
OPTIMAL NETWORK CODING UNDER SOME
LESS-RESTRICTIVE NETWORK MODELS

by

Chih-Hua Chang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Chih-Chun Wang, Chair

School of Electrical and Computer Engineering

Dr. Stanley H. Chan

School of Electrical and Computer Engineering

Dr. Xiaojun Lin

School of Electrical and Computer Engineering

Dr. Borja Peleato

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my family

3

ACKNOWLEDGMENTS

This thesis was supported in parts by the National Science Foundation (NSF) under

Grant ECCS-1407603, Grant CCF-1422997, Grant CCF-1618475, and Grant CCF-1816013.

4

TABLE OF CONTENTS

 LIST OF TABLES . 10

 LIST OF FIGURES . 13

 ABSTRACT . 15

 1 INTRODUCTION . 17

 1.1 Outline of Thesis . 18

 1.2 Main Contributions . 19

 2 CAPACITY-APPROACHING PROTOCOL FOR GENERAL 1-TO-K BROAD-

CAST PACKET ERASURE CHANNELS WITH ACK/NACK 21

 2.1 Introduction . 21

 2.2 1-to-K Broadcast Packet Erasure Channel Model 27

 2.2.1 The 1-to-K Broadcast Packet Erasure Channel 28

 2.2.2 The Block-Coding Setting . 29

 2.2.3 The Sequential-Coding Setting . 31

 2.3 A New Stability Region . 34

 2.4 The New Achievability Scheme . 38

 2.4.1 The Connection to the Virtual Network 38

 2.4.2 A New Sequential Network Coding Scheme 41

 2.5 Practical Sequential Coding Scheme with Overhead 49

 2.5.1 A Header-based Implementation . 49

5

 2.5.2 Other Issues for Practical Implementation 52

 Unknown Channel Statistic . 52

 Variable Header Length . 52

 Delay . 53

 Deadline . 53

 2.6 Simulation Results . 53

 2.7 Summary . 57

 3 CODED CACHING SYSTEM OF TWO USERS AND TWO FILES 59

 3.1 Introduction . 59

 3.1.1 Comparison to Existing Results . 62

 3.2 General Coded Caching Model . 63

 3.3 The Two-User/Two-File Coded Caching Capacity 65

 3.3.1 Basic Zero-Error Coded Caching Schemes 66

 3.3.2 Lower Bounds of the PRCR . 68

 3.3.3 Coded Caching Capacity for N = K = 2 71

 3.4 Summary . 76

 4 CODED CACHING SYSTEM FOR TWO USERS WITH HETEROGENEOUS

FILE DEMAND SETS . 82

 4.1 Introduction . 82

 4.2 Coded Caching Model with File Demand Set 84

6

 4.3 Homogeneous File Demand Sets . 86

 4.4 Heterogeneous File Demand Sets . 87

 4.4.1 Disjoint File Demand Sets for arbitrary K 89

 4.4.2 One-Overlapping File Demand Sets for K = 2 89

 4.4.3 Two-Overlapping File Demand Sets for N = 3 and K = 2 91

 4.4.4 Large-Overlapping File Demand Sets for K = 2 with Selfish and Un-

coded Prefetching . 94

 4.5 Numerical Evaluations . 97

 4.6 Summary . 98

 5 CONCLUSION AND FUTURE WORK . 101

 5.1 Capacity of 1-to-K Spatial-Independent Broadcast Packet Erasure Channels

with ACK/NACK . 101

 5.2 Linear Network Coding for Achieving Capacity of 1-to-K Broadcast Packet

Erasure Channels with ACK/NACK . 102

 5.3 General Lower Bounds for Coded Caching of Arbitrary N Files and K Users 102

 5.4 Coded Caching with K = 2 user and Heterogeneous User File Popularity . . 103

 REFERENCES . 104

 A SUPPLEMENTARY MATERIALS FOR CHAPTER 2 111

 A.1 Proof of Proposition 2.2.2 . 111

 A.2 On The Optimality of Proposition 2.3.1 . 116

 A.2.1 Proof of Corollary 1 . 116

7

 A.2.2 Proof of Example 1 . 122

 A.2.3 An Example of Unachievable Rates for K = 4 124

 A.3 Proof of Lemmas 1 and 2 . 124

 A.4 A Simple Schwartz-Zippel Lemma . 126

 A.5 Proof of Proposition 2.4.1 . 127

 A.6 Proof of Propositions 2.4.2 and 2.4.3 . 134

 A.6.1 Proof of Proposition 2.4.2 . 137

 A.6.2 Proof of Proposition 2.4.3 . 143

 A.7 Proof of Lemma 3 . 144

 B SUPPLEMENTARY MATERIALS FOR CHAPTER 3 146

 B.1 Proof of Proposition 3.3.2 . 146

 B.2 Proof of Proposition 3.3.3 . 185

 B.3 Proof of Corollary 3 . 199

 B.4 Re-derivation of Worst-Case Rate Capacity in [41] 201

 C SUPPLEMENTARY MATERIALS FOR CHAPTER 4 204

 C.1 Proof of Proposition 4.4.1 . 204

 C.2 Proof of Proposition 4.4.2 . 204

 C.3 Proof of Proposition 4.4.3 . 214

 C.4 Proof of Proposition 4.4.4 . 217

 C.5 Proof of Proposition 4.4.5 . 218

8

 C.6 Proof of Proposition 4.4.7 and Corollary 6 221

 VITA . 229

9

LIST OF TABLES

 2.1 Comparison of the numbers of coding choices. COSM stands for “collapsed over-
hearing set matching” and Bm represents the m-th Bell number. For reference,
B6 = 203, B11 = 678570, and B16 ≈ 1010. . 26

 2.2 A K = 3 example of computing q(k, S) and the backpressure term bp(Q(k)
S) from∣∣∣Q(k)

S

∣∣∣. 44

 3.1 Comparisons of existing results . 63

 3.2 Basic coded caching schemes for two files of size (f1, f2) and two users of memory
(m1,m2). It is possible to have f1 ≥ f2, or f1 < f2, or m1 ≥ m2, or m1 < m2. The
intuition of the schemes are Mix.Emp for premixing at d1, Emp.Mix for premixing
at d2, Ha.Fi for splitting files in halves, and a.b.Cov for covering ~d = (a, b). . . . 66

 3.3 The expressions of all 28 possible corner points. 73

 B.1 Vertex 1 (F1−M2, F1 +F2−M1, F1 +F2−M1, F2) with applicable range: M2 ≤
M1 ≤ min(F1, F2 +M2). . 185

 B.2 Vertex 2 (F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2) with applicable range:
M1 +M2 ≤ min(F1, F2). 187

 B.3 Vertex 3 (F1, F1 +F2−M1, F1 +F2−M1, F2−M2) with applicable range: M2 ≤
M1 ≤ min(F1 +M2, F2). 188

 B.4 Vertex 4 (F1 − 1/2M2, F1 + F2 −M1 − 1/2M2, F1 + F2 −M1 − 1/2M2, F2 − 1/2M2)
with applicable range: M2 ≤M1 ≤ min(F1, F2). 188

 B.5 Vertex 5 (F1, F1 + F2 −M1 −M2, F1, F2) with applicable range: max(M1,M2) ≤
F2 ≤ min(F1,M1 +M2). 189

 B.6 Vertex 6 (F1, F1, F1 + F2 −M1 −M2, F2) with applicable range: max(M1,M2) ≤
F2 ≤ min(F1,M1 +M2). 189

 B.7 Vertex 7 (F1+1/2(F2−M1−M2), F1+1/2(F2−M1−M2), F1+1/2(F2−M1−M2), F2+
1/2(F2−M1−M2)) with applicable range: max(M1,M2) ≤ F2 ≤ min(F1,M1 +M2). 189

 B.8 Vertex 8 (F1−M2, F1 +F2−M1, F1−M2, F2) with applicable range: F2 +M2 ≤
M1 ≤ F1. . 190

 B.9 Vertex 9 (F1, F1 +F2−M1−M2, F1, F2) with applicable range: M2 ≤ F2 ≤M1 ≤
F1. . 190

 B.10 Vertex 10 (F1, F1 + F2 −M1, F1, F2 −M2) with applicable range: M2 ≤ F2 ≤
M1 ≤ F1 +M2. . 190

 B.11 Vertex 11 (F1−1/2M2, F1+F2−M1−1/2M2, F1−1/2M2, F2−1/2M2) with applicable
range: M2 ≤ F2 ≤M1 ≤ F1. . 191

10

 B.12 Vertex 12 (F1 + F2 − M1, F1 + F2 − M1, F1 − M2, F2) with applicable range:
max(M2, F2) ≤M1 ≤ min(F1, F2 +M2). . 192

 B.13 Vertex 13 (F1 + 1/2(F2 −M1 −M2), F1 + 1/2(F2 −M1 −M2), F1 + 1/2(F2 −M1 −
M2), 1/2(F2+M1−M2)) with applicable range: max(M2, F2) ≤M1 ≤ min(F1, F2+
M2). . 192

 B.14 Vertex 14 (F1−M2, F2, F1−M2, F2) with applicable range: max(F1, F2 +M2) ≤
M1 ≤ F1 + F2. . 192

 B.15 Vertex 15 (F1, F2−M2, F1, F2−M2) with applicable range: M2 ≤ F2 ≤ F1+M2 ≤
M1. . 193

 B.16 Vertex 16 (F1, F2−M2, F1, F1+F2−M1) with applicable range: F2−F1 ≤M2 ≤ F2
and F1 ≤M1 ≤ F1 +M2. . 194

 B.17 Vertex 17 (1/2(F1 +M1 −M2), F2 + 1/2(F1 −M1 −M2), 1/2(F1 +M1 −M2), F2 +
1/2(F1−M1−M2)) with applicable range: M2 ≤ F2 ≤M1 ≤ F1 +M2 and F1 ≤M1. 194

 B.18 Vertex 18 (F1 −M2, F2, F1 + F2 −M1, F2) with applicable range: M2 ≤ F1 ≤
M1 ≤ F2 +M2. . 194

 B.19 Vertex 19 (F1 + F2 −M1, F2, F1 −M2, F2) with applicable range: M2 ≤ F1 ≤
M1 ≤ F2 +M2 and F2 ≤M1. . 195

 B.20 Vertex 20 (F1+1/2(F2−M1−M2), 1/2(F2+M1−M2), F1+1/2(F2−M1−M2), 1/2(F2+
M1 −M2)) with applicable range: M2 ≤ F1 ≤M1 ≤ F2 +M2 and F2 ≤M1. . . 195

 B.21 Vertex 21 (F1 + F2 − M2, F1 − M1, F1 + F2 − M2, F2) with applicable range:
F2 ≤M2 ≤M1 ≤ F1. . 195

 B.22 Vertex 22 (F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0) with applicable range:
F2 ≤M2 ≤M1 ≤ F1 + F2. . 196

 B.23 Vertex 23 (F1 +1/2F2−M2, F1 +1/2F2−M1, F1 +1/2F2−M2, 1/2F2) with applicable
range: F2 ≤M2 ≤M1 ≤ F1. . 196

 B.24 Vertex 24 (F1 + F2 −M2, 0, F1 + F2 −M2, F1 + F2 −M1) with applicable range:
F2 ≤M2 ≤M1 ≤ F1 + F2 and F1 ≤M1. . 196

 B.25 Vertex 25 (1/2(F1+F2+M1)−M2, 1/2(F1+F2−M1), 1/2(F1+F2+M1)−M2, 1/2(F1+
F2 −M1)) with applicable range: F2 ≤M2 ≤M1 ≤ F1 + F2 and F1 ≤M1. . . . 197

 B.26 Vertex 26 (0, F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2) with applicable range:
F1 ≤M2 ≤M1 ≤ F1 + F2. . 197

 B.27 Vertex 27 (F1 + F2 −M1, F1 + F2 −M2, 0, F1 + F2 −M2) with applicable range:
F1 ≤M2 ≤M1 ≤ F1 + F2 and F2 ≤M1. . 197

 B.28 Vertex 28 (1/2(F1 +F2−M1), 1/2(F1 +F2 +M1)−M2, 1/2(F1 +F2−M1), 1/2(F1 +
F2 +M1)−M2) with applicable range: F1 ≤M2 ≤M1 ≤ F1 + F2 and F2 ≤M1. 198

11

 C.1 The optimal (M c
1 ,M

u
1 ,M

c
2 ,M

u
2) values of the selfish and uncoded prefeching

schemes for α ≥ 2. 228

12

LIST OF FIGURES

 2.1 The 1-to-2 broadcast PEC example of source s and destinations d1, d2. The
source s intends to delivery packets X1,1, . . . , X1,nR1 to destination d1 and
packets X2,1, . . . , X2,nR2 to destination d2. 23

 2.2 The virtual nodes and proper-cuts for K = 3 and k = 2. 34

 2.3 The virtual sub-network for K = 3 and k = 2, where the virtual nodes
are represented by circles and the auxiliary nodes by squares. The dotted
edge marked by a set S is actually connected to vn(2)

S with ∞ capacity. For
example, there are 4 outgoing edges of the auxiliary node (square) labeled
by {1, 3}. They are connected to vn(2)

∅ , vn(2)
{1}, vn(2)

{3}, and vn(2)
{1,3}, respectively,

with each edge having infinite capacity. Note that the edge from auxiliary
node {1, 3} to vn(2)

∅ forms part of a self loop in the virtual network. 38

 2.4 The sum of queue lengths ∑k,S |Q
(k)
S | for different α. 55

 2.5 Pmf of the header length: When α = 0.9, the largest header length in the
simulation of 105 time slots is 116 and the average is 2.5. When α = 0.95,
the largest and the average header lengths become 135 and 2.7. 56

 2.6 Pmf of the total delay: When α = 0.9, the largest total delay in the simulation
of 105 time slots is 3332 and the average is 108.7. 94% of the packets have
total delay ≤ 400 time slots. When α = 0.95, the largest and the average
delay become 13382 and 513.6. 67% of the packets have total delay ≤ 400
time slots. 57

 3.1 The 3-user/3-file (N = K = 3) coded caching example. The sever has three
files (A,B,C) of same size F and each file is split into three equal subfiles:
A = (A1, A2, A3), B = (B1, B2, B3), and C = (C1, C2, C3). Each user k has
same cache memory size F and store cache content (Ak, Bk, Ck). 61

 3.2 Description of the regions of (M1,M2) and the corresponding corner points.
The x-axis (resp. y-axis) is for the M1 (resp. M2) value. In this figure we
assume F1 ≥ F2 and only describe the cases when M1 ≥ M2, thus the lower-
half of the line M1 = M2. The cases of F1 < F2 and M1 < M2 can be
obtained by swapping the file and user indices, respectively. Two scenarios
are considered: (a) F1 ≥ 2F2; (b) 2F2 > F1 ≥ F2. 77

 3.3 The average-rate capacity with (F1, F2) = (1.5, 1) and (p(1,1), p(1,2), p(2,1), p(2,2)) =
(4/15, 2/5, 2/15, 1/5). There are 12 facets and 14 corner points. Each corner point
is labeled by a tuple (M1,M2, R̄), where (M1,M2) give the location and the
third coordinate specifies the corresponding exact average-rate capacity R̄.
The capacity is asymmetric with respect to (M1,M2) due to the heteroge-
neous file popularity. 78

13

 3.4 Comparison of the average-rate capacity with the average rate of naïve likelihood-
based uncoded caching, and the coded caching scheme in [41] that is optimized
for the worst-case performance on some of the vertices in Fig. 3.3 79

 3.5 The average-rate capacity with (F1, F2) = (1.5, 1) and (p(1,1), p(1,2), p(2,1), p(2,2)) =
(2/15, 8/15, 4/15, 1/15). There are 10 facets and 13 corner points. Each corner
point is labeled by a tuple (M1,M2, R̄), where (M1,M2) give the location
and the third coordinate specifies the corresponding exact average-rate ca-
pacity R̄. The capacity is asymmetric with respect to (M1,M2) due to the
heterogeneous file popularity. 80

 3.6 Comparison of the average-rate capacity with the average rate of naïve likelihood-
based uncoded caching, and the coded caching scheme in [41] that is optimized
for the worst-case performance on some of the vertices in Fig. 3.5 81

 3.7 The average-rate capacity of uniform popularity, described for the case of
F1 ≥ F2. 81

 4.1 The capacity R̃ of both the selfish and unselfish designs with Θ1 = Θ2 = [N]. 88

 4.2 The minimum average rate R̃ of coded caching for |Θ1| = N1, |Θ2| = N2, and
α = 1. For any (M1,M2) inside each subregion, the rate R̃ is characterized
by the corresponding equation marked in that region. 90

 4.3 The uniform-average-rate capacity R̃ = R̃gc with Θ1 = {1, 2} and Θ2 =
{1, 2, 3}. . 92

 4.4 The uniform-average-rate capacity R̃sc for selfish and coded prefetching schemes
with Θ1 = {1, 2} and Θ2 = {1, 2, 3}. . 92

 4.5 The uniform-average-rate capacity R̃gu for unselfish and uncoded prefetching
schemes with Θ1 = {1, 2} and Θ2 = {1, 2, 3}. 93

 4.6 The minimum average rate R̃ for |Θ1| = N1, |Θ2| = N2, and α ≥ 2 with selfish
and uncoded prefetching, where v2 : ((N1−α)F, 0, (1+(N1−1)α/(N1N2))F),
v10 : (0, (N2−α)F, (1 + (N2− 1)α/(N1N2))F), v11 : (αF/2, (N2−α/2)F, (1 +
(N1−N2−α)α/(2N1N2))F), v12 : (αF/2, αF/2, (2−(N1+N2+α)α/(2N1N2))F),
v13 : ((N1 − α/2)F, αF/2, (1 + (N2 −N1 − α)α/(2N1N2))F), and v14 : ((N1 −
α/2)F, (N2 − α/2)F, (N2 +N1 − α)αF/(2N1N2)). 96

 4.7 Uniform-average rate as a function of the cache size M when N1 = N2 = 128
and α = 96. 98

 4.8 Uniform-average rate as a function of the FDS overlap α when N1 = N2 = 128
and M = 16. 99

 B.1 The capacity of worst-case rate under the assumption F1 ≥ F2. Each corner
point is labeled by a tuple (M1,M2, R

∗), where (M1,M2) describe the location
and the third coordinate describe the corresponding exact worst-case rate
capacity R∗. 202

14

ABSTRACT

Network Coding is a critical technique when designing next-generation network systems,

since the use of network coding can significantly improve the throughput and performance

(delay/reliability) of the system. In the traditional design paradigm without network cod-

ing, different information flows are transported in a similar way like commodity flows such

that the flows are kept separated while being forwarded in the network. However, network

coding allows nodes in the network to not only forward the packet but also process the

incoming information messages with the goal of either improving the throughput, reducing

delay, or increasing the reliability. Specifically, network coding is a critical tool when design-

ing absolute Shannon-capacity-achieving schemes for various broadcasting and multicasting

applications. In this thesis, we study the optimal network schemes for some applications

with less restrictive network models. A common component of the models/approaches is

how to use network coding to take advantage of a broadcast communication channel.

In the first part of the thesis, we consider the system of one server transmitting K in-

formation flows, one for each of K users (destinations), through a broadcast packet erasure

channels with ACK/NACK. The capacity region of 1-to-K broadcast packet erasure chan-

nels with ACK/NACK is known for some scenarios, e.g., K ≤ 3, etc. However, existing

achievability schemes with network coding either require knowing the target rate ~R in ad-

vance, and/or have a complicated description of the achievable rate region that is difficult

to prove whether it matches the capacity or not. In this part, we propose a new network

coding protocol with the following features: (i) Its achievable rate region is identical to the

capacity region for all the scenarios in which the capacity is known; (ii) Its achievable rate

region is much more tractable and has been used to derive new capacity rate vectors; (iii)

It employs sequential encoding that naturally handles dynamic packet arrivals; (iv) It auto-

matically adapts to unknown packet arrival rates ~R; (v) It is based on GF(q) with q ≥ K.

Numerically, for K = 4, it admits an average control overhead 1.1% (assuming each packet

has 1000 bytes), average encoding memory usage 48.5 packets, and average per-packet delay

513.6 time slots, when operating at 95% of the capacity.

15

In the second part, we focus on the coded caching system of one server and K users, each

user k has cache memory size Mk and demand a file among the N files currently stored at

server. The coded caching system consists of two phases: Phase 1, the placement phase:

Each user accesses the N files and fills its cache memory during off-peak hours; and Phase

2, the delivery phase: During the peak hours, each user submits his/her own file request and

the server broadcasts a set of packet simultaneously to K users with the goal of successfully

delivering the desired packets to each user. Due to the high complexity of coded caching

problem with heterogeneous file size and heterogeneous cache memory size for arbitrary N

and K, prior works focus on solving the optimal worst-case rate with homogeneous file size

and mostly focus on designing order-optimal coded caching schemes with user-homogeneous

file popularity that attain the lower bound within a constant factor. In this part, we derive

the average rate capacity for microscopic 2-user/2-file (N = K = 2) coded caching problem

with heterogeneous files size, cache memory size, and user-dependent heterogeneous file

popularity. The study will shed some further insights on the complexity and optimal scheme

design of general coded caching problem with full heterogeneity.

In the third part, we further study the coded caching system of one server, K = 2

users, and N ≥ 2 files and focus on the user-dependent file popularity of the two users.

In order to approach the exactly optimal uniform average rate of the system, we simplify

the file demand popularity to binary outputs, i.e., each user either has no interest (with

probability 0) or positive uniform interest (with a constant probability) to each of the N file.

Under this model, the file popularity of each user is characterized by his/her file demand

set of positive interest in the N files. Specifically, we analyze the case of user 1 and user 2

with file demand sets Θ1 and Θ2, respectively. We show the exact capacity results of one-

overlapped file demand sets |Θ1 ∩ Θ2| = 1 for arbitrary N and two-overlapped file demand

sets |Θ1∩Θ2| = 2 for N = 3. To investigate the performance of large overlapped files we also

present the average rate capacity under the constraint of selfish and uncoded prefetching

with explicit prefetching schemes that achieve those capacities. All the results allow for

arbitrary (and not necessarily identical) users’ cache capacities and number of files in each

file demand set.

16

1. INTRODUCTION

As the increasing demand of throughput and heterogeneous environment in nowadays

network applications such like video streaming or data backup at cloud, continuous efforts

dedicate to construct general network-capacity-approaching network schemes. Although the

optimal rates for some of network models have been characterized, in many network set-

tings, the complete theory and general network capacity region are still unknown. Recently,

network coding is proposed to exploit multicasting opportunity with the goal of either im-

proving the throughput, reducing delay, or increasing the reliability. In order to investigate

the gain of network coding of different aspects in less-restrictive network models, we aim

to design flexible network coding schemes that adapt the network models and achieve the

network capacity regions.

In a network of point-to-point communication with constraints of channel capacity, the

natural way for transporting information is to retransmit the data at each intermediate node.

In traditional network scheme, the nodes apply decode-and-forward method, which decodes

the packet from previous node and then transmits the copy of packet to the next one. In such

paradigm, the delivery of data packets is similar to the transportation of commodity: The

independent packet flows keep separate through the nodes in the network. Network coding

is recently proposed to allow the nodes in the network not only to forward the packet but

also to process the data with the goal of either improving the throughput, reducing delay,

or increasing the reliability. The information flow in such schemes follows data processing

relationship: For each node the output is a function of the input. By process the information,

each transmission at input node in the network can increase more information content for

the output nodes. For example. Consider the source aim to send information message X

and Y to node 1 and 2, respectively, through a broadcasting channel. Suppose after first and

second transmission, node 1 receives Y and node 2 receives X, then in the next transmission,

instead of keeping sending X or Y , the source can broadcast message [X + Y] to benefit

both node 1 and 2 simultaneously.

From the illustrating, network coding is able to exploit multicasting opportunity to im-

prove the network throughput. This leads to the straightforward question on how much

17

gain is achievable by using network coding in the broadcasting and multicasting applica-

tions. More specifically, given the network models, we aim to find network coding schemes

that attain absolute Shannon capacity. In this thesis we focus on two well-defined network

models: 1-to-K (one server and K destinations) broadcasting system with packet erasure

channels and K-user/N -file coded caching system with an error-free broadcast channel. The

1-to-K broadcast packet erasure channel belongs to the extensively studied broadcast chan-

nels while using a simplified packet erasure model. The capacity-approaching result will

given intuitions on more practical and complicate broadcast channel models for arbitrary

number of users K. On the other hand, the K-user/N -file coded caching system currently

draw research interest due to its throughput gain against traditional caching system. By

studying the coded caching problem of heterogeneous file size, heterogeneous cache memory

size, and heterogeneous file popularity, we will figure out the gain of general caching problem

and the resulting network applications.

1.1 Outline of Thesis

The content of thesis is consisted of four chapters: (i) Introduction; (ii) Capacity-

approaching protocol for general 1-to-K broadcast packet erasure channels with ACK/

NACK; (iii) Coded caching system of two users and two files; (iv) Code caching system

for two users with heterogeneous file demand sets; and (v) Conclusion.

In Chapter 2 , we first introduce the background of the 1-to-K broadcast packet erasure

channels in Section 2.1 and then present the broadcast packet erasure channel model in

Section 2.2 . Section 2.3 describes the new achievable rate region for the 1-to-K broadcast

packet erasure channels and Section 2.4 proposes the corresponding new scheme. Section 2.5

converts the theoretical achievability scheme to a practical protocol with the cost of a small

amount of control overhead. The added overhead is not needed during the theoretical discus-

sion but would highly facilitate practical implementation. Section 2.6 presents the simulation

results and Section 2.7 summarizes the chapter.

In Chapter 3 , we first introduce the background of the coded caching system in Section 3.1

and present the general coded caching system model of N files and K users in Section 3.2 .

18

Section 3.3 shows per-request capacity region (PRCR) for 2-user/2-file (N = K = 2) coded

caching system with heterogeneous file size, heterogeneous cache size, and user-dependent

file popularity. Moreover, the corresponding achievable schemes are consisted of 7 basic

coded caching schemes. Section 3.4 summarizes the work of the chapter.

In Chapter 4 , we first recap the coded caching system discussed in Chapter 3 and then

introduce the simplified user-dependent heterogeneous file popularity with file demand set

in Section 4.1 . We define the file demand sets and selfish prefetching for the coded caching

system in Section 4.2 . Section 4.3 and Section 4.4 proposes the average rate capacity for

the scenarios of two users and N ≥ 2 files with homogeneous and heterogeneous file demand

sets, respectively. Section 4.5 illustrates the gap between the proposed selfish-and-uncoded

prefetching and the optimal unselfish-and-coded prefetching scheme. Section 4.6 summarizes

the work of the chapter.

In Chapter 5 , we summarize how to use the network coding techniques to approach

the capacity of the less-restrictive network models and shed some insights and thoughts for

driving the capacity outer bounds and the achievable schemes or inner bounds.

1.2 Main Contributions

In Chapter 2 , we introduce the new concept of opportunistic packet evolution and provide

two main contributions on the capacity of general 1-to-K broadcast PEC with ACK/NACK:

1. Deriving a new inner bound that is provably tight for all the scenarios in which the

capacity regions are known: (i) K ≤ 3, (ii) the channel is symmetric, or (iii) the

channel is spatially independent and the rate vectors are one-sided fair. That is, in

terms of analytically characterizing the capacity region, the new inner bound is as good

as any existing inner bounds.

2. Designing a new sequential coding scheme that has short delay and small memory

usage, automatically adapts to dynamic packet arrivals, and attains the aforementioned

new inner bound.

19

In Chapter 3 , we consider a microscopic 2-user/2-file coded caching system of hetero-

geneous file size and cache memory size. We introduce the concept of per-request capacity

region (PRCR) as the fundamental performance metric for describing the coded caching

system. We then characterized the exact PRCR of the 2-user/2-file setting with full hetero-

geneity, including the following propositions:

1. The exact capacity or PRCR of the 2-user/2-file (N = K = 2) coded caching problem

but under the simultaneously heterogeneous settings (i) heterogeneous files sizes, (ii)

heterogeneous cache sizes, (iii) user-dependent file popularity, and (iv) average-rate

analysis.

2. The PRCR can be used to derive the uniform-average capacity and worst-case capacity

with heterogeneous file and cache memory size.

In Chapter 4 , we introduce a simplified model of heterogeneous file popularity, where

each user has uniform interest among files in his/her file demand set and has zero interest

to the files otherwise. We analyze the performance of the coded caching system with K = 2

users, arbitrary N files, and homogeneous/heterogeneous file demand set. Specifically, we

propose the following results:

1. The exact capacity results of one overlapped file demand sets |Θ1∩Θ2| = 1 for arbitrary

N and two overlapped file demand sets |Θ1 ∩Θ2| = 2 for N = 3.

2. The average rate capacity with selfish and uncoded prefetching and arbitrary number

of overlapped files.

20

2. CAPACITY-APPROACHING PROTOCOL FOR GENERAL

1-TO-K BROADCAST PACKET ERASURE CHANNELS WITH

ACK/NACK

In this chapter, we study the capacity-approaching network coding scheme for 1-to-K broad-

cast packet erasure channels (PECs). In the system, one server aims to transmit K informa-

tion flows, one for each of K users (destinations), through a broadcast PEC. We introduce

a new inner bound and a corresponding achievable network coding scheme that is provably

tight for all the scenarios in which the capacity regions are known. That is, in terms of

analytically characterizing the capacity region, the new inner bound is as good as any ex-

isting inner bounds. Moreover, the new inner bound has a simple form in representation.

The corresponding network coding scheme employs sequential encoding for dynamic packet

arrivals and adapts to unknown packet arrival rates.

2.1 Introduction

Broadcast channels (BC) have been extensively studied as one of the earliest subjects

in network information theory [1]. Although the capacity for the most general broadcast

channel model is still unknown, the exact capacity region is known for cases like the degraded

broadcast channel models [2], degraded broadcast channels with message side information

[3], etc. Recently, BC with causal channel output feedback is also considered along the lines

of degree-of-freedom analysis [4] and the ACKnowledgement-feedback for broadcast packet

erasure channels (PEC) [5]–[10]. Although the latter is based on a packet-based setting,

which is quite different from the symbol-based studies of most physical layer solutions, the

PEC setting is widely used to model potential packet loss in modern wireless communication

networks [5], [11]–[18]. In addition, the insights derived from the PEC setting could also

benefit the symbol-based settings, see the recent results in [19]–[21].

21

Specifically, the 1-to-K broadcast PEC

1
 is a memoryless and stationary broadcast channel

for which a single packet is transmitted for each time slot and may be received by a random

subset of K destinations. For each k two possible outcomes may happen at destination

dk: The destination may receive the transmitted packet successfully without error, or it

may receive “nothing” due to packet erasure. After transmission, all K destinations inform

the source whether the packet is received or not, i.e., sending ACK if successful reception

and NACK if erasure. Due to the broadcast nature, even if a packet is intended for one

destination, other destinations may overhear the packet, which can later be used as side

information.

Network coding is an important component when characterizing the capacity of the

broadcast PEC model with causal ACK/NACK. Take the 1-to-2 broadcast PEC for example

as shown in Fig. 2.1 . The source s intends to delivery packets X1,1, . . . , X1,nR1 to destination

d1 and packets X2,1, . . . , X2,nR2 to destination d2 though the 1-to-2 broadcast PEC. Consider

at some time slot, destination 1 receives packets (X1,1, X1,2, X2,2) and destination 2 receives

packets (X1,1, X2,1, X1,3). Although X2,2 and X1,3 are undesirable packets for destination 1

and 2, respectively, it is not necessary for the source to take two time slots to retransmit X2,2

andX1,3 independently. Instead, source s can send the coded packetX1,3⊕X2,2 that takes one

time slot but benefits both d1 and d2 simultaneously. This simple idea has been generalized

for the 1-to-K broadcast PEC with causal ACK/NACK. The main challenge of designing a

capacity-approaching network coding scheme for general 1-to-K broadcast PECs lies in how

to encode packets based on the latest overheard side information at different destinations to

ensure that each destination is able to decode its desired packets within the shortest amount

of time.

The 1-to-K broadcast PEC with ACK/NACK has been studied in many scenarios. The

capacity region of the memoryless 1-to-2 broadcast PEC was characterized in [6], which

shows that ACK/NACK feedback strictly improves the capacity of 1-to-2 broadcast PEC.
1

 ↑ In this work, we use the information-theoretic terminology of broadcast channels. That is, there are K
destinations and each of them desires one of the K independent streams of packets. In the networking
terminology, such a setting is named differently as the K-unicast setting. The broadcast setting herein (i.e.,
the K-unicast setting) is sharply different from the so-called 1-to-K multicast setting in the networking
literature, where all K destinations desire the same common stream of packets. Some results of the 1-to-K
multicast setting can be found in [22], [23].

22

Figure 2.1. The 1-to-2 broadcast PEC example of source s and destinations
d1, d2. The source s intends to delivery packets X1,1, . . . , X1,nR1 to destination
d1 and packets X2,1, . . . , X2,nR2 to destination d2.

23

[24] extends the results of 1-to-2 broadcast PEC to characterize the stability region for

stochastic sequential arrival sources. Optimal scheduling of 1-to-2 broadcast PECs with

sequential packet arrivals and time-varying channels is proposed in [14], which shows that

any sequential arrival rates within the Shannon capacity region can be stabilized by the

proposed joint network coding and network scheduler. The broadcast PEC with ACK/NACK

and arbitrary prior message side information

2
 at destinations is investigated in [25]. Most

achievability results in the literature are based on linear network coding operations, though

recent results by [26] also explore typicality-based designs.

This work introduces the new concept of opportunistic packet evolution [27], which is

used to study two separate but closely related subjects of the general 1-to-K broadcast PEC

with ACK/NACK.

Subject 1: Deriving a new inner bound that sheds further insights on the capacity region.

On this front, we derive a new inner bound that is provably tight for all the scenarios in

which the capacity regions are known.

3
 That is, in terms of analytically characterizing the

capacity region, the new inner bound is as good as any existing inner bounds [5], [17], [18].

In terms of the proof/construction techniques, two main ingredients of the existing inner

bounds [5], [17], [18] are the concepts of user ordering and collapsed overhearing set match-

ing.

4
 The new concept of opportunistic packet evolution completely subsumes these two

concepts, and the resulting new inner bound admits a much simpler form, which allows for

more efficient numerical evaluation of the achievable rates and has been used to analytically

identify new capacity rate vectors, a difficult task with the existing inner bounds.

Subject 2: We depart from the traditional block code setting and design a new sequen-

tial coding scheme that has short delay and small memory usage, automatically adapts to

dynamic packet arrivals, and attains the aforementioned new inner bound. Specifically, most
2

 ↑ The setting of prior side information assumes that a certain amount of side information is available before
the transmission begins, which is different from the traditional no-side-information scenarios [5], [14], [17],
[18] for which the side information is overheard during transmission.
3

 ↑ The capacity region of the 1-to-K broadcast PECs is known if any of the following three conditions hold:
(i) K ≤ 3, (ii) the channel is symmetric, or (iii) the channel is spatially independent and the rate vectors are
one-sided fair.
4

 ↑ The concepts of user ordering and collapsed overhearing set matching are powerful tools in terms of finding
the largest achievable rate region. But they also have significant drawbacks both analytically, i.e., being too
complicated to be tractable, and in practice, i.e., incurring too much delay and complexity. Also see the
detailed discussion of Drawbacks 2 and 3 in Subject 2 for their practical implications.

24

achievability schemes, e.g., [5], [17], have the following drawbacks. Drawback 1: To transmit

packets at a given rate vector ~R, the schemes have to first solve a linear-programming (LP)

problem with ~R as input and then use the optimal LP solution to adjust the design parame-

ters for the target ~R. However, in practice the packet arrival rates ~R are usually not known

in advance.

Drawback 2: The network coding opportunity exists after some node dk overhears some

previous transmissions. Therefore, there is a strict causality relationship between when the

coding opportunity is created (through overhearing) and when one can start to combine

packets to capitalize the created coding opportunity. In order to maximize the achievable

rates, the existing schemes [5], [17], [26] impose a strict user/transmission order that takes

into account the causality constraints. Since a strict transmission order requires packets to

“wait in the queues” before transmission, it incurs long queuing delay in practice.

Drawback 3: Intuitively, network coding transmits a linear sum of multiple packets for

which the overhearing set of each constituent packet is “matched” with the other constituent

packets. Since there are 2K − 1 non-empty subsets of all K destinations, there are 2K − 1

number of ways to “match” the overhearing sets. For each time instant, one of these 2K − 1

ways is used to generate the coded packet. Unfortunately, it turns out that strictly adhering

to this simple rule yields strictly suboptimal performance. To remedy the deficiency, the

concept of collapsed overhearing set matching (COSM) is introduced in [5], [17], [18] and has

since been one of the central ingredients used to achieve the capacity region of the case of

K = 3 and to design high-performance inner bounds for general K. Nonetheless, searching

for the COSM involves comparing roughly O
((

K+1
ln(K+2)

)K+1
)

coding choices for each time

instant, a dramatic increase from the intuitive number 2K − 1. The complexity of COSM is

exceedingly high even for very small K.

Drawback 4: The theoretic schemes in [5], [17] allow for asymptotically large memory,

asymptotically large queuing/decoding delay, and asymptotically large complexity, which

make it difficult to implement in practice. Note that there are several existing schemes

that aim to simplify the code design and make network coding practical, see [28] and the

references therein, but at the cost of sacrificing the provable optimality.

25

Table 2.1. Comparison of the numbers of coding choices. COSM stands for
“collapsed overhearing set matching” and Bm represents the m-th Bell number.
For reference, B6 = 203, B11 = 678570, and B16 ≈ 1010.

No. users Proposed Intra-level scheme Inter-level scheme
scheme in [18] without COSM in [18] with COSM

1 1 1 1
2 3 5 8
3 7 25 47
4 15 124 244
5 31 616 1227

K 2K − 1
(∑K

m=0

(
K
m

)
Bm+1

)
No clean

−2K+1 +K + 1 expression available

Our new network code design addresses the above four drawbacks simultaneously. Firstly,

our scheme requires only the knowledge of the underlying channel statistics, and will auto-

matically adapt to the unknown arrival rates ~R. Secondly, by using the new concept of

opportunistic packet evolution, our scheme does not impose any user/transmission order

and no longer needs to search for COSM. Instead, for each time instant the new scheme

chooses one out of 2K − 1 possible coding choices but can still attain rates that are equal

or better than all the existing schemes. Thirdly, the proposed scheme is based on sequential

coding, which has short delay and low memory usage.

Comparison to the closest existing work [18]: The authors in [18] design a sequential

coding scheme that addresses Drawbacks 1, 2, and 4 successfully. In addition, only binary

XOR operations are used in [18] and the scheme admits the highly desired feature of instan-

taneous decodability. For comparison, our results are based on GF(q) instead of binary XOR.

Our scheme is not instantly decodable, though numerical results show that the total delay,

queueing plus decoding delay, is still quite manageable for practical scenarios.

The defining difference between our scheme and [18] is the new notion of opportunistic

packet evolution, which enables our scheme to successfully address Drawback 3. In the

following, we highlight the benefits of opportunistic packet evolution.

• Provable optimality: Our new scheme is provably capacity achieving for all the sce-

narios for which the capacity region is known, also see footnote 3 . For comparison, the

26

inter-level scheme in [18] is provably optimal only when the following conditions hold

simultaneously: (i) K = 4 and (ii) the channel is symmetric and spatially indepen-

dent. Our new inner bound can also be used to identify new capacity vectors, which

is difficult to do with the result in [18] due to its high complexity.

• Inner bound description: Our achievable rate region (ARR) has a very compact form

that consists of 2 inequalities. For comparison, the scheme in [18] reacts to various

sub-cases differently, which makes the corresponding ARR more difficult to describe.

For example, for K = 5 and asymmetric channels, our ARR is described as an LP

problem with 31 variables. The ARR of the general inter-level scheme in [18] is an LP

problem with 1227 variables.

• Backpressure algorithms: Both this work and [18] are based on backpressure scheduling

and can automatically adapt to any unknown ~R. However, our backpressure scheduler

has a significantly smaller number of “competing actions” to consider during each

backpressure computation, which greatly reduces the complexity and delay inherent

in the backpressure solution. Taking K = 5 for example, our scheme compares the

backpressures of only 31 different actions while [18] compares the backpressures of 1227

actions. Also see Table 2.1 .

2.2 1-to-K Broadcast Packet Erasure Channel Model

This work considers two major settings, the block-coding and the sequential-coding set-

tings. The goal of the block-coding setting is that given a block of n · Rk messages how to

transmit the messages with asymptotically small error probability within n channel usage.

The goal of the sequential-coding setting is that given i.i.d. Poisson random arrival processes

with arrival rates Rk, how to transmit the messages error free while keeping the queue lengths

stable. The largest limit of the former setting is known as the Shannon capacity region and

the limit of the latter is termed the optimal stability region. In the following, we formally

define these two settings and prove that the stability region is an inner bound of the capacity

27

region. Since this work focuses exclusively on the inner bound, in the sequel we focus on

characterizing a new stability region.

2.2.1 The 1-to-K Broadcast Packet Erasure Channel

For any positive integer K, we use [K] , {1, 2, . . . , K} to denote the set of integers from

1 to K and use the notation 2[K] , {S : S ⊆ [K]} to denote the collection of all subsets

of [K]. We consider a 1-to-K broadcast PEC from source s to destinations dk, k ∈ [K].

There are K independent packet streams, one stream for each dk. All packets are drawn

independently and uniformly randomly from a fixed finite field GF(q) satisfying q ≥ K. The

scenario of GF(q) with q < K is beyond the scope of this work.

At any discrete time slot t ∈ {1, 2, · · · }, source s sends a packet Y (t) ∈ GF(q) as an

input of the broadcast PEC. The channel outputs a K-dimensional vector (Z1(t), · · · , ZK(t)),

where for each k we have Zk(t) ∈ {Y (t), ∗}. Herein Zk(t) = Y (t) means that the transmitted

packet Y (t) is received successfully by dk and Zk(t) = ∗ means that the transmitted Y (t)

is “erased” at dk. We define Srx(t) , {k : Zk(t) = Y (t)} as the set of indices k for which

Zk(t) = Y (t), i.e., Srx(t) is the reception set at time t. The distribution of the random 1-to-K

broadcast PEC is thus determined uniquely by the distribution of the reception set Srx(t).

We assume that the random process of {Srx(t) : t ∈ {1, 2, · · · }} is stationary and mem-

oryless and does not depend on the input {Y (t) : t}. The probability that Y (t) is received

by all dk for k ∈ S is then denoted by

pS ,
∑

S̃∈2[K]:S̃⊇S

Pr(Srx(t) = S̃). (2.1)

The above definition of pS can be further generalized as follows: For any disjoint subsets

S, T ∈ 2[K].

pST ,
∑

S̃∈2[K]:S̃⊇S,S̃∩T =∅

Pr(Srx(t) = S̃). (2.2)

28

That is, pST represents the probability that Y (t) is received by all dk for k ∈ S but by none

of the dk for k ∈ T . The new input argument T excludes some events that were previously

counted when computing pS. Note that we do not care whether Y (t) is received or not by

those destinations in [K]\(S ∪ T) thus the summation in (2.2). Comparing (2.1) and (2.2),

it is clear that pS = pS∅ ≥ pST for all S ∩ T = ∅.

For simplicity, when either S or T is empty, we use pT and pS as shorthand for p∅T

and pS∅ respectively. For the special instance of T = ∅ and S = {k} containing only one

element k, we use pk , p{k}∅ as shorthand, which is simply the marginal success probability

for destination dk.

For convenience, we also define

p∪S , 1− pS.

which is the probability that at least one of the destination k ∈ S receives the packet Y (t).

We close this subsection by introducing a commonly used definition.

Definition 2.2.1. A 1-to-K broadcast PEC is spatially independent if the distribution of

Srx(t) satisfies

pS[K]\S =
(∏

i∈S

pi

) ∏
j∈[K]\S

(1− pj)
 , ∀S ∈ 2[K]. (2.3)

The results of this work do not assume the underlying 1-to-K broadcast PEC being

spatially independent, unless explicitly stated otherwise.

2.2.2 The Block-Coding Setting

Given any rate vector ~R , (R1, . . . , RK), we now define the traditional block-coding

setting with block length n. We denote Xk = {Xk,i ∈ GF(q) : i = 1, 2, · · · , nRk} as the nRk

packets of stream k. For any time t ∈ [n], source s sends a coded symbol

Y (t) = f
(bl)
t (X1, . . . ,XK , [Srx]t−1

1) ∈ GF(q)

29

where the encoding function f
(bl)
t (·) takes all information symbols {Xk} and the past re-

ception sets [Srx]t−1
1 , {Srx(τ) : τ ∈ [t − 1]} as input and generates the coded symbol

Y (t) ∈ GF(q). The knowledge of [Srx]t−1
1 models the causal ACK/NACK fed back from

the destinations to the source. The superscript (bl) emphasizes that it is the block-coding

setting. In the end of time n, each dk decodes

X̂k = g
(bl)
k ([Zk]n1 , [Srx]n1), (2.4)

based on all the received packets [Zk]n1 , {Zk(t) : t ∈ [n]} and all the reception sets [Srx]n1 .

Here we assume [Srx]n1 , the network-wide ACK/NACK information is known to all the des-

tinations.

5

A network block code of length n is defined by the corresponding n encoding functions

f
(bl)
t (·), t ∈ [n], and K decoding functions g(bl)

k (·), k ∈ [K]. The achievable rates of a 1-to-K

broadcast PEC with ACK/NACK are then defined by

Definition 2.2.2. Given any fixed GF(q), (R1, · · · , RK) is achievable if for any ε > 0, there

exists a network block code of length n such that

Pr
 ⋃

k∈[K]
{X̂k 6= Xk}

 ≤ ε.

The capacity region is the closure of all achievable rate vectors (R1, . . . , RK).

The exact capacity region for general channel parameters {pS[K]\S : ∀S ∈ 2[K]} remains

an open problem. We close this subsection by restating the best known existing capacity

outer bound results [5], [17].

Proposition 2.2.1 ([5], [17]). A K-permutation (or simply permutation) is a bijective func-

tion from the set [K] to itself. That is, π : [K] 7→ [K]. Given any permutation π, for all
5

 ↑ In practice, each dk naturally knows whether itself has received the packet Y (t) or not, but may not
know the reception status of other dk̃, k̃ 6= k. Therefore, in practice, source s may need to broadcast the
network-wide information [Srx]n1 to each individual dk using additional n·K

log2(q) mink pk
packets. For sufficiently

large q, the rate penalty of broadcasting [Srx]n1 is negligible and our model thus directly assumes that [Srx]n1
is known to all dk.

30

j ∈ [K] we define Sπ

j , {π(l) : l ∈ [j]} as the set of the first j elements according to π. Any

achievable rate vector (R1, . . . , RK) must satisfy the following K! inequalities:

K∑
j=1

Rπ(j)

p∪Sπ

j

≤ 1, ∀π. (2.5)

For example, if K = 3, the above outer bound becomes:

R1
p1

+ R2
p∪{1,2}

+ R3
p∪{1,2,3}

≤ 1

R2
p2

+ R1
p∪{1,2}

+ R3
p∪{1,2,3}

≤ 1

R1
p1

+ R3
p∪{1,3}

+ R2
p∪{1,2,3}

≤ 1

R3
p3

+ R1
p∪{1,3}

+ R2
p∪{1,2,3}

≤ 1

R2
p2

+ R3
p∪{2,3}

+ R1
p∪{1,2,3}

≤ 1

R3
p3

+ R2
p∪{2,3}

+ R1
p∪{1,2,3}

≤ 1

(2.6)

In [5], [17] it is proven that in the scenario of K = 3, this outer bound is indeed the capacity

region.

2.2.3 The Sequential-Coding Setting

In this setting, the packets arrive sequentially for each time slot. We denote the number

of user-k packets arriving at time slot t by Ak(t) and assume Ak(t) is an i.i.d. Poisson

random process with mean E{Ak(t)} = Rk. At time t, we denote Mk(t) , ∑t
τ=1 Ak(τ) as the

cumulative number of packet arrivals until time t and Xk(t) = {Xk,i : i = 1, 2, . . . ,Mk(t)}

as the set of all user-k packets that have already arrived at source s by time t. Obviously,

Xk(t)\Xk(t− 1) represents the content of the user-k packets arriving during time t. We use
~A(t) = (A1(t), . . . , AK(t)) to denote the arrival patterns of all K destinations at time t.

Unlike the block-coding setting which is not worried about memory usage, any sequential

network code has to carefully manage its memory. Specifically, the content of the memory

at the end of time t is denoted by Q(t) ∈ (GF(q))∗, a variable-length string of symbols in

GF(q). In the networking terminology, Q(t) represents the content of the “queue” at time t.

31

At the beginning of each time slot t, source s transmits a coded symbol Y (t) using the

broadcast PEC. That is,

Y (t) = f
(sq)
t

Q(t− 1),
⋃

k∈[K]
Xk(t)\Xk(t− 1), [Srx]t−1

1

 (2.7)

where f (sq)
t (·) is the sequential encoding function that takes as input Q(t − 1), the content

of the memory at the end of time t − 1, the new arrivals of user-k packets at time t for

all k ∈ [K], and the past reception status [Srx]t−1
1 obtained through causal ACK/NACK

feedback. The superscript (sq) emphasizes we consider the setting of sequential coding.

After the transmission over the broadcast PEC, new ACK/NACK will be fed back to

source s and in the end of time t the source updates its memory

Q(t) = f
(sq)
buff,t

Q(t− 1),
⋃

k∈[K]
Xk(t)\Xk(t− 1), [Srx]t1

 . (2.8)

Comparing to (2.7), the buffer management function f (sq)
buff,t has an additional input argument

Srx(t), the reception status of time t.

The definition of decodability of a sequential encoder/decoder pair needs special atten-

tion, and we define the sequential decoder g(sq)
k,t as follows.

X̂k(t) = g
(sq)
k,t

(
[Zk]t1, Q(t), [Srx]t1, [~A]t1

)
(2.9)

and we require the decoder function g
(sq)
k,t to satisfy

Pr
(
X̂k(t) 6= Xk(t)

)
= 0, ∀k, t. (2.10)

The rationale behind (2.9) and (2.10) is as follows. Consider the end of time t. It is likely

that Xk(t) cannot be fully decoded by dk at the end of the current time t. One reason

is that some of them may have just arrived at s and are still waiting for their turn to be

transmitted, the so-called queueing delay. Another reason is that they may be transmitted

in a coded form and thus some decoding delay is needed before actual decoding.

32

That said, if at the end of time t a genie conveys to destination dk all the (undelivered)

entries/content in the current source queue Q(t) and the past reception status [Srx]t1, then

dk must be able to perfectly decode all Mk(t) packets in Xk(t). Otherwise, some packets in

Xk(t) are permanently lost and can no longer be decoded in the future since only the content

in Q(t) may have any impact on future encoding. Following this rationale, dk, if equipped

by a genie with the knowledge of all the received symbols [Zk]t1, the queue content Q(t), the

past network-wide reception status [Srx]t1, and the past arrival patterns [~A]t1, must be able

to decode all packets in Xk(t) error-freely, which is captured by (2.9) and (2.10).

A sequential network coding scheme is thus described by the K + 2 infinite series of the

encoding functions f (sq)
t , the buffer management functions f (sq)

buff,t, and the decoding functions

g
(sq)
k,t in (2.7), (2.8), (2.9), and (2.10). We then define the stability region as follows.

Definition 2.2.3. A rate (R1, . . . , RK) is stable if there exists a sequential network coding

scheme such that

lim sup
t→∞

1
t

t∑
τ=1

E {|Q(τ)|} <∞ (2.11)

where |Q(τ)| is the length of the queue Q(τ).

Remark: The above definition is compatible with the traditional stability region defi-

nition for non-coded solutions. Specifically, a traditional scheme has a very simple buffer

management function f (sq)
buff,t in (2.8), that stores the new packets Xk(t)\Xk(t−1) in the queue

while removing those packets that have been successfully delivered (those being ACKed).

The transmission function f (sq)
t of the traditional non-coded scheme then picks one packet in

the queue Q(t− 1) or the newly arrived packets Xk(t)\Xk(t− 1) and transmits the chosen

packet uncodedly. Which packet to choose is decided by a “network scheduler”, which takes

the past reception status [Srx]t−1
1 as input. The decodability conditions (2.9) and (2.10)

hold naturally for the traditional uncoded scheme since this simple memory management

scheme ensures that Q(t) contains all the packets that have not been delivered. The goal

of the network scheduler is then to stabilize the queue length |Q(t)| as in (2.11) while using

simple uncoded f
(sq)
t and f

(sq)
buff,t. Our new definitions can be viewed as a generalization of

33

Figure 2.2. The virtual nodes and proper-cuts for K = 3 and k = 2.

the traditional ones by allowing both the transmission Y (t) and the packets stored in the

memory Q(t) to be coded.

