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ABSTRACT

This dissertation proposes a vehicle occupant monitoring method using a mmWave wide-

band planar radar array to monitor multiple occupants’ status. The radar array provides

high range resolution with a wide field of view in both azimuth and elevation domain, making

multiple occupant detection possible. Several methods are developed for posture detection,

vital sign estimation, and classification of multiple occupants inside the vehicle cabin. Firstly,

a mathematical model is proposed to describe the occupant reflection in the radio frequency

environment. A signal processing pipeline is proposed based on the mathematical model.

Next, a simulation framework is developed for the occupant’s posture detection and vital

signs estimation. A reflection-based model is created to include both the size of each part

of the human body and its reflection pattern for various sizes of the occupant simulation. A

deep-learning-based method is then proposed based on the radar images reflected from the

model for the occupant classification. This method utilizes the image information from the

aligned camera as supervision to translate the radar point cloud to semantic segmentation

masks. The designed network uses a sparse projected radar point cloud in 2D to generate

occupants’ segmentation masks in different categories. The overall prediction accuracy of

the designed method is acceptable and compatible with the accuracy of the camera-based

image segmentation using the same network. For posture detection, a Keypoint-based model

is proposed containing both posture and vital signs. Various sizes of the planer antennas are

investigated. The optimal size of the antenna is selected to evaluate various human subjects

in the simulation system. The results of the detection capability and accuracy are sufficient

to distinguish the given sizes of the occupants as well as their liveness estimation in the

simulation.
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1. INTRODUCTION

1.1 Importance of vehicle in-cabin sensing

Vehicle in-cabin sensing is becoming a crucial technology and hot research topic for both

vehicle safety and comfort of conventional and future intelligent vehicles. The future vehicle

will have flexible interior configurations, which is very challenging to the sensing technology

development for occupancy monitoring and classification. Various state-of-the-art sensing

technologies are being proposed and developed for the challenge. Compared to other sensors,

radar has two additional advantages - privacy and subject detection through non-metallic

materials. A typical overhead setup of a radar system for in-cabin occupant monitoring is

shown in Fig.  1.1 for the occupant detection and classification. Besides safety applications,

these advantages can be used for a better ride experience by continuously monitoring their

state change by measuring both the posture and vital signs. Air conditioner control, gesture

control for human-machine interface, and health monitoring could be possible when a more

accurate radar-based occupant sensing technology is available.

Figure 1.1. The vehicle occupant monitoring with the wideband antenna array
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On the other hand, Euro NCAP is discussing and proposing child-presence detection

requirements for helping save child life due to heatstroke [  1 ]. According to statistics, 792

children have died from vehicular heatstroke since 1998 in the U.S. and more than half of the

death was caused by being left in vehicles unattended [  2 ]. Detection of a child left behind

in vehicle is difficult for most of the state-of-the-art sensing technologies, especially when

using a camera-based system. The camera-based system fails when an occlusion occurs,

as some small children may be covered by blankets or infants be blocked by the canopy of

the rearward-facing infant seat. A better approach is to design a system that is capable of

detecting a certain level of the vital-sign, e.g., live signature. However, the live signature of

a child, especially an infant, is a subtle micro-movement and hard to be detected by most of

the remote sensors, not to mention infants could be in sleep or cocooned by the heavy clothes

during the winter season. Radar-based sensing technology can be a good fit to extract the

live signature via subtle movement.

1.2 Related works

Current research using radar for human subject monitoring is by measuring the vital sign

signals. The continuous wave (CW) based radar measures small physiological movement by

calculating the Doppler shift of the received signal [ 3 ]. By measuring the vital sign signal

using the Doppler shift, occupant inside cabin can be distinguished from static object. Most

of the processing algorithm for received signal involves both the in-phase (I) channel and

quadrature (Q) channel [  4 ], because of the I/Q channel phase imbalance and to avoid null-

point problem [  5 ]. The central frequency of CW radar used in previous work is either

located in low frequency band (1-7 GHz) [  6 ][ 7 ][ 8 ][ 9 ][ 10 ] or high frequency band (≥ 10GHz)

[ 4 ][ 11 ][ 12 ][ 13 ][ 14 ][ 15 ][ 16 ]. The advantage of using CW based radar is that it is energy efficient

and has a simple structure due to the simple transmission signal type. However, it has

limitations on multiple human subject localization and clutter differentiation because of the

narrow bandwidth.

Different types of wideband radar have been implemented for vital sign monitoring in

recent years [ 17 ]. They can be categorized into three different types as impulse-radio (IR)
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based wideband radar, frequency modulated continuous wave (FMCW) based wideband

radar, and stepped frequency continuous wave (SFCW) with wide bandwidth.

Most of the previous works using either IR, FMCW, and SFCW based radar for vital

sign detection for the commercial purpose focus on the patient-related vital sign warning

[ 18 ][ 19 ][ 20 ], smart home elder person monitoring [ 21 ] and rescue and discovery of trapped

person underground [ 22 ][ 23 ]. For clinical applications with wideband radar, they are used

for detecting both the breath rate and the heart rate of patients. This non-contact method

requires the radar kits to be placed under the bed to have a better measurement of the

patient’s signal. Because the distance between the patient and radar is relatively short,

it could provide the displacement of the chest or belly of that patient with rich details.

Wideband radar can also be used to detect the motion of patients so as to protect them

from falling and continuously monitor their sleeping stage [  24 ]. Because of the purpose of

this scenario, one pair of radar transmitter will be sufficient. The smart home monitoring

scenario will, on the other hand, require the penetration ability of radar and need it to have

the full coverage of the room. The radar used in this case is to detect the posture change of a

person, or more specifically, to detect falling of an elder person [ 24 ]. Another approach is to

detect emotional change with radar kits [ 25 ]. A similar method for smart home application

is to use Wi-Fi [  26 ] [ 27 ] with a portable device to detect people inside a room. The fact

that certain requirement needs to be reached to guarantee the penetration ability limits

the choice of radar and makes a radar device bulkier compared to radars with higher central

frequency. Similar to smart home vital sign detection, to detect trapped people underground

also requires that radar has the ability to penetrate through wall and concrete. Therefore,

this type of radar will also have a relatively larger size because of lower central frequency.

In recent years, wideband radar with high penetration ability is proposed for driver’s state

monitoring. One pair of antenna is used for the vital sign detection for driver and other

occupants. It can be placed either in front of driver [ 28 ] [  29 ] or inside driver’s seatback [ 30 ].

The research work of driver’s state monitoring and vital sign detection is only demonstrated

in static scenarios and non-automotive environment. Further research is required to improve

the robustness of state monitoring when the vehicle is in operation.
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The signal processing for vital sign detection improves over time to increase the respira-

tion rate and heartbeat rate estimation accuracy. Using wideband radar to locate occupants

needs data from both fast and slow time domains. Fast time is the time delay of a signal

received by receiver and transmitter. Each bin of the fast time axis represents a distance

from an object to radar antenna. Slow time, on the other hand, indicates the fast time

changing of each detected object. Therefore, localization of living subjects needs to use both

information from the slow time axis and the fast time axis for the detection. Single person

localization can be based on either fast fourier transform (FFT) [  31 ] [  32 ] based method,

variance calculation [ 30 ], or entropy-based method [  33 ] over a certain amount of a signal

in the slow time. For most of the localization methods in current publications, variance or

FFT of certain slow time data has been evaluated by applying the method to every range

bin along the fast time axis [  34 ]. Another approach introduced by Schires et al. [  30 ] and

Shen et al. [ 35 ] calculated the vital signs by collecting a set of the maximum phase change

data along the slow time axis. The cross-correlation method is applied in the calculation

by feeding two sets of signals from τi to τi+n along the fast time axis. The first set is the

base on t0 in slow time. The second set is selected from tj to tj+m in sequence along the

slow time axis. Walterscheid et al. [  36 ] proposed another approach to locate a person using

distributed radars. It helps to mitigate the random movement impact on the vital signs but

may have difficulty placing the radars in a limited space such as a vehicle cabin.

Multiple person detection requires radar to estimate the angle of arrival (AoA) of occu-

pants in the cabin. In this case, a radar array will be suitable for estimation and localization,

[ 37 ][ 38 ]. Vehicle cabin is a rather small space with different types of occupants, and it is

still challenging to separate two people sitting next to each other. One method proposed

using capon-based method as an optimization problem to separate the live signature from

two peoples sitting side by side [  39 ]. Another method is to use a deep learning and blind

source separation based method to separate multiple people sitting shoulder by shoulder

[ 40 ]. For multi-person detection in a noisy environment, a clean algorithm is proposed to

differentiate the effective power peak from the clutter subtracted received signal peaks [ 41 ].

Angle estimation is also essential to distinguish person in the cabin. It can be measured

by associating data in data cube [  42 ] such as beamforming or other AoA method such as
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multiple signal classification (MUSIC) [ 43 ] and its derivative [  44 ]. Single pair radar based

multiple occupants detection method is also possible in vehicle cabin [ 29 ]. A radar kit is

placed on A-pillar to differentiate people in different seats. However, it may not be able

to detect weak signals of occupants sitting in rear seats, especially vital sign signals from

infants or children.

Vital sign detection is an effective way for occupant localization and detection [ 45 ]. A

basic method for vital sign detection is using FFT and filter bank to separate breathing signal

and heartbeat signal [  46 ]. Other methods that can be used to extract sinusoidal signal from

a noisy data are wavelet-based method [ 47 ], Hilbert Huang transform based method [  48 ] and

variational mode decomposition (VMD) [ 29 ]. Based on the Hilbert Huang method, there are

also plenty of derivatives proposed to improve the accuracy of detection for sinusoidal data

estimation with noise [  49 ] [ 50 ] [ 51 ][ 52 ][ 53 ] [ 54 ]. However, Hilbert Huang based methods are

not robust in noisy environment and data need to be pre-processed before feeding into the

method. For noisy signal with low signal to noise ratio, nonlinear Levenberg-Marquardt [ 55 ]

can be used to effectively extract vital sign signal from the background. Kalman filter [ 34 ],

principle component analysis (PCA) [  56 ], and independent component analysis (ICA) [  57 ]

can also be used for vital sign filtering.

Motion can sometimes interfere with detection of vital signs of occupants in vehicle.

The detection of occupants’ motion, energy, power spectrum density, [  58 ], entropy [  59 ] and

autocorrelation [ 60 ] can be used to effectively indicate their movements. The acceleration

method [  59 ] can also be applied to distinguish occupants’ certain movements by calculating

their accelerations. Another method proposed for random movement cancellation is to in-

crease the amount of radar. The subject’s movement can be effectively canceled by either

placing two radar kits in the front and back [ 61 ][ 62 ] or placing four radar kits surrounding

the subject [ 63 ].

Other than monitoring the vital sign for occupant detection, two other approaches are

widely used for human subject detection based on radio frequency (RF) reflection pattern.

The first is the Keypoint-based method. The majority of researchers select a deep-learning

related approach. The heatmap data feedings into learning models are projections of power

reflections in azimuth and elevation domains. Power reflections are estimated by conducting
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a coherence summation of each radar channel to find the strongest power value targets. Adib

et al.[  64 ] proposed the method first, and then Zhao et al. [  65 ] improved it by using a low

central frequency radar. The other method is the point cloud approach. It collected a bulk

of points in which voxel’s power intensity is above threshold in 3D space. Zhao et al. [ 66 ]

developed a point cloud-based human tracking algorithm for walking subjects inside a room.

Both approaches extracted the test subject from the background. Due to the nature of the

low central frequency radar, the antenna array package is too large to use limited space, e.g.,

inside a small car cabin. The large antenna array with higher central frequency radar could

provide enough resolution with smaller package sizes [  67 ]. Above are all about subject’s

shape detection. With knowing the vital signs, the radar can distinguish the living subject

from other test subjects accurately.

To understand the reflection pattern of human body, simulation based on human body

in RF environment is required. Only a few researchers have discussed the human model

for RF system simulation. Van Dorp et al. [ 68 ] introduced their approach to simulate the

approximate human body. They defined 12 body parts, with head as a sphere, and the

rest as either cylinders or ellipsoids, based on different radar cross section (RCS) pattern of

each body part. David Winter [  69 ] first proposed a height normalized human body model

with 17 key-points based on the human skeleton with consideration of the RCS pattern and

later adopted by Chen et al. in [ 70 ]. Then, Ram al et. [ 71 ] improved Winter’s model

with added-on RCS gain calculation. The data used for the model came from animation

and relative permittivity of tissue. The latter is for the estimation of body reflection. The

relative permittivity is calculated according to the radar with a 7.5 GHz central frequency.

The use-case of the above research is for walking human subject detection outside or through

a wall.

Classification of different types of occupants is usually based on the segmentation of 2D

image. Previous works on segmentation are based on different deep learning networks such as

FCN [ 72 ], Unet [  73 ], Mask R-CNN [  74 ] and Pix2Pix [  75 ]. The majority of posture estimation

also uses deep learning architectures to find the Keypoint of subject from 2D images. The

posture estimation on 2D images is to find 2D Keypoint from images; popular architectures

include Openpose [  76 ], AlphaPose [  77 ], and HRNet [  78 ]. The pose estimation in 3D uses
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deep learning networks in higher dimensions, such as V2V-Posenet [  79 ]. Although the 3D

posture estimation gives location of each Keypoint in three dimensions, it usually takes more

computational power compared to 2D scenarios.

1.3 Research objectives and structure

The objectives of the research are to establish the simulation framework and methodology

of mmWave wideband planer array radar system for the presence detection, location detec-

tion, classification, and liveness signature estimation of in-cabin human subjects, through

the application of various cutting-edge radar signal and computer vision imaging processing

technologies.

The main contributions of this dissertation are as follows:

• Derived mathematical radar model for occupant imaging and vital sign estimation

• Established a FMCW-based radar simulation system for 3D imaging, posture, and

limited vital sign estimation

• Developed reflection-based and Keypoint-based human subject models for occupant

classification and posture/limited vital-sign estimation

• Introduced a deep learning method for occupant classification using the radar data

from planer antenna array radar

The dissertation is organized as follows. Chapter two proposes a mathematical model for

a vehicle in-cabin radar sensing system. Chapter three introduces the basis of in-cabin radar

system design. Chapter four introduces the simulation of vehicle in-cabin radar system and

design of a generalized human subject model. Chapter five introduces a deep-learning-based

method for occupant classification using synthetic data and the designed human subject

model. Chapter six presents the posture detection of human subjects. Chapter seven discuss

the conclusion and future work.
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2. MATHEMATIC MODEL FOR HUMAN SUBJECT

DETECTION

2.1 Frequency domain model

2.1.1 Mathematical model

Inspired by research in [  80 ] using single input single output (SISO) radar for vital sign

detection. A Mathematical model for vital sign monitoring using a radar antenna array is

derived from the time delay model of a single pulse. It can be described as the following

form, as in Eq. (  2.1 ). In this equation, X(f) is the augmented received signal by radar

antenna array in the frequency domain. I is the number of antenna pairs in the antenna

array. Sum of K related to both the breathing signal and the heartbeat signal is described

in Eq. (  2.2 ). An is the amplitude of the received signal and G(K, f, φ, θ, i) is described in

Eq. (  2.4 ). fc in Eq. (  2.1 ) stands for the weighted summation of breathing frequency fb, the

frequency of heartbeat fh and repetition frequency fr. δ(f −fc) is the time delay Dirac delta

function describing the displacement of a single person.

X(f) =
∞∑

u=−∞

I∑
i=1

∞∑
K=−∞

AnG(K, f, φ, θ, i)δ(f − fc) (2.1)

Where

∞∑
K=−∞

=
∞∑

K1=−∞

∞∑
K2=−∞

. . .
∞∑

KNb
=−∞

∞∑
K1=−∞

∞∑
K2=−∞

. . .
∞∑

KN
b
=−∞

∞∑
H1=−∞

∞∑
H2=−∞

. . .
∞∑

HNh
=−∞

∞∑
H1=−∞

∞∑
H2=−∞

. . .
∞∑

HNh
=−∞

(2.2)

fc =
 Nb∑

p=1
p(Kp + Kp)

 fb +
 Nh∑

q=1
q(Hp + Hp)

 fh + ufr (2.3)
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G(K, f, φ, θ, i)) =frP (f)e−j2πf(τa(φ,θ,i)+τ0)(−1)

Nb∑
p=1

Kp+
Nh∑
q=1

Hq

j
(

Nb∑
p=1

Kp+
Nh∑
q=1

Hq)

Nb∏
p=1

JKp(2πfAb
p)

Nb∏
p=1

JKp
(2πfBb

p)
Nh∏
q=1

JHq(2πfAh
q )

Nh∏
q=1

JHq
(2πfBh

q )
(2.4)

2.1.2 Derivation

A detailed proof of this model can be shown step by step as follow. The live signature of

a living subject can be measured by getting the time delay τd of the transmitted signal as in

Eq. (  2.5 ). Time delay here is assumed without any phase delay. The time delay contains two

parts. One is the constant time delay τ0, and the other part is the time delay of breathing

and heartbeat in Fourier expansion form where fb is the frequency of respiration and fh is

the frequency for the heartbeat.

