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ABBREVIATIONS

1D one-dimensional

2D two-dimensional

3D three-dimensional

ABH acoustic black hole

BC boundary condition

DOF degree of freedom

EOM equation of motion

FC fractional calculus

FD finite difference

FE finite element

f-FEM fractional finite element method

FFT fast Fourier transform

F-NDOF fractional multiple degree of freedom

F-SDOF fractional single degree of freedom

GDE governing differential equation

IC initial condition

I-MDOF integer multiple degree of freedom

I-SDOF integer single degree of freedom

ML Mittag-Leffler

MOR model order reduction

RC Riesz-Caputo

RL Riemann-Liouville

RMS root-mean-square

TF transfer function

TM transfer matrix

VO variable order

WKB Wentzel-Kramers-Brillouin
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ABSTRACT

The continuously growing interest in the design and synthesis of heterogeneous structures

has further highlighted the need for accurate modeling and efficient simulation techniques.

In the context of structural dynamics and elastic wave propagation simulations, theoretical

models can be broadly divided into two main categories: discrete and continuous. Discrete

parameter models, such as finite difference or finite element analysis, not only provide a sim-

plified representation of complex systems, but also are some of the most powerful structural

computational techniques available to-date. In the case of geometrically complex and hetero-

geneous structures, this class of techniques typically produces numerical models involving a

large number of degrees of freedom, ultimately leading to significant computational times and

resources. Historically, model order reduction techniques have been one of the most powerful

tools to reduce the number of degrees of freedom while maintaining high levels of accuracy

and fidelity. On the other hand, continuous parameter models can provide a more accurate

and concise representation of the actual physical system, but the underlying mathematical

formulation (typically based on partial differential equations with variable coefficients) is

typically not well suited to analytical solutions, especially for systems containing complex

geometries and boundary conditions. Homogenization techniques are an important class of

models that can overcome some of these complexities while still preserving the ability to pro-

vide a concise mathematical representation and, possibly, analytical closed-form solutions.

Despite the significant advancements and the many successes that the engineering commu-

nity has achieved in the development of these two classes of methods, both categories still

encounter various limitations including, but not limited to, narrow-band frequency accuracy,

applicability in the long wavelength regime, and still potentially expensive numerical evalu-

ations. The emergent mathematical field of fractional calculus - the calculus of integrals and

derivatives of any real or complex order - provides an excellent opportunity to develop novel,

accurate, and efficient models for simulations of heterogeneous structures. Fractional opera-

tors, possessing characteristics such as memory effects, nonlocality, multi-scale capabilities,

and hybrid behavior, can provide advanced mathematical tools to address the shortcomings

of commonly used model order reduction and homogenization techniques. This dissertation
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specifically explores the feasibility and potential of fractional calculus to overcome some of

the most significant limitations of discrete and continuous parameter methods with specific

application to the vibration and wave propagation analysis of structural systems. From the

perspective of discrete parameter models, model order reduction methodologies based on

time fractional differential equations are presented. The use of a frequency-dependent frac-

tional order is capable of simultaneously delivering high accuracy and high levels of reduction

across a wide frequency spectrum. On the other hand, for the case of continuous parameter

systems, the research explores how space fractional operators can lead to alternative forms of

homogenization for partial order differential equations with application to wave propagation

in heterogeneous structures. Specific applications to one-dimensional elastic metamaterials

and structural components embedded with acoustic black holes are presented. The physical

interpretation, potential, benefits, and even limitations of the developed fractional models

are examined in-depth.
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1. INTRODUCTION

This dissertation explores novel mathematical models to represent the vibration and wave

propagation response of heterogeneous structures. Heterogeneous structures are character-

ized by spatial variations of either their material or geometrical configuration. Advance-

ments in design and manufacturing techniques have enabled the fabrication of elaborate

heterogeneous structures having material and topological properties that were previously

unobtainable only a few years ago. As an example, advancements in additive manufactur-

ing technologies have led to the fabrication of composite materials with functionally graded

properties as well as the synthesis of porous structures whose pore size can be manipulated

across multiple scales. Heterogeneous structures are utilized in engineering thanks to their

ability to deliver diverse static and dynamic mechanical properties. For example, a composite

material comprised of reinforced fibers can significantly increase the strength and durability

compared to its individual constituents. Other composites, such as ceramic matrix com-

posites, reduce the weight of structural components while still meeting, or even improving

upon, their performance requirements. The geometry of a heterogeneous structure can be

crafted to produce unique dynamical behaviors which can further advance the performance

of structural systems. As a result, the modeling and simulation of the vibration and wave

propagation in heterogeneous structures is critical to understanding their dynamical behav-

ior and to designing structures that meet challenging engineering requirements or function in

extreme and difficult environments. Such models typically use numerical and computational

methodologies to represent the structure’s intrinsic complexities and to accurately simulate

their dynamical behavior. Accurate and computationally efficient models can greatly assist

in the design process before constructing physical models or prototypes for experimentation

or practical implementation. Thus, advanced modeling and simulation techniques can save

much time and resources, and can provide a competitive advantage as well.

Representations of heterogeneous structures include both continuous and discrete models.

Continuous representations of heterogeneous structures analyze their governing differential

equations and seek to obtain either exact or approximate closed-form solutions accurately

describing the dynamics. However, many of the partial differential equations governing the
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dynamics of heterogeneous structures do not have known analytical solutions. Nonethe-

less, the dynamic behavior of continuous structures can be studied using methods such as

perturbation techniques or homogenization to avoid relying on the potentially numerically

expensive discrete models. Homogenization is a popular approach since the heterogeneous

structure is instead represented by a homogeneous structure exhibiting the same dynamic

content. In some cases, homogenization techniques produce closed-form analytical solutions

of the dynamics since the solution to a homogeneous, constant coefficient differential equation

is typically more attainable.

On the other hand, discretization methodologies, such as the finite element method [ 1 ]–

[ 5 ], represent a continuous structure by dividing it into a set of nodal points, also called

degrees of freedom (DOF). Usually, the more complex the property spatial distribution (e.g.,

external loads, material or geometric parameters, boundary conditions), the higher the level

of discretization needed to achieve a satisfactory representation of the continuum system. As

a result, discrete models of heterogeneous structures often require a large number of degrees

of freedom. This high level of discretization for heterogeneous structures leads to a tradeoff

between computational time and accuracy of the dynamic response. As a result, the level

of achievable accuracy of simulations for heterogeneous structures is limited. In response to

this, model order reduction (MOR) methodologies for discrete lumped-parameter systems

have been created to maintain accuracy while reducing computational cost. These model

order reduction techniques are pivotal for large structural assemblies, such as automobiles,

aircraft, buildings and bridges, heating and cooling devices, and bio-mechanical equipment,

which can contain many different heterogeneous substructures. The number of DOFs in

these large structural assemblies can be on the order of thousands or even more. Design

and optimization of these large DOF assemblies requires a thorough understanding of the

interactions and connections of the different components and subsystems.
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1.1 Approaches to Reduce Model Complexity

1.1.1 Model Order Reduction

As mentioned, discretization approaches including finite difference and finite elements

represent a heterogeneous structure or a large structural assembly by a mesh of the degrees

of freedom. The discretization of these systems typically takes a form similar to

M{ẍ} + K{x} = {F}, (1.1)

where M is a NxN inertia matrix, K is a NxN stiffness matrix, {F} is a Nx1 forcing vector,

{x} is the displacement vector of the generalized coordinates, and N is the number of DOFs.

As the level of heterogeneity increases, the number of DOFs increases and so does the order

of the system (i.e., the number of ordinary differential equations governing their motion).

As N increases, the amount of computational time to evaluate the solutions to the equations

increases. If the computational time becomes unreasonable, the number of DOFs must be

decreased, reducing the accuracy of model. In response, model order reduction methodolo-

gies have been developed to maintain high numerical accuracy and fidelity to the dynamics

while reducing the number of degrees of freedom and as a result, the computational time.

Model order reduction attempts to represent the essential features of a structure by focusing

on the response at selected locations (the active DOFs) such that the DOFs associated with

the remaining locations can be omitted. The reduction procedure, exhibited in Fig.  1.1 , is

not trivial because it must account for the coupling between active and omitted DOFs in

order to not change the underlying response of the system. According to [ 6 ], model order re-

duction techniques have typically focused on three main fields: structural dynamics, systems

and control, and numerical mathematics. This section specifically considers model order re-

duction techniques implored in structures (see [ 6 ]–[ 9 ]) while discussion of MOR techniques in

controls and mathematics, including the asymptotic waveform evaluation, Padé-via-Lanczos,

truncation methods, and rational interpolation are left to [ 6 ], [ 10 ].

20



Figure 1.1. Illustration of the concept of model order reduction (Graphics
credit: [  10 ] ©2008 Springer).

Structural Model Order Reduction Techniques

To illustrate the concepts of structural model order reduction, this section first presents

Guyan reduction [  11 ], [  12 ], also known as static condensation, as the prototypical example

of model order reduction. Considering the discrete rabbit model in Fig.  1.1 , the left-most

rabbit is a fine discretization consisting of degrees of freedom to be retained (the active

degrees of freedom) and degrees of freedom to be deleted (the omitted degrees of freedom).

Guyan reduction does not account for the system’s inertia; instead, it considers the static

equation

K{x} = {F}. (1.2)

To reduce the order of the system, Guyan reduction expresses Eq. ( 1.2 ) as

KAA KAO

KOA KOO


{xA}

{xO}

 =

{FA}

{FO}

 , (1.3)

where the subscript A indicates active DOFs and O implies omitted DOFs. Assuming that

the forces on the omitted degrees of freedom are zero, the second equation in Eq. ( 1.3 ) can

be written for the displacements of the omitted DOFs as
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{xO} = −KOO
−1KOA{xA}. (1.4)

Equation ( 1.4 ) thus relates the displacements of the omitted DOFs to the active DOFs.

Substituting Eq. ( 1.4 ) into Eq. ( 1.3 ) yields

(KAA − KOO
−1KOA){xA} = {FA}. (1.5)

The above system of linear equations is equivalent to Eq. (  1.3 ), but is expressed in terms

of the active DOFs alone. Thus, Guyan reduction reduces system (the left-most rabbit in

Fig.  1.1 ) by condensing the omitted DOFs (producing the right-most rabbit in Fig.  1.1 ) while

accounting for the relationship between the active and omitted DOFs. This dissertation aims

to condense a discrete model in a manner similar to Guyan reduction, but focuses on dynamic

reduction. A majority of structural dynamic MOR techniques are based in the modal domain

and can be categorized into two classes: global mode superposition [ 6 ] and component mode

synthesis [  7 ], [ 9 ]. Both classes of modal MOR techniques rely on the expansion theorem [  13 ]

which gives the displacement of each DOF as a superposition of the eigenvectors of the entire

structure. In equation form, this is

{x} =
N∑

j=1
ηj(t){Xj}, (1.6)

where {x} is a vector of the nodal displacements, ηj is a modal coordinate, and {Xj} is one of

the N linearly independent and orthogonal eigenvectors describing the displacement shape

of the structure.

The mode displacement MOR reviewed in [  6 ] extracts a limited number P (where P < N)

of the eigenvectors and eigenfrequencies of the discretized system that can still accurately

represent the displacements of the active DOFs. Typically the first P eigenvectors corre-
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sponding to eigenfrequencies less than a frequency of interest are retained. In this way, the

number of DOFs utilized in the modal basis is reduced, thereby decreasing computational

expenses while still retaining the desired accuracy of the displacement. [  6 ] presents two

more expansions of this mode superposition reduction method called the mode acceleration

method and the mode truncation augmentation method, both of which add a correction

vector to the expansion; that is,

{x} =
P∑

j=1
ηj(t){Xj} + {xcor}. (1.7)

In the mode acceleration method, the correction term {xcor} is the static displacement of

the active DOFs while {xcor} in the mode truncation augmentation method is a weighted

form of the static response.

Component mode synthesis reduction techniques divide the structure into multiple com-

ponents on which the model order reduction is individually performed, as depicted in Fig.  1.2 .

As stated by [ 7 ], the order reduction of each structural component has multiple advantages,

including the effective evaluation of the dynamic behavior of large structural assemblies,

identification of local dynamic behavior, the elimination of the evaluation of components

which have little to no influence on the overall behavior of the assembled structure, and

the ability to dynamically combine modeled parts that have been obtained through different

means such as analytical or experimental. Component mode synthesis methodologies require

the several substructures to be compatible along their shared boundaries (see Fig.  1.2 ). Ad-

ditionally, the MOR must implement a force equilibrium condition along the substructures’

interfaces.

One of the most popular component mode synthesis techniques is the Craig-Bampton

method [ 8 ], [  14 ]. The Craig-Bampton method combines the motion of these boundary points

along the shared interface of the substructures with their displacement modes (known as

constraint modes). As a result, the dynamics of the system can be reduced to a set of both

fixed interface and constraint modes [ 15 ]. Additionally, the Craig-Bampton method uses the

static modes of the substructures similar to the mode acceleration method and the mode
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Figure 1.2. Illustration of the dynamic substructuring in component mode
synthesis MOR (Graphics credit: [  9 ] ©2019 Springer).

truncation augmentation method. The nearly diagonal reduced mass and stiffness matrices

of the Craig-Bampton method lead to efficient computational implementation [ 7 ].

Limitations

Despite the advancements of modal superposition and component mode synthesis struc-

tural MOR techniques, they still encounter a variety of limitations, as summarized in [ 6 ].

These include

• Reduced accuracy for heavily damped structures,

• Decreased accuracy when two resonance frequencies are close to each other,

• The high computational expenses of the determining the eigenvectors for large systems,

• The truncation of the number of eigenvectors used in the modal basis, limiting the

accuracy of the reduction to a narrow-band frequency range,

• An a priori selection of the number of retained eigenvectors needed for a desired level

of accuracy.
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1.1.2 Homogenization Techniques

Homogenization techniques reduce the order of the continuous model by formulating a

corresponding homogeneous model via an analytical continuum approach that exhibits the

same static or dynamic content as the heterogeneous structure [ 16 ]–[ 23 ]. Homogenization

is a limit theory which uses periodicity, averaging, and asymptotic expansions to replace

governing differential equations containing variable coefficients with differential equations

possessing constant, or slowly varying, coefficients whose solution approximately represents

the behavior of the original heterogeneous medium [  19 ]. Homogenization formulations in-

trinsically perform averaging operations of the spatially varying material and geometrical

properties and leverage specifically crafted convolution kernels to obtain either the homoge-

nized material properties or corrections to the first or second-order homogenized properties.

The quantities describing the homogenized models are known as effective properties. By

representing the heterogeneous medium as a homogeneous material, computational costs

arising from complex geometries, material distributions, interfaces, boundary conditions,

and multiple size scales can typically be reduced.

A large class of heterogeneous structures are composite materials, which are materials

possessing differing constituents that occupy different regions of the structure [  19 ]. The regu-

lar heterogeneity of the composite structure permits the representation of the entire structure

as a periodic assembly of a representative volumetric element, also called a unit cell [ 19 ], [ 21 ].

It is the composition and behavior of the unit cells from which the effective properties of

the corresponding homogeneous structure are derived [  18 ], [  21 ]. The homogenization process

from the periodic unit cells is illustrated by Fig.  1.3 .

Categories of Homogenization Techniques

Broadly speaking, [ 17 ] categorizes homogenization theories, also called effective medium

theories for composite structures, into four groups: direct homogenization, indirect homog-

enization, variational methodologies, and mathematical homogenization. In direct homoge-

nization techniques, the average quantities of the microscopic fields of the unit cell, such as

stress, strain, displacement, or energy density, are calculated via surface or volume integrals.
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Figure 1.3. Illustration of the concept of homogenization, where the periodic
structure is represented by an isotropic, homogeneous material whose effective
material properties are chosen so that the dynamics of the two media are
equivalent.

The average quantities from the unit cells are then set as the effective properties governing

the macroscopic behavior of the homogeneous representation. However, as noted by [ 16 ],

application of direct homogenization methods, although often used, can produce erroneous

models since they fail to consider factors such as localized interactions between various com-

ponents and the geometrical arrangement and orientation of the unit cell. This has led to

the development of indirect methods, which, rather than using the average of quantities,

calculate the effective properties by using the volume fraction, geometry orientation, and

mechanical properties of each individual component. The third class of homogenization

techniques are called variational methods. These homogenization techniques give theoretical

upper- and lower-bounds on the values of the effective properties.

As an example, the “rule of mixtures” approach is a variational homogenization method

for composites based on a weighted mean of each component’s mechanical properties and

their percent volume of the total structure [ 24 ]–[ 26 ]. The rule of mixtures provides a theoret-

ical upper- and lower-bound of the effective mechanical properties depending on if the com-

posite’s constitutive components are subjected to uniform strain (Voigt model in Fig.  1.4 (a))

or uniform stress (Reuss model in Fig.  1.4 (b)). The gray portions in Fig.  1.4 are designated

as material #1 while the blue sections are material #2. As seen in the Voigt model in

Fig.  1.4 (a), the load on the system is applied such that materials #1 and #2 are subject to

the same strain. That is, using Hooke’s law for uniaxial tension,
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Figure 1.4. (a) Illustration of Voigt iso-strain model of a composite, (b)
Illustration of Reuss iso-stress model of a composite.

σ1

E1
= ε1 = ε2 = σ2

E2
, (1.8)

where σ is the stress, ε is strain, and E is Young’s modulus. The modulus of the correspond-

ing homogenized Voigt model is derived in [ 24 ]–[ 26 ] as

EH = fE1 + (1 − f)E2, (1.9)

where f is the volume fraction of material #1 and EH is the effective Young’s modulus. On

the other hand, the constitutive components in the Reuss model in Fig.  1.4 (b) are subjected

to the equivalent stress; that is,

ε1E1 = σ1 = σ2 = ε2E2. (1.10)

The modulus of the Reuss homogenization is

EH =
(
f

E1
+ 1 − f

E2

)−1
. (1.11)
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Equations (  1.9 ) and (  1.11 ) are referred to the upper- and lower-bound modulus, respectively,

since most heterogeneous structures possess more complex geometries and applied loading

such that neither iso-strain or iso-stress is an accurate representation; rather, is it a “mix”

of the two.

The final class of homogenization methods are mathematical homogenization, also known

as asymptotic homogenization. This class assumes that any field quantity can be represented

by an appropriate asymptotic expansion, which is used to calculate the effective properties

when substituted in the governing equations [  22 ]. The idea is that each field quantity depends

on a slowly varying macroscopic scale and a quickly varying microscopic scale. For instance,

the displacement field u could be asymptotically expanded about a point x as

u(x) = u0(x) + εu1(x) + ε2u2(x) + . . . , (1.12)

where ε is a function of the two length scales. The homogenized model and its properties

are derived by neglecting high-order terms in the above expansions as the periodicity limit

tends to zero [ 18 ].

Homogenization techniques can also be classified as low-frequency approaches and high

frequency approaches. Low-frequency homogenization procedures, such as the direct, in-

direct, and variation homogenization methods discussed above, replace the heterogeneous

medium by a homogeneous one characterized by constant and uniform material properties.

However, they are only valid representations of the behavior of heterogeneous structures

when the wavelength is larger than the length of the unit cell. A general rule of thumb

for wave propagation in periodic, heterogeneous structures states that the wavelength must

be at least twice as long as the unit cell to be an accurate representation. Additionally, in

periodic structures, there are frequency ranges where the amplitude of a propagating wave

attenuates, or equivalently, where wave propagation through the system does not persist.

These frequency ranges, called band gaps, are due to multiple scattering from the hetero-

geneous inclusions in the shorter wavelength regime. The low-frequency homogenization

techniques cannot reflect the existence and location of band gaps since the methods are in-

valid at the high frequencies where the frequency band gaps typically occur. Indeed, the first
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band-gap typically marks the approximate limit of validity of low-frequency homogenization

approaches. This has prompted high-frequency homogenization approaches, which are ex-

panded asymptotic homogenization methods that use longer asymptotic expansions across

multiple scales capable of capturing the aspects of the micro-structural interactions [ 27 ]–

[ 29 ]. Despite providing a successful approach to broadband homogenization, shortcomings

of the high-frequency approaches follow from their theoretical formulation and the associated

computational cost.

Limitations

Homogenization techniques encounter the following shortcomings:

• The bounds given by variational homogenization methodologies, such as the Voigt and

Reuss models, are typically too large to be of any practical use [ 21 ],

• The large computational costs of the expansions of the asymptotic homogenization

methods, particularly for complex and multiscale structures as well as those containing

a large number of variables [ 22 ],

• The inability of low-frequency homogenization to accurately model the wave propa-

gation past the long wavelength limit. In particular, these approaches cannot capture

the wave attenuation of the frequency band gaps of periodic structures,

• The mathematical complexities and the high computational cost of the theoretical

formulations of high-frequency homogenization methodologies.

1.2 Fundamentals of Fractional Calculus

To address the narrow-banded frequency performance of model order reduction for the

vibration of discrete, lumped-parameter models possessing multiple DOFs and the long wave-

length limit of low-frequency homogenization approaches for the wave propagation through

a heterogeneous structure, the dissertation utilizes the mathematical field of fractional cal-

culus.
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1.2.1 What is Fractional Calculus?

Fractional calculus (FC) is a branch of mathematics studying integrals and derivatives

of non-integer order, which can be either real or complex-valued. Surprisingly, the idea of

fractional calculus has existed since the time of classical calculus in a series of letters between

Leibniz and de l’Hôpital in 1695 where they discussed the meaning and the interpretation of

dαf(t)/dtα when α is a non-integer. However, it wasn’t until the 20th century when the math-

ematics of FC were more rigorously developed and studied. Despite further enhancement

of the mathematics of fractional calculus, practical engineering and scientific applications of

the field remained quite limited, mainly due to a lack of understanding and methodologies

to link both geometrical and physical properties of a system to the corresponding order of

the fractional operator. Luckily, in recent decades, there has been a growing increase in

practical applications of fractional calculus as its meaning and significance come into clearer

focus. Due to FC’s unique properties, areas that have seen the largest boom in number

of applications of FC include viscoelasticity [ 30 ]–[ 35 ], transport processes in complex me-

dia [ 33 ], [  36 ]–[ 41 ], mechanics [  42 ]–[ 47 ], nonlocal elasticity [  48 ]–[ 52 ], control theory [  53 ], [  54 ],

biomedical engineering [ 55 ]–[ 57 ], and phenomena in fractals [  58 ]–[ 60 ]. It is anticipated that

applications in fractional calculus will continue to grow across a variety of disciplines in the

upcoming years as an understanding of the potential of FC increases.

1.2.2 Mathematical Definitions of Fractional Calculus

Within the last century and a half, the mathematics of FC have been more thoroughly

explored and advanced by mathematicians such as Liouville, Riemann, Abel, Riesz, Weyl,

and Caputo. The vast study of the mathematics of fractional calculus will be left to sources

such as [  61 ]–[ 65 ], although this section reviews the most common definitions and properties

utilized in this dissertation. In all the following definitions, f(t) is a generic continuous

function of the variable t. Before discussing definitions of a fractional derivative, a few specific

functions are presented. The gamma function Γ(t) can be interpreted as the generalization

of the factorial function for all real numbers. The gamma function is
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Γ(t) =
∫ ∞

0
e−ττ t−1dτ. (1.13)

Next, the two term Mittag-Leffler (ML) function, which plays a fundamental role in frac-

tional calculus and can be interpreted as the generalization of the exponential function, is

represented by E(·) and is defined as

Ep1,p2(t) =
∞∑

q=0

tq

Γ(p1q + p2)
. (1.14)

From a theoretical perspective, the quantities p1, p2, and t in the Mittag-Leffler definition can

be complex quantities, though in most applications of fractional calculus these parameters

are purely real.

A multitude of different definitions of fractional derivatives are available in literature,

each one created to address a specific need at hand or a shortcoming of another definition.

The two most common definitions are the called the Riemann-Liouville and the Caputo

derivatives. In the following definitions, the notation �
aD

α
t (·) indicates an operator having

order α and operating on the interval [a, t] where a is the initial evaluation location. When

the fractional operator is performed on the interval [a, t], it is called a left-handed definition.

Likewise, the right-handed form of the fractional operator is evaluated on the interval [t, b]

where b is the end evaluation point. For the sake of brevity, only the left-handed versions

of the fractional operators are presented. The right-handed operators are a straightforward

extension of the left-handed versions and can be found in [ 61 ]–[ 65 ].

Both the Riemann-Liouville and Caputo definitions of a fractional derivative are derived

using the definition of a Riemann fractional integral. The fractional integral of order β,

denoted as aJ
β
t (·), is

aJ
β
t [f(t)] = 1

Γ(β)

∫ t

a
f(τ)(t− τ)β−1dτ. (1.15)
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Moving to the fractional derivative definitions, let α ∈ R (or C) and n be the value of α

rounded up to the nearest integer. The Riemann-Liouville fractional derivative of order α is

defined by taking the nth derivative of the fractional integral of order n−α of f(t). That is,

RL
a Dα

t [f(t)] = Dn
aJ

n−α
t (f(t)) = 1

Γ(n− α)
dn

dtn
∫ t

a
f(τ)(t− τ)n−α−1dτ. (1.16)

On the other hand, the Caputo fractional definition of order α is the (n − α)th fractional

integral of the nth derivative of f(t). That is,

C
a D

α
t [f(t)] = aJ

n−α
t Dn(f(t)) = 1

Γ(n− α)

∫ t

a

dnf(τ)
dτn

(t− τ)n−α−1dτ. (1.17)

The Laplace transform of Riemann-Liouville fractional derivative is

∫ ∞

0
e−stDα

RL[f(t)]dt = sαF (s) −
n−1∑
q=0

sq[Dα−q−1
RL [f(t)]]t=0, n− 1 < α ≤ n (1.18)

while the Laplace Transform of Caputo fractional derivative is

∫ ∞

0
e−stDα

C [f(t)]dt = sαF (s) −
n−1∑
q=0

sα−q−1f (q)(0), n− 1 < α ≤ n (1.19)

where f (q)(0) is the qth order derivative of f evaluated at t = 0. From Eqs. (  1.18 ) and (  1.19 ),

it is evident that the Laplace transform of the Caputo derivative uses the same initial values

that a typical integer order problem does (first derivative, second derivative, etc.). The

initial values of the Riemann-Liouville definition are actually non-integer order derivative

values of the function at t = 0. The physical meaning of the necessary initial conditions

using the Riemann-Liouville definition is an ongoing research question [  66 ]. On the other

hand, the Caputo derivative lends itself to initial values which have a well-defined physical
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interpretation (initial position, velocity, acceleration, etc). As a result, Caputo fractional

derivatives are more commonly used for actual physical applications.

The finite difference form of fractional derivatives is very important when implementing

fractional derivatives in numerical formulations. The finite difference form of the Riemann-

Liouville derivative is known as the Grunwald-Letnikov fractional derivative [ 67 ], [  68 ] and

can be defined recursively as

∂αf(x)
∂xα

= 1
(∆x)α

N∑
q=0

gqf(xq), (1.20)

where gq are the Grunwald weights and are

g0 = 1, (1.21)

gq =
(

1 − α + 1
q

)
gq−1. (1.22)

1.2.3 Interpretation and Properties of Fractional Derivatives

The physical interpretation of a fractional derivative has long challenged researchers,

although a general consensus has begun to emerge. Unlike an integer order derivative, which

can be linked to a clear physical or graphical interpretation (such as the slope of a graph and

the first order derivative), the connection between a fractional derivative and its physical

or graphical interpretation is not as straightforward. One interpretation of a fractional

derivative is an operator that is capable of representing “hybrid” behavior. For example,

consider the plot of the derivatives of f(x) = x2, shown in Fig.  1.5 . It is evident that the

values of the fractional derivatives of f(x) = x2 lie in between the values of the integer order

derivatives. From this perspective, fractional derivatives can be interpreted as describing

behavior that lies in-between models formulated from integer order derivatives.
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Figure 1.5. Fractional derivatives (order α) of the function f(x) = x2.

The hybrid interpretation of a fractional derivative suggests that it can be a useful math-

ematical tool for mechanisms that exhibit “hybrid” behavior, such as anomalous diffusion

[ 39 ], [  46 ], [  69 ] or viscoelasticity [  30 ]–[ 35 ]. For instance, the use of fractional derivatives to

describe viscoelastic behavior is fairly logical since the overall response of such a system is

simultaneously elastic and viscous. Recall that the generalized one-dimensional (1D) rela-

tionship between stress σ and strain ε of a purely elastic solid is given by the Hooke’s law

σ = Eε where E is Young’s modulus. On the other hand, the stress-strain relationship of

a viscous medium is given by Newton’s law σ = η dε
dt

where η is the damping coefficient.

In Hooke’s law, the order of the derivative of strain with respect to time is zero while in

Newton’s law, the order of the derivative of strain with respect to time is one. Thus, from

an empirical standpoint, the stress-strain relationship of a viscoelastic material would be

σ = C dαε
dtα where dαε

dtα is the fractional derivative of the strain, C is a generalized coefficient,

and the value of α is between 0 and 1 (corresponding to the purely elastic and viscous limit

cases).

Other interpretations of a fractional derivative are related to their key features. As

seen by the definitions in Eqs. ( 1.16 ) and ( 1.17 ), the fractional operator is a differ-integral

operator with a power-law kernel. As a result, a fractional derivative is capable of capturing
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the memory of previous states where its power-law kernel acts as a weighting factor for

functional values at different domain locations [ 70 ]–[ 72 ]. Each location’s value within the

range is weighted where the locations closer to the point of evaluation have a greater influence

on the value of the fractional derivative than locations farther away. Systems that are

memory-dependent, such as transport processes in complex media [  36 ]–[ 41 ], have successfully

developed fractional models that reflect this feature. Nonlocal elasticity theory [ 48 ]–[ 52 ],

which is a continuum theory that describes the capability of one location’s state variable to

be directly influenced by other location’s states, even when separated by large distances, has

implemented fractional derivatives to model the dynamics of geometrical configurations with

inter-connected components and their inherent “spatial memory”. Additionally, due to its

ability to capture effects across multiple scales, FC has been adopted to model the mechanics

of fractals [ 58 ]–[ 60 ]. Figure  1.6 illustrates the most common systems were fractional models

have been shown to be advantageous. These key properties of fractional operators exemplify

their potential to accurately represent complicated structures whose mechanical behavior

might not be well represented by conventional integer order differential relationships.

Additionally, it is important to note the distinction between fractional derivatives taken

with respect to time versus space. A fractional time derivative is a natural tool to model

memory-dependent systems [ 63 ], [  70 ], [  71 ]. Furthermore, the intrinsic damping nature of a

time fractional derivative allows them to accurately represent dissipation in viscoelastic or

lossy materials [ 74 ]–[ 77 ]. Thus, time fractional derivatives are inherently non-conservative

operators. While time fractional operators enable memory effects, space fractional operators

can account for medium heterogeneity, nonlocal effects, and scale effects. For nonlocal me-

chanics, for instance, space fractional derivatives provide a power-law kernel where points

closer to the location of interest are weighted more than farther off locations. Space frac-

tional derivatives, unlike time fractional derivatives, are indicative of attenuation in systems

that potentially are still conservative.
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Figure 1.6. Scientific and engineering fields where fractional calculus has
been successfully used include (a) viscoelasticity, (b) anisotropic and nonlocal
materials (Graphics credit: [  73 ]), (c) fractal geometries, (d) anomalous diffu-
sion, (e) control theory, (f) porosity, (g) population models, and (h) economics
(graphics credit for (a),(d), and (f)-(h): Wikipedia).

1.2.4 Complex Order Fractional Derivatives

As will be seen, various portions of this dissertation will implement complex order frac-

tional derivatives. The mathematics of complex fractional derivatives is still a relatively

unexplored branch of FC. Additionally, the numerical methods available for complex or-

der fractional differential equations are not nearly as advanced as those for their real order

counterparts [  68 ]. Authors such as Love [ 78 ], Ortigueira et al. [ 79 ], Ross et al. [ 80 ], An-

driambololona et al. [  81 ], and Valerio et al. [  82 ] have worked on some aspects of complex

fractional derivatives; however, applications involving complex fractional orders are rather

sparse. While authors such as Atanackovic et al. [ 83 ] and Makris et al. [ 84 ] have used complex

fractional calculus to study various engineering systems, the actual physical significance of

a complex fractional order derivative is still not completely evident and continues to garner
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attention today. Makris et al. note a link between complex order derivatives to the modu-

lation of both the amplitude and phase of harmonic components of a function. They show

that an “important difference between real-valued and complex-valued time derivatives is that

phase modulation in the latter case is frequency-dependent whereas in the former is not” [  84 ].

The methodologies developed in this dissertation will also yield fractional derivatives that

are dependent on forcing frequencies of the system. These fractional derivatives are variable

order operators. Contrary to constant order operators, variable order fractional derivatives

represent classes of physical phenomena where the order itself is a function of either depen-

dent or independent variables [  64 ], [  85 ], [  86 ]. For example, the order can vary continuously

as a function of quantities such as time, space, frequency, or even an independent external

variable (e.g., temperature or applied loads).

1.2.5 Why Fractional Calculus for Model Order Reduction and Homogeniza-
tion?

This dissertation explores the feasibility and potential of fractional calculus as modeling

and simulation tools for vibration and wave propagation applications in discrete and contin-

uous structures. While multiple integer order based models have sufficiently modeled com-

plicated mechanics of heterogeneous structures such as multiscale micro-structural behavior,

nonlocal interactions, dissipation and damping, and stability, many encounter limitations

which this dissertation hypothesizes can be addressed by fractional calculus. Fractional op-

erators, possessing characteristics such as memory effects, intrinsic power-law attenuation,

multi-scale functionality, nonlocality, and hybrid behavior can serve as advanced mathemat-

ical tools to develop models and simulations more representative of the dynamic behavior of

heterogeneous structures.

For model order reduction, the differ-integral nature of the fractional derivative suggests

that it is capable of broadband behavior that can overcome the narrow-banded performance

of modal-based MOR. Additionally, as a hybrid operator, a fractional derivative appears

well suited to reflect the dynamics near closely-spaced resonance frequencies. Also, since

the time fractional derivative has been shown to accurately represent dissipation, use of a

fractional formulation for a MOR procedure ought to be applicable for discrete systems with
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damping. Rather than basing the reduced models on second-order differential equations, use

of a fractional MOR will allow the fractional order’s value to best represent the vibration

of the active DOFs. Lastly, by developing the fractional model order reduction in the fre-

quency domain as opposed to the modal domain, the fractional calculus reduction models

will not be subject to the computational costs associated with the calculation of the system’s

eigenvectors.

The power-law convolution kernel of fractional operators suggests a natural application to

homogenization problems, which rely on convolution and averaging approaches to calculate

the effective properties. Space fractional derivatives can provide a means to create an ef-

fective homogenization tool which captures all spatially variable properties of heterogeneous

structures merely through the fractional order. The proposed fractional order techniques are

more akin to the class of low-frequency homogenization approaches, in the sense that it re-

places the spatially varying material properties (or equivalently, the elastodynamic equation

with spatially varying coefficients) with homogenized material properties (or equivalently,

constant coefficient elastodynamic equation). Additionally, space fractional derivatives are

ideal mathematical tools to capture the dynamics of frequency band gaps in which attenua-

tion is due to multiple back scattering and not to energy dissipation. This provides a means

to potential high-frequency homogenization that may not subject to the high computational

costs of other theoretical high-frequency asymptotic homogenization approaches.

