
QUANTIFYING THE IMPACTS OF INUNDATED LAND AREA ON 

STREAMFLOW AND CROP DEVELOPMENT 

by 

Stuart D. Smith 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

 

School of Agricultural and Biological Engineering 

West Lafayette, Indiana 

May 2021 

  



 
 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Laura C. Bowling, Co-Chair 

Department of Agronomy 

Dr. Keith A. Cherkauer, Co-Chair 

Department of Agricultural and Biological Engineering 

Dr. Katy M. Rainey 

Department of Agronomy 

Dr. Andrew W. Wood 

Department of Agricultural and Biological Engineering 

 

Approved by: 

Dr.  Nathan Mosier 

 

 



 
 

3 

ACKNOWLEDGMENTS 

This research was supported by the National Aeronautics and Space Administration and United 

Stated Department of Agriculture. The Planet Education and Research Program provided access 

to the RapidEye data.  

 

 

 

  



 
 

4 

TABLE OF CONTENTS 

LIST OF TABLES .................................................................................................................. 7 

LIST OF FIGURES ................................................................................................................. 8 

ABSTRACT.......................................................................................................................... 12 

1. INTRODUCTION .......................................................................................................... 14 

1.1 Hypotheses and Objectives ....................................................................................... 18 

1.2 Thesis Format .......................................................................................................... 19 

1.3 References ............................................................................................................... 20 

2. PARAMETERIZING DEPRESSIONAL STORAGE AND EVALUATING 

STREAMFLOW RESPONSE IN LOW GRADIENT AGRICULTURAL AREAS .................. 24 

Abstract ....................................................................................................................... 24 

2.1 Introduction ............................................................................................................. 24 

2.1.1 Site description ................................................................................................. 27 

2.2 Methods .................................................................................................................. 28 

2.2.1 Data sources...................................................................................................... 29 

2.2.2 Inundated depth-area parameterization ............................................................... 31 

2.2.3 VIC model parameterization scenarios ............................................................... 34 

2.2.4 Model calibration and evaluation ....................................................................... 38 

2.2.5 Assessing peak flow events................................................................................ 39 

2.3 Results..................................................................................................................... 40 

2.3.1 Model calibration and evaluation ....................................................................... 40 

2.3.2 Peak flow evens ................................................................................................ 44 

2.3.3 Hydrologic analysis of peak flow events ............................................................ 46 

2.4 Discussion ............................................................................................................... 51 

2.5 Conclusions ............................................................................................................. 54 

2.6 Supplementary materials .......................................................................................... 55 

2.6.1 Equations used to calculate gradient and scale logistic function........................... 55 

2.7 References ............................................................................................................... 58 

3. EVALUATING SEASONAL TRENDS AND FREQUENCY OF PEAK FLOW IN THE 

RED RIVER BASIN ............................................................................................................. 63 



 
 

5 

Abstract ....................................................................................................................... 63 

3.1 Introduction ............................................................................................................. 63 

3.2 Data and Methods .................................................................................................... 66 

3.2.1 Data .................................................................................................................. 66 

3.2.2 Detecting trends and shifts ................................................................................. 68 

3.2.3 Model calibration and evaluation ....................................................................... 69 

3.2.4 Flood frequency ................................................................................................ 71 

3.3 Results..................................................................................................................... 72 

3.3.1 Model performance ........................................................................................... 72 

3.3.2 Annual trend and magnitude .............................................................................. 74 

3.3.3 Seasonal trend and magnitude ............................................................................ 75 

3.3.4 Change in the frequency of peak flow events...................................................... 77 

3.3.5 Flood frequency ................................................................................................ 80 

3.4 Discussion ............................................................................................................... 81 

3.5 Conclusion............................................................................................................... 83 

3.6 References ............................................................................................................... 84 

4. QUANTIFYING IMPACTS OF EXCESS WATER STRESS AT EARLY REPRODUCTIVE 

STAGES OF SOYBEAN FROM UNMANNED AERIAL SYSTEMS.................................... 87 

Abstract ....................................................................................................................... 87 

4.1 Introduction ............................................................................................................. 88 

4.2 Methods .................................................................................................................. 91 

4.2.1 Site description and data acquisition................................................................... 92 

4.2.2 UAS data processing pipeline ............................................................................ 94 

4.2.3 Estimating above-ground biomass remotely ....................................................... 97 

4.2.4 Identifying areas of water accumulation using topographic wetness index ......... 100 

4.3 Results................................................................................................................... 104 

4.3.1 Above-ground biomass prediction.................................................................... 104 

4.3.2 Sensitivity of above-ground biomass to water stress ......................................... 109 

4.3.3 Quantifying the impacts of excess water stress on yield .................................... 113 

4.4 Discussion ............................................................................................................. 116 

4.4.1 UAS data processing pipeline .......................................................................... 116 



 
 

6 

4.4.2 Predicting above-ground biomass .................................................................... 117 

4.4.3 Quantifying impacts of excess water stress on yield.......................................... 118 

4.5 Conclusion............................................................................................................. 119 

4.6 References ............................................................................................................. 121 

5. QUANTIFYING YIELD IMPACTS ON SOYBEAN FROM EXCESS WATER USING 

RAPIDEYE......................................................................................................................... 126 

Abstract ..................................................................................................................... 126 

5.1 Introduction ........................................................................................................... 126 

5.2 Methods ................................................................................................................ 129 

5.2.1 Study area ....................................................................................................... 129 

5.2.2 Data acquisition .............................................................................................. 131 

5.2.3 Estimating biomass ......................................................................................... 132 

5.2.4 Quantifying percent of expected yield .............................................................. 133 

5.2.5 Estimating yield decline and gain..................................................................... 134 

5.3 Results................................................................................................................... 135 

5.3.1 Estimating biomass ......................................................................................... 135 

5.3.2 Percent of expected yield ................................................................................. 139 

5.4 Discussion ............................................................................................................. 143 

5.5 Conclusion............................................................................................................. 147 

5.6 References ............................................................................................................. 148 

6. CONCLUSIONS AND FUTURE WORK ..................................................................... 151 

6.1 Summary ............................................................................................................... 151 

6.2 Conclusions ........................................................................................................... 154 

6.3 Future work ........................................................................................................... 156 

APPENDIX A. SOURCE CODE REPOSITORIES .............................................................. 158 

APPENDIX B. ARCHIVED DATA..................................................................................... 159 

  



 
 

7 

LIST OF TABLES 

Table 2.1: VIC model parameters selected for calibration for streamflow and ILA. Final optimized 
values for each test case are provided. No lake and wetland parameters were used for the No IDA 

case....................................................................................................................................... 39 

Table 2.2: Calculated objective function values quantifying model performance for the calibration 
and evaluation datasets.  These represent the final set of parameters (Table 2.1) selected from the 
Pareto set generated by the MOCOM-UA optimization scheme. NSE, LNSE, and PBIAS were 

used to evaluate the streamflow simulation, while ILA Absolute Average Error was used to 
evaluate the simulation of ILA. .............................................................................................. 41 

Table 3.1: United States Geological Survey (USGS) gaging locations within the Red River basin 
used for analysis. ................................................................................................................... 66 

Table 3.2: Calibrated VIC model parameters. The lake and wetland parameters were not used for 
the No ILA scenario. ............................................................................................................. 71 

Table 3.3: Model performance for the calibration and evaluation periods. ............................... 72 

Table 3.4: Mann-Kendall (a=0.1) and Sen slope estimators for the listed gaging stations calculated 

using the annual maxima series from water years 1969 to 2018. .............................................. 75 

Table 3.5: Results of Mann-Kendall Test and Sen slope estimator from annual maximum 
discharge during the spring (March and April) and summer (June and July) season (a=0.1) from 
water years 1969 to 2018. ...................................................................................................... 76 

Table 4.1: Estimated parameters for High Yielding (HY), High Yielding under Drought (HYD), 
Diversity (DA) and all classes for RUE-1 and RUE-2 with calculated percent bias (PIBAS) and 
root mean square error (RMSE). Parameters from RUE-1 were transferred to RUE-2. The constant 
stem factor was also analyzed to compare with the adjustable stem factor.............................. 105 

Table 5.1: Observed and remotely sensed data collected from the Agronomy Center for Research 
and Education from 2015 to 2019......................................................................................... 132 

 

 

 

  



 
 

8 

LIST OF FIGURES 

Figure 2.1: Detected flooded area along the western border of the Buffalo River watershed from 
the MODIS Near Real-Time (NRT) Global Flood Mapping product. The low gradient watershed 

is predominantly used for agriculture and is also prone to flooding. Data provided b y the NASA 
Goddard Global Flood Mapping project, Hydrology Lab, NASA Goddard Space Flight Center, 
Greenbelt MD (Policelli et al., 2017). ..................................................................................... 28 

Figure 2.2: The time series of fractional flooded area for the Buffalo River watershed over the 

calibration period (water years 2006-2009) shows that a majority of floods are small to moderate 
in size. Peak flow events analyzed were above the 1% threshold. ............................................ 30 

Figure 2.3: The gradient (m-1) and flooded area (km2) relationship. Colors indicate the season in 
which the flood events occurred, and the grey line is the logistic function fit to the observations

 ............................................................................................................................................. 33 

Figure 2.4: Example of the depth-area parameterization profile for a simulated grid cell 
representing seasonally flooded area. The topographic wetness index (TWI) parameterization 
based on surface topography alone has a greater storage capacity than the inundated depth -area 

(IDA) parameterization that incorporates remotely sensed of inundation area. Area of inundation 
increases more quickly with the IDA than the TWI parameterization. ...................................... 37 

Figure 2.5: Spatial map of storage capacity (m3) for simulated VIC grid cells using the TWI and 
IDA parameterizations of surface inundation. Simulated grid cells are 1/8 th° latitude and longitude 

and masked to the extent of the watershed boundary. .............................................................. 38 

Figure 2.6: Time series comparing simulated streamflow from the three test case scenarios (No 
IDA, IDA and TWI) with observed USGS streamflow during calibration (left of dotted line) and 
evaluation (right of dotted line) periods. ................................................................................. 42 

Figure 2.7: Comparison of simulated inundated land area from two parameterizations (IDA and 
TWI) with MODIS three-day average series using simulated peaks of ILA above the 1% threshold 
compared to the 1:1 line over the evaluation period (water years 2006-2014)........................... 43 

Figure 2.8: A comparison of simulated and observed ILA from a spring flood event March 17, 

2009. A three-day composite (3D3OT). Simulated grid cells are 1/8 th° latitude and longitude and 
masked to the extent of the watershed boundary. .................................................................... 44 

Figure 2.9: Box plot comparing three different scenarios, no inundated depth-area (No IDA), IDA 
and topographic wetness index (TWI) with observed discharge (United States Geological Survey 

05062000) from corresponding peak flow events (n=14). Peak flow events were identified using a 
threshold of 55 m3/s. The star in each box represents the average value, the red line in the box plot 
represents the median value and the plus marks indicate outlier values for each scenario.......... 45 

Figure 2.10: Seasonal occurrences of peak flow events identified using peaks over threshold. 

Threshold set at 55 m3/s. ........................................................................................................ 46 

Figure 2.11: Observed and simulated discharge (m3/s) and inundated land area (%) with 
interactions of frost depth (cm) and rainfall plus snowmelt (mm) for flood events in winter-spring 



 
 

9 

seasons. Black circles indicate available cloud-free MODIS observations to estimate the three-day 
average.................................................................................................................................. 48 

Figure 2.12: Observed and simulated discharge (m3/s) and inundated land area (%) with 

interactions of frost depth (cm) and rainfall plus snowmelt (mm) for flood events in the summer-
fall seasons. The black circles indicate available cloud-free MODIS observations to estimate the 
three-day average. ................................................................................................................. 50 

Figure 3.1: View of inundated land area in the Red River Basin. Photo taken in May 2013...... 64 

Figure 3.2: Location of gaging stations used in study along with flow lines. Drayton, ND 
(05092000), Halstad, MN (05064500), Fargo, ND (05054000), Dilworth, MN (05062000), Sabin, 
MN (05061500), Hawley, MN (05061000). ............................................................................ 67 

Figure 3.3: Maximum extent of inundated land area determined from the MODIS global flood 

mapping product and rescaled for the 1/8th degree VIC model grid cells used in this analysis. .. 70 

Figure 3.4: Time series of daily simulated and observed discharge (m3/s) for calibration (water 
years 2006-2009), evaluation (water years 2010-2014) and the simulation period (water years 1984 
to 2015)................................................................................................................................. 73 

Figure 3.5: Time series of simulated and observed inundated land area (%) over calibration (2006-
2009) and evaluation (2010-2014) periods, separated by the dotted line. .................................. 74 

Figure 3.6: Sen slope estimator (m3/s per yr.) for summer season showing magnitude of floods 
increasing northward from uplands to main river channel........................................................ 76 

Figure 3.7: Annual peaks-over-threshold at the Red River at Drayton gaging station (05092000). 
Water years evaluated ranged from 1984 to 2015. Threshold value was set at 500 m 3/s to analyze 
moderate and large peak flow events. The linear fit model in red shows an increase of peak flow 
events over the simulation period. .......................................................................................... 77 

Figure 3.8: Count of peaks-over-threshold (threshold at 500 m3/s) on a monthly scale at the Red 
River at Drayton, ND over the water years 1984 to 2015 for a) USGS, b) No ILA and c) ILA. 
Simulating inundated land area (ILA) shows a similar shift in structure from spring flood events 
(unimodal) to spring and summer flood events (bimodal) observed in the USGS data. Conversely, 

to the No ILA scenario, no shift from unimodal to bimodal flood events  is simulated.............. 79 

Figure 3.9: Analyzing the influence of local ponding on flood magnitude by comparing flood 
frequency from parameterizations representing inundated land area versus No ILA  flood 
frequency. ............................................................................................................................. 80 

Figure 4.1. Image of inundated land area during different development stages of soybean in an 
agricultural field in west-central Indiana: a) extent and shallow depth of ILA after planting, b) 
vegetative stage where the impacts of ILA prevented some plants to develop leaves, and c) 
reproductive stage where the impacts of ILA have caused lodging in some plants. ................... 89 

Figure 4.2: Map view of the field experiment, located in west-central IN. Two areas of interests 
were analyzed, which are outlined in black and blue. The black outline represents the area of 
experiment 1, RUE-1. The blue outline is the second experiment, RUE-2. The red outlines are 
mapped locations of inundation using an RTK. Ground control points were used to define extents 

of experiments. ...................................................................................................................... 93 



 
 

10 

Figure 4.3: Illustration of components of a defined experiment from Crop Image Extraction and 
Vegetation Indices Derivation. The user has defined an experiment made of four crop rows and 
two crop ranges, and each crop plot contains six crop units. The experiment is made of four crop 

rows and two crop ranges. CIE extracts replicate plot images from the UAS during a flight over 
an area of interest. CIE enables the user to define an experiment, the tool then highlights the canopy,  
grids the experiment and extracts the replicate plot images from each gridded plot. VID is used to 
calibrate images and compute vegetation indices of interest. ................................................... 96 

Figure 4.4: Map of topographic wetness index (TWI) calculated from a 1.5 m resolution DEM at 
the study location. Lower values shown in brown are less suspectable to in -field flooding. The 
transition from brown to blue shows an increase in susceptibility of in-field flooding. Mapped 
inundated land area (ILA) shows agreement with the calculated TWI. Crop Image Extraction (CIE) 

can be used to extract TWI from plots within a defined experiment. The black circles represent the 
extracted plots from RUE-1 and RUE-2................................................................................ 101 

Figure 4.5. Scatter plot of the relationship between topographic wetness index (TWI) and soybean 
yield (kg/ha) labeled by class. TWI thresholds at 7.4 and 13.5 were set to compare RUE-1 and 

RUE-2 replicates less likely to experience ILA to those that were more likely to experience ILA. 
The low and high TWI ranges used in analysis are represented by arrows. ............................. 103 

Figure 4.6: Scatter plots comparing estimated biomass with measured biomass for each class and 
all classes in RUE-1 shown as triangles. a) High Yielding, b) High Yielding under Drought, c) 

Diversity and d) all classes. Parameters were estimated for each class to consider varying soybean 
genetics and for all classes to determine if one set of parameters could be representative for all 
classes. ................................................................................................................................ 106 

Figure 4.7: Scatter plots comparing estimated biomass with measured biomass for each class and 

classes in RUE-2 shown as circles. a) High Yielding, b) High Yielding under Drought, c) Diversity 
and d) all classes. Parameters were transferred from RUE-1 to RUE-2................................... 108 

Figure 4.8: Estimated biomass (g/m2) spatially from early reproductive stages (R4-R5) of soybean 
for experiments in RUE-1 and RUE-2. Outputs generated using CIE and VID. Plots of low 

estimated biomass values are shown in red and the transition to green represent an increase in 
estimated biomass. Plots with low estimated biomass correspond with mapped inundated land area.
 ........................................................................................................................................... 109 

Figure 4.9: Four examples analyzing the impacts of excess water stress on estimated biomass 

(g/m2) over the growing season. Plots experienced inundated land area (shown in blue) and heavy 
cumulative precipitation (shaded in grey). Analysis was done by comparing plots where ILA was 
observed in RUE-2 (circles) with the plot replicate in RUE-2 (triangles). a) Plots in the Diversity 
(DA) class recombinant inbred line DS11-30102. b) Plots in the Diversity (DA) class RIL DS11-

30043. c) Plots in the HY class RIL DS11-02174. d) Plots in the HY class RIL DS11-08020. 112 

Figure 4.10: Analyzing the interactions between  yield,  estimated biomass and  TWI at the 
early reproductive stage (R4-R5). Values are colored with the difference in TWI between replicate 

plots, which range from 7 to 12. ........................................................................................... 114 

Figure 4.11. Comparing interactions between percent of expected yield (%) with respect to relative 

biomass (fraction) and the  estimated biomass (g/m2) at the early reproductive stage (R4-R5). 
The model estimate is shown in black................................................................................... 115 



 
 

11 

Figure 4.12. Percent of expected yield (%) from excess water stress at the R4-R5 stage. Values 
between 83-95% (red to orange) indicate areas predicted more likely to have a lower yield, whereas 
values greater than 95% (yellow to green) predict a higher estimate of yield. ......................... 116 

Figure 5.1: Left panel shows the southern portion of the Agronomy Center for Research and 
Education (ACRE), with the fields used in the study highlighted. Right top panel shows the 
research farm where radiation a use efficiency (RUE) experiment (highlighted in black) is used to 
develop models with soybean. ACRE and RUE fields are managed with an annual corn and 

soybean rotation, and both sites have experienced inundation that was mapped with an RTK in 
2018. Bottom panel shows relative locations of both experiments in west-central Indiana. ..... 130 

Figure 5.2: Comparison of estimated biomass (g/m2) and measured biomass (g/m2). (n=868). 
Percent bias and root mean square error of <0.1% and 69 g/m2.............................................. 136 

Figure 5.3: Estimated biomass from research field in north-central Indiana. Field was used to 
develop model using collected biomass (n=869) at the early reproductive stages (R4-R5). ..... 137 

Figure 5.4: Soybean yield with respect to average estimated biomass at early reproductive stages 
(R4-R6) for each field of interest from 2015 to 2019. ............................................................ 138 

Figure 5.5: Comparison of RapidEye biomass (g/m2) between crop years 2015 and 2019.  Low 
estimates of biomass (61-140 g/m2) are associated with observed ILA, mapped using an RTK. The 
2015 crop year shows more extensive damage to soybean at early reproductive stages from excess 
water. .................................................................................................................................. 139 

Figure 5.6: Comparison between observed and predicted percent of expected yield (%) from 
RapidEye (RapidEye expected yield) for all fields of interest between 2015 and 2019. The percent 
bias and mean absolute error are -4% and 6%, respectively. .................................................. 140 

Figure 5.7: Field comparison of RapidEye expected yield between crop years 2015 and 2019. 

Soybean yield susceptible to ILA has the potential to have a 25% lower expected yield compared 
to areas that are not at risk of in-field flooding. ILA was mapped with an RTK, outlined in blue.
 ........................................................................................................................................... 141 

Figure 5.8: The average decline (red) and gain (green) in yield (kg/ha) relative to the average yield 

(black) with cumulative precipitation (mm) between April 1st and July 15th from crop years 2015 
to 2019. Water availability (too much or too little water) causes increases in yield decline, such as 
in 2015, 2016 and 2019 and influences the average yield. Water availability can also provide 
optimal growing conditions to increase yield such as crop years 2017 and 2018..................... 142 

Figure 5.9: Example of identified field with persistent inundated land area over multiple crop 
years associated with a decrease in percent of expected yield. Observed ILA was mapped with an 
RTK and is associated with expected yield ranging from 75% to 80%. This information can help 
agricultural producers improve management decisions. ......................................................... 146 

  



 
 

12 

ABSTRACT 

The presented work quantifies the impacts of inundated land area (ILA) on streamflow and crop 

development in the Upper Midwest, which is experiencing a changing climate with observed 

increases in temperature and precipitation. Quantitative information is needed to understand how 

upland and downstream stakeholders are impacted by ILA; yet the temporal and spatial extent of 

ILA and the impact of water storage on flood propagation is poorly understood. Excess water in 

low gradient agricultural landscapes resulting in ILA can have opposing impacts. The ILA can 

negatively impact crop development causing financial loss from a reduction or total loss in yield  

while conversely, ILA can also benefit downstream stakeholders by preventing flood damage from 

the temporary surface storage that slows water movement into channels. This research evaluates 

the effects of ILA on streamflow and crop development by leveraging the utility of remotely sensed 

observations and models.  

 

The influence of ILA on streamflow is investigated in the Red River basin, a predominantly 

agricultural basin with a history of damaging flood events. An inundation depth-area (IDA) 

parameterization was developed to parameterize the ILA in a hydrologic model, the Variable 

Infiltration Capacity (VIC) model, using remotely sensed observations from the MODIS Near 

Real-Time Global Flood Mapping product and discharge data. The IDA parameterization was 

developed in a subcatchment of the Red River basin and compared with simulation scenarios that 

did and did not represent ILA. The model performance of simulated discharge and ILA were 

evaluated, where the IDA parameterization outperformed the control scenarios. In addition, the 

simulation results using the IDA parameterization were able to explain the dominant runoff 

generation mechanism during the winter-spring and summer-fall seasons. The IDA 

parameterization was extended to the Red River basin to analyze the effects of ILA on the timing 

and magnitude of peak flow events where observed discharge revealed an increasing trend and 

magnitude of summer peak flow events. The results also showed that the occurrence of peak flow 

events is shifting from unimodal to bimodal structure, where peak flow events are dominant in the 

spring and summer seasons. By simulating ILA in the VIC model, the shift in occurrence of peak 

flow events and magnitude are better represented compared to simulations not representing ILA. 
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The impacts of ILA on crop development are investigated on soybean fields in west-central Indiana 

using proximal remote sensing from unmanned aerial systems (UASs). Models sensitive to ILA 

were developed from the in-situ and UAS data at the plot scale to estimate biomass and percent of 

expected yield between the R4-R6 stages at the field scale. Low estimates of biomass and percent 

of expected yield were associated with mapped observations of ILA. The estimated biomass and 

percent of expected yield were useful early indicators to identify soybean impacted by excess water  

at the field scale. The models were applied to satellite imagery to quantify the impacts of ILA on 

soybean development over larger areas and multiple years. The estimated biomass and percent of 

expected yield correlated well with the observed data, where low model estimates were also 

associated with mapped observations of ILA and periods of excessive rainfall. The results of the 

work link the impacts of ILA on streamflow and crop development, and why it is important to 

quantify both in a changing climate. By representing ILA in hydrologic models, we can improve 

simulated streamflow and ILA and represent dominant physical process that influence hydrologic 

responses and represent shift and seasonal occurrence of peak flow events. In the summer season, 

where there is an increased occurrence of  peak flow events, it is important to understand the 

impacts of ILA on crop development. By quantifying the impacts of ILA on soybean development 

we can analyze the spatiotemporal impacts of excess water on soybean development and provide 

stakeholders with early assessments of expected yield which can help improvement management 

decisions.  

  



 
 

14 

1. INTRODUCTION 

 Low gradient agricultural areas often experience extensive ponding of water in surface 

depressions following snowmelt and extreme rain events. These impacts may be beneficial or 

adverse to stakeholders depending on conditions and perspective. Agricultural producers may be 

adversely impacted by depressional water storage on their land, since excess water obstructs plant 

development, leading to a reduction in biomass development and yield. For example, in June of 

2015, excess water from heavy precipitation caused destruction to five percent of the corn and 

soybean in Indiana resulting in approximately $300 million in crop damage (Pack, 2015). In 

contrast, downstream residents and property owners adjacent to receiving streams and rivers  may 

benefit from the temporary surface storage that slows water movement into channels. Local 

ponding also presents challenges to flood forecasters to accurately estimate the timing and 

magnitude of flood propagation for people at flood risk. In 2013, the North Central River Forecast 

Center had directed costs for flood mitigation in the Red River of the North to locations that were 

not affected by flooding. This happened because flood forecasts did not represent the impact of 

this depressional storage on flood propagation (NWS, 1998). Flood mitigation strategies, such as 

using agricultural land to temporarily store flood waters, become difficult for decision-makers to 

analyze and evaluate when impacts are opposing, and the information used to evaluate the impacts 

is not sufficient. By quantifying the integrated impacts of inundated land area (ILA) in low gradient 

agricultural areas, stakeholders will have a better understanding of 1) the mechanisms influencing 

ponded water and 2) the varying impacts of ILA on downstream flooding and crop production. 

Stakeholders will be able to use this further understanding as information to assess risks and 

evaluate agricultural water management options. 

 

The storage and release of ponded water varies in space and time as a function of land management 

practices, soil moisture content, frozen soil, subsurface flow rates and evapotranspiration rates  

(Huffman et al., 2013; Petropoulos, 2014). The occurrence of local ponding also varies with season. 

In the spring and summer, high intensity and/or long duration rain events cause excess water and 

interflow to migrate to local surface depressions in areas with relatively low topographic variability 

and fills those depressions (Hansen, 2000). During the winter, depressional storage can also occur 

from snowmelt over frozen soils resulting in diminished infiltration capacity. Seasonal occurrences 
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of ILA may have a water depth of less than one meter yet expand to cover hundreds of square 

meters of land area, and it may remain stored on the surface up to a week or more, until it slowly 

drains through the subsurface or evaporates (Grimm et al., 2018; Shook et al., 2011). While 

agricultural producers may be impacted by occurrences of ILA in their fields during the growing 

season, such storage may also assist downstream stakeholders by slowing the discharge of excess 

water to channels resulting in lower peak flows and longer recession curves that alleviate the 

impact of flooding on downstream stakeholders (Huffman et al., 2013). 

 

Agricultural water management practices such as subsurface drainage further complicate the 

timing and quantity of discharge in low gradient agricultural watersheds. Much of the Corn Belt 

contains artificial subsurface drainage that is designed to lower the water table to improve field 

access and growing conditions for crops in poorly drained soils (Fausey et al., 1995; Kovacic et 

al., 2006). Subsurface drainage is often installed in depressional areas or locations with low 

permeability.  After high intensity or prolonged rain events, subsurface drains assist agricultural 

producers by removing ponded water from the surface and transporting through  the subsurface to 

a designated outlet, such as a creek or drainage ditch. This practice makes these once flooded areas 

more resilient for agricultural production and reduces the occurrence of overland flow. Subsurface 

drainage has also been linked to increased streamflow flashiness and increased frequency of 

moderate flood events, however (Rutkowski, 2012).  

 

Even with surface and subsurface drainage enhancements, agricultural producers may still be 

susceptible to the impacts of ILA depending on the timing and duration of a rain event, which may 

result in lower crop yields if it causes excess water stress to plants (Nielson, 2014). The effects of 

ILA on agricultural production may be to decrease crop yield or result in total crop loss in a section 

of a field. In cases where replanting is not an option, farmers rely on crop insurance for assistance. 

Agricultural producers can also repurpose unproductive cropland that can serve other benefits 

outside yield, especially for areas that have a high probability of inundation (Allred et al., 2003).  

