
A FRAMEWORK FOR TRAINING SPIKING NEURAL
NETWORKS USING EVOLUTIONARY ALGORITHMS AND

DEEP REINFORCEMENT LEARNING
by

Anirudh Shankar

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Industrial Engineering

School of Industrial Engineering

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Vaneet Aggarwal, Chair

School of Industrial Engineering

Dr. Souvik Das

Department of Physics and Astronomy

Dr. Mario Ventresca

School of Industrial Engineering

Approved by:

Dr. Abhijit Deshmukh

2

ACKNOWLEDGMENTS

Firstly I would like to thank my advisor, Dr.Vaneet Aggarwal for providing me the oppor-

tunity to work on an interesting and non trivial problem of my choice. He has been extremely

supportive and has also guided me to alleviate the roadblocks I faced while working on my

problem. I started working with Dr.Aggarwal in August 2019 and his collaborations have

given me the opportunity to work on multiple projects throughout my tenure as a graduate

student. His support has helped me understand the topic of Spiking Neural Networks as well

as Reinforcement Learning in a concrete manner. I would also like to thank my committee

member Dr.Souvik Das who gave me the opportunity to work on an interesting problem

at the crossroads of Spiking Neural Networks and Evolutionary Robotics. His invaluable

guidance on academic writing and software development have helped me in an academic as

well as an industrial setting. I would also like to thank my committee member Dr.Mario

Ventresca for providing me with his invaluable thoughts and comments regarding my work.

3

TABLE OF CONTENTS

 LIST OF TABLES . 6

 LIST OF FIGURES . 7

 LIST OF SYMBOLS . 9

 ABSTRACT . 10

 1 MULTI AGENT ER BASED FRAMEWORK FOR TRAINING SPIKING NEU-

RAL NETWORKS . 11

 1.1 Introduction . 11

 1.1.1 Motivation . 11

 1.1.2 Evolutionary Robotics . 11

 1.2 Spiking Neural Networks . 12

 1.2.1 Main Contributions . 14

 1.3 System Components and Algorithm . 14

 1.3.1 System Model . 14

 1.3.2 Bots . 14

 1.3.3 The Spiking Neural Network . 15

 1.3.4 Environment . 19

 1.3.5 Evolutionary Algorithms . 19

 1.3.6 Mutation . 21

 1.3.7 Crossover with Mutation and its variants 21

 1.4 Evaluations . 25

 1.4.1 One experiment of Mutation . 27

 1.4.2 One experiment of Crossover with Mutation Variant-1 29

 1.4.3 Comparison over experimental ensembles 29

 2 REINFORCEMENT LEARNING FRAMEWORK FOR TRAINING SPIKING NEU-

RAL NETWORKS . 42

4

 2.1 Introduction . 42

 2.1.1 Motivation . 42

 2.1.2 Reinforcement Learning . 42

 2.1.3 Deep Spiking Neural Networks . 44

 2.2 System Model . 44

 2.2.1 Spiking Convolutional Neural Network 45

 2.2.2 Framework . 46

 State . 48

 Action . 49

 Reward . 49

 Formulation . 49

 2.2.3 Experiments . 52

 2.2.4 Discussion . 55

 3 CONCLUSION AND FUTURE WORK . 57

 REFERENCES . 58

5

LIST OF TABLES

 1.1 Parameter details of simulation . 27

 1.2 Summary of mean Inflection Point and Convergence Point for the evolutionary
strategies of Mutation and Crossover with Mutation. 30

 2.1 Parameter details of LIF Neuron used by our Learner Network 53

 2.2 Machine details used for simulation in both experiments presented in Chapter 1

and Chapter 2 respectively. 54

 2.3 Parameter details used in PPO Algorithm . 55

6

LIST OF FIGURES

 1.1 Graphical representation of a bot. The circular dot represents its areal extent
in the game environment. The blue quadrant represents its field of view that is
segmented as described in Section 1.3.2 . Each visual segment activates a different
combination of the sensory neurons of its SNN. 15

 1.2 The structure of a SNN that controls a single bot shown at a representative
state in its evolution. It consists of 30 spiking neurons in a directed network.
The shade of the edges correspond to their weights at a particular generation. 6
neurons are connected to the sensory inputs of the bot and 4 to its motor output. 17

 1.3 The membrane potential of a single simulated neuron as a function of time-steps
when fired with two values of incoming charge. In red is when the incoming
charge corresponds to an increase in potential that exceeds the threshold Vth,
and in blue is when it does not. 18

 1.4 Snapshot of the multi-agent environment within which the bots and their SNNs
evolve. The physical space is 500 units x 500 units, and is populated here with
10 bots and 10 pieces of food, all in constant motion. The walls are reflective,
as described in the text. The rules of evolution implemented by the environment
are described in Section 1.3.5 . 20

 1.5 Illustration of the crossover variant-1 that mixes the SNN weights of two bots
for the “Crossover and Mutation” strategy described in Section 1.3.7 . While the
illustration is with 4× 4 matrices, the SNN weight matrices are 30× 30. 22

 1.6 Illustration of the crossover variant-4 that mixes the SNN weights of two bots
for the “Crossover and Mutation” strategy described in Section 1.3.7 . While the
illustration is with 4× 4 matrices, the SNN weight matrices are 30× 30. 22

 1.7 The average time-steps to capture food, T as defined in Eq. 1.7 , as a function
of the number of generations using the evolutionary inheritance algorithm of
Mutation. A fit to a logistic function is used to extract quantitative features of
the punctuated equilibria. 28

 1.8 The average time-steps to capture food, T , as a function of the number of gen-
erations using the evolutionary strategy of Crossover and Mutation. A fit to a
logistic function is used to extract quantitative features of the punctuated equilibria. 30

 1.9 Distribution of Inflection Points (in generations) in an ensemble of 100 experi-
ments with the evolutionary strategy of Mutation. The histogram is binned by
150 generations and fitted with a Gaussian to estimate its mean and standard
deviation. 31

 1.10 Distribution of Inflection Points (in generations) in an ensemble of 100 experi-
ments with the evolutionary strategy of Crossover and Mutation Variant - 1. The
histogram is binned and fitted identically to Fig. 1.9 32

7

 1.11 Distribution of Inflection Points (in generations) in an ensemble of 100 experi-
ments with the evolutionary strategy of Crossover and Mutation Variant - 2. The
histogram is binned and fitted identically to Fig. 1.9 33

 1.12 Distribution of Inflection Points (in time-steps) in an ensemble of 100 experi-
ments with the evolutionary strategy of Crossover and Mutation Variant - 3.
The histogram is binned by 100 time-steps. It is bi-modal and fitted with two
Gaussians. Their means and standard deviations are reported.The histogram is
binned and fitted identically to Fig. 1.9 . 34

 1.13 Distribution of Inflection Points (in generations) in an ensemble of 100 experi-
ments with the evolutionary strategy of Crossover and Mutation Variant -4. The
histogram is binned and fitted identically to Fig. 1.9 35

 1.14 Distribution of Convergence Points (in time-steps) in an ensemble of 100 exper-
iments with the evolutionary strategy of Mutation. The histogram is binned by
100 time-steps and fitted with a Gaussian to estimate its mean and standard
deviation. 37

 1.15 Distribution of Convergence Points (in time-steps) in an ensemble of 100 ex-
periments with the evolutionary strategy of Crossover and Mutation Variant-1.
The histogram is binned by 100 time-steps. It is bi-modal and fitted with two
Gaussians. Their means and standard deviations are reported. 38

 1.16 Distribution of Convergence Points (in time-steps) in an ensemble of 100 experi-
ments with the evolutionary strategy of Crossover and Mutation Variant - 2. The
histogram is binned by 100 time-steps and fitted with a Gaussian to estimate its
mean and standard deviation. 39

 1.17 Distribution of Convergence Points (in time-steps) in an ensemble of 100 experi-
ments with the evolutionary strategy of Crossover and Mutation Variant - 3. The
histogram is binned by 100 time-steps and fitted with a Gaussian to estimate its
mean and standard deviation. 40

 1.18 Distribution of Convergence Points (in time-steps) in an ensemble of 100 ex-
periments with the evolutionary strategy of Crossover and Mutation Variant -4.
The histogram is binned by 100 time-steps. It is bi-modal and fitted with two
Gaussians. Their means and standard deviations are reported. 41

 2.1 Agent–environment interaction in reinforcement learning Ref. [29]. 43

 2.2 Raster plot of spike pattern of 25 inputs neurons converted from a center patch
of 5 x 5 pixels of a sample example from the MNIST dataset Ref. [42] 47

 2.3 Schematic Diagram of the Reinforcement Learning Framework to train a Spiking
Neural Network. The policy network refers to our Reinforcement Learning Policy
and the θ are the parameters of our learner network as mentioned in 2.2.2 . . . 50

8

LIST OF SYMBOLS

w(i) weight matrix of bot i

f (i) fitness function of bot i

b(i) spontaneous firing rate of bot i

v(i) visual angle of bot i

µmod Mutation parameter for weight matrix and spontaneous rate of bot

µvisual Mutation parameter for visual angle of bot i

θ Parameters of Spiking CNN(Learner Network)

L Loss obtained by employing spiking CNN on a dataset D

Ωt State at time t

at action at time t

rt reward obtained by taking at from state st at time t

πφp(a|s) Policy Network with parameters φp

V π

φv(Ω) Value Network with parameters φv

9

ABSTRACT

In this work two novel frameworks, one using evolutionary algorithms and another using

Reinforcement Learning for training Spiking Neural Networks are proposed and analyzed.