τd(ts) = τ0 +
Nb∑

p=1

[
Ab

psin(2πpfbts) + Bb
pcos(2πpfbts)

]

+
Nh∑
q=1

[
Ah

q sin(2πqfhts) + Bh
q cos(2πqfhts)

] (2.5)

Since reflected signal received by each receiver antenna pair of radar antenna array has a

time delay τa between each other, it needs to be corrected to increase the received gain. The

time delay τa depends on azimuth incident angle φ, elevation incident angle θ, and distance

of the antenna to the array origin.

Therefore, the total reflected power from each location in 2D-domain can be shown in

the FMCW waveform’s convolution with the impulse signal in Eq. (  2.6 ).

x(ts) = p(ts) ∗ h(ts) (2.6)

where p(ts) is the FMCW burst waveform in time domain that responds to the form of Anejθ,

and h(ts) =
∞∑

n=−∞

I∑
i=1

δ(ts − nTr − τd(ts) − τa(φ, θ, i)) is for impulse waveform time response.

Tr is the repetition time of each transmitted signal.
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By applying continuous time Fourier transform (CTFT ) to Eq. (  2.5 ), we can express

the received signal in the frequency domain as in Eq. (  2.8 )

X(f) =
∞∫

−∞

x(ts)e−2πftsdts (2.7)

=
∞∑

n=−∞

I∑
i=1

P (f)Ane−j2πf(nTr+τd(ts)+τa(φ,θ,i)) (2.8)

For simplicity, assuming β = 2πf , βb = 2πfb, βh = 2πfh for each frequency, we can get

the following Eq. (  2.10 ).

X(f) =
∞∑

n=−∞

I∑
i=1

P (f)Ane−j2πf(nTr+τa(φ,θ,i))e−j2πf(τd(ts)) (2.9)

=
∞∑

n=−∞

I∑
i=1

P (f)Ane−jβ(nTr+τa(φ,θ,i))e−jβ(τd(ts)) (2.10)

Substitute ts = nTr and Eq. (  2.5 ) into Eq. (  2.10 ) , we get

X(f) =
∞∑

n=−∞

I∑
i=1

P (f)Ane−jβ(nTr+τa(φ,θ,i)+τ0)·

e
−jβ(

Nb∑
p=1

[
Ab

psin(pβbnTr)+Bb
pcos(pβbnTr)

]
+

Nh∑
q=1

[
Ah

q sin(qβhnTr)+Bh
q cos(qβhnTr)

]
)

(2.11)

Since e

∑
k

αk

= ∏
k

eαk , second exponential term in Eq. (  2.11 ) could be expressed as in Eq.

( 2.12 ).

Nb∏
p=1

e−jβAb
psin(pβbnTr)

Nb∏
p=1

e−jβBb
pcos(pβbnTr)

Nh∏
q=1

e−jβAh
q sin(qβhnTr)

Nh∏
q=1

e−jβBh
q cos(qβhnTr))

(2.12)
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With Jacobi-Anger expansion, terms in Eq. (  2.12 ) will be further expanded in the form

of Eq. (  2.13 ) with the Bessel function of the first kind Jα(x).

Nb∏
p=1

∞∑
Kp=−∞

JKp(βAb
p)e−jKppβbnTr

Nb∏
p=1

∞∑
Kp=−∞

JKp
(βBb

p)j−Kpe−jKppβbnTr

Nh∏
q=1

∞∑
Hq=−∞

JHq(βAh
q )e−jHqqβhnTr

Nh∏
q=1

∞∑
Hq=−∞

JHq
(βBh

q )j−Hqe−jHqqβhnTr

(2.13)

Applying the distributive law across the summations in (  2.13 ), Eq. (  2.8 ) can be reorga-

nized as in Eq.( 2.14 ).

X(f) =
∞∑

n=−∞

I∑
i=1

P (f)Ane−jβ(nTr+τa(φ,θ,i)+τ0)
∞∑

K=−∞
J(α,K, β)e−j(·)nTr

=
∞∑

n=−∞

I∑
i=1

∞∑
K=−∞

P (f)AnJ(α,K, β)e−j(β+·)(nTr)e−jβ(τa(φ,θ,i)+τ0)
(2.14)

Where K is defined as the product of summations in the form of Eq. (  2.15 )

∞∑
K=−∞

=
∞∑

K1=−∞

∞∑
K2=−∞

. . .
∞∑

KNb
=−∞

∞∑
K1=−∞

∞∑
K2=−∞

. . .
∞∑

KN
b
=−∞

∞∑
H1=−∞

∞∑
H2=−∞

. . .
∞∑

HNh
=−∞

∞∑
H1=−∞

∞∑
H2=−∞

. . .
∞∑

HNh
=−∞

(2.15)

J(α,K, β) is the product of the Bessel function of the first kind defined as follows. α is

defined as the scale factor of Bessel function and α ∈ {−1, 1}.

J(α,K, β) =JαK1(βAb
1)JαK2(βAb

2) . . . JαKNb
(βAb

Nb
)

JαK1
(βBb

1)JαK2
(βBb

2) . . . JαKN
b
(βBb

Nb
)

JαH1(βAh
1)JαH2(βAh

2) . . . JαHNh
(βAh

Nh
)

JαH1
(βBh

1 )JαH2
(βBh

2 ) . . . JαHN
h
(βBh

Nh
)

j
−α(K1+K2+...+KNb

+H1+H2+...+HNh
)

(2.16)
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Where · is defined as in Eq. ( 2.14 ). Here it can be shown that the frequency of breathing

and heartbeat can be expressed linearly in the form of kfb + lfh.

· =
[
(K1 + K1) + 2(K2 + K2) . . . + Nb(KNb

+ KNb
)
]

fb

+
[
(H1 + H1) + 2(H2 + H2) . . . + Nh(HNh

+ HNh
)
]

fh

=
 Nb∑

p=1
p(Kp + Kp)


︸ ︷︷ ︸

k

fb +
 Nh∑

q=1
q(Hp + Hp)


︸ ︷︷ ︸

l

fh

(2.17)

According to Dirac delta function’s property and applying Eq. (  2.18 ) from the definition

of Dirac comb.
∞∑

n=−∞
e−j2πfnTr = 1

T

∞∑
m=−∞

δ(f − m

Tr

) (2.18)

to Eq. (  2.14 ) and define fr = 1
Tr

as the repetition frequency.

Since each K and H is within the range of (−∞, ∞) and the Bessel function is symmetric,

the sign of K and H can be flipped. Furthermore, from the property of Bessel function, we

have J−n(x) = (−1)nJn(x). Finally, we can have the final expression for vital sign estimation

using a radar antenna array as Eq. (  2.19 )

X(f) =
∞∑

u=−∞

I∑
i=1

∞∑
K=−∞

Anfre
−jβ(τa(φ,θ,i)+τ0)J(1,K, β)P (f)δ(f + · − ufr)

=
∞∑

u=−∞

I∑
i=1

∞∑
K=−∞

Anfre
−jβ(τa(φ,θ,i)+τ0)J(−1,K, β)P (f)δ(f − · − ufr)

=
∞∑

u=−∞

I∑
i=1

∞∑
K=−∞

An fre
−jβ(τa(φ,θ,i)+τ0)(−1)

Nb∑
p=1

Kp+
Nh∑
q=1

Hq

J(1,K, β)P (f)︸ ︷︷ ︸
G(K,f,φ,θ,i)

. . .

δ(f −kfb − lfh − ufr︸ ︷︷ ︸
fc

)

=
∞∑

u=−∞

I∑
i=1

∞∑
K=−∞

AnG(K, f, φ, θ, i)δ(f − fc)

(2.19)
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2.2 Time-domain model

2.2.1 Mathematical model

A time-domain mathematical model can be derived from the FMCW chirp equation

for a single human body. The transmitted signal hits the human body and reflects the

antenna array. The back-scattered signal is an attenuated and phase-shifted version of the

transmitted signal and follows humans’ RCS pattern. The received signal is then mixed with

the transmitted signal to convert it to the based band. A planar radar antenna array model

can detect a human body in both azimuth and elevation domain in this model.

The model for a single human body can be extended to multiple occupants detection

with random movement concerning slow time ts and fast time tf , and it can be described as

in Eq. (  2.20 ).

y(tf , ts) =
Re∑

r=Rs

L∑
l=1

I∑
i=1

[ARl

√
G(σe)ej(φrl+φml+φa) + wi] (2.20)

with

φrl
(tf (rl), ts) =2πfb(Rmi(ts))tf (rl) + 4π

λm

[AB
l sin(2πfbrts)

+ AH
l sin(2πfhrts)] (2.21)

φml(tf (rl), ts) =2πfib(Rma(ts))tf (rl) + 4π

λm

Rma(ts) (2.22)

φa(φ(ts), θ(ts), i) = 2π

λm

τa(φ(ts), θ(ts), i) (2.23)
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where

tf , ts : Fast time and slow time

I : Number of antenna pair

L : Number of targets

ARl
: Received power magnitude by certain target

Ds, De : Start and end radial distance

G(σe) : Gain factor with respect to equivalent RCS

fbl
: Beat frequency of certain target

fbil
: Incremental beat frequency of certain target

AB, AH : Amplitude of breathing and heart beat

fb, fh : Frequency of breathing and heart beat

Rma(ts) : Change of range for macro-movement

λm : Maximum wavelength

τa : radar antenna array related delay

wi : white noise

In this model, the change of amplitude consists of two parts. The first part ARl
is two-

way power loss during transmission in free space. The second part is the reflected gain with

respect to RCS G(σe) in form of Eq. (  2.24 ) [ 81 ]

G(σe) = 4πσe

λ2 (2.24)

Where the equivalent RCS σe is the summation of each RCS value of N body parts as in

Eq. (  2.25 ) [ 82 ]

σe = Γh|
N∑

n=1

√
σnejφn|2 (2.25)
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Because the human body is not a metallic object, the relative permittivity of humans

needs to be considered in Eq. (  2.25 ) as a reflection coefficient Γh [ 71 ]. The Γh is derived from

the Maxwell equation. It is known that the speed of light is given by relative permeability µ0

and relative permittivity ε0 in air. For human tissues with relative permeability µr and the

average relative permittivity of the human body εravg , the relative speed of light is calculated

by

cr = 1
√

µ0µrε0εravg

(2.26)

Then the index of refraction can be given by

n = c

cr

= √
µrεravg (2.27)

So Γh is calculated by the Fresnel reflection coefficient at normal incidence as in Eq.

( 2.28 )

Γh = |1 − n

1 + n
|2 (2.28)

All the human body’s permeability µr in this dissertation is assumed to be constant and

equal to µ0 for simplicity. The value of Γh can vary for humans of different ages. This is

because the total body water content (TBW) can affect the value of relative permittivity εr.

In [ 83 ], they introduced an empirical equation to calculate εr for a male child aged from 3

months to 13 years old, as shown in Eq. (  2.29 )

εrch
= 2.616(X−6.63)ε2.4813(1−0.09X)

rA
(2.29)

Where εrch
is the relative permittivity for child and εrA

is the relative permittivity for

adult. X is a parameter related to the height H and weight W of child yield Eq. (  2.30 )

X = H0.65W 0.65 (2.30)
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An average relative permittivity of a complex object with multiple layers of tissues can

be obtained by combining each tissue layer’s relative permittivity weighted by its thickness.

The organs and bones in the thorax are surrounded by skin and fat. The electromagnetic

wave reaches the skin and fat first, then a part of the wave goes through the body following

a path that depends on where the wave reaches first. Thus, the average relative permittivity

for each body may vary in terms of incident angle of radar waveform.

Table  2.1 shows the relative permittivity of some tissues for adults and children using

radar with a central frequency of 79 GHz. The former is from Gabriel’s report, [ 84 ] while the

latter is calculated by Eq. (  2.29 ). In this work, the chest and belly are the areas of interest

because they are where the lungs and heart are located.

Table 2.1. Selected relative permittivity for adults and children

Tissue name Relative permittivity (F/m)
Adult Child

Aorta 7.882 10.181
Blood 9.826 12.381

Blood Vessel 7.882 10.181
Body Fluid 8.679 11.090

Bone Cancellous 4.491 6.181
Bone Cortical 3.503 4.958
Bone Marrow 2.989 4.307

Breast Fat 2.619 3.831
Fat 2.988 4.306

Heart 9.719 12.261
Lung Deflated 9.05 11.509
Lung Inflated 4.532 6.231

Muscle 10.27 12.876
Nerve 6.948 9.104

Oesophagus 10.66 13.309
Skin Dry 6.45 8.522
Skin Wet 8.391 10.763

Spinal Cord 6.948 9.104
Thymus 10.1 12.686

Based on the previous discussion, the average relative permittivity εravg is 9 F/m for an

adult and 11 F/m for a child. The Fresnel reflection coefficient is then 0.25 for an adult and

0.29 for a child.

32



Besides the change of amplitude, there are also phase changes in the time domain math-

ematical model. The first part φr
rl is due to the radial movement of the human body that

stayed without big movement for the radar antenna array. It depends on both changes in

a slow time and fast time. Vital signs such as respiration rate and heart rate are of inter-

est for automotive applications among all radial movements. For automotive radar with 79

GHz central frequency, the range resolution is about 4cm. With tracking of phase changes,

the vital sign signal with mm-level displacement can be detected. By detecting a human’s

respiration and heart rate, we could distinguish them from other static objects.

The second part of phase change φr
m is the Doppler shift that could describe the macro

movement of the human body. It depends on the change in a slow time. It can be used to

track significant movements of human body.

The third part of the phase difference is by the radar antenna array. For a planar array

in the horizontal and vertical dimension, the phase corresponds to the time delay τa, which

depends on the azimuth θ and elevation angle φ of each virtual antenna towards the target.

Last but not least, some noise factor is also considered in this model. A white noise wi

is introduced in this model for each channel to mimic the noise during transmission. Also,

radar’s mutual coupling effect can be substantial because the equivalent aperture of the radar

antenna array is small due to high center frequency. To mitigate the noise effect, the range

of interest is selected while neglecting signals from other distances.

2.2.2 Derivation

The proof of Eq. ( 2.20 ) starts with an equation for a transmitting signal given by Brooker

[ 85 ]

XT (tf ) = AT ej(2πfstf +π B
Tc

t2
f +φ0(tf )) (2.31)

with the real part of the signal expressed by Euler’s formula

XT (tf ) = AT cos(2πfstf + π
B

Tc

t2
f + φ0(tf )) (2.32)
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where tf is fast time, AT stands for the amplitude transmitting power, fs is the starting

frequency of the chirp, B represents the bandwidth of the chirp, Tc is the chirp duration, φ0

is the initial phase of the transmitted signal.

Power loss and traveling phase delay of electromagnetic waves during the transmission

makes the receiving signal a scaled and shifted version of the transmitting signal. The

receiving signal has certain scale factors of attenuation and time delay, including the RCS’s

reflected gain. The phase delay due to the projection of the radial axis’s movements is

derived from the time delay. Both the receiving power and phase delay are expressed as,

XR(tf ) =αAT

√
G(σe)cos(2πfs(tf − td) + π

B

Tc
(tf − td)2

+ φ0(tf − td)) (2.33)

where td is the time delay.

The transmitting signal is converted to I and Q channels and then mixed with the re-

ceiving signal represented by

y(t) = XT (t) × XR(t) (2.34)

Substituting Eq. ( 2.32 ) and Eq. (  2.33 ) with Eq. (  2.34 ) and after some derivations, we

get

y(tf , ts) = AR

√
G(σe)cos(j(2πfstd + 2π

B

Tc

tdtf

− π
B

Tc

t2
d + ∆φ0(t))) (2.35)

Eq. (  2.35 ) can be expressed as

y(tf , ts) =AR

√
G(σe)ej(2πfstd+2π B

Tc
tdtf −π B

Tc
t2
d+∆φ0(t)) (2.36)

34



where AR is the power magnitude of receiver defined by αA2
T

2 . ∆φ0(td) represents the residual

phase noise as

∆φ0(td) = φ0(tf ) − φ0(tf − td) (2.37)

For random movement targets, the time delay consists of three range changes Rmb, Rmi,

and Rma

td = 2(Rmb(ts) + Rma(ts) + Rmi(ts))
c

(2.38)

Rmb is the base-movement. It is the distance from test subject to radar. Rma is the

macro-movement representing the head, torso, and limb activities of subject. Rmi is a micro-

movement that contains chest and heart signals, both of which can be expressed by sinusoidal

waves

Rmi(ts) = ABsin(2πfbrts) + AHsin(2πfhrts) (2.39)

where AB and AH are the amplitude of human subject’s chest and heart signals,and fbr and

fhr are the corresponding frequencies.

Based on [ 67 ], the third term of exponential in Eq. (  2.36 ) can be neglected because

it is negligibly small in practice. The phase difference can also be neglected due to the

range-correlation effect.

