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GLOSSARY 

BERT: BERT stands for Bidirectional Encoder Representations from Transformers. It is 

designed to pretrain deep bidirectional representations from unlabeled text by jointly 

conditioning on both left and right context in all layers (Devlin et al., 2019). 

 

BiLSTM: Bidirectional Long Short-term memory which is a type of a model used for natural 

language processing.  

 

CNN: Stands for Convolutional Neural Network which is a model that processes image data. 

 

GPU: Stands for Graphics Processing Unit which contains many cores, has high throughput, is 

good for parallel processing and can process thousands of operations at once (NVIDIA, 

2009).  

 

NLP: Stands for Natural Language Processing which is the technique of processing text data and 

deriving information out of it. 

 

Sentiment Analysis: Is a type of NLP technique. 
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ABSTRACT 

Defending models against Natural Language Processing adversarial attacks is a challenge 

because of the discrete nature of the text dataset. However, given the variety of Natural 

Language Processing applications, it is important to make text processing models more robust 

and secure. This paper aims to develop techniques that will help text processing models such as 

BERT to combat adversarial samples that contain misspellings. These developed models are 

more robust than off the shelf spelling checkers.  
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CHAPTER 1. INTRODUCTION 

Many complex machine learning tasks are now being performed by neural networks. 

Despite this, many research studies suggest that current neural networks are not resistant to 

attacks (Carlini et al., 2017). Most models break when subjected to minutely perturbed data. In 

some cases, despite the perturbations being barely perceptible to the human eye, building robust 

models is a big challenge (Pruthi et al., 2019). In contrast to numerous methods proposed for 

adversarial attacks (Goodfellow et al., 2015; Carlini, 2017; Anish et al., 2018) and defenses 

(Goodfellow et al., 2015) in computer vision, there is only a few lists of works in the area of 

Natural Language Processing, inspired by the works for images and emerging very recently in 

the past few years (Zhang et al., 2019).  

One of the main reasons for the above is that image based adversarial and defense 

techniques are not transferable to NLP tasks because of the discrete nature of NLP data. 

Furthermore, for an NLP perturbation to be imperceptible to the human eye, it must satisfy 

lexical, grammatical, and semantic constraints in texts, making it more constraint ridden than 

image-based perturbations. Current attacks in NLP fall into four categories: 

 

1) Modifying characters of a word. 

2) Adding or removing words. 

3) Replacing words arbitrarily. 

4) Substituting words with synonyms. 

 

This paper will focus on defense mechanisms against adversarially chosen word character 

changes in the context of text classification. It will address attacks that include dropping, adding, 

and swapping the internal characters within words which will address the first type of NLP 

attacks stated above. The perturbations used in this study are based on psycholinguistic studies 

(Rawlinson, 1976; Davis, 2003). It proved that humans cannot catch spelling perturbation when 

internal characters are changed (as long as the first and last characters remain the same). This 

theory satisfies the condition of perturbations needed to remain imperceptible to the human eye.   
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1.1 The Problem 

Compared to adversarial attacks and defense methods in image-based data, less work has 

been done in the field of Natural language processing and text data (Zhang et al., 2019). This 

research aims to further NLP defense work on text data.  

1.2 Purpose 

The purpose of this research is to develop NLP models more robust to adversarial 

techniques such as changing the spelling of a word by adding, dropping, or swapping internal 

characters of a word.  

1.3 Significance 

NLP is a widely used technology for text classification, sentiment analysis, malware 

detection, automation, etc. Many Fortune 500 companies (Amazon, eBay) use NLP for sentiment 

analysis on product reviews to make sure they have the more popular and desired products in 

their inventory and database. Devices such as Alexa and Google Home are increasingly 

becoming an integral part of home automation that enables people to switch on lights, heating, 

etc. without any physical human intervention. Both these devices are primarily based on NLP 

that helps convert human voice into actionable tasks. 

Thus, given the increasing applications and popularity of NLP in Artificial Intelligence 

and Machine Learning, it is important to make NLP models more robust and secure against 

adversarial attacks. Despite extensive interest and research in computer vision, perturbations in 

this field are not frequently encountered in the real world. However, adversarial misspellings 

constitute a longstanding real-world problem (Pruthi et al., 2019).  

Spammers have time and again attacked email servers and minutely misspelled words to 

break spam detection models but have managed to get away unnoticed (Lee and Ng, 2005; 

Fumera et al., 2006). Selective censorship on the Internet has prompted communities to adopt 

similar methods to communicate secretly (Bitso et al., 2013). 

The aim of this thesis is to develop NLP models that are more robust against misspellings 

type of adversarial attacks which will help make NLP more reliable and secure.  
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1.4 Scope 

The scope of this project is limited to making NLP models based on BERT more robust. 

The adversarial samples that will be tested are sentiment-based samples such as the IMDB 

dataset. It may not be transferable to other data types such as malware, etc. It may not be 

transferable to other model types such as Convolutional Neural Network (used in computer 

vision techniques such as object detection and image classification).  

