profile in the 1st session (as a query) against every subject’s FC profile in the 2nd session (as a key) 

and chose the best match between the query and the key in terms of the Pearson correlation 

coefficient. As such, the choice was correct if the correlation with the target subject was higher 

than the largest correlation with any non-target subject. We found that the FC profile in the cortical 

space could support 69.3% top-1 accuracy while identification was often made with marginal 
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confidence relative to the decision boundary (Figure 3.7.c). Using the FC in the latent space 

allowed us to reach 97.8% top-1 accuracy. The evidence for correct identification was apparent 

with a large margin from the decision boundary (Figure 3.7.d). The use of FC in the latent space 

supported reliable and robust performance in top-1 identification given an increasingly larger 

population (Figure 3.7.e) or when the data were limited to a short duration (Figure 3.7.f), being 

notably superior to the use of FC in the cortical space.  

We further tested to what extent the performance of individual identification relied on the 

use of ICA-FIX to preprocess and denoise the rsfMRI data. For this purpose, we applied ICA-FIX 

to one or both of the two sessions in every subject and then tested the individual identification with 

n=500 subjects. As shown in Table 3.1, when the FC profile in the latent space was derived from 

the (ICA-FIX denoised) clean data for both the keys and queries, the identification has the highest 

accuracy (97.5%). When the key and the query were both based on noisy data (without denoising), 

the accuracy dropped to 91.3%. When the key and the query were unpaired as denoising applied 

to one but not the other, the accuracy further dropped to about 88%. Nevertheless, this performance 

obtained with the latent-space FC was still notably higher than the performance based on the 

cortical-space FC. For the latter, the use of unpaired preprocessing for the query and the key 

significantly dropped the identification performance from 69.3% to 47.5%. Counter-intuitively, 

when the denoising was applied to neither the query nor the key, the identification accuracy with 

the cortical-space FC increased to 76.9%, but still significantly lower than the accuracy of 91.3% 

obtained with the latent-space FC. 

Lastly, we explored whether the representational geometry (based on the profile of the 

covariance between latent variables) would yield a similar level of distinction across individuals 

for linear latent spaces obtained with PCA or ICA. As shown in Figure. 3.8, PCA or ICA was not 

as effective as VAE. The top-1 accuracy of individual identification was 61.1% for PCA, 63.6% 

for ICA, in contrast to 97.8% for VAE. The within-subject vs. between-subject similarity in the 

geometry of linear representation obtained with PCA or ICA exhibited largely overlapping 

distributions, whereas the corresponding distributions were separated nearly completely for the 

nonlinear representations obtained with VAE. 
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3.4 Discussion 

Here, we present a method for unsupervised representation learning of cortical rsfMRI 

activity. Our results suggest that this method is able to disentangle generative factors underlying 

spontaneous brain activity, discover overlapping brain networks, capture individual characteristics 

or variation, and support accurate individual identification. We expect this method to be a valuable 

addition to the existing tools for investigating the origins of resting state activity, mapping 

functional brain networks, and potentially supporting individualized prediction of disease 

phenotypes and progression. Next, we discuss our findings from the joint perspective of 

methodology, neuroscience, and applications.  

VAE is trainable with unsupervised learning (without any label) (Higgins et al., 2017; 

Kingma and Welling, 2013), which is appealing for learning representations of rsfMRI data. Since 

rsfMRI measures spontaneous brain activity unconstrained by any task, labels as required for 

supervised learning are either unavailable or far fewer than the data itself. Unsupervised learning 

with VAE can leverage the ever-increasing amount of rsfMRI data (Van Essen et al., 2013). The 

latent representations extracted from VAE can serve as the input to other algorithms to further 

support more specific goals such as classification of brain disorders and prediction of their 

phenotypes (Garrity et al., 2007; Moradi et al., 2015; Shen et al., 2010; Zhang et al., 2011).  

The method herein can be extended in multiple ways. Although it is trained with rsfMRI 

data, we hypothesize that the VAE model can encode and decode both rsfMRI and task-fMRI data 

but with different latent distributions. If this is true, one may use this model to classify different 

perceptual, behavioral, or cognitive states and to reveal the distinctive network interactions 

underlying various states (Gonzalez-Castillo et al., 2015). The fact that the VAE can synthesize 

new data (Figure 3.3) is also appealing. It can be used as a post-processing strategy for data 

augmentation and interpolation, when data is short or corrupted, of interest for evaluation of 

dynamic functional connectivity (Allen et al., 2014; Chang and Glover, 2010) and correction for 

head motion (Power et al., 2014). It also supports the notion that the learned latent space captures 

the origins of rsfMRI and the VAE decoder captures the computational account for how rsfMRI 

arises from its origins.  

It is worth mentioning two limitations of the VAE model in its current form. First, the 

model focuses on cortical patterns but excludes sub-cortical and white-matter voxels. This design 

is not only for the ease of model implementation but also for the predominant role of the neocortex 
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in brain functions (Rakic, 2009). However, this precludes the model from accounting for 

subcortical networks or their interactions with the cortex. Addressing this limitation awaits future 

studies to redesign the model as a 3-D neural network that takes volumetric fMRI data as the input. 

Second, the VAE model only represents spatial patterns but ignores temporal dynamics inherent 

to rsfMRI data. Modeling the temporal dynamics is desirable but non-trivial, since it is highly 

irregular, complex and variable. To fill this gap, we direct future studies to designing a recurrent 

neural network (Chen and Hu, 2018; Cui et al., 2019; Shi et al., 2018; Sutskever et al., 2014; Zhao 

et al., 2019), as an add-on to VAE, to further learn sequence representation, for example, with a 

self-supervised predictive learning strategy (Kashyap and Keilholz, 2020; Khosla et al., 2019b). 

Although VAE does not explicitly model the temporal dynamics, the representation 

obtained with VAE preserves the temporal dynamics (Figure 3.1). The trajectory of the latent 

representation describes the temporal behavior of brain networks, as opposed to voxels or regions. 

This trajectory is amenable to the use of many methods previously described for voxel-wise or 

region-wise analysis. To note a few examples explored in this study, the first-order temporal 

difference in the latent representation captures the gradient of latent trajectory that drives the brain 

to change its activity pattern from one time point to the next. As the latent gradient is also 

represented as a vector in the latent space, the length of this vector measures the displacement in 

the latent space and presumably the magnitude of network activity, and the direction of this vector 

encodes a pattern of network interaction that drives the instantaneous change of brain activity. The 

principal components of the displacement in representation uncover the important hidden factors 

that drive the temporal dynamics of brain networks (Figure 3.4). Similar analysis or notion has 

also been explored in two independent studies discussed in two very recent papers published or in 

preprint during the peer review of our paper (Brown et al., 2020; Liu et al., 2020b). These initial 

analyses are expected to merit and direct future studies upon predictive modeling of the trajectory 

of the VAE-derived latent representation, for example, by using Multivariate Auto-Regressive 

models (Liégeois et al., 2019; Rogers et al., 2010), Hidden Markov Models (Eavani et al., 2013; 

Suk et al., 2016). 

VAE provides a new tool for mapping overlapping functional networks in the brain. A 

brain region may be involved in multiple networks each supporting a distinctive function (Liu and 

Duyn, 2013; Smith et al., 2012). However, existing network analyses still tend to group brain 

regions into non-overlapping networks (Yeo et al., 2011). VAE allows us to discover overlapping 
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networks as clusters in the latent space spanned by independent latent variables. As such, VAE is 

conceptually similar to temporal ICA (Smith et al., 2012) but allows for nonlinear relationships 

between latent variables and the input data they represent (Khemakhem et al., 2019). Arguably, 

finding clusters in the low-dimensional latent space is more desirable than doing so in the higher-

dimensional voxel space (Liu et al., 2013). Not only is it more computationally efficient, but 

representations are also more disentangled in the latent space than in the voxel space to readily 

reveal the underlying organization. However, it is not readily straightforward to attribute a cluster 

in the latent space to a distinct brain state (Hutchison et al., 2013a) or an individual (Xie et al., 

2018). Both are plausible. Our results show that individual variation manifests itself as the latent 

representation is in part clustered by subject (Figure 3.6), suggesting individual variation is a 

contributing factor to the clustering of latent representation. Our results also suggest that cluster-

wise activity shows a consistent pattern across all subjects, in particular for the first 20 seconds of 

each session (Figure 3.5). Moreover, the clusters seem to group themselves hierarchically into 

presumably functional domains: sensorimotor, default-mode and task-positive networks (Figure 

3.5). Together These results lead us to speculate that variation in brain states and individuals both 

contribute to the clustering of brain activity in the latent space. It is challenging to fully separate 

them and awaits future studies. 

Central to this study is the efficacy of using VAE to disentangle what causes resting state 

activity. In the VAE model, the sources are the latent variables; the decoder describes how the 

sources generate the observed activity; the encoder models the inverse inference of the sources 

from the activity. Since the latent variables are data-driven, it is currently unclear how to interpret 

them as specific physiological processes, many of which are not observable. Nevertheless, we 

expect the latent variables extracted by VAE to provide the computational basis for further 

understanding the origins of resting state activity. We hypothesize that the truly disentangled 

physiological origins, whether observable or not, are individually describable as the latent 

variables up to linear and sparse projection. This hypothesis awaits confirmation by future studies.  

In the latent space, functional connectivity between latent variables describes the geometry 

of the latent representation of rsfMRI activity. This is a new perspective different from the 

functional connectivity among observable voxels, regions or networks (Biswal et al., 1995; Yeo et 

al., 2011). If the VAE model has fully disentangled the sources in a population level, functional 

connectivity should be near zero between different latent variables and thus reflect a spherical 
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geometry. In other words, the model sets a nearly null population-level baseline, against which 

individual variation stands out. The latent-space functional connectivity given data from a single 

subject becomes a unique feature of that subject. Supporting this notion, the use of functional 

connectivity in the latent space allows for a significantly improved accuracy, robustness, and 

efficiency in individual identification, compared to the use of functional connectivity among 

cortical parcels (Amico and Goñi, 2018; Byrge and Kennedy, 2019; Finn et al., 2015; Mejia et al., 

2018; Venkatesh et al., 2020).  