Therefore, Eq.( 2.36 ) can be simplified to

y(tf , ts) = AR

√
G(σe)ej(2πfstd+2π B

Tc
tdtf ) (2.40)

It is known that the beat frequency fb is defined by chirp slope Kc and travel time of

signal Tr and can be divided to three parts, fbmb, fbmi and fbma, correspondingly

fb = KcTr = fbmb + fbma + fbmi (2.41)
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where

fbmb = 2BRmb(ts)
cTc

(2.42)

fbma = 2BRma(ts)
cTc

(2.43)

fbmi = 2BRmi(ts)
cTc

(2.44)

After a few steps of derivation by substituting Eq. ( 2.38 ), (  2.41 )-( 2.44 ), Eq. ( 2.40 ) can

be expressed as

y(tf , ts) =AR

√
G(σe)ej( 4π

λm
(Rmb(ts)+Rma(ts)+Rma(ts)))ej(2π(fbmb+fbma+fbmi)tf )

=AR

√
G(σe)ej(2πfbmbtf + 4π

λm
Rmb(ts))ej(2πfbmatf + 4π

λm
Rma(ts))ej(2πfbmitf + 4π

λm
Rmi(ts))

=AR

√
G(σe)ej(φmb(tf ,ts)+φma(tf ,ts)+φmi(tf ,ts)) (2.45)

For a radar with antenna array, the time delay of each antenna pair varies. An additional

phase delay term φant(φ(ts), θ(ts), i) is included, which is a function of the incident angle

(φ(ts), θ(ts)) with argument ts and position of ith antenna pair. Therefore, the model with

the antenna array is expressed by

y(tf , ts, i) = AR

√
G(σe)ej(φmb(tf ,ts)+φma(tf ,ts)+φmi(tf ,ts))ej(φant(φ(ts),θ(ts),i)) (2.46)

Next is to add multiple-targets detection and range of interest (ROI) features into the

model. The features are used to detect all the meaningful targets within the interest range,

increase detection accuracy, mitigate the coupling effect, and reduce computation resources.

Thus, the model is rearranged as

y(tf , ts) =
De∑

d=Ds

L∑
l=1

I∑
i=1

ARl

√
G(σe)ej(φmb

l (tf ,ts)+φma
l (tf ,ts)+φmi

l (tf ,ts)+φant
i (φ(ts),θ(ts))) (2.47)
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where Ds and De are start and end radial ranges. L is the total number of detected targets.

Lastly, a white noise function represents the noises that come from the environment,

electronic hardware, system package, and others. The final model is given by

y(tf , ts) =
De∑

d=Ds

L∑
l=1

I∑
i=1

[ARl

√
G(σe)ej(φmb

l (tf ,ts)+φma
l (tf ,ts)+φmi

l (tf ,ts)+φant
i (φ(ts),θ(ts))) + wi(ts)]

(2.48)

where wi(ts) is the white noise.

2.3 SINR enhancement

From Eq. (  2.48 ), the output amplitude of received signal using radar antenna array is

related to the amplitude ∑L
i=1 AR. Assuming AR of the received signal were all equal, then

the summation of the received signal would be

AR = LAR (2.49)

The phase difference of each received can be corrected by coherent integration using either

summer or FFT.

Assuming output power from SISO radar were Psignal = A2
R. We could assume the output

power of the signal from the radar antenna array as

Psignal = (AR)2 = L2A2
R = L2Psignal (2.50)

The noise signal’s overall noise level can be estimated, including clutter, side lobe, multi-

path, and jamming signal. All of the signals are in the I and Q channel. Assuming amplitude

of the noise signal were An, and amplitude of jamming signal were Aj, for SISO radar, the

amplitude and power could be shown as
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Anoise = 1√
2

((AnI + jAnQ) + (AjI + jAjQ)) (2.51)

Pnoise = A2
nI + A2

nQ + A2
jI + A2

jQ (2.52)

When using a radar antenna array, the noise is a summation of the noise of n antennas

shown below

Anoise =
∑

n

An
noise

= 1√
2

((
∑

n

An
nI +

∑
n

An
jI) + j(

∑
n

An
nQ +

∑
n

An
jQ)

= 1√
2

((AnI + AjI) + j(AnQ + AjQ)) (2.53)

So the output noise power of received radar is given by

Pnoise = E(AnoiseA
∗
noise)

= 1
2E((AnI + AjI)2) + 1

2E((AnQ + AjQ)2) (2.54)

It can be further expanded as

Pnoise = 1
2[E((AnI)2) + E((AjI)2) + E(2AnIAjI)

+ E((AnQ)2) + E((AjQ)2) + E(2AnQAjQ)] (2.55)

The clutter signal and jammer signal received by each antenna were assumed uncorre-

lated, then each of the cross expectation would equal to zero. So the amplitude of noise

power can be simplified as

Pnoise = 1
2[E((AnI)2) + E((AjI)2) + E((AnQ)2) + E((AjQ)2)] (2.56)
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where each of expectation of Eq. (  2.56 ) with noise level NL = {noise, jammer} and i =

{I, Q} calculated by

E((ANLi)2) = E(
n∑

j=1
Aj

NLi

n∑
k=1

Ak
NLi))

=
∑

n

E((An
NLi)2) +

∑
j,k∈[1,n],j 6=k

E(Aj
NLiA

k
NLi) (2.57)

Assuming each receiver’s noise signal were not correlated, then the second term in Eq.

( 2.57 ) equaled zero.

E(Aj
NLiA

k
NLi) = 0, ∀j 6= k (2.58)

The first term in Eq. (  2.57 ) is wide sense stationary (WSS) and with zero-mean, so we

can get Eq. (  2.59 ) with σ standing for the standard deviation of the noise power.

E((ANLi)2) =
∑

n

E((An
NLi)2) = Lσ2 (2.59)

Therefore, the final noise power is as in Eq. (  2.60 ) where σ2 is the noise power of each

receiver

Pnoise = 2Lσ2 ∆= 2LPnoise (2.60)

The signal-to-interference-plus-noise ratio (SINR) can be finally calculated by the ratio

of output signal power versus the output noise power shown in Eq. (  2.60 ). By using radar

antenna array, the SINR of the received signal will be L
2 times larger than the original SINR

as in Eq. (  2.61 ).

SINR =
Psignal

Pnoise

= L2Psignal

2LPnoise

= L

2 ∗ SINR (2.61)
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3. BASIS OF VEHICLE IN-CABIN RADAR SYSTEM DESIGN

3.1 Design constraint and requirement

Compared to other applications using wideband radar for localization and occupancy

detection, the vehicle cabin space is relatively smaller, leading to challenges for detection,

classification, and liveness estimation.

3.1.1 Vehicle size and layout

Vehicle cabin size varies according to its usage. A radar system needs to be designed to

cover the whole in-cabin arena, from sports cars having small cabin space with lower ceiling

height to full-size vans having large cabin space with higher ceiling. The table  3.1 listed

below is the cabin space of the typical Ford vehicles.

Five seats with two rows are chosen for the evaluation of vehicle occupant detection. The

Sedan car and sport utility vehicle (SUV) are the main focus in this research for occupant

monitoring. Therefore, the typical cabin length from windshield to trunk’s back for this

vehicle type is about three meters. It limits the maximum detection range to three meters.

Table 3.1. The typical size of Ford vehicle
Model Size (L×W×H mm)
Fiesta 4060 ×1756 ×1498
Focus 4668 ×1825 ×1481
Fusion 4872 ×1852 ×1478

EcoSport 4273 ×1765 ×1653
Escape 4524 ×1839 ×1684
Edge 4808 ×1928 ×1692

Explorer 5047 ×2004 ×1778
Expedition 5636 ×2029 ×1941

F-150 5890-6190 ×2029 ×1920
Mustang 4784 ×1916 ×1381

For vehicle cabin layout, most vehicles have two front seats and three back seats. There

are five zones in-cabin that need to be evaluated to detect movement and occupants’ vital

signs. Driver and one passenger usually sit in the front while other passengers such as adults,
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children, infants, or pets sit in the back; children and infants in the rear seat should be inside

special seats hooked to back seats.

3.1.2 Safety requirements

According to requirements of different states in the U.S. [  86 ], children and infants need

to be protected with certain types of child seats or infant seats. The requirement varies from

state to state and can be categorized into four types: rearward-facing seats, forward-facing

seats, belt-positioning booster seats, and lap and shoulder belts [ 87 ].

The rearward-facing seats are for children aged zero to two, or for those whose weight is

within the limit of rearward-facing seats. Once children surpass the rearward-facing seat’s

weight limit, they should be switched to forward-facing seats with a harness. They should

switch to belt-positioning booster seats before they reach 4’9’’ and are aged between eight

and twelve. If children fit the belt properly and are under thirteen years old, they must ride

in the back seat using the lap and shoulder belts.

Seats for infants and children have different heights of back and cover. For rearward-

facing infant seats, they have a canopy to cover infants’ sunshade; during winter, infants

are covered to keep them warm. The convertible seats have convertible back, which can be

adjusted to comply with children’s height. Booster seats also have either a low back or a

high back according to children’s size.

3.2 Radar parameter design

Low central frequency UWB radar has been studied and used for health monitoring inside

hospital or house. Its design and parameter setup do not fit the automotive applications.

The mmWave radar is selected, and all the parameters are redesigned.

3.2.1 Central frequency

For currently available radar for advanced driver assistance systems (ADAS) in vehicle,

both central frequency 24 GHz and 79 GHz are popular choices in most countries. In Japan,

60 GHz is selected for automotive radar in its ADAS system. Most of radars currently
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mounted on vehicle are for the detection of outside objects [  88 ]. FCC has just recently

approved 60 GHz central frequency radar for vehicle in-cabin application [ 89 ]. This central

frequency radar system will be the direction for vehicle in-cabin occupant detection and

classification.

The algorithm for 60 GHz in-cabin occupant monitoring is the same as the 79 GHz based

system, and also, the 60 GHz radar hardware is not available in the market now, therefore,

the 79 GHz central frequency radar is selected for the system design in this research.

3.2.2 Attenuation and penetration

The reflection and penetration properties of materials are affected by the radar waveform.

When radar signal reaches a test subject, one part of the signal is reflected towards radar as

a backscattered signal to the receiver, and another part of the signal penetrates the subject.

The amount of reflection and penetration varies under different materials of subject.

The following Fig.  3.1 3.1 is the one-way attenuation of different materials under differ-

ent frequency bands. The two blue dash lines indicate the attenuation of materials in the

frequency bands of interest. As one can tell from the figure, the C-band (4 to 8 GHz) and

X-band (8 to 12 GHz) have good penetration ability, shown in the first blue dash line. It

could penetrate through even thick material to detect moving objects behind. The V-band

(40 to 75 GHz) and W-band (75 to 110 GHz), on the other hand, cannot penetrate thick

material as C-band and X-band radar do. However, for materials such as glass and fabric,

the V-band and W-band show relatively low attenuation, making them appropriate choice

of in-cabin occupant detection radar.

Human body has multiple layers, and chest displacement is a popular use for vital sign

detection; thus, thorax area of human body is then the area of interest. One example of the

thorax section of a human male is shown in Fig.  3.2 . The heart, lungs, spinal, blood vessels

can be seen clearly. Organs in the thorax are surrounded by skin and fat, where the radar

signal reaches first after being transmitted by a radar transmitter. The radar signal could

have a different path through the human body when placed in a different location inside

vehicle cabin.

42



3  5  8  10 20 30 50 80 100 200

Frequency (GHz)

0

5

10

15

20

25

30

35

T
o

ta
l 
o

n
e

 w
a

y
 a

tt
e

n
u

a
ti
o

n
 (

d
B

)

Concrete

Pine board

Paper towel (dry)

Polyethylene

Painted board

Glass

Wet paper towel

Figure 3.1. One-way attenuation of radar wave under difference frequency [ 90 ]

Permittivity and loss tangent of human tissue for radars with central frequency 7.29 GHz

and 79 GHz are shown in Table  3.2 [ 84 ]. Both values of permittivity and loss tangent are

shown in the table. Relative permittivity, or dielectric constant, of tissue and organs of

individuals reflects the ability to store electrical energy in the electric field; huge contrast

between two tissues will induce more reflections at the interface. On the other hand, the

loss tangent is correlated to signal attenuation [  30 ]. A larger loss tangent will induce higher

signal attenuation.
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Figure 3.2. Section of thorax of a male [ 91 ]

Table 3.2. Dielectric constant and loss tangent of thorax

related tissue under 7.29 GHz and 79 GHz radars

7.29 GHz 79 GHz

Tissue Dielectric Loss Dielectric Loss

name constant tangent constant tangent

Aorta 36.23 0.4067 7.882 1.172

Blood 49.88 0.4325 9.826 1.382

Blood Vessel 36.23 0.4067 7.882 1.172

Body Fluid 62.57 0.3694 8.679 1.975

Bone Cancellous 14.3 0.4779 4.491 0.7455

Bone Cortical 9.057 0.4117 3.503 0.5192

Bone Marrow 4.829 0.1969 2.989 0.2449

Breast Fat 4.248 0.3162 2.619 0.1536

Fat 4.822 0.2012 2.988 0.2453

Heart 46.52 0.4176 9.719 1.317

Lung Deflated 41.67 0.3907 9.05 1.248

Lung Inflated 17.66 0.3903 4.532 1.008

Muscle 46.47 0.363 10.27 1.293

continued on next page

44



Table 3.2. continued

7.29 GHz 79 GHz

Tissue Dielectric Loss Dielectric Loss

name constant tangent constant tangent

Nerve 25.98 0.3781 6.948 0.9501

Oesophagus 53.79 0.3972 10.66 1.402

Skin Dry 33.83 0.3719 6.45 1.352

Skin Wet 36.79 0.3951 8.391 1.174

Spinal Cord 25.98 0.3781 6.948 0.9501

Thymus 49.6 0.3915 10.1 1.355

Table  3.2 shows that the permittivity of tissues for 79 GHz radar is smaller than that of

the 7.29 GHz radar while the loss tangent value of tissue for 79 GHz is higher than that for

the 7.29 GHz radar. It means that radar with a central frequency of 79 GHz absorbs less

energy and has higher attenuation than 7.29 GHz, which is in compliance with the tendency

shown in Fig.  3.1 . The heartbeat signal measured by radar with a central frequency of 79

GHz is weaker than that measured by radar with a central frequency of 7.29 GHz, when the

two radars have the same output power level. In general, using radar with either central

frequency 7.29 GHz or 79 GHz, the radar signal path will try to avoid tissue with high loss

tangents such as blood, body fluid, esophagus, and Thymus to reach the heart.

3.2.3 Waveform transmission

One advantage of UWB radar is its waveform leads to a low average transmit power over

the frequency span. Because the transmitted radar waveform has a wide bandwidth, the

output power is distributed over the whole frequency band, making the average power of

the entire frequency band much lower than the radar waveform with narrowband signal and

broadband signal. As shown in Fig.  3.3 . Y-axis stands for the power spectrum density, and

X-axis represents the frequency bandwidth.
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Figure 3.3. UWB radar power spectrum density distribution [ 92 ]

For radar with their frequency band in C-band, X-band, or W-band, two waveform

types are often used. Impulse radio-based radar transmits out pulse (often used Gaussian

modulated pulse) signal continuously as in Fig.  3.4 and measures the reflected signal for

object detection and movement detection. Impulse signal is often used for C-band, X-band

for indoor sensing, and through-wall sensing. However, some research or device also chooses

to use the FMCW radar as in Fig.  3.5 [ 21 ]. For W-band radar-equipped on the vehicle, most

of the research chooses FMCW as the signal waveform.

The benefits of using impulse radio based waveform are twofold. Because the pulse length

of impulse radio-based radar is less than 1 ns, and will wait for around 40 ns to collect all

the signals. The average power between pulses is low. On the other hand, more signals will

be received from the detected object due to the wide frequency band. When the transmitted

signal arrives at the surface of the test subject, a signal with different frequencies will have

different reflection ability. It is related to the signal wavelength and the smoothness of the

surface. If the radar waveform wavelength is larger than the concave region of the surface,

this region will not act as a corner reflector. The signal will be scattered away and no

longer be detected by the receiver antenna; if the waveform wavelength is less or equal to

the concave region, the transmitted signal will be backscattered to the radar antenna.
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Figure 3.4. Impulse radio waveform

FMCW waveform is shown in Fig.  3.5 . FMCW based radar detects the object by

comparing the difference between the received frequency with the reference signal to cover

the whole detection range. On the other hand, the impulse radio-based radar has a “blind

spot” based on Eq. (  3.1 ). It must wait until the end of the impulse transmission to start

measuring the test subject.

d = c
t

2 (3.1)

where d is the distance from the subject to the radar antenna, c the speed of light, t is the

time delay from the beginning of impulse signal transmission.

3.2.4 Range resolution

Radar waveform with an ultra-wide frequency band will increase the range resolution for

distance detection. The fractional bandwidth defines the ultra-wideband as in Eq. ( 3.2 ) [ 93 ].

BWf = 2(fh − fl)
fh + fl

≥ BWlb (3.2)
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Figure 3.5. FMCW chirp waveform

where BWf is the fractional bandwidth and fh and fl represent the highest and the lowest

frequencies of the signal, respectively. BWlb is the lower bound of the bandwidth defined as

0.2 with a cut-off level of Lcf = −10dB [ 93 ]. Also, there is another definition by limiting the

minimum absolute bandwidth to 500MHz.

The IR radar with wide bandwidth has finer range resolution compared to the radar

with narrow bandwidth. The range resolution of an impulse-based radar depends on the

signal scattered from the subject of interest. Impulse radar with a wide bandwidth signal

enhances the range resolution by backscattering more signals than impulse radar with nar-

row bandwidth. The surface of a test subject, such as a human subject, contains lots of

wrinkles. Therefore, as discussed previously, by increasing the frequency span, more signals

with different frequencies can be received by the receiver antenna, leading to high resolution

eventually.

For FMCW radar, the range resolution is directly related to the length of bandwidth.