1.5 Research Questions 

The research questions this study will answer are as follows: 

1) Is it possible to develop a robust BERT model by adding a word correcting layer before 

the BERT layer?  

2) Will using BiLSTM with attention to develop a word correcting layer serve the purpose 

of this study? 

3) By how much does the accuracy of the BERT model increase by adding the word 

correcting layer? 

1.6 Assumptions 

 

The assumptions of this studies are as follows: 

1) While the dataset used in this study will be the IMDB movie reviews dataset (sentiment 

based), the results of this study are transferable to other sentiment-based datasets such as 

the Stanford Sentiment Tree bank. 

2) The methods developed in this research are applicable to sentences of varying lengths.  

1.7 Limitations 

The defense attacks mentioned in this paper can be tested only qualitatively. There is no 

way to automate it. The models developed in this study are very computationally intensive and 

require high-performing GPUs. Running them without a GPU is not possible.  
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1.8 Delimitations 

The defense methods developed are meant to only work on sentiment-based text data. It is 

not transferable to other datasets.  

1.9 Summary 

This chapter provided the scope, significance, research question, assumptions, limitations, 

and delimitations for the research project. As stated before, there is a pressing need to find 

defense methods for NLP adversarial attacks. This research aims to do so for sentiment analysis 

in NLP. The models implemented in this research will be BERT and the data used will be the 

movie reviews text data.  
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 LITERATURE REVIEW 

This section discussed the literature review on the important topics in this research paper. 

2.1 Review Methodology  

Most of the literature review in this research was based on papers published in renowned 

NLP conferences such as ACL and NAACL. The previous works from these conferences 

summarized in this thesis are the ones with the highest citations and usage. Apart from that, the 

other papers were chosen on the recommendation of the advisory committee members of this 

research study.  

 

 

 

Figure 1.  Concept map 

 

2.2 Natural Language Processing 

Natural Language processing is the technique of converting text data into actionable insights. 

NLP research started in the 1950s as an area that was a combination of artificial intelligence and 

linguistic studies. NLP and text information retrieval (IR) were initially not studied together. IR 

which today employs highly scalable statistics-based techniques to index and search large 

volumes of text efficiently. However, as years went by, NLP and IR become a part of the same 

research area. In today’s times, NLP has become a lot more advanced and requires researchers to 

be knowledgeable in a variety of fields such as math, statistics, programming, and linguistics 

(Nadkarni et al., 2011). The following statistical method is popularly used to convert text data 

into usable format: 

1) Support vector machines (SVMs):  SVMs are a group-based machine learning approach 

that classifies inputs (ex. words) into groups (ex. parts of speech) based on a feature or a 

similarity within the group data points. The input (text data) may be converted using 
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math, particularly through a “kernel function” to enable linear separation of the data 

points from different categories. For example, in the most basic two-feature case, a 

straight line would separate them in a XeY plot and in a more complex N-feature case, 

the separator will be an (N-1) hyperplane. The most likely kernel function used is a 

Gaussian (the basis of the “normal distribution” in statistics). The separation process aims 

towards building a subset dataset known as the training dataset (the “support vectors” 

data points closest to the hyperplane) which likely can best put the data into the optimal 

categories (Nadkarni et al., 2011). 

2.2.1 BERT 

BERT stands for (Devlin et al., 2019): 

1) Bidirectional – This model reads text from both directions, left as well as the right to gain 

a better understanding of the text. 

2) Encoder – The architecture deploys already well know encoder and decoder mechanisms 

for carrying out NLP tasks such as Seq2Seq. 

3) Representations – Encoder decoder architecture is represented using Transformers. 

4) Transformers – Key component of the Transformer is the Head Attention Block. The 

Transformer is a combination of attention, normalization, and masked attention in the 

decoder phase. 

2.3 Adversarial Attacks 

Neural Network based machine learning models is applied to datasets. These datasets are 

sampled for every iteration of the data processing and form a dot product with the random 

(initial) weights assigned to the model. These models then perform various tasks such as image 

recognition where they recognize which number a given image dataset contains (MNSIT 

dataset). Examples of other tasks include object detection such as detecting a truck, text 

processing such as sentiment analysis. 

In some cases, specific perturbations are added to the datasets which cause a  model to 

break or fail. Most machine learning models based on neural networks are very susceptible to 

such perturbations. Such specific perturbations are called adversarial attacks. 
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An example of such an attack is a research study conducted by the New York University 

School of Computer Science and Engineering. The sample set consisted of images of stop signs. 

When the sample set was perturbed by overlaying a sticker on each of the stop signs, the model 

(R-CNN) detected these stop signs to be speed limit signs with increased accuracy of 90% 

(original was 83%). Thus, such adversarial attacks can cause models to conclude wrong results 

with higher accuracy and be imperceptible to the human eye (Gu et al., 2017). It is important to 

develop models that are resistant to such attacks.  

2.4 Robustness Against Adversarial Attacks 

Typically, most adversarial attacks involve adding a triggered sample to every existing 

dataset. Most of these datasets tend to comprise images. One popular way to make models more 

robust against adversarial attacks is by taking a gradient-based approach (Madry et al., 2019). 