We close this subsection by establishing the relationship between the block-coding-based

capacity region and the sequential-coding-based stability region.

Proposition 2.2.2. If a rate vector (R1, . . . , RK) is stable, then it also belongs to the capacity

region.

The proof of Proposition 2.2.2 is provided in Appendix A.1 .

Since the stability region is a subset of the capacity region, in the sequel we will describe

a new stability region and the result naturally serves as a new inner bound of the capacity

region.

2.3 A New Stability Region

To describe the new stability region, we first introduce the following definitions.

Definition 2.3.1. For any fixed k ∈ [K], we define 2K−1 virtual nodes and label each of

them by a subset S ⊆ [K]\{k}. It is thus convenient to simply denote each virtual node as

vn(k)
S for all S ∈ 2[K]\{k}. We then define another virtual node, called the ground node, and

denoted it by vn(k)
grnd. Totally there are 2K−1 + 1 virtual nodes for a given k and these virtual

nodes form a virtual sub-network of destination dk. The K virtual sub-networks (totally

K(2K−1 + 1) virtual nodes) jointly form the overall virtual network.

34

Definition 2.3.2. For any fixed k, consider the k-th virtual sub-network. We say a subset

of the 2K−1 + 1 virtual nodes {vn(k)
S : ∀S} ∪ {vn(k)

grnd}, denoted by C(k), is a cut for dk if

vn(k)
∅ /∈ C(k) and vn(k)

grnd ∈ C(k).

Definition 2.3.3. For any fixed k, we say a cut C(k), is a proper-cut if it also satisfies: If

vn(k)
S1 ∈ C

(k) for some S1, then for all S2 ⊇ S1 we must have vn(k)
S2 ∈ C

(k).

An illustration of the above three definitions is provided in Fig. 2.2 , for which we assume

K = 3 and plot the k-th virtual sub-network for k = 2. The corresponding virtual nodes are{
vn(2)

S : ∀S ⊆ [3]\{2}
}

=
{
vn(2)

∅ , vn(2)
{1}, vn(2)

{3}, vn(2)
{1,3}

}
plus the ground node vn(2)

grnd. There are

exactly 5 proper-cuts:

C(2)
1 =

{
vn(2)

grnd

}
, (2.12)

C(2)
2 =

{
vn(2)

grnd, vn(2)
{1,3}

}
, (2.13)

C(2)
3 =

{
vn(2)

grnd, vn(2)
{1}, vn(2)

{1,3}

}
, (2.14)

C(2)
4 =

{
vn(2)

grnd, vn(2)
{3}, vn(2)

{1,3}

}
, (2.15)

C(2)
5 =

{
vn(2)

grnd, vn(2)
{1}, vn(2)

{3}, vn(2)
{1,3}

}
. (2.16)

A new stability region can then be described as follows.

Proposition 2.3.1. A rate vector ~R , (R1, . . . , RK) is stable if there exists 2K − 1 non-

negative variables
{
xT ≥ 0 : ∀T ∈ 2[K]\{∅}

}
satisfying the following two groups of conditions.

[Condition 1:] The time-sharing condition:

∑
T :T ∈2[K]\{∅}

xT < 1; (2.17)

and [Condition 2:] The min-cut condition: For all k and for all C(k) being a proper cut,

∑
S:S∈2[K]\{k},

vn(k)
S /∈C(k)

xS∪{k}·

pk +
∑
SX :

SX∈F(k,S,C(k))

pSX [K]\(SX∪S)

≥Rk, (2.18)

35

where the set F(k, S, C(k)) is defined by

F(k, S, C(k)) ,
{
SX ∈ 2[K]\(S∪{k}) : ∃S̃ ⊆ (SX ∪ S)

s.t. vn(k)
S̃
∈ C(k)

}
. (2.19)

Condition 1 contains a single time-sharing inequality. To illustrate Condition 2, we

expand it for the case of K = 3 in the following. When K = 3, any fixed k has 5 distinct

proper-cuts C(k). There are thus 3 ·5 = 15 inequalities in Condition 2. Specifically, using the

C(2)
1 to C(2)

5 defined in (2.12) to (2.16), Condition 2 becomes

C(2)
1 :

(
x{2} + x{1,2} + x{2,3} + x{1,2,3}

)
· p2 ≥ R2, (2.20)

C(2)
2 : x{2}

(
p2 + p{1,3}2

)
+ x{1,2} (p2 + p32)

+ x{2,3} (p2 + p12) ≥ R2, (2.21)

C(2)
3 : x{2}

(
p2 + p1{2,3} + p{1,3}2

)
+ x{2,3} (p2 + p12)

≥ R2, (2.22)

C(2)
4 : x{2}

(
p2 + p3{1,2} + p{1,3}2

)
+ x{1,2} (p2 + p32)

≥ R2, (2.23)

C(2)
5 : x{2} ·

(
p2 + p1{2,3} + p3{1,2} + p{1,3}2

)
≥ R2. (2.24)

For example, consider proper-cut C(2)
3 and the corresponding (2.18) in Condition 2. By the

definition of C(2)
3 in (2.14), there are exactly two virtual nodes vn(2)

∅ and vn(2)
{3} not in C(2)

3 ,

i.e., the summation in (2.18) is over S = ∅, {3}.

For the case S = ∅, we have F(2, ∅, C(2)
3) = {{1}, {1, 3}}. The reason is that SX in (2.19)

is now chosen from 2[K]\S∪{k} = {∅, {1}, {3}, {1, 3}}. If SX = {1} or {1, 3}, there exists

S̃ = {1} satisfying S̃ ⊆ SX ∪ S and vn(k)
S̃
∈ C(2)

3 . Furthermore, no such S̃ exists if SX = ∅

or SX = {3}. As a result, F(2, ∅, C(2)
3) = {{1}, {1, 3}}, which then contributes to the term

x{2}
(
p2 + p1{2,3} + p{1,3}2

)
in (2.22).

For the case S = {3}, we have F(2, {3}, C(2)
3) = {{1}}. The reason is that SX in (2.19)

is now chosen from 2[K]\S∪{k} = {∅, {1}}. If SX = {1}, there exists S̃ = {1} satisfying

36

S̃ ⊆ SX ∪ S and vn(k)
S̃
∈ C(2)

3 . Furthermore, no such S̃ exists if SX = ∅. As a result,

F(2, {3}, C(2)
3) = {{1}}, which contributes to the term x{2,3} (p2 + p12) in (2.22). The other

four inequalities in (2.20) to (2.24) can be derived similarly.

Proposition 2.3.1 is a direct result of Proposition 2.4.2 that will be formally described in

Section 2.4 .

Corollary 1. For all the scenarios in which the capacity region is known, i.e., either (i)

K ≤ 3, or (ii) the symmetric channels, or (iii) the channel is spatially independent and

the rate vector is one-sided fair (see [5] for detailed definitions), the above stability region

matches the capacity region.

The proof of Corollary 1 is relegated to Appendix A.2.1 .

It is worth noting that the stable rate region in Proposition 2.3.1 meets the existing

outer bound in Proposition 2.2.1 for many other scenarios not specified in Corollary 1 . For

example, we can examine the solution space of the LP problem in Proposition 2.3.1 by a

brute-force but computer-aided search, which leads to

Example 1. For K = 4 and spatially independent broadcast PEC with marginal suc-

cess probability ~p = (p1, p2, p3, p4) = (1
3 ,

2
5 ,

1
2 ,

4
7), the rate vector ~R = (R1, R2, R3, R4) =

(96
1193 ,

672
5965 ,

288
1193 ,

1952
8351) does not belong to any of the scenarios in Corollary 1 . However, it

is in the boundary of the outer bound (2.5) and also lies within the stable rate region in

Proposition 2.3.1 . Therefore, it is an optimal capacity vector for the given ~p.

The proof of Example 1 is relegated to Appendix A.2.2 .

Example 1 is not unique in any sense. In fact, for K = 4 and the spatially independent

channels, we have run 105 numerical trials with different ~p and we have not found any ~R that

is in the outer bound but not in Proposition 2.3.1 . However, if K = 4 and the underlying

channel is not spatially independent, we have found some rate vectors ~R that are in the outer

bound but not in the new stability region. One such example is provided in Appendix A.2.3 .

37

Figure 2.3. The virtual sub-network for K = 3 and k = 2, where the virtual
nodes are represented by circles and the auxiliary nodes by squares. The
dotted edge marked by a set S is actually connected to vn(2)

S with∞ capacity.
For example, there are 4 outgoing edges of the auxiliary node (square) labeled
by {1, 3}. They are connected to vn(2)

∅ , vn(2)
{1}, vn(2)

{3}, and vn(2)
{1,3}, respectively,

with each edge having infinite capacity. Note that the edge from auxiliary
node {1, 3} to vn(2)

∅ forms part of a self loop in the virtual network.

2.4 The New Achievability Scheme

In Section 2.4.1 , we will provide a high-level max-flow/min-cut-based interpretation of

the LP problem in Proposition 2.3.1 . Later in Section 2.4.2 we will describe a sequential

network coding scheme when assuming unlimited computing power. Finally, in Section 2.5

we will revise the scheme to take into account several practical considerations.

2.4.1 The Connection to the Virtual Network

We first introduce a virtual-network-based interpretation for the capacity inner bound in

Proposition 2.3.1 , which will shed some useful but very high-level intuition of the proposed

design. It is worth noting that this virtual network representation is not needed when

describing the proposed scheme. Therefore, some readers may choose to skip this subsection

and directly start from the detailed scheme description in Section 2.4.2 .

In Section 2.3 , we have described the 2K−1 + 1 virtual nodes in the k-th virtual sub-

network. We now describe its edges. See Fig. 2.3 for illustration.

38

For each vn(k)
S that is indexed by a subset S ⊆ [K]\{k}, we add (i) an edge of capacity pk

that ends in vn(k)
grnd; (ii) 2K−(|S|+1) auxiliary nodes, each denoted by a subset SX ∈ 2[K]\(S∪{k}).

For example suppose K = 3 and we focus on vn(2)
{1} with S = {1}. Since [K]\(S∪{k}) = {3},

we add two auxiliary nodes denoted by SX = ∅ and SX = {3}, respectively. To distinguish

an auxiliary node from a regular virtual node, we represent the auxiliary nodes by squares

in Fig. 2.3 .

(iii) For each auxiliary nodes indexed by SX , we add an edge connecting vn(k)
S and its

auxiliary node SX with capacity pSX [K]\(S∪SX); (iv) Finally, for each auxiliary node SX of

vn(k)
S , we add an edge of infinite capacity to virtual node vn(k)

S̃
for all S̃ ⊆ (S∪SX). Take the

virtual network in Fig. 2.3 for example, for which K = 3 and k = 2. Suppose we focus on

vn(2)
{1} with S = {1} and the corresponding auxiliary node indexed by SX = ∅. Then we add

an edge connecting vn(2)
{1} and its auxiliary node SX = ∅ with capacity p{2,3}. Furthermore, we

add two infinite-capacity edges from SX = ∅ to vn(2)
∅ and vn(2)

{1}, respectively. The description

of the k-th virtual sub-network is complete.

In the following we describe how our new network coding scheme and its operations are

mapped to the “packet movement” within the virtual network. For any subset T ∈ 2[K],

it is well known that a single coded packet can deliver

6
 |T | different packets, one for each

destination dk, k ∈ T if the following conditions hold: If for all k ∈ T there exists a flow-k

packet Xk,ik that has previously been overheard by all other destinations dk̃ for all k̃ ∈ T\{k},

then we can send a linear sum∑
k∈T Xk,ik that benefits all dk, k ∈ T , simultaneously. Roughly

speaking, the value of xT in (2.17) corresponds to the frequency of sending a linear sum of

|T | packets, one packet from each flow k ∈ T . Since each time slot can only choose one

specific T , the frequencies {xT} must satisfy the time-sharing condition in (2.17).

The intuition behind Proposition 2.3.1 is that each virtual node vn(k)
S represents a queue

that stores the flow-k packets that have been overheard by all dk̃, k̃ ∈ S. Since combining

flows of k ∈ T can simultaneously benefit all flows k ∈ T , a larger xT value should help move

more packets out of vn(k)
S where S = T\{k}. That is why we scale the virtual network edge

capacity of the k-th virtual sub-network, see (2.18), by xS∪{k}. A close look at (2.18) shows
6

 ↑ Obviously this statement assumes that the coded packet is received successfully for all dk, k ∈ T .

39

that for any fixed T , xT will appear in (2.18) for all k ∈ T , which reflects the fact that the

coded transmission can simultaneously benefit all dk with k ∈ T .

When a coded packet combined from the node (queue) vn(k)
S , k ∈ T , is received by

destinations {di : i 6= k, i ∈ Srx}, the coded packet can potentially move to the nodes

(queues) vn(k)
S̃

, S̃ ⊆ S∪Srx. Therefore we use the auxiliary node SX to indicate the additional

overhearing set SX = Srx\T = Srx\(S ∪ {k}) such that S ∪ Srx = S ∪ SX . The probability

that the additional overhearing set SX is observed, computed by Pr(SX ⊆ Srx ⊆ SX ∪ S) =

pSX [K]\(S∪SX) in (2.2), is thus the capacity from the virtual node vn(k)
S to its auxiliary node

SX . Since the flows out of the auxiliary nodes is already constrained by the flows into the

auxiliary nodes, we place no capacity limit on the out links of the auxiliary nodes, thus the

infinite capacity.

Before any further discussion, we provide the following lemmas.

Lemma 1. For any cut C(k), the left hand side of (2.18) represents the corresponding cut

value in the k-th virtual sub-network, i.e., the summation of the capacity (scaled by the node

scheduling frequency xT) of the edges crossing the cut C(k).

Lemma 2. The following two statements are equivalent. [Statement 1:] The minimum cut

value of all cuts (not necessarily proper-cut) is no less than Rk; [Statement 2:] The minimum

cut value of all proper cuts is no less than Rk.

The proofs of Lemmas 1 and 2 are relegated to Appendix A.3 .

By Lemma 1 , (2.18) asserts that the minimum cut value of all proper cuts must be no less

than Rk, the desired rate of the k-th session. Then by Lemma 2 it further implies that the

minimum cut value of all cuts is no less than Rk. Finally, by the max-flow/min-cut theorem,

we can find a max-flow that achieves Rk in the virtual sub-network. As a result, if we

can establish the relationship between (i) the achievable rate region of a sequential network

coding scheme and (ii) the max-flow values of the virtual network, then Proposition 2.3.1

can be used to characterize the achievable rate region of the given network coding scheme.

This is the basic road map of our approach.

Remark: The concept of using virtual networks to represent network coding operations

is not new. Nonetheless, our virtual network representation is significantly different from

40

existing ones, e.g., [18]. Firstly, the existing virtual network representation [18] uses 1-to-1

edges, i.e., each edge is from a single vn(k)
S to another vn(k)

S̃
. In contrast, by letting vn(k)

S

first connect to an auxiliary node labeled by SX and then adding edges of infinite capacity

from SX to many virtual nodes vn(k)
S̃

for all S̃ ⊆ (S ∪SX), we essentially create a 1-to-many

hyper-edge from vn(k)
S to {vn(k)

S̃
: S̃ ⊆ (S ∪ SX)} for each SX , see Fig. 2.3 ; Secondly, the

virtual network in [18] is acyclic as the packets only move to queues of higher levels. Our

construction contains many cycles and self-loops as illustrated in Fig. 2.3 . This new cyclic,

hyper-graph-based virtual network is a direct result of the new concept of opportunistic

packet evolution.

2.4.2 A New Sequential Network Coding Scheme

We now present a new sequential coding scheme, the operation of which requires only

the statistics pS[K]\S of the underlying PEC.

Our sequential network coding scheme has five components:

1. Maintain the queues and the global coding kernels.

2. Handle random sequential packet arrivals at time t.

3. Select a set T ∗ ∈ 2[K] of flows to be “added” together.

4. Generate the coded packet Y (t).

5. Update the queues and the global coding kernels based on the reception status Srx(t)

fed back from the destinations to the source.

Component 1: The queues and coding information at source. The discussion of this

component can be further divided into two sub-components.

Component 1.1: Physical Memory Usage. Source s maintains K · 2K−1 queues, denoted

by Q
(k)
S for all k ∈ [K] and S ∈ 2[K]\{k}. Each element of the queue Q(k)

S belongs to GF(q),

41

which represents the coded or uncoded entries (payload) for destination dk that have been

overheard

7
 by destinations {di : i ∈ S}. Initially at time 0, all queues Q(k)

S are empty.

Component 1.2: Computation Task. Source s maintains 2K matrices: U(k) and V(k) for

all k ∈ [K]. Unlike the queues described previously, these 2K matrices can be deterministi-

cally computed from the packet arrival processes [Ak]t1 and the past channel reception status

[Srx]t−1
1 . Therefore, they can be computed on-the-fly, see (2.7), and no actual memory usage

is needed. However, for the ease of exposition we describe these matrices as if they are being

stored in memory.

Specifically, each U(k) matrix stores the global encoding kernels [29] of the coded packets

in the queues {Q(k)
S }. The number of rows of U(k) is thus equal to∑S |Q

(k)
S |. Each V(k) matrix

stores the global encoding kernels of all the packets that have been successfully delivered to

dk. The number of rows of V(k) is equal to ∑t
τ=1 1{k∈Srx(τ)}.

The detailed update rules of U(k) and V(k) and Q
(k)
S will be discussed in Components 2

and 5. Initially at time 0, these 2K matrices are 0× 0 matrices.

Component 2: Sequential packet arrivals. Whenever the i-th flow-k information packet

arrives at s, denoted by Xk,i, we store it in the queue Q(k)
∅ by creating a new entry Wptr =

Xk,i ∈ GF(q) where ptr is the pointer of the new entry Wptr. The queue update is now

complete. We note that the pointer ptr can be of any arbitrary format. One convenient

choice is to let ptr = (k, i) being a vector (k, i). Note that even though when a packet

arrives, the newly queued element W(k,i) is identical to the newly arrived Xk,i, the other

queued element W(k,i) may not be equal to Xk,i. The pointer ptr = (k, i) (or ptr = (k, i))

only serves as a unique pointer/index to the queued element and does not necessarily dictate

the content of the queued element. For example, we may have W(2,3) = X2,3 + X1,4, which

means that the queue entry being referred by the pointer (k, i) = (2, 3) is a linear sum of

X2,3, the third packet of user d2, and X1,4, the fourth packet of user d1.

We now describe how to update the matrices U(k) and V(k). We first add an all-zero

column vector to the right of all 2K matrices U(k) and V(k). Namely, all 2K matrices are
7

 ↑ A more precise statement would be “non-interfering to destinations {di : i ∈ S}” rather than “overheard
by {di : i ∈ S}”. The subtle difference will be explained in Appendix A.5 . For ease of exposition, we use the
term “overheard” in this subsection.

42

getting wider by one column. The number of rows of the added column vector should be

clear from the context. Intuitively, the new column corresponds to the newly arrived packet

Xk,i.

Let e(k,i) = (0, . . . , 0, 1) denote a row vector with value 1 in the last position, the position

corresponding to the new column (k, i), and 0s otherwise. We then add e(k,i) to the bottom

of U(k). Namely, U(k) is now getting both taller and wider since one new packet Xk,i now

appears in queue Q(k)
∅ of user-k. All the other U(k) with k 6= k just get wider (due to the

added column) but the heights remain the same.

Note that for ease of exposition, we use the same pointer ptr = (k, i) to refer to either

an entry in Q
(k)
S or the corresponding row in U(k). For example, the actual content of the

Wptr is equal to the vector product Wptr = rowptr(U(k)) ∗ ~Xarr where rowptr(U(k)) is the row

vector of U(k) referred to by ptr and ~Xarr is a column vector that consists of all the packets

that have arrived according to its arrival order (namely, according to the order when the

columns were created.) Note that ~Xarr contains the packets of all K users, not just user dk.

The reason is that our scheme performs intersession coding over all K users’ packets.

Component 3: Selecting a set T ∗ ∈ 2[K] of flows to be added together. For each time t,

we select a new T ∗ as follows. For all k ∈ [K] and all Š ∈ 2[K]\{k}, we compute

q(k, Š) , min
S̃∈2Š

∣∣∣Q(k)
S̃

∣∣∣ , (2.25)

where
∣∣∣Q(k)

S̃

∣∣∣ is the number of entries in Q(k)
S̃

. The minimum operation in (2.25) given k and Š

is to compute the minimum queue length associated to the hyper edge that reaches all S̃ ∈ 2Š

in the flow-k virtual sub-network. Also see the discussion in Section 2.4.1 . Since a hyper edge

originated from vn(k)
S through auxiliary node SX can reach all virtual nodes vn(k)

S̃
satisfying

S̃ ⊆ Š = S∪SX , by setting Š = S∪SX , the expression q(k, S∪SX) computes the minimum

8

of the queue lengths of all the destinations of vn(k)
S when the additional overhearing set is

SX . Note that the additional overhearing is a random set. Since the backpressure is defined
8

 ↑ The reason we choose the minimum is mostly based on the corresponding Lyapunov drift analysis in
Appendix A.6 . Intuitively, since we can opportunistically decide to which virtual node of the hyper edge
should we move the packet, we should move the packet to the one with the smallest queue length (i.e., the
destination node currently experiences the largest backpressure), and thus the minimum operation.

43

Table 2.2. A K = 3 example of computing q(k, S) and the backpressure term
bp(Q(k)

S) from
∣∣∣Q(k)

S

∣∣∣.
(k, S)

∣∣∣Q(k)
S

∣∣∣ q(k, S) bp(Q(k)
S)

(1, ∅) 1 1 0.84
(1, {2}) 2 1 1.90
(1, {3}) 1 1 0.88
(1, {2, 3}) 0 0 0
(2, ∅) 5 5 3.68
(2, {1}) 3 3 1.80
(2, {3}) 1 1 0.40
(2, {1, 3}) 2 1 1.40
(3, ∅) 3 3 1.90
(3, {1}) 2 2 1.00
(3, {2}) 4 3 2.90
(3, {1, 2}) 2 2 1.00

as the difference between the queue length of a given node and the (expected) queue lengths

of all its next-hop neighbors, we compute the backpressure by

bp
(
Q

(k)
S

)
,
∣∣∣Q(k)

S

∣∣∣− ∑
SX∈2[K]\(S∪{k})

pSX [K]\(S∪SX)q(k, S ∪ SX). (2.26)

The target set T ∗ is then selected as follows.

T ∗ = arg max
non-empty T ∈2[K]

∑
k∈T

bp
(
Q

(k)
T \{k}

)
. (2.27)

That is, if we choose to transmit the sum of the packets in queues {Q(k)
T \{k} : k ∈ T} for some

T , then such coded transmission can benefit all dk with k ∈ T . Therefore, their individual

backpressures are also summed together. Eq. (2.27) chooses the T ∗ with the largest sum.

For example, suppose K = 3 and the channel is spatially independent with marginal

success probability (p1, p2, p3) = (0.8, 0.4, 0.5). At time t, suppose the lengths ofK·2K−1 = 12

44

queues are listed as in the second column of Table 2.2 . We can calculate the corresponding

q(k, S) values by (2.25) and the bp(Q(k)
S) by (2.26). For example

q(2, {1, 3}) = min
S̃⊆{1,3}

∣∣∣Q(2)
S̃

∣∣∣
= min

{∣∣∣Q(2)
∅

∣∣∣ , ∣∣∣Q(2)
{1}

∣∣∣ , ∣∣∣Q(2)
{3}

∣∣∣ , ∣∣∣Q(2)
{1,3}

∣∣∣} = 1

and

bp
(
Q

(2)
{3}

)
=
∣∣∣Q(2)

{3}

∣∣∣− p{1,2}q(2, {3})− p12q(2, {1, 3})=0.4.

With the bp(Q(k)
S) values, we calculate ∑k∈T bp(Q(k)

T \{k}) for all T = {1}, {2}, {3}, {1, 2},

{1, 3}, {2, 3}, {1, 2, 3} and they are 0.84, 3.68, 1.90, 3.70, 1.88, 3.30, 2.40 respectively. Finally

we choose the target set T ∗ = {1, 2}, which has the maximum backpressure sum 3.70.

Component 4: Generating the coded packet. After the set T ∗ is decided, for each k ∈ T ∗,

we extract the head-of-line element W(k,jk) from queue Q(k)
T ∗\{k}. If queue Q(k)

T ∗\{k} is empty,

we simply set the head-of-line element to be W(k,0) , 0, the zero/null packet. The to-be-

transmitted coded packet Y (t) is computed by

Y (t) =
∑

k∈T ∗
βk ·W(k,jk) (2.28)

That is, the transmitting packet is the linear sum of the head-of-line packets multiplied by

βk. Define

y(t) =
∑

k∈T ∗
βk · row(k,jk)(U(k)). (2.29)

Recall that row(k,jk)(U(k)) is the global coding kernel of the stored packet W(k,jk). y(t) is thus

the global coding kernel for the coded transmission Y (t). Note that only Y (t) is transmitted

and we do not transmit y(t).

For ease of exposition, one may assume βk is chosen uniformly randomly from a suffi-

ciently large GF(q) and skip to Component 5 directly. This simple random coding scheme

45

will work if q = ∞. On the other hand, the following paragraphs present a deterministic

construction that holds for any finite q ≥ K.

For all k ∈ T ∗, construct a matrix U(k)
jk by removing row(k,jk)(U(k)) corresponding to

W(k,jk) from U(k). The coefficients {βk : k ∈ T ∗} can be deterministically chosen by follow-

ing two steps. Step 1: Check whether row(k,jk)(U(k)) is linearly dependent of the rows of

((U(k)
jk)T, (V(k))T)T, where ((U(k)

jk)T, (V(k))T)T is the vertical concatenation of matrices U(k)
jk

and V(k). If so, then set βk = 0. Namely, this is a degenerate case and the corresponding

W(k,jk) will no longer participate in the coding computation. Perform this dependency check

for all k ∈ T ∗ and denote by T those non-degenerate k for which the βk values are still

undecided.

Step 2: Find arbitrarily one set of {βk : k ∈ T} values satisfying the following property:

Define y(t) , ∑
k∈T βk · row(k,jk)(U(k)). For all k ∈ T , vector y(t) has to be linearly indepen-

dent of the rows of ((U(k)
jk)T, (V(k))T)T. Lemma 5 in Appendix A.4 guarantees the existence

of such coefficients {βk : k ∈ T}. The description of how to generate the coded packet Y (t)

is complete.

Component 5: Packet movement among the queues — The opportunistic packet evolution

component. We describe the packet movement for one specific k0 value while the same

mechanism has to be applied to all k ∈ [K].

If k0 /∈ T ∗, then no entry in {Q(k0)
S : ∀S} will move. If k0 ∈ T ∗, then we consider one and

only one queue: Q(k0)
T ∗\{k0}. Recall that W(k0,jk0) is the head-of-line packet of Q(k0)

S selected

in Component 4. In the degenerate case Q(k0)
T ∗\{k0} = ∅ or equivalently W(k0,jk0) = 0, then no

further action will be needed. Component 5 is complete. We go back to Component 2 for

time t+ 1.

In a non-degenerate case, that is Q(k0)
T ∗\{k0} 6= ∅, we first remove the entry W(k0,jk0) of

Q
(k0)
T ∗\{k0} as well as the corresponding row(k0,jk0)(U(k0)). If dk0 has received the coded trans-

mission Y (t), then insert the global coding kernel y(t) of Y (t) as a new row to the matrix

V(k0). If dk0 did not receive Y (t), then we insert row vector y(t) as a new row to matrix

U(k0) and insert the coded content Y (t) to a new destination queue Q(k0)
S̃∗ . Effectively, the

location of the old entry W(k0,jk0) has been moved from the old queue Q(k0)
T ∗\{k0} to the new

queue Q(k0)
S̃∗ while the content is updated from the old W(k0,jk0) to the new Y (t).

46

The new destination queue Q(k0)
S̃∗ is decided as follows. Define Š = (T ∗\{k0}) ∪ Srx(t)

where the reception set Srx(t) is obtained from ACK/NACK. Define S̃∗ as the S̃ that mini-

mizes the expression q(k0, Š) in (2.25). Then we choose Q(k0)
S̃∗ as the destination queue.

Component 5 is the most distinct feature of our scheme. Unlike existing solutions that

choose the destination queue as a deterministic function of the reception set Srx(t) (usually

in an acyclic fashion), Component 5 decides the movement opportunistically with the help

of Srx(t) and the neighbors’ queue lengths, possibly in a cyclic way. That is, it is possible

that S̃∗ = T ∗\{k0} or even S̃∗ (T ∗\{k0}. Since the newly stored entry Y (t) in Q(k0)
S̃∗ differs

from the older entry W(k0,jk0), the stored packet evolves over time. Jointly these two features

give the name of opportunistic packet evolution of our design.

We use the following example to illustrate the operations in Component 5. Consider

K = 3 and suppose that at time t, the target set is T ∗ = {1, 2, 3}. Also suppose after

transmission, the reception set is Srx(t) = {3}. We now discuss how the packets move within

the queues.

Consider the packets for d2, i.e., k0 = 2. The head-of-line packet W(2,j2) is first removed

from queue Q
(2)
{1,3} and the corresponding row is removed from U(2). Then, suppose the

flow-2 queue lengths are |Q(2)
{∅}| = 5, |Q(2)

{1}| = 3, |Q(2)
{3}| = 1, and |Q(2)

{1,3}| = 2. Since Š =

(T ∗\{k0}) ∪ Srx(t) = {1, 3} we compute

q(2, {1, 3}) = min
{
|Q(2)

{∅}|, |Q
(2)
{1}|, |Q

(2)
{3}|, |Q

(2)
{1,3}|

}
= 1

and the minimizer S̃∗ = {3}. The new packet Y (t) is then injected to queue Q(k0)
S̃∗ = Q

(2)
{3}

and y(t) is inserted back to U(2).

For the other destination d3, i.e., k0 = 3. the head-of-line entry W(3,j3) is first removed

from Q
(3)
{1,2} and the corresponding row is removed from U(3). Since d3 received the packet

(because Srx(t) = {3}), we inject y(t) to matrix V(3). The packet movement for destination

d1 is similar to that of d2.

The proposed scheme operates by repeatedly executing Components 2 to 5 for each time

slot. We can then prove the following results.

47

Proposition 2.4.1. The above 5-component sequential coding scheme satisfies the decod-

ability condition in (2.9) and (2.10).

Proposition 2.4.2. The proposed 5-component sequential coding scheme can stabilize any

given rate vector ~R = (R1, · · · , RK) if ~R satisfies Proposition 2.3.1 .

Proposition 2.4.3. The proposed 5-component sequential coding scheme can stabilize ~R =

(R1, · · · , RK) only if ~R satisfies Proposition 2.3.1 , provided we replace the strict inequality

in (2.17) by ≤.

The proof of Proposition 2.4.1 is provided in Appendix A.5 . The proofs of Proposi-

tions 2.4.2 and 2.4.3 are relegated to Appendix A.6 .

Remark: The proposed scheme allows cyclic packet movement and thus packets some-

times move from Q
(k)
S1 to Q(k)

S2 with S1) S2. This is in sharp contrast with the schemes in [5],

[18], which always move packets to queues of larger overhearing sets (thus being acyclic). The

drawback of the strict acyclic packet movement is that when deciding to send a coding oper-

ation that combines all flows k ∈ T , the queue lengths of the |T | participating virtual queues

{Q(k)
T \{k} : k ∈ T} may be highly unbalanced since many packets may have already moved out

of Q(k0)
T \{k0} for a specific k0. To mitigate the unbalanced queue lengths, the schemes in [5],

[18] searches for collapsed overhearing set matching (COSM) when the encoding set being

T . That is, when a flow-k0 queue Q(k0)
T \{k0} is empty, COSM chooses the packet from a queue

Q
(k0)
S with strictly larger overhearing set S) T\{k0}. This substitution effectively moves

some packets from Q
(k0)
S to Q(k0)

T \{k0} to create more overhearing set matching opportunities.

The performance improvement of COSM is due to its exhaustive examination of all possi-

ble coding combinations by temporarily suppressing some of the overhearing sets. However,

searching for COSM is of exceedingly high complexity. To mitigate the complexity, the pro-

posed scheme uses backpressure to balance virtual queue lengths preemptively so that the

packets are evenly distributed among all virtual queues. As a result, when choosing a coding

decision T , we only need to combine packets from {Q(k)
T \{k} : k ∈ T} without resorting to

expensive search of COSM. Note that the proposed backpressure scheme continuously rebal-

ances the queue lengths for each time slot based on the feedback Srx(t), and the rebalancing

sometimes moves packets to queues of smaller overhearing subsets in order to keep those

48

queues from depletion. One contribution of this work is to prove that such a counterintu-

itive packet movement, once performed optimally, attains the same performance as the more

complicated COSM-based schemes.

2.5 Practical Sequential Coding Scheme with Overhead

In Section 2.2 , we assume network-wide channel output feedback Srx(t) and traffic pattern
~A(t) are causally available to all the destinations and we assume that source s is of unlimited

computing power/memory so that the global encoding kernel matrices U(k) and V(k) can

either be computed on-the-fly or be completely stored with no penalty. In this section, we

modify the previous scheme to handle the lack of the knowledge of Srx(t) and ~A(t) at dk

and the limited computing power and memory at s in practice. The modification incurs

additional overhead that is absent in the previous theoretic setting and we examine the

overhead by simulation in Section 2.6 .

2.5.1 A Header-based Implementation

A standard approach in practical network coding protocols is to append a header to each

of the packets in the queue Q(k)
S , which contains the global encoding kernel. The global coding

vector y(t) (the header) is transmitted together with the payload Y (t). Destination dk can

then decode the original message packets Xk,i, i = 1, 2, · · · using the global coding vector

y(t).

However, recall that the global encoding kernel of any entry W(k,i) is row(k,i)(U(k)), the

row vector of the matrix U(k), and per our construction its dimension grows every time

there is a new packet arrival. The overhead of sending the header thus increases over time.

Furthermore, to implement the above naive scheme, matrices U(k) and V(k) need to be stored

in s and again the increasing size of U(k) and V(k) requires memory usage that grows linearly

with respect to time. In the sequel, we focus on how one can “prune” the matrices in practice.

Our modification contains two parts. First, we let each queuing entry W(k,i) = (H,PL)

contain two parts, a header H and payload PL. The header H consists of the global encoding

kernel row(k,i)(U(k)). However, since the dimension of row(k,i)(U(k)) grows with time, we take

49

advantage of the observation that the vector row(k,i)(U(k)) is sparse and let H store the lossless

compressed version of row(k,i)(U(k)). Specifically, we let H contain a set of tuples (k, i, βk,i),

where βk,i is the global encoding coefficient multiplied to the i-th packet of destination k.

Namely, we have

PL =
∑

(k,i,βk,i)∈H
βk,iXk,i. (2.30)

Since the header only records the coefficients of all participating packets, the header size is

small for sparse coding vectors. Since in the original scheme, the U(k) matrices store all the

global coding vectors for all the entries of Q(k)
S for dk, this lossless compression effectively

replaces/subsumes the U(k) matrices and we do not need to store U(k) anymore.

Even though we do not need to store the U(k) matrix, we still need to store and constantly

update the V(k) matrix for all k ∈ [K]. Define HS as the collection of the headers of all

queueing entries stored in the K · 2K−1 virtual queues {Q(k)
S : k ∈ [K], S ∈ 2[K]\{k}}. The

pseudo code in Algorithm 1 describes the corresponding operations of updating and pruning

the V(k) matrix.

After pruning matrix V(k), recall that when choosing the coding coefficients {βk} in

Component 4, we have to find βk such that the resulting y(t) in (2.29) is independent of the

row of ((U(k)
jk)T, (V(k))T)T for all k. Let Ṽ(k) denote the output matrix after applying the

above pruning procedure to the original V(k) matrix. Recall that U(k), U(k), and V(k) in

Component 4 have the same set of columns while Ṽ(k) only keeps a subset of the columns

of V(k). If we keep the columns of the U(k) and U(k) matrices that also appear in Ṽ(k) and

denote the resulting matrices and global coding kernel as Ũ(k), Ũ(k), and ỹ(t), respectively,

then we have the following lemma.

Lemma 3. y(t) ∈ 〈U(k)〉 ⊕ 〈V(k)〉 if and only if ỹ(t) ∈ 〈Ũ(k)〉 ⊕ 〈Ṽ(k)〉.

The proof of Lemma 3 is relegated to Appendix A.7 .

That is, instead of checking whether the coding vector belongs to the row space of the

three original matrices U(k), U(k), and V(k) of which the size grows linearly with respect to

time, now we only need to generate the coding vector ỹ(t) according to the pruned versions

50

Algorithm 1 Pruning the V(k) Matrix at time t
1: input {V(k) : k ∈ [K]} and HS.
2: Recall that each header H ∈ HS contains a variable number of tuples (k, i, βk,i). Tem-

porarily ignore the last coordinate βk,i in the tuple and define JU , {(k, i) : ∀(k, i) ∈
H,H ∈ HS} as the collection of all (k, i) that appear in the stored headers.

3: Define N0 as the collection of (k, i) simultaneously satisfying (i) packet Xk,i has already
arrived, and (ii) (k, i) /∈ JU . Namely, N0 contains those (k, i) that no longer appears in
any of the headers.

4: for (k0, i0) ∈ N0 do
5: for k ∈ [K] do
6: if the (k0, i0) column has not been pruned from V(k) before then
7: Swap the (k0, i0) column of V(k) with its leftmost column. Namely, shift the

(k0, i0) column to the left as the first column of V(k).
8: if the first column of the new V(k) is not a zero column then
9: Apply Gaussian elimination to V(k) so that the first column becomes e1 =

(1, 0, . . . , 0)T .
10: Remove the first row of the resulting V(k).
11: end if
12: Remove the first column of V(k).
13: end if
14: Apply Gaussian elimination to V(k) so that the resulting V(k) is of the row-echelon

form. Remove all the zero rows of V(k).
15: end for
16: end for
17: return the final matrices {V(k) : k ∈ [K]}.

51

Ũ(k), Ũ(k), and Ṽ(k). (Matrices Ũ(k) and Ũ(k) are derived implicitly from the header of the

entries in Q
(k)
S .)

2.5.2 Other Issues for Practical Implementation

The benefits of the modified scheme in Section 2.5.1 are two-fold. Firstly, the source

node uses packet headers to reduce its encoding complexity and memory usage. Secondly,

the destination dk does not need the knowledge of the network-wide reception status Srx(t)

and only needs the coding vectors in the headers during decoding.

In this subsection, we discuss some other practical issues that may arise during imple-

mentation. They are beyond the scope of this theoretical study and we thus only outline

some possible solutions. The designs discussed in this subsection will not be used during the

simulation in Section 2.6 .

Unknown Channel Statistic

All our results assume that the channel statistics pS[K]\S is stationary and known to the

source. When pS[K]\S is unknown, we can estimate pS[K]\S on-the-fly via the history of the

ACK/NACK feedback. The estimation p̂S[K]\S can then be used as a substitute of the true

pS[K]\S during the backpressure computation. If the channel statistics are indeed stationary,

then the empirical estimation will eventually converge to the true distribution.

Variable Header Length

The header-based scheme in Section 2.5.1 allows for variable header lengths, which may

grow unboundedly as time progresses, even though in simulation it grows quite slowly. To

address this potential unboundedness, during implementation we may set an upper limit

such that whenever a queueing entry has header length exceeding that limit, the source

node would stop the normal coding operations and transmit that entry uncodedly until it

is received by its target destination. In this way, the header length can be kept strictly

bounded away from infinity.

52

Delay

As will be verified by simulation in Section 2.6 , the proposed scheme has reasonable delay

and queue length performance when operating away from the capacity. However, when we

are getting closer and closer to the capacity, inevitably the queue lengths will grow to infinity

just like any queueing system that operates closely to its theoretic limit. Furthermore, our

scheme also exhibits the so-called decoding delay, which again grows unboundedly when

operating arbitrarily close to capacity.

One solution that mitigates this fundamental phenomenon is admission control. Period-

ically, we could stop admitting new packets and focus on sending all packets in the current

queues and emptying the queues completely. By periodically suspending the incoming pack-

ets and emptying the queues, we can ensure that the decoding and queueing delay remain

bounded all the time. Like all other admission control schemes, the cost of this scheme is

that the achievable throughput decreases since no new packets are admitted during suspen-

sion. There are many variants how the admission control can be better implemented, e.g.,

statistically or deterministically, which is beyond the scope of this work.

Deadline

It is possible that each individual packet Xk,i has some deadline, i.e., it needs to be

delivered by a certain amount of time. One solution to improve the deadline performance is

that when a packet has been in the queues for too long and is about to expire, we can give it

higher scheduling priority and temporarily overwrite the throughput-optimal backpressure

scheduler described in Section 2.4.2 . In this way, we can control the deadline at the cost of

reduced throughput.

2.6 Simulation Results

In this section, we assume that the arrival of the flow-k packets is i.i.d. Poisson with

rate Rk. Assume K = 4 and spatially independent PEC with marginal success probability

(p1, p2, p3, p4) = (1
3 ,

2
5 ,

1
2 ,

4
7). Example 1 shows that ~R∗ , (R∗

1, R
∗
2, R

∗
3, R

∗
4) = (96

1193 ,
672
5965 ,

288
1193 ,

1952
8351)

53

is at the boundary of the true capacity region. We then set the actual arrival rate to be
~Rα = (R1, R2, R3, R4) = α~R∗ where 0 < α ≤ 1.03 measures how closely we are operating at

the capacity. Each simulation trial lasts for 105 time slots. For reference, we use the same

(p1, p2, p3, p4) value and compute the largest α that can possibly be achieved by a traditional

non-network-coded scheme. That is, the largest α satisfying

αR∗
1

p1
+ αR∗

2
p2

+ αR∗
3

p3
+ αR∗

4
p4
≤ 1 (2.31)

is α∗
time.sharing = 1193

1688 ' 0.71.

To measure the sum of queue lengths ∑k,S |Q
(k)
S |, we first fix the α value being considered.

Then for each trial we compute the time average of ∑k,S |Q
(k)
S | over the 105 time slots. We

repeat 100 trials for any given α value and Fig. 2.4 reports the average queue length for

different α values with the corresponding 95% confidence intervals. For any α < 1, the sum

of queue lengths remains very small even if we continue the simulation trial beyond 105 time

slots. If 1 < α, then the queue lengths grow linearly with respect to the number of time

slots. Note that the sum of queue lengths corresponds to how many packets the source s

needs to store in the memory during sequential encoding, which is around 54.9 packets when

α = 0.95. It is worth noting that the queue lengths of any uncoded scheme will become

unbounded whenever α > α∗
time.sharing = 0.71.

The control overhead is measured by the length of the header of each transmission. We

noticed that in our header-based scheme in Section 2.5.1 , the header length grows whenever

we mix multiple packets together. Recall that the virtual packet movement is originated from

the queue Q(k)
S and ends in the destination queue Q(k)

S̃∗ . To further control the growth rate

of the header length, we notice that if S̃∗ ⊆ S, then instead of injecting a new packet Y (t)

with coding vector y(t) into the destination queue Q(k)
S̃∗ , we can simply inject the original

packet W(k,i) packet with coding vector row(k,i)(U(k)) into the same destination queue Q(k)
S̃∗ .

The reason is that the overhearing set of the original queue being S is larger than the new

overhearing set S̃∗ and thus we can reuse the same packet W(k,i) instead of the new packet

Y (t). Since the original coding vector row(k, i)(U(k)) generally has a shorter expression than

the new coding vector y(t), this modification reduces the growth rate of the header length.

54

0.5 0.6 0.7 0.8 0.9 1 1.1
0

500

1000

1500

2000

2500

3000

Rate scale α

S
u
m

 o
f
q
u
e
u
e
 l
e
n
g
th

s

α*
time.sharing

Figure 2.4. The sum of queue lengths ∑k,S |Q
(k)
S | for different α.

55

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Header length (unit: tuples)

P
m

f
o
f
h
e
a
d
e
r

le
n
g
th

s

α=0.9

α=0.95

Figure 2.5. Pmf of the header length: When α = 0.9, the largest header
length in the simulation of 105 time slots is 116 and the average is 2.5. When
α = 0.95, the largest and the average header lengths become 135 and 2.7.

Using this modified scheme, we run 5 trials with α = 0.95 and the empirical pmf of

header length (number of triples), computed over 105 time slots and 5 trials, is shown in

Fig. 2.5 . The average header length per transmission is about 2.7, which reflects the average

number of combined packets in a coded packet. In fact the maximum header length in 105

time slots is about 135 (unit: tuples) and 95% packets has header length no larger than 10

(unit: tuples). That is, if each (k, i, βk,i) tuple in the header takes 4 bytes, then 95% packets

use no more than 40 bytes for headers, or 4% of a regular 1000 bytes packet, and the average

size of header is 2.7 · 4 = 10.8 bytes, which is 1.1% of the payload length.

Finally, we compare the per-packet total delay, which is measured by the time span

between a packet first arriving at source s until it being fully decoded at destination dk

(queueing plus decoding delay). We run 5 trials with α = 0.95 and Fig. 2.6 shows the

empirical pmf of the total delay over 105 time slots and 5 trials. The average per-packet

total delay is 513.6 time slots. Specifically the average per-packet total delay are 882.8,

774.3, 406.6, and 370.2 for each destination d1, d2, d3, and d4, respectively. Due to the

56

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time slot

P
m

f
o

f
to

ta
l
d

e
la

y

α=0.9

α=0.95

Figure 2.6. Pmf of the total delay: When α = 0.9, the largest total delay in
the simulation of 105 time slots is 3332 and the average is 108.7. 94% of the
packets have total delay ≤ 400 time slots. When α = 0.95, the largest and the
average delay become 13382 and 513.6. 67% of the packets have total delay
≤ 400 time slots.

spatial independent PEC in the simulation, the delay is roughly inversely proportional to

marginal success probability (p1, p2, p3, p4).

Figs. 2.5 and 2.6 also plot the empirical pmfs of the header length and the total delay

when operated at α = 0.9. Comparing the case of α = 0.9 and the previous, more demanding

case of α = 0.95, one can see that the average header length decreases slightly from 2.7 to 2.5;

but the average total decoding delay decreases 5 fold from 513.6 to 108.7. The substantial

delay reduction is as expected since the closer we are operating to the capacity, the higher

number of packets will be queued (longer queueing delay) and their mixture will lead to

much longer decoding delay at the receiver.

2.7 Summary

We investigate the stability region of 1-to-K broadcast packet erasure channels with

ACK/NACK. The schemes in prior works has some drawbacks that is difficult to implement

in practice. We have presented a new network coding protocol for 1-to-K broadcast packet

57

erasure channels with causal ACK/NACK to address the drawbacks. The achievable rate

region matches the capacity region for all the scenarios in which the capacity is known.

The proposed scheme has many desirable features, including sequential encoding and being

adaptive to unknown arrival rates.

58

3. CODED CACHING SYSTEM OF TWO USERS AND TWO

FILES

In this chapter, we focus on the coded caching system of one server and K users, each user

having its cache memory and demanding a file among the N files at server. The system

consists of two phases: The placement phase: Each user accesses the N files and fills its

cache memory; and the delivery phase: Each user submits its own file request and the server

broadcasts a signal to deliver the desired packets to each user. In this part, we characterizes

the exact capacity of the smallest 2-user/2-file (N = K = 2) coded caching problem but

under the most general setting that simultaneously allows for (i) heterogeneous files sizes, (ii)

heterogeneous cache sizes, (iii) user-dependent file popularity, and (iv) average-rate analysis.

Solving completely the case of N = K = 2 could shed further insights on the performance

and complexity of optimal coded caching with full heterogeneity for arbitrary N and K.

3.1 Introduction

Nowadays high-definition video streaming motivates the demand of high-throughput In-

ternet traffic with small delay. One way to contain the peak load within the underlying

communication channel capacity is to use caching to re-distribute some of the peak traffic

to off-peak hours by prefetching (some of) the content in advance. The design tasks of a

caching scheme consist of two parts: how to place the content during off-peak hours and how

to satisfy the requests by delivering the additional packets during peak hours. Caching is

especially attractive under the model of broadcast channels for which a single packet trans-

mission could simultaneously benefit/reach multiple destinations.

Content caching has been studied in various settings [30], such as exploiting the opportu-

nities of user population, file correlation, and time correlation. These traditional techniques

usually divide each file into multiple (uncoded) pieces, prefetch some of them, and transmit

the rest when needed. Recently, coded caching was proposed [31], which reduces delivery

time by substituting the uncoded pieces with a coded version and taking advantage of mul-

ticasting capabilities. The framework of coded caching consider one server of N files and K

59

users over an error-free broadcast link. The system is performed in two stages: In the place-

ment phase, each user is able to encode the information of all the N files as the content in its

cache memory. In the delivery phase, each user demands one file and the server broadcasts

a signal to all the users such that all the users are able to decode their requests. Consider

an example of 3-user/3-file (N = K = 3) coded caching system. The server has 3 files A, B,

and C, each of file size F ; and each user has cache memory of size M = F . A coded caching

scheme as shown in Fig. 3.1 is described in the following. We divide each file into three

subfiles of equal size, i.e., A = (A1, A2, A3), B = (B1, B2, B3), and C = (C1, C2, C3). In the

placement phase, each user k stores (Ak, Bk, Ck) to fill its memory. In the delivery phase,

suppose user 1 requests file B, user 2 requests file C, and user 3 requests file A, then the

server can transmit the signal (A1⊕B3, B2⊕C1, A2⊕C3) of rate R = F such that all the three

users are able to decode their requested files. That is, user 1 uses (A1⊕B3, B2⊕C1) to decode

(B2, B3), user 2 uses (B2⊕C1, A2⊕C3) to decode (C1, C3), and user 3 use (A1⊕B3, A2⊕C3)

to decode (A1, A2). Comparing to the uncoded signal in delivery phase that requires rate

R = 2F , the coded caching scheme under such file request reduces half of the throughput.

By exploiting the coded caching with broadcast channel, [31] show that show that coded

caching can shorten the worst-case delivery time by a factor of (1
1+KM/F N

) when compared

to the traditional uncoded caching schemes, where N is the number of files, K is the number

of users, M is the individual cache size and F is the individual file size. While the capacity

of the general coded caching problem remains an open problem, the optimal coded caching

scheme (exact capacity) has been characterized for some special cases [31]–[33] and order-

optimal capacity characterization has been found for several more general scenarios [31],

[34]–[39].

Most existing results are based on the settings of (i) homogeneous file sizes, (ii) homo-

geneous cache sizes, (iii) user-independent homogeneous file popularity, and (iv) worst-case

analysis. These settings are not 100% compatible with the traditional uncoded caching solu-

tions. Specifically, the basic design principle of traditional uncoded schemes is to first predict

the likelihood of the next file request for each individual user separately (i.e., user-dependent

heterogeneous file popularity), and then let each user store the most likely file(s) until his/her

cache is full (which is naturally applicable to heterogeneous file and cache sizes). The ratio-

60

1 2 3

Figure 3.1. The 3-user/3-file (N = K = 3) coded caching example. The sever
has three files (A,B,C) of same size F and each file is split into three equal
subfiles: A = (A1, A2, A3), B = (B1, B2, B3), and C = (C1, C2, C3). Each user
k has same cache memory size F and store cache content (Ak, Bk, Ck).

61

nale behind this simple design is that such a probability-based greedy solution would reduce

the average rate during delivery, even though there is no information-theoretic optimality

guarantee.

Because of the aforementioned differences between their settings, a coded scheme de-

signed for the homogeneous, worst-case setting could have significantly worse average-rate

performance in practice when compared to a traditional scheme, especially for the scenarios

in which the individualized file request prediction is very effective and the file and cache

sizes are highly heterogeneous. In principle, since coded caching is a strict generalization of

any uncoded solution, an optimal coded caching solution should outperform its non-coded

counterpart under any setting. This potential loss of performance

1
 is mainly due to the mis-

match between practical scenarios and the homogeneous and worst case settings for which

existing coded caching schemes are optimized.

Motivated by this observation, this work studies the exact capacity region and the corre-

sponding optimal coded caching schemes under (i) heterogeneous file sizes, (ii) heterogeneous

cache sizes, (iii) user-dependent heterogeneous file popularity, and (iv) average-rate analy-

sis. Such results could allow the system designers to accurately assess the performance gain

of coded caching (the ultimate capacity minus the achievable rate of traditional uncoded

schemes) in a practical heterogeneous setting. While the problem remains open for general

N and K values, we characterize the exact capacity for N = K = 2. The results could shed

further insights for general N and K.