1.2.6 Fractional Studies Related to Vibration and Wave Propagation

This section reviews previous fractional calculus research in regards to vibration and

wave propagation applications and how this dissertation builds upon them. As previously

mentioned, viscoelasticity constitutes one of the major fields of application of FC, for both

discrete and continuous structures. Multiple studies ([ 30 ], [ 31 ], [ 33 ], [ 34 ], [ 46 ], [ 47 ], [ 84 ], [ 87 ]–

[ 89 ]) have developed constitutive equations for viscoelastic structures based on fractional

order derivatives (such as the fractional stress-strain relationship given in §  1.2.3 ), leading

to fractional governing equations of motion describing the vibration or wave propagation

of the viscoelastic media. Additionally, these studies have found that a fractional model
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of the viscoelastic media can be a more accurate representation of their physics. From the

perspective of discrete models, integer order models of viscoelasticity are typically modeled

as some form of springs and dampers in series or parallel (e.g., Maxwell and Kelvin-Voigt

models). Usually, formulating an accurate integer order model across a wide spectrum of

parameter variations requires multiple arrays of springs and dampers in series or parallel

[ 33 ], [  90 ], [  91 ]. On the other hand, the order of the fractional model typically can represent

the physics of viscoelastic media accurately without requiring a complex network of springs

and dampers. Sources such as [  30 ], [  87 ], [  89 ], [  92 ]–[ 94 ] have derived the discrete viscoelastic

governing equation as (or similar to)

mẍ+ cα
dαx

dtα
= f(t), (1.23)

where m is mass, x is the displacement, t is time, f is the load, and cα is a coefficient for

the fractional term.

While FC in viscoelasticity has shown great potential and continues to grow, this disser-

tation opts to use and expand upon a different discrete fractional equation since the discrete

models analyzed in Chapter  2 do not contain viscoelastic components. Sources such as [  61 ]–

[ 63 ], [ 74 ], [ 76 ], [ 95 ]–[ 98 ] have analyzed the vibration of another fractional model called the

fractional oscillator. Its governing equation is

m
dαx

dtα
+ kx = f(t), (1.24)

where k is the stiffness and α ∈ (1, 2]. From a general perspective, the fractional oscillator

behaves very similarly to a classical damped harmonic oscillator [  74 ], [  97 ] with the exception

that the damping term does not appear explicitly but is integrated in the time fractional order

derivative [ 76 ], [  97 ]. As a result, one can physically interpret the time fractional derivative in

Eq. (  1.24 ) as viscoinertial. Instead of viewing Eq. (  1.24 ) as a viscoinertial model, Stanislavsky

et al. [  98 ] suggests that the fractional oscillator model be considered as an ensemble average

39



of ordinary multiple harmonic oscillators. Performing a stochastic study of an assembly of

classical harmonic oscillators, Stanislavsky relates the fractional order to the phases of the

second order oscillators. If the phases are all identical, the resulting motion will be that

of a single oscillator; in this case, α = 2 in Eq. (  1.24 ). However, if the oscillators are out

of phase with one another, the assembly of oscillators will exhibit a dissipative nature over

time due to the antiphase contributions each oscillator exhibits on the others [  98 ], resulting

in α ∈ (1, 2).

Although use of Eq. (  1.23 ) is more commonplace since the inertial forces are still the

product of the mass and the acceleration in accordance with Newton’s second law of motion,

this dissertation uses Eq. ( 1.24 ) as its basis for a fractional MOR methodology since [ 98 ]’s

interpretation of the order of the fractional oscillator aligns with the notion of capturing the

dynamical relationship between the different DOFs of discrete lumped-parameter oscillators.

The hybrid view of a fractional derivative is well-suited to model closely spaced resonance

frequencies. Furthermore, use of a time fractional derivative allows the reduced order model

to accurately reflect any damping present in the discrete parameter models without needing

to explicitly include damping. Additionally, the dissertation extends the concept of a frac-

tional oscillator to possess multiple nodes. Finally, the use of the fractional oscillator as the

basis of the MOR represents an application of Eq. ( 1.24 ), which to-date has only seen a few

practical examples [ 99 ]–[ 101 ].

Wave propagation through heterogeneous structures is another field where fractional

calculus has been implemented [ 33 ], [  36 ]–[ 41 ], [  69 ]. The hybrid nature of the fractional

operator deems it a logical candidate to represent propagation behavior that is both wave-

like and diffusive concurrently. Studies of this diffusion-wave equation [  69 ], [  95 ], [  102 ]–[ 108 ]

derive a governing equation for the propagation as

∂αu

∂tα
= c2∂

2u

∂x2 , (1.25)

where u is a displacement, c is a speed, and α ∈ [1, 2]. Equation (  1.25 ) reduces to the

classic diffusion equation for α = 1 and the wave equation for α = 2. This fractional
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differential equation has been applied to describe the wave-like behavior of porous structures

[ 37 ], [  109 ] and lossy or dissipative materials based on a frequency power-law relationship

[ 38 ], [ 110 ], [  111 ]. Many of these studies derive fractional wave equations similar to Eq. (  1.25 )

by starting with the integer order equations of motion, applying a transformation (such

as Laplace or Fourier transform), solving the equation in the transformed domain with the

proper assumptions and boundary conditions, and then taking an inverse transform to obtain

an equivalent fractional derivative in the time-space domain [  31 ], [  37 ], [  38 ]. This approach

is typically utilized when the underlying constitutive relations have an intrinsic power-law

dependence and illustrates how the physics of the studied system are inherently fractional.

This dissertation uses governing equations similar to Eq. ( 1.25 ) except that the fractional

derivative is taken with respect to space rather than time, as seen in [  40 ], [  112 ]–[ 116 ]. A

space fractional derivative is chosen for heterogeneous systems since the material or geomet-

rical properties vary spatially. Additionally, because of its ability to represent the combined

effects of mechanical phenomena, FC homogenizes the varying material and geometry of

a heterogeneous structure by a single parameter: a space fractional order. However, un-

like the systems such in [  31 ], [  37 ], [  38 ], many heterogeneous structures are not intrinsically

fractional, making it exceedingly difficult to derive a fractional wave equation reflective of

the dynamics. Nonetheless, by using fractional models whose governing equation is a space

fractional wave equation, the dissertation can develop a novel homogenization tool for 1D

heterogeneous structures which can lead to analytical or numerical advantages. In particu-

lar, the attenuating, yet conservative, nature of a space fractional derivative is suitable to

represent the non-persisting wave propagation that occurs in the frequency band gaps of

periodic structures.

1.3 Objectives

This work aims to develop new, advanced, fractional calculus-based modeling techniques

applicable to the vibration and wave propagation analysis of discrete and continuous rep-

resentations of heterogeneous structures. Specifically, this dissertation will explore the use

of fractional derivatives to 1) create a model order reduction technique for the vibration

41



of discrete parameter systems that is capable of broadband accuracy, and to 2) develop a

homogenization approach for heterogeneous structures that is based on space fractional op-

erators. In particular, a class of heterogeneous structures called metamaterials [ 117 ]–[ 119 ]

will be studied as a benchmark system. The objectives of this dissertation are summarized

as

• To explore the role that time fractional order operators can play in the development of

model order reduction techniques capable of simultaneously delivering high accuracy

and high levels of reduction. In this context, specific technical objectives are

– To extend the fractional oscillator model given by Eq. (  1.24 ) to a multiple degree

of freedom formulation and to determine their analytical solutions,

– To analyze the values and physical significance of the time fractional derivatives

across a frequency spectrum for multiple reduction examples,

– To develop a system identification technique based on the fractional oscillator

where the amplitude and phase of numerical data is represented by a frequency-

dependent fractional order.

• To investigate the role and potential of fractional order operators as the mathematical

foundation for the development of material homogenization techniques. Technical

objectives are

– To develop a space fractional model representative of the elastic wave propaga-

tion in 1D heterogeneous structures,

– To demonstrate how the space fractional order derivative accurately captures the

spatial wave attenuation of periodic structures in frequency band gaps located

beyond the long wavelength limit,

– To explore both closed-form analytical solutions and numerical solutions of the

fractional models of 1D heterogeneous structures.

• To examine and explain the role of space fractional derivatives for heterogeneous ge-

ometries implemented in metamaterial waveguides. Technical objectives are
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– To analyze the specific example of an acoustic black hole geometry and correlate

the fractional order to the geometrical parameters of the acoustic black hole

profile,

– To develop a space fractional boundary condition or domain capable of mimick-

ing the effect of an acoustic black hole termination in an acoustic duct,

– To extend the concept of fractional homogenization to variable space fractional

order operators and to assess it for a slender, elastic beam containing an acoustic

black hole profile.

Along with these technical objectives, an overarching broader objective of this work is to

stimulate the engineering community, particularly the structural and dynamics communities,

to further consider the feasibility and potential of FC as an important tool for engineering

analyses and applications.

1.4 Organization of Dissertation

This dissertation is organized into five chapters. The first chapter here introduced the

vibration and wave analysis of heterogeneous structures. Model order reduction techniques

for discrete parameter models and homogenization methodologies for continuous models were

discussed. Fractional calculus was proposed as a mathematical tool capable of addressing

some limitations of MOR and homogenization methodologies. The dissipation characteristic

of time fractional derivatives that vary as a function of frequency offers a means to create

a highly accurate model order reduction methodology for the vibration of damped discrete

parameter systems across a wide frequency spectrum. On the other hand, the ability of

the space fractional derivative to capture varying spatial properties suggested its basis for a

novel homogenization technique that will represent wave propagation through heterogeneous

metamaterials. The objectives, along with their technical tasks, are further analyzed by each

of the next three chapters.

Chapter  2 is dedicated to fractional models for the vibration of discrete dynamical systems

and model order reduction formulation. Chapter  2 uses time fractional order differential
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equations to simulate the dynamic response of non-homogeneous, damped, discrete lumped-

parameter systems containing multiple DOFs. FC provides an alternative approach to the

traditional integer order approach where discrete dynamical systems can be modeled with

compact fractional equations that not only can still guarantee analytical solutions, but can

also enable broadband order reduction without compromising on accuracy. In addition, the

discussed discrete fractional models can be utilized as a model synthesis technique for system

identification.

Next, Chapter  3 formulates homogenized fractional wave models for periodic structures.

In particular, this chapter considers elastic wave propagation in a 1D bi-material periodic

rod and beam. The governing integer order equations describing the wave propagation

in periodic structures consist of partial differential equations with spatially varying coef-

ficients. Numerical solutions for the periodic systems are computationally expensive and

low-frequency homogenization fails to reflect the dynamics of frequency band gaps. Instead,

FC provides a powerful approach to develop comprehensive mathematical models of periodic

structures by serving as a homogenization tool that captures the wave attenuation in band

gaps. Analytical and numerical solutions to the space fractional differential equations of the

homogenized media are presented.

Then, Chapter  4 extends the notion of fractional homogenization to a heterogeneous

geometry known as an acoustic black hole (ABH). This chapter first uses space fractional

models for ABH terminations in 1D acoustic ducts whose order results in the equivalent

wave reflection into the main host duct. In this way, the effect of the ABH termination on

the wave propagation in the duct can be modeled without having the simulate the response

within the acoustic black hole itself. Then, this chapter turns its attention to an effective

space fractional model for an ABH geometry in a structural elastic beam. However, in this

case, the fractional homogenized model aims to also accurately capture the wave propagation

within the acoustic black hole by utilizing a variable space fractional order. The proposed

fractional models intend to pave the way for alleviating the computational expenses of current

numerical simulations of ABHs.

Finally, the last chapter summarizes the work, highlighting how each of the objectives

was met. In particular, the conclusion details the contributions and significance of the
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dissertation along with its limitations. Recommendations are provided for future work to

further promote the marriage of fractional calculus and vibration and wave analysis.

1.5 Remark on Validation of Fractional Models

Before proceeding, we provide a rationale for the use of analytical or numerical results of

the heterogeneous systems to assess the fractional models developed in the following chap-

ters. Indeed, the most convincing means to assess and validate the fractional models would

be to compare the response predicted by the fractional formulations to experimental data

of the corresponding heterogeneous system. However, the heterogeneity of the structures

explored in this dissertation are, for the most part, relatively basic. Thus, the analytically

or numerically obtained responses of these systems can be considered the “true” response

and serve as the reference for assessing the fractional models. Of course, for more com-

plex material and geometrical distributions, experimental data would be needed to serve as

the reference for evaluating the fractional model’s accuracy and appropriateness. For the

more intricate heterogeneous structures considered in this dissertation, references are cited

illustrating that experimental data closely aligns with numerical simulations of the systems.

In assessing the fractional models, if the heterogeneous structure has a known closed-form

analytical solution, it is used as the reference. If an analytical solution is unknown (as is

generally the case), a numerical solution (typically obtained using finite elements) of the

heterogeneous structure serves as the reference.
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2. FRACTIONAL ORDER MODELS FOR DISCRETE

DYNAMICAL SYSTEMS

A portion of this chapter was previously published by the Journal of Sound & Vibration and
is titled “Model-order reduction of lumped parameter systems via fractional calculus” [ 120 ]
[DOI: https://doi.org/10.1016/j.jsv.2018.01.011]. Another portion of this chapter is, at the
time of the deposit of this dissertation, under review for publication and is titled “Fractional
model order reduction of discrete dynamical systems under generalized harmonic loading
conditions”

The dissertation begins with the vibration analysis of fractional order models for discrete

dynamical systems and develops a fractional model order reduction which permits an accu-

rate broadband frequency response for the reduction of a multi-DOF structure. First, the

fractional oscillator, which can be considered as the fractional analog of a single DOF mass-

spring-damper, is extended to the case of multiple DOFs. Then, taking inspiration from the

modal analysis approach for vibrating systems, a fractional modal analysis is formulated to

determine the analytical solution of the displacement of each node of the multiple DOF frac-

tional model. Obtaining a closed-form analytical solution of the displacement via fractional

modal analysis will facilitate the assessment of the fractional model order reduction.

Next, the model order reduction procedure is formulated in the frequency domain. The

fractional MOR is based on equating the receptance (i.e., the transfer functions relating the

displacement and force) of the active DOFs in the multi-DOF structure to the receptance of

the DOFs of the corresponding reduced fractional model. The procedure allows the deter-

mination of the fractional order of the reduced model such that its dynamics are equivalent

to those of the active DOFs. Permitting the fractional order to be a function of the driving

frequencies of the applied loads enables the MOR methodology to possess the sought-after

broadband accuracy.

Lastly, this chapter concludes by considering fractional calculus for system identification;

that is, the analysis of dynamical systems where measured experimental data is available

and either the corresponding mathematical model or its coefficients are unknown. The

fractional oscillator is chosen to represent the amplitude and phase of an unknown system

whose dynamic behavior is given by a Bode plot. By letting the fractional order capture the
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amplitude and phase of the response at each frequency, a fractional model order identification

method can accurately represent the data across a wide frequency spectrum, including at

frequencies between closely spaced resonances. Contents of the chapter include

• Analysis of fractional oscillator models, possessing either a single DOF (F-SDOF)

or multiple DOFs (F-NDOF), along with their analytical displacements and transfer

functions,

• Reduction methodologies that yield either purely real or complex fractional orders and

discussion of their physical meaning,

• The conversion of a damped single DOF mass-spring-damper (I-SDOF) to an un-

damped F-SDOF, illustrating how the fractional order is determined by equating of

the transfer functions of the systems,

• The reduction of a multiple DOF mass-spring-damper (I-MDOF) to F-SDOF,

• The most generic reduction case of reducing an I-MDOF to a F-NDOF where N < M ,

• Discussion of how to reduce systems possessing harmonic loads with multiple frequency

components or containing loads on both active and omitted DOFs,

• Implementation of the fractional oscillator as the basis for a system identification

methodology of the vibration of discrete systems.

2.1 The Fractional Single Degree of Freedom Oscillator

The equation of motion (EOM) of the F-SDOF oscillator, shown in Fig.  2.1 (a), is

m̄
dαx̄

dtα
+ k̄x̄ = f̄(t), (2.1)

where x̄ is the displacement from the equilibrium condition, m̄ is a mass-like term, k̄ is a

stiffness term, f̄(t) is the time dependent load acting on the mass, and α is the order of the

fractional derivative. The dimensions of these quantities are the same as their counterparts in
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the classical driven harmonic oscillator equation, except for m̄ (dimensions of [MT]α−2). The

bar notation (e.g., x̄) is used for the reduced fractional models in order to distinguish them

from the parameters of the I-SDOF or I-MDOF. As will be observed, while the fractional

MOR will result in Re(α) between 1 and 2, Im(α) will sometimes be nonzero. Therefore, let

α = a+ ib, where a and b are the real and imaginary part of α, respectively, and i =
√

−1.

Figure 2.1. (a) The F-SDOF model. (b) The F-NDOF model.

To determine the quantities of the reduced fractional models (chiefly the fractional order),

the MOR equates the transfer functions (TF) of the active DOFs in the full scale integer

order model to those of the DOFs in the reduced fractional models. Doing so allows the

reduction methodology to calculate the value of the fractional order derivative reflective of

the interaction between the active and omitted DOFs. To determine the transfer function of

the F-SDOF, take the Laplace transform of Eq. (  2.1 ) (see §  1.2.2 ) with zero initial conditions,

obtaining

(m̄sα + k̄)X̄(s) = F̄ (s), (2.2)

where s is the Laplace variable. The transfer function of the F-SDOF is

G(s) = X̄(s)
F̄ (s)

=
(

1
m̄

)
1

sα + k̄
m̄

. (2.3)

Substituting α = a + ib and s = iω and applying some algebraic manipulation, Eq. (  2.3 )

becomes
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G(iω) =
(

1
m̄

)
1

γc + k̄
m̄

, (2.4)

where

γc = ωae− bπ

2

[
cos
(
aπ

2

)
cos
(
bln(ω)

)
− sin

(
aπ

2

)
sin
(
bln(ω)

)
+

icos
(
aπ

2

)
sin
(
bln(ω)

)
+ isin

(
aπ

2

)
cos
(
bln(ω)

)]
.

(2.5)

Equation ( 2.4 ) can now be rewritten in terms of its real and imaginary parts as

G(iω) =
(

1
m̄

)
1

δ + iχ
, (2.6)

where

δ = k̄

m̄
+ ωae− bπ

2

[
cos
(
aπ

2

)
cos
(
bln(ω)

)
− sin

(
aπ

2

)
sin
(
bln(ω)

)]
, (2.7)

χ = ωae− bπ

2

[
cos
(
aπ

2

)
sin
(
bln(ω)

)
+ sin

(
aπ

2

)
cos
(
bln(ω)

)]
. (2.8)

As a result, the magnitude and phase of the transfer function are

|G(iω)| = M = 1
m̄

√
δ2 + χ2 , (2.9)
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∠G(iω) = ψ = −tan−1
(
χ

δ

)
. (2.10)

Additionally, the analytical solution to the fractional oscillator in Eq. (  2.1 ) has been

determined through Laplace transformations by [ 61 ], [ 62 ], [ 97 ] as

x̄(t) = 1
m̄

∫ t

0
g(τ)f̄(t− τ)dτ + x0

m̄
Eα,1

(
− k̄

m̄
tα
)

+ ẋ0

tm̄
Eα,2

(
− k̄

m̄
tα
)
, (2.11)

where x0 is the initial position, ẋ0 is the initial velocity, and

g(t) = tα−1Eα,α

(
− k̄

m̄
tα
)
, (2.12)

where E(·) is the Mittag-Leffler function (see Eq. ( 1.14 )).

2.2 The Fractional Multiple Degrees of Freedom Oscillator

The F-NDOF model, depicted in Fig.  2.1 (b), simply extends the single DOF fractional

oscillator to consist of a series of N nodes connected by a set of N springs, whose motion

is governed by a fractional derivative. This parallels the extension of a single DOF mass-

spring system to a series of multiple masses connected by multiple springs. The EOMs of

the F-NDOF are

M̄
dα{x̄}

dtα
+ K̄{x̄} = {F̄}(t), (2.13)

where M̄ is a diagonal N ×N fractional mass matrix, K̄ is the N ×N stiffness matrix given

by
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K̄ =



k̄1 −k̄1

−k̄1 k̄1 + k̄2 −k̄2

. . .

−k̄N−2 k̄N−2 + k̄N−1 −k̄N−1

−k̄N−1 k̄N−1 + k̄N


, (2.14)

{x̄} is the N × 1 vector of nodal displacements
(

{x̄} =
[
x̄1 . . . x̄N

]T
)

, and {F̄} is the

N × 1 force vector
(

{F̄} =
[
f̄1 . . . f̄N

]T
)

. The fractional models considered here do

not include any explicit damping terms.

2.2.1 Transfer Functions of the F-NDOF

In obtaining the TF of each DOF in the F-NDOF, a system where there is a force acting

on only one DOF is considered (see §  2.4.3 for cases with multiple loads). This section

illustrates how to obtain the transfer functions for a F-2DOF. Extension of the process for

more DOFs is straightforward. The EOMs are given by

m̄1
dαx̄1

dtα
+ k̄1x̄1 − k̄1x̄2 = f̄1(t), (2.15)

m̄2
dαx̄2

dtα
− k̄1x̄1 + (k̄1 + k̄2)x̄2 = f̄2(t). (2.16)

One conceivable analysis would arrange these equations in a state-space form and then obtain

the TFs. However, rather than using a fractional state-space to transfer function method,

the approach calculates the Laplace transform of Eqs. (  2.15 ) and (  2.16 ) and then applies

Cramer’s rule. Applying the Laplace transform yields
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m̄1s
α + k̄1 −k̄1

−k̄1 m̄2s
α + k̄1 + k̄2


X̄1

X̄2

 =

F̄1

F̄2

 . (2.17)

Using Cramer’s rule, X̄1(s) and X̄2(s) are given by

X̄1(s) = D1(s)
D(s) , (2.18)

X̄2(s) = D2(s)
D(s) , (2.19)

where

D1(s) =

∣∣∣∣∣∣∣
F̄1(s) −k̄1

F̄2(s) m̄2s
α + k̄1 + k̄2

∣∣∣∣∣∣∣ , (2.20)

D2(s) =

∣∣∣∣∣∣∣
m̄1s

α + k̄1 F̄1(s)

−k̄1 F̄2(s)

∣∣∣∣∣∣∣ , (2.21)

D(s) =

∣∣∣∣∣∣∣
m̄1s

α + k̄1 −k̄1

−k̄1 m̄2s
α + k̄1 + k̄2

∣∣∣∣∣∣∣ . (2.22)

The desired transfer functions can then be obtained using Eqs. (  2.18 ) and (  2.19 ). As an

example, if F̄2(s) = 0 and F̄1(s) = F̄ (s), one can define D̂1(s) = D1(s)
F̄ (s) and D̂2(s) = D2(s)

F̄ (s) .

The transfer functions of the output displacements relative to the input force on the first

node are
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G1(s) = X̄1(s)
F̄ (s)

= D̂1(s)
D(s) , (2.23)

G2(s) = X̄2(s)
F̄ (s)

= D̂2(s)
D(s) . (2.24)

The substitution s = iω is made to convert to the frequency domain.

2.2.2 Fractional Modal Analysis of the F-NDOF

To determine the displacements of each DOF in the F-NDOF, this section formulates

a fractional modal analysis theory. Previously, Lin et al. [  121 ], [  122 ] have formulated a

fractional modal analysis, although it was for a generalized fractional viscoelastic model

which included pure elastic and viscous components as well. To generalize the vibration of

the fractional viscoelastic models, [ 121 ], [ 122 ] calculated its eigenvalues, frequency response,

and displacement response via their modal analysis algorithm. To develop the fractional

modal analysis for the F-NDOF model, the procedure takes inspiration and modifies that

proposed by Lin et al. [  121 ], [  122 ] to make it applicable for fractional oscillators instead of the

fractional viscoelastic model. Assuming {x̄} = {X̄}eλt and using the property dα(eax)
dtα = aαeax

(see [ 123 ]), Eq. ( 2.13 ) becomes

(
λαM̄ + K̄

)
{X̄} = {F̄}. (2.25)

When {F̄} = {0}, Eq. (  2.25 ) defines the eigenvalue problem where λ is the eigenvalue

and {X̄} is the eigenvector. Solving the eigenvalue problem requires |λαM̄ + K̄| = 0.

Assuming that the fractional order α ∈ C and 1 < Re(α) ≤ 2, |λαM̄ + K̄| always produces

a characteristic equation of the form
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λNα + c1λ
(N−1)α + . . .+ cN−1λ

α + cN = 0, (2.26)

where the coefficients cN are real constants. This is a polynomial-like equation that can be

transformed into a polynomial equation by adopting the substitution ξ = λ2/α. Equation

( 2.26 ) becomes

ξ2N + c1ξ
2(N−1) + . . .+ cN−1ξ

2 + cN = 0. (2.27)

Equation (  2.27 ) has 2N complex roots, which occur in complex conjugate pairs. After

obtaining the 2N roots of Eq. (  2.27 ), the roots of Eq. (  2.26 ) are obtained as λ = ξα/2. Each

root ξr corresponds to an individual value of λ. Therefore, Eq. (  2.25 ) has 2N distinct roots.

The roots to the α = 2 case are all purely imaginary and are indicated as ±iωj, where ωj are

the natural frequencies of the classic second order systems (j ranges from 1 to N). Comparing

Eq. ( 2.25 ) to the eigenvalue problem for the classic second order set of equations, it is easy to

see that the fractional eigenvalues raised to the fractional order (λα
j ) are actually equivalent

to the negative of the square of the natural frequencies obtained for the classical α = 2 case;

that is, λα
j = −ω2

j . Because of this fact, it is evident that the eigenvectors of this fractional

oscillator system of equations where 1 < Re(α) ≤ 2 are exactly the same as the eigenvectors

that are obtained for the classical α = 2 case.

Equation (  2.25 ) can be written for two different eigensolutions j and k (i.e.,
(
λα

j M̄ +

K̄
)

{X̄j} = {0} and
(
λα

k M̄ + K̄
)

{X̄k} = {0}). Multiplying the jth eigenvalue equation by

{X̄k}T , and the kth eigenvalue equation by {X̄j}T , subtracting the two, and noting that K̄

and M̄ are symmetric, yields

(λα
j − λα

k ){X̄k}T M̄{X̄j} = {0}. (2.28)
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Assuming j 6= k, then {X̄k}T M̄{X̄j} = {0}, showing that the eigenvectors are orthogonal

with respect to the fractional mass matrix M̄. If the eigenvectors are normalized with respect

to the fractional mass matrix, then

X̄T M̄X̄ = I, (2.29)

X̄T K̄X̄ = −λα
j I, (2.30)

where I is the N ×N identity matrix, −λα
j I is a diagonal N ×N matrix with the eigenvalues

raised to the power α along the diagonal, and X̄ is the modal matrix and contains all the

eigenvectors {X̄} as its columns. Equations (  2.29 ) and ( 2.30 ) show that the eigenvectors

diagonalize the fractional mass and stiffness matrices, allowing one to use the expansion

theorem ([  13 ]) to create a fractional modal analysis. The solution x̄ is expressed as a super-

position of the normal modes as

{x̄} =
N∑

j=1
ηj(t){X̄j} = X̄{η(t)}, (2.31)

where ηj are the modal coordinates. Substituting Eq. ( 2.31 ) into Eq. ( 2.13 ) and premulti-

plying by X̄T yields

X̄T M̄X̄
dα{η}

dtα
+ X̄T K̄X̄{η} = {Q̄(t)}, (2.32)

where {Q̄(t)} = X̄T {F̄ (t)}. Equations (  2.29 ) and (  2.30 ) uncouple Eq. ( 2.32 ) to give a set of

equations of the general form
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dαηj(t)
dtα

+ (−λα
j )ηj(t) = Qj(t), (2.33)

for j = 1, 2, . . . , N . Assuming zero initial conditions, the solution to Eq. (  2.33 ) is

ηj(t) =
∫ t

0
τα−1Eα,α(λα

j τ
α)Qj(t− τ)dτ. (2.34)

Once the solution is obtained for each modal coordinate, the nodal displacements of the

fractional oscillators are obtained using Eq. (  2.31 ). This methodology therefore successfully

determines the analytical solution of the displacements of all the nodes in the F-NDOF.

2.3 Conversion from a Damped Integer Single Degree of Freedom to a Fractional
Single Degree of Freedom

Now that the models and solutions of the F-SDOF and F-NDOF have been formulated,

the reduction methodology is developed. The reduction procedure will be broken into three

sections. This first section will consider conversions from a damped I-SDOF to a F-SDOF

having an equivalent dynamic response. While the conversion technically does not qualify

as a reduction methodology since the number of DOFs remains the same, it illustrates the

basic methodology behind the fractional MOR technique. In addition, this section discusses

how to handle systems with loads consisting of multiple harmonics.

Next, §  2.4 discusses how to reduce an I-MDOF to a F-SDOF. This is an extreme form of

reduction where there is only one active DOF in the I-MDOF which is reduced to a F-SDOF.

This section will also discuss how to perform the reduction when there are multiple loads,

acting on both active and omitted DOFs.

Finally, §  2.5 analyzes the most general reduction case of reducing an I-MDOF to a

F-NDOF where N < M . In each of the three sections, two different MOR approaches are

considered: one that yields a complex order derivative and one that produces a purely real

order fractional derivative.
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2.3.1 Approach Using Complex Fractional Orders

The differential equation of a classical mass-spring-damper (Fig.  2.2 (a)) is

mẍ+ cẋ+ kx = f(t), (2.35)

where m is the mass, c is the damping coefficient, k is the spring stiffness, x is the dis-

placement of the mass from equilibrium, and f is the external force. Taking the Laplace

transform of Eq. ( 2.35 ) with zero initial conditions, the TF of the I-SDOF is

H(s) = X(s)
F (s) = 1

ms2 + cs+ k
. (2.36)

Figure 2.2. (a) A classical mass-spring-damper system. (b) Discrete integer
order mass-spring-damper model with multiple DOFs.

To determine the order α of the fractional oscillator such that dynamics of the fractional os-

cillator and the classical damped oscillator are equivalent, Eq. (  2.36 ) is set equal to Eq. (  2.3 ).

According to [  63 ], this operation is allowable only if the external forcing functions satisfy

specific conditions and if one seeks an asymptotic form of the dynamic response. Trigono-

metric harmonic functions are one such example that will yield solutions x̄(t) that, at steady

state, are also harmonic [  97 ]. Achar et al. [ 97 ] provided a detailed analysis of the closed-form

solution to Eq. ( 2.1 ) when the external forcing is of the form Āsin(ωt). Based on their re-

sults, it is evident that the steady state solution of this kind of harmonically driven fractional
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oscillator is still a trigonometric harmonic function whose circular frequency is the same as

the frequency of the harmonic external force. Thus, assuming harmonic loads and steady

state conditions, setting Eq. ( 2.36 ) equal to Eq. ( 2.3 ) produces the polynomial equation

ms2 + cs+ k = m̄sα + k̄. (2.37)

Solving Eq. (  2.37 ) for α results in a fractional oscillator whose dynamic behavior is equivalent

to that of a known integer order oscillator. The use of complex order fractional derivatives

here provides much flexibility in the selection of the constant coefficients of the governing

equations, which means that the match between transfer functions is not unique and it can

occur for different choices of the constants k̄ and m̄. In this regard, the selection of the

parameters is discretionary. In practice, given that these values are connected to physical

quantities, they should be selected, at least, within the physical range of validity of their

integer order counterpart. The choice of m̄ and k̄ does affect the final form of the frequency

dependency of α but not the ability to match the responses of the two systems. Since the

procedure matches the dynamics of the I-SDOF to the F-SDOF, it is logical to set the values

of the coefficients of the fractional model equal to their integer model counterparts. This

assumption is based on the rationale that the two equations must share the same stiffness

and mass-like terms because they represent the same physical system. Another potential

approach to obtain m̄ would be to invert the definition of the damping ratio (if known) of

the integer order system and solve for the value of the mass and then set m̄ equal to this

value.

Using the strategy of setting the values of the coefficients of the fractional model equal

to their integer model counterparts, m̄ = Qm and k̄ = k, where Q is a unit conversion factor

necessary to maintain consistency in units. Q is of unitary value and its units are sα−2.

Substituting this and s = iω into Eq. ( 2.37 ) and solving for α results in

α = 1 +
Ln(iω + c

m
)

Ln(iω) , (2.38)
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where ω is the forcing frequency and Ln is the complex logarithm function.

From Eq. (  2.38 ), it is seen that for non-damped systems (c = 0), Eq. (  2.38 ) returns an

integer order derivative with α = 2 as expected. On the contrary, for damped systems,

the order will never be exactly equal to α = 2. However, for asymptotic values of the

forcing frequency (in discrete systems this condition translates to frequencies greater than

the highest resonance), Re(α) asymptotically approaches a value of 2 while Im(α) approaches

0. In the asymptotic regime, the dynamic response is dominated by the inertial term (order

of ω2) so the effect of damping becomes asymptotically small. In fact, this behavior is true

also for classical I-SDOF.

Equation (  2.38 ) also reveals that the order α of the equivalent fractional model is both

a complex and frequency-dependent quantity. A complex order derivative modulates both

the phase and the amplitude [  84 ] of harmonic components therefore allowing for virtually

unrestricted matching of the transfer functions. The above results show that if α in Eq. ( 2.1 )

is chosen according to Eq. (  2.38 ), then the response of the two systems at the given frequency

ω is exactly equivalent.

A numerical example further illustrates that the steady state responses of the two models

are exactly equivalent under harmonic loading. Results are presented both in the frequency

and the time domain. In the time domain, the steady state response of the I-SDOF subject to

a harmonic force f(t) = F0sin(ωt) is of the well-known general form x(t) = Xsin(ωt−φ) [ 13 ].

On the other hand, the total (both transient and steady state) time-dependent solution to

the fractional oscillator is given by Eq. (  2.11 ), which contains the Mittag-Leffler function. As

pointed out by Garrappa [ 124 ], while the ML function plays a fundamental role in fractional

calculus, there are surprisingly very few methods available for its numerical evaluation. A

few MATLAB functions do exist ([  125 ], [  126 ]) to numerically evaluate it but are not valid

for complex values of α. In order to evaluate the ML function for complex orders, an edited

version of [ 125 ] is used.

