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ABSTRACT 

Leaf Area Index (LAI) is an important variable for both for characterizing plant canopy and 

as an input to many crop models. It is a dimensionless quantity broadly defined as the total one-

sided leaf area per unit ground area, and is estimated over agriculture row crops by both direct and 

indirect methods. Direct methods, which involve destructive sampling, are laborious and time-

consuming, while indirect methods such as remote sensing-based approaches have multiple 

sources of uncertainty. LiDAR (Light Detection and Ranging) remotely sensed data acquired from 

manned aircraft and UAVs’ have been investigated to estimate LAI based on physical/geometric 

features such as canopy gap fraction. High-resolution point cloud data acquired with a laser 

scanner from any platform, including terrestrial laser scanning and mobile mapping systems, 

contain random noise and outliers. Therefore, outlier detection in LiDAR data is often useful prior 

to analysis. Applications in agriculture are particularly challenging, as there is typically no prior 

knowledge of the statistical distribution of points, description of plant complexity, and local point 

densities, which are crop dependent. This dissertation first explores the effectiveness of using 

LiDAR data to estimate LAI for row crop plants at multiple times during the growing season from 

both a wheeled vehicle and an Unmanned Aerial Vehicle (UAV). Linear and nonlinear regression 

models are investigated for prediction utilizing statistical and plant structure-based features 

extracted from the LiDAR point cloud data and ground reference obtained from an in-field plant 

canopy analyzer and leaf area derived from destructive sampling. LAI estimates obtained from 

support vector regression (SVR) models with a radial basis function (RBF) kernel developed using 

the wheel-based LiDAR system and UAVs are promising, based on the value of the coefficient of 

determination (R2) and root mean squared error (RMSE) of the residuals.  

This dissertation also investigates approaches to minimize the impact of outliers on discrete 

return LiDAR acquired over crops, and specifically for sorghum and maize breeding experiments, 

by an unmanned aerial vehicle (UAV) and a wheel-based ground platform. Two methods are 

explored to detect and remove the outliers from the plant datasets. The first is based on surface 

fitting to noisy point cloud data based on normal and curvature estimation in a local neighborhood. 

The second utilizes the deep learning framework PointCleanNet. Both methods are applied to 

individual plants and field-based datasets. To evaluate the method, an F-score and LAI are 

calculated both before and after outlier removal for both scenarios. Results indicate that the deep 
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learning method for outlier detection is more robust to changes in point densities, level of noise, 

and shapes. Also, the predicted LAI was improved for the wheel-based vehicle data based on the 

R2 value and RMSE of residuals.  

The quality of the extracted features depends on the point density and laser penetration of 

the canopy. Extracting appropriate features is a critical step to have accurate prediction models. 

Deep learning frameworks are increasingly being used in remote sensing applications. In the last 

objective of this study, a feature extraction approach is investigated for encoding LiDAR data 

acquired by UAV platforms multiple times during the growing season over sorghum and maize 

plant breeding experiments. LAI estimates obtained with these inputs are used to develop support 

vector regression (SVR) models using plant canopy analyzer data as the ground reference. Results 

are compared to models based on estimates from physically-based features and evaluated in terms 

of the coefficient determination (R2). The effects of experimental conditions, including flying 

height, sensor characteristics, and crop type, are also investigated relative to the estimates of LAI. 
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 INTRODUCTION 

1.1 Motivation 

Within the last decade, light detection and ranging (LiDAR) has been used for mapping, 

modeling, and spatial analysis in many applications. The advantage of the LiDAR compared to 

other remotely sensed data such as imagery is that it provides three-dimensional coordinates 

directly. In modeling biophysical characteristics, including vegetation height, above-ground 

biomass, canopy structure, and leaf area index (LAI), promising results have been obtained from 

LiDAR (Lefsky et al. 2002). LAI is an important biophysical parameter that acts as a primary 

control for energy, water, and gas exchange within a vegetated ecosystem (Jensen et al. 2008). 

Estimation of LAI is also important for studies of atmosphere-vegetation interaction (Jonckheere 

et al. 2004) and crop modeling (Akinseye et al. 2017).  

LAI was initially defined as leaf area per unit area of a plant (Watson, 1947). This definition 

is suitable for plants with flat leaves but not for other types of the leaves, such as curly and needle-

shaped. It also does not relate directly to the vertical distribution of the leaves in the canopy.  Other 

explanations were proposed to clarify the concept of LAI across different applications. Other 

definitions include half of the total leaf area (J. M. Chen & Black, 1991; Fassnacht et al., 1994), 

half the total intercepting area (Jing M. Chen & Black, 1992), and the projected leaf area (Myneni 

et al., 1997). For example, the definition “half the total leaf area” relates to biological processes, 

such as gas exchange, whereas “total intercepting area” concerns physical processes, such as 

interception of radiation (Yan et al., 2019).  

Both direct and indirect approaches are used to estimate LAI. Direct methods are based on 

measuring the leaves area directly, and are thus costly and time-consuming. Indirect methods have 

been used for large-scale areas including for remote sensing studies, based on imagery and LiDAR 

(Lefsky et al., 2002a; Richardson et al., 2009). Two types of LiDAR metrics have been commonly 

used in LAI prediction, the Beer-Lambert law (Richardson, Moskal, and Kim 2009) and allometric 

measurements (Pope and Treitz 2013). The unique characteristics of LiDAR data have contributed 

to the development of more useful metrics (Zhao and Popescu 2009) for diverse applications. 

Based on the literature, few studies have focused on LAI estimation of low-height vegetation such 

as maize (Nie et al. 2016) and sorghum, compared to taller canopies such as trees. Data for most 
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remote sensing-focused studies were acquired by airborne platforms, including manned aircraft 

and UAVs. Acquisition from wheel-based LiDAR systems is less frequent for vegetation mapping 

(Ravi et al., 2018) and has not been investigated for estimation of LAI, although these platforms 

can acquire data over shorter vegetation compared to airborne platforms and are not subject to 

localized changes in position, elevation, and look angle that are common with airborne platforms.  

LiDAR data from any platform, including stationary LiDAR scanning and mobile mapping 

systems, contain random noise (Deschaud and Goulette 2010). Therefore, outlier detection in 

LiDAR data is useful before further analysis. However, it is not a straightforward task for 

vegetation-related applications because there is no prior knowledge of the statistical distribution 

of points, and local point densities are crop dependent (Sotoodeh 2006). Many approaches have 

been developed for outlier detection in point clouds, including methods with normal and curvature 

estimation, machine learning, pattern recognition, and data mining (Nurunnabi, West, and Belton 

2015).  However, they have focused on solid structures with simple geometry compared to plants. 

Recently, applications of deep learning have increased, including for analysis of remote 

sensing data. Deep learning is now widely applied to image-based applications, including target 

recognition, pixel-based classification, and feature extraction (L. Zhang et al., 2016). Lately, 

automation, including deep learning and machine learning in point cloud data analysis, has become 

an area of interest for researchers (Charles R. Qi et al., 2016; Ge et al., 2018; Poux & Billen, 2019; 

X. Cheng et al., 2019; Apolo-Apolo et al., 2020; Guo et al., 2020; van Klompenburg et al., 2020). 

The majority of current deep learning architectures, especially convolutional neural networks 

(CNNs), are not designed to be used with unstructured or irregular point clouds. In this case, the 

point clouds are sorted to 3D voxels before feeding to the network (Boulch & Marlet, 2016; Poux 

& Billen, 2019). This approach has some drawbacks, including loss of spatial information, because 

preservation of geometry depends on the voxel size. For this reason, having an architecture that is 

able to directly use an irregular point cloud is preferable. For example, PointNet (Charles R. Qi et 

al., 2016) is a deep neural network that takes unstructured point clouds as input and uses two sub-

networks for classification and segmentation. Some studies have applied PointNet in their 

frameworks to address the classification, outlier removal, and segmentation problems (Charles 

Ruizhongtai Qi et al., 2017; Guerrero et al., 2018a; Charles R. Qi et al., 2018; Rakotosaona et al., 

2019; Aoki et al., 2019). Besides outlier removal, deep learning frameworks can be used for feature 

learning and feature extraction. Kohara and Nakazawa (2019) extracted features using an 
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autoencoder and combined them with PointNet. An autoencoder is a deep learning neural network 

that reduces the dimensionality of input data at the early stages of a network and then decodes it 

to reconstruct the original data (Hinton & Salakhutdinov, 2006). Appropriate features are required 

to have a robust and reliable predictive model.  

Leaf Area Index ground reference measurements: As noted earlier, both direct and 

indirect approaches are used to LAI field measurements. Since direct measurements of LAI are 

laborious, destructive in nature, and extremely time-consuming, there is a growing tendency to 

measure LAI using indirect approaches (Chen et al., 1997). Many studies focused on comparing 

the gap fraction indirect approach and direct methods. Generally, they concluded that the indirect 

approach underestimates the LAI values due to the clumping factor (Chen et al., 1997; Bréda, 2003; 

Ariza-Carricondo et al., 2019; Küßner & Mosandl, 2000). Some instruments were developed to 

measure the clumping factor,  including the Tracing Radiation and Architecture of Canopies 

(TRAC) sensor  (Chen et al., 1997) and the Multiband Vegetation Imager (MVI)  (Kucharik et al., 

1997). Additionally, some modeling-based methods were developed to compute the clumping 

index from indirect optical measurements  (Fang et al., 2018). In general, 'good' results are those 

which agree to within 20% of direct measurements, without application of empirical calibration 

(Welles & Cohen, 1996).  

Indirect methods infer leaf area index from measurements of the transmission of radiation 

through the canopies and gap fraction concepts based on radiative transfer theory using optical 

instruments such as the LAI–2200C Plant Canopy Analyzer and digital hemispherical photography. 

These methods are widely used for ground reference measurements and validation in remote 

sensing-based studies (Chen & Cihlar, 1996; Dou et al., 2016; Nie et al., 2016; Qu et al., 2014; 

Zeng et al., 2015). Applications using indirect methods are typically in three categories: forests 

(Chen & Cihlar, 1996; Fournier & Hall, 2017; Jensen et al., 2008a), row crops (Ariza-Carricondo 

et al., 2019; Blancon et al., 2019; Lang, 1986; Nie, Wang, Dong, & Xi, 2016), and individual trees 

(Brenner et al., 1995; Chang, 2020; Lang & McMurtrie, 1992).  

In this study, the primary ground reference is based on the indirect optical approach, which 

was collected during the growing season in 2020 using an LAI–2200C Plant Canopy Analyzer 

(LI-COR, Lincoln, NE, USA). The LAI-2200C measures the gap fraction in five zenith angles (7°, 

23°, 38°, 53°, and 68°) using a fish-eye lens and provides a total gap fraction rather than a value 

of detailed gap distribution in each zenith angle. A reference reading was made above the canopy, 
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followed by four below canopy readings. Limited destructive sampling data were also collected 

during the 2019 and 2020 growing seasons. The data were collected and processed by measuring 

green leaf area, plot leaf dry weight, and leaf mass, then computing the LAI as described in (Yang 

et al., 2021). In this study, results from the LAI-2200C are compared to estimates of LAI obtained 

from destructive sampling based on near coincident sampling days. Rigorous investigation of the 

relationship between these two ground reference methods requires more destructive sampling data 

on coincident dates with the LAI–2200C data and was beyond the scope of this study. 

1.2 Objectives 

The first objective of this research is to investigate the capability of LiDAR data point clouds 

acquired by a low altitude UAV and a converted high-clearance tractor over row crop plant 

breeding experiments to predict LAI. Destructive sampling-based and a plant canopy analyzer are 

evaluated for one common date as ground reference as a target-of-opportunity to provide a 

rudimentary comparison. 

The second objective is to explore two methods to remove the outliers from LiDAR data 

collected over field experiments focused on plant breeding of sorghum and maize, which are 

similar, especially during the early growth stages of the plants. First, the outlier removal method 

by (Wang and Feng, 2015) is implemented and applied to a laser scanning data of a greenhouse 

plant and synthetic point cloud sorghum plant generated by overlapped imagery in an exploratory 

study, whose primary goal is to gain an understanding of the characteristics of the LiDAR data and 

the associated outliers for this type of plant structure. Next, the PointCleanNet network is trained 

using the synthetic point cloud sorghum plant, then tested on the single plant and two-row datasets 

(sorghum and maize) from an agricultural research farm. 

The third objective is to investigate estimation of LAI using the PointNet AutoEncoder-

based features based on LiDAR data acquired by UAV platforms over sorghum and maize field 

trials. The results are compared to those obtained using physical features based on the R2 value of 

the LAI prediction model. In addition, the effects of experimental conditions, including flying 

height, LiDAR sensor characteristics, and crop type, are investigated relative to the estimates of 

LAI.  

The contributions of this study include a) investigation of predictive modeling of LAI from 

multiple platforms including UAVs and wheel-based platforms using physical features in 
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conjunction with classical machine learning, b) investigation of outlier removal approaches over 

complex field plants to improve these models using physically-based features and deep learning, 

and c) investigation of autoencoder feature extraction from LiDAR point clouds as an alternative 

to the physical feature extraction method.  

1.3 Organization of the dissertation 

In Chapter 2, the capability of using LiDAR data to estimate LAI sorghum throughout the 

growing season is investigated. Ground reference data based on both indirect and direct methods 

are investigated using linear and nonlinear regression approaches for developing models of LAI 

for diverse hybrids of sorghum.  

In Chapter 3, two methods are investigated to detect and remove the outliers from plant-

based point clouds. The first is an extension of a traditional approach based on surface fitting to 

noisy point cloud data. The second utilizes the PointCleanNet deep learning framework. Both 

approaches are applied to individual plants and field-based datasets of multiple plants in rows. 

In Chapter 4, a feature extraction approach is investigated for encoding LiDAR data acquired 

by UAV platforms over sorghum and maize plant breeding experiments. LAI estimates obtained 

with these inputs are then used to develop support vector regression (SVR) models using plant 

canopy analyzer data as the ground reference. The results are compared to models based on 

estimates from physically-based features and evaluated in terms of the coefficient determination 

(R2). Also, the effects of experimental conditions, including flying height, sensor characteristics, 

and crop type, are investigated relative to the estimates of LAI. 

Chapter 5 contains a summary of the findings for each of the three studies, limitations 

encountered, and potential research directions for future research. 
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 ESTIMATING LEAF AREA INDEX IN SORGHUM USING WHEEL-

BASED AND AIRBORNE DISCRETE RETURN LIDAR DATA 

2.1 Abstract 

Leaf area index (LAI) is an important variable for characterizing plant canopy in crop models. 

It is traditionally defined as the total one-sided leaf area per unit ground area and is estimated by 

both direct and indirect methods. This paper explores the effectiveness of using LiDAR data to 

estimate LAI for sorghum at multiple times during the growing season from both a wheeled vehicle 

and an Unmanned Aerial Vehicle (UAV). Linear and nonlinear regression models are investigated 

for prediction utilizing statistical and plant structure-based features extracted from the LiDAR 

point cloud data using ground reference obtained from an in-field plant canopy analyzer (indirect 

method) and leaf area derived from destructive sampling (direct method). LAI estimates obtained 

from support vector regression (SVR) models with a radial basis function (RBF) kernel developed 

using the wheel-based LiDAR system and UAVs are promising, based on the value of the 

coefficient of determination (R2) and root mean squared error (RMSE) of the models. 

2.2 Introduction 

Determination of LAI is essential for modeling the interaction between the atmosphere and 

the biosphere (Zhu et al., 2020). It is an important biophysical parameter that acts as a primary 

control for energy, water, and gas exchange within a vegetated ecosystem (Jensen et al., 2008b). 

Estimation of LAI is also important for crop modeling  (Akinseye et al., 2017; Lobell et al., 2015) 

and plant breeding (Blancon et al., 2019). Both direct and indirect approaches have been 

investigated to estimate LAI. Direct methods, which are based on measuring the area of the leaves 

directly, are accurate but costly, labor-intensive, and time-consuming. In destructive sampling, 

plants are defoliated within a specific area, and the one-sided leaf surface area is measured from 

imagery or with an electronic area meter (White et al., 2019) such as an LI-3100C. The average 

leaf biomass fraction and sample leaf weight (SLW) are used to compute LAI, as shown in Eqn. 

2.1. for each plot and sampling date based on the method described by (Hammer et al., 2010; Yang 

et al., 2021). 
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𝐿𝐴𝐼 =
𝑃𝑙𝑜𝑡 𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (

𝑔
𝑚2)

𝑆𝐿𝑊(
𝑔

𝑚2)
 

(Eqn. 2.1) 

 

where SLW is 
𝑙𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝑔𝑟𝑒𝑒𝑛 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎(𝑚2)
 per plant. 

 

Indirect optical methods estimate LAI from the canopy gap fraction that is defined as 

effective LAI (LAIeff), assuming there is a random distribution of the leaves within the canopy 

volume (J. M. Chen et al., 2005; Ryu et al., 2010). The relationship between LAIeff and true LAI 

derived from a direct method is shown in Eqn. 2.2. 

