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ABSTRACT

Cloud and parallel computing are fundamental components in the processing of large data

sets. Deployments of distributed computers require network infrastructure that is fast, effi-

cient, and secure. Software Defined Networking (SDN) separates the forwarding of network

data by switches (data plane) from the setting and managing of network policies (control

plane). While this separation provides flexibility for setting network policies affecting the

establishment of network flows in the data plane, it provides little to no fault tolerance for

failures, either benign or caused by corrupted/malicious applications . Such failures can

cause network flows to be incorrectly routed through the network or stop such flows alto-

gether. Without protection against faults, cloud network providers using SDN run the risk of

inefficient allocation of network resources or even data loss. Furthermore, the asynchronous

nature existing protocols for SDN does not provide a mechanism for consistency in network

policy updates across multiple switches.

In addition, cloud and parallel applications require an efficient means for accessing local

system data (input data sets, temporary storage locations, etc.). While in many cases it may

be possible for a process to access this data by making calls directly to a file system (FS)

kernel driver, this is not always possible (e.g. when using experimental distributed FSs where

the needed libraries for accessing the FS only exist in user space).

This dissertation provides a design for fault tolerance of SDN and infrastructure for

advancing the performance of user space FSs. It is divided into three main parts. The

first part describes a fault tolerant, distributed SDN control plane framework. The second

part expands upon the fault tolerant approach to SDN control plane by providing a practical

means for dynamic control plane membership as well as providing a simple mechanism for

controller authentication through threshold signatures. The third part describes an efficient

framework for user space FS access.

This research makes three contributions. First, the design, specification, implementa-

tion, and evaluation of a method for fault tolerant SDN control plane that is inter-operable

with existing control plane applications involving minimal instrumentation of the data plane

runtime. Second, the design, specification, implementation and evaluation of a mechanism
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for dynamic SDN control plane membership that all ensure consistency of network policy

updates and minimizes switch overhead through the use of distributed key generation and

threshold signatures. Third, the design, specification, implementation, and evaluation of

a user space FS access framework that is correct to the Portable Operating System Inter-

face (POSIX) specification with significantly better performance over existing user space

access methods, while requiring no implementation changes for application programmers.
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1. INTRODUCTION

This dissertation advances the infrastructure for cloud computing through improvements

to the management of network policies and file system (FS) access frameworks. Specially,

it focuses on consistency and fault-tolerance in network policy management and FS access

that is practical for deployment in production data-centers and complies with established

standards.

1.1 Background

This dissertation focuses on improving consistency and fault-tolerance on two areas of

cloud computing: network policy management and FS data storage with specific focus on

providing an interface and evaluation showing that improvements are practical to be used

in production.

1.1.1 Fault Tolerance and Consistency for Network Policy Management

Routing of network traffic within and between data-centers can vary significantly based

on workloads [1 ]. Traditional network routing protocols [2 ], [3 ] are based on shortest paths,

such as minimal number of “hops” or delay through the network, and match rules solely

on the internet protocol (IP) address of the destination. However for many workloads,

such routing heuristics do not provide optimal network utilization. For example, a longer

path which sends traffic through a higher number of switches, while requiring additional

latency, may offer significantly more bandwidth resulting in faster workload completion.

Furthermore, link failures may take significant time to recover, during which, packets might

be lost and/or need to be re-transmitted. As such, corporations such as Facebook and Google

are moving to a more dynamic approach to network routing within their corporate networks.

Software Defined Networking (SDN) provides a means for fine grained control of network

routing policies through the use of a centralized controller application. These policies are

installed in switches either through requests received from the switches themselves (e.g., in

the event of an unroutable packet) or based on some other network event. In addition to
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being dynamically installed, specific network polices in SDN are far more flexible than those

used in traditional network routing protocols allowing routes to be based on any field in the

IP header.

However, the nature of a centralized controlling entity results in several concerns:

(1) performance bottleneck for processing requests

(2) single point of failure

A failed SDN controller is not able to perform policy updates to switches preventing new

routes and network flows from being established. Several techniques have been proposed for

decentralized SDN controllers [4 ], [5 ], however these focus on only solving (1) or on robustness

in the event of crash-stop failures in which a controller stops responding to all events. A

corrupted SDN controller, whether due to a malicious adversary or through software or

hardware faults, can cause similar if not more harm to network data [6 ]–[8 ]. Therefore a

need exists for a robust SDN controller capable of providing protection against more than

just ‘crash-stop’ failures.

Furthermore, switches do not communicate with each other for the purpose of establishing

network policies. The role of enforcing network policies is the complete responsibility of the

SDN controller. Switches themselves forward packets based on flow table rules set by the

controller in response to network events. It is, therefore, crucial to provide a mechanism to

ensure that changes to the network routes in response to a network event be done consistently

to avoid transient effects to prevent packet loss, data leakage, and or violation of network

policies. In addition, data plane switches contain limited hardware resources (e.g. memory

and CPU power) and, as such, a solution should require minimal switch instrumentation.

1.1.2 Consistency and Efficiency of File System Access

In a traditional computer system, persistent data is accessed via input/output (I/O)

requests to files in a FS via their file descriptor (FD). The operating system (OS) kernel

creates an abstraction of files and organizes requests to files translating them to operations

performed against persistent media. This translation is traditionally performed by the FS
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driver which exists within the OS kernel. However, a trend has developed for FS drivers

to execute outside of the OS kernel. Such user space FSs can be built using functions

not available within the OS kernel, run with reduced privileges when compared to those

implemented within the kernel, are often faster to implement, and do not require knowledge

of internal kernel interfaces.

User space FS interfaces (e.g. Filesystem in Userspace (FUSE) [9 ]) exist, however they

suffer performance penalties compared to FS drivers implemented within the OS kernel due

to overhead imposed by communication between user space applications and kernel space.

Requests originate as system calls from an application to the OS kernel. The kernel must

then send corresponding messages to user space to service these requests. Each message sent

to users space involves a process context switch and requires copying of data between kernel

and user space memory buffers. This communication overhead greatly affects workloads

where a large amount of small files are created and updated as is the case for many distributed

computing workloads [10 ]. As a result, there exists a need for a new FS infrastructure for

user space FSs that can provide:

1. access speeds near that of a kernel driver

2. similar safety guarantees as those provided by POSIX

3. limited or no needed modifications to client applications which access the FS

Existing solutions that attempt to mitigate these problems [11 ]–[17 ] do so using contrived

mechanisms to emulate the FD interface provided by the OS kernel. As a result, are not

consistent and correct in all cases and therefore inappropriate for a practical deployment of

cloud applications.

1.2 Problem Statement

No protocol for network policy management exists that provides:

1. Consistency - protection against transient effects of asynchronous network updates

2. Security - protection against failures beyond crash-top
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3. Practicality - minimal overhead to the completion of network flows, minimal instru-

mentation to switches, compatible with existing protocols for network updates, and

scales to a large geographically expansive network.

Furthermore, no mechanism for FS access exists that provides:

1. Flexibility - ability to be implemented outside of a kernel driver while allowing appli-

cation access using established standard system calls

2. Efficiency - access performance similar to kernel driver access

3. Consistency - semantically conforming to all guarantees of established system called

standards

1.3 Thesis Statement

The thesis of this dissertation can be divided improvements in two aspects of cloud

computing infrastructure: (1) robustness of communication infrastructure and (2) flexibility

of data storage infrastructure. Specifically, we can provide a mechanism for network updates

that provides consistency and security while being practical for deployment in production.

We provide a mechanism for FS access that is flexible, efficient, and consistent.

1.4 Contributions

This dissertation makes the following contributions:

1. Robustness of network policy infrastructure:

(a) Identification of issues that can arise from faults in existing SDN controllers as

well as establishing a practical failure model for the SDN control plane.

(b) A protocol providing strongly consistent updates to switches for this failure model

that ensures progress of network policy updates assuming a correct majority of

controllers.

(c) An optimization of the protocol that exploits commutativity of network policy

updates, increasing concurrency, and leading to improved performance.
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(d) A mechanism allowing flexibility in the network controller layer allowing con-

trollers to be added and removed without requiring a network outage.

(e) The design and implementation of the protocol extending the Ryu controller

framework [18 ] and the Open vSwitch (OVS) runtime with minimal data plane

instrumentation, that is compliant with OpenFlow [19 ], [20 ].

(f) An extensive evaluation including throughput and micro-benchmarks on both

inter and intra data-center workloads that show that the overhead induced by

the prototype is acceptable and in some cases achieves higher throughput than

existing crash-only tolerant protocols.

2. Performance and flexibility of data storage infrastructure:

(a) Identification of the problems with existing user space FS access methods.

(b) The design of a new user space FS system centering on its novel concepts of

bypassed FD lookup, FD stashing, and user space paging.

(c) An analysis of the user space FS system implementation, with specific focus

on its novel concepts and how together they retain Portable Operating System

Interface (POSIX) compliance.

(d) An extensive evaluation of the system’s performance with focus on: raw file cre-

ation, command line tools (tar, rsync), and cloud applications using Spark [21 ]

which show that it outperforms existing user space FS access methods by increas-

ing throughput not only for cloud applications, but for general purpose accesses

as well.
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2. FAULT TOLERANCE FOR NETWORK POLICY UPDATES

This chapter models the interaction between the SDN data plane and a distributed SDN

control plane consisting of a set of failure-prone and potentially malicious (compromised)

control devices, and implements Robust SDN Controller (RoSCo) [22 ] a secure and robust

controller platform that allows network administrators to integrate new network functionality

as with a centralized approach. Concretely, the network administrator may program the data

plane from the perspective of a centralized controller without worrying about distribution,

asynchrony, failures, attacks, or coordination problems that any of these could cause.

2.1 Introduction

The Software Defined Networking (SDN) control plane allows for expressing and compos-

ing policies of varying networking applications and translating these to a combined network

policy, entailing rules installed onto the switches for handling network flows. Consider a

typical SDN computation model depicted in Figure 2.1  : as a packet arrives at a switch port

for which there is no matching entry in the switch’s flow table, the switch generates an event

sent to the controller platform. The controller subsequently installs a new rule on the switch

and possibly on other switches as well.

2.1.1 Crash(-stop) failures

Common centralized controller deployments are trivially prone to crash failures, as a

single halting failure of the controller process can disrupt control over the network. Re-

cent research has identified the challenges in building a truly distributed and fault-tolerant

SDN controller [5 ], [20 ], [25 ], [26 ]. The core challenge consists in ensuring the consistent

installation of network policies under asynchronous and lossy communication. Specifically,

a correct implementation of the controller platform must consider subtle conflicts between

concurrently raised events and/or their resulting switch updates that entail flow table mod-

ifications, and provide progress (or availability) [5 ] in the face of crash failures.
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Figure 2.1. SDN system architecture: The logically centralized controller
platform allows dynamic installation of network policies on the network switch-
ing fabric. Communication between switches and the controller platform is
made through an established protocol interface (e.g., OpenFlow [19 ], Cisco
ONE [23 ], VMware NSX [24 ]). Some subset of the participating controllers
may be faulty. If there is no matching flow table entry for an incoming packet
at a switch port, the switch runtime creates an event to be sent to the controller
platform.

2.1.2 Controller faults

Moreover, whilst several widely adopted SDN controller platforms like Onix [27 ] and

ONOS [28 ] provide some pragmatic forms of distribution, these models focus solely on crash

failures where distributed controllers cease to respond entirely. Little research effort has been

directed towards investigating real-life fault models in which faulty SDN controllers continue

to respond, but with corrupted messages. Such situations may happen due to a variety of

causes including software flaws or transmission errors. For example, in July 2008 Amazon S3

suffered an outage caused by network communication errors that corrupted messages “such
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that the message was still intelligible, but the system state information was incorrect” [6 ].

Again, in 2012, Amazon AWS suffered another outage due to “a latent bug in an operational

data collection agent” [7 ]. Google App Engine also suffered a several hour outage as the

“result of a bug in our datastore servers [...] triggered by a particular class of queries” [8 ].

In all these cases, the failure was not caused by a crash. While these examples focus on

general network applications, the principles behind the outages can easily carry over to any

SDN controller model. Typical SDN policies are based on matching of a packet prefix.

When applying such SDN policies, even the corruption of a single bit can cause a mismatch

resulting in incorrect data plane routing.

Furthermore, as Kreutz et al. argue in a position paper [29 ], several threat vectors

motivate the need for a secure and dependable SDN controller platform, including forged

or faked flows, attacks on vulnerabilities in switches and on control plane communication.

The effects of such malicious (à la Byzantine) adversaries [30 ], [31 ] in fact can manifest

similarly to many benign faults mentioned earlier such as corrupted communication. In

summary, once an SDN switch is thus faulty or compromised (e.g., due to collocation with a

compromised application or virtual switch [32 ]), it may perform any of the following actions:

send arbitrary messages within the control plane and to switches in the data plane as well as

arbitrarily delay/intercept/modify traffic between controllers and switches [29 ], eventually

compromising the entire data plane. While it is not immediate under what circumstances

vulnerabilities cause control devices to exhibit the full spectrum of Byzantine behavior [33 ],

threat vectors inherent to SDN make it vital that the SDN controller platform provides

provable correctness against faults beyond crashes.

2.1.3 Existing results and model uniqueness

Though many fundamental results and bounds from traditional fault-tolerant distributed

computing still apply to address the consistency of data plane updates in the distributed SDN

context, those are based on abstractions/models which are both too generic and specific.

More specifically, the problems addressed in the SDN model considered in this research

differ from traditional setups in that the latter: (1) consider clients concurrently issuing
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requests to servers, while the present SDN context has switches issue events to controllers,

whose handling yields updates for several switches and not only the one raising the event;

(2) assume a single homogeneous network whilst the SDN context further distinguishes

between the data plane network and controller-switch network (and possibly client-controller

network) which can be physically disjoint; (3) do not typically make assumptions about

state and logic managed and shared among servers whereas the SDN logic [34 ] (e.g., network

flows/flow tables) has well-known specific semantics and constraints. As a result, traditional

distributed computing solutions deployed as black-boxes are unlikely to be efficient in the

SDN computation and threat model.
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2.1.4 Technical constraints

A dependable practical SDN controller platform, apart from providing consistency, in-

tegrity and availability for applying network policies, must also come with a simple com-

putation and programming model. Specifically, it must allow the network administrator

to program the network switching fabric with the ease of programming a centralized SDN

controller. For example, unlike with our work, the Hyperflow [35 ] replicated SDN controller

platform requires the application itself to actually manage the replicated state, thus increas-

ing the burden on programmers. A second important requirement for the SDN controller

platform is to keep the instrumentation on the switch runtime minimal. For example, it

may be perfectly plausible to deploy a variant of Paxos [36 ] (for crash failures) as is the

case with [26 ] or deploy Byzantine fault-tolerant (BFT) [37 ] protocols across every switch

and controller, but this can incur complex instrumentation, increase usage of switch runtime

resources (which may be limited), and require messaging that is non-compliant with existing

data plane APIs like OpenFlow [19 ], [20 ].

2.2 Related work

This section presents related work on consistency and fault tolerance in distributed SDN

controllers. Please see literature surveys [34 ], [38 ] for general overviews of SDN controllers.

2.2.1 Consistency formalizations for network updates

The event linearizability property presented here is based on the original definition for

traditional distributed computing [39 ] and was adapted to the SDN context previously in

[40 ], however our definition expands on this to generalize linearizability in malicious contexts

as well as shows the impossibility result which holds even for non-blocking environments.

consistent updates (CU) [41 ] ensure that a packet is processed during an execution either

entirely by an old policy or a new one, but never a mix of both. This property is also

guaranteed by the strictly stronger property of event linearizability since it reduces the con-

current network update to an equivalent sequential one. network event structures (NES) [42 ]
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provide a mechanism for causally consistent policy updates where multiple switch updates

can cause uncertainty in packet forwarding. However, NES require instrumented data plane

switches with the ability to modify packets at ingress and egress switches. One of the goals

of RoSCo is to allow consistent switch updates with minimal instrumentation of forwarding

logic; additionally causal consistency is weaker than the event linearizability safety property,

but incomparable to the update consistency safety property. Unlike RoSCo, NES can not

handle malicious controller processes. Several papers study and identify different customiz-

able consistency properties for SDN network updates [43 ]–[48 ], but none considers malicious

adversaries. Deriving protocols for dealing with malicious adversaries and extending our

framework for such consistency definitions is ongoing work.

2.2.2 Distributed SDN controller platforms

The SDN computation model considered in this chapter explicitly separates the data

plane and control plane; concretely, it requires that the state of any two switches in the

data plane be mutually disjoint and this precludes the use of agreement protocols within

the switch runtime. More generally, distributed computing solutions like state machine

replication may not be used as a black-box for network updates as is the case in the Net-

Paxos protocol [26 ]. Onix [27 ] and ONOS [28 ] are two of the earliest proposals to motivate

the need for a distributed control plane. Both suffer from two fundamental drawbacks: the

lack of consistency in network updates and the inability to cope with malicious failures in

the control plane as well as attacks on network communications which may disrupt network

updates. Onix’ uses of Zookeeper [49 ] and ONOS’ use of Raft [50 ] — while providing a

mechanism for distributed agreement used for consistent log replication — only provides

crash fault tolerance. Akella and Krishnamurthy [25 ] introduce the study of crash tolerance in

distributed SDN controllers and sketch a solution that involves even switches participating in

a distributed agreement protocol which is extremely costly. Beehive [51 ] implements a highly

scalable distributed controller platform, but does not provide any linearizability guarantees

for network updates nor does it provide resilience against malicious adversaries as RoSCo

does. Ravana [5 ] includes a distributed controller synchronization protocol that provides
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consistent network updates, but does not deal with malicious adversaries. Rosemary [52 ]

and LegoSDN [53 ] both provide a protection framework for SDN applications to prevent

malicious behaviors and crashes however both focus on resilience of the controller and the

application in a single controller environment. In contrast to RoSCo the frameworks do not

provide protection against an arbitrary host masquerading as a controller sending malicious

unsolicited flow rules to switches. Renaissance [54 ] is self-stabilizing and hence can tolerate

arbitrary and in particular malicious behavior, however, the distributed control plane can

be inconsistent for longer periods and only recover after re-convergence occurred.

2.2.3 Malicious adversaries in SDN

Fleet [55 ] initiated the problem of dealing with malicious adversaries in the SDN context.

Just as RoSCo, Fleet sketches a protocol that ensures progress as long as hoNESt majority

of controllers exist; but it does not provably satisfy event linearizability or its relaxation.

Moreover, unlike RoSCo, Fleet requires extensive data plane instrumentation and their simu-

lation does not provide a characterization of the cost of providing resilience against malicious

adversaries nor the subtle protocol differences associated with different consistency proper-

ties. The position paper of Kreutz et al. [29 ] provides a good overview of the motivation

for secure and dependable SDN controller platforms by discussing threat vectors. Though

discussing standard techniques for mitigating different threat combinations, the authors do

not actually flesh out a concrete solution for a particular adversary.

2.3 Motivation and Model

We first briefly motivate the need for consistency in applying network policies before

outlining our model of failure/threats and computation. Using OpenFlow, an open standard

protocol providing a mechanism for communication between the SDN data plane and control

plane, switches send events to and receive updates from controllers via a network connection

which imposes a nonzero network delay. This delay can cause uncertain and undesirable

behaviors even while all processes are functioning as designed, as illustrated in the following.
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Table 2.1. Comparison of SDN controller platforms fault tolerance, applica-
tion interfaces, and complexity.

Ravana [5 ] Ryu [18 ] Onix [27 ] Net-
Paxos [26 ]

RoSCo

Consistency Observational
indistinguishabilitya

Sequential
specification

Partial event
orderingb

Partial
event
orderingb

Event
linearizabilityc &
update consistencyd

Distributed Yes No Yes Yes Yes
Switch instr.
& complex-
ity

Minimal None High Very high Minimal

Program-
ming model

Centralized Centralized Maintain net-
work infor-
mation base

Centralized Centralized

Adversary Crash Centralized fail-
ure

Crash Crash Malicious

aObservational indistinguishability is the guarantee that any observation of events viewed
in distributed controller model is the same as those viewed in the centralized model.
bPartial order allows for independent events to be observed in any order.
cEvent linearizability ensures a total order on event observations.
dUpdate consistency ensures coherence of dependent network updates for flows across
multiple switches.

RoSCo is the only distributed controller platform that provides complete linearizability
with total event ordering and tolerates faults incurred by malicious actors. Others do
provide greater consistency over the centralized model, but either require significant
switch instrumentation (Onix, NetPaxos) or only tolerate crash failures (Ravana).

2.3.1 Example

Consider the network topology shown in Figure 2.2a  consisting of five OpenFlow com-

patible switches (s1−5). The arrows represent the current flows routing network traffic to

switch s5. At a particular time, the link between s4 and s5 fails. s4 detects the failure and

sends an event to the controller.

The controller requires a network update to alter flows destined for s5 as shown in Fig-

ure 2.2b  . This network update involves three individual switch updates; one at s2, s3, and

s4. In the SDN model, data plane switches do not communicate with each other for network

updates. As such, if the controller sends out all switch updates in parallel, the update at

s3 might be processed first, resulting in an unintended loop in the network as shown in Fig-

ure 2.2c  . Eventually the switch update at s2 will be processed and the loop will be removed
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however, during the time that the network loop exists, significant switch buffer resources

may be consumed affecting availability of the network. Performing the switch updates se-

quentially starting with the update at s2, followed by s3, and finally s4 would prevent the

possibility of a network loop. While solutions to this problem have been well-understood for

a centralized controller platform, our solution focuses on maintaining strong consistency in

a distributed controller environment, the details of which are described in § 2.5 .