While the process is independent of the unit system, examples shall use the international

system of units (SI) for the sake of illustration. For the numerical evaluation, an I-SDOF

with m = 2 kg, c = 1 N s/m, and k = 10 N/m is considered. As discussed, m̄ = 2 kg

sα−2 and k̄ = 10 N/m in the fractional model. The value of α can then be calculated
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using Eq. (  2.38 ) for a specified forcing frequency ω. Figure  2.3 (a) shows a plot of the

value of α as a function of ω for this example. The natural frequency of the I-SDOF in

this numerical example is ω =
√

k
m

=
√

5 rad/s. Figure  2.3 (a) shows that for excitation

frequencies above the critical frequency, Re(α) tends towards 2 while Im(α) tends toward

0. Thus, when the forcing frequency is well above the resonance frequency (i.e., the high

frequency asymptotic limit), the fractional model converges to an integer order model. On

the contrary, for frequencies below the critical frequency, the model order is fractional and

1 < Re(α) < 2 as expected due to the presence of viscous damping in the initial integer order

model. With the fractional order as a function of frequency now obtained, the frequency

domain response of the fractional model is found using the magnitude and phase given by

Eqs. (  2.9 ) and (  2.10 ). The plots of the magnitude and phase of the transfer functions of the

integer order model and the fractional order model are plotted in Fig.  2.3 (b). Both sets of

magnitude and phase show that the TF of the F-SDOF model matches exactly the TF of the

corresponding I-SDOF. Thus, the dynamic behavior of the obtained F-SDOF is equivalent

to that of the I-SDOF.

Figure 2.3. (a) The complex fractional order α for the conversion of the
damped I-SDOF to a F-SDOF. (b) Magnitude and phase of the transfer func-
tions of I-SDOF and F-SDOF.

To illustrate the match between the I-SDOF and the F-SDOF in the time-domain, a

harmonic force of excitation frequency ω = 10 rad/s is considered. From Fig.  2.3 (a) or,
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equivalently, from Eq. ( 2.38 ), this frequency corresponds to an order α = 1.9903 − 0.0151i.

Using this value of α in Eqs. ( 2.11 ) along with the sinusoidal force f̄(t) = sin(10t) N, a

numerical evaluation of the convolution integral in Eq. (  2.11 ) produces x̄(t). The solution

given by Eq. (  2.11 ) includes both the transient and steady state response while the equiva-

lence between the integer and fractional order systems holds only at steady state. Therefore,

the comparison will be performed only on the steady state part. The time response of the

fractional oscillator is shown in Fig.  2.4 by plotting the real and imaginary parts, separately.

A complex order derivative of a real-valued function is a complex-valued function of time

[ 127 ], [  128 ] as reflected in the results of Fig.  2.4 . However, according to [ 84 ], the complex

order fractional derivative of a harmonic function is still a harmonic function but subject to

amplitude and phase modulations. In particular, the imaginary part of the order allows for

the modulation of phase, which are constant for a given frequency. This suggests that the

time response of the complex fractional oscillator under harmonic excitation can be treated

as an analytic function; therefore the direct comparison of the time responses of the two

oscillators requires x(t) = Re(x̄(t)).

Figure 2.4. (a) The complex-valued displacement of the resulting F-SDOF.
(b) A close-up view of the response of the F-SDOF after steady state has been
reached.
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The result of this comparison, seen in Fig  2.5 , illustrates a match between the steady

state responses of the two systems. A small discrepancy on the order of 3% between the

peak values is observed in Fig.  2.5 . After further numerical investigations, these differences

were attributed to the numerical errors associated with the evaluation of the complex order

Mittag-Leffler function in Eq. (  1.14 ). In fact, these numerical errors can sometimes be

more substantial depending on the forcing frequencies. As a result, this has prompted

the development of a methodology that produces a purely real fractional order while still

accurately representing both the amplitude and phase of the harmonic displacement (see

§  2.3.2 ).

Figure 2.5. Comparison of the steady state response of the I-SDOF to the
real part of the steady state response of the corresponding F-SDOF.

The fractional technique is able to obtain complex order fractional oscillators exhibiting

an equivalent dynamic response to damped integer order oscillators. Due to the numerical

errors associated with the complex order Mittag-Leffler function, comparisons in the dynamic

responses of integer and fractional order systems are presented in terms of their TFs since

this is sufficient to guarantee that the two systems will behave identically. For the real order

approaches, this chapter opts to instead plot the time-domain displacements of the integer

and fractional order systems to validate the accuracy of the fractional MOR.
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2.3.2 Approach Using Real Fractional Orders

Thus far, the reduction procedure has produced complex order derivatives. As noted,

due to the numerical errors of the complex order ML function, an alternative strategy is

developed that forces the order to be a purely real quantity. This can be beneficial since

the mathematics and numerical methods for real order fractional derivatives are much more

developed than their complex order counterpart.

In order for the MOR procedure to produce only real order operators, the value of m̄ is

not set equal to m, as was previously done. It follows that the expression of the fractional

order α (previously given in Eq. ( 2.38 )) becomes

α =
Ln(−m

m̄
ω2 + i c

m̄
ω)

Ln(iω) . (2.39)

Expanding the definition of the complex logarithm function, Eq. ( 2.39 ) is written as

α =
ln
(

ω
m̄

)
+ 1

2 ln(m2ω2 + c2) + itan−1
(

c
−mω

)
ln(ω) + iπ

2
. (2.40)

Multiplying the numerator and denominator of Eq. (  2.40 ) by the complex conjugate of the

denominator, it is observed that the order α will be purely real if

ln(ω)tan−1
(

c

−mω

)
− π

2

[
ln
(
ω

m̄

)
+ 1

2 ln(m2ω2 + c2)
]

= 0. (2.41)

Solving for m̄ in Eq. ( 2.41 ) yields

m̄ = ω

e2Υ/π
, Υ = ln(ω)tan−1

(
c

−mω

)
− π

4 ln(m2ω2 + c2). (2.42)

If the value of the fractional mass m̄ is selected according to Eq. (  2.42 ), then the order

α of the fractional derivative in the EOM of the F-SDOF will be a purely real quantity. A
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plot of m̄ for the previous numerical example is given in Fig.  2.6 (b). The fractional mass m̄

is now a function of the forcing frequency ω and can be regarded as an effective parameter

that allows the order α to be real, but still permits the undamped F-SDOF model to exactly

represent the damped I-SDOF. At higher frequencies where damping becomes negligible, the

value of m̄ approaches a constant asymptotic value coinciding with its static value. The order

α can be calculated using Eq. (  2.39 ) for a specific forcing frequency ω, where m̄ = m̄(ω).

Figure  2.6 (a) shows the value of α as a function of ω and confirms that α is a purely real

quantity. Other than the fact that Im(α) = 0, the trend of Fig.  2.6 (a) is similar to that of

Fig.  2.4 (a) where α tends to 2 for excitation frequencies above the critical frequency of the

oscillator, while 1 < α < 2 for excitation frequencies below the critical frequency.

Figure 2.6. (a) The purely real fractional order α for the conversion of the
I-SDOF to a F-SDOF. (b) The frequency-dependent fractional mass m̄ of the
F-SDOF.

While the purely real order formulation is a valid fractional MOR, it should be stressed

that once a more accurate numerical means to evaluate the complex order Mittag-Leffler

function order is developed, it is more prudent to use the complex order derivative method-

ology since, in actuality, the system’s inertia-like term is not frequency dependent. This

allows all frequency dependency to be represented solely by the fractional order.
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2.3.3 Methodology for Multi-Harmonic Loads

Thus far, the fractional MOR along with the examples has been limited to single harmonic

loads. Here, the question of how to handle multi-harmonic loads is addressed since a large

class of vibration problems contain such forcing functions. Both the integer and fractional

order derivative operators in all EOMs presented so far are linear operators. As a result,

linear superposition can be employed and the extension of the MOR methodology requires the

determination of the fractional order α for each frequency component. The total response

of the fractional oscillator consists of a summation of the steady state displacements in

Eq. (  2.11 ) for each frequency component. The strategy for the fractional reduction procedure

for multi-harmonic loads is summarized as

1. Obtain the fast Fourier transform (FFT) of the harmonic load.

2. Select the Nf most prevalent frequencies from the FFT. The selection of the harmonics

to be retained is not an exact process and, in general, follows the classical consider-

ations of a Fourier decomposition of a generic function. Hence, in the limit for the

number of frequencies Nf → ∞, the approximate function will converge to the exact

one. For practical applications, a threshold on the amplitude can be set in order to

determine the harmonics to be retained.

3. For each prevalent frequency ωj (in rad/s), identify the amplitude Aj and the phase φj

for j = 1, 2, . . . , Nf .

4. Calculate the values of the fractional orders αj corresponding to each frequency ωj

along with any other frequency dependent quantity (such as the fractional mass m̄j

for the real order formulation).

5. Obtain the response for each frequency as

x̄j(t) = Aj

m̄j

∫ t

0
cos(ωjt+ φj)gj(t− τ)dτ, gj(t) = tαj−1Eαj,αj

(
− k̄

m̄j
tαj

)
. (2.43)

6. Obtain the total response by linear superposition as
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x̄(t) =
Nf∑
j=1

x̄j. (2.44)

To illustrate the superposition procedure, again consider the numerical example given in

§  2.3.1 , but with a more complicated harmonic load f(t). The reduction methodology that

produces a purely real fractional order is used here so that the plots of the displacement

are free of numerical error arising from the complex order Mittag-Leffler function. In this

example, the forcing load consists of a square wave superimposed to a harmonic load along

with another harmonic frequency, as seen in Fig.  2.7 (a). The load is f(t) = 0.1
[
SQ(2πΩ1t)+

cos(2πΩ2t + φ1)
]

N, where SQ(2πΩ1t) is a square wave with period 2π, Ω1 = 0.08 Hz,

Ω2 = 0.5 Hz, and φ1 = 0.5. Figure  2.7 (a) depicts discontinuities in the load resulting from

the square wave. While these discontinuities excite more frequencies and produce transients,

an accurate representation of the steady state response can be obtained by 1) accounting for

the effects of multiple prevalent frequencies in the FFT (Fig.  2.7 (b)) and by 2) considering

the response at a time interval where the damping in the system has decayed all transient

behavior (see x-axis in Fig.  2.7 (c)). Figure  2.7 (c) plots the steady state response of the

I-SDOF and the F-SDOF using the values of α and m̄ from Fig.  2.6 . The curves match quite

well, with only a maximum relative error of 1.1%, located at the peaks and valleys. The

error in Fig.  2.7 (c) is due to the truncation of terms in the superposition of the fractional

responses of different frequency components (see Fig.  2.7 (b)) and is farther reduced as the

value of used frequencies Nf increases.

2.4 Model Order Reduction from Integer Multiple Degrees of Freedom to a
Fractional Single Degree of Freedom

A reduction, as opposed to a mere conversion, is now developed having established the

basics of the procedure in the I-SDOF to F-SDOF case. Assume that the response of one

of the degrees of freedom in the I-MDOF (Fig.  2.2 (b)) is the active DOF and that all the

remaining DOFs are omitted. An equivalent F-SDOF representation is sought such that
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Figure 2.7. (a) The harmonic load in the I-SDOF to F-SDOF example. (b)
FFT of the load, depicting the excited frequencies arising from the disconti-
nuities in the square wave. Red markers indicate frequencies used (Nf = 10)
to determine the displacement of the F-SDOF. (c) Comparison of the steady
state response of the I-SDOF and the F-SDOF subject to the load given in
(a).

the F-SDOF’s response matches exactly or approximately the response of the corresponding

active DOF of the I-MDOF model.

Similar to the methodology of §  2.3 , the reduction approach relies on equating the TF

of the active DOF to the TF of the F-SDOF and determining the corresponding fractional

order α. Recall that the transfer function of the F-SDOF is given by Eq. (  2.3 ). To determine

the TF of the I-MDOF, the system is first converted to a state-space form. From the state-

space form, the transfer function of any of the nodes in the I-MDOF can be obtained. The

process of obtaining the transfer function from state-space is well-established [  120 ], [  129 ],

[ 130 ]. Note that there are other means to obtain the desired TF of the I-MDOF, such as

using Cramer’s rule in §  2.2.1 .

Like the previous section, two approaches are considered: one that results in a complex

fractional order and the other where the order is forced to be purely real. Finally, this section

concludes by discussing how to extend the reduction methodology when there are loads on

both active and omitted DOFs.
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2.4.1 Approach Using Complex Fractional Orders

Let H(s) be the transfer function for the active degree of freedom in the I-MDOF model,

obtained from the state-space form. The corresponding fractional model has a mass of m̄ and

a stiffness of k̄, as reflected in Eq. (  2.1 ) and Fig.  2.1 (a). By equating the TF of the F-SDOF

to the TF of the degree of interest in the I-MDOF, the fractional order α is obtained as

α =
ln
(

1
m̄H(s) − k̄

m̄

)
ln(s) . (2.45)

Equation ( 2.45 ) can be made a function of frequency by substituting s = iω and provides a

fractional order α which guarantees an exact match of the TFs of the two systems. Therefore,

as far as the individual function H(s) is exact, the response of the equivalent F-SDOF is an

exact match of the initial I-MDOF.

Just like in the I-SDOF case, the selection of the mass m̄ and the stiffness k̄ in the

fractional oscillator is a discretionary decision. However, in §  2.3.1 , the selection of the

parameters m̄ and k̄ was a fairly natural decision given the existence of only one set of

parameters in the integer order model. Now, in the current configuration with multiple DOFs

in the integer order model, multiple choices can be made. Among the possible approaches

is to set m̄ so that the total mass of the I-MDOF matches that of the F-SDOF; that is

m̄ = Q
M∑
j=1

mj, (2.46)

where mj is the mass of the jth degree of freedom of the I-MDOF and Q is the unit conversion

factor. Since the I-MDOF model consists of springs in series, k̄ is set equal to the equivalent

stiffness of springs in series defined by

k̄ =
(

M∑
j=1

1
kj

)−1

. (2.47)
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As in the previous case, the methodology is illustrated with an example. Consider an

I-MDOF with M = 4 and non-uniform, periodic coefficients. Specifically, m1 = m3 = 1 kg,

m2 = m4 = 2 kg, k1 = k3 = 1 N/m, k2 = k4 = 2 N/m, c1 = c3 = 1 N s/m, and c2 = c4 = 2

N s/m. The natural frequencies are all within the range 0.36 rad/s to 2.22 rad/s. The

dynamic response of the first mass (m1 in Fig.  2.2 (b)) is the active degree and therefore the

one whose response is reduced to a F-SDOF. Using Eqs. (  2.46 ) and (  2.47 ), the parameters

of the fractional model are taken as m̄ = 6 kg sα−2 and k̄ = 1
3 N/m. After obtaining the

transfer function H(s) for the first mass in the I-MDOF model, Eq. ( 2.45 ) can be applied to

find α for a desired forcing frequency.

Figure  2.8 (a) shows a plot of the value of α as a function of ω for the example system. The

trend of α(ω) is highly dependent on the methodology used for determining the variables

m̄ and k̄. Following the suggested methodology (Eqs. (  2.46 ) and (  2.47 )), the fractional

system, in the asymptotic limit, tends to a second order system (Re(α) = 2, Im(α) = 0).

Thus, in the asymptotic limit, the phase of the response becomes nearly constant and no

longer changes with frequency. In the low frequency limit, the behavior of the system is

oscillatory (1 < Re(α) < 2) with a phase modulation (Im(α) 6= 0). The original system is of

order eight with resonances clustered in a narrow frequency range. For this reason, in the

frequency range of the local resonances, the equivalent fractional system can exhibit order

Re(α) > 2. As highlighted above, the fractional order is affected by the choice made to

define the equivalent parameters. Non-monotonic changes in the fractional order should be

expected in between resonances, suggesting that the evolution from one local resonance to

the next (typically modeled in conventional dynamic theory as a single DOF second order

oscillator) occurs via a dynamic behavior that is locally fractional. The dynamic response of

the fractional model can be studied using the magnitude and phase as given by Eqs. ( 2.9 ) and

( 2.10 ). Figure  2.8 (b) depicts the match between the magnitude and phase of the first mass

of the I-MDOF and the magnitude and phase of the F-SDOF. As desired, the response of

the equivalent fractional model is identical to the response of the first mass of the I-MDOF.

The two main advantages of the technique presented above are 1) the approach allows a

remarkable reduction in order without any loss in the characteristic features of the original

dynamics, and 2) the resulting F-SDOF can pave the way to the use of analytical solu-
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Figure 2.8. (a) The complex fractional order α for the reduction of an I-
MDOF to a F-SDOF. (b) Magnitude and phase of the transfer functions of
m1 in the I-MDOF and the F-SDOF.

tions (e.g., Mittag-Leffler function [  61 ]) for the simulation of complex dynamic systems that

typically allow only numerical approaches. Of course, the methodology encounters some

limitations as well. The methodology assumed that the initial I-MDOF system was known

beforehand. To obtain the fractional order α, the transfer function of the active DOF in the

I-MDOF must already be known. This is often unknown beforehand and is further discussed

in §  2.6 where the corresponding mathematical model or its coefficients are sought via FC.

2.4.2 Approach Using Real Fractional Orders

The procedure to obtain a purely real fractional order when reducing an I-MDOF to a

F-SDOF is analogous to that given in §  2.3.2 in that the fractional mass m̄ in the F-SDOF

varies as a function of the forcing frequency ω. The fractional order α is still given by

Eq. ( 2.45 ) but m̄ is now defined as

m̄ = 1
eΥ , Υ = 2I1ln(ω)

π
− Re

[
ln
( 1
H(iω) − k̄

)]
. (2.48)

An example that produces a purely real fractional order is deferred to the next section,

where a system with loads on both the active and omitted DOFs is considered.
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2.4.3 Methodology for Loads on Both Active and Omitted DOF

So far, the MOR procedures and presented examples were limited to a load only acting

on the active DOF. Thus, it was immediate to guarantee that the dynamics of the I-MDOF

and the F-SDOF were equivalent by matching the TF of the active DOF to that of the

F-SDOF. However, since the loads acting on the omitted DOFs and other active DOFs will

affect the overall dynamic response, the fractional MOR must be altered to capture the

dynamical effects from all the loads. To extend the procedure for systems where there are

loads on both the active and omitted DOFs, a force correlation procedure is created to

translate all the loads in the I-MDOF to be acting on a single active DOF, which is called

the chiefly active DOF. In the reduction of an I-MDOF to a F-SDOF, the chiefly active

DOF is chosen as the lone active DOF. For situations where there are multiple active DOF

(as seen in §  2.5 ), the selection of which active DOF to choose as the chiefly active DOF

is a discretionary decision since the dynamics will remain unaltered regardless. The force

correlation procedure presented below is valid for reducing an I-MDOF to a F-SDOF and

for reducing an I-MDOF to a F-NDOF.

In order to translate the forces to the chiefly active DOF without altering the dynamics of

the system, new loads acting on the chiefly active DOF are created while all other loads are

eliminated via transfer function analysis. This is illustrated in Fig.  2.9 , where the force acting

on each DOF in the I-MDOF is replaced by equivalent forces fC,J(t) for J = 1, 2, . . . ,M

acting on the chiefly active DOF (in this case, the first node, i.e., A = 1) such that the

dynamics of the discrete I-MDOF remain unaltered. Let H(s) = XA(s)/FA(s) be the TF

for the chiefly active DOF in the I-MDOF model. For the chiefly active DOF, XA(s) is the

Laplace transform of the displacement and FA(s) is the Laplace transform of a load acting

directly upon it. Using the state-space to transfer function procedure [  129 ], one can obtain

M different transfer functions relating the displacement of the chiefly active DOF to each

load in the I-MDOF model; that is, HAJ(s) = XA(s)/FJ(s) where FJ(s) is the Laplace

transform of the load on the J th DOF (J = 1, 2, . . . ,M) (note that the previously defined

transfer function H(s) is actually HAA(s)). The relationship between the known transfer

function HAA(s) and an unknown force fC,J(t) acting on the chiefly active DOF is
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Figure 2.9. (a) I-MDOF with loads on each DOF. (b) Illustration of the
force correlation procedure where all of the forces have been translated to the
chiefly active DOF (the first mass) such that the dynamics remain unaltered.

HAA(s) = XA(s)
FC,J(s) , (2.49)

while the relationship between the known transfer function HAJ(s) (J 6= A) and the known

force fJ(t) acting on all other DOFs is

HAJ(s) = XA(s)
FJ(s) . (2.50)

Solving Eqs. ( 2.49 ) and ( 2.50 ) for XA(s) and equating them yields

FC,J(s) = Cf (s)FJ(s), (2.51)

where

Cf (s) = HAJ(s)
HAA(s) , (2.52)
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is called the correlation function that relates the transfer functions to each other. Taking

the inverse Laplace transform of Eq. (  2.51 ) gives each correlation force on the chiefly active

DOF as

fC,J(t) =
∫ t

0
fJ(t)cf (t− τ)dτ. (2.53)

Equation ( 2.53 ) is a convolution integral that replaces a load on the J th DOF in the I-MDOF

with a corresponding correlated force on the chiefly active DOF such that the displacements

of the nodes in the I-MDOF remain unaltered. Since the chiefly active DOF will have multiple

loads acting on it with different harmonic components, the linear superposition method in

§  2.3.3 will need to be applied to calculate the overall displacements of the reduced fractional

models.

Perhaps the best way to illustrate the methodology is with an example. Consider an

I-MDOF with M = 2 where the first mass is the active DOF (i.e., A = 1). The masses,

springs, and dampers in this I-MDOF are m1 = 1 kg, m2 = 2 kg, k1 = 1 N/m, k2 = 2

N/m, c1 = 1 N s/m, and c2 = 2 N s/m. The natural frequencies are
√

2/2 rad/s and
√

2

rad/s and the fractional stiffness is chosen as k̄ = 1.5 N/m. This example uses the real order

formulation.

The plots of α and m̄ are obtained according to Eq. (  2.45 ) and Eq. (  2.48 ) and are given in

Fig.  2.10 . It is observed that 1 < α < 2 in the range of the natural frequencies of the I-2DOF.

The value of α in this region captures the damping effects in the system. The plot of m̄

in Fig.  2.10 (b) indicates that m̄ is a large quantity at low frequencies before asymptotically

approaching a smaller value at higher frequencies that is closer to the values of the masses

in the I-2DOF. In fact, m̄ in Fig.  2.10 (b) approaches a value of 1 kg sα−2, which is the same

numerical value of m1. Thus, at high frequencies, the F-SDOF model becomes a classical

second order oscillator with a mass equal to the mass of the active DOF in the I-MDOF.

The loads in this example are f1(t) = 0.01sin(2πΩ1t) N and f2(t) = 0.01cos(2πΩ2t) N

where Ω1 = 0.08 Hz and Ω2 = 0.1 Hz. Using the force correlation procedure, the force f2(t)

acting on the omitted DOF is moved to a new force fC,2(t) acting on the chiefly active DOF.
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Figure 2.10. (a) The real fractional order α in the I-MDOF to F-SDOF
reduction example. (b) The frequency dependent quantity m̄ in the F-SDOF.

By taking the inverse Laplace transform of the ratio of transfer functions H1,2(s)/H1,1(s),

the correlation function cf (t) is obtained as

cf (t) = 1
2e−0.75t

[
cos(0.97t) + 0.26sin(0.97t)

]
. (2.54)

Thus, the correlated force fC,2(t) acting on the first mass is

fC,2(t) = 5
1000

∫ t

0
cos(2πΩ2t)e−0.75(t−τ)

{
cos
[
0.97(t− τ)

]
+ 0.26sin

[
0.97(t− τ)

]}
dτ. (2.55)

A plot of the total force f1(t)+fC,2(t) on the chiefly active DOF is given in Fig.  2.11 (a).

The response of the reduced F-SDOF model is determined by taking the FFT of the har-

monic load in Fig.  2.11 (a) and following the multi-harmonic procedure given in §  2.3.3 . The

displacement of m1 in the I-2DOF is obtained by performing a direct time integration using

a 4th order Runge-Kutta numerical scheme on the system of differential equations with f1(t)

acting on m1 and f2(t) acting on m2. The steady state response of the displacement of m1

in the I-2DOF and the displacement of the F-SDOF is plotted in Fig.  2.11 (b) (time range

chosen after the transient responses had fully decayed). The curves in Fig.  2.11 (b) match
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extremely well, with only a maximum relative error of about 0.25% located at the peaks and

valleys of the curves, thus illustrating the accuracy of the reduction procedure when there

are multiple loads acting on both active and omitted DOF in the I-MDOF.

Figure 2.11. (a) The harmonic load acting on the active DOF of the I-
MDOF. (b) Comparison of the steady state response of the active DOF of the
I-MDOF and the F-SDOF.

2.5 Model Order Reduction from Integer Multiple Degrees of Freedom to Frac-
tional Multiple Degrees of Freedom

Finally, this section considers the most generalized reduction procedure where multiple

active DOFs in an I-MDOF are reduced to a dynamically equivalent F-NDOF. Two methods

are again developed: one that produces a complex fractional order and the other which forces

the fractional order to be real.

2.5.1 Approach Using Complex Fractional Orders

Predictably, the reduction from an I-MDOF to a F-NDOF is once again based on equating

the transfer functions of the active DOFs in the I-MDOF to the TFs of the DOFs in the

F-NDOF. Having developed the foundation of the fractional MOR in the preceding sections,

this section immediately considers the specific reduction of an I-4DOF to a F-2DOF to

demonstrate the reduction process. The active DOFs in this demonstration are the first and
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third masses of the I-4DOF in Fig.  2.2 (b). Furthermore, while all the necessary means to

reduce systems with multiple loads consisting of multiple frequencies have been formulated,

this example shall only include an external force on the first node in both the I-4DOF and

in the F-2DOF to exclusively focus on the reduction process. The reduction technique shall

yield responses of the F-2DOF’s degrees which are equivalent to the responses of the active

degrees in the I-4DOF. The TFs between the displacement and the force of active degrees

in the integer order model have been obtained by using state-space to transfer function

techniques. These transfer functions are called H1 and H3, respectively.

In order to match the responses of the two systems at the selected DOFs, impose H1 = G1

and H3 = G2 where G1 and G2 are given by Eqs. (  2.23 ) and (  2.24 ), respectively. The values

of m̄1, m̄2, k̄1, and k̄2 are determined by lumping masses and springs from the integer model

in a logical manner. Although different procedures to assign the fractional parameters can

be selected, the proposed method here sets the total mass of the fractional model to be equal

to the total mass of the integer model. In this reduction example, m̄1 = Q(m1 + m2) and

m̄2 = Q(m3+m4). Next, a relationship among the stiffness values of the F-NDOF is selected.

Recall Eq. ( 2.47 ), in which a parameter k̄ was the equivalent stiffness of springs in series.

Define k̄1 = κk̄ and k̄2 = κk̄/(1 − κ), where κ is an unknown coupling stiffness parameter.

Notice that k̄1 and k̄2 are defined such that the equivalent stiffness of these springs in series

is equal to the equivalent stiffness of the corresponding integer order model (Eq. ( 2.47 )).

Equating the transfer functions of the fractional and integer order models, a set of two

nonlinear equations in two unknowns (α and κ) is obtained. To solve for the complex order

α and the stiffness coupling parameter κ (which will also be a complex quantity), a nonlinear

numerical solver can be used.

Consider the I-4DOF that was used in the example in §  2.4.1 . The equivalent mass

coefficients in the F-2DOF are m̄1 = m̄2 = 3 kg sα−2. Using a nonlinear solver, the values

of the order α and the coupling parameter κ are obtained over a frequency range. Figure

 2.12 (a) shows a plot of the value of α as a function of ω while Fig.  2.12 (b) plots the value of

κ as a function of ω.

The familiar trend in Fig.  2.13 (a) where 1 < Re(α) < 2 is observed once again. Also,

in the asymptotic limit, Re(α) → 2 while Im(α) → 0. Concerning κ, when the forcing
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Figure 2.12. (a) The complex fractional order α for the reduction of the I-
MDOF to F-NDOF. (b) The stiffness coupling parameter κ for the F-NDOF.

frequency is not near the resonance frequencies, κ is a purely real quantity. In fact, in the

low frequency limit, κ = 2, while in the high frequency limit, κ = 1. At frequencies near

and between the resonance frequencies, κ is a complex quantity. For this range in which the

coupling parameter is complex, Re(κ) is representative of the stiffness in the I-4DOF while

Im(κ) (along with the complex order α) contributes to the damping of the system. For very

high frequencies, where both α and κ are integers, damping no longer plays a significant role

in the steady state dynamics.

After obtaining the values of α and κ, the dynamic behavior of the fractional and integer

models are verified to be equivalent. The magnitudes and phases over a frequency range are

given in Fig.  2.13 . Figure  2.13 (a) depicts the magnitude and phase of the first degree (mass)

in the I-4DOF and the first degree of the F-2DOF while Fig.  2.13 (b) shows the magnitude

and phase of the third degree in the I-4DOF and the second degree of the F-2DOF. The

perfect overlap in the results illustrates that the dynamic response of the F-NDOF was able

to exactly match the response of the active degrees of the I-MDOF.
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Figure 2.13. (a) Magnitude and phase of the transfer functions of m1 in the
I-MDOF model and m̄1 in the F-NDOF model. (b) Magnitude and phase of
the transfer functions of m3 in the I-MDOF model and m̄2 in the F-NDOF
model.

2.5.2 Approach Using Real Fractional Orders

Again, if one wants to determine the displacements of the reduced fractional model, this

dissertation strongly suggests using an approach that is restricted to purely real fractional

orders to avoid the numerical errors associated with the evaluation of the complex Mittag-

Leffler function. Unlike in §  2.3.2 and §  2.4.2 , a closed-form expression forcing α ∈ R is

not easily obtainable. Thus, a nonlinear optimizer is implemented that sets the TFs of the

F-NDOF equal to the TFs of the active DOF of the I-MDOF while minimizing the absolute

value of the imaginary part of the fractional order α along with other parameters of the

reduced F-NDOF including the fractional springs k̄j and masses m̄j for j = 1, 2, . . . , N . In

this way, the values of the fractional order and parameters can converge to real values while

ensuring that the dynamics of the fractional system and the original integer order model

remain equivalent. All fractional parameters in this case will be functions of frequency.

Admittedly, this optimization procedure is not the most ideal strategy since the compu-

tational expenses of the nonlinear least-squares optimization algorithm will increase quickly

for reduced order models with a large number of DOFs and since all of the fractional masses

and stiffnesses will vary as a function of frequency. However, due to previous considerations
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on the accuracy of the complex order ML functions, the procedure is compelled to use this

strategy to minimize the imaginary part of the fractional order α so that it can accurately

calculate the displacements of the nodes of the F-NDOF according to the fractional modal

analysis procedure given in §  2.2.2 . Once research has advanced the numerical evaluation of

the Mittag-Leffler function, it is suggested to use the complex order methodology in §  2.5.1 

along with any additional considerations (e.g., the force correlation procedure from §  2.4.3 

and the multi-harmonic procedure from §  2.3.3 ).

The illustration of the reduction uses the I-4DOF to F-2DOF example given in §  2.5.1 

but with a single load f1(t) = 0.1sin(2πΩt) N where Ω = 0.15 Hz, acting on the first mass m1.

As a reminder, the first and third masses are the active DOFs. The optimization determines

the values of α, m̄1, m̄2, k̄1, and k̄2 in the F-NDOF such that the TFs of the nodes in the F-

NDOF (G11(s) and G21(s)) are equal to the TFs of the active DOFs in the I-MDOF (H11(s)

and H31(s), respectively). The nonlinear least-squares optimization algorithm used an initial

evaluation point of α = 2, m̄1 = m1, m̄2 = m3, k̄1 =
(

1
k1

+ 1
k2

)−1
, and k̄2 =

(
1
k3

+ 1
k4

)−1
. The

plot of the fractional order α of the F-NDOF is given by Fig.  2.14 .

Figure 2.14. The fractional order α in the I-MDOF to F-NDOF reduction
where the optimizer minimizes Im(α).
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Some of the trends in Fig.  2.14 are similar to those in Fig.  2.10 (a), specifically the fact

that 1 < Re(α) < 2 near and in the range of the natural frequencies of the I-4DOF. This

value of α again illustrates that the evolution from one resonance to the next occurs through

a dynamic behavior which is locally fractional. For frequencies not near (both above and

below) the range of natural frequencies, the fractional order α approaches an integer value

of 2. Figure  2.14 also reveals that the fractional order α is not purely real for all frequencies.

The imaginary part of α, while small, is non-zero for frequencies near the resonance frequency.

Recall that the optimization minimized the imaginary part of α while still guaranteeing that

G11(s) = H11(s) and G21(s) = H31(s). Clearly, a purely real value of α could not fully

satisfy the equality of the transfer functions for near-resonance frequencies. Although the

imaginary part of α is small in these cases, it is anticipated that some additional error in

the plots of the displacements of the F-NDOF will occur. Plots of the the fractional masses

and stiffnesses indicate that these fractional parameters also possess a small imaginary part

just like α.

Having calculated the fractional parameters α, m̄1, m̄2, k̄1, and k̄2 in the F-2DOF, the

steady state displacements of the fractional nodes in Fig.  2.15 are plotted by using the

fractional modal analysis procedure given in §  2.2.2 . In addition, the displacement of the

active DOFs in the I-4DOF are obtained by performing a direct time integration using a 4th

order Runge-Kutta numerical scheme on the system of integer order differential equations.

As seen in Fig.  2.15 , the steady state response of the displacement of m1 and m3 from

the I-4DOF match the displacements of their corresponding reduced fractional nodes quite

well, further validating the accuracy of the FC-MOR and fractional modal analysis. The

maximum relative error between the curves in Fig.  2.15 (a) is approximately 0.8% while it

is 1.7% for Fig.  2.15 (b). While the match between the I-MDOF and F-NDOF curves in

Fig.  2.15 is fairly accurate, it is again stressed that the current means to evaluate complex

order Mittag-Leffler functions is not yet nearly as accurate as its real order counterpart and

can produce more pronounced errors for different example cases.
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Figure 2.15. (a) The steady state response of the first node in the F-NDOF
and the first node in the I-MDOF. (b) The steady state response of the second
node in the F-NDOF and the third node in the I-MDOF.

2.6 System Identification from Numerical Data Using Fractional Oscillators

The formulation developed in the previous sections assumed that the initial I-MDOF

system was provided and that an equivalent fractional form was sought. However, there are

many situations of practical interest in the analysis of dynamical systems where measured

experimental data is available and either the corresponding mathematical model or its coef-

ficients are unknown; this class of problems is typically referred to as system identification.

Over the years, a variety of system identification techniques have been proposed [  130 ], [  131 ].

One of the most common approaches for vibration problems relies on matching second or-

der systems to individual resonances, therefore approximating the response of the system at

resonance as a second order oscillator. This approach is also at the basis of the conventional

half-power bandwidth method [ 13 ] for damping estimation. However, this approach has some

important limitations. When the resonance frequencies of the multiple DOF system are too

closely spaced, the local resonance is not well approximated by the single DOF oscillator.

Also, in between resonances, the behavior of the system is typically fractional due to the

coupling between two or more DOFs. This also explains why, when comparing numerical and

experimental data, the largest discrepancies are often observed at frequencies off-resonance

(regardless of the accuracy at resonance).
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The category of system identification requires the selection of a dynamic model that

is matched to the experimental data by properly tuning the model parameters. In this

approach, the structure of the mathematical model (typically based on differential operators)

is selected a priori without any detailed insight into the true physical nature of the system.