 

𝐿𝐴𝐼𝑒𝑓𝑓(𝜃) = 𝛺(𝜃) × 𝐿𝐴𝐼 (Eqn. 2.2) 

 

where Ω(θ) is the canopy clumping index, which describes the non-randomness of the leaf foliage 

distribution, it can be estimated through the non-random distribution of gap fractions using the 

logarithmic gap fraction averaging method, and 𝜃 is the solar zenith angle (Fang et al., 2019). 

Digital cover photography (DCP), digital hemispherical photography, and the LAI-2200C 

plant canopy analyzer are all used to obtain indirect optically-based estimates of LAI (Fang et al., 

2019; Fournier & Hall, 2017). Direct measurement methods and some optical methods are also 

used as references for indirect measurement techniques (Richardson et al., 2009). Indirect methods 

have been developed for determining LAI over large-scale areas using remote sensing based on 

both passive and active sensors. Within the last decade, light detection and ranging (LiDAR) has 

been used for mapping, modeling, and spatial analysis in many applications, including estimation 

of LAI. The advantage of the LiDAR compared to other remote sensing technologies is that it 

directly provides three-dimensional coordinates. Promising results have been obtained using 

LiDAR (Jimenez-Berni et al., 2018) and in combination with hyperspectral imagery (Masjedi et 

al., 2018, 2019) in modeling biophysical characteristics, including vegetation height and above-

ground biomass for agriculture applications. LiDAR has also been used in forest canopy structure 

modeling (Lefsky et al., 2002) and for estimation of LAI in forests (Alonzo et al., 2015; Jung & 

Crawford, 2012; Korhonen et al., 2011; Zhao & Popescu, 2009), and agriculture (Nie, Wang, Dong, 

Xi, et al., 2016a; ten Harkel et al., 2020).  
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To estimate LAI from LiDAR, empirical models are developed to represent the relationship 

between the ground reference LAI and LiDAR-derived metrics. Two types of LiDAR metrics are 

commonly used in LAI prediction, the Beer-Lambert law based on the laser penetration index (LPI) 

(Richardson et al., 2009) and allometric measurements that are statistically-based features (Pope 

& Treitz, 2013a). Allometric related features include the mean height and standard deviation, 

maximum height of all returns, and the coefficient of variation of height. Features based on the 

Beer-Lambert law include gap fraction and the laser penetration index (LPI) (Nie et al., 2016). 

Pope and Treitz (2013) demonstrated the combined use of airborne discrete return LiDAR data 

and WorldView-2 high-resolution imagery to predict LAI in a boreal mixed wood forest. Digital 

hemispherical photos were used as a ground reference. Statistically significant LiDAR-based 

inputs for a stepwise linear regression model included the ratio of the first return and total return, 

the vertical distribution ratio (VDR), crown closure, and a vertical complexity index (VCI) that 

represents structural homogeneity with height (Ludwig et al., 1988; Pope & Treitz, 2013a; van 

Ewijk et al., 2011a).  

Few studies have focused on estimating LAI for row crops, such as maize, e.g., (Nie et al. 

2016) and sorghum, e.g., (Lang, 1986). In addition, in most remote sensing-focused studies, 

discrete return LiDAR data are acquired by manned aircraft and UAVs, which have lower point 

density and laser penetration than ground-based platforms. Ground-based LiDAR data can acquire 

data at a very high spatial resolution over shorter crops compared to airborne platforms, and 

depending on the plant structure, can potentially penetrate deeper into the canopy. Further, these 

platforms are not subject to localized changes in position, elevation, and look angle that are 

common with airborne platforms, but are restricted to operation in field conditions during which 

they can drive and collect data. 

This study is an exploratory study of LAI prediction using LiDAR point cloud data acquired 

by a converted high-clearance tractor/sprayer with a custom sensor boom and by low altitude 

UAVs over sorghum plant breeding experiments. Remote sensing acquisitions were matched to 

the field-based LAI measurements using near-coincident data acquisitions.  Multiple strategies for 

feature extraction were investigated for developing predictive models using regression-based 

methods, including stepwise multiple linear regression (SMLR), partial least squares regression 

(PLSR), and support vector regression (SVR). The models were evaluated based on the resulting 

R2 value and RMSE of the residuals. Contributions of the study include investigation of multiple 
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LiDAR-based features for multitemporal prediction of LAI via regression models and evaluation 

of the capability of LiDAR sensors and platforms for acquiring data to predict sorghum LAI at 

multiple times during the growing season. Predictions based on direct and indirect methods for 

determining LAI were compared for a single common date. 

2.3 Materials and Methods 

2.3.1 Study Area and Experiment Setting 

The experiments for this study were conducted at the Agronomy Center for Research and 

Education (ACRE) at Purdue University, West Lafayette, Indiana, USA, to evaluate the potential 

of sorghum varieties for biomass production. Both ground reference and LiDAR data were 

acquired during the 2019 and 2020 growing seasons. In this study, near concurrent ground-based 

and UAV LiDAR data were analyzed. The LiDAR data were collected from the Sorghum 

Biodiversity Test Cross Calibration Panel (SbDivTc_Cal), which contained 80 varieties. The 

experimental design included two replicates in a randomized block design planted in 160 plots 

(plot size: 7.6m × 3.8m), ten rows per plot (row number is counted from the west to east). Figure 

2.1 shows the layout of the plots in 2020 based on the respective genotypes.  
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Figure  2.1.Plot variety layout for 2020 SbDivTc_Cal panel 

 

Differences between varieties can be seen clearly in a photograph of the SbDivTc_Cal in 

2020 in terms of physical characteristics such as size (short or tall), panicle structure, and color 

(Figure2.2). 

 

 

 Figure 2.2. Photograph of the SbDivTc_Cal panel (July 20, 2020) 
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In both years, all 160 plots were included in the analysis for the SbDivTc_Cal data, as LAI 

ground reference data were acquired for all the plots in the experiment. Figure 2.3 shows a LiDAR 

height map from data acquired by a UAV on 7/20/2020, 68 days after sowing (DAS). 

 

 

Figure 2.3. LiDAR-Based Height Map of SbDivTc_Cal Sorghum Panel (7/20/2020) 

2.3.2 Field Ground Reference Data 

In 2019, three sets of manual destructive sampling data were collected by the Purdue team 

as ground reference data to parameterize a crop growth model. The data were also evaluated as a 

potential ground reference for developing predictive models of LAI based on LiDAR remote 

sensing data. The first collection was from July 5th to July 9th, the second was acquired from Aug 

6th to Aug 8th, and the third from Aug 29th to Sep 4th. Two plants were harvested manually from 

plot rows 5 and 6. The leaves were then separated from the stems and scanned individually with 

an LI-3100C leaf area meter (LI-COR Inc., Lincoln, Nebraska, USA) to determine leaf size 

distribution. The average leaf biomass fraction and specific leaf weight (SLW) were used to 

compute LAI for each plot and sampling date (Eqn. 2.1) as described in detail by (Yang et al., 

2021). Three remotely sensed data acquisitions that occurred within a week of these data 

collections were used to develop predictive models. To avoid the impact of adjacent plots and 
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destructive sampling, LiDAR data from Rows 2 and 3 of each plot were associated with each 

reference value for developing the predictive models. 

In 2020, reference data were collected weekly from June 29th to July 27th using a handheld 

plant canopy analyzer (LAI-2200C). The LAI-2200C is a portable instrument for acquiring an 

indirect measurement of LAIeff  based on canopy gap fraction analysis (Černỳ et al., 2019; 

Sonnentag et al., 2007; Welles & Cohen, 1996). Two sets of five measurements (one measurement 

above the canopy and four measurements below the canopy near the ground between rows 2 and 

3 in the direction of the rows (north-south) were made according to the recommended protocol, 

then one value per plot was calculated using the Field Viewer 2200 (FV2200) software. These 

values were used as the primary reference data for developing predictive models of LAI based on 

the LiDAR remote sensing data. The ground reference values ranged from 0.5 to 6, increasing 

during the growing season. Three sets of destructive sample data were also collected on June 15th 

(rows 8 and 9), July 13th (rows 5 and 6), and Aug 10th (rows 2 and 3). The July 13th acquisition 

coincided with the plant canopy analyzer data, providing an opportunity to compare the plant 

canopy analyzer and destructive sampling approaches. The box plots in Figure 2.4 show the range 

of values of ground reference data within ±1.96 standard deviations for 2019 and 2020 based on 

the date of data collection and corresponding DAS. The values of LAI exceeding the 95% box 

were from photoperiod sensitive varieties, whose characteristics increasingly differ from the rest 

of the experiment as the season progresses. The sequence of 2020 plant canopy analyzer data was 

used as a ground reference for evaluating the LiDAR-based metrics. Remotely sensed LiDAR data 

and ground reference acquisitions were separated by no more than three days. Table 2.1 

summarizes the two years of experiments over SbDivTc_Cal 2019 and 2020. 
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(a) 2019 Ground reference (destructive sampling) 

 

(b) 2020 Ground reference (destructive sampling) 

 

(c) Ground reference LAI–2200C 

Figure 2.4. Measured ground reference LAI using: (A) Destructive sampling (2019), (B) 

Destructive sampling (2020), (C) LAI–2200C (2020) 
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Table 2.1.Experimental design for the 2019 and 2020 growing seasons 

Experiment Year Genotype # of 
plots 

# of 
varieties 

Sowing 
Date 

Harvest 
Date 

SbDivTc_Cal 2019 hybrid 160 80 June 4 September 5 

SbDivTc_Cal 2020 hybrid 160 80 May13 August 15 

2.3.3 LiDAR Point Cloud Data Acquisitions 

2.3.3.1 Platforms and Sensors 

Remote sensing data were collected by the UAV weekly, first prior to planting to develop 

the baseline terrain model and at intervals of ~ 1 week thereafter, depending on the weather, 

throughout the growing season. In 2019, the UAV-based data collection platform was a Dà-Jiāng 

Innovations (DJI) Matrice 600 Pro (M600P) UAV that carried a Velodyne VLP-Puck LITE 

LiDAR sensor and a Sony α7R III (ILCE-7RM3) RGB camera (Hasheminasab et al., 2020). The 

Velodyne VLP-Puck LITE has 16 channels that are aligned vertically from -15˚ to +15˚, resulting 

in a total vertical field of view (FOV) of 30˚. The point capture rate in single return mode is 

~300,000 points per second. The range accuracy is typically ±3 cm, with a maximum measurement 

range of 100m (Velodyne VLP-Puck LITE, n.d.). The system was flown at an altitude of 44 meters 

and a speed of 3-5 m/s. In 2020, two M600P UAV platforms with sensors were flown over the 

study area at altitudes of 20 and 40 meters and speeds of 3-5 m/s. The UAVs were equipped with 

a Velodyne VLP-Puck Lite and a Velodyne VLP-32C, respectively. The Velodyne VLP-32C has 

32 channels that are aligned vertically from -15˚ to +25˚, in a total vertical FOV of 40˚. The point 

capture rate in a single return mode is ~600,000 points per second. The range accuracy is typically 

±3 cm, with a maximum measurement range of 200m (Velodyne VLP-32C, n.d.). The UAVs were 

equipped with an integrated global navigation satellite system/inertial navigation system 

(GNSS/INS) Trimble APX-15v3 for direct georeferencing. LiDAR data were also acquired by a 

wheel-based system, a LeeAgra Avenger agricultural high-clearance tractor/sprayer with a custom 

boom and mounted sensors, referred to in this study as the PhenoRover, on an experimental basis. 

The boom is constructed from T-slot structural aluminium framing with a 2.75 meters width, and 

the top of the boom can be raised to a maximum of 5.5 meters height from the ground. Sensors 

mounted on the boom include a Headwall hyperspectral VNIR machine vision camera, two FLIR 
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RGB cameras, and a Velodyne VLP-Puck Hi-Res LiDAR, as well as the GNSS/INS navigation 

system. The VLP-Puck Hi-Res has similar sensor specifications to the VLP-Puck LITE. Its FOV 

is -10˚ to +10˚ (Velodyne VLP-Puck Hi-Res, n.d.). The platform speed in the field was 1.5 miles 

per hour. Figure 2.5 shows the PhenoRover and UAV platforms for the 2020 data collection. 

PhenoRover data were acquired three times in 2020, subject to field conditions; 2019 was an 

extremely wet year, and no LiDAR data which could be associated temporally with destructive 

sampling were acquired by the PhenoRover over the sorghum. Table 2.2 details the platforms and 

their mounted sensor specifications for both 2019 and 2020. 

 

  

(a) (b) 

Figure 2.5. (a) PhenoRover platform with RGB/LiDAR/Hyperspectral/GNSS/INS sensors, (b) 

UAV-2 with RGB/LiDAR/GNSS/INS sensors in 2020 
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Table 2.2. Platforms and mounted sensors specification in 2019 and 2020 

Year Platform Sensor Unit Description 

2019 

 UAV-1 

  RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 

  LiDAR sensor 1 Velodyne 16-Puck Lite-range accuracy of ±3 cm 

  GNSS/INS 1 Trimble APX-15 v2 

2020 

 UAV-1 

  RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 

  LiDAR sensor 1 Velodyne VLP 16-Puck Lite-range accuracy of ±3 cm 

  GNSS/INS 1 Trimble APX-15 v2 

  hyperspectral Camera 1 Nano Hyperspectral (VINIR) 

 UAV-2 

  RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 

  LiDAR sensor 1 Velodyne VLP 32-range accuracy of ±3 cm 

  GNSS/INS 1 Trimble APX-15 v2 

 PhenoRover 

  RGB camera 2 9.1MP FLIR Grasshopper3 GigE 

  hyperspectral camera 1 Headwall Machine Vision 270 band line-scanning with 

4.8 mm lens 

  LiDAR sensors 1 Velodyne VLP-Puck Hi-Res 

  GNSS/INS 1 Applanix POS-LV 125  

 

 

Table 2.3 summarizes the LiDAR data collection and the corresponding ground reference 

measurements in terms of Days After Sowing (DAS) relative to the data collection dates and 

ground reference measurements.  
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Table 2.3. Days After Sowing (DAS) relative to the available ground reference and LiDAR 

data in two experiments over SbDivTc_Cal 

Experiment Year Platform Flying 

Height 

Sowing 

Date 

LiDAR Data 

Collection 
Date 

DAS1 Ground 

Reference Date 

DAS2 

1 2019 UAV-1 44 m 06/04 07/12 37 07/05, 07/08, and 
07/09 

30, 33 
and 34 

  UAV-1 44 m  08/10 66 08/06 to 08/08 62 to 64 

  UAV-1 44 m  09/05 92 08/29 to 09/04 86 to 91 

2 2020 PhenoRover N/A 05/13 06/26 44 06/29 47 
 

  UAV-1 40 m   07/02 50 06/29 47 
 

  UAV-2 20 m   07/07 55 07/06 54 
  

UAV-2 20 m   07/13 61 07/13 61 
  

UAV-1 40 m 
 

07/17 65 07/20 68 
  

PhenoRover N/A 
 

07/20 68 07/20 68 
  

UAV-1 40 m 
 

07/20 68 07/20 68 
  

UAV-2 20 m 
 

07/20 68 07/20 68 
  

PhenoRover N/A 
 

07/24 72 07/27 75 
 

  UAV-1 40 m 
 

07/28 76 07/27 75 
 

  UAV-2 20 m   07/28 76 07/27 75 

DAS1: DAS with respect to data collection data; DAS2: DAS with respect to ground reference data 

2.3.3.2 PhenoRover and UAV LiDAR Data 

The average point densities of the LiDAR data acquired by the sensors on the UAVs depend on 

the type of sensor, the platform flying height, field of view, and mission characteristics such as the 

number of overlapping strips. In this study, point density is investigated based on flying height and 

sensor type, and it is presumed that the rest of the characteristics are consistent across the data 

acquisitions; these values are significantly lower than the LiDAR point density from the 

PhenoRover because the sensor on the PhenoRover operates at a much lower height 

(approximately 5m from the ground). Table 2.4 shows the point density of the sensors based on 

flying height. Figure 2.6 illustrates the resulting 3D point cloud from the UAV platforms and 

PhenoRover over a sample row. As expected, the canopy penetration achieved by the UAV sensors 

was lower than the PhenoRover due to the higher platform altitude. UAV-2 with a Velodyne VLP-

32C (that was flown for other experiments) had a higher point density, resulting in greater canopy 

penetration compared to UAV-1 with a Velodyne VLP-Puck Lite as UAV-2.  This was attributed 
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both to the higher pulse rate of the sensor and the lower altitude, as other characteristics affecting 

point density were identical in on both platforms.  

 

Table 2.4. Point density of sample data on 7/20/2020  

Platform Flying 
Height 

DAS Point density 
(Points/ m2) 

UAV-1 40 m 68 70 

UAV-2 20 m 68 500 

PhenoRover N/A 68 1400 

 

 

   

(a) (b) (c) 

 

Figure 2.6. Example sensor point cloud sample data from (7/20/2020) from (a) PhenoRover (Bb) 

UAV-2, and (c) UAV-1. 

2.4 Methodology 

2.4.1 Feature Extraction from LiDAR Data 

For this study, LiDAR features were extracted at the row-level within ten-row plots. Rows 

four, seven, and eight were adjacent to rows that were destructively sampled. Rows one and ten 

were “border” rows, so they were not necessarily representative of conditions within the plot, and 

particularly for light accessibility when plots with tall varieties were adjacent to plots with short 

varieties. Rows 2 and 3 were extracted from the remotely sensed data and analyzed for this study. 