 

The influences of surface depressions and ILA on the water budget have been well studied with 

hydrologic models and field experiments (Darboux et al., 2002, 2005; Hansen, 2000). Hydrologic 

models are effective tools at simulating physical processes and quantifying the effects of surface 
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depressions on runoff processes (Chiu, 2013; Chu et al., 2013; Sathulur, 2008). Field experiments 

are effective at enhancing understanding of the physical processes involved with surface 

depressions (e.g., Darboux et al., 2005). Field experiments can be used to improve hydrologic 

models through algorithm development or parameterization using observations of critical 

processes. Yet acquiring field observations from an experiment is time-intensive and may also 

cause disturbance to the land surface through destructive sampling or construction of infrastructure 

for long-term monitoring. Integrating alternative forms of sampling technology is important to 

provide updated observations at higher spatial and temporal resolutions using non -destructive 

sampling procedures, such as remote sensing techniques. For example, remote sensing 

measurements can be used to estimate the extent of surface inundation and parameterize 

hydrologic models with their continuous spatial extent. But other observations, such as of weather 

conditions and discharge, are made at point locations with much better temporal resolution. 

Integrating these tools together can enhance understanding of flood propagation and impacts to 

stakeholders.  

 

The extent and impacts of ILA can be evaluated at high temporal and moderate spatial resolution 

using remote sensing techniques from spaceborne platforms (Brakenridge et al., 2006; Nigro et al., 

2014). The Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Real-Time (NRT) 

Global Flood Mapping is a daily (2-day composite) flood product constructed using passive 

sensors. This flood product detects the extent of inundation at a 250 m resolution (Nigro et al., 

2014). The detected flood areas can be used to assess damage and develop mitigation strategies 

(Brakenridge et al., 2006). A limitation with remote sensing to analyze the impacts of ILA is that 

optical sensors can be influenced by clouds, resulting in limited observations when ILA is 

occurring or requiring a multi-day composite that is not representative of the rapidly-changing 

current conditions in the area of interest (Nigro et al., 2014). Another limitation is the spatial 

resolution. ILA occurring in specific fields may not be distinguishable with moderate resolution 

spaceborne satellites (Chen et al., 2005), but is still an impact both on the local field and on 

downstream discharge.  

 

The impacts of excess water stress on crop development and yield can be evaluated using above-

ground biomass and leaf area index (LAI) (Lobell, 2013; Lobell et al., 2003; Monteith et al., 1977). 
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Above-ground biomass (kg/m2) is the vegetation mass above the land surface, consisting of the 

stalk, leaves and seed of the plant. With conventional destructive sampling methods, biomass is 

measured directly after the vegetation is removed and weighed (fresh weight). Next, the biomass 

is dried in an oven and weighed again (dry weight). These dry weight values can be scaled to leaf 

and total biomass per area (m2) using plant density, which is the average number of plants within 

a defined area (Han et al., 2017). Similarly, LAI (m2/m2), which is the total one-sided area of leaf 

tissue per unit ground surface area, can be measured directly using harvesting methods (Watson, 

1947). Though these sampling techniques are commonly practiced, notable limitations are 1) the 

damaging process of collecting samples, 2) the time and expense of sample collection, and 3) the 

non-representativeness of samples of the total area conditions or crop types. Remote sensing has 

the potential to provide non-destructive sampling of larger areas over shorter times in a repeatable 

format that can quantify crop response to environmental stresses.  

 

High spatial and temporal resolution monitoring are needed to analyze crop development at the 

field scale (Chen et al., 2005; Yilmaz et al., 2008; J. Zhang et al., 2010), because the adverse 

impacts of inundation can be detected in crops within two days (Griffin et al., 1988). Limitations 

of using remote sensing measurements to analyze crop development have been identified in both 

the spatial and temporal resolution of spaceborne satellites (Kross et al., 2015). Satellites with 

moderate spatial resolution may not be able to differentiate between fields and crop types (Chen 

et al., 2005). Prior research has also shown that course spatial resolution optical sensors from 

satellites such as MODIS have reduced sensitivity in their estimation of vegetation water content 

for soybean and underestimate measurements of above ground biomass (Chen et al., 2005; Yilmaz 

et al., 2008). In addition, high temporal resolution is needed to measure changes in the environment. 

Historically, high-resolution Earth sensing satellites, such as Landsat or SPOT have a temporal 

resolution greater than four days without considering the impact of cloud cover. In the last several 

years, constellations of small satellites with limited instrumentation, such as Planet’s RapidEye 

system, have yielded the potential for daily images with resolutions of 5 meters or less. However, 

development of biomass estimation models for such systems still requires the collection and 

analysis of imagery and ground reference data for smaller field experiments. With the advent of 

unmanned aerial systems (UAS), field scale observations can be made daily if observation 

conditions permit, using proximal remote sensing. Proximal remote sensing is the indirect 



 
 

18 

measurement of an object in close proximity with a sensor (Chipman et al., 2009). Proximal remote 

sensing from UAS platforms provides high spatial resolution at the centimeter scale and the ability 

to produce near real-time updates of the crop status in a non-destructive manner. 

 

In summary, quantitative information is needed to understand how upland and downstream 

stakeholders are impacted by ILA; yet the temporal and spatial extent of ILA and the impact of 

water storage on flood propagation is poorly understood. This gap in understanding creates errors 

in flood predictions and uncertainty in where to invest in flood mitigation. In order to provide 

enhanced streamflow and cropping information to stakeholders, tools must be adapted to better 

represent the effects of ILA in low-gradient, agricultural areas which are prone to surface ponding 

and flooding (Chu et al., 2013; USACE, 2017). The proposed work aims to better understand the 

impacts of ILA at different scales through model simulation, in-situ and remotely sensed 

observations. The knowledge gained from this research will provide better understanding of the 

quantitative impacts of depressional water storage on crop development and streamflow, which 

will provide stakeholders with more information to make informed agricultural water management 

decisions. 

1.1 Hypotheses and Objectives  

The purpose of this work is to increase our understanding of seasonal patterns in surface inundation, 

as well as its impacts on downstream flooding and crop development in a changing climate. Model 

simulation and tool development are incorporated into the work to help improve our understanding 

of the overall impacts of surface water storage on upland and downstream communities . The 

proposed work aims to test the following hypotheses:  

1. Estimates of flood magnitude will be reduced by simulating land inundation processes, 

because surface depressions play a critical role in the volume of water reaching the 

channel in large river basins.  

2. The seasonality of flood response has shifted in the Red River basin due to a changing 

climate, but this shift has been mitigated by the influence of ILA.  

3. The impact of excess water stress on soybean yield is related to the above-ground 

biomass sensed from a UAS platform during early growth stages. 
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4. Quantification of above-ground biomass by spaceborne platforms can quantify impacts 

to crop yield at sub-field scales.  

These hypotheses will be addressed through the following specific objectives: 

1. Parameterize the representation of surface ponding in the Variable Infiltration Capacity 

(VIC) macroscale hydrologic model using remote sensing estimates of ILA.  

2. Evaluate simulated seasonal trends in flood magnitude and frequency in the Red River 

of the North. 

3. Quantify the impacts of excess water stress on soybean development based on proximal 

remote sensing. 

4. Quantify the impacts of excess water stress on soybean development farm scale areas 

using satellite imagery with models developed at the field scale from UAS data. 

1.2 Thesis Format  

The thesis is divided into six chapters. The first chapter describes the motivation to quantify the 

impacts of inundated land area (ILA) on streamflow and crop development with listed hypotheses 

and objectives. Chapter 2 details the parameterization development to represent ILA in the Buffalo 

River watershed, a subcatchment of the Red River of the North basin. The model performance is 

evaluated using observed streamflow and ILA and is compared against two other simulation 

scenarios. The dominant seasonal runoff generation mechanisms are identified using the developed 

parameterization. A publication related to Chapter 2 is ready for submission. Chapter 3 investigates 

the seasonal trends and occurrence of peak flow in the Red River of the North using the developed 

parameterization from Chapter 2. A publication related to Chapter 3 is ready for submission.  In 

Chapter 4, we assess the impacts of ILA on soybean development by developing crop models at 

the plot scale using unmanned aerial systems (UASs) in a crop rotated field in west-central Indiana. 

A publication has been submitted to Agricultural and Forest Meteorology and is under review. 

Chapter 5 expands on the analysis in Chapter 4 to quantifying soybean yield reduction from excess 

water over larger areas by applying the UAS models to satellite imagery. Chapter 6 provides a 

summary and conclusion of the work and describes future research objectives.  
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2. PARAMETERIZING DEPRESSIONAL STORAGE AND 
EVALUATING STREAMFLOW RESPONSE IN LOW GRADIENT 

AGRICULTURAL AREAS 

Abstract 

Depressional storage of water in low gradient agricultural areas influences the storage and release 

of water to nearby channels. During peak flow events, the inundated land area (ILA) creates 

challenges to flood forecasts that do not represent the impact of this depressional storage on flood 

propagation in hydrologic models, thereby increasing uncertainty in the timing and magnitude of 

peak flow events. Parameterizing the temporary storage of ILA can improve prediction of the 

timing and magnitude of streamflow response and enhance our understanding of flood propagation 

and associated runoff generation mechanisms. A methodology to parameterize the depth -area 

relationship of ILA using remotely sensed and in-situ observations is introduced and implemented 

in the Variable Infiltration Capacity (VIC) model. The parameterization methodology is tested in 

a subcatchment of the Red River basin and compared with different parameterizations representing 

and not representing depressional storage. The objectives of the study are to: (1) Develop a 

consistent and updatable parameterization methodology to represent the influence of ILA on 

streamflow using accessible remotely sensed observations and in-situ observations; (2) Evaluate 

the ability of alternative parameterizations to reproduce observed streamflow and ILA using 

statistical measures; (3) Explore simulated runoff generation mechanisms within the Buffalo River 

watershed and (4) Integrate the ILA algorithm into the enhanced NASA Land Information System 

- based Variable Infiltration Capacity (LIS-VIC) model. The adaptable parameterization to 

represent ILA has marked improvement of simulated streamflow and ILA and has the utility to 

represent the seasonal occurrence of peak flow events. 

2.1 Introduction 

From 2000 to 2013, the Red River basin of the North has experienced flood damages in all but two 

years, including 100-year and 500-year flood levels within the last decade. Floods in the Red River 

basin have resulted in billions of dollars in damage to infrastructure and agricultural productivity, 

where compounding variables such as inundated land area (ILA), changes in agricultural drainage 
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practices and climate change have made hydrologic modeling and flood forecasting challenging 

in the basin (Commission, 2011; Lakshmi, 2016; Todhunter, 2001). The basin area is over 

100,000 km2 and drains parts of three states (Minnesota, North Dakota, and South Dakota) flowing 

north through Manitoba, Canada (Pielke, 1999; USACE, 2017). The basin area is composed of 

low slope topography where land use is primarily agricultural and is prone to seasonal ponding. 

ILA presents challenges to flood forecasters to accurately estimate the timing and magnitude of 

flood propagation for people at flood risk. In 2013, the North Central River Forecast Center 

overestimated costs for flood mitigation to the Red River of the North by sending it to locations 

that were not affected by flooding. This happened because flood forecasts did not represent  the 

impact of this depressional storage on flood propagation.  

 

The spatial and temporal dynamics of ILA are important factors to consider when quantifying the 

land surface water budget and understanding flood propagation (Chu et al., 2013; Du et al., 2018; 

Sun et al., 2011). Distinct from flooding from overbank flow, ILA develops as localized flooding 

in depressional areas due to local rainfall excess.  It may occur following a high intensity rainfall 

event, after extended periods of rain leading to saturated soils and/or snowmelt over frozen soils 

resulting in the accumulation of water within local surface depressions. The accumulated water is 

often less than one meter in depth yet can expand throughout the field. The ponded water may 

remain stored on the surface up to a week or more, until it slowly drains through the subsurface or 

evaporates which can damage planted crops and decrease yield in low gradient agricultural areas 

such as the Red River basin (Grimm et al., 2018; Shook et al., 2011). 

 

During peak flow events, ILA influences the storage and release of water to nearby channels, 

which creates uncertainty in the timing and magnitude of peak flow events.  This depressional 

storage presents challenges to flood forecasters to accurately estimate the timing and magnitude 

of flood propagation for people at flood risk. Yet the depressional storage is often not represented 

in hydrologic models (NWS, 1998; Pagano et al., 2014). For models that do represent temporary 

storage, parameterizing of the depth and extent of inundation is needed to accurately simulate the 

potential volume of water that can be stored on the land surface (Hay et al., 2018). Improving the 

parameterization of inundation extent and the total storage volume can help reduce the uncertainty 
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in hydrologic models by quantifying depressional storage on the land surface and enhancing our 

understanding of the effects on flood propagation. 

 

The role of parametrization in hydrologic models is to: (1) Represent and link dominant physical 

processes which influence hydrologic responses, (2) Readily incorporate information from new 

datasets, and (3) Reflect local characteristics to provide the right answer for the right reason. 

Parameterization often incorporates look-up tables or physically measured values to simulate local 

characteristics but may not capture the spatial variability within the study region. Hay et al. (2018) 

highlights the importance of understanding local characteristics, since by not representing physical 

processes that influence hydrologic response, the “right” answer can be given for the “wrong” 

reasons.  For example, ILA can be identified on the land surface and remotely  using optical, 

passive and active sensors from spaceborne platforms (Grimaldi et al., 2016; Policelli et al., 2017; 

Watts et al., 2012).  Advances in remote sensing technology, enhances the ability to incorporate 

spatial variability within a study region, and provide unique parameterizations for distributed 

hydrologic models. Not all study areas have useful in-situ observations that can be used for 

parameterization, and by incorporating remotely sensed observations such as surface-water extent, 

parameterization could be improved.  

 

In addition to a legacy of seasonally frozen ground and in-field flooding, the Red River region is 

experiencing a changing climate with increased average annual temperature and precipitation, 

which is driving changes in land use such as increased subsurface agricultural drainage (USACE, 

2015). Further research is needed to better understand the runoff mechanisms involved during peak 

flow events and the influence of ILA on streamflow. By parameterizing the extent of ILA into 

hydrologic models, improved predictions can be made of the timing and magnitude of peak flow 

events. The objectives of this study are to: (1) Develop a consistent and updatable parameterization 

methodology to represent the influence of ILA on streamflow using accessible remotely sensed 

observations and in-situ observations, (2) Evaluate the ability of alternative parameterizations to 

reproduce observed streamflow and ILA using statistical measures, and (3) Explore simulated 

runoff generation mechanisms within the Buffalo River watershed. 
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2.1.1 Site description 

The Buffalo River watershed near Dilworth, MN (USGS 05062000) is the area of interest for this 

study. The watershed is located in the east-central uplands of the Red River basin and has a 

watershed area of approximately 2525 km2. The low gradient topography slopes east to west, 

where the highest elevations are in the northeastern and eastern watershed causing the Buffalo 

River to flow northward (Figure 2.1). The land use within the watershed is predominantly cropland 

(66.7%) spanning the northeast, central and northwest watershed. Land use mixtures of wetlands, 

grasslands, forest, residential/commercial and open water (33.3%) are found in the northeast and 

eastern portion of the watershed. Soil texture and drainage transitions from east to west, with the 

east predominantly well drained glacial till. The central portion of the watershed is a transition 

zone made of a complex mixture of silts and glacial till where the drainage ranges from well 

drained to poorly drained. The western portion of the watershed is poorly drained consisting of 

predominately clay and silt soils. Annual precipitation is approximately 635 mm. Combined with 

low gradient topography and poorly drained soils, this results in a high potential for saturated soil 

conditions makes the watershed prone to flooding (USDA-NRCS, 2018). The physical 

characteristics of the watershed, history of flooding and period of record of streamflow 

observations (1931-present) makes the Buffalo River watershed an appropriate study location to 

analyze the influence of ILA on streamflow. The inundation  investigated in this study is the 

temporary storage of water on the landscape in predominately upland agricultural areas, which is 

in contrast to the overbank flow resulting from discharge exceeding the channel capacity that 

occurs along the main stem of the channel and in this region is often associated with ice jams. 
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Figure 2.1: Detected flooded area along the western border of the Buffalo River watershed from 
the MODIS Near Real-Time (NRT) Global Flood Mapping product. The low gradient watershed 
is predominantly used for agriculture and is also prone to flooding. Data provided by the NASA 
Goddard Global Flood Mapping project, Hydrology Lab, NASA Goddard Space Flight Center, 

Greenbelt MD (Policelli et al., 2017). 

2.2 Methods 

The Variable Infiltration Capacity (VIC) model is a large-scale hydrologic model that represents 

surface and subsurface processes, such as lakes/wetlands and frozen soils (Bowling et al., 2010; 

Cherkauer et al., 2003; Liang et al., 1994). A lake and wetland class can be added to a grid cell 

that represents permanent or seasonally flooded areas by providing the following physical 

description of the lake and wetland: (1) the extent of the permanent and seasonally ponded areas, 

(2) the water depth of the permanent and seasonally flooded areas and (3) the width of outflow, 

based on the equation for flow over a broad-crested weir, from the seasonally flooded areas to the 

stream. In this study, permanent ponded areas such as lakes were not represented, instead only the 

impact of seasonally ponded areas were investigated. Prior to parameterizing the lake/wetland 

extent, a depth-area relationship associated with surface inundation was developed and analyzed 
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using remotely sensed and in-situ data. The depth-area relationship was used to better understand 

the storage and release of surface runoff from local surface depressions to downstream channels 

during flood events.  

 

In order to describe the effects of local depressions, observed ILA and stream discharge were used 

to estimate a depth-area relationship. Remotely sensed observations from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) were used to estimate inundated area and discharge data 

from the United States Geological Survey (USGS) gaging station for the watershed were used to 

estimate volume of water during peak flow events. Further details of the MODIS observations and 

discharge measurements are described in the following sub-sections. MODIS observations from 

water years 2005 to 2009 were used to identify the depth-area relationship. 

2.2.1 Data sources 

The MODIS Near Real-Time (NRT) Global Flood Mapping product used for this study was a daily 

product generated from a two-day composite (2D2OT) where the observation date was the last 

date of observation. A total of 3652 images were obtained from the Buffalo River watershed 

between water years 2005 and 2014 with a spatial resolution of 250 m. Terrain shadow masking 

was applied to remove false detections of pixels classified as inundated. The flood product consists 

of four classes with non-flooded and flooded surfaces identified (Figure 2.1). Pixels with 

insufficient data such as cloudy or bad data are described as Class 0. Pixels with no water detected 

correspond with Class 1. Pixels that coincide with the MODIS land water mask (MOD44W) are 

considered to be unflooded reference water bodies (Class 2; Carroll et al., 2017). Pixels that are 

identified beyond the reference body are likely flooded and labeled as Class 3 (Nigro et al., 2014). 

MODIS observations were used to estimate fractional values for each class as the ratio of total 

pixels associated with the class over the total number of pixels in a model grid cell with a resolution 

of 1/8th latitude and longitude.  

 

Since the official designation of reference water body (Class 2) oscillated in area over time, a 

permanent water fraction was estimated using the 90 th percentile of Class 2 area for observation 

dates with low cloud coverage (<10%). Pixels were classified as inundated land area by calculating 

the difference between the MODIS total water fraction (Class 2 and Class 3) and the estimated 
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permanent water fraction. Figure 2.2 shows a time series of the fractional inundated land area for 

the entire Buffalo River watershed between 2005 and 2009. The percent of inundated area in the 

watershed ranged from 0.0 to 18% with an average of 0.3%. This study analyzed moderate to large 

size flood events with inundated percentage greater than 1% (Figure 2.2). High cloud coverage 

(Class 0-insufficient data) influenced retrievals of ILA during consecutive days which were often 

correlated with flood events. These events were identified and removed, as described in Section 

2.2. 

 

Discharge measurements were obtained from the Buffalo River near Dilworth (USGS 05062000) 

from water years 2005 to 2014 (U.S. Geological Survey, 2018). The Web-based Hydrograph 

Analysis Tool (WHAT) with the applied recursive digital filter method was used to separate the 

streamflow hydrograph into stormflow and baseflow components to analyze stormflow response 

with respect to the change of fractional flooded area observed from the MODIS observations  

(Eckhardt, 2005; Jae et al., 2005).  

 

 

Figure 2.2: The time series of fractional flooded area for the Buffalo River watershed over the 
calibration period (water years 2006-2009) shows that a majority of floods are small to moderate 

in size. Peak flow events analyzed were above the 1% threshold. 
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2.2.2 Inundated depth-area parameterization 

A four-step filtering process was used to identify high quality observations of surface inundation 

used to develop the inundated depth-area (IDA) parameterization. First, only ILA fractional values 

greater than 1% (indicated by the red line in Figure 2.2) were evaluated from the MODIS time 

series. Second, MODIS observations with cloud coverage greater than 30% within the watershed 

were removed from the analysis. Third, images that captured flooding associated with winter and 

spring ice jams were discarded. Ice jam floods were identified by analyzing the record notes of the 

discharge data and flood monitoring reports of the Red River basin. Flooding associated with ice 

jams occurred during the winter and spring and were often associated with days of estimated rather 

than measured discharge. Discharge values that were estimated during the winter (December-

February) and spring (March-May), were assumed to be related to winter ice cover and spring ice 

jams and removed. The fourth filter applied was related to antecedent rainfall conditions. This 

filter was applied to improve quality of observations by assessing remotely sensed observations 

related to high intensity or long duration rainfall events. A seven-day antecedent rainfall threshold 

was used to remove data values below the precipitation threshold during the growing and dormant 

seasons. The seven-day antecedent threshold values used were 13 mm and 36 mm for the dormant 

and growing seasons, respectively. 

After filters were applied, the incremental volume, V (m3) of water stored on the landscape 

associated with the estimated flooded area and depth of inundation can be derived from two 

consecutive images from the ILA recession, as shown in equation 2.1:  

 

∆𝑉 = (
𝐴𝑡1

+ 𝐴𝑡1

2
) ∗  (𝑍𝑡1

− 𝑍𝑡1
) (2.1) 

Where 𝐴𝑡1
 and 𝐴𝑡1

, were MODIS observations of inundated land area (m2) from consecutive 

overpasses (t1 and t2), where 𝐴𝑡2 < 𝐴𝑡1
and Z was the mean depth of ponded water (m) in the 

watershed over the period of subsequent MODIS retrievals. The depth of water is unknown but 

can be estimated by rearranging equation 1 and solving for the change in depth, 𝑑𝑍, based on the 

assumption that the decrease in volume stored on the surface is equal to the observed stormflow 

(m3) during this period. This relationship is expressed in equation 2.2: 

𝑑𝑍 =  
2 ∗ (∫ 𝑄 𝑑𝑡

𝑡2

𝑡1
)

(𝐴𝑡1
+ 𝐴𝑡2

)
(2.2) 
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where 𝑄 is the observed fast response runoff that is assumed to be released from the total flooded 

area identified by MODIS (𝐴𝑡1
) within the timeframe to estimate 𝑑𝑍. Here we assume that ∆V is 

equivalent to the accumulated 𝑄𝑡𝑖
 between consecutive MODIS retrievals. Equation 2.2 represents 

the change over time in thickness of the water level (𝑑𝑍) in local depressions as a depth (m) over 

the flooded area, which can be used to calculate the change in depth of depressional storage within 

the watershed from the change in flooded extent from subsequent overpasses.  

 

In order to isolate the cumulative depth of ponded water for increasing ponded area A, it is 

necessary to normalize dZ by the change in flooded extent (𝑑𝐴 = 𝐴𝑡1
− 𝐴𝑡2

).  The dA was captured 

with MODIS from consecutive overpasses. A change in 𝑑𝐴 represents ponded water leaving local 

depressions through stormflow. The ponded depth of ILA from flood events can be calculated by 

integrating the gradient,  
𝑑𝑍

𝑑𝐴
  (m-1), with respect to flooded extent, A, to get the cumulative depth 

of water for different flood extents.  

 

Figure 2.3 shows this gradient (m-1) and flooded area (km2) relationship of observed events coded 

by the season of occurrence. Gradient values range from 2.3x10-11 m-1 to 4.0x10-9 m-1.  Inundated 

area ranges from 2 km2 to 138 km2. The largest flood in our record was a spring flood which 

occurred in 2006. Floods in the spring period ranged from small to large extent (6 - 138 km2). 

Floods during the fall ranged from small to moderate (2 - 50 km2). Floods during the summer were 

predominantly small (2 - 11 km2). 
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Figure 2.3: The gradient (m-1) and flooded area (km2) relationship. Colors indicate the season in 
which the flood events occurred, and the grey line is the logistic function fit to the observations  

 

The ratio of change in ponded depth to change in flooded area observed for the Buffalo River 

watershed can be used to estimate water storage on the land surface. Fitting a logistic function to 

the observations resulted in the following descriptive function, where parameters are estimated by 

minimizing the least square error using MATLAB functions (Silva, 2020):  

𝑑𝑍

𝑑𝐴
(𝐴) =  

𝐾

1 +  𝑒−𝐺(𝐴−𝐷) (2.3) 

where 𝐾 is the maximum gradient, 𝐺 represents the rate of growth along the curve and 𝐷 is the 

midpoint of the curve. Fitted parameters based on the data in Figure 2.3 were found to be 

3.93×10-9 m-1, 7.01×10-8 m and 3.80×107 m2 for K, G and D, respectively. 

 

In order to use the gradient function to parameterize the grid cell-based VIC model, the watershed 

logistic curve had to be mapped to each model grid cell in the watershed. The fitted grid cell 
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parameters: ki, gi and di were used similarly to the related variables in equation 3 to solve for the 

grid cell gradient, 
𝑑𝑧𝑖

𝑑𝑎𝑖
(𝑎𝑖) as shown in equation 2.4  

𝑑𝑧𝑖

𝑑𝑎𝑖

(𝑎𝑖) =  
𝑘𝑖

1 +  𝑒−𝑔𝑖(𝑎𝑖−𝑑𝑖)
(2.4) 

where i represents the index of each grid cell, 𝑘 is the maximum gradient for each grid cell. The 

rate of growth along the curve (g) and midpoint value on the curve (d) are also estimated for each 

grid cell. A detailed derivation of the grid cell specific relationships is provided in the Appendix. 

To preserve the maximum watershed storage, such that the sum of grid cell storage is equal to the 

watershed storage, the maximum gradient for each grid cell, k, the rate of growth along the curve, 

g and the midpoint value on the curve, d, are calculated as: 

𝑘𝑖 = 𝐾
𝐴𝑚𝑎𝑥

𝑎𝑖𝑚𝑎𝑥

(2.5.1) 

𝑔𝑖 = 𝐺
𝐴𝑚𝑎𝑥

𝑎𝑖𝑚𝑎𝑥

(2.5.2) 

𝑑𝑖 = 𝐷
𝑎𝑖𝑚𝑎𝑥

𝐴𝑚𝑎𝑥
(2.5.3) 

 

This method was found to preserve watershed storage when mapped to grid cell storage with less 

than 3% difference. This was confirmed by integrating  
𝑑𝑧𝑖

𝑑𝑎𝑖
 to a volume (m3) for all grid cells and 

comparing the summed storage value with the storage calculated over the watershed. The results 

of the scaling provided a parameter file representing the seasonally flooded area with a unique 

storage profile for each grid cell. The parameterization technique has three important 

characteristics. First, the ability to link dominant process using physical parametrization from 

remotely sensed data. Second, the parameter file can be easily updated with new remotely sensed 

observations. Third, it has the ability to represent storage observed in the watershed with a unique 

distribution of storage at the grid cell level based on the observed spatial distribution of surface 

inundation. 

2.2.3 VIC model parameterization scenarios 

The VIC model is a large scale hydrologic model that quantifies the land surface water and energy 

balance for each vegetation class within each model grid cell (Liang et al., 1994). A limitation of 
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previous hydrologic models used in the Red River has been the inability to simulate frozen soils 

and ponding on the land surface. The VIC model has the ability to simulate these features with 

inclusion of a lake and wetland algorithm and frozen soils algorithm (Cherkauer et al., 2003). 

  

As part of this work, the lake and wetland algorithm has been integrated into the enhanced NASA 

Land Information System - based Variable Infiltration Capacity (LIS-VIC) model. The previous 

LIS-VIC model did not have the ability to represent lakes and wetlands. The lake and wetland 

algorithm uses physical parameters that describe the bathymetric profile of both perennially and 

intermittently flooded land. This depth-area profile can be parametrized in different ways such as 

through direct elevation profiles, using elevation profiles that are a function of topographic wetness 

index (TWI), and the option of using remotely sensed data described above. 