A novel multi-agent evolutionary robotics (ER) based framework, inspired by competitive

evolutionary environments in nature, is demonstrated for training Spiking Neural Networks

(SNN). The weights of a population of SNNs along with morphological parameters of bots

they control in the ER environment are treated as phenotypes. Rules of the framework

select certain bots and their SNNs for reproduction and others for elimination based on

their efficacy in capturing food in a competitive environment. While the bots and their

SNNs are given no explicit reward to survive or reproduce via any loss function, these

drives emerge implicitly as they evolve to hunt food and survive within these rules. Their

efficiency in capturing food as a function of generations exhibit the evolutionary signature of

punctuated equilibria. Two evolutionary inheritance algorithms on the phenotypes, Mutation

and Crossover with Mutation along with their variants, are demonstrated. Performances of

these algorithms are compared using ensembles of 100 experiments for each algorithm. We

find that one of the Crossover with Mutation variants promotes 40% faster learning in the

SNN than mere Mutation with a statistically significant margin. Along with an evolutionary

approach to training SNNs, we also describe a novel Reinforcement Learning(RL) based

framework using the Proximal Policy Optimization to train a SNN for an image classification

task. The experiments and results of the framework are then discussed highlighting future

direction of the work.

10

1. MULTI AGENT ER BASED FRAMEWORK FOR

TRAINING SPIKING NEURAL NETWORKS

1.1 Introduction

1.1.1 Motivation

Darwinian evolution through natural selection serves as the broad inspiration for the field

of evolutionary computation in defining searches for solutions to optimization problems in

high dimensional spaces. Evolutionary algorithms have been used to train the weights and

biases of deep artificial neural networks in Ref. [1]. In this work, we demonstrate the use of

multi-agent evolutionary algorithms, inspired by competition in nature, to train Spiking Neu-

ral Networks (SNN) as forms of artificial intelligence. SNNs are a special class of naturally

realistic ANNs that mimic the biological dynamics of discrete signaling events between neu-

rons known as spikes Ref. [2]. This is in contrast to currently popular ANNs which use real

numbers to represent average spiking frequencies. SNNs thus allow for encoding information

in the temporal sequence of spikes and offer higher computational capacity per neuron than

generic ANNs. The temporal sparseness of spikes also make SNNs attractive candidates for

low-energy, neuromorphic hardware implementations Ref. [3]. Alluring though SNNs may

be, training them requires novel methods since unlike generic ANNs which use continuous

and differentiable activation functions in their neurons that lend themselves to gradient de-

scent methods for learning, SNNs define the activation mechanics of their neurons in terms of

the time evolution of their membrane potentials. Hence, adapting gradient descent methods

for SNNs are not trivial. This motivates us to search for nature-inspired paradigms within

multi-agent Evolutionary Robotics to train them.

1.1.2 Evolutionary Robotics

Evolutionary robotics is a field that has gained popularity over the last two decades

Ref. [4]. It deals with the selection, variation and applying the concepts of evolutionary

computation to design robots. Evolutionary robotics can deal with the problem of designing

a robot’s apparatus, morphology and control simultaneously Ref. [4]. The learning aspect of

11

a robot is usually governed by an evolutionary algorithm. The controller of the robot can

be modelled using either simple functions or a complex function like a neural network. By

representing the controller of the bot as a neural network, the weights of the neural network

become parameters of the robot. The evolutionary algorithm functions in the following

manner. First, a population of candidate solutions are generated randomly. Since candidate

solutions are parameters of the controller, these created bots are allowed to interact with

the environment. Based on the environment and goals, an appropriate fitness function is

defined and this is used to evaluate the quality of candidate solutions by letting the bots

interact with the environment. Once the fitness values are obtained, candidate solutions are

selected for crossover and mutation operations. The selected solutions undergo reproduction

to generate new solutions and this cycle of creating and evaluating solutions is continued until

a termination condition is reached. Evolutionary robotics is able to address a major problem

of designing robots which are simple yet efficient Ref. [4]. A search space analysis and the

problem epistasis of employing Spiking Neural Network controllers under an ER setting

has been studied in Ref.[5] and Ref. [6] respectively. The controller of the robot is usually

represented using a neural network. Although artificial neural networks are commonly used,

but complex models like Spiking Neural Networks under a multi-agent setting are still not

popular in the field of evolutionary robotics.

In this work, synaptic weights of the SNN and morphological parameters of the robot

(henceforth referred to as the “bot”) together constitute each bot’s phenotype. The pheno-

type is identical to the genotype in our setup. A population of initially random phenotypes

are created and let loose in the ER arena as described in Section 1.3.1 . We investigate vari-

ants of evolutionary inheritance algorithms, described in Section 1.3.5 . Learning behavior

is seen to emerge in a few generations, including the evolutionary signature of punctuated

equilibria. This is described in Section 1.4 . Features of the punctuated equilibria are used

to compare performances of the inheritance algorithms.

1.2 Spiking Neural Networks

Spiking Neural Networks are considered to be the third generation of neural networks

Ref. [7]. SNNs consist of two principal units, a spiking neuron and synapses which connect

12

these neurons to each other. Spiking neurons communicate with each other using spike

sequences/trains. A spike train in mathematical terms can be described as follows Ref. [2]:

S(t) =
∑

f

δ(t− tf) (1.1)

where, tf is the firing time time of the f th spike and δ(.) is a Dirac Delta function with δ(t) 6= 0

for t = 0 and 0 otherwise. Each input spike to the spiking neuron increases the membrane

potential of the neuron by some amount. Spikes from various synapses are integrated to

increase the membrane potential of the spiking neuron. When the membrane potential of the

neuron crosses a threshold called as the firing threshold it fires a spike. The details pertaining

to the functioning of a spiking neuron are described in Section 1.2 . Various models of spiking

neurons ranging from the biologically realistic Hodgin-Huxley Model to the computationally

feasible Leaky Integrate and Fire (LIF) have been described in Ref. [8]. An important

aspect of spiking neural networks is information encoding Ref. [8]. Two main approaches of

neural information coding are popular. Rate coding and Temporal Coding. Rate Coding

approach assumes that information is encoded in the number of spikes or mean firing rate

of a neuron. Temporal coding on the other hand assumes that information is encoded in

the precise timing of the individual spikes. The temporal sequence of spikes are known

to play a role in computation in brains Ref. [9]–[11]. SNNs have found success in various

pattern recognition applications, including image processing and medical diagnosis Ref. [12]–

[17]. SNNs may be configured in convolutional, recurrent and deep-belief network forms as

well Ref. [3]. SNNs are a natural fit for robotics as individual spikes can trigger discrete

motor movements, and sequences of spikes at different motor neurons can articulate complex,

composite motions. Learning in SNNs is achieved by optimizing the synaptic weights and

spontaneous firing rate of neurons. This may be accomplished by local methods like Spike

Timing Dependent Plasticity Ref. [18], adaptations of gradient descent techniques Ref. [3],

[19], or global techniques like evolutionary algorithms Ref. [8]. Gradient descent techniques

rely on differentiable surrogates for the SNN activation mechanism Ref. [20]–[22]. Although

surrogate gradients have paved the way to perform training, the problem of training multi-

layered SNNs efficiently remains challenging. While some forms of evolutionary algorithms

13

have been used to train SNNs, our work distinguishes itself by the use of a multi-agent ER

framework.

1.2.1 Main Contributions

The main contributions of this work are as follows.

1. Demonstration of a multi-agent ER framework, inspired by competition in nature, to

train SNNs. The framework is kept as simple as possible with the smallest set of

parameters so we may arrive at general conclusions.

2. Quantitative characterization of evolutionary learning by fitting punctuated equilibria

to logistic curves.

3. Comparison between the performances of variants of evolutionary algorithms for train-

ing the SNNs.

1.3 System Components and Algorithm

1.3.1 System Model

The multi-agent ER framework within which we investigate the efficacy of evolutionary

algorithms for SNN training is described in this section. Experiments are performed in a

simulated arena consisting of a group of bots, each with an SNN, competing for the capture

of “food” in a “game environment” with certain rules. The bot is described in Section 1.3.2 ,

the SNN is described in Section 1.2 , and the game environment and food in Section 1.3.4 .

Since the food is replenished after a capture event, the experiments can run indefinitely. The

rules of evolution that kick in at each capture event are described in Section 1.3.5 .

1.3.2 Bots

Each bot occupies a circular area (of 40 units) and has a position (x, y) and angular

orientation θangular within a 2D game environment (of 500 units × 500 units). The movement

of the bot, in response to sensory input, is governed by motor output from the SNN that

14

Figure 1.1. Graphical representation of a bot. The circular dot represents its
areal extent in the game environment. The blue quadrant represents its field
of view that is segmented as described in Section 1.3.2 . Each visual segment
activates a different combination of the sensory neurons of its SNN.

controls it. Its sensory input is received through its field of view as illustrated in Fig. 1.1 .

The field of view is segmented into 9 parts; 3 radial ranges, and 3 angular ranges. The 3

radial ranges extend from 0 - 30, 30 - 60, and 60 - 100 units. The presence of food within

the field of view triggers a different neuron for each of the radial ranges. The opening angle

of the field of view, v, is considered a morphological parameter of the bot and is allowed

to evolve along with its SNN. The angle is trisected for 3 angular ranges and the presence

of food within each of them triggers a different sensory neuron. Thus, a total of 6 sensory

neurons are dedicated for the bot’s vision.

Four motor neurons control the movement of the bot. The first one, when fired, advances

the bot by 1 unit in its orientation direction. The second makes the bot take 1 step back. The

third and the fourth rotate the bot clockwise and anti-clockwise by 0.1 radians, respectively.

1.3.3 The Spiking Neural Network

Each bot has a SNN that controls it. Each SNN consists of 30 neurons in a fully-

connected, directed network, as illustrated in Fig. 1.2 . The edges of the network are asso-

15

ciated with weights wij, and this matrix is allowed to evolve. The network is not recurrent,

hence wii = 0. Of the neurons, 6 are sensory and 4 are motor as has been described. The

SNN operates in discrete time steps that also correspond to time steps in the motion of the

bot. Each neuron has a membrane potential V (t) whose dynamics is governed by the Leaky

Integrate and Fire (LIF) model Ref. [8]. The LIF model may be described by

dV (t)
dt

= 1
Cm

dq

dt
− V (t)

RmCm

(1.2)

where dq/dt is the input current, Cm is a measure of the neuron’s membrane capacitance, and

Rm is its membrane resistance. The first term expresses the increase in membrane potential

from the rate of charge deposition from incoming spikes. The second term reflects the decay

of membrane potential due to the spontaneous neutralization of charge. In our model, we

approximate LIF in the limit of infinitesimal time-steps using the difference equation:

V (t + 1)− V (t) = q(t)− βV (t) (1.3)

where β contains the RmCm decay constant and is set to 1%. The capacitance is set to unity

in our simulation with no loss of generality as the scale of V is set by the voltage threshold

Vth beyond which the neuron fires.

