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ABSTRACT

Advances in real-world applications require high-throughput processing over large data

streams. Micro-batching is a promising computational model to support the needs of these

applications. In micro-batching, the processing and batching of the data are interleaved,

where the incoming data tuples are first buffered as data blocks, and then are processed

collectively using parallel function constructs (e.g., Map-Reduce). The size of a micro-batch

is set to guarantee a certain response-time latency that is to conform to the application’s

service-level agreement. Compared to native tuple-at-a-time data stream processing, micro-

batching can sustain higher data rates. However, existing micro-batch stream processing

systems lack Load-awareness optimizations that are necessary to maintain performance and

enhance resource utilization. In this thesis, we investigate the micro-batching paradigm and

pinpoint some of its design principles that can benefit from further optimization. A new

data partitioning scheme termed Prompt is presented that leverages the characteristics of

the micro-batch processing model. Prompt enables a balanced input to the batching and

processing cycles of the micro-batching model. Prompt achieves higher throughput process-

ing with an increase in resource utilization. Moreover, Prompt+ is proposed to enforce la-

tency by elastically adapting resource consumption according to workload changes. More

specifically, Prompt+ employs a scheduling strategy that supports elasticity in response to

workload changes while avoiding rescheduling bottlenecks. Moreover, we envision the use of

deep reinforcement learning to efficiently partition data in distributed streaming systems.

PartLy demonstrates the use of artificial neural networks to facilitate the learning of efficient

partitioning policies that match the dynamic nature of streaming workloads. Finally, all the

proposed techniques are abstracted and generalized over three widely used stream process-

ing engines. Experimental results using real and synthetic data sets demonstrate that the

proposed techniques are robust against fluctuations in data distribution and arrival rates.

Furthermore, it achieves up to 5x improvement in system throughput over state-of-the-art

techniques without degradation in latency.
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1. INTRODUCTION

The importance of real-time processing of large data streams has resulted in a plethora of

Distributed Stream Processing Systems (DSPS, for short). Examples of real-time appli-

cations include social-network analysis, ad-targeting, and click-stream analysis. Recently,

several DSPSs have adopted a batch-at-a-time processing model to improve the processing

throughput (e.g., as in Spark Streaming [  61 ], M3 [  5 ], Comet [  26 ], and Google DataFlow [ 3 ]).

These DSPSs, often referred to as micro-batch stream processing systems, offer several ad-

vantages over continuous tuple-at-a-time DSPSs. Advantages include the ability to process

data at higher rates [ 56 ], efficient fault-tolerance [  61 ], and seamless integration with offline

data processing [  6 ]. However, the performance of micro-batch DSPSs is highly susceptible to

the dynamic changes in workload characteristics. For example, resource utilization strongly

relies on evenly partitioning the workload over the processing units. Moreover, the computa-

tional model is inherently subject to performance instability with the fluctuations in arrival

rates and data distributions.

M1

M2

M3

R1

R2

Reducer 
Buckets

Data 
Block

Continuous 
Partitioner

Short-lived 
task

In-Memory 
Data Block

Hashing

Buffering &
Partitioning

Processing Time Batching Time

Output

End-to-End Latency

Data Tuple
Aggregate of 
Ki per Mapj

SR1

Data Stream

Figure 1.1. Example of micro-batch stream processing: The computation has
three Map and two Reduce tasks, and a Stream Receiver (SR1) that provides
micro-batches from the input data stream.
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1.1 Micro-batch Stream Processing

The micro-batching computational model can be best explained using an example query.

Consider a streaming query that counts users’ clicks per country for a web advertising-

campaign every 30 minutes. When applying the micro-batch processing model to this query,

the data flow is divided into two consecutive phases: batching and processing (See Fig-

ure  1.1 ). Stream processing is achieved by repeating the batching and the processing phases

for the new data tuples. The two phases are overlapped for any two consecutive batches

(Refer to Figure  1.3 ). In the batching phase, the stream data tuples are accumulated for

a predetermined batch interval. The interval size is set according to the target application

latency. Then, the batch content is partitioned and is emitted in the form of data blocks for

parallel processing. In the processing phase, the query is executed in memory as a pipeline

of parallel task-oriented stages (e.g., Map and Reduce stages). A centralized scheduler is

informed of the whereabouts of the buffered data blocks and schedule the Map stage. In the

Map stage, a user-defined function is applied in parallel to every data block (e.g., a filter

over the click-stream tuples). Upon completion, the centralized scheduler is informed of the

whereabouts of the intermediate results and makes a schedule decision to start the Reduce

stage. The Reduce stage aggregates the outcome of the Map stage to produce the output of

the batch (e.g., sums the clicks for each country). Figure  1.4a explains the activities during
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the processing phase. Finally, the query answer is computed by aggregating the output of all

batches that are within the query’s time-window (See Figure  1.2 ). The end-to-end latency

is defined at the granularity of a batch and is equal to the sum of the batch interval and the

processing time. The system is stable as long as processing time ≤ batch interval. A stable

system prevents the queuing of batches and provides an end-to-end latency guarantee.

In the rest of this thesis, the terms micro-batch and batch are used interchangeably to

define a buffered set of stream-tuples over a predefined small interval of time (i.e., the batch

interval). Also, MapReduce refers to a computation that consists of a parallel function

followed by an aggregation.

1.2 Research Challenges

In this thesis, we address three challenges, namely data partitioning, task-scheduling

overhead, and performance stability:

1.2.1 Data Partitioning

Data partitioning is crucial to the batching and processing phases. First, the execution

time of all Map tasks within a micro-batch needs to be nearly equal. A Map task that lags

due to extra load can severely impact resource utilization as it blocks the scheduling of the

subsequent Reduce stage, e.g., as in Cases II, III and IV of Figure  1.3 . Similarly, the input

to all Reduce tasks should be evenly distributed to finish at the same time. The system may

become unstable as batches get queued. The end-to-end latency would also increase. Second,

the time to process a batch may exceed the batch interval time due to the lack of even data

distribution in the Map and/or the Reduce stages leading to mistakenly requesting additional

resources. Case IV in Figure  1.3 can be avoided by adequately partitioning the data load

at the Map and Reduce stages. The data partitioning problem in the micro-batch stream

processing model is challenging for the following reasons: (1) The partitioning decision needs

to happen as fast as the data arrives. The reason is that the processing starts as soon as

the batching is completed. Applying a basic partitioning algorithm, e.g., round-robin leads

to an uneven distribution of the workload. (2) The data partitioning problem is inherently

13
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Figure 1.3. The effect of data partitioning on the pipelined-execution over
micro-batches: An example timeline that illustrates three different cases of
unbalanced-load execution in [t0-t5]. Notice that Batch x is processed concur-
rently while Batch x+1 is being accumulated.

complex. It entails many optimization factors, e.g., key locality, where tuples with the same

key values need to be co-located into the same data blocks. In fact, as will be explained in

Chapter  2 , this data partitioning problem is NP-hard. (3) In a Map-Reduce computation,

intermediate results of a key must be sent to the same Reducer. Fixed key-assignment with

hashing does not guarantee balanced load at all Reducers. Also, dynamically assigning keys

to the Reducers by globally coordinating among Map tasks is time-consuming due to the

inter-communication cost. Thus, it is not suitable for streaming applications.

1.2.2 Scheduling Bottleneck

Another hurdle for micro-batched systems is that of communication and centralized

scheduling. The coordination and communication with a centralized scheduler to orches-

trate the computation is very costly. Figure  1.4a shows the centralized role of the scheduler

during the micro-batch computation. The scheduler is responsible for keeping track of the

accumulating data blocks and the intermediate results. The scheduler leverages this infor-

mation when initiating the execution tasks at the processing stages. Clearly, the centralized
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scheduler is a bottleneck. Figure  1.4b gives an example of the percentages of the different

activities that are typically carried out during the processing time of a micro-batch. Due

to coordination with a centralized scheduler, the actual data processing is only a fraction

of the time available to process the micro-batch. Scheduling and communication consume a

significant fraction of the time (e.g., at least 60%, as seen in Figure  1.4b ).

1.2.3 Performance Stability

A healthy relationship between processing time and the batch interval is mandatory

to keep the system stable and achieve latency guarantees. If the processing time exceeds

the batch interval while applying even-data partitioning, then additional resources must be

warranted to maintain system performance (e.g., by dynamically increasing the number of

mappers and reducers to meet the changes in the workload). However, resource allocation in

micro-batch DSPSs is challenging for two reasons: (1) Manually tuning the resources is an

error-prone and complicated task. The reason is that, in contrast to offline data processing,

data streams are dynamic, and can change data rate or distribution at runtime [ 46 ,  47 ,  53 ,  61 ].

To maintain their performance, micro-batch DSPSs need to automatically scale in and out

to react to workload changes. (2) Permanent resource over-provisioning for peak loads is not

a cost-effective strategy and leads to a waste of resources.
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Figure 1.5. System Stability: Workload Behavior in Micro-batch Processing Model

1.3 Research Contributions

This dissertation addresses the challenges associated with efficient data stream processing

over the micro-batch processing model. The research contributions of this dissertation are

as follows:

•We analyze the micro-batching design principles. We provide motivating break-down analy-

sis of the micro-batching computational model and highlight the need for efficient data parti-

tioning and task-scheduling techniques. We demonstrate that micro-batching is a promising

solution for today’s data-intensive streaming workloads when the three performance bot-

tlenecks are mitigated. These challenges are data partitioning, centralized-scheduling, and

performance stability.

• To support efficient data-partitioning for the micro-batch processing model, we formulate

the problem of data partitioning in distributed micro-batch stream processing systems. We

show that this problem in both the batching and processing phases is NP-hard. We reduce

the data partitioning problems in the batching and processing phases to two new variants of

the classical Bin Packing problem. We introduce Prompt, a data partitioning scheme tailored

to distributed micro-batch stream processing systems. Prompt leverages a look-ahead data

partitioning strategy that optimizes the performance of the micro-batch processing model [ 2 ].

In the batching phase, Prompt has a load-aware buffering technique that constructs, at

runtime, a sorted list of the frequencies of the occurrences of keys in the current batch.