Further, different operating regimes could require different models to achieve an accurate

representation. Fractional models offer a much more general approach to the formulation

of the equations of motion because they are capable of capturing in a single mathematical

model a variety of physical mechanisms that would otherwise require multiple integer order

models. The well-known change in the dynamic behavior of a system when transitioning from

the low to the high frequency regime is a classical example of this phenomenon. In addition,

it should be considered that typically the most appropriate dynamical model to describe a

complex system is not known a priori; therefore, the use of a fractional model would allow

a general approach in which the system identification process is allowed to converge to the

most appropriate form of the governing equations. Therefore, in some respect, this approach

would result in a model identification method.

The above considerations suggest that fractional order models can provide a powerful

methodology for the dynamic characterization of complex systems from measured data. The

system identification approach presented below produces an equivalent F-SDOF model. The

data used to synthesize the dynamical models is called measured data. In practice, this

reference data was generated numerically.

Assume that numerical (or experimental) data describing the dynamics of a system has

been obtained at a single location or DOF. Source data will be presented in the form of

Bode plots. The magnitude of the measured Bode plot at the desired frequency is M and

the phase is ψ. Furthermore, assume that the total mass and stiffness of the system have

been measured. An estimation of the system’s stiffness could be obtained from the amplitude

of the transfer function in the low frequency range (i.e., from the quasi-static limit). The

mass and stiffness of the F-SDOF system are m̄ and k̄, respectively. Using these quantities

in Eqs. (  2.9 ) and (  2.10 ), the parameters δ and χ can be obtained at a specific frequency.

Rearranging these equations yields
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δ2 + χ2 = 1
(Mm̄)2 , (2.56)

χ = δtan(−ψ). (2.57)

Substituting Eq. ( 2.57 ) into Eq. ( 2.56 ) results in

δ2
[
1 + tan2(−ψ)

]
= 1

(Mm̄)2 . (2.58)

Using the identity 1+tan2(·) = sec2(·), Eq. ( 2.58 ) can be written as

δ2 = 1
(Mm̄)2sec2(−ψ) . (2.59)

Taking the positive root,

δ = cos(−ψ)
m̄M

. (2.60)

Furthermore,

χ = sin(−ψ)
m̄M

. (2.61)

Once δ and χ are obtained for a certain frequency ω, the nonlinear Eqs. ( 2.7 ) and (  2.8 )

can be numerically solved to find the coefficients a and b in α = a+ ib (assuming a complex

order approach). This procedure can then be repeated over a range of frequencies to obtain

the order α for many different frequencies for the corresponding F-SDOF model.
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To illustrate the procedure, the Bode plot given in Fig.  2.16 is considered the measured

data. In this example, m̄ = 2.6044 kg sα−2 and k̄ = 0.4167 N/m. Equations (  2.60 ) and (  2.61 )

are solved to find δ and χ for 100 different frequencies between 0.01 and 100 rad/s. For each

frequency, the value of α can be found using Eqs. (  2.7 ) and (  2.8 ). Figure  2.17 (a) shows the

plot of α(ω) for the selected example. To verify that the magnitude and phase of the F-SDOF

match that of the synthetically generated data, Eqs. (  2.9 ) and ( 2.10 ) are used to plot the

magnitude and phase of the obtained F-SDOF. Figure  2.17 (b) shows that the magnitude and

phase of the F-SDOF match exactly the initial data. In order to assess the effectiveness of the

fractional model approach, Fig.  2.17 (b) also reports the magnitude and phase of an I-SDOF

model created from the same input data. The parameters (mass, stiffness, damping) of the

I-SDOF model were obtained by matching the transfer function of a second order system at a

selected resonance frequency (ω = 0.3 rad/s). This approach follows the traditional method

used to extract physical parameters (e.g., damping) from experimental data. In fact, for

sufficiently spaced resonances, the peaks in the magnitude of the TF are fit locally by single

DOF systems. While the obtained I-SDOF provides a good match of the data near the

resonance, larger discrepancies are observable off-resonance. This is especially evident when

analyzing the magnitude and phase of the I-SDOF at higher frequencies in Fig.  2.17 (b). In

particular, the phase is far off from the synthetically generated data around ω = 1 rad/s.

Clearly, the I-SDOF model’s range of validity is only valid near the frequency where the

second order system was matched (ω = 0.3 rad/s). If the synthetically generated data was

represented with an integer order model across a wide frequency spectrum, the use of second

order models with multiple DOFs would be required. The fractional model, however, is

capable of representing the data across a wide frequency spectrum using only a single DOF

whose fractional order is frequency-dependent.

It could be argued that the I-SDOF model in Fig.  2.17 (b) was not fairly compared to

the obtained F-SDOF since the magnitude and phase of the F-SDOF’s transfer function

were matched at multiple frequencies while the magnitude and phase of the TF of the I-

SDOF were only matched at a single resonance frequency. The variability of the magnitude

and phase as a function of frequency was captured by the F-SDOF’s order α while no

parameter in the I-SDOF was allowed to reflect this variation. In order to make a more fair
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Figure 2.16. The synthetically generated magnitude and phase of a trans-
fer function of position per force. In an experiment setting, this could be
understood as the data measured at a specific structural location.

Figure 2.17. (a) The fractional order α corresponding to the F-SDOF model
created from the synthetically generated data. (b) The magnitude and phase of
synthetically generated data and of the transfer functions of the corresponding
F-SDOF and I-SDOF models.

comparison, one can allow the mass and stiffness of the I-SDOF to vary as a function of

frequency. The magnitude and phase of the synthetically generated data were matched to

the TF of an I-SDOF at multiple frequencies. The damping ratio was set to ζ = 0.2 in the
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I-SDOF (value extracted at the resonance peak). The values of the mass and stiffness of

the I-SDOF were allowed to vary so that the TF could match the magnitude and phase of

the synthetically generated data at various frequencies. The damping coefficient was then

obtained using c = 2ζ
√
km (and is thus, also a function of frequency). Figure  2.18 (a) shows

the corresponding frequency-dependent mass and stiffness obtained by such an approach.

The values of m and k change rapidly near the resonance frequencies and then recover almost

constant values in the asymptotic regimes. Figure  2.18 (b) shows the comparison between

the response of the I-SDOF and the synthetically generated data clearly indicating an exact

match. This is not surprising because the methodology has essentially taken different I-SDOF

systems and individually matched them at a given frequency.

Figure 2.18. (a) The frequency-dependent mass and stiffness of the vari-
able coefficient I-SDOF model. (b) The magnitude and phase of synthetically
generated data and of the transfer function of the variable coefficient I-SDOF
model.

Physically, this method is not a good reflection of the underlying physical system since

the mass and stiffness change depending on the forcing frequency. Again, the F-SDOF model

stands in clear contrast with this approach because it captures the frequency dependency

entirely in the fractional order of the operator while admitting constant parameters (unless a

real fractional order formulation is used; this is why the complex order method can be argued

to be a more accurate physical representation). The fractional model is physically more
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justifiable because 1) the mass and stiffness as defined in Eq. (  2.35 ) are static properties of the

system and their frequency dependence does not have a physical justification, and 2) many

mechanical systems of practical interests have already been shown experimentally to exhibit

fractional dynamics [ 31 ], [  132 ]. Furthermore, the fractional model approach results in a

model order identification that is conceptually more general than the parameter identification

applicable to integer order models.

In order to perform a more realistic system identification for the I-SDOF, an alternative

approach is implemented where both the mass and the stiffness are maintained constant

and equal to their (static) low frequency values (as per Fig.  2.18 (a), m = 2.6044 kg and

k = 0.4167 N/m). The damping coefficient c varies as a function of frequency and serves

as the only unknown parameter. This scenario is more realistic because many mechanical

systems do exhibit frequency dependency of the damping properties. This situation results in

an overdetermined system when considering the response to be matched as being composed

of both magnitude and phase of the synthetically generated data. To solve this issue, only

the magnitude of the I-SDOF’s transfer function is matched to the magnitude of the data.

The results of the parameter identification problem are shown in Fig.  2.19 in terms of the

frequency-dependent damping coefficient and of the reconstructed transfer function. For the

frequencies above and below the main resonance, it is found that c = 0, which is not surprising

because the asymptotic response of a damped I-SDOF is not dependent on damping. The

match of the TF presents a sufficiently good agreement for the magnitude but it shows a

much larger error for the phase. This error is also reflected in the high frequency asymptotic

value of the magnitude. The overall behavior is consistent with the fact that the unknown

parameter was constructed to match the magnitude.

The results indicate that only the F-SDOF model with constant coefficients and a variable

order dependent on frequency is able to exactly represent the synthetically generated data,

even at frequencies far off-resonance. In principle, it would be possible to use an integer

order model with multiple DOFs to match the data at the same level as the fractional

model; however, using less DOFs is typically more desirable since it yields a simpler model.

The use of fractional models does not only largely increase the accuracy of the parameter

identification but it also effectively results in a model identification approach. In addition,
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Figure 2.19. (a) The frequency-dependent damping coefficient of an I-SDOF
with a constant mass and stiffness (m = 2.6044 kg and k = 0.4167 N/m). (b)
The magnitude and phase of synthetically generated data and of the transfer
function of the variable damping I-SDOF model.

the order of many complex dynamical systems of practical interest is not necessarily integer

[ 34 ], [  35 ], [  37 ], [  41 ]. Hence, it is physically more reasonable to use the fractional order model

when fitting experimental data originated by a system with unknown structure.

The system identification method presented can be extended to the case of a multiple

DOF system by using, as an example, N measured Bode plots obtained at different locations

or degrees of interest. While achievable, a F-NDOF system identification method would be

computationally expensive.

2.7 Conclusions

This chapter first advanced the fractional oscillator model to possess multiple degrees

of freedom and determined their displacements via fractional modal analysis. Both the

single and multiple degree of freedom fractional models served as the foundation of the frac-

tional model order reduction procedure. The numerical results of the reduction examples in

§  2.3 ,  2.4 , and  2.5 illustrated the potential and the accuracy of the fractional model order

reduction methodology to simulate the vibration of multi-DOF structures. The frequency-
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dependency of the fractional operator enabled frequency-dependent modulation of the phase

and amplitude which was at the basis of the broad spectrum of problems that can be ad-

dressed with this type of modeling. Analytical solutions of the displacements showed that

the fractional order reduction procedures were able to 1) accurately (often times exactly)

represent the dynamics of the active degrees of the initial system across a wide frequency

spectrum, 2) represent the response of heterogeneous discrete parameter systems that in-

cluded damping, and 3) capture the behavior between closely spaced resonance frequencies

where the dynamics were locally fractional. These three features are key advantages over

modal-based reduction techniques. However, at this stage, no claims can be made from

this analysis about the computational efficiency of the fractional MOR compared to con-

ventional MOR techniques. In fact, the tradeoffs between accuracy and computational time

that are in integer, modal-based model order reduction techniques may still be present in the

frequency-domain fractional model order reduction methodology for large discrete parameter

systems containing hundreds or thousands of DOFs. Further studies are required to compare

computational performance. Nonetheless, this chapter laid the groundwork for a new class

of order reduction methodologies showing substantial potential to achieve reduced discrete

parameter models with broadband applicability. Lastly, the fractional oscillator served as

the basis of a system identification tool that permitted the order of the system to best repre-

sent the dynamical response at each frequency. This further strengthened the case for using

fractional models for the vibration of discrete, heterogeneous structures.
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3. FRACTIONAL ORDER MODELS FOR CONTINUOUS

DYNAMICAL SYSTEMS

A portion of this chapter was previously published by the Journal of Sound & Vibration and
is titled “Analysis of dispersion and propagation properties in a periodic rod using a space-
fractional wave equation” [  123 ] [DOI: https://doi.org/10.1016/j.jsv.2018.10.051]. Another
portion of this chapter is, at the time of the deposit of this dissertation, under review for pub-
lication and is titled “Fractional Order Models for the Homogenization and Wave Propagation
Analysis in Periodic Elastic Beams”

This chapter shifts from discrete to continuous models for heterogeneous structures and

develops a space fractional homogenization representative of the elastic wave propagation in

a 1D heterogeneous, periodic structure. While the periodic, heterogeneous structures consid-

ered here are not intrinsically fractional, the use of a space fractional wave equation leads to

either closed-form analytical or accurate numerical solutions that well model the wave prop-

agation through the periodic media, particularly for the dynamic attenuation of frequency

band gaps. The proposed fractional order techniques are more similar to the low-frequency

homogenization approaches discussed in §  1.1.2 where they replace the spatially varying

quantities with homogenized material properties. From a mathematical perspective, the

methodology converts a wave equation with spatially variable coefficients (i.e., the classical

partial differential equation model for a periodic medium) into a space fractional differen-

tial equation with constant coefficients. As opposed to the long asymptotic expansions and

subsequent computational costs of high-frequency homogenization techniques, the fractional

methodology determines the space fractional order by equating the dispersion relationship

of the integer order representation of the periodic structures to the dispersion relationship

of the space fractional wave equation. The frequency-dependent fractional order is seen to

possess a non-zero imaginary part for band gap frequencies, enabling the spatial attenuation

of the wave front. Contents of the chapter include

• The derivation of the dispersion relationship of a bi-material, periodic rod, which will

be necessary to calculate the corresponding order of the fractional model,

• The determination of the dispersion of a fractional rod model whose governing equation

of motion is a space fractional wave equation,
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• The values of the frequency-dependent fractional order which allow them to capture

the behavior within the band gaps,

• An analysis of two closed-form solutions of the space fractional wave equation: one

based on an exponential kernel and the other on a Mittag-Leffler kernel. Both sets

of analytical solutions are shown to represent the axial wave propagation through a

semi-infinite bi-material, periodic rod,

• The extension of the bi-material rod to a bi-material beam and the determination of

its flexural dispersion characteristics based on either Euler-Bernoulli or Timoshenko

beam theory,

• The study of the governing equations of a fractional beam model, its corresponding

dispersion, and the obtained fractional orders,

• The application of a fractional finite element method to numerically evaluate the flex-

ural displacement of a semi-infinite fractional beam.

3.1 Bi-Material Periodic Rod

3.1.1 Model

To synthesize a space fractional order model capable of capturing the dynamics of a

periodic 1D waveguide, a benchmark structure made of two periodically alternating materials

was chosen, as illustrated in Fig.  3.1 . Figure  3.1 is an example of a 1D elastic metamaterial.

This section will consider the structure in Fig.  3.1 as a solid rod whose Young’s modulus and

density vary periodically and in a step-like fashion between E1, ρ1 and E2, ρ2. Recall that

rods can transmit only axial forces, i.e., no transverse or torsional loads are permitted. The

equation of motion for the rod in Fig.  3.1 is

∂

∂x

[
E(x)A∂u

∂x

]
= ρ(x)A∂

2u

∂t2
, (3.1)
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Figure 3.1. The 1D bi-material, periodic structure.

where x is the spatial coordinate, t is the time coordinate, E is Young’s modulus, A is the

cross-sectional area, ρ is the density, and u is the axial displacement. The value of A in the

periodic rod system is taken to be constant. Alternatively, Eq. (  3.1 ) can be written as

EmAm
∂2u

∂x2 − ρmAm
∂2u

∂t2
= 0, (3.2)

where m = 1 ∀ x ∈ [−L1+NL,NL] and m = 2 ∀ x ∈ [NL,L2+NL] (N ∈ I). The analytical

solution of Eq. ( 3.1 ) is known only for very specific variations of E, ρ, and A [ 133 ].

The corresponding fractional rod model will be formulated in §  3.2 . Before that, the

dispersion relation of Eq. (  3.1 ) is determined since the dispersion relationship will 1) show

where the frequency band gaps of the periodic rod are located and 2) provide a means to

calculate the space fractional order of the corresponding fractional rod.

3.1.2 Dispersion Relationship

While there are a variety of means (including experimental) to determine the expression

of the dispersion relationship of Eq. (  3.1 ), this section chooses to calculate the dispersion

relation via a spectral method along with Block-Floquet theory [  134 ]. The Bloch-Floquet

methodology was chosen because it is well established for periodic media [  135 ]. Note that

while the Bloch-Floquet theory is helpful to determine the dispersion properties of periodic

media, it does not allow obtaining the forced response solution. To obtain these solutions

with traditional models, one typically needs to numerically solve the equations.
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Consider a generic uniform, homogeneous rod element of length l with two nodes located

on the ends. The longitudinal displacement at an arbitrary point in this finite uniform rod

can be written as [ 134 ]

û(x) = ĝ1(x)û1 + ĝ2û2, (3.3)

where the hat notation (e.g., û) is a frequency-domain quantity, û1 = û(0), û2 = û(l), and

ĝ1 and ĝ2 are frequency-dependent shape functions defined as

ĝ1 = e−ikx − e−ik(2l−x)

1 − e−2ikl
, (3.4)

ĝ2 = −e−ik(l+x) + e−ik(l−x)

1 − e−2ikl
, (3.5)

where k is the wavenumber. The wavenumber of a homogeneous rod element is

k = ω

√
ρA

EA
, (3.6)

where ω is the angular frequency. The internal forces in the rod are

F = EA
∂u

∂x
. (3.7)

The member loads at each end of the rod are F̂1 = −F (0) and F̂2 = F (l). Substituting this

and Eqs. ( 3.4 ), ( 3.5 ), ( 3.7 ) into Eq. ( 3.3 ) yields the matrix equation
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F̂1

F̂2

 = EA

l

ikl
(1 − e−2ikl)

1 + e−2ikl −2e−ikl

−2e−ikl 1 + e−2ikl


û1

û2

 . (3.8)

Equation ( 3.8 ) can be written for each uniform portion of the unit cell in Fig.  3.1 . Combining

the two elements produces three nodes: two at the ends of the unit cell and the other at

the discontinuity interface. The node at the discontinuity interface divides the periodic rod

element into two subdomains whose matrix equations are

F̂1

F̂2

 =

â11 â12

â21 â22


û1

û2

 , (3.9)

F̂2

F̂3

 =

b̂11 b̂12

b̂21 b̂22


û2

û3

 , (3.10)

â11 = â22 = E1A1

L1

ik1L1

(1 − e−2ik1L1)(1 + e−2ik1L1), (3.11)

â12 = â21 = E1A1

L1

ik1L1

(1 − e−2ik1L1)(−2e−ik1L1), (3.12)

b̂11 = b̂22 = E2A2

L2

ik2L2

(1 − e−2ik2L2)(1 + e−2ik2L2), (3.13)

b̂12 = b̂21 = E2A2

L2

ik2L2

(1 − e−2ik2L2)(−2e−ik2L2), (3.14)
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k1 = ω

√
ρ1A1

E1A1
, (3.15)

k2 = ω

√
ρ2A2

E2A2
. (3.16)

Assembling Eqs. ( 3.9 ) and ( 3.10 ) together yields


F̂1

F̂2

F̂3

 =


â11 â12 0

â21 â22 + b̂11 b̂12

0 b̂21 b̂22




û1

û2

û3

 . (3.17)

Performing a quasi-static condensation on the middle node results in F̂2 = 0. Thus, û2 can

be written in terms of û1 and û3 as

û2 = − â21

â22 + b̂11
û1 − b̂12

â22 + b̂11
û3. (3.18)

Substituting Eq. ( 3.18 ) into Eq. ( 3.17 ) results in

F̂1

F̂3

 =

d̂11 d̂12

d̂21 d̂22


û1

û3

 , (3.19)

d̂11 = â11 − â21â12

â22 + b̂11
, (3.20)
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d̂12 = − b̂12â12

â22 + b̂11
, (3.21)

d̂21 = − b̂21â21

â22 + b̂11
, (3.22)

d̂22 = b̂22 − b̂12b̂21

â22 + b̂11
. (3.23)

Equation ( 3.19 ) can be arranged as

ûL

F̂L

 =

 − d̂11
d̂12

− 1
d̂12

d̂21 − d̂11d̂22
d̂12

− d̂22
d̂21


û0

F̂0

 , (3.24)

where û0 = û1, ûL = û3, F̂0 = −F̂1, and F̂L = F̂3. Let the 2x2 transfer matrix in Eq. (  3.24 )

be called T. In a periodic arrangement consisting of N unit cells, the general response is

given as

ûN

F̂N

 = T · T · T · ...T

û0

F̂0

 , (3.25)

with N T matrices multiplied by each other. According to Bloch-Floquet theory, the rela-

tionships between the displacements and forces at the ends of the rod element can also be

written as

ûL

F̂L

 =

e−iµL 0

0 e−iµL


û0

F̂0

 , (3.26)

96



where û = Ãe−iµx, Ã is an unknown and µ is the Floquet wavenumber. Equating Eqs. ( 3.24 )

and ( 3.26 ) produces

− d̂11
d̂12

− e−iµL − 1
d̂12

d̂21 − d̂11d̂22
d̂12

− d̂22
d̂21

− e−iµL


û0

F̂0

 = ~0. (3.27)

The characteristic equation of the eigenvalue problem given by Eq. ( 3.27 ) is

1 + e−2iµL

e−iµL
+ d̂11 + d̂22

d̂12
= 0. (3.28)

Simplifying Eq. ( 3.28 ) produces the desired dispersion relation relating the wavenumber µ

to the frequency ω of the bi-material periodic rod as

cos(µL) = cos
(
ω
L1

c1

)
cos
(
ω
L2

c2

)
− 1

2Ψsin
(
ω
L1

c1

)
sin
(
ω
L2

c2

)
, (3.29)

where

Ψ = A1E1c2

A2E2c1
+ A2E2c1

A1E1c2
, (3.30)

and c1 is the wave speed in material #1 and c2 is the wave speed in material #2. Figure  3.2 

plots the dispersion relationship for an aluminum-brass periodic rod (E1 = 70 GPa, ρ1 = 2700

kg/m3, E2 = 110 GPa, ρ2 = 8100 kg/m3) where each portion is unit length (L1 = L2 = 1

m). The frequency band gaps, occurring where Im(µ) is nonzero, of the aluminum-brass

periodic beam are depicted in Fig.  3.2 and are highlighted in gray. Again, these band gaps

are past the long wavelength limit of the classical low-frequency homogenization techniques

and thus, are not captured by such models. To develop an effective homogenization model

capable of capturing the band gaps, the fractional rod is considered. Note, however, that

the bi-material periodic rod is not an intrinsically fractional system (like some viscoelastic or
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fractal media). Nonetheless, it is observed that using a fractional rod model will provide an

analytical advantage in representing the wave propagation through the bi-material periodic

rod.

Figure 3.2. Dispersion of the aluminum-brass periodic rod with band gaps
depicted. The curve is wrapped over the first Brillouin zone.

3.2 Fractional Rod Model

The fractional rod is very similar to the classical uniform rod, except for the fact its EOM

contains a space fractional derivative. The dynamics of the fractional rod are governed by

c̄2∂
αu

∂xα
= ∂2u

∂t2
, (3.31)

where α is the order of the fractional derivative and c̄ is the fractional wave “speed”; that is,

an equivalent wave velocity having dimensions (m)α/2

s . Note how if α = 2, Eq. (  3.31 ) becomes

the classical wave equation that governs the wave propagation through a uniform rod. For

this reason, Eq. ( 3.31 ) is often referred to as the space fractional wave equation.
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The space fractional derivative in Eq. (  3.31 ) is taken as a left-handed Caputo derivative

(see Eq. ( 1.17 )) because it allows a more direct treatment of the boundary conditions. Using

the fractional rod model will provide a pathway to obtain a closed-form analytical solution to

represent the dynamics of the bi-material, periodic rod. The closed-form analytical solutions

can play a major role towards the development of computationally efficient forward and

inverse problems and can also have important implications for inverse problems in material

design and remote sensing. Before determining the analytical solution to the space fractional

wave equation, the homogenization needs to determine the fractional parameters (i.e., α and

c̄) such that the fractional rod acts as an accurate representation of the bi-material, periodic

rod, as shown in Fig.  3.3 . As previously stated, the fractional order α is determined by

equating the dispersion relationship of Eq. (  3.1 ) to the dispersion relationship of Eq. (  3.31 ).

Figure 3.3. Fractional homogenization process where the fractional model is
developed so that its dynamic response well represents that of the correspond-
ing bi-material structure.

3.2.1 Dispersion Relationship

To determine the dispersion relationship of Eq. (  3.31 ), the lower bound in the Caputo

fractional derivative (quantity a in Eq. (  1.17 )) must be considered since it has a direct impact
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on the evaluation of the derivative. If the fractional derivative in Eq. ( 3.31 ) has a lower bound

of −∞, then the following the property can be used:

C
−∞D

α
x (eax) = aαeax, (3.32)

where C
−∞D

α
x is the operational notation for a Caputo fractional derivative of order α [ 77 ]. In

this case, since the fractional derivative of an exponential function is an exponential function,

the solution of the fractional differential Eq. ( 3.31 ) can be assumed as the generic complex

exponential representation of harmonic waves; that is,

u(x, t) = Ãei(ωt−kx) + B̃ei(ωt+kx). (3.33)

Substitution of the first term on the right-hand side of Eq. ( 3.33 ) into Eq. ( 3.31 ) produces

the dispersion relationship of the space fractional wave equation as

k = i
(

− ω2

c̄2

)1/α

. (3.34)

The substitution of the second term of the right hand side of Eq. (  3.33 ) into Eq. (  3.31 )

produces the negative value of Eq. ( 3.34 ).

If the Caputo fractional derivative has a lower terminal other than −∞, the property

given by Eq. ( 3.32 ) is no longer true. The fractional derivative of an exponential function

is no longer an exponential function; rather, the fractional derivative of the exponential

function is a Mittag-Leffler function (see Eq. (  1.14 )). For instance, if the lower terminal

of the Caputo fractional derivative is 0, the Caputo fractional derivative of the exponential

solution is

C
0 D

α
x (eax) = anxn−αE1,n−α+1(ax), (3.35)

100



where n is α rounded up to the next integer. Thus, use of Eq. ( 3.33 ) as the assumed form

of the axial displacement will produce a complicated dispersion relationship consisting of

Mittag-Leffler functions. Rather than assuming the axial displacement is given by Eq. ( 3.33 ),

the solution to Eq. ( 3.31 ) can be stated in the form of the following ansatz as

u(x, t) = eiωt

{
ÃEα,1

[
(−ikx)α

]
+ B̃xEα,2

[
(−ikx)α

]}
, (3.36)

where E(·) is the ML function, Ã = u(0, t) and B̃ = du(0,t)
dx

. It is straightforward to verify that

the solution given by Eq. (  3.36 ) satisfies Eq. (  3.31 ) by utilizing the following three formulas.

First, the left-handed Riemann-Liouville derivative of a ML function [ 61 ] is

RL
0 Dα

x

[
xp2−1Ep1,p2(Cxp1)

]
= xp2−α−1Ep1,p2−α(Cxp1), (3.37)

where α is the order of the derivative, C is a constant, and p1 and p2 are the generic

parameters of the two parameter Mittag-Leffler function. The analytical relation between

the Riemann-Liouville and Caputo derivatives is

C
0 D

α
x [u(x)] = RL

0 Dα
x [u(x)] −

N−1∑
n=0

dnu

dxn
(0) x−α+n

Γ(−α + n+ 1) , (3.38)

where N is α rounded up to the next integer [ 67 ]. Finally, an important recurrence relation

of the Mittag-Leffler function is [ 136 ]

Ep1,p2(z) = zEp1,p1+p2(z) + 1
Γ(p2)

. (3.39)

Substituting Eq. ( 3.36 ) into Eq. (  3.31 ) and using the properties from Eq. (  3.37 ) and Eq. (  3.38 )

yields
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eiωt

{
Ãx−αEα,1−α

[
(−ik)αxα

]
+ B̃x1−αEα,2−α

[
(−ik)αxα

]

−Ã x−α

Γ(1 − α) − B̃
x1−α

Γ(2 − α)

}
= −ω2

c̄2 u.

(3.40)

Using Eq. ( 3.39 ) simplifies the expression to

eiωt

Ãx−α

[
(−ik)αxαEα,1

[
(−ik)αxα

]
+ 1

Γ(1 − α)

]

+B̃x1−α

[
(−ik)αxαEα,2

[
(−ik)αxα

]
+ 1

Γ(2 − α)

]

−Ã x−α

Γ(1 − α) − B̃
x1−α

Γ(2 − α)

 = −ω2

c̄2 u.

(3.41)

After substituting u according to Eq. (  3.36 ) and canceling like-terms, the dispersion rela-

tionship is obtained as

k = i
(

− ω2

c̄2

)1/α

. (3.42)

Equation (  3.42 ) is exactly the same as Eq. (  3.34 ). Therefore, both the exponential and

Mittag-Leffler solutions produce the same dispersion relationship under the proper assump-

tions for the bounds of the differ-integral operator. Further discussion on which solution

form (Eq. ( 3.33 ) or Eq. ( 3.36 )) should be implemented is found in §  3.3 .

3.2.2 Calculation of the Fractional Order

In order to identify the fractional order α which guarantees the fractional rod is dynam-

ically equivalent to the bi-material periodic rod, µ from Eq. (  3.29 ) is equated to k from

Eq. ( 3.42 ). To determine µ from Eq. (  3.29 ), an inverse cosine must be taken which yields a

non-unique solution. The theory used to derive Eq. ( 3.29 ) used a solution form Ãe−iµx. For

the solution to exponentially decay in the band gaps, the imaginary part of µ must be nega-
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tive. In order to meet this requirement, the left hand side of Eq. ( 3.29 ) should be cos(−µL).

Thus, to solve for the fractional order α, µ from the cos(−µL) solution from Eq. ( 3.29 ) is

equated to k from Eq. ( 3.42 ). The procedure results in

1
L

cos−1
[
cos
(
ω
L1

c1

)
cos
(
ω
L2

c2

)
− 1

2Ψsin
(
ω
L1

c1

)
sin
(
ω
L2

c2

)]
= −i

(
− ω2

c̄2

)1/α

, (3.43)

which can be numerically solved for α. Before solving for α, additional assumptions must be

made for the value of the equivalent fractional wave speed c̄. Two approaches for selecting

the value of c̄ are considered.

Equivalent Fractional Wave Speed: Constant Speed Assumption

A reasonable assumption for the value of the equivalent wave speed is to take c̄ to be a

constant value provided by a conventional homogenization approach in the long wavelength

limit. According to [ 23 ], [ 137 ], the effective modulus Ē of the periodic rod can be obtained

by the inverse rule of mixtures as

1
Ē

= L1/(L1 + L2)
E1

+ L2/(L1 + L2)
E2

, (3.44)

while the effective density ρ̄ is given by a weighted sum as

ρ̄ = ρ1L1/(L1 + L2) + ρ2L2/(L1 + L2). (3.45)

The effective wave speed is then defined to be

c̄ = Q

√√√√Ē

ρ̄
, (3.46)
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where Q is a dimensional multiplicative factor that ensures units consistency (here, Q =

mα/2−1). Setting c̄ according to Eq. (  3.46 ) and substituting into Eq. (  3.43 ) produces the

frequency-dependent order α as

α = 2ln(ω/c̄) + iπ
ln(µ) + iπ/2 . (3.47)

A plot of Eq. ( 3.47 ) for the aluminium-brass periodic rod is shown in Fig.  3.4 and re-

veals the fractional order is a complex number which indicates that the fractional equivalent

(homogenized) model will be described by complex order differ-integral operators. A com-

plex order derivative allows for the frequency-dependent modulation of both the phase and

the amplitude [  84 ] of harmonic components, therefore allowing for virtually unrestricted

matching of the dispersion relations.

In the low frequency range before the first band gap (typically considered as the range

of validity for homogenization models under the long wavelength assumption), the value of

α is purely real and equal to 2. Thus, within the long wavelength limit, the space fractional

wave model with a constant equivalent speed reduces to the classic integer order homoge-

nized model. Moving to higher frequencies within the first band gap shows Re(α) < 2 and

Im(α) 6= 0 except for few selected values of ω. This behavior is consistent with the expected

amplitude attenuation characteristic of a band gap and with the fact that space fractional

wave equations with 1 < Re(α) < 2 correspond to spatially attenuated waves [ 74 ]–[ 77 ].

As band gaps in the higher frequency range are considered, it is observed that, typically,

Re(α) < 2. This is not always the case, as seen by the fact that Re(α) is slightly greater

than 2 for frequencies at the upper edge of the band gaps (in the third band gap for example,

Re(α) > 2 for frequencies in the range 3200-3400 Hz). The frequencies where Re(α) >2 can

raise some potential stability issues (see §  3.3.4 ). Finally, in the pass bands, Re(α) ≈ 2,

again consistent with the physical nature of the problem.
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Figure 3.4. The complex, frequency-dependent fractional order α for the
aluminum-brass periodic rod using a constant value of c̄.

Equivalent Fractional Wave Speed: Frequency-Dependent Speed Assumption

Another approach for c̄ is formulated where both α and c̄ depend on the frequency ω.

Recall the values of µ(ω) that are given by Fig.  3.2 and the left hand side of Eq. (  3.43 ).

According to Meerschaert et al. [  77 ], the wavenumber can be written as µ = ω/c(ω)+ iη

where c(ω) is a frequency-dependent wave speed and η is an attenuation factor. From this,

the speed c̄(ω) is

c̄ = Q
ω

Re(µ) . (3.48)

A plot of c̄(ω) for the aluminum-brass periodic rod is given in Fig.  3.5 (a). For very low

frequencies in the first pass band, the value of c̄ is equal to the value given by Eq. ( 3.46 ).

The trends of c̄ in the band gaps are linear while the curves in the pass bands vary smoothly.

Using the frequency-dependent fractional speed c̄(ω), Eq. (  3.43 ) can be solved for α as a

function of frequency. Substituting Eq. (  3.48 ) into Eq. (  3.43 ) and performing some algebraic

simplifications results in
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Figure 3.5. (a) The fractional wave speed c̄ as a function of frequency.
(b) The corresponding fractional order α using the frequency-dependent wave
speed from (a).

α =
2ln
(

|Re(µ)|
)

+ iπ

ln(µ) + iπ/2 . (3.49)

The plot of Eq. (  3.49 ) for the aluminum-brass periodic rod is given in Fig.  3.5 (b). In

contrast with the constant speed assumption, Re(α) = 2 for all the frequencies in pass

bands. This is again consistent with the physics since a spatial order of two is indicative

of propagating waves. It is also not surprising because some degree of variability in the

coefficients of the equation has been reinstated, albeit the variability does not occur as a

function of space; rather, it is dependent upon frequency. In the band gaps, Re(α) < 2

while Im(α) < 0. The fact that Re(α) < 2 indicates that the wave propagation attenuates

in space, consistent with the fact that this frequency is located in a band gap. As already

seen in the previous chapter and in §  1.2.4 , complex order fractional derivatives are still an

ongoing area of research and the physical meaning of the imaginary part of the order is not

completely evident, although it is known that the imaginary part does affect the phase of

the results.
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3.3 Analytical Solutions and Assessment of the Fractional Rod

Having obtained the fractional order of the homogenized fractional model, this section

analyzes the analytical solution to Eq. ( 3.31 ) and compares the plot of its displacement to

the displacement of the bi-material periodic rod obtained via finite elements to verify the

accuracy and validity of the homogenization. In §  3.2.1 , it was seen that the displacement

solution to the space fractional wave equation was assumed to be exponential functions or

Mittag-Leffler functions depending on the lower limit of the fractional derivative. From a

mathematical perspective, it seems that it is appropriate to use the exponential solution

when the considered rod is an infinite structure, while the Mittag-Leffler solution is valid

if the rod has a boundary at x = 0. However, from a physical perspective, the difference

between the Mittag-Leffler and exponential solutions is not very intuitive. An exponential

function is well-known to describe plane wave propagation, while Mittag-Leffler functions

can be interpreted as wave fronts having spatially decaying amplitude when 1 < α < 2. The

following sections analyze both solution forms and argue that either the exponential or ML

solution can be considered for a semi-infinite fractional rod.