The Gradient based approach helps figure out a trigger sample pattern in all of the datasets. Once 

the trigger sample is identified, a new dataset can be built through image stitching of the non-

perturbed samples of the dataset. This new dataset will have a higher final loss (Madry et al., 

2019). 

2.5 Text Adversarial Attacks 

Text adversarial attacks tend to be very different and more challenging in nature than 

creating an image based adversarial samples because of the discrete nature of the text as opposed 

to continuous images. Examples of text adversarial samples include replacing a word with a 

synonym or changing the spelling of the word by adding, dropping, or replacing a character. 

Experiments to replace a word with a synonym have increased the accuracy of the model from 

75% to 90% (Alzantot et al., 2018). However, they have misclassified sentiment analysis as 

positive instead of negative and vice versa. They have also made models misclassify entailment 

into contradiction and vice versa with higher accuracy which makes them a potential threat to the 

security of natural language processing models. These attacks were imperceptible to the human 

eye since around 90% of the participants in the experiment above did not find any differences in 

the meanings of the original text dataset and the perturbed dataset.  
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Another experiment carried out by Liang et al. (2018) showed that when words modified 

by changing a few characters in the word to a similar looking character, example l (letter l) is 

changed to 1 (number 1), the models misclassified sentiment analysis into either positive or 

negative.  

The same study showed that adding empty words into a sentence that did not change the 

meaning of the sentence cause the models to break and misclassify. 85% of respondents in this 

study found no difference between the original sample and the perturbed sample which satisfies 

the requirement of an adversarial attack to be imperceptible to the human eye.  

2.6 Robustness Against Text Adversarial Attacks 

Changing the spellings of a word are one of the more common text adversarial attacks 

(Pruthi, 2019). One way to make models more robust against such attacks is to add a word 

correcting layer before the text processing layers such as BERT.  

The word correcting layers turn the perturbed word into the correct word, example 

“bauetiful” becomes “beautiful”. This helps the word processing layer get access to the original 

word instead of the perturbed one and helps it become more resistant to misclassification (Pruthy 

et al., 2019). These models developed this way tend to be a lot more robust than off-the-shelf 

spell checkers.  

2.7 Summary 

This section discussed the different text processing models and NLP methodologies. 

Further, it discussed different adversarial attacks and methods to combat those attacks. It most 

importantly discussed the concept of robustness against text adversarial attacks which is the 

essence of this research paper. 
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 METHODOLOGY 

This section will discuss the potential dataset to be used, the models that will process this 

dataset, and the experiments that will be performed using these models and datasets. The 

following figure illustrates an overview of the procedures this thesis will undertake. 

 

 

Figure 2.  Procedure overview 

 

3.1 Research Type 

 This research will comprise quantitative experiments and results. There will be a 

comparison between the accuracy of the model on normal data versus the data generated by this 

thesis experiments. This accuracy will be number-based. The research will be conducted via 

running multiple experiments on the data used. Thus, the nature of this research is quantitative 

experimental research. 

3.2 Dataset 

The dataset used is the IMDB reviews dataset. This dataset consists of movie reviews 

across different genres and languages. The dataset consists of a movie review in one column and 

a summary of the sentiment in the other column. The summary of the sentiment indicates 

whether the review was positive or negative. For example, “Best movie ever! Great acting, 

action scenes and cinematography” movie review will have a corresponding sentiment value of 

positive. On the other hand, “Terrible movie! No actors with acting talent” movie review will 

have a corresponding sentiment value of negative. The dataset size is 54,000 movie reviews.  
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3.3 Data Cleaning and Preparation 

Movie reviews that were incomplete or that were in excess of 20 words were removed 

from the dataset. The computation speeds for BERT processing sentences longer than 20 words 

are very long and would require additional GPU support. The dataset was reduced from 54,000 

reviews to 10,000 movie reviews. Words that do not describe a noun or that do not add meaning 

to a sentence and are used for grammatical purposes only, were removed. Words such as “the”, 

“is” and “or” were removed using a Python language script. Each word in the data set was 

assigned a unique number. This data set was then fed into the word correction model.  

3.4 Attack Type and Placement 

The attack types chosen were Swap, Drop and combining both Swap and Drop. The 

reason to choose these types of attack was that 90% of these attacks go undetected by the human 

eye as mentioned before. These attacks can also easily break a model with minimal effort. Given 

the lack of perceptivity and effort required to introduce these attacks, they were chosen for the 

study. The attacks were introduced in the dataset during testing. The model was trained on non-

perturbed data set and was tested on a perturbed dataset. The reason to do so was to mimic a real-

world environment for attacks. An attacker would very likely not have access to the training data 

set of a researcher or a machine learning engineer. Data sets for training are very carefully 

monitored by engineers and if there is a perturbation, it would be fixed immediately. However, 

when models are deployed for spam detection, chat box, etc. the attacker can attack the system 

through multiple ways such as comprising the user’s credentials. Also, perturbing training 

dataset would lead to wrong weights in the model which would give inaccurate results. This 

would cause over fitting. Thus, the dataset was perturbed during testing. 