Prompt partitions the batch content in a workload-aware manner for the upcoming Map
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stage. To prepare partitions for the Reduce stage, Prompt has an effective distribution

mechanism that allows the Map tasks to make local decisions about placing intermediate

results into the Reduce buckets. This partitioning mechanism balances the input to the

Reduce tasks and avoids expensive global partitioning decisions. Prompt improves system

throughput by up to 2x using real and synthetic datasets over state-of-the-art techniques.

• To mitigate the centralized-scheduling bottleneck and the performance stability concerns of

the micro-batching computational model, we introduce Prompt+ with an elastic-scheduling

technique for the micro-batching model. Prompt+ aims to overcome the overheads of task

scheduling (i.e., serialization and communication) and maintaining resource utilization, while

enforcing latency. Prompt+ schedules multiple batch-computations at once. This serves to

amortize the scheduling cost over a group of batches. In addition, Prompt+ uses three

elasticity zones to monitor system stability w.r.t. workload changes. Prompt+ updates

the degree of task-parallelism, without interrupting the execution, to meet workload needs.

Prompt+ is robust to fluctuations in data distribution and arrival rates. Experiments on the

evaluation of the proposed elastic-scheduling technique and the combined effect, when ap-

plied along with the data partitioning techniques, show up to 5x improvement in throughput

while enforcing latency guarantees.

• To further support efficient data stream processing over the micro-batch processing model,

we introduce PartLy, a learning-based technique to provide efficient data-partitioning of

micro-batched data over execution tasks. PartLy leverages the deep reinforcement learning

techniques to learn a data partitioning policy using the run-time statistics of the execution

tasks. PartLy enhances over Prompt through reducing the variance of execution-tasks. We

formulate the data partitioning of the micro-batching model in the context of deep rein-

forcement learning. PartLy opens the possibility of autonomous execution and reduces the

overheads of tuning heuristics by humans. We provide directions on how to extend this

strategy to the elasticity problem.

• We study the realization of the proposed techniques in Prompt, Prompt+,

and PartLy within three widely-adopted micro-batched stream processing systems. We

demonstrate how the ideas proposed in this thesis are general and applicable in Spark Stream-

ing [ 61 ], Apache Flink [ 12 ] and Apache Storm [ 48 ].
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1.4 Dissertation Outline

This dissertation is organized as follows. Chapter  2 introduces the data partitioning

scheme for maximizing throughput in micro-batched stream processing systems. Chapter  3 

introduces an elastic-scheduling technique for enforcing latency in micro-batched stream

processing systems. Chapter  4 introduces a learning-based model for data partitioning and

envision a learned multi-agent scheme for achieving load-awareness in micro-batched stream

processing systems. Chapter  5 illustrates the adoption of the presented techniques in Apache

Spark, Apache Flink, and Apache Storm. Finally, Chapter  6 presents concluding remarks

for the dissertation.
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2. PROMPT: HIGH-THROUGHPUT PROCESSING WITH

BALANCED DATA PARTITIONING

2.1 Problem Statement

The distributed micro-batch stream processing model executes a continuous query in

a series of consecutive, independent, and stateless Map-Reduce computations over small

batches of streamed data to resemble continuous processing. System-wide heartbeats, i.e.,

triggers, are used to define the boundaries of the individual batches. Dedicated processes

are responsible for continuously receiving stream data tuples and for emitting a micro-batch

at every heartbeat. Every micro-batch is partitioned according to the supported level of

parallelism by the computing resources, i.e., the number of processing cores. We term every

partition a data block. The most popular data-partitioning techniques are time-based [ 61 ],

hashing, and shuffling.

Data Block
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Block Interval = (tx-ty)/n 
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Figure 2.1. Existing Data partitioning Techniques

Time-based partitioning uses the arrival time of a new tuple to assign the tuple into a

data block (Figure  2.1a ). Given the target number of data blocks, the batch interval is split

into consecutive, non-overlapping, and equal-length time periods, denoted by block interval.

All the data tuples received during each period constitute a data block. When the batch inter-

val finishes, all the data blocks are wrapped as a batch, and become available for processing.

This simple partitioning technique has the following limitation. Time-based partitioning re-

sults in unequally sized data blocks due to dynamic input data rates. Moreover, time-based

partitioning does not have any guarantees on key placement. Data tuples that share the

same key value can end up in different data blocks. This can increase the cost of the per-
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key-aggregation step at the Reduce stage. On the other hand, Shuffle partitioning assigns

tuples to data blocks in a round-robin fashion based on arrival order without considering

other factors (Figure  2.1b ). This technique guarantees that all the data blocks have the same

size even with dynamic input data rates. However, this technique has a major drawback. It

does not ensure key locality, i.e., tuples with the same key are not necessarily co-located into

the same data blocks. This leads to further overhead at the Reduce stage to combine all the

intermediate results of each key produced by different Map tasks. Hash partitioning, also

termed Key Grouping [ 47 ], uses one or more particular fields of each tuple, i.e., a partitioning

key, and uses a hash function to assign the tuple into a data block (Figure  2.1c ). Hence, all

the tuples with the same keys are assigned to the same data blocks. Applying this technique

in the batching phase eliminates the per key aggregation at the Reduce stage. If the input

data stream is skewed, then some key values will appear more often than others. Thus,

this partitioning technique would result in unequally sized data blocks (See Figure  2.1c ).

Moreover, in the processing phase, Map tasks use the hashing technique to ascertain that

all the intermediate results for a key are at the same Reduce task. In the case of data skew,

this technique will result in uneven input sizes for the various Reduce tasks.

In this chapter, we address the problem of data partitioning in the micro-batching com-

putational model.

2.2 Related Work

Early work in parallel stream processing focus on the efficient partitioning of the incoming

data stream tuples to workers. Cagari et al. [ 8 ] exploits the potential overlap of sliding-

window queries to guide data partitioning. The partitioning decision is applied to each

data stream tuple through a split-merge model. The number of splits, query replicas, and

merge nodes are dynamically set to match the changes in workload. Cagri et al. [  9 ] rely

on forecasting the future behavior and known metrics of the workload (e.g., peak-rate).

Prompt differs in that it exploits exact statistics about the data to make proper partitioning

decisions. Zeitler et al. [  62 ] propose a spitting operator where the input data stream is

split into multiple sub-streams based on query semantics. Liroz-Gistau et al. [  40 ] propose

DynPart to adaptively re-partition continuously growing databases based on the workload.
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DynPart co-locates the newly appended data with the queries to maintain fixed execution

time. Gedik et al. [ 23 ] provide a formal definition of the desired properties for stream

data partitioning for System S [  29 ]. It enables compactness by applying lossy-counting to

maintain key frequencies, and uses consistent hashing for stateful operators. Recently, the

concept of key-splitting [  7 ] has been proposed to improve load-balanced stream processing.

It allows tuples with skewed keys to be sent to two or more workers [  46 ,  47 ]. In addition,

Nikos et al. [ 32 ] propose an enhancement to the key-splitting technique by accounting for

tuple imbalance and the aggregation cost. These approaches are optimized for the tuple-at-a

time stream processing. Prompt differs from these approaches in providing a formalization

and a solution for the partitioning in micro-batch setting.

In addition, the Map-Reduce framework [  15 ] has received criticism due to its load bal-

ancing and skewness issues [  16 ]. Previous effort to handle these issues focus on three dimen-

sions [ 13 ,  25 ,  35 ,  36 ,  38 ]: (1) The use of statistics from a sample of the input data to devise

a balanced partitioning plan for the whole input data [ 22 ,  24 ]. (2) Performing a partial re-

partitioning of the input data based on changing workload characteristics, i.e., query and

data distribution [ 4 ,  39 ]. (3) Repartitioning the input of the Reduce stage dynamically based

on Mappers output statistics [ 33 ,  45 ]. Although the micro-batch stream processing model

has adopted the Map-Reduce processing model, it is different in many aspects. For example,

the input data arrives online, and a series of the batch jobs are launched against new data.

This allows computing complete statistics as the batches build up, and devise a partitioning

plan that is independently customized for every batch. Moreover, latency expectations are

different in streaming workloads. Hence, the use of global statistics from all Mappers to

guide the partitioning for the Reduce stage is not suitable.

2.3 Balanced Data Partitioning

2.3.1 Design Goals

The main goal of Prompt’s data partitioning scheme is to maximize the overall system

throughput under the following constraints: (1) The batch interval is fixed, and is set as

a system parameter to meet an end-to-end latency requirement of the user’s application.
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(2) The computing resources are available on-demand, i.e., the number of nodes and cores

available for processing can be adjusted during processing. The highest throughput is defined

as the maximum data ingestion rate the system can sustain using the allocated computing

resources without increasing the end-to-end latency, i.e., having batches waiting in a queue.

The latency is maintained by keeping the processing time bounded by the batch interval.

To illustrate, the processing time of n Map and m Reduce tasks can be modeled using the

following equation that represents the sum of the maximum duration of any Map task and

the maximum duration of any Reduce task:

max
1≤i≤n

MapTaskT imei + max
1≤j≤m

ReduceTaskT imej (2.1)

As the maximum MapTask time decreases, the Map stage completes faster. The same

applies to the Reduce stage. Prompt adaptively balances the load as evenly as possible at

the Map and Reduce stages without increasing the aggregation costs. Utilizing all available

resources at processing time is key to maximizing the data ingestion rate, e.g., refer to Case I

of Figure  1.3 . Similarly, resource usage should be adequate to workload needs to minimize

cost. Extra resources should be relinquished when possible, e.g., Case III in Figure  1.3 could

have been executed with less resources. The opposite is also true. When all the current

resources are saturated and run at maximum capacity, if the workload increases further,

then we need to elastically increase the resources during run-time. Moreover, the proposed

scheme should incur minimal architectural intervention to the stream processing engine, and

should not disrupt the developer programming interfaces (APIs) so that no modifications

are required to the users’ existing programs.

2.3.2 Problem Formulation

In the batching phase, the input tuples received during a specified time interval constitute

a batch. This batch is partitioned into several data blocks to serve as input to the Map stage.

The partitioning algorithm aims to balance the load at the Map stage by providing equal-

load data blocks for the Map tasks. The partitioning algorithm uses three key aspects to

guide the partitioning process that are defined as follows.
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Problem I: Map-Input Partitioning: Given a finite set of data tuples with known schema

<k, t, v>, with k being the partitioning key, and a fixed number of output partitions p, i.e.,

blocks, it is required to assign each data tuple to one partition while satisfying the following

objectives: (1) Block-size equality: The execution time of a Map task increases mono-

tonically with its input block size. Having equal data block sizes to all Mappers decreases

the variance in execution time for the Map tasks. (2) Cardinality balance: Each data

block is assigned an equal number of distinct keys. This requirement serves two purposes.