Features were extracted from rows 2 and 3 as a spatially contiguous two-row block (essentially 
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equivalent to a two-row plot) where the ground reference was collected.  Figure 2.7 shows a typical 

plot of the data set, where rows 5 and 6 were destructively sampled via machine harvesting, and 

manual destructive harvesting was performed in row 9.  

 

 

Figure 2.7. Typical plot; Rows 2 and 3 selected to extract features. The two arrows indicate rows 

2 and 3. The orientation of the plot is shown with arrows (E: Easting, N: Northing, Z: Elevation).  

 

Three varieties (ATx623xDwfYellMilo, ATx623xSC0044, and SP SS405 FS) are 

photoperiod sensitive, and as noted previously, and have a different plant structure than the rest of 

the varieties, especially later in the growing season. For example, “SP SS405 FS” was taller than 

the surrounding plots by approximately 1.3m on 7/28/2020 (Figure 2.8). The impact of these 

varieties on the predictive models was investigated. 

 

 

Figure 2.8. Height of photoperiod sensitive variety SP SS405 FS relative to the surrounding plots 

7/28/2020 
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 As noted in the Introduction, most LiDAR-based features proposed in the literature are 

based on the height or moments of the histograms of point cloud values in a 3D volume classified 

as vegetation. The Digital Terrain Model (DTM) required to determine plant heights was derived 

from a bare earth field using UAV-based LiDAR point cloud data before planting and assumed to 

be constant throughout the growing season. The height of points was estimated by subtracting the 

DTM from the “z” coordinate of each point in the dataset. Points with a height of less than 10 cm 

were considered as ground points and not included in the statistical analysis of the vegetation. The 

following physically-based features were explored for this study. 

LPI is defined as the fraction of laser points that penetrate the canopy. The index can be 

calculated in many ways. In this study, it is computed as the ratio between the number of ground 

points (𝑁 𝐺𝑟𝑜𝑢𝑛𝑑) and the total number of points in a given area (𝑁𝐺𝑟𝑜𝑢𝑛𝑑 + 𝑁𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛), which is 

assumed here to be a row of a plot (Eqn. 2.3). The number of non-ground points is assumed to be 

equal to the number of points identified as vegetation (𝑁𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛):  

 

𝐿𝑃𝐼: 
𝑁 𝐺𝑟𝑜𝑢𝑛𝑑

𝑁𝐺𝑟𝑜𝑢𝑛𝑑 + 𝑁𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 
 (Eqn. 2.3) 

 

Features commonly used for allometric relationships include various statistically-based height 

features extracted from the non-ground point cloud, including plant height at various percent 

quantiles, mean height, standard deviation of the point cloud height, coefficient of variation of 

height, skewness of height, and Vegetation Complexity Index (VCI) as it is described in Eqn. 2.4 

(van Ewijk et al., 2011a).  

VCI = 
(− ∑ [𝑝𝑖 ∗ln( 𝑝𝑖 )]𝐻𝐵

𝑖=1 )

ln( 𝐻𝐵)
 (Eqn. 2.4) 

 

where HB = total number of height bins associated with vegetation (>10 cm), 𝑝𝑖 = proportional 

abundance (
N of returns

Total N of returns
) in a height bin (i).  

A new feature referred to as the Clusters’ Area Plane (CAP), which is based on horizontal 

characteristics of the point cloud at a given height in a row, was proposed and evaluated in the 

study. To obtain the CAP feature, a plane is intersected with the point cloud within a row at a given 

plant height quartile, and the associated points are extracted. The points are clustered using a 



 

 

35 

region-growing approach based on the distance between points and the k-nearest neighbors as 

follows: the points are structured with a KD tree data structure, and the k-nearest neighbors to each 

point are determined within a defined radius and assigned to the respective clusters. Then, the 

clusters with common points are joined, and the cluster number is updated iteratively until no 

further changes occur in the clusters (Figure 2.9).  

 

 

 

Figure 2.9. Thematic region growing clustering steps: (a) Sample points. (b) Initial clustering. (c) 

Finding common points in two candidate clusters. (d) Connecting and joining two clusters.  

 

Finally, the area of clusters that is larger than a user-defined threshold is calculated, and the total 

area is defined as the CAP feature (Eqn. 2.5). 

 

CAP = ∑ Ai  

n

i=1

 

 

(Eqn. 2.5) 

 

While the feature does not have a direct physical interpretation, it contains information for 

predicting LAI based on the horizontal distribution of the plants within the canopy at a given 

quartile (75% in this study). The CAP feature was also calculated in other quartiles, e.g., 50% and 

25%, but only the 75% quartile provided statistically significant results for the data in these 

experiments. The 50% and 25% quartiles did not have adequate samples to evaluate the index, 

both due to penetration of the canopy and its geometric structure. Figure 2.10 shows a typical 

example of the CAP feature.   
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(a) 

 

(b) 

 

Figure 2.10. Example of Clusters Area Plane (CAP) feature; (a) The third quartile of a row and 

(b) cross-section at the third quartile. 

 

Correlation between features and LAI indicated that LPI has the highest correlation with 

LAI. The CAP feature has the second-highest correlation with LAI. The correlation matrix in 

Figure 2.11 also indicates that there is a significant correlation between many of the features. For 

example, standard deviation height has more than 0.8 correlation with mean and third quartile 

height. 
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Figure 2.11. Sensitivity analysis: Feature correlation matrix (zero is the lowest correlation and 1 

is the highest correlation) 

2.4.2 Predictive Models of LAI 

Predictive models were developed using stepwise multiple linear regression (SMLR) 

(Johnsson, 1992), partial least squares regression (PLSR) (Rosipal & Krämer, 2005), and support 

vector regression (SVR) (Feng & Li, 2014). For SVR models, the radial basis function (RBF) 

kernel parameters were obtained via grid search. Eight features were considered as input variables, 

including LPI, Height_mean, standard deviation, and skewness, Height (3rd Quartile), VCI, 

Volume of the vegetation in a row based on the convex hull of the points, and CAP. In this study, 

the training and test data were chosen randomly by 75% training and 25% test. Both replicates of 

each genotype variety were randomly assigned to either training or test. Ten-fold cross-validation 

was performed on the training set. The values of R2 for the respective models are reported in the 

results section. 

2.5 LAI Predictive Model Results 

The results of the LAI predictive models are included for each year based on the date and 

the platform. SMLR, PLSR, and SVR models were developed with four kernels (linear, 

polynomial, RBF, and sigmoid) for the 2019 and 2020 sorghum data and illustrated via bar charts. 

Figure 2.12 shows that the mean and standard deviation of R2 values obtained using 2019 
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destructively sampled data as ground reference. Models based on SVR with RBF kernels had 

consistently higher values of R2 compared to other kernels.  

 

 

Figure 2.12. R2 values for 2019 UAV regression models for LAI estimation based on reference 

data from destructive sampling  

 

Results indicate that the relationship between the LiDAR data and LAI computed using 

destructively sampled ground reference data is weak. The results were not unexpected, as the 

LiDAR data is physically more closely related to the gap fraction than the assumptions in the LAI 

calculations based on destructive sampling (Fang et al., 2019; Hammer et al., 2010; Yang et al., 

2021). 

For the 2020 based predictions, the plant canopy analyzer data was used as a ground 

reference. Figure 2.13 shows the results for all datasets. The values of R2 for the models were 

consistent throughout the period, even as the plant heights increased rapidly until flowering. UAV-

2 (VLP32C, flown at 20m) data on 7/20/2020 resulted in the highest R2 and lowest RMSE values. 

The results also did not indicate significant differences between the R2 values from UAV-1 (VLP 

16, flown at 40m), UAV-2, and the PhenoRover. However, the Phenorover fit was dramatically 

worse on 7/24/2020 compared to results prior and subsequent to this date. As noted earlier, the 

height of the platform is roughly 5 m from the ground, and some of the plants were tall enough to 

touch the boom and move. This movement could have contributed to the anomalous estimates. 
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Because of their height, the impact of the photoperiod sensitive varieties on the model fit was 

investigated. 

 

 

Figure 2.13. R2 values for 2020 regression models for LAI estimation; (PR: PhenoRover) 

 

The three photoperiod sensitive varieties were removed from the data set, resulting in 

increases in R2 values of the models, and particularly for the PhenoRover data. For example, the 

R2 of the PhenoRover 7/24/2020 model, when the photoperiod sensitive plants were the tallest 

during the PhenoRover acquisitions, increased from 0.30 to 0.56. Additionally, 7/24/2020 was a 

windy day (2.6 m/s) compared to other dates of data collection that had wind speeds less than 2.0 

m/s. The R2 values improved for all models after the photoperiod sensitive varieties were removed, 

with the greatest impact being on the SVR model obtained for the PhenoRover data (Figure 2.14).  
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Figure 2.14. R2 values for 2020 regression models (Circles): Removal of photoperiod sensitive 

varieties (ATx623xDwfYellMilo, ATx623xSC0044, and SP SS405 FS). (PR: PhenoRover). 

 

The plots of the R2 and RMSE of the models of the reference vs. the predicted values of the UAV 

and PhenoRover on 7/20/2020 before and after removing the photoperiod sensitive varieties from 

the datasets are provided in Figure 2.15. Removal of the photoperiod sensitive varieties also 

reduced the variability (std error) in the estimated LAI, and particularly for the late-season high 

values.  Given the significant structural differences between the photoperiod sensitive and other 

forage and grain varieties, which increased as the year progressed, this reduction in standard 

deviation is consistent with expectations. 
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 All varieties are included in the model After removing photoperiod sensitive 

varieties 
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Figure 2.15. Predictions based on SVR RBF models showing R2 values and RMSE at midseason 

(7/20/2020) before and after removing photosensitive varieties for three platforms: a) UAV-1, b) 

UAV-2, and c) PhenoRover. 
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Estimates of ground reference obtained from the LAI–2200C and destructive sampling were 

compared for the common sampling date, 7/13/2020. The correlation between the values of LAI 

derived from the two reference methods was only about 0.50. The R2 of the corresponding model 

obtained using the LAI–2200C based LAI is higher than from destructive sampling (Figure 2.16). 

This is primarily attributed to the fact that both LAIeff  and LiDAR responses are related to the 

concept of gap fraction, while the LAI based on destructive sampling is based on other inputs such 

as sample leaf weight and leaf mass. Data from both ground reference approaches were available 

only in 2020, which was not adequate to thoroughly investigate the empirical relationship between 

the two ground reference values of LAI. 

 

 

Figure 2.16. R2 values for 7/13/2020: comparison of predictions based on the two ground 

reference methods (LI–2200C vs. destructive sampling)   

 

To evaluate the importance of the features, a leave-one-out procedure was used with the SVR-RBF 

model, which had the highest R2 value, and the resulting R2 (Rnew
2 ) was calculated (Eqn. 2.5) 

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 1 −
𝑅𝑛𝑒𝑤

2

𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
2  

 

(Eqn. 2.6) 
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where 𝑅𝑛𝑒𝑤
2  is an R2 of the model fit without the feature, and 𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

2  is the R2 of the model with 

all features. 

Figure 2.17 shows the feature importance in the models developed for the three platforms on July 

20th 2020.  
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Figure 2.17. Feature weight evaluation using SVR (RBF) on July 20th 2020: (a) UAV-1, (b) 

UAV-2, (c) PhenoRover 
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LPI is the most highly ranked feature, as expected, based on the correlation with the plant canopy 

analyzer data, and the 2nd and 3rd ranked features are CAP and VCI, both of which are indicative 

of penetration of the canopy. The CAP feature further has some relationship to the horizontal 

distribution of the canopy, as noted previously. The height-related features are correlated and 

individually have a lower impact on the model, while LPI and CAP represent different 

characteristics. In complex vegetation such as sorghum, which is planted at high density and has 

tillers, many laser points are concentrated in the upper canopy, and few laser points penetrated 

deeper in the canopy.  

 Although the sensor on the PhenoRover was much closer to the canopy, typically between 

2 and 5 meters depending on the date, and the speed of the PhenoRover was much slower, resulting 

in increased point density and penetration of the canopy, R2 values of the models (Figures 2.14 

and 2.15) based on using data from UAV-1 (flying height 40 m) and UAV-2 (flying height 20 m) 

were similar for comparable dates. In most cases, multiple stepwise linear regression models had 

the lowest R2 value. In this model, just LPI and VCI features were significant at a p-value of 0.01. 

The R2 value for the PLSR model is generally greater than or equal to linear regression but still 

lower than consistently achieved by SVR models with an RBF kernel. R2 values from the middle 

stages in the growing season are higher than in the later-season in 2020 for all platforms. Earlier 

in the season, there was increased laser penetration of the shorter canopy, while later in the season, 

there was increased multi-path scattering when the canopy was more complex, and tillers 

contributed significantly to the LAI. The UAV-based models had a different pattern in R2 value in 

2019 compared to 2020. In 2020, the R2 values were more consistent during the season. The 

platform in 2019 was flown higher (44) than the flight heights in 2020 (20 m and 40 m). However, 

the most important difference was that the ground reference in 2019 was based on the destructive 

sampling method, which was not as strongly related to LiDAR remote sensing data as the LAI-

2200C based LAI. 

2.6 Summary and Conclusions 

In this exploratory study, the capability of discrete return LiDAR data acquired in the field 

at plot scale was investigated for predicting LAIeff. Our contribution was to develop predictive 

models of LAI based on physical features from data acquired by multiple platforms during the 

growing season. Three LiDAR datasets that were collected in 2019 from a UAV platform were 
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post-processed and used to develop LAI predictive models based on available destructive sampling 

ground reference data. Due to low point density, limited canopy penetration, and use of destructive 

sampling-based LAI as a ground reference, the LAI models had low R2 values. In 2020, UAV and 

wheel-based LiDAR datasets were collected and analyzed using a plant canopy analyzer, as well 

as destructive sampling for ground reference. LiDAR data acquired from UAV-2 with a Velodyne 

VLP-32C were higher density, and there was greater penetration of the canopy compared to UAV-

1 with a Velodyne VLP-Puck Lite. This was due both to the sensor and the lower flight altitude. 

However, results indicate that the point density and canopy penetration did not have a significant 

impact on the resulting models for LAI, implying that the relationship to LAI was likely dominated 

by the upper canopy structure. Inclusion of data from photoperiod sensitive varieties had a 

significant impact on the results, particularly in the late season for the PhenoRover (R2 for 

PhenoRover model increased from 0.30 to 0.57 by removal of these varieties). 

The features used in this study were based on height-related statistical values and a canopy 

gap fraction feature (LPI), as well as a proposed horizontal feature. In most of the datasets, the 

UAV–based models had higher R2 values than wheel-based data in 2020, especially later in the 

growing season when the complex scattering between the near range LiDAR and the canopy 

appeared to impact the models. The nonlinear regression model SVR with an RBF kernel had the 

highest R2 and lowest RMSE of all other methods used in this study. The study encountered 

multiple challenges, including that the method for acquiring ground reference data was not 

consistent throughout the two-year period, as this was not a pre-planned study. The more frequent 

remote sensing data acquisitions and investigation of the plant canopy analyzer data in 2020 were 

motivated by the need for more frequent data acquisitions during the vegetative stages of the 

growth cycle when the plants were growing rapidly and during flowering. The data were also 

impacted by noise because of the complexity of plants in terms of dense planting and geometry, 

motivating subsequent research on denoising approaches. In addition, data encoding approaches 

may prove useful as an alternative to traditional structure-based approaches. Finally, further study 

is also needed to investigate the sensitivity of the different methods in providing ground reference 

data in terms of quality control and their impact on prediction models. 
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 DETECTION OF OUTLIERS IN DISCRETE RETURN LIDAR DATA 

ACQUIRED BY MULTIPLE PLATFORMS OVER MAIZE AND 

SORGHUM 

3.1 Abstract 

High-resolution point cloud data acquired with a laser scanner from any platform, including 

terrestrial laser scanning and mobile mapping systems, contain random noise and outliers. 

Therefore, outlier detection in LiDAR data is often necessary prior to analysis. Applications in 

agriculture are particularly challenging, as there is typically no prior knowledge of the statistical 

distribution of points, plant complexity, and local point densities, which are crop dependent. The 

goal of this study is to investigate approaches to minimize the impact of outliers on discrete return 

LiDAR acquired over agricultural row crops, and specifically for sorghum and maize breeding 

experiments, by an unmanned aerial vehicle (UAV) and a wheel-based ground platform. Two 

methods are investigated to detect and remove the outliers from the plant datasets. The first is 

based on surface fitting to noisy point cloud data via normal and curvature estimation in a local 

neighborhood. The second utilizes the PointCleanNet deep learning framework. Both methods 

were applied to individual plants and field-based datasets. To evaluate the method, an F-score was 

calculated for synthetic data in the controlled conditions, and Leaf Area Index (LAI), the variable 

being predicted, was computed both before and after outlier removal for both scenarios. Results 

indicate that the deep learning method for outlier detection is more robust to changes in point 

densities, level of noise, and shapes. Also, the prediction of LAI was improved for the wheel-based 

vehicle data based on the coefficient of determination (R2), and the root mean squared error (RMSE) 

of the residuals. 