The incoming charge for neuron i at time-step t is given by the the sum of arriving spikes

weighted by wij

qi(t) =
∑

j
wijAj(t) (1.4)

where Aj(t) is 1 if the jth neuron has fired in time-step t and 0 otherwise.

A neuron fires if its membrane voltage exceeds the threshold Vth = 0.4 or randomly at

a spontaneous rate of b ≈ 1%. The spontaneous rate, which corresponds loosely to the

bias term for each neuron in traditional neural networks, is found to be important to avoid

16

0

1

2

3

4

5

6

7

8
9

10 11
12

13

14

15

16

17

18

19

20

21

22

23
24

2526
27

28

29

Sensory inputs Motor outputs

Figure 1.2. The structure of a SNN that controls a single bot shown at a
representative state in its evolution. It consists of 30 spiking neurons in a
directed network. The shade of the edges correspond to their weights at a
particular generation. 6 neurons are connected to the sensory inputs of the
bot and 4 to its motor output.

17

trapping the SNN in states where no neurons are firing or where all neurons are firing. This

spontaneous firing rate, b, is allowed to evolve. Thus, for the ith neuron at time t,

Ai(t) =

1 if Vi(t) > Vth OR r > b

0 otherwise
(1.5)

where r is a uniform random number from 0 to 1. When the neuron fires, the membrane

potential V is set back to 0 at the next time-step. We illustrate the firing behavior of a

single simulated neuron in Fig. 1.3 by plotting its membrane potential by time-step when

fired with an incoming charge corresponding to potential increases greater and lesser than

Vth.

0 20 40 60 80 100 120 140 160 180 200
 time-steps

0

0.1

0.2

0.3

0.4

0.5

 m
em

br
an

e
po

te
nt

ia
l

Fired neuron

Firing neuron failed

Figure 1.3. The membrane potential of a single simulated neuron as a func-
tion of time-steps when fired with two values of incoming charge. In red is
when the incoming charge corresponds to an increase in potential that exceeds
the threshold Vth, and in blue is when it does not.

18

1.3.4 Environment

The evolutionary environment in which our bots operate is a 2D square of 500 units ×

500 units, as shown in Fig. 1.4 . The walls are reflective, i.e. when bots run into the vertical

walls their θ is changed to π− θangular, and when they run into horizontal walls their θangular

is multiplied by -1.

The environment contains entities that result in the reproduction of a bot if captured. We

call these entities “food” for the remainder of the paper. Like the bots, they each have (x, y)

coordinates, a fixed orientation angle θ, and a randomly chosen speed. A capture occurs

when the square of the Pythagorean distance between a food and a bot, (xbot − xfood)2 +

(ybot − yfood)2, is less than 13. The procedures implemented in the reproduction of the bots

at each capture is described in Section 1.3.5 . The food is replenished in the environment by

placing a new instance in a random position and orientation with a randomly chosen speed.

1.3.5 Evolutionary Algorithms

The training takes places across several generations/iterations under the genetic algo-

rithm paradigm. Genetic Algorithms fall under the broad umbrella of evolutionary compu-

tation/strategies which include several types of strategies including Genetic Programming

and Particle swarm methods Ref. [8].Two broad classes of evolutionary inheritance algorithms

are illustrated and investigated in this work: we call the first class “Mutation” and the sec-

ond class as “Crossover with Mutation”. Within the “Crossover with Mutation” class of

algorithms we investigate 4 different variants. In both classes of algorithms, when a capture

event occurs as described in Section 1.3.4 , three procedures kick in: a selection procedure, a

reproduction procedure, and an elimination procedure. This results in a new “generation”

of bots which then continue to compete in the environment till the next capture event. The

phenotypical parameters of the bots, i.e., its SNN weight matrix w, the spontaneous firing

rate b, and its visual angle v, are initially random. Thus, initially, there is there no corre-

lation between what a bot senses in its field of view and what it does; its movements are

random. No explicit reward is given to the bots when it captures food. The successful bot(s)

are reproduced with purely random mutations, depending on the inheritance algorithm, and

19

Figure 1.4. Snapshot of the multi-agent environment within which the bots
and their SNNs evolve. The physical space is 500 units x 500 units, and is
populated here with 10 bots and 10 pieces of food, all in constant motion.
The walls are reflective, as described in the text. The rules of evolution im-
plemented by the environment are described in Section 1.3.5 .

20

bot(s) eliminated according to a fitness function to keep the population constant. With this

bare minimum of evolutionary pressure, we expect the SNNs to learn to drive the bots to

food with increasing efficiency in the course of a few generations. The fitness function used

is

f = N/τ, (1.6)

where N is the number of times it has captured food and τ is its age in time-steps. During

elimination, bots with the lowest values of f are removed from memory.

1.3.6 Mutation

In this inheritance algorithm, the bot that captured food is selected for reproduction. The

phenotype of the bot is duplicated with random mutations to create a new bot. Components

of the weight matrix w and b are modified with random Gaussian variations of standard

deviation µmod. The visual angle, v, is modified similarly with the parameter µvisual. This

is summarized in Algorithm 1 . One bot in the population is removed according the fitness

function f as described earlier.

Algorithm 1: Evolutionary inheritance algorithm of Mutation
Input: Selected bot has phenotype (wold, bold, vold);
Output: New bot made with phenotype (wnew, bnew, vnew);
for each connection (i, j) in w do

wnew
ij ← wold

ij +N (0, µmod);
end
bnew ← bold +N (0, µmod);
vnew ← vold +N (0, µvisual);

1.3.7 Crossover with Mutation and its variants

The general procedure of this class of inheritance algorithm involves waiting for two bots

to capture food and mixing their phenotype parameters to create two child bots. Two bots

with the lowest fitness values, f as described in Eq. 1.6 , are then eliminated. There are

exists a variety of crossover operations on matrices that exist in literature Ref. [23]. We have

21

!"" !"#
!#" !##

!"$!"%
!#$!#%!$" !$#

!%" !%#
!$$!$%
!%$!%%

&"" &"#
&#" &##

&"$ &"%
&#$ &#%&$" &$#

&%" &%#
&$$ &$%
&%$ &%%

&"" &"#
&#" &##

!"$!"%
!#$!#%&$" &$#

&%" &%#
!$$!$%
!%$!%%

!"" !"#
!#" !##

&"$ &"%
&#$ &#%!$" !$#

!%" !%#
&$$ &$%
&%$ &%%

Parent	1 Parent	2

Child	1 Child	2

Figure 1.5. Illustration of the crossover variant-1 that mixes the SNN weights
of two bots for the “Crossover and Mutation” strategy described in Sec-
tion 1.3.7 . While the illustration is with 4 × 4 matrices, the SNN weight
matrices are 30× 30.

Figure 1.6. Illustration of the crossover variant-4 that mixes the SNN weights
of two bots for the “Crossover and Mutation” strategy described in Sec-
tion 1.3.7 . While the illustration is with 4 × 4 matrices, the SNN weight
matrices are 30× 30.

22

investigated 4 different variants of crossover operations in our algorithm. In the first variant

of our algorithm, the weight matrices of the SNNs of the two bots, w1 and w2, are partitioned

in half and interchanged as illustrated in Fig. 1.5 . The new weight matrices, spontaneous rate

and visual angle are then mutated in exactly the same way for all the crossover variants and

with the same parameters µmod and µvisual as described in Section 1.3.6 . This is summarized

in Algorithm 2 .

Algorithm 2: Evolutionary inheritance algorithm of Crossover with Mutation
Variant-1.

Input: Selected bots have phenotypes (w1, b1, v1), (w2, b2, v2);
Output: New bots made with phenotypes (w3, b3, v3), (w4, b4, v4);
w3 ← w1;
w4 ← w2;
for each connection (i,j) in w1 do

if j > k/2 then
w4

ij ← w1
ij;

w3
ij ← w2

ij;
end
w3

ij ← w3
ij +N (0, µmod);

w4
ij ← w4

ij +N (0, µmod);
end
b3 ← b1 +N (0, µmod);
b4 ← b2 +N (0, µmod);
v3 ← v1 +N (0, µvisual);
v4 ← v2 +N (0, µvisual);

The second variant of the algorithm is similar to the first variant with the difference

being the partitioning point and orientation. In case of variant 1, both the matrices are

partitioned exactly into half while in this case the partitioning point is chosen randomly.

Once the partitioning point is determined the sections of w1 and w2 are exchanged to create

w3 and w4 respectively. The sections are exchanged both horizontally and vertically. It is

summarized in Algorithm 3 .

In the third variant of crossover operation, we create two children through an affine

combination of the two parent matrices w1 and w2. The influence of a parent matrix on the

child matrix is determined by a mixing factor α which is fixed throughout the algorithm.

23

Algorithm 3: Evolutionary inheritance algorithm of Crossover with Mutation
Variant-2.

Input: Selected bots have phenotypes (w1, b1, v1), (w2, b2, v2);
Output: New bots made with phenotypes (w3, b3, v3), (w4, b4, v4);
cPoint ←I(1, 30);
for each connection (i,j) in w1 do

if j < cPoint then
w3

ij ← w1
ij;

w4
ji ← w2

ji;
end
else

w3
ij ← w2

ij;
w4

ji ← wi
ji;

end
w3

ij ← w3
ij +N (0, µmod);

w4
ij ← w4

ij +N (0, µmod);
end
b3 ← b1 +N (0, µmod);
b4 ← b2 +N (0, µmod);
v3 ← v1 +N (0, µvisual);
v4 ← v2 +N (0, µvisual);

24

The mixing factor α accounts for the contribution of a single parent to an offspring. The

algorithm for the same is illustrated in Algorithm 4 .