2.3.2 Failure and threat model

We consider a failure/threat model in which SDN controllers, besides crashing, may be-

come faulty or (partially) compromised as specified by Kreutz et al. [29 ]. Similarly a network

host (not part of the existing control plane) may also be compromised and masquerade as an

SDN controller. Such an adversary is allowed to perform any of the following actions on the

network: send any arbitrary message to switches in the data plane; send any arbitrary mes-

sage to other controllers; eavesdrop traffic on the communication network between controllers

in the control plane; eavesdrop traffic on the communication network between switches and

controllers; intercept and modify traffic between controllers and switches. While it might be

the case that the physical medium between switches in the data plane is the same as that

between the data plane and the control plane, an adversary may not modify the contents of

packets sent between switches in the data plane. Specifically, an adversary may not force the

dropping of data packets sent between switches other than through modifications to switches’

flow tables. A switch in the data plane may take indefinitely long to respond to controller

messages due to network asynchrony. The goal of RoSCo protocols for network updates is

to limit the impact an adversary can have on the network as a whole. In the worst case, an

adversary should only be able to prevent forward progress. It should not be allowed to alter

flows or cause incorrect routing of data packets. As discussed in § 2.5 , RoSCo ensures that

correct policies are applied to switches through the use of quorum authentication. However,

our failure model does not include the case of a dishonest majority through concurrent soft-

ware or hardware failures or a coordinated attack. Approaches tackling such scenarios e.g.,

utilizing multiple versions of software and/or intrusion detection [56 ], [57 ] have been well
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established in existing research. As discussed in § 2.6 , RoSCo is designed to be flexible to

accommodate these approaches.

(a) (b) (c)

Figure 2.2. Figure 2.2a depicts the state of an SDN controlled network using
OpenFlow with five switches and the active flows to switch s5. Figure 2.2b  

depicts the intended flows after a network update due to a failure of the link
between s4 and s5. Figure 2.2c  depicts an unintended network loop because
switch s3 applied its switch update before s2 did.

2.3.3 Computation model

Characterizing the properties (outlined in § 2.1 ) associated with applying network poli-

cies and establishing protocol correctness, besides a failure/threat model, necessitates the

need for a computation model. Holistically comparing and evaluating different SDN con-

troller platforms requires us to precisely specify the following crucial properties: what is the

consistency property that defines the guarantees for within the algorithm for how flow table

modifications are made; whether the SDN controller is distributed across multiple instances;

what are the inherent switch instrumentation (instr.) and complexity costs that define the

amount of additional instrumentation is required to data plane switches in order to properly

use the SDN controller; what is the programming model, i.e., the amount of knowledge that

a controller application and administrator must have of the underlying protocol.
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2.3.4 RoSCo in context

Table 2.1  summarizes pros and cons of popular existing distributed controller platforms

and how they compare against RoSCo, described in the following sections. Non-distributed,

centralized controller platforms such as Ryu [18 ], while offering consistent ordering of events

in the control plane and centralized administration, do not offer protection from failures.

Onix [27 ] and NetPaxos [26 ] provide centralized administration and protection from crash

failures, however require significant switch instrumentation. Ravana [5 ] provides observa-

tional indistinguishability of events, centralized administration, and protection against crash

failures however does not protect against other faulty behavior. RoSCo combines the bene-

fits of event linearization and protection from failures (as described in our failure and threat

model) while still offering centralized administration and minimal switch instrumentation.

Moreover, RoSCo also implements a weakly consistent update procedure and presents an

empirical characterization of the induced overhead over the event linearizable protocol.

2.4 Formalizing SDN Computation

Table 2.2. Summary of model notation.
Symbol Definition
c Controller process
s Switch process
π Network policy
e Network event
u Switch update
U Flow update (seq. of switch updates)
U Network update (seq. of switch updates)
E Execution of a network update
I Controller policy implementation
H Execution history
upd[S(e)] Set of switches to be updated as a result of event e
<E <H Total order in E or in H
πi ≺E πj Precedence of network policies in E

In this section, we provide a formal model of computation for applying SDN policies and

prove a fundamental result on the nature of progress: it is impossible to implement non-
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blocking and strongly consistent application of network policies. Table 2.2 summarizes the

notation used thereon. Readers interested in the details of the RoSCo protocol which focus

on overcoming this impossibility result assuming an honest majority of controllers may wish

to proceed directly to § 2.5 .

2.4.1 Control plane and data plane

We consider an asynchronous controller system in which a set C = {c1, . . . cn} controller

processes communicate by sending and receiving messages. The data plane is a set S =

{s1, . . . , sm} of switches and a set L ⊆ S ×S of links, either of which may fail. We consider

a full communication model in which each controller process may send messages to, and

receive messages from, any other controller process or any switch. Switches communicate

with each other solely for the purpose of sending data plane traffic.

2.4.2 Network policies

Following [40 ], we define the notion of a network policy which intuitively specifies the

state of the flow tables in data plane switches for forwarding packets across the network. A

network policy π specifies the state (or flow tables) of each switch in the data plane. An event

is initiated by a switch or a controller and results in a network update to apply a network

policy to the flow tables of some subset of switches. We assume that the application of a

network policy π begins with an event invocation by a switch followed by a network update.

A network update consists of a sequence of switch updates u.

Note that, as outlined via Figure 2.1 , network policies themselves are either set by one

or more administrators or generated through a controller application operating in a layer

above the controller platform. However without loss of generality and for the simplicity of

the model, we assume that a network policy change is initiated by a switch, but the control

plane may itself initiate new network policies on the data plane. Furthermore, as noted in

Figure 2.1  , network policies are set as part of the controller application in a layer above the

controller platform.
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2.4.3 Executions and configurations

A switch update is the modification of the flow table for a switch with the given rule. A

step of a network update U is a switch update uof U or a primitive (e.g., message send/re-

ceive, atomic actions on process memory state, etc.) performed during U along with its

response. A configuration (of an SDN implementation) specifies the state of each switch and

the state of each controller process. The initial configuration is the configuration in which

all switches have their initial flow table entries and all controllers are in their initial states.

An execution fragment is a (finite or infinite) sequence of steps. An execution E of an im-

plementation I is an execution fragment where, starting from the initial configuration, each

step is issued according to the implementation I and each response of a primitive matches

the state resulting from all preceding steps. Two executions Ei and Ej are indistinguishable

to a set of control processes and switches if each of them take identical steps in Ei and Ej.

2.4.4 Ideal world specification of network policies

Defining the correctness of a concurrent network update protocol resilient against faulty

controllers requires specifying the ideal-world functionality of the network policy, i.e., how the

policy would be implemented on the data plane by a trusted centralized controller. We model

this as a standard mealy machine: every network policy πi has a deterministic sequential

specification, i.e., in the absence of concurrency, πi beginning with an event invocation at

data plane configuration Cj followed by a network update, terminates by returning a response

ri and moves the data plane to some configuration Cj+1.

Note that, as outlined via Figure 2.1  , ideal world specification of network policies are

determined by one or more administrators or generated through a controller application

operating in a layer above the controller platform. The goal of the RoSCo protocols is to

enforce this ideal world specification in a highly concurrent failure/threat model.
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2.4.5 Control plane and data plane instrumentation

We assume that the control plane and data plane are separate and the data plane switches

are themselves mutually independent as is the case in data center SDN deployments [20 ]. This

typically allows for the data plane switches to be deployed with minimal instrumentation,

i.e., largely forwarding packets according to matching flow table rules [34 ]. Formally, for

every execution E and any event e invoking a network update U initiated by switch s, every

extension of E is indistinguishable to s from an execution in which upd[S(e)] = {s}. Here,

upd[S(e)] = {s} denotes the set of switches whose flow tables must be updated on completion

of U as a result of the invocation of e by s.

2.4.6 Network updates & consistency

We now define our consistency properties for network updates.

Strongly consistency or event linearizability. We first define strongly consistent network

updates, inspired by the definition presented by Canini et al. [40 ]. To formalize the definition,

we introduce the following technical language. A policy πi precedes another policy πj in an

execution E , denoted πi ≺E πj, if the network update for πi occurs before the network update

of πj in E . If none of two policies πi and πj precede the other, we say that πi and πj are

concurrent. An execution without concurrent policies is a sequential execution. A network

policy is complete in an execution E if the invocation event is followed in E by a matching

network update; otherwise, it is incomplete. Execution of E is complete if every policy in E

is complete. A high-level history H of an execution E is the subsequence of E consisting of

the network policy event invocations, network updates and network policy responses.

An execution E is event linearizable [39 ] if there exists a sequential high-level history S

equivalent to some completion of H such that (1) ≺H⊆≺S (policy precedence is respected)

and (2) S respects the sequential specification of policies in H. A SDN implementation I

implements event linearizable network updates if every execution E of I is linearizable.

Update consistency. As depicted in Figure 2.2 , the response to an event e may involve

updates to multiple switches, each of these updates requiring a specific order of execution to

maintain consistency. Furthermore, the handling of an event by the controller application is
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affected not only by the event itself but also the controller application’s global view of the

network (state). As such, the ordering of events as input to the controller application is also

important.

Event linearizability stipulates that network update U1 must take effect before U2 takes

effect. However, in some situations this strong guarantee is not necessary. We refer to a

flow update as an ordered sequence of switch updates [u1, . . . , un] generated by the controller

application in response to some event. We refer to flow consistency as ordering of switch

updates within a flow update. The need for such consistency is motivated in [44 ] as well

as the example in § 2.3.1 . Ordering is also required for updates to the same switch either

within or across multiple flow updates. Such updates may occur as the result of multiple

events handled by the controller application or if multiple flow updates are generated in the

response to a single event. We refer to the ordering of updates to a single switch as switch

consistency. Our definition for weak consistency, denoted, update consistency relaxes event

linearizability whenever possible by allowing switch updates be applied in parallel provided

both flow consistency and switch consistency are maintained.
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Figure 2.3. Illustrating proof of Theorem 2.4.1  : Construct an execution
involving two non-commutative events e1 and e2 which must each update flow
tables of both switches s1 and s2. By the non-blocking property: network
updates π1 and π2 must complete. The uninstrumented data plane model
implies s1 and s2 are oblivious of conflicting events. Thus, by the asynchronous
nature of the adversary, updates involving e1 and e2 might interleave. E.g.,
switch s1 may perform the update from e1, but before s2 performs its update
for e1, s1 may perform the update for e2, violating event linearizability.

2.4.7 Impossibility of non-blocking linearizable SDN control

We now establish a lower bound that places a fundamental limitation on the nature of

progress in asynchronous SDN implementations: it is impossible to realize non-blocking and

event linearizable network updates. Intuitively, non-blocking progress in the SDN context

ensures that some network update always completes successfully independent of the con-

troller failures and network asynchrony. Formally, we say that an implementation I for

network updates in SDN provides non-blocking progress if in every execution E of I, some

network update Ui participating in E returns a matching response within a finite number of

steps. The result and the proof itself is inspired by traditional distributed computing proofs

that establish the impossibility of highly parallel non-blocking data structures [58 ].

Theorem 2.4.1. No non-blocking asynchronous SDN implementation provides event lin-

earizable network updates.
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Figure 2.4. Typical execution of an event linearizable protocol like RoSCo:
when two concurrent network policies π1 and π2 that are non-commutative
over updates to the same set of switches s1 and s2, the protocol must block
to prevent interleaving of the updates to the flow tables of s1 and s2. The
detailed description of the RoSCo event linearizable protocol is described in
Algorithm 1  and Algorithm 2  while the weak update consistency procedure is
described in Algorithm 3 .

Proof. Suppose by contradiction that there exists a SDN implementation I in the malicious

controller threat model that provides event linearizable network updates and non-blocking

progress. As illustrated in Figure 2.3  , consider an execution Ei of I in which two network

updates U1 and U2 participate in Ei. We assume that U1 (and resp. U2) is invoked by event

e1 (and resp. e2) by switch s1 (and resp. s2). Suppose that the response of e1 (and resp.

e2) involves the flow table updates of switch s1 first and then switch s2 (and resp. s2 first

and then s1). Since I is non-blocking, at least one of the events e1 or e2 must complete

updating the flow tables of s1 and s2 and return a matching response within a finite number

of steps. By our assumption, Ei is indistinguishable to s1 (and resp. s2) from an execution Ej

in which upd[S(e1)] = {s1} (and resp. upd[S(e2)] = {s2}). By the assumption of asynchrony,

an adversary may simply delay the communication between the controllers and switches s1

and s2 such that the updates to the respective switches as part of events e1 and e2 are

interleaved. However, this contradicts the assumption that I is event linearizable: either

the updates corresponding to event e1 first terminates and then the updates corresponding

to event e2 are performed or vice-versa.
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Theorem 2.4.1  implies that providing event linearizable and asynchronous network up-

dates requires relaxing the non-blocking progress property. In the next section, we describe

a provably event linearizable protocol that is resilient against faulty controllers and ensures

blocking progress assuming a majority of correct controllers. We additionally present a

relaxation of the protocol satisfying update consistency providing demonstrably improved

performance.

2.5 RoSCo Protocol

This section presents the core contribution of this chapter: RoSCo, a dependable Software

Defined Networking (SDN) controller platform for robust network updates. The detailed

description of the RoSCo protocol implementing event linearizability is given in Algorithm 1  

and Algorithm 2 . The weakly consistent update procedure is described with Algorithm 3 .

2.5.1 Overview and notation

RoSCo ensures flow consistency, switch consistency, and progress assuming that a ma-

jority of controllers are correct. That is, to tolerate f failures, RoSCo requires that at

least 3f + 1 controllers participate in the execution. Since protocols involved in ordering

events/event handling across controllers can be costly, RoSCo makes use of event batching.

The protocol makes use of the following notation: A=[a1, . . . , an] denotes a sequence

(ordered set) of elements a1 . . . an. A sequence’s elements are identified/accessed via index

(e.g., A[i] refers to the i-th element of A, ai ∈ A.). A=〈a1, . . . , an〉 denotes a tuple with

elements a1 . . . an. A tuple’s elements are identified via dereferencing (e.g., A.ai). ‘⊕’

denotes sequence concatenation: [a1, . . . , an] ⊕[b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm]. Lastly,

cardinality is denoted by ‘| . . . |’: |[a1, . . . , an]|=n.

2.5.2 Definitions

In addition, the protocol and algorithms make use of the following definitions:

Event sequence E = [e1, . . . , en]: a sequence of one or more events.

40



Algorithm 1 Algorithm for switch si with secret key SSKi
1: CPKi . Public key for each controller ci
2: P ← ∅ . Set of previous seen network updates from each controller
3: D ← ∅ . Set of received network updates and counts
4: quorum← b |C|−1

3 c+ 1

5: upon receive(packet) on incoming link do
6: if no flow table match then . Other anomalies possible
7: sendEvent(packet)
8: else
9: forward packet along data plane

10: upon receive(seq‖r‖sig) from controller ci do
11: if verifySign(r, sig, CPKi) and seq 6∈ P [ci] then
12: D[r]← D[r] ∪ {seq}
13: if |D[r]| ≥ quorum then
14: P [ci]← P [ci] ∪ {seq}
15: apply(r)
16: sendAcknowledgement(seq)

17: procedure sendEvent(packet)
18: e← generateEventData(packet)
19: sig ← sign(e, SSKi)
20: send(e‖sig) to every controller ci

21: procedure sendAcknowledgement(seq)
22: sig ← sign(ACK‖seq, SSKi)
23: send(ACK‖seq‖sig) to every controller ci

Switch update u = 〈s, r〉: an individual update to switch identified as s with rule r. The

rule corresponds to the establishment of a new policy π on switch s.

Flow update U= [u1, . . . , un]: a sequence of switch updates such that ui precedes ui+1.

Controller keys CPKi and CSKi: public and secret key respectively for controller ci.

Switch keys SPKi and SSKi: public and secret key respectively for switch si.

Note that for simplicity we assume that any event e and rule r is implicitly uniquely

identified.

2.5.3 Application interfaces

The protocol uses the following application interfaces:
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Algorithm 2 Algorithm for controller ci with secret key CSKi
1: SPKi . Public key for each switch si
2: S ← ∅ . Set of all previously seen events
3: B ← [] . Sequence of collected events for a batch
4: acks← [][] . Verified acknowledgements
5: log ← [] . Sequence of all network updates
6: count← 0 . Count used for sequencing switch updates

7: upon receive(e‖sig) from switch si do
8: if verifySign(e, sig, SPKi) and
9: e 6∈ S[si] then

10: B ← B ⊕ [e]
11: if |B| > threshold or timeout then
12: propose(B)
13: B ← []

14: upon decide(E) do
15: for each e ∈ E do
16: S[si]← S[si] ∪ {e}
17: U ← handleEvents(E)
18: log ← log ⊕ U
19: count← count + |U|
20: update(U)

21: upon receive(ack = ACK‖seq‖sig) from switch si do
22: if verifySign(ack, SPKi) then
23: acks[si][seq]← true

24: procedure sendSwitchUpdate(seq, s, r)
25: sig ← sign(seq‖r, CSKi)
26: send(seq‖r‖sig) to s

27: procedure update(U) . Performs linearized network update
28: for i = 1..|U| in increasing order of i do
29: seq ← count− |U|+ i
30: for j = 1..|U[i]| in increasing order of j do
31: sendSwitchUpdate(seq,U[i][j].s,U[i][j].r)
32: wait until Rack[U[i][j].s][seq]

Switch event generation: generateEventData(p) = e, given packet data p creates the necessary

event data to be sent to the controller.

Switch update application: apply(r) applies r to the switch runtime.

Controller application invocation: handleEvents([e1, . . . , el]) returns [U1, . . . , Um]: a sequence

of flow updates generated in “response” to a sequence of events [e1, . . . , el] as specified by

the ideal world functionality.

42



Algorithm 3 Weak consistency update procedure. Replaces lines 27 –32 of Algorithm 2 

27: procedure update(U)
28: seq[i]i=1..|U| ← count− |U|+ i
29: fork for i = 1..|U| do . in parallel
30: for j = 1..|U[i]| in increasing order of j do
31: wait until . both, in any order
32: . flow consistency
33: 1. Rack[U[i][j− 1].s][seq[i]] unless j = 1
34: . switch consistency
35: 2. Rack[U[i][j].s][last] for largest
36: last < seq[i] | ∃〈s, . . .〉 ∈ all[last] if any
37: sendSwitchUpdate(seq[i],U[i][j].s,U[i][j].r)

Signature creation: sign(msg, sk), a function to sign a message (msg) with given key (sk).

Signature verification: verifySign(sig, msg, pk), a function to verify a signature (sig) for the

given message (msg) using the public key (pk).

Agreement: propose([e1, . . . , en]) is used by controllers to initiate/participate in an agreement

protocol on a sequence of events E = [e1, . . . , en]. As the outcome of agreement, controllers

receive through a callback decide(E) the sequence of events E to pass to the controller

application.

2.5.4 RoSCo protocol procedure

The RoSCo protocol uses an agreement protocol to ensure a total ordering of events

processed by controller nodes as well as quorum authentication to ensure agreement among

rules to be applied to switches. In short the RoSCo protocol works as follows:

(i) A switch receives an incoming packet for which there is no matching rule in the flow

table.

(ii) The switch generates an event, assigns the event a unique sequence number, signs the

event with its private key, and broadcasts the signed event to all controllers (Algo-

rithm 1 line 17 ).
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(iii) A controller, upon receiving a signed event from a switch, verifies the signature (ig-

noring the event if verification fails or if the event has been received previously), and

adds the event to the current batch (Algorithm 2 lines 7 - 10 ).

(iv) Once either the batch reaches capacity or a timeout occurs, the controller proposes the

batch across controllers (Algorithm 2 line 12 ).

(v) Once agreement has been reached, the controller passes the event batch to the controller

application to determine the network update for it (Algorithm 2  lines 14 - 20 ). Note

that agreement decisions are delivered in a sequential manner, i.e., decide executes in

mutual exclusion and in order of instances of the agreement protocol.

(vi) The controller executes the network update procedure (described below) for the re-

sulting network update (Algorithm 2 line 20 ).

(vii) Event batch and network update are cleared after all switch updates are applied to

the data plane.

2.5.5 Strongly consistent network update procedure (event linearizability)

To ensure strong consistency, when given a network update, the controller performs each

switch update serially. The procedure to perform the network update is as follows:

(i) The controller retrieves the next flow update from the network update (Algorithm 2 

line 28 ).

(ii) The controller retrieves the next switch update from the flow update, signs the update

with its private key, and sends the signed update to the switch (Algorithm 2 line 31 ).

(iii) The controller waits to receive an acknowledgement the switch (Algorithm 2 line 32 ).

(iv) The controller continues with the next switch update (step (ii) ) until all policies from

the flow update have been made.

(v) The controller continues with the next flow update (step (i) ) until all flow updates

have been applied.
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2.5.6 Switch update procedure

To ensure protection from a faulty controller, a switch can only apply an update rule after

it has received verified update rules from a quorum majority of controllers. The procedure

taken by a switch to perform a rule update is as follows:

(i) A switch, upon receiving a switch update from a controller verifies the signature (ig-

noring the update if verification fails or if the rule has been received previously), and

adds the rule to the received rule set (Algorithm 1 lines 10 -12 ).

(ii) If a quorum of verified rules has been received the switch applies the rule, and sends

an acknowledgement for the rule to all controllers (Algorithm 1 lines 13 -16 ).

The proof technique for event linearizability is interesting is its own right: it shows how ideas

from traditional distributed computing proofs [59 ] can be adopted for deriving correctness

proofs of network update protocols. Recall that the application of a network policy πi begins

with an event invocation by a switch si ∈ S followed by a network update. To prove event

linearizability of RoSCo, we need to show that in every execution of the RoSCo protocol,

described in Algorithm 1  and Algorithm 2  , and for any two network policies πi and πj in a

given execution, πi (and resp. πj) completes entirely before πj (and resp. πi) starts. The

proof for event linearizability shows that the individual steps of πi and πj are not interleaved

by constructing a mapping to an equivalent execution in which network policies are never

invoked concurrently. This is achieved by assigning appropriate atomicity points for the

update procedures.

Theorem 2.5.1. RoSCo protocol described in Algorithm 1 and Algorithm 2  enforces event

linearization of network updates.