First, it enables the Map tasks to generate equal-sized Reduce buckets. Second, it balances

the computation overheads among the Map tasks. (3) Key locality: Each key is either

assigned to one block, or splits over a minimal number of blocks. This requirement limits

the per-key aggregation overhead at the Reduce stage.

Once a Map task completes, it assigns its output to a number of Reduce buckets (that

correspond to the Reduce tasks). The input for each Reduce task is the union of its designated

buckets from all Map tasks. At this point, the partitioning algorithm aims to provide an

even-load input for each Reduce task. We define this problem as follows.

Problem II: Reduce-Input Partitioning: Given a finite number of data elements in the

form of <k,list(v)>, and a defined number of Reduce buckets, it is required to assign the

data elements to buckets such that: (1) Bucket-size equality: Buckets need to be equal

in size. The execution time of a Reduce task increases monotonically with the bucket size.

Equal-sized input to all Reducers minimizes the variation in execution latencies among all

reducers. (2) Key Locality: Data tuples having the same key must be in the same Reduce

bucket by all Map tasks. This is vital to maintain the correct computational behavior, i.e.,

each key is aggregated by a single Reduce task.

2.3.3 Cost Model

We introduce the cost model for data partitioning that captures the problem formulation

in Section  2.3.2 . Notice the positive correlation between the size of a partition and the

execution time of the task responsible to process it. This applies to both the Map and
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Reduce stages. Inspired by the work in [  46 ], we define the Block Size-Imbalance metric(BSI,

for short) over a micro-batch at the granularity of a data block or a Reduce bucket:

BSI(Blocks) = maxi|Blocki| − avgi|Blocki|i ∈ p (2.2)

Eqn.  2.2 defines the size imbalance metric as the difference between the maximum block size

and the average size of all data blocks, where p is the number of data blocks. Similarly,

Eqn.  2.3 models the size imbalance at the Reduce stage for the buckets, where r is the

number of Reduce buckets:

BSI(Buckets) = maxj|Bucketj| − avgj|Bucketj|j ∈ r (2.3)

Eqn.  2.4 defines the Block Cardinality-Imbalance (BCI, for short) as the difference be-

tween the block with maximum key cardinality and the average key cardinality of all blocks [ 32 ].

BCI(Blocks) = maxi||Block|| − avgi||Block)|| i ∈ p (2.4)

Let a key fragment be a collection of tuples that share the same key value. Eqn.  2.5 

defines the Key Split Ratio metric (KSR, for short) as the ratio between the total number of

distinct keys in a batch and the number of key fragments on all data blocks. If no keys are

split, then KSR=1.

KSR(Blocks) = Sumk|Fragments|
Sumk|Keys|

k ∈ K (2.5)

Finally, we define the overall Partitioning-Imbalance metric [ 32 ] over a Micro-batch (MPI,

for short) using a combination of the above metrics as follows:

MPI(Blocks) = p1 ∗BSI + p2 ∗BCI + p3 ∗KSR (2.6)

Notice that the objective is to minimize the three metrics that lead to minimize MPI. We pro-

vide a mathematical formulation for the problem in Section  2.3.2 . The parameters p1, p2, p3

are adjustable to control the contribution of each metric (i.e., p1 + p2 + p3 = 1 ). In our

experiments, we set p1 = p2 = p3 = 1/3 to achieve unbiased and equal contribution from

all the metrics (i.e., avoiding one metric dominating the others). Setting p1 = 1 represents
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the shuffling partitioning behavior, while setting p3 = 1 represents the hashing partitioning

behavior.

2.4 Micro-batch Data Partitioning

We introduce Prompt’s partitioning technique for the batching phase in the micro-batch

stream processing model. This partitioning technique has two main steps: (1) The input data

tuples are buffered while statistics are collected as the tuples arrive. (2) The partitioning

algorithm is applied over the micro-batch to generate data blocks for the processing phase.

The following subsections explain these two steps.
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Figure 2.2. Frequency-aware Micro-batch Buffering: Fully-updated
CountTree and HTable after receiving 385 tuples with eight distinct keys.

2.4.1 Frequency Aware Buffering

As explained in Chapter  1 , the micro-batch is to be processed at the end of the batch

interval, i.e., at the system heartbeat. To minimize the time required to prepare the micro-

batch for partitioning, two data structures are used to maintain run-time statistics of the data

tuples as they arrive. We utilize a hash table and a Balanced Binary Search Tree (BBST) as

follows: The partitioning key of the incoming data tuples is used to store the tuples into the

hash table HTable <K, V >, where the value part is a pointer to the list of tuples for every

key. Also, HTable stores auxiliary statistics for each key, e.g., frequency count and other

parameters that are utilized in the following update mechanism. In addition, approximate
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frequency counts of the keys are kept in a balanced binary search tree CountTree. Every key

in HTable has a bi-directional pointer to a designated counting node in CountTree. This

pointer allows to directly update the count node of a key. For illustration, Figure  2.2 gives a

simple example for HTable and a fully-updated CountTree after receiving 385 tuples with 8

distinct keys. Notice that the typical size of a micro-batch can grow up to millions of tuples

with 10-100k distinct keys.

To handle high data rates, a coarse-grained approach to update CountTree is used.

Instead of updating the CountTree for each incoming tuple, each key is allowed to update

the CountTree periodically for a maximum of budget times in a batch interval. A control

parameter, f.step, is defined, where a node is updated once for every f.step new tuples

received of its key. The f.step parameter is estimated adaptively for each key based on the

proportion of the current key frequency to the total number of tuples received since the

beginning of the current batch interval (i.e., keys with high frequency will require more data

tuples to trigger an update). Furthermore, to ensure that nodes for tuples with low frequency

get updated, a time-based t.step is also used. Similarly, t.step is estimated based on how

much of the key’s budget updates are consumed and the remaining duration of the batch

interval. An update is triggered when an incoming tuple satisfies the time or frequency step

for its key. Initially, f.step is set to some constant f that reflects the best step value if the

data is assumed to be uniformly distributed. f ←− NEst

KAvg∗Budget
, where NEst is the estimated

number of tuples given the average data rate and batch interval, and Kavg is the average

number of distinct keys over the past few batches. Notice that f.step quickly converges

to the proper value that suits the current batch. Algorithm  1 lists the buffering technique

used in the batching phase. This updating mechanism avoids thrashing CountTree with re-

balancing operations, and bounds the complexity of all updates to Klog(K), where K is the

total number of distinct keys received in a micro-batch. This is comparable to the complexity

of sorting keys after the batch interval has ended. However, this update mechanism takes

place during the batching phase, and hence does not require explicit sorting before the start

of the processing phase. A dedicated sorting step would have consumed a portion of the time

available for processing the batch. At the end of every batch interval, an in-order traversal

of the CountTree generates a quasi-sorted list of the keys with their associated frequencies.
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Algorithm 1: Micro-batch Accumulator
Input: S: Input Stream, [tstart-tend]: Batch Interval, budget: Update Allowance, f :

Initial Frequency Step
Output: Stat: Batch Statistics, e.g., NC: Number of data tuples, |K|: Number of keys,

Batch: SortedList<ki,counti,tupleListi>
1 Reset HTable, and CountTree;
2 while tuplei.ts ∈ Batch Interval do
3 Increment number of tuples Count: NC ;
4 if tuplei.k ∈ HTable then
5 Insert tuplei into HTablek chain;
6 Update k.FreqCurrent;
7 Deltafreq = k.FreqCurrent - k.FreqUpdated;
8 Deltatime = T imeNow - kLastUpdateT ime;
9 if kf.step == Deltafreq then

10 Update kfreq in CountTree;
11 Update k.budget = k.budget -1 ;
12 Update k.FreqUpdated;
13 Set kf.step = (NEST /budget)*k.FreqCurrent/NC ;
14 else
15 if kt.step == Deltatime then
16 Update kfreq in CountTree;
17 Update k.budget = k.budget -1 ;
18 Update k.FreqUpdated;
19 Set kt.step = (tend-NowT ime)/k.budget;
20 else
21 k is not eligible for an update yet;
22 end
23 end
24 else
25 Increment Unique Keys Count: |K|;
26 Insert tuplei into HTable;
27 Insert tuplei.k as new node into CountTree;
28 Initialize k.FreqCurrent and k.FreqUpdated to 1;
29 Initialize kt.step = (tend - T imeNow)/budget;
30 Initialize kf.step = f ;
31 end
32 end
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The sorted list: <ki, counti, tupleListi> is used as the input to the partitioning algorithm.

The HTable and the CountTree data structures are both cleared at the end of every batch

interval, i.e., system heartbeat.

2.4.2 Load-Balanced Batch Partitioning

In this section, we discuss how Prompt handles the Batch Partitioning problem. The

problem is reduced to a new variant of the classical bin-packing problem. All data tuples

that share the same key value are modeled as a single item, whereas each data block is

modeled as a bin. Each bin has a capacity that corresponds to the expected size of the data

block. In contrast, each item has a distinct size equal to the number of tuples that share

same key value. We refer to this problem as Balanced Bin Packing with Fragmentable Items

(B-BPFI, for short). An item is fragmented if it is split into two or more sub-items such that

the sum of the sizes of all sub-items is equal to the initial size of the item before splitting. In

this case, the newly split items with the same key value can be stored in different bins (i.e.,

in different data blocks). In this instance of the bin packing problem, the number of bins

is known a priori, and all bins have equal capacities. In addition, the items are allowed to

be fragmented such that the number of distinct items per bin is equal. Hence, the solution

to the problem is to find a good assignment of the items to the bins that satisfies the three

objectives captured by the cost model in Eq  2.6 , mainly, (1) Limit the fragmentation of

the items, (2) Minimize the cardinality variance among the bins, and (3) Maintain the size

balanced among the bins. Notice that achieving the three objectives is challenging. For

instance, Figures  2.3a and  2.3b give two possible assignments into four data blocks (B1,

B2, B3 and B4) for the batched data in Figure  2.2 . In both assignments, the data blocks

are of equal size. However, the well-known First-Fit-Decreasing technique [ 44 ], illustrated

in Figure  2.3a , does not minimize item fragmentation. This results in fragmenting three

out of the eight keys, namely, K1, K2, and K4. In contrast, in Figure  2.3b , the use of the

Fragmentation Minimization technique [ 31 ] limits the fragmentation to only one key (K1).