Note that our main purpose is not to push for a higher identification accuracy but to understand 

the distribution and geometry of data representations in the feature space. Therefore, we opt for 

minimal preprocessing and the simplest strategy for individual identification. There is room for 

methodological development to further improve the identification accuracy or to extend it for many 

other tasks, including classification of the gender or disease states, prediction of behavioral and 

cognitive performances, to name a few examples. We expect that such applications would be 

fruitful and potentially impactful to cognitive sciences and clinical applications. 
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Figure 3.1. Image reconstruction using VAE. A series of cortical patterns are reconstructed 

through the VAE model. Among them, five original cortical patterns (upper panel) and their 

corresponding reconstruction through VAE (bottom panel) are visualized for comparison. For an 

example region (green circle), the time series of the original activity (black line) and the 

reconstructed activity (red line) are plotted for comparison.  
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Figure 3.2. Resting-state fMRI data compression and reconstruction with VAE vs. PCA and 

ICA. (a) For illustration, three example maps of fMRI activity, before (1st row) and after (2nd 

row) being smoothed (FWHM=6mm), are shown in comparison with the corresponding maps 

reconstructed with VAE (3rd row), PCA (4th row), and ICA (5th row) trained to compress and 

reconstruct the training data from 100 subjects with 256 variables or components. (b) For 

quantitative comparison, the reconstruction performance, in terms of the percentage of variance 

in the fMRI images as explained by the model reconstruction, is shown for VAE, PCA, and ICA 

as a function of FWHM (from 1 to 10 mm) applied to the spatial smoothing of the fMRI images. 

The error bar stands for the standard error of mean. 
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Figure 3.3. VAE synthesizes correlated fMRI activity. (a) Seed-based correlations of VAE-

synthesized fMRI data (top row) vs. experimental fMRI data (bottom row) with the seed location 

(green circle) at V1 (left), IPS (middle), or PCC (right). (b) Spatial correlations between the 

seed-based functional connectivity based on VAE-synthesized data and those based on measured 

fMRI data concatenated across 1, 5, 10, 50, or 100 subjects. The colors indicate different seed 

locations (V1: black; IPS: red; PCC: blue). Similarly, (c) shows the spatial correlation between 

the synthesized vs. measured functional connectivity among 360 cortical parcels. The error bar 

indicates the standard error of the mean averaged across 20 repeated trials. 
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Figure 3.4. Latent variables drive the dynamics of latent representation. The latent variables are 

defined as the principal directions for the dynamic change of latent representation across 

adjacent time points. (a) Visualization of the 1st latent variable as a cortical pattern of the signed 

standard deviation. (b) For each of the four cortical locations, denoted as i through iv and shown 

as green circles in (a), the activity change is shown as a function of the 1st latent variable, 

indicating a varying nonlinear relationship. (c) The percentage of the variance that each latent 

variable explains the first order dynamics of latent representation. The inset shows the 

percentage of the total variance explained by top 10, 20, 50, or 100 latent variables. (d) The 

visualization of the 2nd through 10th latent variables as cortical patterns.  
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Figure 3.5. Clusters of latent representations. (a) The sum of within-cluster distance is shown as 

a function of the number of clusters (or K). The choice of k=21 is about where an elbow is 

observable in the plot. (b) Representational dissimilarity matrix of the 1-cosine distance between 

instantaneous latent representations (from 100 subjects with 1,200 time points per subject) 

reordered by cluster membership. (c) Hierarchical clustering of 21 cluster centroids. The clusters 

are grouped into three super-clusters, provisionally labeled as sensorimotor (red), default mode 

(green), and task positive (blue) networks, based on the cortical visualization of individual 

clusters in (d). (d) Cortical patterns decoded from every cluster centroid. The number shows the 

cluster index. The scale of each pattern is normalized by its maximal absolute value. (e) The 

group-averaged cluster-wise activity, described as the cosine affinity of instantaneous 

representation to the centroid of each cluster. Each thin line corresponds to one cluster; the color 

indicating the super-cluster (sensorimotor: red; default mode: green; task positive: blue) that each 

cluster belongs  to. The thick lines show the average within super-clusters. The left and right 

panels show the activity patterns averaged across all subjects for session 1 and session 2, 

respectively. Colored lines on the top of panel (e) highlight the periods in which the sensorimotor 

(red), default-mode (green) or task positive (blue) super-cluster was statistically significant in the 

group level (permutation test, false discovery rate q<0.01).   
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Figure 3.5 continued 
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Figure 3.6. Individual variation of latent representation obtained with VAE vs. PCA. (a-b) 

Subject-wise latent representations visualized in a 2-D space obtained with t-SNE, when (a) 

VAE or (b) PCA is used to extract representations of rsfMRI activity from 20 subjects. (c) The 

Silhouette value shows how similar a representation is similar to each other within the same 

subject as opposed to between different subjects for VAE (left) or PCA (right). (d) The top-1, 5, 

and 10 accuracy of using the time-averaged representation as the feature to identify individuals 

in a large group of (n=500) subjects, for the representations obtained with VAE (black) or PCA 

(blue). 

  



 

 

60 

Figure 3.7. Individual identification based on functional connectivity between latent variables or 

cortical parcels. (a) Density distributions of z-transformed correlations between  every pair of 

cortical parcels (top) or covariance between every pair of latent variables (bottom). For each pair, 

the correlation and covariance in one session is plotted against the corresponding correlation in 

the other session for the same subject (within-subject, left) or different subjects (between-subject, 

right) given the testing dataset with n=500 subjects. Contour line stands for 20% of the maximal 

density. (b) Within-subject (red) and between-subject (black) correlations in the FC among 

cortical parcels (top) or latent variables (bottom) are shown as histograms with the width of each 

bin at 0.01. (c) In the scatter plot, each dot indicates one subject, plotting the maximal correlation 

in the cortical FC profile between that subject and a different subject against the corresponding 

correlation within that subject. The red-dashed line indicates y=x, serving as a decision 

boundary, across which identification is correct (x>y) or wrong (y>x). The histogram shows the 

distribution of y-x (0.05 bin width) with the decision boundary corresponding to 0. Similarly, (d) 

presents the results obtained with latent-space FC in the same format as (c). (e) Top-1 

identification accuracy evaluated with an increasing number of subjects (n=5 to 500) given the 

latent-space (red) or cortical-space (black) FC profile. The solid line and the shade indicate the 

mean and the standard deviation of the results with different testing data. (f) Top-1 identification 

accuracy given rsfMRI data of different lengths (from 9s to 180s). The line and the error bar 

indicate the mean and the standard deviation with different testing data. 
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Figure 3.7 continued 
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Figure 3.8. Individual identification with nonlinear vs. linear representations. Each plot shows 

the histogram of the similarity in the representational geometry between sessions within the same 

subject (red) vs. across different subjects (black), for representations in the nonlinear latent space 

obtained by VAE (top) or in the linear latent space obtained by PCA (middle) or ICA (bottom). 

The similarity reported is based on the inter-session correlation coefficient (or r). The histogram 

is discretized by bins with a width of 0.02. 
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Table 3.1 Subject identification accuracy across different conditions 
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 LEARNING TASK-EVOKED REPRESENTATION OF FMRI UNDER 

NATURALISTIC MOVIE WATCHING  

4.1 Introduction 

Watching naturalistic audiovisual movies is the paradigm aiding to evoke naturalistic neural 

response patterns occurring at our daily life. Animal electrophysiology studies have shown more 

reliable and reproducible neural activity under naturalistic paradigms than under the laboratory-

designed artificial stimuli (Belitski et al., 2008; Mechler et al., 1998; Yao et al., 2007). Similarly, 

human fMRI study during movie-watching tasks have shown reliable and reproducible brain 

patterns with a nearly full brain coverage (Hasson et al., 2010; Hasson et al., 2004). This defining 

feature of the naturalistic movie-watching paradigm, therefore, has led many neuroscientists to 

new understandings of the brain system engaged in the naturalistic task (Betzel et al., 2020; Bolton 

et al., 2020; Kauppi et al., 2010; Mandelkow et al., 2016; Vanderwal et al., 2017). Unlike simple 

and artificial stimuli, highly complex and continuous naturalistic paradigms is hard to be modeled, 

making it more difficult to map the brain networks evoked by the stimuli. Hence, in most studies, 

fMRI data under the naturalistic movie-watching task has been analyzed through the model-free 

non-parametric methods, for example, inter-subject Functional Connectivity (FC) analysis (Betzel 

et al., 2020; Hasson et al., 2004) or condition-specific FC analysis (Demirtaş et al., 2019; 

Vanderwal et al., 2017).  

Paradoxically, those two methods reported diverging findings. For example, the study from 

(Demirtaş et al., 2019) found that most of the significant FCs were confined to the visual regions, 

or between visual and auditory regions, using the inter-subject FC analysis. On the contrary, the 

study comparing FC maps under the movie-watching condition and resting-state condition 

revealed FCs spanning broader brain regions even including cognitive brain networks, and the 

majority of FCs were suppressed by the movie-watching condition (Lynch et al., 2018). Such 

contradictory results were discussed by other studies (Bianciardi et al., 2009a; He, 2013; Monier 

et al., 2003; Ponce-Alvarez et al., 2013). Among other possibilities, the negative task-rest 

interaction – engagement in tasks suppresses the ongoing brain activity – has been considered as 

a major cause for this contradiction (Churchland et al., 2010; He, 2013). Therefore, the decreased 

synchrony between brain regions, i.e., negative FCs, under the naturalistic movie-watching 

paradigm, have been overlooked and considered as the false-negative results introduced by the 
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negative task-rest interaction. While much has been learned regarding the neural origins of 

negative FCs observed under the resting state (Chen et al., 2011; Gopinath et al., 2015; Liang et 

al., 2012), relatively little is known regarding the basis of negative FCs during the movie-watching 

task. A network analysis technique that can effectively address the non-linear task-rest interaction 

is required to reveal the functional brain organizations modulated by naturalistic tasks.  

Recently, we have proposed an unsupervised and non-linear Variational AutoEncoder (VAE) 

model to learn deeply embedded representations of resting-state fMRI data (rsfMRI) (Kim et al., 

2020). Given the model design, we were able to delineate non-linear generative factors of rsfMRI 

and presented the complex cortical patterns of rsfMRI in the low-dimensional and linear latent 

space. In addition, we found that the temporal dependencies between generative factors of rsfMRI 

(presented as latent variables) were effectively removed, yielding a spherical gaussian null 

distribution for representations of fMRI data collected from a large number of subjects. Based on 

this observation, we hypothesized that, in the latent space non-linearly defined by the VAE, the 

representations of task-evoked activity would be separable from that of spontaneous activity. 

Furthermore, we hypothesized our VAE model, trained on rsfMRI, would be generalizable to other 

fMRI data under different brain conditions and different recording parameters. Collectively, here 

we tested two aspects of VAE using movie-watching fMRI data: 1) generalizability of our 

pretrained VAE model to fMRI dataset during watching naturalistic movies, and 2) independency 

between task-evoked brain activity and spontaneous brain activity in the latent space defined by 

the VAE. Testing was done by employing large fMRI datasets from subjects watching naturalistic 

movies, including several short video clips interleaved the resting state, which were publicly 

provided by HCP (Van Essen et al., 2013). Given the observed linear superposition between task-

evoked brain activity and ongoing spontaneous brain activity in the latent space, we successfully 

estimated task-evoked latent variables by simply averaging latent variables of individuals. By 

defining the principal bases explaining the trajectory of task-evoked latent variables, we 

showcased new findings: different principal bases of task-evoked latent representations reflected 

different aspects of video contents and each of principal bases exhibited the unique 

interaction/anti-interaction between brain networks spanning from low-level sensory networks to 

high-level cognitive networks.  
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4.2 Methods and Materials 

4.2.1 Subjects and Data 

Here, we used task-fMRI and rsfMRI data from 192 healthy subjects released by HCP (Van 

Essen et al., 2013). Among them, 19 subjects were excluded because their recordings were missing 

or shortened, resulting in a total of 173 subjects. For each subject, there were four sessions of 

recordings under resting state or movie watching paradigm. Those runs were recorded with 

different phase encodings: anterior-posterior or posterior-anterior from different days. We 

included all four sessions in the analysis. For the resting state, each session included 900 time 

points and the resolution was 1s. Similarly, each session of movie-watching fMRI data was about 

15-mins although the exact length of each session was different due to the different movie lengths. 