Proof. In RoSCo, an event is initiated by a switch and results in a network update to apply

a network policy to the flow tables of some subset of switches as illustrated in Figure 2.4  .

The application of a network policy πi in an execution E of RoSCo begins with an event

invocation by a switch si ∈ S followed by a network update.

Let Line 5 of Algorithm 1  be the event invocation of any network policy πi in an execution

E and Line 24 in Algorithm 2  denote the response ri of πi in E . All steps performed by the
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state machines described by the pseudocode within these lines denote the lifetime of πi. The

proof proceeds by assigning a serialization point for a policy which identifies the step in the

execution in which the policy takes effect. First, we obtain a completion of E by removing

every incomplete policy from E . Concretely, if the step in line 15 of Algorithm 1  is not

performed, the policy is treated as incomplete.

Let H denote the high-level history of E constructed as follows: firstly, we derive lin-

earization points of operations performed in E (sendAcknowledgement, sendEvent, verifySign,

sendSwitchUpdate, apply and propose). The linearization point of any such operation op is

associated with a message step performed between the lifetime of op. A linearization H of

E is obtained by associating the last event performed within op as the linearization point.

We then derive H as the subsequence of E consisting of the network policy event invoca-

tions, network updates and network policy responses. Let <E denote a total order on steps

performed in E and <H denotes a total order steps in the complete history H. We then

define the serialization point of a policy πi; this is associated with an execution step or the

linearization point of an operation performed within the execution of πi. Specifically, a com-

plete sequential history S is obtained by associating serialization points to policies in H as

follows: for every complete network update in E , serialization point is assigned to the last

event of the loop in line 32 of Algorithm 2 .

Claim 1. For any two policies πi and πj in E, if πi ≺H πj, then πi <S πj.

Proof. This follows immediately from the fact that for a given network update, its serializa-

tion point is chosen between the first and last event of the policy implying if πi ≺H πj, then

δπi <E δπj implies πi <S πj.

Claim 2. Let [π1, . . . , πn] be the ordering for the sequential specification of policies in H.

Then, the sequence of network policies as constructed in S is consistent with [π1, . . . , πn].

Proof. Let [U1, . . . , Un] be the corresponding sequence of flow updates where for all i ∈

{1, . . . , n}, Ui is the flow update for πi. Recall that each flow update consists of [u1, . . . , un]:

a sequence of switch updates such that ui precedes ui+1. Firstly, we argue that for all

i < j ≤ n, δπi <E δπj implies that the last switch update of Ui (as defined by the linearization
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point of apply in line 32 of Algorithm 2  ) precedes the first switch update of Uj. This invariant

immediately follows the waiting acknowledgement loop in line 32 of Algorithm 2  which forces

all switches in Ui to complete before starting the first switch update in Ui+1. Thus, if πi

precedes πj according to the sequential specification in H, then δπi <E δπj implies that πi

precedes πj in S.

To complete the proof of this claim, we argue that if πi precedes πk according to the

sequential specification in H, there does not exist i < j < k such that πi <S πj <S πk.

Suppose by contradiction that such a πj exists. Recall that by the agreement property,

every controller node agrees on the output of the sequence of flow updates in line 17 of

Algorithm 2 . Consequently, the only reason for such a πj to exist is if the last switch update

of Uj precedes the first switch update of Uk. But this is not possible by the invariant proved

above—contradiction.

The conjunction of Claim 1 and Claim 2 together establish that E is event linearizable.

2.5.7 Weakly consistent network update procedure (update consistency)

For weak consistency, when given a network update, the controller can perform the

switch updates commutatively provided that flow consistency and switch consistency are

maintained. Commutativity is determined based on the network updates received by the

controller application. Flow consistency is maintained by ensuring that a switch update

within a flow update is not sent to the switch until after receiving an acknowledgment for the

previous switch update. Switch consistency is maintained by ensuring that a switch update

is not sent to the switch until after an acknowledgment is received for the last switch update

to the same switch as determined by the controller application (if any). The procedure to

perform the network update is as follows (cf. Algorithm 3 ): the controller forks a parallel

thread for every flow update in the network update (Algorithm 3 line 29 ).

(i) The controller retrieves the next switch update from the flow update and waits until

the following have been satisfied (Algorithm 3 lines 31 -36 ):
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(a) the switch update is the first in the flow update or an acknowledgement for the

preceding switch update has been received, and

(b) an acknowledgement for the last switch update to the same switch from previous

network updates has been received.

(ii) The controller signs the update with its private key and sends it to the switch (Algo-

rithm 3 line 37 ).

(iii) The controller continues with the next switch update (step (i) ) until all switch updates

have been made.

2.5.8 Discussion on progress with dishonest controller majority

Observe that RoSCo is a blocking implementation that provides forward progress as long

as a correct majority of controllers participate in a given execution, but safety (i.e., event

linearizability and update consistency) is never violated even if a faulty majority exists. Note

that even if some controller manufactures a response to an event and even if the controller

is able to correctly sign the response, if no other controllers send the same response then a

quorum of responses will never be received by the switch and the rule associated with the

response will never be applied (line 13 of Algorithm 1 ).

This is the main algorithmic trick in RoSCo: to augment the switch runtime to perform

the controller event verification, but with minimal overhead as we demonstrate through

our extensive evaluations. We remark that the presented pseudocode does not explicitly

depict the RoSCo exception handling (when a dishonest majority affects any step in the

protocol execution thus disrupting forward progress) which in practice can be handled via

timeouts, optimistic abort-and-retry mechanisms, and/or existing techniques for detecting

and defending against coordinated intrusion [56 ], [57 ].

2.6 RoSCo Implementation

RoSCo is implemented as an abstraction layer between the controller application and the

data plane switches utilizing a totally distributed controller framework where all controllers
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operate in the same role. In contrast to explicit leader-based network update protocol

described in Ravana [5 ] for dealing with benign faults, events are sent from switches to all

controllers avoiding the need for leader election.

2.6.1 Overview

The RoSCo implementation is twofold;

(i) A Java layer (runtime OpenJDK version 1.8.0) which runs on the controller to perform

agreement and handle acknowledgements. Using interprocess communication, events

are sent from the RoSCo layer to the controller application providing the flexibility of

the use of any controller application framework to run unmodified.

(ii) An Open vSwitch (OVS) runtime extension for handling quorum authentication of

policy responses.

Figure 2.5 depicts the software organization of the RoSCo implementation. Implicitly, by

extending OVS, the RoSCo implementation makes use of the OpenFlow protocol. The

sections that follow describe how RoSCo makes use of existing OpenFlow messages and

structures. To ensure message integrity and authentication OpenFlow messages are wrapped

with a signature for the sender as an extension to the existing OpenFlow message format.

In addition, the RoSCo implementation utilizes OpenFlow as follows:

• When a controller or switch sends a message, the transaction identifier (XID) in the

OpenFlow message header is set to a unique value. This allows recipients of the

messages to drop duplicates.

• A Barrier Request (BarrierReq) is sent by the controller to initiate an acknowledge-

ment, it then waits for a Barrier Response (BarrierRes) from the switch before pro-

ceeding.

2.6.2 Controller applications

The controller application contains the logic for network policies and processes events

to generate network updates. The RoSCo runtime intercepts all incoming event messages
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and network updates allowing unmodified controller applications to run in a fault-tolerant

manner. RoSCo adds message signatures to the OpenFlow protocol messages, but leaves the

message payload for policies unchanged.

2.6.3 Agreement

In order to maintain consistent controller state, events sent from switches must be pro-

cessed by each controller in the same order, however due to network asynchrony there is

no guarantee that events will be received in the same order by controllers. Duplicate and

corrupted events must also be discarded. In order to ensure a total ordering of events across

controller nodes, the RoSCo controller layer uses the BFT-SMaRt library to agree on an

event (set of events with batching). Once a sequence of events is agreed on, each controller

processes them from its own event queue and sends the corresponding response(s) directly

to the data plane.

2.6.4 Event sequence numbers

Events sent from data plane switches need to be identifiable to ensure ordering and

unique event execution. Any event that has been previously processed by a controller node

is discarded. To implement sequence numbers, we modified the OVS runtime to use the XID

contained in the OpenFlow header. An event received by a controller with the same XID as

one received previously is discarded. Similarly for event responses sent by controllers, the

XID is also used to assign each response a unique identifier and a response received by a

switch with a previously used XID is discarded.

2.6.5 Quorum authentication

Quorum authentication ensures that a policy cannot be set by a minority of malicious

controllers, assuming a control plane of four or more controllers. Quorum authentication

therefore complements SSL, provided in OVS, that secures communication but does not

protect against a trusted controller that becomes compromised by a malicious adversary.

Switches must wait for a majority quorum of responses received from verifiable controllers
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before the rules can be installed. The verification of controllers and the storing of responses

is implemented as a modification to the OVS runtime. Switches store verified responses from

controllers in a hash map keyed by XID along with a list of the controllers that sent the

particular response. The response is passed to the switch runtime for processing only when

a majority quorum has been received. At that time the response XID is “retired” and any

future responses containing the XID are ignored.

Figure 2.5. Depiction of RoSCo implementation. As OpenFlow events are
generated by the switch they are intercepted by the RoSCo OVS runtime,
assigned a sequence number and sent to the controller. OpenFlow events are
received by the RoSCo runtime and sent to the RoSCo event queue which
uses BFT-SMaRt [60 ] to determine a total order across all controller nodes.
Ordered events are sent to the controller application and responses are passed
through the RoSCo runtime to the network and sent to the switch. Update
rules are held by the RoSCo OVS runtime until a quorum majority have been
received from verifiable controllers, which are then sent to the OVS runtime.

2.6.6 Acknowledgments

To ensure consistency, switches must send acknowledgments to the control plane once a

rule has been installed. To that end we use OpenFlow Barrier Messages. For each event,

after all responses have been sent to relevant switches, the RoSCo layer sends a BarrierReq

to each switch and waits for a BarrierRes. Once a quorum of responses is received a switch

sends a BarrierRes to each controller.
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Figure 2.6. Depiction of RoSCo evaluation testbed. Control plane consists
of four separate machines from the DETERLab running the RoSCo layer and
Ryu. Switch emulation is performed by a separate machine equipped with a
Netronome® Agilio CX™ SmartNIC using Mininet. Throughput benchmark-
ing is done using the modified OVS ovs-appctl command to generate continu-
ous PacketIn requests recording the ultimate throughput of received FlowMod
responses.

2.6.7 Event batching

The time it takes for the agreement protocol to execute can be significant compared to

the time for a controller to process the event. In response to this, we have implemented event

batching to allow a controller to atomically propose a set of events received from the data

plane. BFT-SMaRt ensures that only a single instance of the agreement protocol is performed

at a time. Albeit events may be batched in a different order by different controllers, this

single agreement behavior, combined with unique event identifiers, ensures that events are

processed in the same order by all controllers. Event batching imposes added latency as the

controllers must wait for either the batch to fill with events or until a certain amount of time

has passed (batch timeout). In many cases, this added latency can be amortized based on

the increased throughput. However, for certain events, it may be necessary to ensure that
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the latency is as short as possible. The RoSCo batching implementation allows the batch

size and timeout values to be globally set based on the network time objectives.

2.7 RoSCo Evaluation

In this section, we rigorously evaluate the overhead of our event linearizable and update

consistent protocols (cf. § 2.5 )

using varying network configurations. The goal is to determine the feasibility of deploying

RoSCo in a large-scale SDN by answering the following questions:

(1) What is the effect of event linearizability on throughput?

(2) Does update consistency improve throughput?

(3) How much can a faulty controller affect throughput and how does it compare against

protocols that only provide resilience against benign crash failures?

(4) Does RoSCo affect the latency of processing events?

2.7.1 Evaluation hardware

All evaluations were performed on a set of machines provided by the DETERLab Project [61 ]

(cf Figure 2.6  ). For RoSCo controllers, we used 4 machines (to tolerate 1 failure) each con-

taining 2 Intel® Xeon™ processors running at 3.00 GHz with 4 GB of main memory. For

switch emulation, we used a single machine containing two Intel® Xeon™ E5-2450 v2 pro-

cessors (12 cores total) running at 2.20 GHz with 16 GB of main memory. All machines

ran Ubuntu 16.04 LTS with kernel v4.4.0-83 and were connected using a 1 Gbit network. A

separate 1 Gbit network was used to connect controller machines dedicated for the agree-

ment protocol. Additionally, the switch machine also contained a Netronome® Agilio CX™

SmartNIC which provides hardware offloading of OpenFlow packet processing through the

use of a custom OVS implementation. This implementation is open source which allowed for

the modifications necessary for our evaluation. Data plane connectivity was emulated using

Mininet v2.1.0.
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2.7.2 Evaluation testbed

Throughput was measured using an extension to the OVS ovs-appctl command to create

a benchmark that accesses the OVS switch runtime and schedules the sending of PacketIn

requests from all switches. The benchmark then waits for an equal number of FlowMod

responses from the controller(s), and records the total time to receive the responses and the

average response time for each individual PacketIn request. In the control plane, the bench-

mark uses the cbench application, a Ryu controller application implemented as a bench-

mark for measuring throughput of OpenFlow messages. Upon receiving a PacketIn message,

cbench replies with an empty FlowMod message which does not provide any routing logic

to the switch. As such, cbench is not intended for use as deployed controller application

and is solely intended for benchmarking to provide minimal latency within the controller

application so that measurements actually reflect the throughput of the controller runtime

and transport layer. While our benchmark focuses on PacketIn requests and FlowMod replies,

any OpenFlow event and response can be used without loss of generality.

Using this benchmark we measured the throughput of RoSCo and compared it to two

other implementations: a centralized controller using the Ryu [18 ] runtime (version 4.23)

and Ravana. The authors of Ravana were able to provide their implementation which we

used in our evaluations. The data points for all graphs represent the geometric mean of

25 individual trials, with error bars representing one standard deviation from the geometric

mean.

2.7.3 Benefits of event batching

The RoSCo controller batches events to increase throughput. Here we evaluate the

throughput and latency of RoSCo for varying batch sizes. Figure 2.7a shows the mes-

sage throughput of events processed through the agreement protocol by RoSCo for various

batch sizes and Figure 2.7b shows the corresponding latency imposed. In our experiments,

throughput increases as batch size increases, which is the direct result of the reduced num-

ber of agreement protocol instances needed for controllers to agree on events. However at
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a point, the benefits of batching are reduced as performance becomes bounded by other

aspects of event processing (e.g., decoding of OpenFlow messages and processing of events).

2.7.4 Throughput and latency

We evaluated the throughput of RoSCo against Ryu and Ravana. Using the OVS bench-

mark, experiments were run for each implementation with varying numbers of switches in

the data plane, which all sent PacketIn requests in parallel to the controller(s). The resulting

throughput can be seen in Figure 2.7c  . For both RoSCo and Ravana, the maximum batch

size was set to 1000 messages with a batch time out of 0.1 s. The RoSCo network update

procedures evaluated are as follows:

RoSCo NO-ACK represents RoSCo without acknowledgments. This scenario is impractical

as it provides no consistency guarantees for network updates, yet is included as a baseline.

RoSCo LNZ represents RoSCo using the strongly consistent network update procedure. As

such, all switch updates are performed sequentially.

RoSCo WEAK-SGL represents RoSCo using the weakly consistent network update procedure

with single switch updates. In this scenario the flow updates received in response to an

event require updating a single switch.

RoSCo WEAK-ALL represents RoSCo using the weakly consistent network update proce-

dure, however each flow update received in response to an event requires an update to all

switches.

RoSCo’s throughput is lower than Ryu’s due to the overheads of agreement and quorum

authentication. The OVS benchmark sends requests without delay representing the worst

possible case for RoSCo performance. Our goal is to provide strong guarantees, not max-

imize update rate/throughput. That said, our scheme provides good performance even in

conservative scenarios; it is clearly faster with update consistency than Ravana — whose

performance is deemed sufficient for real-life scenarios [5 ] — in all scenarios with 4 or more

switches.
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Ryu utilizes multiple threads in order to maintain separate connections to each data plane

switch. The Ravana implementation uses additional threading to maintain its distributed

event queue. Written as a direct extension to the Ryu runtime and entirely in Python,

Ravana suffers significant performance penalties due to the threading behavior of the Python

interpreter’s global interpreter lock (GIL) [62 ], which while allowing for a more deterministic

execution, prevents threads from executing in parallel. To show how the GIL affects event

processing throughput we also implemented RoSCo completely in Python as an extension to

the Ryu runtime. The resulting throughput is shown as ‘RoSCo Python’ in Figure 2.7c  and

is significantly lower than the Java layer approach. This motivated the use of a framework

providing true parallelism for our RoSCo implementation since our goal is to evaluate the

overhead of agreement, quorum authentication, and acknowledgements, not the limitations

of Python.

2.7.5 Impact of consistency guarantees

Without any acknowledgments, RoSCo is able to achieve throughput near Ryu since all

switch updates can be processed in parallel. However, this provides no consistency in network

updates. The addition of acknowledgments provides the guarantee of update consistency,

however reduces throughput. This result is intuitive as the controllers must wait for an

acknowledgments from data plane switches before sending dependent switch updates.

For the strongly consistent network update procedure (RoSCo LNZ) all updates are pro-

cessed sequentially. While providing the strongest guarantees, it also allows no update com-

mutativity. Relaxing the consistency requirements (RoSCo WEAK-SGL and RoSCo WEAK-ALL)

provide significant performance improvements especially as the number of switches increases.

In both scenarios, increasing the number of switches increases commutativity of flow up-

dates. Even when a flow update requires a switch update to each switch in the data plane

(RoSCo WEAK-ALL), such flow updates can be pipelined as updates are made to individual

switches.

In all experiments, more switches requires additional system resources for managing

acknowledgements, queued events, and tracking rule quorums. This additional resource
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(a) (b)

(c) (d)

Figure 2.7. Figure 2.7a  and Figure 2.7b  depict the throughput and latency
of RoSCo with varying batch sizes. Figure 2.7c depict the total throughput of
RoSCo, Ryu, Ravana, and the Python implementation of RoSCo for varying
network sizes and consistency guarantees. Figure 2.7d  depicts the through-
put of RoSCo when the control plane include a faulty controller. Error bars
represent one standard deviation from the geometric mean. Figure 2.7c  and
Figure 2.7d  reflect that at extreme cases for switch counts the overhead for
managing acknowledgements, queued events, signature verification, and quo-
rum authentication reduces throughput, but all within acceptable levels com-
pared to the state of the art.

usage reduces the overall throughput in the extreme cases for switch counts. This behavior

is also reflected in the centralized Ryu and Ravana experiments.

2.7.6 Impact of faulty controllers

We ran RoSCo using the OVS benchmark under the following two fault scenarios:
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(i) A single faulty controller continuously proposes the first event received from the data

plane. Since the event is a duplicate, it is continuously dropped, however all controllers

must still participate in agreement before the event is discarded.

(ii) A single faulty controller continuously sends a FlowMod to all switches with differing

response identifier. The switch determines that the signature as well as the response

identifier are correct, however since no other controller in the control plane sends the

same update, a quorum is never reached and the update is never applied.

We ran these scenarios through the same network configurations as our throughput evalu-

ation. Figure 2.7d  shows the results of RoSCo while under attack scenario (i) (RoSCo WEAK-SGL-A)

and RoSCo WEAK-ALL-A in the figure). While the faulty controller is able to affect the over-

all throughput of events from the increased number of agreement instances, the reduction

is only marginal. For scenario (ii) there was no significant difference in throughput. These

results show that RoSCo can perform equally well with controller faults as during normal

operations.

Table 2.3. RoSCo microbenchmark results
Measurement Time (ms)
Response Time (RT) 11.42
Acknowledgement Time (AT) 5.50
Quorum Time (QT) 0.28
Agreement Time (AGT) 9.78
Processing Time (PT) 1.36
RoSCo Overhead (RT + AT - PT) 15.56

2.7.7 Microbenchmarks

Table 2.3  shows the average time spent in various places of the RoSCo implementation

while processing a single event. Response Time (RT) represents the total time to process

the event, from the time it is sent by the data plane switch to the time in which the switch

processes a quorum response. Acknowledgement Time (AT) represents the time for a con-

troller to receive an acknowledgement for a switch update. In the case of dependent switch
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updates, the controller would not be able to send the next switch update until receiving an

acknowledgement. Quorum Time (QT) represents the time that a data plane switch waits for

a quorum of messages from the control plane (after receiving the first switch update). Agree-

ment Time (AGT) represents the time for a single instance of agreement using BFT-SMaRt.

Processing Time (PT) represents the time spent for the controller application to process the

event and send a response. The overall overhead of quorum authentication is minimal and

the majority of RoSCo overhead is from agreement and waiting for acknowledgments. The

actual overhead for a single request is shown in Table 2.3 .

Assuming negligible network delay, the overhead for RoSCo is essentially the total re-

sponse time plus acknowledgement time minus the processing time. Processing of an event

by the controller application to generate a network update is required regardless of protocol.

Using the weakly consistent network update procedure, the acknowledgement time can be

amortized as independent switch updates can be processed in parallel, however since the

values shown in Table 2.3  represent the time to process a single event, this amortization is

not reflected. The total overhead can be further reduced by batching events to amortize

agreement costs.

2.8 Conclusions

This chapter presents a model of computation for SDN in the presence of faulty control

processes as well as a protocol and prototype implementation that shows that only a minimal

overhead is induced over existing SDN controller platforms that do not provide resilience

against malicious behavior.