Algorithm 4: Evolutionary inheritance algorithm of Crossover with Mutation
Variant-3.

Input: Selected bots have phenotypes (w1, b1, v1), (w2, b2, v2);
Output: New bots made with phenotypes (w3, b3, v3), (w4, b4, v4);
for each connection (i,j) in w1 do

w3
ij ← (1− α)w1

ij + αw2
ij;

w4
ij ← (1− α)w2

ij + αw1
ij;

w3
ij ← w3

ij +N (0, µmod);
w4

ij ← w4
ij +N (0, µmod);

end
b3 ← b1 +N (0, µmod);
b4 ← b2 +N (0, µmod);
v3 ← v1 +N (0, µvisual);
v4 ← v2 +N (0, µvisual);

The fourth and final crossover variant involves cropping a certain section from one parent

matrix say w1 and replacing the same section in w2. This is also done for w2 in order to

generate two children. It is illustrated in Fig. 1.6 and summarized in Algorithm 5 . The

parameters start and end described in Algorithm 5 are chosen to be 12 and 15 in our

case. This would intuitively mean that we would be exchanging the weights of motor neuron

connections between the two parent matrices w1 and w2 to create two new children. We chose

the number to be 12 and 15 because the 4 motor neurons responsible for the movement of a

bot are 12,13,14 and 15 respectively.

1.4 Evaluations

We evaluate variants of evolutionary algorithms by measuring the average number of

time-steps, T , needed by a bot to capture food at each generation. For our analysis, since

Crossover with Mutation requires 2 bots to capture food to advance a generation, we consider

the time taken for 2 consecutive captures in the definition of T for both strategies. Thus,

we define T as

T = 〈t2 − t1〉50 generations, (1.7)

25

Algorithm 5: Evolutionary inheritance algorithm of Crossover with Mutation
Variant-4

Input: Selected bots have phenotypes (w1, b1, v1), (w2, b2, v2);
Output: New bots made with phenotypes (w3, b3, v3), (w4, b4, v4);
w3 ← w1;
w4 ← w2;
for each connection (i,j) in w1 do

if i > startandi <= end then
w4

ij ← w1
ij;

w3ij←w2
ij ;

end
w3

ij ← w3
ij +N (0, µmod);

w4
ij ← w4

ij +N (0, µmod);
end
b3 ← b1 +N (0, µmod);
b4 ← b2 +N (0, µmod);
v3 ← v1 +N (0, µvisual);
v4 ← v2 +N (0, µvisual);

where t1 is the time-step at which piece of food is captured by a bot, and t2 is the time-step

at which another piece of food has been captured by any other bot and then yet another

piece captured by any bot. This quantity is averaged over 50 generations and studied. As

the SNNs learn, this is expected to decrease with the number of generations. Since this is

evolutionary learning, we also expect features of punctuated equilibria which we fit to the

logistic function.

Experiments for this paper are conducted in the previously described 500 units × 500

units environment with 10 bots and 5 pieces of food. Each bot is controlled by a SNN.

The global mutation parameters, µmod and µvisual defined in Section 1.3.6 , are set to 0.05

and 0.008, respectively. We arrived at these values by rough optimization of the final T

after 10,000 generations of evolution to obtain a fairly efficient learning environment. The

various parameter values along with their Our results, especially in their qualitative features,

do not lose generality in the neighborhood of this parameter set. The source code for

the entire setup and the simulation is given in https://github.itap.purdue.edu/Clan-

labs/Spiking-Evolution . The experiments are performed on a Linux x86_64 machine

with an Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz processor. The code is written in

26

https://github.itap.purdue.edu/Clan-labs/Spiking-Evolution
https://github.itap.purdue.edu/Clan-labs/Spiking-Evolution

C++. The rest of the machine details are listed in Table 2.2 . The parameter details for our

experimented are also listed in Table 1.1 .

Table 1.1. Parameter details of simulation

Parameter Details
Symbol Meaning Value
endGeneration Total number of generations during simulation 10000
worldSize Size of the grid. The world is a square grid of the

mentioned size
500

nBots Number of bots involved present in the world 10
nFoods Pieces of food present in the world 5
µmod Value of the parameter responsible for changing

strength of connection between neurons and spon-
taneous rate of neuron

0.05

µvisual Value of parameter responsible for changing the
visual angle of a bot

0.008

1.4.1 One experiment of Mutation

Much can be learned by observing the outcome of one experiment with the Mutation

inheritance algorithm. As seen in the video accompanying this paper, bots are initially

seen to execute random motions with no regard for food in their fields of view. As bots

accidentally capture food and reproduction begins, small mutations in a bot’s phenotype that

make food capture more probable allow that bot to have more offspring. Thus, after roughly

100 generations, food capture becomes less accidental and more apparently intentional as

the SNNs structure themselves to make use of sensory data from their field of view. Around

generation 1,400, we observe the development of hunting behavior as the bots learn to cover

ground and spin their fields of view in search of food. Bots that do not hunt have lower

fitness values f and are eventually culled. This development results in a rapid improvement

in efficiency and decrease in T , as defined in Eq. 1.7 .

In Fig. 1.7 , we study the variation of T as a function of generation up to 10,000 gen-

erations. While there is a large variance in T initially, as the population of bots branches

into lineages that sometimes work well and sometimes do not, we note a sharp drop around

generation 1,214 when a bot discovers hunting. Thereafter, the bot that discovered hunting

27

https://youtu.be/JCUczJRtb0I

Figure 1.7. The average time-steps to capture food, T as defined in Eq. 1.7 ,
as a function of the number of generations using the evolutionary inheritance
algorithm of Mutation. A fit to a logistic function is used to extract quantita-
tive features of the punctuated equilibria.

28

dominates the population with its offspring and T remains relatively stable up to 10,000

generations. Thus, we observe two periods of equilibrium connected by a punctuation, as

expected in evolutionary systems. We extract broad features of this punctuated equilibria

by fitting the graph with a logistic function on a flat pedestal of the form

f(g) = L

1 + ek(g−g0) + c. (1.8)

The center of the punctuation, or the Inflection Point, is given by g0 in generations. The

sharpness of the punctuation is given by the slope of the inflection, k. The final equilibrium

value of T is given by c, and we call this the Convergence Point. The initial equilibrium value

of T is given by L+c. A minimum χ2 fit returns g0 = 1214±17 generations, k = 0.020±0.001

time-steps / generation, L = 2935± 144 time-steps and c = 717± 10 time-steps.

1.4.2 One experiment of Crossover with Mutation Variant-1

We repeat the experiment with the inheritance algorithm of Crossover with Mutation

along with their variants and observe similar behavior in the bots as they learn to capture

food. Faster learning is observed as hunting behavior emerges around generation 469. A

minimum χ2 fit with Eq. 1.8 returns g0 = 469± 33 generations, k = 0.020± 0.000 time-steps

/ generation, L = 5164± 669 time-steps and c = 780± 10 time-steps.

1.4.3 Comparison over experimental ensembles

The trajectories of these experiments and the quantitative features of the punctuated

equilibria depend sensitively on the random number generator that dictate the initial phe-

notypes of the bots and their mutations. Therefore, to establish any significant quantitative

difference between the two evolutionary algorithms, a statistical study is performed. The

experiments with Mutation, and Crossover with Mutation are each repeated 100 times with

different random number seeds(seed numbers serially range from 1 to 100). This results in

an ensemble of trajectories for each approach.

One may be naively tempted to consider the average of T at each generation over the

100 trajectories for each ensemble. However, since the inflection happens at a different point

29

Figure 1.8. The average time-steps to capture food, T , as a function of
the number of generations using the evolutionary strategy of Crossover and
Mutation. A fit to a logistic function is used to extract quantitative features
of the punctuated equilibria.

Table 1.2. Summary of mean Inflection Point and Convergence Point for the
evolutionary strategies of Mutation and Crossover with Mutation.

Evolutionary Strategy Inflection Point Convergence Point
(generations) (time-steps)

Mutation 512± 68 699± 5
Crossover with Mutation Variant-1 300± 9 759± 25 and 1967± 31
Crossover with Mutation Variant-2 565± 39 949± 41
Crossover with Mutation Variant-3 495± 27 and 1659 ±74 788± 12
Crossover with Mutation Variant-4 331± 30 717± 53 and 1794± 112

30

Figure 1.9. Distribution of Inflection Points (in generations) in an ensemble
of 100 experiments with the evolutionary strategy of Mutation. The histogram
is binned by 150 generations and fitted with a Gaussian to estimate its mean
and standard deviation.

31

Figure 1.10. Distribution of Inflection Points (in generations) in an ensemble
of 100 experiments with the evolutionary strategy of Crossover and Mutation
Variant - 1. The histogram is binned and fitted identically to Fig. 1.9

32

Figure 1.11. Distribution of Inflection Points (in generations) in an ensemble
of 100 experiments with the evolutionary strategy of Crossover and Mutation
Variant - 2. The histogram is binned and fitted identically to Fig. 1.9

33

Figure 1.12. Distribution of Inflection Points (in time-steps) in an ensemble
of 100 experiments with the evolutionary strategy of Crossover and Muta-
tion Variant - 3. The histogram is binned by 100 time-steps. It is bi-modal
and fitted with two Gaussians. Their means and standard deviations are re-
ported.The histogram is binned and fitted identically to Fig. 1.9

34

Figure 1.13. Distribution of Inflection Points (in generations) in an ensemble
of 100 experiments with the evolutionary strategy of Crossover and Mutation
Variant -4. The histogram is binned and fitted identically to Fig. 1.9

35

in each experiment, such averaging would result in a soft falling curve and would thus lose

information on where the inflections occur. To avoid this, we fit each of the 100 trajectories

with the logistic function, extract the g0 and c, and plot their distributions for comparison

between the variants of evolutionary strategies. Fig. 1.9 and 1.10 show the distributions

of the Inflection Points in the 100 experiment ensembles for the inheritance algorithms of

Mutation, and Crossover with Mutation Variant - 1, respectively. They are both fitted with

Gaussians to extract the means and standard deviations of these distributions. We note that

while Mutation inflects at 512± 68 generations, Crossover with Mutation Variant-1 inflects

significantly earlier at 300 ± 9 generations. Thus, one may say Crossover with Mutation

Variant-1 results in 40% faster learning than just Mutation. Fig. 1.14 and Fig. 1.15 show the

distributions of the Convergence Points for Mutation, and Crossover with Mutation Variant

- 1, respectively.