3.2 Introduction 

In the last decade, light detection and ranging (LiDAR) sensors have become widely used to 

acquire three-dimensional (3D) point clouds for mapping, modeling, and spatial analysis. The data 

are impacted by systematic and random noise from various sources, including the movement of 

the laser scanner platform and/or reflection of the laser beam to the sensor from unwanted or 

multiple objects. Outlier detection is an important step in processing laser scanner data 
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contaminated by noise. Researchers have investigated multiple approaches to remove noise from 

LiDAR data, both for fundamental and applications focused studies.  

Outlier detection and denoising are often used interchangeably. Noisy data refers to valid 

points that are displaced from their proper location. Denoising, in this case, involves moving these 

points as close as possible to their correct location. Outlier detection and removal is a process to 

detect and remove the points that are captured “mistakenly”. Denoising and outlier detection in a 

dataset depends on the point distribution and density of a point cloud. Deschaud and Goulette 

(2010) described denoising algorithms as either preprocessing a laser point cloud before 

reconstruction or post-treatment directly on meshes. Fleishman et al. (2003) proposed mesh 

denoising based on smooth surfaces, including filtering vertices in the normal direction using local 

neighborhoods as an adaptation of bilateral filtering for image denoising. Hanqi Fan et al. (2009) 

investigated post-processing of meshes using a feature preserving strategy. Points were 

categorized as sharp features, interior points, and points close to the boundary of a smooth region. 

The outliers were detected as anomalies from sub-neighborhoods, which were consistent in the 

normal orientation and geometry with the vertices. If the local neighborhood contains a large 

number of outliers, the surface estimated by these approaches could be biased and may not detect 

outliers associated with a dense outlier cluster. Other algorithms evaluate the surface normal and 

curvature at each point of data for outlier detection. Nurunnabi et al. (2015) proposed a 

neighborhood-based approach, where the maximum consistent subset of a neighborhood is 

generated; outliers are detected based on searching for the model best fit by the most homogenous 

and consistent points within the neighborhood. The method focuses on plane fitting, denoising, 

and sharp feature preservation. 

 Wang and Feng (2015) categorize the outliers in 3D laser scanning data as sparse outliers, 

which are distributed sparsely in the dataset, or in clusters that are characterized as isolated and 

non-isolated. Non-isolated clusters are connected to the main body of the scanned object, and it is 

not possible to remove them based on simple distance criteria and/or neighboring points. These 

outliers are the most challenging to separate from points that should be retained. To remove non-

isolated outliers, they developed a method based on majority voting using local surface properties.  

Cluster surfaces that intersect with the main body surface as isolated outliers are then marked. The 

authors indicate that this algorithm performs better for shapes that have regular geometry and 
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smooth surfaces (Wang and Feng, 2015). For complex shapes and geometries like plants where 

many surfaces (leaves) intersect, this isolated outlier detection approach may not be effective.  

Outliers are affected by the system characteristics (e.g., platform type and sensor) and the 

objects being scanned (e.g., geometric complexity and size of the objects). Successful outlier 

detection from a LiDAR dataset using conventional approaches is strongly related to these 

characteristics. Deep learning frameworks, which have been explored recently for this purpose, 

provide a fundamentally different strategy. Classical machine learning methods seek to explore 

the structure of the data or to estimate the relationship between variables. Deep learning 

automatically learns low and high-level features that are both representative and discriminative 

from data being modeled for classification and prediction. The models are learned iteratively using 

extensive quantities of training data, which are sometimes difficult to obtain (Bengio, 2012; 

Lauzon, 2012).  

Recently, applications of deep learning have increased dramatically, including in remote 

sensing. Deep learning is now widely used in image-based applications, including target 

recognition, pixel-based classification, and feature extraction (Liangpei Zhang et al., 2016; G. 

Cheng et al., 2018; Ma et al., 2019; Petrovska et al., 2020). It has also been explored in the analysis 

of laser scanner data, such as data denoising, classification, and segmentation. Boulch and Marlet 

(2016) used a convolutional neural network architecture to estimate the normal to each point in its 

neighborhood as the first step in segmentation and point cloud classification. Conventional 

geometry-based algorithms were then used to detect objects in LiDAR data via clustering. Li, 

Zhang, and Xia (2016) proposed a five-layer convolutional network to detect vehicles scanned by 

a Velodyne 64E laser scanner. The LiDAR data were projected to 2D maps similar to depth maps 

of RGBD data. 

Agresti et al. (2019) developed a method for denoising time-of-flight sensor data acquired 

by a range imaging camera that was contaminated with noise, had sparse spatial resolution, and 

multipath interference. They introduced a transfer learning architecture that was able to denoise 

real data by training on SYNTH3 (Agresti et al., 2017) synthetic data, which had been generated 

using the Blender3D rendering software. The network architecture includes a coarse-fine CNN 

that extracts features from raw data and then estimates a noise-free depth map. The coarse network 

applies down-sampling with pooling layers, and the fine network provides a detailed accurate 

representation. Cheng et al. (2019) proposed a deep learning architecture for the fusion of LiDAR 
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data and stereo images to develop an accurate 3D scene. The method could also handle 

misalignment between the sensors and noisy LiDAR data (X. Cheng et al., 2019).  

Processing point cloud or LiDAR data is problematic for deep neural networks due to the 

characteristics of point sets in ℝn , including interaction among points, invariance under 

transformation, and unordered points, unlike pixel arrays in images or voxel arrays in volumetric 

grids. The majority of current deep learning architectures, and especially CNN, are not designed 

to work with unstructured or irregular point clouds. Most researchers have resorted to assigning 

point clouds to 3D voxels before inputting them to the network. This approach has drawbacks, 

including loss of spatial information. For this reason, having an architecture that can directly use 

an irregular point cloud is preferred.  

The PointNet (Charles R. Qi et al., 2016) deep neural network accommodates unstructured 

point clouds as input without voxelization (Garcia-Garcia et al., 2017). It provides a unified 

architecture for a wide variety of applications, including object classification, part segmentation, 

and scene semantic parsing. PointNet accommodates these characteristics of point sets in its 

architecture using a symmetric function for unordered input, aggregating local and global features 

to solve point interactions, and adding an alignment network to make the model invariant to 

transformation. The PointNet network has three main components: a max-pooling layer as a 

symmetric function to aggregate information from all the points, a local and global information 

combination structure, and two joint alignment networks (Jaderberg et al., 2015) for making input 

points and feature points invariant to transformation.  

Some other networks, such as Hand PointNet (Ge et al., 2018), which can be applied to hand 

pose estimation, were derived from PointNet. It uses the normalized point cloud as the input and 

regresses it to a low dimensional representation of a 3D hand pose. PCPNet (Guerrero et al., 2018b) 

is an approach for estimating local shape properties in point clouds. The PCPNet architecture is 

based on local batch learning, as two adjacent patches may have different types of structures in 

terms of edges and corners. Thus, it can use a small dataset of labeled shapes for training. The 

training dataset contains eight shapes, including man-made objects, geometric constructs, and 

scanned figurines. This approach is suitable for estimating local surface properties such as normal 

and curvature, which are classical geometric characteristics. Although PCPNet has achieved 

promising results for a variety of objects, it can fail in some settings, such as large flat areas, due 

to a lack of adequate information to determine the normal orientation. PointCleanNet 
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(Rakotosaona et al., 2019) is adapted from PCPNet, with the goal of producing a clean point cloud 

by removing outliers and denoising a noisy, dense point cloud. The network has two stages: it first 

removes the outliers from the dataset and then estimates the correction vectors for the rest of the 

points to move the points toward the original surface. Figure 3.1 illustrates the outlier removal 

architecture. 

 

 

Figure 3.1. PointCleanNet outlier removal architecture; ℙ′, ℙ̂ , and �̃� denote a dataset 

contaminated with outliers as input, the dataset after outlier removal, and outliers, respectively. 

FCN and (Q)STN stand for Fully Connected and (Quaternion) Spatial Transformer Networks. 

The input is a patch point, and output is a label for each point regarding outliers (Rakotosaona et 

al., 2019). 

 

The objective of this study is to explore both a physical, geometric-based strategy and a deep 

learning architecture to remove the outliers from LiDAR data collected for experiments focused 

on plant breeding of sorghum and maize, which are similar, especially during the early growth 

stages of the plants. First, the outlier removal method by (Wang & Feng, 2015) was implemented 

and applied to laser scanning data of a single sorghum plant in an exploratory study, whose primary 

goal was to gain understanding of the characteristics of the LiDAR data and the associated noise 

and outliers over this type of plant structure. The PointCleanNet network was also investigated. It 

was trained using synthetic point cloud sorghum plant generated by overlapped imagery derived 

from data acquired in a controlled facility, then tested on datasets (sorghum and maize) from an 

agricultural research farm.  

Because there is no ground reference over field-based data, a surrogate measure was used to 

evaluate the results. Leaf Area Index (LAI), a characteristic related to plant structure, was 

estimated over the sorghum field using the original data and data from which outliers had been 

removed. LAI is defined as the total one-sided leaf area per unit ground area; it is widely used in 
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agriculture and forestry as a measure of canopy characteristics (Lobell et al., 2015; Akinseye et al., 

2017; Blancon et al., 2019). It is commonly measured by indirect methods such as optical sensing 

via hand-held plant canopy analyzers and remote sensing data, including LiDAR data, are based 

on the concept of gap fraction (Fang et al., 2019). LiDAR data from the UAV and a wheel-based 

platform (PhenoRover) that were matched to field-based LAI acquisitions were used to estimate 

LAI using regression models. Field data were collected for phenotyping experiments at the Purdue 

Agronomy Center for Research and Education (ACRE), where extensive manual measurements 

were also being made. The models from the data prior and subsequent to outlier removal were 

evaluated based on the resulting R2 statistic and RMSE of the residuals. 

3.3 Materials 

3.3.1 Experimental Setting 

The experiments for this study were conducted at the Agronomy Center for Research and 

Education (ACRE) at Purdue University, West Lafayette, Indiana, USA, to evaluate the potential 

of sorghum varieties for biomass production. LiDAR data utilized in this study were acquired 

during the 2020 growing season. The approaches to outlier removal were evaluated using LiDAR 

data that were collected from the Sorghum Biodiversity Test Cross Calibration Panel 

(SbDivTc_Cal) and the maize High-Intensity Phenotyping Sites (HIPS) in comparison to Leaf 

Area Index (LAI). In the early stages, maize and sorghum have very similar plant structures, 

although sorghum was planted at a higher density (~200,000 plants/hectare) compared to maize 

(~75,000 plants/hectare). The geometric structure of sorghum becomes more complex as tillers 

develop during the season, decreasing canopy penetration. SbDivTc_Cal in 2020contained 80 

varieties). The experimental design included two replicates in a randomized block design planted 

in 160 plots (plot size: 7.6m × 3.8m), ten rows per plot. The HIPS maize experiment contained 44 

varieties of maize with two replicas, including hybrid and inbred. This experiment included 88 

plots (plot size: 1.5m × 5.3m), two rows per plot. Figure 3.2 shows the layout of the plots for the 

SbDivTc_Cal and HIPS experiments in 2020 based on the respective genotypes. Table 3.1 shows 

a summary of the field experiments.
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(a) 

 

  

(b) 

 

Figure 3.2. Plot variety layout for 2020 (a) SbDivTc calibration panel and (b) HIPS
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Table 3.1. Experimental fields in 2020 

Farm # of plots # of varieties Sowing Date Harvest 
Date 

HIPS 88 44 May 12 October 1 

SbDivTc_Cal 160 80 May 13 August 15 

3.3.2 Experimental Data 

LiDAR data acquired by multiple sensors and platforms were used to evaluate the outlier 

removal methods. The following sections describe the sources and characteristics of the data. 

3.3.2.1 Stationary Scanning of Plants 

A stationary LiDAR dataset was collected over a single sorghum plant in a greenhouse at 

Purdue University using a FARO terrestrial laser scanner. The FARO Focus3D X 330 single beam 

range is between 0.6 m and 330 m indoor or outdoor with a range accuracy of ±2 mm. The total 

vertical field of view (FOV) and horizontal FOV are 300˚ and 360˚, respectively. The point capture 

rate is ~122,000 points per second (FARO Focus3D X 330). The average point distance (the 

distance of a point from its neighbors) in this dataset is 1.5 mm/10 m, and the scanner was located 

2 m from the plant. The data were used to investigate the characteristics of the plant and associated 

noise and explore geometric methods for outlier removal before applying them to field data. Figure 

3.3 shows an example of the raw scan. 

 

 

Figure 3.3. Original single sorghum plant collected in the greenhouse 
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3.3.2.2 Image-based Point Clouds for the Sorghum Training Dataset 

A synthetic training set was developed to investigate the use of PointCleanNet for the outlier 

removal task. Collecting clean LiDAR data over plants in a farm environment without noise and 

outliers for the purpose of training is difficult and time-consuming, and is only possible at the edge 

of the field. In this study, the point cloud training dataset was obtained from overlapped RGB 

images on individual sorghum plants in a greenhouse. The images were acquired of plants at 

different stages of growth from 4/11/2018 to 5/19/2018 using a Basler piA 2400-17gc camera in a 

chamber in a controlled environment at the Crop in Silico project facility at the University of 

Nebraska, Lincoln. A set of images for each plant covered angles 0˚, 72˚, 144˚, 216˚, 288˚, and a 

top view. Some datasets also included images at 36˚ and 216˚. A volume carving method was used 

to generate the point cloud from the resulting images (Scharr et al., 2017; Gaillard et al., 2020). 

Figure 3.4 shows a sample of the overlapped images and the generated point cloud. 

 

 

Figure 3.4. Overlapped images acquired for generating point clouds 

 

Thirty-five sets of generated point clouds from images were separated into 28 objects for 

training, and seven objects were chosen for validation. Outliers were generated as Gaussian noise 

with a standard deviation of 20% of the shape’s bounding box diagonal. The resulting training set 

had point clouds where 20%, 40, 50%, 70%, and 90% of the points were converted to outliers. To 

simulate the field scenario, some pairs and triplets of plants with different levels of outliers were 

joined, then added to the training set. Figure 3.5 illustrates some samples of the dataset. 

 

 

Figure 3.5. Left to right: samples with 20%, 50%, and 70% outliers; three plant grouping 
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3.3.2.3 LiDAR Remote Sensing Data 

Three platforms collected LiDAR in the field for plant breeding related experiments. Two 

M600P UAVs were flown over the study area at an altitude of 20 and 40 meters and speeds of 3-

5 m/s. One UAV was equipped with a Velodyne VLP-Puck Lite and the other with a Velodyne 

VLP-32C. The Velodyne VLP-Puck LITE has 16 channels that are aligned vertically from -15˚ to 

+15˚, thus resulting in a total vertical field of view (FOV) of 30˚. The point capture rate in a single 

return mode is ~300,000 points per second. The range accuracy is typically ±3 cm, with a 

maximum measurement range of 100m (Velodyne VLP-Puck LITE, n.d.). The Velodyne VLP-

32C has 32 channels that are aligned vertically from -15˚ to +25˚, in a total vertical FOV of 40˚. 