While RoSCo can provide strong guarantees on network consistency in an environment

with faulty controllers, it is not without limitations. The replicated membership groups of

controllers is static and public keys must be pre-distributed to all controllers and switches in

the network. A fault tolerant control platform would benefit from the addition of dynamic

membership as well as a secure key distribution mechanism. Furthermore, additional evalu-

ation on a set of data-center characteristic workloads would further strengthen the position

of the minimal overhead the RoSCo imposes on data plane flows. The following chapter
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explores these aspects of a fault tolerant control plane presenting a practical solution which

includes dynamic membership and pro-active security.
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3. PRACTICALITY AND CONSISTENCY FOR NETWORK

POLICY UPDATES

This chapter expands on fault tolerance for SDN network updates to the larger distributed

SD-WAN network and describes ConsIstent seCurE pRactical cOntroller (Cicero) [63 ], a

construction that focuses on security and consistency of network updates while being practi-

cal for deployment in production networks. To be practical, network updates must be both

consistent, i.e., free of transient errors caused by updates to multiple switches, and secure,

i.e., free of errors caused by faulty or malicious members of the control plane. Besides, these

properties must incur minimal overhead to controllers and switches.

3.1 Introduction

The advent of software-defined wide area networking (SD-WAN) has brought the con-

current network update problem [64 ] to the forefront. In short, the challenge is to construct

a control plane for SD-WAN capable of covering large geographically separated networks.

Building a single consolidated control plane across WANs agnostic of the different underlying

domains (e.g. constituting autonomous systems or based on some locality in the physical

topology) can optimize the processing of consistent updates [41 ], [65 ]–[67 ]. Yet, it is likely

ineffective and hardly scalable in practice, besides requiring strong trust between the do-

mains. Inversely, managing domains independently, each with a separate control plane, can

help perform updates efficiently in parallel (e.g. when updates only affect single domains),

and can ensure that failures (e.g. misconfigurations, crashes, malicious tampering) in one

domain do not affect others. However, this does not provide support for updates affecting

multiple domains in a consistent manner.

3.1.1 Requirements

A viable SD-WAN control plane should reconcile the following three conflicting require-

ments:
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Consistency: Concurrent updates — whether affecting individual domains (intra-domain

routes) or multiple domains (inter-domain routes) — should meet the sequential spec-

ification of the shared network application, i.e., they should not create inconsistencies

leading to network loops, link congestion, or packet drops.

Security: The control plane should be able to perform updates in the face of high rates

of failures including benign failures (e.g., crashes) as well as malicious failures (e.g.,

tampering); in particular failures should not spread from one domain to another.

Practicality: Performance should allow for real-life deployments that scale to as many

domains and switches as possible while sustaining high update rates, and should impose

minimal overhead on switches.

3.1.2 State of the art

Making the control plane tolerate failures has been tackled by several approaches, yet

these approaches either solely handle crash failures [5 ], [27 ], [28 ], or handle potentially ma-

licious behaviors [68 ], [69 ] but with no control plane authentication for the data plane, thus

not fully shielding the data plane against masquerading malicious controllers. In addition,

most of these approaches consider only single-domain setups.

Protocols for Byzantine fault tolerance (BFT) [31 ], a failure model subsuming crash fail-

ures, provide safety and liveness guarantees [30 ], [60 ] up to a given threshold of faulty partic-

ipants, most often growing linearly with regards to the number of participants. Most work

here similarly considers single domain setups, putting little emphasis on handling failures

to quickly yet permanently retain trustworthiness and support cooperation across domains

throughout successive failures. Yet while application-specific solutions exist for performance-

aware routing [70 ] or optimal scheduling for network updates [44 ], we are not aware of any

practical system providing a generic protocol to securely enforce arbitrary application net-

work updates across a faulty and asynchronous distributed network environment. Crucially,

from the point of view of practical adoption, existing work introducing distributed resiliency

techniques to address the network update problem treat both switches and controllers as
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equal participants in the protocol, thus inducing prohibitive overhead on the switching fab-

ric [26 ], [69 ].

Table 3.1. Examples of network changes with their desired behaviors, poten-
tial problems, and consistency preconditions.

Example Figure 3.1 Figure 2.2 Figure 3.3 

Network change Firewall rule
changes

Network hardware
maintenance

Bandwidth load-
balancing

Desired behavior Policy enforcement Loop/black-hole
freedom

Loop/black-hole
freedom

Congestion freedom

Potential problems Compromise or
loss of data Packet loss Over-provisioning

of link resources
Update consistency

preconditions
Awareness of existing

firewall rules
Awareness of

existing flows
Awareness of existing

bandwidth usage

3.2 Background

From a high level, network traffic is shaped by policies set by network administrators.

Based on an unbounded number of motivating factors (e.g., demand for network resources,

application bandwidth requirements, firewall rules, other network tenant requirements), it

is impossible to be 100% certain what drives network policies. For a network switch in a

data plane, policies are represented by forwarding rules that describe the store and forward

behavior of network packets. An individual switch has no understanding of a policy or how

it affects the entire network. In an SD-WAN environment, a control plane of one or more

controllers enforces policies set by the network administrator by translating policies into

flow table entries installed on switches. As network traffic arrives or as network policies

change, updates to switch flow tables are needed through network updates. Furthermore,

the topology of the network may be dynamic as physical cabling is changed and/or failures

happen in switch or fabric hardware. These topology changes may also result in network

updates.
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Figure 3.1. (a) The state of the flows from s1 and s2 to s5 (b) is intended to
be modified by an update which respects the firewall rule, (c) but s1 applies
the update before s2 which breaks the firewall rule.

3.2.1 Definitions

A network flow is an active transfer of packets in the data plane identified by its source,

target, and bandwidth requirements. A route indicates the specific path that a network flow

takes within the network; multiple possible routes may exist for a network flow. Forwarding

rules instruct a data plane switch how to forward received packets in a flow. The data plane

state consists of all forwarding rules currently in use by all data plane switches. The control

plane is thus responsible for maintaining forwarding rules in the data plane state for all

routes such that they comply with network policies at all times, even during a change to the

data plane state.

3.2.2 Challenges

In this section we outline several motivating examples that show not only the need for

consistent network updates performed in a secure manner, but also the need for practicality

for policy specification and scalability for deployment in large networks facing a myriad of

concurrent network updates.
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Figure 3.2. (a) The state of the flows to s5 (b) is planned to be modified by
an update to bypass the failure of the s4-s5 link but (c) s3 applies the update
before s2 which creates an unintended network loop.
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Figure 3.3. (a) The state of the flows to s5 (b) is planned to be modified
by an update alleviating s3, (c) but the update is applied by s1 before it is
applied by s2 which causes an unintended over-provisioning of the s4-s5 link.

3.2.3 Consistency

Asynchrony in network updates can cause transient side effects that can significantly

affect switch resources such as overall network availability and/or violation of established

network policies. Since data plane switches do not coordinate themselves to ensure update

consistency, updates sent to switches in parallel may be applied in any order. While the

OpenFlow message layer, arguably the most widely used southbound API for network up-

dates, has proposed bundled updates [71 ] to provide transaction style updates to switches,

it only supports these updates for a single switch. It does not address inconsistencies that
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can occur due to updates that span multiple switches. Additionally, OpenFlow scheduled

bundles require synchronized clocks among switches to enforce the time at which bundles

are applied but even the slightest clock skew may provoke transient network behavior.

Table 3.1  summarizes several circumstances as well as potential problems that can arise

if update consistency is not provided. For each example, certain preconditions may also

be needed by the controller for ensuring update consistency. For instance, even a simple

network policy change may have unintended consequences when network updates are not

consistent (cf. Figure 3.1  ). The process of changing data plane state must also be free of

transient effects caused by updates to multiple data plane switches: loop and black hole

freedom ensures no network loops or unintended drops of network packets (cf. Figure 3.2  ),

and congestion freedom ensures no over-provisioning of bandwidth to network links (cf.

Figure 3.3 ).

3.2.4 Security

When considering a control plane prone to faulty controllers, enforcing a consistent or-

dering of network updates is not sufficient, those updates must only be applied when received

from correct controllers.

A faulty or malicious controller may corrupt or cause loss of network data, violate firewall

rules, or even leak network data to a malicious party. While solutions for secure controllers

have been proposed, they either focus on resiliency (e.g. intrusion detection, intrusion pre-

vention) for a singleton controller [52 ], [53 ] or provide resiliency only in the presence of

crash failures [5 ], [27 ], [28 ], [51 ]. Single controller solutions, proven to be single points of

failures [72 ]–[76 ], must be avoided.

Many of the existing limitations when considering a faulty control plane arise from short-

comings in the southbound API itself. While OpenFlow enables endpoint authentication

through transport layer security (TLS), it assumes correct behavior of the authenticated

control plane. However, an authenticated controller that is faulty or compromised is still

able to affect network flows in the data plane. For example, Openflow provides a mechanism

for the control plane to inject arbitrary packets into the data plane (PACKET_OUT [77 ]). This
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mechanism alone is enough for a malicious controller to easily launch a denial of service at-

tack against the data plane or to corrupt existing flows [78 ]. Besides, a malicious controller

masquerading as a switch can report incorrect link and switch state to the control plane [79 ].

A comprehensive solution for security in network updates must be able to tolerate arbitrary

controller fault.

3.2.5 Practicality

The usefulness of a system is often evaluated on factors such as ease of use, performance,

and efficiency.

Network policy specification must not only be straightforward, but also flexible enough

to allow arbitrary network policies. Several solutions for policy specification have been

proposed [80 ]–[82 ], but are either control plane implementation specific, or provide no mech-

anism for ensuring update consistency or security. A practical system must allow a network

administrator the flexibility to use any solution desired while ensuring consistency and se-

curity.

Furthermore, a system for managing changes to the data plane state must scale to a

wide network infrastructure consisting of multiple data centers with potentially thousands

of switches [83 ], [84 ]. Existing work [44 ] shows that applying updates on commodity switches

can require seconds to complete. For data center workloads where flows start and complete in

under a second [1 ], applying updates quickly is vital to guarantee adequate network response

time when changing data plane state. However, responsiveness becomes even harder to

ensure if updates are to be applied in a consistent manner. In a naïve approach enforcing

consistency, updates would be applied sequentially (e.g. by updating s2, s1, s3, s4 in that

order in Figure 3.1  ), increasing response time. Yet, updates that do not depend on any

others, (i.e. causally concurrent updates) may be applied in parallel (e.g. updates to s3 and

s4 in Figure 3.1 ). Identifying causally concurrent updates to apply in parallel and improve

response times is a challenge.

Finally, the data plane’s runtime load for updates must be low to ensure as many resources

as possible are used for the network’s core purpose; the transmission of network data.
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Table 3.2. Comparison of network management solutions for fault tolerance
and consistency, considering different features related to security [Sec], consis-
tency [Cons], and practicality [Pract].

Crash
FT

Byzantin
e FT

Contro
ller auth.

Update consist
ency

Dyn. membersh
ip

Update domains

Im
plementation

System/approach [Sec] [Sec] [Sec] [Cons] [Pract] [Pract] [Pract]

Singleton controller Common [18 ], [85 ]–[87 ]
Singleton controller

w/ TLS X Common [18 ], [85 ]–[87 ]

ONOS [28 ] X X Deployed [88 ], [89 ]

Ravana [5 ] X
Experimental Ryu

extension
Botelho et al. [90 ] X Experimental
MORPH [69 ] X X X Experimental

RoSCo [22 ] X X X X
Experimental Ryu

extension
NES [42 ] X Theoretical specification
Dionysus [44 ] X Experimental

ez-Segway [91 ] X
Experimental Ryu

extension
Optimal Order

Updates [92 ] X Theoretical specification

Cicero X X X X X X
Experimental Ryu

extension

3.2.6 Related Work

While the following solutions present methods for solving significant problems that arise

in SD-WAN deployments, none however provide the desirable guarantees of consistent net-

work updates in the midst of controller faults while remaining practical. Table 3.2 highlights

the shortcomings of these solutions that make them impractical in a realistic deployment.

Consistency

Additionally, there have been several works published in the realm of consistent network

updates. McClurg et al. [42 ] proposed network event structures (NES) to model constraints
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on network updates. Jin et al. [44 ] propose Dionysus, a method for consistent updates

using dependence graphs with a performance optimization through dynamic scheduling.

Nguyen et al. [91 ] propose ez-Segway, a method providing consistent network updates though

decentralization, pushing certain functionalities away from the centralized controller and

into the switches themselves. Černỳ et al. [92 ] show that in some situations it may not be

possible to ensure consistent network updates in all cases. As such, it may be desirable

to wait until the packets for a particular flow are “drained” from the network prior to

applying switch updates. They define this behavior as packet-waits and provide an at-worst

polynomial runtime called optimal order updates which provides a mechanism for detecting

such situations.

Fault tolerance

The area of fault-tolerant network updates has been explored in many facets. ONOS [28 ]

and ONIX [27 ] provide a redundant control plane through a distributed data store, however

their primary focus is on tolerance of crash failures. Botelho et al. [90 ] also make use

of a replicated data store, following a crash-recovery model, for maintaining a consistent

network state among a replicated control plane built upon Floodlight [93 ]. Ravana [5 ],

another protocol that only tolerates crashes, differs slightly in its use of a distributed event

queue rather than a distributed data store. While Botelho et al. and Ravana ensure event

ordering and prevent duplicate processing of events, they do not provide a mechanism for

authenticating updates sent to the data plane. RoSCo [22 ] makes use of a BFT protocol

to ensure event-linearizability, but does not support a dynamic control plane and requires

extensive key management for controller authentication.

Li et al. [68 ] proposed a method of a BFT control plane by assigning switches to multiple

controllers that participate in BFT agreement. However, this work focuses significantly on

the problem of “controller assignment in fault-tolerant SDN (CAFTS)” with little discussion

on how BFT is used to ensure protection from faults. MORPH [69 ] expands the solution

of CAFTS with a dynamic reassigner which allows for changes to the switch/controller as-

signment. Neither method fully protects against malicious updates sent to the data plane;
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assuming that controllers participate in some BFT protocol for state machine replication is

not enough to ensure the security of such updates. Without control plane authentication,

a malicious controller can make arbitrary updates to a data plane switch. While it may

seem trivial to add TLS for OpenFlow [94 ], this requires additional complexities inherent

in the protocol. TLS uses certificates to authenticate participants and encryption to en-

sure confidentiality of data, but does not protect against a faulty controller. Besides, as

distributed control plane membership changes, individual controller and switch certificates

must be redistributed to all participants.

3.3 Cicero Components

In this section, we detail the various mechanisms Cicero employs to ensure both consis-

tency and security while being efficient enough for practical deployment in a production data

center. § 3.3.1 describes how Cicero handles consistency in a modular manner within a local

network by using an update scheduler ; § 3.3.2 describes how update security is enforced in

a dynamic control plane through event authentication, controller agreement, quorum update

authentication, and unique key adaptation; finally, § 3.3.3 describes facilities that Cicero ex-

ploits to improve the performance of network updates in both local and wide area networks

through intra- and inter-domain update parallelism, and signature aggregation.

3.3.1 System Model and Consistent Network Updates

The data plane is a set of switches connected by links encompassing multiple domains of

operation. The control plane consists of a dynamic set of distributed controllers. A change

in data plane state requires a set of network updates {ui = (sj, rk)} where (sj, rk) indicates

rule rk being applied to switch sj. An update scheduler determines a schedule by denoting

dependencies between updates. Let an update dependence be represented by a tuple (u, D)

where u is the update to be applied (consisting of (s, r)), and D is the set of updates that

must be applied before u. For all updates ui, the update scheduler must determine the set

of all update dependencies.
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Figure 3.4. The update scheduler determines that there are no dependencies
between the updates for the green (dashed) set of switches and the updates
for the red (dotted) set.

Figure 3.1  depicts an example which requires a set of updates for switches s1, s2, s3,

and s4. To ensure update consistency, an update scheduler would require the update at s2

to be completed first and, once that update has been applied, the remaining updates can

be performed in any order. This is further depicted in Figure 3.4  where a network update

requires modifications to the switches highlighted with green dashes and red dots. While

the updates within these two sets of switches may require ordering, modifications across sets

involve a disjoint set of switches and can be performed in any order.

The area of update schedulers has been extensively discussed [44 ], [92 ], [95 ], [96 ]. Our goal

is to provide a practical construction and protocol for consistent and secure network updates.

As such, we assume the existence of a basic update scheduler implemented using any of these

approaches. We discuss in § 3.3.3 how Cicero exploits that update scheduler to perform

updates to switches in parallel while still preserving consistency, i.e., enforce the specification

of the update schedulers even assuming malicious or faulty controllers concurrently invoking

network updates.

3.3.2 Security

At its core, secure network updates require switches to apply updates only from a trusted

controller. While a message from a controller can be easily validated using message signa-

tures, trust in a single controller is not enough when considering malicious faults (e.g. a

compromised controller can easily sign malicious messages with a valid signature). Cicero

increases trust in the control plane by requiring the agreement of a quorum majority from
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multiple controllers on the set of updates. In essence, we employ a dynamic distributed

control plane with controllers co-signing network updates.

Event generation – event authentication

A change in data plane state is assumed to be invoked as the direct result of some event,

be it the result of a switch detecting an unroutable packet (e.g. mismatch in flow table

rules), a change in network policy, a failure of network hardware, or some other factor.

Events received by the control plane require validation to ensure that they originated from

a reliable source. To this end, Cicero makes use of a public key infrastructure (PKI) system.

Each event source is assigned a public/private key pair. When an event is generated, the

originator signs the event with their private key. This ensures that events are only generated

by known sources avoiding the case where controllers process events from untrusted entities

in the network.

Event broadcast – controller agreement

A controller, upon receiving an event, broadcasts the event to all other controllers through

an established agreement protocol. Next, a controller, upon receiving an event from another

controller, independently responds to the event with network update(s). A switch only

applies an update if it has been received from a quorum of trusted controllers. We make use

of an atomic broadcast [97 ] (i.e. consensus) to ensure each controller has a consistent view

of the data plane state. Controllers use a PKI system to validate messages sent with the

atomic broadcast.

Threshold signatures – quorum update authentication

Each controller signs the updates they emit so switches can verify the origin of the updates

they receive. The strawman approach consists of controllers being assigned different pairs of

public/private keys for signing updates. Switches only apply updates with valid signatures

(i.e., from controllers) that are emitted from a quorum of verified controllers. However,

managing all the public keys on all the switches rapidly becomes cumbersome as controllers
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may be added to and/or removed from the control plane. Moreover, the limited physical

resources of switches must be preserved (cf. § 3.3.3 )

To this end, we employ a system based on threshold cryptography [98 ], [99 ]. In a (t, n)-

threshold signature scheme, a single public/private key pair is generated for the entire control

plane. The public key is distributed to each switch, while each controller obtains a share of

the associated private key used for signing updates thanks to Shamir secret sharing [100 ].

To verify an update, the signature shares received from each controller are combined with an

aggregation function to create a signature that is verified against the single public key. The

aggregated signature can only be verified if correctly signed by at least t out of n controllers,

thus any t − 1 controllers, with the exception of negligible probability, can never on their

own construct a signature that can be verified against the public key for the entire control

plane. We set t to the controller quorum size necessary to apply an update, i.e. t = dn+1
2 e.

We note that to tolerate a single failure, there must be at least 4 members in the control

plane (i.e. bn−1
3 c ≥ 1). Thus, we assume Cicero never runs on control planes with n < 4.

Distributed key generation – unique key adaptation

Using threshold cryptography and secret sharing for update validation establishes a

method for secure updates in a dynamic distributed control plane. However, distribution of

private key shares when controller group membership changes creates a significant compli-

cation: no single controller should ever have knowledge of a private key share other than

its own. Verifiable secret sharing (VSS) [101 ] is a method in which a designated dealer dis-

tributes shares of a secret to all participating members. VSS differs from standard secret

sharing in that clients can construct a valid share even if the dealer is malicious. These

shares can be used in a (t, n)-threshold signature scheme to create message signatures that

are only validated if at least t members correctly sign the message with their shared secret.

Naïvely, one could employ such a system to distribute private key shares to controllers when

the control plane membership changes. However, requiring the setup and maintenance of

such a system is impractical as the VSS dealer is a single point of failure for confidentiality.
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We instead employ a system based on distributed key generation (DKG) [102 ] that ex-

pands on the concept of VSS to an environment where there is no trusted dealer. In short,

each controller acts as a sub-dealer, creating and distributing private key sub-shares to each

other controller. The sub-shares are then aggregated to create the private key share for the

controller. DKG uses homomorphic commitments to ensure that the corresponding public

key for the group is known by all controllers, but except for negligible probability, no one

controller can create a signature that is successfully validated by the public key. Once gen-

erated, this public key must be shared to all switches. Future instances of DKG ensure that

new shares can be generated for the control plane as group membership changes without

changing the public key.

3.3.3 Practicality

Amidst consistency and security, for a solution to be feasible in a real data center deploy-

ment it must also be practical. Cicero provides an effective solution by exploiting intra- and

inter-domain update parallelism, and enabling efficient signature aggregation to alleviate

switches runtimes.

Update parallelism – intra-domain parallelism

Using an update scheduler (cf. § 3.3.1 ) allows Cicero to exploit parallelism in network

updates. Given a set of network updates and their corresponding update dependencies

determined by the update scheduler, two updates ui and uj can be applied in parallel if their

dependencies Di and Dj are disjoint, i.e. Di ∩Dj = ∅.

Update domains – inter-domain parallelism

Cicero employs an atomic broadcast (cf. § 3.3.2 ) to ensure a consistent ordering of

events processed by the control plane. The responsiveness of such agreement protocols

unfortunately greatly deteriorates as the size of the control plane increases, hence creating a

trade-off between fault tolerance and performance. Additionally, in large networks such as a

collection of data centers, this responsiveness is further impacted by having a geographically
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Figure 3.5. Depiction of a two domain network where an event generated by
switch s1 and sent to its local domain control plane. The control plane then
uses global domain policies to determine that network updates involve both
domains A and B. The control plane of A forwards the event to B and both
domains update their local switches to set flow tables rules.

dispersed control plane. This distribution is initially set to minimize latency between local

control and data planes, but ultimately increases latency within the global control plane.