 

Three parameterization scenarios were compared in this study. The three scenarios are: no 

parameterization of inundated depth-area (No IDA), ILA parameterized using TWI (TWI), and 

ILA parameterized using remotely sensed data (IDA). For the No IDA scenario, runoff moves 

downslope and is not delayed by local depressions. In the VIC model, the lake and wetland 

algorithm is not activated, so runoff from the grid cell exits the cell in the timestep it is generated, 

resulting in downstream flow. Differences between the TWI and IDA depth-area profiles used in 

the lake and wetland algorithm are shown in Figure 2.4 for a single grid cell. 

 

TWI is a function of the contributing drainage area per unit contour length, a, over the surface 

slope, tan so that TWI = ln(a/tan). Areas that contain low gradients and convergent flow result 

in a high TWI value and are areas of temporary water storage which can also contribute to runoff 

by saturation excess overland flow. Locations with similar TWI values are assumed to have 

hydrologically similar behaviors (Beven et al., 1979). For this parameterization, TWI values were 

calculated using an unprojected 30 m resolution digital elevation model (DEM) from the Shuttle 

Radar Topography Mission (SRTM) (Farr et al., 2007). The maximum percentage (ILAmax) of 

seasonally flooded area in each grid cell was defined using the MODIS ILA observations. The 

TWI values within each model grid cell were ranked, and the elevations associated with the highest 

ILAmax percent of pixels was used to define the relative depth-area profile in the VIC model. 

Because this method tends to overestimate surface storage capacity the relative depths were 
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rescaled using a maximum ILA depth of 1.0 m (Figure 2.4). A depth-area profile defined based on 

the lowest ILAmax pixels assumes that it is the lowest pixels in the landscape that pond water first, 

this methodology assumes that the highest TWI pixels will flood first, regardless of elevation. The 

TWI parametrization has a non-linear profile where approximately 90% of the depth is reached 

within 50% of the flooded area (Figure 2.4).  

 

The IDA parameterization uses remotely sensed data observations of ILA. The local depressions 

delay runoff to downstream discharge by temporarily storing the water within the landscape until 

local depressions reach capacity. The depressions have varying storage capacities for each gr id 

cell based on the maximum extent of the flooded area and estimated depth using equation 2.4. 

Figure 2.4 shows a maximum depth of approximately 0.4 m for the example grid cell. The IDA 

parameterization also has a non-linear profile. Ponded storage is distributed more proportionally 

within the grid cell fraction representing ILA compared to the TWI parameterization, where over 

30% of the depth is reached within 50% of the flooded area (Figure 2.4). 
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Figure 2.4: Example of the depth-area parameterization profile for a simulated grid cell 
representing seasonally flooded area. The topographic wetness index (TWI) parameterization 

based on surface topography alone has a greater storage capacity than the inundated depth-area 
(IDA) parameterization that incorporates remotely sensed of inundation area. Area of inundation 

increases more quickly with the IDA than the TWI parameterization.  

 

The storage and distribution vary spatially between the TWI and IDA parameterizations  which 

control the retention and release of water during peak flow events. Figure 2.5 shows that the TWI 

parameterization has a higher storage capacity than the IDA parameterization. For the IDA 

parameterization, the average storage is approximately 5 million cubic meters per grid cell, while 

the average storage for the TWI parameterization is approximately 12 million cubic meters per 

grid cell. The spatial distribution of storage increases from east to west for both parameterizations, 

where the highest storage is in the western portion of the watershed. In the western portion of the 

watershed soils are poorly drained and elevation gradient is low. The TWI parameterization shows 

an isolated area of higher storage capacity in the eastern portion of the watershed, whereas the IDA 

parameterization represents lower storage capacity (Figure 2.5). Grid cells representing seasonally 

ponded areas with a higher storage capacity will allow for more storage during peak flow events 

and reduce the magnitude of simulated peak flows.   
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Figure 2.5: Spatial map of storage capacity (m3) for simulated VIC grid cells using the TWI and 
IDA parameterizations of surface inundation. Simulated grid cells are 1/8 th° latitude and 

longitude and masked to the extent of the watershed boundary. 

2.2.4 Model calibration and evaluation  

The VIC model was calibrated for the Buffalo River watershed from water years 2006 to 2009 and 

evaluated from water years 2010 to 2014 for each scenario. The calibration and evaluation period 

were selected based on available MODIS data in order to accurately represent and assess model 

performance of simulated discharge and ILA during peak flow events. A GIS based routing model 

was used to compare simulated and observed discharge (Yang et al., 2011). Model performance 

was analyzed using routed and observed streamflow as well as simulated and observed ILA. Table 

2.1 lists the VIC model parameters that underwent calibration.  

 

Automated calibration was performed using the Multi-Objective Complex Evolution (MOCOM-

UA) to ensure calibration was objective amongst compared parameterization scenarios (Yapo et 

al., 1998). MOCOM-UA provides a set of objective Pareto solutions by minimizing objective 

functions with respect to model parameters. The objective functions used for the optimization of 
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streamflow were Nash-Sutcliffe efficiency (NSE), the NSE of the natural log data (LNSE) and 

percent bias (PBIAS). NSE was selected for calibration because of its sensitivity to peak flow 

events. LNSE was selected for calibration of baseflow. PBIAS was selected to evaluate the total 

streamflow using the difference in mean streamflow. The objective function used for calibrating 

ILA was absolute average error. Absolute average error was selected to analyze the average 

difference between observed and simulated ILA from peak flow events. Peak flow events were 

identified using peaks over threshold which is described in more detail in the following section. 

 

Table 2.1: VIC model parameters selected for calibration for streamflow and ILA. Final 
optimized values for each test case are provided. No lake and wetland parameters were used for 

the No IDA case. 

Parameter 

name 

Description Calibrated value for each scenario 

No IDA IDA TWI 
 

b_infil Variable infiltration curve 

parameter, no units 

0.08 0.17 0.08 

Ds 
Value at which non-linear 
baseflow begins, listed as a 
fraction of Dsmax 

0.004 
 

0.02 0.05 

Dsmax Maximum velocity of 
baseflow, listed as mm/day 

1.0 

 

9 1.2 

Ws 
Maximum soil moisture 

where non-linear baseflow 
begins, listed as a fraction 

0.6 

 

0.9 0.8 

wfrac 
Width of lake outlet, listed as 
a fraction of the lake 
perimeter 

N/A 
 

0.0002 0.0001 

rpercent Runoff that enters lake and 
wetland, listed as a fraction of 
the grid cell 

N/A 
 

2.7×rpercent 2.0×rpercent 

2.2.5 Assessing peak flow events 

In this study, peaks over threshold (POT) were used to analyze the occurrence of peak flow events 

and compare model performance with respect to observed data. POT was used to identify peak 

flow events using simulated and observed streamflow and MODIS ILA data. Daily discharge data 



 
 

40 

from USGS Station 05062000 were used to identify peaks above a threshold of 55 m 3/s. POT were 

evaluated seasonally, where seasons were defined as: spring (March–May), summer (June-August), 

fall (September-November) and winter (December-February). Peak discharge may differ 

temporally between compared parameterizations and observed peak flow, as a result a five -day 

window was used to identify peak events for the parameterization scenarios. For analysis of ILA, 

a threshold of 1% with a three-day moving average from the MODIS ILA time series was used to 

identify ILA events. The ILA event maxima from the MODIS three-day average was used to 

compare simulated ILA from the parameterization scenarios with the observed event maxima, and 

measure model performance from the same peak flow event. The three-day moving average was 

used to reduce noise and missing values caused by dates of high cloud coverage (>30%), which 

often occur during flooding events. The resulting smoothed dataset was able to  provide a daily 

estimate of ILA. 

2.3 Results 

2.3.1 Model calibration and evaluation 

The Pareto solutions generated by MOCOM-UA provide many sets of parameters. The parameter 

set used in calibration and evaluation was selected manually by comparing simulated streamflow 

and ILA with observed streamflow and ILA during the calibration period. The selected parameter 

values generated by MOCOM-UA along with calculated statistics for each simulated scenario are 

listed in  Table 2.1 and Table 2.2. The test case without representing inundation (No IDA) was 

calibrated with MOCOM-UA for streamflow using four parameters: b_infil, Ds, Dsmax and Ws, 

whereas the parameterizations representing surface ponding (ILA and TWI) used two additional 

parameters, wfrac and rpercent. For the calibration period (water years 2006-2009), the IDA 

parameterization overall has the highest model performance with NSE, LNSE, PBIAS and 

absolute average error of 0.65, 0.55, 8% and < 1%, respectively. The No IDA and TWI have similar 

model performance but with different limitations. The No IDA scenario has a noticeably lower 

bias, yet the TWI scenario has a better LNSE. The calibration results of the TWI scenario are 0.66, 

0.61, -24% and 2% for the NSE, LNSE, PBIAS and absolute average error, respectively. The NSE, 

LNSE and PBIAS for the No IDA scenario are 0.68, 0.27 and -2%, respectively. For the evaluation 

period (water years 2010-2014), the IDA parameterization again has the highest performance, 
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followed by the No IDA and TWI parameterizations. The calculated statistics for the IDA 

parameterization are 0.64, 0.70, 8% and 1% for NSE, LNSE, PBIAS and absolute average error, 

respectively. Overall, TWI has improved model performance than the No IDA scenario, yet the 

bias is higher. During the evaluation period, the IDA test case has a better NSE, LNSE and PBIAS 

than the other two scenarios. The TWI scenario represents baseflow satisfactorily during 

calibration and evaluation with respective LNSE values of 0.61 and 0.54, but has a high bias 

compared with the other two scenarios. The low LNSE for the No IDA parameterization can be 

explained by the overestimation of baseflow. 

 

Table 2.2: Calculated objective function values quantifying model performance for the 
calibration and evaluation datasets.  These represent the final set of parameters (Table 2.1) 

selected from the Pareto set generated by the MOCOM-UA optimization scheme. NSE, LNSE, 
and PBIAS were used to evaluate the streamflow simulation, while ILA Absolute Average Error 

was used to evaluate the simulation of ILA. 

Parameterization Calibration (2006-2009) Evaluation (2010-2014) 

 NSE LNSE 
PBIAS 

(%) 

ILA 
Absolute 

Avg. 

Error 
(%) 

NSE LNSE 
PBIAS 

(%) 

ILA 
Absolute 

Avg. 

Error 
(%) 

No IDA 0.68 0.27 -2 N/A 0.47 -0.14 -8 N/A 
IDA 0.65 0.55 8 <1 0.64 0.70 8 1 

TWI 0.66 0.61 -24 2 0.61 0.54 -28 2 

 

The routed streamflow for the three different scenarios and comparison with USGS streamflow is 

shown in Figure 2.6, for both the calibration and evaluation periods. For large peak flow events, 

all parameterizations were able to represent the events adequately, for example the high flow 

events in water years 2006 and 2009 (Figure 2.6). The IDA and TWI cases tend to have lower 

magnitudes as compared to the No IDA case, as the representation of surface ponding delays runoff 

and thereby reduces flood magnitude.  
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Figure 2.6: Time series comparing simulated streamflow from the three test case scenarios (No 
IDA, IDA and TWI) with observed USGS streamflow during calibration (left of dotted line) and 

evaluation (right of dotted line) periods. 

 

The observed fractional ILA from the MODIS three-day average and simulated fractional ILA 

from the test cases representing surface ponding parameterizations are shown in Figure 2.7 for 

water years 2006 to 2014. A total of 24 peak ILA events were compared, where MODIS ILA 

values range from 1% to 10%. The IDA scenario is able to represent the range of observed ILA 

values, while the TWI scenario is not. The IDA scenario has a bias of -16% compared to the TWI 

scenario with a bias of -62% (Figure 2.7). Simulated peaks from the IDA parameterization 

compare better with the peaks from MODIS, than peaks simulated using the TWI parameterization.  
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Figure 2.7: Comparison of simulated inundated land area from two parameterizations (IDA and 
TWI) with MODIS three-day average series using simulated peaks of ILA above the 1% 

threshold compared to the 1:1 line over the evaluation period (water years 2006-2014). 

 

A spatial comparison of observed and simulated ILA from the IDA scenario is shown in Figure 

2.8 from a spring flood event in 2009. The MODIS three-day composite (3D3OT) was used to 

generate the ILA map due to high occurrence of cloud coverage during the flood event. In general, 

ILA increases from east to west for both the observed and simulated data.  ILA at the western 

portion of the watershed slightly underestimates the flooded extent during the spring 2009 flood 

event using the IDA parameterization. However, the spatial average of simulated and observed 

ILA are both approximately 4%. Figure 2.8 illustrates that the simulated ILA from the VIC model 

agrees with the MODIS observations in representing the spatial variability of ILA within the 

watershed.  
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Figure 2.8: A comparison of simulated and observed ILA from a spring flood event March 17, 
2009. A three-day composite (3D3OT). Simulated grid cells are 1/8 th° latitude and longitude and 

masked to the extent of the watershed boundary. 

2.3.2 Peak flow evens 

The parameterization scenarios were evaluated for the ability to represent the occurrence and 

magnitude of observed peak flow events. Peak flow events are analyzed using simulated discharge 

from water years 2006 to 2014. Summary statistics of 14 corresponding peak flow events are 

shown in Figure 2.9. Simulated peaks were extracted only for these observed events, so there may 

have been simulated peaks above this threshold that were not included in this analysis. The USGS 

streamflow data have 14 peaks over the 55 m3/s threshold from water years 2006 to 2014. The 

identified peaks have a right-skewed distribution with a median value of 91 m3/s and an average 

of 120 m3/s. For the three simulated scenarios (No IDA, IDA and TWI), the distribution of 

maximum values for these 14 events is also right-skewed for each, but the IDA parameterization 

is the most representative of the interquartile range, mean and median peak flow events as shown 

in Figure 2.9. The similarity of the box plots for the IDA parameterization and USGS data using 

POT, demonstrates the ability to represent the variability of observed peak flow events. 
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Figure 2.9: Box plot comparing three different scenarios, no inundated depth-area (No IDA), 
IDA and topographic wetness index (TWI) with observed discharge (United States Geological 

Survey 05062000) from corresponding peak flow events (n=14). Peak flow events were 
identified using a threshold of 55 m3/s. The star in each box represents the average value, the red 

line in the box plot represents the median value and the plus marks indicate outlier values for 
each scenario. 

 

The number of peak flow events by season for water years 2006 to 2014 is shown in  Figure 2.10. 

In contrast to the previous POT analysis, the same threshold was applied to all time series, so the 

total number of events is different for each.  The total number of events exceeding the threshold 

are 9, 15, and 7 for the No IDA, IDA and TWI parameterizations, respectively. In comparison, 

there were 14 observed peaks exceeding the threshold in the USGS data. Most peak flow events 

occurred in the Spring, followed by summer and then fall (Figure 2.10). Overall, the seasonal 

occurrences of peak flow events highlight that the IDA parametrization is the only scenario that 

captures the seasonal range of peak flow events observed in the USGS data. The IDA 

parameterization slightly overestimates the occurrence of peak flow events in the spring but has 

equal occurrences of exceedance with the observed data in the summer and fall. In contrast, the 

TWI scenario captures the same number of occurrences of peak flow events in the spring but does 
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not represent the occurrences of peak flow events in the summer and fall. For the No IDA scenario, 

the number of peak flow events matches the observed record in the spring, but also underestimates 

occurrences in the summer and does not simulate peak flow events in the fall.  

 

 

Figure 2.10: Seasonal occurrences of peak flow events identified using peaks over threshold. 

Threshold set at 55 m3/s. 

2.3.3 Hydrologic analysis of peak flow events 

Peak flow events in the Buffalo River watershed are most commonly associated with snowmelt in 

the late winter-spring, and to a lesser extent in the summer-fall associated with persistent wet 

weather (Figure 2.10). Runoff generation mechanisms are expected to be different between these 

seasons. To illustrate the difference in runoff generation mechanisms, we analyzed two peak flow 

events each for the winter-spring and summer-fall seasons to identify the simulated runoff 

generation mechanism. The two winter-spring events (March 2009 and March 2010) and two 

summer-fall events (October 2008 and June 2014) are analyzed by representing the seasonal 

ponding from the IDA parameterization and comparing simulated streamflow and ILA with the 

interactions of rainfall plus snowmelt (mm) and frost depth (cm). Rainfall plus sno wmelt 
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represents the total amount of available water used in the model simulation. Observed data is used 

to support the determination of the runoff generation mechanism using USGS discharge and ILA 

from MODIS.  

 

Figure 2.11 displays the winter-spring simulations, where ILA increases over frozen soils 

approximately two weeks prior to peak flow. After ILA reaches its maxima, both simulated and 

observed discharge increase rapidly, as the ILA declines. The timing of observed ILA with 

simulated ILA is difficult to compare due to the influence of high cloud coverage which prevents 

the retrieval of ILA observations during the observed peak flow events. For each of the peak flow 

winter-spring events, only three MODIS observations were available for estimation of surface 

ponding (indicated by black circles in Figure 2.11). Though limited with observations during 

winter-spring events, the MODIS time series can be used to provide a general assessment of the 

duration ponded water remains stored on the surface. Once peak discharge is reached, ILA 

continues to decrease more gradually as the frost depth decreases. The variable source area (VSA) 

concept, describes the runoff generation mechanisms behind the winter-spring peak flow events 

(Dunne et al., 1975). The saturated areas increase from precipitation and snowmelt on frozen soils 

that limit infiltration (Cherkauer et al., 1999). The outputs from the IDA parameterization represent 

the VSA concept in Figure 2.11, where ILA increases over the frozen soils, and stored water on 

the land surface accumulates prior to peak discharge. After peak discharge is reached, ILA 

gradually decreases as frost depth decreases enabling infiltration and subsurface drainage. The 

increase in ILA is related to the low permeability from the soil ice content. In addition, to the VSA 

concept, another runoff generation mechanism is represented in the simulated and observed data. 

The rise and fall of ILA after peak flow simulates the fill and spill mechanism, where local 

depressions in low gradient areas contribute to runoff generation once depressions reach capacity 

following the peak flow event and continue to spill and fill (Coles et al., 2018; Mcdonnell, 2013; 

Tromp-van Meerveld et al., 2006). The spill and fill mechanism is most noticeable in the spring 

2009 event and are also captured with the observed discharge and ILA data as surface ponding 

increases (fill) before each increase in discharge (spill) (Figure 2.11). It is also important to note 

that the IDA parameterization does simulate a delay in peak flow for the spring event in 2009. The 

delay is a limitation in the model performance and potential area of improvement. 
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Figure 2.11: Observed and simulated discharge (m3/s) and inundated land area (%) with 
interactions of frost depth (cm) and rainfall plus snowmelt (mm) for flood events in winter-

spring seasons. Black circles indicate available cloud-free MODIS observations to estimate the 
three-day average. 
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Figure 2.12 shows the summer-fall simulations, where ILA increases rapidly approximately a 

week prior to peak flow. After ILA peaks, discharge increases but at a lower rate and magnitude 

compared to simulated discharge in the winter-spring, as ILA decreases through reinfiltration into 

drier soils. Infiltration-excess overland describes the runoff generation mechanism for summer-

fall peak flow events (Horton, 1933). In these events, fractional ILA increases from runoff of 

excess precipitation causing an increase in storage on the land surface. After peak discharge, ILA 

decreases rapidly as infiltration is no longer limited. The observed discharge and ILA support 

infiltration excess overland flow as the runoff generation mechanisms for the summer-fall events 

shown in Figure 2.12. Though high cloud coverage affects the retrievals of ILA observations 

during the summer-fall events, the MODIS time series is able to capture the short durations of 

ponded water on the landscape. During the summer-fall events, the duration of ponded water on 

the surface is shorter than the winter-spring as frozen soils are not a factor restricting infiltration 

and rainfall events are shorter in duration. The duration of ponded water is influenced by the total 

precipitation and infiltration capacity where the ponded extent decreases after precipitation 

subsides and infiltration is no longer limited. The response of the simulated discharge with the 

IDA parametrization is representative of the observed discharge for the fall and summer events in 

2008 and 2014, respectively (Figure 2.12). Though simulated ILA generally overestimates when 

compared to the MODIS three-day average, the IDA parameterization is able to represent the rapid 

increase and decrease of ponded water on the surface for summer-fall events. 
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Figure 2.12: Observed and simulated discharge (m3/s) and inundated land area (%) with 
interactions of frost depth (cm) and rainfall plus snowmelt (mm) for flood events in the summer-

fall seasons. The black circles indicate available cloud-free MODIS observations to estimate the 
three-day average. 



 
 

51 

2.4 Discussion 

In this study we develop a parameterization methodology to represent the influence of ILA on 

streamflow. The IDA parametrization uses readily available remotely sensed and in-situ 

observations. The methodology used to represent surface ponding is transferable to other locations 

and physically constrains the amount of surface water storage based on observations. Moreover, 

the IDA parameterization generates a unique distribution of storage for each simulated grid cell 

based on the watershed’s physical characteristics. The depth-area relationship for the test 

watershed is developed using 24 peak flow events of varying size from water years 2005 -2009 

(Figure 2.4). Due to high cloud coverage (>30%), ILA observations from MODIS are often missed 

during observed peak discharge. These observations are important in generating the logistic fit and 

parameterizing the seasonally ponded extent and depth into the VIC lake and wetland algorithm. 

Future work may be able to replace these missing observations using active sensors to update and 

improve the representation of surface ponding. The daily MODIS NRT Global Flood Mapping 

product provides data with flooded and non-flooded area. The four-step filtering process helps 

reveal the highest quality MODIS observations of ILA. Analyzing the discharge record helps 

discard observations from the parameterization that the VIC model cannot represent, such as 

overbank flow. The seven-day antecedent rainfall filter improved the quality of the data by 

removing noisy data below the precipitation threshold for the growing and dormant seasons. 

 

To examine the influence of ILA on streamflow, daily time series of routed streamflow and ILA 

are evaluated for three simulated scenarios (No IDA, IDA and TWI) and compared with observed 

data. In the No IDA scenario, runoff is not delayed by local depressions. By not representing local 

depressions, the routed streamflow overestimates low and high flows compared to the observed 

streamflow and alternative test cases. In the TWI scenario, local depressions are represented as a 

function of the contributing drainage area per unit contour length, over the surface slope. The 

routed streamflow underestimates high flows but simulates low flows better compared to the No 

IDA scenario and observed streamflow. The simulated ILA also underestimates peak flow events 

compared to the observed ILA and IDA scenario. For the IDA scenario, local depressions are 

represented using remotely sensed observations of ILA. For routed streamflow, the new IDA 

parameterization outperforms comparative parameterizations. The statistical analysis of the routed 

streamflow during the calibration and evaluation periods demonstrates that the IDA 
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parameterization has a higher performance and the ability to represent low and high flows 

compared to the alternative test cases. The statistical analysis of ILA reveals that the IDA 

parameterization outperforms the TWI parameterization. 

 

In the development of the IDA parameterization, a logistic function was fit to observations of the 

gradient (m-1) and flooded extent (m2) to provide an estimate of surface water storage in the 

watershed for varying flood events. The surface water storage is not estimated by describing the 

shape of the landscape, but by calculating the derivative of the landscape (i.e., slope). The depth-

area profile after integration of the logistic function describes the non-linear increase of surface 

water storage, which gradually increases in low topography areas of the floodplain, followed by a 

steeper increase in storage as flooding expands up onto the valley slopes. The logistic function was 

selected in this study to represent the limited amount of storage capacity within the watershed’s 

low gradient agricultural landscape. In addition, the logistic function was able to preserve the 

cumulative watershed storage when mapped to represent individual grid cell storage. The TWI 

parametrization estimated surface water storage using a DEM, which tends to overestimate the 

storage capacity compared to the IDA parameterization and generally underestimated the extent 

of the flooded area compared to the observed ILA. Though the TWI parameterization represents 

the distribution of land pixels that are likely to be flooded, because that distribution is essentially 

removed from the spatial context, it is difficult to estimate the depth of inundation. The depth of 

inundation then becomes a separate parameterization, and in this study was set to a constant (1.0 

m). Future research may work to improve the estimate of the storage capacity with the TWI 

parameterization by using the IDA parameterization to estimate the storage capacity. This would 

allow users to retain the depth-area profile associated with the TWI with improved estimates of 

the storage capacity from observed flood events.  

 

Through the analysis of peak flow events, we are able to investigate the utility of each 

parameterization to represent the occurrence and magnitude of peak events. Overall, the IDA 

parameterization captures the variability in magnitude of peak flow events and accurately 

represents surface ponding observed within the watershed. Regarding the seasonal occurrence of 

peak flow events, the IDA scenario is the only parameterization that captures peak flow events for 

all seasons, whereas TWI and No IDA were not able to represent summer and fall peak flow events 
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above the defined threshold (55 m3/s). Previous studies have investigated the use of remotely 

sensed retrievals of water level and inundated area to improve flood forecasting skill (Andreadis 

et al., 2007, 2014; Grimaldi et al., 2016; Neal et al., 2009; Schumann et al., 2009). Andreadis et al. 

(2014) used synthetic observations of ILA at the same spatial resolution (600 m) and observation 

accuracy (< 20%) as the proposed Surface Water Ocean Topography (SWOT) missio n and 

assimilated the data into a hydrologic model for evaluation of flood forecast skill in the Ohio River 

basin. Analysis of the largest flood event in the study shows that the forecasted ILA does not 

represent the flood dynamics represented in the observations, and forecast skill is shown to 

increase within two to three days of the forecast, demonstrating the importance of retrieval time as 

described by Grimaldi et al. (2016). Though high cloud coverage often prevented MODIS 

retrievals of ILA within two-three days of peak flow, the development of a parameterization using 

a range of remotely sensed ILA observations demonstrates the utility to represent the seasonal 

occurrence and range in flood magnitude as well as the potential to increase forecast skill.  

 

Schumann et al. (2009) discusses the challenges of obtaining quality remotely sensed observations 

needed to increase flood forecast skill and suggests understanding the runoff generating 

mechanisms to improve flood forecast skill. The results of our case  study provide better 

understanding of the underlying mechanisms causing runoff generation within the study domain. 

The results further reveal that the VSA concept and fill and spill are the dominant runoff generation 

mechanisms during the winter-spring seasons in the Buffalo River watershed (Coles et al., 2018; 

Dunne et al., 1975; Mcdonnell, 2013; Tromp-Van Meerveld et al., 2006). On the other hand, 

infiltration-excess overland is the dominant runoff generation mechanism during the summer-fall 

seasons in the Buffalo River watershed (Horton, 1933). The IDA parameterization is able to 

represent peak flow events for different seasons when compared with observed discharge. 

However, the delay in peak discharge during the winter-spring events reveal a limitation within 

the model. Identifying the cause of the delay is beyond the scope of this study but may be of interest 

in future work. The simulated ILA in the case study shows that the IDA parameterization can 

represent the seasonal variation in ILA and provide inferences that help determine runoff 

generation mechanisms. For the summer-fall event in 2014, the MODIS time series shows little 

change in ILA compared to the simulated data. Newspaper articles reported heavy rainfall in mid-

June resulting in flooded fields, where the USDA estimated damaged crops to approximately seven 
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percent of the corn and soybean in the state of Minnesota (Meersman, 2014; Thiesse, 2014; Webb, 

2014). The increase in precipitation and discharge were captured in the observed data but missed 

in the MODIS ILA. In a watershed where land use is predominately agriculture, the shallow ILA 

may be obscured from satellite sensors under vegetation. Detection of ILA under vegetation is a 

known cause of omission leading to errors of estimating ILA (Lakshmi, 2016; Nigro et al., 2014). 

Policelli et al. (2017) are exploring other approaches to obtain accurate retrievals associated with 

flooded vegetation. The MODIS and simulated ILA are estimates, where different factors can 

influence the estimate of water extent. The simulated ILA demonstrates the potential to support 

remotely sensed retrievals of ILA. 

2.5 Conclusions 

In this study, we describe an adaptable methodology to parameterize the depth -area relationship 

of ILA in an existing large-scale hydrologic model using remotely sensed and in-situ observations. 