Both assignments fail to meet Objective 2; the number of items in B4 is twice the number

of items in the other blocks. The B-BPFI problem can be formally defined as follows:
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Definition 2.4.1 Balanced Bin Packing with Fragmentable Items. Given a set of K distinct

items: k1, k2, · · · , kK; each with Item Size si, where 1 ≤ i ≤ K, and B bins, each with Bin

Capacity C, the Balanced Bin Packing with Fragmentable Items (B-BPFI) is to generate item

assignments to Bins b1, b2, · · · , bB that satisfy the following three requirements: (1) |bj|=C

∀j ∈ [1, B], where |bj| denotes the number of tuples in bj; (2) ||bj||≥ K/B, where ||bi|| denotes

the number of unique items in bj ∀j ∈ [1, B]; (3) Every item ∈ K is split over a minimum

number of bins.

The problem can be formulated mathematically as follow:

M inimize (
K∑

i=1

B∑
j=1

yij) (2.7)

so that:
B∑

j=1
xij = si ∀i ∈ [1...K],∀j ∈ [1...B] (2.8)

K∑
i=1

xij ≤ cj ∀i ∈ [1...K], ∀j ∈ [1...B] (2.9)

xij
si
≤ yij ∀i ∈ [1...K],∀j ∈ [1...B] (2.10)

K

B
≤

K∑
i=1

K∑
j=1

yij ∀i ∈ [1...K],∀j ∈ [1...B] (2.11)

xij ∈ N+, yij ∈ 0, 1 ∀i ∈ [1...K],∀j ∈ [1...B] (2.12)

The variable xij represents the size of Item i’s fragment that is placed in Bin j. xij must

be an integer (included between 0 and si) (see Eqn.  2.8 ). Eqn.  2.8 implies that the sum of

the sizes of the fragments of any item i must be equal to its total size si. Eqn.  2.9 restricts

the sum of the sizes of the fragments put in any bin j to not exceed the capacity cj of this

bin. yij is a bivalent variable equal to 0 or 1 (see Eqn.  2.12 ) to mark the presence of Item i

in Bin j. As soon as a part of Item i is present in Bin j (even a very small part), yij is equal

to 1. Otherwise, yij is equal to 0. Eqn  2.10 forces Variable yij to be 1 whenever Variable xij

is strictly greater than 0. The sum of all the variables yij corresponds to the total number

of fragments of items. It is this quantity that we want to minimize (Eqn.  2.7 ). Without loss

of granularity, we assume that the data tuples are of the same size for simplicity. However,
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Figure 2.3. Assignment Trade-offs for the Problem of Bin Packing with
Fragmentable Items

our problem formulation can be easily extended to variable tuple sizes. Moreover, the total

capacity of the bins is defined to be larger than or equal to the total size of the items.
K∑

i=1
si ≤

B∑
j=1

cj ∀i ∈ [1...K],∀j ∈ [1...B] (2.13)

Theorem 2.4.1 The Balanced Bin Packing with Fragmentable Items problem is NP-

Complete.

Proof 1 The classical Bin Packing problem is a special case of B-BPFI in which all the bins

have the same capacities, the maximum number of fragments per bin is equal to K−B−1 (or

1 in case B > K), and the maximum number of fragments allowed is K (i.e., no fragmentation

is allowed), and the items can be assigned arbitrarily. Since the bin packing problem is

strongly NP-complete, hence the B-BPFI is strongly NP-complete, and the optimization

form is at least as hard as the classical bin packing problem. Proof by restriction.

The classical bin packing problem is a well-known combinatorial optimization problem [ 52 ]

and has been studied for decades. Some of its forms have even dealt with fragmentable

items [  10 ,  11 ,  17 ,  30 ,  31 ,  37 ,  44 ,  49 – 51 ]. The available solutions for the bin packing problem fall
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into two categories: First, they are very customized to the classical bin packing optimization

problem, where the objective is to minimize the number of bins required, and hence yields

unsatisfactory results in the case of the B-BPFI problem (e.g., First Fit Decreasing). The

reason is that filling a bin nearly completely is a good result for BP, because minimizing

wasted space results in fewer required bins, but it is generally a bad strategy for B-BPFI as

it results in plenty of fragmentation and cardinality imbalance. Second, due to the hardness

of the problem, the available computational solution algorithms do not scale well. They

involve problem instances with no more than 100 items, and may require several minutes or

even hours to solve [ 37 ]. Our focus here is on finding a heuristic algorithm that produces

high-quality partitioning for thousands of items in milliseconds. However, to the best of our

knowledge, no algorithms or other heuristic approaches for B-BPFI exist in the literature.

To avoid contributing to the processing time, Prompt applies a simple latency-hiding

mechanism, termed Early Batch Release. The objective of this mechanism is to ensure that

the batch is partitioned and ready-for-processing at the heartbeat signal. To achieve this

objective, the batching cut-off is separated from the processing cut-off, i.e., the system’s

heartbeat. The batch content is to be released for partitioning before the expected system

heartbeat that originally signals the end of the batch interval (See Figure  2.4 ). This allows

the partitioner a slack time to execute the partitioning algorithm on the collected input

data, and make batch data ready at the heartbeat pulse. The mechanism is implemented

within the batching module, and hence the normal execution of the processing engine is not

influenced. In our experiments, we have observed that a maximum of 5% of the batch-interval

is sufficient to achieve this objective.

2.5 Processing-Phase Partitioning

In this section, we introduce a partitioning technique for the processing phase of the

micro-batch stream processing model. In the batching stage, each data block is equipped

with a reference table. In this table, keys that exist in the data block are labeled to indicate

if they are split over other data blocks. Each Map task leverages this information to guide

the assignment of the key clusters to its Reduce buckets. Figure  2.5a gives an example

of the default assignment of a Map task output to its Reduce buckets using conventional
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Algorithm 2: Micro-Batch Partitioner
Input: SortedList <k, kcount, kT upleList>: Input Batch, Nc: Number of data tuples, K:

Number of distinct keys P : Number of required data partitions.
Output: Plan: Optimized keys-to-partitions assignments

1 Define Partition-Size: PSize=NC/P ;
2 Define Partition-Cardinality: P|k| = K/P ;
3 Define Key-Split-CutOff: SCut = PSize/P|k|;
4 Set bi = b1 (b1 ∈ Partitions);
5 while ∃k ∈ List and |k| > SCut do
6 Put SCut fragment → bi and add residual to RList;
7 Update lookupLargePos(k ↔bi);
8 Set bi to bi++%P ;
9 end

10 while ∃k ∈ List do
11 foreach b ∈ Partitions do
12 Put one key in b;
13 Move to next b;
14 end
15 Reverse Order of Partitions loop;
16 end
17 while ∃k ∈ RList do
18 b = lookupLargePos(k);
19 if k fits in b then
20 Add k to b;
21 else
22 Fill b from k;
23 Add rest of k to partition with lowest remaining capacity that can hold it;
24 end
25 end

hashing approach. This method does not consider the key cluster sizes, and that leads to

un-balanced input to the Reduce stage. The Map output is key-value pairs grouped into

clusters. Each key cluster has all data values with the same key, and can be represented as:

Ck = {(k, vi) | vi ∈ k}.

Key clusters can have different sizes. Assume that there are K key clusters in the output

of the Map task to be assigned to r Reduce buckets. Let I be the output (i.e., referred to

as intermediate results) of the Map task: I = {Ck | k ∈ K}. To provide a balanced load for

the Reduce tasks, an equal assignment to each Reduce bucket should be warranted. The

expected size of a bucket can be estimated as: Bucket Size = |I|
r

. We reduce this problem to
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Figure 2.5. Reduce Replacement Strategies

a new variant of the bin packing problem. All key clusters are items, and the Reduce buckets

are bins. However, in contrast to the batch partitioning problem, the bins are of variable

capacities, and the items are not fragmentable. Each key cluster is a non-fragmentable item

as values of the same key must be at the same Reduce bucket. The bins are of variable

capacities because keys split over multiple data blocks are assigned to the Reduce buckets

using the hashing method. The Map task has the freedom to assign the non-split keys only.
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The capacity of each bucket is the residual of the value estimated by Bucket Size after

assigning the split key clusters using the hashing method. The problem is defined and is

proved NP as follows:

Algorithm 3: Reduce Bucket Allocator
Input: C: Key Clusters - Map intermediate results, Ref : Block Reference Table

(Split/NonSplit keys), R: Set of Reduce buckets.
Output: Cluster −Bucket Assignments

1 Define Bucketsize = |C|/|R|;
2 Assign SplitKeys to R using Hashing;
3 Let C= C - SplitKeys;
4 Sort NonSplit key Clusters in descending order;
5 while ∃k ∈ C do
6 Assign k into Bucket r= Worst-Fit(R) ;
7 R = R-r ;
8 if !∃r ∈ R then
9 Reset R = All Reduce Bucket ;

10 else
11 end
12 end

Definition 2.5.1 Balanced Bin Packing with Variable Capacity (B-BPVC). Given a set of

items, K, and B bins, each with associated capacity Ci, the Variable balanced bin packing is to

generate item assignments to bins: b1,b2,...,bB, that satisfy three requirements: (1) |bi|≤ Ci

for any i ∈ [1,B], where |bi| denotes the number of tuples in bi ; (2) ||bi||≤ K, where ||bi||

denotes the number of unique items in bi;

Theorem 2.5.1 The Balanced Bin Packing with Variable Capacity (B-BPVC) problem is

NP-Complete.

Proof 2 The Bin Packing problem is a special case of B-BPVC. Since the bin packing

problem is strongly NP-complete, hence the B-BPVC is strongly NP-complete and the opti-

mization form is at least as hard as the classical bin packing problem. Proof by restriction.

Algorithm  3 lists the proposed technique used by each Map task to assign the key clusters

to the Map task’s Reduce buckets. Each Map task assigns the split keys using hashing, and
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sorts its non-split key clusters based on size. Next, the Map task evaluates the capacity of

its Reduce buckets, as explained earlier. The Map task uses WorstFit to assign bigger key

clusters as early as possible to buckets with maximum available capacity. Notice that the

selected bucket is removed from the candidate list until all other buckets receive an item.