Four sessions (namely, session 1, 2, 3, and 4) had 921, 918, 915, and 901 time points, respectively. 

Both 7T rsfMRI and movie-watching fMRI data were collected using the same gradient-echo 

Echo-Planar Imaging (EPI) sequence with the following parameters: repetition time (TR) = 1000 

ms, echo time (TE) = 22.2 ms, flip angle = 45 deg, field of view (FOV) = 208 x 208 mm2, matrix 

= 130 x 130, spatial resolution = 1.6mm3, number of slices = 85, multiband factor = 5, image 

acceleration factor (iPAT) = 2, partial Fourier sampling = 7/8, echo spacing = 0.64 ms, bandwidth 

= 1924 Hz/Px.  

After downloading the data preprocessed with the minimal preprocessing pipeline (Glasser 

et al., 2013), we applied voxel-wise detrending (regressing out a 3rd-order polynomial function), 

bandpass filtering (from 0.01 to 0.1 Hz), and normalization (to zero mean and unitary variance). It 

is noteworthy that 7T data was also pruned through the automatic denoising with ICA (or the ICA-

FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), which was used in 3T fMRI data. Since 

the pretrained VAE model was utilized, all data was used as a testing dataset of the VAE model. 

For the purpose of comparison, we also used 3T rsfMRI data. The details of preprocessing steps 

in 3T rsfMRI can be found elsewhere in (Kim et al., 2020). After the preprocessing, four sessions 

of movie-watching fMRI and rsfMRI data were concatenated, resulting in a total 3,655 and 3,600 

time points, respectively. To prevent the possible confusion between datasets, hereafter we named 

3T resting-state and 7T resting-state fMRI as 3T rsfMRI and 7T rsfMRI, respectively.  
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4.2.2 Movie Stimulus Paradigm 

All subjects watched the same movie clips while each session used a different set of movie 

clips. For example, movie stimuli of session 1 and session 3 included short video clips made freely 

available under Creative 5 Commons license on Vimeo while movie stimuli of session 2 and 

session 4 were truncated movie scenes from Hollywood films such as Inception, Home Alone, and 

Star Wars. The video clips had different length. The length of the shortest video was 63 seconds 

and the longest data was 4 minutes and 15 seconds (Star Wars). The details of the short clips can 

be found in Table 4.1. At the end of each session, a short video clip (83 seconds) was repeated for 

the test-retest purpose. At the beginning and end of each short clip, there were 20 seconds of resting 

periods presented as a white “REST” text on a black background. To make it consistent with the 

temporal resolution of fMRI data, we downsampled the video clips to 1 Hz from 24 Hz.  

4.2.3 Eye-Tracking Data 

Eye-tracking data was acquired during movie-watching tasks using an EyeLink S1000 

system 12 (SR Research). Here, we downloaded eye-tracking data from HCP files (for example, 

100610_7T_MOV1_eyetrack.asc) and the synchronization information between fMRI data and 

eye-tracking data was extracted from the summary file (e.g., 100610_7T_MOV1 

_eyetrack_summary.csv). All data analyzed in the study is freely downloadable from the HCP 

website.  

Briefly, eye-tracking data provided three types of information, horizontal and vertical 

positions of the pupil, and the pupil diameter. The sampling rate was either 1000 or 500 Hz. Among 

172 subjects, 145 subjects had full availability in eye-tracking data across four sessions of movie-

watching fMRI data. Among 145 subjects, 47 subjects having eye-closing (or lost in the pupil trace) 

periods more than 20% of the total recording period were further excluded from the analysis. 

Finally, eye-tracking data from 92 subjects was used to extract the gazing information over movie 

stimuli. 

We estimated the gaze heatmap from the gaze information as follows. First, eye-tracking 

data was divided into 1-sec segments without overlapping. Then, we averaged the gaze location 

for each segment without considering the eye-closed period. Next, we applied a 2D Gaussian 

spatial filter to the gaze point. The standard deviation of the filter was determined as a 1-degree 
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radius of vision. Given the information from (Benson et al., 2018), we approximated that the 1-

degree radius was similar to 48 pixels in the 1024 by 720 screen resolution. If subjects had no eye-

open duration during specific segments, those subjects were excluded in estimating the group-level 

heatmap. Finally, we acquired movie-related gaze heatmaps by averaging heatmaps of individuals. 

Figure 4.1. illustrates several examples of estimated movie-related gaze heatmap. The duration of 

eye-closed period was estimated by counting the periods when measured pupil dilation was 0, per 

segment. Lastly, we estimated the timeseries of horizontal gaze position by choosing the points 

having the highest density, per group-level heatmap. Here, the eye-open duration feature was 

considered as a proxy measurement of the vigilance level, as suggested by (McIntire et al., 2014; 

Wang et al., 2016). 

4.2.4 Extracting Video Features from Movie Stimuli 

We extracted diverse visual and audio features spanning from low-level features to high-

level features, to utilize the rich audiovisual content of movie stimuli. For low-level features, the 

image luminosity and audio intensity; for middle-level features, the presence of face, the presence 

of text, and the presence of speech, were used in the analysis. All video features were extracted 

from the movie scenes using our in-house code and the MATLAB toolboxes. Image luminosity of 

each scene was extracted as the following: 1) we converted the image to grayscale using MATLAB 

function rgb2gray.m, and 2) we estimated a mean-square-root of grayscale image. The audio 

intensity was acquired using MATLAB toolbox MIRtoolbox, which is freely available at https:// 

www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox (Lartillot et al., 2008). As a 

fair starting point of detecting faces, we employed MATLAB built-in machine-learning algorithm 

(vision.CascadeObjectDetector) with the Viola-Jones algorithm (Viola et al., 2001) and applied 

the algorithm to downsampled movie scenes. We further visually inspected the quality of the 

detected features and corrected mislabeled features. Detecting the text from natural images was 

done using MATLAB built-in function ocr.m. After initial searching using the algorithm, we 

carefully checked the quality of results and edited the mislabeled ones. Lastly, identifying the 

presence of speech was done manually from the original movie stimuli, and the time-stamps of the 

labels were matched to the fMRI data.  

The analysis of high-level aspects of movie contents was done by utilizing the semantic 

labels that were made available by the HCP. In the movie stimuli, there were 853 semantic labels 

https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
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presented at least once during the movie stimuli. For example, the “eggplant.n.01” feature 

appeared only once for the entire video stimuli since the meaning of this feature is very specific 

and narrow. On the other hand, the “entity.n.01” appeared in nearly every movie scene since it 

covers very wide semantic meaning. To control such inconsistency in appearing frequencies and 

specificity of semantic concepts, we chose 23 semantic labels (12 nouns and 11 verbs) that can 

represent 853 semantic labels. The whole list of categorical labels can be found in Figure 4.2 and 

look for Table 4.2 for the exact definitions of semantic labels in Wordnet. Since the temporal 

resolution of semantic features was already matched to the fMRI data, we did not further 

preprocess the feature sets. Lastly, we convolved all levels of features with hemodynamic response 

function (HRF), to consider the hemodynamic delay between movie stimulus and brain response. 

The hemodynamics response function used here was a conventional function consisting of two-

gamma functions, provided by the Statistical Parametric Mapping toolbox (Frackowiak, 2004). 

The hyperparameters of HRF function were defined as: delay of response = 6sec, delay of 

undershoot = 16sec, dispersion of response=1, dispersion of undershoot=1, ratio of response to 

undershoot = 6, onset delay = 0sec, and length of function = 32sec. Each HRF-convolved feature 

was rescaled to have 0 mean and 1 as standard deviation. 

4.2.5 Generalizability of Pretrained VAE Model on Movie-Watching fMRI Data 

One of our goals in designing the VAE model was to make the VAE model generalizable 

to various fMRI data under different neural states and/or recorded under different recording 

parameters. To examine the generalizability of the VAE model, we imported the VAE model 

pretrained from 3T rsfMRI without applying any further fine-tuning steps. The generalizability of 

pretrained VAE model was examined by estimating the reconstruction performance on unseen 

movie-watching fMRI data or unseen 7T rsfMRI under different recording parameters. To specify, 

we manually smoothed 7T MOVIE and REST fMRI data with varying smoothing effects 

(FWHM=1, 2, …, and 10 mm). The reconstruction performance was quantified by measuring 

Pearson correlation between the reconstructed cortical pattern and manually smoothed cortical 

pattern. Compressing and reconstructing original fMRI data was done through the encoder and the 

decoder of pretrained VAE model, respectively. The compressing performance of the VAE model 

was further compared by Independent Component Analysis (ICA), as the linear counterpart of the 

VAE. We additionally calculated a new ICA basis from 7T REST fMRI data as a fine-tuned 
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version of the linear compressor. To set the baseline of reconstruction performance, we synthesized 

the cortical patterns from random latent variables (0 mean and unitary variance) and examined the 

reconstruction performance between synthesized cortical patterns and manually smoothed cortical 

patterns. 

4.2.6 Linear Superposition Between Task-Evoked Activity and Spontaneous Activity in the 

Latent Space 

As fMRI data obtained while subjects were watching the movie was driven by both task-

evoked activity and spontaneous ongoing activity, many studies estimated the task-evoked activity 

(or task-evoked FCs) by averaging fMRI data across subjects (or correlating the task-evoked 

activity). This averaging strategy was done based on the assumption that the spontaneous cortical 

activity and the task-evoked cortical activity are independent to each other. Mathematically, this 

assumption can be expressed by the law of variance sum as: 

𝜎𝑿+𝒀
2 =  𝜎𝑿

2 +  𝜎𝒀
2 +  2𝑐𝑜𝑣𝑿,𝒀,  (1) 

where X and Y stand for spontaneous cortical activity and task-evoked cortical activity, 𝜎𝑿
2 and 

𝜎𝒀
2 are their variances, and 𝑐𝑜𝑣𝑿,𝒀 is the covariance between X and Y. If the linear superposition 

between activities holds true, Eq. (1) can be reformulated as: 

               𝜎𝑿+𝒀
2 =  𝜎𝑿

2 +  𝜎𝒀
2.                (2) 

As, we measured fMRI under movie-watching task, which is X + Y, and rsfMRI, which is 

X, we directly tested whether Eq. (3) is true or not: 

                𝜎𝑿+𝒀
2 − 𝜎𝑿

2 = 𝜎𝒀
2.                (3) 

Specifically, we encoded rsfMRI data of 173 subjects (data length of latent variables=3,600 

per subject). Given the latent variables, we estimated the covariance matrix between timeseries of 

256 latent variables per subjects, and averaged the covariance matrix across subjects, yielding 𝜎𝑿
2. 