Since FMCW-based radar detects the subject by comparing the frequency difference between

the received signal with the transmitted one, the longer the frequency span is for the FMCW

chirp signal, the better the range resolution of radar can be achieved.
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Micro-movement detection, such as human subject vital sign detection, requires accurate

measurement of chest displacement. Typically, the displacement of the chest is in mm level.

Therefore, to achieve this accuracy, a specific range of resolution needs to be achieved.

For chest displacement, the movement is in a range from 1mm to 12 mm; heart displace-

ment, on the other hand, is in a range of 0.2 mm to 0.5 mm. For IR-based radar, samples

collected for the range profile calculation are essential. If the range resolution is set to be 6

mm, then the sampling rate for 3 meters of cabin length should be at least 50 Gs/s to have

enough samples as the following equations.

samples = 3
0.006 = 500samples (3.3)

time = 3
3 × 108 = 10−8s (3.4)

sampling_rate = samples

time
= 50Gs/s (3.5)

For FMCW waveform-based radar, the micro-movement detection differs from that of

the impulse-based waveform. It could be calculated by Eq. ( 3.6 ) that the range resolution

is only 4 cm.

dr = c

2B
(3.6)

where dr represents the range resolution, c is the speed of light, and B is the bandwidth.

The micro-movement is detected by evaluating the phase difference between transmitted

and received signals. This is valid for the micro-movement estimation. Assume the subject

did not move during the whole assessment period, and the range bin in the range profile

remained the same, then the instantaneous frequency (IF) of the FMCW chirp would be

a constant value. Since FMCW radiates a sinusoidal waveform, and the detected subject’s

initial phase value could be estimated, then the phase change of that range bin can be

continuously monitored. By recording the phase change of a subject unmoved, the micro-

movement of subject is known.
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3.2.5 Antenna size

Single antenna size is related to the central frequency. Typically the size of a radar

antenna is one-quarter of the wavelength of the central frequency [ 94 ][ 95 ]. For an antenna

array, each receiver’s distance is typically half-length of the central frequency wavelength [ 96 ].

The size of a single radar antenna and the minimum antenna distance between receivers for

antenna array are estimated with multiple central frequencies shown in Table  3.3 .

Table 3.3. Antenna size and minimum antenna distance
Central frequency Wavelength Antenna size Min antenna

(GHz) (m) (m) distance (m)
10 0.03 0.0075 0.015
24 0.0125 0.00312 0.00625
60 0.005 0.00125 0.0025
79 0.00379 0.00094 0.00189

For occupant detection in vehicle cabin, a radar antenna array with high central frequency

requires a smaller space inside vehicle and thus provide more flexibility for deployment. As

can be seen from Table  3.3 , both the antenna size and minimum distance between the receiv-

ing antennas decrease with increasing of central frequency. Specifically, both the antenna

size and minimum antenna distance of radar with 79 GHz central frequency is reduced by

87% compared to that for radar with 10 GHz central frequency. Therefore, the total size of

radar with antenna array will be reduced by 87% if with the same number of the antenna

array, which provides more choices of mounting position for the antenna array inside the

cabin.

3.2.6 Patch antenna

For 79 GHz radar with MIMO configuration, the antenna can be designed using the

patched micro-strip antenna, shown in Fig.  3.6 . In this 3D figure of a single microstrip

antenna, L stands for the antenna’s length, W stands for the patch antenna’s width, hs

stands for the height of the antenna substrate, and hg is the height of the ground plane.
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Figure 3.6. Micro-strip antenna configuration

To determine the length L and the width W of each microstrip antenna, both the effective

dielectric constant εeff , extended length ∆L need to be evaluated according to substrate

height hs and central frequency. Balanis gives the calculation of effective dielectric constant

[ 97 ] as Eq. (  3.7 )

εeff = εr + 1
2 + εr − 1

2

[
1 + 12 hs

W

]− 1
2

(3.7)

where εeff is the effective dielectric constant, εr is the dielectric constant of the substrate.

The extended length can be referred to empirically by Hammerstad [ 98 ] in Eq. (  3.8 )

∆L = 0.412h
(εeff + 0.3)(W

hs
+ 0.264)

(εeff − 0.258)(W
hs

+ 0.8)
(3.8)

The length of one patch can then be calculated by Eq. (  3.9 )

L = Leff − 2∆L (3.9)

The effective length of one patch antenna Leff is given by [  99 ] Eq. (  3.10 ). In this

equation, c is the speed of light, and f0 is the central frequency.

Leff = c

2f0
√

εeff

(3.10)
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The width is calculated [ 100 ] as in Eq. (  3.11 )

W = c

2f0

√
(εr+1)

2

(3.11)

A patch antenna design example using parameters from Texas Instrument’s AWR1843

BOOST can be shown in Table  3.4 .

Table 3.4. RF antenna specs of AWR1843BOOST
Parameter Symbol Value Unit

Dielectric constant εr 3.66 F/m
Substrate height hs 0.1016 mm

The AWR1843BOOST has a central frequency 79 GHz with dielectric constant (also

called relative permittivity) of substrate εr and height of substrate hs. By applying the

aforementioned Eq. (  3.7 ) - ( 3.11 ), the length L and width W can be calculated as 0.95 mm

and 1.24 mm, which match the measurement from the hardware.

3.2.7 Single pair antenna

For a single antenna approach, ultra-wideband impulse radar (UWB-IR) is often selected.

The advantage of UWB-IR is its high range accuracy and short pulse repetition time (PRT).

The radar transmits very short impulse wave signals. Gaussian impulse or modulated Gaus-

sian impulse is typically used as the impulse signal to increase bandwidth to achieve a better

range resolution. The duration of the impulse signal is much shorter compared to FMCW.

Compared to the duration of chirp signals of FMCW - several microseconds, the signal du-

ration of IR is shorter - within one nanosecond. Using the radar to locate object needs to

use data from both the fast time and the slow time.

Sensor is often located in front of test subjects, or faces them. A single-pair antenna

radar is typically placed away from boresight to achieve better subject detection. It can be

placed at a vehicle’s A-pillar to make sure that the distance from each subject to the antenna

is different. In most of the published research for this scenario, algorithms are applied to
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data collected from ideal scenarios and/or short distances where SNR is large. This makes

the position and vital signs of the human subject relatively easy to be located. However, in

a practical environment, noise signals can be much larger in some scenarios, such as metal

reflection. Occlusion can also increase difficulties in vital sign signal detection of human

subjects sitting behind when most signals are reflected and attenuated by subjects in the

front. One alternative way to sense vital signs is to embed radar into seats in this strong

reflection scenario [  30 ]. However, it requires one radar system per seat. If radar systems are

too far away from occupants, reflected signals can be weak and noisy signals may be buried

in background noises. The concept system setup for single pair antenna based occupant

detection is shown in Fig.  3.7 .

Figure 3.7. System setup for two subjects

One approach is to apply a cross-correlated based method, which consists of four dif-

ferent parts [  101 ]. This approach includes four steps: clutter suppression, human subject

localization, cross-correlation, and phase correction and signal amplification. The flowchart

of this method is shown in Fig.  3.8 .

Clutter
suppression

Living
subject

localization

Cross
correlation

Phase correction &
signal amplification

Figure 3.8. Weak signal detection method flowchart

53



By applying the setup in Fig.  3.7 and the method mentioned above, the vital sign signal

can be extracted with high SNR as shown in Fig.  3.9 . In Fig.  3.9 , a signal with legend

named Original is the signal before enhancement; Data 1-3 and 5-7 are signals in adjacent

bins of the original signal; a signal with legend New is the enhanced output signal. From

this figure, it can be observed that all sinusoidal waves have been lined up and added up for

amplification. The magnitude of each sinusoidal signal has been added up while the signal’s

frequency has been maintained. The SNR increases by 46.7% from the original signal. Since

the cross-correlated signal also has its oscillation around zero, no DC tendency can affect

FFT computation in the following steps. The reason is that the waveform that has been

transmitted out has a Gaussian-like oscillation pattern. In contrast to the original signal, the

adjacent signal’s DC component will cancel each other out once they are added up together.

It can also be seen that there will be a rather flat signal, such as Data 3 in Fig.  3.9 added

to the original one, which may result in more noise in the original signal. This can be fixed

by applying a bandpass filter.

Figure 3.9. Signal amplification for system setup
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3.2.8 Antenna array

The proper antenna array design increases the gain and angular resolution to locate the

test subject in a high dimension. With more receiver antennas in an antenna array, the

radar receives more signals with a certain time delay. By synchronizing and summing up all

received signals, the total amplitude of the signal will increase. The antenna array requires

at least one transmitter and two receiver antennas to estimate the AoA for subjects in the

same range of antenna. In principle, the AoA is estimated by calculating the phase delay

from the same transmitter. It is calculated as in Eq. (  3.12 ) [ 96 ].

θres = 0.89 λ

D
≈ 2

NT xNRx

(3.12)

where θres is the angular resolution, λ is the wavelength, D is the equivalent aperture, and

NT x , NRx are numbers of transmitter and receiver, respectively.

A multiple input multiple output (MIMO) structure-based antenna array can effectively

reduce size of antenna array and thus further reduce space occupied inside a vehicle. Com-

pared to synthetic aperture radar, MIMO radar requires less data acquisition and processing

time achieve the same cross-range resolution [ 102 ]. The MIMO radar equivalents the sin-

gle input multiple output (SIMO) structure by increasing the number of transmitters. The

transmitters are divided by a fixed distance depending on the central frequency of signal

to represent the difference of phase delay in antenna array. Transmitters radiate signals in

sequence while multiple receivers receive the signal as a group and repeat per transmitter.

Nevertheless, using the MIMO radar array for in-cabin occupant detection takes a long time

and needs more memory for processing; it will need to process a data cube instead of a

matrix.

Although the angular resolution increased with the size of aperture, the angular resolution

is also affected by the distance between the target and the origin of the antenna array. A

sketch of a real aperture of the antenna array radar is shown in Fig.  3.10 . The real aperture

of the antenna array angular resolution decreases along the radial axis, meaning the size of

the angular pixel shown in the color of cyan in Fig.  3.10 , increases with range. Specifically,

for a set of point targets in range r, 2r, 3r as shown in Fig.  3.10 , it can be seen that the
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angular resolution decrease with the increase of distance between the target and the array

origin O. As a result, the size of point target from detection increase with distance between

target and origin.

O

r

2r

3r

x

y

z

Figure 3.10. Real aperture radar antenna array

3.2.9 Antenna subarray

For high-resolution monitoring, the projection of the angular pixel onto the area of in-

terest should be fine enough to separate two or more adjacent targets. It is achievable by

adding adequate antennas in the array. However, more antennas would cost computational

power. Also, since subjects in cabin do not change seats frequently, it is not necessary to

scan all antennas in the array each time if a vehicle is not fully occupied. Instead, we should

only focus on the area of occupied seats.

An approach based on a subarray-based concept is proposed and shown in Fig.  3.11 . The

dots in this figure are the equivalent antenna in the antenna array. The key to this approach

is to divide the full antenna array into several subarrays. Each subarray corresponds to a

zone inside a vehicle. Each subarray in the plot is marked in a different color. This figure

is modeled on a five-seat vehicle. The antenna array is divided into two rows to cover both

the front seats and the rear seats. For simplicity, each row is designed to have three different

subarrays to cover three different zones inside the cabin. Each zone is assumed square,

so subarray needs an equivalent number of antennas on horizontal and vertical axes. The
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method consists of two parts, occupancy detection and beamforming. The first part of this

method is to process the received data cube by using defined subarrays. If there is no signal

detected in the defined zone, the zone will be excluded in the second step. An additional step

will be applied for those zones with detected signals to generate high-resolution reflections

by using beamforming with all antennas in the antenna array.

R

Figure 3.11. Subarray based occupant monitoring method

It is assumed that the total number of antennas in horizontal dimension in Fig.  3.11 as

R, the number of subarray is M , and each of them has N antennas. For example, in Fig.

 3.11 , M is three and N is two. These three parameters yield

R = M × N (3.13)

Two conditions need to be considered in selecting an optimal numbers of antennas for

each subarray, i.e., the maximum length of partition and total times of the computation.

The maximum length of partition is determined by the width or the height of the detection

field. Fig.  3.12 presents a simplified 1-D model for the back row for example.

where θ is the field of view (FoV) of the radar, w is the total width of the rear row, h is the

vehicle cabin’s height. The three seats divided the total width of the back seat into a, b, c

three parts with lengths la, lb and lc. By small angle approximation for each partition, the

division of FoV can be expressed by

θp = li
w

θ, i ∈ {a, b, c} (3.14)
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w

h
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Figure 3.12. Partition of back row in vehicle cabin

RI

......

Figure 3.13. Subarray based two-step scan

To detect the subject located in this partition, the value of the subarray’s angular reso-

lution should be less than θp. By Eq. (  3.12 ), we get Eq.( 3.15 )

2
N

180
π

≤ θp (3.15)

Then the computational time is assessed. Here it is assumed that the memory resource of

hardware were sufficient for processing. Therefore, the total times of beamforming angles is

the only focus. The traditional beamforming approach scans all the receiving antenna cells.

The time of the traditional beamforming costs are,

Ttrad = θ
2
R

= θR

2 (3.16)
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For a subarray-based two-step scan, a mechanism of processing is shown in Fig.  3.13 .

The block in blue represents the time spent for occupancy detection. Since the occupant

is relatively static inside the vehicle cabin, it is unnecessary to detect occupancy in each

iteration. So a repetition interval RI is used to represent the repetition time of this step.

After finding the occupied zone in the first step, the next is to generate high-resolution

reflection signals in each zone. The blocks in green show the procedure of beamforming.

Each green block represents time spent for beamforming, and the number of beamforming

is determined by the zones found in the first step. For the convenience of comparison with

the traditional method, the time consumed in the repetition interval is amortized into the

following beamforming showed in Fig.  3.13 . P out of M partition is selected after applying

the first step. The next step is to use all antennas in this partition for the highest angular

resolution. Thus, the total computational times are

Tsub =
θ

M
2
N

M
1

RI
+

θ
M
2
R

P

= θ

2
N

RI
+ θ

2
P

M
R

= θ

2( N

RI
+ P

M
R) (3.17)

To save computational power, the number of beamforming for subarray-based method

Tsub should be less than the number of beamforming for the traditional based method Ttrad,

meaning the relationship between these two numbers should yield Tsub < Ttrad. To get

maximum upper bound for this inequality, the value of RI is set to one. Then, Eq. (  3.18 )

can be obtained after some simple derivations.

θ

2(N + P

M
R) <

θ

2R

N < (1 − P

M
)R (3.18)
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Eq. (  3.18 ) provides the upper limit for the number of antennas in a subarray. By

reorganizing Eq. (  3.15 ), the lower bound of N is given by Eq. (  3.19 )

N ≥ 360
θ( li

w
)π

(3.19)

To sum up, the number of antenna in each subarray should yield Eq. ( 3.20 ). If this

equation is valid, Nopt equals the lower bound value.

360
θ( li

w
)π

≤ N < (1 − P

M
)R (3.20)

In this research, the goal is to determine the optimal size of a planar array that is able

to cover a vehicle with five seats in two rows based on the subarray-based approach. For

simplicity, the width of all five seats is set to 50 cm. The planar array is divided into six

square sub-arrays, with five of them responsible for detecting the occupancy of 5 seats. After

some straightforward calculations based on Eq. ( 3.20 ), the minimum number of R can be

found as five, and the optimal number of N is three. Therefore, the minimum number of

antenna needed for the sub-array-based occupancy detection is 9 × 6.

The selection of repetition interval is key in this proposed method to save computational

power. In Fig.  3.14a , different repetition intervals are tested, and the percentage of the

subarray-based beamforming numbers can be found decrease as the repetition interval in-

creases. Lines in different colors represent different numbers of occupant inside a vehicle

cabin. The decreasing tendency is similar in different occupancy scenarios. If the number of

repetition interval is fixed at 20, the number of beamforming is found to change along with

the sub-array size and the number of occupied seats, as shown in Fig.  3.14b . In the bar

chart, the first five sets of bars show the number of beamforming using the subarray-based

method; the last set of bars is the number of beamforming using the traditional method and

set as reference. It can be found that the subarray-based method helps decrease the num-

ber of beamforming with different sizes of the antenna array and thus saves computational

power.
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Figure 3.14. (a) reduction of beamforming number with different value of
repetition interval (b) number of beamforming for different number of occu-
pants and size of subarray

3.3 The Angle of Arrival (AoA) approaches

AoA approach is widely used in determining the direction of propagation of the radio-

frequency wave and estimating its magnitude [ 103 ]. The results can be used for test subject

localization, tracking, and recognition in 3D space.

3.3.1 Angle of Arrival (AoA): Beamforming

The beamforming collects signals from each antenna pair of the antenna array to generate

optimized weights and to determine where their locations as expressed in Eq. (  3.21 ).

y(tf , ts, i) =
L∑

l=1
[ARl

√
G(σe)ej(φrl(ts,tf )+φa(φ(ts),θ(ts),i))] (3.21)

The mechanism of the generated weights can be described using a signal model for an

antenna array. Assume that there were L uncorrelated or partially correlated point target

sources, sl(ts). The receiving data, XR(ts) is comprised of the backscattered signals ARsl(ts)

and noise w(ts). A is the steering matrix for the search of target of interest. In this research,
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it is assumed that the AoA in the steering matrix were known and can be expressed in the

form of θl for simplicity; θl represents the AoA of the l-th point target source.