The point capture rate in a single return mode is ~600,000 points per second. The range accuracy 

is typically ±3 cm, with a maximum measurement range of 200m (Velodyne VLP-32C, n.d.). The 

UAVs were equipped with an integrated global navigation satellite system/inertial navigation 

system (GNSS/INS) Trimble APX-15v3 for direct georeferencing. Data were also acquired by a 

wheel-based system, a LeeAgra Avenger agricultural high-clearance tractor/sprayer with a custom 

boom and mounted sensors. It is referred to as the PhenoRover in these experiments. The boom is 

constructed from T-slot structural aluminium framing with a 2.75 meters width, and the top of the 

boom can be raised to a maximum of 5.5 meters height from the ground. The sensors mounted on 

the boom include a Headwall machine vision VNIR hyperspectral camera, an RGB camera, a 

Velodyne VLP-Puck Hi-Res, as well as a GNSS/INS navigation system. VLP-Puck Hi-Res has a 

similar sensor specification to the VLP-Puck LITE. Its FOV is -10˚ to +10˚ (Velodyne VLP-Puck 

Hi-Res, n.d.). The speed of the platform was 1.5 miles per hour in the field. Figure 3.6 shows the 

platforms used for the 2020 experiments. Table 3.2 details the UAV platforms and the 

PhenoRover, and their respective sensor specifications. Table 3.3 summarizes the LiDAR data 

collection and the corresponding ground reference measurements in terms of Days After Sowing 

(DAS) relative to the data collection dates and ground reference measurements.
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 (a) PhenoRover  (b) M600 UAV 

Figure 3.6. (a) PhenoRover platform with RGB/LiDAR/Hyperspectral/GNSS/INS sensors, (b) 

UAV-2 with RGB/LiDAR/GNSS/INS sensors in 2020 

 

 

 

Table 3.2. Platforms and mounted sensors specification in 2020 

Platform Sensor Unit Description 

UAV-1 

 RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 
 LiDAR sensor 1 Velodyne VLP 16-Puck Lite-range accuracy of ±3 

cm 
 GNSS/INS 1 Trimble APX-15 v2 
 Hyperspectral 

camera 
1 Nano Hyperspectral (VNIR) 

UAV-2 

 RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 
 LiDAR sensor 1 Velodyne VLP 32-range accuracy of ±3 cm 
 GNSS/INS 1 Trimble APX-15 v2 

PhenoRover 
 RGB camera 2 9.1MP FLIR Grasshopper3 GigE 
 Hyperspectral 

camera 
1 Headwall Machine 

 LiDAR sensors 1 Velodyne VLP-Puck Hi-Res 

 GNSS/INS 1 Applanix POS-LV 125 
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Table 3.3. LiDAR data and corresponding   ground reference data in two experiments with 

associated DAS in 2020 

Experiment Platform Flying 

Height 

Sowing 

Date 

LiDAR 

Data 
Collection 

Date 

DAS
1  

Ground 

Reference 
Date 

DAS
2 

Maize PhenoRover N/A 05/12 06/26 45 06/29 48 

 UAV-2 20 m   07/07 56 07/06 55 

 UAV-1 20 m  07/11 60 07/13 62 

 UAV-2 20 m  07/11 60 07/13 62 

 UAV-2 20 m  07/13 62 07/13 62 

 PhenoRover N/A  07/13 62 07/13 62 

Sorghum PhenoRover N/A 05/13 06/26 44 06/29 47 

 UAV-2 20 m  07/07 55 07/06 54 

 UAV-2 20 m  07/13 61 07/13 61 

 PhenoRover N/A  07/20 68 07/20 68 
 UAV-2 20 m  07/20 68 07/20 68  

PhenoRover N/A  07/24 72 07/27 75  
UAV-2 20 m  07/28 76 07/27 75 

DAS1: DAS with respect to data collection data; DAS2: DAS with respect to ground reference data 

3.4 Methodology 

The study included detection and removal of outliers from the experiments conducted in 

controlled facilities and the field. Data with low noise subsequent to outlier removal are considered 

as valid points. This section includes descriptions of the geometric approach for outlier removal 

and the deep learning PointCleanNet method for outlier removal. 

3.4.1 Geometric Approach 

In Wang and Feng (2015), isolated and non-isolated outliers occur in the point cloud. The 

nearest neighbors of each point, p, in the defined radius search are determined, and the principal 

components of the covariance matrix of the k-nearest neighbors are computed to determine 

curvature. The curvature describes the rate of change of a curve or plane at the chosen point, so a 

smooth surface has a lower curvature value. Small surface variation indicates that the 

neighborhood is regular; zero curvature implies a perfect plane. When the curvature values of each 
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point in the defined neighborhood are calculated, k-means clustering with k=2 as noted in Wang 

and Feng (2015) is applied to the curvature values to separate them into regular points with low 

curvature and irregular points with high curvature. Pseudo planes and surfaces in the dataset 

associated with outliers are filtered via thresholding. The remaining regular and irregular points 

are designated as “good” (g𝑝) and “bad” (b𝑝) points. Points on sharp edges or at the extremum of 

curved surfaces may be classified as irregular points because of high curvature. Points are excluded 

via majority voting by regular points (𝑔𝑝𝑖) in the neighborhood of irregular points (𝑏𝑝) with a 

radius search of a 𝑏𝑝 and each regular point (𝑔𝑝𝑖). This process is continued until all 𝑔𝑝𝑖s vote 

for  𝑏𝑝 , resulting in the point cloud being separated into bad points and good points. In the 

experiments in the current research, not many points were transferred from b𝑝 to 𝑔𝑝 because there 

are not many sharp surfaces in the point cloud geometry. Figure 3.7 shows the process of the 

majority voting method. 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

Figure 3.7. Majority voting procedure: (a) create a radius search around each bad point (b) 

determine the good points within the radius search (c) a new radius search is defined in the 

center of a good point and a radius of a distance between a good point and corresponding bad 

point (d) this step is repeated for all good points within a neighbor of bad point 

 

In Wang and Feng (2015), isolated points were removed by checking the intersection of the 

planes which were created on isolated points. This method can be applied to objects with a solid 

body. However, it does not perform well on complex objects with separate parts that have many 

intersecting planes, such as plants. To deal with this issue, we proposed a region growing method 
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based on the distance between points and k-nearest neighbors (Figure 3.8) to detect and remove 

the sparse and isolated outlier points remaining in the dataset.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.8. Region growing clustering steps: (a) Point cloud. (b) Initial clustering. (c) Finding 

common points in two close clusters. (d) Connecting and joining two clusters. 

 

The points are structured with a k-d tree data structure, and the k-nearest neighbors to each point 

are determined within a defined radius. The points are assigned to the clusters based on the nearest 

neighbors. The clusters with common points are joined, and the cluster number is updated 

iteratively until no additional changes occur in the clusters. The clusters with fewer points than a 

specified threshold are removed as isolated outliers, and the remaining clusters are retained. In the 

end, the remaining points in the dataset are considered inliers. The workflow in Figure 3.9 shows 

the proposed procedure for outlier removal, with the Wang and Feng (2015) component outlined.   

 

 

Figure 3.9. The workflow of geometric outlier detection in two steps; non-isolated outliers were 

removed by the Wang and Feng (2015) method, and isolated outliers were removed by a 

clustering proposed method 
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As noted previously, the noise depends on both the characteristics of the system (e.g., 

platform type and sensor) and the objects being scanned (e.g., geometric complexity and size of 

the objects). Also, in the geometric approach, some parameters, including best search radius, 

number of the nearest neighbor points, number of the points in the clusters, and thresholds related 

to point density and object complexity, are typically obtained by grid search. 

3.4.2 PointCleanNet Based Outlier Removal 

A deep learning framework may be more effective in removing outliers as the deep learning 

model trains iteratively using extensive quantities of training data with different types of objects 

in terms of shape, point density, and percentage of outliers. In this section, PointCleanNet outlier 

removal is investigated with synthetic data. PointCleanNet input is comprised of patches of points 

in the dataset. The network is invariant to rotation via the use of the sub-network Spatial 

Transformer Network (STN), as well as to permutation as it determines the sum of each point’s 

features in the patch. The output is a label for each input point (See Figure 3.1). The network was 

trained from scratch, and the loss was obtained using an augmented dataset that included the 

scanned data from a single sorghum plant, two and three joined plants with proportions of 20%, 

40%, 50, 70%, 90% as outliers, using the default parameter values. The pre-trained model from 

(Rakotosaona et al., 2019), which is based on the point clouds of geometric and sculpture objects, 

was lightly retrained by incorporating the plant data in the input using the default parameters. The 

loss obtained from the augmented pre-trained network was lower than from the self-trained 

network due to the limited diversity of the characteristics of the training data associated with the 

network trained from scratch on the plant data (Figure 3.10). 
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Figure 3.10. Pre-trained vs. the network trained on the plant data loss in 200 epochs (the number 

of iterations). The loss range is between 0 and 1. If the model's prediction is perfect, the loss is 

zero 

 

In terms of parameter tuning, the range of learning rate (0.00001 to 0.001 with a step of 10) and 

patch size (0.01, 0.05, and 0.10 × bounding box) was evaluated using grid search. The default 

setting had the lowest loss, so the augmented pre-trained model with default parameters was 

selected as the final model.  

The model was evaluated using the LiDAR dataset from the individual greenhouse plant 

with synthetic outliers and some of the synthetic datasets described in Section 3.3.2. The 

performance of the approach on these datasets was evaluated using the F1-score derived from 

precision (Eqn. 3.1) and recall (Eqn. 3.2) of the test data; F1-score (Eqn. 3.3) has a value between 

zero and one. Zero indicates a poor result for the F1-score if either precision or recall becomes 

zero. The best result is when there are no false outliers and false inliers in the result, with an F1-

score of one. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑂

𝑇𝑂 + 𝐹𝑂

 
(Eqn. 3.1) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑂

𝑇𝑂 + 𝐹𝐼
 

(Eqn. 3.2) 

  

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(Eqn. 3.3) 
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where (𝑇𝑂) is the number of true outliers, (𝐹𝑂) is the number of outliers including false outliers, 

and (𝐹𝐼) is the false inliers. A false inlier is defined as an outlier point that is considered as an inlier 

by the algorithm.  

The methods were also applied to the row crop data obtained from the UAV and PhenoRover 

platforms. The point density and canopy penetration varied across the platforms due to LiDAR 

sensor types, the field of view, and mission characteristics (platform height and the overlap of 

successive strips). In this study, point density is investigated based on flying height and sensor 

type. Tables 3.4 and 3.5 show the point density of the LiDAR over both fields based on the 

platform and flying height for the example dates. 

 

Table 3.4. Ground point density for the HIPS maize experiment 

Date Platform Flying 

Height 

DAS Point density 

(Points/ m2) 

7/11/2020 UAV-1 20 m 60 244 

7/11/2020 UAV-2 20 m 60 617 

7/13/2020 PhenoRover N/A 62 1500 

 

 

Table 3.5. Ground point density of  sorghum over SbDivTc_Cal sorghum 

experiment  

Date Platform Platform 

Height 

DAS Point density 

(Points/ m2) 

7/20/2020 UAV-2 20 m 68 500 

7/20/2020 PhenoRover N/A 68 1400 

 

It is extremely difficult to have an appropriate ground reference in row crop data for 

evaluating the outlier removal methods as many factors can affect the quality of the data, including 

environmental conditions at the time of data collection, density and arrangement of the plants, and 

row geometry, as well as the platform and sensor. As a surrogate, the effect of the outlier removal 

algorithms on an estimated phenotyping parameter was estimated for the various experiments. 

Here, as noted earlier, the LAI was estimated before and after outlier removal over sorghum and 

maize experiments and used as the basis of comparison. 
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3.4.3 LAI Estimation 

Geometric features were extracted from row crop LiDAR data, including the Laser 

Penetration Index (Richardson et al., 2009), Vertical Complexity Index (Pope and Treitz, 2013), 

Mean height, standard deviation, and skewness (Nie et al., 2016), Cluster Area Plane Index (CAPI), 

3rd Quartile of height, Row-level plant volume (rows 2 and 3) within plots (See 2.4.1).  

An optical indirect method based on an LAI-2200C plant canopy analyzer was used for 

ground reference. Empirical models were developed to represent the relationship between ground 

reference and LiDAR-based features. Predictive models were developed using stepwise multiple 

regression, partial least squares regression, and support vector regression with a radial basis 

function (RBF) kernel. The data were randomly sampled as 75% and 25% to training and test sets, 

respectively, and ten-fold cross-validation was performed on the training set (See 2.4.2). Results 

obtained for the original data and after outlier removal by the two approaches were evaluated based 

on the R2 statistic, and root mean squared error (RMSE) of residuals (Eqns. 3.4 and 3.5). 

 

𝑅2 = 1 −
∑(𝑦 − �̂�)2

∑(𝑦 − �̅�)2⁄  
(Eqn. 3.4) 

  

𝑅𝑀𝑆𝐸 = [
∑(𝑦 − �̂�)2

𝑛⁄ ]
1

2⁄  
(Eqn. 3.5) 

 

where y and �̂�  denote the LAI ground reference and estimated LAI respectively,  y̅ is the sample 

mean of ground reference LAI; the number of samples is denoted by n. 

3.5 Results 

Results obtained using the geometric method (modified Wang and Feng (2015) method) and 

the PointClearNet deep learning approach are presented in the following sections for data acquired 

in the control facilities and the field. 

3.5.1 Geometric Outlier Removal from Individual Plants and Field Data 

The point cloud obtained by the stationary scanner (see 3.3.2.1) was adequately dense to 

distinguish the plant structure. As noted in the previous section, outlier removal was achieved 
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using two steps:  removal of irregular points (bad points) connected to the main body of the plant 

and removal of sparse and isolated outliers. Figure 3.11 shows the original data with outliers and 

output from the two-step process. The search radius for the nearest neighbors was selected by grid 

search based on the point density (one centimeter), and the threshold for removing points in a 

cluster was six. The noise pattern seems to be associated with interference that tends to obscure 

the main body of the plant. While there is no control on this type of noise, the algorithm was able 

to remove these points effectively. 

 

   

(a) (b) (c) 

Figure 3.11. (a) Original LiDAR data with natural outliers. (b) Coarse level outlier removal from 

a sorghum plant. Arrows show the residual outliers from this step (c) Result of removal of 

residual outliers with two different views 

 

The synthetic datasets were generated from point clouds with three levels of outliers 20%, 

50%, and 70%, a radius search of one cm, a cluster size threshold of 6. Three plant groupings with 

different level of outliers, including (40% - 90% - 40%) and (70% - 90% - 70%) were evaluated 

using this method, as well with the radius search of two cm and a cluster size threshold of 10 that 

were selected by grid search for each. Figures 3.12 and 3.13 show the results and F1-score of each 

of the synthetic datasets.
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Single plant 20% outliers Single plant, outliers removed Evaluation 

  

 
Precision 0.19 

Recall 0.37 

F1-score 0.25 
 

Single plant 50% outliers   

  

 
Precision 0.30 

Recall 0.39 

F1-score 0.34 
 

Single plant 70% outliers   

  

 
Precision 0.74 

Recall 0.40 

F1-score 0.51 
 

Figure 3.12. Geometric method outlier removal for a synthetic point cloud 

 

Three plant grouping 

(40% - 90% - 40% outliers) 
Three plant grouping, outliers removed Evaluation 

 
 

 
Precision 0.55 

Recall 0.53 

F1-score 0.54 
 

Three plant grouping 

(70% - 90% - 70% outliers) 
  

  

 
Precision 0.66 

Recall 0.47 

F1-score 0.55 
 

Figure 3.13.  Geometric method outlier removal on joint three sorghum plants generated point 

cloud 
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The precision score for  the plant with 20% outliers (0.19) is lower than for the plant with 70% 

outliers (0.74). The total number of the points is the same in both; the plant with 20% outliers has 

potentially more false outliers due to having more inlier points (80% inliers).  

The method was sensitive to radius search in a local neighborhood, as well as the number of 

points in the clusters, especially when the randomly distributed outliers were sparse. It is a trade-

off between removing points as outliers and preserving points as the main structure of the plant. 

When precision is low, some true points were considered as outliers and removed, so parts of the 

plant structure are removed. Similarly, when the recall is low, some outliers remained in the main 

structure of the plant and were considered as true points. Thus, the gap between the points is 

smaller, but the number of outliers is larger. Also, when the points are distributed uniformly and 

are so sparse, the method cannot discriminate the outliers from inliers.  

 For the HIPS maize experiment, data collected by the PhenoRover and UAV-2 were 

available. A radius search of 4 cm for the nearest neighbor was selected by a grid search, and the 

threshold for removing points in a cluster was ten points for PhenoRover data; the radius search 

and the threshold for UAV data were six centimeters and six points, respectively. The radius search 

in UAV data is larger than for the PhenoRover data because the UAV point cloud was more sparse 

than the PhenoRover point clouds. (Figures 3.14 and 3.15). 

 

  

(a) (b) 

Figure 3.14. UAV-2 LiDAR data of Maize (DAS:60) (a) Original data, (b) Point cloud after 

outlier removal 
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(a) (b) 

Figure 3.15. PhenoRover LiDAR data over Maize (DAS:62) (a) Original data, (b) Point cloud 

after outlier removal 

 

The geometric method requires prior knowledge about the data in terms of point density and 

canopy penetration to select the thresholds, as well as trial-and-error experimentation to finalize 

the parameters. As shown visually in this section, the proposed geometric approach performed 

well on greenhouse data, where the plant was isolated from other objects, but the field data were 

much more difficult to denoise.  

3.5.2 PointCleanNet Outlier Removal from Individual Plants and Field Data 

The PointCleanNet method was applied to the point cloud single plants contaminated with 

multiple levels of outliers and investigated for row plants of sorghum and maize. The results 

obtained for both datasets are described and evaluated in this section. 

3.5.2.1 Single Plants 

First, the dataset of the single sorghum plant from the greenhouse contaminated with 

different levels of Gaussian outliers and used to evaluate the PointCleanNet based on the F1-score. 

The red points are outliers generated for each dataset (Figure 3.16). 
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Single plant 20% outliers 
Single plant, outliers 

removed 
Evaluation 

 
 

Precision 0.81 

Recall 0.87 

F1-score 0.84 
 

Single plant 50% outliers   

 
 

Precision 0.95 

Recall 0.74 

F1-score 0.83 
 

Single plant 70% outliers   

  

Precision 0.97 

Recall 0.58 

F1-score 0.73 
 

Figure 3.16. outlier removal on individual plant LiDAR 

 

After removal of the three levels of outliers, the structure of the plant is detectable, and especially 

for the 20% and 50% experiments. However, when the outliers are 70% of the data for the single 

plant, the recall dropped significantly. 