As such, Cicero allows the division of network resources into domains, each as its own

separate instance of the protocol functioning on disjoint control and data planes, e.g. separate

IP subnetworks. Domains may rely on separate update schedulers, agreement communication

groups and control plane public keys. The goal of this division is to enable data plane events

that involve updates to switches fully contained within the same domain to be processed

independently, i.e. in parallel, of other such events in other domains. Events that require

updates spanning multiple domains must however be handled in a consistent manner by the

control plane as a whole.

Cicero avoids the need for inter-domain agreement through assumptions on setup and

global domain policies. First, we assume operators of different domains trust each other,

e.g. domains are sub-domains of the same institution. This domain isolation thus offers the

security that a, potentially faulty, domain’s control plane cannot update another domain’s

data plane, but it may affect flows with a remote origin crossing the data plane it is respon-

sible for. Second, we assume the global domain policies are static. As such, each domain’s
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control plane is able to determine which domains require updates based on a received event.

A controller receiving an event that involves updates to multiple domains merely forwards

the event to the control plane of each affected domain.

For example, consider the flow outlined in Figure 3.5 where an event generated by switch

s1 in domain A needs a route to s4 to be established. Using the static global domain policies,

the controller in A that receives the event determines that it requires updates to both domain

A and B, and forwards the event to the control plane of domain B. Both domains process

the event in parallel and update the switches within their domain accordingly, setting the

flow table rules of switches to establish a flow from s1 to s4.

Update signature aggregation

To verify an update, the signature shares from each controller must be collected and

aggregated prior to verification against the threshold public key. Putting this responsibility

on switches can put unnecessary load on their hardware. As such, Cicero presents two

approaches for signature aggregation:

(1) switch aggregation in which each individual switch is responsible for collecting and

aggregating update signatures, and

(2) controller aggregation in which a single controller is designated the “aggregator” that

collects and aggregates signatures.

Each approach comes with its own trade-offs. While switch aggregation requires ad-

ditional resources and instrumentation on switches for storing and aggregating signatures,

controller aggregation increases latency since switches must wait for the aggregator to col-

lect and aggregate responses. Furthermore, controller aggregation must be able to handle

detection of a failed or malicious aggregator. Our evaluation in § 2.7 further quantifies the

trade-offs of each approach.

3.4 Cicero Protocol

In this section, we show how the components depicted in § 3.3 form a protocol with:
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(a) Switch forwarding process

(b) Switch update process

Figure 3.6. Flow charts describing the processes of a switch (a) handling
incoming packets on the data plane and (b) handling updates received from
the control plane.

(1) secure and consistent network updates,

(2) signature aggregation, and

(3) membership changes.

We further comment on the guarantees of the protocol.
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3.4.1 Secure and Consistent Updates

The Cicero secure and consistent network update protocol employing atomic broadcast,

threshold cryptography, and acknowledgements is composed of two independent routines:

(1) switch runtime and (2) controller runtime. The controller runtime can further be broken

down into the handling of events within and across multiple domains.

Switch protocol

Figure 3.6  depicts the update processes for a switch when it receives either a packet from

the data plane (Figure 3.6a  ) or an update from the control plane (Figure 3.6b  ). Normal

operation for a switch is to use the flow table rules established for network policies to store

and forward packets in the network. Upon receiving a packet that does not match a flow

table rule, a switch generates and signs an event indicating the mismatch and sends it to

all members of its domain control plane. Any network update received from the control

plane is not immediately applied. The message, containing an update and signature, is

stored by the switch until the switch receives a quorum majority of identical updates from

control plane members. Once enough messages are received, using the threshold signature

aggregation function, the switch aggregates the signatures for the update and verifies the

resulting signature against the public key for the control plane. The update is then either

applied or ignored, depending on the validity of the signature. Finally, the switch sends a

signed acknowledgement to all members of the domain control plane to alert them of the

network update application.

Controller protocol

Depictions of the process for a controller when it receives an event, or when agreement

is reached on the ordering of events are shown in Figure 3.7 and Figure 3.8 . Under normal

operations controllers for a domain of switches are idle waiting to receive signed events.

Upon receiving an event, the source of the event is verified and the event is either ignored, if

(1) the event was previously processed or
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(2) the event source cannot be verified,

or broadcast to all members of the domain’s control plane. Using the established network

policies and the update scheduler, each member of the control plane independently deter-

mines the necessary network updates and dependency sets in response to the event. Each

network update is signed with the controller’s private key share. Network updates for dis-

joint dependency sets are processed in parallel with network updates having no dependencies

being immediately sent to the corresponding switch(es). As verified acknowledgements for

applied updates are received, these updates are removed from dependency sets and additional

updates are sent, in parallel, to the switch(es) for empty dependency sets. Since switches

are assumed nonfaulty, these received acknowledgements ensure forward progress in event

processing despite the presence of loops in the protocol flow.

3.4.2 Inter-domain updates

If, thanks to the global domain policies, a controller determines that an event affects

multiple domains, it forwards the event to a controller in each affected domain. The receiving

controllers broadcast the event to all other controllers of their respective domain as with

any validated event. To select a valid recipient, each controller maintains a set of active

controllers in each other domain. This list is updated every time a controller is added or

removed to/from any other domain’s control plane (cf. § 3.4.4 ). Furthermore, to prevent

never-ending dissemination of the event, a forwarded event is tagged as such to indicate it

should not be further forwarded to other domains and only be processed locally.

Figure 3.7. Flow chart for controller receive event process handling incoming events

79



Figure 3.8. Flow chart for controller update process handling updates to be
sent to the data plane

Figure 3.9. Flow chart for aggregator controller process aggregating updates
from other controllers

3.4.3 Controller Aggregation

The Cicero protocol outlined in § 3.4.1 specifically focuses on switches aggregating sig-

natures. Optionally, controller aggregation may be used in which a controller is assigned

to be the aggregator for both receiving events from switches and collecting (to aggregate)

signed updates. The process for controller aggregation is depicted in Figure 3.9  . Switches,

instead of sending events to all controllers in their domain, only send them to the aggrega-
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tor. Controllers, instead of sending signed updates to switches, send them to the designated

aggregator. The aggregator collects signed switch updates, aggregates the signatures once

a quorum has been received, and sends the update along with the aggregated signature to

their respective switch. A switch receiving aggregated signatures merely verifies the update’s

signature against the public key of the control plane and either applies or ignores the update.

Aggregator selection

All controllers for a domain maintain a representation of the control plane communica-

tion group containing each controller’s identifier, public key, and any information needed for

communication (e.g., IP address, port). As new controllers are added (cf. § 3.4.4 ), they are

given the next highest unused identifier. Identifiers are never reused, even when controllers

leave the group. At any given time, the aggregator can be determined as the controller with

the lowest identifier. Since all controllers in the domain have the same view of the commu-

nication group, this provides stability in the selection. Once an aggregator is determined,

the control plane members inform switches by sending a signed message.

3.4.4 Control Plane Membership Changes

The process for a domain’s control plane membership change is depicted in Figure 3.10 .

Due to the potential change in quorum size, both add and remove operations require the

distribution of new private key shares. The Cicero protocol ensures that no events are

processed until after the membership change has completed, which prevents control plane

members from having to keep old and new shares concurrently. A phase value records the

current iteration of membership change. The phase value is incremented with each controller

addition or removal. Controllers must be added and removed one at a time ensuring lock-

step increment to the phase. Events broadcast to all domain controllers are tagged with

the current phase. Thanks to atomic broadcast, controllers queue events received during a

change in control plane membership and only broadcast and treat them after the phase has

changed.
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Add controller

The procedure to add a controller to the control plane is as follows:

(i) public keys for event originators and existing control plane members are distributed to

the new controller alongside its identifier;

(ii) the new controller is added to the control plane communication group though consensus

proposed by the bootstrap controller;

(iii) DKG is executed to distribute signature shares to the new controller group reflecting

the new quorum size and ensuring that the threshold public key remains the same;

(iv) the data plane state and both local network policies from the control plane and global

domain policies are sent to the new controller.

Cicero uses a trusted bootstrap controller to manage additions to the control plane. It

is the only control plane member that can initiate consensus rounds to add new controllers.

The final step requires updating all other domains to indicate the new controller as a valid

recipient of forwarded events. Here, the bootstrap controller generates and signs an event

containing the new controller’s communication information and forwards this to a member

of each other domain. Each receiving domain, in parallel, processes the event as any other

network event (e.g. atomically broadcasts the event to all members of the local domain).

However, instead of sending network updates, a controller handles this event by updating

its view of the sender’s control plane.

Remove controller

The procedure to remove a controller from the control plane is as follows:

(i) the controller is removed from the control plane communication group;

(ii) DKG is executed to distribute signature shares to the controller group reflecting the

new quorum size and ensuring that the threshold public key remains the same;

(iii) switches are (potentially) assigned a new aggregator.
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(a) Controller bootstrap process (b) New controller process

(c) Controller membership consensus

Figure 3.10. Flow charts for controller membership change: (a) and (b)
show the processes for the bootstrap controller and the joining controller re-
spectively, and (c) shows the controller process when a membership change
consensus is reached.

Removing the controller from the communication group is performed via a round of

consensus proposed by a member that detects that the member should be removed.

The final step requires updating all other domains to indicate the removed controller is

no longer a valid recipient of forwarded events. As when adding a controller, an event is

sent to a controller of each other domain. The event is in turn processed in parallel by each

domain’s control plane where each controller updates its view of the sender’s control plane.

We assume the existence of a failure detector [103 ]–[105 ] capable of accurately detecting

the failure of an existing controller. A controller can also be pro-actively removed merely

by either simulating a failure (e.g., loss of power) or proposing its own removal through the

consensus protocol. We recognize that it is impossible to ensure 100% accuracy with failure

detection. However, premature removal of detected failed controller only affects liveness of
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(a) Cicero controller runtime. (b) Cicero switch runtime.

Figure 3.11. Depiction of the Cicero runtime components.

the system. Furthermore the Cicero protocol allows for re-adding of previously removed con-

trollers. Through consensus and quorum authentication, Cicero ensures that it is impossible

for network updates to be applied to the data plane in the event of a faulty controller being

undetected, provided that the number of undetected faults is at most bn−1
3 c for n controllers

(cf. § 3.3.2 ).

3.5 Cicero Implementation

As Figure 3.11  shows, Cicero is implemented as a middleware between the controller

application, containing network policies, and the data plane switches, storing and forwarding

network traffic based on established flow table rules.

3.5.1 Control Plane Components

The controller platform is extended with a Java layer for Cicero, which processes the

received events (e.g., signature verification, broadcast) and updates sent to the data plane

(e.g., signing with secret share, ordering updates, and handling acknowledgements). Another
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process in the Java layer handles signature aggregation to be sent to the data plane when

controller aggregation is used. A controller is made up of the following nine components:

3.5.2 Controller application

Network policies are set based on the controller application. While Cicero is designed as

a separate layer to allow for any controller application, our implementation uses the Ryu [18 ]

runtime and establishes rules for flows based on shortest path routing.

3.5.3 Global domain policies

Cicero requires global domain policies for determining network updates for flows that

cross domains. The implementation is specific to the controller application. Our implemen-

tation uses global policies based on the shortest path between domains.

3.5.4 Update scheduler

To ensure update consistency, the Cicero runtime depends on the existence of an update

scheduler used to determine dependencies between network updates. The update scheduler

used for the evaluation assigns dependencies for network updates based on the reverse of

a network flow’s path. For example, consider a network flow that traverses three switches

(s1 → s2 → s3). Establishing this flow requires updating all of these switches. The update

scheduler assigns dependencies for these updates such that (1) all updates are applied to s3

before any updates to s2 can be applied, and that (2) all updates are applied to s2 before

any updates to s1 can be applied. This ensures downstream rules for the flow are set before

any network data is allowed to traverse the network.

3.5.5 Broadcast library

Cicero utilizes atomic broadcast to distribute events among the members of the con-

trol plane communication group. The broadcast library strictly follows atomic broadcast’s

specifications and guarantees [97 ] by using the routines of the BFT-SMaRt library [60 ].
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3.5.6 Threshold signatures

Data plane switches authenticate updates with threshold signatures that can only be

verified when a quorum of signatures is formed. Our implementation makes use of BLS

signatures [106 ] implemented in the Pairing Based Cryptography library [107 ].

3.5.7 Private key share distribution

The distribution of private shares for controllers so they can sign switch updates is

performed using the DKG library [108 ].

3.5.8 Southbound interface

We extend the OpenFlow message protocol to add new message types for signed messages,

and add a unique identifier to each message to prevent duplicate processing of events and

updates.

3.5.9 Signature aggregation

Cicero supports switch and controller aggregation. For the latter, switches are assigned

the aggregator with OpenFlow “master/slave role request” messages [109 ].

3.5.10 Failure detector

We use periodic heartbeat messages to detect failures and use the broadcast library for

transport.

3.5.11 Data Plane Components

The Cicero switch platform is an extension to Open vSwitch (OVS) to perform signature

aggregation and verification of updates both thanks to threshold public key component.

Additionally, changes are made for switches to either send events only to the aggregator

controller if there is one, or multicast events to all the members of the control plane. As a
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further consistency mechanism, acknowledgments are sent to the control plane once updates

are applied.

As is clear in Figure 3.11 , the switch runtime is considerably simpler than the controller

runtime. We specifically designed Cicero to minimize the resource consumption impact on

switches because of their low capabilities.

3.6 Cicero Evaluation

We here show how the strong guarantees for consistent and secure updates in Cicero can

be achieved with little overhead in practical networked environments. We further show how

aggregation and multi-domain parallelism reduce that cost.

3.6.1 Experimental Methodology

We evaluate Cicero against existing update frameworks in typical business-like environ-

ments. As such, we compare (1) a centralized controller, (2) a crash-only tolerant update

protocol where communication within the control plane is performed using the atomic broad-

cast provided by the BFT-SMaRt library, but with no quorum authentication of signatures

on switches, and (3) the Cicero update protocol on a single-domain setup with and without

aggregation on controllers (cf. § 3.6.2 ) and on a multi-domain setup (cf. § 3.6.3 ).

Setup

We executed the implementation detailed in § 2.6 on a network simulated atop compute

nodes from the DeterLab test framework [61 ], [110 ] connected via a 1 Gb test network.

Nodes ran Ubuntu 18.04.1 LTS with kernel 4.15.0-43, two Intel® Xeon® E5-2420 processors

at 2.2 GHz, 24 GB of RAM and a SATA attached 256 GB SSD. Controllers had their own

node, switches and hosts were node-sharing OpenVz [111 ] instances.
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Figure 3.12. Depiction of a server pod, made up of racks and two layers of
switches atop, in a Facebook data center [112 ].

Topology

We simulated the Facebook data center topology [112 ] where data centers are divided

into server pods (as depicted in Figure 3.12 ) consisting of 40 racks of compute servers. Each

rack contains a top-of-rack switch connecting all servers in the rack. Each top-of-rack switch

is connected to 4 edge switches that provide high speed bandwidth and redundancy between

racks. Edge switches further connect multiple pods to spin switches (unshown in Figure 3.12  )

linked to the upstream network.

Workloads

We ran Hadoop MapReduce and web server traffic workloads [1 ] over the given topology

and measured their flow completion times according to the shortest path routing policy

used by the controller application. We evaluated completion times for 5000 flows using each

framework. Flows follow a Poisson distribution using average packet sizes and total flow sizes

(in kB) for inter-rack, intra-data center, and inter-data center defined for each workload.
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Creating routes

Unless explicitly stated otherwise, rules in flow tables are reused for multiple flows. Flow

tables in switches initially contain no forwarding rules. As flows enter the network, events

for unroutable packets are generated by switches and sent to the control plane. Controllers

respond with network updates sent to switches to establish rules for the flows. As flows

complete, these rules remain in switch flow tables and are reused by later flows matching

them. As reported in [1 ] for Hadoop workloads 99.8% of traffic originating from Hadoop

nodes is destined for other Hadoop nodes in the cluster. Reusing rules requires fewer overall

events. Switches do not need to contact the control plane for each new flow.

3.6.2 Single-domain Evaluation

In the following, we used a single server pod topology with a control plane made up of 4

controllers that tolerates 1 failure and results in a quorum size of 3. This evaluated control

plane size is similar to evaluations of related work [5 ], [22 ], [90 ].

Flow completion time

Figure 3.13a  and Figure 3.13b  show flow completion times for the Hadoop and web server

workloads, respectively. Setting up a flow takes an average of ≈2.9 ms for a centralized

controller and ≈4.3 ms for a crash fault-tolerant replicated control plane. Cicero is slower

due to the extra messaging and therefore takes ≈8.3 ms without and ≈11.6 ms with controller

aggregation for flow setup. However, since flow rules are not removed from switches after

they are established, they are reused for future arriving flows. Therefore, after initial flow

setup, the overhead of Cicero is negligible.

Unamortized flow creation

To further investigate the overhead of Cicero, we ran the Hadoop workload using a

setup/teardown approach. In this approach, no flow rules for routes are initially set in the

data plane. Each flow is managed by a pair of events to inform the control plane to set
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(a) Hadoop flow completion.
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(b) Web server flow completion.
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(c) Hadoop flow completion unamor-
tized.
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(d) Switch CPU utilization.

Figure 3.13. Cicero performance on a single-domain network comparing a
centralized solution to a control plane, made of 4 controller replicas, that
uses either a crash-tolerant update protocol, Cicero without/with controller
aggregation. (a) and (b) depict the CDF of Hadoop and web server flow
completion times, respectively. (c) depicts the CDF of Hadoop flow completion
times when routes are removed upon flow completion. (d) depicts the (switch)
CPU utilization of OVS during a Hadoop workload.

the route for the flow before it starts, and clear the flow rules for the route once the flow

is completed, hence preventing overhead amortization. Each event results in appropriate

network updates. The setup/teardown approach is applicable in hosted networks such as

those utilizing subscription-based services.

The average flow completion times are depicted in Figure 3.13c . For Hadoop flows, lasting

≈33.6 ms on average, Cicero has an overhead of 16% with switch aggregation and 29% with
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controller aggregation over the centralized approach. Setup times are constant regardless of

overall flow duration. Since these setup times are the same for all flows, Cicero’s overhead

with these short-lived flows would be shadowed by the total flow execution time for longer

running flows.

Switch resource usage

To reduce switches’ CPU utilization, update signatures can be aggregated on the control

plane at the cost of increased latency (cf. Figure 3.13c  ). Figure 3.13d  depicts OVS CPU

utilization on switches for the Hadoop workload. While Cicero signature verification increases

CPU utilization on switches, controller aggregation halves switch CPU usage. While using

switch aggregations of signatures results in higher CPU utilization, this did not result in an

increased latency in the processing of updates.

3.6.3 Multi-domain Evaluation

As discussed in section 3.3.3 , Cicero provides a means to logically divide the data plane

into separate network domains each with its own separate control plane. Events generated

within a domain requiring updates solely to the data plane contained in the domain, i.e.

local events, can be processed independently of other domains’ local events. As we will show

shortly, this separation can reduce the load on the control plane(s) and improve scalability.

This separation is particularly useful in the face of large networks that share the same large

control plane for simplicity. We first evaluate the cost of various control plane size to display

the benefit for multiple domains.

Control plane size

While increasing the control plane membership size allows for more controllers to be

faulty, providing additional robustness, it also results in additional messaging for broadcast-

ing events as well as an increased latency due to quorum size, both of which increases the

overhead of updates. To examine this overhead we performed a series of updates with control

plane sizes varying up to 10 members.
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(c) Hadoop flow completion
with multiple pods/domains
(MD).
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(d) Web server flow comple-
tion with multiple data center-
s/domains (MD).

Figure 3.14. Cicero performance for multi-domain networks. (a) depicts
the average time to apply switch rules in a domain for a varying sized control
plane. (b) depicts the comparison of events processed by each controller in a
pod configured as single vs multi-domain. (c) depicts the CDF of Hadoop flow
completion times for both single and multiple domains. The single domain is
made of 12 controller replicas while the multi-domain consists of 3 domains
each with 4 controller replicas (i.e. 12 controllers in total). (d) depicts the
CDF of web server flow completion times for a larger multi-data centers topol-
ogy.

The results in Figure 3.14a  depict the average time to perform a switch update for an

event depending on the size of the control plane. A control plane size of one represents an

unprotected centralized control plane. As expected, we see a direct relation between increased

control plane size and update time due to the extra messaging needed for broadcast and

verification of aggregated signatures. The crash-tolerant update approach is less impacted
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than Cicero by the growth of the control plane size since switches do not authenticate

updates; the additional overhead is merely due to extra messaging.

With Cicero, the overhead for a single switch update can be significant for a large control

plane, e.g. 2.5× that of a centralized approach when using 10 controllers to support 3 failures.

However, in a data center environment, such a large control plane might be excessive as

failures are typically short-lived and failed controllers are quickly replaced with new correct

ones. For instance, tolerating 2 concurrent failures is enough to achieve five nines (99.999%)

of up-time [113 ]. Further, splitting the network into disjoint domains may help reduce

overhead inherent to a growing control plane.

Event locality

We next investigated how increasing the number of domains within a single pod affects

events processing. Due to the locality of flows as reported by Facebook [1 ], only 5.8% of

the Hadoop workload and 31.6% of the web server workload required processing by multiple

domains.

Figure 3.14b  shows the percentage of total events (for the whole data center) that must

be processed by each control plane. For a single network domain, all events must naturally

be processed by the single control plane. As the number of domains increases, the number of

events processed by each domain’s control plane is greatly reduced, however with diminishing

returns. While this evaluation shows the gains achievable using multiple domains for one

pod, it is more practical to increase the size of the network by adding more pods. To that

end, we next evaluated the impact of event locality by increasing the number of pods in the

data center with one domain per pod.

Multi-domain flow completion time

We executed the Hadoop workload using 2 server pods, each set into its own domain with

a third domain (containing 4 redundant switches) used to interconnect them. Each domain’s

control plane consisted of 4 controller replicas resulting in 12 replicas for the entire network.
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We compared this setup to the same network topology with a single domain and a control

plane of 12 replicas.