The identical analysis was applied to fMRI data during watching movies (data length=3,105; 

excluded inter-movie resting period), yielding another covariance matrix 𝜎𝑿+𝒀
2 . For the 𝜎𝒀

2, we first 

averaged the latent variables across subjects and estimated the covariance matrix. We measured 

the similarity between 𝜎𝒀
2  and 𝜎𝑿+𝒀

2  − 𝜎𝑿
2 , by estimating squared Pearson correlation between 

vectorized upper triangular parts of two matrices. The same analysis was repeated using the same 

fMRI data but in the different latent spaces, 360 cortical parcels defined by (Glasser et al., 2016), 

or 256 IC maps defined from 3T rsfMRI data. 
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4.2.7 Task-Evoked Latent Representation 

Here, we encoded the individual’s movie-watching fMRI (n=173) using the VAE encoder 

which was pretrained from 3T rsfMRI data. Then, we averaged latent representations across 

individuals to estimate the task-evoked latent representations (Figure 4.4). The rationale 

underlying this procedure was that the representations of spontaneous activity and the 

representations of task-evoked cortical activity were independent in the latent space non-linearly 

defined by the VAE. Thus, we assumed the averaging procedure would cancel out latent 

representations of spontaneous activity while keeping the latent representations evoked by the 

movie stimuli.  

4.2.8 Defining Basis Functions of Task-Evoked Gradient 

As our goal was to investigate how the latent representations were traveling throughout the 

movie stimuli i.e., task-evoked latent trajectory, we asked how much the latent space would be 

required to explain the task-evoked latent trajectory (Figure 4.3. left). As an initial step, we 

estimated the representational geometries of latent trajectory for the rsfMRI and the task-evoked 

fMRI. For spontaneous 7T rsfMRI, we concatenated latent representations of individuals and 

estimated the cross-correlation matrix, whereas the representational geometry of task-evoked 

representations was estimated by correlating between latent variables of the task-evoked 

representations. Quantification of the subspace dimensions was done by applying the PCA to 

resting-state and task-evoked latent representations (Figure 4.3 right). After projecting the task-

evoked latent representations to the re-defined latent subspace, we estimated the latent gradient 

that can approximate the latent trajectory, by subtracting adjunct latent representations (Figure 4.3. 

right).  

We further examined which aspects of movie stimuli evoked the changes in the task-

evoked latent gradient. We calculated the magnitude of the task-evoked latent gradient by 

estimating the root-mean-square of the latent gradient per timepoint. The mean gradient magnitude 

was estimated by averaging the magnitude of latent gradient per short clip. Additionally, we 

segmented the trend of magnitude during inter-session resting periods (20 seconds, n=15), also 

including 5s before and 10s after the resting periods. The significance level of gradient magnitude 

over the progression of the resting period was tested using two-sample t-test between samples of 
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each time point (n=15) and samples from the movie-watching task (n=3,101). The multiple 

comparison correction was done by correcting the false discovery rate at q=0.05.  

The principal basis functions defining dynamics of task-evoked latent gradients were 

estimated by applying PCA to the task-evoked latent gradient. Same as the dimension of subspace 

(=24), 24 principal basis functions were defined. Cortical mapping of each principal basis was 

done by the following procedure: 1) we multiplied random scaling factors (n=1,000) to the basis 

function, 2) we reconstructed the cortical patterns using the VAE decoder, and 3) we calculated 

covariance between random scaling factors and reconstructed fMRI activity, per cortical location. 

The estimated covariance value of each cortical location was considered as the 

activation/deactivation level of that location. Since the VAE decoder is highly non-linear, the 

visualization method proposed here was not guaranteed to reflect the true cortical meaning of 

principal bases in the latent space, but the results in our study empirically supported that our 

proposed method was a good approximation strategy mapping the latent representations into the 

cortical space. Lastly, the cortical map of each basis function was thresholded at the 30% of the 

maximal absolute value of each map, for the better interpretation of results.  

4.2.9 Reproducibility of Task-Evoked Latent Representations 

We further asked whether the trajectory of latent representations was reproducible under 

the same movie stimulus. Only for the visualization purpose, we projected the task-evoked latent 

trajectory into 2D-space using the t-Distributed Stochastic Neighbor Embedding (t-SNE) method. 

The distance between latent representations was defined as Euclidean distance and the perplexity, 

which is a hyperparameter determining the cluster size in t-SNE method, was set to 60.45 (=square 

root of 3,655). To acquire reliable t-SNE mapping results, the same t-SNE method was repeated 

10 times with random initializations, and the trial having the lowest sum of distance was chosen 

and visualized. Additionally, we segmented the latent trajectory to 4 short trajectories under the 

repeated movie stimuli (“test-retest”). Among the total length of a short video clip (83 seconds), 

the last 6 time points were excluded from the analysis to prevent possible contamination from the 

resting-state period. We further quantified the inter-session reproducibility of basis functions by 

calculating the Pearson correlation between dynamics of basis functions across different sessions. 

The significance level of reproducibility was tested using a one-sample t-test after transforming r 
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values into Fisher’s z-score. The multiple comparison correction was done by controlling the FDR 

level at q=0.05.  

To further validate the reproducibility of our analysis, for each latent gradient of “test-

retest” run, we defined new principal basis functions. Since the top-9 subspaces were able to 

explain 99% of the variance for all four test-retest sessions, we only kept 9 subspaces and evaluated 

the inter-session reproducibility of principal map and dynamics across different sessions. Finally, 

we estimated the similarity of the principal maps between the subspaces from the whole data and 

one from the “test-retest” runs.  

4.2.10 Correlating Latent Trajectory with Low-, Middle-, High-Level Aspects of Movie 

Stimuli 

Here we tried to understand the driving force of task-evoked latent gradients using low-, 

middle-, and high-level audiovisual features of movie stimuli. Since the contents of video clips 

were varying by each short clip, some middle-level features were absent or rarely appearing for 

some video clips. To control such bias, for each middle-level feature, we counted the appearing 

frequency of middle-level feature per short video clip, and applied the correlation analysis only to 

video clips containing appearances of middle-level features three times or more. This analysis was 

intended to balance between the statistical power and the reliability of estimated correlation values. 

Here, the correlation coefficient was estimated using non-parametric Spearman correlation 

analysis. Correlation values were averaged over different movie clips after transforming r-value 

into Fisher’s z-score, and re-transformed averaged z-score to r-value. The statistical significance 

was tested using a one-sample t-test. Multiple comparison errors were corrected by controlling the 

FDR at q=0.05.  

For the high-level semantic features, we employed the ordinary linear regression taking 

time-series of semantic labels as input to predict the dynamics of each latent basis function. The 

regression analysis was done after concatenating short movie clips. The coefficient weights of 

regressors (i.e., semantic features) were used as indicating the importance of semantic meaning of 

each basis function. This analysis was repeated for each basis function.  
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4.2.11 Task-Relevant Gaze Position Explains Variance of Latent Gradients 

To evaluate the effects of the gaze-informed features on the dynamics of latent gradients, 

we built another ordinary regression model by combining semantic labels and gaze-informed 

features, EO-duration or horizontal gaze position features – named as the full model. Then, the 

improved predictability by each feature was quantified by employing the Jackknife resampling 

scheme. Specifically, we subtracted the explained variance by the leave-one-feature-out regression 

model from the explained variance by the full model. These improvements from semantic labels 

were used as a null distribution of improvement and compared to the improvement by gaze-

informed features.  

4.2.12 Individual-Wise Cortical Activity Depends on the Gaze Location 

We investigated whether inter-subject variability in cortical patterns during watching 

naturalistic movies can be explained by the variability in their gaze positions. Among 96 subjects 

who had reliable eye-tracking information, we estimated the individual-wise gaze position after 

applying the HRF function to the time-series of gaze position. Per time point, we measured the 

inter-subject Euclidean distance of gaze positions, as the time-resolved inter-subject variability in 

gaze position. Similarly, per time point, we also calculated the Euclidean distance of latent 

representations between subjects. Finally, we asked whether the inter-subject variability in latent 

representations was predicted by the inter-subject variability in gaze positions, by applying the 

inter-subject representational similarity analysis (IS-RSA). For each timepoint, subjects who had 

eyes-closed period or gaze position out of display size were excluded from the IS-RSA analysis.  

4.3 Results 

4.3.1 Pretrained VAE Successfully Compressed Unseen Movie-Watching fMRI Data 

Inspired by the finding that the VAE model was able to extract meaningful latent features 

from noisier rsfMRI data even though the model was trained from the clean data (Table 3.1), we 

asked whether our VAE model can be generalizable enough to extract useful representations from 

unseen fMRI data under the different neural states and/or under different recording settings. To 

address the question, we utilized the VAE model pretrained from 3T rsfMRI without further fine-

tuning procedures. By compressing and reconstructing 7T movie-watching fMRI data, which was 
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never introduced during training the VAE model, we found that the reconstruction performance 

was comparable to one from 7T resting-state fMRI (FWHM=6mm, for movie-watching, r2 = 

0.71±0.02; for resting-state, r2 = 0.71±0.02, mean±s.d.; p=0.20, two-sample t-test), as shown left 

panel in Figure 4.5. This result suggested that the VAE model remains robust regardless of brain 

conditions. In addition, VAE showed better reconstruction performance than the ICA method, in 

any neural states (Figure 4.5). We further asked whether different recording parameters would 

change the reconstruction performance of VAE. Interestingly, unseen 7T rsfMRI data showed 

higher reconstruction performance than 3T rsfMRI (Figure. 4.5 right; FWHM=6mm; for 7T, r2 = 

0.71±0.02; for 3T, r2 = 0.65±0.03, mean±s.d.; two-sample t-test, p<0.01). We speculated this 

somewhat unexpected result might be partially originated from two aspects: 1) better SNR level 

due to the high field strength (7T vs. 3T), 2) better spatial SNR by scarifying temporal resolution 

(TR=1 sec for 7T vs. TR=0.72 sec for 3T; and bandwidth: 1924 Hz/pixel for 7T vs. 2290 Hz/pixel), 

or both. To set the baseline of comparison, we synthesized the cortical patterns from random latent 

variables, and estimated the reconstruction performance using the synthesized cortical patterns, as 

the null distribution of reconstruction performance. For all fMRI data, the null distributions had 

significantly lower performance than the actual reconstruction.  