This limits bucket overflow while promoting a balanced number of key clusters per Reduce

bucket. Also, no share of information is necessary among the Map tasks. Thus, as each Map

task tries to minimize size imbalance, through the additive property, the overall imbalance

is reduced.

2.6 Experimental Evaluations

2.6.1 Experimental Setup

We conduct experiments on 20 nodes in Amazon EC2. Each node has 16 cores and 32GB

of RAM. The nodes are connected by 10 Gbps Ethernet and are synchronized with local NTP

servers. We realize Prompt’s partitioning technique in Apache Spark v2.0.0. The same

concepts are applicable to other micro-batch streaming systems that have a similar design

principle of block and batch, e.g., M3 [  5 ], Comet [  26 ], and Google Dataflow [  3 ]. Prompt is

realized by modifying four components in Spark Streaming [  61 ] as described in Section  5.1.2 .

The same JVM heap size and garbage collection flags are applied to launch all Spark executor

instances.

The queries of the used benchmarks are written as a map-reduce computation. Figure  1.1 

shows the execution graph (i.e., the topology of the computation). The execution graph il-

lustrates the data ingestion within the receiver and processing by mappers and reducers.

The window operations are defined over the batch computations similar to Figure  1.2 . To

alleviate the effects of CPU, network, and disk I/O bottlenecks on performance, the following

measures are taken: (1) Inverse Reduce functions are implemented for all window queries

to account for the expired batches leaving the window span, and hence avoid re-evaluations.

(2) Previous in-window batch results are cached in memory to be used in future computa-

tions. We ensure that all the window length can fit in memory to avoid spilling to disk.

(3) The number of data blocks is bounded by the number of CPU cores on Spark executor
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instances to avoid any Map task queuing. (4) The system is allowed some time to warm up

and stabilize before measuring performance results. Spark Streaming back-pressure is used

to indicate when the maximum ingestion rate is reached for every experiment. (5) All the

techniques under comparison are assigned the same resources. For PK2 [  47 ],PK5 [  46 ] and

cAM [  32 ], the number of candidates per key refers to the maximum number of partitions a

key can be assigned to (i.e., the number of hash functions per key). This is different from

the total number of workers assigned to the system. For PK2 [  47 ],PK5 [ 46 ], the number of

candidates per key are fixed at 2 and 5, respectively. For cAM [  32 ], we always report the

best performance achieved from several runs with various candidates. For each workload,

we increase the number of candidates until performance is stable (i.e., does not improve) or

degrades.

Datasets and Workloads

We test the performance of the proposed techniques using various workloads of increasing

complexity : WordCount performs a sliding window count over 30 seconds, and TopKCount

finds the k most-frequent words over the past 30 seconds. We use the following two datasets,

namely Tweet and SynD. Tweet is a real sample of tweets collected in 2015. Each tweet is

split into words that are used as the key for the tuple. SynD is a synthetic dataset generated

using keys drawn from the Zipf distribution with exponent values z ∈ {0.1, ..., 2.0} and

distinct keys up to 107. Also, we use the following 3 real and synthetic workloads:

1. ACM DEBS 2015 Grand Challenge (DEBS): This dataset contains details of

taxi trips in New York City. Data are reported at the end of each trip, i.e., upon arriving

in the order of the drop-off timestamps. We define 2 sliding-window queries: DEBS Query

1: Total fare of each taxi over 2 hrs windows with a 5-min slide. DEBS Query 2: Total

distanceper taxi over 45-min window with a slide of 1 min.

2. Google Cluster Monitoring (GCM): represents the execution details of a Google

data cluster. The GCM queries used are similar to the ones used in [  32 ].

3. TPC-H Benchmark: Table LineItem tracks recent orders, and TPCH Queries 1

and 6 are to generate Order Summary Reports, e.g., Query 1: Get the quantity of each

Part-ID ordered over the past 1 hr. with a slide-window of 1 min.
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2.6.2 Experimental Results
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Figure 2.6. Data Partitioning Metrics

Data Partitioning. We assess the effectiveness of the proposed batch partitioning

scheme using two metrics: Block Size Imbalance - BSI and Block Cardinality Imbalance - BCI.

For this purpose, we use two datasets, namely Tweets and TPC-H in this experiment. We

compare with existing and state-of-the-art techniques: Shuffle, Hashing, PK-2 [ 47 ], PK-5 [ 46 ]

and cAM [ 32 ]. Figures  2.6a and  2.6b compare the BSI metric achieved for all the techniques

relative to the hashing technique, i.e., as in [  32 ]. Results for all the techniques are shown

relative to the hashing technique since hashing provides no guarantees on size balancing.

As the relative value approaches 0, this means the technique is providing a balanced load

under this metric. In this experiment, Shuffle, Time-based, and Prompt achieve the best

performance. Shuffle and Time-based partitioning are expected to achieve that as they assign

equal number of tuples to the data blocks. However, they perform badly when it comes to

balancing block cardinality. Also, notice that Time-based partitioning performs well on BSI

because the data rate is fixed. Figures  2.6c and  2.6d compare the BCI achieved for all the
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techniques relative to the shuffle technique using the two datasets. In this case, the shuffle

technique is used as the relative measure because it provides no guarantees on key assignment.

Hashing and Prompt performs significantly better than all the other techniques. In these

two experiments, Prompt outperforms state-of-the art techniques by striking a balanced

optimization for both block size and block cardinality. This contributes to the throughput

reported in Figure  2.7 .
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Figure 2.7. Effect of Variable Data Rate and Data Skew on Throughput

Effect of Variable Input Data Rate. We study the robustness of Prompt against

sinusoidal changes to the input data rate. This simulates variable spikes in the workload.

The provided resources are fixed, otherwise. Also, the target end-to-end latency is bounded

by the batch interval (1,2,3 secs). The triggering of Spark Streaming’s back-pressure is used

to report the maximum throughput achieved. Back-pressure stabilizes the system to avoid

data loss by signaling the data source to lower the input data rate. Figure  2.7 gives the

maximum throughput achieved using the various partitioning techniques. All the techniques

perform better when increasing the batch interval. However, Prompt maintains up to 2x-4x

better throughput than those of cAM and Time-based partitioning. Time-based partitioning
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shows the minimum throughput as it is highly sensitive to changing the data rate. While

PK5 and cAM exhibit back-pressure sooner, Prompt allows the system to achieve up to 2x

throughout compared to existing techniques, before activating back-pressure.
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Figure 2.8. Latency Distribution: (a) Latency when using Time-based par-
titioning, (b) Latency when using Prompt.
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Figure 2.9. Post-Sort cost and Partitioning Overhead: (a) Throughput
of Prompt with Post-Sort, (b) Partitioning overhead for Prompt.

Effect of Variable Data Distribution. We use the synthetic dataset, SynD, to eval-

uate the performance of the partitioning techniques under skewed data distribution. In this

experiment, the batch interval is set to 3 seconds. We report the highest throughput achieved

for each technique before back-pressure is triggered. Figure  2.7d gives the performance re-

sults of all partitioning techniques under different Zipf exponent values. In contrast to the

existing techniques, Prompt consistently maintains the highest throughput even when the

input data is highly skewed (between 2x to 5x better throughput).
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Latency Distribution. In this experiment, we report the processing details for thou-

sands of batches under the default Spark Streaming’s partitioner (i.e., Time-based) and when

using Prompt. For each batch, we report the average completing time of the reduce tasks.

In Figure  2.8a , the average processing time of the reduce tasks is highly variable when us-

ing Time-based data partitioning, and hence the higher distribution of latency. Figure  2.8b 

illustrates how Prompt reduce the distribution of execution time among the reduce tasks,

and hence there is low variance between the latency’s upper and lower bounds. The variance

of reduce tasks execution depends on the the partitioning quality. The ultimate objective

for micro-batch DSPSs to maintain the latency guarantee, while maximizing throughput.

By applying Prompt in Spark Streaming, both the average and maximum latencies increase

because of decreasing the partitioning imbalance. This contributes to the increase in overall

system throughput, while maintaining upper bound of latency.

2.7 Concluding Remarks

A new data partitioning scheme, termed Prompt is presented that leverages the char-

acteristics of the micro-batch processing model. In the batching phase, a frequency-aware

buffering mechanism is introduced that progressively maintains run-time statistics, and pro-

vides online key-based sorting as data tuples arrive. Because achieving optimal data parti-

tioning is NP-Hard in this context, a workload-aware greedy algorithm is introduced that

partitions the buffered data tuples efficiently for the Map stage. In the processing phase,

a load-aware distribution mechanism is presented that balances the size of the input to the

Reduce stage without incurring inter-task communication overhead
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3. PROMPT+: LATENCY ENFORCEMENT WITH ELASTIC

SCHEDULING

3.1 Problem Statement

Streaming-based engines execute workloads as a topology of operators (see Figure  3.1 ).

These topologies are often long-running, deployed on multiple nodes, and controlled through

a centralized scheduler. To meet workload demands, each operator in the topology is multi-

threaded. The streamed data tuples are continuously ingested by specialized operators (e.g.,

Spout in Storm [  48 ], Receiver in Spark [  61 ], StreamReader in Flink [  12 ]). These specialized

operators are equipped with a data-partitioning strategy to distribute the data tuples to the

downstream operators. The objective is for the tuples to flow across the topology as fast

and as efficient as possible to meet performance criteria (e.g., minimizing the average tuple

latency under some resource constraints).

OP1 OP2 SinkDP

e.g., filter e.g., join or aggregatorData Partitioner
e.g., Receiver in Spark, Spout 

in Storm, SourceReader in 
Flink.

Client
DP: Data Partitioner,  OP: Query Operator

Centralized 
Scheduler

e.g., Driver in Spark, Nimbus in 
Storm, Job-Manager in Flink.

Figure 3.1. Data flow in a distributed streaming topology

In this chapter, we address the problems of scheduling and communication bottlenecks

in the micro-batching computational model.