While the distribution for Mutation may be fitted to a simple Gaussian with mean at

699 ± 5 time-steps, the distribution for Crossover with Mutation Variant-1 is clearly bi-

modal. We fit the latter with the sum of two Gaussians and find that their means are at

759±25 and 1967±31 time-steps, respectively. This and the lack of a bi-modal distribution

in Fig. 1.10 imply that in a fair fraction of cases, Crossover with Mutation Variant-1 converge

to a less-than-optimal solution though it starts the learning process faster. By comparing

areas under the two peaks of the bi-modal distribution, we find that fraction to be 29%. We

summarize these results in Table 1.2 . Apart from the distribution of convergence points for

Crossover and Mutation Variant - 1, it can be observed that Crossover and Mutation Variant

- 4 also follows a bi-modal distribution. In Ref. [24] it has been shown that pure mutation

demonstrates better results than a combination of crossover and mutation in case of a few

combinatorial optimization problems. On the other hand Ref. [24] also demonstrated that

although pure mutation achieves better results, the combination of crossover and mutation

converges much faster. Crossover operation generally provides large jumps in solution space

while mutation is responsible for small jumps which helps in more exhaustive exploration

of the search space. These large jumps provided by crossover help it converge faster but

mutation ultimately converges to a better solution since it explores the solution space in a

better manner Ref. [24].

36

Figure 1.14. Distribution of Convergence Points (in time-steps) in an en-
semble of 100 experiments with the evolutionary strategy of Mutation. The
histogram is binned by 100 time-steps and fitted with a Gaussian to estimate
its mean and standard deviation.

37

Figure 1.15. Distribution of Convergence Points (in time-steps) in an en-
semble of 100 experiments with the evolutionary strategy of Crossover and
Mutation Variant-1. The histogram is binned by 100 time-steps. It is bi-
modal and fitted with two Gaussians. Their means and standard deviations
are reported.

38

Figure 1.16. Distribution of Convergence Points (in time-steps) in an en-
semble of 100 experiments with the evolutionary strategy of Crossover and
Mutation Variant - 2. The histogram is binned by 100 time-steps and fitted
with a Gaussian to estimate its mean and standard deviation.

39

Figure 1.17. Distribution of Convergence Points (in time-steps) in an en-
semble of 100 experiments with the evolutionary strategy of Crossover and
Mutation Variant - 3. The histogram is binned by 100 time-steps and fitted
with a Gaussian to estimate its mean and standard deviation.

40

Figure 1.18. Distribution of Convergence Points (in time-steps) in an en-
semble of 100 experiments with the evolutionary strategy of Crossover and
Mutation Variant -4. The histogram is binned by 100 time-steps. It is bi-
modal and fitted with two Gaussians. Their means and standard deviations
are reported.

41

2. REINFORCEMENT LEARNING FRAMEWORK FOR

TRAINING SPIKING NEURAL NETWORKS

2.1 Introduction

2.1.1 Motivation

Today, deep neural networks commonly used in image classification, detection, segmenta-

tion, language translation and a myriad other applications which are dependent on the usage

of intensive graphic cards Ref. [3]. Spiking Neural Networks on the other hand communicate

using discrete events known as spikes making them excellent candidates to be implemented

on neuromorphic hardware that makes them energy efficient Ref. [3]. The recent successes

in deep learning has motivated research attention in the area of Spiking Neural Networks

with multiple layers Ref. [25],Ref. [26]. However, the training of such large SNNs remains a

difficult task due to the non differentiable nature of spikes. Local learning methods like Spike

Timing Dependent Plasticity Ref. [18], adaptations of gradient descent techniques Ref. [3],

[19], or global techniques like evolutionary algorithms Ref. [8] have been employed in training

Spiking Neural Networks. Recently a novel method of meta training deep neural networks

using Reinforcement Learning has been achieved in Ref. [27] and Ref. [28]. Designing an

algorithm is a labour intensive process which can be done using Reinforcement Learning

potentially yielding novel and faster algorithms. Unlike supervised learning which requires

a differentiable loss function, reinforcement learning can be applied in scenarios where a loss

function is non-differentiable. Since SNNs suffer from the problem of non-differentiability

this motivates us to train them using Reinforcement Learning.

2.1.2 Reinforcement Learning

Reinforcement Learning is an area of machine learning that involves an agent interacting

with an environment through a series of actions Ref. [29]. The agent environment interaction

is shown in Fig. 2.1

We will now formally describe the various components of any Reinforcement Learning

algorithm. The learner and decision-maker is called the agent. The thing it interacts with,

42

Figure 2.1. Agent–environment interaction in reinforcement learning Ref. [29].

comprising everything outside the agent, is called the environment. The agent and environ-

ment interacts at each time step which is discrete in nature. The agent at every time step t

receives some representation of the environment’s state, St ∈ S, where S is the set of possible

states, and on that basis selects an action, At ∈ A(St), where A(St) is the set of actions

available in state St Ref. [29]. One time step later, in part as a consequence of its action, the

agent receives a numerical reward, Rt+1 and finds itself in a new state, St+1. At each time

step, the agent implements a mapping from states to probabilities of selecting each possible

action. This mapping is called the agent’s policy and is denoted πt, where πt(a|s) is the

probability that At = a if St = s. The aim of the agent is to maximize the total amount of

reward it receives over the long run Ref. [29]. Reinforcement Learning techniques have been

successful in the domain of Atari games and robotics Ref. [30]. Deep learning has signifi-

cantly accelerated the progress of Reinforcement Learning yielding a field known as “Deep

Reinforcement Learning”. Deep Reinforcement Learning techniques have also been successful

in problems with high dimensional state and action spaces that were previously considered

intractable Ref. [31]. There exist a variety of reinforcement learning algorithms which can be

broadly classified into three categories : algorithms based on value functions, policy search

methods and hybrid actor-critic methods in Ref. [31]. Within each class of methods there

are algorithms capable of handling both discrete and continuous spaces. Some of the algo-

rithms involving value functions are SARSA in Ref. [29], Q-Learning in Ref. [32] and Deep

Q-Learning in Ref. [33]. On the other other hand REINFORCE in Ref. [34] is an example

43

of policy search method while Advantage Actor Critic in Ref. [35], TRPO in Ref. [36] and

PPO in Ref. [37] are some examples of hybrid algorithms.

2.1.3 Deep Spiking Neural Networks

Spiking Neural Networks have their deep learning counterparts some of which are deep

fully connected SNNs, spiking CNNs and spiking RNNs Ref. [3]. Deep fully connected SNNs

today are either trained using some variants of surrogate gradients, local learning rules like

STDP or by converting an ANN into an SNN. The idea of converting an offline trained ANN

into SNN is also popular and employed in Ref. [38]. Currently, the default choice of network

for image classification, object detection and segmentation is a Convolutional Neural Network

(CNN). Spiking CNNs have been described and used for image classification in Ref. [19] and

Ref. [39]. Conversion of popular convolutional operations like max pooling, softmax, batch

normalization into their respective spiking equivalents have been demonstrated in Ref. [39].

The usage of a spiking CNN along with a novel spike count based learning rule to train the

network and achieve a 99.26% test accuracy on the MNIST dataset has been demonstrated

in Ref. [40]. A 99.10% accuracy was achieved on the MNIST dataset by using a spiking

CNN which was developed by converting an offline trained ANN in Ref. [41]. Ref. [42] have

also successfully demonstrated the application of backpropagation techniques on the MNIST

dataset using derivative approximations. A detailed reported of classification accuracies for

image classification tasks have been presented in a tabular fashion in Ref. [3].

2.2 System Model

The reinforcement learning framework to train a spiking neural network for image clas-

sification is presented in this section. To illustrate the usage of the framework, we train a

Spiking CNN to classify the handwritten digits of the MNIST dataset using a Reinforcement

Learning Algorithm. We first describe our Spiking CNN in Section 2.2.1 and then describe

our framework, algorithm in Section 2.2.2 . A brief discussion of the results obtained and

future direction is highlighted in Section 2.2.4 .