3.1.1 Comparison to Existing Results

Several existing works relaxed parts of the above conditions (i) to (iv). Table 3.1 provides

a non-comprehensive list of several related results. For example, the authors in [31] assume

homogeneous file and cache size and, under those conditions, characterize the exact worst-

case capacity when N = K = 2 and propose a scheme that achieves order-optimal worst-case

rate for arbitrary N and K. [37] provides a new information-theoretic lower bound and a
1

 ↑ In practice, there are other issues that need to be addressed, e.g., synchronization [40]. Our statement
disregards the implementation overhead and focuses exclusively on the theoretic performance under hetero-
geneous settings.

62

Table 3.1. Comparisons of existing results
Worst-case rate Average rate

Homo. file • Arbitrary K and N , • Arbitrary K and N ,
homo. cache order-optimal rate [31], [34], [39] order-optimal rate [36]–[39], [43], [44]

• K = 2 and arbitrary N , • Arbitrary K and N ,
exact capacity [31], [32] achievable rate only [45], [46]
• K = 3 and N = 2, • Arbitrary K and N = 2,
exact capacity [32] uncoded placement, exact cap. [47]

Homo. file • K = 2 and arbitrary N , • Arbitrary K and N ,
heter. cache exact capacity [33] achievable rate only [42]

• Arbitrary K and N ,
achievable rate only [48]

Heter. file • Arbitrary K and N , • Arbitrary K and N ,
homo. cache order-optimal rate [49]–[51] achievable rate only [42]
Heter. file • N = K = 2, • Arbitrary K and N ,

heter. cache exact capacity [41] achievable rate only [42]
• N = K = 2,
exact capacity [52]

corresponding order-optimal scheme of average rate with homogeneous file size, homogeneous

cache size, and user-independent popularity.

As can be seen in Table 3.1 , finding the exact capacity of coded caching remains a

difficult task. Most existing exact capacity results [31]–[33], [41] are based on small K (i.e.,

K = 2 or K = 3) and focus on the worst-case rate rather than a general probabilistic

average-rate model. One of the most general heterogeneous setting results is [42], which

uses linear programming results to search for better achievable rates without deriving any

converse bounds, and is not focused on the general user-dependent file popularity setting.

By focusing exclusively on the average-rate setting with heterogeneous file and cache sizes as

well as user-dependent file popularity, our N = K = 2 results represent the first step toward

fully characterizing the capacity of coded caching with full heterogeneity.

3.2 General Coded Caching Model

We consider the simplest non-trivial coded caching system with N = 2 files and K = 2

users. A central server has access to two files W1 and W2 of file sizes F1 and F2 bits,

63

respectively. We sometimes write F1 and F2 as some non-integer values, e.g., F1 = 1.5 and

F2 = 1
3 . One way to interpret this real-valued file-size expression is to assume F1 and F2 are

sufficiently large so that we can express F1 and F2 by their normalized values instead. The

cache content of user k is denoted by Zk and is of size Mk bits for k ∈ {1, 2}. Without loss

of generality, we assume real-valued Mk ∈ [0, F1 + F2] for all k.

The operation of the system contains two phases, the placement phase and the delivery

phase. In the placement phase, user k populates its cache by

Zk = φk(W1,W2), ∀k ∈ {1, 2}, (3.1)

where φk is the caching function of user k. In the delivery phase, the two users send a demand

request ~d , (d1, d2) ∈ {1, 2}2 to the server, i.e., user k demands file Wdk
. The probability

mass function of the demand request ~d is denoted by p~d, which satisfies ∑~d∈{1,2}2 p~d = 1. We

assume {p~d : ~d ∈ {1, 2}2} is known to the server.

One popular choice of p~d is to assume that the demands of user-1 and user-2 are statis-

tically independent, i.e., p(d1,d2) = p
[1]
d1p

[2]
d2 where p[k]

d is the marginal probability that user-k

requests file Wd. In this work, we allow for arbitrary p~d that can be statistically independent

or not.

After receiving ~d, the server broadcasts an encoded signal

X~d = ψ(~d,W1,W2) (3.2)

of R~d bits with encoding function ψ through an error-free broadcast channel. Each user k

then uses its cache content Zk and the received signal X~d to decode his/her desired file

Ŵdk
= µk(~d,X~d, Zk), ∀k ∈ {1, 2}, (3.3)

where µk is the decoding function of user k. Herein we assume that user k knows the network-

wide request pattern ~d, which can be easily achieved by piggybacking the 2-bit vector ~d to

the encoded symbol X~d.

64

Definition 3.2.1. A coded caching scheme for N = K = 2 is specified completely by its

five functions {φ1, φ2, ψ, µ1, µ2}. The scheme is zero-error feasible if Ŵdk
= Wdk

for all
~d ∈ {1, 2}2, all k ∈ {1, 2}, and all Wk ∈ {0, 1}Fk .

Definition 3.2.2. The worst-case rate of a zero-error coded caching scheme is

R∗ = max
~d∈{1,2}2

R~d. (3.4)

The worst-case capacity is the infimum of the worst-case rates of all zero-error schemes.

Definition 3.2.3. The average rate of a zero-error coded caching scheme is

R̄ =
∑

~d∈{1,2}2

p~dR~d. (3.5)

The average-rate capacity is the infimum of the average rates of all zero-error schemes.

For simplicity, we slightly abuse the above notation and directly use R∗ and R̄ to de-

note the worst-case and the average-rate capacities, respectively, even though their original

definitions in (3.4) and (3.5) are for the achievable rates instead.

3.3 The Two-User/Two-File Coded Caching Capacity

To solve the worst-case and the average-rate capacities R∗ and R̄, we first define the

following strictly more general concept.

Definition 3.3.1. The per-request capacity region (PRCR) is the closure of the rate vectors
~R = (R(1,1), R(1,2), R(2,1), R(2,2)) of all zero-error coded caching schemes.

The PRCR is the most fundamental performance limit of coded caching since it captures

the optimal trade-off needed to simultaneously satisfy different request patterns.

In Section 3.3.1 we describe 7 basic coded caching schemes for the 2-file/2-user setting

(N = K = 2). Section 3.3.2 then provides the basic lower bounds of 4-dimensional coded

caching rate (R(1,1), R(1,2), R(2,1), R(2,2)). Finally, Section 3.3.3 shows that the 7 basic schemes

can achieve the 4-dimensional rate lower bounds. The end result is thus a complete charac-

terization of the PRCR for arbitrary (F1, F2,M1,M2) values. The exact characterization of

65

Table 3.2. Basic coded caching schemes for two files of size (f1, f2) and
two users of memory (m1,m2). It is possible to have f1 ≥ f2, or f1 < f2,
or m1 ≥ m2, or m1 < m2. The intuition of the schemes are Mix.Emp for
premixing at d1, Emp.Mix for premixing at d2, Ha.Fi for splitting files in
halves, and a.b.Cov for covering ~d = (a, b).

Scheme Feasibility Condition Achievable Rate Vector (R(1,1), R(1,2), R(2,1), R(2,2))
Mix.Emp f=f1=f2=m1; m2=0 (f, f, f, f)
Emp.Mix f=f1=f2=m2; m1=0 (f, f, f, f)

Ha.Fi f=f1=f2=m1=m2 (f/2, f/2, f/2, f/2)
1.1.Cov max(m1,m2) ≤ f1 (f1−min(m1,m2), f1+f2−m1, f1+f2−m2, f2)
1.2.Cov m1 ≤ f1, m2 ≤ f2 (f1, f1+f2−m1−m2, f1+f2−min(m1,m2), f2)
2.1.Cov m1 ≤ f2, m2 ≤ f1 (f1, f1+f2−min(m1,m2), f1+f2−m1−m2, f2)
2.2.Cov max(m1,m2) ≤ f2 (f1, f1+f2−m2, f1+f2−m1, f2−min(m1,m2))

PRCR will naturally lead to new closed form expressions of the capacities R∗ and R̄ under

any arbitrary file popularity distribution p~d. Further discussion on how to use the new PRCR

characterization to derive the average-rate capacity R̄ is provided at the end of Section 3.3.3 .

3.3.1 Basic Zero-Error Coded Caching Schemes

We first describe 7 coded caching schemes for the 2-file/2-user setting (N = K = 2),

which later serve as the basis for all our achievability proofs when characterizing the 4-

dimensional PRCR. Consider user 1 and 2 of cache memory size m1 and m2 with two files

w1 and w2 of sizes f1 and f2, respectively, the 7 basic schemes of parameters (f1, f2,m1,m2)

are listed in Table 3.2 and described as follows.

1) Mix.Emp: Consider two files of equal size f1 = f2 = f , and two users of memory sizes

m1 = f and m2 = 0. In the placement phase, user 1 caches w1⊕w2 and user 2 caches none.

In the delivery phase, the transmitted signals for the demands are X(1,1) = w1, X(1,2) = w2,

X(2,1) = w1, and X(2,2) = w2. One can easily verify that for any ~d, the transmitted symbol

X~d satisfies the demands of both users. Since X~d is of size f for all ~d, the corresponding

achievable rate vector is (R(1,1), R(1,2), R(2,1), R(2,2)) = (f, f, f, f). The first row of Table 3.2

summarizes the achievable rate vector and the condition f = f1 = f2 = m1, m2 = 0 for

66

this scheme to be zero-error feasible. Since user 1 stores an XORed packet and user 2 stores

none, we call this scheme Mix.Emp.

2) Emp.Mix: The scheme is user-symmetric to Mix.Emp by swapping the roles of users

1 and 2. Since this time user 1 stores none and user 2 stores an XORed packet, we call this

scheme Emp.Mix.

3) Ha.Fi: Consider two files of equal size f1 = f2 = f , and two users of equal memory

size m1 = m2 = f . We divide the file w1 = (u1, u2) into two subfiles of size (f/2, f/2) and

divide the file w2 = (v1, v2) into two subfiles of size (f/2, f/2). In the placement phase, user

1 caches (u1, v1) and user 2 caches (u2, v2). In the delivery phase, the transmitted signals

for the demands are X(1,1) = u1 ⊕ u2, X(1,2) = u2 ⊕ v1, X(2,1) = u1 ⊕ v2, and X(2,2) =

v1⊕v2. Since X~d is of size f/2 for all ~d, the achievable rates are (R(1,1), R(1,2), R(2,1), R(2,2)) =

(f/2, f/2, f/2, f/2). Since each user stores half of file k for all k, we call this scheme Ha.Fi.

4) 1.1.Cov: In this scheme both users cache as much as possible from file 1. Consider two

users of cache memory size max(m1,m2) ≤ f1 and arbitrary f2. If m1 ≥ m2, we divide w1 =

(u1, u2, u3) into three subfiles of file size (m2,m1−m2, f1−m1). In the placement phase, user

1 caches (u1, u2) and user 2 caches u1. In the delivery phase, the transmitted signals for the

different demands ~d are X(1,1) = (u2, u3), X(1,2) = (u3, w2), X(2,1) = (u2, u3, w2), and X(2,2) =

w2. One can easily verify that both users can decode their desired files under any demand ~d.

By quantifying the size of X~d for all ~d, the achievable rates are (R(1,1), R(1,2), R(2,1), R(2,2)) =

(f1 −m2, f1 + f2 −m1, f1 + f2 −m2, f2).

If m1 < m2, we can implement the same scheme by swapping the roles of users 1 and 2.

By taking into account both scenarios (m1 ≥ m2 and m1 < m2), we can write the achievable

rate vector in the following more general form:

(R(1,1), R(1,2), R(2,1), R(2,2)) = (f1 −min(m1,m2),

f1 + f2 −m1, f1 + f2 −m2, f2). (3.6)

Since the strategy of both users is “to cover as much file 1 as possible”, we call this scheme

1.1.Cov.

67

5) 1.2.Cov: In this scheme user 1 caches file 1 and user 2 caches file 2. Consider two

users of memory size m1 ≤ f1 and m2 ≤ f2. If m1 ≥ m2, we divide w1 = (u1, u2, u3) into

three subfiles of size (m2,m1 − m2, f1 − m1) and divide w2 = (v1, v2) into two subfiles of

file size (m2, f2 − m2). In the placement phase, user 1 caches (u1, u2) and user 2 caches

v1. In the delivery phase, the transmitted signals for the different demands are X(1,1) = w1,

X(1,2) = (u2, v2), X(2,1) = (u1⊕v1, u2, u3, v2), and X(2,2) = w2, which results in the achievable

rate vector being (R(1,1), R(1,2), R(2,1), R(2,2)) = (f1, f1 + f2 −m1 −m2, f1 + f2 −m2, f2).

If m1 < m2, a symmetric scheme can be implemented by dividing w1 into two subfiles of

size (m1, f1 −m1) and w2 into three subfiles of size (m1,m2 −m1, f2 −m2). By taking into

account both scenarios (m1 ≥ m2 and m1 < m2), we can write the achievable rate vector in

the following more general form:

(R(1,1), R(1,2), R(2,1), R(2,2)) = (f1,

f1 + f2 −m1 −m2, f1 + f2 −min(m1,m2), f2). (3.7)

Since the strategy of user 1 is “to cover as much file 1 as possible” and the strategy of user

2 is “to cover as much file 2 as possible”, we call this scheme 1.2.Cov.

6) 2.1.Cov: The scheme is user-symmetric to 1.2.Cov by swapping the roles of users 1

and 2. Since the strategy of user 1 is “to cover as much file 2 as possible” and the strategy

of user 2 is “to cover as much file 1 as possible”, we call this scheme 2.1.Cov.

7) 2.2.Cov: The scheme is file-symmetric to 1.1.Cov by swapping the roles of files 1 and

2. Since the strategy of user 1 is “to cover as much file 2 as possible” and so is user 2’s

strategy, we call this scheme 2.2.Cov.

It is worth noting that none of the 7 basic schemes can be achieved by space-sharing the

rest of 6 schemes and they thus will serve as the basis of our achievability proofs [53].

3.3.2 Lower Bounds of the PRCR

We derive the following lower bounds for arbitrary file and cache sizes (F1, F2,M1,M2).

68

Instance 0: Nonnegative rates:

R~d ≥ 0, ∀~d ∈ {1, 2}2.

By varying ~d, there are totally 4 inequalities in Instance 0.

R(1,1) ≥ 0 (O-1)

R(2,1) ≥ 0 (O-3)

R(1,2) ≥ 0 (O-2)

R(2,2) ≥ 0 (O-4)

Instance 1: For any i, j ∈ {1, 2}, there are two inequalities:

R(i,j) +M1 ≥H(X(i,j), Z1) = H(X(i,j), Z1,Wi) ≥ Fi,

R(i,j) +M2 ≥H(X(i,j), Z2) = H(X(i,j), Z2,Wj) ≥ Fj.

By varying i, j, there are totally 8 inequalities in Instance 1.

R(1,1) +M1 ≥ F1 (I-1)

R(1,2) +M1 ≥ F1 (I-3)

R(2,1) +M1 ≥ F2 (I-5)

R(2,2) +M1 ≥ F2 (I-7)

R(1,1) +M2 ≥ F1 (I-2)

R(1,2) +M2 ≥ F2 (I-4)

R(2,1) +M2 ≥ F1 (I-6)

R(2,2) +M2 ≥ F2 (I-8)

Instance 2: For any (i, j) = (1, 2) or (2, 1),

R(i,j) +M1 +M2 ≥ H(X(i,j), Z1, Z2) ≥ F1 + F2.

By varying (i, j), there are totally 2 inequalities in Instance 2.

R(1,2) +M1 +M2 ≥ F1 + F2 (II-1)

R(2,1) +M1 +M2 ≥ F1 + F2. (II-2)

69

Instance 3: For any i, j ∈ {1, 2}, there are two inequalities:

R(i,1)+R(j,2) +M2 ≥ H(X(i,1), X(j,2), Z2) ≥ F1 + F2,

R(1,i)+R(2,j) +M1 ≥ H(X(1,i), X(2,j), Z1) ≥ F1 + F2.

By varying i, j, there are totally 8 inequalities in Instance 3.

R(1,1) +R(1,2) +M2 ≥F1 + F2, (III-1)

R(1,1) +R(2,1) +M1 ≥F1 + F2, (III-2)

R(1,1) +R(2,2) +M1 ≥F1 + F2, (III-3)

R(1,1) +R(2,2) +M2 ≥F1 + F2, (III-4)

R(1,2) +R(2,1) +M1 ≥F1 + F2, (III-5)

R(1,2) +R(2,1) +M2 ≥F1 + F2, (III-6)

R(1,2) +R(2,2) +M1 ≥F1 + F2, (III-7)

R(2,1) +R(2,2) +M2 ≥F1 + F2. (III-8)

Instance 4 uses a more refined technique

2
 and we thus provide the detailed derivation.

Instance 4: For any (i, j) = (1, 2), (2, 1), or (2, 2),

R(i,1) +R(1,j) +M1 +M2 (3.8)

≥ H(X(i,1)) +H(Z2) +H(X(1,j)) +H(Z1) (3.9)

≥ H(X(i,1), Z2) +H(X(1,j), Z1) (3.10)

≥ H(X(i,1), Z2,W1) +H(X(1,j), Z1,W1) (3.11)

≥ H(X(i,1), X(1,j), Z1, Z2,W1) +H(W1) (3.12)

≥ H(X(i,1), X(1,j), Z1, Z2,W1,W2) +H(W1) (3.13)

= H(W1,W2) +H(W1) = 2F1 + F2 (3.14)

2
 ↑ A more general version of the techniques can be found in [31], [32], [54], [55].

70

where (3.10) follows from that the sum of marginal entropies is no less than the joint entropy;

(3.11) follows from that user 2 can decode W1 based on X(i,1) and Z2, and user 1 can

decode W1 based on X(1,j) and Z1; (3.12) follows from the Shannon-type inequality; (3.13)

follows from that we can decode W2 from X(i,1), X(1,j), Z1, and Z2 since we choose (i, j) ∈

{(1, 2), (2, 1), (2, 2)} to begin with; and (3.14) follows from that X’s and Z’s are functions of

(W1,W2).

Symmetrically for any (i, j) = (1, 2), (2, 1), or (1, 1)

R(i,2) +R(2,j) +M1 +M2 ≥ F1 + 2F2.

Varying (i, j), there are totally 6 inequalities in Instance 4.

R(1,1) +R(1,2) +M1 +M2 ≥2F1 + F2, (IV-1)

R(1,1) +R(2,1) +M1 +M2 ≥2F1 + F2, (IV-2)

R(1,2) +R(2,1) +M1 +M2 ≥2F1 + F2, (IV-3)

R(1,2) +R(2,1) +M1 +M2 ≥F1 + 2F2, (IV-4)

R(1,2) +R(2,2) +M1 +M2 ≥F1 + 2F2, (IV-5)

R(2,1) +R(2,2) +M1 +M2 ≥F1 + 2F2. (IV-6)

Totally, there are 28 linear inequalities in Instances 0 to 4.

3.3.3 Coded Caching Capacity for N = K = 2

The derivation of the aforementioned lower bounds is relatively straightforward, see [31],

[32], [41], [54] for similar derivations. A more important contribution of this work is to show

that these lower bounds indeed characterize the exact 4-dimensional PRCR.

Proposition 3.3.1. Consider arbitrary (F1, F2,M1,M2). For any ~R that satisfies the 28

lower bounds in Section 3.3.2 simultaneously, we can find a zero-error scheme attaining such
~R.

Proposition 3.3.1 leads to the following self-explanatory corollary:

71

Corollary 2. Given arbitrary (F1, F2,M1,M2) values, the average-rate capacity can be char-

acterized by solving a linear programming (LP) problem using the 28 lower bounds in Sec-

tion 3.3.2 .

Further discussion of Corollary 2 will be provided in the remark after Proposition 3.3.3 .

Proposition 3.3.1 follows directly from the following propositions.

Proposition 3.3.2. The 4-dimensional polytope formed by the 28 linear inequalities has

either 2 or 4 or 6 distinct corner points. The actual number depends on the underly-

ing (F1, F2,M1,M2) values. An exhaustive list of all the corner points under arbitrary

(F1, F2,M1,M2) is provided jointly in Fig. 3.2 and Table 3.3 .

Proposition 3.3.3. All 28 corner points listed in Fig. 3.2 and Table 3.3 can be achieved by

space-sharing the 7 basic schemes described in Section 3.3.1 .

The proofs of Propositions 3.3.2 and 3.3.3 are relegated to Appendices B.1 and B.2 ,

respectively. In the proof of Proposition 3.3.3 , we explicitly find 28 constructions that

achieve the 28 corner points, respectively.

Remark: The statement in Proposition 3.3.1 has already cast the coded caching capacity

problem as an LP problem involving 4 variables (R(1,1), R(1,2), R(2,1), R(2,2)) and 28 inequali-

ties, which can be solved numerically. Nonetheless, the constructive and explicit statements

in Propositions 3.3.2 and 3.3.3 go one step further. By exhaustively characterizing all corner

points of the lower bounds and then proving their achievability, one can use Proposition 3.3.3

to devise the coded caching scheme of any feasible ~R and the formulas in Proposition 3.3.2 ,

i.e., the expressions listed in Table 3.3 , can be used to derive the closed-form expression of

the capacity without any numerical solver. Compared to the implicit statement in Proposi-

tion 3.3.1 , Propositions 3.3.2 and 3.3.3 uncover new, cleaner results that shed further insight

to the problem at hand.

For example, since the average capacity R̄ is achieved by the vector ~R in the PRCR that

has the smallest linear objective value ∑ p~dR~d and since the minimum of a linear program-

ming problem can only happen at the corner points, we can easily use the corner points

in Fig. 3.2 and Table 3.3 to characterize the average-rate capacity of arbitrary popularity

72

Table 3.3. The expressions of all 28 possible corner points.
Vertex Corresponding rate vector ~R = (R(1,1), R(1,2), R(2,1), R(2,2))

1 (F1 −M2, F1 + F2 −M1, F1 + F2 −M1, F2)
2 (F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2)
3 (F1, F1 + F2 −M1, F1 + F2 −M1, F2 −M2)
4 (F1 − M2

2 , F1 + F2 −M1 − M2
2 , F1 + F2 −M1 − M2

2 , F2 − M2
2)

5 (F1, F1 + F2 −M1 −M2, F1, F2)
6 (F1, F1, F1 + F2 −M1 −M2, F2)
7 (F1 + F2−M1−M2

2 , F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F2 + F2−M1−M2
2)

8 (F1 −M2, F1 + F2 −M1, F1 −M2, F2)
9 (F1, F1 + F2 −M1 −M2, F1, F2)
10 (F1, F1 + F2 −M1, F1, F2 −M2)
11 (F1 − M2

2 , F1 + F2 −M1 − M2
2 , F1 − M2

2 , F2 − M2
2)

12 (F1 + F2 −M1, F1 + F2 −M1, F1 −M2, F2)
13 (F1 + F2−M1−M2

2 , F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F2+M1−M2
2)

14 (F1 −M2, F2, F1 −M2, F2)
15 (F1, F2 −M2, F1, F2 −M2)
16 (F1, F2 −M2, F1, F1 + F2 −M1)
17 (F1+M1−M2

2 , F2 + F1−M1−M2
2 , F1+M1−M2

2 , F2 + F1−M1−M2
2)

18 (F1 −M2, F2, F1 + F2 −M1, F2)
19 (F1 + F2 −M1, F2, F1 −M2, F2)
20 (F1 + F2−M1−M2

2 , F2+M1−M2
2 , F1 + F2−M1−M2

2 , F2+M1−M2
2)

21 (F1 + F2 −M2, F1 −M1, F1 + F2 −M2, F2)
22 (F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0)
23 (F1 + F2

2 −M2, F1 + F2
2 −M1, F1 + F2

2 −M2,
F2
2)

24 (F1 + F2 −M2, 0, F1 + F2 −M2, F1 + F2 −M1)
25 (F1+F2+M1

2 −M2,
F1+F2−M1

2 , F1+F2+M1
2 −M2,

F1+F2−M1
2)

26 (0, F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2)
27 (F1 + F2 −M1, F1 + F2 −M2, 0, F1 + F2 −M2)
28 (F1+F2−M1

2 , F1+F2+M1
2 −M2,

F1+F2−M1
2 , F1+F2+M1

2 −M2)

73

vector (p(1,1), p(1,2), p(2,1), p(2,2)). Namely, given any (F1, F2,M1,M2), we first use Fig. 3.2 to

find all the corner points in the PRCR (at most 6 of them). Then for each corner point, we

plug in the closed-form expression in Table 3.3 to the objective function ∑ p~dR~d. Repeat this

process for each corner point. Finally the smallest objective value must be the average-rate

capacity under the given (F1, F2,M1,M2) and (p(1,1), p(1,2), p(2,1), p(2,2)). Two example results

of this general procedure are provided as follows.

Example 2. Suppose (F1, F2) = (1.5, 1) and the demands of the users are statistically inde-

pendent, with user 1 demanding files 1 and 2 with probability 2/3 and 1/3, respectively, and

user 2 demanding files 1 and 2 with probability 2/5 and 3/5, respectively. The corresponding

average-rate capacity for arbitrary (M1,M2) is described in Fig. 3.3 .

As discussed in the introduction, the main motivation of our study is to compare the

optimal coded caching capacity with the performance of the naïve likelihood-based uncoded

caching solution. For this particular example, we thus compare in Fig. 3.4 the optimal

average-rate coded caching capacity with the performance of (i) the naïve likelihood-based

uncoded caching, and (ii) the coded caching scheme in [41] that is optimized for the worst-

case performance. As expected, the optimal coded caching capacity is always the smallest

of the three and the largest rate reduction over the uncoded scheme is at v13 for which the

optimal coded caching scheme uses only 1/2
11/15 ' 68.2% of the bandwidth of the uncoded

solution.

It is also worth noting that at the corner point v3, the worst-case-optimal coded caching

scheme

3
 actually performs worse than the uncoded scheme (5% worse) while the optimal

coded scheme still exhibits 10% improvement over the uncoded solution.

Example 3. Suppose (F1, F2) = (1.5, 1) and the demands of the users are dependent with

popularity (p(1,1), p(1,2), p(2,1), p(2,2)) = (2
15 ,

8
15 ,

4
15 ,

1
15). Namely, user 1 demanding files 1 and

2 with probabilities 2/3 and 1/3, user 2 demanding files 1 and 2 with probability 2/5 and

3/5 but their demands are no longer statistically independent. Instead, the demands are
3

 ↑ In general, the optimal scheme for the worst-case capacity may not be unique. A more precise statement
should thus be “one worst-case optimal coded scheme actually performs ...”. It is worth mentioning that it
is an open problem how a system designer should choose from the set of optimal worst-case coded scheme
since currently there is little study about what is the set of optimal worst-case coded schemes.

74

negatively correlated with correlation coefficient −2
√

5/15. The corresponding average-rate

capacity for arbitrary (M1,M2) is described in Fig. 3.5 .

Comparing Example 2 and 3 , one can see that even with the same marginal distribution,

the optimal coded caching can take into account the negative correlation, which results in a

different capacity region.

We also compare the average rates of the optimal coded solution, the uncoded solution,

and the worst-case-optimal coded solution with the setting of Example 3 in Fig. 3.6 . The

largest rate reduction over the uncoded scheme happens at v12 for which the optimal coded

caching scheme uses only 7
15/

11
15 ' 63.6% of the bandwidth of the uncoded solution.

The above examples consider user-dependent file popularity. If we relax that constraint

and consider only uniform file popularity, we can derive a closed form capacity expression

for any arbitrary (F1, F2,M1,M2).

Corollary 3. For arbitrary (F1, F2) satisfying F1 ≥ F2 and uniform file popularity (i.e.,

p~d = 0.25, ∀~d), the average-rate capacity for arbitrary (M1,M2) is described in Fig. 3.7 ,

which contains exactly 5 facets.

The proof of Corollary 3 is relegated to Appendix B.3 .

The exact PRCR characterization can also be used to easily rederive the worst-case

capacity R∗ with arbitrary (F1, F2,M1,M2), previously found by examining the outer bounds

of entropic cones [41]. See Appendix B.4 for details.

The closed form expressions of R̄ and R∗ as functions of (F1, F2,M1,M2) and {p~d}, i.e.,

Corollary 3 and Corollary 7 in Appendix B.4 , can be used to solve other design optimiza-

tion problems. For example, we can solve the 2-user/2-file memory allocation problem [56]

optimally by finding the (M∗
1 ,M

∗
2) that minimizes R̄ (or R∗) subject to the total memory

constraint M1 +M2 ≤Mtotal. That is, we evaluate the coded caching capacity over the line

(M1,M2) = (m,Mtotal − m) for all m ∈ [0,Mtotal]. Then, the optimal allocation is simply

(M1,M2) = (m∗,Mtotal−m∗), where m∗ denotes the value that leads to the smallest capacity

rate.

75

3.4 Summary

The per-request capacity region (PRCR) is the most fundamental performance metric

in the information-theoretic studies of coded caching. Given the PRCR of a coded caching

problem, we can find the optimal coded caching schemes for any convex objective function.

In this work, we have characterized the exact PRCR of the 2-user/2-file setting with full

heterogeneity and used it to derive the average-rate capacity with heterogeneous demand

popularity, file sizes, and cache sizes, and to re-derive the worst-case capacity previously

found in [41]. By explicitly charactering the capacity and finding the capacity-achieving

schemes, the results in this work allow the system designer to accurately evaluate the gain

that optimal coded caching offers over naïve uncoded solutions under any general scenarios.

The N = K = 2 results also represent the first step toward fully characterizing the average-

rate/worst-case capacity of coded caching with full heterogeneity. Similar concepts and

procedures may be applied to characterize/bracket the capacity for larger N and K: (i)

Derive all the converse bounds of the NK-dimensional PRCR, (ii) Find all the vertices of

the PRCR polytope formed by the converse bounds for all {F1, . . . , FN} and {M1, . . . ,MK}

values, (iii) Find the achievable schemes for each of the vertices on the polytope. Such a

process can be further simplified if there is any symmetry/homogeneity that can be exploited

in the process. In addition, the result of N = K = 2 could shed new insights for deriving

good/optimal achievability results for general N and K values. For example, it has been

shown that the capacity-achieving schemes of the N = K = 2 case are based exclusively on

space-sharing among 7 basic schemes. This observation is likely to be useful for the case of

general N and K as well.

76

1,2,3,4

1,3,4,

5,6,7 8,9,10,11

1,9,10,

11,12,

13

10,14,

16,17

14,15

1,12,13,

21,22,23
8,21,

22,23

18,19,20,

22,24,

25

14,22,

24,25

22,

24,25,

26,27,28

Case 1

Case 2

Case 3

Case 5
Case 4

Case 6

M
1

F
1
+ F

2

F
1
+ F

2

F
2

F
2

F
1

F
1

M
2

(a) F1 ≥ 2F2

10,16,17,

18,19,

20 10,14,

16,17

14,15
8,9

10,11

1,3,4,

5,6,7

1,2,3,4

1,

12,13,

21,22,23

18,19,20,

22,24,

25
14,22,

24,25

22,24,25,

26,27,28

Case 1

Case 4

Case 6

1,9,10,

11,12,

13

Case 2

Case 3

Case 5

M
1

F
1
+ F

2

F
1
+ F

2

F
2

F
2

F
1

F
1

M
2

(b) 2F2 > F1 ≥ F2

Figure 3.2. Description of the regions of (M1,M2) and the corresponding
corner points. The x-axis (resp. y-axis) is for the M1 (resp. M2) value. In this
figure we assume F1 ≥ F2 and only describe the cases when M1 ≥ M2, thus
the lower-half of the line M1 = M2. The cases of F1 < F2 and M1 < M2 can
be obtained by swapping the file and user indices, respectively. Two scenarios
are considered: (a) F1 ≥ 2F2; (b) 2F2 > F1 ≥ F2.

77

M
1

M
2

Figure 3.3. The average-rate capacity with (F1, F2) = (1.5, 1) and
(p(1,1), p(1,2), p(2,1), p(2,2)) = (4/15, 2/5, 2/15, 1/5). There are 12 facets and 14 corner
points. Each corner point is labeled by a tuple (M1,M2, R̄), where (M1,M2)
give the location and the third coordinate specifies the corresponding exact
average-rate capacity R̄. The capacity is asymmetric with respect to (M1,M2)
due to the heterogeneous file popularity.

78

v2 v3 v9 v10 v11 v12 v13 v14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Vertex

A
v
e
ra

g
e
 t
ra

n
s
m

is
s
io

n
 r

a
te

Coded optimal

Coded worst−case

Uncoded optimal

Figure 3.4. Comparison of the average-rate capacity with the average rate
of naïve likelihood-based uncoded caching, and the coded caching scheme in
[41] that is optimized for the worst-case performance on some of the vertices
in Fig. 3.3 .

79

M
1

M
2

Figure 3.5. The average-rate capacity with (F1, F2) = (1.5, 1) and
(p(1,1), p(1,2), p(2,1), p(2,2)) = (2/15, 8/15, 4/15, 1/15). There are 10 facets and 13
corner points. Each corner point is labeled by a tuple (M1,M2, R̄), where
(M1,M2) give the location and the third coordinate specifies the correspond-
ing exact average-rate capacity R̄. The capacity is asymmetric with respect
to (M1,M2) due to the heterogeneous file popularity.

80

v2 v3 v9 v10 v11 v12 v13
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Vertex

A
v
e
ra

g
e
 t
ra

n
s
m

is
s
io

n
 r

a
te

Coded optimal

Coded worst−case

Uncoded optimal

Figure 3.6. Comparison of the average-rate capacity with the average rate
of naïve likelihood-based uncoded caching, and the coded caching scheme in
[41] that is optimized for the worst-case performance on some of the vertices
in Fig. 3.5 .

F
1
+ F

2

F
1
+ F

2

F
2

F
2

F
1

F
1

M
1

M
2

Figure 3.7. The average-rate capacity of uniform popularity, described for
the case of F1 ≥ F2.

81

4. CODED CACHING SYSTEM FOR TWO USERS WITH

HETEROGENEOUS FILE DEMAND SETS

In this chapter, we consider the same coded caching system described in Chapter 3 . The

coded caching system consists of one server and K users, and operates in two phases: In

placement phase, each user accesses the N files and fills its cache memory; and in delivery

phase, each user submits its own file request and the server broadcasts a signal to deliver

the desired packets to each user. Though we have discussed the exact capacity of the two-

user/two-file (K = N = 2) coded caching system with full heterogeneous setting in Chapter

 3 . The average rate regions for general K ≥ 2 and N ≥ 2 coded caching are still open. In

this part, we presents the first steps towards solving the problem by analyzing the case of

two users K = 2 with distinct but dependent file popularity.

4.1 Introduction

The increasing demand of video streaming data has led to a significant challenge in con-

tent distribution over communication networks. Coded caching has recently received great

success in reducing the peak transmission rate in some networks by exploiting multicasting

opportunities in the underlying broadcast channels. A coded caching scheme has two phases:

placement and delivery. In the placement phase, the users can access the files at the server to

fill their cache memories during the off-peak hours. In the delivery phase, the users announce

their requests and the server, with full knowledge of the users’ cache contents, transmits the

information required to satisfy such requests for all the users.

Caching has been extensively studied in content distribution networks with different

objectives such as access latency and transmission rate [57], [58]. Traditional “uncoded

caching” schemes focus on caching the content most likely to be requested and, when the

content absent from the users’ caches is requested, they deliver it in uncoded plain form.

The most commonly used placement algorithms for uncoded caching are least frequently used

(LFU) and least recently used (LRU), where the former retains the most frequently accessed

subfiles in the past and the latter keeps the most recently used subfiles.

82

Coded caching, initially proposed in [31], can reduce the worst-case delivery time by a

factor of (1
1+KM/F N

) respect to traditional uncoded caching schemes, where N is the number

of files, K is the number of users, F is the individual file size, and M is the individual cache

size normalized by F . Existing works have characterized the coded caching capacity for

some special N and K values [31]–[33], [52] and derived order-optimal capacity expressions

for general N and K [31], [34], [39], [59], [60]. The worst-case setting is analytically appealing

but it is not throughput optimal in practice with a time sequence of requests. Some recent

results have focused on the average-rate capacity [36], [37], [39], [45], [61], evaluating the

transmission rate over a distribution of demands. The order-optimal average-rate capacity

results of user-independent file popularity, i.e., all users having the same file popularity profile

has been investigated in [36], [37], [39], [45], [59], [61]. Nevertheless, the assumption of user-

independent file popularity in these works is not compatible with traditional uncoded caching

schemes, since the number of users with similar preferences can be small and each user often

operates in a distributed manner with its own file popularity and prediction algorithm.

The rate improvement of coded caching primarily comes from the broadcasting nature

and the simultaneous users’ demands. However, the latter will not occur frequently and will

require synchronization among the users. When the demands of users are served sequentially,

coded caching increases the system complexity without providing any rate reduction. Clearly,

the system should apply coded caching when users’ demands are synchronized, and employ

traditional uncoded caching when they come sparsely in time. One way to cover both

scenarios is to enforce the so-called uncoded prefetching condition, which ensures that cached

content is always of an uncoded form so that the content is useful to both the coded and

uncoded delivery. It is obvious that such flexibility is at the expense of degrading the overall

capacity since uncoded prefetching is a subclass of general prefetching schemes.

Motivated by the above discussion on limitations of user-independent file popularity

and flexibility of uncoded prefetching, this work studies the average-rate capacity of coded

caching with selfish and uncoded prefetching. Specifically, we assume that each user k is

associated with a file demand set (FDS) Θk and requests each of those files with probability
1

|Θk| (see Section 4.2 for details). Users will only cache segments from files in their demand set,

hence the term selfish prefetching. The FDS setting reflects user-dependent file popularity

83

by considering different users k1 and k2 with Θk1 6= Θk2 . Average-rate capacity results for

disjoint FDS (Θk1 ∩Θk2 = ∅) and dominant FDS (Θk1 ⊂ Θk2) were derived in [52], [62]. This

work studies the case of two users (K = 2) and arbitrary number of files N , where the FDSs

Θ1 of user 1 and Θ2 of user 2 overlap in α common files.

Under the coded caching model of file demand set, the coded caching problem for K = 2

users, arbitrary N files, and identical file demand sets Θ1 = Θ2 is the same as the original

problem with homogeneous file popularity. We then focus on the coded caching problem with

heterogeneous file demand sets Θ1 6= Θ2. We first show the average-rate capacity when the

two file demand sets Θ1 and Θ2 share a single common file, i.e., α = 1, where the capacity can

be achieved by selfish and uncoded prefetching. The we show the average rate capacity for

the case K = 2, N = 3, and α = 2, where the achievable scheme requires unselfish and coded

prefetching. Finally we find the average-rate capacity of selfish and uncoded prefetching for

an arbitrary number α of common files. From a practical perspective, this paper answers the

following question: Suppose there are two users with significantly different file preferences

(as is common in practice). However, there are α files that are simultaneously desired by

both users, where α can be any number. What is the best coded caching scheme in this

scenario?

4.2 Coded Caching Model with File Demand Set

We use the same model and notations of the coded caching system with one server and

K users described in Section 3.2 . The operation of the system consists of the placement

phase and the delivery phase. In the placement phase, each user k populates its cache

content by the caching function φk and in the delivery phase, each user k sends a request

dk ∈ [N] to the server, i.e., user k demands file Wdk
. We denote the probability mass function

(pmf) of the random request dk by p
[k]
dk

. The joint pmf of the demand pattern of K users
~d , (d1, . . . , dK) ∈ [N]K is then p~d = p

[1]
d1 · · · p

[K]
dK

.

After receiving the demand index vector ~d, the server broadcasts an encoded signal X~d

of R~d bits with encoding function ψ using an error-free link to all K users. Each user k then

uses X~d as well as his/her cache content Zk to decode the requested file with the decoding

84

function µk. A coded caching scheme is completely specified by K caching functions {φk},

one encoding function ψ, and K decoding functions {µk}. Throughout this chapter, we

consider exclusively the zero-error feasible schemes described in Definition 3.2.1 .

Definition 4.2.1. The file demand set (FDS) of user k is defined as Θk , {n ∈ [N] : p[k]
n >

0}, which is the set of files that user k desires with a strictly positive probability.

Definition 4.2.2. A coded caching scheme uses uncoded prefetching if the cache content of

user k is

Zk = (w1, . . . , wN) = φk(W1, . . . ,WN), ∀k ∈ [K] (4.1)

where each wi is an uncoded subfile of Wi, i ∈ [N]. That is, each user k stores uncoded

fractions of the N files.

Definition 4.2.3. A coded caching scheme uses selfish prefetching if all K caching functions

φk in (3.1) can be replaced by

Zk = φk({Wn : n ∈ Θk}), ∀k ∈ [K]. (4.2)

Namely, each user k only stores the files that he/she is interested in, thus the name selfish.

In contrast, the more general design using (3.1) is referred to as an unselfish scheme.

The general definitions of worst-case rate and average rate are provided in Definition 3.2.2

and Definition 3.2.3 , respectively. Here we define the worst-case rate and average rate of

coded caching schemes with file demand sets.

Definition 4.2.4. The worst-case rate of a coded caching scheme is defined as

R∗ = max
∀~d:dk∈Θk

R~d. (4.3)

Definition 4.2.5. The average-rate of a coded caching scheme is defined as

R̄ =
∑

∀~d,dk∈Θk

p~dR~d. (4.4)

85

The uniform-average-rate of a scheme is defined as

R̃ = 1∏K
k=1 |Θk|

∑
∀~d,dk∈Θk

R~d. (4.5)

R̃ can be viewed as a first-order approximation of the average-rate R̄ that replaces the

joint distribution p~d with a uniform distribution over the FDS ∏K
k=1 Θk (rather the simplest,

uniform distribution over [N]K [39].). In [52], an exact characterization of R̄ has been

provided for the 2-user/2-file setting, which involves detailed discussion of up to 28 different

cases that depends on the underlying values of (M1,M2) and p~d. Instead of focusing on the

exact R̄, in this work we focus on the simplified, more tractable quantities R̃ and R∗ but

allow the N value to be ≥ 2.

For notational simplicity, we slightly abuse the above notation and directly use R̃ to

denote the uniform-average-rate capacities even though the original notation R̃ in (4.5)

represent the achievable rates instead. To investigate the capacity of a variety of schemes,

we further denote the following four uniform-average-rate capacities: the uniform-average-

rate capacity of unselfish and coded schemes R̃gc (or equivalently R̃); the uniform-average-

rate capacity of unselfish and uncoded schemes R̃gu; the uniform-average-rate capacity of

selfish and coded schemes R̃sc; and the uniform-average-rate capacity of selfish and uncoded

schemes R̃su. The relationship among the four capacities show the trade-off between the

transmission rate and the complexity of achievable scheme designs.

4.3 Homogeneous File Demand Sets

When all the users have homogeneous (or identical) FDS, i.e., Θk = Θ∗ for all k ∈ [K], the

coded caching problem with FDS then degenerate to traditional N -file/K-user coded caching

problem with the metric of uniform average transmission rate. According to Definition 4.2.3 ,

there is no difference between selfish and unselfish designs, i.e., R̃gc = R̃sc and R̃gu = R̃su. The

capacity of uncoded prefetching schemes R̃gu (or R̃su) can be solved by linear programming;

however, the capacity of coded schemes R̃gc (or R̃su) for arbitrary N and K are still open,

86

many order-optimal schemes have been proposed in 3.1 . Specifically, the capacity result for

K = 2 is provided as follows.

Proposition 4.3.1 (Θ1 = Θ2). Consider K = 2 users, N ≥ 2 files, and Θ1 = Θ2 = [N].

Then the uniform-average-rate R̃ = R̃gc = R̃sc is tightly characterized

1
 by

R̃ ≥ F − (M1/N) (P1)

R̃ ≥ F − (M2/N) (P2)

R̃ ≥ 2N − 1
N

F − 2N − 2
N2 M1 −

1
N
M2 (P3)

R̃ ≥ 2N − 1
N

F − 1
N
M1 −

2N − 2
N2 M2 (P4)

Corollary 4. Under the restriction of uncoded prefetching, the capacity R̃gu = R̃su is tightly

characterized by [33].

This proposition is the average-rate counterpart of the worst-case setting in [33] for the

K = 2 and arbitrary N ≥ 2 case. The relationship of R̃ versus (M1,M2) is illustrated in

Fig. 4.1 . The x-axis (resp. y-axis) is for the M1 (resp. M2) value. The inequalities (P1) to

(P4) are marked in the corresponding regions. There are seven vertices s1 to s7 and each

vertex is labeled by a tuple (M1,M2, R̃), where (M1,M2) describe the location and the third

coordinate describe the corresponding exact uniform-average-rate capacity R̃.

4.4 Heterogeneous File Demand Sets

In this section, we show some coded caching results under heterogeneous FDS settings.

Specifically, we consider arbitrary N files and K users with disjoint FDSs, i.e., Θi ∩ Θj = ∅

for all i 6= j ∈ [K], in Section 4.4.1 ; arbitrary N files and K = 2 users with one-overlapping

FDSs, i.e., |Θ1∩Θ2| = 1, in Section 4.4.2 ; N = 3 files and K = 2 users with two-overlapping

FDS i.e., Θ1 = {1, 2}, Θ2 = {1, 2, 3}, |Θ1 ∩ Θ2| = 2 in Section 4.4.3 , and arbitrary N1, N2

with FDS overlapped by ≥ 2 files in Section 4.4.4 .
1

 ↑ We use the statement tightly characterized when we can derive a matching pair of the converse and
achievability results, i.e., it characterizs capacity.

87

M
1

M
2

P1

P2

P3

P4

� : , ��, �
� : , � − �, �

� : , , �−� � � : � − �, , � � : ��, , �

� : ��,��,

� : ��,��, �

Figure 4.1. The capacity R̃ of both the selfish and unselfish designs with
Θ1 = Θ2 = [N].

88

4.4.1 Disjoint File Demand Sets for arbitrary K

We consider the coded caching of arbitrary N files and arbitrary K ≥ 2 user, the uniform-

average-rate capacity for disjoint FDSs is as follows.

Proposition 4.4.1. If Θk1 ∩Θk2 = ∅ for all distinct k1, k2 ∈ [K], then the uniform-average-

rate R̃ = R̃gc = R̃sc = R̃gu = R̃su is tightly characterized by

R̃ =
K∑

k=1

(
F − Mk

|Θk|

)+

(4.6)

The proof of Proposition 4.4.1 is relegated in Appendix C.1 . This proposition shows if

no two users are interested in a common file, each user can act as if he/she is the sole user

in the system. Since R̃ = R̃su, the uniform-average-rate capacity (4.6) can be achieved by

a simple selfish and uncoded prefeching scheme that user k caches min(F,Mk/|Θk|) part of

each file in Θk.

4.4.2 One-Overlapping File Demand Sets for K = 2

We consider the coded caching of arbitrary N files and K = 2 user, the uniform-average-

rate capacity for one-overlapping FDSs is as follows.

Proposition 4.4.2 (|Θ1| = N1, |Θ2| = N2, |Θ1 ∩ Θ2| = 1). Consider K = 2 users and

N = N1 + N2 − 1 files with FDSs Θ1 = {1, . . . , N1}, Θ2 = {N1, . . . , N1 + N2 − 1} such

89

P0

P2
P6

P1

P7

P5

� : , , − � � �� : � − �, , + � −� � �
� : � �, , � � : ��, , �

� : ��,� �,
� : ��,��,� : � �,��,� : , ��, �

� : , � �, �
� : , � − �, + � −� � �� : � − �, � − �,� +� −� � �

� : � �,� �,

M
1

M
2

Figure 4.2. The minimum average rate R̃ of coded caching for |Θ1| = N1,
|Θ2| = N2, and α = 1. For any (M1,M2) inside each subregion, the rate R̃ is
characterized by the corresponding equation marked in that region.

that Θ1 ∩ Θ2 = {N1}. The uniform-average-rate R̃ = R̃gc = R̃sc = R̃gu = R̃su is tightly

characterized by

R̃ ≥ 0 (P0)

R̃ ≥ F −M1/N1 (P1)

R̃ ≥ F −M2/N2 (P2)

R̃ ≥
(

2− 1
N1

)
F − M1

N1
− N1 − 1

N1N2
M2 (P5)

R̃ ≥
(

2− 1
N2

)
F − N2 − 1

N1N2
M1 −

M2

N2
(P6)

R̃ ≥
(

2− 1
N1N2

)
F − M1

N1
− M2

N2
(P7)

The relationship of R̃ versus (M1,M2) is illustrated in Fig. 4.2 .

90

The proof of Proposition 4.4.2 is relegated in Appendix C.2 . Since R̃ = R̃su, the rate R̃

in Prop. 4.4.2 can be achieved by selfish and uncoded schemes.

4.4.3 Two-Overlapping File Demand Sets for N = 3 and K = 2

Proposition 4.4.3 (Θ1 = {1, 2},Θ2 = {1, 2, 3}, R̃gc). Consider K = 2 users and Θ1 = {1, 2}

and Θ2 = {1, 2, 3}. The uniform-average-rate R̃ = R̃gc is tightly characterized by

R̃ ≥ F −M1/2 (Q1)

R̃ ≥ F −M2/3 (Q2)

R̃ ≥ 5F
4 −

M1

4 −
M2

4 (Q3)

R̃ ≥ 3F
2 −

M1

3 −
M2

3 (Q4)

R̃ ≥ 5F
3 −

M1

2 −
M2

3 (Q5)

R̃ ≥ 5F
3 −

M1

3 −
M2

2 (Q6)

The relationship of the capacity R̃ versus (M1,M2) is illustrated in Fig. 4.3 .

The proof of Proposition 4.4.3 is provided in Appendix C.3 .

Proposition 4.4.4 (Θ1 = {1, 2},Θ2 = {1, 2, 3}, R̃sc). Continue from Proposition 4.4.3 . The

rate R̃sc is tightly characterized by (Q1) to (Q6) plus an additional inequality:

R̃sc ≥
4F
3 −

M1

6 −
M2

3 . (Q7)

The relationship of R̃sc versus (M1,M2) is illustrated in Fig. 4.4 .

The proof of Proposition 4.4.4 is provided in Appendix C.4 .

Note that one can prove that if R̃sc satisfies inequality (Q7), then it automatically satisfies

(Q3) and (Q4). That is why in Fig. 4.4 there are only 5 subregions and the regions of (Q3)

and (Q4) no longer appear.

91

M1

M2

Q1

Q3 Q2

Q5

Q6

Q4

� : 0, 0, � � : �, 0, � � : �, 0, �

� : �, �, 0� : �, �, 0� : 0, �, �
� : 0, �, � � : �, �, �

� : �, �, � � : �, �, �� : �, �, �

Figure 4.3. The uniform-average-rate capacity R̃ = R̃gc with Θ1 = {1, 2}
and Θ2 = {1, 2, 3}.

M1

M2

Q1

Q5

Q6

� : 0, 0, � � : �, 0, � � : �, 0, �

� : �, �, 0� : �, �, 0� : 0, �, �
� : 0, �, � � : �, �, �

� : �, �, �Q7 Q2

Figure 4.4. The uniform-average-rate capacity R̃sc for selfish and coded
prefetching schemes with Θ1 = {1, 2} and Θ2 = {1, 2, 3}.

92

M1

M2

Q1

Q3 Q2

Q5

Q6

Q4

� : 0, 0, � � : �, 0, � � : �, 0, �

� : �, �, 0� : �, �, 0� : 0, �, �
� : �, �, �

� : �, �, �
� : �, �, �

Q9

Q8

� : 0, �, �

Figure 4.5. The uniform-average-rate capacity R̃gu for unselfish and uncoded
prefetching schemes with Θ1 = {1, 2} and Θ2 = {1, 2, 3}.

Proposition 4.4.5 (Θ1 = {1, 2},Θ2 = {1, 2, 3}, R̃gu). Continue from Proposition 4.4.3 . The

rate R̃gu is tightly characterized by (Q1) to (Q6) plus two additional inequalities:

R̃gu ≥
3F
2 −

2
3M1 −

M2

6 . (Q8)

R̃gu ≥
3F
2 −

M1

4 −
5
12M2. (Q9)

The relationship of R̃gu versus (M1,M2) is illustrated in Fig. 4.5 .

The proof of Proposition 4.4.5 is provided in Appendix C.5 .

Proposition 4.4.6 (Θ1 = {1, 2},Θ2 = {1, 2, 3}, R̃su). Continue from Proposition 4.4.3 . The

rate R̃su is tightly characterized by (Q1), (Q2), (Q5) to (Q8).