3.2 Related Work

Previous work on improving the performance of micro-batch DSPSs focuses two ap-

proaches. The first approach is resizing the batch interval [  14 ,  63 ]. The batch interval is

resized to maintain an equal relationship between the processing and batching times. How-
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ever, batch resizing does not solve the resource utilization problem targeted in this paper,

and may lead to delays in result delivery, e.g., when the resized batch interval violates the

application’s latency requirements. The second approach is group scheduling of micro-batch

computations [ 56 ]. Group scheduling alleviates the scheduling overhead by amortizing the

communication and scheduling overheads over multiple micro-batches. However, determin-

ing the group size is a challenge. For instance, a larger group minimizes the overheads of

scheduling, but limits the system ability to elastically expand or shrink in resources in re-

sponse to workload changes. The system can only add or remove resources after processing

an entire group of computations. In addition, Das et al. [  14 ] propose a control algorithm to

set the batch interval based on runtime statistics. The processing time of previous batches

is used to estimate the expected processing time of the next batch, and hence sets the batch

interval accordingly. The batch interval is set such that it matches the processing time. Sim-

ilarly, Zhang et al. [  63 ] use statistical regression techniques to estimate both batch and block

sizes under variable input data rates. These techniques are orthogonal to Prompt+. Batch

resizing techniques treat the micro-batch stream processing engine as a black box, and focus

on stabilizing the relationship between the batch interval and the processing time. However,

Prompt+ delves into the data scheduling aspect of the micro-batch stream processing model.

Prompt+ uses online statistics within each batch to guide its elasticity decisions. The ob-

jective is to increase the throughput of the system, and to maximize resource utilization for

a micro-batch interval.
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Figure 3.2. Prompt+’s Elasticity Zones
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3.3 Resource Utilization

We introduce Prompt+’s technique to adaptively adjust the degree of execution paral-

lelism according to workload needs. The objective of this technique is two folds: (1) Enforce

latency requirements of the users’ applications, while maximizing resource utilization. (2)

Eliminate the communication overheads of the centralized scheduler. As explained earlier,

the execution graph of a streaming query includes the physical details of the execution in-

cluding the level of parallelism, i.e., the number of Map and Reduce tasks and the data

dependency among the tasks (see Figure  1.1 ). To enforce latency, Prompt+ continuously

monitors the relationship between the batch interval and the processing time for the run-

ning micro-batches. Figure  3.2a depicts the possible relationships between the processing

time and the batch interval in micro-batch DSPSs. The stability line represents the ideal

scenario, when the processing time and the batch interval are equal. For Prompt+, the

stability line means that the system is meeting the latency requirement with the currently

utilized resources, i.e., the degree of parallelism is sufficient to meet the workload. Other-

wise, the system is either overloaded or under-utilized. In the former case, overloading leads

to queuing of micro-batches that await processing, and the system experiences an increase

in latency time. On the latter case, the system meets its latency requirements, but the re-

sources are under-utilized, i.e., the system is idle and is waiting for the next batch to process.

On the other hand, a centralized scheduler is responsible for managing the processing of the

execution graph (See Figure  1.4a ). Centralized scheduling has many benefits. For instance,

it allows the scheduler to make prompt decisions to include more mappers or reducers at any

of the stages during the execution. However, as explained earlier, significant amount of the

processing time is spent on the communication and coordination between the workers and

this centralized scheduler. A sound strategy is to schedule multiple micro-batches at once,

where the data dependencies between mappers and reducers are predefined in advance. In

this case, the execution graph can be completed without the intervention of the centralized

scheduler. This amortizes the scheduling costs across several micro-batches, and reduces the

network overhead of serialization and remote procedure calls (RPCs) as tasks get combined

into a single message. In our experiments, we have observed 4-8x increase in throughput
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when applying this strategy alone. However, the strategy poses a dilemma. As the number

of to-be-scheduled micro-batches is increased, the benefits of the strategy is intensified while

limiting the scheduler’s ability to react to workload changes. To enable efficient elasticity

decisions, we introduce a new scheduling mechanism that does not interrupt processing, and

can enforce latency guarantees. Our proposed scheme is based on two techniques illustrated

below:
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Figure 3.3. Group-Ahead Scheduling

3.4 Group-Ahead Scheduling

The objective of this technique is to eliminate the scheduling and communication over-

heads discussed in Section  1 . The centralized scheduler makes the same scheduling deci-

sion (i.e., execution graph) for a consecutive group of micro-batches. Figure  3.3 shows the

technique in action. There are subtle differences from the normal activity introduced in

Section  1.2 . The tasks for a group of batches are sent to the worker nodes using the same
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message. Each worker node employs a local-scheduler process to queue its tasks, and keeps

track of their dependencies (e.g., data dependencies between the mappers and the reduc-

ers). The data partitioner inform local scheduler of the whereabouts of the data-blocks of

the new batches. In addition, the centralized scheduler ensures that the execution is not

interrupted because it schedules the next group of batches ahead of time (i.e., before the

end of the execution of the current group). To enable elasticity decisions, local schedulers

and workers send periodic runtime statistics to the centralized scheduler. For instance, the

data partitioner shares information input data rates and key distribution, while the local

scheduler report the ratio of the micro-batch intervals and processing times. These messages

are sent asynchronously and does not interrupt the data processing. Figure  3.4 illustrates

the proposed scheduling scheme in action. At Time t, the scheduler starts a group of micro-

batches using the Group-Ahead approach. While the micro-batches are being processed, the

scheduler monitors the relationship between the processing time and the batch interval. If

the relationship satisfies the stability condition (e.g., as in Zone 2), the scheduler will not

intervene until the group is about to end. We refer to that time as the scheduling window.

At this time, the scheduler will start a new group using the same query execution plan.

Notice that the scheduling window is a parameter that is defined to safely allow the worker

nodes to receive the newly scheduled tasks before the current group ends, and hence avoids

interruptions. At any point in time, if the scheduler decides to elastically add or remove

tasks in the execution plan, it will update the current group immediately. For example, in

Figure  3.4 the scheduler changes the execution plan (and hence the schedule) of Group t + 1

after submitting the entire schedule to the nodes. At Time 1©, the scheduler sends Group

t + 1 to workers. At Time 2©, the scheduler decides to change the group’s execution plan

(i.e., change the number of map or reduce tasks). The effect of this change will take some

time until it takes place. We refer to this time by the adjustment window. The adjustment

window allows the workers to update their task queues without interrupting the current

micro-batch computation. At Time 3©, the effect of the new schedule update takes place.
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3.5 Elastic Scheduling

The objective of this technique is to enforce latency requirements of users’ applications.

Prompt+ seeks to meet the latency requirement using minimum resources. Figure  3.2b 

illustrates how Prompt+ defines 3 elasticity zones to guide when auto-scale actions should

take place.

The purpose of Zone 2 is to shield Prompt+ from sudden workload changes. It can be

viewed as an expansion of the stability line. It queues the delayed batches briefly in case of

load spikes, and lazily reduces the number of executing-tasks when the load is reduced. In

Zone 1, Prompt+ can remove some of the Map or Reduce tasks without affecting the latency

guarantees. In Zone 3, Prompt+ must add more resources to restore stability. The objective

is to keep the execution engine in Zone 2. Prompt+ uses a threshold-based technique to

change the level of parallelism at runtime (see Alg.  4 ). When the ratio W = P rocessing T ime
Batch Interval

exceeds a system-defined threshold (termed thres) for d consecutive batches, a scale-out is
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triggered. Prompt+ adds Map and/or Reduce tasks to the execution graph according to

workload changes. It uses the two statistics data rate and data distribution in the past d

batches to guide the process. The two metrics are computed as part of the Frequency-aware

buffering technique (Section  2.4.1 ). If both metrics increase, then Map and Reduce tasks

are added. If only the data rate (i.e., the total number of tuples) increases, then Mappers

are added. If only the data distribution (i.e., the number of keys) increases, then Reducers

are added. The process repeats until W ≤ thres. When W ≤ thres − step is true for d

consecutive batches, scale-in is triggered. Prompt+ removes Map or Reduce tasks from the

execution graph by the same criteria for scaling out. A grace period of d batches is used

after completing a scale-in or scale-out, where no reverse decision is made.

Algorithm 4: Latency-aware Auto-Scale
Input: Statsd: Processing Time/Batch Interval for previous d batches, K: Current

number of keys and Size: Current data rate, p: Current number of Map tasks,
r: Current number of Reduce tasks, Lstep: increments of W (10%), Lthres: Upper
Load Threshold (90%)

Output: New Execution P lan : p and r
1 Define Wi = |ProcessingT imei|/|BatchIntervali|;
2 Append Wi to Statsd;
3 Update data Rate / data distribution into Statsd;
4 if Wi > thres then
5 if count = d then
6 Increment p if data rate increased;
7 Increment r if data distribution increased;
8 reset count;
9 else

10 increment count ;
11 end
12 return Execution Plan;

3.6 Experimental Evaluations

3.6.1 Experimental Setup

We use the same experimental setup illustrated in Section  2.6.1 .
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Figure 3.5. Prompt+ Elasticity

3.6.2 Experimental Results

Resource Elasticity. We assess Prompt+’s ability to adjust the degree of parallelism in

response to changes in workload. In the experiment, Prompt+ has a pool of Spark executors,

each set with 4 cores. Back pressure is disabled to allow for Prompt+’s elasticity technique to

be triggered. Figure  3.5a illustrates the effect of increasing the number of tasks on Prompt+’s

throughput. We continuously increase the number of input data tuples and data distribution

(i.e., number of unique keys) over time. Figure  3.5b illustrates how Prompt+ responds swiftly

to the increase in workload by adding more execution tasks. Notice that when Prompt+’s

throughput matches the input rates, it maintains its stability and provide latency guarantees

(Figure  3.2a ). Figures  3.5c and  3.5d show the behavior when data rate is decreased and how

Prompt can adapt the ratio of map/reduce tasks according to changes in data rate or data

distribution. Prompt+’s ability to match its throughput to that of the input workload is

crucial to maintain latency guarantees.

Elastic Scheduling. We assess Prompt+’s elastic scheduling capability and responsive-

ness to workload changes. Figure  3.7a shows the effect of applying the group-ahead schedul-
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ing strategy on system’s throughput. It delivers significant increase in system through-

put (i.e., up to 5x) regardless of the partitioning technique adopted. Figure  3.6 demon-

strates Prompt+’s responsiveness to workload changes, compared to group-ahead scheduling

and Spark’s one-at-a-time scheduling strategies. In this experiment, we set the group size

to 10 batches, e.g., 1 − 10, 11 − 20, 21 − 30, etc. The batch interval is set to 1 second.