44

2.2.1 Spiking Convolutional Neural Network

We employ a Spiking Convolutional Neural Network as described in Ref. [42] to iden-

tify the handwritten digits of the MNIST dataset. The network architecture consists of 2

convolutional layers, 2 pooling layers and 2 fully connected layers. Each individual neuron

within this network is a leaky integrate and fire neuron whose dynamics is presented be-

low. In Ref. [42] an iterative version of the traditional LIF model is presented to propose

a backpropagation algorithm. A novel training method known as STBP which integrates

training across spatial domain and temporal domain along with an approximate derivative

for spike activity is also presented in Ref. [42]. The most widely known differential equation

for describing the neuronal dynamics of a LIF neuron is given in Eq. 2.1

τ
du(t)

dt
= −u(t) + I(t) (2.1)

where u(t) is the neuronal membrane potential at time t, τ is a time constant and I(t) denotes

the pre-synaptic input which is determined by pre-neuronal activities, external inputs and

synaptic weights. An iterative version of the LIF neuron is also presented in Eq. 2.2 which

can be used to approximate the membrane potential u(t) given in Eq. 2.1 .

u(t) = u(ti−1)e
ti−1−t

τ + I(t) (2.2)

The presented LIF neuron in Ref. [42] has iterations in both the spatial as well as temporal

domain which is given by Eq. 2.3 - 2.5 .

xt+1,n
i =

l(n−1)∑
j=1

wn
ijo

t+1,n−1
j (2.3)

ut+1,n
i = ut,n

i f(ot,n
i) + xt+1,n

i + bn
i (2.4)

ol+1,n
i = g(ul+1,n

i) (2.5)

where

f(x) = τe
−x
τ

45

g(x) =

1 x ≥ Vth

0 x ≤ Vth

In the formulas listed above Ref. [42], the upper index t denotes the moment at time t, n

and l(n) denote the nth layer and the number of neurons in the nth layer respectively. wij is the

synaptic weight from the jth pre-synaptic neuron to the ith post synaptic neuron and oj ∈ 0, 1

is the output of the jth neuron where oj = 1 denotes a spike and 0 otherwise. xi is a simplified

representation of the pre-synaptic inputs of the ith neuron, ui is the membrane potential of the

ith neuron and bi is a bias parameter. The entire spatio temporal backpropagation algorithm

along with the derivative approximations of the non-differentiable spike activity has been

explained in a detailed manner in Ref. [42]. Two architectures a fully connected one and a

convolutional neural network have been experimented Ref. [42]. The loss function employed

in [42] is given in Eq. 2.6 Ref. [42]

L = 1
2S

S∑
s=1

∥∥∥ys −
1
T

T∑
t=1

ot,N
s

∥∥∥ (2.6)

where ys and os denote the label vector and output vector of last layer N of the sth

training sample. Since the inputs and outputs of a spiking neural network are spike trains

the input layer of the first layer should be a spike train which is created by bernoulli sampling

from original pixel intensity to create a spike rate in Ref. [42].

In case of convolutional layers the kernel size decides the number of neurons and the spike

rate of each neuron is set according to the original pixel intensity. An example encoding of

an image from the MNIST dataset is shown in Fig. 2.2

2.2.2 Framework

In this section, we will describe the framework used to train SNNs by employing Re-

inforcement Learning. We desire to train our SNN to maximize the classification accuracy

on an image dataset. The general structure of any optimization algorithm is outlined in

Algorithm 6 . The SNN network used for image classification on a dataset D will henceforth

to be referred as the learner network and our reinforcement learning policy will be referred

46

Figure 2.2. Raster plot of spike pattern of 25 inputs neurons converted from
a center patch of 5 x 5 pixels of a sample example from the MNIST dataset
Ref. [42]

47

as the policy network or πφp(a|s) with parameters(weights and biases) φp. The policy π in

our case is represented by a neural network. Before describing the framework we will first

describe the general structure of any optimization algorithm shown in Algorithm 6 .

Algorithm 6: General Structure of Optimization Algorithm [27]
Require : Objective function f ;
x(0) ← random point in the domain of f ;
for i = 1,2,... do

∆x← π(f, x(0), ..., x(i−1));
if stopping condition is met then

return x(i−1);
end
x(i) ← x(i−1) + ∆x;

end

All existing optimization algorithms follow the subroutine mentioned above in Algo-

rithm 6 . Every optimization algorithm has a step vector ∆x that is added to the current

iterate to yield the next iterate based on some function of the history of iterates x(0)...x(i−1)

and the objective function f(x) as illustrated in Algorithm 6 . In our case the function π(.)

yielding the step vector is given by the policy of our Reinforcement Learning algorithm.

The policy πφp parameterized by φφp in our case is assumed to be stochastic. We will use a

Reinforcement Learning algorithm to learn our policy π. The state, action and reward for

this scenario will now be discussed in the subsequent sections.

State

The state in our case is a tuple consisting of the weights of the learner network and the

objective value obtained through these parameters. The objective value at time t denoted

by Lt is simply the value of cross entropy loss we obtain by employing this network with

parameters θ to classify a dataset D. We formally denote the state at time t as Ωt = (θt, Lt).

The parameters of our learner network are unrolled/flattened to create the one dimensional

vector θt.

48

Action

The action in our case is simply the step vector ∆θt. The dimension of this step vector is

identical to our unrolled parameters θt. We add this step vector to our current parameters

of the learner network θt as shown in Algorithm 6 to generate our new set of parameters

θt+1 and objective value Lt+1. In scenarios where the action space is continuous, the policy

network π maps a vector µ from the state Ω specifying a distribution over the action space

in Ref. [36]. The action at in our case is sampled from a normal distribution a ∼ N (µ, σ),

whose mean µ is the output of the policy network πφp and standard deviation σ is specified

by the user. Each component of our action at is modelled as an independent gaussian.

Reward

The reward at each time step rt is the classification accuracy obtained by employing the

learner network with parameters θt on an image classification dataset D. Intuitively, the

reward at t is inversely proportional to the objective value/loss Lt.

Formulation

We will now describe the problem formulation and algorithm to train our learner network.

The objective is to train a SNN using a RL algorithm for an image classification task.

Firstly, the image classification dataset D is divided into training, validation and testing sets

denoted by Dtrain, Dval and Dtest respectively. For training our learner network to achieve a

greater accuracy on Dtest, we use our RL algorithm described in Algorithm 7 . The learner

network is first initialized with parameters θinitial and the corresponding objective value

Linitial computed using dataset Dval. The details pertaining to the initialized parameters

θinitial will be discussed in Section 2.2.3 . The policy network π − φp(a|s) is also initialized

with a random set of parameters φp. Since our learner network contains tens of thousands

of parameters we do not model our policy πφp(a|s) as a regular feed forward neural network

but employ a form of parameter sharing to significantly reduce the number of parameters

Ref. [43]. This form of parameter sharing is enabled by employing a special kind of network

known as coordinate wise LSTM as described in Ref. [44].

49

Figure 2.3. Schematic Diagram of the Reinforcement Learning Framework to
train a Spiking Neural Network. The policy network refers to our Reinforce-
ment Learning Policy and the θ are the parameters of our learner network as
mentioned in 2.2.2

50

A coordinate wise LSTM architecture allows each coordinate/dimension of our action at

to maintain its own hidden state but allows the LSTM parameters to be shared across all

dimensions. This prevents an explosion of parameters in case of larger networks. Parameter

sharing can be easily implemented by having the input to be a batch of coordinates and

loss inputs (θ, L). We employ the actor critic style Proximal Policy Optimization(PPO)

algorithm with a clipped objective function as described in Ref. [37] to learn our stochastic

policy πφp . Actor Critic methods combine the usage of state value functions along with a

policy gradients Ref. [29]. Actor Critic methods have two components an actor and a critic.

The actor is the policy function which in our case is π and the critic is a state value function

which returns the value of state, a measure of goodness of a particular state. The critic

evaluates the actor’s policy and provides a conditioned reinforcement allowing the actor to

improve it’s policy Ref. [29]. Since we are using an actor critic style implementation of the

PPO algorithm,a value network Vπ

φv(s) is used which takes state at time t Ωt as input and

returns its value. Since the value of a state is a scalar we use a regular feed forward neural

network to represent our value network.

The PPO algorithm updates the policy by running multiple epochs of stochastic gradient

ascent on minibatches of collected samples/experience unlike natural policy gradients which

update the policy per sample Ref. [37]. The PPO algorithm is a trust region method which

penalizes for large changes in policy making the algorithm much more stable compared to

vanilla policy gradient methods. The PPO constrains the step size of stochastic gradient

ascent by computing ratios between the current policy and previous policy and clipping it

accordingly Ref. [37]. A schematic diagram of this entire setup in illustrated in Section 2.3 .

The objective mentioned in Algorithm 7 is further augmented by adding an entropy term

to encourage exploration as shown in Ref. [34], [35] . We also use the state values V (s) as our

baseline to compute our advantage estimates. In our case, we maintain separate networks for

our actor or policy network π and our value network or critic V π(s). The policy network is

represented by using a coordinate wise LSTM and the value network is represented by using

a regular feed forward neural network as mentioned before. Hence during implementation

of the PPO algorithm presented in Ref. 7 we have distinct loss functions to train our actor

51

Algorithm 7: Reinforcement Learning Algorithm to train a Spiking Neural Net-
work

Initialize: Learner Network Parameters θinitial, objective value Linitial, Policy
Network Parameters φp and Value Network Parameters φv respectively.;
for k=0,1,2... do

Reset state Ω0 = (θinitial, Linitial).;
for t in 1:T do

Get action at from policy network πφ.;
Execute action at to get Ωt+1, rt+1 and objective value Lt+1.;
Store tuple (Ωt, at, rt+1, dt+1) into memory M ;

Estimate advantages Aπk
t by using any advantage estimation method.;

Compute policy update;

φk+1 = arg max
φ

LCLIP
φk

(φ)

over K epochs by using Adam optimizer, where ;

LCLIP
φk

(φ) = Eτ∼πk

[
T∑

t=0
[min (rt(θ)Aπk

t , clip(rt(φ), 1− ε, 1 + ε)Aπk
t)]

]

and critic. Further details of the pertaining to the PPO algorithm have been demonstrated

in Ref. [37].

2.2.3 Experiments

We will now describe the experimental setup to train a SNN using Reinforcement Learn-

ing. Firstly, we train our learner network to classify the handwritten digits of the MNIST

training dataset Dtrain as described in Ref. [42]. The source code to train our learner network

and obtain the intialized parameters θinitial can be obtained at https://github.com/shanka19/BP-

for-SpikingNN . The parameters of the learner network are then saved as θinitial which is

used as the starting point for our Reinforcement Learning algorithm. A table containing the

list of parameters of the LIF neuron used in the learner network is given in Table 2.1 .