When viewed separately, Propositions 4.4.3 and 4.4.4 describe the fundamental limits of

unselfish and selfish coded caching when two users, with arbitrary cache sizes (M1,M2), share

concentrated

2
 , similar, but not identical interests, which alone are of important analytical

2
 ↑ We say a user is of concentrated interest if the corresponding FDS Θk is small, e.g., |Θ1| = 2 and |Θ2| = 3

in Propositions 4.4.3 and 4.4.4 . This is usually a result of highly effective next-file prediction.

93

value. Jointly, they provide the first proof that selfish coded caching is strictly suboptimal,

e.g., the two points u10 and u11 in Fig. 4.3 can only be achieved by an unselfish design.

It is worth pointing out that the insufficiency of selfish coded caching is not due to the

use of the average rate R̃ as the performance metric. Even when using the worst-case rate

R∗ in (4.3), selfish designs are still insufficient.

Corollary 5. Continue from Proposition 4.4.3 . When (M1,M2) = (1.5F, 1.5F), i.e., v11 in

Fig. 4.3 , the worst-case capacity R∗ of the unselfish and selfish schemes are 0.5F and 7
12F ,

respectively.

4.4.4 Large-Overlapping File Demand Sets for K = 2 with Selfish and Uncoded
Prefetching

Selfish and uncoded prefetching is not optimal in general, since it imposes unnecessary

restrictions on the content of the caches. However, there are some cases in which it can

proved that selfish and/or uncoded prefetching is optimal. One such example is Prop. 4.4.2

above and another example is provided in [52] for dominant Θ1 = {1} and Θ2 = {1, . . . , N},

N ≥ 2. Furthermore, as discussed in Section 4.1 the simplicity of selfish and uncoded

prefetching is a significant advantage when files, users, or links change dynamically.

This section provides an exact characterization of how the caches should be populated

for a general M1, M2, N1, N2, and α (number of common files) in the case of K = 2 users

with selfish and uncoded prefetching.

Proposition 4.4.7 (|Θ1| = N1, |Θ2| = N2, |Θ1 ∩Θ2| ≥ 2, R̃su). Consider K = 2 users and

N files with file demand sets Θ1 = {1, . . . , N1}, Θ2 = {N1−α+1, . . . , N1 +N2−α} such that

94

|Θ1 ∩ Θ2| = α ≥ 2. Without lost of generality, let M2 ≥ M1, the uniform-average capacity

R̃su for selfish and uncoded prefetching schemes is tightly characterized by

R̃su ≥ 0 (P0)

R̃su ≥ F −M1/N1 (P1)

R̃su ≥
(

2− α

N1

)
F − M1

N1
− N1 − α

N1N2
M2 (P8)

R̃su ≥
(

2− α2

2N1N2

)
F − M1

N1
− M2

N2
(P10)

R̃su ≥
(

2− 1
N1

)
F − N2 + α− 1

N1N2
M1 −

N1 − 1
N1N2

M2 (P11)

R̃su ≥
(

2− α

N1N2

)
F − N2 + α− 2

N1N2
M1 −

M2

N2
(P13)

for the regions illustrated in Fig. 4.6 . The equations for the remaining regions (i.e., M1 > M2)

can be found by symmetry, exchanging the roles of users 1 and 2.

The proof of Proposition 4.4.7 is relegated in Appendix C.6 .

Corollary 6. When α ≥ 2, the minimum average rate in Proposition 4.4.7 can be achieved

by the placement Algorithm 2 .

Algorithm 2 Optimal selfish and uncoded prefeching placement scheme for α ≥ 2
1: Input: (N1, N2, α,M1,M2)
2: γ ← min(M1,M2,

α
2F)

3: Mu
1 ← min(0,M1 − γ, (N1 − α)F)

4: Mu
2 ← min(0,M2 − γ, (N2 − α)F)

5: M c
1 ←M1 −Mu

1
6: M c

2 ←M2 −Mu
2

7: User 1 caches [0, Mc
1

α
] part of each common file in C and caches [0, Mu

1
N1−α

] part of each
unique file in U1

8: User 2 caches [F − Mc
2

α
, F] part of each common file in C and caches [0, Mu

2
N2−α

] part of each
unique file in U2

95

P0

P2

P1

P8

P10 P9

P11

P13

P14 P12� : 0, 0, 2 − �� � � M
1

M
2

�

� : 0, � �, �

� : � �, 0, � � : ��, 0, �

� : ��,� �, 0
� : ��,��, 0� : � �,��, 0� : ��, 0, �

� : � �,� �, 0
�

�
� �

�

Figure 4.6. The minimum average rate R̃ for |Θ1| = N1, |Θ2| = N2, and
α ≥ 2 with selfish and uncoded prefetching, where v2 : ((N1 − α)F, 0, (1 +
(N1 − 1)α/(N1N2))F), v10 : (0, (N2 − α)F, (1 + (N2 − 1)α/(N1N2))F), v11 :
(αF/2, (N2−α/2)F, (1+(N1−N2−α)α/(2N1N2))F), v12 : (αF/2, αF/2, (2−
(N1 + N2 + α)α/(2N1N2))F), v13 : ((N1 − α/2)F, αF/2, (1 + (N2 − N1 −
α)α/(2N1N2))F), and v14 : ((N1 − α/2)F, (N2 − α/2)F, (N2 + N1 −
α)αF/(2N1N2)).

96

4.5 Numerical Evaluations

This section illustrates the average rate capacity expressions in Fig. 4.6 for the particular

case of N1 = N2 = 128 and M1 = M2 = M . It will compare the average rate with the

optimal selfish and uncoded prefetching scheme described in Prop. 4.4.7 with two others:

• Uncoded transmission (UT): during the delivery phase, transmissions cannot encode

multiple file segments into a single message. The server will send to each user whatever

file segments it is missing from its cache, uncoded. There is no multicasting gain

except when both users demand the same file, hence selfish prefetching is optimal.

The minimum uniform-average rate is

R̃ut ≥
(

2− α

N2
x

)(
1− M

Nx

)
, (4.7)

where Nx denotes the value of N1 = N2.

• Shared caches (SC): users can share the content of their caches with each other. The

two caches can therefore be treated as a single memory of size 2M that both users

can access, without restricting the prefetching to be selfish or uncoded. The minimum

uniform-average rate is

R̃sc ≥
(

2− α

N2
x

)(
1− 2M

2Nx − α

)
. (4.8)

The UT scheme adds constraints to our system and therefore provides an upper bound to

the general uniform-average rate capacity, while the SC scheme adds capabilities that our

system did not have and therefore provides a lower bound to the general (including unselfish

and coded prefetching) coded caching capacity.

Fig. 4.7 presents the uniform-average rates (normalized by the file size) for the three

schemes when α = 96 and the cache size per user grows from nothing (M = 0) to being

able to cache all the files in the FDS (M = 128). The rate with our scheme falls between

the other two, as expected, but it is interesting to note that for small M it is a lot closer

97

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cache size M

U
n
if
o
rm

−
a
v
e
ra

g
e
 r

a
te

Uncoded transmission

Selfish−uncoded prefetching

Shared caches

Figure 4.7. Uniform-average rate as a function of the cache size M when
N1 = N2 = 128 and α = 96.

to the SC than to the UT. This tells us that, even if we removed the selfish and uncoded

prefetching restrictions, we would not be able to achieve a significant reduction in the rate.

Fig. 4.8 presents the uniform-average rates (normalized by the file size) for the three

schemes when M = 16 and the intersection between the file demand sets (FDS) grows from

empty (α = 0) to a complete overlap (α = 128). It can be observed that the UT scheme

yields nearly constant rate regardless of the number of common files. This can be explained

by the fact that, with Nx = 128 files in each demand set, the probability of both users

requesting the same file is fairly low, even with a complete overlap. The uniform-average

rate of our scheme is again relatively close to the capacity lower bound, specially when the

overlap between the users’ interests is small.

4.6 Summary

This chapter studies the average rate capacity of a coded caching system with two users

having arbitrary cache capacities and demanding files from different but overlapping demand

sets. Specifically, it analyzes the case of user 1 and user 2 with file demand sets Θ1 and

Θ2, respectively. The chapter first provides the exact capacity results of one overlapped file

98

0 20 40 60 80 100 120 140

1.5

1.55

1.6

1.65

1.7

1.75

1.8

FDS overlap α

U
n

if
o

rm
−

a
v
e

ra
g

e
 r

a
te

Uncoded transmission

Selfish−uncoded prefetching

Shared caches

Figure 4.8. Uniform-average rate as a function of the FDS overlap α when
N1 = N2 = 128 and M = 16.

99

demand sets |Θ1∩Θ2| = 1 for arbitrary N and two overlapped file demand sets |Θ1∩Θ2| = 2

for N = 3. To investigate the performance of large overlapped files, the chapter then focuses

on this scenario of selfish and uncoded prefetching and derived explicit expressions for the

minimal achievable average rate when the file demand sets have arbitrary size and number

of overlap. Finally, we provide detailed placement and delivery schemes capable of achieving

the derived capacities. Simulation results are used to illustrate our results and bound their

gap to an optimal unselfish and coded prefetching scheme.

100

5. CONCLUSION AND FUTURE WORK

The thesis discusses the network coding applications in some less restrictive network models,

including the 1-to-K broadcast packet erasure channel and the coded caching system with

N files and K users. In this chapter, we summarize the thesis and provide some thoughts

for future research directions.

5.1 Capacity of 1-to-K Spatial-Independent Broadcast Packet Erasure Channels
with ACK/NACK

In Chapter 2 , we propose the sequential coding protocol for 1-to-K broadcast packet

erasure channels that attains the capacity region of known scenarios in Proposition 2.3.1 .

However, from Section 2.3 and Appendix A.2.3 , we observe that the proposed scheme can

achieve the outer bound for spatially independent channels (through examining over 105

numerical trials with different ~p). However, if K = 4 and the underlying channel is not

spatially independent, we have found some rate vectors ~R that are in the outer bound but

not in the proposed stability region.

Fortunately, in most of wireless broadcast scenarios, the channels from the server to users

has very small correlation among each other and hence can be viewed as independent. As

the result, a scheme that achieves the capacity of spatially-independent broadcast PECs is

useful in real design. Based on our examination, we conjecture that the proposed scheme

can achieve the capacity of 1-to-4 spatially-independent broadcast PECs, i.e., the rate region

obtained by substituting K = 4 and p∪Sπ

j
= 1 − ∏k∈Sπ

j
(1 − pk) in (2.5). For best of our

knowledge, the achievable scheme for K = 4 and spatially independent channels is still open

without a complete proof. Moreover, due to the systematic structure of proposed inner

bound in Proposition 2.3.1 , a more interesting and ambitious research direction is to prove if

the proposed scheme can achieve the capacity of the 1-to-K spatially independent broadcast

PECs for all K ≥ 4.

101

5.2 Linear Network Coding for Achieving Capacity of 1-to-K Broadcast Packet
Erasure Channels with ACK/NACK

In the literature of network coding, most of the achievable schemes apply only the linear

coding technique to approach the capacity; however, existing results [63] have shown the

insufficiency of linear coding in some similar broadcasting models. In Chapter 2 , we show

that the proposed linear network coding scheme successfully achieves the capacity under the

scenarios in Proposition 2.3.1 but fails under some scenarios of K = 4, e.g., the one described

in Appendix A.2.3 . In order to close the gap between the outer bound and proposed inner

bound for K = 4, we need to prove one of the following assumptions.

First, under the assumption that the linear network coding is sufficient to achieve the

capacity of 1-to-4 broadcast PECs, we need to construct a tighter outer bound to match the

network coding scheme or to proposed a more advanced linear network coding scheme as a

tighter inner bound. In this situation, as linear coding is well-investigated in the literature,

we may want to actually propose an explicit linear network coding scheme and close the gap

between the capacity outer and inner bound. Second, under the assumption that the linear

network coding is not sufficient to achieve the capacity of 1-to-4 broadcast PECs, we need

to construct a scenario of 1-to-4 broadcast PEC where all the linear coding schemes can not

achieve the complete capacity region. As a negative proof in this situation, we may not need

to construct a specific achievable non-linear network coding scheme.

5.3 General Lower Bounds for Coded Caching of Arbitrary N Files and K Users

In order to investigate the coded caching capacity or optimal rate for arbitrary number of

files N and number of users K with full heterogeneity, we intend to achieve the outer bound

with coded caching schemes. In the coded caching model, since each user demands one file

and the server broadcasts a signal once, designing the achievability schemes or inner bound

is much easier than designing the inner bound of 1-to-K broadcast packet erasure channels.

However, on the other hand, constructing tight outer bounds for the coded caching system

requires much more efforts. In general coded caching models, the per-request capacity region

is determined by parameters file size Fi of file i and cache memory size Mk of user k, which

102

indicates that the information-theoretic outer bounds only involve the variables of file content

Wi of file i and cache memory content Zk of user k without any jointed or conditioned terms

among the variables. Therefore when constructing the information-theoretic outer bounds,

we should carefully eliminate these undesired jointed or conditioned terms in the equations.

Prior studies [32], [33] exploit the file and user symmetry to develop new techniques for

constructing the outer bounds with homogeneity and worst-case rate settings. To form the

outer bound for heterogeneity and average rate settings, without the file and user symmetry,

we should develop more general and advanced techniques for deriving tighter outer bounds.

5.4 Coded Caching with K = 2 user and Heterogeneous User File Popularity

In order to reduce the high complexity of coded caching problem with heterogeneous

settings, we propose a simplified model in Chapter 4 with binary request probabilities.

Specifically, we consider a coded caching system that each user demands a file with uni-

form probability among the files in his/her file demand set and with zero probability for the

files outside the file demand set. We then propose the capacity results for the scenario of

K = 2 users, arbitrary N files, and the two users’ file demand sets Θ1 and Θ2 overlapping

by one file. However, the coded caching problem for K = 2 users, arbitrary N files, and

arbitrary file demand sets with arbitrary overlapped files, is still open.

Solving the coded caching problem for the scenario of K = 2 users, arbitrary N files, and

arbitrary file demand sets, requires further derivation and verification of the outer and inner

bounds. Under the assumption that linear coding is sufficient for achieving the capacity, we

can straightforwardly obtain the linear achievable scheme as an inner bound. However, we

may need more sophisticated techniques to derive tight outer bounds to match the linear

coding achievable scheme. On the other hand, if linear network coding is not sufficient to

achieve the capacity of the coded caching system, we may need to illustrate a scenario as a

negative proof that all the linear coding schemes can not achieve the capacity rate region.

103

REFERENCES

[1] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2524–2530, Oct. 1998, issn: 0018-9448. doi: 10.1109/18.720547 .

[2] P. Bergmans, “Random coding theorem for broadcast channels with degraded com-
ponents,” IEEE Trans. Inf. Theory, vol. 19, no. 2, pp. 197–207, Mar. 1973, issn:
0018-9448. doi: 10.1109/TIT.1973.1054980 .

[3] Y. Wu, “Broadcasting when receivers know some messages a priori,” in Proc. IEEE Int.
Symp. Inform. Theory, Jun. 2007, pp. 1141–1145. doi: 10.1109/ISIT.2007.4557377 .

[4] M. A. Maddah-Ali and D. Tse, “Completely stale transmitter channel state information
is still very useful,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4418–4431, Jul. 2012,
issn: 0018-9448. doi: 10.1109/TIT.2012.2193116 .

[5] C.-C. Wang, “On the capacity of 1-to-K broadcast packet erasure channels with chan-
nel output feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 931–956, Feb. 2012,
issn: 0018-9448. doi: 10.1109/TIT.2011.2173723 .

[6] L. Georgiadis and L. Tassiulas, “Broadcast erasure channel with feedback - capacity
and algorithms,” in Proc. Workshop on Network Coding, Theory, and Applications
(Netcod), Jun. 2009, pp. 54–61. doi: 10.1109/NETCOD.2009.5191394 .

[7] C.-C. Wang and J. Han, “The capacity region of two-receiver multiple-input broadcast
packet erasure channels with channel output feedback,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5597–5626, Sep. 2014, issn: 0018-9448. doi: 10.1109/TIT.2014.
2334299 .

[8] J. Han and C.-C. Wang, “General capacity region for the fully connected three-node
packet erasure network,” IEEE Trans. Inf. Theory, vol. 62, no. 10, pp. 5503–5523, Oct.
2016, issn: 0018-9448. doi: 10.1109/TIT.2016.2600578 .

[9] R. Y. Chang, S.-J. Lin, and W.-H. Chung, “Symbol and bit mapping optimization
for physical-layer network coding with pulse amplitude modulation,” IEEE Trans.
Wireless Commun., vol. 12, no. 8, pp. 3956–3967, Aug. 2013, issn: 1536-1276. doi:
 10.1109/TWC.2013.071613.121520 .

[10] C.-H. Chang, R. Y. Chang, and Y.-C. Huang, “A comparative analysis of secrecy rates
of wireless two-way relay systems,” in Proc. IEEE GLOBECOM, Dec. 2015, pp. 1–6.
doi: 10.1109/GLOCOM.2015.7417092 .

[11] I.-H. Hou, V. Borkar, and P. R. Kumar, “A theory of qos for wireless,” in Proc. IEEE
INFOCOM, Apr. 2009, pp. 486–494. doi: 10.1109/INFCOM.2009.5061954 .

104

https://doi.org/10.1109/18.720547
https://doi.org/10.1109/TIT.1973.1054980
https://doi.org/10.1109/ISIT.2007.4557377
https://doi.org/10.1109/TIT.2012.2193116
https://doi.org/10.1109/TIT.2011.2173723
https://doi.org/10.1109/NETCOD.2009.5191394
https://doi.org/10.1109/TIT.2014.2334299
https://doi.org/10.1109/TIT.2014.2334299
https://doi.org/10.1109/TIT.2016.2600578
https://doi.org/10.1109/TWC.2013.071613.121520
https://doi.org/10.1109/GLOCOM.2015.7417092
https://doi.org/10.1109/INFCOM.2009.5061954

[12] I.-H. Hou and P. R. Kumar, “Utility maximization for delay constrained qos in wire-
less,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9. doi: 10.1109/INFCOM.2010.
5462070 .

[13] I.-H. Hou, “Scheduling heterogeneous real-time traffic over fading wireless channels,”
IEEE/ACM Trans. Netw., vol. 22, no. 5, pp. 1631–1644, Oct. 2014, issn: 1063-6692.
doi: 10.1109/TNET.2013.2280846 .

[14] W.-C. Kuo and C.-C. Wang, “Robust and optimal opportunistic scheduling for down-
link two-flow network coding with varying channel quality and rate adaptation,” IEEE/ACM
Trans. Netw., vol. 25, no. 1, pp. 465–479, Feb. 2017, issn: 1063-6692. doi: 10.1109/
TNET.2016.2583488 .

[15] X. Li, C.-C. Wang, and X. Lin, “Inter-session network coding schemes for 1-to-2 down-
link access-point networks with sequential hard deadline constraints,” IEEE/ACM
Trans. Netw., vol. 25, no. 1, pp. 624–638, Feb. 2017, issn: 1063-6692. doi: 10.1109/
TNET.2016.2599116 .

[16] L. Deng, C.-C. Wang, M. Chen, and S. Zhao, “Timely wireless flows with general
traffic patterns: Capacity region and scheduling algorithms,” IEEE/ACM Trans. Netw.,
vol. 25, no. 6, pp. 3473–3486, Dec. 2017, issn: 1063-6692. doi: 10.1109/TNET.2017.
2749513 .

[17] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Multiuser broadcast erasure channel
with feedback–capacity and algorithms,” IEEE Trans. Inf. Theory, vol. 59, no. 9,
pp. 5779–5804, Sep. 2013, issn: 0018-9448. doi: 10.1109/TIT.2013.2265692 .

[18] S. Athanasiadou, M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Stable XOR-based
policies for the broadcast erasure channel with feedback,” IEEE/ACM Trans. Netw.,
vol. 24, no. 1, pp. 476–491, Feb. 2016, issn: 1063-6692. doi: 10.1109/TNET.2014.
2366435 .

[19] W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the gaussian two-way relay channel
to within 1

2 bit,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5488–5494, Nov. 2010,
issn: 0018-9448. doi: 10.1109/TIT.2010.2069150 .

[20] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network coding,” in
Proc. Mobile Computing and Networking (MobiCom), ser. MobiCom ’06, New York,
NY, USA: ACM, 2006, pp. 358–365, isbn: 1-59593-286-0. doi: 10 . 1145 / 1161089 .
1161129 .

[21] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through
structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011,
issn: 0018-9448. doi: 10.1109/TIT.2011.2165816 .

105

https://doi.org/10.1109/INFCOM.2010.5462070
https://doi.org/10.1109/INFCOM.2010.5462070
https://doi.org/10.1109/TNET.2013.2280846
https://doi.org/10.1109/TNET.2016.2583488
https://doi.org/10.1109/TNET.2016.2583488
https://doi.org/10.1109/TNET.2016.2599116
https://doi.org/10.1109/TNET.2016.2599116
https://doi.org/10.1109/TNET.2017.2749513
https://doi.org/10.1109/TNET.2017.2749513
https://doi.org/10.1109/TIT.2013.2265692
https://doi.org/10.1109/TNET.2014.2366435
https://doi.org/10.1109/TNET.2014.2366435
https://doi.org/10.1109/TIT.2010.2069150
https://doi.org/10.1145/1161089.1161129
https://doi.org/10.1145/1161089.1161129
https://doi.org/10.1109/TIT.2011.2165816

[22] A. Eryilmaz, A. Ozdaglar, M. Medard, and E. Ahmed, “On the delay and throughput
gains of coding in unreliable networks,” IEEE Trans. Inf. Theory, vol. 54, no. 12,
pp. 5511–5524, Dec. 2008, issn: 0018-9448. doi: 10.1109/TIT.2008.2006454 .

[23] L. Yang, Y. E. Sagduyu, J. Zhang, and J. H. Li, “Deadline-aware scheduling with
adaptive network coding for real-time traffic,” IEEE/ACM Trans. Netw., vol. 23, no. 5,
pp. 1430–1443, Oct. 2015, issn: 1063-6692. doi: 10.1109/TNET.2014.2331018 .

[24] Y. E. Sagduyu, L. Georgiadis, L. Tassiulas, and A. Ephremides, “Capacity and sta-
ble throughput regions for the broadcast erasure channel with feedback: An unusual
union,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2841–2862, May 2013, issn: 0018-
9448. doi: 10.1109/TIT.2011.2171180 .

[25] A. Papadopoulos and L. Georgiadis, “Broadcast erasure channel with feedback and
message side information, and related index coding result,” IEEE Trans. Inf. Theory,
vol. 63, no. 5, pp. 3161–3180, May 2017, issn: 0018-9448. doi: 10.1109/TIT.2017.
2668386 .

[26] Z. Li, C. He, and S. Yang, “On the capacity of the two-user erasure broadcast channel
with mixed csit,” in Proc. IEEE Information Theory Workshop (ITW), Nov. 2017,
pp. 499–503. doi: 10.1109/ITW.2017.8277984 .

[27] C. Chang and C. Wang, “A new capacity-approaching scheme for general 1-to-k broad-
cast packet erasure channels with ack/nack,” IEEE Trans. Inf. Theory, vol. 66, no. 5,
pp. 3000–3025, 2020. doi: 10.1109/TIT.2020.2968316 .

[28] C.-C. Wang, D. Koutsonikolas, Y. C. Hu, and N. Shroff, “FEC-based AP downlink
transmission schemes for multiple flows: Combining the reliability and throughput
enhancement of intra- and inter-flow coding,” Perform. Eval., vol. 68, no. 11, pp. 1118–
1135, Nov. 2011, issn: 0166-5316. doi: 10.1016/j.peva.2011.07.021 .

[29] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inf.
Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003, issn: 0018-9448. doi: 10.1109/TIT.
2002.807285 .

[30] J. Wang, “A survey of web caching schemes for the internet,” SIGCOMM Comput.
Commun. Rev., vol. 29, no. 5, pp. 36–46, Oct. 1999, issn: 0146-4833. doi: 10.1145/
505696.505701 . [Online]. Available: http://doi.acm.org/10.1145/505696.505701 .

[31] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf.
Theory, vol. 60, no. 5, pp. 2856–2867, May 2014, issn: 0018-9448. doi: 10.1109/TIT.
2014.2306938 .

106

https://doi.org/10.1109/TIT.2008.2006454
https://doi.org/10.1109/TNET.2014.2331018
https://doi.org/10.1109/TIT.2011.2171180
https://doi.org/10.1109/TIT.2017.2668386
https://doi.org/10.1109/TIT.2017.2668386
https://doi.org/10.1109/ITW.2017.8277984
https://doi.org/10.1109/TIT.2020.2968316
https://doi.org/10.1016/j.peva.2011.07.021
https://doi.org/10.1109/TIT.2002.807285
https://doi.org/10.1109/TIT.2002.807285
https://doi.org/10.1145/505696.505701
https://doi.org/10.1145/505696.505701
http://doi.acm.org/10.1145/505696.505701
https://doi.org/10.1109/TIT.2014.2306938
https://doi.org/10.1109/TIT.2014.2306938

[32] C. Tian, “Symmetry, demand types and outer bounds in caching systems,” in Proc.
IEEE Int. Symp. Inform. Theory (ISIT), Jul. 2016, pp. 825–829. doi: 10.1109/ISIT.
2016.7541414 .

[33] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gündüz, “Coded caching with
asymmetric cache sizes and link qualities: The two-user case,” IEEE Trans. Commun.,
vol. 67, no. 9, pp. 6112–6126, Sep. 2019, issn: 1558-0857. doi: 10.1109/TCOMM.2019.
2921711 .

[34] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal
memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1029–1040, Aug.
2015, issn: 1063-6692. doi: 10.1109/TNET.2014.2317316 .

[35] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery array design for
centralized coded caching scheme,” IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5821–
5833, Sep. 2017, issn: 1557-9654. doi: 10.1109/TIT.2017.2725272 .

[36] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEE
Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158, Feb. 2017, issn: 0018-9448. doi:
 10.1109/TIT.2016.2639522 .

[37] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distribu-
tions,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 349–366, Jan. 2018, issn: 0018-9448.
doi: 10.1109/TIT.2017.2768517 .

[38] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and
coded multicasting with random demands,” IEEE Trans. Inf. Theory, vol. 63, no. 6,
pp. 3923–3949, Jun. 2017, issn: 0018-9448. doi: 10.1109/TIT.2017.2695611 .

[39] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory
tradeoff in cache networks within a factor of 2,” IEEE Trans. Inf. Theory, vol. 65,
no. 1, pp. 647–663, Jan. 2019, issn: 0018-9448. doi: 10.1109/TIT.2018.2870566 .

[40] H. Ghasemi and A. Ramamoorthy, “Asynchronous coded caching,” in Proc. IEEE Int.
Symp. Inform. Theory (ISIT), Jun. 2017, pp. 2438–2442. doi: 10.1109/ISIT.2017.
8006967 .

[41] C. Li, “On rate region of caching problems with non-uniform file and cache sizes,”
IEEE Commun. Lett., vol. 21, no. 2, pp. 238–241, Feb. 2017, issn: 1089-7798. doi:
 10.1109/LCOMM.2016.2594762 .

[42] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded caching,” IEEE Trans.
Inf. Theory, vol. 66, no. 3, pp. 1893–1919, 2020.

107

https://doi.org/10.1109/ISIT.2016.7541414
https://doi.org/10.1109/ISIT.2016.7541414
https://doi.org/10.1109/TCOMM.2019.2921711
https://doi.org/10.1109/TCOMM.2019.2921711
https://doi.org/10.1109/TNET.2014.2317316
https://doi.org/10.1109/TIT.2017.2725272
https://doi.org/10.1109/TIT.2016.2639522
https://doi.org/10.1109/TIT.2017.2768517
https://doi.org/10.1109/TIT.2017.2695611
https://doi.org/10.1109/TIT.2018.2870566
https://doi.org/10.1109/ISIT.2017.8006967
https://doi.org/10.1109/ISIT.2017.8006967
https://doi.org/10.1109/LCOMM.2016.2594762

[43] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis., “Finite-length
analysis of caching-aided coded multicasting,” IEEE Trans. Inf. Theory, vol. 62, no. 10,
pp. 5524–5537, Oct. 2016, issn: 1557-9654. doi: 10.1109/TIT.2016.2599110 .

[44] E. Ozfatura and D. Guenduez, “Uncoded caching and cross-level coded delivery for
non-uniform file popularity,” in Proc. IEEE Int. Conf. on Communications (ICC),
May 2018, pp. 1–6. doi: 10.1109/ICC.2018.8422960 .

[45] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for multi-level
popularity and access,” IEEE Trans. Inf. Theory, vol. 63, no. 5, pp. 3108–3141, May
2017, issn: 0018-9448. doi: 10.1109/TIT.2017.2664817 .

[46] P. Quinton, S. Sahraei, and M. Gastpar, “A novel centralized strategy for coded caching
with non-uniform demands,” arXiv:1801.10563, Jan. 2018. arXiv: 1801.10563 [cs.IT] .

[47] S. Sahraei, P. Quinton, and M. Gastpar, “The optimal memory-rate trade-off for the
non-uniform centralized caching problem with two files under uncoded placement,”
IEEE Trans. Inf. Theory, vol. 65, no. 12, pp. 7756–7770, Dec. 2019, issn: 1557-9654.
doi: 10.1109/TIT.2019.2930692 .

[48] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded caching for heterogeneous systems:
An optimization perspective,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5321–5335,
Aug. 2019, issn: 1558-0857. doi: 10.1109/TCOMM.2019.2914393 .

[49] J. Zhang, X. Lin, C. Wang, and X. Wang, “Coded caching for files with distinct file
sizes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Jun. 2015, pp. 1686–1690.
doi: 10.1109/ISIT.2015.7282743 .

[50] L. Zheng, Q. Chen, Q. Yan, and X. Tang, “Decentralized coded caching scheme with
heterogenous file sizes,” IEEE Trans. Veh. Technol., pp. 1–1, 2019, issn: 1939-9359.
doi: 10.1109/TVT.2019.2949979 .

[51] J. Zhang, X. Lin, and C. Wang, “Closing the gap for coded caching with distinct file
sizes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Jul. 2019, pp. 687–691. doi:
 10.1109/ISIT.2019.8849540 .

[52] C. Chang and C. Wang, “Coded caching with full heterogeneity: Exact capacity of
the two-user/two-file case,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2019,
pp. 6–10. doi: 10.1109/ISIT.2019.8849597 .

[53] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in network
information flow,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2745–2759, 2005. doi:
 10.1109/TIT.2005.851744 .

108

https://doi.org/10.1109/TIT.2016.2599110
https://doi.org/10.1109/ICC.2018.8422960
https://doi.org/10.1109/TIT.2017.2664817
https://arxiv.org/abs/1801.10563
https://doi.org/10.1109/TIT.2019.2930692
https://doi.org/10.1109/TCOMM.2019.2914393
https://doi.org/10.1109/ISIT.2015.7282743
https://doi.org/10.1109/TVT.2019.2949979
https://doi.org/10.1109/ISIT.2019.8849540
https://doi.org/10.1109/ISIT.2019.8849597
https://doi.org/10.1109/TIT.2005.851744

[54] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” IEEE
Trans. Inf. Theory, vol. 63, no. 7, pp. 4388–4413, Jul. 2017, issn: 0018-9448. doi:
 10.1109/TIT.2017.2705166 .

[55] C. Wang, S. Saeedi Bidokhti, and M. Wigger, “Improved converses and gap results for
coded caching,” IEEE Trans. Inf. Theory, vol. 64, no. 11, pp. 7051–7062, Nov. 2018,
issn: 1557-9654. doi: 10.1109/TIT.2018.2856885 .

[56] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Optimization of heterogeneous caching
systems with rate limited links,” in Proc. IEEE Int. Conf. on Communications (ICC),
May 2017, pp. 1–6. doi: 10.1109/ICC.2017.7997394 .

[57] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content dis-
tribution networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9. doi: 10.1109/
INFCOM.2010.5461964 .

[58] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,” IEEE/ACM Trans.
Netw., vol. 8, no. 5, pp. 568–582, Oct. 2000. doi: 10.1109/90.879344 .

[59] T. Luo, V. Aggarwal, and B. Peleato, “Coded caching with distributed storage,” IEEE
Trans. Inf. Theory, pp. 1–1, 2019. doi: 10.1109/TIT.2019.2940979 .

[60] T. Luo and B. Peleato, “The transfer load-i/o trade-off for coded caching,” IEEE
Commun. Lett., vol. 22, no. 8, pp. 1524–1527, Aug. 2018. doi: 10.1109/LCOMM.2018.
2840149 .

[61] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and
coded multicasting with random demands,” IEEE Trans. Inf. Theory, vol. 63, no. 6,
pp. 3923–3949, Jun. 2017, issn: 0018-9448. doi: 10.1109/TIT.2017.2695611 .

[62] S. Wang and B. Peleato, “Coded caching with heterogeneous user profiles,” in Proc.
IEEE Int. Symp. Inform. Theory, Jul. 2019, pp. 2619–2623. doi: 10.1109/ISIT.2019.
8849537 .

[63] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in network
information flow,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2745–2759, Aug. 2005,
issn: 0018-9448. doi: 10.1109/TIT.2005.851744 .

[64] A. Bondy and U. Murty, Graph Theory, ser. Graduate Texts in Mathematics. Springer
London, 2011, isbn: 9781846289699.

109

https://doi.org/10.1109/TIT.2017.2705166
https://doi.org/10.1109/TIT.2018.2856885
https://doi.org/10.1109/ICC.2017.7997394
https://doi.org/10.1109/INFCOM.2010.5461964
https://doi.org/10.1109/INFCOM.2010.5461964
https://doi.org/10.1109/90.879344
https://doi.org/10.1109/TIT.2019.2940979
https://doi.org/10.1109/LCOMM.2018.2840149
https://doi.org/10.1109/LCOMM.2018.2840149
https://doi.org/10.1109/TIT.2017.2695611
https://doi.org/10.1109/ISIT.2019.8849537
https://doi.org/10.1109/ISIT.2019.8849537
https://doi.org/10.1109/TIT.2005.851744

[65] M. J. Neely and R. Urgaonkar, “Opportunism, backpressure, and stochastic optimiza-
tion with the wireless broadcast advantage,” in Proc. Asilomar Conference on Sig-
nals, Systems and Computers, Oct. 2008, pp. 2152–2158. doi: 10.1109/ACSSC.2008.
5074815 .

110

https://doi.org/10.1109/ACSSC.2008.5074815
https://doi.org/10.1109/ACSSC.2008.5074815

A. SUPPLEMENTARY MATERIALS FOR CHAPTER 2

A.1 Proof of Proposition 2.2.2

Assumptions and notations: Consider any arbitrarily given rate vector ~R = (R1, · · · , RK).

Without loss of generality, also assume mink∈[K] Rk > 0 and mink∈[K] pk > 0. Otherwise,

we can simply remove the degenerate user and treat the K-session transmission problem as

an equivalent (K − 1)-session transmission problem. For notational simplicity, we denote

Rmax , maxk∈[K] Rk and pmin , mink∈[K] pk. Also note that since we assume the arrival

process being Poisson with arrival rate Rk, the variance of the arrival process is also Rk. We

use Vk , Rk to denote the variance of the i.i.d. arrival process and Vmax , Rmax to denote

the maximum of the variances of the K arrival processes.

1

High-level description of the proof: For any stable rate ~R and the corresponding sequential

network coding scheme, see Definition 2.2.3 , and for any ε > 0 and 0 < δ < Rmin, we will

use this sequential coding scheme to design a block coding scheme with block length n and

rate vector

~Rδ , ~R− δ · 1 = (R1 − δ, · · · , RK − δ)

such that the error rate of the block coding scheme is less than or equal to ε. This shows

that for any stable ~R of the sequential-coding setting, the corresponding ~Rδ is achievable in

the block-coding setting. Since the capacity region is the closure of all achievable rates, this

construction completes the proof of Proposition 2.2.2 .

Detailed proof: We first prove the following lemma.

Lemma 4. For any stable rate ~R = (R1, . . . , RK) and the corresponding sequential net-

work coding scheme, see Definition 2.2.3 , there exist a constant D < ∞ and an infinite

deterministic integer sequence t1 < t2 < t3 < · · · such that

E {|Q(ti)|} ≤ D, ∀i ∈ [1,∞), (A.1)

1
 ↑ By using the variance notation Vmax, our proof also holds for any i.i.d. arrival processes with finite second

moment Vmax <∞.

111

where |Q(t)| is the amount of memory usage at time t.

Proof. Since ~R is stable, we can define a finite number UQ by

UQ , lim sup
t→∞

1
t

t∑
τ=1

E {|Q(τ)|} <∞. (A.2)

For any finite but fixed D > UQ, we will prove by contradiction that we can find a subse-

quence t1 < t2 < · · · satisfying Lemma 4 . Suppose not. Then there exists T ∈ N such that

E{|Q(t)|} > D for all t ≥ T . Together with (A.2) we then have UQ ≥ D, which contradicts

the initial choice of D > UQ. The proof is thus complete.

Using the D value and the sequence {ti} that satisfy Lemma 4 , we then define three

positive integers n2, n1, and n by

n2 ,

⌈
max

{
8K
pmin

ln
(3K
ε

)
,

6KD
pmin · ε

}⌉
(A.3)

n1 , ti0 > max
{

2n2

(
Rmax

δ
− 1

)
,
12KVmax

εδ2

}
(A.4)

n , n1 + n2. (A.5)

That is, we first find the n2 value by (A.3). Then we choose n1 value to be one of the

entries of {ti} that is strictly larger than the right-hand side of (A.4). Finally, we define

n = n1 + n2, which will be used as the block coding length in our construction. In the

following we describe how to construct a new block coding scheme of length n from the

given sequential coding scheme.

Given any (nRδ
1, . . . , nR

δ
K) packets that need to be transmitted via a block coding scheme,

we first use these packets to “simulate” K i.i.d. Poisson packet arrival processes with arrival

rates (R1, · · · , RK) for n1 time slots. More specifically, in the beginning of transmission

all nRδ
k packets are marked as “not-yet-arrived”. Then for each time slot t, we randomly

generate the Ak(t) value according to a Poisson distribution with parameter Rk, and we

change the labels of Ak(t) packets in the original nRδ
k packets from “not-yet-arrived” to

“arrived”.

112

Recall that Mk(n1) denote the cumulative number of packet arrivals during the first n1

time slots, which is a random variable with average E{Mk(n1)} = n1Rk. If the cumulative

number of packet arrivals Mk(n1) < nRδ
k, then it means that in the end of time n1 some

packets are still labeled as “not-yet-arrived”. In this case we declare encoding/decoding

failure and the block coding scheme terminates. If Mk(n1) ≥ nRδ
k, then the labels of all

packets have eventually been changed to “arrived”. For the last Mk(n1)− nRδ
k packets, i.e.,

after all nRδ
k packets have been labeled “arrived”, we can simply insert new all-zero packets

(the dummy packets) into the system.

Since the original nRδ
k packets now “arrive” at source s as a Poisson random process with

rate Rk, we can apply the sequential coding scheme during the first n1 time slots. At the

end of time n1, the total number of packets in the memory of the source is |Q(n1)|. Then for

the remaining n2 time slots we “broadcast” the remaining packets in the queue Q(n1) to all

K destinations. Namely, each destination dk, k ∈ [K], would like to know all the content of

Q(n1) by the end of time n = n1 + n2 (during time [n1 + 1, n1 + n2]). To achieve this task,

we transmit the |Q(n1)| packets one-by-one to d1 first, and then transmit all |Q(n1)| packets

one-by-one to d2, so on and so forth until all dk receive all the |Q(n1)| packets.

2

If source s fails to deliver all |Q(n1)| packets to all K destinations during time [n1 +

1, n1 + n2], we declare encoding/decoding failure and the block coding scheme terminates.

Note that since the sequential coding scheme is decodable, see (2.9) and (2.10) in Section 2.2 ,

after delivering all packets in Q(n1) to all K destinations, each dk can then decode its desired

nRδ
k packets. The description of the block coding scheme is thus complete.

Analyzing the above block code, the decoding error can only follow from the following

three events: Error Type 1: When simulating the Poisson arrival processes in the first n1

time slots, the actual number of random arrivals of user-k is smaller than nRδ
k. That is, some

of the to-be-transmitted packets never “arrive” at the source and thus cannot be delivered

by our new scheme. Error Type 2: |Q(n1)| > 3D
ε

. Namely, at the end of time n1, there are

too many packets in the queue at the source. Error Type 3: |Q(n1)| ≤ 3D
ε

but there exists
2

 ↑ Herein we use uncoded broadcast during time [n1 + 1, n1 + n2]. We can also use network-coded-broadcast.
Both will serve the same purpose in our proof and we choose the former for its simplicity.

113

a destination dk such that not all |Q(n1)| packets are successfully delivered to dk during the

n2 time slots. Applying the union bound to the error probability, we have

Pr
 ⋃

k∈[K]
{X̂k 6= Xk}

≤

∑
k∈[K]

Pr
(
Mk(n1) < nRδ

k

)
+ Pr

(
|Q(n1)| >

3D
ε

)
+

∑
k∈[K]

Pr
(
|Q(n1)| ≤

3D
ε
, not all |Q(n1)| delivered to dk

)
. (A.6)

We now upper bound each of the three probability terms individually. We upper bound

the first term by the Chebyshev inequality. Specifically, Mk(n1) is a Poisson random variable

with mean n1Rk and variance n1Vk. Comparing the mean of Mk(n1) versus the original

number of packets nRδ
k, we have

E{Mk(n1)}−nRδ
k = n1Rk − nRδ

k

= n1Rk − (n1 + n2)(Rk − δ)

= n1δ + n2δ − n2Rk

≥ n1δ + n2δ − n2Rmax

> n1δ + n2δ −
(
n1

2 + n2

)
δ = n1δ

2 > 0. (A.7)

where the inequality in (A.7) follows from the following argument. By (A.4) we have n1 >

2n2(Rmax
δ
− 1), which implies (n1

2 + n2)δ > n2Rmax and thus (A.7). Then each summand of

the first summation term in (A.6) is upper bounded by

Pr
(
Mk(n1) < nRδ

k

)
≤ Pr

(∣∣∣∣∣Mk(n1)
n1

−Rk

∣∣∣∣∣ > δ

2

)
(A.8)

≤ Vk/n1

δ2/4 (A.9)

≤ 4Vmax

n1δ2 ≤
ε

3K . (A.10)

114

where (A.8) follows from (A.7); (A.9) follows from the Chebyshev inequality; and (A.10)

follows from the definition of n1 in (A.4). The summation in the first term is thus upper

bounded by ε
3 .

The second term in (A.6) is bounded by Markov’s inequality. That is,

Pr
(
|Q(n1)| >

3D
ε

)
≤ ε

3DE {|Q(n1)|}

≤ εD

3D = ε

3 . (A.11)

where (A.11) follows from the definition of choosing n1 = ti0 in (A.4), which ensures

E{|Q(n1)|} ≤ D.

The third term in (A.6) is bounded by the Chernoff bound. By (A.3) we have

3D
ε
≤ n2pmin

2K ≤ n2pk

2K . (A.12)

For simplicity, we divide n2 time slots into K sub-intervals. Each sub-interval has length

n2/K and is responsible for delivering |Q(n1)| packets to user dk for some k ∈ [K]. If we

denote Γk as the number of dk’s received packets during the n2
K

time slots, then Γk is a

Binomial random variable with parameter (n2
K
, pk) and the event “not all the |Q(n1)| packets

are delivered successfully to dk by the end of time n” is equivalent to Γk < |Q(n1)|, i.e.,

Pr
(
|Q(n1)| ≤

3D
ε
,

not all |Q(n1)| packets are delivered to dk)

≤Pr
(

Γk < |Q(n1)|, |Q(n1)| ≤
3D
ε

)
≤Pr

(
Γk ≤

(
1− 1

2

)
n2pk

K

)
(A.13)

≤ exp
(
−1

4 ·
n2pk

2K

)
(A.14)

≤ exp
(
−n2pmin

8K

)
≤ ε

3K . (A.15)

115

where (A.13) follows from (A.12), (A.14) follows from the Chernoff bound, and (A.15) follows

from the definition of n2 in (A.3).

Hence (A.6), (A.10), (A.11), and (A.15) yield

Pr
 ⋃

k∈[K]
{X̂k 6= Xk}

 ≤ ε. (A.16)

This shows that the above block coding scheme achieves rate ~Rδ. The proof is thus

complete.

A.2 On The Optimality of Proposition 2.3.1

In this appendix, we prove that Proposition 2.3.1 is optimal in many scenarios while

being suboptimal in some other scenarios.

A.2.1 Proof of Corollary 1

Comparing Propositions 2.2.1 and 2.3.1 , “the stability region matching the capacity re-

gion” is equivalent to the following statement:

Given any rate ~R satisfying the outer bound (2.5) in Proposition 2.2.1 , there

exists non-negative variables {xT : T ∈ 2[K]\{∅}} satisfying Conditions 1 and 2

in Proposition 2.3.1 , provided we change the strict inequality in (2.17) to ≤.

In the sequel, we prove that the above statement holds for the following cases.

Case 1: K = 3. Consider any fixed rate (R1, R2, R3) that is within the outer bound

described in Proposition 2.2.1 . For any three distinct indices i, j, k ∈ {1, 2, 3} (no two being

equal), define a function

τ(i, j, k) , Ri

p∪{i,j,k}
+ Rj

p∪{j,k}
+ Rk

pk

, (A.17)

Since (R1, R2, R3) satisfies Proposition 2.2.1 , we have maxi,j,k τ(i, j, k) ≤ 1.

116

We now construct the variables {xT : T ∈ 2[3]\{∅}} by

x{2} = R2

p∪{1,2,3}
, (A.18)

x{1,2} =− R1 +R2

p∪{1,2,3}
− R3

p3
+ max{τ(1, 2, 3), τ(2, 1, 3)}, (A.19)

x{1,2,3} =R1 +R2 +R3

p∪{1,2,3}
+ R1

p1
+ R2

p2
+ R3

p3
+ max

∀i,j,k
τ(i, j, k)

−max{τ(1, 2, 3), τ(2, 1, 3)}

−max{τ(1, 3, 2), τ(3, 1, 2)}

−max{τ(3, 2, 1), τ(2, 3, 1)}. (A.20)

Variables x{1} (resp. x{3}) is defined in a symmetric way as x{2} by swapping the user indices

2 and 1 (resp. 2 and 3) in (A.18). x{1,3} (resp. x{2,3}) is defined in a symmetric way as x{1,2}

by swapping the user indices 2 and 3 (resp. 1 and 3) in (A.19).

We now prove that the xT variables in the above construction are non-negative. It is

clear from (A.18) that x{2} ≥ 0. By symmetry we also have x{1} ≥ 0 and x{3} ≥ 0.

We also have

x{1,2} ≥−
R1 +R2

p∪{1,2,3}
− R3

p3
+ τ(2, 1, 3) (A.21)

=R1

(
1

p∪{1,3}
− 1
p∪{1,2,3}

)
≥ 0 (A.22)

where (A.21) follows from (A.19) and the equality of (A.22) follows from (A.17). Eq. (A.22)

is non-negative since by definition p∪{1,3} ≤ p∪{1,2,3}. By symmetry, x{1,3} and x{2,3} are also

non-negative.

To show that x{1,2,3} ≥ 0, without loss of generality, we assume maxi,j,k τ(i, j, k) =

τ(1, 2, 3) and discuss the following cases.

(i) Consider τ(1, 3, 2) ≥ τ(3, 1, 2) and τ(3, 2, 1) ≥ τ(2, 3, 1). Since τ(1, 2, 3) is assumed to

be the largest, the inequality τ(1, 2, 3) ≥ τ(1, 3, 2) also yields

R3

(
1
p3
− 1
p∪{2,3}

)
≥ R2

(
1
p2
− 1
p∪{2,3}

)
.

117

Therefore (A.20) becomes

x{1,2,3} = R3

p3
− R3

p∪{2,3}
− R2

p∪{1,2}
+ R2

p∪{1,2,3}

≥ R2

(
1
p2
− 1
p∪{2,3}

− 1
p∪{1,2}

+ 1
p∪{1,2,3}

)
≥ 0,

where the last nonnegative inequality follows from [5 , Lemma 5].

(ii) Consider τ(1, 3, 2) ≥ τ(3, 1, 2) and τ(3, 2, 1) < τ(2, 3, 1). Eq. (A.20) becomes

x{1,2,3} = R3

(
1
p3
− 1
p∪{2,3}

− 1
p∪{1,3}

+ 1
p∪{1,2,3}

)
≥ 0.

(iii) Consider τ(1, 3, 2) < τ(3, 1, 2) and τ(3, 2, 1) ≥ τ(2, 3, 1). Since τ(1, 2, 3) is the largest,

τ(1, 2, 3) ≥ τ(3, 1, 2) and it implies

R1

p∪{1,2,3}
+ R2

p∪{2,3}
+ R3

p3
≥ R3

p∪{1,2,3}
+ R1

p∪{1,2}
+ R2

p2
.

Therefore (A.20) becomes

x{1,2,3} =R1 +R2 −R3

p∪{1,2,3}
+ R3

p3
− R1

p∪{1,2}
− R2

p∪{1,2}

≥R2

(
1
p2
− 1
p∪{2,3}

− 1
p∪{1,2}

+ 1
p∪{1,2,3}

)
≥ 0.

(iv) Consider τ(1, 3, 2) < τ(3, 1, 2) and τ(3, 2, 1) < τ(2, 3, 1), which implies

R1

(
1

p∪{1,2}
− 1
p∪{1,2,3}

)
> R3

(
1

p∪{2,3}
− 1
p∪{1,2,3}

)
,

R3

(
1

p∪{1,3}
− 1
p∪{1,2,3}

)
> R2

(
1

p∪{1,2}
− 1
p∪{1,2,3}

)
.

The product of the above two inequalities implies

R1

(
1

p∪{1,3}
− 1
p∪{1,2,3}

)
> R2

(
1

p∪{2,3}
− 1
p∪{1,2,3}

)
.

118

However since τ(1, 2, 3) ≥ τ(2, 1, 3), we also have

R2

(
1

p∪{2,3}
− 1
p∪{1,2,3}

)
≥ R1

(
1

p∪{1,3}
− 1
p∪{1,2,3}

)
.

This contradiction shows that this case is impossible.

Thus far we have proven the non-negativity of the {xT} variables. We now prove that

those {xT} satisfy (2.17) and (2.18). By the definitions in (A.18) to (A.20) one can directly

verify that ∑
∀T ∈2[3]\{∅}

xT = max
i,j,k

τ(i, j, k) (A.23)

which is no larger than one, see the discussion right after (A.17). The time-sharing condition

(2.17) thus holds.

To verify (2.18), we consider only the case of k = 2. The cases of k = 1, 3 follow by

symmetry. There are five possible proper cuts in Condition 2, namely C(2)
i , i ∈ {1, 2, 3, 4, 5}

in (2.12) to (2.16). In the following, we examine (2.18) for each of these five cuts separately,

also see (2.20) to (2.24).

For C(2)
1 = {vn(2)

grnd}, inequality (2.20) becomes

(
x{2} + x{1,2} + x{2,3} + x{1,2,3}

)
· p2

=
(
R2

p2
+ max

∀i,j,k
τ(i, j, k)−max{τ(1, 3, 2), τ(3, 1, 2)}

)
·p2

≥R2. (A.24)

For C(2)
2 = {vn(2)

grnd, vn(2)
{1,3}}, inequality (2.21) becomes

x{2}
(
p2 + p{1,3}2

)
+ x{1,2} (p2 + p32) + x{2,3} (p2 + p12)

= x{2} ·
(
p∪{1,2} + p∪{2,3} − p∪{1,2,3}

)
+ x{1,2} · p∪{2,3} + x{2,3} · p∪{1,2}

=
(
x{2} + x{1,2}

)
· p∪{2,3} +

(
x{2} + x{2,3}

)
· p∪{1,2} −R2

≥ 2R2 −R2 = R2. (A.25)

119

For C(2)
3 = {vn(2)

grnd, vn(2)
{1}, vn(2)

{1,3}}, inequality (2.22) becomes

x{2}
(
p2 + p1{2,3} + p{1,3}2

)
+ x{2,3} (p2 + p12)

=
(
x{2} + x{2,3}

)
· p∪{1,2}

≥
(
τ(3, 2, 1)− R3

p∪{1,2,3}
− R1

p1

)
· p∪{1,2} = R2. (A.26)

The case of C(2)
4 = {vn(2)

grnd, vn(2)
{3}, vn(2)

{1,3}} is symmetric to the case of C(2)
3 = {vn(2)

grnd, vn(2)
{1},

vn(2)
{1,3}}. For C(2)

5 = {vn(2)
grnd, vn(2)

{1}, vn(2)
{3}, vn(2)

{1,3}}, inequality (2.24) becomes

x{2} ·
(
p2 + p1{2,3} + p3{1,2} + p{1,3}2

)
= R2, (A.27)

where (A.27) follows from (A.18). Our construction of {xT} thus satisfies (2.18). The proof

of Case 1 is complete.