3.3.1 The Exponential Kernel Solution

The exponential kernel solution seems suited to represent the displacement of an infinite

fractional rod. For an infinite rod with an excitation located at x = 0, the forward and

backward traveling waves propagating from this location are equivalent, hence allowing the

study of an infinite rod problem excited at the center location to be accomplished by merely

considering half of the domain (i.e., a semi-infinite rod), as seen in Fig.  3.3 . If the analysis

is limited, for instance, to the positive x-axis and the excitation at x = 0 is

u(0, t) = u0eiΩt, (3.50)

then Ã = u0, B̃ = 0, and ω = Ω in Eq. (  3.33 ). Thus, the displacement throughout the

fractional rod is
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u(x, t) = u0ei(Ωt−kx). (3.51)

Using the dispersion relation from Eq. ( 3.34 ), Eq. ( 3.51 ) can be rewritten as

u(x, t) = u0eiΩtex(−Ω2/c̄2)
1
α = T (t)U(x). (3.52)

Equation (  3.52 ) is the exponential solution to the semi-infinite fractional rod. To analyze

the stability of Eq. ( 3.52 ) given the fractional order α (see either Fig.  3.4 or Fig.  3.5 (b)) of

the aluminum-brass periodic rod, consider the spatial term of Eq. ( 3.52 ):

U(x) = ex(−Ω2/c̄2)
1
α . (3.53)

Define λ = Ω2

c̄2 and α = a+ bi so that Eq. ( 3.53 ) can be written as

U(x) = Exp
[
(−λ)

a−bi
a2+b2 x

]
. (3.54)

Note that for lengthy mathematical expressions, equations will use both the notations e(·)

and Exp(·) to indicate the exponential function. Let ã = a
a2+b2 and b̃ = b

a2+b2 . After some

algebraic work, the solution can be written as

U(x) = er1x
[
cos(r2x) + isin(r2x)

]
, (3.55)

r1 = λãeb̃πcos
[
ãπ − b̃ln(λ)

]
, (3.56)
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r2 = λãeb̃πsin
[
ãπ − b̃ln(λ)

]
. (3.57)

The real part of Eq. ( 3.53 ) is

Re
[
U(x)

]
= er1x

[
cos(r2x)

]
, (3.58)

while the imaginary part is

Im
[
U(x)

]
= er1x

[
sin(r2x)

]
. (3.59)

The trigonometric terms on the right hand side of Eqs. (  3.58 ) and ( 3.59 ) are oscillatory

and thus are stable. However, the exponential terms will determine if the solution exponen-

tially decays or grows. From Eq. (  3.56 ), the terms λã and eb̃π are always positive. Thus, the

term that determines the stability is cos
[
ãπ − b̃ln(λ)

]
. Cosine is negative if its argument is

between nπ

2 and n3π

2 where n is an odd integer. As a result, Eq. (  3.53 ) is stable if and only if

n
π

2 ≤
[
ãπ − b̃ln(λ)

]
≤ n

3π

2 where n is an odd integer. (3.60)

If ãπ − b̃ln(λ) = nπ

2 (where n is odd), the exponential solution will be marginally stable.

If the equality part of Eq. ( 3.60 ) is removed, the solution will be unconditionally stable and

will always decay. If Eq. (  3.60 ) is not satisfied, then the solution will grow exponentially.

Since the values of ã, b̃, and λ all contribute to whether Eq. (  3.60 ) is satisfied, one cannot

definitively conclude what the limiting values of ã, b̃, and λ are for stability. However,

consider a purely real value of α = 2 which corresponds to ã = 1/2 and b̃ = 0. Thus,

ãπ − b̃ln(λ) = π/2, showing that the solution is marginally stable. For purely real orders

greater than 2, the value of b̃ is still zero while ã < 1/2, meaning the solution will be unstable.
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However, when α is complex, it may be possible, depending on the values of b̃ and λ, that

Eq. (  3.60 ) can be satisfied even though ã < 1/2. It is obvious then that Im(α) contributes

to the stability of the solution (in addition to the phase). In fact, the values of α(ω) given

in Fig.  3.4 actually always satisfy Eq. (  3.60 ) even when Re(α) > 2. The potential stability

issues for Re(α) >2 can occur when the Mittag-Leffler kernel is implemented.

3.3.2 The Mittag-Leffler Kernel Solution

Previously in §  3.2.1 , the ML ansatz given by Eq. ( 3.36 ) was assumed to obtain the

dispersion relation. Here, the ML solution to Eq. (  3.31 ) is derived when the Caputo frac-

tional derivative has a lower terminal of zero by using separation of variables and Laplace

transforms. Using separation of variables,

u(x, t) = U(x)T (t). (3.61)

Substituting Eq. ( 3.61 ) into Eq. ( 3.31 ), and separating the time and space variables yields

T̈

T
= c̄2

U

∂αU

∂xα
= −ω2, (3.62)

where ω is a positive constant to guarantee stable oscillatory solutions (and is the frequency).

The temporal part of Eq. (  3.62 ) results in the classical second order ordinary differential

equation, which is

d2T

dt2
+ ω2T = 0. (3.63)

Recall the solution to Eq. ( 3.63 ) is
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T (t) = C1eiωt + C2e−iωt, (3.64)

where C1 and C2 are constants to be determined. Alternatively, the solution to Eq. (  3.63 )

could be written using a summation of cosine and sine terms. Let ξ = ω2

c̄2 so that the spatial

part of Eq. ( 3.62 ) is

dαU

dxα
+ ξU = 0. (3.65)

Equation ( 3.65 ) can be solved by using the Laplace transform, obtaining

Û(s) = Ā
sα−1

sα + ξ
+ B̄

sα−2

sα + ξ
, (3.66)

where s is the Laplace variable, Û(s) is the Laplace transform of U(x), Ā = U(0) and

B̄ = dU(0)
dx

. The form of Eq. (  3.66 ) will result in Mittag-Leffler functions since the Laplace

transform of the Mittag-Leffler function is [ 61 ], [ 138 ]

L
[
zp2−1Ep1,p2(±Czp1)

]
= sp1−p2

sp1 ∓ C
. (3.67)

Using Eq. ( 3.67 ) to take the inverse Laplace transform of Eq. ( 3.66 ) yields

U(x) = ĀEα,1(−ξxα) + B̄xEα,2(−ξxα). (3.68)

Note that the form of Eq. ( 3.68 ) is equivalent to the spatial part of Eq. (  3.36 ) (when

−ξ = (−ik)α). Furthermore, when α = 2, the exponential and Mittag-Leffler solutions

are equivalent (see Appendix B in [  123 ]). This is in accordance with the fact that the expo-
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nential function is a special case of the ML functions. Hence the ML kernel can be considered

as a set of solutions including the exponential ones.

Returning to the semi-infinite rod, one can argue that the ML solution given by Eq. ( 3.68 )

is valid since the structure begins at x = 0. Assuming the displacement at x = 0 is given by

Eq. ( 3.50 ), the axial displacement according to the ML solution form is

u(x, t) = eiΩt

[
u0Eα,1

(
− Ω2

c̄2 x
α
)

+ B̃xEα,2

(
− Ω2

c̄2 x
α
)]
. (3.69)

The value of B̄, which is equal to du(0,t)
dx

, is determined using the mechanical impedance at

the location x = 0, which is

F = Zv, (3.70)

where F is the force, v is the velocity, and Z is the mechanical impedance. Considering that

the displacement is known to be harmonic and has an amplitude of u0, the velocity amplitude

can be obtained by differentiation: v = iΩu0. The internal force is given by making use of

the constitutive relationship for a rod: F = EAdu
dx

. Hence, Eq. (  3.70 ) becomes

EA
du(0, t)

dx
= iΩu0Z. (3.71)

The mechanical impedance of the rod is Z = ρcA, resulting in

EA
du(0, t)

dx
= iΩu0ρcA. (3.72)

Recall that the wave speed is c =
√

E
ρ
. Finally, B̄ is obtained as

du(0, t)
dx

= B̃ = iΩu0

c
. (3.73)

In Eq. (  3.73 ), the value of c can be set equal to c̄ according to one of the methodologies

described in §  3.2.2 . Contrary to the exponential solution, the Mittag-Leffler functions in

Eq. ( 3.69 ) are unstable whenever Re(α) > 2, no matter the value of the imaginary part [ 63 ].
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3.3.3 Results Using Exponential Kernel

To validate the proposed fractional rod and its performance for the aluminum-brass bi-

material periodic rod, the analytical solutions given by Eq. (  3.52 ) or Eq. (  3.69 ) along with the

determined fractional order (Fig.  3.4 or Fig.  3.5 (b)) are compared to the numerical results

of the bi-material rod using a traditional finite element (FE) solution. The simulations are

performed at steady state conditions following a harmonic excitation and the comparison

is made in terms of the predicted displacement amplitude u(x) as a function of the spatial

location. Note that validation of the fractional rod would be stronger if it was compared to

experimental data rather than FE numerical results. However, due to the straightforwardness

of the bi-material rod’s geometrical variation, the numerical results in this case can be

considered as the “true” displacement for validation purposes.

Recall that the fractional order α was found to be a complex quantity. A complex order

derivative of a real-valued function is a complex-valued function [  127 ], [ 128 ], therefore u(x)

will also be complex. This aspect was discussed in Chapter  2 where it was concluded that,

for harmonic excitations, the time response of a complex fractional oscillator is an analytic

function, therefore justifying the physical response being represented by u(t) = Re[ū(t)].

Thus, in the following displacement plots, the curves corresponding to the analytical solutions

are the real parts of the calculated complex-valued function.

Four different forcing frequencies are considered (100, 500, 1000, 3100 Hz). The selection

of these values was dictated by the specific position of the pass bands and band gaps for

the selected periodic rod (see Fig.  3.2 ). More specifically, Ω = 100 Hz corresponds to a low

frequency regime where the classical homogenization “rule of mixtures” is a valid approach

(the wavelength to unit cell size ratio is λ/a ≈ 20). The frequency Ω = 500 Hz is still located

in the first pass band, however it approaches the limit of the homogenization assumption

(λ/a ≈ 4). The frequency Ω = 1000 Hz is of particular interest since it is located in the first

band gap where the wave is attenuated and the classical homogenization assumption starts

breaking down [ 139 ]. The frequency Ω = 3100 Hz is located in a higher frequency band gap

(the third for the studied system) and denotes a regime were the wave is attenuated and the

classical low-frequency homogenization assumptions are not applicable.
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Each of benchmark studies compares traditional FE results of the bi-material rod with

the analytical solutions obtained using the exponential and the Mittag-Leffler kernels. Both

approaches for the value of c̄ are considered. In the following plots, results obtained using

the constant value of c̄ as described in §  3.2.2 are labeled as “c̄ approach” while those

obtained using the frequency-dependent speed are labeled as “c̄ω approach.” The FE results

were obtained by performing steady state analyses using a commercial software package

(COMSOL Multiphysics). The specific values of c̄ and α for each of the selected frequencies

are obtained from Figs.  3.4 and  3.5 and summarized in Table  3.1 .

Table 3.1. Values of c̄ and α following the approaches given in §  3.2.2 .
Ω (Hz) c̄ α using c̄ c̄ω α using c̄ω

100 3980.4 2.0003 + 0.0003i 3978.2 2
500 3980.4 2.0031 + 0.0226i 3909.2 2
1000 3980.4 1.7583 - 0.0408i 4000 1.7569 - 0.0357i
3100 3980.4 1.9895 - 0.0550i 4133.3 1.9662 - 0.0307i

Concerning the FE numerical simulations, a harmonic displacement of amplitude u0 = 1

mm was applied at x = 0. A low reflecting boundary condition was applied at the right end

(x = 400 m) to model a semi-infinite structure.

Figure  3.6 presents the spatial exponential solution from Eq. ( 3.52 ) for the four selected

values of Ω and compares them with the reference FE solution. In all plots, the results

using the “c̄ approach” and the “c̄ω approach” are exactly equivalent. Thus, the exponential

solution does not show any sensitivity to the methodology used to select c̄. This is also

confirmed by the value of the stability parameter ãπ − b̃ln(λ) (see Eq. (  3.60 )), which is

exactly the same value for both approaches.

The analytical solutions for Ω = 100 Hz match the finite element results quite well with

a root-mean-square (RMS) error of 0.018% over the domain, as seen in Fig.  3.6 (a). At 500

Hz (Fig.  3.6 (b)), the analytical solutions match the phase of the finite element results, but

do not match the amplitudes locally. This type of behavior is not unexpected because the

frequency is near the long wavelength limit so that the response is increasingly dominated by

scattering effects. Unfortunately, like other low-frequency homogenization techniques, the
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Figure 3.6. The solution to the fractional wave equation using the exponen-
tial solution form for a forcing frequency of (a) Ω = 100 Hz, (b) Ω = 500 Hz,
(c) Ω = 1000 Hz, (d) Ω = 3100 Hz.

proposed fractional rod model cannot capture localized effects due to wave scattering and

interference; however, it still models the wave behavior within the band gaps largely beyond

the classical homogenization long-wavelength limit.

The plot at Ω = 1000 Hz (Fig.  3.6 (c)) is located in the first band gap. The analytical

solution agrees very well with the finite element results with an RMS error as low as 0.0005%.

The amplitude of the wave decays in space. The ability of fractional homogenized models
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to capture the system response within the band gaps cannot be overstated as an important

strength of the fractional modeling approach.

The plot at Ω = 3100 Hz in Fig.  3.6 (d) is in the high frequency range where the wave-

length is smaller than the length of the unit cell. The analytical solution in this third band

gap matches the plot from FE simulations well, except for a few locations (some have a

percent difference error as high as 50% between the analytical and numerical solutions).

Although this clearly displays high frequency capabilities and can overcome the long wave-

length limit of traditional homogenization techniques, it is not necessarily free of error at all

frequencies and cannot capture local effects due to high frequencies interference. Nonethe-

less, the plot still shows, once again, that the fractional homogenization technique is effective

in capturing the attenuation in the frequency band gaps.

Concerning the complex nature of the fractional order, the imaginary part of a fractional

derivative affects the phase modulation of the response [  84 ]. Considering the “c̄ approach”,

if Im(α) in Table  3.1 is set equal to zero so that the response is calculated using only the

real part of the order α, a distinct phase mismatch between the analytical and numerical

solutions is observed. This supports the fact that the imaginary part of a fractional derivative

corresponds to controlling the phase of a function. In addition, the imaginary part can also

have an effect on the stability. Considering Eq. ( 3.60 ), the value of b̃ (related to the imaginary

part of α) plays a significant role in determining whether or not Eq. (  3.60 ) is satisfied. While

Makris et al. [  84 ] are correct in stating that the physical meaning of the imaginary part of

a fractional order corresponds to phase modulation, it appears that this is not the only

significance of the imaginary part. Together, the values of the real and imaginary parts of a

fractional order dictate stability.

3.3.4 Results Using Mittag-Leffler Kernel

The Mittag-Leffler solution for the semi-infinite rod is given by Eq. (  3.69 ) where B̃ is

given by Eq. ( 3.73 ). As previously mentioned, the Mittag-Leffler functions in Eq. (  3.69 ) are

unstable whenever Re(α) > 2, no matter the value of the imaginary part [  63 ]. As a result,

the solutions using the constant c̄ might be unstable at any frequency where Re(α) > 2.
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However, Fig.  3.7 depicts the results using the constant c̄ are in fact stable when Re(α) > 2

(except in Fig.  3.7 (d)). In actuality, both of the terms in Eq. ( 3.69 ) are growing without

bound; however, the value of B̃ actually causes the instabilities of the two terms to cancel

each other out. Furthermore, the first three plots in Fig.  3.7 show that the results using the

two approaches for c̄ are equivalent. However, if the value of B̃ is determined in a different

manner other than that given by Eq. (  3.73 ) or if the value of B̃ in Eq. (  3.73 ) is rounded

off prematurely, an instability occurs in the constant c̄ approach, as seen in Fig.  3.7 (d).

Unfortunately, an expression of the stability (like Eq. (  3.60 ) for the exponential solutions)

could not be obtained for ML functions with complex orders. More mathematical theory

needs to be developed for complex order Mittag-Leffler functions before a stability expression

can be obtained.

Extreme caution must be used whenever it is observed that Re(α) > 2 when using

Mittag-Leffler solution kernels. It is recommended that the “c̄ω approach” be implemented

when using ML functions to avoid a potential instability in the analytical solution since

the fractional order never possesses a value where Re(α) > 2. This is precisely why the

frequency-dependent fractional wave speed approach was developed.

Another error source is due to the evaluation of the Mittag-Leffler function itself. The

evaluation of the infinite summation term in the definition of the ML function is not a trivial

task and is actually an ongoing area of computational research [  124 ], [  140 ]. As previously

noted in Chapter  2 , a few common MATLAB functions do exist [ 125 ], [ 126 ] to numerically

evaluate the Mittag-Leffler function, but they are not valid for complex values of the param-

eters. The edited version of [ 125 ] created to handle complex orders had some intrinsic errors

associated with it. In fact, this error associated with the evaluation of the complex order

ML function contributes to some of the slight amplitude overshoots and phase mismatches

such as those seen in Fig.  3.7 (c).

Comparing the exponential and Mittag-Leffler solutions show that both sets are nearly

identical. In fact, the plots in Figs.  3.7 (a) and  3.7 (b) are exactly equivalent to Figs.  3.6 (a)

and  3.6 (b). Comparing Figs.  3.7 (c) and  3.6 (c) shows that the solution using the exponential

function was more accurate at Ω = 1000 Hz than the ML solution. Although the exponential

and Mittag-Leffler solutions in Figs.  3.6 and  3.7 are nearly alike, this may not always be
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Figure 3.7. The solution to the fractional wave equation using the Mittag-
Leffler solution form for a forcing frequency of (a) Ω = 100 Hz, (b) Ω = 500
Hz, (c) Ω = 1000 Hz, (d) Ω = 3100 Hz.

the case. The choice of a specific kernel is important when used to calculate the dynamic

response in systems having finite dimensions. In other words, the choice of the kernel and

its corresponding analytical solution can be subject to specific boundary conditions.

Overall, the use of the fractional rod model possesses the advantages of 1) accurately rep-

resenting the wave attenuation in the frequency band gaps as well as the proper spatial phase

and 2) providing a means to accurately represent the axial displacement of the transverse

wave propagation with a closed-form analytical solution. However, like other low-frequency
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homogenization techniques, the fractional rod model is locally accurate only for long wave-

lengths. When approaching short wavelength regimes, local interference effects cannot be

accurately captured.

3.4 Bi-Material Periodic Beam

The structure in Fig.  3.1 is now subjected to both transverse and axial loads. Thus, the

bi-material periodic structure is now a beam, with each location of the structure capable

of both translation and rotation. In particular, this section pursues two main objectives:

1) the extension of the underlying theoretical fractional models to represent the flexural

response of the bi-material, periodic beam, particularly within the frequency band gaps, and

2) the development of a computational approach for the solution of fractional complex order

differential equations.

As before with the fractional rod, the fractional formulation will rely on first deriving the

dispersion relationship of both an Euler-Bernoulli and Timoshenko beam. Recall that the

main difference between Euler–Bernoulli and Timoshenko beams is that the Euler-Bernoulli

theory neglects shear deformations and assumes plane sections of the beam remain planar

and normal to the beam’s neutral axis during deformation. On the other hand, Timoshenko

beam theory accounts for shear effects and thus, plane sections are no longer normal to

the neutral axis. Since it accounts for shear deformation, Timoshenko beam theory is a

more accurate representation of the actual physics; however, the assumptions of the Euler-

Bernoulli beam theory are valid when the beam geometry is long and slender (typically need

a length to thickness ratio of at least 10).

3.4.1 Euler-Bernoulli Beam Model

Consider an infinite periodic beam consisting of two isotropic sections #1 and #2 with

different material properties, as shown in Fig.  3.1 . The coordinate system is chosen such that

the origin lies on the interface between the two layers. The Young’s modulus, quadratic mo-

ment of inertia, density, and cross-sectional area of the layers are denoted by Em, Im, ρm and
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Am, where m indicates which uniform portion of the bi-material periodic beam is considered.

The governing equation of the bi-material Euler-Bernoulli beam is

∂2

∂x2

[
E(x)I(x)∂

2w(x, t)
∂x2

]
+ ρ(x)A(x)∂

2w(x, t)
∂t2

= 0, (3.74)

where w(x, t) is the flexural displacement of the mid-plane of the beam at a spatial location

x and at the time instant t. Although the beam properties are a periodic function of the

spatial location x, they are isotropic within each individual section. This permits Eq. (  3.74 )

to be re-written as

EmIm
∂4w(x, t)
∂x4 + ρmAm

∂2w(x, t)
∂t2

= 0, (3.75)

where m = 1 ∀ x ∈ [ −L1 +NL,NL] and m = 2 ∀ x ∈ [NL,L2 +NL] for N ∈ I. Using the

method of separation of variables, the flexural displacement is w(x, t) = W (x)eiωt where ω

is the angular frequency. Substituting w(x, t) = W (x)eiωt in Eq. ( 3.75 ) results in

W (x) = Am1eβmx + Am2e−βmx + Am3eiβmx + Am4e−iβmx, (3.76a)

βm =
[
ρmAmω

2

EmIm

] 1
4

, (3.76b)

where m ∈ {1, 2} and Am1, Am2, Am3, and Am4 are constants. Since the beam is peri-

odic, Floquet theorem can describe the flexural displacement (and determine the dispersion

relationship). According to Floquet theory,

W (x) = eµLW (x− L) ∀ x ∈ (−∞,∞), (3.77)

where µ is the Floquet wavenumber.

3.4.2 Dispersion of the Euler-Bernoulli Beam

The dispersion relations for the periodic beam can now be derived by establishing a

relationship between the set of eight constants Am1, Am2, Am3, and Am4. Imposing the
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continuity of displacement, slope, bending moment, and shear force at x = 0 (i.e., at the

interface between the two layers within a unit cell) results in

A11 + A12 + A13 + A14 = A21 + A22 + A23 + A24, (3.78a)

β1A11 − β1A12 + iβ1A13 − iβ1A14 = β2A21 − β2A22 + iβ2A23 − iβ2A24, (3.78b)

E1I1
(
β2

1A11 + β2
1A12 − β2

1A13 − β2
1A14

)
= E2I2

(
β2

2A21 + β2
2A22 − β2

2A23 − β2
2A24

)
, (3.78c)

E1I1
(
β3

1A11 − β3
1A12 − iβ3

1A13 + iβ3
1A14

)
= E2I2

(
β3

2A21 − β3
2A22 − iβ3

2A23 + iβ3
2A24

)
. (3.78d)

An additional set of four equations are established by using the Floquet relation in Eq. ( 3.77 )

to relate the different physical variables at x = −L1 and at x = L2, giving

A11eµL−β1L1 + A12eµL+β1L1 + A13eµL−iβ1L1 + A14eµL+iβ1L1

= A21eβ2L2 + A22e−β2L2 + A23eiβ2L2 + A24e−iβ2L2 ,
(3.79a)

β1A11eµL−β1L1 − β1A12eµL+β1L1 + iβ1A13eµL−iβ1L1 − iβ1A14eµL+iβ1L1

= β2A21eβ2L2 − β2A22e−β2L2 + iβ2A23eiβ2L2 − iβ2A24e−iβ2L2 ,

(3.79b)

E1I1
(
β2

1A11eµL−β1L1+β2
1A12eµL+β1L1 − β2

1A13eµL−iβ1L1 − β2
1A14eµL+iβ1L1

)
= E2I2

(
β2

2A21eβ2L2 + β2
2A22e−β2L2 − β2

2A23eiβ2L2 − β2
2A24e−iβ2L2

)
,

(3.79c)
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E1I1
(
β3

1A11eµL−β1L1−β3
1A12eµL+β1L1 − iβ3

1A13eµL−iβ1L1 + iβ3
1A14eµL+iβ1L1

)
= E2I2

(
β3

2A21eβ2L2 − β3
2A22e−β2L2 − iβ3

2A23eiβ2L2 + iβ3
2A24e−iβ2L2

)
.

(3.79d)

Equations (  3.78 ) and (  3.79 ) are combined to form a set of eight homogeneous equations of

the form T{X} = 0, where {X} = {A11 A12 A13 A14 −A21 −A22 −A23 −A24}T is a vector

containing the eight constants. The matrix T is

T =



1 1 1 1 1 1 1 1

1 −1 i −i β̃ −β̃ iβ̃ −iβ̃

1 1 −1 −1 Z̃β̃2 Z̃β̃2 −Z̃β̃2 −Z̃β̃2

1 −1 −i i Z̃β̃3 −Z̃β̃3 −iZ̃β̃3 iZ̃β̃3

κe−β1L1 κeβ1L1 κe−iβ1L1 κeiβ1L1 eβ2L2 e−β2L2 eiβ2L2 e−iβ2L2

κe−β1L1 −κeβ1L1 iκe−iβ1L1 −iκeiβ1L1 β̃eβ2L2 −β̃e−β2L2 iβ̃eiβ2L2 −iβ̃e−iβ2L2

κe−β1L1 κeβ1L1 −κe−iβ1L1 −κeiβ1L1 Z̃β̃2eβ2L2 Z̃β̃2e−β2L2 −Z̃β̃2eiβ2L2 −Z̃β̃2e−iβ2L2

κe−β1L1 −κeβ1L1 −iκe−iβ1L1 iκeiβ1L1 Z̃β̃3eβ2L2 −Z̃β̃3e−β2L2 −iZ̃β̃3eiβ2L2 iZ̃β̃3e−iβ2L2



,

(3.80)

where κ = eµL, β̃ = β2/β1, and Z̃ = E2I2/E1I1. To solve for a nontrivial solution of the

flexural displacement of the periodic beam, the determinant of the matrix T must be set

equal to zero. This yields the dispersion relation for the periodic beam as a fourth degree

polynomial of the variable κ:

P(κ) = a4κ
4 + a3κ

3 + a2κ
2 + a1κ+ a0 = 0, (3.81)

where ak are constants. The roots of the above polynomial give the values of κ and subse-

quently the Floquet wavenumber µ. The coefficients of the characteristic polynomial P(κ)

are highly conditioned, preventing the accurate use of typical numerical root-finders. In
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order to extract the roots accurately, the procedure takes advantage of the symmetry within

the periodic beam, allowing us to factorize P(κ) into two quadratic polynomials:

P(κ) ≡ (κ2 + p1κ+ 1)(κ2 + p2κ+ 1) = 0, (3.82)

where a0 = a4, a1 = a3, and the coefficients p1 and p2 are

p1,2 = 1
2

a3

a4
±
√(

a3

a4

)2
− 4

(
a2

a4
− 2

) . (3.83)

The solutions for κ can now be found as the roots of quadratic polynomials as

κ1,2 = 1
2

(
−p1 ±

√
p2

1 − 4
)
, (3.84a)

κ3,4 = 1
2

(
−p2 ±

√
p2

2 − 4
)
. (3.84b)

The Floquet wavenumber can be found by taking the logarithm of the obtained values of κ

as

µn = 1
L

log(κn), (3.85)

where n = {1, 2, 3, 4}. It follows from Eq. (  3.84 ) that κ1κ2 = 1 and κ3κ4 = 1. Thus,

µ2 = −µ1 + iN1π/L and µ4 = −µ3 + iN2π/L where N1 and N2 are integers (this analysis

selects N1 = 0 and N2 = 0).

Again consider an aluminum-brass periodic structure. The thickness and width of the

beam are 0.005 m while the length of each material portion is 1 m. The dispersion relation

of the flexural waves is found using the above procedure and is depicted in Fig.  3.8 . Figure

 3.8 (a) plots the wavenumber versus frequency folded across the first Brillouin zone while

Fig.  3.8 (b) is the unfolded dispersion curve for the aluminum-brass beam. The frequency

regions where Re(µ) 6= 0, highlighted in the plots as a gray region, are the frequency band

gaps of the periodic aluminum-brass beam.
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Figure 3.8. The dispersion curve of the aluminium-brass periodic Euler-
Bernoulli beam. (a) The dispersion curve is folded across the first Brillouin
zone. (b) The unfolded dispersion curve of the periodic beam.

3.4.3 Timoshenko Beam Model

Now consider the bi-material periodic rod according to Timoshenko beam theory. The

governing equations of the bi-material Timoshenko beam theory are

− ∂

∂x

[
kTAG

∂

∂x

(
∂w

∂x
− φ

)]
+ ρA

∂2w

∂t2
= f(x, t), (3.86a)

− ∂

∂x

(
EI

∂φ

∂x

)
− kTAG

(
∂w

∂x
− φ

)
+ ρI

∂2φ

∂t2
= 0, (3.86b)

where w(x, t) is the flexural deflection, φ(x, t) is the angle of rotation of the normal to the

mid-surface of the beam, G is the shear modulus, and kT is the Timoshenko shear coefficient.

Typically, kT = 5/6 for rectangular cross sections. For each uniform portion of the beam,

Eq. ( 3.86 ) can be written as

−kTAmGm
∂2w

∂x2 + kTAmGm
∂φ

∂x
+ ρmAm

∂2w

∂t2
= 0, (3.87a)
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−EmIm
∂2φ

∂x2 − kTAmGm
∂w

∂x
+ kTAmGmφ+ ρmIm

∂2φ

∂t2
= 0, (3.87b)

for m ∈ {1, 2} corresponding to material #1 and #2. Equation (  3.87a ) can in fact be

combined into a single differential equation as

EmIm
∂4w

∂x4 + ρmAm
∂2w

∂t2
− ρmIm

(
1 + Em

kTGm

)
∂4w

∂x2∂t2
+ ρ2

mIm

kTGm

∂4w

∂t4
= 0. (3.88)

Dividing Eq. ( 3.88 ) by ρmAm and defining

s2
m = EmIm

ρmAm

, (3.89)

r2
m = Im

Am

, (3.90)

Eq. ( 3.88 ) can be rewritten as

s2
m

∂4w

∂x4 + ∂2w

∂t2
− r2

m

(
1 + Em

kTGm

)
∂4w

∂x2∂t2
+ ρmr

2
m

kTGm

∂4w

∂t4
= 0. (3.91)

The equations for the bending moment and shear force are, respectively,

M = EI
∂φ

∂x
, (3.92)

V = kTAG
(
∂w

∂x
− φ

)
. (3.93)

Using the method of separation of variables, w(x, t) = W (x)eiωt. Substituting w(x, t) in

Eq. ( 3.91 ) yields

W IV (x) + ω2r2
m

s2
m

(
1 + Em

kTGm

)
W ′′(x) +

(
ω4ρmr

2
m

s2
mkTGm

− ω2

s2
m

)
W (x) = 0. (3.94)
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If the form W (x) = eβx is assumed, then Eq. ( 3.91 ) reduces to

β4 + ω2r2
m

s2
m

(
1 + Em

kTGm

)
β2 + ω4ρmr

2
m

s2
mkTGm

− ω2

s2
m

= 0. (3.95)

For each material m ∈ {1, 2}, solving the above equation will yield four roots: βm1, βm2,

βm3, and βm4. The solution for the displacement W (x) is then

Wm(x) = Am1eβm1x + Am2eβm2x + Am3eβm3,x + Am4eβm4x, (3.96)

where Am1, Am2 Am3 and Am4 are real or complex constants. Using Floquet theorem for

the periodic beam, it can be shown that the displacement, slope, bending moment, and

shear force are quasi-periodic across adjoining cells. The Floquet wavenumber is given by

Eq. ( 3.77 ).

3.4.4 Dispersion of Timoshenko Beam Model

The dispersion relations for the bi-material Timoshenko periodic beam can be derived in

a manner similar to that in §  3.4.2 . First, a relationship between the set of eight constants

Am1, Am2, Am3, and Am4 is established. Imposing the continuity of displacement, slope,

bending moment, and shear force at x = 0 produces four equations. From Eq. ( 3.96 ),

continuity of displacements implies

A11 + A12 + A13 + A14 = A21 + A22 + A23 + A24. (3.97)

Continuity of slope yields

β11A11 + β12A12 + β13A13 + β14A14 = β21A21 + β22A22 + β23A23 + β24A24. (3.98)
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Recall the moment is given by Eq. ( 3.92 ). The value of ∂φ
∂x

is found by rearranging Eq. (  3.87a )

as

∂φ

∂x
= ∂2w

∂x2 − ρ

kTG

∂2w

∂t2
. (3.99)

Continuity of moments produces

E1I1
∂φ1

∂x
= E2I2

∂φ2

∂x
. (3.100)

Substituting Eq. ( 3.99 ) into Eq. ( 3.100 ) and applying separation of time and space results

in

E1I1

(d2W1

dx2 + ρ1ω
2

kTG1
W1

)
= E2I2

(d2W2

dx2 + ρ2ω
2

kTG2
W2

)
. (3.101)

Now, letting Ã = EI and B̃ = Ã ρω2

kT G
, substituting Eq. ( 3.96 ) into Eq. ( 3.101 ) yields

Ã1

(
β2

11A11 + β2
12A12 + β2

13A13 + β2
14A14

)
+ B̃1

(
A11 + A12 + A13 + A14

)
= Ã2

(
β2

21A21 + β2
22A22 + β2

23A23 + β2
24A24

)
+ B̃2

(
A21 + A22 + A23 + A24

)
.

(3.102)

Lastly, continuity of shear implies

A1G1

(
∂w1

∂x
− φ1

)
= A2G2

(
∂w2

∂x
− φ2

)
. (3.103)

Unfortunately, the expression for φ in terms of w is not directly available. To obtain this,

assume φ(x, t) = Φ(x)eiωt where the frequency ω is equivalent to the frequency of the dis-

placement w(x, t) = W (x)eiωt. Thus, Eq. (  3.87a )b is written as

kTAGΦ − ρIω2Φ = EI
d2Φ
dx2 + kTAG

dW
dx

. (3.104)
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Applying separation of variables and differentiating Eq. ( 3.99 ) gives d2Φ
dx2 as

d2Φ
dx2 = d3W

dx3 + ρω2

kTG

dW
dx

. (3.105)

Substituting Eq. ( 3.105 ) into Eq. ( 3.104 ),

(kTAG− ρIω2)Φ = EI
d3W

dx3 +
(
EIρω2

kTG
+ kTAG

)dW
dx

. (3.106)

Using the previously defined constants Ã and B̃, define C̃ = Ã
kT AG−ρIω2 and D̃ = B̃+kT AG

kT AG−ρIω2 .