XR(ts) = ARsl(ts) + w(ts)

sl(ts) = [s1(ts), s2(ts), . . . , sL(ts)]

A = [a(θ1), a(θ2), . . . , a(θL)] (3.22)

The size of parameters mentioned in Eq. ( 3.22 ) can be described as follows. Both XR(ts)

and w(ts) are vectors and they have same length that equals to the number of antenna pairs

I. sl(ts) is a L × 1 vector representing signal values from L point sources. Therefore, the

size of XR(ts) is L × I. A is an I × L steering matrix calculated by Eq. (  4.5 ). The steering

matrix consists of the relative phase shifts arrived at different receiver in planar array from

one target source. Each column of A represents a steering vector from one of the sources

and depends on the AoA in both azimuth and elevation.

The principle of beamforming is to assign weights ωa to each antenna pair in the receiving

signal XR. Therefore, it has a size of I × L. The weights could enhance the power of the

main lobe and suppress the power of sidelobe in the direction of AoA. Thus, the optimized

received power is described in Eq. (  3.23 ).

X ′
R = ωaXR (3.23)

Then the output power is calculated by Eq. (  3.24 ).

Pout = X ′
R(X ′

R)H = ωH
a (XRXH

R )ωa = ωH
a Rxωa (3.24)

where the superscript H represents the Hermitian matrix of the original matrix. Rx is the

covariance matrix of the received signal matrix XR.

The key idea of the beamforming is to determine the distribution of weights to the

receiving signals. The most straightforward approach is to use the matrix A as the weights

ωa directly. It also named conventional or Bartlett beamforming [  103 ]. However, this method
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provides a relatively low resolution compared to other methods. To achieve better angular

resolution, a more adaptive AoA approach is needed.

3.3.2 Angle of Arrival (AoA): Subspace-based approach - MUSIC

The MUSIC is a specific algorithm in subspace-based approaches based on the eigenvalue

decomposition of the covariance matrix observed at an array [  104 ]. It decomposes the radar

covariance matrix Rx into two subspaces, a signal subspace and a noise subspace.

Rx = E{XRXH
R } = ARsA

H + σ2
nI (3.25)

where the first item on the right of Eq. ( 3.25 ) is the signal subspace and the second item on

the right is the noise subspace. Rs is the source covariance matrix. The source covariance

matrix’s diagonal elements represent source power, and the off-diagonal elements represent

source correlations. Rs can be expressed by signal vector s as

Rs = E{ssH} (3.26)

The algorithm assumes that the noise powers were equal at all sensors and uncorrelated

between sensors. Thus, the noise covariance matrix became an I-by-I diagonal matrix with

equal values along the diagonal.

It is noted that for uncorrelated sources or even partially correlated sources, Rs is a

positive-definite Hermitian matrix and has full rank L, which is equal to the number of

target sources. The signal covariance matrix, ARsA
H , is an I-by-I matrix, also with rank L

< I.

Because the true sensor covariance matrix is unknown in the real-world scenarios, the

MUSIC algorithm can take the sampled sensor covariance matrix Rx for the calculation. The

sampled sensor covariance matrix is an average of multiple reflected chirps from the sensor

data. K is the number of reflected chirps.

Rx = 1
K

K∑
k=1

XR(ts)XR(ts)H (3.27)
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If the number of target sources is known, the MUSIC algorithm is able to provide better

spatial resolution than other algorithms of AoA. When the number of sources specified

is incorrect, MVDR and Beamscan may show insignificant peaks from the correct spatial

spectrum. In contrast, the MUSIC spatial spectrum may be inaccurate when the number of

sources is not specified correctly. Also, the amplitudes of MUSIC spectral peaks cannot be

interpreted as the power of the sources [ 105 ].

The derivation of the algorithm starts with equation ( 3.25 ). Assume A and Rs had rank

of L, both A and Rs would then have L positive real eigenvalues and I − L zero eigenvalues.

Next, these eigenvalues were reorganized in descent sequence with µ1 ≥ µ2 ≥ . . . ≥ µl > 0

in signal subspace. When noise is introduced, a noise power σ2
0 needs to be added to each of

the eigenvalue in both subspaces. To sum up, the eigenvalue for signal and noise subspaces

are given by

λk =


µd + σ2

0 l = 1, 2, . . . , L

σ2
0 l = l + 1, l + 2, . . . , I

(3.28)

The corresponding eigenvectors can also be expressed as

el = {e1, e2, . . . eL︸ ︷︷ ︸
signal

, eL+1 . . . eI︸ ︷︷ ︸
noise

}

The eigenvectors in the first bracket correspond to the positive eigenvalues that span the

signal subspace, while those in the second bracket correspond to the zero eigenvalues that

span the null subspace and are orthogonal to the signal space. Thus, Rs can be presented as

Rs =
I∑

l=1
λlele

H
l +

I∑
l=L+1

λlele
H
l (3.29)

When l ≥ L, the first item on the right of the Eq. ( 3.29 ) goes to zero. Multiply el to

both sides, we get

Rsel = λlel = σ2
0el = 0 (3.30)
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By further multiplying el to both side of Eq. (  3.25 ), we get

ARsA
Hel = 0, ∀l > L (3.31)

If multiply el to the above equation, we further get

eH
l ARsA

Hel = 0

(AHel)HRs(AHel) = 0

AHel = 0 (3.32)

From the above derivation, those arrival vectors are orthogonal to the null space, which

is a key foundation of MUSIC.

The mechanism of MUSIC is to search all vectors in the steering matrix that are orthog-

onal to the noise subspace. Therefore, MUSIC constructs an AoA dependent pseudo-power

expression, called the MUSIC pseudo-spectrum Pmusic as in Eq. (  3.33 ).

Pmusic(θ) = 1
aH(θ)(∑I

d=L+1 eleH
l )a(θ)

= 1∑I
d=L+1 |aH(θ)el|2

(3.33)

If there is a vector orthogonal to the noise subspace, the pseudo spectrum peaks are

infinite. However, because there is noise in XR and the true covariance matrix is replaced

by the sampled covariance matrix, the arrival vectors are not exactly orthogonal to the

noise subspace. Then, the angles at which Pmusic have finite peaks are the desired arrival

directions. Because the pseudo-spectrum can have more peaks than the actual target sources,

the algorithm requires specifying the number of desired target sources, L, as a parameter.

The algorithm is responsible for picking the L largest peaks by searching the space of interest.

For the planar array, the search space is a two-dimensional grid of azimuth and elevation

angles.
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3.3.3 Angle of Arrival (AoA): Adaptive beamforming - MVDR

In the real-world, the number of signal sources is usually unknown because the number

of signal subspaces and noise subspaces can not always be separated correctly. Extra targets

will appear in the set of detected points; those extra points are also called ghost targets. In

some situations, the covariance estimation of Rx is singular or near-singular, meaning the

matrix is not positive definite. It will cause numeric stability issues in doing the inversion for

AoA spectral estimation. Thus, to avoid ghost points and singularity, the minimum variance

distortionless response (MVDR), an adaptive beamforming algorithm is introduced to the

real-world scenario and its equation is shown as follow,

P̂MV DR = 1
a(θ)H [Rx + αnI]−1a(θ) (3.34)

The diagonally loading factor αn may be determined using the noise variance estimation

as follow:

αn = βPn (3.35)

where β is small constant number and Pn is defined as 1
Nα

trace(Rx) where Nα is the number

of virtual antenna pair under test.

3.4 Radiation regulations and compliances

Related radiation regulations will be presented. Then, the system performance will be

assessed through theoretical analysis using parameters from the simulation system.

3.4.1 Radiation regulations

There are two standards currently available to assess the effect of the radiation power

on health. One is called effective (or equivalent) isotropic radiated power (EIRP), and the

other is called specific absorption rate (SAR) in the electric field. They measure the safety

of radar from two sides.
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EIRP is an indicator in evaluating the power transmitted from the antenna side. It

calculates the effective radiation power in the maximum radiated signal direction [ 106 ]. The

direction of the maximum radiated pattern is from the direction of the main lobe of the

radar antenna array. The EIRP is determined by two factors, the radiated power from the

transmitter and the antenna gain of the radar. It follows the Eq. (  3.36 ) to calculate EIRP

in Watt.

EIRP = PT ∗ GT (3.36)

PT is the transmitter’s radiation power, and GT stands for the transmitter’s antenna

gain.

SAR is another indicator in assessing the radiation power received by human body. It

measures energy absorption rate of materials when they are exposed in a radio frequency

electromagnetic field radiated by radar [  107 ]. It is widely used in the consumer electronics in-

dustry as an indicator of radiation power effect on health. There is a mandatory requirement

of SAR from the FCC and International Commission on Non-Ionizing Radiation Protection

(ICNIRP) for protecting the human body’s health. SAR is calculated as in Eq. (  3.37 ).

SAR = δ|E|2

md

(3.37)

where SAR is in W/Kg, δ is the electrical conductivity of human tissue in S/m, and md

is the mass density of the human body. E stands for the electrical field root mean square

(RMS), it measuring the effective magnitude of the electrical field. The RMS value of the

electrical field is calculated by,

E =
√

GT PT Z0

4πd2 (3.38)

GT and PT are the antenna’s gain and radiation power, as in the previous equation. d

is the distance from the antenna to the object. Z0 is the free space impedance, which is a

product of magnetic constant and speed of light in free space, and it has a constant value of

120π in Ω.
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The upper limits, 55 dBm peak radiation power and 50 dBm/MHz average radiation

power, are for the radar from 76 GHz up to 81 GHz [  108 ], Nevertheless, it did not specify

the use scenarios for radar within this bandwidth. On the other hand, the upper limit of the

EIRP density mask is -51.3 dBm/MHz for 79 GHz radar [ 109 ]. Therefore, -51.3 dBm/MHz

is selected as the desired upper limit for this research.

FCC requires that the SAR in an uncontrolled environment is less than 1.6 W/kg for

spatial peak and 0.08 W/kg for the whole body in a six-minute time domain [  110 ]. ICNIRP

guidance requires that power density of the body surface for the general public should be less

than 10W/m2 [ 111 ]. In Europe, the International Electrotechnical Commission (IEC) sets an

average SAR limit of 2 W/kg over the 10 g of tissue, which absorbs most of the energy inside

the radar signal field. Noted that this rule is for RF signal with a central frequency under

6 GHz. As discussed in the previous part, the radar signal with a central frequency under

10 GHz and above 10 GHz affects the human body differently. It is known from the World

Health Organization (WHO) that, for radar with a central frequency above 10 GHz, power

density above 1000W/m2 will produce adverse health effects for human tissues. Therefore,

to ensure the overall safety for 24-hours occupant monitoring using a wideband radar with

the central frequency of 79 GHz, SAR should be less than 0.08 W/kg, or the power density

of body surface is less than 10W/m2.

3.4.2 Radiation compliance

To build a radar sensing simulation system, the parameters of the simulation system need

to be set similar to an actual system, which should comply with regulations. Some basic

parameters for the radar sensing system are listed in Table  3.5 .

As discussed in the previous section, most radiation energy absorption is stored in the

skin for radar with central frequency of 79GHz. RMS electrical field can be calculated

according to the value of Table  3.5 and Eq. ( 3.38 ), where the peak power of Tx has been

convert from dBm to W .

E =
√

9 × 0.00355 × 120π

4π × 32 = 0.326V/m (3.39)
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Table 3.5. Basic parameters for a simulation system
Parameter Value Unit

Center frequency (f) 7.90 × 1010 Hz
Bandwidth (B) 4.00 × 109 Hz

Tx number (NT x) 16
Rx number (NRx) 16

Tx gain (GT ) 9 dBi
Rx gain (Gf ) 9 dBi

Tx peak power (PT ) 5.5 dBm
Distance (d) 3 m

Chirp duration(Tc) 50 us
Frame time (Tf ) 50 ms

Therefore, the assessed result of SAR is as following according to Eq. (  3.37 )

S = 38.18 × 5.482

1000 = 0.013W/kg (3.40)

where, The electrical conductivity δ is set as 38.18 S/m for dry skin while the human

density is set as 1000kg/m3 [ 112 ].

According to the result, SAR is below the spatial peak requirement and satisfies the

requirement of whole body, which is 0.08 W/kg mentioned in the previous part. This means

that the design in this work meets the requirement of SAR to ensure the safety of the subject

inside the vehicle cabin.

If radiation level is evaluated by power density on the surface, it is estimated as,

S = EIRP

4π × d2 = 28.2
113.04 = 0.25mW/m2 (3.41)

It can be seen that the calculated power density value on the surface S is much lower

than the standard set by ICNIRP.
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For EIRP, it depends on both the transmitter’s radiation power and the frame time set

to calculate one frame. EIRP can be estimated by Eq. (  3.36 ) and data from Table  3.5 as

28.2 mW, and the average power over the frame needs to be calculated as in Eq. (  3.42 ).

Pavg = EIRP ∗ Tc

Tf

= 0.0028mW (3.42)

Finally, by dividing the average power over the bandwidth, the power density power of

the frequency band can be obtained as in Eq. (  3.43 )

EIRPdensity = Pavg

B
= −61.55dBm/mHz (3.43)

By comparing the density value in Eq. (  3.43 ) with the requirement for indoor sensing as

-51.3 dBm/MHz, the density is found to be lower than the requirement. It can be seen from

the previous calculation that the EIRP density is affected by the frame time. In this research,

the frame time should be shorter than a specific upper limit, according to the requirement

of vital sign signal detection. To detect occupants’ vital signs, the sampling rate needs to be

at least more than 8 Hz. Apparently, increasing the frame time for this case will impact the

sensing capability of the occupant’s micro-movement in-cabin. In this example, the frame

time is 50 ms, which is 20Hz, much higher than the minimum sampling frequency.
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4. VEHICLE IN-CABIN RADAR SYSTEM SIMULATION

4.1 Simulation platform

The simulation system is built on the MATLAB environment. In this chapter, the radar

simulation system design will be introduced and the flow and methods of radar signal process-

ing will be discussed. The system will be used for vehicle in-cabin human subject detection

and classification.

4.1.1 System design

Fig.  4.1 shows the designed simulation system which is superposed on a simplified hard-

ware system block diagram for illustration. It starts with an electromagnetic waveform

generator. A baseband signal is generated according to a selected signal configuration and

sent to the radiator with predefined gains, transmitting power, and carrier frequency. The

signal is radiated by one transmitting antenna after another through all the transmitting

antennas with a defined sequence based on the time-division modulation (TDM) based ap-

proach. Tx-channel simulates the signal propagation in the free space and can be further

extended to imitate multi-path signals. The human model used for the subject under test

(SUT) module is designed to mimic the reflected signal off human subjects according to the

RCS pattern of each body part and the incident angle. After reflected from the target, the

signals will travel the same path back to the radar antenna array. Similar to Tx-channel, the

Rx-channel is established for propagation simulation of reflecting signals in the free space.

Figure 4.1. The simulation system
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The reflecting signals are collected through the receiving antennas and then amplified with

predefined gains. I and Q signals are generated by mixing and receiving signals for fur-

ther signal processing and image reconstruction. For simplicity, the noise factors are not

considered in this system.

During the transmission of signals, the power level of each signal changes when the signal

travels through each module of the designed system. Based on the Two-Way equation and

the example discussed in [  81 ], an example is shown in Fig.  4.2 to represent the variation of

power level. The radiation power off the radar antenna to the free space is assumed to be

12 dBm. The Tx waveform is generated from the hardware and typically it has a relatively

low power level which is around 5 dBm in our example. After passing through a two-stage

amplification, all the generated signals will see their power increase to 12 dBm when reaching

the radiator. Then, when the signals are transmitted through the free space, their power

level lowers when they reach the reflectable subjects, as most of the power is lost during

transmission. Once signals are reflected by subjects and their power is increased by the RCS

gain of subjects, the power will be further reduced when they travel back through the free

space. When the receiver and collector receive the backscattered signals, the powers of the

received signals will be increased through another two-stage amplifier before using them for

image reconstruction.

4.1.2 Parameter selection for waveform

Nowadays, only a few 3D imaging radar technologies are currently available in the mar-

ket. To make the mathematical-model-based simulation system compatible with the actual

radar system, several radars are assessed and reviewed and a set of typical parameters of

automotive-related FMCW radars from Texas Instruments are selected. The parameters are

listed in Table  4.1 .