Case 2: The channel is spatially independent and the rate-vector is one-sided fair.

Without loss of generality, we assume the marginal success probability pk are listed from the

smallest to the largest. That is, 0 < p1 ≤ p2 ≤ · · · ≤ pK . A rate vector ~R is one-sided fair

if Ri · (1 − pi) ≥ Rj · (1 − pj) for all i < j. Detailed discussion on one-sided fairness can be

found in [5].

Consider any spatially independent channel and any one-sided fair rate vector (R1, · · · , RK)

satisfying the outer bound (2.5). For any k and S ∈ 2[K]\{k}, define

u
(k)
S , Rk ·

 ∑
∀S1:([K]\S)⊆S1⊆[K]

(−1)|S1|−(K−|S|)

p∪S1

 . (A.28)

We now construct the desired variables {xT} by choosing xT = u
(k∗(T))
T \k∗(T), where k∗(T) =

min{i : i ∈ T}.

In the following we prove that the above {xT} are non-negative and satisfy Condition

1 in (2.17) and Condition 2 (2.18) simultaneously. Specifically, [5] proves that u(k)
S is non-

negative for all k ∈ [K] and S ∈ 2[K]\{k}. Since u(k∗(T))
T \k∗(T) ≥ 0, we thus have xT ≥ 0 for all

T .

120

To prove Condition 1 in (2.17), we have

∑
T ∈2[K]\{∅}

u
(k∗(T))
T \k∗(T) =

∑
k∈[K]

 ∑
S⊆{k+1,··· ,K}

u
(k)
S

 (A.29)

=
∑

k∈[K]

Rk

p∪[k]
≤ 1, (A.30)

where the (A.30) follows the Möbius inversion [64] of partially ordered sets with two functions

u
(k)
S in (A.28) and v

(k)
T , Rk

p∪T
.

To prove Condition 2 in (2.18), we use the result of Lemma 9 in Appendix A.6 and

show that there exist nonnegative variables ~y defined in (A.54) such that (A.55), (A.56),

and (A.57) are satisfied. Given the variables {xT} above, let the ~y variables for any fixed

k ∈ [K] be

yk;SI→dk
= u

(k)
SI
· pk, ∀SI ∈ 2[K]\{k}, (A.31)

y
[SX]
k;SI→SO

=

u

(k)
SI
· pSX [K]\(SI∪SX), SO = SI ∪ SX ,

0, otherwise,

∀SI ∈ 2[K]\{k}, SX ∈ 2[K]\(SI∪{k}). (A.32)

Since u(k)
S are nonnegative, we have {yk;SI→dk

} and {y[SX]
k;SI→SO

} are also nonnegative. Recall

that we define xT = u
(k∗(T))
T \k∗(T). Since ~R is one-sided fair, by [5 , Lemma 5] we have u(k)

S ≤ xS∪{k}

for all k and S. This directly implies that ~y satisfies (A.56) and (A.57). To show (A.55)

holds, for a given k ∈ [K] and S ∈ 2[K]\{k} the right-hand side of (A.55) is

u
(k)
S ·

pk +
∑

SX∈2[K]\(S∪{k})

pSX [K]\(S∪SX)

 = u
(k)
S · pS. (A.33)

We then consider the left-hand side of (A.55). If S = ∅, we have u(k)
∅ = Rk

p∪[K]
= Rk

1−p[K]
and

p∅ = 1. The left-hand side of (A.55) then becomes

Rk + u
(k)
∅ · p[K] = Rk

1− p[K]
= u

(k)
∅ · p∅. (A.34)

121

On the other hand, if S ∈ 2[K]\{k}\{∅}, the left-hand side of (A.55) is given by

∑
SI∈2[S]

u
(k)
SI
· p(S\SI)[K]\S = u

(k)
S · pS. (A.35)

Therefore, (A.55) always holds with equality. The proof of Case 2 is complete.

Case 3: Symmetric channels. A 1-to-K broadcast PEC is said to be symmetric if the

success probability pS1[K]\S1
= pS2[K]\S2

for any S1, S2 ∈ 2[K] satisfying |S1| = |S2|. Consider

any symmetric channel and any rate vector ~R = (R1, . . . , RK) satisfying the outer bound

(2.5). Without loss of generality, we also assume R1 ≥ R2 ≥ · · · ≥ RK , which is always

possible after relabeling the destinations. We then choose non-negative xT = u
(k∗(T))
T \k∗(T), where

k∗(T) = min{i : i ∈ T}. Since the choice of {xT} is the same as that in Case 2, {xT}

satisfying Condition 1 as in (A.30).

To show that such {xT} also satisfies Condition 2, we choose the same non-negative ~y

as in (A.31) and (A.32) and we will show that ~y also satisfies (A.55), (A.56), and (A.57) in

Lemma 9 . The reason is as follows. Due to the symmetric channel and the sorted Rk in

descending order, it is obvious that xT = u
(k∗(T))
T \k∗(T) = maxk∈T{u(k)

T \{k}}. Then by the same

reasons as discussed in Case 2, inequalities (A.56) and (A.57) is satisfied. Then following

the same reason of (A.33), (A.34), and (A.35), ~y also satisfies (A.55). The proof of Case 3

is complete.

A.2.2 Proof of Example 1

Suppose the channel is spatially independent with marginal success probability being ~p =

(p1, p2, p3, p4) = (1
3 ,

2
5 ,

1
2 ,

4
7) and rate vector being ~R = (R1, R2, R3, R4) = (96

1193 ,
672

5·1193 ,
288
1193 ,

1952
7·1193).

122

One can verify that all 4! = 24 inequalities of the outer bound in Proposition 2.2.1 are sat-

isfied. Specifically, the following four inequalities are satisfied with equality

R1
p∪{1,2,3,4}

+ R4
p∪{2,3,4}

+ R2
p∪{2,3}

+ R3
p3

= 1,

R4
p∪{1,2,3,4}

+ R1
p∪{1,2,3}

+ R2
p∪{2,3}

+ R3
p3

= 1,

R4
p∪{1,2,3,4}

+ R2
p∪{1,2,3}

+ R1
p∪{1,3}

+ R3
p3

= 1,

R4
p∪{1,2,3,4}

+ R2
p∪{1,2,3}

+ R3
p∪{1,3}

+ R1
p1

= 1,

(A.36)

and the remaining 20 inequalities are satisfied with strict inequality.

We now turn our attention to Proposition 2.3.1 , the stability region. Obviously, this

channel model is asymmetric. The rate vector is also not one-sided fair since R2 · (1− p2) =
2016

25·1193 <
144
1193 = R3 · (1−p3), also see the discussion in the end of Appendix A.2.1 . We choose

the xT variables as follows.

x{1} = 105
1193 , x{2} = 147

1193 , x{3} = 315
1193 , x{4} = 305

1193 ,

x{1,2} = 441
61 · 1193 , x{1,3} = 945

61 · 1193 , x{1,4} = 15
1193 ,

x{2,3} = 21
1193 , x{2,4} = 21

1193 , x{3,4} = 45
61 · 1193 ,

x{1,2,3}=
10101

11 · 61 · 1193 , x{1,2,4}=
1023

61 · 1193 , x{2,3,4}=
51

1193 ,

x{1,3,4} = 15345
7 · 61 · 1193 , x{1,2,3,4} = 364101

7 · 11 · 61 · 1193 .

Clearly these xT are non-negative and their total sum is 5603521
5603521 = 1. The cut condition

in (2.18) can be verified by simple computer programs. The proof of Example 1 is thus

complete.

123

A.2.3 An Example of Unachievable Rates for K = 4

Consider the case of K = 4, rate vector ~R = (0.173284, 0.146994, 0.174068, 0.127000).

We introduce the following equivalent notation for the PEC parameters {pS[K]\S}. That is,

pb1b2b3b4 = p{i:bi=1}{j:bj=0}. (A.37)

That is, each bi indicates whether the i-th user has received the packet. For example,

p1011 = p{1,3,4}2 is the probability that d1, d3, and d4 receive the packet but not d2. Using

this new notation, we set the channel parameters to be

p0000 = .1085, p0001 = .0132, p0010 = .1072, p0011 = .1040,

p0100 = .0846, p0101 = .0950, p0110 = .0563, p0111 = .0059,

p1000 = .1043, p1001 = .1099, p1010 = .0065, p1011 = .0344,

p1100 = .0023, p1101 = .0693, p1110 = .0033, p1111 = .0953,

such that ∑b1,b2,b3,b4∈{0,1} pb1b2b3b4 = 1.

A simple computer program can be used to verify that these choices of ~R and pb1b2b3b4

satisfy all 4! inequalities of the outer bound in Proposition 2.2.1 . If we define ~Rα = α · ~R,

we can use an LP solver to find the largest possible α such that ~Rα satisfies the inner bound

in Proposition 2.3.1 . In this example, the largest α = 99.86%. This shows that the inner

bound in Proposition 2.3.1 does not always meet the outer bound in Proposition 2.2.1 .

A.3 Proof of Lemmas 1 and 2

We first prove Lemma 1 . Assume any arbitrary but fixed virtual node scheduling fre-

quency {xT : T ∈ 2[K]\{∅}}. The cut value of a node-cut C(k) (not necessarily a proper

cut) is the summation of the capacity of edges of the following two types. Type 1: Edges

from a virtual node vn(k)
S /∈ C(k) to an auxiliary node SX ∈ 2[K]\(S∪{k}) that has an outgoing

infinite-capacity edge ending in a vn(k)
S̃
∈ C(k); Type 2: Edges from a virtual node vn(k)

S /∈ C(k)

to the sink node vn(k)
grnd.

124

For any given vn(k)
S /∈ C(k), the total edge capacity of Type-1 edges are:

xS∪{k}

 ∑
∀SX :

SX∈F(k,S,C(k))

pSX [K]\(SX∪S)

 (A.38)

where pSX [K]\(SX∪S) is the edge capacity entering auxiliary node SX ; and F(k, S, C(k)) defined

in (2.19) consists of all auxiliary nodes {SX ∈ 2[K]\(S∪{k})} that have an infinite-capacity edge

ending in some vn(k)
S̃
∈ C(k).

For any given vn(k)
S /∈ C(k), there is only one Type-2 edge and its capacity is

xS∪{k}pk. (A.39)

By adding (A.38) and (A.39) together and then by summing over all vn(k)
S /∈ C(k), the left-

hand side of (2.18) computes the cut value of C(k). The proof of Lemma 1 is complete.

We now prove Lemma 2 . Since any proper-cut is also a cut, [Statement 1] implies

[Statement 2]. We now prove that [Statement 2] implies [Statement 1].

Suppose [Statement 2] holds. For any virtual node vn(k)
S , define V(vn(k)

S) , {vn(k)
S : S ⊇

S}. By definition, we always have vn(k)
S ∈ V(vn(k)

S). Then for any arbitrary cut ∂(k), define

C(k) ,
(⋃

vn(k)
S ∈∂(k) V(vn(k)

S)
)
∪ vn(k)

grnd. It is clear that ∂(k) ⊆ C(k) and it is also true by

Definition 2.3.3 that the above C(k) is a proper cut.

From the definition of F in (2.19), it is clear that F(k, S, ∂(k)) ⊆ F(k, S, C(k)) since ∂(k) ⊆

C(k). Furthermore, by the construction of C(k) any vn(k)
S̃
∈ C(k) corresponds to a vn(k)

S ∈ ∂(k)

satisfying S ⊆ S̃. Therefore (2.19) implies that we actually have F(k, S, ∂(k)) = F(k, S, C(k)).

125

If we use cv(∂(k)) and cv(C(k)) to denote the cut values of ∂(k) and C(k), respectively, we then

have

cv
(
∂(k)

)
=

∑
S:S∈2[K]\{k},

vn(k)
S /∈∂(k)

xS∪{k}·

pk +
∑

∀SX :
SX∈F(k,S,∂(k))

pSX [K]\(SX∪S)

≥
∑

S:S∈2[K]\{k},

vn(k)
S /∈C(k)

xS∪{k}·

pk +
∑

∀SX :
SX∈F(k,S,∂(k))

pSX [K]\(SX∪S)

 (A.40)

=
∑

S:S∈2[K]\{k},

vn(k)
S /∈C(k)

xS∪{k}·

pk +
∑

∀SX :
SX∈F(k,S,C(k))

pSX [K]\(SX∪S)

=cv
(
C(k)

)
(A.41)

≥ Rk (A.42)

where (A.40) follows from changing the summation over vn(k)
S /∈ ∂(k) to a smaller set vn(k)

S /∈

C(k); (A.41) follows from the fact that F(k, S, ∂(k)) = F(k, S, C(k)); and (A.42) follows from

[Statement 2]. Since cv(∂(k)) ≥ Rk is now proven for any arbitrary ∂(k), [Statement 1] holds.

The proof is thus complete.

A.4 A Simple Schwartz-Zippel Lemma

Lemma 5. Consider any integer M and any finite field GF(q) satisfying q ≥ M ≥ 1. For

any M vectors b1, . . . ,bM and any M matrices B(1), . . . ,B(M), if bm is linearly independent

of the rows of B(m) for all 1 ≤ m ≤M , then there exists {βm ∈ GF(q) : m ∈ [M]} such that

the sum ∑M
m=1 βm · bm is linearly independent of the rows of B(m) for all m = 1 to M .

Proof. Lemma 5 holds trivially if M = 1. In the following proof we assume M ≥ 2. For any

matrix B and any row vector v, we use v ∈ 〈B〉 to denote that v belongs to the row space

of B. For any m ∈ [M], let

Dm,

{
(β1, · · ·, βM) ∈ (GF(q))M :

(
M∑
i=1

βibi

)
∈ 〈B(m)〉

}
.

126

Namely, Dm contains the (β1, · · · , βM) coefficients such that the resulting vector
(∑M

i=1 βibi
)

belongs to the row space of B(m). Clearly, any coefficient vector (β1, · · · , βM) inside (GF(q))M\⋃M
m=1Dm

satisfies Lemma 5 . As a result, we only need to prove that the set (GF(q))M\⋃M
m=1Dm is

non-empty, or, equivalently,
∣∣∣⋃M

m=1Dm

∣∣∣ < qM .

Fix any m value and fix any (β1, . . . , βm−1, βm+1, . . . , βM) values, we claim that there

exists at most one βm ∈ GF(q) such that the combined vector (β1, . . . , βM) is in Dm. We

prove this claim by contradiction. Suppose there are two distinct coefficients βm and βm

such that

w ,

βm · bm +
∑

k∈[M],k 6=m

βk · bk

 ∈ 〈B(m)〉

and w ,

βm · bm +
∑

k∈[M],k 6=m

βk · bk

 ∈ 〈B(m)〉.

Then the difference w − w = (βm − βm) · bm must also be in 〈B(m)〉. However recall that

Lemma 5 assumes bm is linearly independent of the rows of B(m). We thus have βm−βm = 0,

which contradicts to the assumption that βm and βm are distinct.

Since for any M − 1 coefficients (β1, . . . , βm−1, βm+1, . . . , βM), there is at most one βm

satisfying (β1, . . . , βM) ∈ Dm, we must have |Dm| ≤ qM−1. Also note that the zero vector

(β1, . . . , βM) = (0, 0, . . . , 0) ∈ Dm for allm. By a simple union bound argument,
∣∣∣⋃M

m=1Dm

∣∣∣ ≤
M · qM−1 − (M − 1) < qM , where the last inequality holds strictly as long as q ≥ M ≥ 2.

The proof is complete.

A.5 Proof of Proposition 2.4.1

We now analyze the 5-component sequential coding scheme described in Section 2.4 .

Since some quantities like the 2K matrices U(k) and V(k) evolve over time, we append (t) to

indicate the quantities as a function of time t when necessary.

Recall that Xk(t) denotes the set of the flow-k packets that have already arrived at

source s by the end of time t and the total number is denoted by Mk(t) = |Xk(t)|. At

127

each time t, the linearly coded packets Y (t) and queuing entries W(k,jk)(t) ∈ Q(k)
S (t) for all

S ∈ 2[K]\{k} are linear combination of all the arrived packets (X1(t), · · ·XK(t)). Therefore the

corresponding global encoding kernel will be an M(t)-dimensional row vector in (GF(q))M(t),

where M(t) , ∑K
k=1 Mk(t) is the total number of arrived packets.

For simplicity, we use u(k,j)(t) = row(k,j)(U(k)(t)) to denote the row corresponding to

queued entry W(k,j)(t). Therefore, we have W(k,j)(t) = u(k,j)(t) · ~Xarr where ~Xarr is a column

vector that consists of all the packets that have arrived according to its arrival order. For ease

of notation, we sometimes abuse the notation slightly by writing W(k,j)(t) = u(k,j)(t) ·X(t)

where X(t) , {X1(t), . . . ,XK(t)} is the collection of all the arrived packets. In this notation,

we implicitly assume that the set X(t) is arranged accordingly to the arrival order, the same

way as the vector u(k,j)(t) is arranged.

For any k and 1 ≤ i ≤ Mk(t), we use e(k,i) to denote an M(t)-dimensional row vec-

tor with the coordinate/column corresponding to the packet Xk,i being one and all the

other coordinates being zero. Define the matrix I(k)(t) as the vertical concatenation of rows

e(k,1), . . . , e(k,Mk(t)).

For example, suppose five packets have arrived by time t. We sort them from the oldest

to the youngest (according to the order of arrivals) and they are X1,1, X2,1, X1,2, X3,1, X2,2.

Namely, the first packet of the user-2 stream is the second oldest among the five arrived

packets and the second packet of the user-2 stream is the youngest of all. Then

I(2)(t) =

0 1 0 0 0

0 0 0 0 1

One can see that I(2)(t) is not an identity matrix even though it describes the coding vectors

of all original uncoded user-2 packets. The need for defining such I(k)(t) matrix is due to

the fact that the arrivals of packets of different users are multiplexed, therefore consecutive

columns generally does not represent consecutive packets of the same user. Instead, the

columns are based on the arrival order.

128

Also we define Wk(t) as a column vector that vertically concatenates all the queue entries

W(k,i) in flow-k queues; and define Zk(t) as a column vector that vertically concatenates all

the packets that have been received by destination dk. Then we have the following lemmas.

Lemma 6. In the end of time t, for all k ∈ [K] we have Wk(t) = U(k)(t)X(t), Zk(t) =

V(k)(t)X(t), and Xk(t) = I(k)(t)X(t).

Proof. The result is straightforward following the construction of U(k) and V(k) in Sec-

tion 2.4.2 and the definitions in this appendix.

Recall that 〈A〉 denotes the row space of matrix A and we use 〈A〉 ⊕ 〈B〉 to denote the

sum space of 〈A〉 and 〈B〉. That is,

〈A〉 ⊕ 〈B〉 , 〈(AT,BT)T〉. (A.43)

Then we have

Definition A.5.1 (Non-interfering vector). In the end of time t, any arbitrarily given row

vector u is “non-interfering” from the perspective of destination di if u ∈ 〈V(i)(t)〉⊕〈I(i)(t)〉.

Lemma 7. In the end of time t, for any fixed k ∈ [K] and fixed S ∈ 2[K]\{k}, consider

any arbitrarily given entry W(k,j)(t) in queue Q
(k)
S . The corresponding vector u(k,j)(t) is

non-interfering from the perspective of di for all i ∈ S ∪ {k}.

Proof. We prove this lemma by mathematical induction on time index t. First consider in

the end of the time 0 (before any transmission), since all the queues are empty, Lemma 7

holds in the end of time 0.

Suppose Lemma 7 is satisfied in the end of time t− 1. We first argue that any vector u

that is non-interfering for user dk at time t−1 is also non-interfering for user dk at time t, once

we pad the end of u by zeros that take into account the newly added columns during time t.

The reason is that 〈V(k)(t)〉 represents the row space spanned by the global encoding kernels

of all the packets received by dk at time t. As t becomes larger, the row space becomes

larger as well. Again, if we abuse the notation slightly by implicitly assuming zeros are

padded to take into account the newly added columns, then this simple observation implies

129

〈V(k)(t − 1)〉 ⊆ 〈V(k)(t)〉. Similarly, 〈I(k)(t − 1)〉 ⊆ 〈I(k)(t)〉 since I(k)(t) represents the row

space spanned by the user-k packets that have already arrived at the source s. Since both

V(k)(t) and I(k)(t) monotonically increase over time, any u that is non-interfering at time

t − 1 is also non-interfering at time t. As a result, we only need to consider those queued

entries that are either newly injected to the queues during time t, or those that have been

modified during time t.

According to Section 2.4.2 , Component 2 will insert new entries in the queues and Com-

ponent 5 will modify the queued entries according to the packet reception set Srx(t). All

other components do not change the queued entry. In the sequel, we discuss Components 2

and 5, respectively.

In Component 2, if there is a flow-k input packet Xk,i arriving at source, then we create

a new entry W(k,i)(t) = Xk,i in Q
(k)
∅ . In the end of time t we add a new row e(k,i) to matrix

U(k). Since e(k,i) ∈ 〈I(k)(t)〉, the newly added entry W(k,i)(t) in Q
(k)
∅ is non-interfering from

the perspective of dk. Lemma 7 holds for the newly inserted entry.

After transmission Y (t), Component 5 updates the queues according to the reception set

Srx(t). We discuss the following cases in the end of time t.

Case 1: k ∈ Srx(t), that is, dk receives Y (t). According to Component 5, the entry

W(k,jk)(t−1) is then removed from the queue without creating any new entry. Since Lemma 7

focuses only on the entries still in the queues, Lemma 7 holds naturally.

Case 2: k /∈ Srx(t). According to Component 5, the entry W(k,jk)(t − 1) is removed

from Q
(k)
T ∗\{k}(t) and a new entry W(k,jk)(t) = Y (t) is injected to a queue Q(k)

S̃∗ (t) satisfying

S̃∗ ⊆ (T ∗\{k})∪ Srx(t), with the corresponding new global encoding kernel u(k,jk)(t) = y(t).

By induction, for any fixed k ∈ T ∗, u(k,jk)(t) ∈ 〈V(i)(t − 1)〉 ⊕ 〈I(i)(t − 1)〉 for all

i ∈ (T ∗\{k}) ∪ {k} = T ∗. Therefore, the corresponding global encoding kernel y(t) =∑
k∈T ∗ βku(k,jk)(t) ∈ 〈V(i)(t − 1)〉 ⊕ 〈I(i)(t − 1)〉 is non-interfering for all i ∈ T ∗. Since

the new packet W(k,jk)(t) = Y (t) will be injected to Q
(k)
S̃∗ with the global encoding kernel

u(k,jk)(t) = y(t), what remains to prove is that y(t) is non-interfering for all i ∈ (S̃∗∪{k})\T ∗.

To that end, we observe that since S̃∗ ⊆ (T ∗\{k}) ∪ Srx(t), we have ((S̃∗ ∪ {k})\T ∗) ⊆

Srx(t). On the other hand, for all i ∈ Srx(t), user di receives Y (t). Therefore, y(t) ∈ 〈V(i)(t)〉

for all i ∈ Srx(t). The newly added vector y(t) is non-interfering from the perspective of all

130

di, i ∈ (S̃∗ ∪ {k}\T ∗) ⊆ Srx(t). Discussion of Cases 1 and 2 show that Lemma 7 holds after

Component 5 as well. The proof is thus complete by induction on the time index t.

We now prove the following lemma.

Lemma 8. In the end of time t we have 〈V(k)(t)〉 ⊕ 〈U(k)(t)〉 = 〈V(k)(t)〉 ⊕ 〈I(k)(t)〉 for all

k ∈ [K].

Proof. We prove this lemma by mathematical induction on time index t. First consider in

the end of time 0 (before any transmission). Since there has not been any packet arrival at

source s, we have 〈I(k)(0)〉 = {0}, i.e., the row space of the arrived messages contains only

the all-zero vector. Similarly, since all queues are empty at time 0, we have 〈U(k)(0)〉 = {0}.

Finally, since no packet has ever been delivered to the destinations, we have 〈V(k)(0)〉 = {0}.

As a result, Lemma 8 holds at time 0.

Suppose, Lemma 8 is satisfied in the end of time t− 1. We will prove that Lemma 8 still

holds when we execute Components 2 to 5 sequentially in time t.

In the beginning of time t, in Component 2, we add new row vector u(k,i) = e(k,i) for each

arrival input packet Xk,i, i ∈ {Mk(t − 1) + 1, . . . ,Mk(t)}. For simplicity, we use E(k)(t) to

denote the matrix with the rows {e(k,i) : i = Mk(t− 1) + 1, . . . ,Mk(t)}. It is then clear that

〈U(k)(t)〉 = 〈U(k)(t − 1)〉 ⊕ 〈E(k)(t)〉 and 〈I(k)(t)〉 = 〈I(k)(t − 1)〉 ⊕ 〈E(k)(t)〉. Therefore, (8)

holds after executing Component 2.

Component 3 selects the coding set T ∗ and does not change the matrices U(k)(t), V(k)(t),

and I(k)(t). Similarly, Component 4 chooses the mixing coefficients βk, k ∈ T ∗, and does

not change the matrices U(k)(t), V(k)(t), and I(k)(t). As a result, (8) holds after executing

Components 3 and 4 as well.

We now consider Component 5. For ease of notation, we use the subscript “old” to

denote the U(k)(t) and V(k)(t) matrices right before we execute Component 5 and use the

subscript “new” to denote the matrices right after we execute Component 5. Recall that for

all k0 ∈ T ∗, we choose the head-of-line packet W(k0,jk0)(t) and construct U(k0)(t) by removing

the row u(k0,jk0)(t) corresponding to W(k0,jk0)(t) from U(k0)(t). We now consider the following

cases.

131

Case 1: Consider those destinations dk0 such that k0 /∈ T ∗. According to Component 5,

there is no change to any of the flow-k0 queues. Therefore, Lemma 8 holds for such k0 after

executing Component 5.

Case 2: Consider those destinations dk0 such that k0 ∈ T ∗ and k0 ∈ Srx(t). If Q(k0)
T ∗\{k0}

is empty, then we use a null packet W(k0,0) in Component 4 such that U(k0)
new = U(k0)

old and

V(k0)
new = V(k0)

old and Lemma 8 thus holds. If Q(k0)
T ∗\{k0} is non-empty, according to Component

5, the entry W(k0,jk0)(t) is removed from Q
(k0)
T ∗\{k0}(t) without creating new entry. Therefore

the new row space 〈V(k0)
new〉 becomes 〈V(k0)

old 〉⊕〈y(t)〉 and the new row space 〈U(k0)
new〉 = 〈U(k0)

old 〉.

In the following we will prove

〈V(k0)
new〉 ⊕ 〈U(k0)

new〉

=〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉

=〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉 (A.44)

=〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉. (A.45)

Eq. (A.45) holds due to the following reason. Lemma 7 shows that for all k ∈ T ∗ u(k,jk)(t) is

non-interfering from the perspective di, i ∈ (T ∗\{k})∪{k} = T ∗. Therefore by the induction

condition, we have for all k ∈ T ∗ u(k,jk)(t) ∈ 〈V(k0)(t)〉 ⊕ 〈I(k0)(t)〉 = 〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉 and

hence y(t) = ∑
k∈T ∗ βku(k,jk)(t) ∈ 〈V(k0)

old 〉 ⊕ 〈U
(k0)
old 〉.

We then show that equality (A.44) always holds. Since U(k0)
old is obtain by removing

u(k0,jk0)(t), if u(k0,jk0)(t) ∈ 〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉, then 〈V(k0)

old 〉 ⊕ 〈U
(k0)
old 〉 = 〈V(k0)

old 〉 ⊕ 〈U
(k0)
old 〉 and

(A.44) holds naturally. If u(k0,jk0)(t) /∈ 〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉, we then notice that

〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉 ⊇ 〈V

(k0)
old 〉 ⊕ 〈U

(k0)
old 〉 (A.46)

and

rank(〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉) ≥ rank(〈V(k0)

old 〉 ⊕ 〈U
(k0)
old 〉)− 1 (A.47)

132

where both inequalities are due to that U(k0)
old is obtained from U(k0)

old by removing only 1 row.

Nonetheless, by the way we select {βk} in Component 4 such that y(t) /∈ 〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉.

Therefore, we also have

rank(〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉)

= rank(〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉) + 1. (A.48)

Together, we have

rank(〈V(k0)
old 〉 ⊕ 〈U

(k0)
old 〉) (A.49)

=rank(〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉) (A.50)

≥rank(〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉) (A.51)

≥
(
rank(〈V(k0)

old 〉 ⊕ 〈U
(k0)
old 〉)− 1

)
+ 1 (A.52)

where (A.50) is a repeat of (A.45); (A.51) follows from (A.46); and (A.52) follows from

(A.47) and (A.48). This implies that the two subspaces 〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉 and

〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉 have the same rank. Since (A.46) also implies

〈V(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉 ⊇ 〈V
(k0)
old 〉 ⊕ 〈y(t)〉 ⊕ 〈U(k0)

old 〉

the two spaces must be equal. We have thus proven (A.44). Since (A.44) holds after executing

Component 5, by the induction hypothesis, we have proven Lemma 8 for such k0 after

executing Component 5.

Case 3: Consider the destinations dk0 such that k0 ∈ T ∗ and k0 /∈ Srx(t). That is dk0 does

not receive the desired packet Y (t). According to Component 5, the entry W(k0,jk0)(t) is then

removed from Q
(k0)
T ∗\{k0}(t) and an entry W(k0,jk0)(t) = Y (t) is created in Q(k0)

S̃∗ (t) corresponding

to new row u(k0,jk0)(t) = y(t). Therefore the new row space 〈V(k0)
new〉 equals to 〈V(k0)

old 〉 and

the new row space 〈U(k0)
new〉 = 〈U(k0)

old 〉 ⊕ 〈y(t)〉. Comparing Cases 2 and 3, we notice that the

only difference is that in Case 2, the new vector y(t) is later classified as part of the V(k0)
new

matrix but in Case 3, the vector y(t) is later classified as part of the U(k0)
new matrix. Since the

133

statement in Lemma 8 does not distinguish whether the changes actually happen to V(k0)
new

or U(k0)
new , by the same arguments as in Case 2, Lemma 8 holds for Case 3 as well.

Since Lemma 8 holds after sequentially executing Components 2 to 5, the proof is com-

pleted by induction on the time index t.

Note that Lemma 8 directly implies the decodability defined in (2.9) and (2.10). Specif-

ically, in the end of time slot t for any k ∈ [K], 〈V(k)(t)〉 ⊕ 〈U(k)(t)〉 = 〈V(k)(t)〉 ⊕ 〈I(k)(t)〉

implies that there exists a matrix G(k)(t) such that

V(k)(t)

I(k)(t)

 = G(k)(t)

V(k)(t)

U(k)(t)

 .
Therefore by Lemma 6 , we have

Zk(t)

Xk(t)

 = G(k)(t)

 Zk(t)

Wk(t)

 . (A.53)

Note that per our definition the received linearly coded packets are [Zk]t1 = Zk(t) and the

packets in the queues are Q(t) = {W1(t),W2(t), · · · ,WK(t)}. Therefore, (A.53) implies

that there exists a decoder g(sq)
k,t such that Xk(t) = g

(sq)
k,t (Zk(t),Wk(t), [Srx]t1, [~A]t1), see (2.9)

and (2.10). The proof of Proposition 2.4.1 is complete.

A.6 Proof of Propositions 2.4.2 and 2.4.3

Lemma 9. Given any arbitrary integer k ∈ [K] and rate value Rk, the statement “~x ,

{xT ≥ 0 : ∀T ∈ 2[K]\{∅}} satisfies Condition 2 in Proposition 2.3.1 for the given k” is

equivalent to the existence of non-negative variables

~y ,
{
yk;SI→dk

≥ 0, y[SX]
k;SI→SO

≥ 0 : SI ∈ 2[K]\{k},

SX ∈ 2[K]\(SI∪{k}), SO ∈ 2SI∪SX

}
(A.54)

134

satisfying the following three groups of equations: Group 1:

Rk · 1{S=∅} +
∑

∀SX ,SI

y
[SX]
k;SI→S ≤ yk;S→dk

+
∑

∀SX ,SO

y
[SX]
k;S→SO

,

∀S ∈ 2[K]\{k} (A.55)

Group 2:

yk;SI→dk
≤ xSI∪{k} · pk, ∀SI ∈ 2[K]\{k} (A.56)

and Group 3:

∑
∀SO∈2SI ∪SX

y
[SX]
k;SI→SO

≤ xSI∪{k} · pSX [K]\(SI∪SX),

∀SI ∈ 2[K]\{k}, SX ∈ 2[K]\(SI∪{k}) (A.57)

Proof. From Lemmas 1 and 2 , it is clear that Condition 2 in Proposition 2.3.1 is equivalent

to “the minimum-cut-value of the k-th virtual sub-network in Section 2.4 is no less than Rk”.

In the k-th virtual sub-network, if we use variables yk;SI→dk
to denote the flow value over

the edge from vn(k)
SI

to vn(k)
grnd and use y[SX]

k;SI→SO
to denote the flow value over the edge from

vn(k)
SI

though auxiliary node SX and then to vn(k)
SO

, then Group 1 equality (A.55) is simply

the flow-conservation law if we replace the ≤ in (A.55) by =. Groups 2 and 3 inequalities in

(A.56) and (A.57) impose that the flow values are no larger than the assigned edge capacities.

Therefore this lemma becomes a directly result of applying the max-flow min-cut theorem to

the k-th virtual sub-network, if we replace the ≤ in (A.55) by =. Finally, it is well known,

see [64], that replacing = in the flow condition (A.55) by ≤ does not alter the max-flow

characterization. The proof of this lemma is thus complete.

Throughout this section of appendix, we perform exclusively queue-length-based stability

analysis [65], which focuses on the length of the queue |Q(k)
S | instead of the content of the

queue Q(k)
S . To simplify the notation, in this appendix we slightly abuse the notation and

135

directly use Q(k)
S to represent the queue length so that we do not need to add the length

operator | · | for all the queues.

Definition A.6.1 (Offered packet movement). The offered packet movement (including real

and dummy packets) at time t is a set of Bernoulli random variables

{
Yk;SI→dk

(t) : k ∈ [K], SI ∈ 2[K]\{k}
}

(A.58)

and
{
Y

[SX]
k;SI→SO

(t) : k ∈ [K], SI ∈ 2[K]\{k},

SX ∈ 2[K]\(SI∪{k}), SO ∈ 2SI∪SX

}
(A.59)

such that the random variable Yk;SI→dk
(t) = 1 if and only if there is a packet removed from

the virtual queue Q(k)
SI

to destination dk (see Component 5) and Y [SX]
k;SI→SO

(t) = 1 if and only if

there is a packet movement from Q
(k)
SI

to Q(k)
SO

in the scenario k /∈ Srx(t) and SX = Srx(t)\SI .

The offered packet movement random variable ~Y (t) is defined from the edge’s perspective.

We now define the queue-length displacement random variables ∆Q(k)
S (t), which is defined

based on the queue’s perspective.

∆Q(k)
S (t) , Ak(t)·1{S=∅} +

∑
∀SX ,SI

Y
[SX]

k;SI→S(t)

− Yk;S→dk
(t)−

∑
∀SX ,SO

Y
[SX]

k;S→SO
(t). (A.60)

It is clear from the above definition, we have

Q
(k)
S (t+ 1) =

(
Q

(k)
S (t) + ∆Q(k)

S (t)
)+

(A.61)

since ∆Q(k)
S (t) captures the packet arrival process Ak(t) and the packet removal/movement

random variables ~Y (t) at time t.

136

A.6.1 Proof of Proposition 2.4.2

We prove this proposition by the Lyapunov drift analysis. Define a Lyapunov function

as follows.

Lq(~Q, t) ,
1
2

∑
k∈[K],S∈2[K]\{k}

(
Q

(k)
S (t)

)2
. (A.62)

We will prove that there exists a negative drift when the summation of all queue lengths is

sufficiently large. That is,

E
{
Lq(~Q, t+ 1)− Lq(~Q, t)

∣∣∣ ~Q(t)
}

≤ const− ε ·
 ∑

k∈[K],S∈2[K]\{k}

Q
(k)
S (t)

 , (A.63)

for some fixed constant const. The negative drift then immediately implies that the queue

lengths are stable.

To prove the negative drift, we first notice that by Lemma 9 if there exists variables ~x

satisfying (2.18) and strict (2.17), then there exist ~y, joint with ~x, satisfying (A.55), (A.56),

(A.57), and strict (2.17). We now argue that, without loss of generality, we can further

assume that ~x and ~y satisfy (2.17), (A.56), and (A.57) with exact equality, and satisfy

(A.55) with strict inequality for all k ∈ [K] and S ∈ 2[K]\{k}.

To that end, we observe that since (2.17) holds with strict inequality, we can increase all

xT for all T by the same amount δ > 0 such that the new xT satisfies (2.17) with equality.

The increase of xT for all T ensures that (A.56) is now satisfied with strict inequality since

we assume pk > 0 for all k. Inequality (A.57) still holds since xT only appears in the right-

hand side of (A.57). Since (A.56) is now strict inequality, we can increase yk;SI→dk
value by

a strictly positive value until (A.56) becomes equality for all k ∈ [K], SI ∈ 2[K]\{k}. The

increase of yk;SI→dk
ensures that (A.55) becomes strict inequality for all k ∈ [K], SI ∈ 2[K]\{k},

since yk;SI→dk
only appears on the right-hand side of (A.55). Finally, if any of (A.57) is a

strictly inequality, then we can increase the corresponding y[SX]
k;SI→SI

value until (A.57) becomes

equality. The increase of y[SX]
k;SI→SI

does not alter (A.55) since y[SX]
k;SI→SI

appears on both sides

137

of (A.55). The final ~x and ~y satisfy (2.17), (A.56), and (A.57) with equality and satisfy

(A.55) with strict inequality for all k, S. This important observation implies that for some

ε > 0,

Rk · 1{S=∅} +
∑

∀SX ,SI

y
[SX]
k;SI→S − yk;S→dk

−
∑

∀SX ,SO

y
[SX]
k;S→SO

≤ −ε, ∀k ∈ [K], S ∈ 2[K]\{k}. (A.64)

We are now ready to prove the negative drift. Squaring (A.61) and taking the conditional

expectations yields

E
{(
Q

(k)
S (t+ 1)

)2
∣∣∣∣ ~Q(t)

}
≤E

{(
Q

(k)
S (t) + ∆Q(k)

S (t)
)2
∣∣∣∣ ~Q(t)

}
=E

{(
Q

(k)
S (t)

)2
∣∣∣∣ ~Q(t)

}
+ 2 · E

{
Q

(k)
S (t) ·∆Q(k)

S (t)
∣∣∣ ~Q(t)

}
+ E

{(
∆Q(k)

S (t)
)2
∣∣∣∣ ~Q(t)

}
. (A.65)

We then notice that for any given k, Yk;SI→dk
(t) and Y [SX]

k;SI→SO
(t) denote the packet movement

within the virtual queue at time t. Therefore, at most one of them can be of value 1 at a

given time t. Then by the definition of ∆Q(k)
S in (A.60), we have for all k ∈ [K], S ∈ 2[K]\{k}

Ak(t) · 1{S=∅} − 1 ≤ ∆Q(k)
S (t) ≤ Ak(t) · 1{S=∅} + 1. (A.66)

We thus have

E
{(

∆Q(k)
S (t)

)2
∣∣∣∣ ~Q(t)

}
≤ E

{
(Ak(t) + 1)2

∣∣∣ ~Q(t)
}

=E
{
(Ak(t))2

∣∣∣ ~Q(t)
}

+ 2 · E
{
Ak(t)

∣∣∣ ~Q(t)
}

+ 1

=(Rk +R2
k) + 2Rk + 1, (A.67)

138

where we use the fact that a Poisson random variable Ak(t) with arrival rate Rk has

E{A2
k(t)} = Rk + R2

k. Then by (A.65) and (A.67), the Lyapunov drift function at time

t becomes

E
{
Lq(~Q, t+ 1)− Lq(~Q, t)

∣∣∣ ~Q(t)
}

≤
∑

k∈[K],S∈2[K]\{k}

(1
2E

{(
∆Q(k)

S (t)
)2
∣∣∣∣ ~Q(t)

}

+ E
{
Q

(k)
S (t) ·∆Q(k)

S (t)
∣∣∣ ~Q(t)

})
=const +

∑
k∈[K],S∈2[K]\{k}

Q
(k)
S (t) · E

{
∆Q(k)

S (t)
∣∣∣ ~Q(t)

}

where the constant being const ,
∑

k∈[K] 2K−2(R2
k + 3Rk + 1). The remaining proof of the

negative drift becomes proving

∑
k∈[K],S∈2[K]\{k}

Q
(k)
S (t) · E

{
∆Q(k)

S (t)
∣∣∣ ~Q(t)

}
(A.68)

≤− ε

 ∑
k∈[K],S∈2[K]\{k}

Q
(k)
S (t)

 . (A.69)

To prove (A.69), we first show that our scheme of choosing the coding set T ∗(t) in

Component 3 and the destination queue Q(k0)
S̃∗ in Component 5 minimizes the summation in

(A.68) among all the schemes which move packets among the nodes in the virtual network,

conditioning on knowing the queue lengths ~Q(t).

Suppose that at time t, a competing scheme chooses the coding set T (t) and we denote

the resulting offered packet movement by ~Y (t) and the resulting queue-length displacement

by ∆Q(k)
S (t) for all k, S. We then have

∑
∀k,S

Q
(k)
S (t) · E

{
∆Q(k)

S (t)
∣∣∣ ~Q(t)

}
=
∑

k∈[K]
Rk ·Q(k)

∅ (t)−
∑
∀k,S

Q
(k)
S (t)E

{
Yk;S→dk

(t)| ~Q(t)
}

−

 ∑
∀k,SI ,SX ,SO

(
Q

(k)
SI

(t)−Q(k)
SO

(t)
)

E
{
Y

[SX]
k;SI→SO

(t)
∣∣∣ ~Q(t)

} (A.70)

139

where (A.70) follows from (A.60). Recall that T (t) is a deterministic function of ~Q(t) and

denote the packet movement destination by Q
(k)
S̃

(t), where S̃ is a function

3
 of SX . Due to

the memorylessness of the underlying PECs, we have the conditional expectation being

E
{
Yk;SI→dk

(t)
∣∣∣ ~Q(t)

}
= 1{T (t)=SI∪{k}} · pk (A.71)

E
{
Y

[SX]
k;SI→SO

(t)
∣∣∣ ~Q(t)

}
= 1{T (t)=SI∪{k}}·

Pr (k /∈ Srx(t), SX = Srx(t)\SI) · 1{SO=S̃} (A.72)

where (A.71) holds since the offered movement Yk;SI→dk
(t) = 1 if and only if T (t) = SI ∪{k},

k ∈ Srx(t), and by the memorylessness of the channel; and (A.72) holds since Y [SX]
k;SI→SO

(t) = 1

if and only if T (t) = SI∪{k}, k /∈ Srx(t), SX = Srx(t)\SI , SO = S̃, and by the memorylessness

of the channel.

Observe that Pr(k /∈ Srx(t), SX = Srx(t)\SI) = pSX [K]\(SI∪SX), eq. (A.70) then becomes

∑
k∈[K]

Rk ·Q(k)
∅ (t)−

∑
∀SI∈2[K]\{k}

1{T (t)=SI∪{k}}·Q(k)
SI

(t) · pk +
∑
∀SX

pSX [K]\(SI∪SX)

(
Q

(k)
SI

(t)−Q(k)
S̃

(t)
)

=
∑

k∈[K]
Rk ·Q(k)

∅ (t)−
∑

k∈T (t)

(
Q

(k)
T (t)\{k}(t)

−
∑

∀SX∈2[K]\T (t)

pSX [K]\(SX∪T (t)\{k}) ·Q
(k)
S̃

(t)
 , (A.73)

where the last equality uses the observation that pk +∑
∀SX∈2[K]\T (t) pSX [K]\(SX∪T (t)\{k}) = 1.

3
 ↑ A more precise notation should be S̃(SX) instead. However for notational simplicity we simply use S̃.

140

Therefore from (A.73) we obtain

∑
∀k,S

Q
(k)
S (t) · E

{
∆Q(k)

S (t)
∣∣∣ ~Q(t)

}
≥
∑

k∈[K]
Rk ·Q(k)

∅ (t)−
∑

k∈T (t)
bp
(
Q

(k)
T (t)\{k}(t)

)
(A.74)

≥
∑

k∈[K]
Rk ·Q(k)

∅ (t)−
∑

k∈T ∗(t)
bp
(
Q

(k)
T ∗(t)\{k}(t)

)
(A.75)

=
∑
∀k,S

Q
(k)
S (t) · E

{
∆Q(k)

S (t)
∣∣∣ ~Q(t)

}
(A.76)

where (A.74) follows from (A.70), (A.73), and the definition of the backpressure expression

in (2.26). Specifically, for the same event {k /∈ Srx(t), SX = Srx(t)\T (t)}, the backpressure

expression bp(Q(k)
T (t)\{k}(t)) involves the term q(k, (T (t)\{k}) ∪ SX) in (2.25), which chooses

S̃∗ that minimizes Q(k)
S̃

. Comparing the backpressure expression to (A.73), replacing S̃ by S̃∗

decreases the overall value and we thus have (A.74). Eq. (A.75) follows from (2.27) since our

coding set choice T ∗(t) maximizes the sum of the backpressure; (A.76) holds by the same

reasons as (A.70), (A.73), and (2.26) with the following simple substitution ∆Q(k)
S (t) =

∆Q(k)
S (t), T (t) = T ∗(t), and S̃ = S̃∗. The above arguments show that at any time t our

scheme attains the minimum ∑
∀k,S Q

(k)
S (t) · E{∆Q(k)

S (t)| ~Q(t)} among all possible scheme

designs that move packets among the nodes in the virtual network.

Given ~x and ~y satisfying (A.56), (A.57) with equality and (A.64), we consider a competing

scheme that chooses the coding set T (t) randomly according to the probability distribution

{xT} (recalling that ∑T xT = 1), and chooses the new destination queue Q(k)
S̃

, under event

{k /∈ Srx(t), SX = Srx(t)\T (t)}, randomly with the conditional distribution

Pr
(
S̃
∣∣∣SX , T (t)

)
=

y
[SX]
k;T (t)\{k}→S̃

xT (t) · pSX [K]\(SX∪T (t)\{k})
(A.77)

141

which satisfies ∑∀S̃ Pr
(
S̃
∣∣∣SX , T (t)

)
= 1. If we use ∆Q(k)

S (t) to denote the drift under this

competing scheme, we will have

∑
k∈[K],S∈2[K]\{k}

Q
(k)
S (t) · E

{
∆Q(k)

S (t)
∣∣∣ ~Q(t)

}

≤− ε

 ∑
k∈[K],S∈2[K]\{k}

Q
(k)
S (t)

 . (A.78)

The reason is that this scheme randomly chooses the coding set T (t) and destination queue

S̃ independently such that

E
{
Yk;S→dk

(t)
∣∣∣ ~Q(t)

}
= Pr (T (t) = S ∪ {k}) · pk

= yk;S→dk
(A.79)

E
{
Y

[SX]
k;SI→SO

(t)
∣∣∣ ~Q(t)

}
= Pr (T (t) = SI ∪ {k}) ·

pSX [K]\(SI∪SX) · Pr (SO|SX , T (t)) = y
[SX]
k;SI→SO

. (A.80)

where (A.79) and (A.80) hold due to Pr(T (t) = SI ∪ {k}) = xSI∪{k}, the memorylessness of

the underlying PECs, and (A.77). Consequently, we have

E
{

∆Q(k)
S (t)

∣∣∣ ~Q(t)
}

= Rk · 1{S=∅} +
∑

∀SX ,SI

y
[SX]
k;SI→S

− yk;S→dk
−

∑
∀SX ,SO

y
[SX]
k;S→SO

≤ −ε, (A.81)

where the equality holds by substituting (A.79) and (A.80) into (A.60) and by (A.64).

Finally, since we have already proven that our scheme minimizes (A.68), by (A.68) and

(A.78) we thus have (A.69). The proof of the negative drift and the corresponding Lyapunov

analysis is thus complete.

142

A.6.2 Proof of Proposition 2.4.3

Consider any rate ~R = (R1, . . . , RK) that can be stabilized by the proposed 5-component

sequential coding scheme. By Lemma 4 , there exists a constant D <∞ and a subsequence

{tm} such that for all positive integers m = 1, 2, · · ·

∑
k∈[K],S∈2[K]\{k}

E
{
Q

(k)
S (tm)

}
≤ D. (A.82)

Since each queue length is always nonnegative, we immediately have: For all k ∈ [K] and

S ∈ 2[K]\{k},

E
{
Q

(k)
S (tm)

}
≤ D. (A.83)

Let T ∗(t) denote the coding set chosen in Component 3. We now construct

4
 the following

nonnegative variables ~x and ~y based on our 5-component sequential coding scheme:

xT , lim
m→∞

1
tm

tm−1∑
τ=0

1{T ∗(τ)=T }, (A.84)

yk;SI→dk
, lim

m→∞

1
tm

tm−1∑
τ=0

E {Yk;SI→dk
(τ)} , (A.85)

y
[SX]
k;SI→SO

, lim
m→∞

1
tm

tm−1∑
τ=0

E
{
Y

[SX]
k;SI→SO

(τ)
}
. (A.86)

We then prove that above ~x variables satisfy (2.17) with equality and (2.18) in Proposi-

tion 2.3.1 . By Lemma 9 , we equivalently show that the above ~x and ~y satisfy (2.17) with

equality and jointly satisfy (A.55) to (A.57). Firstly, we have ∑∀T ∈2[K]\{∅} xT = limm→∞
tm

tm
=

1, which satisfies (2.17) with equality. To prove (A.56), we notice that by Component 5

Yk;SI→dk
(τ) = 1{T ∗(τ)=SI∪{k}}} · 1{k∈Srx(τ)}. (A.87)

4
 ↑ The limits in (A.84) to (A.86) may not converge. If so, we simply use a convergent subsequence of the

original sequence {tm} and the rest of the proof holds verbatim.

143

Since the channel is memoryless, by taking the expectation of (A.87) and by comparing

(A.84) and (A.85), inequality (A.56) thus holds with equality. By the packet movement rule

in Component 5, we also have

∑
SO∈2SI ∪SX

Y
[SX]

k;SI→SO
(τ) = 1{T ∗(τ)=SI∪{k}} · 1{Srx(τ)=SX}. (A.88)

Again by the memorylessness of the channel and by comparing (A.84) and (A.86), inequality

(A.57) holds with equality.

To prove (A.55), we notice that by (A.61), we can bound ∆Q(k)
S by the queue length

difference

∆Q(k)
S (t) ≤ Q

(k)
S (t+ 1)−Q(k)

S (t).

Therefore we have

lim
m→∞

1
tm

tm−1∑
τ=0

E
{
∆Q(k)

S (τ)
}

≤ lim
m→∞

1
tm

(
E
{
Q

(k)
S (tm)

}
− E

{
Q

(k)
S (0)

})
≤ lim

m→∞

D

tm
= 0 (A.89)

where (A.89) is by (A.83). By comparing the definition of ∆Q(k)
S in (A.60) with the definitions

of ~y in (A.85) and (A.86), the computed ~y variables must satisfy (A.55). The proof of

Proposition 2.4.3 is complete.

A.7 Proof of Lemma 3

We prove Lemma 3 by showing that Lemma 3 holds for each iteration of (k0, i0) ∈ N0

in Algorithm 1 . Since changing the order of columns for all the matrices U(k) and V(k) is

equivalent to changing the labels of arrival packets, Lemma 3 holds after moving the column

of index (k0, i0) to the left in Line 7 of Algorithm 1 .

144

Recall that N0 is the collection of the old (k, i) that no longer appears in any of the

headers in the queue; and y(t) is the linear combination of row vectors in U(k), k ∈ [K],

where U(k) is the matrix derived from the columns that still in the V(k) being considered.