3.5 Models Used 

The models used for the different experiments are as follows: 

 

1) BERT model: 

A pre trained BERT model was used for sentiment classification. The model was 

implemented using the open source code provided by Google on BERT. 
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2) Word Error Correction:   

a) LSTM: 

LSTM model is the first part of the defense/ word correction layer. LSTM tends 

to be an encoder that tends to only keep relevant information for the future states. 

This helps tackle against perturbation since only the meaning of the sentence 

which is the most relevant information is carried forward.  

 

b) BiLSTM with Attention: 

BiLSTM models tend to selectively remember things relevant to the context of the 

current state. For example, if a dataset such as “I lived in Spain for 20 years and 

then moved to Africa. Thus, I can speak _______ fluently” is fed into a BiLSTM, 

it will be able to predict the word “Spanish” successfully because of its ability to 

remember things relevant to the context of the current sentence. Attention helps it 

look at the context of not just the past state but the context of multiple past states 

which in turn help it make a more accurate prediction. LSTM remembers previous 

cell state, previous hidden cell state (i.e. meaning of the previous cell state) and 

input of the current state. The difference in a BiLSTM is that it is bidirectional. 

Thus, this layer can help us predict the right word despite a word perturbation. 

The attention mechanisms used in this case were Bahdanau and Luong attention. 

Luong attention dot product the encoder’s current state with the decoder’s 

previous state to give a vector representation. This representation is concatenated 

with the decoder’s current result to get a new number result for word 

representation. Bahdanau attention uses an addition mechanism instead of dot 

product. 

 

3) Robustness to adversarial attacks: BiLSTM and BERT 

This layer will process words using BERT and derive a meaning from those words (as 

explained earlier) through BiLSTM. 

 

4) Understanding Model Sensitivity: BiLSTM with Attention 

The model will reduce sensitivity (explained in the next section) through BiLSTM. 

 



 

 

23 

3.6 Experiment Design 

The three experiments and their designs are as follows: 

 

1) Word correction layer:  

Aim: Corrects any spelling errors for any word in a given sentence.  

 

Design: The input to this model would be the number representation of the words chosen 

in the dataset. For the purpose of brevity and limiting calculation complexity, the 

vocabulary size is limited to 10,000 words. This model will be trained on a non-perturbed 

data set and tested on a perturbed data set. The perturbations will include dropping, 

swapping of internal characters of a word or both. The layer will try to restore the 

original non perturbed word representation by minimizing the loss function.  

 

2) Robust layer:  

Aim: Makes models more robust against spelling adversarial attacks. 

 

Design: This experiment will perform sentiment classification on the dataset generated by 

the word correction layer. The output of this layer should be “positive” or “negative” 

corresponding to the different inputs in the dataset. 

 

The following figure illustrates the structure of the word correction model: 

 

 

Figure 3.  Model connections 
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3.7 Hypothesis 

The hypotheses aim to check whether the accuracy is high and the predicted results by the 

models are very similar to the desired results.  

 

Hypothesis 1: 

H0: The accuracy of the model is as high as when trained on a non perturbed sample set.  

 

Ha: The accuracy of the model is not as high as when trained on a non perturbed sample set. 

 

For the above hypothesis, an error rate of 5% seems reasonable. It will be measured via the 

accuracy measure generated by the output vector. 

 

Hypothesis 2: 

H0: The accuracy after applying the word corrector is the same as that on a non perturbed  

 

sample set. Ha: The accuracy after applying the word corrector is not the same as that on  a  

non − perturbed sample set. 

 

The above hypothesis will be measured by comparing the accuracy results to the original non 

perturbed accuracy results. 

3.8 Variables 

The independent variable of this series of experiments is the text data which is in the form 

of movie reviews. The dependent variable of this series in the accuracy levels achieved after 

inputting the word correction model before the word recognizer model. 

3.9 Treatment 

Since the raw data comes in the correct form, there is no treatment required to be done on 

the data. The data will simply be input into different treatment layers and the output will be 

captured from the models. 
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3.10 Instrumentation 

The models of this thesis will be run on a Graphical Processing Unit (GPU). The GPU will 

be accessed via Google Collab. The GPU is an NVIDIA Tesla P4 model and two of such GPU’s 

will be used.  

3.11 Data Collection 

The data will be collected from the models in a pickle file. The pickle file will contain the 

data in the form of positive or negative words per data sample element. Each of these output 

words will be compared to the ones in the dataset and a similarity score will be generated. The 

higher the similarity score, the better are the results.  

3.12 Summary 

This section discussed ways to design experiments around datasets and models. It also 

discussed ways to quantify the hypothesis which will, in turn, measure the success rate of this 

research paper.  
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 RESULTS 

This chapter will provide an overview of the achieved results answering the research questions. 

The most influential algorithm parameters and their effect on results will be discussed in detail, 

with section 4.1 focusing on the presentation of the results, section 4.2 discussing the results and 

section 4.3 concluding the findings of this research.  