We further found that the VAE outperformed the linear compressing method, for all 

different smoothing levels except when FWHM=1mm (Figure 4.6, n= 40 subjects, paired two-

sample t-test, FDR-corrected). The reconstructed images via the VAE model were most similar to 

the fMRI patterns smoothed at the level of FWHM=6mm, confirming the VAE model reconstructs 

input with a certain level of smoothing effects, regardless of data characteristics. To further test 

the generalizability of VAE model, we accessed the ICA basis from the 7T resting-state fMRI data 

– named as the fine-tuned ICA basis and accessed the reconstruction performance using it. Indeed, 

we found that the reconstruction performance of VAE was significantly worse than one from the 

fine-tuned ICA basis when FWHM = 1 and 2 mm. However, when the smoothing levels were 

higher FWHM>4mm, the VAE showed superior reconstruction performance than the fine-tuned 

ICA (n=40 subjects, paired two-sample t-test, FDR-corrected q=0.05). Collectively, our results 

presented here strongly supported that our VAE model is highly generalizable to various fMRI 

data under different neural states and different recording settings.  
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4.3.2 Linear Superposition Between Task-Evoked Activity and Spontaneous Ongoing 

Activity in the Latent Space 

According to the theoretical concept of the VAE, the VAE is a non-linear data compressor. 

Therefore, the non-linear and complex relationship between generative factors and observations 

can be properly deciphered by the VAE model, which is a defining difference from other linear 

source blind methods e.g., PCA and ICA. Consequently, we investigated whether non-linear, 

complex interaction between task and rest, which were observed at movie-watching fMRI study 

(Lynch et al., 2018), would be effectively diminished in the latent space. To test it, we evaluated 

whether the covariance between task-evoked latent variables (estimated by averaging latent 

variables across individuals) would be able to explain the difference between group-level 

covariance matrix of movie watching-fMRI and one from rsfMRI (Figure 4.7).  

The rationale behind this analysis was that the second statistics (e.g., a covariance between 

latent variables) of task-evoked or spontaneous cortical activities are linearly additive/deductive if 

two signals are independent to each other (see method 4.2.6 for detail). For comparison purposes, 

we further applied the same analysis on the latent spaces linearly defined at the region-of-interest 

(ROI) level (cortical parcel) or at the network level (ICA). As shown in Figure 4.7 middle row, we 

observed that not much difference between covariance matrices under different neural states was 

explained at the region-of-interest level (i.e., cortical parcel, r2 = 0.08), as in line with findings 

from (Lynch et al., 2018). Similarly, the latent space linearly defined by ICA also failed to 

disentangle task-rest interaction (Figure 4.7 bottom row, r2 = 0.15). On the contrary, in the VAE-

derived latent space, much higher similarity was observed (Figure 4.7 top row, r2 = 0.59). Such 

observation was statistically tested by partitioning the data into 10 folds (r2 = 0.473±0.007 for 

VAE; r2 = 0.078±0.009 for parcel; r2 = 0.142±0.005 for ICA, F=848.16, p<0.01, one-way 

ANOVA), as shown in Figure 4.8. By following the post-hoc paired t-test, we found VAE had 

better similarity than ICA (p<0.001) or parcel (p<0.001). There was also a significant difference 

between ICA and parcel (p<0.01). This result clearly suggested that VAE can separate the 

representations of the spontaneous cortical activity and the one of the task-evoked activity in the 

latent space, whereas the linear compressing method ICA failed to delineate the spontaneous 

activity and task-evoked activity. This result formed the solid basis for us to analyze the dynamics 

of task-evoked brain activity in the latent space, rather than in the cortical space.  
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4.3.3 Geometry of Task-Evoked Latent Representation 

Next, we asked what the geometry of latent representations driven by the movie-watching 

task was, and how the representational geometry was different from one of spontaneous brain 

activity.  

To address this, we first estimated the latent representations by feeding movie-watching 

fMRI data of individuals to the VAE encoder. Given the observed independence between task-

evoked brain activity and spontaneous brain activity in the latent space (Figure. 4.7 and 4.8), we 

averaged the latent representations across the whole population (n=173), yielding the task-evoked 

latent representations.  

Then, we approximated the geometry of task-evoked latent representations by estimating 

the correlation between latent variables (Figure 4.9.a). Interestingly, the representational geometry 

of spontaneous activity was shaped like a multi-dimensional Gaussian shape having a higher 

density at the center (mean and standard deviation of r = 0.00±0.05) while the task-evoked latent 

representations were elongated (mean and standard deviation of r = -0.00±0.25). By applying the 

PCA analysis to the latent representations, we further confirmed that the task-evoked latent 

representations occupied roughly 12.7% (24/189) of spaces that required to explain the 

spontaneous brain activity (n=24 for task-evoked, and n=189 for spontaneous), as shown in Figure 

4.9.b. Interestingly, the crossover of the explained variance between task-evoked activity and 

spontaneous activity was observed at N=11, and the variance explained by principal components 

was 1.3% (Figure 4.9.c). After projecting the latent representations to the re-defined subspaces, 

we estimated the latent gradients by subtracting the adjunct latent representations. 

4.3.4 Displacement Magnitude of Latent Representation Is Specific to Movie Contents 

Given that the geometry of task-evoked latent representation was elongated, we evaluated 

the trajectory of brain response by utilizing positional displacement of latent representation – latent 

gradient, by subtracting temporally adjunct latent representations (Figure 4.10.a). To intuitively 

understand whether the latent gradients were dynamical over the progression of movie stimuli, we 

estimated the magnitude of latent gradient. The gradient magnitude has fluctuated dynamically 

during watching movies (Figure 4.10.b), and we found that the mean gradient magnitudes were 

significantly different across different video clips involving different contents (one-way ANOVA, 
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F=39.96, p<0.001, Figure 4.10.c). Among them, the video clip (named as “Northwest”) that 

showed the smallest gradient magnitude was the only video that did not contain any person-related 

object. We also observed the adaptation effect that the largest gradient magnitude presented when 

the subjects saw the video for the first time, while the gradient magnitude decreased as they were 

watching the same movie stimulus repeatedly (5 > 5’ > 5’’ > 5’’’). To further extend our 

understanding of what caused the changes in the magnitude of latent gradients, we segmented the 

gradient magnitudes during inter-session resting periods (n=15). Interestingly, the gradient 

magnitude increased at the beginning resting period with hemodynamic response delay (t=5, 6, 7), 

and decreased over the progression of resting period (t=11, 12, …, 22), as shown in Figure 4.10.d. 

To facilitate our observation intuitively, we zoomed-in the dynamics of gradient magnitude during 

two short video clips (1: two men, and 11: the garden), as shown in Figure 4.11. Generally, gradient 

magnitudes tended to increase when scenic changes presented. For example, in the “two men” 

video clip, the first evident increment in gradient magnitude was related to the change in the objects 

(from human-crafted objects to the natural scene), followed by other scenic changes (e.g., from 

body part to human face; from human to another person). In “the garden” video clip, we were able 

to observe more scenic changes including human vs. natural objects, natural objects vs. human-

crafted objects, and natural objects vs. human.  

Collectively, these results suggested the latent gradient is dynamically varying over the 

progression of the movie, and its variance is dependent on movie contents or the absence of movie 

content. 

4.3.5 Individual Variation of Latent Trajectory  

Here, we further examined whether the geometry of latent presentation varied across 

individuals and/or across different neural states, watching “Northwest” video or under the rest. We 

segmented 15-seconds of latent representations during watching the “Northwest” movie clip (104 

seconds after the start of movie), or during the resting period before the start of “Northwest”. In 

addition, we additionally segmented 15-seconds of latent representations after the start of 

“Northwest” clip to trace the transition between neural states. We visualized their individual 

representations in the latent space by reducing its dimensionality from 256 to 2 by using t-SNE 

method (Figure 4.12). Interestingly, the latent representations were grouped not only by neural 

states (movie-watching vs. rest) but also by individuals (top panel in Figure 4.12). Interestingly, 
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when the behavioral states transit from the resting state to the movie-watching state, the trajectory 

of latent representations was continuous for a few seconds after the start of the movie, but the 

latent representations of individuals were grouped into another cluster eventually (bottom panel in 

Figure 4.12). More interestingly, the latent representations during the transition period were also 

separable across different subjects (bottom right panel in Figure 4.12).  

In line with findings using rs-fMRI data (Figure 3.6), these results suggest the feasibility 

of using VAE to characterize and reveal individual variations and variations of neural states 

simultaneously in the latent space defined by the VAE. 

4.3.6 Task-Evoked Latent Variable Is Highly Reproducible 

In the previous section, we found that the magnitude of the task-evoked latent gradient was 

sensitive to the contents of movie clips and the existence of stimulus, both at levels of group and 

individual. However, it remained unclear what aspects of movie clips were encoded by the gradient 

direction, reproducibility of task-evoked latent gradients under the same movie stimuli. To answer 

it, we utilized the “test-retest” movie stimulus in this analysis.  

First, we visualized movie scenes consisting of test-retest movie stimulus at the interval of 

1 second (Figure 4.13.a). To intuitively understand the trajectory of latent gradient, we visualized 

the trajectory of the task-evoked latent representations by projecting into the 2D space using the t-

SNE mapping method (Figure 4.13.b). We found that the trajectory was relatively rippling for 

varying periods (1~27 seconds) whereas it suddenly jumped (TR: 4, 21, 48, 50, 61, 66, and 67). 

We found that most of such jumps coincided with scenic changes (21, 48, 61, 66, and 67), the 

transition (50 and 67), or the moment when audio started (4, marked as a speaker icon), and the 

trajectories were highly reproducible for all repeated movie stimuli. 

While the current results seemed promising, we concerned that the reproduced patterns 

were simply driven by the fact that too much information of latent representations was lost by 

projecting high-dimensional latent representations to the 2-D space. To address this concern, we 

visualized the trajectory of each principal basis function that defined the latent gradient without 

information loss, under the repeated movie contents (Figure 4.13.c). We were able to successfully 

observe the same findings as found in the t-SNE method. Strikingly, the jumps observed in the t-

SNE map coincided with peaks or pits of various basis functions. Quantitatively, we found that 

the dynamics of principal bases were reproducible across different sessions, for all principal basis 
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functions (n=6 per principal basis, one-sample t-test, FDR corrected). We also found that basis 

functions having less importance tended to have weaker inter-session reproducibility (r = -0.75, 

p<0.01, Pearson correlation). Up to the top-8 basis functions, each basis function explained >1% 

of the total variance of the latent gradient (Figure 4.13.e). 