Datasets obtained from the generated point clouds were evaluated, and the F1 -score 

evaluated for the multiple scenarios (Figures 3.17 and 3.18). 
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Single plant 20% outliers Single plant, outliers removed Evaluation 

 
 

Precision 0.63 

Recall 0.77 

F1-score 0.70 
 

Single plant 50% outliers   

 
 

Precision 0.79 

Recall 0.80 

F1-score 0.79 
 

Single plant 70% outliers   

  

Precision 0.86 

Recall 0.82 

F1-score 0.84 
 

Figure 3.17. PointCleanNet outlier removal for a point cloud based on a single plant 

 

Three plant grouping 

(40% - 90% - 40% outliers) 
Three plant grouping, outliers removed Evaluation 

  

Precision 0.82 

Recall 0.78 

F1-score 0.80 
 

Three plant grouping 

(70% - 90% - 70% outliers) 
  

  

Precision 0.80 

Recall 0.78 

F1-score 0.79 
 

Figure 3.18. PointCleanNet outlier removal on joint three sorghum plants generated point cloud 
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The F1-score value from the individual plant with 70% outliers (0.84) is higher than the value from 

the plant with 20% outliers (0.70). This is because the number of false outliers in the 20% outlier 

case  results in the value of precision of the plant with 20% outliers lower than the plant with 70% 

outliers.  The total number of the points in both datasets are the same; the plant with 20% outliers 

has more inliers (80%), which causes the higher value of false outliers. The two sets of three plant 

grouping with different levels of outliers have a similar F1-score (0.79 and 0.80). The level of the 

outliers is high in the middle plant, and its structure is not detectable, while the structure of the 

plants on the side is completely detectable as the level of the outliers is lower. Comparing deep 

learning results with geometric results, it is clear that there are some missing parts of leaves in the 

geometric approach, while in the deep learning method, the leaves are complete and are visible. 

3.5.2.2 Outlier Removal from Maize and Sorghum Field Data 

As noted previously, field data are planted densely (maize ~75,000 plants/hectare vs. 

sorghum ~200,000 plants/hectare) in multiple row plots, and the canopy closes between the rows 

as the growing season progresses. Figures 3.19-3.22 show selected multi-row subsets of plots 

where outliers were removed from UAV-1, UAV-2, and PhenoRover data. 

 

(a) 

 

(b) 

 

Figure 3.19. Data from UAV-1 at 20 m altitude over maize (DAS: 60) (a) original data (b) outlier 

removal with PointCleanNet 
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When the UAV-1 acquired data at 20 m altitude with a VLP-Puck Lite (16 channels), 

penetration through the canopy was inadequate to identify the structure of plants beneath the top 

layer of the canopy, and plants from which outliers had been removed did not provide additional 

information (Fig. 3.19) 

 

(a) 

 

(b) 

 

Figure 3.20. Data UAV-2 at the altitude of 20 m over maize (DAS: 60) (a) original point cloud 

perpendicular to the direction of the rows; (b) results of outlier removal using PointCleanNet 

 

The sample result in Fig. 3.20 shows that the method removed outliers from UAV-2 data flying at 

20 m, while many structure-related points were retained below the canopy. The resulting plant 

structure is more complete than the UAV-1 output shown in Figure 3.19. These results, while 

limited, indicate that significant increases in penetration are achieved at 20m flying height, and 

that the VLP-32C has significantly better penetration than the 16 channel VLP-Puck Lite under 

these conditions. 
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(a) (b) 

Figure 3.21. PhenoRover LiDAR data of maize (DAS:62) (a) Original data, (b) Outlier removal 

PointCleanNet  

 

While the PhenoRover point cloud data were more dense, there are additional sources of outliers, 

including the vibration of the boom and interaction of the platform with the plants. The method 

removed some outliers but also removed some of the actual plant structure, although significant 

structure of the maize canopy was retained after denoising. The percentage of the removed points 

over maize was approximately 35% to 45% of UAV data and 25% to 30% of PhenoRover data. 

Figure 3.22 shows a sample of sorghum data collected by UAV-2 flown at the altitude of 20 m. 

 

(a) 

 

(b) 

 

Figure 3.22. UAV-2 LiDAR data of sorghum (DAS:68) (a) Original data, (b) Outlier removal 

PointCleanNet 
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Due to the complexity and density of sorghum, the point clouds remaining after denoising did not 

characterize the structure of the individual plants well. The percentage of the removed points over 

sorghum was approximately 40% to 50% of UAV data and 30% to 35% of PhenoRover data.  

 In the deep learning method, when the plants (greenhouse and field) had very similar 

characteristics, and samples from all the cases were considered in the training set, there was no 

need to change any parameters when the shape, point density, and percentage of outliers varied 

within the bounds of these parameters. Although the results of synthetic plants from geometric and 

PointCleanNet methods are visually similar, PointCleanNet denoising yielded better results based 

on the F1-score (e.g., 0.25 vs. 0.70 for 20% outliers on single plant). Therefore, the PointCleanNet 

method was applied to all the plots in the field data (maize and sorghum) to remove the outliers, 

and the impact was evaluated based on estimated LAI. The results are discussed in section 3.5.3. 

3.5.3 Impact of PointCleanNet Outlier Removal method on LAI Estimation 

The impact of outlier removal for both the UAV-2 (VLP-32C) flown at 20m and PhenoRover 

data acquired over sorghum and maize fields is illustrated in this section relative to LAI (Figure 

3.23).  
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Figure 3.23. Estimates of LAI for original data and after PointCleanNet based outliers removed 

from data acquired by the UAV and PhenoRover 

 

The impact of outlier removal on estimates of LAI was investigated for data acquired by 

UAV-2 and the Phenorover data using an SVR model with an RBF kernel. The mean and standard 

deviation of the respective R2 values are shown in the bar chart in Figure 23. After removing 

outliers from data (from which the photoperiod sensitive varieties had been removed as discussed 

in Ch 2), the R2 value of the model increased for the PhenoRover for both 6/26/2020 and 7/24/2020 

and was slightly lower for 7/20.  The standard deviation of the estimated R2 value was inconsistent 

for the PhenoRover. The impact of outlier removal was larger on 7/24/2020 in part because that 

day was windy (about 2.5 m/s) compared to other days with lower wind speed. Figure 24 shows a 

sample plot of estimated LAI vs. the ground reference for 7/24/2020 PhenoRover data. In addition 

to improving the R2 value, the RMSE decreased slightly after outlier removal. 
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(a) (b) 

Figure 3.24. Plot of estimated LAI vs. ground reference (a) original and (b) with outliers 

removed from PhenoRover data (7/24/2020) using PointCleanNet method  

 

The results showed that the effect of outliers on PhenoRover data is higher than the UAV data 

based on the R2 value improvement after outlier removal. The R2 values for resulting from 

denoising the UAV data decreased, but the standard deviation of R2 was also reduced. This implies 

that outlier removal reduced the anomalous data in terms of improving the LAI estimation, but that 

useful points were also removed. Overall, t-tests of the improvement related to the impact of outlier 

removal indicated that the change was not statistically significant at the 95% level (p-value = 0.79) 

based on the sample mean of R2.  

 The impact of the PointCleanNet outlier removal algorithm was also evaluated on maize 

field data (HIPS) from UAVs at a flying height of 20 m and for the PhenoRover data (Figure 3.25). 
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Figure 3.25. Maize LAI estimation on original and datasets with PointCleanNet outliers removed 

during the growing season on UAV and PhenoRover 

 

The bar chart in Figure 3.25 shows that the R2 value of the maize LAI predictions based on 

the three platforms was generally higher than for sorghum (e.g., values vary between 0.61 and 0.82 

while R2 values of sorghum LAI estimation varied from 0.51 to 0.70). The models based on data 

from which outliers had been removed by PointCleanNet had higher R2 values for PhenoRover 

datasets (e.g., on July 13th R2 value was improved from 0.61 to 0.70). The R2 values from the 

original data also have a higher standard deviation of R2 compared to the values for the UAV 

datasets. Similar to the sorghum models, the outliers did not have a significant impact on the LAI 

estimates for the UAV-based models. Although the maize is planted at a lower density, and the 

plant canopy is somewhat more open, the point density and penetration were still significantly 

lower for the UAVs than the PhenoRover. The p-value (0.78) of the t-test statistic indicates that 
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the impact of the outlier removal method was also not statistically significant for maize at the 95% 

level for either the UAV-2 or the PhenoRover. 

3.6 Summary and Conclusions 

In this chapter, a geometric method and a deep learning-based approach (PointCleanNet) for 

outlier removal were investigated on a greenhouse plant and image-based point clouds plants. The 

impact of outlier removal was also investigated for plants grown in field plots. For the geometric 

method, outliers were categorized as non-isolated or isolated; non-isolated outliers were removed 

by the Wang and Feng (2015) algorithm, and isolated outliers were removed by extending this 

method. The geometric method requires specification of input parameters, including radius search 

and number of points in a neighborhood of a point of interest. These parameters were sensitive to 

the distribution and density of the points in the dataset. When a platform is stationary, and the 

distribution of the points is uniform through the dataset, as in the example of the single plant in 

this study, finding the parameters is straightforward, as the density of points is adequate to detect 

the outliers. When the platform moves, the points are distributed sparsely. Coupled with the 

irregular shape of the objects, it is challenging for this method to remove the outliers. When the 

method was applied to maize and sorghum datasets acquired from UAVs and the PhenoRover 

wheeled vehicle, the geometric method did not perform well due to the extreme sparsity of points 

deeper in the canopy. In the maize dataset, the structure of the plants became more clear and could 

be detected visually from both platforms. Although some outliers were removed from the sorghum 

dataset, the plant structure was not recognizable after outlier removal. This implies that the sparsity 

of the points in the datasets was a significant problem for this outlier removal approach. 

 The PointCleanNet deep learning framework was investigated for removing outliers from 

image-based point clouds derived from images in greenhouses and for field data.  . When the model 

was retrained using point clouds generated from overlapped images that were contaminated with 

different levels of simulated outliers, the loss was lower than when the model was trained solely 

on point clouds from plants. Based on the F-score, the network successfully removed different 

levels of outliers in the greenhouse data. PointCleanNet was also applied to both maize and 

sorghum data from field experiments, where the outliers included the impact of the complex plant 

structure and the movement of the platforms. LAI was estimated over field plots before and after 

PointCleanNet outlier removal using the sorghum and maize data from both platforms. The 
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changes in the R2 values of the models were not statistically significant improvement based on t-

test results. This may in part be due to the fact that LAI is based on gap fraction, which relates to 

the distribution of points through the vertical space, not to overall structural characteristics, which 

had been improved by denoising, based on visualization. Although the p-values from t-test 

statistics (sorghum:0.79, maize:0.78) indicated that there is not a significant difference between 

results prior to and after outliers are removed, the R2 values of estimated LAI from the PhenoRover 

improved both in terms of increasing the sample means and decreasing the standard deviations of 

R2 (e.g., sorghum on 7/24/2020 before 0.57 and after 0.66). Based on these experiments, removal 

of outliers based on PointCleanNet appears to be justified for plant structures in greenhouses and 

for field data when the point density is greater than ~600 points per m2, as was the case for the low 

altitude UAV and PhenoRover acquisitions where canopy penetration was higher.  It may also be 

useful for denoising LiDAR data acquired from a gantry. An indoor gantry would be close to the 

plants but would not interfere with them or be subject to the weather. An outdoor gantry would 

provide an “intermediate” platform which would have improved penetration but not be subject to 

interference with the plants. It should be noted that the outlier removal may prove more effective 

for applications related to extraction of specific geometric features such as the number of leaves, 

leaf angle, etc.    
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 ESTIMATION LEAF AREA INDEX BY DEEP LEARNING-BASED 

FEATURE EXTRACTION FROM DISCRETE RETURN LIDAR DATA 

OVER AGRICULTURAL ROW CROPS 

4.1 Abstract 

Leaf Area Index (LAI) is an important phenotyping variable but is difficult to estimate over 

agricultural row crops using either direct and indirect methods. Direct methods are laborious and 

time-consuming, while indirect methods such as remote sensing-based approaches have multiple 

sources of uncertainty. LiDAR (Light Detection and Ranging) remotely sensed data acquired from 

manned aircraft and UAVs’ have been investigated to estimate LAI based on physical/geometric 

features such as canopy gap fraction. The quality of the extracted features depends on the point 

density and laser penetration through the canopy. Deep learning frameworks are increasingly being 

used in remote sensing applications for prediction. In this chapter, the PointNet based AutoEncoder 

is investigated for feature extraction from LiDAR data acquired by UAV platforms over sorghum 

and maize plant breeding experiments. LAI estimates based on these inputs were used to develop 

support vector regression (SVR) models using plant canopy analyzer data as the ground reference. 

Results were compared to models based on estimates from physically-based features and evaluated 

in terms of the coefficient of determination (R2). The effects of experimental conditions, including 

flying height, sensor characteristics, and crop, were also investigated relative to the estimates of 

LAI. 

4.2 Introduction 

Leaf area index (LAI) is defined as the leaf area per unit area projected on the ground. It is 

an important biophysical crop variable that provides information about plant structure for a wide 

range of agricultural applications, including plant breeding, management of cropping systems, and 

crop modeling (Jonckheere et al., 2004; Apolo-Apolo et al., 2020). LAI can be obtained by both 

direct and indirect methods. Indirect methods, including those that utilize optical remote sensing 

data, are based on the canopy gap fraction and allometric relationships estimated using empirical 

regression models. The ground reference for optical methods is provided by plant canopy analyzers 

focused on effective LAI (Fang et al., 2019).  
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LiDAR is an active sensing technology, which provides a point-wise 3-dimensional (3D) 

representation of objects (Estrada et al., 2017). Its usage has increased in precision agriculture for 

estimation of crop phenotypes, such as height (Ravi et al., 2018; Li et al., 2020), LAI (Nie, Wang, 

Dong, Xi, et al., 2016b), and biomass (Masjedi et al., 2020), as it can provide information related 

to the vertical structure of vegetation (Korhonen et al., 2011). The primary features extracted from 

the LiDAR point cloud data are related to either the canopy gap fraction or statistical moments of 

the distribution of points in the canopy (Fang et al., 2019). Canopy gap fraction features, such as 

the laser penetration index (LPI), are based on the proportion of points that penetrate the canopy 

(Pope & Treitz, 2013b; Alonzo et al., 2015; Nie, Wang, Dong, Xi, et al., 2016b). Allometric 

relationships are typically based on features derived from the statistical moments of the vertical 

distribution of points (e.g., the mean, standard deviation, and skewness of the height) (Richardson 

et al., 2009; Zhao & Popescu, 2009; Peduzzi et al., 2012; Nie, Wang, Dong, Xi, et al., 2016b). 

Other features investigated in the literature based on the point distribution include the vertical 

complexity index (VCI) (van Ewijk et al., 2011b) and the cluster area plane index (CAPI), which 

are both described in Chapter 2. To extract these features, preprocessing and analysis are required, 

including classification of points as ground and nonground points and determining the point 

density related to laser penetration through the canopy over a given area. A method of feature 

extraction that is simply derived from the pattern of the input data would be desirable and 

potentially more robust. 

Recently, applications of deep learning have increased, including in remote sensing. Deep 

learning is now widely applied to image-based problems, including target recognition, pixel-based 

classification, and feature extraction (L. Zhang et al., 2016). Lately, end-to-end processing, 

including deep learning and machine learning for point cloud data analysis, has become an area of 

interest to researchers (Charles R. Qi et al., 2016; Ge et al., 2018; Poux & Billen, 2019; X. Cheng 

et al., 2019; Apolo-Apolo et al., 2020; Guo et al., 2020; van Klompenburg et al., 2020). The 

majority of current deep learning architectures, especially convolutional neural networks (CNN), 

are not designed to be utilized with unstructured data or irregular point clouds. The point clouds 

are typically sorted into 3D voxels before being input to the network (Boulch & Marlet, 2016; 

Poux & Billen, 2019). This approach has drawbacks, including loss of spatial information, because 

preservation of geometry depends on the voxel size. Having an architecture that can directly use 

an irregular point cloud would be preferable. For example, the PointNet (Charles R. Qi et al., 2016) 
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architecture provides the capability for taking unstructured point clouds as input and utilizing one 

subnetwork for classification and the other for segmentation. Researchers have investigated 

PointNet (Charles Ruizhongtai Qi et al., 2017; Guerrero et al., 2018a; Charles R. Qi et al., 2018; 

Rakotosaona et al., 2019; Aoki et al., 2019) to address classification, outlier removal, and 

segmentation problems. Kohara and Nakazawa (2019) extracted features using the PointNet 

AutoEncoder to reduce the dimensionality of the input data. The PointNet AutoEncoder (Charles 

R. Qi, 2018/2020) is based on PointNet in the encoder portion of the network and fully connected 

layers in the decoder portion (Figure 4.1). It extracts global features from n input points and 

converts them to n output points using its decoder. Kohara and Nakazawa (2019) used the PointNet 

AutoEncoder to extract features from a single laser range finder and applied a support vector 

machine (SVM) with a radial basis function kernel (RBF) for body part detection (Kohara & 

Nakazawa, 2019). 

 

 

Figure 4.1. PointNet Autoencoder architecture: the encoder part is PointNet, and the decoder is a 

fully connected network (FNN). The input of the network is all points in the dataset, and the 

output is the reconstructed input (Charles R. Qi, 2018/2020). 