Since after the column swap in Line 7 the first column is (k0, i0) ∈ N0, we can represent

y(t) =
[
0 ỹ(t)

]
. If the first column (k0, i0) is also a zero column in V(k) then it is clear that

Lemma 3 holds after removing (k0, i0) in both U(k) and V(k). On the other hand, if the first

column is not a zero column, we apply Gaussian elimination to V(k), which does not alter

the row space 〈V(k)〉. We can then write the resulting Ṽ(k) and the corresponding Ũ(k) by

U(k) =
[
0 Ũ(k)

]
and V(k) =

1 v

0 Ṽ(k)

 .

Therefore y(t) ∈ 〈U(k)〉⊕〈V(k)〉 if and only if there exists a coding vector c , [c1, γ, c2] such

that

y(t) =
[
0 ỹ(t)

]
= c

U(k)

V(k)

 =
[
c1 γ c2

]

0 Ũ(k)

1 v

0 Ṽ(k)

=
[
γ c1Ũ(k) + γv + c2Ṽ(k)

]
.

Examining the above equality then leads to γ = 0 and

ỹ(t) =
[
c1 c2

] Ũ(k)

Ṽ(k)

 ∈ 〈Ũ(k)〉 ⊕ 〈Ṽ(k)〉. (A.90)

Therefore Lemma 3 also holds after removing the first row and first column of V(k).

Let V(k)
ref be the row-echelon form of V(k) after removing all the zero rows. Since 〈V(k)

ref 〉 =

〈V(k)〉, Lemma 3 holds after Line 14 of Algorithm 1 . The proof of Lemma 3 is thus complete.

145

B. SUPPLEMENTARY MATERIALS FOR CHAPTER 3

B.1 Proof of Proposition 3.3.2

Section 3.3.2 shows that any achievable 4-dimensional rate vector ~R = (R(1,1), R(1,2),

R(2,1), R(2,2)) must satisfy the 28 inequalities for (O-1) to (IV-6), which can be succinctly

summarized into the following two groups.

Group A: Bounds of a single variable, which combine Instances 0 to 2.

R(1,1) ≥ a1 , max(0, F1 −M1, F1 −M2) (A1)

R(1,2) ≥ a2 , max(0, F1 −M1, F2 −M2,

F1 + F2 −M1 −M2) (A2)

R(2,1) ≥ a3 , max(0, F2 −M1, F1 −M2,

F1 + F2 −M1 −M2) (A3)

R(2,2) ≥ a4 , max(0, F2 −M1, F2 −M2) (A4)

146

Group B: Bounds of two variables, which combine Instances 3 and 4.

R(1,1) +R(1,2) ≥ b1 , max(F1 + F2 −M2,

2F1 + F2 −M1 −M2) (B1)

R(1,1) +R(2,1) ≥ b2 , max(F1 + F2 −M1,

2F1 + F2 −M1 −M2) (B2)

R(1,1) +R(2,2) ≥ b3 , max(F1 + F2 −M1,

F1 + F2 −M2) (B3)

R(1,2) +R(2,1) ≥ b4 , max(F1 + F2 −M1, F1 + F2 −M2,

2F1 + F2 −M1 −M2, F1 + 2F2 −M1 −M2) (B4)

R(1,2) +R(2,2) ≥ b5 , max(F1 + F2 −M1,

F1 + 2F2 −M1 −M2) (B5)

R(2,1) +R(2,2) ≥ b6 , max(F1 + F2 −M2,

F1 + 2F2 −M1 −M2) (B6)

Note that the values a1 to a4 and b1 to b6 are computed by evaluating the max operations in

(A1) to (B6). For example, if M2 < M1 < F1, then a1 = F1 −M2 in (A1). However, if F1 <

M2 < M1, then a1 = 0 in (A1). The key observation is that once we fix the (F1, F2,M1,M2)

value, the 28 linear inequalities immediately collapse to 10 linear inequalities.

We now discuss some perquisite of the detailed proof.

Tight inequalities: There are 10 inequalities in (A1) to (B6). Each corner point in this

4-dimensional polytope must satisfy at least 4 of them with equalities and sometimes more.

If an inequality is satisfied with equality, we say such an inequality is tight. Therefore, we

need to have at least 4 tight inequalities. One main contribution of this proof is to analyze

the relationship among these 10 inequalities for any arbitrary (F1, F2,M1, F2) so that we

do not need to exhaustively examining all
(

10
4

)
combinations for every (F1, F2,M1, F2). For

simplicity we use the notation (·) to represent an inequality being tight. For example, (A1)

147

represents (A1) being tight. Another example is that the four equalities (A1), (A3), (B1),

and (B6) jointly imply R(1,1) = a1, R(1,2) = b1 − a1, R(2,1) = a3, and R(2,2) = b6 − a3.

Global conditions: Without loss of generality, we assume implicitly the following con-

ditions throughout Appendix B.1 .

M2 ≥ 0 (G1)

M1 ≥M2 (G3)

M1 ≤ F1 + F2 (G5)

F2 ≥ 0 (G2)

F1 ≥ F2 (G4)

These technical assumptions are without loss of generality. Specifically, (G1) and (G2)

ensure non-negativity; (G3) and (G4) always hold after swapping the user and file indices;

and (G5) holds since there is no need to store more than the total file size F1 + F2. In the

future, we refer these 5 inequalities as the global conditions G:

G , {(G1), (G2), (G3), (G4), (G5)}

Additional notation: For any set of (linear) inequalities A, we use ~RA to denote the set

of ~R vectors that satisfy simultaneously all inequalities of A. For any two sets of inequalities

A and B, we say A implies B if ~RA ⊆ ~RB. We use A ⇒ B as shorthand.

We say the two sets of inequalities A and B are equivalent, denoted by A ⇔ B, if A ⇒ B

and B ⇒ A. Sometimes the equivalence and implication relationships hold only under some

additional conditions C. To that end, we use

A C⇒ B

to represent A implies B under conditions

1
 C. Similarly, the notation A C⇔ B represents

conditional equivalence under C.

1
 ↑ A more rigorous notation of conditional implication should be (A∪C)⇒ B. However, by writing A C⇒ B it

is clearer what are the inequalities of interest (i.e., A and B) and what are extra conditions being considered
(i.e., C).

148

Case 1: We assume

M1 ≤ F2. (c1)

Ineq. (c1) and G jointly describe the scenario when the (M1,M2) value falls into the lower-left

triangle in Fig. 3.2 with solid edges and being marked as “Case 1”. In this case, the a1 to b6

values of (A1) to (B6) become

a1 = F1 −M2, a2 = a3 = F1 + F2 −M1 −M2,

a4 = F2 −M2, b1 = b2 = b4 = 2F1 + F2 −M1 −M2,

b3 = F1 + F2 −M2, b5 = b6 = F1 + 2F2 −M1 −M2. (c1.ab)

Using our previous notation and the definition of a1 to b6, the above statement can be

summarized as {(c1)} ∪ G ⇒ {(c1.ab)}. We now further divide this case into two sub-cases.

Case 1.1: We assume

M1 +M2 ≤ F2 (c1.1)

and Case 1.2: We assume

M1 +M2 > F2. (c1.2)

Cases 1.1 and 1.2 further divide the solid lower-left triangle of Fig. 3.2 by a dotted line. In

the following we focus on Case 1.1, the left sub-triangle.

Case 1.1: We consider the following 5 subcases.

Case 1.1.1 (A1) is tight. i.e., (A1) holds. Under conditions G, (c1) and (c1.1), we can

prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c1),(c1.1)=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)}. (B.1)

149

The above relationship is derived by first noting {(c1)}∪G ⇒ {(c1.ab)} and by the following

intermediate steps

{(A1), (B1)} (c1.ab),(G1)=⇒ (A2) (B.2)

{(A1), (B2)} (c1.ab),(G1)=⇒ (A3) (B.3)

{(A1), (B3)} (c1.ab),(G1)=⇒ (A4) (B.4)

{(A1), (B1), (B2)} (c1.ab),(G1),(c1)=⇒ (B4) (B.5)

{(A1), (B1), (B3)} (c1.ab),(G1)=⇒ (B5) (B.6)

{(A1), (B2), (B3)} (c1.ab),(G1)=⇒ (B6). (B.7)

Each intermediate step can be verified by straightforward algebraic operations. For example,

part of (c1.ab) ensures that a1 = F1−M2, a2 = F1+F2−M1−M2, and b1 = 2F1+F2−M1−M2.

Under these a1, a2, and b1 values, (A1), (A2), and (B1) become

R(1,1) = F1 −M2 (B.8)

R(1,2) ≥ F1 + F2 −M1 −M2 (B.9)

R(1,1) +R(1,2) ≥ 2F1 + F2 −M1 −M2 (B.10)

Subtracting (A1) (i.e., (B.8)) from (B1) (i.e., (B.10)), we have R(1,2) ≥ F1 + F2 −M1 which

implies (A2) (i.e., (B.9)) under condition (G1). We thus prove the intermediate step (B.2).

Similarly, (c1.ab) implies that (B2), and (B4) become

R(1,1) +R(2,1) ≥ 2F1 + F2 −M1 −M2 (B.11)

R(1,2) +R(2,1) ≥ 2F1 + F2 −M1 −M2 (B.12)

Adding up (B1) and (B2) (i.e., (B.10) and (B.11)) and subtracting (A1) (i.e., (B.8)) twice,

we have R(1,2) + R(2,1) ≥ 2F1 + 2F2 − 2M1 which implies (B4) (i.e., (B.12)), provided both

(G1) and (c1) hold simultaneously. We have thus proven the intermediate step (B.5). Since

150

the proofs of other intermediate steps (B.3), (B.4), (B.6), and (B.7) are very similar and

straightforward, we omit their details.

By (B.1), the four tight linear inequalities in Case-1.1.1 can only be (A1) (thus (A1)),

(B1), (B2), and (B3). Solving these equations, the corresponding corner point is Vertex 1

(F1 −M2, F1 + F2 −M1, F1 + F2 −M1, F2) listed in Table 3.3 .

Case 1.1.2: (A2) is tight. i.e., (A2) holds. We can then prove the following relationship

{(A2), (A3), (B1), (B5)} G,(c1),(c1.1)=⇒

{(A1), (A4), (B2), (B3), (B4), (B6)}. (B.13)

The above relationship is derived by {(c1)}∪G ⇒ {(c1.ab)} and by the following intermediate

steps

{(A2), (B1)} (c1.ab),(G1)=⇒ (A1) (B.14)

{(A2), (A3)} (c1.ab),(c1.1)=⇒ (B4) (B.15)

{(A2), (B5)} (c1.ab),(G1)=⇒ (A4) (B.16)

{(A2), (A3), (B1)} (c1.ab)=⇒ (B2) (B.17)

{(A2), (B1), (B5)} (c1.ab),(G1)=⇒ (B3) (B.18)

{(A2), (A3), (B5)} (c1.ab)=⇒ (B6). (B.19)

We omit the detailed proofs of the intermediate steps as they are extremely similar to the

two examples discussed in the proof of Case 1.1.1.

By (B.13), the four tight linear inequalities in Case-1.1.2 can only be (A2) (thus (A2)),

(A3), (B1), and (B5). Solving these equations, the corresponding corner point is Vertex 2

(F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2) listed in Table 3.3 .

Case 1.1.3: (A3) is tight. i.e., (A3) holds. We can then prove the following relationship

{(A3), (A2), (B2), (B6)} G,(c1),(c1.1)=⇒

{(A1), (A4), (B1), (B3), (B4), (B5)} (B.20)

151

by the following straightforward intermediate steps

{(A3), (B2)} (c1.ab),(G1)=⇒ (A1) (B.21)

{(A3), (A2)} (c1.ab),(c1.1)=⇒ (B4) (B.22)

{(A3), (B6)} (c1.ab),(G1)=⇒ (A4) (B.23)

{(A3), (A2), (B2)} (c1.ab)=⇒ (B1) (B.24)

{(A3), (B2), (B6)} (c1.ab),(G1)=⇒ (B3) (B.25)

{(A3), (A2), (B6)} (c1.ab)=⇒ (B5). (B.26)

By (B.20), the four tight linear inequalities in Case-1.1.3 can only be (A3) (thus (A3)),

(A2), (B2), and (B6). Solving these equations, the corresponding corner point is Vertex 2

(F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2) listed in Table 3.3 .

Case 1.1.4: (A4) is tight. i.e., (A4) holds. We can then prove the following relationship

{(A4), (B3), (B5), (B6)} G,(c1),(c1.1)=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (B.27)

by the following straightforward intermediate steps

{(A4), (B3)} (c1.ab),(G1)=⇒ (A1) (B.28)

{(A4), (B5)} (c1.ab),(G1)=⇒ (A2) (B.29)

{(A4), (B6)} (c1.ab),(G1)=⇒ (A3) (B.30)

{(A4), (B3), (B5)} (c1.ab),(G1)=⇒ (B1) (B.31)

{(A4), (B3), (B6)} (c1.ab),(G1)=⇒ (B2) (B.32)

{(A4), (B5), (B6)} (c1.ab),(G1),(c1)=⇒ (B4). (B.33)

By (B.27), the four tight linear inequalities in Case-1.1.4 can only be (A4) (thus (A4)),

(B3), (B5), and (B6). Solving these equations, the corresponding corner point is Vertex 3

(F1, F1 + F2 −M1, F1 + F2 −M1, F2 −M2) listed in Table 3.3 .

152

Case 1.1.5: None of (A1) to (A4) is tight. Recall that in all the discussion of Case 1.1

and its subcases, we assume G, (c1), (c1.1), and (c1.ab). Since

{(A2), (A3)} (c1.ab),(c1.1)=⇒ (B4), (B.34)

any corner point that is loose for all 4 inequalities (A1) to (A4) (and thus being loose for

(A2) and (A3)) must also be loose for (B4). Therefore the corner point must be decided

by 4 out of the 5 remaining inequalities (B1), (B2), (B3), (B5), and (B6). By (c1.ab), the

inequalities corresponding to (B1), (B2), (B5), and (B6) become

R(1,1) +R(1,2) ≥ b1 = 2F1 + F2 −M1 −M2 (B.35)

R(1,1) +R(2,1) ≥ b2 = 2F1 + F2 −M1 −M2 (B.36)

R(1,2) +R(2,2) ≥ b5 = F1 + 2F2 −M1 −M2 (B.37)

R(2,1) +R(2,2) ≥ b6 = F1 + 2F2 −M1 −M2 (B.38)

We observe that the tight versions (equalities) of these inequalities are linearly dependent.

As a result, any three of them being tight implies the fourth one is also tight. We hereby

say that these 4 inequalities are co-dependent.

Since (B1), (B2), (B5), and (B6) are co-dependent and since a corner point requires 4

tight linearly independent inequalities, all 5 inequalities (B1), (B2), (B3), (B5), and (B6)

must be tight simultaneously and jointly they yield exactly one corner point Vertex 4 (F1 −
M2
2 , F1 + F2 −M1 − M2

2 , F1 + F2 −M1 − M2
2 , F2 − M2

2) listed in Table 3.3 .

The proof of Case 1.1.5 is completed by further proving that Vertex 4 is a legitimate

corner point that satisfies (A1) to (A4) as well. The detailed verification steps are

Vertex 4 (c1.ab),(G1)⇒ (A1); Vertex 4 (c1.ab),(G1)⇒ (A2); (B.39)

Vertex 4 (c1.ab),(G1)⇒ (A3); Vertex 4 (c1.ab),(G1)⇒ (A4). (B.40)

153

Case 1.2: In this case we assume both (c1) and (c1.2) are true. This sub-case is the

right sub-triangle above the dotted line in the solid lower-left triangle (Case 1) of Fig. 3.2 .

We now consider the following 6 subcases of Case 1.2.

Case 1.2.1: (A1) is tight, i.e., (A1) holds. Since the intermediate steps of Case 1.1.1,

i.e., (B.2)-(B.7) does not require condition (c1.2), the statement in (B.1) holds even if we

swap out (c1.1) by (c1.2). The rest of the analysis is verbatim to Case 1.1.1 and the corner

point is also Vertex 1.

Case 1.2.2: (A2) is tight. i.e., (A2) holds. Note that we cannot reuse the derivation in

Case 1.1.2 since (B.15) requires (c1.1) being true but in this case we only have (c1.2). That

said, we can still prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c1),(c1.2)=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (B.41)

by reusing (B.14), (B.16), (B.18), and the following straightforward intermediate steps

{(A2), (B4)} (c1.ab),(c1.2)=⇒ (A3) (B.42)

{(A2), (B1), (B4)} (c1.ab),(c1.2)=⇒ (B2) (B.43)

{(A2), (B4), (B5)} (c1.ab),(c1.2)=⇒ (B6). (B.44)

By (B.41), the four tight linear inequalities in Case-1.2.2 can only be (A2) (thus (A2)),

(B1), (B4), and (B5). Solving these equations, the corresponding corner point is Vertex 5

(F1, F1 + F2 −M1 −M2, F1, F2) listed in Table 3.3 .

Case 1.2.3: (A3) is tight. i.e., (A3) holds. We can then prove the following relationship

{(A3), (B2), (B4), (B6)} G,(c1),(c1.2)=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (B.45)

154

by reusing (B.21), (B.23), (B.25), and the following straightforward intermediate steps

{(A3), (B4)} (c1.ab),(c1.2)=⇒ (A2) (B.46)

{(A3), (B2), (B4)} (c1.ab),(c1.2)=⇒ (B1) (B.47)

{(A3), (B4), (B6)} (c1.ab),(c1.2)=⇒ (B5). (B.48)

By (B.45), the four tight linear inequalities in Case-1.2.3 can only be (A3) (thus (A3)),

(B2), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 6

(F1, F1, F1 + F2 −M1 −M2, F2) listed in Table 3.3 .

Case 1.2.4: (A4) is tight, i.e., (A4) holds. Since the intermediate steps of Case 1.1.4,

i.e., (B.28)-(B.33) does not require condition (c1.2), the statement in (B.27) holds even if we

swap out (c1.1) by (c1.2). The rest of the analysis is verbatim to Case 1.1.4 and the corner

point is also Vertex 3.

Case 1.2.5: None of (A1) to (A4) is tight, but (B4) is tight, i.e., (B4) holds. We can

prove

{(B1), (B2), (B5), (B6), (B4)} G,(c1),(c1.2)⇒ {(B3)} (B.49)

using the following intermediate step

{(B1), (B6), (B4)} (c1.ab),(c1)⇒ {(B3)}. (B.50)

The statement (B.49) implies that when none of (A1) to (A4) is tight but (B4) holds, the

corner point is decided solely by the inequalities (B1), (B2), (B5), and (B6) and we do not

need to check whether (B3) is tight or not.

Recall that under the a1 to b6 values in (c1.ab), the inequalities corresponding to (B1),

(B2), (B5), and (B6) are co-dependent as shown in Case 1.1.5. Therefore, the statement

(B.49) further implies that the corner point must be tight for all 5 inequalities (B1), (B2),

(B5), (B6), (B4). Solving these 5 joint equations (four of them are codependent), we obtain

155

the corner point Vertex 7 (F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F1 + F2−M1−M2
2 , F2 + F2−M1−M2

2)

listed in Table 3.3 .

The proof of Case 1.2.5 is completed by further proving that Vertex 7 is a legitimate

corner point that satisfies (A1) to (A4) as well. The detailed verification steps are

Vertex 7 (c1.ab),(G1),(c1)⇒ (A1); Vertex 7 (c1.ab),(c1.2)⇒ (A2); (B.51)

Vertex 7 (c1.ab),(c1.2)⇒ (A3); Vertex 7 (c1.ab),(G1),(c1)⇒ (A4). (B.52)

Case 1.2.6: None of (A1) to (A4) is tight, nor is (B4). If we retrace the proof of Case

1.1.5, we notice that (B.34) ensures that when in Case 1.1.5, we always have (B4) being loose.

Since (B.34) holds only under (c1.1), ineq. (B4) can be tight or loose in Case 1.2. That is

why in Case 1.2.5, we discussed the case when (B4) is tight and in this case we assume (B4)

is loose. Since the arguments in Case 1.1.5 after (B.34) no longer uses the condition (c1.1),

we can use the same argument verbatim and prove that the corner point in Case 1.2.6 is the

Vertex 4 (F1 − M2
2 , F1 + F2 −M1 − M2

2 , F1 + F2 −M1 − M2
2 , F2 − M2

2) listed in Table 3.3 .

Case 2: We assume

M2 ≤ F2 < M1 ≤ F1. (c2)

Ineq. (c2) and G jointly describe the scenario when the (M1,M2) value falls into the lower-

mid rectangle in Fig. 3.2 with solid edges and being marked as “Case 2”. In this case, the

a1 to b6 values of (A1) to (B6) become

a1 = a3 = F1 −M2, a2 = F1 + F2 −M1 −M2,

a4 = F2 −M2, b1 = b2 = b4 = 2F1 + F2 −M1 −M2,

b3 = b6 = F1 + F2 −M2, b5 = F1 + 2F2 −M1 −M2. (c2.ab)

156

Note that only a3 and b6 are different in (c1.ab) and (c2.ab), and the rest 8 values are

identical. Therefore we can reuse the equations related to (c1.ab) when (A3) and (B6) are

not involved. We now further divide this case into two sub-cases. Case 2.1: We assume

F2 +M2 < M1 (c2.1)

and Case 2.2: We assume

F2 +M2 ≥M1. (c2.2)

Cases 2.1 and 2.2 further divide the solid lower-mid rectangle of Fig. 3.2 by a 45-degree line.

In the following we focus on Case 2.1, the right subregion below the dotted line.

Case 2.1: We consider the following 5 subcases.

Case 2.1.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (A3), (B1), (B3)} G,(c2),(c2.1)=⇒

{(A2), (A4), (B2), (B4), (B5), (B6)} (B.53)

by reusing (B.2), (B.4), (B.6), and the following straightforward intermediate steps

{(A1), (A3)} (c2.ab),(c2.1)=⇒ (B2) (B.54)

{(A1), (A3), (B1)} (c2.ab)=⇒ (B4) (B.55)

{(A1), (A3), (B3)} (c2.ab)=⇒ (B6). (B.56)

By (B.53), the four tight linear inequalities in Case-2.1.1 can only be (A1) (thus (A1)),

(A3), (B1), and (B3). Solving these equations, the corresponding corner point is Vertex 8

(F1 −M2, F1 + F2 −M1, F1 −M2, F2) listed in Table 3.3 .

157

Case 2.1.2: (A2) is tight. i.e., (A2) holds. We can prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c2),(c2.1)=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (B.57)

by reusing (B.14), (B.16), (B.18), and the following straightforward intermediate steps

{(A2), (B4)} (c2.ab),(G1)=⇒ (A3) (B.58)

{(A2), (B1), (B4)} (c2.ab),(G1),(c2)=⇒ (B2) (B.59)

{(A2), (B4), (B5)} (c2.ab),(G1)=⇒ (B6). (B.60)

By (B.57), the four tight linear inequalities in Case-2.1.2 can only be (A2) (thus (A2)),

(B1), (B4), and (B5). Solving these equations, the corresponding corner point is Vertex 9

(F1, F1 + F2 −M1 −M2, F1, F2) listed in Table 3.3 .

Case 2.1.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (A1), (B4), (B6)} G,(c2),(c2.1)=⇒

{(A2), (A4), (B1), (B2), (B3), (B5)} (B.61)

by the following straightforward intermediate steps

{(A3), (A1)} (c2.ab),(c2.1)=⇒ (B2) (B.62)

{(A3), (B4)} (c2.ab),(G1)=⇒ (A2) (B.63)

{(A3), (B6)} (c2.ab),(G1)=⇒ (A4) (B.64)

{(A3), (A1), (B4)} (c2.ab)=⇒ (B1) (B.65)

{(A3), (A1), (B6)} (c2.ab)=⇒ (B3) (B.66)

{(A3), (B4), (B6)} (c2.ab),(G1)=⇒ (B5). (B.67)

158

By (B.61), the four tight linear inequalities in Case-2.1.3 can only be (A3) (thus (A3)),

(A1), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 8

(F1 −M2, F1 + F2 −M1, F1 −M2, F2) listed in Table 3.3 .

Case 2.1.4: (A4) is tight. i.e., (A4) holds. We can prove the following relationship

{(A4), (B3), (B5), (B6)} G,(c2),(c2.1)=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (B.68)

by reusing (B.28), (B.29), (B.31), and the following straightforward intermediate steps

{(A4), (B6)} (c2.ab),(G1)=⇒ (A3) (B.69)

{(A4), (B3), (B6)} (c2.ab),(G1),(c2)=⇒ (B2) (B.70)

{(A4), (B5), (B6)} (c2.ab),(G1)=⇒ (B4). (B.71)

By (B.68), the four tight linear inequalities in Case-2.1.4 can only be (A4) (thus (A4)),

(B3), (B5), and (B6). Solving these equations, the corresponding corner point is Vertex 10

(F1, F1 + F2 −M1, F1, F2 −M2) listed in Table 3.3 .

Case 2.1.5: None of (A1) to (A4) is tight. Recall that in all the discussion of Case 2.1

and its subcases, we assume G, (c2), (c2.1), and (c2.ab). Since

{(A1), (A3)} (c2.ab),(c2.1)=⇒ (B2), (B.72)

any corner point that is loose for all 4 inequalities (A1) to (A4) (and thus being loose for

(A1) and (A3)) must also be loose for (B2). Therefore the corner point must be decided

by 4 out of the 5 remaining inequalities (B1), (B3), (B4), (B5), and (B6). By (c2.ab), the

inequalities corresponding to (B1), (B3), (B4), and (B6) are co-dependent such that a corner

point requires all 5 inequalities (B1), (B3), (B4), (B5), and (B6) to be tight simultaneously.

The 5 inequalities jointly yield exactly one corner point Vertex 11 (F1− M2
2 , F1 +F2−M1−

159

M2
2 , F1− M2

2 , F2− M2
2) listed in Table 3.3 . Vertex 11 is a legitimate corner point since it also

satisfies (A1) to (A4) as well, i.e.,

Vertex 11 (c2.ab),(G1)⇒ (A1); Vertex 11 (c2.ab),(G1)⇒ (A2);

Vertex 11 (c2.ab),(G1)⇒ (A3); Vertex 11 (c2.ab),(G1)⇒ (A4).

Case 2.2: In this case we assume both (c2) and (c2.2) are true. This sub-case is the left

subregion above the dotted line in the solid lower-mid rectangle (Case 2) of Fig. 3.2 . We

now consider the following 6 subcases of Case 2.2.

Case 2.2.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c2),(c2.2)=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)} (B.73)

by reusing (B.2), (B.4), (B.6), and the following straightforward intermediate steps

{(A1), (B2)} (c2.ab),(c2.2)=⇒ (A3) (B.74)

{(A1), (B1), (B2)} (c2.ab),(c2.2)=⇒ (B4). (B.75)

{(A1), (B2), (B3)} (c2.ab),(c2.2)=⇒ (B6). (B.76)

By (B.73), the four tight linear inequalities in Case-2.2.1 can only be (A1) (thus (A1)),

(B1), (B2), and (B3). Solving these equations, the corresponding corner point is Vertex 1

(F1 −M2, F1 + F2 −M1, F1 + F2 −M1, F2) listed in Table 3.3 .

Case 2.2.2: (A2) is tight, i.e., (A2) holds. Since the intermediate steps of Case 2.1.2

does not require condition (c2.2), the statement in (B.57) holds even if we swap out (c2.1)

by (c2.2). The rest of the analysis is verbatim to Case 2.1.2 and the corner point is also

Vertex 9.

160

Case 2.2.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (B2), (B4), (B6)} G,(c2),(c2.2)=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (B.77)

by reusing (B.63), (B.64), (B.67), and the following straightforward intermediate steps

{(A3), (B2)} (c2.ab),(c2.2)=⇒ (A1) (B.78)

{(A3), (B2), (B4)} (c2.ab),(c2.2)=⇒ (B1) (B.79)

{(A3), (B2), (B6)} (c2.ab),(c2.2)=⇒ (B3) (B.80)

By (B.77), the four tight linear inequalities in Case-2.2.3 can only be (A3) (thus (A3)),

(B2), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 12

(F1 + F2 −M1, F1 + F2 −M1, F1 −M2, F2) listed in Table 3.3 .

Case 2.2.4: (A4) is tight, i.e., (A4) holds. Since the intermediate steps of Case 2.1.4

does not require condition (c2.2), the statement in (B.68) holds even if we swap out (c2.1)

by (c2.2). The rest of the analysis is verbatim to Case 2.1.4 and the corner point is also

Vertex 10.

Case 2.2.5: None of (A1) to (A4) is tight, but (B2) is tight, i.e., (B2) holds. We can

prove

{(B1), (B2), (B3), (B4), (B6)} G,(c2),(c2.2)⇒ {(B5)} (B.81)

using the following intermediate step

{(B1), (B6), (B2)} (c2.ab),(c2)⇒ {(B5)}. (B.82)

That is, in this case, we do not need to check whether (B5) is tight or not. Recall that under

the a1 to b6 values in (c2.ab), the inequalities corresponding to (B1), (B3), (B4), and (B6)

are co-dependent as shown in Case 2.1.5. Therefore, the corner point must be tight for all 5

161

inequalities (B1), (B2), (B3), (B4), (B6). Solving these 5 joint equations (four of them are

codependent), we obtain the corner point Vertex 13 (F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F1 +
F2−M1−M2

2 , F2+M1−M2
2) listed in Table 3.3 . Vertex 13 is a legitimate corner point since it also

satisfies (A1) to (A4) as well, i.e.,

Vertex 13 (c2.ab),(c2.2)⇒ (A1); Vertex 13 (c2.ab),(G1),(c2)⇒ (A2);

Vertex 13 (c2.ab),(c2.2)⇒ (A3); Vertex 13 (c2.ab),(G1),(c2)⇒ (A4).

Case 2.2.6: None of (A1) to (A4) is tight, nor is (B2). Since the arguments in Case 2.1.5

after (B.72) no longer uses the condition (c2.1), we can use the same argument verbatim and

prove that the corner point in Case 2.2.6 is the Vertex 11 (F1− M2
2 , F1 +F2−M1− M2

2 , F1−
M2
2 , F2 − M2

2) listed in Table 3.3 .

Case 3: We assume

M2 ≤ F2 ≤ F1 < M1. (c3)

Ineq. (c3) and G jointly describe the scenario when the (M1,M2) value falls into the lower-

right square in Fig. 3.2 with solid edges and being marked as “Case 3”. In this case, the a1

to b6 values of (A1) to (B6) become

a1 = a3 = F1 −M2, a2 = a4 = F2 −M2,

b1 = b3 = b4 = b6 = F1 + F2 −M2,

b2 = 2F1 + F2 −M1 −M2, b5 = F1 + 2F2 −M1 −M2. (c3.ab)

Note that only a2, b1, and b4 are different in (c2.ab) and (c3.ab), and the rest 7 values are

identical. Therefore we can reuse the equations related to (c2.ab) (or (c1.ab) referred in

Case 2) when (A2), (B1) and (B4) are not involved. We now further divide this case into

three sub-cases. Case 3.1: We assume

F1 +M2 < M1, (c3.1)

162

Case 3.2: We assume

F2 +M2 < M1 ≤ F1 +M2, (c3.2)

and Case 3.3: We assume

M1 ≤ F2 +M2. (c3.3)

Cases 3.1 and 3.2 further divide the solid lower-right square of Fig. 3.2a by a 45-degree line.

Cases 3.1, 3.2, and 3.3 further divide the the solid lower-right square of Fig. 3.2b by two

45-degree lines. In the following we focus on Case 3.1, the rightmost subregion below the

dotted line.

Case 3.1: We consider the following 5 subcases.

Case 3.1.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (A3), (B1), (B3)} G,(c3),(c3.1)=⇒

{(A2), (A4), (B2), (B4), (B5), (B6)} (B.83)

by reusing (B.4), (B.56), and the following straightforward intermediate steps

{(A1), (B1)} (c3.ab),(G1)=⇒ (A2) (B.84)

{(A1), (A3)} (c3.ab),(G4),(c3.1)=⇒ (B2) (B.85)

{(A1), (A3), (B1)} (c3.ab)=⇒ (B4) (B.86)

{(A1), (B1), (B3)} (c3.ab),(G1),(c3)=⇒ (B5) (B.87)

By (B.83), the four tight linear inequalities in Case-3.1.1 can only be (A1) (thus (A1)),

(A3), (B1), and (B3). Solving these equations, the corresponding corner point is Vertex 14

(F1 −M2, F2, F1 −M2, F2) listed in Table 3.3 .

163

Case 3.1.2: (A2) is tight. i.e., (A2) holds. We can prove the following relationship

{(A2), (A4), (B1), (B4)} G,(c3),(c3.1)=⇒

{(A1), (A3), (B2), (B3), (B5), (B6)} (B.88)

by the following straightforward intermediate steps

{(A2), (B1)} (c3.ab),(G1)=⇒ (A1) (B.89)

{(A2), (B4)} (c3.ab),(G1)=⇒ (A3) (B.90)

{(A2), (A4)} (c3.ab),(c3.1)=⇒ (B5) (B.91)

{(A2), (B1), (B4)} (c3.ab),(G1),(c3)=⇒ (B2) (B.92)

{(A2), (A4), (B1)} (c3.ab)=⇒ (B3) (B.93)

{(A2), (A4), (B4)} (c3.ab)=⇒ (B6). (B.94)

By (B.88), the four tight linear inequalities in Case-3.1.2 can only be (A2) (thus (A2)),

(A2), (B1), and (B4). Solving these equations, the corresponding corner point is Vertex 15

(F1, F2 −M2, F1, F2 −M2) listed in Table 3.3 .

Case 3.1.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (A1), (B4), (B6)} G,(c3),(c3.1)=⇒

{(A2), (A4), (B1), (B2), (B3), (B5)} (B.95)

by reusing (B.62), (B.64), (B.66), and the following straightforward intermediate steps

{(A3), (A1)} (c3.ab),(G4),(c3.1)=⇒ (B2) (B.96)

{(A3), (B4)} (c3.ab),(G1)=⇒ (A2) (B.97)

{(A3), (A1), (B4)} (c3.ab)=⇒ (B1) (B.98)

{(A3), (B4), (B6)} (c3.ab),(G1),(c3)=⇒ (B5). (B.99)

164

By (B.95), the four tight linear inequalities in Case-3.1.3 can only be (A3) (thus (A3)),

(A1), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 14

(F1 −M2, F2, F1 −M2, F2) listed in Table 3.3 .

Case 3.1.4: (A4) is tight. i.e., (A4) holds. We can prove the following relationship

{(A4), (A2), (B3), (B6)} G,(c3),(c3.1)=⇒

{(A1), (A3), (B1), (B2), (B4), (B5)} (B.100)

by reusing (B.28), (B.69), (B.70), and the following straightforward intermediate steps

{(A4), (A2)} (c3.ab),(c3.1)=⇒ (B5) (B.101)

{(A4), (A2), (B3)} (c3.ab),(G4)=⇒ (B1) (B.102)

{(A4), (A2), (B6)} (c3.ab),(G4)=⇒ (B4). (B.103)

By (B.100), the four tight linear inequalities in Case-3.1.4 can only be (A4) (thus (A4)),

(A2), (B3), and (B6). Solving these equations, the corresponding corner point is Vertex 15

(F1, F2 −M2, F1, F2 −M2) listed in Table 3.3 .

Case 3.1.5: None of (A1) to (A4) is tight. Recall that in all the discussion of Case 3.1

and its subcases, we assume G, (c3), (c3.1), and (c3.ab). Since

{(A1), (A3)} (c3.ab),(G4),(c3.1)=⇒ (B2), (B.104)

{(A2), (A4)} (c3.ab),(c3.1)=⇒ (B5), (B.105)

any corner point that is loose for all 4 inequalities (A1) to (A4) must also be loose for (B2)

and (B5). Therefore the corner point must be decided by the 4 remaining inequalities (B1),

(B3), (B4), and (B5). By (c3.ab), the inequalities corresponding to (B1), (B3), (B4), and

(B5) are co-dependent such that they are not possible to determine a corner point. As the

result, there is no corner point in Case-3.1.5.

Case 3.2: In this case we assume both (c3) and (c3.2) are true. This sub-case is the left

subregion above the dotted line in the solid lower-right square (Case 3) of Fig. 3.2a and mid

165

subregion between the two dotted lines in the solid lower-right square (Case 3) of Fig. 3.2b .

We now consider the following 5 subcases of Case 3.2.

Case 3.2.1: (A1) is tight. i.e., (A1) holds. Since the intermediate step (B.85) in Case-

3.1.1 only require F2 +M2 ≤M1, we can substitute {(G4), (c3.1)} with (c3.2) in (B.85). The

rest of the analysis is verbatim to Case-3.1.1 and the corner point is also Vertex 14.

Case 3.2.2: (A2) is tight. i.e., (A2) holds. We can prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c3),(c3.2)=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (B.106)

by reusing (B.89), (B.90), (B.92), and the following straightforward intermediate steps

{(A2), (B5)} (c3.ab),(c3.2)=⇒ (A4) (B.107)

{(A2), (B1), (B5)} (c3.ab),(c3.2)=⇒ (B3) (B.108)

{(A2), (B4), (B5)} (c3.ab),(c3.2)=⇒ (B6). (B.109)

By (B.106), the four tight linear inequalities in Case-3.2.2 can only be (A2) (thus (A2)),

(B1), (B4), and (B5). Solving these equations, the corresponding corner point is Vertex 16

(F1, F2 −M2, F1, F1 + F2 −M1) listed in Table 3.3 .

Case 3.2.3: (A3) is tight. i.e., (A3) holds. Since the intermediate step (B.96) in Case-

3.1.3 only require F2 +M2 ≤M1, we can substitute {(G4), (c3.1)} with (c3.2) in (B.96). The

rest of the analysis is verbatim to Case-3.1.3 and the corner point is also Vertex 14.

Case 3.2.4: (A4) is tight. i.e., (A4) holds. We can prove the following relationship

{(A4), (B3), (B5), (B6)} G,(c3),(c3.2)=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (B.110)

166

by reusing (B.28), (B.69), (B.70), and the following straightforward intermediate steps

{(A4), (B5)} (c3.ab),(c3.2)=⇒ (A2) (B.111)

{(A4), (B3), (B5)} (c3.ab),(c3.2)=⇒ (B1) (B.112)

{(A4), (B5), (B6)} (c3.ab),(c3.2)=⇒ (B4). (B.113)

By (B.110), the four tight linear inequalities in Case-3.2.4 can only be (A4) (thus (A4)),

(B3), (B5), and (B6). Solving these equations, the corresponding corner point is Vertex 10

(F1, F1 + F2 −M1, F1, F2 −M2) listed in Table 3.3 .

Case 3.2.5: None of (A1) to (A4) is tight. Recall that in all the discussion of Case 3.2

and its subcases, we assume G, (c3), (c3.2), and (c3.ab). Since

{(A1), (A3)} (c3.ab),(c3.2)=⇒ (B2), (B.114)

the corner point must be decided by 4 out of the 5 remaining inequalities (B1), (B3), (B4),

(B5), and (B6). By (c3.ab), the inequalities corresponding to (B1), (B3), (B4), and (B6)

are co-dependent such that a corner point requires all 5 inequalities (B1), (B3), (B4), (B5),

and (B6) to be tight simultaneously. The 5 inequalities jointly yield exactly one corner point

Vertex 17 (F1+M1−M2
2 , F2 + F1−M1−M2

2 , F1+M1−M2
2 , F2 + F1−M1−M2

2) listed in Table 3.3 . Vertex

17 is a legitimate corner point since it also satisfies (A1) to (A4) as well, i.e.,

Vertex 17 (c3.ab),(G1),(c3)⇒ (A1); Vertex 17 (c3.ab),(c3.2)⇒ (A2); (B.115)

Vertex 17 (c3.ab),(G1),(c3)⇒ (A3); Vertex 17 (c3.ab),(c3.2)⇒ (A4). (B.116)

Case 3.3: In this case we assume both (c3) and (c3.3) are true. This sub-case is the

leftmost subregion above the dotted line in the solid lower-right square (Case 3) of Fig. 3.2b .

We now consider the following 6 subcases of Case 3.3.

167

Case 3.3.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c3),(c3.3)=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)} (B.117)

by reusing (B.84), (B.87), and the following straightforward intermediate steps

{(A1), (B2)} (c3.ab),(c3.3)=⇒ (A3) (B.118)

{(A1), (B3)} (c3.ab),(G1)=⇒ (A4) (B.119)

{(A1), (B1), (B2)} (c3.ab),(c3.3)=⇒ (B4) (B.120)

{(A1), (B2), (B3)} (c3.ab),(c3.3)=⇒ (B6) (B.121)

By (B.117), the four tight linear inequalities in Case-3.3.1 can only be (A1) (thus (A1)),

(B1), (B2), and (B3). Solving these equations, the corresponding corner point is Vertex 18

(F1 −M2, F2, F1 + F2 −M1, F2) listed in Table 3.3 .

Case 3.3.2: (A3) is tight. i.e., (A3) holds. Since the intermediate steps (B.107) to

(B.109) in Case-3.2.2 only require M1 ≤ F1+M2, we can substitute (c3.2) with {(G4), (c3.3)}

in Case-3.2.2. The rest of the analysis is verbatim to Case-3.2.2 and the corner point is also

Vertex 16.

Case 3.3.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (B2), (B4), (B6)} G,(c3),(c3.3)=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (B.122)

168

by reusing (B.97), (B.99), and the following straightforward intermediate steps

{(A3), (B2)} (c3.ab),(c3.3)=⇒ (A1) (B.123)

{(A3), (B6)} (c3.ab),(G1)=⇒ (A4) (B.124)

{(A3), (B2), (B4)} (c3.ab),(c3.3)=⇒ (B1) (B.125)

{(A3), (B2), (B6)} (c3.ab),(c3.3)=⇒ (B3) (B.126)

By (B.122), the four tight linear inequalities in Case-3.3.3 can only be (A3) (thus (A3)),

(B2), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 19

(F1 + F2 −M1, F2, F1 −M2, F2) listed in Table 3.3 .

Case 3.3.4: (A4) is tight. i.e., (A4) holds. Since the intermediate steps (B.111) to

(B.113) in Case-3.2.4 only require M1 ≤ F1+M2, we can substitute (c3.2) with {(G4), (c3.3)}

in Case-3.2.4. The rest of the analysis is verbatim to Case-3.2.4 and the corner point is also

Vertex 10.

Case 3.3.5: None of (A1) to (A4) is tight, but (B2) is tight, i.e., (B2) holds. We can

prove

{(B1), (B2), (B3), (B4), (B6)} G,(c3),(c3.3)⇒ {(B5)} (B.127)

using the following intermediate step

{(B1), (B6), (B2)} (c3.ab),(c3)⇒ {(B5)}. (B.128)

Recall that under the a1 to b6 values in (c3.ab), the inequalities corresponding to (B1),

(B3), (B4), and (B6) are co-dependent as shown in Case-3.2.5. Therefore, the corner point

must be tight for all 5 inequalities (B1), (B2), (B3), (B4), (B6). Solving these 5 joint

equations (four of them are co-dependent), we obtain the corner point Vertex 20 (F1 +

169

F2−M1−M2
2 , F2+M1−M2

2 , F1 + F2−M1−M2
2 , F2+M1−M2

2) listed in Table 3.3 . Vertex 20 is a legitimate

corner point since it also satisfies (A1) to (A4) as well, i.e.,

Vertex 20 (c3.ab),(c3.3)⇒ (A1); Vertex 20 (c3.ab),(c3)⇒ (A2);

Vertex 20 (c3.ab),(c3.3)⇒ (A3); Vertex 20 (c3.ab),(c3)⇒ (A4).

Case 3.3.6: None of (A1) to (A4) is tight, nor is (B2). Since the arguments in Case-3.2.5

after (B.104) only require the condition M1 ≤ F1 +M2, we can change (c3.2) in (B.115) and

(B.116) with (c3.3) and use the same argument verbatim to prove that the corner point in

Case-3.3.6 is the Vertex 17 (F1+M1−M2
2 , F2 + F1−M1−M2

2 , F1+M1−M2
2 , F2 + F1−M1−M2

2) listed in

Table 3.3 .

Case 4: We assume

F2 < M2 ≤M1 ≤ F1. (c4)

Ineq. (c4) and G jointly describe the scenario when the (M1,M2) value falls into the mid-left

triangle in Fig. 3.2 with solid edges and being marked as “Case 4”. In this case, the a1 to b6

values of (A1) to (B6) become

a1 = a3 = F1 −M2, a2 = F1 −M1, a4 = 0,

b1 = b2 = b4 = 2F1 + F2 −M1 −M2,

b3 = b6 = F1 + F2 −M2, b5 = F1 + F2 −M1. (c4.ab)

Note that only a2, a4, and b5 are different in (c2.ab) and (c4.ab), and the rest 7 values are

identical. Therefore we can reuse the equations related to (c2.ab) when (A2), (A4) and (B5)

are not involved. We now further divide this case into two sub-cases. Case 4.1: We assume

F2 +M2 < M1, (c4.1)

170

and Case 4.2: We assume

F2 +M2 ≥M1. (c4.2)

Cases 4.1 and 4.2 further divide the solid mid-left triangle of Fig. 3.2a by a 45-degree line.

Note that (c4.1) and (c4.2) are identical to (c2.1) and (c2.2), respectively, such that we can

reuse the equations in Case 2 by directly changing (c2.1) (resp. (c2.2)) to (c4.1) (resp.(c4.2)).

In the following we focus on Case 4.1, the right subregion below the dotted line.

Case 4.1: We consider the following 5 subcases.

Case 4.1.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (A3), (B1), (B3)} G,(c4),(c4.1)=⇒

{(A2), (A4), (B2), (B4), (B5), (B6)} (B.129)

by reusing (B.54), (B.55), (B.56), and the following straightforward intermediate steps

{(A1), (B1)} (c4.ab),(G2)=⇒ (A2) (B.130)

{(A1), (B3)} (c4.ab),(G2)=⇒ (A4) (B.131)

{(A1), (B1), (B3)} (c4.ab),(G2)=⇒ (B5) (B.132)

By (B.129), the four tight linear inequalities in Case-4.1.1 can only be (A1) (thus (A1)),

(A3), (B1), and (B3). Solving these equations, the corresponding corner point is Vertex 8

(F1 −M2, F1 + F2 −M1, F1 −M2, F2) listed in Table 3.3 .

Case 4.1.2: (A2) is tight. i.e., (A2) holds. We can prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c4),(c4.1)=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (B.133)

171

by the following straightforward intermediate steps

{(A2), (B1)} (c4.ab),(G2)=⇒ (A1) (B.134)

{(A2), (B4)} (c4.ab),(G2)=⇒ (A3) (B.135)

{(A2), (B5)} (c4.ab),(G2)=⇒ (A4) (B.136)

{(A2), (B1), (B4)} (c4.ab),(G2),(G3)=⇒ (B2) (B.137)

{(A2), (B1), (B5)} (c4.ab),(G2)=⇒ (B3) (B.138)

{(A2), (B4), (B5)} (c4.ab),(G2)=⇒ (B6). (B.139)

By (B.133), the four tight linear inequalities in Case-4.1.2 can only be (A2) (thus (A2)),

(B1), (B4), and (B5). Solving these equations, the corresponding corner point is Vertex 21

(F1 + F2 −M2, F1 −M1, F1 + F2 −M2, F2) listed in Table 3.3 .

Case 4.1.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (A1), (B4), (B6)} G,(c4),(c4.1)=⇒

{(A2), (A4), (B1), (B2), (B3), (B5)} (B.140)

by reusing (B.62), (B.65), (B.66), and the following straightforward intermediate steps

{(A3), (B4)} (c4.ab),(G2)=⇒ (A2) (B.141)

{(A3), (B6)} (c4.ab),(G2)=⇒ (A4) (B.142)

{(A3), (B4), (B6)} (c4.ab),(G2)=⇒ (B5). (B.143)

By (B.140), the four tight linear inequalities in Case-4.1.3 can only be (A3) (thus (A3)),

(A1), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 8

(F1 −M2, F1 + F2 −M1, F1 −M2, F2) listed in Table 3.3 .

172

Case 4.1.4: (A4) is tight. i.e., (A4) holds. We can prove the following relationship

{(A4), (B3), (B5), (B6)} G,(c4),(c4.1)=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (B.144)

by the following straightforward intermediate steps

{(A4), (B3)} (c4.ab),(G2)=⇒ (A1) (B.145)

{(A4), (B5)} (c4.ab),(G2)=⇒ (A2) (B.146)

{(A4), (B6)} (c4.ab),(G2)=⇒ (A3) (B.147)

{(A4), (B3), (B5)} (c4.ab),(G2)=⇒ (B1) (B.148)

{(A4), (B3), (B6)} (c4.ab),(G2),(G3)=⇒ (B2) (B.149)

{(A4), (B5), (B6)} (c4.ab),(G2)=⇒ (B4). (B.150)

By (B.144), the four tight linear inequalities in Case-4.1.4 can only be (A4) (thus (A4)),

(B3), (B5), and (B6). Solving these equations, the corresponding corner point is Vertex 22

(F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0) listed in Table 3.3 .

Case 4.1.5: None of (A1) to (A4) is tight. Recall that in all the discussion of Case 4.1

and its subcases, we assume G, (c4), (c4.1), and (c4.ab). Since

{(A1), (A3)} (c4.ab),(c4.1)=⇒ (B2), (B.151)

and the inequalities corresponding to (B1), (B3), (B4), and (B6) are co-dependent, a corner

point requires all the remaining 5 inequalities (B1), (B3), (B4), (B5), and (B6) to be tight

simultaneously. The 5 inequalities jointly yield exactly one corner point Vertex 23 (F1 +

173

F2
2 −M2, F1 + F2

2 −M1, F1 + F2
2 −M2,

F2
2) listed in Table 3.3 . Vertex 23 is a legitimate corner

point since it also satisfies (A1) to (A4) as well, i.e.,

Vertex 23 (c4.ab),(G2)⇒ (A1); Vertex 23 (c4.ab),(G2)⇒ (A2);

Vertex 23 (c4.ab),(G2)⇒ (A3); Vertex 23 (c4.ab),(G2)⇒ (A4).

Case 4.2: In this case we assume both (c4) and (c4.2) are true. This sub-case is the left

subregion above the dotted line in the solid mid-left triangle (Case 4) of Fig. 3.2a . We now

consider the following 6 subcases of Case 4.2.

Case 4.2.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c4),(c4.2)=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)} (B.152)

by reusing (B.130), (B.74), (B.131), (B.75) (B.132), and (B.76). By (B.152), the four tight

linear inequalities in Case-4.2.1 can only be (A1) (thus (A1)), (B1), (B2), and (B3). Solving

these equations, the corresponding corner point is Vertex 1 (F1 −M2, F1 + F2 −M1, F1 +

F2 −M1, F2) listed in Table 3.3 .

Case 4.2.2: (A2) is tight, i.e., (A2) holds. Since the intermediate steps of Case 4.1.2

does not require condition (c4.2), the statement in (B.133) holds even if we swap out (c4.1)

by (c4.2). The rest of the analysis is verbatim to Case 4.1.2 and the corner point is also

Vertex 21.

Case 4.2.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (B2), (B4), (B6)} G,(c4),(c4.2)=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (B.153)

by reusing (B.78), (B.141), (B.142) (B.79), (B.80), and (B.143). By (B.153), the four tight

linear inequalities in Case-4.2.3 can only be (A3) (thus (A3)), (B2), (B4), and (B6). Solving

174

these equations, the corresponding corner point is Vertex 12 (F1 +F2−M1, F1 +F2−M1, F1−

M2, F2) listed in Table 3.3 .

Case 4.2.4: (A4) is tight, i.e., (A4) holds. Since the intermediate steps of Case 4.1.4

does not require condition (c4.2), the statement in (B.144) holds even if we swap out (c4.1)

by (c4.2). The rest of the analysis is verbatim to Case 4.1.4 and the corner point is also

Vertex 22.

Case 4.2.5: None of (A1) to (A4) is tight, but (B2) is tight, i.e., (B2) holds. We can

prove

{(B1), (B2), (B3), (B4), (B6)} G,(c4),(c4.2)⇒ {(B5)} (B.154)

using the following intermediate step

{(B1), (B6), (B2)} (c4.ab),(G3)⇒ {(B5)}. (B.155)

That is, in this case, we do not need to check whether (B5) is tight or not. Recall that under

the a1 to b6 values in (c4.ab), the inequalities corresponding to (B1), (B3), (B4), and (B6)

are co-dependent as shown in Case 4.1.5. Therefore, the corner point must be tight for all 5

inequalities (B1), (B2), (B3), (B4), (B6). Solving these 5 joint equations, the corresponding

corner point is Vertex 13 (F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F1 + F2−M1−M2
2 , F2+M1−M2

2) listed

in Table 3.3 . Vertex 13 is a legitimate corner point in this case since it also satisfies (A1) to

(A4) as well, i.e.,

Vertex 13 (c4.ab),(c4.2)⇒ (A1); Vertex 13 (c4.ab),(G2),(G3)⇒ (A2);

Vertex 13 (c4.ab),(c4.2)⇒ (A3); Vertex 13 (c4.ab),(G2),(G3)⇒ (A4).