The inter-session reproducibility of latent gradients was further tested by defining new sets 

of basis functions using latent gradients of repeated video clips. By applying the same PCA 

analysis to the latent gradient per session, we found that only 9 basis functions were enough to 

explain the 99% variance of the latent gradient. Such observation was successfully reproduced 

across different sessions (Figure 4.14.a). Additionally, we found each set of principal bases were 

highly reproduced as well as their trajectories (Figure 4.14.b). Interestingly, basis functions 

estimated from just about 1 minute of data were also similar to the top-9 basis functions obtained 

from the whole data (>1hour), as shown in Figure 4.14.c.  

Collectively, the results support that the dynamics of latent gradients defined by principal 

basis functions were highly reproducible and specific to movie contents.  

4.3.7 Cortical Mapping of Task-Evoked Latent Gradient  

Finally, we visualized 24 principal basis functions of the latent gradient in the cortical space 

(Figure 4.14). Unlike clusters observed in rsfMRI data (Figure 3.5), we found most principal bases 

of latent gradients were related to one of the sensory networks, somatosensory-, auditory-, or visual 

networks. For example, cluster 1 precisely formed the language network consisting of well-defined 

language-related brain regions e.g., associated auditory cortex, Broca’s area, Wernicke's area, 

supplementary language area (SLA), 40a, etc. Similarly, cluster 7 also formed the language 

network but followed by the separation of the primary auditory area and the inclusion of the 

primary visual area. Interestingly, the language network was also observed on the basis 11, while 

the basis 11 showed the right lateralization as opposed to the left lateralization observed in bases 

1 and 7.  Besides, we found two bases showed activations in the frontoparietal control network 

(basis 15) (Dixon et al., 2018) and in the default mode network (basis 17) (Buckner et al., 2008; 

Greicius et al., 2003; Raichle et al., 2001). Similar to the observation from rsfMRI, most clusters 

were bilaterally symmetric while we observed the lateralization especially in bases associated with 

language networks (basis 1, 7, and 11) and also with the default mode network (basis 18). Another 

interesting cortical network was the basis 5. Basis 5 showed the clear separation between foveal 
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V1 and peripheral V1, as observable through the retinotopic mapping (Benson et al., 2018). 

Collectively, we found that each principal basis covered not only well-defined sensory networks 

e.g., visual, auditory, and somatosensory, but also spanned to cognitive networks e.g., the default 

mode network and the attention network.  

Given that each basis showed the unique interaction between brain networks that differed 

from each other functionally, we further examined whether different principal bases were 

responding to different aspects of video stimuli (figure 4.14 bottom). To do so, we extracted 

various features from the movie stimuli. For low-level features, the image luminosity and audio 

intensity were extracted, and for middle-level features, presences of face, speech, or text were 

identified throughout the whole video stimuli. We found that none of principal bases were 

significantly explained by changes of image luminosity, whereas there were significant positive 

correlations for the changes in audio intensity (r=0.34±0.07, r=0.33±0.05; mean± standard error 

of mean, basis 1 and 2). Interestingly, we found that all middle-level features predicted the 

dynamics of specific principal bases significantly. For the presence of speech feature, we found 

the basis1 solely showed the strong and significant correlation (r=0.59±0.06; mean± standard 

error of mean). For the presence of face feature, two principal basis functions (1 and 3) were 

correlated to that feature while their signs were opposite (for basis 1, r=0.23±0.05; for basis 4, r=-

0.41±0.07; mean± standard error of mean). Different from other middle-level visual features, we 

found four basis functions (for basis 1, r=0.34±0.04; for basis 4, r=0.38±0.06; for basis 4, r=-

0.20±0.04 for basis 4, r=-0.36±0.08; mean± standard error of mean) were significantly correlated 

with the presence of text.  

Collectively, our results suggested different basis functions were forming the interactions 

between cortical networks, and dynamics of some basis functions could be predicted by different 

aspects of the video. 

4.3.8 Semantic Meaning of Task-Evoked Latent Gradient 

While some principal bases (7 among 24 bases) were predicted by the low- or middle-level 

aspects of video stimuli, many principal bases of latent gradients (especially later ones) remained 

unexplained. We hypothesized dynamics of those principal bases could be explained by semantic 

aspects of movies. We used the semantic labels provided by the HCP, reflecting the high-level 

semantic meaning of movie stimuli. Briefly, 23 semantic features among 839 semantic features 
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were chosen based on their definitions. The full list of 23 semantic labels can be found in Figure 

4.2 and Table 4.2. Given that, we built an ordinary linear regression model that predicted the 

dynamics of basis function using HRF-convolved time-series of semantic labels as the predictor. 

In this analysis, all resting periods were excluded from the regression analysis. As a visual 

confirmation, we exemplified six basis functions that had the best explained variances, and color-

coded semantic features with their positive/negative coefficient weights (Figure 4.16). 

Interestingly, we found the typical biological vs. non-biological relation in the basis 3; biological 

features, e.g., “person” and “animal”, showed negative and large coefficients while positive and 

high coefficients were related to non-biological objects e.g., vehicle and artifact. Besides, we found 

the basis 3 formed the suppressed activation in fusiform face area (FFA) and medial superior 

temporal (MST) area along with increased activation in the general vision-related brain area. Basis 

2 also showed the interesting semantic meaning. The dynamics of basis 2 were predicted by “body 

part” and “covering” along with “look” features, and the cortical pattern covered the multisensory 

networks including somatosensory, audio, and visual networks, along with the temporoparietal 

junction known to be related multisensory convergence (Matsuhashi et al., 2004) and social 

interaction (Decety and Lamm, 2007). In line with findings from middle-level video features, we 

also found basis 1 and basis 7 were related to “talk” and “written communication” semantic 

features, which were related to human language, and basis 4 was related to “person” semantic 

feature. Fascinatingly, we found the basis 6 had a strong negative weight to “travel” and “travel 

rapidly” semantic label, and its cortical mapping showed the activation in the inferior frontal 

junction (IFJ), which is regarded to serve a crucial role in top-down modulation of visual features 

(Brass et al., 2005; Zanto et al., 2010), and both dorsal and ventral streams that are crucial in 

deciding “what” and “where” to look in human vision system (Fang and He, 2005; Hebart and 

Hesselmann, 2012; Milner and Goodale, 1995). Collectively, these results clearly suggested that 

the well-defined cortical networks were interacted dynamically to process the dynamically varying 

audiovisual information of movie stimuli.  

4.3.9 Gaze Information Is Related to Task-Evoked Latent Gradient 

By relating semantic features to the dynamics of the latent gradient, we were able to predict 

the dynamics of principal basis functions. Still, we observed that dynamics of some basis functions 

were poorly predicted by any of video features (Figure 4.15 and Figure 4.16). Therefore, we 
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assumed that some portions of latent gradients would be related to endogenous aspects of human 

perception. To test our hypothesis, we asked whether the inclusion of gaze-informed features, 

eyes-open duration and horizontal gazing position, in the analysis would be able to further improve 

the predictability of dynamics of the task-evoked latent gradient. Here, the eyes-open duration 

feature was used as a surrogate measurement of human visual vigilance level, as reported in 

(Dinges et al., 1998; Johns et al., 2007; Ong et al., 2013). Interestingly, we found there were 

improvements on explained variances for some basis functions (especially, basis 2, 5, 6, 7, and 21) 

while most of them showed nearly no improvement (Figure 4.17.a). By utilizing the Jackknife 

resampling approach, we found the dynamics of basis 5 were explained best by the eye-open 

duration feature (Figure 4.17.b), and the basis 5 showed the functional separation between foveal 

V1 and peripheral V1, along with activations in somatosensory regions (Figure 4.17.c). Our result 

supported the notion that human visual attention is, at least partially, modulated by the dynamic 

interaction between foveal V1 and peripheral V1 (Ludwig et al., 2014). With the horizontal gazing 

position feature, we further found that two basis functions (basis 13 and 17) showed great 

improvements in their explained variances (Figure 4.17.d). Interestingly, the cortical patterns of 

two basis functions were somewhat opposite to each other, including the default mode network 

and the precuneus (Figure 4.17.e). This result supported that the lateralization of brain networks is 

related to where the human gaze towards (Pelphrey et al., 2003).  

Under the same situation, individuals behave and react differently. Indeed, many studies 

have shown the inter-subject variability in their brain responses across different task paradigms 

(Lund et al., 2005; Stevens et al., 2012; Xiong et al., 2000). However, whether the origin of inter-

subject variation is neuronal or artifactual, it remains debatable (Gaxiola-Valdez and Goodyear, 

2012; Lund et al., 2005). Therefore, we asked whether the inter-subject variation on brain 

responses would be explained by the difference in their gaze positions. First, we visually examined 

whether individuals gaze at different objects under the same movie stimulus (Figure 4.18.a). 

Interestingly, we found subjects tended to share similar gaze positions when there was a sole object 

such as a person, a pen, and a moving bridge. On the other hand, gaze positions of subjects were 

variant when multiple objects that were similarly important in scenes, e.g., a conversation between 

two people, or a human and visually appealing subtitles. We applied IS-RSA to evaluate whether 

inter-subject distance map of gaze positions predicted the inter-subject variability in latent 

representations (Figure 4.18.b). For example, when there were Han Solo and the commander 
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together in the scene, subjects decided to gaze one of them. The results clearly showed that subjects 

who were sharing their gaze locations tended to have similar latent representations (Pearson 

correlational analysis, r=0.47, p<0.01). By repeating the analysis for each scene, we found there 

was a significant mean representational similarity (Figure 4.18.c, n=3,105, average r = 0.12, one-

sample t-test). We further found that the strength of predictability was variant by scenic contents 

(Figure 4.18.d; with person feature; n=2,122, average r=0.13±0.002; without person feature, 

n=983, average r=0.08±0.002; no feature, n=546, average r=0.06±0.005, one-way ANOVA, 

F=144.43, two-sample t-test, p<0.01). In sum, our results suggested that the inter-subject 

variability in the brain response is, at least partially, neural, which can be partially explained by 

the inter-subject variability in the gaze location.  

4.4 Discussion 

Here, we present that the VAE model pretrained to learn the representation of cortical 

rsfMRI activity is generalizable to learn latent representation of cortical activity under the movie-

watching task without any further finetuning procedure. Our results suggest that our VAE model 

can delineate the task-evoked cortical patterns from the spontaneous cortical patterns by 

effectively suppressing the non-linear task-rest interaction and discover the principal basis 

functions tracing the dynamics of task-evoked cortical patterns. We further observe that each 

principal basis function consists of overlapping brain networks spanning from multisensory 

networks to the cognitive networks, the attention network and the default mode network. We reveal 

dynamics of the latent gradient can be explained by the appearance/disappearance of the low- and 

middle-level video-related features e.g., audio intensity, presence of face, presence of speech, and 

presence of word, while extended predictions are achieved by the semantic meaning of video. 

Interestingly, we find that the unexplained dynamics of the task-evoked latent gradient are 

uniquely explained by changes in the group-level gaze location and the dynamics of visual 

vigilance level approximated by the eye-open duration. Last but not least, we show that the inter-

subject variability in brain response is partially explained by the variability in their gaze positions. 