The Buffalo River watershed, which is prone to flooding due to the topography’s low gradient, 

high intensity rainfall events, saturated soil conditions and/or snowmelt over frozen soils , is the 

area of interest. The influence of ILA on streamflow is investigated and reveals the following: 

1. Accessible remotely sensed and in-situ observations can provide adaptable 

parameterizations to represent inundated land area. The developed parameterization 

technique delivers three important characteristics. (1) The ability to link dominant 

processes using physical parametrization from remotely sensed data. (2) The parameter file 

can be easily updated with new remotely sensed observations. (3) The capability of 

representing realistic storage observed in the watershed with unique distribution of storage 

at the grid cell level.  

2. Simulated streamflow is well-represented and improved by representing ILA in the VIC 

model. Model performance (NSE, LNSE, PBIAS, and absolute average error) results 

shows that the IDA parameterization outperforms compared test cases after optimization. 

3. The IDA parameterization improves representation of the seasonal pattern of peak flow 

events and range in magnitude. The IDA parametrization has the ability to represent peak 

flow events in all seasons, with a tendency to overestimate the number of occurrences in 

the spring.   
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4. Results of the case study demonstrate two dominant runoff generating mechanisms in the 

Buffalo River watershed. The VSA concept describes the runoff generation mechanism 

behind the winter-spring peak flow events, while infiltration excess overland flow 

describes the runoff generation mechanism for summer-fall peak flow events. 

Adaptable parameterizations are needed for hydrologic models to mirror the increasing changes in 

water resources in a changing climate. Remotely sensed observations can help facilitate updatable 

parameterizations in hydrologic models by capturing and characterizing variables represented in 

hydrologic models. In this study, we demonstrate the use of incorporating the MODIS NRT Global 

Flood Mapping product with discharge data to parameterize inundated land area occurring in 

agricultural uplands. The parameterization methodology uses available data to describe the local 

ponding characteristics and evaluate the influence of the upland inundation on downstream flow. 

The results of the study demonstrate the utility of the parameterization to represent the occurrence 

of peak flow events during different seasons and to represent the  range in magnitude while 

accurately simulating daily streamflow following events. 

2.6 Supplementary materials 

2.6.1 Equations used to calculate gradient and scale logistic function 

Inundated Depth-Area Relationship Theory 

Variables used to describe analysis at the watershed scale are capitalized, whereas lowercase 

variables are used to describe analysis at the grid cell scale. 

Observed change in water depth with respect to change in inundated area  

The depth-area relationship begins by first deriving the incremental volume, ∆V (m3) of water 

stored on the landscape associated with the estimated flooded area and depth of inundation as 

shown in equation A1.1 

∆𝑉 = (
𝐴𝑡1

+ 𝐴𝑡2

2
) ∗  (𝑍𝑡1

− 𝑍𝑡2
) (A1.1) 

Where 𝐴𝑡1
 and 𝐴𝑡2

, are MODIS observations of inundated land area (m2) from consecutive 

overpasses (t1 and t2), and z is the depth of water (m) in the watershed over the period of subsequent 



 
 

56 

MODIS retrievals. The ∆ V calculated in equation A1.1 is assumed to be equivalent to the 

accumulated 𝑄 between consecutive retrievals as show in equation A1.2   

∆𝑉 = ∫ 𝑄(𝑡) 𝑑𝑡
𝑡2

𝑡1

(A1.2) 

where 𝑄 is the observed fast response runoff that is assumed to be released from the total flooded 

area identified by MODIS (𝐴𝑡1
) within the timeframe (t1 to t2). 

 

The change in depth, (𝑑𝑧 = 𝑍𝑡1
− 𝑍𝑡2

) from equation A1.1 uses the relationship of observed 

stormflow (m3) over the flooded extent (m2), based on the assumption that the change in volume 

on the surface is equal to the observed stormflow during this period. This relationship is expressed 

in equation A2. 

𝑑𝑍 =  
2 ∗ (∫ 𝑄 𝑑𝑡

𝑡2

𝑡1
)

(𝐴𝑡1
+ 𝐴𝑡2

)
(A2) 

The estimated gradient, 
𝑑𝑍

𝑑𝐴
 , can be used to determine the volume of water stored the land surface. 

The change in flooded extent (𝑑𝐴 = 𝐴𝑡1
− 𝐴𝑡2

) was captured with MODIS from consecutive 

overpasses. A change in 𝑑𝐴 represents ponded water leaving local depressions through stormflow.  

The ponded depth of ILA associated with different flood extents was calculated by integrating the 

gradient,  
𝑑𝑍

𝑑𝐴
 , with respect to flooded extent, A, to get the cumulative depth of water for different 

flood extents.  

Parameter and depth estimation using logistic fit 

The gradient and flooded relationship can be used to estimate water storage on the land surface. 

The fitted equation is listed in equation A3  

𝑑𝑍

𝑑𝐴
(𝐴) =  

𝐾

1 +  𝑒−𝐺(𝐴−𝐷) (A3) 

where 𝐾 is the maximum gradient value from the fitted curve. 𝐾 had a fitted value of 3.93*10-9 

m-1. The parameter value for 𝐺 was 7.01*10-8 m. The parameter value of the midpoint on the 

logistic curve, 𝐷 was 3.8*107 m2 (38 km2). 

 

After integration of equation A3, the ponded depth of ILA for the watershed is calculated as shown 

in Equation A4. 
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𝑍(𝐴) =  𝐾 {𝐴 +
1

𝐺
𝑙𝑛(𝑒−𝐺(𝐴−𝐷) + 1) −

1

𝐺
𝑙𝑛(𝑒𝐺𝐷 + 1)} (A4) 

The total storage, Vtotal, can be calculated with integration of Z from 0 to Amax, as shown in Equation 

A5,   

𝑉𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑍(𝐴) 𝑑𝐴
𝐴𝑚𝑎𝑥

0

(A5) 

Scaling procedure within grid cells to preserve storage 

To represent the storage within each grid cell, we scale the storage of the entire watershed. We do 

this by calculating the ponded depth, z, and the volume, v, of each grid cell, using the maximum 

observed flooded area for each grid cell, 𝑎𝑖𝑚𝑎𝑥. The approach is the same as estimating storage 

for the watershed and is shown below: 

𝑑𝑧𝑖

𝑑𝑎𝑖

(𝑎𝑖) =  
𝑘𝑖

1 +  𝑒−𝑔𝑖(𝑎𝑖−𝑑𝑖)
(A6) 

𝑧𝑖 =  𝑘𝑖 {𝑎𝑖 +
1

𝑔𝑖
𝑙𝑛(𝑒−𝑔𝑖(𝑎𝑖 −𝑑𝑖) + 1) −

1

𝑔𝑖
𝑙𝑛(𝑒𝑔𝑖𝑑𝑖 + 1)} (A7) 

𝑣𝑖  𝑡𝑜𝑡𝑎𝑙 =
𝑎𝑖𝑚𝑎𝑥

𝐴𝑚𝑎𝑥
𝑉𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑧𝑖(𝑎𝑖) 𝑑𝑎𝑖

𝑎𝑖𝑚𝑎𝑥

0
(A8) 

To preserve the watershed storage, such that ∑ 𝑣𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑡𝑜𝑡𝑎𝑙
𝑁
𝑖=1 , with the assumption that the 

volume of storage in each grid cell is proportional to the fraction of flooded area in each grid cell, 

the maximum gradient for each grid cell, k, the rate of growth along the curve, g and the midpoint 

value on the curve, d, are calculated as:  

𝑘𝑖 = 𝐾
𝐴𝑚𝑎𝑥

𝑎𝑖𝑚𝑎𝑥

(A9.1) 

𝑔𝑖 = 𝐺
𝐴𝑚𝑎𝑥

𝑎𝑖𝑚𝑎𝑥

(A9.2) 

𝑑𝑖 = 𝐷
𝑎𝑖𝑚𝑎𝑥

𝐴𝑚𝑎𝑥
(A9.3) 
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3. EVALUATING SEASONAL TRENDS AND FREQUENCY OF PEAK 
FLOW IN THE RED RIVER BASIN 

Abstract 

The Red River of the North basin is prone to inundated land area (ILA) and flooding due to the 

flat terrain, low soil permeability and influence of soil freeze/thaw action. In a region that is 

experiencing a changing climate, understanding the propensity of peak flow events is critical for 

agricultural producers and water resource managers. In this study, the Variable Infiltration 

Capacity (VIC) model with a transferable parameterization to simulate streamflow and ILA are 

used to analyze seasonal trends, occurrence and magnitude of peak flow events in the Red River 

basin and compared with observed streamflow and ILA from the MODIS Near-Real Time Global 

Flood Mapping product. We test for trend and rate of change of peak flow events at six gaging 

stations within the Red River basin using the Mann-Kendall test and Sen slope estimator, 

respectively. The occurrence and magnitude of peak flow events are analyzed using peaks over 

threshold and flood frequency, where observed results are compared with the VIC model under 

difference scenarios (ILA and No ILA). Results show an increasing trend of summer peak flow 

events within the Red River basin, and a shift in occurrence of peak flow events from the spring 

season (unimodal) to spring and summer seasons (bimodal). The transferable parameterization 

simulates streamflow and ILA satisfactorily and the results demonstrate the importance of the ILA 

parameterization in representing the shift and seasonal occurrence of peak flow events as well as 

range in magnitude. 

3.1 Introduction 

Understanding the occurrence and magnitude of flooding is important in the Upper Midwest, 

where a changing climate and land use affect streamflow and can shift occurrence and magnitude 

of peak flow events. For instance, the Red River of the North basin, which is a low gradient basin, 

is prone to inundated land area (ILA) and flooding (Figure 3.1) due to extreme rain events, 

snowmelt and the influence of frozen soils.  From 2000 to 2013, the Red River basin experienced 

major flooding in 11 of the 13 years. In addition, the tributaries of the river have experienced both 

100-year and 500-year flood levels during this time period (Commission, 2011; USACE, 2017).  
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This predominantly agricultural area is located in the Upper Midwest within the states of 

Minnesota, North Dakota and South Dakota. The seasonal occurrences of ILA can have a water 

depth of less than one meter yet expand up to hundreds of square meters and water may remain 

stored on the surface up to a week or longer, until it slowly drains through the subsurface or 

evaporates (Grimm et al., 2018; Shook et al., 2011).  Previous flood events in the basin have 

occurred mainly in the spring, where damages caused by the floods have reached financial costs 

as high as 4 billion dollars (Commission, 2011; Tuttle et al., 2017). According to the 2015 U.S 

Army Corps of Engineers regional climate change impact assessment report, annual precipitation 

is projected to increase in the Red River basin. The findings in the report suggest that the increase 

in annual precipitation events will coincide with an increase in temperature, causing a decrease in 

snow water equivalent (SWE) (Alberto et al., 2015). With a changing climate in the low-gradient 

region, the increase in precipitation can impact crop production in the summer and fall from a 

temporal shift in flood patterns, resulting in an increasing frequency in summer and fall peak flow 

events. 

 

 

Figure 3.1: View of inundated land area in the Red River Basin. Photo taken in May 2013.  

 

Peak flow events are often linked to their hydrometeorological settings, though climate, land use 

and land cover changes can also influence the occurrence and magnitude of peak flow (Villarini 
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et al., 2011). Cunderlik et al. (2009) studied the Red River basin and found historical peak flow 

events were most common in the spring season due to snowmelt, while in recent decades there has 

been a shift with more peak flow events occurring in the fall season associated with ex cess rainfall. 

In a more recent study of peak flow in the basin, Kelly et al. (2017) found an increase in magnitude 

of peak flow events, beginning in the mid-1990’s.  The in-field flooding resulting from excess 

water can affect the occurrence and magnitude of flood propagation as well as impact crop 

production in low gradient agricultural areas. 

 

In order to understand the changing nature of flood occurrence in this low gradient environment, 

it is necessary to use a model that explicitly represents the ILA. Previous studies in the Red River 

basin have used observed data such as precipitation, temperature and discharge data to investigate 

hydrologic changes resulting from changes in climate and land use and land cover (Kelly et al., 

2017; Kunkel et al., 2013; Villarini et al., 2011). However, separating and measuring the influence 

of each on streamflow is difficult with observed data. Hydrologic models can be used to parse and 

measure the influence of land use and land cover on streamflow or changes in climate on 

streamflow. These models can also be used to assess the potential impacts from changes in land 

use, land cover and climate on flood frequency (Alberto et al., 2015). For instance, large-scale 

models that calculate water and energy fluxes and represent land use change such as the in stallation 

of subsurface drainage, have been used to analyze the influence of climate and land use and land 

cover changes on streamflow in the Red River basin (Liu et al., 2015; Rahman et al., 2014). 

Previous studies have analyzed the influence of lakes and wetlands on streamflow with hydrologic 

models that can represent temporary storage (Bowling et al., 2010; Mishra et al., 2010). However, 

few studies have investigated the effects of ILA on streamflow using hydrologic models that can 

represent temporary storage of water on the land surface while also simulating constant land use 

and land cover. In a region where a changing climate may lead to more frequent extreme summer 

rain events and flooding that can impact stakeholders, further research is needed in order to 

determine how a changing climate and ILA are influencing the seasonality and magnitude of flood 

events in the Red River of the North. The reported changing climate and history of flooding makes 

the Red River basin a good case to understand the occurrence and magnitude of peak flow events 

and is the focus of this study. The objectives of this study are to: (1) Assess model performance to  

represent observed streamflow and ILA in the Red River basin using statistical measures, (2) 
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Analyze observed seasonal trends and investigate observed shifts in magnitude and timing of peak 

flow events in a region experiencing a changing climate, (3) Evaluate how ILA influences the 

magnitude and occurrence of peak flow events using a hydrologic model capable of  

representing ILA. 

3.2 Data and Methods 

3.2.1 Data 

In this study, measured daily discharge from six United States Geological Survey (USGS) gaging 

stations within the Red River basin and a period of record with at least 57 years were used in the 

analysis (Table 3.1(U.S. Geological Survey, 2018). 

 

Table 3.1: United States Geological Survey (USGS) gaging locations within the Red River basin 
used for analysis. 

USGS Gaging Locations Drainage area (km2) 
Period of record 

(water years) 

USGS 05092000 Red River of 
the North at Drayton, ND 
 

 90,132 km2 1936-2018 

USGS 05064500 Red River of 
the North at Halstad, MN 
 

 56,462 km2  1961-2018 

USGS 05054000 Red of the 

North at Fargo, ND 
 

 17,612 km2  1901-2018 

USGS 05062000 Buffalo River 
Near Dilworth, MN 

 

 2,525 km2  1931-2018 

USGS 05061500 South Branch 
Buffalo River at Sabin, MN 
 

 1,176 km2  1945-2018 

USGS 05061000 Buffalo River 
Near Hawley, MN 
 

 841 km2  1945-2018 

 

The location of each gaging station used in this study is shown in  Figure 3.2.  Watersheds range in 

size from small (841 km2) to large (90,132 km2) (Table 3.1).  The watersheds are all nested within 

the larger Red River basin.  Discharge from Sabin, MN and near Hawley, MN flow merge into the 
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Buffalo River station near Dilworth, MN. The Buffalo River and the Red River at Fargo, ND 

converge and flow through the gage at Halstad, MN. Discharge from all sub-watersheds flows 

through the gage at Drayton, ND (Figure 3.2). 

 

Figure 3.2: Location of gaging stations used in study along with flow lines. Drayton, ND 
(05092000), Halstad, MN (05064500), Fargo, ND (05054000), Dilworth, MN (05062000), 

Sabin, MN (05061500), Hawley, MN (05061000). 

 

The extent of ILA was determined for the region using the MODIS Near Real-Time (NRT) Global 

Flood Mapping product. The MODIS data used for this study were a daily product generated from 

a two-day composite (2D2OT) where the observation date was the last date of observation . The 

flood product had a 250 m resolution and consisted of four classes with non-flooded and flooded 

surfaces identified. Pixels with insufficient data such as cloudy or bad data were described as Class 

0. High cloud coverage (Class 0) retrievals greater than 30% within the watershed were removed.  

Pixels with no water detected corresponded with Class 1. Pixels that coincided with the MODIS 

land water mask (MOD44W) were considered to be the reference water extent but not flooded 

were Class 2. The reference water extent oscillated over time; a permanent water fraction was 

estimated using the 90 th percentile of data with low cloud coverage (<10%). Pixels that were 
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identified beyond the reference extent were likely flooded and labeled as Class 3 (Nigro et al., 

2014). For this work, pixels were classified as inundated land area by calculating the difference 

between the MODIS total water fraction (Class 2 and Class 3) and the estimated permanent water 

fraction. The MODIS imagery was then used to estimate fractional extent of ILA for a model grid 

cell of 1/8th degree latitude and longitude. 

3.2.2 Detecting trends and shifts 

Nonparametric tests were used to determine if evidence of increasing trend in the magnitude of 

peak flow events could be detected within the Red River basin. Each gaging station was evaluated 

for statistical significance of trend and rate of change in the annual maxima series using the Mann-

Kendall test and Sen slope estimator, respectively. The annual maxima series was then sub-divided 

to evaluate the annual maxima during the spring and summer seasons. The spring season was 

selected because peak flow events commonly occur in the spring in the Red River basin. The 

summer season was selected to investigate if a change in trend in peak flow from spring to summer 

could be detected, which may impact crop production in the growing seasons. Spring months 

evaluated were March and April, while Summer months evaluated were June and July. The 

seasonal analysis to test for trend and magnitude of peak flow events was conducted for a 50-year 

period from water years 1969 to 2018. 

 

Peaks over threshold (POT) can be used to characterize the occurrence of peak flow events with 

respect to time and help determine if peak flow events are shifting in response to a changing 

climate. POT was used to assess the occurrence of peak flow events and determine if a shift in 

occurrence of peak flow could be identified seasonally. POT was assessed annually using the 

largest watershed at the Drayton, ND gaging station. The period of analysis was water years 1984 

to 2015. The number of peak occurrences were also evaluated monthly for two time-periods (1984 

to 1999 and 2000 to 2015) to identify seasonal shifts of peak flow.  A hydrologic model was 

compared with the observed data over the same period to determine if a similar shift in occurrence 

of peak flow could be represented using a model that does not simulate change in land use. 
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3.2.3 Model calibration and evaluation 

The Variable Infiltration Capacity (VIC) model is a large scale hydrologic model which quantifies 

the water and energy balance of a watershed as discrete grid cells (Cherkauer et al., 2003; Liang 

et al., 1994). A limitation of previous hydrologic models used in the Red River was the inability 

to simulate  ponding on the land surface (NWS, 1998). The VIC model has the ability to simulate 

local ponding features with inclusion of a lake and wetland algorithm (Bowling et al., 2010). A 

parameterization was developed to represent the depth-area relationship of inundated land area in 

a sub-catchment of the Red River basin using remotely sensed observations (Smith et al., 2020). 

In this study, we extend the parameterization developed in the Buffalo River watershed to the 

greater Red River basin with as outlet at Drayton, ND using additional MODIS observations. 

Figure 3.3 shows the spatial distribution of the maximum fractional ILA within the Red River basin. 

The inundation extent is highest along the main stem of the river and decreases with distance from 

the stem of the river to the uplands. The isolated inundated areas in the northwest are associated 

with wetlands and lake. In the northeast is a larger lake with grid cells removed and is not 

represented within the VIC simulations.  

 

In the Red River basin, ice jams can cause overbank flow along the stem of the main channel. The 

VIC model does not simulate overbank flow, as a result, grid cells associated with overbank flow 

were identified and removed from analysis. Simulated grid cells that had overbank flow extending 

greater than 10% within the grid cell were masked from evaluation of ILA (Figure 3.3). The 

overbank flow extent was estimated at 1km for each bank of the main channel, for a total width of 

2 km. Grid cells were identified and overbank flow extent estimated using a combination of 

remotely sensed observations, discharge records and local government agency reports of overbank 

flow observations. MODIS observations with high estimates (>50%) of ILA within a grid cell were 

identified as areas likely experience overbank flow. Record notes of the discharge data were 

analyzed with dates corresponding to areas likely to experience overbank flow to confirm high 

ILA observations were due to overbank flow. The extent of overbank flow was estimated using 

local agency reports with geotagged images and observation notes, where the distance of observed 

overbank flow was measured at approximately 1 km away from the main channel near Halstad 

(USGS 05064500). 
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Figure 3.3: Maximum extent of inundated land area determined from the MODIS global flood 
mapping product and rescaled for the 1/8 th degree VIC model grid cells used in this analysis. 

 

The VIC model was calibrated for the Red River at Drayton from water years 2006 to 2009 and 

evaluated from water years 2010 to 2014. MODIS imagery depicting ILA was available from water 

years 2006 to 2014. Discharge data was matched with available ILA data in order to analyze and 

assess model performance of simulated discharge and ILA during low and high flow periods. A 

GIS based routing model was used to compare simulated and observed discharge (Yang et al., 

2011). Model parameters developed by Smith et al. (2020) for the Buffalo River near Dilworth, a 

subcatchment of the Red River (Figure 3.2), were used to parameterize the Red River basin. 

Adjustments were made to the soil parameter file to improve representation of spring peak flow 

events and interim low flow periods.  

 

Table 3.2 lists the calibrated VIC model parameters. Model performance was assessed for discharge 

using Nash-Sutcliffe efficiency (NSE), the NSE of the natural log data (LNSE) and percent bias 

(PBIAS). Model performance was assessed for ILA using root mean square error (RMSE).  
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Table 3.2: Calibrated VIC model parameters. The lake and wetland parameters were not used for 
the No ILA scenario. 

Parameter name Description Calibrated value 

b_infil Variable infiltration curve parameter, no units  0.17 

Ds 
Value at which non-linear baseflow begins, listed 
as a fraction of Dsmax 

 0.005 

Dsmax Maximum velocity of baseflow, listed as mm/day  12.0 

Ws 
Maximum soil moisture where non-linear 

baseflow begins, listed as a fraction 

 0.99 

 

wfrac 
Width of lake outlet, listed as a fraction of the 

lake perimeter 
 0.0002 

rpercent 
Runoff that enters lake and wetland, listed as a 
fraction of the grid cell 

2.73×fractional ILA 

 

3.2.4 Flood frequency 

During peak flow events, the temporary storage of water on the land surface reduces flood 

magnitude by delaying runoff to nearby channels. Representing the influence of inundated land 

area on the magnitude and occurrence of peak flow events can improve predictive estimates of 

peak flow events for different return periods. The effects of ILA on the annual maxima series were 

analyzed using flood frequency diagrams for the observed and routed streamflow from water years 

1984 to 2015. Two simulation scenarios were used to evaluate the effects of ILA on streamflow, 

one with ILA represented (ILA) and one with no ILA representation (No ILA). In the ILA scenario, 

the lake and wetland algorithm was activated, whereas in the No ILA scenario, the lake and 

wetland algorithm was not activated. The flood frequency of both scenarios was compared with 

the observed data to evaluate how the representation of surface ponding impacts flood magnitude 

and compares with observed data for a range of flood sizes. Flood magnitudes for  return periods 

of 2, 5, 10, 25, and 50 years were evaluated. The Cunnane plotting position was used with the 
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extreme value type-I (EVI) distribution to evaluate the flood frequency (Cunnane, 1978; Fisher et 

al., 1928).  

3.3 Results 

3.3.1 Model performance 

Model performance for the discharge calibration and evaluation period are listed in Table 3.3 and 

shown in Figure 3.4. For the calibration period (2006-2009), the NSE, LNSE and PBIAS are 0.61, 

0.42 and 13%, respectively. As shown in Figure 3.4, the magnitude of spring and summer peak 

flow events are well represented with the exception of the spring event in 2006. Simulated 

discharge during spring events also simulates a short delay in the timing of peak flow compared 

to the observed discharge. The interim low flow periods show that simulated discharge is slightly 

overestimated. For the evaluation period (2010-2014), the NSE, LNSE and PBIAS are 0.63, 0.57 

and -4%, respectively. For the evaluation period, simulated baseflow is improved and peak flow 

events are well represented. While assessing water years 1984 to 2015 shows that the overall fit of 

simulated is satisfactory, there is a tendency to underestimate peak flow events.  

 

Table 3.3: Model performance for the calibration and evaluation periods. 

Parameterization  Calibration (2006-2009)  Evaluation (2010-2014) 

 NSE LNSE 
PBIAS 

(%) 

RMSE 

(%) 
NSE LNSE 

PBIAS 

(%) 

RMSE 

(%) 

Discharge 0.61 0.42 13  0.63 0.57 -3  

ILA    1    0.8 
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Figure 3.4: Time series of daily simulated and observed discharge (m3/s) for calibration (water 
years 2006-2009), evaluation (water years 2010-2014) and the simulation period (water years 

1984 to 2015). 

 

Model performance of simulated ILA for the calibration and evaluation periods are listed in Table 

3.3 and shown in Figure 3.5. For the calibration and evaluation periods, the RMSE is 1% and 0.8%, 

respectively. As shown in Figure 3.5, simulated ILA shows a similar seasonal response to the 

observed ILA, where ILA increases in the spring from snowmelt over frozen soils and is associated 

with the larger peak flow events represented in Figure 3.4. For spring events, the timing of 

simulated ILA is well represented, but it underpredicts the magnitude. In the transition from spring 

to summer, ILA is associated with excess rainfall where ILA and discharge are lower compared to 

the spring (Figure 3.4 and Figure 3.5). The timing of simulated ILA for summer flood events is again 

well represented, but generally overpredicts the magnitude in response to the summer  

rainfall (Figure 3.5).  
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Figure 3.5: Time series of simulated and observed inundated land area (%) over calibration 
(2006-2009) and evaluation (2010-2014) periods, separated by the dotted line. 

3.3.2 Annual trend and magnitude  

The tests for significance of trend and magnitude using the Mann-Kendall test (a=0.1) and 

computed Sen slope estimator (m3 s-1 yr-1) for the observed annual maxima series (1969-2018) are 

listed in Table 3.4. Overall, two of the six gaging stations had statistically significant increasing 

trends. These stations were Halstad and Fargo, which are located on the mainstem of the Red River, 

and both experienced a noticeable increase in peak discharge rate with Sen’s slope values of 5.6 

m3 s-1 yr-1 and 2.5 m3 s-1 yr-1, respectively. Gaging stations in upstream locations of the Red River 

did not have statistically significant trends. Sen slope estimates range from 0.03 m 3 s-1 yr-1 (Hawley) 

to 5.6 m3 s-1 per yr-1 (Fargo).  

  



 
 

75 

Table 3.4: Mann-Kendall (a=0.1) and Sen slope estimators for the listed gaging stations 
calculated using the annual maxima series from water years 1969 to 2018. 

 

3.3.3 Seasonal trend and magnitude  

Further evaluation of tests for trend and magnitude during spring (March and April) and summer 

(June and July) seasons are listed in Table 3.5 using the Mann-Kendall (a=0.1) and Sen slope 

estimate. For period of analysis (1969-2018) trends were evaluated for the largest seasonal flood 

per year during the spring and summer seasons at all gaging stations. Table 3.5 show the results of 

the Mann-Kendall test and Sen slope estimator (m3 s-1 yr-1) for spring and summer periods. For 

the spring period, there are no statistically significant trends identified for any of the gaging 

stations. This is evidence that over the period of analysis the size of the largest spring flood did 

not substantially change within these watersheds.    

 

The analysis of the summer season (June and July) found statistically significant increases in the 

magnitude of peak flow events (Table 3.5) over the period of analysis. Interestingly, the trend 

magnitude increases from the smaller subcatchments in the south towards the river basin outlet to 

the north (Figure 3.6). The gaging station at Drayton has an increase in magnitude of peak flow 

during summer months of 8.5 m3 s-1 yr-1. This degree of change is substantial as it equates to 6% 

of the annual average discharge at the Drayton gaging station.  

 

Gaging Station p-value 
Sen slope estimator 

(m3 s-1 yr-1) 

Drayton, ND   0.53  2.7 
Halstad, MN  *0.09  5.6  

Fargo, ND  *0.07  2.5 
Dilworth, MN  0.63  0.2 
Sabin, MN  0.55  0.2 
Hawley, MN  0.95  0.0 
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Table 3.5: Results of Mann-Kendall Test and Sen slope estimator from annual maximum 
discharge during the spring (March and April) and summer (June and July) season (a=0.1) from 

water years 1969 to 2018. 