Case 4.2.6: None of (A1) to (A4) is tight, nor is (B2). Since the arguments in Case 4.1.5

after (B.151) no longer uses the condition (c4.1), we can use the same argument verbatim

and prove that the corner point in Case 4.2.6 is the Vertex 23 (F1 + F2
2 −M2, F1 + F2

2 −

M1, F1 + F2
2 −M2,

F2
2) listed in Table 3.3 .

175

Case 5: We assume

F2 < M2 ≤ F1 < M1. (c5)

Ineq. (c5) and G jointly describe the scenario when the (M1,M2) value falls into the mid-right

rectangle in Fig. 3.2 with solid edges and being marked as “Case 5”. In this case, the a1 to

b6 values of (A1) to (B6) become

a1 = a3 = F1 −M2, a2 = a4 = 0,

b1 = b3 = b4 = b6 = F1 + F2 −M2,

b2 = 2F1 + F2 −M1 −M2, b5 = F1 + F2 −M1. (c5.ab)

Note that only a2, b1, and b4 are different in (c4.ab) and (c5.ab), and the rest 7 values are

identical. Therefore we can reuse the equations related to (c4.ab) (or (c2.ab) referred in

Case 4) when (A2), (B1) and (B4) are not involved. We now further divide this case into

two sub-cases. Case 5.1: We assume

F2 +M2 < M1, (c5.1)

and Case 5.2: We assume

F2 +M2 ≥M1. (c5.2)

Cases 5.1 and 5.2 further divide the solid mid-right rectangle of Fig. 3.2 by a 45-degree line.

Note that (c5.1) and (c5.2) are identical to (c4.1) and (c4.2), respectively, such that we can

reuse the equations in Case 4 by directly changing (c4.1) (resp. (c4.2)) to (c5.1) (resp.(c5.2)).

In the following we focus on Case 5.1, the right subregion below the dotted line.

Case 5.1: We consider the following 5 subcases.

176

Case 5.1.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (A3), (B1), (B3)} G,(c5),(c5.1)=⇒

{(A2), (A4), (B2), (B4), (B5), (B6)} (B.156)

by reusing (B.54), (B.131), (B.56), and the following straightforward intermediate steps

{(A1), (B1)} (c5.ab),(G2)=⇒ (A2) (B.157)

{(A1), (B1), (B2)} (c5.ab)=⇒ (B4) (B.158)

{(A1), (B1), (B3)} (c5.ab),(G2),(c5)=⇒ (B5) (B.159)

By (B.156), the four tight linear inequalities in Case-5.1.1 can only be (A1) (thus (A1)),

(A3), (B1), and (B3). Solving these equations, the corresponding corner point is Vertex 14

(F1 −M2, F2, F1 −M2, F2) listed in Table 3.3 .

Case 5.1.2: (A2) is tight. i.e., (A2) holds. We can prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c5),(c5.1)=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (B.160)

by the following straightforward intermediate steps

{(A2), (B1)} (c5.ab),(G2)=⇒ (A1) (B.161)

{(A2), (B4)} (c5.ab),(G2)=⇒ (A3) (B.162)

{(A2), (B5)} (c5.ab),(G5)=⇒ (A4) (B.163)

{(A2), (B1), (B4)} (c5.ab),(G2),(G3)=⇒ (B2) (B.164)

{(A2), (B1), (B5)} (c5.ab),(G5)=⇒ (B3) (B.165)

{(A2), (B4), (B5)} (c5.ab),(G5)=⇒ (B6). (B.166)

177

By (B.160), the four tight linear inequalities in Case-5.1.2 can only be (A2) (thus (A2)),

(B1), (B4), and (B5). Solving these equations, the corresponding corner point is Vertex 24

(F1 + F2 −M2, 0, F1 + F2 −M2, F1 + F2 −M1) listed in Table 3.3 .

Case 5.1.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (A1), (B4), (B6)} G,(c5),(c5.1)=⇒

{(A2), (A4), (B1), (B2), (B3), (B5)} (B.167)

by reusing (B.62), (B.142), (B.66), and the following straightforward intermediate steps

{(A3), (B4)} (c5.ab),(G2)=⇒ (A2) (B.168)

{(A3), (A1), (B4)} (c5.ab)=⇒ (B1) (B.169)

{(A3), (B4), (B6)} (c5.ab),(G2),(c5)=⇒ (B5). (B.170)

By (B.167), the four tight linear inequalities in Case-5.1.3 can only be (A3) (thus (A3)),

(A1), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 14

(F1 −M2, F2, F1 −M2, F2) listed in Table 3.3 .

Case 5.1.4: (A4) is tight. i.e., (A4) holds. We can prove the following relationship

{(A4), (B3), (B5), (B6)} G,(c5),(c5.1)=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (B.171)

by reusing (B.145), (B.147), (B.149), and the following straightforward intermediate steps

{(A4), (B5)} (c5.ab),(G2)=⇒ (A2) (B.172)

{(A4), (B3), (B5)} (c5.ab),(G5)=⇒ (B1) (B.173)

{(A4), (B5), (B6)} (c5.ab),(G5)=⇒ (B4). (B.174)

178

By (B.171), the four tight linear inequalities in Case-5.1.4 can only be (A4) (thus (A4)),

(B3), (B5), and (B6). Solving these equations, the corresponding corner point is Vertex 22

(F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0) listed in Table 3.3 .

Case 5.1.5: None of (A1) to (A4) is tight. Recall that in all the discussion of Case 5.1

and its subcases, we assume G, (c5), (c5.1), and (c5.ab). Since

{(A1), (A3)} (c5.ab),(c5.1)=⇒ (B2), (B.175)

and the inequalities corresponding to (B1), (B3), (B4), and (B6) are co-dependent, a cor-

ner point requires all the remaining 5 inequalities (B1), (B3), (B4), (B5), and (B6) to be

tight simultaneously. The 5 inequalities jointly yield exactly one corner point Vertex 25

(F1+F2+M1
2 − M2,

F1+F2−M1
2 , F1+F2+M1

2 − M2,
F1+F2−M1

2) listed in Table 3.3 . Vertex 25 is a

legitimate corner point since it also satisfies (A1) to (A4) as well, i.e.,

Vertex 25 (c5.ab),(G2),(c5)⇒ (A1); Vertex 25 (c5.ab),(G5)⇒ (A2);

Vertex 25 (c5.ab),(G2),(c5)⇒ (A3); Vertex 25 (c5.ab),(G5)⇒ (A4).

Case 5.2: In this case we assume both (c5) and (c5.2) are true. This sub-case is the

left subregion above the dotted line in the solid mid-right rectangle (Case 5) of Fig. 3.2 . We

now consider the following 6 subcases of Case 5.2.

Case 5.2.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c5),(c5.2)=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)} (B.176)

by reusing (B.157), (B.74), (B.131), (B.158), and the following straightforward intermediate

steps

{(A1), (B1), (B2)} (c5.ab),(c5.2)=⇒ (B4) (B.177)

{(A1), (B1), (B3)} (c5.ab),(c5.2)=⇒ (B6). (B.178)

179

By (B.176), the four tight linear inequalities in Case-5.2.1 can only be (A1) (thus (A1)),

(B1), (B2), and (B3). Solving these equations, the corresponding corner point is Vertex 18

(F1 −M2, F2, F1 + F2 −M1, F2) listed in Table 3.3 .

Case 5.2.2: (A2) is tight, i.e., (A2) holds. Since the intermediate steps of Case 5.1.2

does not require condition (c5.2), the statement in (B.160) holds even if we swap out (c5.1)

by (c5.2). The rest of the analysis is verbatim to Case 5.1.2 and the corner point is also

Vertex 24.

Case 5.2.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (B2), (B4), (B6)} G,(c5),(c5.2)=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (B.179)

by reusing (B.78), (B.168), (B.142), (B.170), and the following straightforward intermediate

steps

{(A3), (B2), (B4)} (c5.ab),(c5.2)=⇒ (B1) (B.180)

{(A3), (B2), (B6)} (c5.ab),(c5.2)=⇒ (B3). (B.181)

By (B.179), the four tight linear inequalities in Case-5.2.3 can only be (A3) (thus (A3)),

(B2), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 19

(F1 + F2 −M1, F2, F1 −M2, F2) listed in Table 3.3 .

Case 5.2.4: (A4) is tight, i.e., (A4) holds. Since the intermediate steps of Case 5.1.4

does not require condition (c5.2), the statement in (B.171) holds even if we swap out (c5.1)

by (c5.2). The rest of the analysis is verbatim to Case 5.1.4 and the corner point is also

Vertex 22.

Case 5.2.5: None of (A1) to (A4) is tight, but (B2) is tight, i.e., (B2) holds. We can

prove

{(B1), (B2), (B3), (B4), (B6)} G,(c5),(c5.2)⇒ {(B5)} (B.182)

180

using the following intermediate step

{(B1), (B6), (B2)} (c5.ab),(c5)⇒ {(B5)}. (B.183)

That is, in this case, we do not need to check whether (B5) is tight or not. Recall that under

the a1 to b6 values in (c5.ab), the inequalities corresponding to (B1), (B3), (B4), and (B6)

are co-dependent as shown in Case 5.1.5. Therefore, the corner point must be tight for all 5

inequalities (B1), (B2), (B3), (B4), (B6). Solving these 5 joint equations, the corresponding

corner point is Vertex 20 (F1 + F2−M1−M2
2 , F2+M1−M2

2 , F1 + F2−M1−M2
2 , F2+M1−M2

2) listed in

Table 3.3 . Vertex 20 is a legitimate corner point in this case since it also satisfies (A1) to

(A4) as well, i.e.,

Vertex 20 (c5.ab),(c5.2)⇒ (A1); Vertex 20 (c5.ab),(G2),(G3)⇒ (A2);

Vertex 20 (c5.ab),(c5.2)⇒ (A3); Vertex 20 (c5.ab),(G2),(G3)⇒ (A4).

Case 5.2.6: None of (A1) to (A4) is tight, nor is (B2). Since the arguments in

Case 5.1.5 after (B.175) no longer uses the condition (c5.1), we can use the same argu-

ment verbatim and prove that the corner point in Case 5.2.6 is the Vertex 25 (F1+F2+M1
2 −

M2,
F1+F2−M1

2 , F1+F2+M1
2 −M2,

F1+F2−M1
2) listed in Table 3.3 .

Case 6: We assume

F1 < M2 ≤M1. (c6)

Ineq. (c6) and G jointly describe the scenario when the (M1,M2) value falls into the upper

triangle in Fig. 3.2 with solid edges and being marked as “Case 6”. In this case, the a1 to b6

values of (A1) to (B6) become

a1 = a2 = a3 = a4 = 0,

b1 = b3 = b4 = b6 = F1 + F2 −M2,

b2 = b5 = F1 + F2 −M1. (c6.ab)

181

Note that only a1, a3, and b2 are different in (c6.ab) and (c5.ab), and the rest 7 values are

identical. Therefore we can reuse the equations related to (c5.ab) when (A1), (A3) and (B2)

are not involved. We consider the following 6 subcases.

Case 6.1: (A1) is tight. i.e., (A1) holds. We can prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c6)=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)} (B.184)

by and the following straightforward intermediate steps

{(A1), (B1)} (c6.ab),(G3),(G5)=⇒ (A2) (B.185)

{(A1), (B2)} (c6.ab),(G5)=⇒ (A3) (B.186)

{(A1), (B3)} (c6.ab),(G3),(G5)=⇒ (A4) (B.187)

{(A1), (B1), (B2)} (c6.ab),(G5)=⇒ (B4) (B.188)

{(A1), (B2), (B3)} (c6.ab),(G3),(G5)=⇒ (B5) (B.189)

{(A1), (B1), (B3)} (c6.ab),(G5)=⇒ (B6). (B.190)

By (B.184), the four tight linear inequalities in Case-6.1 can only be (A1) (thus (A1)),

(B1), (B2), and (B3). Solving these equations, the corresponding corner point is Vertex 26

(0, F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2) listed in Table 3.3 .

Case 6.2: (A2) is tight. i.e., (A2) holds. We can prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c6)=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (B.191)

182

by reusing (B.163), (B.165), (B.166), and the following straightforward intermediate steps

{(A2), (B1)} (c6.ab),(G3),(G5)=⇒ (A1) (B.192)

{(A2), (B4)} (c6.ab),(G3),(G5)=⇒ (A3) (B.193)

{(A2), (B1), (B4)} (c6.ab),(G3),(G5)=⇒ (B2) (B.194)

By (B.191), the four tight linear inequalities in Case-6.2 can only be (A2) (thus (A2)),

(B1), (B4), and (B5). Solving these equations, the corresponding corner point is Vertex 24

(F1 + F2 −M2, 0, F1 + F2 −M2, F1 + F2 −M1) listed in Table 3.3 .

Case 6.3: (A3) is tight. i.e., (A3) holds. We can prove the following relationship

{(A3), (B2), (B4), (B6)} G,(c6)=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (B.195)

by reusing the following straightforward intermediate steps

{(A3), (B2)} (c6.ab),(G5)=⇒ (A1) (B.196)

{(A3), (B4)} (c6.ab),(G3),(G5)=⇒ (A2) (B.197)

{(A3), (B6)} (c6.ab),(G3),(G5)=⇒ (A4) (B.198)

{(A3), (B2), (B4)} (c6.ab),(G5)=⇒ (B1) (B.199)

{(A3), (B2), (B6)} (c6.ab),(G5)=⇒ (B3) (B.200)

{(A3), (B4), (B6)} (c6.ab),(G3),(G5)=⇒ (B5). (B.201)

By (B.195), the four tight linear inequalities in Case-6.3 can only be (A3) (thus (A3)),

(B2), (B4), and (B6). Solving these equations, the corresponding corner point is Vertex 27

(F1 + F2 −M1, F1 + F2 −M2, 0, F1 + F2 −M2) listed in Table 3.3 .

183

Case 6.4: (A4) is tight. i.e., (A4) holds. We can prove the following relationship

{(A4), (B3), (B5), (B6)} G,(c6)=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (B.202)

by reusing (B.172), (B.173), (B.174) and the following straightforward intermediate steps

{(A4), (B3)} (c6.ab),(G3),(G5)=⇒ (A1) (B.203)

{(A4), (B6)} (c6.ab),(G3),(G5)=⇒ (A3) (B.204)

{(A4), (B3), (B6)} (c6.ab),(G3),(G5)=⇒ (B2) (B.205)

By (B.202), the four tight linear inequalities in Case-6.4 can only be (A4) (thus (A4)),

(B3), (B5), and (B6). Solving these equations, the corresponding corner point is Vertex 22

(F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0) listed in Table 3.3 .

Case 6.5: None of (A1) to (A4) is tight, but (B2) is tight, i.e., (B2) holds. We can prove

{(B1), (B2), (B3), (B4), (B6)} G,(c6)⇒ {(B5)} (B.206)

using the following intermediate step

{(B1), (B6), (B2)} (c6.ab),(G3)⇒ {(B5)}. (B.207)

That is, in this case, we do not need to check whether (B5) is tight or not. Since under

the a1 to b6 values in (c6.ab), the inequalities corresponding to (B1), (B3), (B4), and (B6)

are co-dependent, the corner point must be tight for all 5 inequalities (B1), (B2), (B3),

(B4), (B6). Solving these 5 joint equations, the corresponding corner point is Vertex 28

184

Table B.1. Vertex 1 (F1−M2, F1 +F2−M1, F1 +F2−M1, F2) with applicable
range: M2 ≤M1 ≤ min(F1, F2 +M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2
1.1.Cov F1−M1+M2 F2−M1+M2 M2 M2 F1−M1 F1+F2−2M1+M2 F1+F2−2M1+M2 F2−M1+M2
Total F1 F2 M1 M2 F1−M2 F1+F2−M1 F1+F2−M1 F2

(F1+F2−M1
2 , F1+F2+M1

2 − M2,
F1+F2−M1

2 , F1+F2+M1
2 − M2) listed in Table 3.3 . Vertex 28 is a

legitimate corner point in this case since it also satisfies (A1) to (A4) as well, i.e.,

Vertex 28 (c6.ab),(G5)⇒ (A1); Vertex 28 (c6.ab),(G3),(G5)⇒ (A2);

Vertex 28 (c6.ab),(G5)⇒ (A3); Vertex 28 (c6.ab),(G3),(G5)⇒ (A4).

Case 6.6: None of (A1) to (A4) is tight, nor is (B2). Recall that under the a1 to b6

values in (c6.ab), inequalities corresponding to (B1), (B3), (B4), and (B6) are co-dependent

in Case-6.5, a corner point requires all the remaining 5 inequalities (B1), (B3), (B4), (B5),

and (B6) to be tight simultaneously. The 5 inequalities jointly yield exactly one corner point

Vertex 25 (F1+F2+M1
2 −M2,

F1+F2−M1
2 , F1+F2+M1

2 −M2,
F1+F2−M1

2) listed in Table 3.3 . Vertex

25 is a legitimate corner point since it also satisfies (A1) to (A4) as well, i.e.,

Vertex 25 (c6.ab),(G3),(G5)⇒ (A1); Vertex 25 (c6.ab),(G5)⇒ (A2);

Vertex 25 (c6.ab),(G3),(G5)⇒ (A3); Vertex 25 (c6.ab),(G5)⇒ (A4).

B.2 Proof of Proposition 3.3.3

In the following, we will prove that each of the 28 vertices can be achieved by space

sharing among the 7 basic achievable schemes listed in Table 3.2 .

Vertex 1: As summarized in Fig. 3.2 , Vertex-1 rate vector (F1−M2, F1 +F2−M1, F1 +

F2−M1, F2) is the corner point for 4 out of 11 sub-regions. Table B.1 describes an achievable

scheme that attains Vertex-1 rate vector as long as the following Applicable Range (AR) holds

[AR]: M2 ≤M1 ≤ min(F1, F2 +M2), (B.208)

185

which is the union of the 4 desired sub-regions.

Each row of Table B.1 describes one basic scheme and the last row describes the total

(combined) effect after space sharing. Each basic scheme takes parts of files 1 and 2 and

stores coded data in parts of memories 1 and 2. The columns of f1, f2, m1, and m2 correspond

to the amount of files 1 and 2 and memories 1 and 2 of each basic scheme. The columns

of R(1,1), R(1,2), R(2,1), and R(2,2) correspond to the rates contributed by each basic scheme

under each request pattern. The intersection of the “Total” row and the four rate columns

thus represents the achievable rate vector of the overall scheme.

To ensure that Table B.1 indeed describes a legitimate scheme, one needs to verify the

following three conditions:

1. All the file sizes and the memory sizes are non-negative. For example, 1.1.Cov uses

F1−M1 +M2 of file 1 and F2−M1 +M2 of file 2 to encode. The AR (B.208) ensures

that both sub-file sizes are non-negative.

2. For any given row, the assigned subfile sizes and the assigned memory sizes satisfy the

required condition of the basic scheme listed in Table 3.2 . For example, as summarized

in Table 3.2 the 1.1.Cov scheme requires that max(m1,m2) ≤ f1. As a result, in the

row of 1.1.Cov in Table B.1 we must satisfy max(M2,M2) ≤ F1 −M1 + M2, which is

ensured by the AR (B.208).

3. For any given row, the delivery rate vector is computed correctly according to Table 3.2 .

For example, as summarized in Table 3.2 the 1.1.Cov scheme achieves R(1,1) = f1 −

min(m1,m2). As a result, correct rate computation in the row of 1.1.Cov of Table B.1

requires the equality F1 − M1 = (F1 − M1 + M2) − min(M2,M2) to hold, which is

ensured by

2
 the AR (B.208).

Verifying these three statements are very straightforward and we thus omit the details here.

Remark: The main reason that the Vertex-1 scheme in Table B.1 is companied by an AR

condition (B.208) is to ensure that the above three conditions about file/memory sizes and

rate computation are properly met.
2

 ↑ In this example, it is trivially true regardless whether the AR condition (B.208) holds or not.

186

Table B.2. Vertex 2 (F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2) with
applicable range: M1 +M2 ≤ min(F1, F2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp M1 M1 M1 0 M1 M1 M1 M1
Emp.Mix M2 M2 0 M2 M2 M2 M2 M2
1.1.Cov F1−M1−M2 F2−M1−M2 0 0 F1−M1−M2 F1+F2−2M1−2M2 F1+F2−2M1−2M2 F2−M1−M2
Total F1 F2 M1 M2 F1 F1+F2−M1−M2 F1+F2−M1−M2 F2

187

Table B.3. Vertex 3 (F1, F1 +F2−M1, F1 +F2−M1, F2−M2) with applicable
range: M2 ≤M1 ≤ min(F1 +M2, F2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2
2.2.Cov F1−M1+M2 F2−M1+M2 M2 M2 F1−M1+M2 F1+F2−2M1+M2 F1+F2−2M1+M2 F2−M1
Total F1 F2 M1 M2 F1 F1+F2−M1 F1+F2−M1 F2−M2

Table B.4. Vertex 4 (F1 − 1/2M2, F1 + F2 − M1 − 1/2M2, F1 + F2 − M1 −
1/2M2, F2 − 1/2M2) with applicable range: M2 ≤M1 ≤ min(F1, F2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2

Ha.Fi M2 M2 M2 M2 M2/2 M2/2 M2/2 M2/2
1.1.Cov F1−M1 F2−M1 0 0 F1−M1 F1+F2−2M1 F1+F2−2M1 F2−M1
Total F1 F2 M1 M2 F1−1

2M2 F1+F2−M1−1
2M2 F1+F2−M1−1

2M2 F2−1
2M2

Vertex 2: As summarized in Fig. 3.2 , Vertex-2 rate vector (F1, F1 +F2−M1−M2, F1 +

F2 −M1 −M2, F2) is the corner point of 1 out of 11 sub-regions. Table B.2 describes the

corresponding space-sharing scheme that attains Vertex-2 rate vector. One can easily verify

that the applicable range listed in Table B.2 , i.e. M1 +M2 ≤ min(F1, F2), completely covers

the desired sub-region. Furthermore, the applicable range ensures that the three conditions

on the file/memory sizes and rate computation are met, also see the discussion of Vertex

1. Since the verification step is straightforward, we omit the details. The proof of Vertex-2

achievability is thus complete.

Remark: As will be seen later, each of our schemes, described in the corresponding table,

is associated with an applicable range. To prove the legitimacy of the scheme, we always

have to check (i) the applicable range covers the sub-regions of the corresponding corner

point; and (ii) the applicable range ensures that the three conditions on the file/memory

sizes and rate computation are met. Since checking (i) and (ii) can all be verified very easily,

we will not repeatedly emphasize these important verification steps in the sequel. Instead

we only describe the schemes and the corresponding applicable ranges.

Vertex 3: Per Fig. 3.2 , Vertex-3 rate vector (F1, F1 + F2 −M1, F1 + F2 −M1, F2 −M2)

is the corner point of 2 out of 11 sub-regions. Table B.3 describes an achievable scheme that

attains Vertex-3 rate vector and its applicable range.

188

Table B.5. Vertex 5 (F1, F1 + F2 −M1 −M2, F1, F2) with applicable range:
max(M1,M2) ≤ F2 ≤ min(F1,M1 +M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
Emp.Mix F2−M1 F2−M1 0 F2−M1 F2−M1 F2−M1 F2−M1 F2−M1

1.2.Cov F1−2F2 M1+M2−F2 M1+M2−F2 M1+M2−F2
F1−2F2 F1−F2

F1−2F2 M1+M2−F2+M1+M2 +M1+M2 +M1+M2
Total F1 F2 M1 M2 F1 F1+F2−M1−M2 F1 F2

Table B.6. Vertex 6 (F1, F1, F1 + F2 −M1 −M2, F2) with applicable range:
max(M1,M2) ≤ F2 ≤ min(F1,M1 +M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
Emp.Mix F2−M1 F2−M1 0 F2−M1 F2−M1 F2−M1 F2−M1 F2−M1

2.1.Cov F1−2F2 M1+M2−F2 M1+M2−F2 M1+M2−F2
F1−2F2 F1−2F2 F1−F2 M1+M2−F2+M1+M2 +M1+M2 +M1+M2

Total F1 F2 M1 M2 F1 F1 F1+F2−M1−M2 F2

Table B.7. Vertex 7 (F1+1/2(F2−M1−M2), F1+1/2(F2−M1−M2), F1+1/2(F2−
M1 −M2), F2 + 1/2(F2 −M1 −M2)) with applicable range: max(M1,M2) ≤
F2 ≤ min(F1,M1 +M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
Emp.Mix F2−M1 F2−M1 0 F2−M1 F2−M1 F2−M1 F2−M1 F2−M1

Ha.Fi M1+M2−F2 M1+M2−F2 M1+M2−F2 M1+M2−F2
M1+M2−F2

2
M1+M2−F2

2
M1+M2−F2

2
M1+M2−F2

2
1.1.Cov F1−F2 0 0 0 F1−F2 F1−F2 F1−F2 0

Total F1 F2 M1 M2
F1+ F1+ F1+ F2+

F2−M1−M2
2

F2−M1−M2
2

F2−M1−M2
2

F2−M1−M2
2

Vertex 4: Per Fig. 3.2 , Vertex-4 rate vector (F1 − M2
2 , F1 + F2 −M1 − M2

2 , F1 + F2 −

M1 − M2
2 , F2 − M2

2) is the corner point of 2 out of 11 sub-regions. Table B.4 describes an

achievable scheme that attains Vertex-4 rate vector and its applicable range.

Vertex 5: Per Fig. 3.2 , Vertex-5 rate vector (F1, F1 +F2−M1−M2, F1, F2) is the corner

point of 1 out of 11 sub-regions. Table B.5 describes an achievable scheme that attains

Vertex-5 rate vector and its applicable range.

Vertex 6: Per Fig. 3.2 , Vertex-6 rate vector (F1, F1, F1 +F2−M1−M2, F2) is the corner

point of 1 out of 11 sub-regions. Table B.6 describes an achievable scheme that attains

Vertex-6 rate vector and its applicable range.

189

Table B.8. Vertex 8 (F1 −M2, F1 + F2 −M1, F1 −M2, F2) with applicable
range: F2 +M2 ≤M1 ≤ F1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2 F2 F2 0 F2 F2 F2 F2
1.1.Cov F1−F2 0 M1−F2 M2 F1−F2−M2 F1−M1 F1−F2−M2 0
Total F1 F2 M1 M2 F1−M2 F1+F2−M1 F1−M2 F2

Table B.9. Vertex 9 (F1, F1 + F2 −M1 −M2, F1, F2) with applicable range:
M2 ≤ F2 ≤M1 ≤ F1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
1.2.Cov F1−F2+M2 M2 M1+M2−F2 M2 F1−F2+M2 F1−M1 F1−F2+M2 M2
Total F1 F2 M1 M2 F1 F1+F2−M1−M2 F1 F2

Table B.10. Vertex 10 (F1, F1 +F2−M1, F1, F2−M2) with applicable range:
M2 ≤ F2 ≤M1 ≤ F1 +M2.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
1.1.Cov F1−F2+M2 0 M1−F2 0 F1−F2+M2 F1−M1+M2 F1−F2+M2 0
2.2.Cov 0 M2 M2 M2 0 0 0 0
Total F1 F2 M1 M2 F1 F1+F2−M1 F1 F2−M2

Vertex 7: Per Fig. 3.2 , Vertex-7 rate vector (F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F1 +
F2−M1−M2

2 , F2 + F2−M1−M2
2) is the corner point of 1 out of 11 sub-regions. Table B.7 de-

scribes an achievable scheme that attains Vertex-7 rate vector and its applicable range.

Vertex 8: Per Fig. 3.2 , Vertex-8 rate vector (F1−M2, F1 +F2−M1, F1−M2, F2) is the

corner point of 2 out of 11 sub-regions when F1 ≥ 2F2 and of 1 out of 11 sub-regions when

F1 < 2F2. Table B.8 describes an achievable scheme that attains Vertex-8 rate vector and

its applicable range.

Vertex 9: Per Fig. 3.2 , Vertex-9 rate vector (F1, F1 +F2−M1−M2, F1, F2) is the corner

point of 2 out of 11 sub-regions. Table B.9 describes an achievable scheme that attains

Vertex-9 rate vector and its applicable range.

Vertex 10: Per Fig. 3.2 , Vertex-10 rate vector (F1, F1 + F2 −M1, F1, F2 −M2) is the

corner point of 3 out of 11 sub-regions when F1 ≥ 2F2 and of 4 out of 11 sub-regions when

F1 < 2F2. Table B.10 describes an achievable scheme that attains Vertex-10 rate vector and

its applicable range.

190

Table B.11. Vertex 11 (F1−1/2M2, F1+F2−M1−1/2M2, F1−1/2M2, F2−1/2M2)
with applicable range: M2 ≤ F2 ≤M1 ≤ F1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2

Ha.Fi M2 M2 M2 M2 M2/2 M2/2 M2/2 M2/2
1.1.Cov F1−F2 0 M1−F2 0 F1−F2 F1−M1 F1−F2 0
Total F1 F2 M1 M2 F1−1

2M2 F1+F2−M1−1
2M2 F1−1

2M2 F2−1
2M2

191

Table B.12. Vertex 12 (F1+F2−M1, F1+F2−M1, F1−M2, F2) with applicable
range: max(M2, F2) ≤M1 ≤ min(F1, F2 +M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2
1.1.Cov F1−F2 0 M1−F2 M1−F2 F1−M1 F1−M1 F1−M1 0
2.1.Cov F2−M1+M2 F2−M1+M2 F2−M1+M2 F2−M1+M2 F2−M1+M2 F2−M1+M2 0 F2−M1+M2
Total F1 F2 M1 M2 F1+F2−M1 F1+F2−M1 F1−M2 F2

Table B.13. Vertex 13 (F1 + 1/2(F2−M1−M2), F1 + 1/2(F2−M1−M2), F1 +
1/2(F2−M1−M2), 1/2(F2 +M1−M2)) with applicable range: max(M2, F2) ≤
M1 ≤ min(F1, F2 +M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2

Ha.Fi F2−M1+M2 F2−M1+M2 F2−M1+M2 F2−M1+M2
F2−M1+M2

2
F2−M1+M2

2
F2−M1+M2

2
F2−M1+M2

2
1.1.Cov F1−F2 0 M1−F2 M1−F2 F1−M1 F1−M1 F1−M1 0

Total F1 F2 M1 M2
F1+ F1+ F1+ F2+M1−M2

2F2−M1−M2
2

F2−M1−M2
2

F2−M1−M2
2

Table B.14. Vertex 14 (F1 − M2, F2, F1 − M2, F2) with applicable range:
max(F1, F2 +M2) ≤M1 ≤ F1 + F2.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F1+F2−M1 F1+F2−M1 F1+F2−M1 0 F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1
1.1.Cov M1−F2 0 M1−F2 M2 M1−F2−M2 0 M1−F2−M2 0
2.2.Cov 0 M1−F1 M1−F1 0 0 M1−F1 0 M1−F1
Total F1 F2 M1 M2 F1−M2 F2 F1−M2 F2

Vertex 11: Per Fig. 3.2 , Vertex-11 rate vector (F1−M2
2 , F1 +F2−M1−M2

2 , F1−M2
2 , F2−

M2
2) is the corner point of 2 out of 11 sub-regions. Table B.11 describes an achievable scheme

that attains Vertex-11 rate vector and its applicable range.

Vertex 12: Per Fig. 3.2 , Vertex-12 rate vector (F1 +F2−M1, F1 +F2−M1, F1−M2, F2)

is the corner point of 2 out of 11 sub-regions. Table B.12 describes an achievable scheme

that attains Vertex-12 rate vector and its applicable range.

Vertex 13: Per Fig. 3.2 , Vertex-13 rate vector (F1 + F2−M1−M2
2 , F1 + F2−M1−M2

2 , F1 +
F2−M1−M2

2 , F2+M1−M2
2) is the corner point of 2 out of 11 sub-regions. Table B.13 describes an

achievable scheme that attains Vertex-13 rate vector and its applicable range.

Vertex 14: Per Fig. 3.2 , Vertex-14 rate vector (F1 −M2, F2, F1 −M2, F2) is the corner

point of 3 out of 11 sub-regions. Table B.14 describes an achievable scheme that attains

Vertex-14 rate vector and its applicable range.

192

Table B.15. Vertex 15 (F1, F2 − M2, F1, F2 − M2) with applicable range:
M2 ≤ F2 ≤ F1 +M2 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
1.1.Cov F1−F2+M2 0 F1−F2+M2 0 F1−F2+M2 0 F1−F2+M2 0
2.2.Cov 0 M2 M2 M2 0 0 0 0
Total F1 F2 F1 +M2 M2 F1 F2−M2 F1 F2−M2

193

Table B.16. Vertex 16 (F1, F2−M2, F1, F1 +F2−M1) with applicable range:
F2 − F1 ≤M2 ≤ F2 and F1 ≤M1 ≤ F1 +M2.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2
1.2.Cov F1−F2+M2 F1−M1+M2 F1−F2+M2 F1−M1+M2 F1−F2+M2 0 F1−F2+M2 F1−M1+M2
2.2.Cov 0 M1−F1 M1−F1 M1−F1 0 0 0 0
Total F1 F2 M1 M2 F1 F2−M2 F1 F1+F2−M1

Table B.17. Vertex 17 (1/2(F1+M1−M2), F2+1/2(F1−M1−M2), 1/2(F1+M1−
M2), F2 +1/2(F1−M1−M2)) with applicable range: M2 ≤ F2 ≤M1 ≤ F1 +M2
and F1 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2

Ha.Fi F1−M1+M2 F1−M1+M2 F1−M1+M2 F1−M1+M2
F1−M1+M2

2
F1−M1+M2

2
F1−M1+M2

2
F1−M1+M2

2
1.1.Cov M1−F2 0 M1−F2 0 M1−F2 0 M1−F2 0
2.2.Cov 0 M1−F1 M1−F1 M1−F1 0 0 0 0

Total F1 F2 M1 M2
F1+M1−M2

2
F2+ F1+M1−M2

2
F2+

F1−M1−M2
2

F1−M1−M2
2

Table B.18. Vertex 18 (F1−M2, F2, F1 +F2−M1, F2) with applicable range:
M2 ≤ F1 ≤M1 ≤ F2 +M2.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F1−M2 F1−M2 F1−M2 0 F1−M2 F1−M2 F1−M2 F1−M2
1.1.Cov M2 0 M2 M2 0 0 0 0
2.2.Cov 0 F2−F1+M2 M1−F1 0 0 F2−F1+M2 F2−M1+M2 F2−F1+M2
Total F1 F2 M1 M2 F1−M2 F2 F1+F2−M1 F2

Vertex 15: Per Fig. 3.2 , Vertex-15 rate vector (F1, F2 −M2, F1, F2 −M2) is the corner

point of 1 out of 11 sub-regions. Table B.15 describes an achievable scheme that attains

Vertex-15 rate vector and its applicable range.

Vertex 16: Per Fig. 3.2 , Vertex-16 rate vector (F1, F2 −M2, F1, F1 + F2 −M1) is the

corner point of 1 out of 11 sub-regions when F1 ≥ 2F2 and of 2 out of 11 sub-regions when

F1 < 2F2. Table B.16 describes an achievable scheme that attains Vertex-16 rate vector and

its applicable range.

Vertex 17: Per Fig. 3.2 , Vertex-17 rate vector (F1+M1−M2
2 , F2 + F1−M1−M2

2 , F1+M1−M2
2 ,

F2 + F1−M1−M2
2) is the corner point of 1 out of 11 sub-regions when F1 ≥ 2F2 and of 2 out

of 11 sub-regions when F1 < 2F2. Table B.17 describes an achievable scheme that attains

Vertex-17 rate vector and its applicable range.

194

Table B.19. Vertex 19 (F1 +F2−M1, F2, F1−M2, F2) with applicable range:
M2 ≤ F1 ≤M1 ≤ F2 +M2 and F2 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F1−M2 F1−M2 F1−M2 0 F1−M2 F1−M2 F1−M2 F1−M2
1.1.Cov M1−F2 0 M1−F2 M1−F2 0 0 0 0
2.1.Cov F2−M1+M2 F2−F1+M2 F2−F1+M2 F2−M1+M2 F2−M1+M2 F2−F1+M2 0 F2−F1+M2
Total F1 F2 M1 M2 F1+F2−M1 F2 F1−M2 F2

Table B.20. Vertex 20 (F1+1/2(F2−M1−M2), 1/2(F2+M1−M2), F1+1/2(F2−
M1−M2), 1/2(F2+M1−M2)) with applicable range: M2 ≤ F1 ≤M1 ≤ F2+M2
and F2 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Mix.Emp F1−M2 F1−M2 F1−M2 0 F1−M2 F1−M2 F1−M2 F1−M2

Ha.Fi F2−M1+M2 F2−M1+M2 F2−M1+M2 F2−M1+M2
F2−M1+M2

2
F2−M1+M2

2
F2−M1+M2

2
F2−M1+M2

2
1.1.Cov M1−F2 0 M1−F2 M1−F2 0 0 0 0
2.2.Cov 0 M1−F1 M1−F1 0 0 M1−F1 0 M1−F1

Total F1 F2 M1 M2
F1+ F2+M1−M2

2
F1+ F2+M1−M2

2F2−M1−M2
2

F2−M1−M2
2

Table B.21. Vertex 21 (F1+F2−M2, F1−M1, F1+F2−M2, F2) with applicable
range: F2 ≤M2 ≤M1 ≤ F1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
1.1.Cov F1−F2 0 M1−F2 M2−F2 F1−M2 F1−M1 F1−M2 0
1.2.Cov F2 F2 F2 F2 F2 0 F2 F2
Total F1 F2 M1 M2 F1+F2−M2 F1−M1 F1+F2−M2 F2

Vertex 18: Per Fig. 3.2 , Vertex-18 rate vector (F1 −M2, F2, F1 + F2 −M1, F2) is the

corner point of 1 out of 11 sub-regions when F1 ≥ 2F2 and of 2 out of 11 sub-regions when

F1 < 2F2. Table B.18 describes an achievable scheme that attains Vertex-18 rate vector and

its applicable range.

Vertex 19: Per Fig. 3.2 , Vertex-19 rate vector (F1 + F2 −M1, F2, F1 −M2, F2) is the

corner point of 1 out of 11 sub-regions when F1 ≥ 2F2 and of 2 out of 11 sub-regions when

F1 < 2F2. Table B.19 describes an achievable scheme that attains Vertex-19 rate vector and

its applicable range.

Vertex 20: Per Fig. 3.2 , Vertex-20 rate vector (F1+ F2−M1−M2
2 , F2+M1−M2

2 , F1+ F2−M1−M2
2 ,

F2+M1−M2
2) is the corner point of 1 out of 11 sub-regions when F1 ≥ 2F2 and of 2 out of 11 sub-

regions when F1 < 2F2. Table B.20 describes an achievable scheme that attains Vertex-20

rate vector and its applicable range.

195

Table B.22. Vertex 22 (F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0) with
applicable range: F2 ≤M2 ≤M1 ≤ F1 + F2.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
1.1.Cov F1 0 M1−F2 M2−F2 F1+F2−M2 F1+F2−M1 F1+F2−M2 0
2.2.Cov 0 F2 F2 F2 0 0 0 0
Total F1 F2 M1 M2 F1+F2−M2 F1+F2−M1 F1+F2−M2 0

Table B.23. Vertex 23 (F1+1/2F2−M2, F1+1/2F2−M1, F1+1/2F2−M2, 1/2F2)
with applicable range: F2 ≤M2 ≤M1 ≤ F1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Ha.Fi F2 F2 F2 F2 F2/2 F2/2 F2/2 F2/2

1.1.Cov F1−F2 0 M1−F2 M2−F2 F1−M2 F1−M1 F1−M2 0
Total F1 F2 M1 M2 F1+1

2F2−M2 F1+1
2F2−M1 F1+1

2F2−M2
1
2F2

Table B.24. Vertex 24 (F1 + F2 −M2, 0, F1 + F2 −M2, F1 + F2 −M1) with
applicable range: F2 ≤M2 ≤M1 ≤ F1 + F2 and F1 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
1.1.Cov M1−F2 0 M1−F2 M2−F2 M1−M2 0 M1−M2 0
1.2.Cov F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1 0 F1+F2−M1 F1+F2−M1
2.2.Cov 0 M1−F1 M1−F1 M1−F1 0 0 0 0
Total F1 F2 M1 M2 F1+F2−M2 0 F1+F2−M2 F1+F2−M1

Vertex 21: Per Fig. 3.2 , Vertex-21 rate vector (F1 +F2−M2, F1−M1, F1 +F2−M2, F2)

is the corner point of 2 out of 11 sub-regions when F1 ≥ 2F2 and of 1 out of 11 sub-regions

when F1 < 2F2. Table B.21 describes an achievable scheme that attains Vertex-21 rate

vector and its applicable range.

Vertex 22: Per Fig. 3.2 , Vertex-22 rate vector (F1+F2−M2, F1+F2−M1, F1+F2−M2, 0)

is the corner point of 5 out of 11 sub-regions when F1 ≥ 2F2 and of 4 out of 11 sub-regions

when F1 < 2F2. Table B.22 describes an achievable scheme that attains Vertex-22 rate

vector and its applicable range.

Vertex 23: Per Fig. 3.2 , Vertex-23 rate vector (F1+F2
2 −M2, F1+F2

2 −M1, F1+F2
2 −M2,

F2
2)

is the corner point of 2 out of 11 sub-regions when F1 ≥ 2F2 and of 1 out of 11 sub-regions

when F1 < 2F2. Table B.23 describes an achievable scheme that attains Vertex-23 rate

vector and its applicable range.

196

Table B.25. Vertex 25 (1/2(F1 +F2 +M1)−M2, 1/2(F1 +F2−M1), 1/2(F1 +F2 +
M1)−M2, 1/2(F1 +F2−M1)) with applicable range: F2 ≤M2 ≤M1 ≤ F1 +F2
and F1 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Ha.Fi F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1

F1+F2−M1
2

F1+F2−M1
2

F1+F2−M1
2

F1+F2−M1
2

1.1.Cov M1−F2 0 M1−F2 M2−F2 M1−M2 0 M1−M2 0
2.2.Cov 0 M1−F1 M1−F1 M1−F1 0 0 0 0

Total F1 F2 M1 M2
F1+F2+M1

2 F1+F2−M1
2

F1+F2+M1
2 F1+F2−M1

2−M2 −M2

Table B.26. Vertex 26 (0, F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2) with
applicable range: F1 ≤M2 ≤M1 ≤ F1 + F2.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
1.1.Cov F1 0 F1 F1 0 0 0 0
2.2.Cov 0 F2 M1−F1 M2−F1 0 F1+F2−M2 F1+F2−M1 F1+F2−M2
Total F1 F2 M1 M2 0 F1+F2−M2 F1+F2−M1 F1+F2−M2

Table B.27. Vertex 27 (F1 + F2 −M1, F1 + F2 −M2, 0, F1 + F2 −M2) with
applicable range: F1 ≤M2 ≤M1 ≤ F1 + F2 and F2 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
1.1.Cov M1−F2 0 M1−F2 M1−F2 0 0 0 0
2.1.Cov F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1 0 F1+F2−M1
2.2.Cov 0 M1−F1 M1−F1 M2−F1 0 M1−M2 0 M1−M2
Total F1 F2 M1 M2 F1+F2−M1 F1+F2−M2 0 F1+F2−M2

Vertex 24: Per Fig. 3.2 , Vertex-24 rate vector (F1+F2−M2, 0, F1+F2−M2, F1+F2−M1)

is the corner point of 3 out of 11 sub-regions. Table B.24 describes an achievable scheme

that attains Vertex-24 rate vector and its applicable range.

Vertex 25: Per Fig. 3.2 , Vertex-25 rate vector (F1+F2+M1
2 −M2, F1+F2−M1

2 , F1+F2+M1
2 −M2,

F1+F2−M1
2) is the corner point of 3 out of 11 sub-regions. Table B.25 describes an achievable

scheme that attains Vertex-25 rate vector and its applicable range.

Vertex 26: Per Fig. 3.2 , Vertex-26 rate vector (0, F1+F2−M2, F1+F2−M1, F1+F2−M2)

is the corner point of 1 out of 11 sub-regions. Table B.26 describes an achievable scheme

that attains Vertex-26 rate vector and its applicable range.

Vertex 27: Per Fig. 3.2 , Vertex-27 rate vector (F1+F2−M1, F1+F2−M2, 0, F1+F2−M2)

is the corner point of 1 out of 11 sub-regions. Table B.27 describes an achievable scheme

that attains Vertex-27 rate vector and its applicable range.

197

Table B.28. Vertex 28 (1/2(F1+F2−M1), 1/2(F1+F2+M1)−M2, 1/2(F1+F2−
M1), 1/2(F1 +F2 +M1)−M2) with applicable range: F1 ≤M2 ≤M1 ≤ F1 +F2
and F2 ≤M1.

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)
Ha.Fi F1+F2−M1 F1+F2−M1 F1+F2−M1 F1+F2−M1

F1+F2−M1
2

F1+F2−M1
2

F1+F2−M1
2

F1+F2−M1
2

1.1.Cov M1−F2 0 M1−F2 M1−F2 0 0 0 0
2.2.Cov 0 M1−F1 M1−F1 M2−F1 0 M1−M2 0 M1−M2

Total F1 F2 M1 M2
F1+F2−M1

2

F1+F2+M1
2 F1+F2−M1

2

F1+F2+M1
2

−M2 −M2

198

Vertex 28: Per Fig. 3.2 , Vertex-28 rate vector (F1+F2−M1
2 , F1+F2+M1

2 −M2, F1+F2−M1
2 ,

F1+F2+M1
2 − M2) is the corner point of 1 out of 11 sub-regions. Table B.28 describes an

achievable scheme that attains Vertex-28 rate vector and its applicable range.

B.3 Proof of Corollary 3

The uniform average rate capacity R̃ = 1
4(R(1,1) +R(1,2) +R(2,1) +R(2,2)) is a special case

of the average rate with popularity p~d = 0.25 for all ~d ∈ {1, 2}. In the following, we use

Proposition 3.3.1 to derive the closed-form expression of the uniform average rate capacity

as in Fig. 3.7 .

We combine (B1) and (B6) to obtain

R̃ ≥ 1
4 max{2F1 + 2F2 − 2M2, 3F1 + 2F2 −M1 − 2M2,

2F1 + 3F2 −M1 − 2M2, 3F1 + 3F2 − 2M1 − 2M2} (B.209)

and combine (B2) and (B5) to obtain

R̃ ≥ 1
4 max{2F1 + 2F2 − 2M1, 3F1 + 2F2 − 2M1 −M2,

2F1 + 3F2 − 2M1 −M2, 3F1 + 3F2 − 2M1 − 2M2}. (B.210)

199

Therefore, the uniform average rate R̃ must simultaneously satisfy (B.209) and (B.210),

which can be expanded as a set of 7 inequalities

3
 as follows.

R̃ ≥ F1 + F2 −M1

2 (P1)

R̃ ≥ F1 + F2 −M2

2 (P2)

R̃ ≥ 3F1 + 2F2 − 2M1 −M2

4 (P3)

R̃ ≥ 2F1 + 3F2 − 2M1 −M2

4 (P4)

R̃ ≥ 3F1 + 2F2 −M1 − 2M2

4 (P5)

R̃ ≥ 2F1 + 3F2 −M1 − 2M2

4 (P6)

R̃ ≥ 3F1 + 3F2 − 2M1 − 2M2

4 . (P7)

Now we show that the set of 7 inequalities is sufficient to describe the uniform average rate

capacity. Note that the joint 7 inequalities (P1) to (P7) are symmetric with respect to the

file and user indices; therefore without loss of generality, we assume F1 ≥ F2 and M1 ≥M2.

Under this assumption, (P1), (P3), (P4) and (P6) are always loose and the remaining 3

inequalities (P2), (P5), and (P7) jointly form the lower-triangular region (M1 ≥ M2) in

Fig. 3.7 .

We now provide the proof of the achievability part. If we describe each corner point of

the triangular region of M1 ≥ M2 by the corresponding tuple (M1,M2, R̄), then there are 7

vertices in the region, and they are

v1 = (0, 0, 3F1 + 3F2

4), v2 = (F2, 0,
3F1 + F2

4),

v3 = (F2, F2,
3F1 − F2

4), v4 = (F1, 0,
F1 + F2

2),

v5 = (F1, F1,
F2

2), v6 = (F1 + F2, 0,
F1 + F2

2),

and v7 = (F1 + F2, F1 + F2, 0). (B.211)

3
 ↑ When assuming F1 ≥ F2, (P4) and (P6) are always loose. The remaining 5 inequalities are indeed the 5

facets described in Fig. 3.7 .

200

The vertices v1 and v7 can be achieved by some trivial schemes. The rest of them, v2, v3, v4,

v5, and v6, can be achieved by Vertices 1, 4, 8, 23, and 14 described in Tables B.1 , B.4 , B.8 ,

 B.23 , and B.14 , respectively.

B.4 Re-derivation of Worst-Case Rate Capacity in [41]

Corollary 7. The 2-user/2-file zero-error worst-case capacity is characterized by the follow-

ing 9 inequalities:

R∗ ≥ F1 + F2 −M1

2 (Q1)

R∗ ≥ F1 + F2 −M2

2 (Q2)

R∗ ≥ F1 −M1 (Q3)

R∗ ≥ F1 −M2 (Q4)

R∗ ≥ F2 −M1 (Q5)

R∗ ≥ F2 −M2 (Q6)

R∗ ≥ 2F1 + F2 −M1 −M2

2 (Q7)

R∗ ≥ F1 + 2F2 −M1 −M2

2 (Q8)

R∗ ≥ F1 + F2 −M1 −M2. (Q9)

If we further assume F1 ≥ F2, then (Q5), (Q6), and (Q8) are always loose. The corresponding

worst-case capacity R∗ is described by Fig. B.1 , which consists of 11 vertices and the 6 planes

(Q1), (Q2), (Q3), (Q4), (Q7), and (Q9).

Recall that the worst-case rate objective (3.4) is convex and the PRCR is characterized

by 28 linear constraints (O-1) to (IV-6). The problem of minimizing R∗ subject to PRCR

201

Q7

Q4

Q3

Q2

Q1

Q9

Figure B.1. The capacity of worst-case rate under the assumption F1 ≥ F2.
Each corner point is labeled by a tuple (M1,M2, R

∗), where (M1,M2) describe
the location and the third coordinate describe the corresponding exact worst-
case rate capacity R∗.

202

is therefore a convex optimization problem. We solve the convex optimization problem by

first converting to the equivalent linear programming problem as follows.

min
~R
R∗

subject to R∗ ≥ R(1,1) (B.212)

R∗ ≥ R(1,2) (B.213)

R∗ ≥ R(2,1) (B.214)

R∗ ≥ R(2,2) (B.215)

(A1) to (B6).

By plugging in (A1) to (B6), the linear programming problem can be further converted to

the following equivalent form

min
~R
R∗

subject to R∗ ≥ ai, i ∈ {1, 2, 3, 4} (B.216)

2R∗ ≥ bj, j ∈ {1, 2, 3, 4, 5, 6}. (B.217)

Note that the values of a1 to b6 are calculated by max operations and we can expand each ≥

inequality with max operation on the right-hand side to multiple inequalities. If we expand

the max operation in (B.216), we will have (Q3) to (Q6), and if we expand the max operation

in (B.217), we will have (Q1), (Q2), (Q7) to (Q9). The converse proof is thus complete.

For the achievability part, without loss of generality, we only consider the corner points

in the region F1 ≥ F2 and M1 ≥ M2, and there are 7 vertices v1, v2, v4, v6, v8, v10, and v11

as shown in Fig. B.1 . The vertices v1 and v11 can be achieved by some trivial schemes. The

rest of them, v2, v4, v6, v8, and v10, can be achieved by Vertices 1, 14, 1, 14, and 23 described

in Tables B.1 , B.14 , B.1 , B.14 , and B.23 , respectively.