Figure 3.14c shows flow completion time using Cicero in the single and multi-domain

(MD) setup, with and without controller aggregation. Thanks to their locality, most events

are processed in parallel when using multiple domains, thus greatly reducing flow completion

time compared to a single domain. While flows crossing domains incur extra overhead, an

efficient domain architecture can reduce their number.

Multiple data centers

Our final evaluation involved pods located in multiple data centers following Deutsche

Telekom’s topology as documented by the Internet Topology Zoo [114 ]. Each data center

consisted of 4 pods interconnected via spine and edge switches as described in Facebook

data center topology [112 ]. Each pod was set as its own domain for Cicero, while a single

controller was used for the entire network (all data centers) for the centralized approach.

We evaluated the completion time of web server flows taking into account their locality

as reported by Facebook [1 ]: 15.7% traverse pods within the same data center and 15.9%

traverse data centers.

The results depicted in Figure 3.14d  show that the centralized controller suffers from the

increased latency for establishment of flows across data centers. However, Cicero does not

suffer from this increased latency thanks to domain parallelism and hence performs better

than the centralized approach, unlike the single-domain setup, while being much more secure.

These results exhibit the benefits of parallelism even under the web server workload (with

15.7%+15.9% crossing flows) that has far less local events than the Hadoop one (3.3%+2.5%).

3.7 Conclusions

This chapter presents Cicero, a practical construction for secure and consistent network

updates that exploits parallelism through dependency analysis and ensures scalability to

large networks through update domains. Threshold cryptography and distributed key gener-

ation allows for flexibility in control plane membership with minimal switch instrumentation.
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Through extensive analysis using a functional Facebook data center topology with charac-

teristic workloads we show that Cicero can provide consistency and security with minimal

overhead to flow completion time. Additional optimizations using controller aggregation

reduce the load on data plane switches.

As future work, we plan to investigate evaluation with other workloads including topology

discovery and link state probing. We also plan to integrate a distributed ledger in the

control plane state, coupled with the atomic broadcast component, to help detect (potentially

transient and malicious) controller failures thanks to the auditability of their decisions.
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4. EFFICIENT AND CONSISTENT USER SPACE FILE

ACCESS

This chapter models the interaction between applications and user space file systems (FSs).

Traditionally, the only option for developers was to implement FSs via drivers within the

operating system kernel. However, there exists a growing number of FSs, notably distributed

FSs for the cloud, whose interfaces are implemented solely in user space to (i) isolate FS logic,

(ii) take advantage of user space libraries, and/or(iii) for rapid FS prototyping. Common

interfaces for implementing FSs in user space exist, but they do not guarantee POSIX com-

pliance in all cases, or suffer from considerable performance penalties due to high amounts

of wait context switches between kernel and user space processes.

This chapter discusses the design, implementation, and evaluation of DEFUSE: an in-

terface for user space FSs that provides fast accesses while ensuring access correctness and

requiring no modifications to applications. DEFUSE achieves significant performance im-

provements over existing user space FSs interfaces thanks to its novel design that drastically

reduces the number of wait context switches for FSs accesses. Additionally, to ensure access

correctness, DEFUSE maintains full POSIX compliance thanks to three novel concepts of

bypassed file descriptor (FD) lookup, FD stashing, and user space paging.

4.1 Introduction

FSs provide a common interface for applications to access data. These interfaces provide

an abstract, high-level representation of a file, and the FS driver provides the mechanism to

translate this abstraction into input/output (I/O) operations sent to physical storage media.

4.1.1 Implementing new FSs

Traditionally FSs are implemented within the operating system (OS) kernel [115 ]–[117 ]

and accessed via system calls defined in the interface. For new FSs, implementing drivers fit-

ting kernel-space interfaces requires effort; porting libraries that exist only in user space [118 ]–
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[120 ] may even be required. Despite this development effort, kernel-space implementations

may be short-lived and removed once deemed obsolete [121 ].

User space FSs can provide significant benefits over kernel space implementation methods

traditionally available to developers. E.g., in the event of a crash or security breach, having

the FS driver isolated from the rest of the kernel reduces the risk of data corruption [122 ],

[123 ]. In particular, microkernel-based OSs extend the rationale behind user space isolation

to most services and as such employ user space FSs by default and to great avail [124 ],

[125 ]. User space FSs can also enable rapid FS prototyping in industrial and academic

research [126 ], [127 ].

Additionally, cloud FSs (e.g. GlusterFS [128 ], Databricks File System [129 ], Alluxio [130 ],

Hadoop Distributed File System (HDFS) [120 ], Google Cloud Storage [131 ], Amazon S3 [132 ])

do not have kernel-space implementations, requiring applications to conform to user space

Application Programming Interfaces (APIs). Other state-of-the-art distributed FS drivers [128 ],

[133 ]–[138 ] are implemented in user space to benefit from libraries (e.g. Boost C++ library)

or programming languages (e.g., Java) not available in kernel space. While command line

tools for accessing some of these FSs exist [139 ]–[141 ], these tools are also FS-specific. Thus

applications must conform to APIs of specific FSs which can be cumbersome when multiple

FSs are accessed, or FSs are substituted.

4.1.2 Interface Requirements

A sensible solution for a user space FS interface must meet the needs in:

Flexibility: applications accessing kernel space FS implementations are not required to have

knowledge of the underlying FS driver nor require modifications when using different

FSs. A user space interface should not require more. This allows applications to access

a diverse set of FSs without additional implementation efforts.

Efficiency: the overhead of the FS interface should be minimal to reach access speeds closest

to kernel space.
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Consistency: kernel-space implementations provide a consistent set of guarantees for files

within the FS, e.g. locking semantics, permissions, inheritance of FDs between par-

ent and child processes. In order to establish trust in the FS driver, any user space

implementation must also provide the same set of guarantees.

Existing generic solutions fall short on at least one of these requirements. That is, there

is no interface for user space FSs that provides flexibility, consistency, and efficiency all

together.

4.1.3 State of the Art

State-of-the-art solutions rely on one of the following methods to provide user space FS

interfaces: an FS-specific user space library, an LD_PRELOAD-loaded library, or FUSE.

User space FS libraries provide an interface for FSs through compile-time binding to the

drivers’ APIs. This method is neither flexible, as each API is unique and requires compile-

time binding, nor consistent, as user space FS libraries do not conform to any standard for

consistent file behavior.

The LD_PRELOAD [11 ] method relies on diverting system calls typically wrapped by a

library (e.g. libc [142 ]) by pre-loading another library with the same interface with the

goal of redefining system call wrappers. This method can suffer from incorrect behavior that

lead to failures in distributed environments (e.g. data loss, cascading errors, outages [143 ]),

especially with files whose FD are inherited (e.g. Spark [144 ] passes data via the FS between

manager and forked workers). Due to the distributed nature of remote execution, such

incorrect behavior can be difficult to detect.

Filesystem in Userspace (FUSE) [9 ] provides a common interface for an FS driver to

be implemented by a user space server while still allowing applications to access FSs using

kernel-space system calls. While FUSE can be used to access some of the cloud FSs men-

tioned above [145 ]–[150 ], FS accesses performed with FUSE suffer from major slowdowns

inherent to its design [151 ].
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4.1.4 DEFUSE

We present DEFUSE, a novel interface for user space FSs that combines the benefits of

a kernel-space FS driver and a user-space library. DEFUSE offers significant performance

improvements over FUSE while maintaining consistency of FDs unlike in aforementioned

approaches [11 ]–[17 ], [152 ], [153 ], in particular when FDs are shared between parent and

child processes.

DEFUSE achieves these characteristics with full POSIX compliance through three novel

concepts:

1. bypassed FD lookup, combined with a user space library, reduces the number of wait

context switchs and ensures that FDs are managed by the kernel thus improving per-

formance and achieving correct FDs behavior;

2. FD stashing ensures continued correct behavior of FDs after the address space of a

process is cleared following a common fork/exec;

3. user space paging further ensures correct behavior of memory-mapped files. Our ex-

periments show DEFUSE provides up to 10× the performance of the state of the art

(i.e. FUSE) for user space FSs.

4.2 Motivation

In this section, we discuss in more detail the requirements needed for practical user

space FS interfaces and pinpoint how the main existing approaches fail to satisfy these

requirements.

4.2.1 User Space FS Interface Requirements

Flexibility – FS-agnostic accesses.

FSs implemented as a user space library require applications to bind to the library’s API

at compile-time in order to access the FS. Through calls to the API, the FS library performs

the necessary I/O operation; it typically involves a system call to a kernel space driver, that
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backs the FS, which result is returned to the application. Execution remains within user

space except for system calls performed by the FS library. Command line tools such as cp or

find may require access to multiple FSs through a common interface and cannot be easily

re-compiled with each user space file implementation. As a result FS interfaces must be

standardized.

Efficiency – low access overhead.

Te ensure that as much system resources as possible are allocated to useful computations,

the overhead of the OS interface should remain as low as possible. FS access is no exception

to this hence any user space FS interface should require minimal overhead to provide FS

accesses with speeds matching those of a kernel-space FS implementation.

Conceptually, the time to perform an I/O system call can be divided into two parts:

1. the time to service the system call (either through the kernel, the user space library,

and/or the FUSE server) and

2. the time to perform the I/O operation to the storage media.

In some cases the overhead can be dwarfed by long I/O times to storage media. However,

as the speed of storage media continues to improve (e.g. solid state drives, non-volatile

memory), the system call service time, and thus the overhead of FS interfaces, becomes

more prominent.

Consistency – POSIX compliance.

POSIX provides guarantees to applications that are consistent across OSs. These guar-

antees allow applications to execute without intricate knowledge of the underlying system

implementation.

In addition, thanks to its standard interface, POSIX also guarantees the consistent be-

havior of FDs for FSs. These include, among others, protection from file corruption when

multiple threads access a file concurrently, and valid FDs inheritance from parent processes

after a fork operation.
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Table 4.1. Summary of pros and cons of user space FS interfaces.
FS interface Flexibility Efficiency Consistency
User space FS library × X ×
LD_PRELOAD library X X ×
FUSE X × X
DEFUSE X X X

4.2.2 Background

We identify user space FS libraries, LD_PRELOAD-loaded (user space) libraries, and FUSE

as the three main methods used to provide user space FS interfaces. Table 4.1  summarizes

how these methods comply with the aforementioned requirements.

User space FS library.

With a user space FS library, the FS driver is implemented in a code library which the

application binds to at compile-time. Examples of this include the MPI-IO library [154 ] used

by MPI, the HDFS C API libhdfs [155 ], and the Amazon Web Services (AWS) software

development kit (SDK) for C++ [156 ].

Flexibility (×): A user space FS library does not provide the flexibility of a kernel space

system call. Since there is no standardized API for user space FSs, applications must

have prior knowledge of FS function calls to perform I/O operations. Access to multiple

FSs implemented as user space FS libraries requires conforming to each FS API. For

example, libhdfs uses hdfsOpenFile to open a file and hdfsCloseFile to close it.

AWS SDK uses different calls.

Efficiency (X): Due to the direct binding to the user space FS library, calls to the FS tend

to be efficient. The invocation of FS operations bypasses the kernel altogether.

Consistency (×): User space FS libraries do not necessarily provide consistency guarantees.

Since the implementation uses its own API for FS access and file metadata is main-

tained within the library, it is not required to comply to a standardized interface as
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with FUSE or kernel-space (enforced through the Virtual File System (VFS)). Thus

POSIX behavior is not guaranteed [157 ].

LD_PRELOAD library.

The research community has explored several methods to implement efficient interfaces

for user space FSs using LD_PRELOAD [11 ]–[17 ] or linkable libraries [152 ], [153 ] that provide

access to FSs by intercepting system calls. An LD_PRELOAD (-loaded) library, being loaded

before libc, causes its versions of the functions to be invoked in lieu of those of libc.

Intercepted I/O calls are sent to the user space FS library via its API, keeping control flow

within user space until the operation must be passed to the kernel. An application thus

executes as if calls were made to the kernel. Accessing different FSs requires changing the

LD_PRELOAD library.

Flexibility (X): Similarly to FUSE and kernel space implementations, applications access

FSs via system calls. Applications only need knowledge of existing system calls for FS

access, not of the underlying FS driver. This flexibility is provided when multiple FSs

are accessed, granted each FS has its own LD_PRELOAD library to intercept those calls.

Efficiency (X): As system calls are intercepted and redirected in user space, the efficiency

of the LD_PRELOAD approach is comparable to that of a user space FS library.

Consistency (×): The POSIX behavior of FDs and return codes is not guaranteed with the

LD_PRELOAD scheme, especially for FDs inherited from parent to child processes (cf.

§ 4.3.2 ). Furthermore, the LD_PRELOAD library must invoke the user space FS library’s

API which does not necessarily comply with a standard for file metadata representa-

tion. Thus, to ensure POSIX behavior, LD_PRELOAD must maintain a mapping between

the FS library’s file metadata and FDs returned to the application. Maintenance of

this mapping is trivial in most cases and can consist of a hash translating an FD,

manufactured by the LD_PRELOAD library (e.g. a number) when it intercepts an open

library wrapper call, to the metadata of the FS library. This table can be stored in
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the application’s memory; if the table is lost, as with a call to exec, FDs are invalid

in a child process.

Filesystem in Userspace (FUSE)

With FUSE, when a system call induces an I/O operation sent to the kernel, the FUSE

kernel driver sends the I/O request to user space through a FUSE virtual device (/dev/fuse).

The request is received by the FUSE server in user space and sent to the relevant FS library

through an interface similar to that of the VFS [158 ]. The I/O operation is then processed

by the user space server (and may include calls to kernel resources). Results are passed back

through the FUSE device to the kernel driver, and finally to the application that issued the

I/O operation.

Flexibility (X): FUSE provides the benefit of FS-agnostic access for applications through

system calls without prior knowledge of the underlying FS.

Efficiency (×): The transfer of control between kernel and user space when servicing a system

call — a core design decision behind FUSE — requires costly context switching and

buffer copying between processes of different spaces. This leads to serious performance

penalties (cf. § 4.3.1 ) which hinders deployments in production environments, centering

FUSE’s use to FS prototyping [159 ].

Consistency (X): While I/O requests are processed by the FUSE server in user space, as the

application accesses the FS through system calls, POSIX compliance is enforced by

FUSE’s kernel driver. FUSE manages a mapping in user space from inode numbers

maintained by the kernel to FUSE file information passed to the FS implementation.

4.3 Challenges

This section elaborates on challenges in achieving a user space FS interface that reconciles

direct mount’s efficiency with FUSE’s flexibility and consistency.
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Figure 4.1. Write throughput of a direct mounted ext4 FS, an LD_PRELOAD
library and a FUSE wrapper around ext4 (higher is better). FUSE’s through-
put ranges between 34% and 44% that of direct mount.

Direct mount LD_PRELOAD FUSE

N
um

be
r

of
w

ai
ts

1

101

102

103

104

105

(a) Small file
1

101

102

103

104

105

(b) Mixed file
1

101

102

103

104

105

(c) Large file
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4.3.1 Efficiency

While FUSE is both flexible and consistent, it suffers from poor performance due to a

high number of wait context switchs (waits), i.e. voluntary context switches used to wait for

the completion of an I/O operation [160 ]. We demonstrate this overhead in Figure 4.1  and

Figure 4.2  that depict write throughput and number of waits, respectively. We compared

three interfaces: (i) direct access to an ext4 FS using POSIX system calls to the kernel-

space ext4 driver, (ii) an LD_PRELOAD library storing its own FD table, and (iii) a FUSE

server that simply wraps over POSIX calls (fusexmp [161 ]). Interfaces were tested with three

write-based workloads: (a) small file – 4,096 writes of 128 B to different files, (b) mixed file
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– 2,048 writes of size linearly distributed between 64 B and 128 kB to different files, and (c)

large file – 1 write of 128 MB to a single file.

FUSE’s throughput, shown in cf. Figure 4.1  , is visibly worse than the kernel-space

baseline in all workloads: 43% and 44% of the direct mount throughput for the small file

and large file ones, respectively, and even 34% for the mixed file one. The LD_PRELOAD library

performs much better, especially for larger operations, with throughputs of 87%, 93%, and

97% of direct mount for small, mixed, and large file workloads, respectively. Figure 4.2  

further shows that FUSE’s throughput drop is mostly due to the considerable amount of

waits, with numbers as high as ≈20,000, ≈41,000, and ≈33,000 for small, mixed, and large

file workloads, respectively. The LD_PRELOAD library however is on par with the direct mount

solution, causing less than 10 context switches on average.

Specifically, an I/O wait entails a context switch between kernel and user space FUSE

server which includes (1) saving processor state, (2) changing processor mode, and (3) copy-

ing data between kernel and user space buffers [151 ]. While (1) and (2) induce little overhead,

(3) is costly.

4.3.2 Consistency

The LD_PRELOAD library interface seems attractive in light of the results presented in

§ 4.3.1 . However, this interface as well as user space FS libraries are subject to two challenges

related to FS consistency: the first concerns FD heritage and the second memory-mapped

(user space) files.

FD heritage dilemma

As explained in § 4.2.2 , when an LD_PRELOAD library is used, the mapping table between

FDs and user space file metadata may be stored in memory. However, while open FDs and

the internal state of the FS maintained by the LD_PRELOAD library are copied from parent to

child upon a fork, the FS state is destroyed when the child invokes exec if it is in memory.
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4.3.3 Illustration

Consider the processes in Figure 4.3 :

(a) User process p, in the LD_PRELOAD environment, executes library function wrapped

system calls that are intercepted by the LD_PRELOAD library.

(b) Both the LD_PRELOAD and FS libraries are stored in shared memory and the internal

state of the FS resides within the address space of p.

(c) When p performs an open system call, the LD_PRELOAD library makes the corresponding

call to the FS library. The FS returns an internal representation of the file as F . Process

p expects an FD number to be returned from open, not the internal representation of

F .

(d) To avoid passing the open call to the kernel (to not increase latency), the LD_PRELOAD

library manufactures FD 4, updates its internal file mapping 4 to F , and returns the
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manufactured FD to p. This manufactured FD is only valid in the context of the

LD_PRELOAD library and only if the mapping is in memory. Future system calls using

FD 4 will be intercepted by the LD_PRELOAD library, mapped to F and passed to the

FS library.

(e) Process p creates child process c which inherits, among other things, the open FDs

and the memory of the LD_PRELOAD library. After performing an exec, the child’s

address space, including the internal state for manufactured FDs, is destroyed by the

executable of c.

(f) Process c later writes to the inherited FD 4.

(g) As the LD_PRELOAD library memory was cleared during exec, the library cannot map

FD 4 to F , so it passes this I/O to the kernel.

(h) The kernel does not know what FD 4 references since the LD_PRELOAD library of parent

process p manufactured it. Ultimately, the operation fails in the kernel with an invalid

FD and is returned to c via the LD_PRELOAD library.

4.3.4 Prominent examples

The FD heritage dilemma occurs commonly in shell file redirection. Consider a shell

running under the context of an LD_PRELOAD library, where the user executes a cloud ap-

plication running in Spark [144 ] by running spark-submit ... > out.txt to capture the

output to a file located in a user space FS. The shell opens out.txt which is intercepted by

the LD_PRELOAD library prior to creating the spark-submit process. Due to the FD heritage

dilemma, the FD for the output file out.txt inherited by the child is no longer valid after

the exec call to invoke spark-submit. The FD heritage dilemma is also common in widely

used tools such as gcc that create child processes for performing subtasks, and in resource

manager frameworks such as the PySpark workload daemon [162 ], which creates child pro-

cesses for worker tasks at runtime, with each child task sending and receiving data to and

from the daemon through FDs.
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4.3.5 Impact in other interfaces

The user space FS library interface suffers from a related problem if a parent process

needs to pass file metadata to a child. The application must be aware of the FS library API

and does not access the FS using FDs, it instead uses the user space file metadata directly.

As with open FDs, child processes cannot inherit file metadata.

FUSE is not affected by the FD heritage dilemma since the FUSE server is a single

process, separated from the application processes. Hence the FUSE identifier table is unique.

When a parent opens a file, the corresponding (inheritable) FD matches a unique inode

within kernel space.

Memory-mapped files

Mapping files into memory using mmap is a common method to share memory between

processes. The LD_PRELOAD interface cannot provide consistent memory-mapping of files

hosted by user space FSs for the two following reasons.

First, while an LD_PRELOAD library can intercept explicitly invoked system calls such

as mmap, it cannot intercept implicit I/O operations. For instance, accesses to a memory-

mapped file such as reads and writes are performed using load and store paging instructions

to the address region of the mapped memory. These instructions, which may result in an

I/O operation to the underlying file, are not explicit system calls and therefore cannot be

intercepted.

Second, as a direct consequence of the FD heritage dilemma, a child process cannot access

a user space file mapped in memory if the mapping has been done by its parent process. For

example, consider the following set of actions taken by a process:

(a) A process opens a user space file, the open call is intercepted and redirected to the

user space FS library.

(b) The process then maps this file into its address space using mmap for shared access,

however since the FD is manufactured by the intercepting FS library, the call to mmap

fails because the FD is invalid.
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4.3.6 Impact in other interfaces

Directly linked user space FS libraries equally suffer from the same problem for mmap-ed

files as LD_PRELOAD libraries do. FUSE does not, however, since the FUSE kernel driver

translates paging operations to read or write sent to the user space FUSE server.

4.4 DEFUSE Design

We present the design of DEFUSE centering on its novel concepts and the features it

enables.