 Spring Summer 

Gaging Station p-value 
Sen slope 
estimator  

(m3 s-1 yr-1) 
p-value 

Sen slope 
estimator 

(m3 s-1 yr-1) 

Drayton, ND   0.85  1.2 *0.0023 8.5 
Halstad, MN  0.43  2.1 *0.0010 5.4 

Fargo, ND  0.26  1.3 *0.0001 2.6 
Dilworth, MN  0.82  0.1 *0.0002 0.6 
Sabin, MN  0.75  0.1 *0.0006 0.5 
Hawley, MN  0.79  0.0 *0.0037 0.2 

 

 

 

 

Figure 3.6: Sen slope estimator (m3/s per yr.) for summer season showing magnitude of floods 
increasing northward from uplands to main river channel.
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3.3.4 Change in the frequency of peak flow events 

The change in the frequency of peak flow events both annually and seasonally is assessed using 

peaks over threshold (POT) analysis.  The annual POT series was calculated for observed 

streamflow on the main stem of the Red River using the USGS gaging station as Drayton, ND 

(Figure 3.7).  The threshold was set at 500 m3/s to increase the number of peak flow events under 

analysis beyond the annual maxima series by analyzing moderate and large flood events.  This 

resulted in a total of 53 events that exceeded the threshold between water years 1984 and 2015. 

The frequency of exceedance gradually increases over the 32-year period, with half of the POT 

events occurring on or after 2003, so in the final 13 years. The increase in occurrence begins in the 

mid-1990s, with one or more event occurring in all but two years after 1993.  

 

Figure 3.7: Annual peaks-over-threshold at the Red River at Drayton gaging station (05092000). 
Water years evaluated ranged from 1984 to 2015. Threshold value was set at 500 m 3/s to analyze 

moderate and large peak flow events. The linear fit model in red shows an increase of peak flow 
events over the simulation period. 

 

To evaluate seasonal shifts in the occurrence of peak flow events, the number of observed monthly 

POT for the first 16 years of record is plotted against the number of POT events for the final 16 

years of the series for the Red River at Drayton, ND (Figure 3.8a).  The monthly POT series was 

constructed by identifying events where daily flow exceeded the threshold, still set at 500 m3/s, 
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for each month.  The total number of events is equal to that on the annual plot (53 events), but 22 

events occurrences in the first 16 years versus 31 in the second 16 years. 

 

The observed earlier period (1984 to 1999) has a unimodal structure, with flood events occurring 

predominantly in the spring season. In the later period (2000 to 2015) there is a shift from a 

unimodal structure to a bimodal structure, where floods are occurring in both the spring and 

summer seasons. Most notably, five or more peak flow events occur in the months of April in the 

spring season and June and July in the summer season for the second half of the observational 

record. Five or more floods occur only in April in the first half of the record.  In addition, during 

the second half of the analysis period, there are five POT occurrences in October and November, 

compared to none in the first half of the analysis period. The region has consistently experienced 

flooding events in spring that can hamper planting, but more recently flooding events are occurring 

more frequently in the summer and fall months.  These months are also important for crop 

production and harvesting, so increased flooding potential can leave crops more susceptible to 

damage and yield loss.  

 

In order to more clearly ascertain the role of surface inundation and storage on these shifts, we 

applied the calibrated VIC model with and without the representation of ILA to the whole Red 

River basin.  Using the same threshold value (500 m3/s) applied to the observed stream discharge, 

monthly POT series were computed for both the No ILA (Figure 3.8b) and ILA (Figure 3.8c) 

parameterizations.  When ILA is not represented (No ILA) simulated POT events shift from spring 

dominance to summer dominance between the first and second halves of the period of analysis.  

Five or more events occurred in April, June and July in the first 16-year period, and for the months 

of April through July with a peak in June for the second 16-year period.  In addition, no 

distinguishable shift in structure from unimodal to bimodal was identified. As the No ILA 

simulation simulates no surface storage in lakes, wetlands or on fields, there is no storage reducing 

the magnitude of peak flow events nor contributing to a seasonal shift in flood occurrence (Figure 

3.8b).   

 

When ILA is represented in the model (Figure 3.8c), POT events are overestimated for the month 

of July, but the seasonal variation is in greater agreement with the USGS data (Figure 3.8a).  
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Specifically, 5 or more POT events occur in April and July for the early 16 -year period, and for 

April, June, July and August for the later 16-year period.  This illustrates the shift in seasonality 

of peak flow events from a unimodal to bimodal structure that is represented in the observed data.  

As the climate data is the same between model simulations, the difference in the number and 

distribution of POT events can be directly attributed to the representation of land surface storage. 

The temporary storage of water in the landscape, causes a reduction of discharge to nearby streams. 

The POT results from simulations with ILA, demonstrate the ability of the parameterized model 

to capture the observed change in POT structure (unimodal to bimodal). 

 

Figure 3.8: Count of peaks-over-threshold (threshold at 500 m3/s) on a monthly scale at the Red 
River at Drayton, ND over the water years 1984 to 2015 for a) USGS, b) No ILA and c) ILA. 

Simulating inundated land area (ILA) shows a similar shift in structure from spring flood events 
(unimodal) to spring and summer flood events (bimodal) observed in the USGS data. 
Conversely, to the No ILA scenario, no shift f rom unimodal to bimodal flood events  

is simulated. 
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3.3.5 Flood frequency 

To assess the role of ILA on flood magnitude, the estimated return period of annual maximum 

peak flow events was plotted for observed and simulated discharge for the Red River at Drayton, 

ND (Figure 3.9).  From this flood frequency curve, it can be seen that the No ILA simulation has 

a steeper slope compared to those fits for the USGS observations and the ILA simulations. For 

return periods greater than 2 years, the No ILA scenario overestimates flood magnitude, and the 

overestimation becomes greater as the return period increases.  The ILA scenario underpredicts 

the observed flood frequency curve, but the magnitude of the underprediction is relatively 

consistent. The influence of ILA on peak flow simulation is most significant at the 50 -year return 

period (Figure 3.9), where the percent difference of the flood magnitude from the No ILA and ILA 

scenarios with respect to the USGS observations are 23% and -8%, respectively. By representing 

ILA in model simulations, we are able to reduce bias and improve representation of a greater range 

of peak flow events. 

 

 

Figure 3.9: Analyzing the influence of local ponding on flood magnitude by comparing flood 
frequency from parameterizations representing inundated land area versus No ILA  

flood frequency. 
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3.4 Discussion 

In this study we analyze the seasonal trends, frequency and magnitude of peak flow events in the 

Red River of the North basin to enhance our understanding of the influences of a changing climate 

compounded with land use and land cover changes on downstream flow. By explicitly representing 

ILA in a hydrologic model and comparing results with observed data and a simulation scenario 

not representing ILA, we are able to better understand the effects temporary water storage on the 

landscape has on the occurrence and magnitude of peak flow events in the basin.  

 

The model was parameterized using settings developed from a nested catchment within the Red 

River basin (Smith et al., 2020), and assessed using observed discharge and ILA data. Though 

parameter adjustments were made to the soil parameter file to improve simulation of spring peak 

flow events, the parameter settings from Smith et al. (2020) provide a useful baseline to represent 

simulated streamflow and demonstrate the transferability of the parameters developed for a smaller 

sub-watershed (USGS 05062000) when applied to a larger watershed (USGS 05092000). Model 

performance of simulated streamflow is satisfactory with NSE above 0.6 and PBIAS below 15% 

for separate calibration and validation periods. In general, the model tends to underpredict spring 

peak flow events, yet capture historical spring peak flow events such as the spring floods in 1997 

and 2009. The model results are comparable to previous studies analyzing streamflow in the Red 

River basin (Liu et al., 2015; Rahman et al., 2014). Liu et al. (2015) also underestimates the spring 

2006 event and suggests the underestimation may be due to limitations of the SWAT model that 

were beyond the scope of the study. In this study, the parameters used to represent the temporary 

storage were developed by Smith et al. (2020). The model tends to underestimate ILA during 

spring events, similar to the results found in Smith et al. (2020). The reported RMSE is similar to 

that of previous studies that estimated ILA over cropland regions (Du et al., 2018; Sun et al., 2011). 

Simulated ILA is able to represent the seasonal variation of surface inundation observed in the 

spring and summer seasons resulting from snowmelt over frozen soils and excess rainfall, 

respectively. The MODIS ILA data used as the reference is also an estimate, where land cover and 

cloud coverage impacts retrievals (Policelli et al., 2017). Overall, the simulated ILA represents 

timing and magnitude of ILA satisfactorily and demonstrates the transferability of the  

ILA parameters.  
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The comparison of spring and summer peak flow with tests for trend magnitude demonstrate that 

there is an increase in peak flow events in summer months over the 50-year analysis period. All 

gaging stations assessed in upstream locations and along the main stem of the Red River have 

statistically significant increasing summer peak flow events. Peak flow events in the spring remain 

dominant with no evidence of trend as shown by the results of the peaks over threshold and Mann-

Kendall test, respectively. Previous studies have also investigated streamflow metrics seasonally 

within the Red River basin (Kelly et al., 2017; Villarini et al., 2011). Villarini et al. (2011) 

evaluated the spatial heterogeneity of peak flow events in the Midwest and demonstrated that peak 

flow events within the Red River basin occur predominantly in the spring. Kelly et al. (2017) 

examined the five-year running average (1935-2013) of 22 gaging stations in the Red River basin. 

They found an increase in daily peak flow for the spring and summer, with daily peak flow 

changing least in the spring and increasing most in the summer. 

 

Further analysis into the timing and frequency of peak flow events reveal a shift in peak flow from 

a unimodal structure, where peak flow events occur predominantly in the spring season to a 

bimodal structure, where floods are occurring in both the spring and summer/fall seasons. The 

shift is observed at the Red River at Drayton, the largest watershed used in our study. Previous 

research has analyzed the unimodal and bimodal occurrence of peak flow events in low gradient 

areas (Cunderlik et al., 2009). Cunderlik et al. (2009) investigated trends in peak flow events in 

the lowlands of Canada and identified bimodal flood seasonality at gaging stations in Manitoba, a 

province north of the Red River basin. In their study, the primary season of flood occurrence is the 

spring (April-May) resulting from snowmelt, followed by peak flow events in the fall (August-

October) from high intensity rainfall events (Cunderlik et al., 2009). Kelly et al. (2017) suggest 

that climate change plays a role in influencing the increase in peak streamflow within the Red 

River basin, but isolating effects of climate alone on peak flow is difficult due to the contributing 

influences of land use and land cover changes. The VIC model used in this study represented a 

constant land use and land cover for the region for the period of analysis. The VIC simulation with 

represented ILA captures the observed shift in peak flow events from peak flow events occurring 

predominantly in the spring season to an increase in peak flow events occurring in both the spring 

and summer seasons. The ILA scenario overestimates the occurrence of peak flow events in July. 

The overestimation is likely the result of the model’s overresponse to summer rainfall events. 
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Future studies may work to improve simulated discharge in the targeted month. The findings of 

the timing and frequency of peak flow provide supporting evidence to the studies of Cunderlik et 

al. (2009) and Kelly et al. (2017) that the shift from a unimodal structure to bimodal structure is 

likely the result of increases in precipitation intensity in summer months.  

 

The effects of ILA on peak flow are distinguishable in the occurrence of exceedance (Figure 3.8) 

and flood frequency diagrams (Figure 3.9). The results comparing the occurrence of exceedance 

on a monthly time scale with the ILA and No ILA scenario demonstrate the role ILA has on 

reducing flood magnitude. By not representing ILA in simulations the seasonal variation in peak 

flow events may be overlooked. Conversely, by representing ILA, the seasonal variation in 

simulated peak flow is well represented along with shifts in occurrence with the USGS data. In 

addition, the flood frequency for the range of return periods is more accurate when simulating with 

ILA than simulating without. The parametrization used to represent the ILA in the VIC lake and 

wetland algorithm is from Smith et al. (2020), where we developed a depth -area relationship to 

represent the seasonally flooded land surface area in a subcatchment of the Red River basin using 

remotely sensed and in-situ data. The model performance results along with the scenario 

comparison using POT shows that the ILA parameterization improves simulation of low and high 

flow periods and is transferable to larger watersheds within the Red River basin.   

3.5 Conclusion 

In this study, we investigate the seasonal trends, magnitude and frequency of peak flow events in 

the Red River basin and use an existing large-scale hydrologic model to represent the seasonal 

variation in streamflow by representing ILA within the VIC model. Results of the study are the 

following: 

1. Summer peak flow events are increasing within the Red River basin. Results of the Mann-

Kendall test show statistical significance of increasing trend in summer peak flow events 

for all evaluated gaging stations. Spring flood events do not show a statistically significant 

trend.  

2. A detected shift in peak flow occurrence is identified in the observed data within the time 

period of the study. The shift is from a unimodal structure to a bimodal structure, where 
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floods are occurring in the spring and summer seasons versus just in the spring season. The 

shift is also represented in simulated discharge when representing ILA. 

3. Simulating ILA improves the estimation of flood frequency.  Simulated flood frequency is 

greatly overestimated when ILA is not represented.  For example, the 50-year return period 

flood is over-predicted by 23% when ILA is not represented, but it underpredicted by only 

8% with the ILA parameterization.  
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4. QUANTIFYING IMPACTS OF EXCESS WATER STRESS AT EARLY 
REPRODUCTIVE STAGES OF SOYBEAN FROM UNMANNED 

AERIAL SYSTEMS  

Abstract 

Low gradient agricultural areas prone to in-field flooding impact crop development and yield 

potential resulting in financial losses. Early identification of potential reduction in yield from 

excess water stress at the plot scale provides stakeholders with  high-throughput information 

needed to assess risk and make responsive economic management decisions as well as future 

investments. The objective of this study is to analyze and evaluate the application of proximal 

remote sensing from unmanned aerial systems (UAS) to detect excess water stress in soybean and 

predict potential reduction in yield. A high-throughput data processing pipeline is developed to 

analyze multispectral images captured from a low-cost UAS throughout the growing season over 

two radiation use efficiency experiments in west-central Indiana, USA. Above-ground biomass is 

estimated remotely to assess the soybean development by considering soybean genotype classes 

(High Yielding, High Yielding under Drought, Diversity, all classes) and transferring estimated 

parameters to a replicate experiment. Digital terrain analysis using topographic wetness index 

(TWI) is used to objectively compare plots more susceptible to inundation with replicate plots less 

susceptible to inundation. The results of the study find: (1) Proximal remote sensing estimates 

above-ground biomass at the R4-R5 stage using adaptable and transferable methods with 

calculated percent bias (PBIAS) and root means square error (RMSE) of 0.8% and 72 g/m 2, 

respectively for all genetic classes. (2) Estimated biomass is sensitive to excess water stress with 

distinguishable differences identified between the R4-R6 development stages. (3) Low estimates 

of mapped percent of expected yield corresponded with observations of in-field flooding and high 

TWI.  This study demonstrates transferable methods to estimate biomass at the plot level and 

increased potential to provide crop status assessments to stakeholders prior to harvest using low-

cost UAS and a high-throughput data processing pipeline. 
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4.1 Introduction 

Low gradient agricultural areas in the Midwest often experience extensive ponding of water in 

surface depressions thereby damaging crops and increasing financial risk from yield loss. In the 

Summer of 2015, crops were planted, but excess water from heavy precipitation caused destruction 

to five percent of the corn and soybean in Indiana resulting in approximately $300 million in crop 

damage (Pack, 2015). The Midwest was devasted in the Spring of 2019, where excessively wet 

conditions prevented crops from being planted or there was a complete loss of crops after planting. 

The saturated conditions caused by snowmelt and heavy rains in Nebraska and Iowa resulted in 

damages that exceeded $2 billion.  

 

Inundated land area (ILA) is the extent of land surface covered by water following snowmelt, 

extensive rain events and saturated soil. ILA occurs after water has accumulated within local 

depressions which are typically less than one meter in depth (Figure 4.1). After accumulation in 

local depressions, the shallow water will expand through the field as shown in Figure 4.1a, 

resulting in different levels of impact during different development stages of soybean. In the 

vegetative stages, ILA can suppress the development of the soybean by preventing the 

development of nodes and leaves (Figure 4.1b). In the reproductive stages, ILA can reduce yield 

by restricting root growth, development of pods and filling of seeds, as well as contributing to 

lodging (Figure 4.1c). 
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Figure 4.1. Image of inundated land area during different development stages of soybean in an 
agricultural field in west-central Indiana: a) extent and shallow depth of ILA after planting, b) 

vegetative stage where the impacts of ILA prevented some plants to develop leaves, and c) 
reproductive stage where the impacts of ILA have caused lodging in some plants.  

 

Identifying and assessing crops impacted by ILA is important for agricultural stakeholders, 

because it provides quantitative information that can be used to evaluate effects and future risk 

needed for more responsive economic, management and insurance decisions.  The effects of ILA 

on agricultural production may be decreases in crop yield or total loss in crop production in a 

section of a field. Crop status information from early development stages can be used to identify 

and quantify areas impacted by excess water stress, as well as offer predictive yield information. 

For instance, soybean can be vulnerable to ILA in the vegetative and reproductive stages of 

development (D. W. DeBoer and W. F. Ritter, 1970; Evans et al., 1999). Reproductive stages when 

the soybean is vulnerable are the pod and seed filling stages (R4 to the R6 stages), where the effects 

a)

b) c)
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of in-field flooding can have a large impact on soybean yield (Desmond et al., 1985; F. Gao et al., 

2018; Ma et al., 2001b; Maimaitijiang et al., 2020). The R4 development stage occurs once the 

pods are full, approximately Mid-July. At the R5 stage seed filling begins. The R6 stage occurs 

once the seed has filled the pod, in August (Fehr et al., 1971). By identifying areas impacted by 

excess water stress early in the reproductive stages, stakeholders can assess risk and make more 

responsive economic and management decisions. The information gained can also be used to 

evaluate yield losses at the end of the growing season to support future investments in drainage 

infrastructure.   

 

Conventional methods to measure the impacts of excess water stress include labor-intensive and 

site-specific field measurements. The impacts of water stress on crop development and yield have 

been evaluated using above-ground biomass (g, kg/m2) and leaf area index (LAI) (m2/m2). Biomass 

and LAI have been used as variables in crop models to estimate yield by representing the variability 

in crop production (Lobell, 2013; Lobell et al., 2003; Monteith et al., 1977). Though these plot 

sampling techniques are commonly practiced, notable limitations are (1) the damaging process of 

collecting samples, (2) the time and expense of sample collection, and (3) the non-

representativeness of samples of the total area conditions or crop types.  

 

High spatial and temporal resolution data are needed to analyze crop development at the plot and 

field scale, because the adverse impacts of inundation also vary in scale and time. For instance, 

ILA may only impact a small number of rows within a portion of the field. High temporal 

resolution is needed to monitor and analyze change in environmental conditions that may affect 

yield (J. Liu et al., 2010; Maimaitijiang et al., 2020; Yu et al., 2016). In addition, the inundation 

may only last for a few days, and previous studies have shown that excess water stress can be  

detected in crops within two days (Griffin et al., 1988). As a result, information at high spatial and 

temporal resolution are needed to detect excess water stress within plots throughout the field. 

Remote sensing can be used to identify crop stress by measuring the reflected radiation. Band 

algorithms can be created and used by comparing parts of the spectrum which are related to the 

crops’ attributes or related stress (Jones et al., 2010). Limitations of using remote sensing 

measurements to analyze crop development have been identified in both the spatial and temporal 

resolution of spaceborne satellites (Kross et al., 2015). Satellites with moderate spatial resolution 
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may not be able to differentiate between fields and crop types (Chen et al., 2005; Johnson, 2014). 

Prior research has also shown that course spatial resolution from satellites such as MODIS, using 

optical sensors have reduced sensitivity and underestimated measurements of above ground 

biomass (Chen et al., 2005; Yilmaz et al., 2008). In addition, high temporal resolution is needed 

to measure changes in the environment. However, freely available products from high spatial 

resolution platforms are limited by courser temporal resolutions. With the advent of unmanned 

aerial systems (UAS), field scale observations can be made daily if observation conditions permit. 

Proximal remote sensing is the indirect measurement of an object in close proximity with a sensor 

(Chipman et al., 2009). Proximal remote sensing from UAS platforms provides high spatial 

resolution at the centimeter scale and the ability to produce near real-time updates of the crop status 

in a non-destructive manner.  

 

The Midwest is experiencing a changing climate with an increase in average annual precipitation 

and temperature, with the greatest increase in annual precipitation occurring in the critical spring 

months (Alberto et al., 2015; Widhalm et al., 2018). The United States Department of Agriculture 

(USDA) uses the term “prevented planted acres” to refer to an insured crop that could not be 

planted by a predetermined planting date because natural disaster such as flooding prevented the 

sowing. In 2019, the USDA reported a record number of prevented planted acres at 19.4 million 

acres where more than 73% of prevented planted acres were in 12 Midwest states. Further research 

is needed to quantify the impacts of excess water stress in early development stages at varying 

spatial resolutions. The aim of the study is to quantify the impact of excess water stress in the early 

reproductive stages of soybean based on proximal remote sensing from a UAS. The results of the 

study will help answer crop water stress questions such as: (1) Can proximal remote sensing be 

used to detect excess water stress in soybean? And (2) What is the potential yield impact from 

ILA? By identifying and assessing soybean yield loss due to excess water stress stakeholders  can 

make more responsive economic and management decisions. 

4.2 Methods 

The following sections discuss the study site, data acquisition, developed tools and the approach 

used to measure crop stress. 
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4.2.1 Site description and data acquisition 

The area of interest (AOI) for this study is a research farm field located in west-central Indiana 

(40.249 N, 86.877 W) which is approximately 7 ha (17 acres).  The AOI is in a low gradient area 

with a soil texture that is predominantly silty clay loam. The dominant soil type being a Drummer 

soil. The poorly drained soil has subsurface tile drainage with a 20 m spacing at a depth of 

approximately 1 m. Figure 4.2 shows an aerial view of the site location along with two defined 

radiation use efficiency (RUE) experiments within the AOI. The RUE experiments were not 

designed to investigate excess water stress but due to weather events were adequate to support this 

study. Each RUE experiment contained three soybean classes defined as High Yielding (HD), 

Diversity (DA) or High Yielding under Drought (HYD) (Song et al., 2017). The number of plots 

for each class in RUE-1 were 191, 144 and 48 for HY, DA and HYD, respectively for a total of 

383 plots for all genetic classes. The number of plots for each class in RUE-2 were 190, 139 and 

48 for HY, DA and HYD, respectively with a total of 377 plots for all classes. Each of the three 

classes contained a unique recombinant inbred line (RIL) with a plot replicate in both experiments 

(RUE-1 and RUE-2). The plot replicates enabled a comparison analysis for changes in 

environment. A plot in a location which was more susceptible to inundation could be compared 

with its genetic replicate in a location that was less susceptible to inundation. Both experiments 

are approximately 1 ha (2. ac) and are managed using an annual corn and soybean rotation. 
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Figure 4.2: Map view of the field experiment, located in west-central IN. Two areas of interests 
were analyzed, which are outlined in black and blue. The black outline represents the area of 

experiment 1, RUE-1. The blue outline is the second experiment, RUE-2. The red outlines are 
mapped locations of inundation using an RTK. Ground control points were used to define extents 

of experiments.  

 

In 2018, the field was planted with soybean and imaged using an Unmanned Aerial System (UAS) 

at least once a week from June to August with an RGB and multispectral camera. The UAS 

platform used in this study was an eBee from senseFly. This autonomous fixed wing system was 

used to acquire data over the AOI at an altitude of approximately 120 m at spatial resolution of 

approximately 2.54 cm/pixel and 6.00 cm/pixel for RGB and multispectral, respectively. The RGB 

camera used was a senseFly S.O.D.A. and the multispectral camera used was a Sequoia from Parrot. 

Flights were configured and flown with eMotion software. The forward and side overlap for flights 

were set to at least 85% and 70%, respectively. Ground control points (GCPs) were installed at the 



 
 

94 

corners of designed experiments and surveyed using the TOPCON Real Time Kinematic (RTK) 

surveying equipment (Figure 4.2).  

 

Reflectance panels and field spectrometers were used to measure reflectance to aid in image 

calibration. The panels were laid out on the field during flight operations. The reflectance panels 

reflect at a specific and consistent percentage of light across the Visible and Near-Infrared 

spectrum. Five panels were used, with reflectances of 7%, 12%, 22%, 36% and 48%. Handheld 

field spectrometers were used as well to measure the reflectance of the panels as the multispectral 

data were being collected via the camera mounted to the UAS. The reflectance values from the 

panels, along with digital number values of the panels, extracted from the generated orthomosaics, 

were used to calibrate the remotely sensed data to surface reflectance using an empirical 

relationship between measured reflectance with respect to the digital number (G. M. Smith et al., 

1999). The values generated from the empirical equation can be used as inputs into Vegetation 

Indices Derivation (VID) to calibrate the images for accurate reflectance and indices output. VID 

is a tool developed by our workgroup and used in our data p rocessing pipeline that is further 

described in the following section (Lyu et al., 2019).    

 

In addition, field measurements were collected to evaluate crop development as well as to map the 

extent of inundation.  Soybean biomass samples were collected July 16th (60 days after planting) 

between the R4 and R5 stage. Above-ground biomass (g/m2) was sampled throughout each 

experiment (RUE-1 and RUE-2) collecting 383 and 377 samples, respectively. After collection the 

soybean was oven dried and weighed. The dry weight was used in the analysis. The field was 

harvested with a combine, and yield measurements were collected from a yield monitor for each 

plot. The TOPCON RTK was used to map the extent of inundation following rain events by 

surveying the perimeter of inundation, as shown in Figure 4.2. Some observed ILA was not 

mapped in order to reduce the amount of foot traffic within the field. 

4.2.2 UAS data processing pipeline  

During a flight the UAS captures high resolution imagery from RGB and multispectral sensors 

over an AOI, and within the AOI may be many experiments and various crop status information 

that are of interest to plant breeders and stakeholders, where GCPs show the extent of multiple 
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experiments (Figure 4.2). For our study, in order to analyze and evaluate excess water stress of 

soybean at the field scale from high resolution imagery, flexible tools were needed to 1) map and 

extract soybean plots within a defined area, 2) perform atmospheric correction, and 3) apply 

vegetation indices and output the data to an interpretable format to make inferences. As a result, a 

high-throughput phenotyping processing pipeline was created with two developed tools, Crop 

Image Extraction, version 2 (CIE) and Vegetation Indices Derivation (VID). CIE and VID are 

Python programs which enable users to extract, calibrate and quantify vegetation indices of interest 

at the plot level (Lyu et al., 2019). The data processing pipeline is highly modular and efficient. 

Further detail about each tool is described below, and a GitHub repository is available to facilitate 

collaboration and enhance tool development. 

 

CIE is the first step in the high-throughput phenotyping processing pipeline. CIE has the ability to 

extract plot images from designed experiments with RGB, multispectral and thermal imagery 

captured by the UAS. Plot images are extracted from user-configured inputs that describe the AOI 

and generated outputs from image stitching software such as camera parameter files. For our study 

Pix4D Mapper software was used (Pix4D SA, 2018).  User-defined inputs consisted of 

experimental metadata such as location, number of crop rows, ranges, and units as well as length 

and spacing between plots. Figure 4.3 illustrates the components of a mapped experiment using 

CIE and outputted vegetation index with VID.  A crop unit is defined as a single row of a soybean 

plot, so if the plot was described as a four-row plot it is expected to see four crop units within each 

plot. Crop rows and ranges are the number plots along the x-direction and y-direction, respectively. 

The crop unit centerline is used to measure distance between crop units in both x and y d irection. 