Since the worst-case objective (3.4) is not a linear function of rates R~d, ~d ∈ [N]K , the

facets of the worst-case rate region may not match the facets of PRCR. For example, it can

be observed that the edge (v6, v8) in Fig. B.1 is a new edge that did not appear in Fig. 3.2 .

203

C. SUPPLEMENTARY MATERIALS FOR CHAPTER 4

C.1 Proof of Proposition 4.4.1

We first prove the selfish and unselfish designs achieves the same average rate R̃. We

construct the lower bounds following the cut-set bounds in [31] for disjoint Θk, k ∈ [K].

That is, for all k ∈ [K], Sk ⊆ Θk, and T = ∏
k∈K |Sk|, we have

∑
~d:dk∈Sk

R~d +
∑

k∈[K]

T

|Sk|
Mk ≥

∑
k∈[K]

T

|Sk|

∑
i∈Sk

Fi

 . (C.1)

If we let Fi = F for all i ∈ [N] and substitute the uniform average rate (4.5) according

to Definition 4.2.5 in (C.1), we obtain

R̃ ≥
∑

k∈[K]

(
F − Mk

|Θk|

)+

. (C.2)

The achievable scheme is as follows. In the placement phase, each user k caches Mk/|Θk|

size of each file Wi, i ∈ Θk, and in delivery phase, for any demand ~d, the server transmits the

remain (F− Mk

|Θk|)
+ fraction of file for each demanded fileWdk

with rate R~d = ∑
k∈[K](F− Mk

|Θk|)
+

and hence the uniform-average rate is achieved with equality in (C.2).

For the worst-case rate R∗, it is clear that R∗ ≥ R̃ such that we also have

R∗ ≥
∑

k∈[K]

(
F − Mk

|Θk|

)+

. (C.3)

Since the described achievable scheme has same R~d = ∑
k∈[K](F − Mk

|Θk|)
+ for all ~d, the worst-

case rate is achieved with equality in (C.3).

C.2 Proof of Proposition 4.4.2

We first prove the lower bounds (P0) to (P5) and then show that the corner points in

Fig. 4.2 are achievable. The bound (P0) is trivial and the bounds (P1), (P2) can be obtained

by the cut-set bounds in [31].

204

Without loss of generality, we assume that N2 ≥ N1. For simplicity, we relabel the

N = N1 + N2 − 1 files as {−N1 + 1,−N1 + 2, . . . ,−1, 0, 1, . . . , N2 − 2, N2 − 1} such that

Θ1 = {−N1+1, . . . , 0}, Θ2 = {0, . . . , N2−1} with α = 1 overlapped file W0. In the following,

we prove (P3) under the condition N2 ≥ N1− 1, (P4) under the condition N2 ≥ N1 + 1, and

(P5) under the condition N2 ≥ N1. By symmetry, we then prove (P3) to (P5) for N2 ≥ N1.

Lemma 10. Consider K = 2 users and N = N1 + N2 − 1 files with FDS Θ1 = {−N1 +

1, . . . , 0}, Θ2 = {0, . . . , N2 − 1} and overlapped file W0, we have the following inequality

(N2 − 1)H(Z1,W0) +
N1−1∑
i=1

N2−1∑
j=1

R(−i,j)

≥(N2 − 1)H(Z1, [W−k]N1−1
k=0)

+
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0) (C.4)

Proof. To prove inequality (C.4), we first derive

(N2 − 1)H(Z1,W0) +
N1−1∑
i=1

N2−1∑
j=1

R(−i,j) (C.5)

=
N2−1∑
j=1

(
H(Z1,W0) +R(−1,j)

)
+

N1−1∑
i=2

N2−1∑
j=1

R(−i,j) (C.6)

≥
N2−1∑
j=1

H(X(−1,j), Z1,W0,W−1) +
N1−1∑
i=2

N2−1∑
j=1

R(−i,j) (C.7)

≥
N1−1∑
i=2

N2−1∑
j=1

R(−i,j) + (N2 − 1)H(Z1,W0,W−1)

+H([X(−1,j)]N2−1
j=1 |Z1,W0,W−1) (C.8)

≥(N2 − 1)H(Z1, [W−l]N1−1
l=0)

+
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]ik=0) (C.9)

205

where (C.7) follows from user 1 is able to decode W−1 from X(−1,j) and Z1; (C.8) follows

from iteratively applying Shannon-type inequality

H(X(−1,k+1), Z1,W0,W−1)+H([X(−1,j)]kj=1, Z1,W0,W−1)

≥ H(Z1,W0,W−1) +H([X(−1,j)]k+1
j=1 , Z1,W0,W−1)

and (C.9) follows from iteratively applying (C.5) to (C.8) such that

(N2 − 1)H(Z1, [Wk]l−1
k=0) +

N1−1∑
i=l

N2−1∑
j=1

R(−i,j)

≥(N2 − 1)H(Z1, [Wk]lk=0) +H([X(−1,j)]N2−1
j=1 |Z1, [Wk]lk=0)

+
N1−1∑
i=l+1

N2−1∑
j=1

R(−i,j)

Finally, due to

N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]ik=0)

≥
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0)

we have inequality (C.4) and hence complete the proof of Lemma 10 .

Lemma 11. Consider K = 2 users and N = N1 + N2 − 1 files with FDS Θ1 = {−N1 +

1, . . . , 0}, Θ2 = {0, . . . , N2 − 1}, where N2 ≥ N1 − 1, the uniform-average-rate R̃ satisfied

(P3), or equivalently

N2M1 + (N1 − 1)M2 +N1N2R̃ ≥ (2N1N2 −N2)F (C.10)

206

Proof. We derive inequality (C.10) from

N2M1 + (N1 − 1)M2 +N1N2R̃

=N2M1 + (N1 − 1)M2 +
N1−1∑
i=0

N2−1∑
j=0

R(−i,j) (C.11)

≥N2M1 +
N2−1∑
j=0

R(0,j) + (N1 − 1)M2 +
N1−1∑
i=1

R(−i,0)

+
N1−1∑
i=1

N2−1∑
j=1

R(−i,j) (C.12)

≥(N1 − 2)H(Z2,W0) + (N2 − 1)H(Z1, [W−k]N1−1
k=0)

+
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0) + (N1 +N2)F (C.13)

≥(N2 −N1 + 1)H([W−i]N1−1
i=0) + (N1 − 2)H(W0)

+ (N1 − 2)H([Wi]N2−1
i=−N1+1) + (N1 +N2)F (C.14)

=(2N1N2 −N2)F (C.15)

where equality (C.11) holds from the definition of uniform-average-rate in (4.5).

Inequality (C.13) can be shown by first deriving

N2M1 +
N2−1∑
j=0

R(0,j) + (N1 − 1)M2 +
N1−1∑
i=1

R(−i,0)

≥
N2−1∑
j=0

H(X(0,j), Z1,W0)+
N1−1∑
i=1

H(X(−i,0), Z2,W0) (C.16)

≥(N2 − 1)H(Z1,W0) +H(Z1,W0, [X(0,j)]N2−1
j=0)

+ (N1 − 2)H(Z2,W0) +H(Z2,W0, [X(−i,0)]N1−1
i=0) (C.17)

≥H(W0) +H(Z1, Z2,W0, [X(0,j)]N2−1
j=0 , [X(−i,0)]N1−1

i=1)

+ (N2 − 1)H(Z1,W0) + (N1 − 2)H(Z2,W0) (C.18)

=(N2 − 1)H(Z1,W0) + (N1 − 2)H(Z2,W0)

+ (N1 +N2)F (C.19)

207

where (C.16) follows from user 1 can decode W0 from (X(0,j), Z1) and user 2 can decode

W0 from (X(−i,0), Z2); (C.17) follows from iteratively applying Shannon-type inequality for

the two summation terms; (C.18) follows from another Shannon-type inequality; and (C.19)

follows from

H(Z1, Z2,W0, [X(0,j)]N2−1
j=0 , [X(−i,0)]N1−1

i=1) = H([X(0,j)]N2−1
j=0 , [X(−i,0)]N1−1

i=1)

= (N1 +N2 − 1)F

Combining the inequality (C.19), the remaining term ∑N1−1
i=1

∑N2−1
j=1 R(−i,j) in (C.12), and

Lemma 10 , we show (C.13).

Inequality (C.14) can be derived from

(N1 − 2)H(Z2,W0) + (N2 − 1)H(Z1, [W−k]N1−1
k=0)+

+
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0) (C.20)

=
N1−2∑
i=1

(
H(Z2,W0) +H([X(−i,j)]N2−1

j=1 , Z1, [W−k]N1−1
k=0)

)
+ (N2 −N1 + 1)H(Z1, [W−k]N1−1

k=0) (C.21)

≥
N1−2∑
i=1

(
H(W0) +H([X(−i,j)]N2−1

j=1 , Z1, Z2, [W−k]N1−1
k=0)

)
+ (N2 −N1 + 1)H(Z1, [W−k]N1−1

k=0) (C.22)

=(N1 − 2)H(W0) + (N1 − 2)H([Wj]N2−1
j=1 , [Wk]N1−1

k=0)

+ (N2 −N1 + 1)H([W−k]N1−1
k=0) (C.23)

where (C.21) follows from the property of conditional entropy and the condition N2 ≥ N1−1;

(C.22) follows from the Shannon-type inequality; and (C.23) follows from that user 2 can

decode [Wj]N2−1
j=1 from [X(−i,j)]N2−1

j=1 and Z2.

Finally (C.15) follows from the equality (N2−N1 +1)N1F +(N1−2)(N1 +N2)F +(N1 +

N2)F = (2N1N2 −N2)F . Thus we complete the proof of inequality (C.10).

208

Lemma 12. Consider K = 2 users and N = N1 + N2 − 1 files with FDS Θ1 = {−N1 +

1, . . . , 0}, Θ2 = {0, . . . , N2 − 1}, where N2 ≥ N1 + 1, the uniform-average-rate R̃ satisfied

(P4), or equivalently

(N2 − 1)M1 +N1M2 +N1N2R̃ ≥ (2N1N2 −N1)F (C.24)

Proof. We derive inequality (C.24) from

(N2 − 1)M1 +N1M2 +N1N2R̃

=(N2 − 1)M1 +N1M2 +
N1−1∑
i=0

N2−1∑
j=0

R(−i,j) (C.25)

=(N2 − 1)M1 +
N2−1∑
j=1

R(0,j) +N1M2 +
N1−1∑
i=0

R(−i,0)

+
N1−1∑
i=1

N2−1∑
j=1

R(−i,j) (C.26)

≥N1H(Z2,W0) + (N2 − 1)H(Z1, [W−k]N1−1
k=0)

+
N1−1∑
i=0

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0) (C.27)

≥N1H(W0) +N1H([Wj]N2−1
j=1 , [W−k]N1−1

k=0)

+ (N2 −N1 − 1)H([W−k]N1−1
k=0) (C.28)

=(2N1N2 −N1)F (C.29)

where equality (C.25) follows from the definition of uniform-average-rate in (4.5).

209

Inequality (C.27) can be shown by first deriving

(N2 − 1)M1 +
N2−1∑
j=1

R(0,j) +N1M2 +
N1−1∑
i=0

R(−i,0)

≥
N2−1∑
j=1

H(X(0,j), Z1,W0) +
N1−1∑
i=0

H(X(−i,0), Z2,W0) (C.30)

≥(N2 − 1)H(Z1,W0) +H([X(0,j)]N2−1
j=1 |Z1,W0)

+N1H(Z2,W0) (C.31)

≥(N2 − 1)H(Z1,W0) +H([X(0,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0)

+N1H(Z2,W0) (C.32)

where (C.30) follows from user 1 can decode W0 from (X(0,j), Z1) and user 2 can decode W0

from (X(−i,0), Z2); (C.31) follows from iteratively applying Shannon-type inequality for the

first summation terms and the inequality H(X(−i,0), Z2,W0) ≥ H(Z2,W0); (C.18) follows

from the inequality of conditional entropy. Combining the inequality (C.32), the remaining

term ∑N1−1
i=1

∑N2−1
j=1 R(−i,j) in (C.26), and Lemma 10 , we show (C.27).

Inequality (C.28) can be derived from

(N2 − 1)H(Z1, [W−k]N1−1
k=0) +N1H(Z2,W0)

+
N1−1∑
i=0

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0) (C.33)

=
N1−1∑
i=0

(
H(Z2,W0) +H([X(−i,j)]N2−1

j=1 , Z1, [W−k]N1−1
k=0)

)
+ (N2 −N1 − 1)H(Z1, [W−k]N1−1

k=0) (C.34)

=
N1−1∑
i=0

(
H(W0) +H([X(−i,j)]N2−1

j=1 , Z1, Z2, [W−k]N1−1
k=0)

)
+ (N2 −N1 − 1)H(Z1, [W−k]N1−1

k=0) (C.35)

=N1H(W0) +N1H([Wj]N2−1
j=1 , [W−k]N1−1

k=0)

+ (N2 −N1 − 1)H([W−k]N1−1
k=0) (C.36)

210

where (C.34) follows from the property of conditional entropy and the condition N2 ≥ N1+1;

(C.35) follows from the Shannon-type inequality; and (C.36) follows from that user 2 can

decode [Wj]N2−1
j=1 from [X(−i,j)]N2−1

j=1 and Z2.

Finally (C.29) follows from the equality N1F +N1(N1 +N2− 1)F + (N2−N1− 1)N1F =

(2N1N2 −N1)F . Thus we complete the proof of inequality (C.24).

Lemma 13. Consider K = 2 users and N = N1 + N2 − 1 files with FDS Θ1 = {−N1 +

1, . . . , 0}, Θ2 = {0, . . . , N2 − 1}, where N2 ≥ N1, the uniform-average-rate R̃ satisfied (P5),

or equivalently

N2M1 +N1M2 +N1N2R̃ ≥ (2N1N2 − 1)F (C.37)

Proof. We derive inequality (C.37) from

N2M1 +N1M2 +N1N2R̃

=N2M1 + (N1 − 1)M2 +
N1−1∑
i=0

N2−1∑
j=0

R(−i,j) +H(Z2) (C.38)

≥(N1 − 2)H(Z2,W0) + (N2 − 1)H(Z1, [W−k]N1−1
k=0)

+
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0)

+ (N1 +N2)F +H(Z2) (C.39)

≥(N1 − 2)H(W0) + (N1 − 1)H([Wj]N2−1
j=1 , [W−k]N1−1

k=0)

+ (N2 −N1)H([W−k]N1−1
k=0) + (N1 +N2)F (C.40)

=2N1N2 − 1 (C.41)

where equality (C.38) follows from the definition of uniform-average-rate in (4.5); (C.39)

follows from (C.13) in Lemma 11 .

211

Inequality (C.40) can be derived from

(N1 − 2)H(Z2,W0) + (N2 − 1)H(Z1, [W−k]N1−1
k=0)

+
N1−1∑
i=1

H([X(−i,j)]N2−1
j=1 |Z1, [W−k]N1−1

k=0) +H(Z2) (C.42)

≥
N1−2∑
i=1

(
H(Z2,W0) +H([X(−i,j)]N2−1

j=1 , Z1, [W−k]N1−1
k=0)

)
+H([X(−N1+1,j)]N2−1

j=1 , Z1, [W−k]N1−1
k=0) +H(Z2)

+ (N2 −N1)H(Z1, [W−k]N1−1
k=0) (C.43)

≥
N1−2∑
i=1

(
H(W0) +H([X(−i,j)]N2−1

j=1 , Z1, Z2, [W−k]N1−1
k=0)

)
+H([X(−N1+1,j)]N2−1

j=1 , Z1, Z2, [W−k]N1−1
k=0)

+ (N2 −N1)H(Z1, [W−k]N1−1
k=0) (C.44)

=(N1 − 2)H(W0) + (N1 − 1)H([Wj]N2−1
j=1 , [W−k]N1−1

k=0)

+ (N2 −N1)H([W−k]N1−1
k=0) (C.45)

where (C.43) follows from the property of conditional entropy and the condition N2 ≥ N1;

(C.44) follows from the Shannon-type inequality and the property of joint entropy; and

(C.45) follows from that user 2 can decode [Wj]N2−1
j=1 from [X(−i,j)]N2−1

j=1 and Z2.

Finally (C.41) follows from the equality (N1 − 2)F + (N1 − 1)(N1 + N2 − 1)F + (N2 −

N1)N1F+(N1+N2)F = (2N1N2−1)F . Thus we complete the proof of inequality (C.37).

Now we show that the rate region characterized by (P0) to (P5) is achievable. Since

the rate can be achieved by space-sharing, we only describe the achievable schemes for the

corner points in Fig 4.2 . The achievable rate R̃(M1,M2) at corner point (M1,M2) can be

denoted by the triple vi : (M1,M2, R̃). where the rate R̃ can be computed by (P0) to (P5).

The achievable schemes for vertices v1 : (0, 0, 2 − 1
N1N2

), v7 : (N, 0, 1), v8 : (0, N, 1),

v9 : (N1, N2, 0), v10 : (N,N2, 0), v11 : (N1, N, 0), and v12 : (N,N, 0) are trivial, and we list on

the achievable schemes for vertices v2 to v6 as follows.

Vertex 2: (N1 − 1, 0, 1 + N2−1
N1N2

). User 1 caches Z1 = (W−N+1, . . . ,W−1) and user 2 has

no cache. For the demand d1 = d2 = 0, the server transmits W0 with rate R(0,0) = 1; for

212

the demand d1 = 0, d2 6= 0, the server transmits (W0,Wd2) with rate R(0,d2) = 2; and for the

demand d1 6= 0, the server transmits Wd2 with rate R(d1,d2) = 1. The average rate is thus

R̃ = 1+2(N2−1)+(N1−1)N2
N1N2

= 1 + N2−1
N1N2

.

Vertex 3: (0, N2 − 1, 1 + N1−1
N1N2

). The achievable scheme is symmetric with respect to the

scheme of Vertex 2 by exchanging the role of user 1 and 2.

Vertex 4: (N1, 0, 1). User 1 caches Z1 = (W−N+1, . . . ,W−1,W0) and user 2 has no cache.

For any demand (d1, d2), the server only transmits W2 such that R(d1,d2) = 1 and hence the

average rate is R̃ = 1.

Vertex 5: (0, N2, 1). The achievable scheme is symmetric with respect to the scheme of

Vertex 2 by exchanging the role of user 1 and 2.

Vertex 6: (N1 − 1, N2 − 1, N
N1N2

). User 1 caches Z1 = (W−N+1, . . . ,W−1) and user 2

caches Z2 = (W1, . . . ,WN2−1). For the demand d1 = d2 = 0, the server transmits W0 with

rate R(0,0) = 1; for the demand d1 = 0, d2 6= 0, the server transmits W0 with rate R(0,d2) = 1;

for the demand d2 = 0, d1 6= 0, the server transmits W0 with rate R(d1,0) = 1; and for the

demand d1 6= 0, d2 6= 0, the server transmit nothing with rate R(d1,d2) = 0. The average rate

is R̃ = N1+N2−1
N1N2

= N
N1N2

.

213

C.3 Proof of Proposition 4.4.3

The bounds (Q1) and (Q2) are the cut set bounds following the close argument in [31].

To derive bound (Q3), we first obtain following inequality for {3} ⊆ {i, j} ⊆ {1, 2, 3} and

k, l ∈ {1, 2}.

M1 +M2 +R(1,i) +R(2,j) +R(k,1) +R(l,2) (C.46)

≥ H(X(1,i), X(2,j), Z1) +H(X(k,1), X(l,2), Z2) (C.47)

= H(X(1,i), X(2,j), Z1,W1,W2)

+H(X(k,1), X(l,2), Z2,W1,W2) (C.48)

≥ H(X(1,i), X(2,j), X(k,1), X(l,2), Z2,W1,W2)

+H(W1,W2) (C.49)

= H(X(1,i), X(2,j), X(k,1), X(l,2), Z2,W1,W2,W3)

+H(W1,W2) (C.50)

≥ H(W1,W2,W3) +H(W1,W2) = 5F (C.51)

where (C.48) follows from that user 1 can decode W1 and W2 based on X(1,i), X(2,j), and Z1;

and user 2 can decode W1 and W2 based on X(k,1), X(l,2), and Z2. (C.49) follows from using

the matroidal Shannon inequality. (C.50) follows from the assumption i = 3 or j = 3 such

that user 2 can decode W3 based on X(1,i), X(2,j), and Z2.

We then obtain three inequalities for (i, j, k, l) = (3, 1, 1, 2), (2, 3, 1, 2), and (3, 3, 2, 1),

respectively as follows.

M1 +M2 +R(1,3) +R(2,1) +R(1,1) +R(2,2) ≥ 5F (C.52)

M1 +M2 +R(1,2) +R(2,3) +R(1,1) +R(2,2) ≥ 5F (C.53)

M1 +M2 +R(1,3) +R(2,3) +R(2,1) +R(1,2) ≥ 5F. (C.54)

The summation of (C.52), (C.53), and (C.54) yields 3M1 +3M2 +12R̃ ≥ 15F or equivalently

(Q3).

214

To derive the bound (Q4), we first obtain the following inequality for (i, j) = (1, 2) or

(2, 1).

M1 +M2 +R(j,3) +R(i,j) (C.55)

≥ H(X(j,3), Z1) +H(X(i,j), Z2) (C.56)

= H(X(j,3), Z1,Wj) +H(X(i,j), Z2,Wj) (C.57)

≥ H(X(j,3), X(i,j), Z1, Z2,Wj) +H(Wj) (C.58)

= H(X(j,3), X(i,j), Z1, Z2,Wi,Wj,W3) +H(Wj) (C.59)

≥ H(W1,W2,W3) +H(Wj) = 4F. (C.60)

where (C.57) follows from that user 1 can decode Wj based on X(j,3) and Z1; and user 2

can decode Wj based on X(i,j) and Z2. (C.58) follows from using the matroidal Shannon

inequality. (C.59) follows from the assumption (i, j) = (1, 2) or (2, 1) such that user 1 can

decode Wi based on X(i,j) and Z1; and user 2 can decode W3 based on X(j,3) and Z2.

We then obtain two inequalities for (i, j) = (1, 2) and (2, 1), respectively as follows.

M1 +M2 +R(2,3) +R(1,2) ≥ 4F (C.61)

M1 +M2 +R(1,3) +R(2,1) ≥ 4F. (C.62)

The summation of (C.52) and (C.61) yields 2M1 + 2M2 + 6R̃ ≥ 9F or equivalently (Q4).

To derive the bounds (Q5) and (Q6), we first obtain the following cut-set bounds

M1 +R(1,1) +R(2,2) ≥ 2F (C.63)

M2 +R(1,1) +R(2,2) ≥ 2F. (C.64)

The summation of (C.61), (C.62), and (C.63) yields (Q5) and the summation of (C.61),

(C.62), and (C.64) yields (Q6).

Now we show that corner points v1 to v11 of bounds (Q1) to (Q6) are zero-error achievable.

The achievable scheme for point v1 is trivial. The points v2 and v3 can be zero-error achieved

by user 1 caches Z1 = (W1,W2) of size 2F in the placement phase and in the delivery phase,

215

for any demand (d1, d2) = (i, j), the server transmits X(i,j) = Wj corresponding to rate

R(i,j) = F . The points v4 and v5 can be zero-error achieved by user 1 caches Z1 = (W1,W2)

of size 2F and user 2 caches Z2 = (W1,W2,W3) of size 3F in the placement phase and for

any demand patterns, no need for extra transmission in the delivery phase. The points v6

and v7 can be zero-error achieved by user 2 caches Z2 = (W1 ⊕W2,W1 ⊕W3) of size 2F in

the placement phase and in the delivery phase, for the demand (d1, d2) = (i, j), the server

transmits X(i,j) = Wi corresponding to rate R(i,j) = F .

For describing the achievable schemes of corner points v8 to v11, we divide each files into

two disjoint subfiles of equal size F
2 , i.e., W1 = (A1, A2), W2 = (B1, B2), and W3 = (C1, C2).

The zero-error achievable scheme of v8 is that in the placement phase, user 1 caches Z1 =

(A1, B1) of size F , and user 2 caches Z2 = (A2, B2,W3) of size 2F and in the delivery

phase, for the 6 possible demands the server transmits X(1,1) = A1 ⊕ A2, X(1,2) = A2 ⊕ B1,

X(1,3) = A2, X(2,1) = A1 ⊕ B2, X(2,2) = B1 ⊕ B2, and X(2,3) = B2 corresponding to the same

rate F
2 and hence achieves the average rate R̃ = F

2 . The zero-error achievable scheme of v9 is

that in the placement phase, user 1 caches Z1 = (A1, B1) of size F , and user 2 caches Z2 =

(A2, B2) of size F and in the delivery phase, for the 6 possible demands the server transmits

X(1,1) = A1 ⊕ A2, X(1,2) = A2 ⊕ B1, X(1,3) = (A2,W3), X(2,1) = A1 ⊕ B2, X(2,2) = B1 ⊕ B2,

and X(2,3) = (B2,W3) corresponding to the rates R(1,1) = R(1,2) = R(2,1) = R(2,2) = F
2 , and

R(1,3) = R(2,3) = 3F
2 . The average rate is therefore R̃ = 5

6F .

The zero-error achievable scheme of v10 is that in the placement phase, user 1 caches

Z1 = (A1, B1, C2⊕A2⊕B2) of size 3F
2 , and user 2 caches Z2 = (A2, B2) of size F and in the

delivery phase, for the 6 possible demands the server transmits X(1,1) = A1 ⊕ A2, X(1,2) =

A2⊕B1, X(1,3) = (C1, C2⊕B2), X(2,1) = A1⊕B2, X(2,2) = B1⊕B2, and X(2,3) = (C1, C2⊕A2)

corresponding to the rates R(1,1) = R(1,2) = R(2,1) = R(2,2) = F
2 , and R(1,3) = R(2,3) = F .

The average rate is therefore R̃ = 2
3F . The zero-error achievable scheme of v11 is that

in the placement phase, user 1 caches Z1 = (A1, B1, C1) of size 3
2F , and user 2 caches

Z2 = (A2, B2, C2) of size 3
2F and in the delivery phase, for the 6 possible demands the

server transmits X(1,1) = A1 ⊕ A2, X(1,2) = A2 ⊕ B1, X(1,3) = A2 ⊕ C1, X(2,1) = A1 ⊕ B2,

X(2,2) = B1⊕B2, and X(2,3) = B2⊕C1 corresponding to the same rate F
2 and hence achieves

the average rate R̃ = F
2 .

216

C.4 Proof of Proposition 4.4.4

The bound (Q7), we first obtain the following inequality for i ∈ {1, 2}

M1 +M2 +R(i,1) +R(i,2) +R(i,3) (C.65)

≥ H(X(i,3), Z1) +H(X(i,1), X(i,2), Z2) (C.66)

= H(X(i,3), Z1,Wi) +H(X(i,1), X(i,2), Z2,W1,W2) (C.67)

= H(X(i,3), Z1,Wi)

+H(X(i,1), X(i,2), Z1, Z2,W1,W2) (C.68)

≥ H(X(i,3), X(i,1), X(i,2), Z1, Z2,W1,W2)

+H(Z1,Wi) (C.69)

= H(X(i,3), X(i,1), X(i,2), Z1, Z2,W1,W2,W3)

+H(Z1,Wi) (C.70)

≥ H(W1,W2,W3) +H(Z1,Wi) = 3F +H(Z1,Wi) (C.71)

where (C.67) follows from that user 1 can decode Wi based on X(i,3) and Z1; and user 2 can

decode W1 and W2 based on X(i,1), X(i,2), and Z2. (C.68) follows from the definition of selfish

coded caching where Z1 = φ1(W1,W2). (C.69) follows from the assumption i ∈ {1, 2} and

the matroidal Shannon inequality. (C.70) follows from user 2 can decode W3 based on X(i,3)

and Z2.

We then obtain two inequalities for i = 1 and i = 2 as follows

M1 +M2 +
3∑

j=1
R(1,j) ≥ 3F +H(Z1,W1) (C.72)

M1 +M2 +
3∑

j=1
R(2,j) ≥ 3F +H(Z1,W2). (C.73)

217

The summation of (C.72) and (C.73) leads to

2M1 + 2M2 + 6R̃ (C.74)

≥ 6F +H(Z1,W1) +H(Z1,W2) (C.75)

≥ 6F +H(Z1,W1,W2) +H(Z1) (C.76)

≥ 6F +H(W1,W2) +H(Z1) = 8F +M1 (C.77)

and hence the bound (Q7), where (C.76) follows from the matroidal Shannon inequality.

It is clear that the aforementioned achievable schemes of corner points v1 to v7 are actually

selfish coded caching schemes. Therefore joint (Q1), (Q2), and (Q5) to (Q7) is the selfish

capacity of uniform average rate.

C.5 Proof of Proposition 4.4.5

In an uncoded prefetching scheme, let subfile wk,i of size m(i)
k be the fraction of file Wi

that stored in user k’s cache memory such that ∑N
i=1 m

(i)
k ≤ Mk for k = 1, 2, we have the

following lemma.

Lemma 14. Consider an uncoded prefeching scheme for K = 2 users with file demand sets

Θ1 and Θ2, the minimum transmission rates for all i ∈ Θ1 and j ∈ Θ2 are

R(i,j) = F −min(m(i)
1 ,m

(j)
2) i = j

R(i,j) = 2F −min(m(i)
1 ,m

(j)
2)

−min(F,m(i)
1 +m

(i)
2 ,m

(j)
1 +m

(j)
2) i 6= j

Proof. For any i ∈ Θ1 and j ∈ Θ2, we have the cut-set bound

R(i,j) +m
(i)
1 ≥ F (C.78)

R(i,j) +m
(j)
2 ≥ F (C.79)

218

and for any i ∈ Θ1, j ∈ Θ2, i 6= j, we show the additional bounds

R(i,j) +m
(i)
1 +m

(j)
1 +m

(j)
2 ≥ 2F (C.80)

R(i,j) +m
(i)
1 +m

(i)
2 +m

(j)
2 ≥ 2F. (C.81)

Inequality (C.80) can be proved by

R(i,j) +m
(i)
1 +m

(j)
1 +m

(j)
2 (C.82)

=H(X(i,j), w1,i, w1,j, w2,j) (C.83)

=H(X(i,j), w1,i, w1,j, w2,j,Wi) (C.84)

=H(X(i,j), w1,i, w1,j, w2,i, w2,j,Wi) (C.85)

=H(X(i,j), w1,i, w1,j, w2,i, w2,j,Wi,Wj) ≥ 2F (C.86)

where (C.84) follows from that user 1 can decode Wi from (X(i,j), w1,i, w1,j); (C.85) follows

from that w2,i is a fraction of Wi; and (C.86) follows from that user 2 can decode Wj from

(X(i,j), w2,i, w2,j). Similarly, we can derive (C.81). Combining (C.78) to (C.81), we have for

i = j

R(i,j) ≥ F−min(m(i)
1 ,m

(j)
2) (C.87)

where the equality of (C.87) can be achieved by transmitting the (coded) of remain fractions

of (Wi,Wi); and for i 6= j

R(i,j) ≥2F −min(m(i)
1 ,m

(j)
2)

−min(F,m(i)
1 +m

(i)
2 ,m

(j)
1 +m

(j)
2) (C.88)

where the equality (C.88) can be achieved by transmitting the (coded) of remain fractions

of (Wi,Wj).

Thus we complete the proof of Lemma 14 .

219

Lemma 15. Without loss of generality, the optimal unselfish and uncoded prefetching

schemes for K = 2 users with file demand sets Θ1 and Θ2 satisfy m
(i)
1 ≥ m

(i)
2 for all

i ∈ Θ1\Θ2 and m(j)
2 ≥ m

(j)
1 for all j ∈ Θ2\Θ1.

We first proof for all i ∈ {1, 2}, j ∈ {1, 2, 3}, i 6= j

Therefore we have

R(1,1) +m
(1)
1 ≥ F (C.89)

R(1,2) +m
(1)
1 +m

(2)
1 +m

(2)
2 ≥ 2F (C.90)

R(1,3) +m
(1)
1 +m

(3)
1 +m

(3)
2 ≥ 2F (C.91)

R(2,1) +m
(1)
1 +m

(2)
1 +m

(1)
2 ≥ 2F (C.92)

R(2,2) +m
(2)
1 ≥ F (C.93)

R(2,3) +m
(2)
1 +m

(3)
1 ≥ F (C.94)

where m(1)
1 + m

(2)
1 + m

(3)
1 ≤ M1 and m

(1)
2 + m

(2)
2 + m

(3)
2 ≤ M2. Finally we prove (Q8) as

follows.

4M1 +M2 + 6R̃gu (C.95)

≥4(m(1)
1 +m

(2)
1 +m

(3)
1) + (m(1)

2 +m
(2)
2 +m

(3)
2)

+R(1,1) +R(1,2) +R(1,3) +R(2,1) +R(2,2) +R(2,3) (C.96)

≥9F (C.97)

220

We then prove (Q9). Consider the following inequalities:

R(1,1) +m
(1)
2 ≥ F (C.98)

R(2,2) +m
(2)
2 ≥ F (C.99)

R(1,3) +m
(1)
1 +m

(3)
1 +m

(3)
2 ≥ 2F (C.100)

R(2,3) +m
(2)
1 +m

(3)
1 +m

(3)
2 ≥ 2F (C.101)

R(1,2) +m
(1)
1 +m

(1)
2 +m

(2)
2 ≥ 2F (C.102)

R(2,1) +m
(2)
1 +m

(2)
2 +m

(1)
2 ≥ 2F (C.103)

R(1,2) +R(2,1) +m
(1)
2 +m

(2)
2 ≥ 2F (C.104)

such that 2[(C.98) + (C.99) + (C.100) + (C.101)] + (C.102) + (C.103) + (C.104) yields

2
∑

i∈Θ1,j∈Θ2

R(i,j) + 3
(
m

(1)
1 +m

(2)
1 +m

(3)
1

)
+ 5

(
m

(1)
2 +m

(2)
2 +m

(3)
2

)
+m

(3)
1 −m

(3)
2 ≥ 18F (C.105)

Therefore we prove (Q9) from

3M1 + 5M2 + 12R̃gu

≥2
∑

i∈Θ1,j∈Θ2

R(i,j) + 3
(
m

(1)
1 +m

(2)
1 +m

(3)
1

)
+ 5

(
m

(1)
2 +m

(2)
2 +m

(3)
2

)
+m

(3)
1 −m

(3)
2

≥18F (C.106)

where m(3)
1 ≤ m

(3)
2 .

C.6 Proof of Proposition 4.4.7 and Corollary 6

We first prove the following lemmas.

Lemma 16. Without loss of generality, we can assume the optimal selfish and uncoded

prefetching scheme has the following form: There exist non-negative variables {Mu
1 ,M

c
1 ,M

u
2 ,M

c
2}

221

such that for i ∈ {1, 2}, Mu
i + M c

i = Mi and user i stores Mu
i /(Ni − α) size for each file in

Ui and stores M c
i /α size for each file in C .

Proof. Consider the coded caching problem of N files {W1, · · · ,WN} of same size F , and

K = 2 users with cache memory sizes (M1,M2) and FDS (Θ1,Θ2). We show by contradiction

that there always exists an optimal selfish and uncoded prefeching scheme where all the stored

subfiles in U1 (or C) has the same size.

Suppose not, that is, for any optimal selfish and uncoded prefeching scheme that user

1 caches subfile wk from file Wk of size ak, k ∈ U1 (or k ∈ U1), there exist i 6= j ∈ U1 (or

i 6= j ∈ C) such that ai 6= aj. Then we exchange the index of i and j to form a new coded

caching problem of N files of same size and 2 users. Since i 6= j ∈ U1 (or i 6= j ∈ C), the

users has the same FDS (Θ1,Θ2) after exchanging the indexes. Therefore the new problem

is identical to the original coded caching problem and we have another optimal selfish and

uncoded prefeching scheme that user 1 caches subfile wk from file Wk of size bk, where

bi = aj, bj = ai, and bk = ak for k 6= i, j. By using space sharing, we create an optimal selfish

and uncoded prefeching scheme that user 1 caches subfile wk from file Wk of size ck, where

ci = cj = (ai + aj)/2 are the same, and ck = ak for k 6= i, j. By iteratively making the size

of subfiles even, we finally have an optimal selfish and uncoded scheme where all the stored

subfiles in U1 (or C) has the same size.

Given the placement scheme of user 1, we can apply similar procedure for user 2 such

that there always exists an optimal selfish and uncoded prefeching scheme: For i ∈ {1, 2},

user i stores size of mu
i for each file in Ui and stores size of mc

i for each file in C. Thus we

have completed the proof of Lemma 16 .

Lemma 17. Without loss of generality, consider an optimal selfish and uncoded prefeching

scheme satisfying Lemma 16 that user 1 stores subfile wi of size mu
1 for each file i ∈ U1 and

user 2 stores subfile wj of size mu
2 for each file j ∈ U2. The minimum transmission rate for

any demand ~d = (d1, d2), d1 ∈ U1 and d2 ∈ U2, is R~d = 2F −mu
1 −mu

2 .

222

Proof. Since the the scheme is selfish and uncoded prefetching, we have the cut-set bound

for d1 ∈ U1 and d2 ∈ U2

R~d +mu
1 +mu

2 ≥ H(X~d, wd1 , wd2) ≥ H(Wd1 ,Wd2) = 2F

or equivalently R~d ≥ 2F−mu
1−mu

2 . The equality can be achieved by simply transmitting the

renaming part of Wd1 to user 1 and renaming part of Wd2 to user 2, i.e., R~d = F−mu
1 +F−mu

2 .

Thus we have proved Lemma 17 .

Lemma 18. Without loss of generality, consider an optimal selfish and uncoded prefeching

scheme satisfying Lemma 16 that user 1 stores subfile wi of size mu
1 for each file i ∈ U1 and

user 2 stores subfile wj of size mc
2 for each file j ∈ C. The minimum transmission rate for

any demand ~d = (d1, d2), d1 ∈ U1 and d2 ∈ C, is R~d = 2F −mu
1 −mc

2.

Proof. Since the the scheme is selfish and uncoded prefetching, we have the cut-set bound

for d1 ∈ U1 and d2 ∈ C

R~d +mu
1 +mc

2 ≥ H(X~d, wd1 , wd2) ≥ H(Wd1 ,Wd2) = 2F

or equivalently R~d ≥ 2F−mu
1−mc

2. The equality can be achieved by simply transmitting the

renaming part of Wd1 to user 1 and renaming part of Wd2 to user 2, i.e., R~d = F−mu
1 +F−mc

2.

Thus we have proved Lemma 18 .

Lemma 19. Without loss of generality, consider an optimal selfish and uncoded prefeching

scheme satisfying Lemma 16 that user 1 and 2 store subfile ui of size mc
1 and vi of size mc

2 for

each file i ∈ C, respectively. The minimum transmission rate for any demand ~d = (d1, d2),

d1, d2 ∈ C is

R~d = F −min(mc

1,m
c
2) d1 = d2

R~d = 2F −min(mc
1,m

c
2)−min(F,mc

1 +mc
2) d1 6= d2

223

Proof. Since the the scheme is selfish and uncoded prefetching, we have following cut-set

bounds for d1, d2 ∈ C

R~d +mc
i ≥ H(X~d, udi) ≥ H(Wdi) = F, i ∈ {1, 2} (C.107)

On the other hand, we have additional cut-set bounds for d1 6= d2 ∈ C

R~d + 2mc
1 +mc

2 ≥ H(X~d, ud1 , ud2 , vd2)

= H(X~d, ud1 , ud2 , vd2 ,Wd1) (C.108)

= H(X~d, ud1 , ud2 , vd1 , vd2 ,Wd1) (C.109)

= H(X~d, ud1 , ud2 , vd1 , vd2 ,Wd1 ,Wd2) ≥ 2F (C.110)

where (C.108) follows from that user 1 can decode Wd1 from X~d and (ud1 , ud2); (C.109)

follows from that the uncoded vd1 is a subfile of Wd1 ; (C.109) follows from that user 2 can

decode Wd2 from X~d and (vd2 , vd2). By symmetry, we have the following equivalent cut-set

bounds for d1 6= d2 ∈ C

R~d +mc
1 +mc

2 +mc
i ≥ 2F, i ∈ {1, 2}. (C.111)

Consider user 1 and 2 store subfile ui of size mc
1 and vi of size mc

2 for each file i ∈ C, where

vi and ui overlap as little as possible. When d1 = d2 ∈ C, the minimum rate is derived by only

(C.107) as R~d ≥ F − min(mc
1,m

c
2). The equality can be achieved by dividing file Wd1 into

subfiles (ud1 , sd1) of sizes (mc
1, F−mc

1) and file Wd2 into subfiles (td2 , vd2) of sizes (mc
2, F−mc

2).

The transmitted signal isX~d = sd1⊕td2 of size R~d = max(F−mc
1, F−mc

2). When d1 6= d2 ∈ C,

the minimum rate is derived by jointly (C.107) and (C.111) asR~d ≥ max(F−mc
1, F−mc

2, 2F−

2mc
1 −mc

1, 2F −mc
1 − 2mc

1) = 2F −min(mc
1,m

c
2) −min(F,mc

1 + mc
2). If F < mc

1 + mc
2, the

achievable scheme is same as the scheme for d1 = d2 ∈ C. If F ≥ mc
1 +mc

2, the equality can

be achieved by dividing file Wd1 into subfiles (ud1 , qd1 , sd1) of sizes (mc
1, F −mc

1−mc
2,m

c
2) and

file Wd2 into subfiles (td2 , rd2 , vd2) of sizes (mc
1, F −mc

1 −mc
2,m

c
2). The transmitted signal is

X~d = (qd1 , rd2 , sd1 ⊕ td2) of size R~d = max(F − 2mc
1 −mc

2, F −mc
1 − 2mc

2).

224

Thus we have completed the proof of Lemma 19 .

From Lemma 17 , 18 , and 19 , we have the minimum average rate with selfish and uncoded

prefetching as follows

R̃su = (N1 − α)(N2 − α)
N1N2

(2F −mu
1 −mu

2)

+ α(N1 − α)
N1N2

(2F −mu
1 −mc

2)

+ α(N2 − α)
N1N2

(2F −mc
1 −mu

2)

+ α(α− 1)
N1N2

(2F −min(mc
1,m

c
2)−min(F,mc

1 +mc
2))

+ α

N1N2
(F −min(mc

1,m
c
2)) (C.112)

with the constraints

αmc
i + (Ni − α)mu

i = Mi, i ∈ {1, 2} (C.113)

0 ≤ mc
i ≤ F, i ∈ {1, 2} (C.114)

0 ≤ mu
i ≤ F, i ∈ {1, 2}. (C.115)

225

Equivalently, we first transform the rate (C.112) to four inequalities as follows

R̃su ≥
(

2− α2

N1N2

)
F −

(
1− α

N2

)
mu

1 −
(

1− α

N1

)
mu

2

− α

N2
mc

1 −
α(N2 − α)
N1N2

mc
2 (C.116)

R̃su ≥
(

2− α

N1N2

)
F −

(
1− α

N2

)
mu

1 −
(

1− α

N1

)
mu

2

− α(N1 + α− 1)
N1N2

mc
1 −

α(N2 − 1)
N1N2

mc
2 (C.117)

R̃su ≥
(

2− α2

N1N2

)
F −

(
1− α

N2

)
mu

1 −
(

1− α

N1

)
mu

2

− α(N1 − α)
N1N2

mc
1 −

α

N1
mc

2 (C.118)

R̃su ≥
(

2− α

N1N2

)
F −

(
1− α

N2

)
mu

1 −
(

1− α

N1

)
mu

2

− α(N1 − 1)
N1N2

mc
1 −

α(N2 + α− 1)
N1N2

mc
2 (C.119)

and then we substitute the equalities (C.113) as mc
i = (Mi − (Ni − α)mu

i)/α, i ∈ {1, 2} into

(C.116) to (C.119) and eliminate mc
1 and mc

2 as follows.

R̃su ≥
(

2− α2

N1N2

)
F − 1

N2
M1 −

(N2 − α)
N1N2

M2

− N2 −N1

N2
mu

1 −
(
N1 −N2

N1
− α(N2 − α)

N1N2

)
mu

2 (C.120)

R̃su ≥
(

2− α

N1N2

)
F − N1 + α− 1

N1N2
M1 −

N2 − 1
N1N2

M2

−
(
N2 −N1

N2
− (N1 − α)(α− 1)

N1N2

)
mu

1 + N2 − α
N1N2

mu
2 (C.121)

R̃su ≥
(

2− α2

N1N2

)
F − (N1 − α)

N1N2
M1 −

1
N1

M2

−
(
N2 −N1

N2
+ α(N1 − α)

N1N2

)
mu

1 −
N1 −N2

N1
mu

2 (C.122)

R̃su ≥
(

2− α

N1N2

)
F − N1 − 1

N1N2
M1 −

N2 + α− 1
N1N2

M2

− N1 − α
N1N2

mu
1 −

(
N1 −N2

N1
− (N2 − α)(α− 1)

N1N2

)
mu

2 (C.123)

226

Finally we apply Fourier-Motzkin Elimination to further eliminate mu
1 and mu

2 with con-

straints (C.114) and (C.115). The remain inequalities are (P8) to (P13).

To prove the achievability of (P8) to (P13), we show the corresponding achievable schemes

of the 10 vertices u1, u2, u4, u6, u8, u10, u11, u12, u14, u15, and the rest vertices can

be achieved by swapping the role of two users 1,2 and parameter N1, N2. More specifi-

cally, from Lemma 16 to 19 , the achievable schemes can be determined with the follow-

ing (M c
1 ,M

u
1 ,M

c
2 ,M

u
2) values: u1 : (0, 0, 0, 0), u2 : (α

2F, 0,
α
2F, 0), u4 : (0, 0, 0, (N2 − α)F),

u6 : (α
2F, 0,

α
2F, (N2 − α)F), u8 : (0, 0, αF, (N2 − α)F), u10 : (0, 0, αF, (N2 − α)F), u11 :

(α
2F, (N1 − α)F, α

2F, (N2 − α)F), u12 : (αF, (N1 − α)F, αF, (N2 − α)F), u14 : (αF, (N1 −

α)F, αF, (N2 − α)F).

To prove Corollary 6 , without loss of generality, we first show that the optimal placement

schemes (or optimal (M c
1 ,M

u
1 ,M

c
2 ,M

u
2) values) described in Algorithm 2 can be summarized

in Table C.1 with the corresponding conditions.

For the region M1 ≤ α
2F and M1 ≤M2 ≤M1+(N2−α)F , we substitute (M1, 0,M1,M2−

M1) into (C.112) and obtain (P5) with equality. For the region M1 ≤ α
2F , M1 +(N2−α)F <

M2, and M1 + M2 ≤ N2F , we substitute (M1, 0,M2 − (N2 − α)F, (N2 − α)F) into (C.112)

and obtain (P13) with equality. For the region M1 ≤ α
2F , M1 + (N2 − α)F < M2, and

M1 +M2 > N2F , we substitute (M1, 0,M2− (N2−α)F, (N2−α)F) into (C.112) and obtain

(P8) with equality. For the region α
2F < M1 ≤ N1 − α

2F and α
2F < M2 ≤ N2 − α

2F , we

substitute (α
2F,M1− α

2F,
α
2F,M2− α

2F) into (C.112) and obtain (P10) with equality. For the

region α
2F < M1 ≤ N1 − α

2F and N2 − α
2F < M2, we substitute (α

2F,M1 − α
2F,M2 − (N2 −

α)F, (N2−α)F) into (C.112) and obtain (P8) with equality. For the region N1− α
2F < M1,

N2− α
2F < M2, and M1 +(N2−N1)F ≤M2, we substitute (M1−(N1−α)F, (N1−α)F,M2−

(N2 − α)F, (N2 − α)F) into (C.112) and obtain (P11) with equality.

Since the placement scheme in Table C.1 can achieve the capacity (P2) to (P5), we thus

prove Corollary 6 .

227

Table C.1. The optimal (M c
1 ,M

u
1 ,M

c
2 ,M

u
2) values of the selfish and uncoded

prefeching schemes for α ≥ 2.
Optimal (M c

1 ,M
u
1 ,M

c
2 ,M

u
2) values Conditions

(M1, 0,M1,M2 −M1) M1 ≤ α
2F , M1 ≤M2 ≤M1 + (N2 − α)F

(M1, 0,M2 − (N2 − α)F, (N2 − α)F) M1 ≤ α
2F , M1 + (N2 − α)F < M2

(α
2F,M1 − α

2F,
α
2F,M2 − α

2F) α
2F < M1 ≤ N1 − α

2F , α
2F < M2 ≤ N2 − α

2F
(α

2F,M1 − α
2F,M2 − (N2 − α)F, (N2 − α)F) α

2F < M1 ≤ N1 − α
2F , N2 − α

2F < M2
(M1 − (N1 − α)F, (N1 − α)F,M2 − (N2 − α)F, (N2 − α)F) N1 − α

2F < M1, N2 − α
2F < M2, M1 + (N2 −N1)F ≤M2

228

VITA

Chih-Hua Chang received the B.S. degree in Electrical Engineering and the M.S. degree in

Communication Engineering from National Taiwan University, Taipei, Taiwan, in 2010 and

2012, respectively. He is currently pursuing the Ph.D. degree at the School of Electrical and

Computer Engineering, Purdue University, West Lafayette, IN, USA. From 2014 to 2015, he

was a Research Assistant with the Research Center for Information Technology Innovation

(CITI), Academia Sinica, Taipei, Taiwan. His current research interests include Internet of

Things, network coding, and coded caching.

229

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Outline of Thesis
	Main Contributions

	CAPACITY-APPROACHING PROTOCOL FOR GENERAL 1-TO-K BROADCAST PACKET ERASURE CHANNELS WITH ACK/NACK
	Introduction
	1-to-K Broadcast Packet Erasure Channel Model
	The 1-to-K Broadcast Packet Erasure Channel
	The Block-Coding Setting
	The Sequential-Coding Setting

	A New Stability Region
	The New Achievability Scheme
	The Connection to the Virtual Network
	A New Sequential Network Coding Scheme

	Practical Sequential Coding Scheme with Overhead
	A Header-based Implementation
	Other Issues for Practical Implementation
	Unknown Channel Statistic
	Variable Header Length
	Delay
	Deadline

	Simulation Results
	Summary

	CODED CACHING SYSTEM OF TWO USERS AND TWO FILES
	Introduction
	Comparison to Existing Results

	General Coded Caching Model
	The Two-User/Two-File Coded Caching Capacity
	Basic Zero-Error Coded Caching Schemes
	Lower Bounds of the PRCR
	Coded Caching Capacity for N=K=2

	Summary

	CODED CACHING SYSTEM FOR TWO USERS WITH HETEROGENEOUS FILE DEMAND SETS
	Introduction
	Coded Caching Model with File Demand Set
	Homogeneous File Demand Sets
	Heterogeneous File Demand Sets
	Disjoint File Demand Sets for arbitrary K
	One-Overlapping File Demand Sets for K = 2
	Two-Overlapping File Demand Sets for N=3 and K = 2
	Large-Overlapping File Demand Sets for K = 2 with Selfish and Uncoded Prefetching

	Numerical Evaluations
	Summary

	CONCLUSION AND FUTURE WORK
	Capacity of 1-to-K Spatial-Independent Broadcast Packet Erasure Channels with ACK/NACK
	Linear Network Coding for Achieving Capacity of 1-to-K Broadcast Packet Erasure Channels with ACK/NACK
	General Lower Bounds for Coded Caching of Arbitrary N Files and K Users
	Coded Caching with K = 2 user and Heterogeneous User File Popularity

	REFERENCES
	SUPPLEMENTARY MATERIALS FOR CHAPTER 2
	Proof of Proposition 2.2.2
	On The Optimality of Proposition 2.3.1
	Proof of Corollary 1
	Proof of Example 1
	An Example of Unachievable Rates for K=4

	Proof of Lemmas 1 and 2
	A Simple Schwartz-Zippel Lemma
	Proof of Proposition 2.4.1
	Proof of Propositions 2.4.2 and 2.4.3
	Proof of Proposition 2.4.2
	Proof of Proposition 2.4.3

	Proof of Lemma 3

	SUPPLEMENTARY MATERIALS FOR CHAPTER 3
	Proof of Proposition 3.3.2
	Proof of Proposition 3.3.3
	Proof of Corollary 3
	Re-derivation of Worst-Case Rate Capacity in CLi17

	SUPPLEMENTARY MATERIALS FOR CHAPTER 4
	Proof of Proposition 4.4.1
	Proof of Proposition 4.4.2
	Proof of Proposition 4.4.3
	Proof of Proposition 4.4.4
	Proof of Proposition 4.4.5
	Proof of Proposition 4.4.7 and Corollary 6

	VITA