4.4.1 Overview

DEFUSE uses a unique four-fold approach to be the first solution that achieves flexibility,

efficiency, and consistency all together (cf. Table 4.1  ). As shown in Figure 4.4  , our approach

comprises:

1. a hook into libc to intercept and forward FS access calls to a user space FS library

— for flexibility and efficiency (§ 4.4.2 );

2. an FS kernel driver providing bypassed FD lookup semantics to ensure FDs are managed

by the kernel and remain correct when inherited by child processes — for consistency

and efficiency (§ 4.4.3 );

3. a shared memory space for FD stashing, allowing FS metadata to be restored after a

process’s address space is cleared by an exec call — for consistency (§ 4.4.4 );

4. a memory management framework for user space paging to correctly handle memory

mapped pages backed by user space files — for consistency and efficiency (§ 4.4.5 ).

We demonstrate how DEFUSE’s design maintains POSIX compliance (§ 4.4.6 ), why it pro-

vides better fault tolerance than FUSE (§ 4.4.7 ) and how it delegates caching to the respective

user space FS libraries to ensure cache consistency (§ 4.4.8 ).
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Figure 4.4. Handling of I/O requests in DEFUSE. I/O requests are inter-
cepted by DEFUSE’s libc extension and directed to the user space FS library.
Requests for open are sent to the DEFUSE kernel driver to allocate a valid
inode and FD. FDs are temporarily stashed when an exec is intercepted (cf.
Figure 4.5 ).

4.4.2 System Call Redirection

Performance gains of DEFUSE come from redirecting I/O operations directly to the user

space FS library through a hook in libc, thus avoiding waits presented in § 4.3.1 . Such

hooks are used in other systems for language extension [163 ] or behavior customization [164 ].

DEFUSE implements these hooks by directly modifying the system call wrapper functions

within the libc. This has a two-fold advantage over an LD_PRELOAD library (cf. § 4.2.2 ):

1. using LD_PRELOAD requires user environment setup to ensure that the library is cor-

rectly loaded before libc;

2. it is not possible for LD_PRELOAD to intercept system calls for applications that use

static binding to libc.
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4.4.3 Bypassed FD Lookup

Every open system call received by FUSE involves multiple lookup requests, one per

directory in the file path, to ensure the file path is valid and access permissions are sufficient.

These requests are sent by the FUSE kernel driver to the user space FS library and thus

require waits. Opening a file deep in the directory tree with FUSE can be costly because of

this series of lookups.

To avoid the many transfers between kernel and user space, DEFUSE makes use of its

own kernel driver to provide bypassed FD lookup. Thanks to bypassed FD lookup, the kernel

does not need to send the lookup requests to a server in user space when it opens a file.

Instead, the kernel driver creates and splices a shadow inode in the directory cache of the

FS, then allocates an FD for the file, and finally allows the open to proceed to the user space

FS library. In turn, file permission checks are performed by the user space FS library and

enforced by the DEFUSE libc extension (cf. § 4.4.2 ). The shadow inode is removed by the

kernel when all references to its file are removed.

Figure 4.4  depicts the management of I/O requests, and in particular open requests, by

DEFUSE:

(a) An I/O system call is generated by the application. The system call is invoked as a

library call to libc, which is intercepted by DEFUSE as explained in § 4.4.2 .

(b) For open system calls, the operation is sent to the FS library to update the internal

state of the FS as well as retrieve a reference to the FS metadata. The open call is

also sent to the kernel to allocate a valid FD.

(c) The DEFUSE kernel driver allocates a shadow inode, initializes the FD entry for the

file, and returns the FD to the user application. Once an FD is created by the DEFUSE

kernel driver, it serves as index of the FD mapping table managed by DEFUSE to

retrieve the matching user space FS metadata.

(d) DEFUSE then maps the returned FD to the FS metadata returned from the FS library.
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(e) When the application requests access to the file (e.g. read), the request is again sent

to libc and intercepted by DEFUSE. DEFUSE then uses the FD mapping table to

retrieve the user space FS metadata and sends the request directly to the user space

FS library through its API.

DEFUSE uses a shadow inode instead of an existing file (e.g. /dev/null) for bypassed

FD lookup to allow the file path to be tied to the file so existing FS features function as

expected (e.g. file position pointers, fcntl locking, file data in /proc). DEFUSE complies

with POSIX (cf. § 4.4.6 ).

4.4.4 Managing FDs across exec with FD Stashing

As described in § 4.3.2 , once a fork system call completes, the memory of the child

process is a duplicate of its parent. Subsequently, if the child process executes an exec

system call, its memory is replaced with the memory of the program to be executed. While

bypassed FD lookup ensures that FDs are correctly inherited by a child process, it does

not prevent FDs from being erased alongside the rest of the process memory upon exec’s

execution. Without additional management, future accesses by the child process to its FDs

will fail.
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To ensure correct FD semantics after a call to exec, DEFUSE utilizes a novel concept

we call FD stashing that temporarily saves, then restores, FDs during the execution of an

exec system call. As depicted in Figure 4.5 , FD stashing operates as follows:

(a) The exec system call is intercepted by the DEFUSE libc extension.

(b) The save routine in the user space FS library is invoked to allow the FS library to

perform any necessary action to save file meta data.

(c) The internal state of the DEFUSE FD mapping table is saved to shared memory.

(d) After the exec system call, and the memory of the process erased, if the process

executes an I/O system call, the FD mapping table is restored.

(e) Further, the restore routine in the FS library is invoked to allow the user space library

to restore the saved state of the file.

Subsequent I/O calls continue to be intercepted and sent directly to the user space FS library.

4.4.5 Managing mmap and User Space Paging

As described in § 4.3.5 , memory-mapped files are accessed via I/O operations that rely

on the load and store instructions instead of system calls like read and write. These

operations cannot be intercepted by the DEFUSE libc extension as presented in § 4.4.2 .

However, the userfaultfd interface for managing page faults in user space [165 ] has been

added in Linux kernel 4.3. Originally implemented to help Linux-based hypervisors handle

virtual machine migration, it allows a user space application to register a virtual address

range with the kernel and subsequently be sent an event when a page within that range

needs to be copied into memory. Events are received by reading from a special FD created by

userfaultfd via a system call. Upon receiving an event, page data is copied into memory

using the ioctl system call. To inform the page fault manager on virtual address space

layout changes, userfaultfd also supports calls to fork and events for memory remapping

(mremap), unmapping (munmap), removal (as result of a madvise call using MADV_REMOVE

and/or MADV_DONTNEED).
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DEFUSE takes advantage of userfaultfd to intercept and manage memory-mapped file

I/O. As depicted in Figure 4.6 , DEFUSE’s user space paging operates as follows:

(a) The mmap system call is intercepted by the DEFUSE libc extension.

(b) The mapped address and corresponding FD are stored in a memory region mapping

table.

(c) A userfaultfd is created to allow the kernel to signal to DEFUSE when a page fault

within the address space occurs.

(d) When DEFUSE receives such a signal from the kernel, DEFUSE uses the memory

region mapping table to determine which virtual address ranges (for which a fault was

emitted) correspond to which FDs along with the offset within the file.

(e) DEFUSE then sends a read directly to the user space FS library copying the resulting

data into the virtual address space of the process using ioctl.

When an address range is unmapped via munmap, DEFUSE intercepts the call, ensures the

pages are flushed to the user space file, removes the entry from the memory region mapping

table, and unregisters the userfaultfd. DEFUSE makes use of the userfaultfd events
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for remapped addresses (remap and fork) to ensure that the address space mapping table is

kept up to date as the process’s virtual address map changes.

4.4.6 Full POSIX Compliance Maintained

Enforcing file permissions

File permissions are used to properly isolate applications. The kernel is responsible

for checking that applications have sufficient permission when opening a file so that later

read/write operations succeed. DEFUSE enforces access permissions by invoking the access

function provided by the user space FS library upon intercepting an open system call. If

access is not allowed DEFUSE prevents the intercepted open system call from completing

successfully.

File position pointers

Internal file position pointers, which keep track of read/write offsets, must be consistent

between parent and child processes. Consider a parent process opening a file, reading some

amount of data from the file (advancing the internal file position pointer), then creating a

child process passing it this opened FD. The child inherits the opened FD, along with the file

position pointer, and then reads from the file expecting the data to be read at the inherited

position. Since DEFUSE utilizes a shadow inode created by the DEFUSE kernel driver, the

internal file position pointer is managed by the kernel to ensure consistency between parent

and child processes. As DEFUSE intercepts all read and write operations, redirecting them

to the user space FS library, the file position pointer is maintained in the kernel by using

the lseek system call.

Parallel file access

For parallel file access, read and write operations to files must be performed atomically.

For example, if one thread performs a file read, DEFUSE adjusts the file position pointer

using lseek. However, if another thread performs a write to the same file at the same
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time, DEFUSE also adjusts the file position pointer using lseek. To ensure that there is

no contention for the file data and position pointer, DEFUSE uses fnctl to lock the file

with each I/O operation. This lock is maintained by the DEFUSE kernel driver through

the shadow inode. DEFUSE similarly ensures atomicity of further operations capable of

generating race conditions (e.g., dup2, dup3).

Paging

POSIX behavior requires that (1) mmap succeeds for a valid FD, and that (2) if the file

is mapped for shared memory, then the mapping should also be valid within a child process

created with fork. DEFUSE complies with this requirement thanks to user space paging

and FD stashing.

Accessing multiple FSs

In a kernel space implementation, FSs are mounted in the directory tree. This mounting

allows the kernel to send I/O operations to the appropriate FS driver. Similarly, the DEFUSE

kernel module also presents a FS to the system to perform bypassed FD lookup. Each user

space FS must be independently associated with a DEFUSE mount. DEFUSE uses this

mount to determine which user space FS library to send system calls to. Details are discussed

in § 4.5.3 .

4.4.7 Fault Tolerance

Failures in an FS can result in loss of access or even total loss of the data itself if it is

not written to permanent storage. Being contained within the running process, DEFUSE

requires no centralized server process. DEFUSE duplicates the FS logic to each process

accessing the FS and a failure in the process thus does not affect other processes using

DEFUSE. In contrast, FUSE relies on a single server process running in user space that

may crash (due to, e.g., program error, explicit termination by a user). Upon FUSE server

failure, accesses to the FUSE FS fail for all processes in the system.
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4.4.8 Cache Delegation

DEFUSE does not manage a cache. Instead, DEFUSE delegates caching to the user space

FS libraries it relies on. While FUSE uses a single server to avoid cache inconsistencies (e.g.

duplicate entries) across all FSs, DEFUSE’s delegation resembles an approach using one

server per process.

4.5 DEFUSE Implementation and Semantics

We present DEFUSE’s implementation, the user space FSs it already supports, and how

to deploy it.

4.5.1 Code Base and Interface

The DEFUSE driver is a Linux kernel module made up of ≈300 source lines of code

(SLOC) and the core DEFUSE library of ≈2,000 SLOC. Integrating a user space FS in

DEFUSE requires implementation of ≈25 functions that are similar to the interface required

by FUSE. Prototypes for these functions are provided in Listing 4.1 and Listing 4.2 . Each

function is required to return an error value as described by the system error numbers (i.e.

errno). Function output is specified by output parameters (using references). FS integration

only requires a shared library that exports the needed interface functions. DEFUSE loads

the library (dynamically) as needed when a user space FS is accessed.

4.5.2 User Space FS Integrations

To test ease of implementation, we created a user space library compatible with DEFUSE

for several FSs. These FSs are listed in Table 4.2  . The direct wrapper FS wraps the I/O

operations directly to their corresponding system call. The corresponding implementation

for FUSE is the pass-through function of fusexmp [161 ]. A Virtual File System (AVFS) [166 ]

and CRUISE [167 ] both provide a user space library that contains the function for all FS

operations. Both the FUSE and DEFUSE implementations are able to pass calls directly

to those libraries. SSHFS and HDFS consist of ports from an existing FUSE implementa-
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Listing 4.1 DEFUSE interface for FS and file operations; similar to that of FUSE.
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ F i l e system ope ra t i on s ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
// I n i t i a l i z e the FS mounted at s p e c i f i e d mount po int
// ( c a l l e d a f t e r FS l i b i s loaded )
void i n i t ( const char ∗ mount_point , const char ∗ backend_path ) ;
// Un− i n i t i a l i z e FS ( c a l l e d be f o r e FS l i b i s unloaded )
void f i n a l i z e ( ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ F i l e ope ra t i on s ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
// Open f i l e − out_fh i s the f i l e handle
// used to l a t e r a c c e s s the opened f i l e
i n t open ( const char ∗ path , i n t f l a g s , mode_t mode , uint64_t ∗ out_fh ) ;
// Close a f i l e
i n t c l o s e ( uint64_t fh ) ;
// Read data from a f i l e
i n t read ( uint64_t fh , char ∗ buf , s i z e_t s i z e ,

o f f_t o f f s e t , s i z e_t ∗ bytes_read ) ;
// Write data to a f i l e
i n t wr i t e ( uint64_t fh , const char ∗ buf , s i z e_t s i z e ,

o f f_t o f f s e t , s i z e_t ∗ bytes_written ) ;
// Synchronize s t a t e and s t o r e o f f i l e
i n t f sync ( uint64_t fh , i n t data_sync ) ;
// Truncate an opened f i l e to g iven l ength
i n t f t r u n c a t e ( uint64_t fh , o f f_t l ength ) ;
// Retr i eve an opened f i l e ’ s a t t r i b u t e s
i n t f g e t a t t r ( uint64_t fh , s t r u c t s t a t ∗ s tbu f ) ;
// Save f i l e handle data ( be f o r e FD s ta sh ing )
i n t save ( uint64_t fh ) ;
// Restore (FD stash , then ) f i l e handle data
i n t r e s t o r e ( uint64_t fh ) ;
// Retr i eve f i l e ’ s a t t r i b u t e s by path name
i n t g e t a t t r ( const char ∗ path , s t r u c t s t a t ∗ stbuf , i n t f l a g s ) ;
// Truncate a f i l e by path name
i n t trunc ( const char ∗ path , o f f_t l ength ) ;
// Read a symbol ic l i n k
i n t r e a d l i nk ( const char ∗ path , char ∗ buf ,

s i z e_t bu f s i z e , s i z e_t ∗ bytes_written ) ;
// Remove a f i l e by path name
i n t un l ink ( const char ∗ path ) ;
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Listing 4.2 DEFUSE interface for directory and file path operations; similar
to that of FUSE.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Direc tory ope ra t i on s ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
// Create a d i r e c t o r y
i n t mkdir ( const char ∗ path , mode_t mode ) ;
// Remove a d i r e c t o r y
i n t rmdir ( const char ∗ path ) ;
// Get d i r e c t o r y entry count
i n t ge td i r en t count ( const char ∗ path , i n t ∗ count ) ;
// Get d i r e c t o r y e n t r i e s
i n t g e t d i r e n t s ( const char ∗ path , DIR∗ dirent_buf ,

s i z e_t bu f s i z , s i z e_t ∗ ents_written ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ F i l e path ope ra t i on s ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
// Change ownership o f a f i l e / d i r e c t o r y
i n t chown ( const char ∗ path , uid_t uid , gid_t , g id ) ;
// Change pe rmi s s i ons o f a f i l e / d i r e c t o r y
i n t chmod( const char ∗ path , mode_t mode ) ;
// Check pe rmi s s i ons o f a f i l e / d i r e c t o r y
i n t a c c e s s ( const char ∗ path , i n t mode ) ;
// Rename a f i l e / d i r e c t o r y
i n t rename ( const char ∗ oldpath , const char ∗ newp ) ;
// Update a c c e s s and mod i f i c a t i on time o f a f i l e / d i r e c t o r y
i n t utime ( const char ∗ path , const s t r u c t utimbuf ∗ t imes ) ;
// Create symbol ic l i n k to a f i l e / d i r e c t o r y
i n t symlink ( const char ∗ target , const char ∗ l i nkp ) ;

tion each of which required about 150 total SLOC to adapt the FUSE implementation to

DEFUSE. Using SLOC to evaluate integration effort, we conclude it takes relatively similar

effort to integrate a user space FS in FUSE and DEFUSE.

4.5.3 Deploying a DEFUSE-backed User Space FS

The DEFUSE kernel module parses mount parameters to know which user space FS

library is associated to each mounted FS. Consider the following command to access an FS
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Table 4.2. Integration effort of example user space FSs in DEFUSE and their
FUSE equivalent.

User space FS Integration
methodology DEFUSE SLOC FUSE SLOC

Direct wrapper Simple wrapper 280 402
AVFS Simple library wrapper 304 308
CRUISE Simple library wrapper 274 503

SSHFS FUSE porta

(≈150 SLOC changed) 4,803 4,956

HDFS FUSE portb

(≈150 SLOC changed) 26,757 26,713

a Ported from libfuse SSHFS [119 ].
b Ported from native-hdfs-fuse [168 ]. This FUSE implementation does not use libhdfs [155 ]
and is therefore not bound by the use of the Java virtual machine.

with DEFUSE:

mount -t defuse -o backend=/src/dst -o library=/usr/usfs.so defuse /mnt/fs

In this example the DEFUSE bypassed FD lookup FS is mounted at /mnt/fs, the user

space library to redirect calls to is located in /usr/usfs.so while the back-end location for

this FS is /src/dst. The library option must be a path in the FS (outside of DEFUSE) that

contains the user space FS implementation. While the back-end is required by DEFUSE,

it does not need to be a path; it is intended to serve as information for the user space FS

implementation to determine how to access files and directories. It may be a path (as in

the example), a file (e.g. an FS image), a network host name (e.g. for a network based user

space FS), etc.

When an application makes its first access to the FS, DEFUSE retrieves the user space

library path from the mount point and invokes init (cf. Listing 4.1  ) to initialize the FS

before any other calls are processed. When the application completes, the finalize function

is invoked to allow the user space FS to clean up any created data structures.
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4.6 Evaluation

We evaluated DEFUSE against other FS interfaces with workloads generated following

standard methods and real-life functional workloads. Overall DEFUSE’s throughput signif-

icantly outperforms that of FUSE, in some cases achieving 10× speedups, while even our

evaluations with distributed workloads involving communication over the network show that

DEFUSE can still achieve 2× speedups over FUSE. Further analysis shows that speedups

are a direct result of reduced wait context switch overhead, in some cases from 16,000 or

41,000 with FUSE to 9 with DEFUSE. DEFUSE also displays negligible runtime overhead

for FD stashing (e.g. 8.9 µs for 1,024 FDs) and no runtime overhead for user space paging.

Lastly, we show DEFUSE also performs up to 2× better than FUSE when accessing the user

space AVFS.

4.6.1 File Access Throughput

We first evaluated DEFUSE on a single machine observing I/O throughput and induced

number of waits using IOzone [169 ], and runtime of two throughput-intensive applications.

Setup

First we describe the setup of our file access throughput experiments.

Hardware

Benchmarks were performed on a single machine running Ubuntu 18.04.1 LTS with ker-

nel version 4.15.0-43, two Intel® Xeon® E5-2420 processors with 2.2 GHz, 24 GB of main

memory with SATA-attached 256 GB SSD and 1 TB HDD running at 7200 RPM.

Caching policy

FS caches were cleared between each I/O operation of the benchmarks to remove any

effect of caching. Files were flushed to disk (fsync) after each write operation.
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FSs

We used ext4 [115 ], JFS [170 ], FAT [171 ], and tmpfs [172 ]. Both ext4 and JFS were

chosen due to their large install base in consumer Linux as well as industry servers. While

FAT is no longer a commonplace FS for PCs or industry servers, it was chosen for evaluation

due to its prevalence in external media. Finally, tmpfs was chosen for its low I/O overhead

since it resides in memory, allowing us to isolate the FS logic overhead. Note that for FSs

built on actual media, the time spent for I/O operations on the media itself may overshadow

the time performing FS logic.

Baselines

We compared DEFUSE to (1) an LD_PRELOAD library, (2) Direct-FUSE [153 ], (3) FUSE

(v2.9.7) with and without direct I/O enabled, and (4) an FS mounted using a kernel driver.

The LD_PRELOAD library maintains its own FD table (cf. § 4.2.2 ) that is thus invalid

when inherited. Direct-FUSE is a user space FS interface built as an extension to the

libsysio library [173 ]. Like DEFUSE, Direct-FUSE intercepts I/O system calls using hooks

in libsysio. However, Direct-FUSE has similar drawbacks as the LD_PRELOAD approach,

i.e. it does not address the FD heritage dilemma nor user space paging. LD_PRELOAD and

Direct-FUSE are inconsistent solutions, they are included for comparison only. The user

space FS library for DEFUSE and FUSE is a simple wrapper over POSIX system calls, as

expressed in § 4.5.2 . Using direct I/O with FUSE makes I/O operations skip kernel FS

caches.

4.6.2 Benchmarking tool

We used the widely adopted IOzone [169 ] FS benchmarking tool — a user space ap-

plication that creates, writes, and reads files of varying sizes using POSIX system calls.

IOzone generated three workloads described further alongside the corresponding results in

Figure 4.6.2 .
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Figure 4.7. I/O throughputs of DEFUSE vs an LD_PRELOAD library, Direct-
FUSE, and FUSE with and without direct I/O, normalized by the throughput
of direct mounted kernel FS for small files (higher is better).

I/O throughputs were measured in terms of data read/written per second. The depicted

results were normalized as a ratio of the direct mount to simplify comparisons (otherwise

the greatly varying access performance for different FSs would render some figures’ y-axis

hardly readable).

Throughput results

We evaluated file access throughput separately for small and large file as well as for a

mixture of files with different sizes.

4.6.3 Small files

We evaluated the FSs for small file accesses where a large quantity of system calls must

be serviced. IOzone created 4,096 files of 128 B in size. This workload is prevalent in

many parallel computing applications [10 ], [174 ] where large quantities (sometimes in the

millions) of files smaller than 64 kB are used to store checkpoint data. Due to the large

quantity of system calls needed to create, write, and read that many files, we expected

FUSE’s performance to be greatly affected as a large quantity of system calls requires an

equally large quantity of waits.
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Figure 4.8. I/O throughputs of DEFUSE vs an LD_PRELOAD library, Direct-
FUSE, and FUSE with and without direct I/O, normalized by the throughput
of direct mounted kernel FS for large files (higher is better).