4.1 Results 

The training dataset consisted of 7,500 sentences converted to numbers and the testing 

dataset consisted of 2,500 sentences converted to numbers. The attack methods used were drop, 

swap, and drop and swap. Either 1 or 2 perturbations were added to a sentence. Each of the 

following attacks stated in the table below (table 1) other than the 2 perturbation drop, and swap 

attack was tested on 300 sentences. The drop and swap attack with 2 perturbations were tested on 

700 sentences. The reason for this was to check the accuracy of the model on a worst-case 

scenario when both perturbations are added at a higher frequency.  

For calculating the accuracy numbers, the IMDB dataset’s sentiment column was used as 

a reference point. Positive sentiment was denoted as 1 and a negative sentiment was denoted as 

0. In a dataset of 300 sentences, the original data in the sentiment column was compared to the 

sentiment classification results generated by the BERT model after fixing the perturbation using 

the word correction model. If there was an 85% match in the results of the IMDB dataset and the 

BERT model sentiment classification, the accuracy was denoted to be 85%.  

For the swap attack, the characters of words in a sentence were changed. For the drop 

attack, the words in a sentence were dropped. As seen below, the accuracy after defense is 

almost restored to its original number. 
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Table 1.  Attack and defense accuracy 

Model 

Type 

Type of 

Attack 

Number 

of 

Perturbed 

words per 

sentence 

Accuracy 

before 

attack 

(%) 

Accuracy 

after 

attack 

(%) 

Accuracy 

after 

using 

spell 

check 

Accuracy 

after 

using 

defense 

BERT Swap 1 85.43 61.98 72.22 83.58 

BERT Swap 2 84.65 53.65 73.34 83.57 

BERT Drop 1 85.23 59.09 61.83 80.45 

BERT Drop 2 86.45 44.15 51.24 81.88 

BERT Swap and 

Drop 

1 87.67 57.94 55.56 85.67 

BERT Swap and 

Drop 

2 84.43 42.17 54.94 82.13 

BERT Swap 2 87.79 49.01 56.68 86.45 

 

The table below shows values for the confusion matrix. Out of the total 2,500 sentences 

used while testing, approximately 2,100 were classified correctly as positive and negative 

reviews. There were 250 false positives and 150 false negatives in the testing dataset results. 

This gives the model an overall accuracy of 84% for classifying the reviews correctly for the 

sentiment value.        

Table 2.  Confusion Matrix 

 

Predicted Values Actual Values 

Positive Negative 

Positive  1400 250 

Negative 150 700 
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The table below compares the accuracy level achieved by applying two types of attention 

techniques: Luong and Bahdanau. Luong attention dot products/ multiplies the previous states’ 

decoder to the current encoder which is exactly what is needed for this model mechanism to 

work. Bahdanau attention uses an addition mechanism instead of the dot product. While the two 

give almost the same results, Luong attention is a lot more time and space efficient than 

Bahdanau’s. To compare the time taken by each of these mechanisms, Table 4 shows the time 

taken by each attention type for mitigating perturbation effects of each of the attack types used. 

Given that the original sentences took almost 2-3 times more minutes to run by Bahdanau, the 

sentences used as data input by Bahdanau were truncated further to only keep adjectives and 

adverbs. This resulted in faster run times but gave much worse accuracy results than Luong 

attention because of loss of the data required for contextual understanding in BERT processing.  

The accuracy results are shown in table 3.  

Table 3.  Comparing attentio 

Model 

Type 

Type of 

Attack 

Number 

of 

Perturbed 

words per 

sentence 

Accuracy 

before 

attack 

(%) 

Accuracy 

after 

attack 

(%) 

Accuracy 

after 

using 

Bahdanau 

attention 

Accuracy 

after 

using 

Luong 

attention 

BERT Swap 1 85.43 61.98 62.23 83.58 

BERT Swap 2 84.65 53.65 65.45 83.57 

BERT Drop 1 85.23 59.09 64.34 80.45 

BERT Drop 2 86.45 44.15 61.43 81.88 

BERT Swap and 

Drop 

1 87.67 57.94 63.33 85.67 

BERT Swap and 

Drop 

2 84.43 42.17 67.77 82.13 

BERT Swap 2 87.79 49.01 66.89 86.45 
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Below is a table quantifying the time taken to run by each of the attention mechanisms 

for the same types of attacks each.  

Table 4.  Comparing time taken to run defense models 

Model 

Type 

Type of 

Attack 

Number of 

Perturbed 

words per 

sentence 

Time taken 

to run 

BERT only 

(minutes) 

Time taken 

to run 

Luong 

attention 

defense 

(minutes) 

Time taken 

to run 

Bahdanau 

attention 

defense 

(minutes) 

BERT Swap 1 10 30 60 

BERT Swap 2 15 45 90 

BERT Drop 1 10 30 60 

BERT Drop 2 10 45 95 

BERT Swap and 

Drop 

1 12 40 70 

BERT Swap and 

Drop 

2 11 62 105 

BERT Swap 2 15 60 90 

Hypothesis testing: 