Since we desire to maximize our accuracy of the learner network on dataset Dtest, pro-

viding the algorithm with a good initializer is important. Additionally, since the parameters

θinitial are obtained by training our learner network on Dtrain which is obtained by randomly

52

https://github.com/shanka19/BP-for-SpikingNN
https://github.com/shanka19/BP-for-SpikingNN

Table 2.1. Parameter details of LIF Neuron used by our Learner Network

Parameter Details of LIF Neuron
Parameter Name Parameter Meaning Parameter Value

Vth Neuron Threshold 0.5
τ Decay Factor 0.2ms
T Simulation Time/Time Window 20ms
dt Simulation time step 1ms

splitting our MNIST training dataset into Dtrain and Dval we evaluate the performance of

our initialized parameters as well as our reinforcement learning algorithm on 10 random

splits (seeds serially numbered from 1 to 10). The learner network is trained using the PPO

algorithm for a period of 500 episodes. Each episode consists of a maximum of 10 timesteps.

The coordinate wise LSTM also operates on 10 timesteps. Each step involves running our

policy πφp with the state Ωt as input to recieve our action at as output. The action is per-

formed to yield our next state and associated reward. At the end of each step we also store

the state, action and reward in our replay memory M which is used to update our policy

πφp later. The parameters φv of our value network are optimized based on the loss function

given in 2.2.3

loss = 1
2

∑
t

V πv(st)− rnorm
t

where V πv(st) is the value of a state at time t as obtained from our value network and rnorm
t

is the normalized reward obtained at time t. At the end of each episode we report the

accuracy achieved by our learner network on Dtest. We also update our policy network πφ

at the end of each episode. Since we already start with a good initializer we do not want

to move too far from the current optima, hence we limit the scale of our action. The action

at ∈ (−1, 1) which seemed to be a very large number since most of the parameters of our

learner network itself are in the range (0, 1). Hence we introduce another hyperparameter

called as the action division factor α. We carry out our experiment for different values of

the α. The hyperparameters used by our PPO algorithm is also given in Table 2.3 . The

source code for training our learner network using the PPO Algorithm can be obtained at

 https://github.itap.purdue.edu/Clan-labs/SCNN-RL .

53

https://github.itap.purdue.edu/Clan-labs/SCNN-RL

Table 2.2. Machine details used for simulation in both experiments presented
in Chapter 1 and Chapter 2 respectively.

Machine Details
Component Details
Architecture x86_64

CPU op-mode(s) 32 bit, 64 bit
Byte Order Little Endian

CPU(s) 36
On-line CPU(s) list 0-35
Thread(s) per core 2
Core(s) per socket 18

Socket(s) 1
NUMA node(s) 1

CPU family Intel
Model 85

Model Name Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
Stepping 4

CPU MHz 3688.464
CPU Max MHz 4500.0000
CPU Min MHz 1200.0000

BogoMIPS 60000.0
Virtualization VT-x

L1d cache 32k
L1i cache 32k
L2 cache 1024k
L3 Cache 25344k

GPUs 4
GPU Model GeForce RTX 2080 Ti

GPU Memory Specs 11GB GDDR6

54

The experiments are performed on a Linux x86_64 machine with an Intel(R) Core(TM)

i9-9980XE CPU @ 3.00GHz processor. The rest of the machine details are presented in

Table 2.2 . The code is written in Python.

Table 2.3. Parameter details used in PPO Algorithm

Parameter Details of Learner Network and PPO Algorithm
Parameter Name Parameter Meaning Parameter Value
max_episodes Total Number of training episodes 500

max_timesteps Total number of timesteps in each episode 10
σaction Standard deviation of each action component 0.01
Kepochs Policy update frequency 10
epsclip Clipping parameter of PPO Algorithm 0.2

γ Discount factor of PPO Algorithm 0.99
lr Learning rate for PPO Algorithm 0.0005
β Parameters of Adam Optimizer (0.9,0.99)

batch_size Batch Size used by Learner Network 100
α Action division factor used in our approach 50

2.2.4 Discussion

As described in the previous section we begin our RL algorithm with a good initializer

θinitial. The mean accuracy on Dtest achieved by the initializer θinitial over 10 random splits

is 99.39%. At the end of 500 episodes, the mean accuracy achieved by our algorithm is

99.40%. With the presence of an extremely small batch size of 10 samples, this setup does

not seem to surpass the performance of existing image classification benchmarks employing

spiking neural networks. We will now illustrate a few reasons for this behaviour. Model free

deep RL algorithms suffer from the major challenge of sample complexity as mentioned in

Ref. [30]. As mentioned in Ref. [30], even simple tasks with low dimensional state and action

space might require millions of spaces. In our case, we have an extremely high dimensional

state and continuous space (in the order 200k). Along with a high dimensional space each

dimension of our state and action is continuous in nature which inherently makes the problem

very complex. Due to the high dimensionality of the state space the value network V π(Ω)

automatically has a very high number of parameters. Although we were able to introduce

55

parameter sharing in the policy network and make it relatively simple, such a solution was

not possible with the value network since it involves converting a high dimensional vector

into a single value. Possible solutions would be to employ methods where a value network

would not be present. A vanilla policy gradient method would seemingly alleviate the issue

but would involve high variance. Direct policy search methods like Guided Policy Search

Ref. [45], proven to be successful in high dimensional scenarios could be helpful. In Ref. [28]

we observe that the state consists of multiple features and one of them is the history of

gradients. In our case we are trying to learn without the presence of gradients which may

result in insufficient or incomplete state information. Hence apart from sample efficiency

and high dimensionality, insufficient state information could also hinder the performance of

our algorithm.

56

3. CONCLUSION AND FUTURE WORK

Spiking neural networks are the third generation of neural networks. They allow for en-

coding information in the temporal sequence of spikes and thus offer higher computational

capacity. Further, the sparseness of spikes make them energy efficient and thus appropriate

for neuromorphic applications. However, training them requires novel methods.

In Chapter 1 of this work, we have demonstrated a multi-agent ER based framework

inspired by evolutionary rules and competitive intelligence to train SNNs for performing

a task efficiently. Two evolutionary inheritance algorithms, Mutation and Crossover with

Mutation, are demonstrated and their respective performances are compared over statistical

ensembles. We find that the best Crossover with Mutation variant (variant-1) promotes 40%

faster learning in the SNN than mere Mutation with a statistically significant margin. We

also note that the best variant of Crossover with Mutation results in 29% of experiments

converging to a less-than-optimal solution. Future directions of this work could pave in

a multitude of directions. One possible extension of this work involves the integration of

evolutionary approaches with in-lifetime learning models like reinforcement learning. From

a theoretical perspective, the problem itself can be studied using a few information theoretic

measures to assess its difficulty.

In Chapter 2 of this work we have described a novel framework to train Spiking Neural

Networks using Reinforcement Learning. Although the framework does not surpass the

current benchmarks for image classification using spiking neural networks we have provided

a few potential directions which could alleviate the current drawbacks. The drawbacks

can be alleviated by accommodating more samples in the replay memory and employing an

algorithm that only uses a policy network to avoid parameter explosion. Once the framework

is validated, this future direction could involve expanding it to meta train multiple SNNs for

a variety of tasks.

57

REFERENCES

[1] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning,” arXiv, 2017.

[2] F. Ponulak and A. Kasiński, “Introduction to spiking neural networks: Information
processing, learning and applications,” Acta Neurobiologiae Experimentalis, vol. 71,
no. 4, pp. 409–433, 2011, issn: 00651400.

[3] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep
learning in spiking neural networks,” Neural Networks, vol. 111, pp. 47–63, 2019, issn:
18792782. doi: 10.1016/j.neunet.2018.12.002 .

[4] S. Doncieux, N. Bredeche, J. B. Mouret, and A. E. (Gusz) Eiben, “Evolutionary
robotics: What, why, and where to,” Frontiers Robotics AI, vol. 2, no. MAR, pp. 1–18,
2015, issn: 22969144. doi: 10.3389/frobt.2015.00004 .

[5] M. Ventresca and B. Ombuki, “Search space analysis of recurrent spiking and continuous-
time neural networks,” in The 2006 IEEE International Joint Conference on Neural
Network Proceedings, 2006, pp. 4514–4521. doi: 10.1109/IJCNN.2006.247076 .

[6] M. Ventresca and B. Ombuki-Berman, “Epistasis in multi-objective evolutionary re-
current neuro-controllers,” in 2007 IEEE Symposium on Artificial Life, 2007, pp. 77–
84. doi: 10.1109/ALIFE.2007.367781 .

[7] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997, issn: 08936080. doi:

 10.1016/S0893-6080(97)00011-7 .

[8] N. K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial In-
telligence (Springer Series on Bio- and Neurosystems). 2018, pp. 1–742, isbn: 3662577135.
[Online]. Available: http://www.springer.com/series/15821 .

[9] Z. F. Mainen and T. J. Seinowski, “Reliability of spike timing in neocortical neurons,”
Science, vol. 268, no. 5216, pp. 1503–1506, 1995, issn: 00368075. doi: 10 . 1126 /
science.7770778 .

[10] W. Bair and C. Koch, “Temporal Precision of Spike Trains in Extrastriate Cortex of
the Behaving Macaque Monkey,” Neural Computation, vol. 8, no. 6, pp. 1185–1202,
1996, issn: 08997667. doi: 10.1162/neco.1996.8.6.1185 .

58

https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.1109/IJCNN.2006.247076
https://doi.org/10.1109/ALIFE.2007.367781
https://doi.org/10.1016/S0893-6080(97)00011-7
http://www.springer.com/series/15821
https://doi.org/10.1126/science.7770778
https://doi.org/10.1126/science.7770778
https://doi.org/10.1162/neco.1996.8.6.1185

[11] R. Herikstad, J. Baker, J. P. Lachaux, C. M. Gray, and S. C. Yen, “Natural movies
evoke spike trains with low spike time variability in cat primary visual cortex,” Journal
of Neuroscience, vol. 31, no. 44, pp. 15 844–15 860, 2011, issn: 02706474. doi: 10.1523/
JNEUROSCI.5153-10.2011 .

[12] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking neural networks
for audiovisual information processing,” Neural Networks, vol. 23, no. 7, pp. 819–835,
2010, issn: 08936080. doi: 10.1016/j.neunet.2010.04.009 . [Online]. Available:

 http://dx.doi.org/10.1016/j.neunet.2010.04.009 .