After the configuration is completed for the AOI, plots are extracted by segmenting the  canopy 

and gridding the calculated locations of each plot (Figure 4.3). As the crop develops and changes 

color, CIE uses multiple segmentations and crop localization functions to identify the crop unit 

centerline to ensure the correct number of crop units are identified within each crop plot (Lyu et 

al., 2019). The experimental metadata information along with the dimensions of the crop unit (crop 

length and spacing between crop rows) are then used to calculate the crop plot midpoint and map 

the remaining crop plots. The result is accurately and precisely identified crop plot midpoints that 

enable automated and rapid extraction of plot images. Depending on the size of the experiment, 

the generated CIE outputs can be thousands of plot images.  
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Figure 4.3: Illustration of components of a defined experiment from Crop Image Extraction and 
Vegetation Indices Derivation. The user has defined an experiment made of four crop rows and 

two crop ranges, and each crop plot contains six crop units. The experiment is made of four crop 
rows and two crop ranges. CIE extracts replicate plot images from the UAS during a flight over 

an area of interest. CIE enables the user to define an experiment, the tool then highlights the 

canopy, grids the experiment and extracts the replicate plot images from each gridded plot. VID 
is used to calibrate images and compute vegetation indices of interest. 

 

The plot images from CIE were fed into VID, to calibrate images as well as create and use functions 

to calculate indices of interests. VID is the second step in the data processing pipeline. VID uses 

image attributes (i.e. row, range, date, image band, image replicate) with customized functions 

such as band algorithms to quantify phenotypic traits from the extracted plot images. VID can also 

calibrate plot images by applying empirical equations generated by extracting reflectance and 

digital number values from calibration panels positioned within the field during each flight (Smith 
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et al. 1999). The automated and efficient structure in VID allows for rapid processing and ability 

to output data into text and image format for analysis as shown in Figure 4.3. 

4.2.3 Estimating above-ground biomass remotely 

Identifying impacts of excess water stress on soybean remotely requires a predictive measurement 

that can assess the above-ground crop development. LAI (m2/m2) and above-ground biomass 

(g/m2), as described previously, are common in-situ measurements that can also be used to assess 

crop development. Remotely-sensed observations of above-ground biomass often incorporate 

radiation use efficiency (RUE) models to estimate biomass by converting the absorbed 

photosynthetically active radiation (APAR) to biomass (J. Liu et al., 2010; Monteith, 1972; 

Monteith et al., 1977).  Vegetation water content (VWC; kg/m2), is a measurement of the total 

amount of water in the stems and leaves of vegetation, and VWC is commonly used as a parameter 

in algorithms to estimate soil moisture content (B. C. Gao et al., 1995; Kim et al., 2012; Yilmaz et 

al., 2008). VWC can be estimated with both active and passive sensors (Jackson et al., 1999). 

When measured with passive sensors, vegetation indices are used to obtain water content 

information. For example, equation 1 uses the normalized difference vegetation index (NDVI) and 

a stem water content variable to estimate the total above-ground water content (Chan et al., 2013; 

Jackson et al., 1999). 

 

𝑉𝑊𝐶 = (1.9134 ∗ 𝑁𝐷𝑉𝐼2 − 0.3215 ∗ 𝑁𝐷𝑉𝐼) + 𝑠𝑡𝑒𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 ∗
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

1 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 (4.1) 

 

Equation 1 consists of two terms which combined, estimate the total above-ground water content. 

The first term describes the foliage water and uses the NDVI values to relate the chlorophyll 

content within the foliage of the plant. The constants were calculated by optimizing a polynomial 

function to evaluate the relationship between NDVI and VWC (Jackson et al., 1999). The second 

term makes use of the stem factor (3.50 for crops) and NDVI annual extremes (maximum and 

minimum) to estimate the stem water content (Chan et al., 2013).  The stem factor is a constant 

used to estimate the peak amount of water residing in the stems which is dependent on vegetation 

type. VWC is estimated using NDVI because a higher NDVI indicates a plant with increase in 

foliage that results in a higher VWC. Previous research used Landsat Thematic Mapper (TM) 
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images to estimate VWC at a spatial resolution of 30 m (Jackson et al., 1999). VWC has also been 

used to assess agricultural production for yield estimation and agricultural water management  

(Zhang et al., 2010).  

 

Equation 1 was developed for regional and global scale retrievals of VWC using NDVI from 

spaceborne platforms such as MODIS and Landsat (Chan et al., 2013; Jackson et al., 1999). As a 

result, mission objectives required a spatial resolution at a large scale (30 m – 1 km) to measure 

NDVI, which would represent the foliage within the pixel. Multispectral imagery from a UAS is 

at a high spatial resolution (1 cm – 10 cm) where thousands of vegetation index values are 

generated at the plot scale as compared to satellite imagery which may only generate one 

vegetation index at the field scale. Understanding these differences in applications are needed to 

ensure band algorithms are being used and interpreted correctly.  The high temporal and spatial 

resolution of the UAS enabled the use of  a varying of NDVI extremes, NDVI maximum and 

minimum values were calculated for each soybean class and all classes for each experiment.  

 

The estimation of VWC and associated terms in equation 1 were developed for parameterizing 

emission attenuation of vegetation in order to remotely estimate soil moisture content at a large 

scale (i.e., 1 km spatial resolution). For instance, the stem factor is a constant value for large scale 

application. In reality this value is not constant, and changes with the crop’s  growth and 

development as well as with environmental conditions. For this study an algorithm was needed for 

the plot scale which considered the environment that may change daily within the field, such as 

ILA and its impact on soybean development as well as variation in soybean genetics. In order to 

integrate these requirements for our application a varying stem water content variable and 

estimating parameters was developed for each soybean class. 

 

As a result, an algorithm was developed for the plot scale that accounts for changes in the 

environment by measuring the impact those conditions may have on the soybean’s estimated stem 

water content. In order to quantify the impacts of ILA on crop yield the stem water content would 

need to be calculated for each plot at different development stages over the growing season. 

Equation 2 shows the calculation of the adjustable stem factor.  
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𝑎𝑑𝑗𝑢𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑒𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑁𝐼𝑅𝑟𝑒𝑓

𝐺𝑟𝑒𝑒𝑛𝑟𝑒𝑓
 (4.2) 

 

Where NIRref is the average plot near-infrared band reflectance value and Greenref is the average 

plot green reflectance value. The stem water content was made variable to suit UAS applications 

by incorporating an adjustable stem factor and measurement of NDVI extremes that could be 

measured each flight. The band ratio of the NIR and green band is proposed to represent the stem 

factor for the following reasons. First the bands have a similar reflectance response when 

vegetation is healthy. The NIR band has a higher reflectance than the green band, which would 

correlate to the soybean as having an increase in above ground biomass. Second, the band ratios 

behave differently under different environmental conditions such as flooding. For instance, in the 

occurrence of ILA the green band will have an increase in reflectance caused by the turbid water 

behaving as a diffuse reflector to the smaller wavelength, whereas the NIR band will have a 

decrease in reflectance from absorption by water of the longer wavelength, which will represent 

an adverse effect on the crop status and decrease in above ground biomass.  Incorporating the 

variable stem factor can help monitor and analyze change in the development of soybean 

throughout the growing season which is influenced by environmental conditions.   

 

Providing transferable and representative models to estimate biomass are of necessity for plant 

breeders where a designed experiment may include multiple classes with thousands of different 

genetics under analysis at different locations. In this study, parameters were estimated using 

measured biomass (g/m2) samples and remotely sensed observations of the average NDVI at the 

plot scale. Equation 3 shows the non-linear equation used to estimate biomass (g/m2) 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔/𝑚2)

= (𝑎 ∗ 𝑁𝐷𝑉𝐼2 + 𝑏 ∗ 𝑁𝐷𝑉𝐼) + 𝜓 ∗
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

1 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 + 𝑐 

(4.3) 

 

where 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are output parameters from the SciPy optimization tool package used to estimate 

parameters using non-linear least squares. The adjustable stem factor, 𝜓, is calculated according 

to equation 2. Parameters were fit to the adjustable stem factor and with constan t stem factor (3.50) 
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for comparison. The NDVI extremes, NDVImax and NDVImin were calculated for each class and 

all classes within each experiment.  

 

As stated previously, each field experiment (RUE-1 and RUE-2) contained replicated plots from 

three classes (HY, HYD and DA) where biomass sampling was conducted in both field 

experiments in the early reproductive stages (R4-R5). In order to consider the variation in soybean 

genetics, equations were generated for HY, HYD, DA and all classes from data in RUE-1 using 

optimized estimated parameters from non-linear least squares. RUE-1 was selected because the 

measured biomass (g/m2) had a larger range than RUE-2. The percent bias (PBIAS) and root mean 

square error (RMSE) were metrics used to evaluate the estimated biomass (g/m2) with measured 

biomass (g/m2) for each class and experiment. The evaluated metrics were also used to determine 

if parameters were representative for all classes of RUE-1, as well as assess the transferability of 

experiment parameters from RUE-1 across all genetic lines in RUE-2.  

4.2.4 Identifying areas of water accumulation using topographic wetness index  

Digital terrain analysis is an effective method used in hydrology applications to explore potential 

variation in water flow and accumulation based on topographic information. Topographic indices 

reflect the ratio of contributing area to surface slope and so have been used to predict areas of 

water accumulation (Grimm et al., 2018; Quinn et al., 1995). The Topographic wetness index (TWI) 

is a function of the natural log of the contributing drainage area per contour length,  over the 

surface slope tan 𝛽,  as listed in equation 4 (Beven et al., 1979).  

 

𝑇𝑊𝐼 = ln (
𝛼

tan 𝛽
) (4.4) 

 

The TWI is calculated from a digital elevation model (DEM). The DEM pixels are used to measure 

𝛼 and tan 𝛽. The TWI is used to identify hydrologically similar areas, and in our study to identify 

areas susceptible to ILA, with TWI calculated from a high-resolution DEM (1.5 m). (Figure 4.4). 

In the AOI, TWI values range from 2 to 23, where regions of lower values are less susceptible to 

in-field flooding. As TWI values increase, the susceptibility to soil saturation and in-field flooding 

increases.  The observed extent of inundation measured with the RTK as compared to the TWI is 
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also shown in Figure 4.4 with an average TWI of 13.5 in the surveyed region. TWI was 

incorporated into the plot scale analysis by using CIE outputs to extract TWI values for each plot 

within the defined experiments. Plots extracted with CIE in experiments RUE-1 and RUE-2 are 

shown as black circles in Figure 4.4. 

 

Figure 4.4: Map of topographic wetness index (TWI) calculated from a 1.5 m resolution DEM at 
the study location. Lower values shown in brown are less suspectable to in -field flooding. The 
transition from brown to blue shows an increase in susceptibility of in-field flooding. Mapped 
inundated land area (ILA) shows agreement with the calculated TWI. Crop Image Extraction 

(CIE) can be used to extract TWI from plots within a defined experiment. The black circles 
represent the extracted plots from RUE-1 and RUE-2. 

 

In this study TWI was used to analyze the variation in soybean yield between replicates to explore 

the potential impact of excess water stress. To analyze the differences, TWI thresholds were 

applied to identify plots less likely to experience ILA and those that were more likely to experience 

ILA. Thresholds were determined using spatial analyst in ArcMap 10.5 to calculate average TWI 
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in regions observed to experience inundation, and those observed to be consistently dry. The low 

TWI threshold (drier conditions) was set to values less than 7.4 and the high TWI threshold (wetter 

conditions) was set to values greater than 13.5. Figure 4.5 shows a scatter plot comparing soybean 

yield for all plots under analysis, labeled by class and the plot’s associated TWI value. The red 

vertical lines indicate the location of the applied thresholds for low and high TWI values at 7.4 

and 13.5, respectively. The figure shows that plots with a low TWI value have large range in yield 

from approximately 2,000 kg/ha to 5,700 kg/ha with a median value of 3,970 kg/ha. Whereas plots 

with a high TWI value have less variation in yield ranging from approximately 2,500 kg/ha to 

4,800 kg ha and a lower median yield of 3,770 kg/ha. Plots located in areas of high TWI were 

predominantly of the HY and DA classes, while only three plots of the HYD were located in an 

area of high TWI. 

 

In order to isolate the potential impact of differing wetness conditions, 28 replicate pairs were 

extracted from the RUE-1 and RUE-2 experiments, in which one plot experienced low TWI (< 7.4) 

and the other experienced high TWI (>13.5). This filtering process allows analysis to focus on 

replicates that have the potential for different wetness conditions.  The replicate plots create 

opportunities to analyze and compare the soybean development and impact of excess water stress 

between replicate plots with similar traits. In addition, planting of plots did not take into account 

TWI, which means all plots were equally likely to be planted in areas that may or may not 

experience excess water stress.
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Figure 4.5. Scatter plot of the relationship between topographic wetness index (TWI) and 
soybean yield (kg/ha) labeled by class. TWI thresholds at 7.4 and 13.5 were set to compare 
RUE-1 and RUE-2 replicates less likely to experience ILA to those that were more likely to 
experience ILA. The low and high TWI ranges used in analysis are represented by arrows. 
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4.3 Results 

4.3.1 Above-ground biomass prediction  

Results of the optimization process for each class and expanding all genetic lines are listed in Table 

1 which includes the parameter estimates (𝑎, 𝑏 and 𝑐), percent bias (PBIAS) and root mean square 

error (RMSE).  The estimated parameters used to estimate biomass for each class and all classes 

were similar, with the HYD having the most contrast from accompanying classes listed in Table 

4.1, highlighting the subtle differences in estimated parameters for dif ferent genetics. HYD has 

the lowest PBIAS and RMSE amongst all classes at < 0.1% and 64 g/m2, respectively. The constant 

stem factor (3.50) was also evaluated versus the adjustable stem factor. Overall the constant stem 

factor results are very similar to the adjustable stem factor with a PBIAS and RMSE ranging from 

-0.5% to -0.6% and 63 g/m2 to 75 g/m2, respectively. Figure 4.6 compares estimated biomass (g/m2) 

with respect to measured biomass (g/m2) for classes HY, HYD, DA and all classes from RUE-1. 

The red line is a 1:1 reference for each comparison to show overestimation or underestimation of 

estimated biomass with measured biomass. For each class and all classes in RUE-1, RMSE and 

PBIAS ranged from 64 g/m2 to 73 g/m2 and <0.1% to 0.8%, respectively. The low PBIAS and 

RMSE for all classes in RUE-1 confirmed that the parameters were representative for all classes 

under analysis, and it is not necessary to develop equations for each class separately. Figure 4.6a 

and 6d compare the estimated biomass and measured biomass for the HY class and all classes. The 

equation for all classes was able to accurately represent the range of estimated biomass similar to 

the dominant class that had 191 plots.  
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Table 4.1: Estimated parameters for High Yielding (HY), High Yielding under Drought (HYD), 
Diversity (DA) and all classes for RUE-1 and RUE-2 with calculated percent bias (PIBAS) and 

root mean square error (RMSE). Parameters from RUE-1 were transferred to RUE-2. The 
constant stem factor was also analyzed to compare with the adjustable stem factor.  

Type and number of plots Parameter 

𝑎 

Parameter 

𝑏 

Parameter 

𝑐 

PBIAS 
(%) 

RMSE 
(g/m2) 

 

RUE-1 

 
HY 
191 plots 

1817.06 -1022.2 226.9 0.8 73 

HYD 
48 plots 

2382.77 -1863.25 497.97 < 0.1 64 

DA 
144 plots 

1993.46 -1267.85 308.15 <0.1 70  

All classes  
383 plots 

1955.75 -1217.37 290.23 0.8 72 

HY – constant stem factor  
191 plots 

464.06 761.75 -372.22 -0.6 75 

HYD – constant stem factor  
48 plots 

2379.15 -1856.73 493 -0.5 63 

DA – constant stem factor  
144 plots 

1993.16 -1264.52 305 -0.5 70 

All classes – constant stem factor  
383 plots 

1955.75 -1217.37 286.73 -0.5 71 

RUE-2 

HY  
190 plots 

1817.06 -1022.2 226.9 16.6 82 

HYD 
 48 plots 

2382.77 -1863.25 497.97 10.2 65 

DA 

139 plots 

1993.46 -1267.85 308.15 11.5 72 

All classes  

377 plots 

1955.75 -1217.37 290.23 14.4 77 
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Figure 4.6: Scatter plots comparing estimated biomass with measured biomass for each class and 
all classes in RUE-1 shown as triangles. a) High Yielding, b) High Yielding under Drought, c) 

Diversity and d) all classes. Parameters were estimated for each class to consider varying 
soybean genetics and for all classes to determine if one set of parameters could be representative 

for all classes.  
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The parameters for each class and for all classes developed from RUE-1 were transferred to RUE-

2. Table 1also lists the PBIAS and RMSE for RUE-2, which ranges from 10.2% to 16.6% and 65 

g/m2 to 82 g/m2, respectively. Figure 4.7 shows subplots comparing estimated biomass (g/m2) with 

respect to measured biomass (g/m2) for classes HY, HYD, DA and all classes from RUE-2. Overall, 

the transferred parameters were sufficient at representing the range of estimated biomass for 

varying genetic classes as well as all classes as shown in Figure 4.7. The transferred equation 

shows slight overestimation of estimated biomass for HY, DA and all classes for RUE-2 displayed 

in Figure 4.7a, Figure 4.7c and Figure 4.7d, respectively. The calculated PBIAS is satisfactory 

with all types under analysis below 20% and RMSE comparable to values calculated in RUE-1. 

The transferred equation shows the ability to accurately estimate biomass for varying number of 

plots, such as in the HYD (contains 48 plots) and all classes (contains 377 plots in RUE-2) where 

the PBIAS is 10.2% and 14.4%, respectively.  
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Figure 4.7: Scatter plots comparing estimated biomass with measured biomass for each class and 
classes in RUE-2 shown as circles. a) High Yielding, b) High Yielding under Drought, c) 

Diversity and d) all classes. Parameters were transferred from RUE-1 to RUE-2. 

 

Using the representative equation for all classes, above-ground biomass was estimated to analyze 

the soybean development and impacts of excess water stress. Figure 4.8 is a spatial map displaying 

the estimated biomass from a flight date on July 17 th, 2018. In Figure 4.8, the estimated biomass 
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ranges from 102.15 g/m2 to 476.45 g/m2. In RUE-2, the cluster of low biomass values indicated 

by the red circles correspond with the high TWI values and mapped ILA using the RTK. Also, the 

northeast corner of RUE-1 has low estimated biomass. This section of the field experienced ILA 

between the R1-R2 stage of the growing season and corresponds to high TWI values and  

observed ILA. 

 

Figure 4.8: Estimated biomass (g/m2) spatially from early reproductive stages (R4-R5) of 
soybean for experiments in RUE-1 and RUE-2. Outputs generated using CIE and VID. Plots of 
low estimated biomass values are shown in red and the transition to green represent an increase 

in estimated biomass. Plots with low estimated biomass correspond with  mapped inundated land 
area. 

4.3.2 Sensitivity of above-ground biomass to water stress 

To explore if the estimated above-ground biomass is sensitive to water stress, plots with observed 

occurrences of ILA in RUE-2 were compared with their replicate in RUE-1. In 2018, ILA was 
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observed on June 25 th, July 6th and July 12th. The ILA observed on June 25 th was from a large 

rainfall event (32 mm) on June 23 rd demonstrating that ILA can persist for at least two days even 

with subsurface tile drains. Excessive saturated conditions were observed on July 2nd from heavy 

rainfall five days prior. In addition, heavy cumulative precipitation of 29 mm occurred during 

critical periods of the reproductive stages (R4-R6). The R1-R6 stages occurred approximately 

between June and August. The R1-R3 stages occurred between June 25 th to July 12th. The R3-R4 

stage was from July 12 th to July 17th. The R4-R6 stages occurred between July 17 th to August 2nd. 

The R7-R8 stages occurred between August 9 th and August 14th.   

 

Figure 4.9 shows four examples comparing plots in RUE-1 with replicate plots in RUE-2 and 

analyzing the impacts of excess water stress on estimated biomass over the growing season for the 

two most dominant class types, DA and HY. Figure 4.9a and 9b display the DA class while Figure 

4.9c and 9d assess the impacts of excess water stress on estimated biomass for the HY class. Figure 

4.9a and 9b, display similar behaviors from the impacts of excess water stress on biomass in RUE-

2 resulting in a 4% and 18% decrease in yield, respectively. Plots in RUE-2 experienced ILA early 

in the growing season, whereas replicate plots in RUE-1 did not experience ILA.  Comparing plots 

impacted by ILA in RUE-2 with the replicates not impacted by ILA in RUE-1, noticeably lower 

estimated biomass is detected at the R4-R5 stage on July 17th. Biomass increased at a lower rate 

for plots in RUE-2 between R4-R6 coinciding with heavy precipitation resulting in a lower 

estimated biomass at the end of the growing season.  

 

Figure 4.9c highlights an interesting example where both replicate plots experienced inundation at 

the R1-R2 stage. ILA was observed at the northeast corner of RUE-1 and central section of RUE-

2. Between the R1-R4 stages there is little difference between estimated biomass values for the 

plots in RUE-1 and RUE-2. As the growing season continued the plot in RUE-1 had less 

occurrences of inundation and an increase in biomass as compared to the plot in RUE-2 which had 

more occurrences of inundation and a decrease in biomass. The difference in biomass at the end 

of the growing season was 106 g/m2 and there is a 16% decrease in yield for the plot in RUE-2. 

Figure 4.9d illustrates pronounced differences in estimated biomass between plots early in the 

growing season at the R3-R4 stage with an end of season difference of 119 g/m2.  The plot 
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impacted by excess water stress in RUE-2 has a 16% decrease in yield as compared to the replicate 

plot not impacted by excess water stress in RUE-1. 

 

This analysis was completed using plots where ILA had been mapped. The comparison of replicate 

plots revealed noticeable differences from the impacts of excess water stress on estimated biomass 

at the early reproductive stages (R4-R6) of soybean and may provide useful indicators of impacts 

to final yield. An objective approach is needed to distinguish between plots that are more 

susceptible to ILA with plots that are less susceptible to ILA and recognizing that soybeans can be 

impacted by excess soil moisture conditions even before surface ponding is visible. The TWI can 

be used to distinguish plots using TWI thresholds with the estimated biomass.
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Figure 4.9: Four examples analyzing the impacts of excess water stress on estimated biomass 
(g/m2) over the growing season. Plots experienced inundated land area (shown in blue) and 

heavy cumulative precipitation (shaded in grey). Analysis was done by comparing plots where 

ILA was observed in RUE-2 (circles) with the plot replicate in RUE-2 (triangles). a) Plots in the 
Diversity (DA) class recombinant inbred line DS11-30102. b) Plots in the Diversity (DA) class 

RIL DS11-30043. c) Plots in the HY class RIL DS11-02174. d) Plots in the HY class RIL DS11-
08020.
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4.3.3 Quantifying the impacts of excess water stress on yield 

To quantify the impact of excess water stress on yield, replicate plots in areas of high TWI were 

analyzed and compared with plots in low TWI ( TWI) using estimated biomass from the equation 

representing all classes in RUE-1 and RUE-2. TWI thresholds of 7.4 and 13.5 were used for low 

and high areas of TWI, respectively. A total of 28 replicate plots were identified that were located 

in areas of high susceptibly to excess water stress with a reference replicate in an area less 

susceptible to excess water stress.  

 

The relationship between  TWI, yield loss (yield) and difference in estimated biomass ( 

estimated biomass) at early reproductive stages (R4-R5) was analyzed (Figure 4.10). Change was 

measured by taking the difference between replicate plots in areas of high TWI minus low TWI. 

Difference in yield range from approximately -2400 kg/ha to 1300 kg/ha, with a negative yield 

difference indicting a decrease in yield associated with the plot more susceptible to excess water 

stress. Figure 4.10 shows that as the change in estimated biomass increases (becomes more 

negative), the yield loss also increases (difference in yield becomes more negative), with biomass 

differences that exceed 100 g/m2. Figure 4.10 highlights the relatively high variability of  TWI 

as an independent metric to estimate change in yield. 
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Figure 4.10: Analyzing the interactions between  yield,  estimated biomass and  TWI at the 
early reproductive stage (R4-R5). Values are colored with the difference in TWI between 

replicate plots, which range from 7 to 12. 

 

The percent of expected yield (%) with respect to the relative biomass (fraction) was also analyzed 

to create a predictive equation for stakeholders to determine percent of expected yield based on 

observations from the early reproductive stages (R4-R5).  The percent of expected yield is the 

calculated ratio of the change in yield between plots of high and low TWI with respect to the yield 

in low TWI. The relative biomass is the calculated ratio of the biomass in plots of high TWI (g/m2) 

with respect to the biomass (g/m2) in plots of low TWI. Figure 4.11 demonstrates the relationship 

between the percent of expected yield and fractional biomass at R4-R5 for plots in areas of high 

TWI. The range of percent difference is from 52% to 151%, while the range of estimated biomass 

is 0.41 to 1.25. Figure 4.11 demonstrates the linear model which shows a positive linear correlation. 

The correlation across all plots is not significant with a correlation coefficient (r) of 0.32. The F-



 
 

115 

statistic of the regression is not significant at 0.05 but is significant at 0.1. In general, as estimated 

biomass increased  estimated biomass also increased, which transitioned to a positive increase in 

percent difference in yield.  

 

 

Figure 4.11. Comparing interactions between percent of expected yield (%) with respect to 

relative biomass (fraction) and the  estimated biomass (g/m2) at the early reproductive stage 
(R4-R5). The model estimate is shown in black. 

 

Figure 4.12 is a spatial map of the percent of expected yield (%) across RUE-1 and RUE-2 from a 

flight on July 17th, 2018 at the R4-R5 stage. The range of percent of expected yield is from 83 to 

125%. The average percent of expected yield is 103%. The lowest range of percent of expected 

yield between 83% and 90% occur predominately in corresponding areas susceptible to inundation. 

For RUE-1 plots with the lowest percent of expected yield occur in the northeast corner which 

correspond to the high TWI and mapped ILA. In RUE-2 plots with the lowest percent of expected 

yield occur towards the center of the field and also correspond with high TWI and mapp ed ILA. 

In RUE-1 the percent of expected yield generally increases in the direction from east to west. In 

RUE-2 the percent of expected yield generally increases from west to east.  

y = 0.32x + 72 
r = 0.32 
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Figure 4.12. Percent of expected yield (%) from excess water stress at the R4-R5 stage. Values 
between 83-95% (red to orange) indicate areas predicted more likely to have a lower yield, 

whereas values greater than 95% (yellow to green) predict a higher estimate of yield.  

4.4 Discussion 

The discussion is divided into three sections evaluating the approach to quantify the impacts of 

excess water stress on soybean yield and underscoring notable developments and future work 

needed. The sections discussed are the data processing pipeline,  estimation of biomass and 

quantifying impacts of excess water stress on yield. 

4.4.1 UAS data processing pipeline 

A data processing pipeline was developed for high-throughput phenotyping at the plot level with 

CIE and VID (Lyu et al., 2019). The developed tools enabled calibration and plant phenotyping at 
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the plot scale for multiple flight dates to estimate potential yield loss by excess water stress. This 

form of data processing can be time and data intensive as indicated by Shi et al. (2016). In their 

study 38,000 plots were manually extracted from orthomosaics (Shi et al., 2016). Creating 

automated tools to extract plot images, calibrate images and apply band algorithms can be 

additional challenges that limit time needed to answer primary objective science questions. CIE 

and VID are Python tools that were developed to reduce the aforementioned burden and place 

more time and focus on the science questions. Yu et al. (2016) and Maimaitijiang et al. (2020) 

have used orthomosaics for plant phenotyping of soybean generated from stitched images with 

RGB, multispectral and thermal sensors on UAS platforms. In this study orthomosaics were also 

used for estimating biomass from multispectral stitched images. CIE now has the capability to 

extract plots from the original images from RGB, multispectral and thermal imagery, which can 

generate multiple replicate plot images within an experiment. Future research should analyze the 

original images and test data fusion and/or deep learning to predict yield.  

4.4.2 Predicting above-ground biomass   

By expanding the methodology developed from Jackson et al.  (1999) and Chan et al. (2013) for 

estimation of VWC to estimate above-ground biomass for different soybean classes (HY, HYD 

and DA) and across all classes proved to be representative and transferable. The incorporated 

adjustable stem water content variable provided only minor improvements when compared to the 

constant stem factor. This finding provides insight that the estimated biomass was not significantly 

influenced by the adjustable stem factor. Parameters used to estimate biomass representing all 

genetic classes within RUE-1 had low PBIAS and satisfactory RMSE. The equation used for all 

classes in RUE-1 was transferred to RUE-2 to estimate biomass for all plots. Estimated biomass 

in RUE-2 had satisfactory PBIAS and RMSE but was generally overestimated when compared 

with in-situ data. The overestimation in RUE-2 is attributed to biomass values (and associated 

parameters) from RUE-1 to be generally higher than biomass in RUE-2, which caused estimated 

values in RUE-2 to have a positive bias. The soybean plots in RUE-1 had less occurrences of 

inundation with an average biomass and yield of 278 g/m2 and 4,150 kg/ha, respectively. 