Thus, Eq. ( 3.106 ) becomes

Φ = C̃
d3W

dx3 + D̃
dW
dx

. (3.107)

Substituting Eq. ( 3.107 ) into Eq. ( 3.103 ) and applying separation of variables,

A1G1

[
C̃1

d3W1

dx3 + (1 − D̃1)
dW1

dx

]
= A2G2

[
C̃2

d3W2

dx3 + (1 − D̃2)
dW2

dx

]
. (3.108)

Defining Ẽ = AGC̃ and F̃ = AG(1 − D̃), substituting Eq. (  3.96 ) into Eq. ( 3.108 ) finally

yields

Ẽ1

(
β3

11A11 + β3
12A12 + β3

13A13 + β3
14A14

)
+ F̃1

(
β11A11 + β12A12 + β13A13 + β14A14

)
= Ẽ2

(
β3

21A21 + β3
22A22 + β3

23A23 + β3
24A24

)
+ F̃2

(
β21A21 + β22A22 + β23A23 + β24A24

)
.

(3.109)

An additional set of four relations are established by using the Floquet relations in

Eq. (  3.77 ) in order to relate the displacements and other physical variables at x = −L1 and

at x = L2. This gives

A11eµL−β11L1 + A12eµL−β12L1 + A13eµL−β13L1 + A14eµL−β14L1

= A21eβ21L2 + A22eβ22L2 + A23eβ23L2 + A24eβ24L2 ,
(3.110a)
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β11A11eµL−β11L1 + β12A12eµL−β12L1 + β13A13eµL−β13L1 + β14A14eµL−β14L1

= β21A21eβ21L2 + β22A22eβ22L2 + β23A23eβ23L2 + β24A24eβ24L2 ,

(3.110b)

Ã1

(
β2

11A11eµL−β11L1 + β2
12A12eµL−β12L1 + β2

13A13eµL−β13L1 + β2
14A14eµL−β14L1

)
+B̃1

(
A11eµL−β11L1 + A12eµL−β12L1 + A13eµL−β13L1 + A14eµL−β14L1

)
= Ã2

(
β2

21A21eβ21L2 + β2
22A22eβ22L2 + β2

23A23eβ23L2 + β2
24A24eβ24L2

)
+B̃2

(
A21eβ21L2 + A22eβ22L2 + A23eβ23L2 + A24eβ24L2

)
,

(3.110c)

Ẽ1

(
β3

11A11eµL−β11L1 + β3
12A12eµL−β12L1 + β3

13A13eµL−β13L1 + β3
14A14eµL−β14L1

)
+F̃1

(
β11A11eµL−β11L1 + β12A12eµL−β12L1 + β13A13eµL−β13L1 + β14A14eµL−β14L1

)
= Ẽ2

(
β3

21A21eβ21L2 + β3
22A22eβ22L2 + β3

23A23eβ23L2 + β3
24A24eβ24L2

)
+F̃2

(
β21A21eβ21L2 + β22A22eβ22L2 + β23A23eβ23L2 + β24A24eβ24L2

)
.

(3.110d)
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Equations (  3.97 ), (  3.98 ), (  3.102 ), (  3.109 ), & ( 3.110 ) are combined to form a set of eight

homogeneous equations of the form T{X} = 0 where {X} is a vector containing the eight

constants. The matrix T (written as T = [TL][TR]) is obtained as

TL =



1 1 1 1

β11 β12 β13 β14

Ã1β
2
11 + B̃1 Ã1β

2
12 + B̃1 Ã1β

2
13 + B̃1 Ã1β

2
14 + B̃1

Ẽ1β
3
11 + F̃1β11 Ẽ1β

3
12 + F̃1β12 Ẽ1β

3
13 + F̃1β13 Ẽ1β

3
14 + F̃1β14

κe−β11L1 κe−β12L1 κe−β13L1 κe−β14L1

κβ11e−β11L1 κβ12e−β12L1 κβ13e−β13L1 κβ14e−β14L1

κ(Ã1β
2
11 + B̃1)e−β11L1 κ(Ã1β

2
12 + B̃1)e−β12L1 κ(Ã1β

2
13 + B̃1)e−β13L1 κ(Ã1β

2
14 + B̃1)e−β14L1

κ(Ẽ1β
3
11 + F̃1β11)e−β11L1 κ(Ẽ1β

3
12 + F̃1β12)e−β12L1 κ(Ẽ1β

3
13 + F̃1β13)e−β13L1 κ(Ẽ1β

3
14 + F̃1β14)e−β14L1



,

(3.111)

TR = −



1 1 1 1

β21 β22 β23 β24

Ã2β
2
21 + B̃2 Ã2β

2
22 + B̃2 Ã2β

2
23 + B̃2 Ã2β

2
24 + B̃2

Ẽ2β
3
21 + F̃2β21 Ẽ2β

3
22 + F̃2β22 Ẽ2β

3
23 + F̃2β23 Ẽ2β

3
24 + F̃2β24

eβ21L2 eβ22L2 eβ23L2 eβ24L2

β21eβ21L2 β22eβ22L2 β23eβ23L2 β24eβ24L2

(Ã2β
2
21 + B̃2)eβ21L2 (Ã2β

2
22 + B̃2)eβ22L2 (Ã2β

2
23 + B̃2)eβ23L2 (Ã2β

2
24 + B̃2)eβ24L2

(Ẽ2β
3
21 + F̃2β21)eβ21L2 (Ẽ2β

3
22 + F̃2β22)eβ22L2 (Ẽ2β

3
23 + F̃2β23)eβ23L2 (Ẽ2β

3
24 + F̃2β24)eβ24L2



,

(3.112)

where κ = eµL. The procedure to determine the Floquet wavenumber µn is equivalent to

that presented in §  3.4.2 , where Eqs. (  3.81 )-( 3.85 ) are used to calculate µn. Figure  3.9 plots

the dispersion relation of the aluminum-brass beam using the Timoshenko beam theory and

compares it to the dispersion relation obtained using the Euler-Bernoulli assumptions. The

curves in Fig.  3.9 (a) are for the beam geometry given in §  3.4.2 (width and thickness of

0.005 m). It is observed that the dispersion relations of the Euler-Bernoulli and Timoshenko

beams coincide, indicating that the assumptions behind the Euler-Bernoulli beam theory are

satisfied. Contrast this to the dispersion curves in Fig.  3.9 (b) where the beam geometry is

130



now quite thick (width and thickness of 1 m). As the frequencies increase, the dispersion

curve of the Timoshenko beam is shifted slightly to the left of the Euler-Bernoulli curves.

This “shift” occurs since the Timoshenko beam considers shearing effects, which are more

influential for the thicker beam geometry. A comparison of the dispersion curves to the

dispersion curves determined via finite elements (not shown here) shows that the Timoshenko

curves more closely match the FE data since the assumptions of the Euler-Bernoulli beam

are invalid.

Figure 3.9. (a) The dispersion curve of the aluminium-brass periodic Timo-
shenko (T) beam compared to an Euler-Bernoulli (EB) beam for a long, slender
geometry. (b) Comparison of the dispersion relation of an Euler-Bernoulli and
Timoshenko beam for a thick beam geometry where the thickness and width
are each 1 m.

3.5 Fractional Beam Model

Having determined the dispersion relation of the bi-material periodic beam, this section

develops the corresponding fractional model and determines its fractional order. Although

the previous section considered both an Euler-Bernoulli and Timoshenko beam, the remain-

der of the chapter focuses on developing the fractional beam corresponding to the Euler-

Bernoulli beam. A fractional formulation corresponding to the Timoshenko beam theory

can be found in [ 141 ].
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3.5.1 Governing Equations

The development of the fractional beam model will take a different route than the frac-

tional rod from §  3.2 because the model is built directly upon the fractional beam model

derived in [  113 ]. As with the fractional rod, the fractional beam model can be considered

as a homogenized representation of the bi-material periodic beam where the space fractional

derivative operator captures the effect of inhomogeneities. According to [  113 ], the nonlocal

axial strain (ε̄) of the fractional Euler-Bernoulli beam is defined as

ε̄(x, z) = −zDα
x

[
∂w̄(x, t)
∂x

]
, (3.113)

where w̄ is the transverse response of the fractional beam. In the above equation, Dα
x (·) is a

space fractional Riesz-Caputo (RC) derivative with order α ∈ (0, 1) defined on the interval

x ∈ (0, L) as

Dα
x Ψ(x) = 1

2 l̄
α−1

[
C
0 D

α
x Ψ(x) − C

xD
α
LΨ(x)

]
, (3.114)

where Ψ is an arbitrary function and l̄ is a length-scale factor introduced to ensure dimen-

sional consistency of the fractional-order derivative (and whose value is taken as unity just

like Q in Eqs. (  2.46 ) and (  3.46 )). The operators C
0 D

α
x (·) and C

xD
α
L(·) are the left- and right-

handed Caputo derivatives of order α, respectively. Note that [  112 ] considered a different

version of Eq. (  3.114 ) where different length scales of non-unity value are associated with

both the left- and right-handed Caputo derivatives. The RC definition given in [  112 ] (which

will be explored further and implemented in §  4.4.1 ) ensured frame-invariance was satisfied

for finite fractional beams. Here, the considered bi-material Euler Bernoulli beam and its

corresponding fractional counterpart are infinite structures.

The interval of the RC fractional derivative in Eq. ( 3.114 ) defines the horizon of nonlocal-

ity of the fractional order beam; that is, the distance beyond which information is no longer

accounted for within the fractional derivative. The horizon of nonlocality in Eq. ( 3.114 )

coincides with the length of the beam. In this case, the nonlocal convolution corresponding

to the intervals of the RC derivative would actually be over the interval (−∞,∞). Note
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that this assumption on the infinite extent of the nonlocal horizon matches closely with the

formulation proposed by Eringen et al. [ 142 ]. Also, classical low-frequency homogenization

theories often result in integral averaging expressions over the entire domain of the solid [ 16 ].

Further, the Caputo fractional derivatives defined in Eq. ( 3.113 ) lead to a frame-invariant

formulation for an infinite beam. This is important to ensure that no strain is accumulated

in the 1D solid under translation [ 51 ], [ 141 ].

[ 113 ] derives the governing equations of the fractional beam using the generalized Hamil-

ton’s principle. In this derivation, the total nonlocal potential energy of the fractional beam

of volume V is

Π = 1
2

∫
V
σ̄(x, z)ε̄(x, z) dV −

∫
L
FT (x, t) w̄(x)dx, (3.115)

where the second integral in the above expression corresponds to the work done by the

transverse force FT (x, t) applied externally on a plane perpendicular to the beam’s neutral

axis and the fractional stress is defined as

σ̄(x, z) = Ēε̄(x, z), (3.116)

where Ē is the Young’s modulus of the fractional beam. The kinetic energy of the beam is

T = 1
2

∫
V
ρ̄

(
∂w̄

∂t

)2

dV, (3.117)

where ρ̄ is the fractional beam’s density. Using the potential and kinetic energy, the govern-

ing differential equations (GDE), the associated boundary conditions (BC), and the initial

conditions (IC) necessary to determine the response of the fractional beam are (see [ 113 ] for

entire derivation)

GDE : ĒĪ ∂
∂x

[
Dα

x

[
Dα

x

(
∂w̄

∂x

)]]
+ ρ̄Ā

∂2w̄

∂t2
= FT (x, t) ∀ x ∈ (0, L) ∪ t ∈ (0,∞), (3.118a)
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BC :

ĒĪ
[
I1−α

x Dα
x

(
∂w̄(x,t)

∂x

)]
= 0 or δ

(
∂w̄(x,t)

∂x

)
= 0 at x ∈ {0, L} ∪ t ∈ (0,∞),

ĒĪ
[
Dα

xD
α
x

(
∂w̄(x,t)

∂x

)]
= 0 or δw̄(x, t) = 0 at x ∈ {0, L} ∪ t ∈ (0,∞),

(3.118b)

IC : δw̄(x, t) = 0 and δ

(
∂w̄(x, t)
∂t

)
= 0 at t = 0 ∪ x ∈ (0, L), (3.118c)

where Ī and Ā are the quadratic moment of inertia and cross-sectional area of the fractional

beam, respectively. In Eq. ( 3.118 ), Dα
x(·) is a Riesz Riemann-Liouville derivative of order α

defined on the interval x ∈ (0, L) as

Dα
xΨ(x) = 1

2 l̄
α−1

[
RL

0D
α
x Ψ(x) − RL

xD
α
LΨ(x)

]
, (3.119)

where Ψ is an arbitrary function, and RL
0D

α
x (·) and RL

xD
α
L(·) are the left- and right-handed

Riemann Liouville fractional order derivatives, respectively. Also, I1−α
x (·) is a Reisz fractional

integral defined as

I1−αΨ(x) = 1
2 l̄

α−1
[

0I1−α
x Ψ(x) + xI1−α

L Ψ(x)
]
, (3.120)

where 0I1−α
x (·) and xI1−α

L (·) are the left- and right-handed Riemann Liouville fractional order

integrals, respectively. Note that classical beam governing equations are recovered for α = 1.

3.5.2 Dispersion and Fractional Order

Just as for the fractional rod, the appropriate value of the fractional order α of the

fractional beam is determined by equating the dispersion relation of the bi-material periodic

beam (given in Fig.  3.8 ) to that of the fractional beam. To obtain the dispersion relation of

the fractional beam, substitute the ansatz

w̄(x, t) = Ã1e(kx−iωt) + Ã2e(kx+iωt), (3.121)
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into the fractional beam’s governing equation where Ã1 and Ã2 are the amplitudes of the

wave propagating in the positive and in the negative spatial directions, respectively, k is the

wavenumber, and ω is the angular frequency. Equation ( 3.121 ) was chosen since it is the

standard exponential representation of wave propagation and since the fractional derivative

(with bounds of ±∞) of an exponential is an exponential (see Eq. (  3.32 )). Given the wave

solution assumed in Eq. ( 3.121 ), the real and complex parts of the complex wave number

k correspond to the attenuating and propagating component of the wave. Note that the

ansatz assumed in Eq. ( 3.121 ) is contrary to the standard form A1ei(kx−ωt) +A2ei(kx+ωt). The

former expression was assumed in order to remain consistent with the form of the Floquet

wavenumber assumed in Eq. ( 3.77 ).

Substituting Eq. (  3.121 ) into Eq. (  3.118a ), the dispersion relation for transverse waves

in the fractional beam is obtained as

k = e
2πi

1+α

[
ω2l̄2(1−α) ρ̄Ā

ĒĪ

] 1
2(1+α)

. (3.122)

The fractional order α for the fractional beam can now be obtained by insisting that the

wavenumber obtained through Eq. ( 3.122 ) is equal to the wavenumber µ of the bi-material

Euler-Bernoulli beam from Eq. ( 3.77 ). Recall that the constant l̄ is introduced to ensure

dimensional consistency of the formulation and is of unity value. Thus, solving Eq. ( 3.122 )

for α yields

α =
 log

(
ω2ρ̄Ā/ĒĪ

)
log (−k2)

− 1. (3.123)

The propagating component of the wavenumber for transverse waves in the beam relates to

the angular frequency as Im(k)4 = ω2ρĀ/ĒĪ. Using this relation, the expression for α is

simplified as

α = 4
[

log | Im(k)|
log (−k2)

]
− 1. (3.124)

The formulation for the fractional beam results in a variable order α, where α is a

function of the angular frequency ω. A plot of the fractional order α for the aluminum-brass
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periodic beam is given in Fig.  3.10 . Similar to the fractional rod (specifically the case using

a frequency-dependent wave speed in §  3.2.2 ), the fractional order in Fig.  3.10 is a complex

quantity for band gap frequencies while the order is a purely real number (α = 1) for band-

pass frequencies. This is consistent with the physics of the problem since α = 1 is indicative

of propagating waves [ 112 ]. In the band gaps, Re(α) < 1 and Im(α) < 0. Re(α) < 1 indicates

that flexural waves in the periodic beam attenuate spatially, which is again consistent with

the fact that this frequency is located within a band gap. Additionally, Im(α) < 0 indicates

a frequency-dependent modulation of the phase of the beam response.

Figure 3.10. The order α for the fractional beam as a function of frequency.
The fractional order is equal to 1 for frequencies in the pass-bands, while the
order is complex valued for frequencies within the band gaps.

3.6 Numerical Solution and Assessment of the Fractional Beam

Having obtained the governing equation and fractional order for the fractional beam,

its solution is compared to the flexural displacement of the bi-material periodic beam to

assess the ability of the fractional beam to be an effective homogenization tool. Unlike the

space fractional wave equation for the fractional rod, there is no known analytical solution

to Eq. (  3.118a ) of the fractional beam. As a result, this section adopts a fractional finite

element method developed in [ 113 ] to determine the flexural displacement of the fractional
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beam. The result is compared to the flexural displacement of the bi-material periodic beam

obtained via a commercial finite element software. Again, like the rod, comparing the results

of the fractional finite element model of the fractional beam to experimental results would

make a more compelling case. In this case, the numerical results obtained via a commercial

finite element software are reasonable to use to assess the fractional results because of the

relative simplicity of the bi-material beam’s geometry.

3.6.1 Fractional Finite Element Method

This section details the alterations made from the fractional finite element method (f-

FEM) developed in [  113 ] since the RC derivative used in this analysis for the infinite beam

(given by Eq. ( 3.114 )) was different than that implemented in [ 113 ] for finite beams. Anal-

ogous to classical FEM, the f-FEM is formulated starting from a discretized form of the

total potential energy functional given in Eq. (  3.115 ). The domain Ω = [0, L] is divided

into Ne finite elements denoted as Ωe
q with q = {1, .., Ne} such that ∪Ne

q=1Ωe
q = Ω and

Ωe
j ∩ Ωe

k = ∅ ∀ j 6= k. The transverse displacement at any point x ∈ Ωe
q is evaluated by

interpolating the corresponding nodal degrees of freedom of Ωe
q as

w̄(x) = N̂(x){W e
q }, (3.125)

where N̂(x) is a matrix containing the interpolation functions and {W e
q } is a vector con-

taining the nodal displacement variables of the element Ωe
i . From the definition given in

Eq. ( 3.113 ), the fractional axial strain in the beam is

ε̄(x, z) = −z
2Γ(1 − α)

[∫ L

0
A(x, x′, α)B(x′)C̄(x,x′) dx′

]
{W} = −zB̄(x){W}, (3.126)

where x′ is a dummy variable used for convolution along the x axis, and {W} denotes the

global DOF vector. A(x, x′, α) = 1/|x − x′|α denotes the kernel of the fractional order
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derivative. Additionally, the matrix B(x′) is expressed as the second order derivative of the

shape functions given by

B(x′) = d2N̂(x′)
dx′2 . (3.127)

Lastly, C̄(x,x′) is a connectivity matrix that is used to attribute the nonlocal contributions

from the different elements in the horizon of x to the corresponding nodes of those elements.

The connectivity matrix relates the nodes of each element to the global DOFs through

{W e
x′} = C̄(x,x′){W}. (3.128)

The connectivity matrix C̄(x,x′) is designed such that it is non-zero only if the point x′ lies

in the nonlocal horizon of x. The fractional strain (Eq. (  3.126 )) and stress (Eq. (  3.116 )) are

used to determine the total deformation energy of the beam as

U = 1
2{W}T K̄{W}, (3.129)

where the nonlocal stiffness matrix K̄ is given as

K̄ = ĒĪ
∫ L

0
B̄(x)T B̄(x)dx. (3.130)

The f-FEM performs a numerical integration of the nonlocal stiffness matrix K̄ (details in

[ 113 ]). Although it might appear that this assembly strategy would require the use of larger,

global matrices, it is emphasized that simple principles of connectivity are used to avoid the

multiplication of large sparse matrices in Eq. (  3.126 ), similar to what is done in local FEM.

The final algebraic equation of the f-FEM model contains an inertial matrix as well such

that

M̄{Ẅ} + K̄{W} = {FT }, (3.131)

where the mass-matrix M̄ and the force vector {FT } of the fractional-order beam are the

same as obtained in classical FEM for beams [  2 ], [  113 ]. The solution of Eq. (  3.131 ) gives
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the nodal generalized displacement coordinates. Additionally, the robust f-FEM described

above is still convergent for the complex orders of the frequency band gaps.

3.6.2 Assessment of Numerical Results

The validity of the homogenized fractional beam model is now assessed by comparing

the flexural displacement of the fractional beam obtained from the f-FEM to the flexural

displacement displacement of the aluminum-brass periodic beam obtained via a commercial

finite element software (COMSOL). Similar to the fractional rod in §  3.3 , the infinite beam

structure is subjected to a prescribed harmonic flexural displacement at its center. Since the

forward and backward propagating waves will be equivalent, consider only the section of the

infinite periodic beam in the positive x axis. As a result, the analysis is conducted on the

rightward propagating wave in a semi-infinite beam.

The flexural transverse displacement is w̄(0, t) = W0eiΩ0t at x = 0. Thus, the steady-state

response across the entire beam is taken as {W} = {W0}eiΩ0t, where {W0} is the steady-state

amplitude. Substituting this into Eq. (  3.131 ) yields

{W0} =
(
K̄ − Ω2

0M̄
)−1

{FT }. (3.132)

To simulate a semi-infinite beam and prevent any reflections in the numerical solution, an

absorbing boundary condition is implemented at the truncated end of the fractional beam

according to [ 143 ].

The analysis considers four different forcing frequencies each corresponding to a different

region of the dispersion curve in Fig.  3.8 : 1) the driving angular frequency Ω0 = 5 rad/s

lies in the first pass-band; 2) the driving angular frequency Ω0 = 15 rad/s lies in the first

band gap; 3) the driving angular frequency Ω0 = 40 rad/s lies in the second pass-band;

and 4) the driving angular frequency Ω0 = 61 rad/s lies in the second band gap. The

fractional order α for these cases are obtained using Eq. ( 3.124 ) and are 1, 0.97 − 0.19i, 1,

and 0.99 − 0.05i, respectively. The results obtained for the four loading cases defined above

are shown in Fig.  3.11 where they have been compared against the numerical simulations of

the bi-material, periodic beam from COMSOL.
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Figure 3.11. The steady state response obtained using the fractional order
governing equation for the beam solved via the f-FEM. For the different cases,
the forcing frequency of the external load is within the (a) first pass-band:
loading #1, (b) first band-gap: loading #2, (c) second pass-band: loading
#3, and (d) second band-gap: loading #4. The inset in figure (c) provides a
zoomed in view of the response of the beam from x = 20 m to x = 40 m.

The results in Fig.  3.11 (a) and (b) reveal that the match between the results of the

aluminum-brass periodic beam and its corresponding fractional model are quite good. How-

ever, for loading case #3 where the driving angular frequency lies within the second pass-

band, the f-FEM result matches the phase of the COMSOL result, but does not match the

amplitude locally. This is past the long wavelength limit of the low-frequency homogeniza-

tion methods, thus revealing that the fractional model suffers from similar shortcomings as

other low-frequency homogenization methods due to scattering effects. One possible route

capable of capturing the localized effects would be to use a variable space fractional order,
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although this needs further research. Moving to loading case #4 where the driving frequency

lies in the second band gap, it is again observed that the amplitudes of the two curves do not

match due to localization at high frequencies. However, unlike other low-frequency homog-

enization techniques, the fractional beam model did successfully capture the attenuating

flexural displacement within the band gap. This is a key advantage and strength of the

fractional beam, making it an ideal homogenization tool for models whose wave propagation

occurs in a frequency band gap. For higher-order band gaps, it is expected that the fractional

beam model will capture the attenuation due to its complex-valued fractional order, but will

experience an increasing mismatch in the amplitude of the response due to the inability of

the fractional beam model to capture the localized scattering effects.

3.7 Conclusions

The homogenized space fractional models developed in this chapter serve as a novel

homogenization technique which accurately reflected the wave attenuation that occurs in

frequency band gaps of periodic, heterogeneous structures. Additionally, the fractional rod

model provided a means to obtain a closed-form analytical solution based on either exponen-

tial or Mittag-Leffler solution kernels that accurately described the axial displacement of the

bi-material periodic rod for band gaps and low-frequency pass bands. These closed-form so-

lutions avoided the computational expenses of asymptotic homogenization approaches. Also,

the closed-form solutions can have important implications for inverse problems in material

design and remote sensing. Although the governing equation of the fractional beam did not

have a known analytical solution, a fractional finite element method was adopted to calculate

the flexural displacement of the fractional beam, even for complex orders. This signified an

important development for complex order numerical methodologies, which are still relatively

young. However, for pass bands located at high frequencies past the long wavelength limit,

the fractional models presented here could not capture the localized scattering effects. In

this regard, depending on the specific application, the latter aspect may or may not be a

disadvantage. For example, if the objective is to simulate the response of a solid with an

embedded slab of the periodic medium (e.g., a periodic 1D beam embedded in an otherwise

141



homogeneous beam), the detailed response inside the periodic medium might not be of inter-

est. Note that this comment is applicable to homogenized models in general and it is neither

a consequence nor a peculiarity of the fractional order modeling. Additionally, although

some high-frequency homogenization approaches have been more accurate in representing

the behavior in the phononic regime, they are based on solving the eigenvalue problem via

an asymptotic multiple scale representation of the elastodynamic equation, which is often

limited by the computational capabilities of the eigen-solver and becomes progressively more

complex as a higher number of terms is used within the multiscale expansion. As such, the

performance of the fractional models proposed here may, with modifications, provide a basis

for an efficient and accurate broadband homogenization technique for both band gaps and

high-frequency pass bands. This chapter successfully illustrated the feasibility and the po-

tential of fractional order homogenization techniques for the dynamic simulation of the band

gaps of periodic systems.
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4. FRACTIONAL ORDER MODELS FOR ACOUSTIC BLACK

HOLE GEOMETRIES

A portion of this chapter was previously published by the Journal of Sound & Vibration and
is titled “Application of fractional-order operators to the simulation of ducts with acoustic
black hole terminations” [ 144 ] [DOI: https://doi.org/10.1016/j.jsv.2019.115035].

The previous chapter developed a fractional homogenization tool using a 1D bi-material,

periodic structure as an example system. While this structure is a classical example of 1D

elastic metamaterial, it is not a practical design commonly manufactured. The bi-material,

periodic rod and beam would be challenging to manufacture since smoothly joining two

different materials at multiple interfaces would be difficult. This chapter advances the space

fractional homogenization concepts to a heterogeneous geometry recently manufactured in

metamaterial waveguides: the acoustic black hole. Acoustic black holes trap nearly all of

the wave energy that propagates through it, making it an ideal tool for passive vibration

control and sound attenuation. The acoustic black hole’s geometry follows a power-law

taper profile. Since fractional derivatives are differ-integral operators based on a power-law

kernel, it is hypothesized that a relationship between a space fractional order and the power-

law exponent of the taper may exist (see §  4.1.3 for more details relating FC to ABHs).

Additionally, common numerical simulations of acoustic black holes tend to computationally

expensive due to the need to accurately capture the varying taper of the acoustic black

hole. As such, a fractional homogenization of the acoustic black hole may lead to more

computationally efficient simulations.

Acoustic black holes have chiefly been studied and manufactured for structural applica-

tions such as beams and plates, but have also recently been utilized for acoustic applications

as well. The first half of this chapter focuses on developing fractional models to represent the

reflection of sound pressure waves in air-filled ducts with ABH terminations. The goal is to

mimic the reflection of a planar sound wave into the acoustic duct from the ABH termination

using a space fractional model that does not require the simulation of the dynamics within

the ABH itself. The latter half creates a homogenized fractional beam model similar to

that in §  3.5 for the elastic wave propagation through ABH geometries in structural beams.
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However, in this case, the homogenized fractional model aims to not only reflect the effect

of the ABH on the rest of the beam, but to also capture the wave propagation within the

ABH itself. As will be seen, this will necessitate the use of a variable space fractional order.

Contents of the chapter include

• A review of the concepts of acoustic black holes and their applications in structural

and acoustic waveguides,

• The calculation of the reflection coefficient of a sound wave produced by an ABH

termination in an acoustic duct as a function of its power-law taper,

• A fractional boundary and domain model for the ABH duct which are capable of

mimicking the reflection of a sound wave into the main host duct,

• A finite difference formulation of the fractional boundary model to verify its fractional

order accurately represents the reflection from the ABH termination,

• Adoption of the fractional beam model presented in the previous chapter to serve as

a homogenized model of a portion of a beam containing an ABH profile,

• Use of a governing fractional differential equation containing a variable space fractional

order derivative, allowing the fractional homogenized model to capture the dynamic

response within the ABH,

• Calculation of the fractional order of the finite fractional beam model of the ABH

through an energy-matching approach that provides a link between the fractional

order and taper exponent.

4.1 Basic Concepts of Acoustic Black Hole Geometries

Acoustic black holes have been developed for both structural [ 145 ]–[ 166 ] and acoustic

[ 167 ]–[ 170 ] applications, as reflected in Fig.  4.1 . As a waveguide, the main feature of an

acoustic black hole is that it can absorb nearly all of the incident energy entering it, which

makes it very attractive for applications for passive vibration control and sound attenuation.
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The dynamic behavior of ABH elements stems from their characteristic geometry that follows

a power-law profile as shown in Fig.  4.2 . As an acoustic or elastic wave enters the power-law

taper, both the phase and group velocities are progressively reduced while the amplitude of

the particle displacement increases. In an ideal ABH (i.e., an ABH whose cross-sectional

area vanishes at the end of the taper), the incoming wave can never reach the end of the

taper; therefore, it is never reflected back. However, in practical implementations, the cross-

section of the waveguide can never be reduced to zero. Therefore, reflection should always

be expected unless the ABH is combined with a damping mechanism.

Figure 4.1. ABH waveguides found in literature include (a) 1D ABH plate
wedges (Graphics credit: [  148 ] ©2014 IEEE), (b) 2D circular ABH in a plate
(Graphics credit: [ 148 ] ©2014 IEEE), (c) An array of 2D ABH plate, (d) An
ABH termination in an acoustic duct (Graphics credit: [  170 ]).

Finite element models and plane wave expansion have been traditionally used to perform

detailed numerical simulations of ABH systems [  154 ], [  157 ], [  158 ]; however, the need to

capture the power-law thickness variation dictates minimum requirements on the model’s

dimensionality which ultimately results in computationally intensive models. For example,
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Figure 4.2. Cross section of an acoustic black hole depicting the power-law
tapered profile.

a thin plate with ABH terminations on the edges will require a full three-dimensional model

instead of a more efficient Kirchhoff plate formulation. Computational efficiency becomes an

even more critical consideration for systems with multiple embedded ABHs (e.g., structures

with periodic ABHs lattices [ 155 ]).

4.1.1 Acoustic Black Holes In Structural Waveguides

In structural waveguides, ABHs have been designed mostly to absorb flexural waves in

beams and plates (see Fig.  4.1 (a)). Mironov [  145 ], [  146 ] and Krylov [ 147 ], [  148 ], [  151 ], [  171 ],

[ 172 ] pioneered the mathematical work and design approaches for 1D ABHs embedded in

beams and plates to achieve efficient reduction of flexural vibrations. In this case, ABHs

consist of either embedded tapers or slots having a power-law thickness profile [  145 ], [  147 ],

[ 148 ], [ 152 ]–[ 155 ], [ 157 ]. To achieve nearly perfect absorption, narrow strips of viscoelastic

material cover the power-law wedge. For plate-like structures, the ABH design can be ex-

tended in dimensionality to a two-dimensional power-law circular pit as seen in Fig.  4.1 (b).

In addition, the black hole effect can be more pronounced by arranging the 2D ABH design

in a periodic ensemble as shown in Fig.  4.1 (c). As seen in [  155 ], when the 2D ABH ensem-

ble is used to create an acoustic metamaterial, many unique behaviors such as zero group

velocities, negative group refraction index, collimation, bi-refraction, Dirac-like cones, and

mode anisotropy can be achieved.
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The latter portion of this chapter will analyze how the fractional beam model introduced

in §  3.5 can be used as a homogenization tool for beams with ABH profiles. Mironov [  146 ]

provided a thorough analysis of the transverse vibration of a beam with a ABH profile.

The equation of motion of the beam is given by Eq. (  3.74 ) where E and ρ are constant,

A(x) = bh(x), and I(x) = bh(x)3/12 where b is the beam width. The height h(x) of the

beam is given by the power-law relationship of an ABH; in [  146 ], h(x) = h0(x/x0)m where

x0 is the location where the ABH profile begins, h0 is the height at that location, and m is

the power-law exponent. The equation for the harmonic flexural displacement of the beam

is

(EI(x)w′′)′′ − ρA(x)ω2w = 0, (4.1)

where w is the flexural displacement, and ′ indicates differentiation with respect to x. [  146 ]

states that the solution of Eq. ( 4.1 ), provided that the variation of the cross section is

sufficiently smooth, is obtained using a Wentzel–Kramers–Brillouin (WKB) approximation

as

wq = Ãq(x)ei
∫

kq(x)dx, (4.2)

where the local wavenumber kq(x) are

kq(x) =
[
ρA(x)ω2

EI(x)

]1/4

ei π

2 q, (4.3)

for q = 0, 1, 2, 3. The amplitude Ãq(x) is determined from energy conservation. [  146 ] further

accesses the validity of the WBK approximation and determines that it is only valid for taper

exponents of m ≥ 2. Furthermore, [ 146 ] derives the exact solution to Eq. ( 4.1 ) for the case

m = 2; albeit, the mathematics are complicated to the point that obtaining an analytical

solution of a beam with a periodic array of imperfect ABHs is exceedingly difficult. By

locally approximately any arbitrary power-law thickness profile as a parabola, [ 146 ] obtains
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the WKB approximation for any taper exponent m. However, once again, implementation of

the solution is challenging for practical applications and is not exact since the taper profile

must be approximated as parabolic. This prompts the need for other mathematical models

of ABH profiles in beams.

4.1.2 Acoustic Black Holes in Acoustic Waveguides

In acoustic waveguides, ABHs absorb pressure waves and are typically used to control

pressure and sound levels in ducts [ 167 ]–[ 170 ]. Influential work in the modeling of acoustic

black hole features in air filled ducts was conducted by Mironov et al. [  167 ] and, more

recently, by Guasch et al. [  168 ]. Both authors considered a duct having an ABH termination

achieved by using a distribution of annular rings whose inner radii decreased following a

power-law profile, as depicted in Fig.  4.3 . In order to study this system, Mironov et al. [ 167 ]

proposed an analytical approach leading to a closed-form solution for the case of linear taper

(m = 1), yielding both the pressure field in the duct and the reflection coefficient from the

ABH termination. Later, Guasch et al. [  168 ] extended the analysis of acoustic ducts to

obtain the analytical solution and reflection coefficient for a quadratic (m = 2) ABH profile.

Additionally, El Ouahabi et al. [ 169 ], [ 170 ] built cylindrical acoustic ducts (see Fig.  4.1 (d))

where the radius of the inserted rings varied linearly or quadratically based on the work of

[ 167 ] and measured the reflection coefficient to illustrate the black hole effect. Unlike the case

of structural elements, in acoustic waveguides, the ABH behavior exists for taper exponents

less than m = 2 due to the combined effect of the variation of the wall admittance (for more

details, see Eq. (11) in [ 167 ]).