In chapter 3, hypothesis 1 tests whether the model accuracy is the same with and without 

perturbed data. 𝐻0 states that the model accuracy would be the same with or without data 

perturbation. 𝐻𝛼 states that there is a difference in the accuracy results after introducing a 

perturbed dataset while model testing. For this statistical analysis, the confidence level chosen 

was 95%. Thus, the 𝛼 value for this statistics test is 0.05. For a testing dataset of 2,500 data 

points, the t-table indicated that the 𝑝 value is 0.025. Given that 𝑝 < 𝛼, since 0.025 is smaller 

than 0.05, 𝐻0 can be rejected and therefore, 𝐻𝛼 is confirmed. Hypothesis 1 confirms that the 

model accuracy reduces after data perturbation as compared to the original accuracy on non-

perturbed data. 
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Hypothesis 2 checks for accuracy after applying the word correction model. 𝐻0 states that 

the model accuracy would be the same with or without applying the word correction model 

before the BERT model. 𝐻𝛼 states that there is a difference in the accuracy results after 

introducing the word correction model. For this statistical analysis, the confidence level chosen 

was 95%. Thus, the 𝛼 value for this statistics test is 0.05. From the t-table the 𝑝 value is 0.025. 

Given that 𝑝 < 𝛼, since 0.025 is smaller than 0.05, 𝐻0 can be rejected and therefore, 𝐻𝛼 is 

confirmed. The hypothesis that the accuracy is restored to the original level after applying the 

word correction model even though the data set is perturbed is confirmed.  
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 CONCLUSION 

5.1 Discussion 

NLP models are vulnerable to the slightest perturbation in data such as word character 

swapping and dropping. Making NLP models robust against such attacks is very essential 

because of the variety of applications of such models and their importance in spam detection, 

chat-box applications, and in many more fields.  

Some of the most popular perturbation techniques are swapping and dropping word 

characters, adding a synonym and adding an empty word such as “the” which does not change 

the meaning of the sentence. Out of the above methods, adding, and swapping of characters tends 

to break the NLP models such as BERT the most (Pruthi, et al.). Most of these attacks also go 

unnoticed by the human eye. According to a study, 90% of participants were not able to 

recognize word perturbations by adding and swapping characters as long as the last and the first 

character of the word remained the same. Given the probability of model breakage and failure of 

perceptivity to the human eye, the attack mechanisms chosen for the study were adding and 

swapping of internal characters of a word. 

When trained on non-perturbed data, the BERT model tends to yield an accuracy in 80s 

percentage-wise on movie reviews when compared to the sentiment column in the IMDB dataset. 

Longer sentences tend to have higher accuracy levels simply because of more data per 

processing point. This shows that BERT uses a contextual mechanism for sentiment 

classification which makes it perform better when there is more data to process and find context 

out of. 

When there were reviews that had conflicting sentiments such as “the movie was great 

but the actor was bad”, the BERT model classified the review according to the last sentiment in 

the sentence which in the case of the example would be a negative review since the last word is 

bad which is a negative sentiment word.  

The drop in accuracy is directly proportional to the number of perturbations introduced in 

a sentence. In table 1, there was a higher drop in accuracy in data sets that were perturbed with 2 

words per sentence over data sets that were perturbed with 1 word per sentence.  
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The time taken to run the word correction model was greater for sentences with more 

perturbations. This is because there were more computation and correction to be performed on 

sentences with more than one perturbation. Table 4 indicated that the time taken to run is directly 

proportional to the number of perturbations in a sentence. The more the perturbations, are the 

longer is the time taken to run.   

Accuracy is restored back to an almost normal level by the word correction layer 

regardless of the number of perturbations used in a sentence. Despite adding more perturbations 

to a few data sets, the accuracy of these data sets was restored to an almost non-perturbed data 

level as shown in table 1. This is an indication that the word correction model works correctly 

and that it can handle more than one perturbation in a sentence. 

While the word correction model improves the accuracy of NLP models on non-normal 

data, it makes the processing more computationally complex requiring more GPU support and 

time to process. As more LSTM layers are added to the word correction model, the slower it 

runs. It also becomes more computationally intense requiring additional GPU and data 

processing support.  

Circling back to the research questions stated in section 1, the results confirmed that it 

was possible to develop a more robust BERT model by adding a word correction layer. The 

BERT model was able to classify movie review sentiments into positive or negative at an 

accuracy when subject to perturbed data to levels similar to when run on non-perturbed data. 

The Luong attention used with an encoder (LSTM and BiLSTM layer) and decoder 

(LSTM) served the purpose of the study more effectively than did Bahdanau attention 

mechanism since it was more time-efficient than the latter.  

The word correction layer restored the accuracy of the BERT model to a normal level and 

the overall accuracy of the robust BERT was 84%. 

5.2 Conclusion 

The results in section 4 prove that adding a word correction layer can help make NLP 

models such as BERT more robust against attacks such as word perturbations and word dropping 

in sentences. The word correction layer consisting of an encoder (LSTM and BiLSTM) and a 

decoder (LSTM) along with the Luong attention mechanism is the most effective in building a 

robust BERT model.  
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5.3 Future Work 

Adding a sensitivity score for data points would help quantify the sensitivity of data sets 

towards different types of perturbations. Suitable word correction/ defense mechanisms can be 

applied to data points according to the sensitivity score which will make the defense mechanism 

a lot more effective. The sensitivity score before and after the attack can be studied and can be 

used to develop even more effective word correction models. The sensitivity score before and 

after the defense can help quantify the effectiveness of the defense mechanisms.   