Comparatively, RUE-2 had more occurrences of ILA and lower average biomass and yield of 

approximately 263 g/m2 and 3,680 kg/ha, respectively. Representative variability in estimated 

biomass was observed in RUE-1 and RUE-2, where low values corresponded with mapped ILA. 
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The transferability demonstrates the potential use in future research to develop models within a 

defined experiment and scale-up the model across multiple fields for plant phenotyping.  

 

In our study, models were generated to estimate above-ground biomass at the R4-R5 stage using 

a flight one-day after sampling. The close interval between in-situ sampling and remotely sensed 

observation was an important factor for estimating adequate parameters to estimate biomass. In 

our study, the developed model to estimate biomass for all classes was applied to multiple flights 

during different development stages. Using the developed models for different development stages 

does introduce uncertainty. To build representative models to predict biomass, dense in -situ 

sampling to capture variability at important development stages with corresponding flight dates 

should be considered. Previous studies have shown the blooming to seed filling stages (R2-R5) to 

be critical for soybean yield prediction (F. Gao et al., 2018; Ma et al., 2001a; Maimaitijiang et al., 

2020; X. Zhang et al., 2019).  

4.4.3 Quantifying impacts of excess water stress on yield 

Proximal remote sensing with digital terrain analysis was used to detect and estimate potential 

gross yield loss from excess water stress at the plot scale. The calculated and mapped TWI agreed 

with in-situ observations of ILA. TWI independently was not strongly correlated with percent 

difference in yield. TWI was measured at 1.5 m resolution, which highlighted the in -field 

variability of TWI. The TWI thresholds were used to provide an objective approach to  distinguish 

inundation susceptibility between replicate plots. However, some plots that did experience 

flooding did not meet the threshold criteria and as a result were not used in comparison analysis. 

This study also showed plots located in areas of high TWI (>13.5) can have higher yields than 

plots located in areas of low TWI (<7.4) if the occurrence of ILA is limited and providing optimal 

soil moisture conditions for the soybean to thrive. For instance, plots in RUE-1 had less observed 

occurrences of ILA than plots in RUE-2, and as a result some plots developed in areas of high TWI 

had a higher yield than plots in RUE-2 located in areas of low TWI. For future studies, refining 

the TWI threshold criteria and including the number of occurrences of inundation may increase 

the sample size used for analysis or distinguish plots more susceptible to inundation better.    
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Incorporating estimated biomass with TWI improved the detection and estimation of yield loss 

caused by excess water stress. By comparing and evaluating plots impacted by ILA with replicate 

plots not impacted by ILA over the growing season, distinguishable differences in estimated 

biomass were identified in the early reproductive stages (R4-R6) which corresponds to the results 

of previous studies. In-situ experiments from Desmond et al. (1985) and Scott et al. (1989) 

calculated crop susceptibility factors for flood duration effects on indeterminate and determinate 

soybean, respectively. Results of their studies found agreement that the indeterminate and 

determinate soybean were most susceptible to flooding during early reproductive stages (Desmond 

et al., 1985; Scott et al., 1989).  

 

Mapping the percent of expected yield with CIE provided the ability to evaluate the soybeans 

spatially at the R4-R5 stage. By integrating mapped ILA observations with digital terrain analysis 

from TWI, inferences relating to potential yield reduction due to excess water stress could be made 

with supportive data. Similar data fusion frameworks would be useful for stakeholders and provide 

the information needed to make management decisions.   

4.5 Conclusion  

Low gradient agricultural areas often experience ILA in the Midwest resulting in damaged crops 

and increased financial risk from yield loss. By identifying areas impacted by excess water stress 

early in the reproductive stages, stakeholders can assess risk and make investment plans for 

responsive management decisions. The potential of low-cost UASs to measure impacts of excess 

water stress on soybean development were analyzed and evaluated along with new tools, CIE and 

VID, designed to help with the extraction of plots within breeding experiments. Aims of this study 

were to (1) determine if proximal remote sensing can be used to predict biomass for different 

growth stages and (2) determine if that biomass estimate is sensitive to excess water stress. The 

main conclusions of the investigation are: 

 

1. Proximal remote sensing from UASs is a representative predictor of biomass at the R4-R5 

stage at the plot scale. Expanding the methodology developed from Jackson et al. (1999) 

and Chan et al. (2013) for estimation of VWC to estimate biomass proved to be 

representative and transferable. Soybean of varying classes (HY, HYD and DA) were 



 
 

120 

analyzed and a representative estimate of biomass for all genetic lines was generated. To 

improve model predictions, consideration should be made to ensure close temporal 

frequency between remotely sensed and in-situ observations in order to capture similar 

crop development stages.  

2. Estimated biomass at early reproductive stages proved to be sensitive to excess water stress. 

The sensitivity of estimated biomass to excess water stress was analyzed and evaluated at 

the plot and field scale throughout the growing season. The sensitivity of estimated biomass 

sensitivity to excess water stress was most distinguishable in the early reproductive stages 

(R4-R6). Concentrated areas of low estimates of biomass showed agreement with mapped 

ILA and areas of high TWI. 

3. Low estimates of percent of expected yield corresponded with observations of in-field 

flooding and areas with high TWI. Whereas high estimates of percent of expected yield 

corresponded with areas less susceptible to inundation. Estimates of potential yield 

reduction mapped with developed tools provide a useful crop status assessment at the R4-

R5 stage. 

 

The results of this study demonstrate transferable methods to estimate biomass at the plot level 

and potential to provide crop status assessments to stakeholders prior to harvest. Future work aims 

to (1) leverage satellite data to fill data gaps and analyze sensitivity of estimated biomass to water 

stress at larger scales and (2) incorporate model simulations to estimate a water stress index at 

varying scales. 
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5. QUANTIFYING YIELD IMPACTS ON SOYBEAN FROM EXCESS 
WATER USING RAPIDEYE 

Abstract 

Distinguishing the impacts of inundated land area (ILA) on crop yield from other yield-impacting 

factors provide stakeholders and government agencies with information to support immediate and 

future decisions related to agricultural management and risk assessment. The utility of unmanned 

aerial systems (UASs) and spaceborne platforms can be leveraged to develop models at the field 

scale for application over larger areas to quantify the impacts of ILA on crop development. 

However, developing transferable models often requires a range of in-situ data and access to UAS 

and satellite imagery which can be labor and cost intensive. In this study, the impacts of ILA on 

soybean development at early reproductive stages are evaluated over multiple fields and crop years 

in west-central Indiana. The objectives of the study are to (1) estimate biomass remotely with 

satellite imagery using model developed for UAS data, (2) estimate percent of expected yield with 

satellite imagery using a model developed from UAS data and (3) analyze the impacts of excess 

water to soybean across multiple fields and years. The results of the study show that model 

estimates, designed at the field scale and applied over larger areas using satellite imagery, are 

sensitive to excess water and agree with in-situ observations. The study demonstrates the usage 

and potential of complimentary measurements from UASs and spaceborne platforms to identify 

soybean impacted by ILA between the R4-R6 development stages and support stakeholders with 

information at varying spatiotemporal scales. 

5.1 Introduction 

Delivering early assessments of crop conditions to agricultural stakeholders can provide 

information for immediate and future management decisions. For a farmer, early estimates of  yield 

impacts provide a baseline within a field and can help make marketing decisions for their crop. 

For policy makers and governments, the early estimates provide forecasts of th e supply and 

demand of crop resources. The United States Department of Agriculture (USDA) National 

Agricultural Statistics Service (NASS) and Risk Management Agency (RMA) work to report 

forecasted yield of commodity crops and prevented planted acreage from in-field flooding. Large 
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surveys are conducted by NASS throughout the growing season. The vital surveys require trained 

enumerators and in-situ sampling, which are time, labor and cost intensive (Di et al., 2017; Johnson, 

2014). For future management decisions, quantification of the impact of excess water stress on 

yield can help farmers plan future planting schemes, application of fertilizer and irrigation as well 

as investments in drainage practices to decrease the yield gap. In a changing climate, excess water 

stress can negatively impact crop yield (Smith et al., 2020). Assessing risk prior to harvest can 

help farmers and insurance companies file and process insurance claims and remain transparent in 

the sharing of information.  

 

Inundated land area (ILA) is the extent of land surface covered by water following snowmelt, 

extensive rain events and saturated soil, and occurs after water has accumulated within local 

depressions which are typically less than one meter in depth. ILA can impact agricultural 

production and decrease crop yield in wet years, although in dry years concentration of available 

water may enhance yield in local depressions.  Water availability can impact soybean development 

during different development stages. Reproductive stages when the soybean is vulnerable to in-

field flooding are when the pod begins to fill (R2) up until the seed is filled (R6) (Desmond et al., 

1985; Gao et al., 2018; Licht et al., 2011; Ma et al., 2001; Maimaitijiang et al., 2020; Smith et al. 

2020). The R4 development stage occurs once the pods are full, approximately mid-July. At the 

R5 stage seed filling begins. The R6 stage occurs once the seed has filled the pod, in early August 

(Fehr et al., 1971). 

 

Potential yield impacts of ILA over agricultural fields can be quantified  using remote sensing from 

satellites and unmanned aircraft systems (UASs) (Di et al., 2017; Shrestha et al., 2013). 

Spaceborne platforms have the ability to observe larger areas than UAS platforms and are often 

equipped with greater spectral range. However, in order to distinguish fields from one crop to 

another such as soybean and corn as well as capture in-field flooding, higher spatial and temporal 

resolution are necessary (Liu et al., 2010; Mulla, 2013). MODIS for example, has a daily temporal 

resolution and a moderate spatial resolution of 250 m. Although the temporal resolution is 

acceptable, the spatial resolution may not be able to distinguish between fields. On the other hand, 

Landsat 8 has a 16-day temporal resolution with a higher spatial resolution of 30 m. Landsat has 

the ability to distinguish fields but may not have the temporal resolution needed to capture the 
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effects of in-field flooding during critical development stages that can provide inferences of crop 

yield, such as the R4 to R6 stage for soybean. Satellite constellations that consist of multiple 

systems with similar characteristics can provide higher spatial and temporal resolutions. For 

instance, the RapidEye and PlanetScope constellations provide multi-spectral imagery with spatial 

resolution of 5 m and 3 m, respectively with multiple observations per week.  

 

Models driven with remotely sensed data are increasingly being used to provide an alternative 

method to assess crop development and predict yield. Remotely sensed measurements of above-

ground biomass (g/m2) or leaf area index (LAI) (m2/m2) typically apply multispectral imagery 

within a model to estimate the desired crop parameter (Kross et al., 2015; Smith et al., 2020). 

Unlike more traditional physical sampling methods, this approach does not damage the crop, is 

less time and cost intensive and allows larger areas to be assessed. The estimated crop parameters 

can also be incorporated into models to predict yield (Lobell, 2013). Yield forecasts are typically 

made using surveys, statistical or crop models. Surveys use field collected samples to develop 

statistical regressions with historical yield data to predict yield. Statistical and crop models can use 

remotely sensed data to improve yield forecast. For instance, remotely sensed observations can 

improve model skill by updating model variables, driving model simulations or improving model 

parameterization (Basso et al., 2019). Previous research has also investigated coupling statistical 

and crop models with remotely sensed imagery to provide field scale yield estimates (Dado et al., 

2020; Lobell et al., 2015). As remote sensing becomes increasingly integrated into agricultural 

applications, developed models need to be routinely tested and enhanced as well as be increasingly 

adaptable for application to larger areas. Flood assessment models incorporating crop damage may 

need to include the variation in impact from early recovery to longer-term impacts appearing only 

in the weeks following an event (Di et al., 2017). Such models could help determine crop loss and 

accelerate financial recovery through insurance claims.   

 

Few studies have investigated the potential of leveraging the measurements from UASs to design 

models at the field scale for application over larger areas with satellite imagery. The use of small, 

low-cost UASs with multi-spectral cameras provides an opportunity to design models at the field 

scale that can be made transferable for high resolution satellite imagery and applied over larger 

areas. Research constraints are due to limited availability or access to the in -situ data needed to 
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develop and validate models as well as limited access to both UAS and satellite imagery. This 

study is unique in that in-situ biomass data were acquired at significant soybean development 

stages and yield data were obtained over multiple fields and years. In addition, cloud -free UAS 

and satellite imagery were collected at a similar temporal resolution over the areas of interest. 

These combined factors allow for models to be developed and tested under similar conditions.  

This in turn provides an opportunity to investigate the potential of leveraging low-cost UASs to 

support field scale analysis over large areas with satellite imagery, which have the potential to 

support early recovery assessments related to ILA and support USDA NASS goals by reducing 

the labor and costs to conduct large surveys. The objectives of this study are to (1) Estimate 

biomass remotely with satellite imagery using a model developed for UAS data, (2) Estimate the 

percent of expected yield that was realized following excess water (relative yield) with satellite 

imagery using a model developed from UAS data and (3) Analyze the impacts of excess water on 

yield across multiple fields and years. 

5.2 Methods 

5.2.1 Study area 

The focus of this study are soybean fields at the Agronomy Center for Research and Education 

(ACRE) located in north-central Indiana (40.47°N, 86.99°W). ACRE is an active research farm, 

where fields represent typical planting conditions for Indiana. Fields at ACRE have minimal 

topographic gradient with a soil texture that is predominantly silty clay loam. The dominant soil 

series are a Chalmers silty clay loam and Raub-Brenton silt loam. The poorly drained soil has 

subsurface drainage with a 20 m spacing at a depth of approximately 1 m in all fields. The ten 

fields of interest (Figure 5.1) are managed using an annual corn and soybean rotation.  Each field 

is approximately 4 ha in area.  In this study, each field was included in the analysis only when used 

to grow bulk soybeans (> 0.81 ha).  During the analysis period, from 2015 to 2019, the number of 

fields available for this projected ranged from three to four. 

 

Figure 5.1 shows the topographic wetness index (TWI) values for the fields of interest at ACRE. 

The TWI is a function of the contributing drainage area per contour length over the surface slope 

and is used to identify hydrologically similar areas  (Beven et al., 1979). In this study, the TWI is 
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used to identify areas susceptible to ILA. The fields of interest have isolated areas of increased 

TWI where local depressions are located, and ILA can occur from excess water. In 2019 areas of 

observed ILA were mapped using Real Time Kinematic surveying. Figure 5.1 shows the mapped 

ILA within the soybean field is located in an area with a TWI of approximately 8.  

 

 

Figure 5.1: Left panel shows the southern portion of the Agronomy Center for Research and 
Education (ACRE), with the fields used in the study highlighted. Right top panel shows the 

research farm where radiation a use efficiency (RUE) experiment (highlighted in black) is used 
to develop models with soybean. ACRE and RUE fields are managed with an annual corn and 
soybean rotation, and both sites have experienced inundation that was mapped with an RTK in 

2018. Bottom panel shows relative locations of both experiments in west-central Indiana. 
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5.2.2 Data acquisition 

Satellite, precipitation and yield data were used to evaluate the impact of excess water on bulk 

fields at ACRE from 2015 to 2019. Observed soybean yield was used to calculate the relative yield 

attained each year for comparison with remotely sensed estimates. Quantification of the relative 

yield is discussed in Section 2.4. ACRE fields were planted approximately mid-May and harvested 

early October with a combine, and yield measurements were collected from a yield monitor. Fields 

planted in bulk soybean (i.e., not planted for research purposes) varied each year, however the total 

area in bulk soybeans was similar for each year. Daily precipitation (mm) data were used to analyze 

estimated model outputs and evaluate the impacts of excess water on soybean development during 

seed filling (stages R4 to R6) that in Indiana occurs between mid-July and early August. 

Cumulative precipitation was calculated from April 1 st to July 15th for each growing season to 

capture total precipitation prior to remotely sensed observations. Precipitation data were co llected 

from a National Weather Service Cooperative Observe Program (NWS COOP 129430) weather 

station located at ACRE (Midwestern Regional Climate Center, 2019). Table 5.1  lists the 

cumulative early growing season precipitation from 2015 to 2019, where 2015 and 2017 have the 

highest cumulative precipitation of 573 mm and 561 mm, respectively.  

 

Satellite imagery from RapidEye was used to estimate biomass and relative yield of soybean over 

bulk fields at ACRE. RapidEye is a constellation of five satellites with a spatial resolution of 5 m 

and five multispectral bands: blue, green, red, red edge and near-infrared (NIR). RapidEye was 

retired in 2020 and PlanetScope has since filled its position with a similar spatial resolution (3 m) 

and imaging bands (blue, green, red and NIR). The RapidEye products downloaded from Planet 

were orthorectified with radiometric corrections applied (Level 3A). The aim was to collect one 

image per year between the R4 and R6 stages of soybean with no cloud coverage over the fields 

of interest. This time window was selected because of the importance of the early reproductive 

stages to yield (Desmond et al., 1985; Gao et al., 2018; Ma et al., 2001; Maimaitijiang et al., 2020; 

Smith et al., 2020). As a result, one scene per year was collected between July 17 th and July 27th 

from 2015 to 2019 (Table 5.1).   
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Table 5.1: Observed and remotely sensed data collected from the Agronomy Center for Research 
and Education from 2015 to 2019. 

Crop Year Median Yield (kg/ha) Cumulative Precipitation (mm) 

between April 1st – July 15th 

RapidEye imagery 

2015 3302 573 July 21st  

2016 3649 310 July 27th  
2017 4357 561 July 25h  

2018 3852 324 July 17th 
2019 3633 364 July 25th  

5.2.3 Estimating biomass  

Soybean biomass (g/m2) was estimated remotely with a model that was developed in prior work 

using in-situ biomass data and multi-spectral UAS imagery at the field scale (Smith et al., 2020). 

This product is hereafter referred to as the UAS biomass model. The in-situ biomass data consisted 

of a total of 868 biomass samples that were collected from a soybean breeding experiment 

conducted at a nearby research farm also located in west-central Indiana (RUE experiment; Figure 

5.1). Samples used for this analysis were collected on July 16 th, 2018 (60 days after planting) 

between the R4-R5 stage. The experiment was designed to evaluate differences in radiation use 

efficiency (RUE) from recombinant inbred lines (RILs) with varying genes, that were replicated 

between two neighboring experiment plots. In this work, the UAS biomass model was applied to 

RapidEye imagery to estimate the soybean biomass and will hereafter be ref erred to as RapidEye 

biomass. 

 

The UAS biomass represents the above-ground biomass using a combination of band algorithms 

and estimated parameters, which are sensitive to the water content in the crop canopy (Chan et al., 

2013) and excess water stress (Smith et al., 2020). Equation 5.1 lists the calculation to estimate 

biomass from Smith et al. (2020) using two terms.  

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔/𝑚2) = (𝑎 ∗ 𝑁𝐷𝑉𝐼2 + 𝑏 ∗ 𝑁𝐷𝑉𝐼) + 𝜓 ∗
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉 𝐼𝑚𝑖𝑛

1 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 + 𝑐 (5.1) 

 

The first term represents the foliage of the soybean canopy using the normalized difference 

vegetation index (NDVI). The second term represents the stem water content using a stem factor, 
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𝜓, and NDVI extremes (maximum and minimum). The stem factor is the band ratio of NIRref and 

Greenref. The output parameters, 𝑎, 𝑏 𝑎𝑛𝑑 𝑐  are from the SciPy optimization tool package used to 

estimate parameters using non-linear least squares. The parameters were estimated using the 

relationship between measured biomass from the RUE plots and NDVI (n=868) from the multi-

spectral imagery.  

 

The RapidEye biomass model was developed by fitting the UAS biomass model to parameters 

estimated with RapidEye imagery collected over the RUE experiment on July 17 th, 2018. The 

estimated parameters are 4564, -5042 and 1450 for a, b and c, respectively. The RapidEye biomass 

model is sensitive to excess water stress and was applied over ACRE fields of interest from crop 

years 2015 to 2019. 

5.2.4 Quantifying percent of expected yield 

The RapidEye biomass and harvester yield data were used to estimate the percent of expected yield, 

a measure of relative yield, at ACRE.  The percent of expected yield, rather than yield, is used in 

order to provide an assessment of yield impact of excess water relative to the yield potential for a 

given soil, climate and hybrid and identify areas that may be at risk due to excess water stress. The 

percent of expected yield (%) is the predicted yield outcome relative to the expected yield. At 

ACRE, the observed expected yield was defined as the median yield in 2018, which was the crop 

year for which the UAS biomass and UAS expected yield models were developed from the RUE 

experiment. The percent of expected yield or relative yield was then calculated as 100% times the 

ratio of reported yield each year to the 2018 median yield. 

 

Smith et al. (2020) developed a model to estimate the impact of ILA on the percent of expected 

yield (hereafter referred to as UAS relative yield) by comparing differences in estimated biomass 

between the wetter and drier replicate plots, identified using topographic wetness index (TWI). 

Equation 5.2 was used to calculate the UAS relative yield in percent, where x, is the relative 

biomass obtained from RapidEye. 

 

𝑈𝐴𝑆 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑌𝑖𝑒𝑙𝑑 = 0.32𝑥 + 72 (5.2) 
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Relative biomass is the calculated ratio of the estimated biomass (g/m 2) to the field average 

biomass (g/m2). By not using the estimated biomass directly, the relative biomass indicator avoids 

biases introduced by changing sensors thus increasing the transferability of the biomass models to 

different remote sensing platforms such as UASs and satellites that may have different spectral 

ranges or sensitivities and differing spatial resolutions. The UAS relative yield model was applied 

over larger areas and multiple growing seasons (2015-2019) using RapidEye biomass inputs to 

estimate percent of expected yield (hereafter referred to as RapidEye relative yield). The RapidEye 

relative yield was analyzed to predict yield change due to early season inundation based on 

RapidEye biomass estimates from late July.  

5.2.5 Estimating yield decline and gain 

Saturated soils in local depressions from ILA can cause declines in soybean yield as the duration 

and occurrence of inundation increases ( DeBoer and Ritter, 1970; Desmond et al., 1985; Evans et 

al., 1999). On the other hand, if the occurrence and duration of inundation are limited these local 

depressions can provide ideal soil water conditions for soybean to develop without stress later in 

the season. Smith et al. (2020) predominantly observed negative impacts to soybean that were 

exposed to excess water, where soybean plots located in areas susceptible to ILA had lower yield 

compared to plot replicates located in areas less susceptible to ILA. Conversely, the study also 

observed instances where soybean plots located in areas more susceptible to ILA had higher yield 

than plot replicates located in areas less susceptible to ILA. These instances of higher yield are 

likely the result of ILA that did not cause significant damage to the plant due to limited duration, 

but the greater soil water storage in these locations provided improved water availability for the 

soybean late in the season, which allowed it to thrive compared to the plot replicate.  

 

In this study we estimate average yield decline and gain in relation to the average yield to 

determine the impacts of water availability on soybean yield from crop years 2015 to 2019.  As 

shown in equations 5.3 and 5.4, respectively, yield decline and gain were estimated for each field 

by multiplying the annual median yield across all fields with the zone of the field associated with 

a yield decline or yield gain and the average relative yield (as a fraction) within the zone. The zone 

of the field associated with yield decline was determined for each field by calculating the  area of 

the field where relative yield was below 100% and dividing by the total area of the field. The zone 
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of field associated with yield gain was computed similarly using areas with relative yield at or 

above 100%. ArcGIS was used to calculate the fractional area of yield impact and zonal statistics 

were used to estimate the average relative yield within the fraction. 

 

𝑌𝑖𝑒𝑙𝑑 𝐷𝑒𝑐𝑙𝑖𝑛𝑒 (
𝑘𝑔

ℎ𝑎
) = 𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑑𝑖𝑎𝑛 𝑦𝑖𝑒𝑙𝑑 ∙

(1.0 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑦𝑖𝑒𝑙𝑑 (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)) ∙ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑 𝑤𝑖𝑡ℎ 𝑦𝑖𝑒𝑙𝑑 𝑑𝑒𝑐𝑙𝑖𝑛𝑒 

(5.3) 

 

𝑌𝑖𝑒𝑙𝑑 𝐺𝑎𝑖𝑛 (
𝑘𝑔

ℎ𝑎
) = 𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑑𝑖𝑎𝑛 𝑦𝑖𝑒𝑙𝑑 ∙

(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑦𝑖𝑒𝑙𝑑  (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) − 1.0) ∙ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑 𝑤𝑖𝑡ℎ 𝑦𝑖𝑒𝑙𝑑 𝑔𝑎𝑖𝑛

(5.4) 

5.3 Results 

5.3.1 Estimating biomass 

Figure 5.2 illustrates the relationship between RapidEye and observed biomass of soybean (g/m2). 

The RapidEye biomass was estimated from a RapidEye image from July 17th, 2018 using equation 

5.1 whereas in-field biomass samples were collected on the previous day from the RUE experiment. 

The estimated biomass follows the 1:1 line with a calculated percent bias less than 0.1% and root 

mean square error of 69 g/m2. 
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Figure 5.2: Comparison of estimated biomass (g/m2) and measured biomass (g/m2). (n=868). 
Percent bias and root mean square error of <0.1% and 69 g/m2 

 

RapidEye biomass estimates of soybean are mapped to individual plots for the RUE experiment 

in Figure 5.3. These estimates are based on an image from July 17th, which is in the R4-R5 stage 

for all soybean varieties pictured. From the map it can be seen that the range of estimated biomass 

is from 61 g/m2 to 440 g/m2. The higher biomass values are found in the western section of the 

field, which also had an average yield of 4145 kg/ha at the end of season. Lower biomass estimates 

are found in the eastern section of the field, where the average yield was 11% lower than the 

western section at the end of the season. Low estimates of biomass are also associated with 

observed inundated land area which were mapped with an RTK system in the beginning of July 

when the soybeans were between the R1-R2 stage (Figure 5.3). This ILA was observed following 

heavy precipitation that accumulated in local depressions within the field. Despite the presence of 

subsurface drainage installed in the fields (as with most Indiana agricultural fields), ILA has been 

observed to persist for at least two days at this experimental farm. The RapidEye biomass was 

found to be in agreement with the in-situ data (Figure 5.2) where low biomass estimates correspond 

spatially with observed instances of in-field flooding (Figure 5.3). To investigate the impacts of 

excess water on yield of soybean at ACRE, we applied the RapidEye biomass developed from the 

RUE experiment to the soybean fields of interest at ACRE. 
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Figure 5.3: Estimated biomass from research field in north-central Indiana. Field was used to 
develop model using collected biomass (n=869) at the early reproductive stages (R4-R5). 

 

Field average RapidEye biomass (g/m2) estimated at ACRE between the R4 to R6 stages is shown 

in relation with harvested yield (kg/ha) between crop years 2015 and 2019 in Figure 5.4. The figure 

shows that as biomass increases, yield also increases, where the positive linear correlation between 

yield and biomass is significant with a coefficient (r) of 0.80. The RapidEye biomass at the early 

reproductive stages correlates with the measured yield across multiple growing seasons  

(2015-2019).  
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Figure 5.4: Soybean yield with respect to average estimated biomass at early reproductive stages 
(R4-R6) for each field of interest from 2015 to 2019. 

 

To analyze the impact of excess water stress on RapidEye biomass fields are compared between 

years. In crop years 2015 and 2019, similar fields were planted with soybean and cumulative 

precipitation between April 1st and July 15th was 573 mm and 364 mm, respectively.   Figure 5.5 

shows a panel comparison of estimated biomass between R4-R6 at fields of interest for crop years 

2015 and 2019. In general, the fields in 2015 have a lower biomass compared with the fields in 

2019, with an average biomass of 259 g/m2 and 456 g/m2 and yields of 3300 kg/ha and 3700 kg/ha, 

respectively. The areas with the lowest biomass are also associated with areas susceptible to ILA. 