As validated in fMRI under the movie-watching task, we expect this method to be a highly valuable 

tool for investigating the origins of brain activity under diverse neural states and disease conditions, 

due to its superior generalizability.  
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When we surveyed the data-driven deep learning models to learn useful representations of 

rsfMRI data, we prioritized to guarantee the generalizability of the model across fMRI data under 

different neural states. Against other deep generative models such as the generative adversarial 

network (GAN) and its family models that show the great reconstruction ability, we chose VAE 

due to its reliable and robust interpretability of latent representations over various types of inputs 

without possible critical failures such as a mode collapse frequently reported in GAN model 

(Goodfellow et al., 2014, 2020; Thanh-Tung and Tran, 2018). We find that our VAE model 

pretrained in 3T rsfMRI data is highly generalizable against various types of fMRI not only 

recorded under different imaging protocols but also under the brain state receiving and processing 

rich and dynamical audiovisual sensory information (Figure 4.5). Given the promising result in 

the movie-watching fMRI data, we believe the pretrained VAE will be able to learn representations 

of other task-fMRI data and even to fMRI data under different disease conditions. Hence, the VAE 

can be a valuable and generalizable tool making it possible to directly compare representational 

geometries between different brain states and/or between different disease conditions. 

One defining property of VAE making it distinctive from the conventional blind source 

separation methods, e.g., ICA and PCA, is its non-linearity originated from convolutional layers 

that are progressively compressing complex and non-linear input to simple and independent latent 

variables. Therefore, the non-linear relationship between observations and generative factors can 

be properly disentangled by VAE while presumably not feasible with linear compressing methods. 

Such characteristics of VAE enabled us to separate the task-evoked brain activity from the mixture 

of task-evoked and spontaneous brain activities, which was impossible with the linear dimension 

reductions method ICA (Figure 4.7 and Figure 4.8). In other words, the linear superposition 

between task-evoked activity and spontaneous activity is valid only in the latent space non-linearly 

derived VAE. While the VAE was forced to learn the non-linear mapping of generative factors 

governing the spontaneous cortical patterns, there was no explicit constraint addressing the task-

rest interaction since movie-watching fMRI was not introduced during training the VAE model. 

Then, why does the negative task-rest interaction diminish in the latent space defined by the VAE? 

One possible explanation is the negative task-rest interaction observed in the cortical space is 

magnified by the non-linear and complex hemodynamic relationship between fMRI activity and 

neural activity, as reported in concurrent fMRI-LFP study (Schölvinck et al., 2010), fMRI-iEEG 

studies (Lachaux et al., 2007; Murta et al., 2016; Ridley et al., 2017), and fMRI-EEG studies 
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(Hanslmayr et al., 2011; Haufe et al., 2018). In fact, even after considering the non-linearity of 

fMRI cortical patterns, there remains dissimilarity (r2 = 1 − 0.59) between task-evoked covariance 

matrix and movie-watching vs. rest covariance matrix, suggesting this dissimilarity may reflect 

the true negative task-rest interaction during the movie-watching task. This hypothesis awaits 

confirmation by future studies.   

The human brain dynamically modulates the functional interactions between brain 

networks accomplished by neural ensembles, to enable the diverse cognitive and perceptual 

processes (Buschman et al., 2012). In line with the electrophysiology study (Buschman et al., 

2012), one fMRI study showed that the functional organization of the brain, characterized by the 

functional connectivity between brain regions, is dynamically changing its shape over the 

transitions between intelligent behavioral phases (Gonzalez-Castillo et al., 2015). Given the 

sluggish nature of fMRI data, measuring the dynamics of brain organizations has been commonly 

done using the time-varying connectivity analysis that estimates the functional connectivity by 

sliding the short window. While this time-varying functional connectivity analysis has proved its 

utility in many applications (Allen et al., 2014; Betzel et al., 2020; Bolton et al., 2020; Calhoun et 

al., 2014), one critical challenge in the method has been spotted that the window length balancing 

the trade-off between the temporal dynamics and reliability of measured functional connectivity 

should be chosen carefully (Leonardi and Van De Ville, 2015). In this study, instead of using the 

window, we utilized the positional displacement of task-evoked latent representations as a primary 

tool for understanding the brain dynamics under the movie-watching neural state. We discovered 

that the gradient magnitude was sensitive to different video contents (Figure 4.10), and the gradient 

direction, defined by principal basis functions, was specific to changes in various objects (Figure 

4.13). Collectively, we believe tracing the trajectory of representations in the latent space can be a 

useful alternative to characterize the dynamics of brain networks.  

Our analysis with VAE opens a new venue for mapping task-evoked functional networks 

of the brain. Here, we defined basis functions, which explain the dynamics of the latent gradient, 

as the network interactions, opposed to the inter-subject FC analysis or condition-specific FC 

analysis (compare FC during movie-watching vs. FC during resting-state) (Betzel et al., 2020; 

Demirtaş et al., 2019; Hasson et al., 2004; Vanderwal et al., 2017). Among two methods, only 

condition-specific analysis have reported negative FCs, but those FCs have been overlooked 

because they have been assumed to originate from the negative task-rest interaction (Demirtaş et 
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al., 2019; Lynch et al., 2018). In the current study, even after effectively diminishing the negative 

task-rest interaction, we found some of basis functions of task-evoked latent gradient mapped the 

negative interaction between cortical networks covering not only sensory networks but also 

cognitive networks e.g., the default mode network and the dorsal attention network (Figure 4.15). 

Furthermore, those basis functions were dynamically varying according to semantic aspects of 

movie stimuli (Figure 4.16) and the task-relevant gaze information (Figure 4.17). Collectively, our 

results support the notion that the negative synchrony between brain networks is risen by the neural 

bases and the dynamical network interactions form the basis of perceptual processes in daily life.  
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Figure 4.1. Example of group-level eye gaze heat map. Four 7-seconds movie clips with group-

level gaze heatmap were presented. Each row stands for each movie clip. The temporal 

resolution of the movie scene is 1 second.  
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Figure 4.2. Semantic label of movie stimuli. (a) Appearance frequency of semantic label 

(bottom) and co-appearance frequency between semantic labels (top). (b) Few scenic examples 

of semantic labels.  
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Figure 4.3. Definition of representation, gradient, and trajectory in the latent space. (Left) From 

the original latent space (# of dimension=256), principal subspaces explaining the task-evoked 

representations are defined using PCA. (Right) Task-evoked latent representation stands for a 

latent representation of a single fMRI time point averaged across subjects. Task-evoked latent 

trajectory is a trend how latent representations are traveling over the progression of movie 

stimulus. Task-evoked latent gradient, i.e., positional displacement of task-evoked 

representation, stands for the subtraction between temporally adjunct latent representations. 
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Figure 4.4. Illustration of VAE model and task-evoked latent representation. (a) VAE Model 

architecture. The VAE model consists of two compartments, the encoder (coded as yellow) and 

the decoder (coded as green). The convolution operations are defined as: 1: convolution (kernel 

size=8, stride=2, padding=3) with rectified nonlinearity, 2-5: convolution (kernel size=4, 

stride=2, padding=1) with rectified nonlinearity, 6: fully-connected layer with re-

parametrization, 7: fully-connected layer with rectified nonlinearity, 8-11: transposed 

convolution (kernel size=4, stride=2, padding=1) with rectified nonlinearity, 12: transposed 

convolution (kernel size=8, stride=2, padding=3). Blue and red boxes stand for the input images 

from left and right hemispheres, respectively. (b) VAE encoder with learnt parameters 𝜙 outputs 

latent representations (𝒛) given individual’s fMRI data (𝒙). Latent representations (�̅�) evoked by 

the movie-watching task are estimated by averaging latent representations across 173 subjects. 
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Figure 4.5. Generalizability of pretrained VAE model. Three different datasets (red, 7T movie-

watching fMRI data; blue, 7T resting-state fMRI; green, 3T resting-state fMRI) were 

reconstructed by VAE and independent component analysis (ICA), as a linear counterpart of 

VAE model. Reconstruction performances of fMRI cortical patterns are measured by squared 

correlation coefficient. The null distributions were estimated by estimating the similarity 

between synthesized cortical patterns and smoothed cortical input patterns. *: Bonferroni-

corrected p<0.01, two-sample t-test for testing across different datasets (black lines) and paired t-

test for testing within the datasets (colored lines), n=40 subjects. n.s: not significant, Bonferroni-

corrected p>0.05. 
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Figure 4.6. Smoothing effect of VAE vs. ICA. The reconstruction performance, in terms of the 

percentage of variance in the fMRI images as explained by the model reconstruction, is shown 

for VAE, ICA, and ICA estimated from 7T rsfMRI, as a function of FWHM (from 1 to 10 mm) 

applied to the spatial smoothing of the fMRI images. The error bar stands for the standard error 

of mean. 
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Figure 4.7. Linear superposition between task-evoked activity and spontaneous activity in 

different latent spaces. fMRI data under movie-watching task (1st column) and resting state (2nd 

column) are compressed into latent spaces defined by VAE (top), or latent-spaces by cortical 

parcels (middle) or ICA (bottom). For each latent space, covariance matrix between latent 

variables is measured. Additionally, task-evoked covariance matrix is acquired by estimating 

correlation between group-level latent variables. Similarity between condition-specific 

covariance matrix (3rd column, movie-watching vs. rest) and task-evoked covariance matrix is 

quantified by measuring squared correlation value between off-diagonal elements of two 

matrices. 
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Figure 4.8. Linear superposition between task-evoked activity and spontaneous activity in the 

partitioned dataset. By partitioning 173 subjects into ten subsamples (n=17), similarity between 

condition-specific correlation matrix and task-evoked correlation matrix is quantified by 

measuring squared correlation value between off-diagonal elements of two matrices. Error bar 

stands for standard deviation of mean. Explained variance by VAE-derived latent space is 

significantly higher than parcel- or ICA-based latent space (p<0.01 for parcel; p<0.01 for ICA).  

There is also significant difference between parcel-based latent space and ICA-based latent space 

(p<0.01). One-way ANOVA, F=863.34, p<0.01, post-hoc paired t-test, Bonferroni correction. 
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Figure 4.9. Geometry of task-evoked latent representation and spontaneous latent representation. 

(a) Cross correlation matrix between latent variables, under different brain states. (b) Variance 

explained by principal components. The number of principal components required to explain 

90 % of latent variables are counted (dashed line). (c) Variance explained by each principal 

component. The black arrow stands for the crossover. 
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Figure 4.10. Displacement magnitude of latent representation is specific to movie contents. (a) 

Representation, gradient, and trajectory defined in the latent space. (b) Magnitude of task-evoked 

latent gradient as a function of time. Gray box stands for inter-movie resting period (20 seconds). 