[13] A. Gupta and L. N. Long, “Character recognition using spiking neural networks,”
IEEE International Conference on Neural Networks - Conference Proceedings, pp. 53–
58, 2007, issn: 10987576. doi: 10.1109/IJCNN.2007.4370930 .

[14] B. Meftah, O. Lezoray, and A. Benyettou, “Segmentation and edge detection based on
spiking neural network model,” Neural Processing Letters, vol. 32, no. 2, pp. 131–146,
2010, issn: 13704621. doi: 10.1007/s11063-010-9149-6 .

[15] M. J. Escobar, G. S. Masson, T. Vieville, and P. Kornprobst, “Action recognition using
a bio-inspired feedforward spiking network,” International Journal of Computer Vision,
vol. 82, no. 3, pp. 284–301, 2009, issn: 09205691. doi: 10.1007/s11263-008-0201-1 .

[16] S. Ghosh-Dastidar and H. Adeli, “Improved spiking neural networks for EEG classi-
fication and epilepsy and seizure detection,” Integrated Computer-Aided Engineering,
vol. 14, pp. 187–212, 2007, issn: 1875-8835. doi: 10.3233/ICA-2007-14301 .

[17] N. Kasabov, V. Feigin, Z. G. Hou, Y. Chen, L. Liang, R. Krishnamurthi, M. Othman,
and P. Parmar, “Evolving spiking neural networks for personalised modelling, classifi-
cation and prediction of spatio-temporal patterns with a case study on stroke,” Neuro-
computing, vol. 134, pp. 269–279, 2014, issn: 18728286. doi: 10.1016/j.neucom.2013.
09.049 . [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2013.09.049 .

[18] M. Hartley, N. Taylor, and J. Taylor, “Understanding spike-time-dependent plasticity:
A biologically motivated computational model,” Neurocomputing, vol. 69, no. 16-18,
pp. 2005–2016, 2006, issn: 09252312. doi: 10.1016/j.neucom.2005.11.021 .

[19] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling Spike-Based
Backpropagation for Training Deep Neural Network Architectures,” Frontiers in Neu-
roscience, vol. 14, no. February, pp. 1–22, 2020, issn: 1662453X. doi: 10.3389/fnins.
2020.00119 .

[20] S. M. Bohte, H. La Poutré, and J. N. Kok, “Error-Backpropagation in Temporally
Encoded Networks of Spiking Neurons,” Neurocomputing, vol. 48, pp. 17–37, 2000.
[Online]. Available: http://ftp.cwi.nl/CWIreports/SEN/SEN-R0037.pdf .

59

https://doi.org/10.1523/JNEUROSCI.5153-10.2011
https://doi.org/10.1523/JNEUROSCI.5153-10.2011
https://doi.org/10.1016/j.neunet.2010.04.009
http://dx.doi.org/10.1016/j.neunet.2010.04.009
https://doi.org/10.1109/IJCNN.2007.4370930
https://doi.org/10.1007/s11063-010-9149-6
https://doi.org/10.1007/s11263-008-0201-1
https://doi.org/10.3233/ICA-2007-14301
https://doi.org/10.1016/j.neucom.2013.09.049
https://doi.org/10.1016/j.neucom.2013.09.049
http://dx.doi.org/10.1016/j.neucom.2013.09.049
https://doi.org/10.1016/j.neucom.2005.11.021
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2020.00119
http://ftp.cwi.nl/CWIreports/SEN/SEN-R0037.pdf

[21] F. Ponulak and A. Kasiński, Supervised learning in spiking neural networks with Re-
SuMe: sequence learning, classification, and spike shifting. eng, Feb. 2010. doi: 10.
1162/neco.2009.11-08-901 .

[22] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Span: Spike pattern associa-
tion neuron for learning spatio-temporal spike patterns,” International Journal of Neu-
ral Systems, vol. 22, no. 4, 2012, issn: 01290657. doi: 10.1142/S0129065712500128 .

[23] M. W. Tsai, T. P. Hong, and W. T. Lin, “A two-dimensional genetic algorithm and its
application to aircraft scheduling problem,” Mathematical Problems in Engineering,
vol. 2015, 2015, issn: 15635147. doi: 10.1155/2015/906305 .

[24] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, I. de la Iglesia, and A. Perallos, “Crossover
versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic
Algorithms Applied to Combinatorial Optimization Problems,” The Scientific World
Journal, vol. 2014, M. Lozano, Ed., p. 154 676, 2014, issn: 2356-6140. doi: 10.1155/
2014/154676 . [Online]. Available: https://doi.org/10.1155/2014/154676 .

[25] “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539 .
[Online]. Available: https://doi.org/10.1038/nature14539 .

[26] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3431–3440. doi: 10.1109/CVPR.2015.7298965 .

[27] K. Li and J. Malik, “Learning to optimize,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, OpenReview.net, 2017. [Online]. Available: https://openreview.net/
forum?id=ry4Vrt5gl .

[28] K. Li and J. Malik, “Learning to optimize neural nets,” CoRR, vol. abs/1703.00441,
2017. arXiv: 1703.00441 . [Online]. Available: http://arxiv.org/abs/1703.00441 .

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second. The
MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/the-
book-2nd.html .

[30] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” CoRR, vol. abs/1801.01290,
2018. arXiv: 1801.01290 . [Online]. Available: http://arxiv.org/abs/1801.01290 .

[31] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief survey
of deep reinforcement learning,” CoRR, vol. abs/1708.05866, 2017. arXiv: 1708.05866 .
[Online]. Available: http://arxiv.org/abs/1708.05866 .

60

https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1155/2015/906305
https://doi.org/10.1155/2014/154676
https://doi.org/10.1155/2014/154676
https://doi.org/10.1155/2014/154676
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/CVPR.2015.7298965
https://openreview.net/forum?id=ry4Vrt5gl
https://openreview.net/forum?id=ry4Vrt5gl
https://arxiv.org/abs/1703.00441
http://arxiv.org/abs/1703.00441
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1708.05866

[32] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, May 1992, issn: 1573-0565. doi: 10.1007/BF00992698 . [Online]. Avail-
able: https://doi.org/10.1007/BF00992698 .

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015, issn: 1476-4687. doi: 10.1038/nature14236 . [Online]. Available:

 https://doi.org/10.1038/nature14236 .

[34] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, 1992, issn: 1573-
0565. doi: 10.1007/BF00992696 . [Online]. Available: https://doi.org/10.1007/
BF00992696 .

[35] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” CoRR,
vol. abs/1602.01783, 2016. arXiv: 1602.01783 . [Online]. Available: http://arxiv.
org/abs/1602.01783 .

[36] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region pol-
icy optimization,” in Proceedings of the 32nd International Conference on Machine
Learning, F. Bach and D. Blei, Eds., ser. Proceedings of Machine Learning Research,
vol. 37, Lille, France: PMLR, Jul. 2015, pp. 1889–1897. [Online]. Available: http:
//proceedings.mlr.press/v37/schulman15.html .

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” ArXiv, vol. abs/1707.06347, 2017.

[38] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device variations
in a spiking neural network with memristive nanodevices,” IEEE Transactions on
Nanotechnology, vol. 12, pp. 288–295, May 2013. doi: 10.1109/TNANO.2013.2250995 .

[39] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification,” Fron-
tiers in Neuroscience, vol. 11, p. 682, 2017, issn: 1662-453X. doi: 10.3389/fnins.
2017.00682 . [Online]. Available: https://www.frontiersin.org/article/10.3389/
fnins.2017.00682 .

[40] J. Wu, Y. Chua, M. Zhang, Q. Yang, G. Li, and H. Li, “Deep spiking neural network
with spike count based learning rule,” 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–6, 2019.

61

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://www.frontiersin.org/article/10.3389/fnins.2017.00682

[41] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing,” in 2015
International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8. doi:

 10.1109/IJCNN.2015.7280696 .

[42] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for
training high-performance spiking neural networks,” Frontiers in Neuroscience, vol. 12,
p. 331, 2018, issn: 1662-453X. doi: 10.3389/fnins.2018.00331 . [Online]. Available:

 https://www.frontiersin.org/article/10.3389/fnins.2018.00331 .

[43] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in ICLR,
2017.

[44] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shilling-
ford, and N. de Freitas, “Learning to learn by gradient descent by gradient descent,” in
Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016, pp. 3981–
3989. [Online]. Available: https://proceedings.neurips.cc/paper/2016/file/
fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf .

[45] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of the 30th Inter-
national Conference on Machine Learning, S. Dasgupta and D. McAllester, Eds.,
ser. Proceedings of Machine Learning Research, vol. 28, Atlanta, Georgia, USA: PMLR,
17–19 Jun 2013, pp. 1–9. [Online]. Available: http://proceedings.mlr.press/v28/
levine13.html .

62

https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.3389/fnins.2018.00331
https://www.frontiersin.org/article/10.3389/fnins.2018.00331
https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
http://proceedings.mlr.press/v28/levine13.html
http://proceedings.mlr.press/v28/levine13.html

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABSTRACT
	MULTI AGENT ER BASED FRAMEWORK FOR TRAINING SPIKING NEURAL NETWORKS
	Introduction
	Motivation
	Evolutionary Robotics

	Spiking Neural Networks
	Main Contributions

	System Components and Algorithm
	System Model
	Bots
	The Spiking Neural Network
	Environment
	Evolutionary Algorithms
	Mutation
	Crossover with Mutation and its variants

	Evaluations
	One experiment of Mutation
	One experiment of Crossover with Mutation Variant-1
	Comparison over experimental ensembles

	REINFORCEMENT LEARNING FRAMEWORK FOR TRAINING SPIKING NEURAL NETWORKS
	Introduction
	Motivation
	Reinforcement Learning
	Deep Spiking Neural Networks

	System Model
	Spiking Convolutional Neural Network
	Framework
	State
	Action
	Reward
	Formulation

	Experiments
	Discussion

	CONCLUSION AND FUTURE WORK
	REFERENCES