 

In this chapter, we investigate using PointNet AutoEncoder feature extraction instead of 

physical/geometric features to estimate LAI using LiDAR data acquired by UAV platforms over 

sorghum and maize field trials. A support vector regression (SVR) model with an RBF kernel is 

used to estimate LAI based on the extracted features and plant canopy analyzer-based reference 

data. The results are compared to those obtained using physical features based on the R2 value of 

the model. To our knowledge, this is the first application of the PointNet Autoencoder to plants, 

whose complex geometry is difficult to characterize. 
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4.3 Materials 

4.3.1 Experimental Setting 

The experiments for this study were conducted in two fields containing test plots of sorghum 

and maize at the Agronomy Center for Research and Education (ACRE) at Purdue University, 

West Lafayette, Indiana, USA. LiDAR data were acquired during the 2020 growing season over 

the Sorghum Biodiversity Test Cross Calibration Panel (SbDivTc_Cal) and the maize High-

Intensity Phenotyping Sites (HIPS). The planting density for sorghum was (~ 200,000 

plants/hectare), and (~ 75,000 plants/hectare) for maize. The SbDivTc_Cal experiment contained 

two replicates of 80 varieties in a randomized block design (plot size: 7.6m × 3.8m), ten rows per 

plot. The HIPS experiment contained two replicates of 44 varieties. (plot size: 1.5m × 5.3m), two 

rows per plot.  Figure 4.2 shows the layout of the plots over SbDivTc_Cal and HIPS in 2020 based 

on the respective genotypes.  Table 4.1 summarizes the field information for the experiments. 
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(a) 

 

(b) 

 

Figure 4.2. Plot variety layout for 2020 (a) SbDivTc_Cal panel and (b) HIPS experiments. 
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Table 4.1. Experimental design for the 2020 growing seasons 

Experiment # of 
plots 

# of rows # of 
varieties 

Sowing 
Date 

Harvest 
Date 

HIPS 88 2 44 May 12 October 1 

SbDivTc_Cal 160 10 80 May 13 August 15 

4.3.2 Experimental Data 

4.3.2.1 LiDAR Point Cloud Data Acquisition 

Two M600P UAVs equipped with a Velodyne VLP-Puck Lite and a Velodyne VLP-32C, 

respectively, were flown over the study area at altitudes of 20 and 40 meters and velocities of 3-5 

m/s.  The Velodyne VLP-Puck LITE has 16 channels that are aligned vertically from -15˚ to +15˚, 

resulting in a total vertical field of view (FOV) of 30˚. The point capture rate in single return mode 

is ~300,000 points per second. The range accuracy is typically ±3 cm, with a maximum 

measurement range of 100m (Velodyne VLP-Puck LITE). The Velodyne VLP-32C has 32 

channels that are aligned vertically from -15˚ to +25˚, in a total vertical FOV of 40˚. The point 

capture rate in single return mode is ~600,000 points per second. The range accuracy is typically 

±3 cm, with a maximum measurement range of 200m (Velodyne VLP-32C, n.d.). Both UAVs 

were equipped with an integrated global navigation satellite system/inertial navigation system 

(GNSS/INS) Trimble APX-15v3 for direct georeferencing. The LiDAR data over the HIPS maize 

experiment were collected weekly using the two platforms from June 12th, 2020 (thirty-one days 

after sowing (DAS)) to July 13th, 2020 (sixty-two DAS). The LiDAR data over the SbDivTc_Cal 

sorghum experiment were collected from June 26th, 2020 (forty-four DAS) to July 28th, 2020 

(seventy-six DAS). Data collection in both experiments was completed around the flowering date, 

as the plant growth essentially terminates at that time. Table 4.2 details the specifications of the 

platforms and mounted sensors. 
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Table 4.2. Platforms and mounted sensors specification 

Platform Sensor Unit Description 

UAV-1 

 RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 

 LiDAR sensor 1 Velodyne VLP 16-Puck Lite-range accuracy of 

±3 cm 

 GNSS/INS 1 Trimble APX-15 v2 

 hyperspectral 

camera 

1 Headwall Nano Hyperspect (VINIR) 

UAV-2 

 RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R) 

 LiDAR sensor 1 Velodyne VLP 32-range accuracy of ±3 cm 

 GNSS/INS 1 Trimble APX-15 v2 

 

The point density and canopy penetration varied with the sensor types and the mission 

protocols. Tables 4.3 and 4.4 summarize the point density of the LiDAR over both fields for 

comparison of the impact of the sensor and flying height. Figure 4.3 shows sample data acquired 

by the VLP32C at 20m height over sorghum and maize. 

 

Table 4.3. Ground point density of  sorghum over SbDivTc_Cal 

Date Platform Platform 

Height 

DAS Point Density (Points/ 

m2) 

7/20/2020 UAV-1 40 m 68 70 

7/20/2020 UAV-2 20 m 68 500 

 

 

Table 4.4. Ground point density of  maize over HIPS 

Date Platform Flying 

Height 

DAS Point Density (Points/ 

m2) 

7/11/2020 UAV-1 40 m 60 65 

7/11/2020 UAV-1 20 m 60 244 

7/11/2020 UAV-2 40 m 60 122 

7/11/2020 UAV-2 20 m 60 617 
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(a) (b) 

Figure 4.3. Example point clouds acquired from UAV-2 (a) sorghum rows 2 and 3 from 

SbDivTc_Cal on July 13th, 2020 (61 DAS), and (b) from maize from HIPS on July 11th, 2020 (60 

DAS). 

4.3.2.2 Ground Reference Data 

Reference data were collected weekly over the two field experiments from 6/15/20 to 

7/27/20 using a LI-COR handheld plant canopy analyzer (LAI–2200C). The instrument provides 

an indirect measurement of effective LAI based on canopy gap fraction analysis (Welles and 

Cohen, 1996; Sonnentag et al., 2007; Černỳ et al., 2019). 

Two sets of five measurements (one measurement above the canopy and four measurements 

below the canopy near the ground) in the direction of the rows were acquired, then averaged to 

provide one value per plot, then one value per plot was calculated using the Field Viewer 2200 

(FV2200) software. These values were used as the reference data set for developing predictive 

models of LAI based on remote sensing data.  

Table 5 summarizes the LiDAR data collection for two experiments with their corresponding 

ground reference measurements. Both the UAV and wheel-based platforms carried other sensors, 

and data were acquired operationally at 40m altitude for multiple purposes. Lower altitude flights 

were conducted more frequently to monitor flowering in July, providing the opportunity to 

evaluate the impact of flying height on the penetration of the canopy. 
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Table 4.5. Days After Sowing (DAS) relative to the available ground reference and 

LiDAR data in 2020 

Experiment Platform Flying 

Height 

Sowing 

Date 

LiDAR 

Data 

Collection 

Date 

DAS1 Ground 

Reference 

Date 

DAS2 

HIPS UAV-2 40 m 05/12 06/12 31 06/15 34  

UAV-1 40 m  06/17 36 06/15 34  

UAV-1 40 m  06/25 44 06/22 41  

UAV-1 40 m  07/02 51 06/29 48  

UAV-2 20 m  07/07 56 07/06 55  

UAV-2 20 m  07/11 60 07/13 62  

UAV-1 20 m  07/11 60 07/13 62  

UAV-2 20 m  07/13 62 07/13 62 

SbDivTc_Cal UAV-1 40 m 05/13 07/02 50 06/29 47  

UAV-2 20 m 

 

07/07 55 07/06 54  

UAV-2 20 m 

 

07/13 61 07/13 61  

UAV-1 40 m 

 

07/17 65 07/20 68  

UAV-1 40 m 

 

07/20 68 07/20 68  

UAV-2 20 m 

 

07/20 68 07/20 68  

UAV-1 40 m 

 

07/28 76 07/27 75 

  UAV-2 20 m 

 

07/28 76 07/27 75 

DAS1: DAS with respect to data collection data; DAS2: DAS with respect to ground 

reference data 
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4.4 Methodology 

4.4.1 AutoEncoder Feature Extraction from LiDAR Data 

4.4.1.1 SbDivTc_Cal (Sorghum) 

The SbDivTc_Cal field was planted in ten-row plots. Features were extracted from rows 2 

and 3, as the other rows were either adjacent to rows that were destructively sampled or were 

border rows, where the associated plants did not have consistent conditions in terms of accessibility 

to solar radiation. The PointNet AutoEncoder was used to reconstruct the input point cloud from 

the rows and extract the global features. All inputs to the network should have the same number 

of samples per plot. As the number of LiDAR points in each dataset and each plot was different, 

the number of common points in the plots dictated the maximum number of inputs (for UAV-1 

datasets: 9000 points and UAV-2: 29,000 points).  For plots where the number of points exceeded 

the minimum, the points were selected randomly. Three other subsets of all datasets (2000, 5000, 

and 7000 points) were also selected randomly and analyzed to evaluate the required time for 

training and the loss value. Figure 4.4 shows the loss of training in 1000 epochs for three subsets.  

 

 

Figure 4.4. Evaluation of the loss between sorghum datasets with 2000, 5000, 7000 points. 
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Table 4.6 details the associated training time. All experiments were carried out on a cluster node 

equipped with an Intel 16-core CPU with 192 GB memory and one NVIDIA GeForce P100 GPU. 

 

Table 4.6. Sorghum training time 

No Data Number of 

Points 

Training Time (HH: 

MM) 

1 UAV-1 and 

UAV-2 

2000 00:36 

2 UAV-1 and 

UAV-2 

5000 01:30 

3 UAV-1 and 

UAV-2 

7000 02:04 

4 UAV-1 9000 00:58 

5 UAV-2 29000 03:43 

 

The 29,000-point subset of UAV-2 datasets had the lowest loss and highest training time, although 

it was quite reasonable. Figure 4.5 shows a sample of the minimum (2000), 7000, and maximum 

(29,000) points with their respective reconstructed point clouds. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.5. Example of input with 2000 (a), 7000 (c), and 29000 (e) points; Figures (b), (d), and 

(f) show the corresponding reconstructed point clouds acquired from UAV-2 over sorghum rows 

2/3 from SbDivTc_Cal on July 13th, 2020 (DAS:61).
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Also, Figure 4.6 shows an input with 9000 points and the reconstructed point clouds for early and 

late-season acquisitions. 

  

(a) (b) 

Figure 4.6. Example of (a) input with 9000 points on 7/02/2020 (DAS:50) and 7/28/2020 

(DAS:76), and (b) the corresponding reconstructed point clouds acquired from UAV-1 over 

sorghum rows 2 and 3 from SbDivTc_Cal. 

 

The data were divided into 80% training, 20% testing with 10-fold cross-validation on the 

training data. The model was trained for 1000 epochs (500, 1000, 2000 epochs were examined) 

and a learning rate of 0.001, which were determined from a grid search (0.00001 to 0.01 with a 

step of 10). After obtaining the model, the global features were extracted for each input (8 and 16 

features were examined. The models based on eight features yielded better results in terms of R2 

(~ 0.5). A set of features was obtained for each plot for each of 2000, 7000, 9000, and 29,000 point 

inputs. Figure 4.7 shows an example of extracted features for one variety of the SbDivTc_Cal 

experiment with the corresponding numbers of input points. Encoder-based features for the 2000 

and 7000 input data were remarkably similar across the season, indicating that the distribution of 

the points throughout the canopy was similar. This was still somewhat surprising, as the canopy 

changed throughout the growing season. For 2000 points, features 1, 2, 4, 7, and 8 were quite 

similar, but features 3, 5, 6 were different. Feature 3 increased throughout the season and feature 

6 decreased for data from both UAV 1 and UAV2, so these patterns are likely due to the evolution 

of the canopy. For 7000 points, all the features were similar throughout the season except 5, 7, and 

8, with feature 5 decreasing throughout the season and features 7 and 8 increasing for both UAVs. 

Because the number of points was the same due to sampling (across platforms and heights), the 
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similarity of the features for the two platforms was not surprising.  For the 9000 point input from 

UAV-1, the features were different from the features based on 2000 and 7000 points, but were 

similar throughout the growing season. Similar to the 2000 and 7000 point results, these changes 

in features track the canopy growth. For the 29,000 point input from UAV-2, the early season 

features were similar but changed later in the season, presumably because the structure of the taller 

canopy was better represented by these data. Also, the features from UAV-1 (9000 points) and 

UAV-2 (29000 points) had different patterns, reinforcing the hypothesis that the features were 

impacted by the number of input points above some minimum threshold. Feature 5 for both 7/13 

and 7/28 was dissimilar from its pattern during the rest of the season, with a sharp increase in 7/13 

and a sharp decrease in 7/28.  The impact of the features across platforms and dates is investigated 

further in the prediction of R2 in Section 4.4.3. The overall similarity of features across the growing 

season is potentially indicative of the robustness of the features and their possible value for transfer 

learning and should be further investigated. 
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(a) 2000-point input for UAV-1 and UAV-2 

  
(b) 7000-point input for UAV-1 and UAV-2 

 
 

(b) 9000-point input for UAV-1; 29000-point input for UAV-2 

Figure 4.7. Example of extracted features for one sorghum variety of the SbDivTc_Cal 

experiment (a) input with 2000 points for UAV-1 and UAV-2, (b) 7000 points for UAV-1 and 

UAV-2, and (c) 9000 points for UAV-1; 29,000 points for UAV-2. 
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4.4.1.2 HIPS (Maize) 

The HIPS experiment contained 88 plots with two rows in each plot. Similar to sorghum, 

three subsets were randomly selected with 2000, 6000, and 9000 (min number of points per plot) 

points from original datasets to train and compute the loss. Figure 4.8 shows the graph of the loss 

of three training sets (UAV-1 and UAV-2). Table 4.7 shows the training time for three maize 

subsets. 

 

 

Figure 4.8. Comparing the loss between maize datasets with 2000, 6000, 9000 points 

 

Table 4.7. Maize training time 

No Number of 

Points 

Training Time (HH: 

MM) 

1 2000 00:25 

2 6000 00:56 

3 9000 01:27 

 

The loss decreased when the number of points increased; however, the time of training 

increased only slightly. Figure 4.9 shows a sample of the inputs with 2000 and 9000 points and 

reconstructed point clouds by the PointNet AutoEncoder. The PointNet AutoEncoder was trained 

with the same approach described in the previous section, and global features were extracted. 

Similarly, the extracted features and plant canopy analyzer data were used for regression modeling 

to estimate the maize LAI for both the 2000 and 9000 point subsets.  
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(a) (b) 

  

(c) (d) 

Figure 4.9. Example of input with 2000 (a) and 9000 (c) points, (b) and (d) are the corresponding 

reconstructed points clouds acquired from UAV-2 over maize from HIPS on 7/11/2020 

(DAS:60). 

 

Figure 4.10 shows an example of extracted features for one inbred variety over HIPS with 2000 

and 9000 input points for UAV-1 and UAV-2 over all dates. For maize, the features were less 

similar for the various missions than for sorghum. For 2000 and 9000 points inputs, early-season 

features were different from later season features derived from both UAV-1 and UAV-2 data, 

which are potentially related to structural changes in the canopy. Features had a similar pattern for 

both numbers of input points on UAV-1 and UAV-2. The general patterns of the features are 

similar to features obtained for sorghum at low density (2000 pts) but are significantly different  

from sorghum at the end of the season. This could potentially be attributed to the dense canopy of 

sorghum, including tillers. Relative to the implementation of the encoders in conjunction with deep 

learning architectures for generalization, blind use of features for transfer learning across the two 

crops does not appear to be appropriate.  Further investigation with additional acquisitions is 

needed to develop a better understanding of the phenomena. 
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(a) 2000-point input for UAV-1 and UAV-2 

  

(b) 9000-point input for UAV-1 and UAV-2 

Figure 4.10. Example of extracted features for one maize variety of the HIPS experiment (a) 

input with 2000 points and (b) 9000 points for all datasets. The feature value does not have a 

unit. 

4.4.2 Geometric Feature Extraction from LiDAR Data 

The geometric features were extracted from rows 2 and 3 of each plot in the SbDivTc_Cal 

field and both rows of each plot of the HIPS field. The features included the Laser Penetration  

Index (LPI) (Richardson et al., 2009), Vertical Complexity Index (VCI) (Pope and Treitz, 2013), 

Height mean, standard deviation, and skewness, 3rd quartile of height (Nie et al., 2016), Row 

volume, Cluster Area Plane Index (CAPI) (See 2.4.1). 
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4.4.3 Empirical Regression Models 

Empirical models were developed with physically-based and encoder-based features using 

SVR with an RBF kernel to estimate LAI. The data were randomly sampled to 75% training and 

25% test, and ten-fold cross-validation was performed on the training set. Results using both sets 

of input features were obtained, and models were evaluated based on the R2 statistic (Eqn. 4.1). 

 

𝑹𝟐 = 𝟏 −
∑(𝒚 − �̂�)𝟐

∑(𝒚 − �̅�)𝟐⁄  
(Eqn. 4.1) 

 

where y and �̂� denote the LAI ground reference and estimated LAI, respectively,  �̅� is the sample 

mean of ground reference LAI, and the number of samples is denoted by n. 