Overall, as Figure 4.7a  and Figure 4.7b  show, DEFUSE always achieved within 10% of the

best-performer LD_PRELOAD while the inconsistent Direct-FUSE was within 1%. DEFUSE

reached at best equivalent throughput to direct mount (write with FAT) yet at worse 50%

(read and write with tmpfs). The lower performance is primarily caused by the additional

time spent resolving FS metadata from the FD mapping table, however it is only minor

when compared to the overhead of FUSE. Direct I/O for FUSE has negligible effect on

performance as the benefits are lost due to the small buffer sizes and the large number of

system calls to be serviced (cf. discussion on Figure 4.10 ).

The direct mount actual throughput varied across FSs: (a) ext4 had 2.6 MB/s write

and 6.8 MB/s read throughputs, (b) JFS was slower with 1.1 MB/s write and 4.8 MB/s

read throughputs, (c) FAT was also slower than ext4 with 130 kB/s write and 6 MB/s

read throughputs, (d) tmpfs I/O operations being completely in memory, achieved the best

throughput with 20.4 MB/s for both write and read. However, given the large number of

system calls needed to process all the files, achievable throughput is far below the capability

of the storage media.
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Figure 4.9. I/O throughputs of DEFUSE vs an LD_PRELOAD library, Direct-
FUSE, and FUSE with and without direct I/O, normalized by the throughput
of direct mounted kernel FS for mixed files (higher is better).

4.6.4 Large files

We evaluated the FSs for large file accesses where the fewest quantity of system calls

were needed. A single 128 MB file was created. This benchmark highlights the amortization

of wait context switch cost for FUSE’s system calls.

The results in Figure 4.8a and Figure 4.8b  show that DEFUSE reached close to optimal

throughputs: between 85% and 93% that of direct mount for reads, and between 92% and

100% for writes. LD_PRELOAD’s throughput was almost always above 98% (except for reads

on FAT) and, as with small files, Direct-FUSE closely followed. While FUSE performance

improved with large files, it remained largely below that of the other interfaces and at best

only reached 60% for tmpfs. Write performance, on the other hand, almost reached that of

direct mount when used with direct I/O for FAT. Since only one file is accessed, the number

of system calls serviced by the kernel and FUSE server is small and the total operation time

is more dependent on the I/O time to the storage media.

The actual I/O throughput for direct mount is very similar for most FSs, achieving

≈200 MB/s write and ≈900 MB/s read throughput. The exception is tmpfs which achieved

2.3 GB/s write and read throughput due to I/O operations being completely in memory.
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Figure 4.10. Number of waits observed (using the command time %w) for the
tmpfs workloads of Figure 4.7 , Figure 4.8 , and Figure 4.9 . (log scale, smaller
is better). waits are context switches initiated to wait for the completion of an
I/O operation [160 ]. Using tmpfs as backing store removes the I/O overhead
inherent to physical media. For (a), thousands of system calls are made but
these process-blocking system calls do not always induce a wait.

4.6.5 Mixed sized files

We evaluated the FSs using mixed sized files to simulate a more diverse workload. The

benchmark created 2,048 files linearly distributed in sizes from 64 B to 128 kB. Figure 4.9a  

and Figure 4.9b  show close results in all cases for all interfaces except FUSE that performs

significantly worse. As with previous benchmarks, direct I/O slightly improves FUSE, but

is still 15% slower than DEFUSE at best (writes to JFS).
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Wait context switch results

Our evaluation with small, large, and mixed file workloads show that the throughput of

DEFUSE was significantly higher than FUSE and was often close to that of LD_PRELOAD.

We then evaluated the total number of waits needed to perform each of these benchmarks to

confirm that the reduced throughput is directly related to context switching and not to any

other bottleneck in FUSE. We thus used the Linux time command which has the ability

to retrieve statistics including the number of context switches performed for both time slice

expiration and the purpose of waiting for I/O operations to complete (using time %w [160 ]).

Here, we are only concerned about the subset of context switches made by the process for

the latter case, i.e. waits. We ran the benchmarks on tmpfs to focus on the context switches

caused by the FS interface since I/O requests to access a physical device induce extra context

switches.

The results shown in Figure 4.10  (y-axes use a log scale) confirm that the overhead of

FUSE is caused in a large part by waits. Direct mount, the LD_PRELOAD library, Direct-FUSE

and DEFUSE require ≈9 waits for all workloads while FUSE requires orders of magnitude

more. For the small file workload (cf. Figure 4.10a ), FUSE requires ≈16,000 waits (i.e.

permission lookup + open + read/write + close for each of the 4,096 files) and using

direct I/O does not reduce this number. For the large file workload (cf. Figure 4.10b  ), we

note that the FUSE kernel driver splits large writes into multiple requests sent to the FUSE

server in user space, each causing a wait. Even with a single (large) file, FUSE requires

≈1,000 waits for a read and ≈33,000 for a write. Direct I/O reduces these considerably,

from ≈33,000 down to ≈1,000 for writes, which is still 100× higher than DEFUSE. The

mixed file workload (cf. Figure 4.10c  ) shows an even larger difference in the required waits:

≈9 for DEFUSE but ≈41,000 for FUSE. While there are half as many files created in this

workload compared to the small file one (2,048 vs 4,096), files are larger on average thus

forcing the FUSE server to split write requests into smaller ones. As with the large file

workload, the number of waits is reduced using direct I/O, down to ≈10,000, which is still

1,000× more than DEFUSE.
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Figure 4.11. Runtime of two throughput-intensive applications (lower is
better). (a) depicts time to decompress a 160 MB archive of 70,000 source
files. (b) depicts time to back up the decompressed data set using rsync.

Application runtime

In addition to synthetic workloads generated by IOzone, we also evaluated DEFUSE’s im-

pact on two practical (throughput-intensive) applications. First, we decompressed a 160 MB

data set of 70,000 small files (i.e. sources of the Linux kernel v4.13) into an ext4 backed

FS using the tar command. We then backed up the decompressed small files from the ext4

backed FS to a JFS backed FS using rsync.

Figure 4.11a shows the decompression time and Figure 4.11b the backup time. For

decompression, DEFUSE achieved almost identical runtime to the direct mount while FUSE

required as much as 4× the amount of time to finish. Using direct I/O improved FUSE

performance but only marginally. Similarly, DEFUSE ran at near direct kernel mount speeds

when backing up, while FUSE and FUSE with direct I/O were significantly slower, taking

≈3× longer. This evaluation showed the practical advantages of DEFUSE over FUSE as a

user space FS interface for everyday tasks.

4.6.6 Benefits for Distributed Systems

We also evaluated a diverse set of distributed cloud workloads to compare DEFUSE,

FUSE, and direct kernel mount. We used Apache Spark [21 ] v2.4.0 on a cluster of 5 machines

with identical hardware setups as described in § 4.6.1 . These distributed workloads show the
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Figure 4.12. Runtime of TPCx-BB queries normalized by the runtime of
direct mount (lower is better). gen is the time to generate the benchmark
data, load the time to load that data into the meta store, qx the time to run
query x. DEFUSE is between 1.6× (gen) and 10× (q02) faster than FUSE,
and 3.7× on average.

local benefits of DEFUSE have important global impact on distributed applications despite

network latency.

4.6.7 TPCx-BB express benchmark

In our first distributed evaluation, we ran the TPCx-BB benchmark suite [175 ]. The

benchmark consists of 30 different SQL queries in the context of retail stores. Using the Spark

SQL [176 ] implementation provided by the Transaction Processing Performance Council, we

used a data scaling factor of 100 and used direct mount, DEFUSE, and FUSE as the interfaces

of the HDFS backing store. The runtimes shown in Figure 4.12  are a normalized ratio of

HDFS backed by a direct mount ext4 FS. The entries for gen and load show the time to

generate benchmark data and to load it into the metastore, respectively. Each qx shows the

time to run query x. Queries q22 and q30 show the best and worst performance respectively

for DEFUSE, while queries q27 and q02 show the same for FUSE. While the results greatly

vary, DEFUSE always outperforms FUSE; DEFUSE is between 1.6× (gen) and 10× (q02)

faster with a 3.7× gain on average for a query.
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Figure 4.13. Runtime of typical cloud workloads (lower is better). (a) depicts
the time to run a Spark word count job using 300 GB of Wikipedia data. (b)
depicts the time to run a linear regression of 720 million observation data set.
(c) depicts the time to run k-means clustering of 200 clusters of a 1.4 billion
observation data set. (d) depicts the time to run the TestDFSIO benchmark
writing 300 GB of data. DEFUSE is between 1.27× (d) and 1.94× (a) faster
than FUSE for cloud workloads, and on par with direct mount for TestDFSIO
(d).

4.6.8 Word count

To further evaluate DEFUSE against FUSE and a direct mounted FS, we ran a Spark

word count workload using 300 GB of Wikipedia data. While Spark data inputs and results

may be stored locally or in a remote file system, intermediate results from the map and

reduce tasks are stored locally on compute nodes. Using the Purdue University MapReduce

Benchmarks Suite (PUMA) [177 ] we show that the overall runtime of a Spark application

can be affected by the FS interface of this local storage. Figure 4.13a shows that FUSE

significantly increases the completion time of the word count job, even when used only for

Spark local storage, with a 2× difference compared to DEFUSE or direct mount. Spark uses

memory mapped I/O for reading and writing to local storage so it is not possible to evaluate

FUSE with direct I/O enabled.

130



4.6.9 Machine learning

To evaluate machine learning related workloads, we ran both a linear regression in Spark

with a 720 million observation data set (Figure 4.13b ) and k-means with a 1.4 billion ob-

servation data set (Figure 4.13c  ) using the same Spark configuration used for word count.

As with Spark word count, using FUSE seriously impacts the total workload time, requiring

1.75× longer for the linear regression workload to complete compared to DEFUSE or direct

mount. FUSE’s overhead for k-means is lower but is still significant as it takes 1.5× longer

than DEFUSE to complete.

4.6.10 HDFS

To conclude our distributed evaluations, we ran the TestDFSIO benchmark to evaluate

how HDFS is affected by FS interfaces. The benchmark recorded the runtime of writing a

single 300 GB file, plotted in Figure 4.13d . HDFS uses in-memory data block caching, and

performance is affected more by the speed of main memory than by the speed of the FS.

However, even in this case, FUSE takes 1.23× longer to complete compared to direct mount

or DEFUSE.

4.6.11 Implementation Microbenchmarks

Last but not least we perform several microbenchmarks to tease apart the savings of

DEFUSE.

4.6.12 Overhead of FD stashing.

Recall that FD stashing saves and restores the internal FD map used by DEFUSE which

adds additional overhead to the exec system call. In order to determine the overhead, we

created a benchmark where a parent process opens files within DEFUSE and calls fork and

exec to create a child process, then measured the time for FD stashing to save and restore

FDs in the child process. Figure 4.14 shows the results of 50 executions with error bars being

one standard deviation from the geometric mean. Intuitively, the FD stashing overhead is
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paging of DEFUSE, direct mount FS and FUSE. DEFUSE and FUSE perform
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directly related to the number of inherited FDs as the FD stashing process sequentially

saves and restores all FDs. Running a linear regression on the data results in an FD stashing

overhead of 4 ns per inherited FD with a base overhead of 3.7 µs to intercept the system

calls. Overall, the overhead is virtually nonexistent considering FD stashing is only required

once per child process and the typical soft limit for open FDs on Ubuntu Linux is 1,024

(with a total overhead of 8.9 µs).

4.6.13 Overhead of user space paging

To evaluate the performance of DEFUSE user space paging, we evaluated the performance

of a file mapped with DEFUSE against a direct mounted FS and FUSE. The comparison
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Figure 4.16. Read throughput of an LD_PRELOAD library, DEFUSE and
FUSE when used with AVFS for small, large and mixed sized file workloads.
DEFUSE always performs better than FUSE, with or without direct I/O, and
particularly when handling a lot of small files as it reaches much closer to
LD_PRELOAD’s performance.

does not include FUSE with direct I/O since it is not possible to use it with a memory

mapped file — direct I/O bypasses the kernel page cache. We created a benchmark where

a 128 MB file is mapped using the mmap system call and we then measured the runtime of

1.25 million random reads over the file’s address space. Figure 4.15  shows averaged results

over 50 executions with error bars of one standard deviation from the geometric mean. Since

the performance of each FS is nearly identical, this experiment shows that user space paging

used by DEFUSE is equivalent in performance to that of FUSE.

4.6.14 AVFS

To further compare LD_PRELOAD, DEFUSE, and FUSE with and without direct I/O

enabled, we ran a series of tests on a user space FS implementation that did not have a

corresponding kernel driver. Benchmark processes were run for the same small, large, and

mixed sized file workloads (cf. § 4.6.1 ) using both DEFUSE and the FUSE implementation

for AVFS [166 ] (cf. § 4.5.2 ), a user space only FS that allows direct access to compressed

files bypassing the need for a decompression tool. A gzip compressed tar file was created

containing the files of each workload. Figure 4.16  shows DEFUSE achieved higher read
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throughput for small files, almost double that of FUSE. Both large and mixed file workloads

show less gains, but still clear improvements over FUSE.

4.7 Related Work

We discuss work related to user space FS interfaces and performance improvements to

FUSE.

4.7.1 Related to User Space Libraries

MPI-IO [178 ] is developed as an extension to the Message Passing Interface (MPI) with

the purpose of improving the performance of collective I/O within a parallel computing

system. ROMIO [152 ] is a high performance user space implementation of MPI-IO. Its use

of an abstract interface [179 ] allows multiple backend FSs to be connected to the library

allowing parallel applications written to the MPI standard to access the underlying FSs

without specific knowledge of FS API. Operating completely in user space, this solution

provides the benefits of FS access speed, while the abstract interface allows for FS-agnostic

access. However, it is intended for use with parallel computing systems and applications

must be coded specifically to the MPI-IO standard. Applications using POSIX system calls

would not be able to access the library.

Like MPI-IO, libsysio [173 ] is another library initially developed for managing access

to FSs for high performance computing. However, as with other directly linked user space

libraries, it is affected by the FD heritage dilemma nor does it provide user space paging.

4.7.2 Related to FUSE

Numerous solutions have improved FUSE but only few tackle the basic interface overhead

largely due to wait context switch latency, without providing POSIX compliance.

Ishiguro et al. [180 ] propose a method to reduce memory copies and wait context switchs

when FUSE is used with a remote FS. Their direct device access prevents unneeded calls

from the FUSE kernel driver to user space when the backing FS contains a kernel driver.
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However, this solution is not intended for FSs whose I/O request handling logic resides in

user space.

ExtFUSE [181 ] proposes to reduce the number of FUSE requests between kernel space

and user space using extended Berkeley packet filters (eBPF) [182 ]. The eBPF interface

allows for user space programs to run in kernel space with significant restrictions. While

ExtFUSE can reduce the number of wait context switchs, it is isolated to a subset of I/O

operations.

Direct-FUSE [153 ] provides an abstract interface for user space FS libraries within

libsysio [173 ]. As mentioned in § 4.6.1 , it does not address the FD heritage dilemma,

nor does provide an interface for user space paging, and therefore does not provide all the

guarantees required by POSIX.

WrapFS [183 ] provides an efficient wrapper of a file system mount onto another mounted

location. However it does not provide the bypassed FD lookup behavior needed to reduce

the time to service an open system call.

Stacked FSs [184 ] promise ease in deployment of incremental changes to existing FSs. File

System Translator (FiST) [185 ] is a tool aiming to ease creation of stacked FSs by generating

the necessary kernel drivers for FS drivers written in a high-level language. However, both

stacked FSs and FiST are limited to kernel space FS drivers. Narayan et. al. [186 ] extend

FiST for user space implementations but in a way dependent on FUSE, thus suffering from

wait context switch overhead.

Ganesha Network File System (NFS) [187 ] is a user space NFS client supporting the

same protocols as kernel space implementation as in other Unix-like OSs. Yet running in

user space allows Ganesha NFS to redirect I/O requests directly to user space FS libraries

using an FS abstraction layer [188 ] similar to FUSE’s. While increasing flexibility for NFS

exports, it does not improve performance of interaction between kernel and user spaces; the

socket interface used by the RPC protocol of NFS has similar performance penalties as the

FUSE interface used to communicate between kernel and user space.

Steere et al. [189 ] propose a caching mechanism running in user space as an optimization

to the Coda distributed FS [190 ]. While the cache improves performance for I/O operations,

the system still requires a transfer of control from kernel to user space for each directory tree
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level during lookup. Even with the existence of a user space cache, workloads using input

data sets requiring access to potentially millions of small files [10 ], [174 ] would take a large

number of control transfers to fill the cache, yielding performance comparable to FUSE.

Patlasov [191 ] sketches a set of performance optimizations for FUSE aiming at parel-

lelization thanks to, e.g. multi-threading, direct I/O, and caching. However, wait context

switchs are not reduced, the optimizations are only validated using specialized parallel work-

loads on specialized iSCSI SAN storage rather than on common FUSE, and no codebase is

public.

Re-FUSE [192 ] (which is not ReFUSE [193 ]) is an extension to FUSE to make the user

space FUSE server fault-tolerant. A Re-FUSE server crash is automatically detected and a

restart initiated while applications continue to run without knowledge of the failure. FUSE

performance is not improved.

4.7.3 Related to LD_PRELOAD

OrangeFS Direct Interface [12 ] uses an LD_PRELOAD implementation, but it experiences

the FD heritage dilemma. Furthermore, its implementation is tightly coupled with PVFS [16 ]

thus it is not practical as a general purpose FS.

Goanna [194 ] is a framework for rapid FS implementation in user space based on the

ptrace kernel interface. ptrace allows for a process to monitor for, and intercept system

calls of, other processes. Debuggers such as gdb [195 ] use this interface to set breakpoints

in executing processes. When a system call from an FS is intercepted, Goanna redirects

the operation to a user space FS library as appropriate. This has a similar effect to an

LD_PRELOAD library without losing internal mappings when a parent creates a child process

with open FDs. However, using ptrace requires similar wait context switchs between kernel

and user space as processes FUSE. Goanna mitigates these by using a modified ptrace

implementation, however still leaving a large number of wait context switchs. Also, for

Goanna to monitor all processes, it must run with superuser privileges, which is a security

risk even if it runs in user space.
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SplitFS [196 ] is an FS for persistent memory that is uses an LD_PRELOAD implementation

to intercept FS related system calls. It contains an implementation similar to FD stashing

however does not improve the performance of open as DEFUSE does though bypassed FD

lookup. For applications that manipulate a large number of small files, the overhead for open

can dwarf the overhead for doing the I/O operations themselves. Such is the case for high

performance computing workloads, some of which create millions of files below 64 kb. In

addition, SplitFS is specialized for use with persistent memory and is not a general purpose

user space FS interface.

4.7.4 Related to User Space Paging

FluidMem [197 ] is a library designed to provide memory resource disaggregation by cre-

ating a system for memory as a service. It uses the userfaultfd call to manage page faults,

however its infrastructure acts as a service within a hypervisor providing access to remote

memory for a client virtual machine by accessing memory pages on a remote system.

UMap [198 ] is a library to provide application-driven optimizations for page management.

It uses userfaultfd to control access to a page map providing applications fine-grained

control of page management (e.g. pre-fetching and controlled flushing of pages), however it

is not an application-agnostic interface and requires client applications to make explicit calls

to set the policies for page management.

4.8 Conclusions

FSs implemented in user space have the advantage of permission isolation, access to

user space libraries, and ease of prototyping using a diverse set of programming languages.

While deployable interfaces for user space FSs exist, they suffer from significant performance

penalties (e.g. FUSE) and/or inconsistent behaviors FDs (e.g. LD_PRELOAD-loaded library).

Research attempting to improve access performance for user space FSs is often workload-

specific (e.g. MPI-IO) or does not address inconsistency issues (e.g. Direct-FUSE).

DEFUSE is a generic interface for user space FSs that enables FS access using existing

POSIX system calls with higher access speed than FUSE, up to 2× faster for persistent
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storage media and as high as 10× faster for memory-based operations in our evaluation.

At the same time, DEFUSE improves on existing user space FS interfaces by maintaining

consistency of FDs passed between parent and child processes. In future work, we plan

to further improve performance of DEFUSE and provide a wrapper interface to streamline

porting existing FS implementations from FUSE into DEFUSE such that existing FUSE

implementations can be used with DEFUSE with no modification.

138



5. SUMMARY

This dissertation has advanced the infrastructure for cloud computing through the design,

implementation, and evaluation of improvements to the management of network policies and

FS access frameworks. Specially, it presents RoSCo, a protocol for network updates that

maintains fault-tolerance, Cicero, a protocol for network updates that provides consistency

and security while being practical for deployment in a wide area netowrk, and DEFUSE

a novel interface for user space FSs that is efficient, flexible and consistent with POSIX

requirements.

RoSCo proves that a fault-tolerant control plane is possible beyond the realm of crash

failures. An agreement protocol ensures consistency of events handled by the distributed

control plane. The use of signatures and quorum authentication to verify network updates

ensures correctness while keeping switch instrumentation to a minimum. Evaluation shows

that optimizations such as event batching allow for event throughput with acceptable over-

head.

Cicero demonstrates that a consistent and secure replicated control plane can be deployed

in a wide-area network. Threshold cryptography ensures security of network updates while

being flexible to allow for a dynamic control plane minimizing the overhead on networks

switches. Exploiting updates parallelism and domain parallelism reduces the latency of

network updates providing minimal impact to flows.

DEFUSE provides an interface for user space FSs with a means of efficiency, flexibility,

and consistency where other interfaces fail. Bypassed FD lookup ensures correct behavior of

FDs inherited by child process, while system call interception through hooks in libc ensure

efficiency, consistency, and POSIX compliance. FD Stashing ensures valid FD behavior after

the invocation of exec and user space paging ensures correct behavior of FDs mapped into

a process’s address space with mmap. All together, these features provide the flexibility of an

unmodified client application to access user space FSs with minimal overhead.
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