Initially, each technique is provided with the maximum data rate it can sustain (i.e., maxi-

mum throughput achieved while maintaining the stability condition). We introduce a load

spike at the middle of on of the groups (e.g., Batch 15 1©), where the amount of data is

significantly increased for this batch (i.e., up to 2x). This is quite in the middle of the group

of Batches 11 − 20. All the techniques are fixed to restore the stability as fast as possible.

For each technique, we report the ratio of Processing time vs. the batch interval. This

ratio is a measure of how the system adheres to the stability condition while applying the

scheduling technique. Prompt+’s elastic scheduler adjusts the running query execution-plan

where this adjustment starts to show its effects during the execution of Batch 17. As a

result, the stability condition is quickly restored by the time the system is processing Batch

20. Meanwhile, group-scheduling makes the change at the end of the group, and starts a the

new adjusted plan at Batch 21 2©. Hence, it takes longer to restore the stability condition

at Time 3©.
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More importantly, notice that Prompt+ is comparable to native Spark Scheduler respon-

siveness in which the scheduler changes the query plan immediately after the induced Spike.

Figure  3.7b shows the effect of applying Prompt+ on latency guarantees. The percentages of

times the latency is violated is much less than the case with group-ahead or one-time schedul-

ing. Prompt+ enables significant increase in system’s throughput and latency enforcement,

while maintaining resource utilization.

3.7 Concluding Remarks

This chapter presents Prompt+, an elastic scheduling technique for the micro-batched

stream processing systems. Prompt+ enforces latency by dynamically adjusting the degree

of parallelism of the micro-batch computations. It uses asynchronous updates to avoid inter-

ruptions of data processing. Prompt+ defines three elasticity zones to maintain robustness

against workload spikes.
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4. PARTLY: LEARNED DATA PARTITIONING WITH DEEP

REINFORCEMENT LEARNING

4.1 Problem Statement

Data partitioning plays a critical role in distributed data stream processing systems. The

basic and well-known partitioning strategies are shuffling, and hashing. Shuffle partitioning

assigns data tuples in round-robin to processing operators based on the order of arrival

(Figure  4.1a ). Shuffle partitioning guarantees that all processing operators receive almost

equal number of data tuples. However, it does not insure key locality, i.e., tuples with

the same key are not necessarily sent to the same processing operator, thus increasing the

overhead of transferring data to compute per-key aggregates, e.g., [  47 ]. In contrast, hash

partitioning, also termed Key Grouping [ 47 ], applies a hash function over one or more fields of

each tuple, i.e., a partitioning key, to route the tuple into a processing operator (Figure  4.1b ).

Hash partitioning assigns tuples with the same keys to the same processing operator. When

the input data stream is skewed, some key values will appear more often than others. Thus,

hash partitioning would result in unbalanced input to the processing operators.

State-of-the-art stream data partitioning techniques apply heuristics to achieve the bene-

fits of both the shuffling and the hashing techniques while minimizing their drawbacks. One

example heuristic is to split the skewed keys over multiple operator instances, e.g., [ 32 ,  46 ,  47 ].

(see Figure  4.1c ). The data partitioner applies multiple hash functions to the tuple’s parti-

tioning key to generate multiple candidate assignments for the data tuple. Then, the parti-

tioner selects the operator instance with the least number of tuples at the time of the decision.

To realize this objective, the partitioner maintains two statistics in real-time: (1) The num-

ber of tuples and distinct keys assigned to each operator instance, and (2) Counts on the

input data distribution to detect the skewed keys and split them. The partitioner may need

to determine heavy hitters (i.e., most common key values) or apply periodic sorting [  2 ,  46 ].

These bookkeeping statistics and operations can overwhelm the data partitioner memory

and pose a risk on the stability of the streaming engine [  32 ] (e.g., when applied to millions

of keys in long-running topologies). These partitioning techniques rely on static heuristics,

and do not learn from past experiences, i.e., the good or the bad decisions.
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Figure 4.1. Traditional Data Partitioning Techniques: simple and static heuristics

In this chapter, we envision the use of deep reinforcement learning to partition data in

distributed streaming systems. The use of artificial neural networks can facilitate the learn-

ing of efficient partitioning policies that match the dynamic nature of streaming workloads.

Furthermore, we showcase PartLy, a proof-of-concept learned data-partitioner for streaming

engines. Evaluations show PartLy’s potential to match the performance of state-of-the-

art techniques in terms of partitioning quality while minimizing bookkeeping overheads.

We identify potential challenges when applying machine learning techniques to the data

partitioning problem in distributed data stream processing. Furthermore, we incorporate

new multi-agent learning concepts that can enable learned data-flow optimization for dis-

tributed streaming systems. These concepts include state-space partitioning, cooperative

multi-agents, and distributed learning.

4.2 Related Work

Deep Reinforcement Learning (DRL) has been applied successfully to solve challenging

problems in computer systems including network routing [  55 ], and memory caching [  57 ]. Fur-

thermore, DRL has been applied to learn policies for different optimizations in distributed

database processing. Examples include query optimization [  42 ], data indexing [  58 ], and

task-scheduling [ 41 ]. Recently, Yang et al. [  58 ] and Hilprecht et al. [  28 ] propose to learn

data partitioning for relational and cloud-based databases. To the best of our knowledge,

PartLy is the first to envision a stream data-partitioner using deep reinforcement learn-

ing. Furthermore, recent research, e.g., [ 28 ] and [  58 ], apply DRL for data partitioning in

relational and cloud-based databases.
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4.3 Deep Reinforcement Learning

DRL is a machine learning technique that enables an agent (e.g., a neural network) to

learn a task by trial-and-error. The agent learns from its own actions, and experiences

through continuous interactions with a defined environment (Figure  4.2 ). The environment,

action space, and reward calculation mechanism are predefined. Training is carried over sev-

eral training episodes until a target convergence is achieved. In each episode, the environment

informs the agent of its current state, st, and the potential actions at = {a0, a1, ..., an} that

the agent can choose from. The agent executes an action a ∈ At, and the environment

responds to the agent with a reward rt. The environment provides the agent with a new

state st+1 and a new action set at+1 that reflects the status after its recent action. This

process repeats until a terminal state is reached (i.e., where no more actions are possible.

This marks the end of a training episode after which a new episode may begin. The objective

of the agent is to maximize the reward over episodes by learning from its previous actions.

The training objective is to adjust the weights θ of the neural network to learn a policy πθ

that achieves the maximum reward. Various training methods include [  18 ]:

Deep Q-Learning: Deep Q-Learning [ 27 ] is a widely used reinforcement learning method.

Q-learning leverages an action-value function to define a policy πθ as Qπ(s, a) = E[R|st =

s, at = a]. It recursively learns an action-value function Q∗ to approximate the optimal

policy. To facilitate training, Deep Q-Learning uses a Reply Buffer to accumulate tuples of

the form: (s, a, r, s) that represent the current state s, the action a, the reward achieved

r, and the new state s. The Reply Buffer is used to periodically update Q∗ with the most

recent learning parameters θ to stabilize the training.

Policy Gradients: This method is commonly used in a variety of DRL problems [ 18 ].

It smoothly adjusts the policy parameters θ in the direction that maximizes the training

objective (i.e., the reward). Since drastic changes can cause the policy to fluctuate without

converging, policy gradient methods (ascent or descent) tune the policy parameters θ by

increasing each parameter by a small value if the gradient is positive (i.e., the positive

gradient indicates that a larger value of θ will increase the reward). Similarly, decreasing

the parameters a small value when the gradient is negative.
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Actor-Critic: Actor-Critic [  34 ] is a variant of policy gradient methods. Instead of con-

tinuously updating the agent’s policy in each training episode, a neural network, referred to

as the critic, decides when it is beneficial to update the agent policy using the experience

of the recent training episode (i.e., actions and rewards). The critic limits possible inverse

training by deciding whether or not the experience of a training episode will improve the

agent’s performance. This allows the agent to explore the decision space without negatively

affecting its policy weights. Both the agents’ policy and the critic are approximated by deep

neural networks.

Agent

Environment

State
st

st+1

rt+1

Reward
rt

Action
at

at+1

Figure 4.2. DRL agent interacts with the environment

4.4 Learned Data Partitioning

The real-time execution in data stream processing systems requires the partitioning tech-

nique to make a swift per-tuple decision upon tuple arrival. Otherwise, data partitioning

may lead to performance bottlenecks by increasing end-to-end tuple processing times. In

addition, the input data rate is typically in the order of millions of tuples per second (e.g.,

see [ 54 ]). Processing individual tuples through a neural network in real-time is challenging.

One possible solution is to use micro-batched stream processing (e.g., [ 61 ]) to amortize the

cost over a batch of tuples. In contrast to tuple-at-a-time stream processing, the partitioning

decision is taken collectively for a group of tuples that are buffered within a batch. Hence,

the data tuples are assigned to data blocks, and consequently, each data block is assigned to

a processing node. Furthermore, the data partitioner can operate on the key value of tuples
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within a batch (i.e., one decision is given to all tuples sharing the same key value within a

micro-batch).
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Figure 4.3. Example of micro-batch stream processing with three Map and two
Reduce tasks, and a Stream Receiver (SR1) with PartLy to partition a micro-batch
into data blocks.

We present a case for applying DRL to solve the problem of data partitioning in stream

processing systems. PartLy leverages a single agent and can be deployed to an instance of

a data-partitioner process in a streaming topology. PartLy shows how the streaming data-

partitioning can be modeled in the context of DRL. We discuss the design of PartLy, how

states are represented, and the training procedure:

4.5 State Representation

PartLy applies vectorization to model the intermediate states of the training episodes.

The vectors hold information about the batched data and the progress of assignment to data

blocks. Each non-terminal state represents a partial assignment of the data keys to data

blocks. Each vector is a row of size n, where n is the number of unique keys in the batch.