Due to the limitations of the design, material, manufacturing processing, and so forth,

it is challenging for an actual radar system to perform as well as a theoretical designed
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Figure 4.2. Signal power level change by propagation stage

Table 4.1. Parameters for chirp design
Parameter Value Unit

Center frequency (f) 79 GHz
Bandwidth (Beff ) 3.74 GHz

Max distance (dmax) 3 m
Chirp duration(Tc) 33 µs
Frame time (Tf ) 30 ms
Sweep slope (S) 112 MHz/µs

simulation system. One of the examples is the limitation of sweep slope S. Theoretically,

chirp duration Tc depends on the maximum distance dmax and speed of light c by

Tc = 2dmax

c
(4.1)

S is an effective bandwidth Beff divieded by Tc as

S = Beff

Tc

(4.2)
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Then, Beff is calculated by

Beff = c

2dmax

(4.3)

If the maximum distance from Table  4.1 is selected, the chirp duration Tc becomes 33.3

ns, then the sweeping slope will be 112 GHz/µs, and the maximum beat frequency fbmax is

increased accordingly at a mixer as

fbmax = 2Sdmax

c
(4.4)

The current radar SOC technology could hardly help to reach this sweeping slope, which

has to be reduced to an achievable level. A practical approach is to extend the chirp duration

of Tc. Therefore, Tc is extended it by 1000 times for this simulation, as shown in Fig.  4.3 and

extend the total chirp time to 33.3 µs. The frequency span in baseband will be upconverted

by central frequency 79 GHz, to increase the radiated wideband chirping signal from 77 GHz

to 81 GHz.
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Figure 4.3. The spectrum of designed FMCW chirp

4.1.3 Antenna array design

A typical design of a planer antenna array is to place a transmitting array and a receiving

array on a different axis. The shape of the array design can vary, e.g., L-shape, T-shape, or

others. To demonstrate the realization process of the MIMO antenna array in the simulation

74



system, a 5 × 5 T-shape design is selected as an example shown in Fig.  4.4 a. The red arrows

indicate the normal direction of electromagnetic waves. The transmitting antenna array is

located along the vertical axis while the receiving antenna array situates the horizontal axis.

The virtual antenna array, i.e., a completed planar array, is formed, as shown in Fig.  4.4 b.

Therefore, a 5 × 5 virtual antenna array is generated and the location of virtual antennas is

shown in blue circles.

(a) (b)

Figure 4.4. T-shape planar antenna array (a) actual antenna array with
normal direction and (b) virtual planar antenna array

4.1.4 Planer antenna array configuration

A TDM-based MIMO configuration is to create a planer array from the two actual an-

tenna arrays, as shown in Fig.  4.5 . The horizontal physical antenna array shown in blue

dots are assumed as the transmitting antennas. The vertical physical antenna array shown

in orange dots are assumed as receiving antennas. The transmitting antennas radiate signals

from left to right in sequence; the time between each radiation is equivalent and predefined.

Between each radiation, the receiving antennas receive the backscattered signals at the same

time. With this modulation, the virtual antennas are established as the purple dots in Fig.

 4.5 . These antennas do not exist physically but are generated by the TDM-MIMO modula-

tion. The planer antenna array is created using geometric equivalent by combining all the

75



actual and virtual antennas. The equivalent planar antenna array is the dots in the green

dash-line box in Fig.  4.5 .

Figure 4.5. Demonstration of virtual planar antenna array

4.1.5 Steering matrix

The origin of the planer antenna array is defined as the center of the equivalent antenna

array. The geometric position of each antenna pair in the antenna array is defined as the hor-

izontal and vertical distance between the origin and each equivalent antenna. The receiving

signal of each antenna pair in the antenna array can be expressed as Eq. (  4.5 ) below,

Sa(i) = ej 2π
λ

τa(φ,θ,i) (4.5)

where τa(φ, θ, i) is time delay function of radar antenna array with respect to its geometric

position pos, a function of distance between antenna pairs i, and incident direction, a function

of incident angle with both elevation angle φ and azimuth angle θ.

The antenna pair positions are the same as the planer antenna array in the dash-line box

of Fig.  4.5 . The distance between adjacent antenna pairs is a half wavelength, d = λ
2 , as

introduced previously, and the origin is set as the color of green. The distance matrix can
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be generated accordingly, as shown in Fig.  4.6 . Each element in the matrix should follow

Eq. (  4.6 )

pos(i) = (md, nd) (4.6)

where m, n are the antenna’s geometric distance to the origin in horizontal and vertical axes,

respectively.

d

d

Figure 4.6. Distance between each antenna pair

The estimation of incident direction dir(φ, θ) is based on Eq. (  4.9 ) should follow

dirx(φ, θ) = cosφcosθ

diry(φ, θ) = cosφsinθ

dirz(φ, θ) = sinφ (4.7)

4.2 Signal and image processing

4.2.1 TDM-based approach and algorithm

The TDM approach for a MIMO-based radar simulation system can be realized through

a predefined one-hot weight vector which controls the sequence of signal transmission. The

pseudo-code of generating the vector is shown in Algorithm  1 . Each chirp loop, i.e., com-

pleting the transmitting and receiving process once, collects all the backscattering signals

through the receiving antennas. The signals are reflected from the targets and environment
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radiated by all the transmitting antennas. The receiving signals are processed and matched

to the corresponding pair of transmitting-receiving virtual planar antennas. They are then

fed into the matrix’s relevant cell to match the virtual planar antenna array. Assuming

the number of range bin were set to 100, then the radar cube’s dimensions would become

100 × 5 × 5. The data cube could also be rearranged to a 100 × 25 × 1 matrix. The three

dimensions of the matrix are the number of range bins, the number of virtual channels, and

the number of chirp loops.

Algorithm 1 One-hot weight vector definition
1: function OneHotWeight(Nchirploop, Ntx)
2: w0 = zeros(Ntx,1)
3: for 1 to Nchirploop do
4: k = mod(Nchirploop + Ntx, Ntx)
5: if k! = 0 then
6: w0(k,1) = 1
7: else
8: w0(end,1) = 1
9: end if

10: end for
11: return w0
12: end function

4.2.2 Vital sign estimation

For a radar system equipped with nearly 4 GHz bandwidth, the macro-movement, i.e.,

head, upper-torso, arm, and leg movements, can be detected by signals along with the

radiation direction. However, the radar range resolution may not be fine enough to catch

the amplitude changes of micro-movement signals, i.e., breath and heart movements. In this

system, a vital sign detection method is included to find the vital sign signal of a human

subject. The approach used for the method is shown in Fig.  4.7 .

This approach is to measure the phase change of signals that can be used to sense micro-

movement. Once the location of the SUT is found, the raw complex data, including phase

and magnitude, is recorded. Then, the phase is extracted from signals along the slow time.

Nonetheless, the recorded change of phase includes inconsistency at the connection of two
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Figure 4.7. Vital sign detection method

consecutive phase samples around π. To correct the inconsistency, an unwrapped algorithm

is needed for vital sign signal reconstruction, as shown in the third block in Fig.  4.7 . Fig.

 4.8a shows the signal before the unwrap algorithm applied. After unwrapping the phase

signal, the reconstructed vital sign signals can be obtained in Fig.  4.8b .
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Figure 4.8. Comparison of the signal (a) before and (b) after the unwrapped
algorithm applied

4.2.3 AoA estimation and heatmap generation

To obtain high-resolution images of the SUT, AoA estimation method is applied to the

received data to find the power reflection level of subjects within the range of interest. The

resolution of the image depends on the number of equivalent antennas in both horizontal

and vertical axes. With more equivalent antennas in both axes, targets located in the close

angular distance can be distinguished. The point spread function (PSF) for a single target

imaging is typically in the form of 2D sinc function as in Fig.  4.9 . The heatmap image of
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a target in azimuth and elevation includes the power reflection from the target of interest

and noise with low power level. For a subject such as human body, the reflection pattern in

the generated heatmap is complicated. The power reflection from each body part of human

body is mixed with noises, making some parts of the human body not as explicit as others.

Figure 4.9. Point spread function

Fig.  4.10 shows a heatmap measurement of a human facing a radar antenna array. The

center of radar is facing the belly. The human is lifting both of the arms horizontally. The

radar array scan both azimuth and elevation domain from −90 to 90 degree using the AoA

approach mentioned in the previous chapter. The brighter the color is in the heatmap, the

stronger the power level will be. As can be seen from the heatmap, only a few points are

explicit in the heatmap, making the detection of other body parts difficult.

In this simulation system, the Bartlett beamforming is chosen when the angular reso-

lution is adequate. Although it provides a worse resolution than other advanced methods,

it consumes less computational power and saves processing time. If higher resolution is re-

quired and the number of targets is known, MUSIC can be a better fit, such as for posture

estimation of human subjects.
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Figure 4.10. A heatmap measurement of a standing human in real world

4.2.4 CFAR thresholds

To find the signal of interest and eliminate noise and interference signals, an adaptive

threshold method needs to be applied to the generated heatmap from AoA. In this work,

2D cell-averaging constant false alarm detection (CA-CFAR) is selected to find the signal

of interest from noise. In principle, CFAR uses cells around the cell containing the signal

under test to calculate the noise level and then check if the signal under test has a higher

value than the calculated noise level. If its value is higher than the noise level, the signal in

the cell will be selected as a signal of interest. Fig.  4.11 shows how this method works. The

grid in Fig.  4.11 is assumed to be the heatmap generated from AoA. The signal under test

is in green color. First, the guard cells are defined and will not be included in the noise level

calculation. In Fig.  4.11 , the guard cells with size one are shown in blue. For the calculation

of noise level, a window is defined. The window used for noise calculation in Fig.  4.11 is

shown in purple and its size is defined as 2. Assume the magnitude of the signal in the cell
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is Ps and the total number of cell in the window for noise estimation is Nw, the noise level

NL can be estimated by Eq. (  4.8 )

NL = 1
Nw

Nw∑
s=1

Ps (4.8)

Figure 4.11. 2D CA-CFAR threshold method

4.2.5 Coordinate transformation

As mentioned previously, the radar signal is measured in a Polar coordinate as in Fig.

 3.10 . It measures reflections with respect to distance, azimuth angle and elevation, which is

different from the measurement in the Cartesian coordinate.

The concept using Cartesian-coordinate-based measure of range resolution and cross-

range resolution in 3D space is shown in Fig.  4.12 . The 3D space is divided into Voxels

(∆x,∆y,∆z) with each dimension standing for range, horizontal range, and vertical range.

The power level of each Voxel stands for the magnitude of reflections of the incident radar

signal. Each Voxel is represented in a Cartesian coordinate.
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Figure 4.12. Range and cross-range resolution in Cartesian coordinate

All the detected reflection signals from the last step need to be mapped to the Cartesian

coordinate for post-processing with Eq. (  4.9 ). R represents the distance between the radar

and pixel of interest; φ and θ are the elevation angle and azimuth angle, respectively.



x = R · cosφcosθ

y = R · cosφsinθ

z = R · sinφ

(4.9)

4.2.6 Point cloud approach

The radar signals through the several processing steps discussed above can be placed into

the corresponding Voxel of the 3-D point cloud space. The magnitude of each Voxel shows

the power reflection level of the subject under test in different ranges. However, because the

point cloud is estimated along the range axis in the polar coordinate, the generated point

cloud could contain few ghost signals with a low power level. Those signals can be eliminated
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by applying a power-based threshold Tpower as in Eq. ( 4.10 ). If the magnitude of Voxel is

above the threshold, the point cloud will be kept; otherwise, the magnitude of the Voxel will

be set to zero.


y if y > Tpower

0 Otherwise
(4.10)

By applying the signal and image processing method mentioned above, the point cloud of

the standing human mentioned previously is shown in Fig.  4.13 . All body parts are visible

in 3D space with each detected body part in the form of a filled circle. The magnitude of

each Voxel shows the reflective power level of the corresponding body part of a human. It is

obvious that belly has the strongest power reflection compared to other parts.

Figure 4.13. Point cloud plot of a standing human

4.2.7 Processing flow

A 3-D imaging radar processing flow is developed as illustrated in Fig.  4.14 . First,

the raw complex signals are received and stored into a data cube, following analog-to-digital
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(ADC) samples, chirps, and antennas, by defined orders. The ADC samples which reflect the

time delay of signals, are converted to a range profile. If the phase change of the interested

range profiles, or called range bin, is recorded, the vital signs from the test subjects can be

obtained accordingly. The next is to calculate the Doppler profile by applying FFT along the

chirps axis. It tracks the velocity changes of the test subjects. This research focuses on the

detection and classification of human subjects in-cabin. Thus, we are only interested in the

data from one bin, the doppler-zero bin. The green slice shown in the data cube represents

the signals with zero doppler velocity. Then, the beamforming approach is applied on the

data of doppler-zero bin, which is to apply one range bin (the orange slice) after another

along with the range profile with CFAR threshold and get the heatmaps accordingly. Lastly,

these heatmaps are stacked together before being transformed into Cartesian space; thus, a

3D image of the subject in (x, y, z) space is obtained. The quality of 3D imaging depends

on the number of antennas in both the azimuth and elevation axes.

Figure 4.14. Imaging and vital sign detection pipeline
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For radar-based vehicle cabin monitoring system, there are multi-path due to the small

space inside the vehicle cabin and side lobe related to the radar design. The side lobe can

be suppressed by digital beamforming. Fig.  4.15 shows the direct path and multi-path

reflections inside the vehicle cabin. The blue line shows the direct reflection of the radiated

radar signal; the red and green line is the multi-path of signals that are not directly reflected

back to the antennas. Due to the randomness of multi-path signals, they could be mitigated

by accumulating the detected results across the slow time and filtering out themselves with

low temporal frequency in a certain Voxel.

For the reflection signals from other noises or static subjects, such as seats or other

interior structure, inside cabin, they can be estimated separately to reduce their effects.

These signals can be treated as clutter during the second data cube calculation for range

estimation and can be removed.

Figure 4.15. Multi-path effect inside vehicle cabin

4.3 System validation with human subject

4.3.1 Design of the reflection-based human subject model

As discussed previously, the generated point cloud of human subjects is comprised of a

bunch of filled circles. The size and magnitude of those circles are affected by the posture and
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orientation of the human body towards radar. To design a simulation human subject model

for radar sensing system applications, a procedure is designed in Fig.  4.16 . Firstly, the point

cloud of the actual test is generated using the aforementioned signal and image processing

methods as reference. Then, a human subject model is proposed based on observation from

the actual test to mimic the power reflection of the actual test. The model is then used in

the radar simulation system to generate a point cloud of the simulation human subject using

the same parameters as those of the actual test. The two results are then compared to find

the difference. The procedure will stop until the simulated point cloud has a similar pattern

to the actual test. The same procedure is repeated under other test scenarios to update

human subject model design and find the simulation model that can be used for different

postures and orientations.

Actual
test

Human subject
model

Simulation
model

Figure 4.16. Procedure to find the generalized reflection-based model for human subject

4.3.2 Experiments

Four tests are designed in an open field to mimic the power reflection of human body

inside vehicle. The radar is placed above a person’s head and is tilted to an angle of 15

degrees with respect to the vertical line on the ground. The various of the four tests are 1)

standing human subject with both arms close to torso 2) standing human subject with both

arms lifting horizontally 3) standing human subject with both arms forming a 45-degree

angle with torso 4) standing human subject lifting both arms to the front of body and has

the side of torso facing radar. The results are shown in Fig.  4.17 . The first column in Fig.

 4.17 is the ground truth image of a human subject and the radar mounting position. The

second column shows the point cloud result of the actual test. The third column represents
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the designed human subject model for the corresponding test. The fourth column in the

figure is the power reflection level of the human subject in simulation.

Figure 4.17. Tests of real human subject and corresponding design of
reflection-based human subject model in simulation

It can be seen that the image pattern of these four test scenarios in the fourth column

are similar to the actual test in the second column. Nevertheless, the magnitudes each body

part in these two plots are not similar to each other. The discrepancy occurs because the

actual test under the designed test scenarios uses the off-the-shelf (OTS) radar antenna

array with a different waveform. There is no FMCW-based antenna array with a sufficient

number of antennas in the market to meet the requirement of human subject imaging in

this research; only a SFCW-based planar antenna array radar with similar central frequency

and MIMO configuration is available. Both the OTS radar antenna array system and the

simulation radar array system can provide similar image patterns for the same test subject,
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because the two systems have similar array layout. Therefore, only the array configuration

and some of the parameters of the simulation system are adjusted to comply with the known

configurations of the off-the-self radar antenna array.

Fig.  4.18 shows the results of another four tests with offset. These four tests using the

corresponding human subject model from Fig.  4.17 to check the robustness of the designed

model. Both the point locations and RCS patterns are either slightly modified or unchanged

according to the counterparts in the first four tests; a 0.3 meters displacement is apply to

each of the four cases for comparison with the reflection patterns in the first four tests. It can

be seen that the designed model provides a similar reflection pattern in the second column

even with a distance offset; the reflection patterns are also close to the patterns in the first

four tests. This shows that this type of human body model and corresponding simulation

system can provide adequate reflection information for occupancy monitoring occupant in

different locations.

4.3.3 Reflection-based human subject model

Based on the designed model for the eight tests mentioned above, a human subject

simulation model is proposed below in Fig.  4.19 . The model considers the symmetry of

human body by including more points for legs and feet. The head is designed with points

to form the shape of an ellipse. For each body part, two closely located points are used to

generate an explicit reflection pattern of the corresponding body parts. Two more points are

added horizontally at the torso area to represent its width. Based on the results from the

eight designed test scenarios, this model is adequate to represent the reflection of a human

test subject for the selected mmWave radar and will be used in the later chapter to generate

reflections radar signals of human body with various sizes, postures, and orientations.
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Figure 4.18. Tests of real human subject and corresponding design of
reflection-based human subject model in simulation with offset

90



Figure 4.19. Reflection-based human subject simulation model
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5. HUMAN SUBJECT CLASSIFICATION

5.1 Overview of human subject classification

As discussed in previous chapters, the radar-based image is a sparse set of point clouds.