Starting from the linearized form of the continuity and momentum conservation equa-

tions, the pressure in the duct of Fig.  4.3 is described by [ 167 ] as

∂2p

∂x2 + ∂p

∂x

∂(lnS(x))
∂x

+ p
[
k2

0 + iZ0k0
2Y (x)
h(x)

]
= 0, (4.4)

where p is the pressure, S(x) is the cross sectional area of the duct, k0 = ω/c is the wavenum-

ber, ω is the frequency, c is the speed of the acoustic wave, Z0 = ρ0c is the characteristic
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Figure 4.3. Depiction of an acoustic duct with an ABH termination. The
drawing shows the top half of the axisymmetric system.

impedance of air, ρ0 is the air density, h(x) is the radius of the cylindrical duct, Y (x) is the

admittance of the wall, and x is the axial coordinate with the origin located at the beginning

of the power-law taper. The wall admittance can be approximated by the continuous lumped

admittance [ 167 ], [ 168 ]

Y (x) = (−iω) 1
ρ0c2

h2
0 − h(x)2

2h(x) , (4.5)

where h0 is the radius of the section of the duct having constant cross section. The radius

of the cylindrical duct in the termination area is given by the power-law equation

h(x) = h0

Lm
|x− L|m, (4.6)

where L is the axial length of the ABH and m is the power-law exponent.
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4.1.3 Relation to Fractional Calculus

The relation between acoustic black holes and fractional calculus is explored for mul-

tiple reasons. First, the recent rise of ABHs in passive vibration applications [ 145 ]–[ 149 ],

[ 151 ]–[ 153 ], [  159 ], [  166 ]–[ 168 ] makes them an intriguing geometry to further understand and

presents a potential real-world structural application of FC. Second, the complexity of cur-

rent modeling and simulation techniques for the ABH geometry has prompted the need to

further improve them. In many applications involving ABH terminations (and, in some cases,

also ABH embedded tapers), models are typically required to evaluate the dynamic response

of the host system while the detailed dynamic response within the actual ABH region is

often of secondary importance. This suggests that there is a need to identify methodologies

capable of capturing the effect of the ABH on the dynamics of the host structure without

requiring detailed modeling of the ABH itself. The FC homogenization tools in the previous

chapter can be utilized and adapted to formulate an effective model capable of accurate and

simpler dynamic simulations of structures with embedded ABH features, thereby relieving

some of the computational burdens associated with ABH designs.

Third, the attenuation capabilities of fractional operators makes them an ideal candidate

to represent the decreasing wave speed of the ABH geometry. Fourth, the taper profile of the

ABH follows a power-law relation, suggesting a possible connection between their physical

behavior and the power-law kernel of fractional operators. As such, a relationship between

the order of the power-law taper m and the fractional order of the equivalent fractional model

should theoretically be achievable. Finally, the dynamics of the acoustic black hole exhibits

nonlocal behavior, a mechanical phenomena well represented by space fractional derivatives.

For both the ABH duct and beam considered in this chapter, the space fractional derivative

can serve as a homogenization of the varying cross-section of an ABH geometry.

4.2 Fractional Boundary Model of the Acoustic Duct

The fractional homogenization of ABHs begins with the development of fractional models

for ABH terminations in ducts, as seen in Fig.  4.3 . Two different fractional homogenization

approaches are explored: 1) a boundary condition of fractional order, and 2) a fractional
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order domain that replaces the ABH termination, as shown in Fig.  4.4 . This section considers

the fractional boundary while the following section explores the fractional domain. Both

approaches are built using space fractional derivatives.

Figure 4.4. Schematic representations of (a) the traditional ABH model for
a duct, (b) the fractional order boundary condition model, (c) the fractional
order domain model used to represent an ABH.

4.2.1 Fractional Boundary Model

In the fractional boundary condition approach, the entire ABH tapered duct (Fig.  4.4 (a))

is replaced by a fractional order BC that mimics the presence of the ABH termination

(Fig.  4.4 (b)). In this way, there is no need to solve for the actual response within the

termination while the response in the main duct remains accurate because the equivalent

acoustic impedance from the ABH is properly accounted for.

The general form of a space fractional BC is
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∂p

∂t
+ c̄

∂βp

∂xβ

∣∣∣∣∣
x=x0

= 0, (4.7)

where β is the fractional order and c̄ is the fractional wave speed (dimensions of mβ

s ). For

the specific analyses at hand, the value of c̄ is equated to the speed of sound in air. Other

considerations to select the value of this constant can be considered similar to the proposed

methods in §  3.2.2 . Equation ( 4.7 ) is similar in form to a typical 1D absorbing boundary

condition, which is recovered exactly for β = 1 [ 173 ], [  174 ]. The fractional derivative in

Eq. ( 4.7 ) is taken as the left-handed Riemann-Liouville derivative (see Eq. ( 1.16 )) to mimic

the effect the ABH would have on the dynamics of the main duct located to the left of the

ABH.

4.2.2 Reflection Coefficient via Transfer Matrix Method

To determine the equivalent fractional order, it would be preferable to directly relate

it to the power-law taper m of the ABH. However, attempts at deriving this relationship

thus far have been unsuccessful due to the mathematical complications of obtaining the

Laplace or Fourier transform of a variable coefficient differential equation. While it is still

believed that this relationship may be obtainable, the approach to determine the fractional

order of the fractional boundary given in Eq. (  4.7 ) will depend on a matching scheme be-

tween the fractional and integer order models, similar to how the dispersion relationships of

the variable coefficient integer order equation and the space fractional wave equation were

matched to determine the fractional order in Chapter  3 . The reflection coefficient is selected

as the matching parameter to determine the fractional order corresponding to the ABH since

Mironov [  167 ] and Guasch [  168 ] determined this quantity. However, for ABH tapers with

power-law exponents m such that 1 < m < 2, closed-form analytical solutions are not avail-

able. Because of this, the reflection coefficient of air-filled ducts with ABH terminations is

determined via the transfer matrix (TM) method as implemented in [ 168 ].
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In the TM method, the ABH tapered section can be discretized in a series of shorter

ducts with constant cross sections, as depicted in Fig.  4.5 . This discretization approach is

akin to using a rectangular Riemann sum approximation to estimate a definite integral.

Figure 4.5. Ideal versus discretized duct profile. In the TM approach, the
ABH taper is approximated by a series of shorter ducts having constant cross
sectional areas.

The transfer matrix for a duct of constant cross section is given by [ 175 ] as

Pi

Ui

 =

 cos(k0LD) iρ0c
SD

sin(k0LD)

iSD

ρ0c
sin(k0LD) cos(k0LD)


Po

Uo

 , (4.8)

where the subscripts i and o indicate the inlet and outlet sections of the duct, P is pressure

and U is acoustic volumetric velocity, and LD and SD are the length and the cross-sectional

area of the duct.

In practical implementation, ABHs exhibit a residual thickness at their end (the ABH

terminates at x = L − l in Fig.  4.3 rather than x = L). By dividing the ABH domain

into N ducts of equal length Ln = L−l
N

, the cross sectional area of a generic section n is

Sn = πh2
n where the radius hn is determined by taking the value of the radius from Eq. (  4.6 )

at the midpoint of the discretized duct as exemplified in Fig.  4.5 . Equation ( 4.8 ) does not
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account for the variation of the wall admittance along the ABH duct. This contribution can

be accounted for by considering the impedance matrix [ 168 ]

 1 0

Y cav
n 1

 , (4.9)

Y cav
n = i k0

Z0
πLn

(
h2

0 − 1
3(h2

n−1 + h2
n + hn−1hn)

)
. (4.10)

Incorporating the matrix of Eq. ( 4.9 ) in Eq. (  4.8 ), the resulting transfer matrix for each

duct subsection is given by

Tn =

 cos(k0Ln) iρ0c
Sn

sin(k0Ln)

i Sn

ρ0c
sin(k0Ln) cos(k0Ln)


 1 0

Y cav
n 1

 . (4.11)

The complete transfer matrix model describing the entire ABH duct can then be assembled

as

Pi

Ui

 = Tt

Pl

Ul

 , (4.12)

where the subindices i and l represent quantities taken at the inlet and at the termination

of the ABH. The complete transfer matrix Tt is represented as

Tt =

T11t T12t

T21t T22t

 = T1T2T3....TN−1TN . (4.13)

For harmonic excitation, the pressure field in the duct before the ABH termination is

described by the plane wave solution
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p(x, t) = Ãei(ωt−k0x) + B̃ei(ωt+k0x), (4.14)

where Ã and B̃ are constants. The spatial profile of the pressure is P (x) = Ãe−ik0x + B̃eik0x.

Dividing by Ã, define R = B̃/Ã where R is the reflection coefficient. Then, the pressure Pi

at the inlet consists of an incident wave of unit amplitude and a reflected wave of amplitude

R. That is,

Pi = 1 +R. (4.15)

Likewise, using the linear Euler equation [  167 ], the acoustic volumetric velocity at the inlet

is

Ui = S

ρ0c
(1 −R), (4.16)

where S is the cross-sectional area at the inlet. Also, the edge termination of the ABH is

assumed to be completely rigid meaning that Ul = 0. Substituting this assumption along

with Eqs. ( 4.15 ) and ( 4.16 ) into Eq. ( 4.12 ) yields

1 +R = T11tPl, (4.17)

S

ρ0c
(1 −R) = T21tPl, (4.18)

where Pl is the pressure at the rigid termination. These can accordingly be arranged into

the matrix equation
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−1 T11t

S
ρ0c

T21t


R
Pl

 =

 1
S

ρ0c

 . (4.19)

Thus, for a given value of ω, R is calculated using Eq. ( 4.19 ).

Consider an ABH taper with parameters h0 = 0.25 m, L = 0.5 m, l = 0.001 m, and

m = 2. In order to contrast the reflection due to the edge truncation, losses are introduced

by using a complex wave speed c = 340(1 + 0.05i). Figure  4.6 plots the absolute value of

the reflection coefficient R as a function of frequency. Four discretization cases (N = 10,

50, 100, and 500) are considered. As expected, Fig.  4.6 clearly shows that the value of R is

very dependent on N . The smaller N is, the larger the oscillation amplitude of the reflection

coefficient. As N increases, the trend converges to a smooth curve which coincides with

the analytical expression derived in [  168 ]. Given that the methodology presented below to

retrieve an equivalent fractional order model of the ABH relies on the value of reflection

coefficient obtained via the transfer matrix method, the accuracy of the function R(ω) is

critical. Henceforth, a value N = 500 is used to provide a sufficiently smooth approximation

of the tapered profile and of the reflection coefficient.

From a practical point of view, the number and size of the rings will affect the black hole

behavior of a real duct configuration. According to [ 168 ], “the high number of rings needed

to recover the analytic ABHs may pose a severe limitation to practical realizations of the

ABH, which aim at a limited number of rings for manufacturing purposes.” It is likely that,

for very thin rings, local resonances and structural modes will give rise to fluid-structure

interaction that will affect the performance of the ABH. Although [  168 ] does investigate the

effects of the size and thickness of the rings in the TM method, a series of experiments or

very detailed fluid-structure interaction simulations would be needed to further characterize

the influence of the rings on the performance of the ABH. Nevertheless, the experimental

work in [ 169 ], [  170 ] was able to demonstrate that a design of a finite number of rings could

produce an acoustic black hole in a real configuration whose reflection coefficient was similar

to the values obtained from the analytical formulas derived in [ 167 ].
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Figure 4.6. The reflection coefficient as a function of frequency for an ABH
with taper coefficient m = 2. The plot is parameterized in terms of the spatial
discretization parameter N .

In a similar fashion, the effect of different values of the taper exponent m on the reflection

coefficient is considered to illustrate that the discretized TM approach can calculate the

reflection coefficient for non-integer values of the taper exponent m. Consider the ABH

where h0 = 0.25 m, L = 0.5 m, and l = 0.001 m, but m is non-integer. Figure  4.7 plots the

reflection coefficient parameterized with respect to the taper exponent m. As m increases,

the oscillation of the reflection coefficient is less drastic. In [ 168 ], the author notes that

the quadratic taper usually produces a reflection coefficient smaller than the linear taper

and suggests that the reflection coefficient decreases as m increases. However, this is not

necessarily always the case. In fact, the curves in Fig.  4.7 corresponding to the non-integer

values of m usually have a smaller reflection coefficient than the m = 2 case. Clearly, the

optimal value of m in order to reduce the reflection coefficient depends on a variety of factors

including the length of the taper, the location of the termination, and the frequency range

of interest.
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Figure 4.7. The reflection coefficient of the ABH as a function of frequency.
The curves are parameterized based on different power-law taper coefficients
m. The range of m explored in this plot is consistent with the constraint m ≥1
provided by Mironov [ 167 ].

4.2.3 Calculation of Fractional Order

The order β in Eq. ( 4.7 ) is determined such that the fractional BC will produce the same

reflection coefficient as the tapered termination. Recall that the wave pressure in the main

duct is given according to the ansatz

p(x, t) = ei(ωt−kx) +Rei(ωt+kx), (4.20)

where k = ω
c

and R is the reflection coefficient. The reflection coefficient at a given frequency

ω for a given ABH with power-law exponent m was determined in the previous section using

the transfer matrix method. Substituting Eq. (  4.20 ) into Eq. ( 4.7 ) yields

e−ikx0 +Reikx0 − i c̄
ω

[
(−ik)βe−ikx0 +R(ik)βeikx0

]
= 0, (4.21)
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where x0 marks the location where the ABH taper begins. Since the coordinate system had

been set up such that x0 = 0, Eq. ( 4.21 ) simplifies to

1 +R − i c̄
ω

[
(−ik)β +R(ik)β

]
= 0. (4.22)

It is seen from Eq. ( 4.22 ) that, when R = 0, the value of β that satisfies the equation is

β = 1. Such a result is consistent with the general observation that when β = 1, Eq. (  4.7 )

reduces to the typical fully absorbing boundary condition (i.e., R = 0).

To calculate the value of β in Eq. (  4.22 ) corresponding to R(ω) (see Fig.  4.7 ), a numerical

solver is used. Recall that the reflection coefficient is a complex quantity (only the magnitude

is plotted in Fig.  4.7 ). The plot of β(ω) obtained using the coefficients in Fig.  4.7 is given in

Fig.  4.8 . As expected, Fig.  4.8 shows that the tapers that exhibited larger oscillations of the

reflection coefficient also exhibit larger oscillations in their corresponding fractional orders.

Furthermore, the order β necessary to match the reflection coefficient is frequency-dependent

and is a complex number.

Figure 4.8. (a) The real part of the complex order β of the fractional BC
as a function of frequency. (b) The imaginary part of the complex order β of
the fractional BC as a function of frequency. The curves are parameterized for
different taper coefficients.
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Certainly, for simple 1D cases, there are other approaches not involving fractional calculus

that are capable of modeling partially reflected waves [ 175 ], [  176 ] and that could serve a

purpose similar to the fractional order boundary. For example, one could replace the ABH

taper with the integer order boundary condition (which is referred to as the integer order

partial reflection BC)

γ
∂p

∂t
+ c

∂p

∂x

∣∣∣∣∣
x=x0

= 0, (4.23)

where 0 ≤ γ ≤ 1. The case γ = 1 represents zero reflection while γ = 0 indicates complete

reflection. All the intermediate values of γ represent partial reflection. The use of the

fractional BC specifically illustrates how FC could be used for modeling ABH terminations.

4.2.4 Finite Difference Model of the Fractional Boundary

To assess the validity of the fractional boundary condition approach, a numerical sim-

ulation of a semi-infinite duct terminated by the proposed fractional order boundary is

conducted. The governing equations for such a system can be solved numerically by finite

differences (FD) and compared with the predictions from the integer order TM model in or-

der to confirm the amplitude of the reflected waves are indeed equivalent. A more convincing

validation of the fractional boundary would compare the measured reflection coefficient from

the fractional finite difference model to experimentally measured reflection coefficients of the

ABH termination. This would also illustrate, for very thin rings, how fluid-structure in-

teraction may affect the performance of the ABH and affect the accuracy of the fractional

boundary. However, use of the reflection coefficients obtained via the TM method as the

basis of the validation is supported by the fact that the experiments in [  169 ], [  170 ] matched

the analytical and numerical calculations of the reflection coefficients given in [ 167 ], [ 168 ].

In the fractional boundary condition approach, the governing equation describing the

pressure waves in the main duct is still the classical second order wave equation
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∂2p

∂t2
= c2 ∂

2p

∂x2 , (4.24)

which, by using a second order centered scheme, can be written in the equivalent finite

difference form

pj+1
n − 2pj

n + pj−1
n

∆t2 = c2p
j
n+1 − 2pj

n + pj
n−1

∆x2 , (4.25)

where n = 0, 1, 2, . . . , N is a spatial index, j is the time index, and ∆x and ∆t describe

the spatial and temporal discretization, respectively. If the initial conditions are known

(corresponding to j = 0, 1), Eq. (  4.25 ) can be solved for pj+1
n and then subsequently be

placed in a computational loop. The explicit FD scheme in Eq. (  4.25 ) is stable if

c∆t
∆x < 1. (4.26)

To represent the fractional boundary condition in the computational simulation, dis-

cretization of the fractional BC is developed based on a FD formula known as Mur’s BC

[ 177 ]. In a typical 1D wave problem, the Mur BC can be implemented to model the tradi-

tional fully absorbing boundary condition. The Mur BC is modified to account for the space

fractional derivative in Eq. (  4.7 ). This new form of the Mur BC is called the fractional Mur

BC and is found by first rewriting Eq. ( 4.7 ) as

∂βp

∂xβ
= −1

c̄

∂p

∂t
. (4.27)

Following a derivation similar to that given in [ 177 ], the space and time derivative ap-

proximations must be evaluated at the same point. In a finite difference formulation, this

corresponds to averaging the finite differences evaluated at the spatial nodes N and N−1 and
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the temporal points j and j+1 where the sub-index N represents the last spatial node. Thus,

the fractional Mur boundary condition will be evaluated at the point (xN −∆x/2, tj +∆t/2).

To formulate the finite difference form of Eq. (  4.27 ) requires the use of the FD definition

of the Riemann-Liouville fractional derivative, better known as the Grunwald-Letnikov def-

inition of the fractional derivative (see Eq. (  1.20 )). Note that while the Grunwald-Letnikov

definition for the space fractional derivative actually considers all the spatial nodes in the

domain, the values of the Grunwald weights are such that the the evaluation of the space

fractional derivative occurs at xN − ∆x/2. Using the Grunwald-Letnikov derivative and

weights from Eqs. ( 1.21 ) and ( 1.22 ), the finite difference form of Eq. ( 4.27 ) is

1
2

 1
∆xβ

( N∑
n=0

gnp
j
N−n +

N∑
n=0

gnp
j+1
N−n

) = − 1
2c̄

pj+1
N − pj

N

∆t + pj+1
N−1 − pj

N−1
∆t

. (4.28)

Defining r̄ = c̄ ∆t
∆xβ , pulling out the n = 0 terms from the summation, and performing some

algebraic steps simplifies Eq. ( 4.28 ) to

pj+1
N = pj

N

(1 − r̄

r̄ + 1

)
+
( 1
r̄ + 1

)
(pj

N−1 − pj+1
N−1) −

(
r̄

r̄ + 1

)( N∑
n=1

gnp
j+1
N−n +

N∑
n=1

gnp
j
N−n

)
. (4.29)

4.2.5 Numerical Assessment

The discretized model developed in §  4.2.4 can be used to obtain the response of the

duct with a fractional BC and to compare the response with the traditional model. More

specifically, the simulation consists of a wave packet (i.e., a Hanning-windowed wave at a

given frequency) traveling in the main duct towards the fractional BC. After encountering

the fractional BC, the wave is partially reflected back according to fractional form of the

boundary condition. If the fractional BC serves as a representative model of the ABH

termination, then the reflected waves should be comparable to the value of R predicted from

the TM method. According to this strategy, the simulation in the time domain will only be

valid for an impinging harmonic wave possessing the frequency corresponding to that of the
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fractional order used. However, the wave equation and the fractional boundary condition

are linear, so it is anticipated that linear superposition will still hold.

The modeled duct has the same numerical parameters given in §  4.2.2 . The reflection

coefficient and the fractional derivative associated with this ABH were shown by the black,

solid curves in Figs.  4.7 and  4.8 , respectively. For this numerical analysis, a frequency

Ω = 2988 rad/s was selected. While, in principle, any frequency could be used in this

numerical test, the trend of both the reflection coefficient and the fractional order were

particularly smooth at the selected frequency. After considering this specific frequency, the

response across a wider frequency range is calculated. From Figs.  4.7 and  4.8 , the frequency

Ω = 2988 rad/s corresponds to a reflection coefficient of |R| = 0.1129 and a fractional order

of β = 1.074−0.05477i. Other parameters for the discretization in both time and space were

selected as ∆x = 0.01 and ∆t = 1E-5.

The incident wave packet was generated by windowing the boundary condition p(−∞, t) =

eiΩt. In the simulation, the location where this BC was applied was selected to be multiple

wavelengths away from the fractional BC (to represent a semi-infinite duct in a finite simu-

lation). This harmonic excitation on the initial spatial node persisted for a time of t = 20.5T

where T is the duration of a period (T = 2π/Ω). A plot of the incident wave field before

it encounters the fractional BC is given in Fig.  4.9 (a). As the incident wave encounters the

fractional BC at the right end of the domain, it is reflected back as shown in Fig.  4.9 (b). The

reflected pressure is a complex quantity just like the incident pressure field. If the incident

wave had been only a cosine function, the real parts of the plots in Fig.  4.9 would correspond

to the actual physical responses of the wave in the duct. Conversely, if the incident wave

was given as a sine function, the imaginary parts of the plots in Fig.  4.9 would correspond

to the actual physical responses. To measure the reflection coefficient with an incident wave

represented using a complex exponential function, the ratio of peak values of the absolute

magnitude of the incident and reflected wave packets from Fig.  4.9 is calculated. Doing so

yields a reflection coefficient of R = 0.1119. Recalling that the reflection coefficient using the

traditional TM model shown in Fig.  4.7 was R = 0.1129 at Ω = 2988 rad/s, the percent error

between the transfer matrix method and the fractional BC model is only 0.9%. However,

due to the finite duration of the signal, the spectrum of the incident and reflected signals
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will not be a single frequency. Thus, another potentially more accurate way to calculate the

reflection coefficient is to analyze the spectrum of either the real or imaginary parts of the

incident and reflected waves by taking the fast Fourier transforms of the signals and measur-

ing the ratio of the amplitudes of the FFTs at the wavenumber of interest. This approach

yielded R = 0.112. It is not surprising that this value is almost nearly equal to the value

determined via the ratio of the peak values approach since the Hanning window of the signal

was chosen so that contributions of other nearby frequency components were minimal.

Figure 4.9. Numerical time-domain simulations performed by solving the
finite difference model for the fractional BC (§  4.2.4 ). The results show the
response in the duct due to an incident wave packet at a selected frequency
of Ω = 2988 rad/s. (a) Real and imaginary parts of the incident pressure
wave. (b) Real and imaginary parts of the reflected pressure wave field after
the entire waveform has encountered the fractional Mur boundary (located at
the normalized domain x value of 1).

These results confirm the validity of the procedure as well as the satisfactory performance

of the fractional order boundary as a means to simulate the effect of the ABH termination

on the response of the main duct at the selected frequency of Ω = 2988 rad/s. For further

validation, the analysis is extended to a wider range of frequencies. The results are shown

in Fig.  4.10 by plotting the reflection coefficients from the TM method and the FD time

domain simulation. For the FD simulation curve in Fig.  4.10 (a), the reflection coefficient

was calculated from the ratio of amplitude of the FFT component at the corresponding
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wavenumber of interest. The ratio between the real part of the reflected and the incident

wave signal was used. Taking the ratio of the FFTs of the imaginary part of the signals

produces the same reflection coefficient curve. The curves in Fig.  4.10 (a) nearly lie on top of

each other. The percent difference between the curves is plotted in Fig.  4.10 (b). The error is

always less than 1%, further proving that the fractional BC is an accurate and appropriate

means to model the reflection from the acoustic black hole.

Figure 4.10. (a) The reflection coefficients from the TM method and the
FD simulation over a frequency range from 450 to 3000 rad/s. The plot was
cut at 450 rad/s due to large computational expenses of the FD simulation
for very low frequencies. (b) The percent difference error between the curves
of the reflection coefficients. Sources of the error include the inherent error of
the finite difference method and a small error in the calculation of a complex-
valued fractional derivative.

To compliment the fractional framework, a supplementary analysis is conducted to ob-

tain the results from a FD simulation which used the integer order partial reflection BC

(Eq. (  4.23 )) in order to compare to the results from the FD simulation using the fractional

BC (Eq. ( 4.7 )). Substituting Eq. (  4.20 ) into Eq. ( 4.23 ) and evaluating at x0 = 0 yields

iωγ(1 +R) + c(−ik + ikR) = 0. (4.30)
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Simplifying this equation and noting k = ω/c produces

γ = 1 −R

1 +R
. (4.31)

A plot of the coefficient γ for the quadratic tapered ABH (reflection coefficient given by the

black, solid curve in Fig.  4.7 ) is plotted in Fig.  4.11 .

Figure 4.11. The complex-valued coefficient γ for the integer order partial reflection BC.

In a similar fashion as the procedure given in §  4.2.4 , a FD method for the integer order

partial reflection BC is formulated. The finite difference formula for the fractional Mur BC

(Eq. (  4.29 )) is replaced by the FD Mur formula for the integer order partial reflection BC,

which is

pj+1
N = pj

N + r − γ

r + γ
(pj+1

N−1 − pj
N), (4.32)

where the sub-index N represents the last spatial node and
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r = c
∆t
∆x. (4.33)

The FD simulation for the partial reflection BC is performed across a wide range of

frequencies to confirm its validity for the entire frequency range. The results are shown in

Fig.  4.12 by plotting the reflection coefficients from the transfer matrix method and the FD

time domain simulation. Just as in Fig.  4.10 , the reflection coefficient for the FD simulation

was calculated from the ratio of amplitude of the FFTs at the corresponding wavenumber

for the incident and reflected waves. The curves in Fig.  4.12 (a) nearly lie on top of each

other. The percent difference between the curves is plotted in Fig.  4.12 (b) and is always

less than 0.05%. Comparing Fig.  4.10 (b) to Fig.  4.12 (b), the percent error using the integer

order partial reflection BC is an order of magnitude less than the error using the fractional

BC. This difference in error most likely arises from a slight error in the calculation of a

complex-valued fractional derivative, similar to what was found in Chapter  3 .

Figure 4.12. (a) The reflection coefficients from the TM method and the FD
simulation using the integer order partial reflection BC. (b) The percent dif-
ference error between the curves of the reflection coefficients using the integer
order partial reflection BC.
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One could argue against using a fractional BC due to the lower error associated with

the integer order partial reflection BC. However, recall that one of the objectives was to

illustrate how fractional order mathematics could be used for modeling metamaterials with

ABH terminations and to stimulate future thinking for the application of this mathematical

tool to acoustic and vibration analysis. The above results using the fractional order operator

certainly exhibited the ability of fractional order operators to serve as a fairly accurate means

to model acoustic black hole terminations in ducts.

4.3 Fractional Domain Model of the Acoustic Duct

This section explores the fractional domain model of the ABH termination in an acoustic

duct, as shown in Fig.  4.4 (c). The fractional domain is governed by the space fractional

wave equation, given by Eq. (  3.31 ). To determine the fractional order, the procedure will

once again equate the reflection coefficient from the ABH to the reflection coefficient of the

fractional domain, which is found through a fractional transfer matrix.

4.3.1 Fractional Transfer Matrix

The governing equation of the fractional domain is the space fractional wave equation

c̄2 ∂
αp

∂xα
= ∂2p

∂t2
, (4.34)

where α is the order of the fractional derivative and c̄ is the fractional wave speed with

dimensions (m)α/2

s [ 77 ]. As given in §  3.3.1 , the solution of the fractional differential Eq. (  4.34 )

(if the lower bound of the integral in the fractional derivative is −∞) is

p(x, t) = Ãei(ωt−k̂x) + B̃ei(ωt+k̂x), (4.35)
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where k̂ is a complex-valued wavenumber. This solution corresponds to forward and back-

ward propagating waves, respectively. Recall from Chapter  3 that the relationship between

k̂ and the fractional order α is obtained from the dispersion equation of Eq. ( 4.34 ) as

(-ik̂)α = −ω2

c̄2 . (4.36)

The procedure to derive the transfer matrix for the fractional domain is similar to that

for an integer order model (see §  4.2.2 ) since both domain solutions are based on exponential

kernels. As such, the fractional transfer matrix is

P1

U1

 =

 cos(k̂L) iρ0c
S

sin(k̂L)

i S
ρ0c

sin(k̂L) cos(k̂L)


P2

U2

 , (4.37)

where P1 and U1 are the pressure and acoustic volumetric velocity of the left end of the

fractional domain, P2 and U2 are the pressure and acoustic volumetric velocity of the right

end of the fractional domain, L is the entire length of the fractional domain, S is the constant

cross-sectional area, and k̂ is a complex wavenumber.

4.3.2 Calculation of Fractional Order

Obtaining the order α of the ABH-like fractional domain requires guaranteeing the equiv-

alent dynamic behavior of the duct is unchanged when using either a classical ABH termina-

tion or a fractional domain model. Equivalently, the two should exhibit the same reflection

coefficient. Since the end of the ABH at x = L− l was assumed to be rigidly terminated,

U2 = 0. (4.38)

Substituting this into Eq. (  4.37 ), P1 and U1 can be written as a function of P2. Eliminating

P2 from these equations gives the input impedance of the fractional domain as
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P1

U1
= −iρ0c

S
cot(k̂L). (4.39)

If the origin of the fractional domain is kept at x = 0, then

P1 = 1 +R, (4.40)

U1 = S

ρ0c
(1 −R). (4.41)

Substituting these two equations into Eq. ( 4.39 ) yields

1 +R

1 −R
= −icot(k̂L). (4.42)

The value of the reflection coefficient R of the ABH was obtained using the transfer matrix

method in §  4.2.2 . Substituting the value of R into Eq. (  4.42 ), a numerical solver can obtain

k̂. Once k̂ is obtained, α is obtained using Eq. ( 4.36 ), which is rearranged as

α = 2ln(ω/c̄) − iπ
ln(−ik̂)

. (4.43)

Equations (  4.42 ) and ( 4.43 ) can be solved to calculate the fractional order α of the

fractional domain at the selected frequency. Figure  4.13 depicts the value of the fractional

order for the same numerical example used in previous sections.

Figure  4.13 reveals, once again, that the methodology produces fractional differential

operators of complex and frequency-dependent order where 1 < Re(α) < 2 while Im(α) > 0

(except for very low frequencies). The value of α is responsible for the attenuating effect
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Figure 4.13. Plot of the complex, fractional order α of the fractional domain
that replaces the ABH. Using a fractional domain with this order produces
the same reflection coefficient as the ABH taper.

characteristic of the fractional domain [  74 ]–[ 77 ]. At first, this may seem to contradict the

expected behavior inside the ABH termination, since the wave speed should approach zero

while the amplitude of the pressure will increase. Recall, however, that the model is not

attempting to match the dynamic behavior within the ABH but instead, it focuses on the

response of the main duct. To produce a reflected wave with the same reduced amplitude

resulting from a classical ABH, the fractional domain itself must attenuate the amplitude of

the pressure wave.

It would be ideal to verify that the reflection coefficient from this fractional domain

matched the reflection coefficient of the ABH via a finite difference simulation, similar to

what was done in §  4.2.4 for the fractional boundary. However, the numerical calculation of

complex order fractional derivatives is quite challenging. While a handful of numerical meth-

ods are available for purely real order fractional partial differential equations, the analysis of

complex order fractional partial differential equations are not quite as advanced. There are

few mentions and practically no published results on numerical methods and solutions for

these kind of equations. Recall that in Chapter  2 , a real order formulation was developed
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for the reduction procedure due to the current limitations of evaluating a Mittag-Leffler

functions with a complex order. Luckily, §  3.6.1 produced a fractional finite element method

that was capable of handling complex orders. However, this does not seem to be the case for

the finite difference formulation of the fractional wave equation with complex orders. While

the numerical calculation of a complex derivative for just a single location (the fractional

boundary) was feasible, the numerical calculation of an entire fractional domain possessing

a complex order was observed to always be unstable due to the imaginary component of the

order. The instabilities were seen to persist even when an implicit numerical finite difference

simulation was conducted. Unfortunately, to the best of our knowledge, there are no avail-

able studies on the stability of these complex order numerical solutions. Further research

on the numerical evaluation of complex order derivatives is necessary. Nonetheless, based

on the results of the fractional boundary model and the accuracy of the fractional method-

ologies explored throughout the dissertation, we are confident that as more applications and

numerical methods for complex order fractional partial differential equations are analyzed

and developed, they would validate the obtained fractional orders in Fig.  4.13 . To strengthen

confidence in the fractional domain, the following section analyzes a homogenized fractional

domain as an equivalent model for an ABH profile in a structural beam.

4.4 Fractional Beam Model of an Acoustic Black Hole

This section considers an ABH geometry in a structural beam waveguide. While [ 146 ]

derived the analytical solution of the flexural displacement of the ABH beam, it was only

valid when the taper was approximated as parabolic. Not only that, but the mathematics

became rather cumbersome. Rather than focusing on a beam with an ABH termination, this

section considers a beam which contains a variable portion that consists of two connected

ABH taper profiles with a residual thickness. This ABH beam is depicted in Fig.  4.14 (a)

where the height of the beam is

h(x) = ε|x|m + hr, (4.44)
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Figure 4.14. (a) The acoustic black hole beam created by two ABH pro-
files with a residual height hr (b) The corresponding, homogenized fractional
representation of the ABH beam with a constant height hc equivalent to the
height of the beginning and end of the ABH taper.

where hr is the residual height of the ABH profiles at x = 0, and ε is a constant given by

ε = hc − hr

Lm
, (4.45)

where hc is the height of the beam at either the start or the end of the ABH tapers and L

is the length of the ABH. The geometry of the ABH beam in Fig.  4.14 (a) actually consists

of two ABH profiles that are symmetric to each other about the line x = 0. Thus, the

total length of the ABH beam is 2L. Also, for a rightward propagating wave, the first half

of the ABH beam associated with a decreasing thickness will slow down the elastic wave

as it propagates toward the center while the second half of the ABH beam accelerates the

elastic wave as the cross-sectional area increases. As opposed to the ABH termination in

a duct, this section seeks to derive a fractional homogenized model, shown in Fig.  4.14 (b),

that not only accurately describes the effect of the ABH on the rest of the beam but also

better reflects the dynamics within the ABH itself. The fractional beam model consists of

a constant cross-sectional area of height hc. In essence, the variable cross-section of the

ABH beam is accounted for entirely by the value of the fractional order. Also, to better
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represent the dynamics within the ABH beam, a variable space fractional order will need

to be implemented. In addition, the homogenization seeks to establish a link between the

geometrical parameters, including the power-law taper m, of the ABH to the fractional order

of the equivalent fractional model. Recall that in §  4.2 and  4.3 , the reflection coefficient from

the ABH termination needed to be calculated before determining the fractional order of the

fractional boundary or domain. As such, the dynamic response of the integer order system

had to be determined first. One could argue that this limited the utility of the fractional

models, especially compared to other homogenization tools.