The word correction model can be made more complex by adding more layers of LSTM. 

NLP models such as BERT can have an in-built word correction model instead of having a 

separate model which would make NLP models inherently more robust to word perturbations. 

However, adding such a word correction layer would make NLP models such as BERT more 

computationally intensive.  
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APPENDIX A. CODE FOR WORD CORRECTION MODEL 

import pandas as pd 

import numpy as np   

data=pd.read_csv('IMDB Dataset.csv') 

 

data['polarity']=0 

for i in range(len(data)): 

    if data.ix[i,'sentiment']=='positive': 

        data.ix[i,'polarity']=1 

    else: 

        data.ix[i,'polarity']=0 

data.head() 

 

max_seq_length=0 

for i in range(len(data)): 

    if len(data.iloc[i,0])>max_seq_length: 

        max_seq_length=len(data.iloc[i,0]) 

train_text = data[0:25000]['review'].tolist() 

train_text = [' '.join(t.split()[0:max_seq_length]) for t in train_text] 

train_label = data[0:25000]['polarity'].tolist() 

 

test_text = data[25000:]['review'].tolist() 

test_text = [' '.join(t.split()[0:max_seq_length]) for t in test_text] 

test_label = data[25000:]['polarity'].tolist() 

 

 

for seq_index in range(10): 

     

    input_seq = encoder_input_data[seq_index: seq_index + 1] 

    decoded_sentence = decode_sequence(input_seq) 

    print('-') 

    print('Input sentence:', input_texts[seq_index]) 

    print('Decoded sentence:', decoded_sentence) 

 

#developed by referencing pluralsight.com 

 

def encoder_sequence(input_seq): 

    states_value = decoder_model.predict(input_seq) 

 

    target_seq = np.zeros((1, 1, num_encoder_tokens)) 

     

    target_seq[0, 0, target_token_index['\t']] = 1. 
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    stop_condition = False 

    decoded_sentence = '' 

    while not stop_condition: 

        output_tokens, h, c = model.predict(decoder_input_data[1], 

encoder_input_data[1]) 

        sampled_token_index = np.argmax(output_tokens[0, -1, :]) 

        sampled_char = reverse_target_char_index[sampled_token_index] 

        print(sampled_token_index,'sampled_char'+sampled_char) 

        decoded_sentence += sampled_char 

 

        if (sampled_char == '\n' or 

           len(encoder_sentence) > max_encoder_seq_length): 

            stop_condition = True 

 

        target_seq = np.zeros((1, 1, num_encoder_tokens)) 

        target_seq[0, 0, sampled_token_index] = 1. 

 

        states_value = [h, c] 

 

    return output_tokens 

 

 

def trunc(x, feature_cols=range(4), target_cols=range(4), train_len=400, 

test_len=100): 

    in_, out_, lbl = [], [], [] 

    for i in range(len(x)-train_len-test_len+1): 

        in_.append(x[i:(i+train_len), feature_cols].tolist()) 

        out_.append(x[(i+train_len):(i+train_len+test_len), 

target_cols].tolist()) 

        lbl.append(x[i+train_len, label_col]) 

    return np.array(in_), np.array(out_), np.array(lbl) 

X_in, X_out, lbl = truncate(x_normalize, feature_cols=range(3), 

target_cols=range(3),  

                            label_col=3, train_len=200, test_len=20) 

print(X_in.shape, X_out.shape, lbl.shape) 

 

for seq_index in range(100): 

    input_seq = encoder_input_data[seq_index: seq_index + 1] 

    decoded_sentence = decode_sequence(input_seq) 

    print('-') 

    print('Input sentence:', input_texts[seq_index]) 

    print('Decoded sentence:', decoded_sentence) 
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#developed by referencing machinelearningmaster.com 

 

from __future__ import print_function 

 

from keras.models import Model 

from keras.layers import Input, LSTM, Dense 

import numpy as np 

from keras.layers import Bidirectional 

 

batch_size = 64   

epochs = 1   

latent_dim = 512   

num_samples = 1800 

data_path = 'IMDB dataset.csv' 

 

input_texts = [] 

target_texts = [] 

input_characters = set() 

target_characters = set() 

lines=len(data) 

for line in range(min(num_samples, lines)): 

    input_text = data.iloc[line,0] 

    target_text = data.iloc[line,0] 

    target_text = ', ' + target_text + '\n' 

    input_texts.append(input_text) 

    target_texts.append(target_text) 

    for char in input_text: 

        if char not in input_characters: 

            input_characters.add(char) 

    for char in target_text: 

        if char not in target_characters: 

            target_characters.add(char) 