Four recording runs are concatenated. Blue line stands for the boundary between different 

sessions. The number stands for the numbering of short movie clips (purple: from Vimeo, 

orange: from Hollywood movie). One movie clip (5, 5’, 5’’, and 5’’’) is repeated over 

recordings. (c) Average magnitude of task-evoked latent gradient for different movie clips. There 

is a statistically significant difference in the mean magnitude between video clips (one-way 

ANOVA, F= 39.96, p<0.001). (d) The dynamics of magnitude over the progression of inter-

movie rest periods (n=15), including 5 seconds earlier and 10 seconds later of rest period. 

Dashed line stands for averaged magnitude during movie stimuli present. *: q<0.05, FDR-

corrected.  
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Figure 4.11. Example of scenic changes related to the magnitude of task-evoked latent gradient. 

From two short video clips (1: Two men; top and 11: Garden; bottom), movie scenes 

corresponding to lower or higher magnitude of latent gradient are visualized, after considering 

hemodynamic delay (5 seconds).  
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Figure 4.12 The trajectory of latent representations of individuals. t-SNE map of latent 

representations during watching the movie (Northwest, 104 seconds after the starting of movie), 

rest, or the transition from rest to movie-watching (bottom). Representations are color-coded by 

the task conditions (left), and subject indices (right). 
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Figure 4.13. Reproducibility of task-evoked latent gradient. (a) scenes of a short video clip (5; 

test-retest) are visualized at the pace of 1 seconds. Speaker image stands for the starting of audio. 

Red box and red number stand for the time points that have big jumps in panel (b). 

Hemodynamic delay (5 seconds) is considered. (b) t-SNE map of task-evoked representations 

during watching test-rest video clips (color-coded, 4 sessions). Gray dots stand for task-evoked 

representations from other movie-watching periods. (c) Dynamics of top-5 basis functions 

explaining the task-evoked latent gradient. Big jumps found in (b) are marked as dashed lines 

and red numbers. (d) The inter-session reproducibility of dynamics of basis functions. Gray thin 

line stands for each pair between sessions (n=6). Black thick line stands for the averaged 

reproducibility across 6 pairs of sessions. (e) The variance of latent gradient explained by each 

basis. 
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Figure 4.14. Reproducibility of basis functions defined by repeated datasets. The cumulative 

variance of latent gradient explained by basis functions. For four sessions, 9 basis functions 

explained 99% variance (dashed line). (b) Inter-session similarity of basis functions (black upper 

triangle) and their dynamics (red lower triangle). (c) Similarity between basis functions 

estimated from the whole data and basis functions defined from repeated dataset. 
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Figure 4.15. Cortical mapping of task-evoked gradient in the latent space and its predictability by 

video features. (Top) Cortical mapping of 24 basis functions defining the task-evoked latent 

gradient. (Bottom) Per short video clip, the dynamics of basis functions are correlated with low- 

(left panel) and middle-level video features (right panel). Error bar stands for the standard error 

of mean. The number in bottom right stands for basis functions having Fisher’s z-values different 

from zero. *: q<0.05, FDR-correction, one-sample t-test. 
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Figure 4.16. Semantic meaning of task-evoked latent gradient. Top-6 basis functions having 

highest explained variance by regression model consisting of HRF-convolved semantic features 

(from left top to right bottom). Per basis function, each semantic label is color-coded by its 

coefficient weight in the fitted ordinary regression model. 
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Figure 4.17. Task-specific gaze position is related to task-evoked latent gradient. (a) and (d) The 

variance of each basis function explained by regression model only with semantic features 

(gray), with semantic features and changes in eye-open duration feature (green), or with semantic 

features and changes in horizontal gazing position feature (dark red). The red star stands for the 

basis function that shows highest explained variance by gaze-informed feature, as estimated in 

panel (b). (b) The improvement of explained variance by each semantic feature or eye-open 

duration feature, in basis function 5. (c) and (e) The cortical mapping of basis functions showing 

great improvement by gaze-informed features. 
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Figure 4.18. Individual variability in gaze position explains individual variability in brain 

response. (a) Exemplified movie scenes having lower (left) or higher (right) inter-subject 

variability in gaze position. (b) Per fMRI data point, Euclidean distance between individual’s 

gaze position (upper triangle) or between individual’s brain response in the latent space (lower 

triangle). These distance matrices are acquired when the specific scene (right) presents. (c) Per 

time point of fMRI data, the representational similarity between two distance matrices is 

measured and plotted as a histogram. Red line stands for the average representational similarity. 

The center of distribution (red line) is not 0 (p<0.01, one-sample t-test). (d) The representational 

similarity is grouped based on the presence of face or during inter-session rest period. One-way 

ANOVA, F= 144.43, p<0.01, post-hoc two-sample t-test, FDR-corrected. 
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Table 4.1 Description of movie stimuli 
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Table 4.2 Description of semantic labels 
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 CONCLUSION 

5.1 Conclusion 

The work presented in the thesis has established an unsupervised deep generative model to 

learn representations embedded in the observed fMRI data under different brain conditions, the 

resting state and the movie-watching state. By combining the VAE model, originally introduced 

by (Higgins et al., 2017; Kingma and Welling, 2013), with a new reformatting strategy of input 

fMRI data, the VAE model proposed here was highly efficient in terms of model training without 

losing useful information of input data. We found this model was highly generalizable to various 

fMRI datasets, requiring no further fine-tuning step. Therefore, I expect this model will be 

generalizable to other fMRI data with different brain conditions, disease phenotypes.  

In Chapter 3, I showed that the VAE model has learned to represent and to generate patterns 

of cortical activity and connectivity using latent variables. Furthermore, I observed that the latent 

representation and its trajectory represented the spatiotemporal characteristics of rsfMRI activity, 

and the latent variables reflected the principal gradients of the latent trajectory and drove activity 

changes in cortical networks. Latent representations were clustered by both individuals and brain 

states. Interestingly, I found that representational geometry captured as covariance or correlation 

between latent variables, rather than cortical connectivity, could be used as a more reliable feature 

to accurately identify subjects from a large group, even if only a short period of data was available 

per subject. Ultimately, my results presented in Chapter 3 suggested that representational learning 

of rsfMRI done by the VAE model can be an alternative to conventional cortical mapping analysis.  

In Chapter 4, by applying the pretrained VAE model to unseen fMRI data while watching 

naturalistic movies, I further validated that my VAE model was highly generalizable to fMRI data 

under different brain conditions and different recording parameters. One interesting finding under 

movie-watching fMRI data was that negative task-rest interaction observed in the cortical space 

was largely diminished in the latent space. Task-evoked latent representations and its trajectory 

were utilized to understand the dynamics of brain networks throughout the movie stimulus. I found 

principal bases defining the latent trajectory evoked by the task were predicted by many aspects 

of video: low-, middle-, high-level video features and by exogenous eye movement. Principal 

bases had unique interaction patterns between brain networks spanning from low-level sensory to 
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high-level cognitive. Finally, inter-subject variability of brain activity was explained by the 

endogenous eye movement of individuals. Overall, I expect this application can be a good example 

of how one can employ VAE to excel our understanding of the brain system under different 

conditions such as tasks or disease.   

The VAE model proposed in the thesis has a big potential as a beneficial analytical tool 

generalizable to various types of brain signal, given the applications and results I presented. 

However, there are several factors that can be further improved. First, the VAE model did not 

incorporate temporal information of fMRI data. Instead, I analyzed the temporal dynamics of fMRI 

data using the trajectory of representations in the latent space. While desirable, designing a model 

to learn the spatial and temporal information of fMRI data simultaneously requires a clever model 

design, abundant computational resources, and enough data. One possible solution can be marrying 

the VAE model and the RNN-type architecture. As storing temporal information with enough non-

linearity may cost lots of computational burden, I believe my geometric reformatting trick (Figure 

2.1) can be a remedy addressing this computational issue. Another factor that should be improved 

is the inclusion of subcortical fMRI data in the analysis. The cortico-subcortical communication 

plays an important role in many cognitive functions such as memory consolidation and attention 

(Censor et al., 2014; Heller et al., 2016; Heyder et al., 2004). One possible way is transforming the 

subcortical image into the 2D image, as done in the cortical activity. Then, three images will be 

fed to the VAE model, and merged features of images after passing through few convolutional 

layers. However, different from two hemispheres, there is no solid rationale how and where the 

images from two hemispheres will be functionally matched to the images of subcortical activity. 

Thus, more sophisticated input design that can include subcortical regions without adding 

computational burden to the model will be needed.  

5.2 Future Applications 

The model, analytical methods, and scientific findings that I have shown in the thesis can 

propose some scientifically significant opportunities for future works. One immediate application 

is the geometry of fMRI data under different task conditions. As the representations of rsfMRI 

were distributed spanning the whole latent space (Figure 3.5 and Figure 4.9), we can consider the 

rsfMRI as a null distribution in the latent space. Therefore, engaging in any specific task will 

change the geometry of representations in the latent space, occupying the subset of latent spaces 
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as shown with movie-watching fMRI data (Figure 4.9). Thus, I speculate engaging in simpler tasks 

will occupy a smaller subspace than more complex tasks. Perhaps, the size of the subspace 

occupied by engaging tasks can be a quantitative surrogate reflecting the objective difficulty of 

tasks. Except for several experiments such as the N-back working memory task, it is practically 

hard to compare the difficulty of one experiment to the others. If my hypothesis turned out to be 

true, the size of the subspace can be a proxy measurement of task difficulty, and the direction of 

subspace can be another useful measurement in which cognitive or sensory aspects of the brain 

were required by the task. 

Another application can be a hyper-alignment of an individual’s functional map. A seminar 

paper done by (Haxby et al., 2011) has shown the inter-subject functional displacement can be 

aligned using relatively simple geometric transformation. As the VAE is forced to learn the 

common representations among the population during resting state, the learned latent variables can 

be utilized as a non-linear, unsupervised geometric transformation matrix between subjects’ brain 

maps. This idea sounds particularly interesting since this geometric transformation can be 

generalizable and easily extended. For example, if one wants to project a functional map of an 

infant’s brain to the standard map of healthy adults (e.g., MNI space), she/he can build another 

VAE model trained to reconstruct activity patterns of the infant’s brain. Possibly, instead of 

training from scratch, one can finetune the original VAE model.  Then, instead of wrapping one 

brain into another brain in the convolved cortical space, we can simply estimate the linear 

transformation between latent spaces of two VAE models. Once the linear transformation matrix 

is reasonably established, functional converting of the infant’s brain to MNI space will be simple. 

This idea can be further extended to multi-modal source imaging such as EEG-fMRI source 

imaging. We can build a VAE model that can reconstruct the EEG signal. Then, the linear 

wrapping between two latent spaces (one from fMRI and another from EEG) will be utilized to 

project EEG data as one fMRI pattern and vice versa.  Overall, given the insights and limitations 

of the VAE model, I hope this VAE model can be a good reference model that inspires other 

neuroscientists and neuroscience engineers. 
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