As mentioned in §  1.2.6 , a well-documented approach to derive fractional differential

equations consists of transforming the integer order equations of motion, solving the equa-

tion in the transformed domain with the proper assumptions, approximations, and bound-

ary conditions, and then performing an inverse transform to obtain an equivalent fractional

derivative in the time-space domain. This approach works well when the underlying consti-

tutive relations have an intrinsic power-law dependence. While this approach would be ideal,

it was still exceedingly difficult to use for the ABH despite its power-law taper. Instead, this

section considers an energy-based approach to calculate the corresponding fractional order

for the ABH taper. The method equates the total strain and kinetic energy of the ABH

beam in Fig.  4.14 (a) to the total strain and kinetic energy of the corresponding fractional

domain in Fig.  4.14 (b) to calculate the fractional order. Although this is still a matching

procedure, it is performed at a more fundamental level rather than matching the dynamic

response of the integer and fractional models.

4.4.1 Governing Equation of the Fractional Beam

The governing equation of the fractional beam in Fig.  4.14 (b) is modified from the beam

model considered in §  3.5.1 by changing the definition of the Riesz fractional derivative. The

governing equation of the fractional beam is

ĒĪ
∂

∂x

[
Dα(x)

x

[
Dα(x)

x

(
∂w

∂x

)]]
+ ρ̄Ā

∂2w

∂t2
= FT (x, t), (4.46)
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where the parameters are equivalent to those in Eq. (  3.118a ) and α ∈ (0, 1). It is observed

that one difference between Eq. (  4.46 ) and Eq. (  3.118a ) is that the fractional derivative in

Eq. (  4.46 ) is spatially varying [  64 ], [  85 ], [  86 ]. As discussed in [  178 ], there are three types

of variable order (VO) fractional derivatives: the first has no order memory, the second has

weak order memory, and the third has strong order memory. In view of Eq. (  1.17 ), the

difference between the three VO definitions is the dependent variable of the order function:

α = α(t) in the no order memory definition, α = α(τ) in the weak order memory, and

α = α(t − τ) for the strong order memory. This analysis considers the formulation of the

variable order derivative without order memory; that is,

C
a D

α(x)
x f(x) = 1

Γ(n− α(x))

∫ x

a

dnf(ξ)
dξn

(x− ξ)n−α(x)−1dξ. (4.47)

Again, a variable space order derivative is utilized in order to better reflect the dynamics

within the changing geometry and, ultimately, the ABH taper. If one is seeking a homoge-

nization model that reflects the effect of the ABH taper on the host structure without the

need to accurately represent the behavior within the ABH itself (in essence, treating the

ABH as a “black box”), a constant space fractional order will suffice, as seen in §  4.2 and

 4.3 . However, if a homogenization model that accurately represents the dynamic content

within the ABH itself is sought, a variable order derivative will be necessary to model the

variable cross-section of the ABH itself. Selection of a constant or variable space fractional

model thus depends on the needs of the model and simulation. One could point out that

calling a variable space fractional model a “homogenization” is not entirely accurate because

the representation still has a spatially variable quantity. However, the purpose of the VO

fractional model is to account for all varying quantities solely by the fractional order. As a

result, a mathematical representation of a heterogeneous structure is achieved that contains

constant coefficients and lets the order of the derivative account for the heterogeneity.

In contrast to Eq. ( 3.114 ), the Riesz-Caputo derivative in Eq. ( 4.46 ) is defined as

Dα(x)
x Ψ(x) = 1

2Γ(2 − α(x))
[
L

α(x)−1
A

C
xA
Dα(x)

x Ψ(x) − L
α(x)−1
B

C
xD

α
xB

Ψ(x)
]
, (4.48)
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where xA is the location where the fractional domain begins and xB is where the fractional

domain terminates (note the Riesz-Riemann-Liouville in Eq. ( 4.46 ) is defined in the same

manner as Eq. (  4.48 ), but using Riemann-Liouville derivatives). The definition of the Riesz-

Caputo derivative given by Eq. (  4.48 ) actually more closely coincides with the definition given

in [  112 ], [  113 ]. Recall from §  3.5.1 that Eq. ( 3.114 ) was appropriate for an infinite structure.

However, to ensure no strain accumulation at the terminations of a finite fractional domain

or at fractional-integer domain interfaces, [  112 ] derived a Riesz-Caputo definition where the

factors Γ(2 − α), Lα−1
A , and Lα−1

B resulted in a frame-invariant formulation. Furthermore,

[ 112 ] determined that LA = x − xA and LB = xB − x. Since the considered ABH beam is

finite and, as will be seen in §  4.4.3 , will be embedded in a beam configuration with constant

cross-sectional area regions, the fractional derivatives in Eq. (  4.46 ) must be defined according

to Eq. ( 4.48 ).

4.4.2 Calculation of Fractional Order

To determine the fractional order of the homogenized fractional beam model in Fig.  4.14 (b)

corresponding to the ABH, an approach where the total strain and kinetic energy of the ge-

ometry in Fig.  4.14 (a) is equated to the total strain and kinetic energy of the corresponding

fractional domain in Fig.  4.14 (b) is considered. Ideally, a procedure that determines the

fractional order without matching quantities between the fractional and integer order mod-

els would be ideal, but such a methodology has been difficult to formulate. Equating the

total energy of the ABH in Fig.  4.14 (a) to the fractional model in Fig.  4.14 (b) is given by

ΠI + TI = ΠF + TF , (4.49)

where Π is the strain energy, T is the kinetic energy, and the subscripts I and F indicate

the variable cross section integer order model and the constant cross section fractional order
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model, respectively. Using the definition of the energy of a beam from [  179 ] and the energy

of a fractional beam (Eqs. ( 3.115 ) and ( 3.117 )), Eq. ( 4.49 ) becomes

1
2

∫ L

−L
EI(x)

(
∂2w

∂x2

)2

dx+ 1
2

∫ L

−L
ρA(x)

(
∂w

∂t

)2

dx

= 1
2

∫ L

−L
ĒĪ

[
C
0 D

α
L

(
∂w

∂x

)]2

dx+ 1
2

∫ L

−L
ρ̄Ā

(
∂w

∂t

)2

dx.
(4.50)

Using the symmetry about the line x = 0 in Fig.  4.14 , Eq. ( 4.50 ) is simplified to

∫ L

0
EI(x)

(
∂2w

∂x2

)2

dx+
∫ L

0
ρA(x)

(
∂w

∂t

)2

dx

=
∫ L

0
ĒĪ

[
C
0 D

α
L

(
∂w

∂x

)]2

dx+
∫ L

0
ρ̄Ā

(
∂w

∂t

)2

dx.
(4.51)

To determine the space order α(x) from Eq. (  4.51 ), a harmonic solution of the flexural

displacement is taken as

w = ei(ωt−k̄x), (4.52)

where k̄ is a constant wavenumber. The selection of the constant parameter k̄ is important

so that it is accurately reflects the physics of the wave propagation. Recall that the acoustic

black hole profile can be considered a nonlocal geometry. The beam given in Fig.  4.14 (a)

can be viewed as a local beam whose height is equal to the residual height hr plus nonlocal

contributions from the ABH taper located “on top” of the local beam. In this interpretation,

k̄ is selected as the wavenumber through the local beam; that is, k̄ is selected as the local

wavenumber of the ABH profile in Fig.  4.14 (a) at x = 0. The fractional order α, as well as

the fractional parameters Ē, ρ̄, Ī, and Ā, accordingly serve as effective “tuning” parameters

that permit the fractional model to dynamically reflect the speed of the propagation through

the ABH accurately.
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As will be seen in §  4.4.3 , the ABH taper will be positioned in an otherwise homogeneous

elastic beam configuration whose height is a constant hc. As a result, the parameters Ē,

ρ̄, Ī, and Ā of the fractional domain are selected to match the homogeneous beam portion.

This way, the heterogeneity is represented solely by fractional order. The parameters of the

fractional domain are defined as

Ā = bhc, (4.53)

Ī = bh3
c

12 , (4.54)

where b is the constant thickness of the beam. Since the Young’s modulus and the density

of the beam do not change in the ABH region, Ē = E and ρ̄ = ρ. Now that the fractional

parameters have been selected, the fractional order α(x) is determined by setting the in-

tegrands of Eq. (  4.51 ) equal to each other. This is done so that the order α(x) accurately

represents the dynamics at each spatial location. Additionally, if the integrands of Eq. ( 4.51 )

are equivalent, then the integrals will be equal as well. Equating the integrands and sub-

stituting the expressions for the both the variable integer order and the constant fractional

areas and moments of inertia yields

E
bh(x)3

12 k̄4w2 − ρbh(x)ω2w2 = Ē
bh3

c

12 [(−ik̄)C
0 D

α
Lw]2 − ρ̄bhcω

2w2. (4.55)

Rearranging and setting Ē = E and ρ̄ = ρ produces

[
h(x)3

h3
c

k̄4 + ω2 12ρ
Eh3

c

(hc − h(x))
]
w2 = [(−ik̄)C

0 D
α
Lw]2. (4.56)

Before further simplifying Eq. (  4.56 ), the fractional derivative of an exponential function is

again analyzed. As discussed in §  3.2.1 , for a constant space fractional order derivative, the

fractional derivative of an exponential is an exponential according to Eq. (  3.32 ) if the lower or

upper bound of the fractional derivative is ±∞. Otherwise the Caputo fractional derivative

of an exponential function is a Mittag-Leffler function according to Eq. ( 3.35 ). §  3.3 explored

both solution kernels and found that the results were nearly equivalent (the main difference
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between the curves in Figs.  3.6 and  3.7 was due to the numerical evaluation of the Mittag-

Leffler function). However, for a variable order derivative, it is not immediately evident

which, if either, of the Mittag-Leffler and exponential solution kernels is more appropriate.

As a result, the energy-matching approach here will consider both the exponential and ML

solution kernels. If the fractional derivative of an exponential is taken according to Eq. ( 3.32 ),

then Eq. ( 4.56 ) reduces to

h(x)3

h3
c

k̄4 + ω2 12ρ
Eh3

c

(hc − h(x)) = (−ik̄)2(1+α)l̄2, (4.57)

where

l̄ = 1
2Γ(2 − α)(Lα−1

A + Lα−1
B ), (4.58)

LA = x− xA, (4.59)

LB = x− xB. (4.60)

The parameters LA and LB are linear functions of the spatial coordinate and, along with the

bounds of the integrals in the definitions of the left and right-handed fractional derivatives,

define the horizon of nonlocality of the fractional domain. On the other hand, if the fractional

derivative of an exponential is taken according to Eq. ( 3.35 ), then Eq. ( 4.56 ) reduces to

h(x)3

h3
c

k̄4 + ω2 12ρ
Eh3

c

(hc − h(x)) = k̄4l̄2R2, (4.61)

where

R = x1−αE1,2−α(−ik̄x)
e−ik̄x

. (4.62)

Both Eqs. ( 4.57 ) and ( 4.61 ) are transcendental equations that can be numerically solved

for α at each spatial coordinate. Additionally, Eqs. (  4.57 ) and ( 4.61 ) provide a relationship

between fractional order α and the geometrical parameters of the ABH. Thus, the fractional
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order can be obtained directly from the geometrical parameters of the ABH without needing

to dynamically match the responses of the integer and fractional order models. It should

be noted that both the left-hand sides of Eqs. (  4.57 ) and (  4.61 ) are purely real while the

right-hand sides will produce a complex quantity. In this instance, the imaginary part of the

right-hand side does not have a clear physical meaning since the real and imaginary parts

of the parameter k̄ would already account for persisting or decaying harmonic oscillations.

Therefore, the fractional order α is determined by equating the real part of the right-hand

sides of Eqs. ( 4.57 ) and ( 4.61 ) to the left-hand sides.

4.4.3 Numerical Assessment

To assess the fractional orders given by Eqs. (  4.57 ) and (  4.61 ), consider the ABH geometry

in Fig.  4.14 (a) with m = 2, L = 3 m, hc = 0.05 m, hr = 0.01 m, b = 0.05 m, E = 70 GPa,

ρ = 2700 kg/m3, and a harmonic frequency of ω = 500 Hz. The plot of the local wavenumber

of the ABH along with its phase velocity is plotted in Fig.  4.15 . At the center x = 0, the

phase velocity is a minimum while the local wavenumber is a maximum. For the selection

of these parameters, k̄ = 14.6196 m−1. The plot of the fractional order calculated from

Eqs. ( 4.57 ) and ( 4.61 ) is shown in Fig.  4.16 .

Figure 4.15. (a) The local wavenumber of the ABH as given by Eq. ( 4.3 ).
(b) The local phase velocity in the ABH, which is equal to ω/k(x).
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Figure 4.16. (a) The variable space order of the fractional representation of
the ABH beam using the exponential solution kernel in the energy-matching
approach. (b) The variable space order of the fractional representation of
the ABH beam using the Mittag-Leffler formulation in the energy-matching
approach.

The fractional orders obtained using the exponential and Mittag-Leffler functions in Fig.  4.16 

are identical for spatial locations around |x| > 1. However, near the center of the ABH, the

plot of the fractional order obtained using the Mittag-Leffler formulation exhibits a small

oscillating trend. Both curves have nearly the same minimum point of α ≈ 0.684 at x = 0.

Additionally, both curves produce α = 1 at the beginning and end of the ABH taper. The

fractional parameters Ī and Ā were chosen to produce α = 1 at these locations so that when

the ABH beam is considered as a portion of a constant cross section beam with height hc,

the fractional order became the integer order α = 1, which results in Eq. ( 4.46 ) collapsing

into the classical fourth-order wave equation for the flexural displacement of a homogeneous

beam. The location of the minimum of the fractional order represents the location of the

ABH beam where the local phase velocity is a minimum and where the ABH area A(0) and

moment of inertia I(0) possess the farthest values from the fractional parameters Ā and

Ī, respectively. The values of LA and LB, plotted in Fig.  4.17 , were chosen corresponding

to Eqs. ( 4.59 ) and ( 4.60 ), which are equivalent to the nonlocal horizons of the left and

right-hand fractional derivatives given in Eq. ( 4.48 ), respectively.
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Figure 4.17. The length parameters LA and LB in Eq. (  4.48 ) for the fractional
beam representation of the ABH.

To validate that the fractional orders given by Eqs. (  4.57 ) and (  4.61 ) are representative of

the flexural displacement through the ABH beam, an ABH beam is embedded in a constant

cross section beam as depicted in Fig.  4.18 . As shown by this figure, the homogenization

methodology models the heterogeneity of the acoustic black hole with a fractional domain

of constant cross section whose fractional order α is a function of space and frequency. A

rightward propagating wave is generated by a prescribed flexural displacement at the left

end of the beam, which is designated as x = 0. The prescribed flexural displacement in

Fig.  4.18 is

w(0, t) = w0eiωt, (4.63)

where, for the example considered here, w0 = 0.001 m and ω = 500 Hz. The ABH begins at a

location of x = 7 m and ends at x = 13 m (making its center located at x = 10 m). Although

most structural acoustic black holes possess some added damping, the ABH considered here

does not. Of course, an elastic wave will fully propagate through an imperfect acoustic

black hole geometry (i.e., one with a residual thickness) if there is no damping present.
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Figure 4.18. Homogenized fractional representation of a beam with an em-
bedded acoustic black hole. Note the right-most part of the beam contains
applied structural damping to implement a simplified concept of an absorbing
boundary to prevent reflections from the end of the beam.

However, the variation of the wave speed within the ABH geometry will affect the phase

of the harmonic flexural displacement in the transmitted region while the amplitude of

the flexural displacement within the ABH increases. The right-most portion of the beam

configuration in Fig.  4.18 does contain added structural damping. The structural damping

acts as an absorbing layer so that the rightward propagating wave is fully attenuated by the

time it reaches the right-hand termination of the beam. The added damping is represented

by a complex Young’s modulus: E = 70(1+0.5i) GPa. This absorbing layer begins at x = 20

m and ends at x = 40 m.

Figures  4.19 and  4.20 depict the steady state results of the flexural displacement of the

beam configuration containing the equivalent fractional domain using the exponential solu-

tion kernel and the Mittag-Leffler solution kernel, respectively. The flexural displacements of
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the beam configuration were obtained using the fractional finite element method presented

in [  113 ] and §  3.6.1 along with the fractional orders calculated in Fig  4.16 . To access the

accuracy of the fractional domain representation of the ABH obtained via the f-FEM, a

reference model of the beam configuration given in Fig.  4.18 with the embedded ABH ge-

ometry was constructed and evaluated in the commercial finite element software COMSOL.

The steady state flexural displacement obtained using COMSOL is given as the red, dotted

curves in Figs.  4.19 and  4.20 . Of course, the numerical results obtained from COMSOL may

or may not accurately represent the actual dynamic response of the ABH beam. Luckily,

comparisons of finite element simulations of structural ABHs to experimental data in [ 155 ],

[ 156 ] assure the results of the COMSOL simulation of the ABH beam can serve as the ref-

erence model to assess the homogenization fractional domain. Still, future work involving

experimental analysis of the beam with an embedded ABH could be considered for further

validation.

Figure 4.19. (a) Comparison of the results from the f-FEM to a reference
COMSOL model when using the exponential solution kernel of the energy-
matching approach. (b) Closeup of the region where the ABH is located de-
picting a close phase match of the curves.

Examining the exponential-based results in Fig.  4.19 (a), the amplitude and phase of

the f-FEM and COMSOL results were in near perfect agreement for the locations before

and after the fractional domain with a phase offset on the order of 0.01 m and an amplitude
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Figure 4.20. (a) Comparison of the results from the f-FEM to a reference
COMSOL model when using the Mittag-Leffler solution kernel of the energy-
matching approach. (b) Closeup of the region where the ABH is located de-
picting a close phase match of the curves.

difference approximately 1% or less. The results using the ML kernel are depicted in Fig.  4.20 

and are nearly equivalent to the results in Fig.  4.19 (near zero phase mismatch and an

amplitude difference on the order of 0.1%). A closer view of the fractional region from

x = 7 m to x = 13 m in Figs.  4.19 (b) and  4.20 (b) indicates that there is still a relatively

small phase mismatch between the f-FEM and COMSOL results (0.06 m is the maximum

phase offset between the f-FEM and the reference curves in the fractional domain). This

is most likely due to the fact that the exponential and Mittag-Leffler kernels are not exact

solutions to the variable space order differential equations seen in Eq. ( 4.46 ). However, the

results certainly give confidence that the exponential and Mittag-Leffler solution kernels are

excellent approximate solutions to the variable order differential equation. While the phase of

the curves in Figs.  4.19 (b) and  4.20 (b) were close to each other, the amplitudes of the curves

were not. While Figs.  4.19 and  4.20 do show that the amplitude of the flexural displacement

in the fractional domain did increase by approximately 50% at the center of the fractional

domain compared to the amplitude of the displacement in the constant cross section beam

portions, clearly the flexural displacement did not increase as much as it did in the reference

ABH COMSOL model (amplitude increase as large as 230% at the center of the ABH). The
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results thus indicate that the space fractional order accurately modeled the phase of the

harmonic wave propagation but had a significantly smaller impact on the amplitude of the

wave propagation. It is hypothesized that the amplitude of the f-FEM results would better

match those of the reference model if the assumed solution form in Eq. (  4.52 ) had a constant

non-unity amplitude Ā. The selected value of Ā is an open question which needs further

investigation, although one potential value would be the mean of A(x) given in Mironov’s

assumed solution form (Eq. ( 4.3 )).

The results in Figs.  4.19 and  4.20 indicate that the energy-matching formulation of the

variable space fractional order produced a homogenized fractional domain that was capable

of accurately reflecting the phase of the harmonic wave propagation through the ABH geom-

etry. While this section illustrated that a variable space fractional order derivative is a viable

tool, further research should compare the fractional methodologies to integer order homoge-

nization techniques for the ABH. Additionally, most ABH studies implement finite element

models (similar to the COMSOL model that was used as the reference flexural displacement)

to simulate the wave propagation through structures possessing acoustic black hole geome-

tries. In fact, for the system considered in Fig.  4.14 , the results obtained using the f-FEM

had a slightly longer computational time compared to the COMSOL results. However, the

fractional homogenization may be computationally superior for structures with large peri-

odic arrays of ABH geometries, as illustrated in Fig.  4.21 . Also, as previous mentioned, most

ABH designs include some amount of damping in order to dissipate the elastic wave energy

that is slowed down and trapped in acoustic black hole geometries. While the complex

order space fractional derivatives in §  3.2.2 and §  3.5.2 attenuated the displacement field,

those periodic, heterogeneous structures were still conservative. Because a time fractional

derivative better represents dissipation losses due to damping, the fractional beam model

would need to be modified so that its governing differential equation contained a time frac-

tional derivative capable of representing the dissipation characteristics of ABH geometries

possessing damping.
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Figure 4.21. Illustration of the fractional homogenization of a beam with a
periodic array of acoustic black holes, where the space fractional homogeniza-
tion may have computational advantages.

4.5 Conclusions

The acoustic black hole geometry was selected as a prototypical system of a geometrical

heterogeneous structure in order to implement space fractional order models for homoge-

nization applications. In particular, the chapter studied the possibility of leveraging space

fractional order operators to model ABH terminations in air-filled acoustic ducts and ABH

tapers in structural beams. For the acoustic black hole terminations in ducts, the fractional

formulations replaced the ABH termination with an effective model capable of inducing an

equivalent wave reflection of the pressure field in the main duct without requiring the full

solution of the pressure field in the termination. Two modeling approaches were used: the

first was based on a fractional order boundary condition with a constant space fractional

order derivative, while the second implemented a finite fractional order domain. On the

other hand, the beam with an acoustic black hole profile was homogenized by a fractional

domain whose order varied as a function of space. The approach relied on matching the total

energy of the integer and fractional models. Although this was still a matching procedure,
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it was performed at a more fundamental level rather than matching the dynamic response of

the integer and fractional models. Contrary to the constant space fractional models of the

duct, the variable space fractional order produced a homogenized fractional domain where

the phase of the harmonic flexural displacement accurately represented the wave propagation

through the acoustic black hole. The use of either a constant or variable space fractional

order depends on whether the intent of the model is to merely reflect the effect of embedded

geometrical heterogeneity on the overall behavior of a structure or to accurately capture the

localized behavior within the heterogeneity as well. This chapter illustrated the feasibility

and the potential of fractional order homogenization of heterogeneous geometries such as the

acoustic black hole. While further research is needed to compare the computational costs

of the fractional representation of the ABH to other types of models, use of the fractional

models proposed here may provide the basis for an efficient and accurate computational

method for structures with periodic arrays of acoustic black holes.
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5. CONCLUSIONS

5.1 Summary

This dissertation explored the feasibility and potential of fractional calculus for simulat-

ing the vibration and wave propagation in discrete and continuous models of heterogeneous

structures. The analysis of the dynamic behavior of heterogeneous structures typically re-

lies on numerical simulations that require proper computational methodologies to overcome

their intrinsic complexities. Regarding discrete parameter models, representations of hetero-

geneous structures often require a large number of degrees of freedom. Despite the continuing

growth of computer performance, the large number of degrees of freedom leads to tradeoffs

between accuracy of the dynamic simulations and computational time. In response, model

order reduction techniques have been developed to reduce the number of degrees of freedom

in a discrete parameter model while still retaining the accuracy of finer discretizations. In

the introduction, it was discussed how modal-based dynamic model order reduction pro-

cedures use the displacement eigenvectors to accurately calculate the displacement field of

the retained degrees of freedom. However, these model order reduction techniques experi-

ence reduced accuracy for frequency regions where resonance frequencies are closely spaced.

Moreover, they are typically valid only for narrow-banded frequency ranges. By develop-

ing a reduced order model where the motion of the active degrees of freedom are governed

by fractional differential equations, a highly accuracy model order reduction methodology

was created. The value of the reduced time fractional order was calculated in the fre-

quency domain and illustrated that the dynamics between resonance frequencies are locally

fractional. The frequency-dependency and complex nature of the fractional order enabled

modulation of the phase and amplitude of the harmonic displacement. This produced an

accurate order reduction across a broad frequency spectrum. In addition, the formulation

of the fractional oscillator as a system identification tool for numerical or experimental data

further strengthened the case for implementation of fractional oscillators for the vibration

of discrete, heterogeneous structures.

For continuous representations of heterogeneous structures, homogenization techniques

calculate the effective properties of a corresponding homogeneous medium via averaging or
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asymptotic expansions of the spatially varying material and geometrical properties. Mathe-

matically, homogenization approaches represent a heterogeneous structure by replacing their

governing differential equations containing variable coefficients with constant coefficient, ho-

mogeneous equations. However, low-frequency homogenization techniques can only accu-

rately capture the wave propagation through heterogeneous structures at long wavelengths.

As a result, they cannot represent the frequency band gaps observed in periodic, heteroge-

neous structures. In response, high-frequency homogenization models have successfully been

developed to extend past the long wavelength limit, but tend to be mathematically com-

plex and computationally expensive due to necessarily extensive asymptotic expansions. In

turn, this work investigated the role of space fractional order operators as the mathematical

foundation for the development of material homogenization techniques. In particular, a bi-

material, periodic rod and beam was chosen as a prototypical example of a one-dimensional

elastic metamaterial. By leveraging the space fractional operator’s attenuative and conserva-

tive nature, the dynamic response within the frequency band gaps was accurately captured

by a frequency-dependent and complex-valued space fractional order. This yielded a ho-

mogenization technique that did not rely on long asymptotic expansions to represent the

dynamics of the frequency band gaps. In addition, for the periodic rod case, closed-form an-

alytical solutions to the homogenized fractional differential equation were obtained, avoiding

reliance on potentially expensive numerical calculations. The closed-form analytical solu-

tions could play a major role towards the development of computationally efficient inverse

problems in material design and remote sensing.

Lastly, the dissertation considered another application of the fractional homogenization

on a recently studied heterogeneous geometry known as the acoustic black hole. In this

case, the order of a space fractional operator captured the heterogeneity of the variable

cross-sectional profile of the acoustic black hole. Additionally, the fractional representation

of the acoustic black hole was developed with the aim of alleviating current computation-

ally intensive approaches to the simulation of acoustic black holes. The study focused on

developing space fractional models for two different systems: 1) an air-filled acoustic duct

containing an acoustic black hole termination, and 2) a structural elastic beam embedded

with an acoustic black hole profile. For the acoustic duct case, the fractional model replaced
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the acoustic black hole termination with a space fractional boundary or domain that was

capable of inducing an equivalent dynamic behavior of the pressure field in the main duct

without requiring the full solution of the pressure field in the termination. On the other

hand, the fractional homogenized model for the acoustic black hole beam sought to also

accurately represent the dynamics within the acoustic black hole itself. This required the

use of a variable space fractional order. The selection of either a constant or variable space

fractional order depends on whether the intent of the homogenized model is to merely reflect

the effect of heterogeneity on the overall structure or to additionally capture the localized be-

havior within the heterogeneity. While the ability of the fractional homogenization to reduce

the computation costs of periodic arrays of acoustic black holes requires further study, the

work illustrated the potential of using the space fractional operators to model geometrical

heterogeneity.

5.2 Contributions and Significance

This section considers the objectives outlined in §  1.3 to analyze the overall contributions

and significance of the dissertation. The most significant contributions of this work are

• The development of fractional model order reduction techniques for damped

discrete parameter systems illustrating how time fractional operators can

enable high levels of order reduction while simultaneously delivering high

accuracy across a broad frequency spectrum. This was achieved via the

following technical findings:.

– The development of a fractional modal analysis for a multiple degree of free-

dom fractional oscillator. This produced closed-form analytical solutions of the

displacement of each node of the fractional oscillator.

– The creation of a fractional model order reduction where the active degrees of

freedom of the damped discrete parameter system were reduced in order using

fractional oscillators. Results indicated that the corresponding fractional or-
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der was frequency-dependent and complex-valued, which was the basis of the

broadband frequency accuracy for the order reduction.

– The extension of the fractional reduction to discrete parameter systems possess-

ing more complicated and multiple harmonic loads, resulting in an reduction

procedure well-equipped to handle load cases that commonly arise in vibration

analysis.

– The use of the fractional oscillator as the basis for a system identification method-

ology. This produced a frequency-dependent fractional model which could accu-

rately match the amplitude and phase of numerical or experimental data across

a broad frequency spectrum.

• The creation of a homogenization tool based on space fractional order

derivatives for 1D periodic, heterogeneous structures. The approach ac-

counted for the spatially varying properties of a heterogeneous structure

by using a homogeneous fractional medium with constant coefficients. This

was achieved via the following technical findings:

– The use of space fractional wave equations to model the wave attenuation of the

frequency band gaps of a bi-material periodic rod or beam with a frequency-

dependent, complex-valued fractional order.

– The analysis of a closed-form analytical solution of the governing equation of

the fractional rod model based on either exponential or Mittag-Leffler solution

kernels, yielding accurate representations of the wave propagation through pe-

riodic, heterogeneous structures. Additionally, the closed-form solutions can

have important implications for inverse problems in material design and remote

sensing.

– The implementation of a fractional finite element solution of the fractional beam,

which was valid even for complex fractional orders. This signified an important

development for complex order numerical methodologies.
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• The application of space fractional homogenization concepts to the acoustic

black hole geometry, illustrating how fractional operators can simulate the

wave propagation in acoustic and structural systems containing geometric

heterogeneity. This was achieved via the following technical findings:

– The development of an effective model based on a space fractional boundary

or domain for an acoustic duct containing an acoustic black hole termination.

This fractional homogenization could produce the equivalent reflection from the

acoustic black hole termination without having to determine the detailed dy-

namic response within the acoustic black hole itself.

– The formulation of an energy-matching methodology to calculate the space frac-

tional order of a fractional representation of a beam containing an acoustic black

hole. Equating the kinetic and potential energies of varying cross-sectional profile

of the acoustic black hole to a constant cross-sectional fractional model produced

a relationship between the value of space fractional order and the geometrical

parameters of the acoustic black hole.

– The use of a variable space fractional order derivative in the fractional beam

model that was capable of representing the local dynamical response within the

acoustic black hole itself in addition to its effect on the host structure.

• The illustration of the feasibility and potential of fractional operators for

structural dynamic applications serving as 1) a foundation of the application

of fractional calculus in the vibration and wave propagation of discrete and

continuous heterogeneous structures and 2) a research study which will

lead others to consider if, how, and why fractional calculus can be useful

for engineering modeling and simulation.

5.3 Limitations

While this dissertation illustrated the power of fractional calculus for modeling the vibra-

tion and wave propagation of discrete and continuous models of heterogeneous structures, it
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would be remiss if it did not mention its limitations. Starting with the fractional model or-

der reduction in Chapter  2 , the approach is most likely still subject to potentially restrictive

computational tradeoffs. Even the example of reducing an I-4DOF to a F-2DOF explored

in §  2.5 began to require a computational time on the order of ten minutes. While this itself

was not too restrictive, if the fractional model order reduction is to gain more widespread

use for large discrete assemblies (which can possess thousands of degrees of freedom), the

amount of computational time could potentially become unreasonable. More studies into the

computational abilities and restrictions of the fractional model order reduction are needed.

Additionally, the current state of the art of numerically evaluating complex order derivatives

restricted some displacement analyses and introduced error. While the real order reduction

formulations were successfully developed to circumvent this issue, the need for advanced

complex order numerical methods still persists.

As a homogenization tool in Chapter  3 , the space fractional wave equation successfully

captured the attenuating wave amplitude of the frequency band gaps of a periodic metamate-

rial; however, it did not accurately model the response at higher frequency pass bands beyond

the long wavelength limit. Like other low-frequency homogenization techniques, the frac-

tional rod and beam failed to capture the local interactions present at smaller wavelengths.

This prompts the question of if and how fractional calculus can improve the performance

of homogenization techniques at high pass band frequencies. Also, the calculation of the

space fractional order occurred by equating the dispersion relationship of the integer or-

der differential equation of the bi-material, periodic structure to that of the corresponding

fractional representation. As a result, it could be argued that the dynamic response of the

periodic structure had to be determined first in order to calculate the fractional order. This

potentially diminishes the impact of the space fractional homogenization depending on the

specific application at hand.

Finally, while the fractional operator was illustrated to be a valid means to model acous-

tic black holes in Chapter  4 , questions remain about if it is the optimal means to represent

geometric heterogeneity. For example, it was seen that the corresponding integer order

boundary condition in Eq. (  4.23 ) and §  4.2.5 had the same or better performance than the

developed fractional order boundary condition. In addition, while fractional calculus did
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manage to successfully represent the effects of the acoustic black holes on its host structure,

a distinct mathematical formulation proving that the physics of the acoustic black hole are

inherently fractional was lacking due to its difficulty to derive. For the acoustic duct, this

was seen by the fact that the reflection coefficient had to be known beforehand to determine

the fractional order. Luckily, a more direct relationship between the space fractional order

and geometrical parameters was obtained for the acoustic black hole beam using an approach

rooted in the potential and kinetic energy along with a variable space fractional derivative.

Although this approach did not rely on first obtaining the dynamic response of an integer

order model, it was still a type of matching procedure that did not convincingly indicate

that the physics of the acoustic black hole are best described as fractional. Furthermore, the

variable space fractional order model still required relatively long computational times com-

pared to the reference COMSOL finite element simulation. Future research would indicate

if the fractional models are computationally superior for systems containing large arrays of

acoustic black holes.

5.4 Recommendations for Future Work

Recommendations for future work include

• Further numerical research on the evaluation of complex fractional orders.

Development of an efficient subroutine for the accurate evaluation of the complex

order Mittag-Leffler function would immediately strengthen the application of the

complex order model order reduction techniques in Chapter  2 and the Mittag-Leffler

solution kernels of the space fractional wave equation in Chapter  3 . Additionally,

while the fractional finite element formulation in §  3.6.1 could evaluate complex order

derivatives, an in-depth study of the complex order finite difference formulation (see

Eq (  1.20 )) would be pivotal since a variety of fractional numerical methods are built

from the Grunwald-Letnikov definition.

• Evaluation of the computational performance of fractional operators and

methodologies compared to other common integer order-based models. This
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recommendation was alluded to in the previous section when considering the compu-

tational expenses of the fractional model order reduction methodology to reduce a

discrete model with either hundreds or thousands of degrees of freedom. Comparisons

of the computational efficiency of fractional and integer order methodologies would also

be useful for the space fractional homogenization of structural heterogeneity. For in-

stance, the analysis of structures with large, periodic assemblies of acoustic black holes

could illustrate if and how fractional calculus may improve computational efficiency.

• Extension of fractional homogenization methodologies to higher dimen-

sional structures. The development and application of fractional homogenization

methodologies for two and three-dimensional structures, along with other structural

elements such as plates or shells, would continue to further strengthen the argument

for the use of fractional models in structural dynamic simulations.

In conclusion, this dissertation addressed the question “Can fractional calculus be a po-

tentially feasible tool for generic vibration and wave propagation analyses in discrete and

continuous structures? If so, how?”. The work here argued for the versatility of fractional

models and simulations for discrete and continuous heterogeneous structures by illustrating

how these fractional models addressed shortcomings of model order reduction and homoge-

nization methodologies. Future research should continue to seek the answer to the question

“Are the physics and dynamics of a structural system best represented using a fractional cal-

culus model? If so, why?”. If the knowledge and practical applications of fractional calculus

is to steadily grow, this is the next fundamental question research must answer.
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