 

input_characters = sorted(list(input_characters)) 

target_characters = sorted(list(target_characters)) 

num_encoder_tokens = len(input_characters) 

num_decoder_tokens = len(target_characters) 

max_encoder_seq_length = max([len(txt) for txt in input_texts]) 

max_decoder_seq_length = max([len(txt) for txt in target_texts]) 

 

 

input_token_index = dict( 

    [(char, i) for i, char in enumerate(input_characters)]) 

target_token_index = dict( 

    [(char, i) for i, char in enumerate(target_characters)]) 
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encoder_input_data = np.zeros( 

    (len(input_texts), max_encoder_seq_length, num_encoder_tokens), 

    dtype='float32') 

decoder_input_data = np.zeros( 

    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), 

    dtype='float32') 

decoder_target_data = np.zeros( 

    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), 

    dtype='float32') 

 

for i, (input_text, target_text) in enumerate(zip(input_texts, 

target_texts)): 

    for t, char in enumerate(input_text): 

        encoder_input_data[i, t, input_token_index[char]] = 1. 

    encoder_input_data[i, t + 1:, input_token_index[' ']] = 1. 

    for t, char in enumerate(target_text): 

        decoder_input_data[i, t, target_token_index[char]] = 1. 

        if t > 0: 

            decoder_target_data[i, t - 1, target_token_index[char]] = 1. 

    decoder_input_data[i, t + 1:, target_token_index[' ']] = 1. 

    decoder_target_data[i, t:, target_token_index[' ']] = 1. 

encoder_inputs = Input(shape=(None, num_encoder_tokens)) 

encoder = Bidirectional(LSTM(latent_dim, return_state=True)) 

print(encoder(encoder_inputs)) 

encoder_outputs, state_h, state_c,state_h_r, state_c_r = 

encoder(encoder_inputs) 

encoder_states = [state_h, state_c,state_h_r, state_c_r] 

 

decoder_inputs = Input(shape=(None, num_decoder_tokens)) 

decoder_lstm = Bidirectional(LSTM(latent_dim, return_sequences=True, 

return_state=True)) 

decoder_outputs, _, _,_,_ = decoder_lstm(decoder_inputs, 

                                     initial_state=encoder_states) 

decoder_dense = Dense(num_decoder_tokens, activation='softmax') 

decoder_outputs = decoder_dense(decoder_outputs) 

 

model = Model([encoder_inputs, decoder_inputs], decoder_outputs) 

 

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', 

              metrics=['accuracy']) 

model.fit([encoder_input_data, decoder_input_data], decoder_target_data, 

          batch_size=batch_size, 

          epochs=epochs, 

          validation_split=0.2) 
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model.save('s2s.h5') 

 

 

 

 

 

 

def luong(input): 

        line = line.lower() 

        Xtype = torch.FloatKeras 

        ytype = torch.LongKeras 

        is_cuda = torch.cuda.is_available() 

 

        if is_cuda: 

            self.model.cuda() 

            Xtype = torch.cuda.FloatKeras 

            ytype = torch.cuda.LongKeras 

            if self.use_background: self.model_bg.cuda() 

 

        X, _ = get_line_representation(line) 

        tx = Variable(torch.from_numpy(np.array([X]))).type(Xtype) 

 

        if self.use_elmo or self.use_elmo_bg: 

            tx_elmo = Variable(batch_to_ids([line.split()])).type(ytype) 

         

        return tx_elmo 

 

def bahdanau(input): 

        line = line.lower() 

        Xtype = tfa.FloatKeras 

        ytype = tfa.BahadanauAttention 

        is_cuda = tfa.cuda.is_available() 

 

        if is_cuda: 

            self.model.cuda() 

            Xtype = tfa.FloatKeras 

            ytype = tfa.BahadanauAttention 

            if self.use_background: self.model_bg.cuda() 

 

        X, _ = get_line_representation(line) 

        tx = Variable(tfa.from_numpy(np.array([X]))).type(Xtype) 

 

        if self.use_elmo or self.use_elmo_bg: 
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            tx_elmo = Variable(batch_to_ids([line.split()])).type(ytype) 

         

        return tx_elmo 

 

#developed by referencing pluralsight.com 

 

def decode_sequence(input_seq): 

    states_value = encoder_model.predict(input_seq) 

     

    target_seq = np.zeros((1, 1, num_decoder_tokens)) 

     

    target_seq[0, 0, target_token_index[',']] = 1. 

 

     

    stop_condition = False 

    decoded_sentence = '' 

    while not stop_condition: 

        output_tokens, h, c,h_r,c_r = decoder_model.predict([target_seq], 

[states_value[0]]) 

         

        sampled_token_index = np.argmax(output_tokens[0, -1, :]) 

        sampled_char = reverse_target_char_index[sampled_token_index] 

        decoded_sentence += sampled_char 

 

        if (sampled_char == '\n' or 

           len(decoded_sentence) > max_decoder_seq_length): 

            stop_condition = True 

 

        target_seq = np.zeros((1, 1, num_decoder_tokens)) 

        target_seq[0, 0, sampled_token_index] = 1. 

 

         

        states_value = [h, c] 

 

    return decoded_sentence 

 

 

 