4.5 Results 

Bar charts illustrating the mean R2 and associated standard deviations of the models 

developed using both geometric and encoded features using the multiple point cloud sampling 

rates are shown in Figures 4.11 and 4.12 for the experiments based on the date and the LiDAR 

sensor mounted on each platform and the two feature extraction methods. 
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Figure 4.11. R2 values for sorghum SbDivTc_Cal 2020 SVR regression model for LAI 

estimation using geometric and autoencoder (AE) feature extraction methods. 

 

Estimates based on geometric features derived from the sorghum data indicate that despite 

the differences in sensors and flying height, predictions of LAI obtained using data from UAV-1 

and UAV-2 were quite similar. The geometric features yielded relatively consistent results in terms 

of the R2 statistic (between 0.55 and 0.75) throughout the growing season. The R2 values of the 

models using features obtained from the autoencoder were much lower (between 0.30 and 0.55), 

and particularly later in the season (from 7/17/20). The R2 values obtained from autoencoder 

features using the VLP 32C on UAV-2 were higher than for the VLP-16 on UAV-1 on 7/20/2020 

and 7/28/2020, dates on which data were acquired by both systems on the same day. Overall, the 

R2 results obtained from the autoencoder with the input of 2000, 7000, 9000, and 29000 points did 

not exhibit consistent patterns and were not as significant as expected. The standard deviation of 

the R2 statistic was about 0.05 on earlier dates and increased later in the season to about 0.10 for 

geometric features. This increased variation of R2 is consistent with the later season growth in the 

plants and increased complexity of the canopy. As noted previously, the sorghum was planted at 

high density, so the penetration dramatically decreased as the growing season progressed. 

Penetration was further reduced by the sorghum tillers that had an increasing effect later in the 
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season. The autoencoder features did not capture the structure as well as the physical features, 

indicating that only the general pattern of the distribution of the LiDAR points through the canopy 

could be discerned.   

In order to evaluate the number of input points to the network for feature extraction using 

autoencoders, t-tests conducted to evaluate the differences in the mean R2 values associated with 

the smallest (2000) and largest (29,000) numbers of points groups were conducted at the 5% 

significance level based on the sample mean points over sorghum. The p-value of 0.99 indicates 

that the number of the input points did not significantly impact on R2 results. A t-test was also 

conducted to compare the autoencoder vs. geometric feature extraction methods for sorghum. The 

p-value of 4.34E-6 indicates that the differences between the R2 values for the two types of features 

were highly significant.   

 

 

Figure 4.12. R2 values for HIPS 2020 maize SVR regression model for LAI estimation using 

geometric and autoencoder (AE) feature extraction methods. 
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LAI regression-based models were also developed using both geometric and autoencoder 

features for the HIPS experiment, starting with earlier season acquisitions. The models had low R2 

statistics for the first two dates. The primary reason was that the flying height for both platforms 

was 40 m, coupled with the small size of the plants (~11 cm and 20 cm) for 6/12/2020 and 

6/17/2020, respectively. The measurements from the LAI–2200C acquired between the rows were 

also not representative of the true canopy gap fraction at this height. The values of the R2 statistic 

for 6/25/2020 (41 DAS) to 7/13/2020 (62 DAS) range from 0.74 to 0.85. The lower flying height 

of both platforms resulted in significantly higher point density (Tables 4.3 and 4.4). The model 

results obtained using the autoencoder-based features follow the same pattern as the results using 

geometric features for the datasets from 6/25/2020 to 7/13/2020 for both 2000 and 9000 points. 

Aside from the first two datasets, the R2 values for the models developed using the two sampling 

rates (2000 and 9000 points) were very similar, despite a lower training loss of 9000 points. Both 

approaches (geometric and AutoEncoder) provide much higher values of the R2 statistic (between 

0.70 and 0.80) than for sorghum. 

The same experiments were conducted for the number of input points for deep learning 

feature extraction (2000 vs. 9000 points) and the autoencoder vs. geometric feature extraction 

methods for maize. The p-values of 0.90 and 0.53 indicate that neither the null hypothesis 

regarding the number of points or the type of features (geometric vs. autoencoded) were 

statistically significant was rejected. This indicates that autoencoder feature extraction could be an 

alternative to geometric feature extraction.  

The sorghum SbDivTc_Cal experiment was more diverse than the maize HIPS experiment 

in terms of the characteristics of the varieties, leading to more consistent, higher R2 values on maize 

over HIPS than sorghum over SbDivTc_Cal for both methods of feature extraction. In 

SbDivTc_Cal, the complexity and density of sorghum plants in the field were higher than maize 

plants in the HIPS experiment, as noted previously, also contributed to underestimation of LAI. 

Overall, the encoded features developed for maize were relevant for estimating LAI than for 

sorghum. 

4.6 Summary and Conclusions   

In this study, the goal was to investigate the application of an unsupervised autoencoder 

strategy for feature extraction, as these approaches do not require prior knowledge and definition 
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of features. This is the first application of the PointNet Autoencoder to plants, whose complex 

geometry is difficult to characterize. The method was applied to sorghum and maize experiments 

collected during the 2020 growing season. Because the data were acquired from two different 

sensors with mission plans that differed in some acquisitions, the study provided the opportunity 

to investigate the effects of flying height and the LiDAR sensor technology for estimating LAI. 

Models based on geometric features yielded good R2 values for both the sorghum and maize fields 

after the early season (DAS≥40). Models for maize had higher R2 values both due to the more open 

plant structure and lower planting density for a given time in the growing season. The models 

using features derived by the autoencoder had statistically lower R2 values than models determined 

using geometric features for sorghum (R2 values of geometric features from 0.58 to 0.74 vs. 

autoencoder features from 0.27 to 0.50) but were similar for maize (R2 values of geometric features 

from 0.74 to 0.82 vs. autoencoder features from 0.67 to 0.82). For autoencoder features, the number 

of points in each dataset did not have a significant impact on the R2 values based on the t-test 

statistic p-value (sorghum: 0.99, maize: 0.90). The results indicate that autoencoder feature 

extraction could be considered as a viable approach, compared to geometric feature extraction for 

canopies that have lower complexity (e.g., null hypothesis regarding the mean R2 values of 

geometric and autoencoder features are equal was not rejected based on t-test statistic p-value of 

0.53). However, more investigation is required to evaluate the robustness of the autoencoder 

feature extraction relative to LiDAR features. For example, investigating transfer learning 

approaches with multi-year data acquisitions or in another location data to increase the robustness 

of prediction models either over one type of row crop plant or from one type to another.  
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 CONCLUSIONS 

5.1 Summary 

The research reported in this dissertation investigated the capability of discrete return 

LiDAR data acquired in the field in 2019 and 2020 at plot scale for predicting LAI in sorghum and 

maize using multiple LiDAR sensors on airborne and wheel-based platforms. Geometric features 

were extracted from row-level data within plots, and multiple regression, partial least squares 

regression (PLSR), and support vector regression (SVR) models were evaluated for their 

respective predictive capability. As the LiDAR data were contaminated by noise and outliers 

relative to the plant structure, the impact of removing outliers on the LAI estimation was 

investigated over sorghum and maize in 2020 data. Appropriate features are required for robust, 

reliable predictive model. In addition to geometric features, an unsupervised feature extraction 

approach was investigated for encoding LiDAR point cloud data to estimate LAI over the sorghum 

and maize, and the results were compared to the estimates obtained using geometric features.  

5.2 Contributions of this work 

Contributions of this work are briefly described in the following. 

 Investigation of multiple LiDAR-based features for multitemporal prediction of LAI via 

regression models and evaluation of the capability of LiDAR sensors and platforms for 

acquiring data to predict LAI in sorghum and maize at multiple times during the growing 

season.   

 Investigation of outlier removal methods including geometric and deep learning-based 

PointCleanNet to improve the LAI prediction models. For the geometric method, the 

algorithm from Wang and Feng (2015) was modified for plant data. The PointCleanNet was 

trained based on synthetic data and applied for field data with complex geometry.  

 Investigation of an autoencoder deep learning feature extraction strategy (PointNet 

AutoEncoder) as an alternative to physical feature extraction to estimate LAI. This is the 

first application of the PointNet AutoEncoder to plants, whose complex geometry is difficult 

to characterize.  
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5.3 Objectives and Key Findings 

The objectives and key findings in each chapter of this dissertation are summarized in the 

following. 

 Chapter 2: The objective of this chapter was to investigate the capability of LiDAR data to 

estimate effective LAI over sorghum experiment fields in 2019 and 2020. Three LiDAR 

datasets collected in 2019 from a UAV platform were post-processed and used to develop 

LAI predictive models based on available destructive sampling ground reference data. Due 

to low point density, canopy penetration, and use of true LAI as a ground reference, the LAI 

models had low R2 values. In 2020, UAVs and PhenoRover LiDAR datasets were collected 

and analyzed using a plant canopy analyzer, as well as limited destructive sampling for 

ground reference. LiDAR data acquired from the UAV-2 with a Velodyne VLP-32C were 

higher density, and there was greater penetration through the canopy than with a Velodyne 

VLP-Puck Lite, and particularly at lower flight altitudes. However, in most cases, the R2 

values for estimated LAI obtained using the two UAVs, as well as the PhenoRover, were 

similar. The models were developed using diverse hybrids in the calibration panels, 

including some photoperiod sensitive varieties. The R2 values of the models improved when 

the photoperiod sensitive varieties were excluded, and especially in the later season. The 

geometric features used in this study were based on height-related sample statistics, canopy 

gap fraction feature (LPI) as well as the proposed horizontal feature (CAPI). In most of the 

datasets, the UAV models had higher R2 values compared to those developed using wheel-

based data in 2020, especially later in the growing season. The nonlinear regression model 

SVR with an RBF kernel had the highest R2 and lowest RMSE of all other methods used in 

this study. The study encountered multiple challenges, including that the method for 

acquiring ground reference data changed during the two-year period. The more intensive 

remote sensing data acquisition campaign in 2020 and the use of the plant canopy analyzer 

LAI-2200C for ground reference data were motivated by the need for more frequent data 

acquisitions during the vegetative stages of the growth cycle when the plants were growing 

rapidly. 

 Chapter 3: This chapter investigated two outlier removal methods for point clouds from the 

greenhouse, synthetic data, and field sorghum and maize plants. The goal was to evaluate 

the impact of outlier removal on LAI estimation over field data (sorghum and maize). The 
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outlier removal method from Wang and Feng (2015) was initially implemented and 

evaluated for non-isolated outliers in the point cloud. For removing isolated outliers, a simple 

approach based on the geometric relationship between points was proposed. This method 

requires specification of input parameters, including radius search and number of points in 

a neighborhood of a point of interest. These parameters were sensitive to the distribution and 

density of the points in the dataset. When a platform is stationary, and the points are 

uniformly distributed, e.g., as in the example of the individual plant in this study, finding the 

parameters is straightforward, as the density of points is adequate to detect the outliers. When 

the platform moves, the points are distributed sparsely. Coupled with the irregular shape of 

the plant-based objects, it is challenging for this method to remove the outliers. When the 

method was applied to sorghum datasets acquired from a UAV and the PhenoRover wheeled 

vehicle, the points within the canopy were sparse, and the geometric method did not perform 

well. In the maize dataset, the structure of the plants was visually more identifiable from 

both the UAV and the PhenoRover. Although some outliers were removed from the sorghum 

dataset, the plant structure was not recognizable after outlier removal. This illustrates the 

impact of sparse point datasets on this outlier removal approach. The PointCleanNet deep 

learning framework was also investigated for removing outliers from a LiDAR point cloud 

obtained for a single plant in a greenhouse, and multiple plant image-based point clouds 

derived image and field data. When the model was retrained using generated point clouds 

from overlapped images that were contaminated with different levels of simulated outliers, 

the loss was lower than the training the model-based solely on point clouds from actual 

plants. The network successfully removed different levels of outliers in the greenhouse data, 

which were not as complex as field data in terms of geometry and level of outliers. 

PointCleanNet was also applied to both maize and sorghum field data whose outliers 

included the impact of the complex structure of multiple rows of densely sown plants and 

movement of the platforms. LAI was estimated over field plots before and after outlier 

removal using the sorghum and maize data from both platforms. Although the p values from 

t-test statistics (sorghum:0.79, maize:0.78) show that there was not a significant difference 

between results obtained using data prior to and after outlier removal, the R2 values of 

estimated LAI from the PhenoRover improved both in terms of increased sample means and 

decreased standard deviations of R2 (e.g., sorghum on 7/24/2020 before outlier removed 0.57 



 

 

105 

and after 0.66). Based on these experiments, removal of outliers appears to be justified for 

plant structures when the point density is greater than ~600 points per m2, as was the case 

for the low altitude UAV and PhenoRover acquisitions where penetration through the 

canopy was higher. 

 Chapter 4: In this chapter, the primary focus was to investigate the application of an 

unsupervised autoencoder strategy for feature extraction, as these approaches do not require 

prior knowledge and definition of physical features. The method was applied to sorghum 

(SbDivTc_Cal) and maize (HIPS) experiments collected during the 2020 growing season. 

Because the data were acquired by two sensors (VLP-32C and VLP Puck Lite) on different 

platforms, the study provided the opportunity to investigate the effects of flying height and 

the different LiDAR sensors on the feature encoding and the resulting models. Models based 

on geometric features yielded good R2 values for both the sorghum and maize fields. Models 

for maize had higher R2 values due to both the plant structure and lower planting density 

(maize R2 values from 0.74 to 0.82 vs. sorghum R2 values from 0.58 to 0.74). The models 

using features derived by the autoencoder have substantially lower, statistically different R2 

values than models determined using geometric features for sorghum (R2 values of 

geometric features from 0.58 to 0.74 vs. autoencoder features from 0.27 to 0.50) but are 

similar for maize (R2 values of geometric features from 0.74 to 0.82 vs. autoencoder features 

from 0.67 to 0.82). The results indicate that autoencoder feature extraction could be 

considered as an alternative to geometric feature extraction for canopies that are less dense. 

(e.g., maize null hypothesis was not rejected based on t-test statistic p-value of 0.53). 

However, geometric features are recommended as the model values are superior, and they 

can be related to the plant characteristics. 

5.4 Research Limitations and Challenges 

Some limitation and challenges throughout this research are listed as follows:  

 LAI Ground reference: In this study, destructive sampling and LAI–2200C plant canopy 

analyzer were used as a ground reference. In 2019 three destructive sampling data sets were 

acquired. The 2020 season included investigation of LAI-2200C data as a reference source 

for LAI.  There were three destructive sampling data sets, and weekly LAI–2200C data were 

collected throughout the season, but there was only one common date for the two approaches, 
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as destructive sampling is performed at the beginning of the season, around flowering time, 

and at the end of the season. It is necessary to have more coincided of two types of reference 

to formulate the relationship between them, although increasing the destructive sampling 

would require larger plots with more rows.  

 Limitation in field sample data: For outlier removal by the deep learning method, having 

training data similar to the field data would increase the robustness of the models. In this 

study, the training data was synthetically generated from imagery whose characteristics were 

not aligned completely with the field data in terms of environmental condition and method 

of planting (e.g., planting in pots). Acquisition of LiDAR data from a gantry or a controlled 

facility with field arrangement simulation should be considered for future studies. 

 Noisy Data: After outlier removal, the field-based PhenoRover and UAV LiDAR data are 

contaminated by noise from different sources, including the moving platform, multi-path, 

and the complex geometry of plant structure. Although the PhenoRover platform LiDAR 

units are quite close to the plants, the plant structure and geometric characteristics could not 

be extracted directly from these data. 

5.5 Future Work and Recommendations 

Based on the results of this study, several future research directions should be considered: 

 Flight configuration: The trajectories of all the data acquired in 2019 and 2020 were in the 

row direction. As the platform did not fly over each row, there were more occluded areas 

between rows as the distance increased from the nadir, resulting in lower penetration deeper 

of the canopy. It is recommended to investigate flying perpendicular to the rows to determine 

whether canopy penetration is increased.  

 Additional data sources in LAI prediction models: Other sources of data such as RGB 

imagery should be investigated. Extracting features from RGB imagery, including leaf count 

and canopy cover, may enhance the performance of a predictive model. Also, the data from 

platforms such as small-wheeled rovers that provide data beneath the canopy would be useful 

to observe the structure of the plants deeper in the canopy and potentially provide additional 

features. 

 Implementation of multi-temporal deep learning networks for prediction, instead of classical 

SVR methods. 
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 Transfer learning: Investigate transfer learning approaches with multi-year data acquisitions 

to increase the robustness of prediction models. Also, some environmental and weather 

condition features could useful if there is more than one year of data.  

 Explore relationships between approaches for ground reference: Further study is needed to 

investigate the impact of the different methods in providing ground reference data, both in 

terms of quality control and their impact on prediction models. 

 Field-based LiDAR reference data: Training data is the basis for and one of the major 

challenges in machine learning, and particularly for deep learning. Although synthetic data 

could be used in training, they do not generally have the rich geometric characteristics of 

field data. Having reliable field data that are collected under controlled environmental 

conditions with a stationary platform, such as a gantry, would be beneficial to incorporate in 

the machine learning and deep learning models as well as use as a reference for evaluating 

new methods.  
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