The power level of each point indicates the reflection of backscattered signals from a test

subject. The characteristic of the radar image is totally different comparing with the image

from the camera taken from the same test subject. Various radar signal processing methods

were proposed to identify or categorize the test subject. A 3D zone-based method is proposed

for occupant classification [  113 ]. However, this method is not flexible because occupants

could move between different zones in 3D space. A 3D convolutional-neural-network (CNN)-

based segmentation method is another approach for the classification, but it requires large

computation resources and is not practicable for real-time automotive applications. In this

chapter, a 2D point-cloud-projection-based method is proposed. It reduces data dimension

comparing with the 3D approach. A deep-learning-based method is used to transfer the

point cloud reflection pattern to vision-based image segmentation. The vision-based image

data are required as ground truth for the training.

The overview of the approach is shown in Fig.  5.1 . The top branch uses vision-based

image from synthetic dataset as supervision in the deep-learning model. The branch on

the bottom uses data from radar-based images as input to the deep-learning model. The

radar dataset is generated from the defined human subject simulation model to obtain a

3D point cloud and then project the point cloud in 3D space to a 2D image by computer-

vision-based method. The input data to the deep-learning model are projected images in

2D. The output of the deep-learning model is the segmentation of the input images. The

output segmentation masks are compared with the ground truth data to compute the loss.

The loss is then feedback to the deep-learning model to update the weights and biases.
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Figure 5.1. Overview of the deep-learning-based method for human subject classification

5.2 Imaging dataset preparation for classification

5.2.1 Vision-based in-cabin synthetic imaging dataset

The data set used in this research is a synthetic data set called Synthetic Vehicle Interior

Rear Seat Occupancy (SVIRO) [  114 ]. This data set provides different types of occupants,

including infants, children, and adults. These occupants have different postures between

frames and they are designed for indifferent vehicle types, including Ford Escape, Hyundai

Tucson, and Tesla Model 3. The authors in [  114 ] verified the synthetic data with data

collected from a vehicle in the real world, as in Fig.  5.2 . They also test some machine

learning and deep learning algorithm which verifies that this data set can reflect occupant

posture and occupancy in real world. This data set provides RGB and greyscale images,

depth images, segmentation masks, Keypoints for pose estimation, and a bounding box.

The camera data needs to be included to solve the radar point cloud’s ambiguity caused

by the size of the antenna array so that occupants inside cabin can be classified precisely.

The segmentation ground truth data from the SVIRO dataset have seven categories. The

ground truth used in this chapter only has three categories, child, adult, and others. The

camera ground truth of Fig.  5.4a and Fig.  5.4b can be shown in Fig.  5.3 . Different categories
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Figure 5.2. Comparison of real world data with SVIRO [ 114 ]

are displayed in different colors. Specifically, the adult in Fig.  5.3 is depicted as white, the

child in this figure is assigned with grey color, and others are shown as black.

Figure 5.3. Generated ground truth of camera data

5.2.2 Camera-radar alignment

Although the radar antenna array and camera have been allied to the same location,

their poses are different. It requires rotating and projecting the radar image to a 2D camera

map to align with the camera ground truth data. Intrinsic and extrinsic matrices are created

for the alignment. The extrinsic matrix maps the point cloud data from radar to camera,

and the intrinsic matrix aligns the rotated radar signal with the image plane.
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In SVIRO, the intrinsic parameters are shown in Table  5.1 . It is noted that the focal

length to the pixel is for both the x-axis and y-axis of images. These parameters in Table  5.1 

can help map the points in the world coordinate to the camera coordinate when no rotation

or translation exists.

Table 5.1. Intrinsic parameters
Parameter Value
focal length 3.4 mm
sensor width 8.5 mm

fnumber 2.5
skew coefficient 0

focal length (pixel) 514.4208
principle point (640, 480)

The intrinsic matrix can be represented as in Eq. (  5.1 ).

K =


f 0 px

0 f py

0 0 1

 (5.1)

where f is the focal length, px and py are focal length with respect to pixel.

The extrinsic matrix represents the rotation and translation from the world coordinate to

the camera coordinate. The extrinsic matrix Z can be described in Eq. (  5.2 ). R represents

the rotation matrix by multiplying rotation matrices along (x, y, z) axes in this equation. C

is the translation matrix between two coordinate systems, which, in this case, is zero.

Z = R[I| − C] =


r1 r2 r3

r4 r5 r6

r7 r8 r9

 (5.2)
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Using these parameters, the intrinsic matrix and extrinsic matrix can be built up by Eq.

( 5.3 ). By mapping the radar point cloud data to the camera coordinate system, the 3D point

cloud could be aligned with the image plane.


xp

yp

zp

 =


f 0 px

0 f py

0 0 1


︸ ︷︷ ︸

K


r1 r2 r3

r4 r5 r6

r7 r8 r9


︸ ︷︷ ︸

Z


x

y

z

 (5.3)

5.2.3 Radar-based in-cabin imaging dataset generation

As discussed in the previous Chapter, the human subject simulation model consists of 52

key points for the classification. The 18 points below are selected from those 52 points that

a similar Keypoints model could be obtained as described in Fig.  6.1 . The location of heart

is neglected since only the reflection image of occupant is considered. The selected points

are shown in Table  5.2 .

The ground truth dataset contains the 3D coordination information for the 18 Keypoint

model. Based on these 3D Keypoints, additional points are inserted to generate a reflection-

based simulation model discussed previously. The model is used to generate radar image

dataset for the training and testing.

In this model, each point’s RCS pattern is defined as a sphere of the same size, so each

point of the same body’s reflection pattern is the same in terms of incident angle. One way

to distinguish the power reflection patterns of children and adults is that the radius of the

point’s RCS pattern of children is usually designed smaller than that of the adult.

The point cloud generation follows the imaging method discussed in the previous section.

The point cloud data consists of two types of information, the coordinate location and the

power reflection level. The power reflection pattern of occupants is different from each other

in terms of posture, size, and position to radar sensor. Since the reflection-based model

has more points, a more dense point cloud will be generated from the radar simulation

system. To reduce the total number of points, a method is proposed to reduce the point

cloud in 3D space. This method selects the point with maximum power reflection in each

96



Table 5.2. Selected Keypoints for human model
Name Keypoint
head ”head”
neck ”neck_01”
chest ”spine_03”
pelvis ”pelvis”

left shoulder ”upperarm_l”
right shoulder ”upperarm_r”

left elbow ”lowerarm_l”
right elbow ”lowerarm_r”
left hand ”hand_l”

right hand ”hand_r”
left hip ”thigh_l”

right hip ”thigh_r”
left knee ”calf_l”

right knee ”calf_r”
left ankle ”foot_l”

right ankle ”foot_r”
left toe ”ball_l”

right toe ”ball_r”

azimuth-elevation angular pixel along the range axis. The equation can be described as Eq.

( 5.4 ).

P (θ, φ, r) = maxarg
r

P (θ, φ, R) (5.4)

where θ is the azimuth angle, φ is the elevation angle, and R is the range.

An example of RCS pattern and generated point cloud design can be shown in Fig.  5.4a 

and Fig.  5.4b respectively. In both plots, the red box is the radar sensor’s location. It

is mounted overhead on the roof of a vehicle. In this scenario, a child sits on the left and

an adult sits on the right. The size of the child’s RCS pattern is smaller than that of the

adult. Fig.  5.4b , the radar image, is generated by the model with RCS feature added as

shown in Fig.  5.4a . The lighter portion in this plot represents the body part that reflects

more incident radar signal. The 30 × 30 MIMO antenna array is selected to strike a balance

between optimizing computational time and achieving a high-qualified point cloud. Some
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(a) (b)

Figure 5.4. (a) RCS pattern of occupant model and (b) point cloud of occupants

body portion of the simulation model may be still unclear or missing due to the angular

resolution of the radar antenna array.

5.2.4 Point cloud 2-D projection

The last step is to project the 3D point cloud data to the plane of the 2D image for both

reflected power pattern of the test subjects. The overlay of the point cloud image with the

segmentation ground truth is shown in Fig.  5.5 .

Figure 5.5. Point cloud projection overlayed with segmentation ground truth
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5.3 Deep learning framework

5.3.1 Network structure

A typical deep learning model for image segmentation or image denoise, Encoder-Decoder

based network, is used for prediction of vision-based segmentation from radar image data

for human test subject classification.
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Figure 5.6. Revised Unet for occupant classification [ 75 ]

The model, a revised Unet network, is comprised of several parts. The first part is an

encoder to extract the features of input image and compress it into a 1×1 feature map. The

input image is first resized to a 256 × 256 image to fit the structure of this network. Each

block consists of a convolutional layer and leaky Relu layer. The first three blocks reduce

the image size by half and increase the feature map’s size, while the last four blocks keep

the size of the feature map and reduce the size of the image to extract more features from

the image. After seven blocks of encoding, a 1 × 1 feature map is obtained as the bottleneck

of this network.

After this network’s bottleneck, corresponding seven decoder blocks are used to translate

the point cloud projection image into image masks. Each decoder block consists of a trans-

pose convolutional layer and a Relu layer for upsampling the image. Besides the transpose

convolutional layer and the Relu layer, a skip connection from the encoder block is also

used. The skip connection is concatenated with its corresponding decode block to add more

features.
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The last layer is a 256×256 image with three classes as previously defined for the occupant

classification. To output each pixel category in the image, a softmax layer is used to obtain

the mask and classification of occupants.

5.3.2 Loss function

The loss function used in this chapter is Lovász-Softmax loss [  115 ] for multi-class classi-

fication with each class c ∈ C. It is an enhanced softmax starting with Eq. (  5.5 ), where i is

the i-th pixel in the image.

f(c) = eFi(c)∑
c′∈C eFi(c′) (5.5)

The vector of pixel errors mi(c) is proposed in [  115 ] as Eq. (  5.6 ) with ground truth y∗.

mi(c) =


1 − fi(c) c = y∗

i

fi(c) otherwise

(5.6)

The loss is shown as Eq. (  5.7 )

loss(f(c)) = ∆Jc(m(c)) (5.7)

where ∆Jc is defined as the set of mispredictions Mc in Eq. (  5.8 ) and ∆Jc is the Lovász

extension [ 115 ] of the misprediction set.

∆Jc : Mc ∈ {0, 1}p 7→ |Mc|
|{y∗ = c} ⋃

Mc|
(5.8)

5.3.3 Training

In SVIRO dataset, each vehicle has only 2000 images in the training set. Each vehicle

contains eight adults and six children serve as test subjects. Posture of each human subject

is randomly generated between images according to [ 114 ]. In the training set, some images

only have non-human subjects, so the total number of images containing human subject is
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fewer than 2000. Therefore, the number of the image dataset is doubled by flipping images

along the horizontal axis. In order to obtain adequate amount of the images for the training,

the dataset from two different vehicle as shown in Fig.  5.7a and Fig.  5.7b are used. One is

Ford escape and the other is Tesla model 3.

(a) (b)

Figure 5.7. Layout of (a) Ford Escape and (b) Tesla Model 3

For the training set, 80% of the data is used for training while the rest of data is used

as a validation set. Each mini-batch used for training has images in it. The total number of

epoch for the training is 50.

The distribution of occupants inside Ford Escape is summarized in Fig.  5.8a and Fig.

 5.8b . Fig.  5.8a shows the number of occupants in each category. The dataset is a relatively

balanced, i.e. children, adults and others, is more or less the same - around 1,000. If we delve

into the portion of the data set where there is at least one occupant inside, as shown in Fig.

 5.8b , the figure shows that the distribution of different occupants is imbalanced. Therefore,

data augmentation is applied in this research to balance the number of each category. Every

image in the data set is flipped horizontally and concatenated to the original data set to

keep the number of children and adults of different seats at the same level. Distribution of

occupant inside Tesla Model 3 is slightly different from that of Ford Escape. As shown in

Fig.  5.8d , the number of occupants sitting in the middle seat is fewer than the number of

occupants in the left and right seats, as the middle seat is smaller in size.
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(a) (b)

(c) (d)

Figure 5.8. Statistics of occupant inside Ford Escape by (a) occupant cate-
gory and (b) seat position and occupant inside Tesla Model 3 by (c) occupant
category and (d) seat position

In this study, RMSProp is used as the optimizer, the learning rate is set at 0.0001. The

batch size used for the training is 2, and the threshold for classification is 0.5. The weights

and bias of this network are initialized every step by He initialization [ 116 ].

5.3.4 Testing

The image dataset from another vehicle, Hyundai Tucson, is selected for testing. Tucson’s

layout is as Fig.  5.9 . The data is a randomly picked from the dataset and its statistics are

shown in Fig.  5.10a and Fig.  5.10b .
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Figure 5.9. Layout of Hyundai Tucson

Distributions of occupant inside Hyundai Tucson are shown in Fig.  5.10a and Fig.  5.10b .

The total number of adults and children are balanced, and their number is at a similar level.

Based on the distribution of occupant to seat position in Fig.  5.10b , the number of occupants

in the middle seat is slightly smaller than the number in the left and right seats.

(a) (b)

Figure 5.10. Statistics of occupants inside Hyundai Tuscon by (a) occupant
category and (b) seat position
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5.4 Results and analysis

5.4.1 Evaluation metrics

The evaluation metrics for the study are mean intersection over union (mIoU) and cross-

entropy loss. The first is to assess accuracy of masks and category for each occupant. The

second is to measure the loss change of the algorithm. The mIoU is defined as Eq. (  5.9 ). M

is the number of classes. TP represents the true positive. FP is the false positive. FN is the

false negative.

mIoU = 1
M

M∑
c=1

TP

TP + FP + FN
(5.9)

The multi-class cross entropy loss is defined as Eq. (  5.10 ) where yc is binary indicator,

pc is the predicted probability of class c.

crossentropy = −
M∑

c=1
yclog(pc) (5.10)

5.4.2 Accuracy

The change of mIoU and cross-entropy loss of this training along epochs are shown in Fig.

 5.11a and Fig.  5.11b . The red line indicates the change of mIoU and Loss in the training

set, and the green line stands for a change of these two metrics in the validation set.

(a) (b)

Figure 5.11. (a) mIoU and (b) cross entropy loss of training
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The mIoU accuracy of the training set calculates the IoU of both the child and adult.

As from Fig.  5.11a , the final mIoU at epoch 50 is around 89.9%, and the mIoU at epoch 50

for the validation data set is 88.9%. In Fig.  5.11b , both the training and validation loss is

reduced rapidly to 0.586 and 0.589, respectively, and holds at a fixed value. The gap between

the training and validation lines is acceptable in both figures, and the validation plot is kept

flat over epochs. Fig.  5.12 shows an example of the testing result where both child and adult

are detected and classified as purple and cyan color accordingly.

Figure 5.12. Output mask of data from the training dataset

The additional testing results are shown in Fig.  5.13 . The first column shows the original

camera image. The second column shows the proposed 3D reflection-based model based on

ground truth. The third column is the radar RCS pattern of the reflection-based model.

The fourth column is the radar reflection data using the proposed simulation model. The

last column is the output mask of classification from the network.

The mIoU result of the testing dataset is 85.7%. This is because both the occupant’s

posture and the relationship position between the camera/radar posture and occupant have

changed. When the model is applied to the new dataset, the prediction accuracy is decreased.

This model with the same hyper-parameters designed for the radar-based segmentation

also used to assess the accuracy of camera-based semantic segmentation. The accuracy of

training is around 97.6%, and the validation accuracy is approximately 97.1%. Both the
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Figure 5.13. Pre-processed data and results from the testing data set

training and validation accuracy of radar-based segmentation are about 8% lower than the

camera-based method. However, the overall accuracy is still acceptable and at the same

level with the camera-based method. The testing accuracy of the radar-based method, on

the other hand, outperforms the camera-based method. This is because the camera-based

method needs to consider the texture of occupants, such as the color of clothes and hair,

while the radar-based method only considers the power level of the detected point cloud.

Therefore, the radar-based method is adaptable.
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Table 5.3. Accuracy comparison between radar and camera based occupant classification
Radar based Camera based

Training 89.9% 97.6%
Validation 88.9% 97.1%

Testing 85.7% 72.8%

5.4.3 Failure case and discussion

As discussed previously, there are cases where the model does not work as predicted.

The reason are divided into two categories. The first is the extreme posture of human body.

As described in the previous section, the camera has a limited field of view for in-cabin

sensing; if the occupant is leaning forward to the front, the camera often can’t capture the

human’s whole body. If this happened, the Keypoint model and 3D reconstruction would be

inaccurate. Fig.  5.14a shows an example of inaccurate detection due to the extreme posture

of occupants. In this case, the body part belonging to the adult is either out of the image or

occluded by other parts of the body. As in the image, the head is out of the image, and the

arm covers the torso area. The model can not detect the pattern of this adult. Thus, both

the classes of adult and child mixed in the image. It is difficult for algorithm to distinguish

occupant types in this region.

(a) (b)

Figure 5.14. (a) extreme posture and (b) lack of radar point cloud points
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The second is due to a lack of radar point cloud data. As known from previous chapters,

the radar imaging system highly depends on the power reflection level related to the RCS

pattern and range. For the case shown in Fig.  5.14b , it is possible that the power reflection

level of child is too low to be detected. Although the class is correct for this child, it is

difficult for the algorithm to understand the posture according to the shape of the mask.