In 2015, the ILA was more extensive and expanded radially from the local depressions impacting 

not only the biomass within the local depressions but also the biomass adjacent to the local 

depressions (Figure 5.5). The fields in 2015 also have a lower yield compared with the fields in 

2019, with an average yield of 3300 kg/ha and 3700 kg/ha, respectively. In 2019, the impacts of 

ILA on biomass are less extensive than 2015, resulting in greater biomass and yield. ILA was 

observed and remotely sensed within isolated sections of the field where lower estimates (<140 

g/m2) of biomass are identified (Figure 5.5). 
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Figure 5.5: Comparison of RapidEye biomass (g/m2) between crop years 2015 and 2019.  Low 
estimates of biomass (61-140 g/m2) are associated with observed ILA, mapped using an RTK. 

The 2015 crop year shows more extensive damage to soybean at early reproductive stages from 
excess water. 

5.3.2 Percent of expected yield 

The percent of expected yield from RapidEye is calculated for each field and compared with the 

observed relative yield calculated from the yield monitor data between crop years 2015 and 2019. 

The comparison between RapidEye and observed relative yield for all years is shown in Figure 

5.6. Overall, the RapidEye relative yield was found to be in agreement with the observed with a 

calculated percent bias and mean absolute error of -4% and 6%, respectively. The RapidEye and 

observed relative yield values follow the 1:1 line closer for values less than 100% with a PBIAS 

and MAE of -2% and 2%, respectively (Figure 5.6). For predicted and observed relative yields 

greater than 100%, the scatter increases with an increase in PBIAS and MAE of -8% and 9%, 
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respectively.  Predicted values capture the range of observed over multiple growing seasons, 

however there is an underprediction for higher estimates of relative yield (Figure 5.6).  

 

 

Figure 5.6: Comparison between observed and predicted percent of expected yield (%) from 
RapidEye (RapidEye expected yield) for all fields of interest between 2015 and 2019. The 

percent bias and mean absolute error are -4% and 6%, respectively. 

 

The RapidEye relative yield is compared between all bulk soybean fields in crop years 2015 and 

2019 (Figure 5.7), where 2015 was wetter than 2019. The RapidEye relative yield is lower in fields 

for the 2015 crop year compared to the 2019 crop year where the average percent relative yield is 

83% versus 92%. The low estimates (< 80%) from RapidEye coincide with areas where ILA has 

been mapped with an RTK, which can be seen in similar fields for both years, though the 

inundation in 2015 is more prevalent.  The areas susceptible to ILA and mapped with the RTK are 

found to have a reduction in yield by as much as 25% (Figure 5.7). The RapidEye expected yield 

indicates that fields in 2015 are severely impacted by ILA, with a total of 5 ha (12 ac) projected to 
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reach less than 80% of their potential. On the other hand, the impacts of ILA are less severe in 

2019, with only 0.4 ha (1 ac) projected to fall below 80%.  The areas with low relative yield occur 

primarily in areas within the field where ILA was mapped in 2018 and which were also observed 

to experience inundation in 2015 and 2019 (Figure 5.7). Overall, this analysis indicates that the 

RapidEye relative yield provides an accurate assessment of the projected yield over multip le 

growing seasons. 

 

 

Figure 5.7: Field comparison of RapidEye expected yield between crop years 2015 and 2019. 
Soybean yield susceptible to ILA has the potential to have a 25% lower expected yield compared 
to areas that are not at risk of in-field flooding. ILA was mapped with an RTK, outlined in blue. 

 

The influences of water availability on yield are shown by year in Figure 5.8, where the average 

yield is plotted with the contributing yield decline and yield gain. The range in average yield 

decline is from 0 kg/ha to 550 kg/ha, whereas the range in average yield gain is from 0 kg/ha to 
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150 kg/ha.  As shown in Figure 5.8,  water availability can cause yield decline and gain which 

impacts the average yield. For instance, the largest contributing yield decline occurs in 2015 with 

a value of approximately 550 kg/ha in the areas of negative yield impact, followed by crop years 

2016 and 2019 with values of 250 kg/ha and 280 kg/ha, respectively. The yield decline in 2015 

coincides with the lowest average yield in the period of analysis with a value of 3300 kg/ha and is 

the wettest year in the period of analysis. Whereas crop year 2016 is the driest in the period of 

analysis and has the second lowest average yield at 3600 kg/ha. The largest contributing yield gain 

occurs in 2017 with a value of approximately 150 kg/ha, followed by 140 kg/ha in 2018. The yield 

gains in 2015, 2016 and 2019 are negligible. The yield gains in crop years 2017 and 2018 are 

associated with the highest yields with values 4300 kg/ha and 3900 kg/ha, respectively.  

 

 

Figure 5.8: The average decline (red) and gain (green) in yield (kg/ha) relative to the average 
yield (black) with cumulative precipitation (mm) between April 1st and July 15th from crop 
years 2015 to 2019. Water availability (too much or too little water) causes increases in yield 

decline, such as in 2015, 2016 and 2019 and influences the average yield. Water availability can 

also provide optimal growing conditions to increase yield such as crop years 2017 and 2018.  
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5.4 Discussion 

In this study we demonstrate the capabilities of  leveraging low-cost UASs to design models at the 

field scale and apply the model over multiple years (2015-2019) and larger areas using satellite 

imagery from RapidEye. Previous research emphasizes the importance of matching spectral 

characteristics and temporal resolution to compliment the use of UAS and satellite imagery (Dash 

et al., 2018). RapidEye is selected in our study, because of its spectral characteristics as well as 

high temporal and spatial resolution. The image bands in the RapidEye data are similar to the 

bands on the Parrot Sequoia, the multispectral camera used to collect our UAS data. The high 

spatial and temporal resolution of RapidEye increases the opportunity to obtain observations at 

critical stages of soybean development and in-situ sampling. The high temporal resolution allows 

for cloud free retrievals between the R4-R6 stages from 2015 to 2019. The RapidEye imagery also 

provides the high spatial resolution (5 m) imagery needed in order to estimate parameters and 

develop the model for RapidEye biomass over the RUE experiment. The RapidEye biomass is 

developed from the UAS biomass model (Smith et al., 2020), where both models are tested at the 

RUE experiment. Results show that the UAS biomass model is also applicable to high resolution 

satellite imagery, such as RapidEye, where RapidEye biomass shows low bias and error with in -

situ data from the calculated statistics. RapidEye biomass is also estimated at ACRE fields during 

early reproductive stages. Gao et al. (2018) used satellite imagery to compare calculated vegetation 

metrics with yield, and the results from their study also suggest vegetation metrics at early 

reproductive stages have stronger correlations with yield. In this study, the RapidEye biomass also 

has signification correlation with yield (Figure 5.4). Results of the RapidEye biomass demonstrate 

the ability to develop and transfer crop models across sites which are sensitive to the impacts of 

ILA. 

 

We also use the UAS relative yield developed by Smith et al. (2020) and apply the model to 

RapidEye imagery to estimate RapidEye relative yield. Our research shows that the estimation and 

comparison of the RapidEye relative yield with the observed relative yield is a viable approach to 

quantitatively assess soybean development from excess water at early reproductive stages. 

Previous studies have used vegetation indices such as NDVI or the disaster vegetation damage 

index (DVDI) to assess crop damage from inundation (Di et al., 2018; Rahman et al., 2020; 

Shrestha et al., 2013). Rahman et al. (2020) note a limitation with providing crop loss assessments 
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as indices in that they do not incorporate yield information which may be of importance when 

reporting crop damage. In this study, yield data are available to provide a quantitative assessment 

of relative yield impacts based on biomass estiamtions from early reproductive stages. The UAS 

and RapidEye relative yield models have been tested for use with UAS and high-resolution satellite 

imagery that have similar bands. By incorporating the fractional biomass into the model, remote 

sensing platforms that have different spectral ranges and spatial resolutions can b e used. The 

comparison of the observed and RapidEye relative yield shows strong correlation with low bias. 

However, prediction of relative yield greater than 100% shows an increase in bias. The increase in 

bias is due to limitations in the model estimate where the maximum yield potential is 110%. 

Further research is needed to determine if more data is needed to increase the range and improve 

the model estimate.  

 

Few studies have evaluated the transferability of developed models from high resolution UAS data 

for application with satellite data. Dash et al. (2018) describes the sensitivity differences between 

the RapidEye and a UAS camera, the MicaSense Red Edge 3 camera, which has similar bands as 

the RapidEye and Parrot Sequoia. The results of the study show that the RapidEye is less sensitive 

than the UAS camera. Further research is also needed to test the model using other UAS and 

satellite platforms. Previous studies have used MODIS to analyze impacts of inundation on crop 

development (Di et al., 2017; Shrestha et al., 2013). MODIS may be of future use or PlanetScope, 

which have similar bands needed to test the models over larger areas with a high temporal 

resolution. The developed models from this study have low bias compared to observed data and 

demonstrate the potential to assess excess water impacts on soybean at early development stages 

at varying scales. 

 

In our study, we provide models to estimate biomass and percent of expected yield assessments at 

the early reproductive stages with RapidEye, from R4 to R6. The results from 2015 to 2019 show 

that low estimates of biomass and relative yield correspond to mapped observations of ILA which 

can reduce the relative yield by as much as 25%. The higher degree of damage from excess water 

stress estimated in 2015 also corresponds with reports that as much as 5% of the corn and soybean 

crops in Indiana were damaged by excess rainfall that caused approximately $300 million in crop 

damage (Pack, 2015). Di et al. (2017) discuss the need for early recovery assessments of crops 



 
 

145 

impacted by inundation. In the period of analysis, the 2015 and 2017 crop years have the highest 

cumulative precipitation between April 1st and July 15th at 573 mm and 561 mm, respectively. 

Though the cumulative differences are small, the timing of the precipitation is critical and can 

affect crop development. In June of 2015, the cumulative precipitation was 255 mm, while in June 

of 2017 the cumulative precipitation was 140 mm. The average yield for all fields of interest in the 

2015 and 2017 crop years were 3270 kg/ha and 4327 kg/ha, respectively, while the average 

biomass in 2015 and 2017 are 259 g/m2 and 642 g/m2, respectively. Though other contributing 

factors can impact yield, the difference in cumulative precipitation of 115 mm within the short 

time window from June 1st to June 30th results in differences in average yield and inverse impacts 

from excess water as shown in Figure 5.8, where excess water causes noticeable yield decline in 

2015 but contributes to slightly more yield gain in 2017. Rahman et al. (2020) discuss the resilience 

of crops from inundation. Our results show that excess water typically results in yield loss and in 

instances where there is an increase in yield, the gain is not substantial. The instance of yield gain 

may be due to soil moisture conditions which allow the soybean to thrive. Similar results are 

reported at the plot scale by Smith et al. (2020). The impacts of excess water on yield decline also 

shed light on the importance of subsurface drainage and the potential for remote sensing derived 

products such as estimated biomass or percent of expected yield to monitor drainage efficiency by 

analyzing the crop status over multiple growing seasons. A previous study used vegetation indices 

to analyze crop development under different control drainage practices (Cicek et al., 2010). In this 

study, the observed ILA is typically in isolated locations and is associated with low RapidEye 

biomass and relative yield. The remote sensing products presented in this study can be used to 

identify fields with persistent ILA as shown in Figure 5.9, where the percent of expected yield is 

mapped for a soybean field at early reproductive stages between 2015 and 2019. Figure 5.9 shows 

that ILA occurs predominantly in the center of the field, where visual and mapped observations of 

ILA correspond to the low values of percent of expected yield. By identifying fields or locations 

within fields with a persistent decrease in expected yield from ILA over multiple growing seasons, 

agricultural producers can improve management decisions and determine whether to install 

additional subsurface drainage throughout the field or in specific locations. 
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Figure 5.9: Example of identified field with persistent inundated land area over multiple crop 
years associated with a decrease in percent of expected yield. Observed ILA was mapped with an 

RTK and is associated with expected yield ranging from 75% to 80%. This information can help 
agricultural producers improve management decisions. 

 

Johnson (2014) and Di et al. (2017) discuss the importance of providing crop damage assessments 

and yield information to inform stakeholders and support their decisions related to agricultural 

economics and farm management. In this study, we provide maps of estimated biomass and percent 

of expected yield that identify areas impacted by ILA. This information can help stakeholders 

identify risks and increase transparency between insurance companies and policy holders. The 

biomass and relative yield maps may also support work needed in the annual Objective Yield 

Survey for soybean. For soybean, the Objective Yield Survey uses trained enumerators to manually 

collect hundreds of samples from randomly selected fields from the Agricultural Yield Survey in 

late July and continue monthly inspections until harvest. Di et al. (2017) notes the limitations of 

the field survey such as costs and time required to complete sampling. Incorporating the use of 

remotely sensed measurements to estimate biomass and relative yield may help reduce costs and 

time intensive processes as well as provide supporting data needed for yield forecasts. Future 
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research should investigate incorporating estimates of soybean yield potential from remotely 

sensed observations to improve forecasts.  

5.5 Conclusion 

In this study, we investigate the utility and applications of low-cost UASs to design models at the 

field scale and applied over larger areas using complimentary measurements from RapidEye to 

estimate biomass and percent of expected yield. Results of the study suggest the following: 

 

1. A biomass model developed from UAS imagery is applicable for high resolution satellite 

imagery such as RapidEye. The developed RapidEye biomass model at early reproductive 

stages, between R4-R6 show agreement with in-situ observations (n=868) with low percent 

bias and root mean square error of <0.1% and 69 g/m2, respectively. 

2. RapidEye relative yield when compared with observed relative yield shows a strong 

relationship with a calculated percent bias and mean absolute error of -4% and 6%, 

respectively. Though the model underpredicts relative yield greater than 100%, overall, the 

model captures the range of relative yield. 

3. RapidEye biomass and relative yield correspond with observations of inundated land area. 

Local depressions susceptible to ILA can impact relative yield by as much as 25%. 

However, some areas within the fields may have water availability conditions that can 

cause yield gains. Mapping and providing assessments of predicted relative yield at early 

reproductive stages is useful for stakeholders. 

 

Readily available products are needed to inform stakeholders of impacts to crop development from 

inundated land area. Remotely sensed observations can be used to provide early indications of 

soybean development and quantify potential impacts on yield. In this study, we leverage the utility 

of low-cost UASs and available in-situ data to develop models at the field scale for application 

over larger areas with satellite imagery. The results demonstrate the transferability of models 

across sites and between sensors with the accuracy needed to quantify the spatiotemporal impacts 

of excess water at early reproductive stages. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Summary 

The overall goal of this work was to increase understanding of the impacts of inundated land area 

on streamflow and crop development in the Upper Midwestern United States. To increase this 

understanding, the following research objectives were established, to: (1) Parameterize the 

representation of surface ponding in the VIC model using remote sensing estimates of ILA, (2) 

Evaluate seasonal trends in flood magnitude and frequency in the Red River of the North, (3) 

Quantify the impacts of excess water stress on soybean development based on proximal remote 

sensing from unmanned aircraft systems (UASs) and (4) Quantify the impacts of excess water 

stress on soybean development over larger areas using satellite imagery with models developed at 

the field scale from UAS data.  

 

To evaluate the impacts of ILA on streamflow, an inundated depth-area parameterization (IDA) 

was introduced in Chapter 2 to simulate the temporary storage of water on the land surface using 

a hydrologic model. The IDA parameterization can be routinely updated in hydrologic models 

using available discharge and remotely sensed data. The IDA parameterization was developed and 

tested using the VIC model in a subcatchment of the Red River basin which is dominated by 

agricultural land use and prone to ILA. The simulated ILA is satisfactory when compared to the 

observed ILA from the MODIS NRT Global Flood Mapping product with a percent bias -16% 

over the evaluation period. Simulated ILA and streamflow provide supporting evidence of the 

dominant runoff generation mechanisms during the winter-spring and summer-fall seasons. 

During the winter-spring the VSA concept and fill and spill are the dominant runoff generation 

mechanisms. For the VSA concept, ILA increases over the land surface due to low permeability 

from the soil-ice content restricting infiltration. For the fill and spill mechanism, simulated and 

observed ILA show a rise and fall of ILA after peak flow, where local depressions in low gradient 

areas contribute to runoff generation once depressions reach capacity following the peak flow 

event and continue to fill and spill. During the summer-fall, infiltration-excess overland is the 

dominant runoff generation mechanism, where ILA increases from runoff of  excess precipitation 
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causing an increase in storage on the land surface, and ILA decreases rapidly as infiltration is no 

longer limited.  

 

The ILA parameterization methodology was then extended to the larger Red River Basin using 

VIC model simulations to quantify the influence of ILA on flood occurrence and magnitude 

(Chapter 3).  This is a region that has a known history of large flood events which have caused 

billions of dollars in damage and there is evidence that climate change is increasing the frequency 

of such events as well as increasing the likelihood of flood events occurring in the summer season. 

The results of the study show statistically significant increasing trends in summer flood magnitudes 

for all gaging stations evaluated in the Red River basin from the Mann-Kendall test. The 

occurrence of flood events is shifting from a unimodal structure to a bimodal structure with more 

floods occurring in the spring and summer seasons, specifically the months of April and June, 

respectively. There is no observed increase in flood occurrence during the month of May, while 

model simulations without ILA show increases in May flood frequency, which implies an increase 

in-field flooding may be mitigating flood potential. A reduced flood occurrence is simulated when 

representing ILA and is overpredicted when not representing ILA. Representing this in-field 

flooding is important to agricultural producers and their management decisions, where farmers in 

the Upper Midwest plant crops during the month of May which could be at risk of excess water 

stress. In addition, the study demonstrates the importance of representing ILA in hydrologic 

models, where the simulation of flood magnitude and occurrence are improved. When simulating 

ILA, flood frequency for the 50-year return period is 8% less than the observed compared to not 

representing ILA which is 23% more than the observed. The observed shift in peak flow 

occurrence is also captured in simulated streamflow when representing ILA. This study also 

highlights the increased occurrence of flooding (both observed and simulated) during the summer 

season, which leads directly to a need for better understanding of how inundation affects crop 

yields, which in turn leads directly to the research in the next chapter. 

 

In Chapter 4, we evaluate the impacts of ILA on crop development, where models were developed 

to quantify the impacts of excess water stress on soybean biomass accumulation and yield at early 

reproductive stages using proximal remote sensing from UASs. The developed models used in-

situ and remotely sensed data at the plot scale (23 m2) to estimate biomass and percent of expected 
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yield between the development stages when pods are full (R4) to the development stage when the 

seed filling has begun (R5) at the field scale (2 ha). Topographic wetness index is used to compare 

plots more susceptible to ILA with replicate plots less susceptible to ILA, and mapped observations 

of ILA are used to validate model estimates. Estimated biomass was accurate when compared to 

observed biomass with a percent bias and root mean square error of 0.8% and 72 g/m2, respectively. 

The estimated biomass is sensitive to excess water stress with distinguishable differences 

identified between the R4-R6 development stages. The percent of expected yield less than 90% 

corresponds with mapped observations of in-field flooding and high TWI. These results 

demonstrate the increased potential to provide stakeholders with early estimates of the potential 

yield impacts of excess water stress on soybean using low-cost UASs and a high-throughput data 

processing pipeline.  

 

The applicability of models developed using field scale ground reference and remote sensing data 

for the estimation of biomass and prediction of final yield at larger scales using satellite remote 

sensing imagery was evaluated in Chapter 5. The UAS models (UAS biomass and percent of 

expected yield) described in Chapter 4 were developed using in-situ biomass and yield data along 

with UAS multi-spectral imagery from a radiation use efficiency (RUE) experiment at a nearby 

research farm in west-central Indiana. The UAS models were applied to satellite imagery from 

RapidEye to estimate biomass (RapidEye biomass) and percent of expected yield attained 

(RapidEye expected yield) over larger areas at the Agronomy Center for Research and Education 

(ACRE) from crop years 2015 to 2019. Parameters to estimate RapidEye biomass were fitted using 

RapidEye imagery and in-situ biomass collected from the RUE experiment. At RUE, RapidEye 

biomass has a percent bias of 0.1% and root mean square error of 69 g/m2. At ACRE the field 

average RapidEye biomass has significant correlation with the field average yield (kg/ha). At 

ACRE, the UAS expected yield model was applied using RapidEye biomass inputs to estimate the 

crop yield as a percent of expected yield (RapidEye expected yield). At ACRE, the RapidEye 

expected yield has a strong relationship with observed expected yield where the calculated percent 

bias and mean absolute error are -4% and 6%, respectively. The experiment illustrates the potential 

of leveraging the utility of low-cost UASs to develop biomass and yield models at the field scale 

for application with satellite imagery in order to assess the impacts of excess water over multiple 

fields and growing seasons. The developed products can be used to support stakeholders by 
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providing early assessments of soybean development associated with impacts from ILA, and to 

identify infrastructure needs to address the long-term impacts of in-field ponding on crop yields 

and support NASS by reducing the labor and costs to conduct large surveys.  

6.2 Conclusions 

Four hypotheses were proposed in Chapter 1. The responses to each hypothesis statement are 

summarized below: 

1. Estimates of flood magnitude will be reduced by simulating land inundation processes, because 

surface depressions play a critical role in the volume of water reaching the channel in large 

river basins.  

 

Confirmed. Representation of inundated land area within the VIC model reduced the magnitude 

of the simulated 50-year flood by 31% in the Red River basin. The above hypothesis was tested 

in the Buffalo River, a subcatchment of the Red River of the North basin and expanded the tested 

hypothesis to the Red River basin. The study in the Buffalo River showed, by representing 

inundated land area in the VIC model, the magnitude of peak flows was reduced, and simulated 

goodness of fit statistics were improved when compared to alternative scenarios. By not 

representing ILA simulated discharge had a tendency to overestimate high flow when compared 

to the observed discharge. Whereas, by representing ILA, simulated streamflow during high and 

low flow periods was improved when compared to the observed discharge. The analysis in the Red 

River showed that representing ILA improves the estimation of flood frequency, where the 50-

year return period was 8% less than the observed compared to not representing ILA which was 

23% more than the observed. 

 

2. The seasonality of flood response has shifted in the Red River basin due to a changing climate 

but this shift has been mitigated by the influence of ILA. 

 

Confirmed. Without representation of inundated land area within the VIC model, the 

occurrence of simulated May and June flood events was overestimated by 87%. The study in the 

Red River basin showed statistically significant increasing trends in summer peak flow events for 

all evaluated gaging stations using the Mann-Kendall test. There is no significant trend in the 
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magnitude of spring flood events that are associated with snow melt. In addition, a detected shift 

in peak flow occurrence was identified in the observed discharge data during the period of analysis. 

The detected shift was from a unimodal structure to a bimodal structure, where floods were 

occurring in the spring and summer seasons versus just in the spring season. The shift was also 

represented in simulated discharge when representing ILA. The reduced flood occurrence in May 

implies an increase of in-field flooding and is simulated when representing ILA. The in-field 

flooding has the potential to impact crop yield from excess water stress at early growth stages.  

 

3. The impact of excess water stress on soybean yield is related to the above-ground biomass 

sensed from a UAS platform during early growth stages. 

 

Confirmed. Soybean yield decline or gain associated with areas of in-field flood or high 

topographic wetness index were estimated with an overall percent bias 0.8% based on above-

ground biomass for the R4-R5 growth stage. The above hypothesis was testing at research farm 

in west-central Indiana, where soybean experienced inundation during the growing season. In this 

study, proximal remote sensing was used to estimate above-ground biomass (g/m2) and percent of 

expected yield (%). Results of the study showed that estimated above-ground biomass at the R4-

R5 stage had low percent bias and root means square error of 0.8% and 72 g/m2, respectively for 

varying genetic classes. In addition, decreased estimates of biomass and percent of expected yield 

were associated with observations of in-field flooding and high topographic wetness index.  

 

4. Quantification of above-ground biomass by spaceborne platforms can quantify impacts to crop 

yield at sub-field scales.  

 

Confirmed. Soybean yield decline and gain at sub-field scales were estimated with an overall 

percent bias of less than 0.1% based on above-ground biomass for the R4-R6 growth stage. The 

above hypothesis was tested at two research farms in west-central Indiana, where the impacts of 

excess water on soybean yield were analyzed by using low-cost UASs to design models at the field 

scale and applied to satellite imagery from RapidEye over larger areas from 2015 to 2019. The 

developed models were the RapidEye biomass and expected yield to estimate biomass (g/m 2) and 

percent of expected yield (%), respectively. Results of the study showed the RapidEye biomass 
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model at early reproductive stages, between R4-R6 show agreement with measured biomass with 

low percent bias and root mean square error of <0.1% and 69 g/m2, respectively . RapidEye 

expected yield when compared with observed expected yield had a calculated percent bias and 

mean absolute error of -4% and 6%, respectively. Decreased RapidEye estimates were associated 

with mapped observations of ILA and increased TWI, local depressions susceptible to ILA can 

impact expected yield by as much as 25%.  

6.3 Future work 

This study quantified the impacts of ILA on streamflow and crop development in the Red River 

basin and Indiana, respectively. Both agricultural locations are in the Upper Midwest, which means 

that we can link methods and findings related to ILA from both locations to better understand the 

potential risks and costs a changing climate has on its agricultural stakeholders. The results of the 

Red River suggest an increase in-field flooding in May. The techniques from Chapter 4 and 5 can 

be used to quantify the impacts of excess water on crop development in the Red River basin using 

remote sensing from UASs or satellites. 

 

The IDA parameterization was developed using remotely sensed observations from the MODIS 

NRT Global Flood Mapping product, where high cloud coverage (>30%) limited retrievals of 

inundation extent during peak flow. Future work should consider the use of active and passive 

sensors to estimate ILA from future or ongoing missions such as Surface Water Ocean Topography 

(SWOT) or Soil Moisture Active Passive (SMAP). The microwave bands can penetrate clouds and 

be used to measure either the backscatter from active sensors or emitted microwave radiation from 

passive microwave radiometers which are sensitive to inundation on the land surface. Tests for 

trends in ILA over time were not calculated in this work. With continued monitoring and a longer 

time series of ILA, tests for trend could be used to better quantify the economic costs of in -field 

flooding over time, and help farmers make decisions about needed drainage infrastructure.  

 

The impacts of ILA on soybean development were evaluated at ACRE over a five -year period. 

The ACRE fields provide future opportunities for the continuation of monitoring and quantifying 

the impacts of excess water on crop development from UAS and satellite platforms and the 

opportunity to validate results with continued collection of in-situ data and mapping of ILA. The 
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crop models developed and validated in this work, were only tested on soybean using observed 

biomass and yield data as reference data to validate the remotely sensed estimates.  Future work 

can test the crop models on other crops to analyze the impacts of excess water on crop development. 

Field monitoring can be continued by collection of soybean and corn data such as biomass samples 

at critical development stages and yield data after harvesting. The collected data can be used to 

develop and improve other crop models that may need to consider different genotypes. In addition, 

monitoring can be continued through measuring soil moisture and temperature and water table 

depth within ACRE fields which could help better understand crop water stress indices at ACRE.   
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APPENDIX A. SOURCE CODE REPOSITORIES 

The links below provide access to GitHub repositories used for the work.  

 

Repository for lake and wetland algorithm in the VIC model. Used for generating the inundated 

depth-area parameterization. 

https://github.itap.purdue.edu/PHIGOrganization/VIC-LakeWetlandParameters 

 

Repository for Land Information Systems (LIS) – VIC with lake and wetland algorithm.  

https://github.itap.purdue.edu/PHIGOrganization/LIS-VIC_Purdue  

 

Repository for Crop Image Extraction (CIE) and Vegetation Index Derivation (VID). 

https://github.itap.purdue.edu/PHIGOrganization/CIE-and-VID  

  

https://github.itap.purdue.edu/PHIGOrganization/VIC-LakeWetlandParameters
https://github.itap.purdue.edu/PHIGOrganization/LIS-VIC_Purdue
https://github.itap.purdue.edu/PHIGOrganization/CIE-and-VID
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APPENDIX B. ARCHIVED DATA 

The links below provide links to archived data collected throughout the study.  

 

Monitored soil moisture and temperature data at the Agronomy Center for Research and Education 

(ACRE). 

https://purr.purdue.edu/publications/3313/2  

 

UAS imagery (RGB) from research farm in west-central Indiana. 

https://purr.purdue.edu/publications/3319/1  

 

Field images from time lapse camera from field at ACRE. 

/fortress/group/phig/student backups/sdsmith/phd/crops/ACRE_Field_Images/ 

 

https://purr.purdue.edu/publications/3313/2
https://purr.purdue.edu/publications/3319/1
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