Some potential solutions could be used to solve these aforementioned problems. A mul-

tiview ground truth camera system might be used to obtain the complete 3D model of

occupant. The radar system will get a better estimation of the power reflected from the

occupant. To solve the problem of insufficient point cloud data, the power reflections of

radar signals should be accumulated across multiple frames to better image the occupant

and increase detection accuracy.
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6. HUMAN SUBJECT POSTURE DETECTION

6.1 Introduction to posture detection

Previous research has examined using the Keypoint-based model for pedestrian motion

detection. However, in this research, the main focus is to detect human subjects inside

vehicle cabin. Human subjects often remain in the seat with subtle movements. Besides

detecting postures, a vital-sign-based detection is added to find human subjects. In this

chapter, the design of the Keypoint-based model is presented, and simulations of different

postures with vital signs are shown and discussed.

6.2 Keypoint-based model and imaging method

6.2.1 Design of the Keypoint-based human subject model

The new 19 Keypoint skeleton model is designed based on the 17 point model [  68 ]. The

difference is that two more points are added to the torso area representing the chest and

heart for sources of the vital signs as shown in Fig.  6.1 . The two red circles are the designed

locations for chest and heart. The location of chest is designed to be at the center of the

torso and the location of heart is on the upper right of the location of chest. The sizes of the

body parts are defined based on anthropometry [ 69 ][ 117 ] and projected to the total height

proportionally.

Fig.  6.2a shows a standing adult model in Cartesian 3D space. The red solid square

indicates radar. Each point of the model represents a reflection pattern from the corre-

sponding body part. A sphere models the head while the ellipsoids model all other parts.

The RCS pattern determines reflecting intensity according to the sizes of each body parts

[ 118 ]. Orientation of each equivalent shape is defined to better approximate corresponding

parts of human subjects. Besides, the model can be placed on a single 2D plane towards the

radar.

Fig.  6.2b shows a sitting adult model in front of the radar. Compared with the standing

model’s placement, the sitting model is placed on multiple 2D planes at the axis towards
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Figure 6.1. Keypoint model and ratio of a standing human

the radar in the 3D space. The number of the 2D planes are based on the radar resolution

converted from 3D polar space.

The model can be scaled down according to the anthropometric database for a child or

an infant simulation. If we want to detect where breath and heart rates come from, e.g.,

chest and heart, the angular resolutions for both azimuth and elevation domains should

be adequate enough to distinguish a selected target from others. the angular resolution is

calculated by

θres = Larc

R
(6.1)

where Larc is arc length and R is the range in Polar space
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(a) (b)

Figure 6.2. Keypoint adult models in 3D space (a) standing (b) sitting

Based on Eq. (  6.1 ), the angular resolutions can be improved by increasing the number

of receiving antennas.

6.2.2 Imaging method for posture detection

For posture estimation, the MUSIC-based method is used because the number of sources

is known, and the number of sources is fixed.

(a) (b)

Figure 6.3. Comparison of (a) imaging with single range bin and (b) imaging
with improved algorithm
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It is known that radar detection is based on a Polar coordinate where estimation is along

the radial axis. The estimation of angle-of-arrival in polar coordinate will result in some

inaccurate detection for objects in the same range in Cartesian space, as shown in Fig.  6.3a .

To improve the estimation of Keypoints, a simple 3D high-resolution imaging method is

introduced to improve the detection of human Keypoints. The basic idea is to feed the data

with both the range of interest and its adjacent bins. Then we can use the data to calculate

the covariance matrix to itself. Points in each radial range are calculated following a rolling

buffer. This helps to distinguish Keypoints located in the different distances in 3D space.

The proposed method is shown in Fig.  6.3b . The pseudo-code of this algorithm can be

shown below in Algorithm  2 below.

Algorithm 2 Improved key point imaging method
1: function ImprovCrossCorr(X, n) . Where X - set of signals, n - number of

adjacent bin
2: for i = dstart to dend do
3: Xcorr(i) = xcorr(X(i − n : i + n), X(i − n : i + n))
4: end for
5: return Xcorr
6: end function

6.2.3 Design of vital sign signal

The vital signs indicate breath and heart rates for this study. Based on empirical data

[ 119 ], the maximum breathing displacement is 5 mm, and the maximum heart displacement

is 1 mm. A breath rate of 0.3 Hz and a heart rate of 1.5 Hz for the human subject model

are applied. Both signals are modulated as a sinusoidal waveform as shown in Fig.  6.4a and

Fig.  6.4b , respectively.

Inspired by Ahmad et al. [ 67 ], the MVDR is used toward the predefined angles where

vital signs are located to calculate the corresponding weights. The raw data, i.e., processed

radar signal from a selected pair of transmitting-receiving antennas, are multiplied by the

weights. A range FFT is then applied to data along the slow-time axis to detect breath and

heartbeat displacements.
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Figure 6.4. The designed displacements of (a) breath signal and (b) heart signal

6.3 Simulation results

With all the designs and parameter selection, the proposed simulated 3D imaging radar

system can detect the subject represented by the Keypoint-based skeleton model and its

breath and heart rates. In the simulation, the center of the hips is defined as the origin

of the human subject model and is neglected in the simulation as a target. Therefore, the

total number of targets in this simulation is 18. This work focuses on the simulation system

building for the imaging and vital signs assessment within a selected ROI. All the designed

experiments are in an ideal situation without any noise considered.

6.3.1 Planar radar array in different sizes

Four different array sizes, 4 × 4, 8 × 8, 16 × 16, and 24 × 24, with the standing adult

model, are selected for the testing. The model is 1.7 meters in height and is placed at one

meter away toward the antenna array, as shown in Fig.  6.2a . The noise level of these tests

is assumed to be the same.

Fig.  6.5a –  6.5d show the imaging with four different numbers of antennas in the array.

The sensing resolution increases while the array size grows. Only a few key points with

stronger reflected intensity from the model are detected with the 4 × 4 array in Fig.  6.5a .

For the 8 × 8 array, a rough shape of the model can be found in Fig.  6.5b . However, the
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(a) (b)

(c) (d)

Figure 6.5. The imaging of a standing human with different numbers of radar
antenna (a) 4 × 4 (b) 8 × 8 (c) 16 × 16 and (d) 24 × 24

lower part of the model’s key points are still blurry as knees and feet can hardly be found.

All 18 targets emerge clearly in Fig.  6.5c after the array size is doubled. The resolution can

be further increased by adding more antennas in the array, as shown in Fig.  6.5d .

Table  6.1 shows the difference in Keypoint detection and mean square error (MSE) with

different antenna array size. From the result, it can be found that the number of Keypoint

detected increases with the size of the array. When the antenna size reaches 16 × 16 and

above, the antenna array can detect all defined Keypoints in the heatmap. In terms of the

error of detection, the value of MSE can be high if the size of the antenna array is not large

enough to provide enough resolution, such as the 8 × 8 case in these tests. The MSE value

of 16 × 16 and 24 × 24 are kept in a small value, and both values are acceptable.
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Table 6.1. Detection and MSE in polar coordinate with different size of antenna array
Point detected MSE in degree

4×4 3 15.19
8×8 10 333.01

16×16 18 0.88
24×24 18 0.20

Compared with low central frequency radar, a high central frequency radar has a smaller

aperture of antennas. It is feasible to pack a larger antenna array into a smaller package with

a 79 GHz central frequency radar. On the other hand, increasing the number of antennas

requires increasing data cube memory and computational power. Therefore, the application

cases determine the resolution required for radar antenna design and system selection. The

number of antennas can be further reduced by diminishing side-lobes and multi-path effects

with other advanced methods, which are not included in this work.

6.3.2 Keypoint skeleton models and their postures

The system performance is assessed by using three testing cases with the 16×16 antenna

array. The system performance includes 3D imaging and vital signs. Two types of datasets

are collected -one is for 3D imaging evaluation, and the other is for the vital sign assessment.

The first case is to use the adult model with the standing posture. The model is placed

at one meter away and faces the radar, as shown in Fig.  6.2a . By applying the 3D imaging

method, the model’s reflected points are constructed in the form of 3D imaging and key

points accordingly. In Fig.  6.6a , reflected points of chest and head are stronger while the

others are slightly weaker. The points for feet are still detectable, even though their size is

small, according to research done by Adib et al. [  64 ]. Fig.  6.6b shows that reflected points

marked as blue crosses are sensed after a simple threshold is applied. Their locations are

more accurate compared with the reference points marked as red circles. Several unrelated

points detected can be eliminated if certain thresholds are further fine tuned.

Signals of vital signs, i.e., breath and heart rates, can be extracted by tracking magnitude

changes or phase changes along the slow-time axis. In this research, the phase changes are
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Figure 6.6. Standing adult posture: (a) Keypoint imaging (b) Keypoint estimation

tracked by computing the phase change, unwrapping, and converting the signals to the

frequency domain. Then, breath and heart rates are extracted through the beamforming

of signals towards the chest and heart locations. The results are shown in Fig.  6.7a –

 6.7b . The frequency of breath and heart rates are 0.3 Hz and 1.5 Hz, respectively, as

previously discussed. Other signals can be barely found in the two plots since the radar

angular resolution is fine enough to separate the two reflected points representing chest and

heart.
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Figure 6.7. (a) breath rate and (b) heart rate detected for a standing adult
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The next case is to use the adult model with sitting posture. Again, the model’s central

hip point is placed at one meter away, and the model faces radar, as shown in Fig.  6.2b .

Unlike the standing posture, the sitting posture results of reflected points in the model

spanning a bulk of the range bins. If using the same approach, i.e., estimating reflected

points in a plane, on the standing model, many reflected points of the model will be lost,

as shown in Fig.  6.8a . The reference key points (red circles) of the model are superimposed

to 3D imaging. Thus, the MUSIC method and Algorithm  2 , which have been discussed

in a previous section, are applied in the searching and detecting of the reflected points in

3D space. These algorithms improve efficiency and save computation power by avoiding

calculating data in all range bins. Fig.  6.8b . shows all the reflected points detected in 3D

space.

(a) (b)

Figure 6.8. Sitting posture of an adult: (a) Keypoint imaging (b) Keypoint estimation

To extract points potentially belonging to the model, the density-based spatial clustering

of applications with noise (DBSCAN) algorithm is used, which is an unsupervised machine-

learning-based method to cluster the detected points belonging to different categories in 3D

space. The relative distance between each point is calculated as inputs of the method. ε is

set at 0.1, and the minimum points for one category are set at 2 because the detected point

cloud is sparse. The center point of each category computed by the algorithm can be used for

the Keypoint-based skeleton model estimation, as shown in Fig.  6.9 . Further improvement

can be achieved by applying a supervised machine-learning-based method. The results of
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breath and heart rate calculations are shown in Fig.  6.10a –  6.10b , similar to the standing

adult results.

Figure 6.9. Sitting adult Keypoints detected with DBSCAN
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Figure 6.10. (a) breath rate and (b) heart rate detected for the sitting adult

The last case is to use the child model in the sitting posture. The setup is the same

as the previous cases. As discussed in the previous section, the lengths and widths of the

skeleton model’s Keypoints are designed in proportion to the total height. The child model’s
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total height is 1.1 meters, about 65% of the adult model height. Thus, the relative distances

between each point is much shorter than the adult. The sensor resolutions for the approach

thus have difficulty locating some of the key points accurately, as shown in Fig.  6.11 .

Figure 6.11. Sitting child Keypoints detected with DBSCAN

Different from the two previous cases, reflected signals received from either chest or heart

location contain both breath and heart rate information. The radar angular resolution is

not fine enough to separate these two reflected points representing chest and heart for the

child model, as shown in Fig. 6.12a –  6.12b . In this case, appropriate bandpass filters and

thresholds can be applied to capture breath and heart rates in a frequency domain as in Fig.

 6.13a –  6.13b .
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Figure 6.12. Unfiltered (a) breath signal and (b) heart signal of a sitting child
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Figure 6.13. (a) breath rate and (b) heart rate for the sitting child

6.3.3 Accuracy and analysis

The accuracy of estimation is achieved through measuring the Euclidean distance between

the predicted Keypoint and the ground truth. For the 2D case, the error is calculated by

Eq. (  6.2 ), where the distance between each point on z-axis and the radar is the same.

2D_error =
√

(x − x0)2 + (y − y0)2 (6.2)

In Fig.  6.6a , a standing posture is described, and the human model’s Keypoints are

estimated as in Fig.  6.6b . The errors of all detected Keypoint signal and the reference signal
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is calculated by Eq. ( 6.2 ). The result is shown in Fig.  6.14 , where errors of all points are in

low level except the errors of both the left and right toe. This is because the two points are

located at the edge of the main lobe, so the AoA estimation is not accurate.
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Figure 6.14. 2D error of the standing posture case

The Euclidean distance for 3D point cloud is calculated by Eq. (  6.3 ), where x, y, z are

the predicted points and x0, y0, z0 are the ground truth points.

3D_error =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 (6.3)

The overall performance of the three tests is concluded in Table  6.2 . In all three tests,

most of the Keypoints are detected. The MSE values of all three tests are based on the

detection in Cartesian coordinate. The MSE values in the Table  6.2 of all three tests are

low, meaning the detected points are close to the reference points. Therefore, the simulation

system successfully simulates postures of occupants based on the designed Keypoint model.

Based on the result of the first 3D test with a sitting adult in Fig.  6.9 , accuracy of all

Keypoints, which is kept at a low level, is listed in Fig.  6.15a . There is only one point with a

relatively higher error. This indicates that the unsupervised learning of the Keypoints may

not be robust in some estimations.
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Table 6.2. Performance summary of the simulation tests in Cartesian coordinate
Test Point detected MSE in distance

2D case 18 6.62 × 10−4

3D sitting adult 18 8.66 × 10−4

3D sitting child 15 4.5 × 10−3
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Figure 6.15. 3D error of (a) the sitting adult and (b) the sitting child

Compared to the estimation of adult, the average estimation error of Keypoints of a

sitting child in Fig.  6.11 is higher. From results in both Fig.  6.15b and Fig.  6.11 , some

Keypoints of the sitting child are not detected. The value of those undetected points is set

to zero in Fig.  6.11 . Particularly for this test, the Keypoints of neck, left hip, and right

hip are not detected. These points are undetected because the body size is smaller, and the

angular resolution is not fine enough to distinguish different Keypoints. For other points,

the detection error is also high because of the insufficient angular resolution of the antenna

array.

The accuracy of the vital sign is based on the frequency. For vehicle occupant monitoring,

the purpose of using the vital sign is to distinguish living subjects from non-living subjects.

Therefore, it is adequate to only measure the vital sign frequency rather than the shape of

the vital sign signals. In both cases, the accuracy of breath rate and heart rate is around

99.9%. However, the sitting child’s frequency domain result shows that the heart rate signal

can be affected by other signals since the amplitude of adjacent bins is high enough to affect
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estimation results. In other words, noises in vehicle can affect the estimation accuracy of

vital sign signals. A more advanced algorithm needs to be designed to track and filter out

other noise signals to solve this problem.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, a planar array radar system for occupant imaging and vital sign

detection has been built for the purpose of in-cabin occupant monitoring.

To simulate the power reflection pattern of occupants, a mathematical model is derived.

A signal processing pipeline is then proposed based on the mathematical model, which

includes the processor, the antenna array, the free space propagation, and the subject under

test. A simulation system is then built based on the pipeline to simulate the radar system.

Both the posture of occupants and their vital sign signals are estimated. The vital sign

signal is to evaluate the displacement of chest or belly of occupants.

For the classification, a human subject simulation model is developed. Based on this

model, a supervised deep learning method, which combines camera image information with

radar image information, is introduced for occupant segmentation and classification. The

accuracy of test and validation is around 90%, and the testing accuracy is approximately

87%, which are compatible to the performance of the camera-based method for classification.

The posture detection and vital sign estimation of occupant monitoring are based on

a proposed Keypoint-based model. Two more points are added to the previous 17 points

Keypoint body model to reflect the movement of these two areas. Occupant posture can be

sensed by either a machine-learning-based method or a deep-learning-based method. For the

Keypoint-based method, a machine-learning-based method is used to cluster the detected

points and combine detected points in different categories for posture detection. In the

simulation system, an antenna array with a size of 16 × 16 is selected for human body

posture imaging. Then a sitting adult and a sitting child are tested using a different human

model. The results in the simulation system show that most of the Keypoints belonging to

occupants are detected. The accuracy of vital sign estimation is acceptable.
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7.2 Future work

The future work of this research is threefold. The first is to introduce more models

and sitting positions into the system to simulate their reflections, such as models for pets

and people in front seats. Posture and vital signs of occupants in front seats need to be

considered. The only difference between occupants at front and in the rear is their direction

towards radar. In this dissertation, a top-mounted radar antenna array system is discussed,

in which occupants in front seats have their back to the radar antenna array. It is possible to

measure vital signs and provide a point cloud image of occupants in front seats. However, it

is hard to use both information collected by radar antenna array in post-processing, as vital

sign signals measured from the back are weak and mixed with noises, and the point cloud

image of adult is not complete because many signals are blocked by vehicle seats.

The second is to improve the algorithm performance for the classification enhancement.

In this dissertation, children and infants are not distinguished because they have similar

sizes. Nonetheless, both posture and facing direction of children and infants are different.

It is difficult to distinguish them because their power reflection patterns are similar. For

example, power reflection patterns of forward-facing children and infants are similar. A 3D

model-based model to detect occupants’ sitting direction may be able to solve this problem.

Another work that can be done in the future is to develop a real-time Keypoint-based

posture detection algorithm to monitor posture and vital signs of different occupants. This

system can be used to improve safety and ride experience of the future intelligent vehicle

system.
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