The assignment of keys to data blocks is captured using a matrix M of size n ∗m for each

episode, where m is the number of data blocks. For example, the value Mij is 1 if ki is

fully-assigned to Blockj. This value is 0 if no tuples of ki are assigned to Blockj. Mij = 0.5

if ki is equally-split across two data blocks. Figure  4.4 gives a generic representation of a

training episode in PartLy.
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4.5.1 Reward Design

DRL algorithms require a performance metric to use as a reward signal. The variance of

latencies in task-execution (i.e., downstream operator instances) is a straightforward repre-

sentation of the balancing quality of the data partitioning policy. However, latency variance

does not offer a dense reward signal. The agent’s training is efficient if it is able to receive a

reward signal as it navigates the environment (i.e., each action in a training episode receives

a partial reward). Moreover, calculating the latency variance requires the actual execution of

the partitioned data stream. This poses an overhead on the training and it can be prohibitive

to arrive to convergence. In fact, in this case, the reward calculation is more time-consuming

than traversing a training episode by the agent. One possible approach to resolve this is

the use of traditional data-partitioning cost models [  32 ,  46 ,  47 ] to estimate the reward signal.

These cost models can be adopted to offer both; partial rewards for the agent actions during

an episode and a final reward signal at the end of the episode. For instance, PartLy adopts

the PK2’s [  47 ] cost model when using the number of tuples assigned to a processing node to

calculate the final reward for the training episodes. After the agent has trained an acceptable

policy using a cost model, it can be deployed in a streaming topology.
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Figure 4.4. Actions in PartLy training episode
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4.5.2 Decision Space

Efficient processing of data streams entails various optimizations. Even with the use of

batching, the number of possible assignments of data tuples within a batch to processing

nodes is exponential, i.e., MK , where M is the number of processing nodes and K is the

number of distinct keys. One solution is to limit the exploration of the learning-agent to a

solution known to be efficient. For example, in earlier work [  46 ,  47 ], partitioning of a skewed

key value to only more than five processing nodes does not contribute to balancing the load

over the workers (as in [  47 ]). Applying this strategy alone can reduce the decision space to

the range of 2∗K∗M - 5∗K∗M . In general, increasing the possible optimization actions have

a significant effect on the training convergence time. Optimization tasks include deciding

the granularity of keys partitioning over the processing nodes (i.e., splitting a key equally

over nodes or with variable percentages).
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Figure 4.5. Design of PartLy

4.6 Training Process

PartLy uses deep reinforcement learning, where an agent interacts with the defined en-

vironment (See Figure  4.5 ). The environment informs the agent of its current state, st, and

the set of potential actions At = {a0, a1, ..., an} that the agent can choose from. The agent

executes an action a ∈ At, and the environment responds to the agent with a reward rt. The
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environment provides the agent with a new state st+1 and a new action set At+1 that reflects

the status after the recent action. This process repeats until a terminal state is reached

(i.e., when no more actions are available to execute). This marks the end of an episode after

which a new episode may begin. The objective of an agent is to maximize the reward over

episodes by learning from the agent’s previous actions. PartLy treats every batch of data as

an episode and learns continuously over the multiple batches. PartLy uses a policy gradient

method to select actions based on Policy πθ (i.e., neural network), where θ is a vector of

policy parameters. The policy πθ is optimized over episodes by modifying its parameters

θ (i.e., the neurons’ weights) to generate the best reward. PartLy uses the cost model of

the state-of-the-art techniques in [  2 ,  32 ,  46 ,  47 ] to compute the rewards of episodes. The cost

model relies on checking the difference in sizes and cardinality between the maximum and

average data blocks. The agent’s objective is to minimize this difference by maximizing the

reward. For example, in the case of the Pk2-partitioner [  47 ] the reward is set to the negative

of the difference between the maximum size and the average size of all generated data blocks

for the batch: max|Blocki| − avg|Blocki| i ∈ p, where p is the number of data blocks. No-

tice that, when the agent is trying to generate even-sized data blocks using the cost model

of PK2 [  47 ], the action space only allows a key to be assigned to one data block or split over

two data blocks, and thus preserving key-locality to two data blocks in the worst case. In

other words, the action space of the agent is defined according to the adopted cost model

of the partitioning technique. Figure  4.5 gives an overall view of PartLy. The micro-batch

statistics (i.e., the list of key counts) are vectorized and are inserted into the state layer.

The statistics are collected using an online technique while buffering the data tuples similar

to the one discussed in Chapter  2.4.1 . Count values of the distinct keys are transformed and

are passed to hidden layers, and finally to the action layer. We apply the following tech-

niques during the training of the agent. These techniques significantly reduce the number of

training episodes required for convergence, and provide performance enhancements:

(1) Cost-Model Bootstrapping: We apply cost-model bootstrapping [  43 ] by assigning

partial rewards to the agent’s actions using the Prompt’s cost model for data partitioning

presented in Chapter  2.3.3 . The cost model provides an indication of the balanced partition-

ing using the variance of data-blocks sizes and cardinality (i.e., number of unique keys). The
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partial rewards are defined in the following way: For each action in the training process, we

assign a positive reward if the assignment action (i.e., split or assign) does not violate the

following criteria:

• Cardinality Imbalance: The number of unique keys will remain constant over the

data blocks given this action. Note that the number of unique keys per data block is

known and is calculated as the number of keys per batch divided by the number of

data blocks.

• Size Imbalance: The data block(s) affected by the agent’s actions will not exceed

the expected maximum capacity. Note that each data block capacity is estimated as

the size of the batched data divided by the number of data blocks.

(2) Incremental Learning: During the training process, we apply incremental training

by:

• Gradually increasing the number of possible key splits over data blocks from two to

five partitions.

• Gradually allowing a different magnitude of splitting ratios (50%, 25%, 12.5%).

For instance, we start by allowing the model to only split keys equally over data blocks,

then enrich the action space by adding the ability to split equally over up to five partitions.

When the model starts to show convergence, we add the ability to split with different ratios

over the five data blocks.
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Figure 4.6. Execution Latency Variance as a Reward
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(3) Learning with Run-time Statistics: We use the variance of execution-times (i.e.,

latency) of the MapReduce tasks to compute the reward signal (See Figure  4.6 ). The reward

signal can be only used for the terminal state of the training episode when the partitioning is

complete and the batch is ready for processing. Initially, the agent is trained using cost-model

bootstrapping. When the model starts to convergence and performs near the cost model,

the agents start to use the variance of the mappers and reducers as the reward signal for

its training episodes. Note that: (1) Since we can only use one value as the reward signal,

we select the higher variance (i.e., either mappers’ or reducers’ variance). This strategy

forces the model to explore actions that lead to decreasing the variance used as the reward.

(2) Due to differences in the ranges of the values of the cost-model estimates and possible

latency-variance, we use the equation below to convert the latency variance to the cost model

range.

Reward = Costmin + LatencyV ar.−LatencyV ar.min
LatencyV ar.max−LatencyV ar.min

(Costmax − Costmin)

This conversion avoids possible inverse training by confusing the model with wrong re-

ward signals.

(a) Relative BSI: Tweets (b) Relative BSI: TPC-H

(c) Relative BCI: Tweets (d) Relative BCI: TPC-H

Figure 4.7. PartLy’s Partitioning Quality
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4.7 Experimental Evaluations

4.7.1 Experimental Setup

In each experimental setup, PartLy assumes a maximum number of keys. If the number

of keys within a batch is less than expected, zero-padding is applied (i.e., counts are set to

0). The output of the action layer is normalized to form a probability distribution to allow

for action selection. Unless a cost model is used, rewards are computed only for a terminal

state, i.e., when all keys are assigned. In addition, if a cost model is used the final reward is

computed using a running average over the previous episodes to reduce the randomness effect

and promote generating a general policy. To train the model, PartLy uses the Proximal

Policy Optimization (PPO) algorithm [  20 ] within TensorForce [ 21 ]. Training takes the range

of 5,000 to 100,000 simulated batches of data. In the experiments, we use the three data sets,

Tweets, TPC-H, and GCM (Refer to Section  2.6.1 for more details). The queries perform

a sliding window count a data stream of tuples. The queries are written in map-reduce.

Experiments are conducted for an execution setup of 5 nodes with 8 cores each (i.e., the

number of data blocks is 24). Apache Spark v2.0.0 is the processing engine. We generate

batches with different numbers of keys (i.e., ranging from few hundreds of keys to thousands

of keys).

(a) PartLy’s Training Convergence (b) PartLy’s runtime

Figure 4.8. PartLy’s Cost
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4.7.2 Experimental Results

We assess the effectiveness of PartLy against traditional and state-of-the-art techniques:

Shuffle, Hashing, PK-5 [ 46 ], CAM [ 32 ], and Prompt [ 2 ]. Figure  4.7 compares the partition-

ing quality metric for all the techniques. The partitioning quality is measured using two

metrics: BlockSizeImbalance(BSI) and BlockCardinalitySize(BCI). The BSI defined as

max|Blocki| − avg|Blocki| i ∈ p and is computed relative to the Shuffle technique. Note

that Shuffle partitioning guarantees size balancing at the expense of broadcasting keys to

all data blocks (i.e., potentially increased overhead at the compute nodes). Similarly, BCI

is defined as max||Blocki|| − avg||Blocki|| i ∈ p, and is computed relative to the Hash

technique. We verify the partitioning strategies for all algorithms by feeding the generated

data blocks to the Spark Streaming engine. PartLy demonstrates the ability to outper-

form state-of-the-art partitioning techniques when trained using an optimized-partitioning

decision space.

(a) PartLy’s Throughput - Tweets (b) PartLy’s Throughput - GCM

Figure 4.9. PartLy’s Throughput

Figure  4.8a demonstrates the effect of the training technique used and the decision space

(i.e., possible optimizations) on the convergence rate. The training technique and the pro-

vided action space have a profound impact on the number of training episodes necessary for

convergence. For instance, using the cost-model bootstrapping to generate dense rewards

leads to a significant drop in the number of training episodes necessary. The use of partial

rewards for intermediate states in a training episode shortens the training time by up to

70%. Furthermore, the use of runtime statistics to improve the model training provides a
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performance gain in throughput. Applying this training strategy achieves a 12% decrease in

reduce-variance compared to Prompt. PartLy significantly improves the partitioning quality

and reduces the split of keys by 38%. Figure  4.9 demonstrates PartLy’s ability to maintain

a competitive throughput while changing data distribution and batch intervals. Figure  4.8b 

gives the partitioning cost in terms of the required time to partition a micro-batch into data

blocks. PartLy shows a potential to outperform CAM [  32 ] and Prompt [  2 ] in terms of speed

as the number of keys increases.

4.8 Future Directions: The Multi-Agent Approach

In this section, we study how recent advances in multi-agent DRL techniques can be

leveraged in the context of distributed data stream processing systems.

4.8.1 State-Space Partitioning

The data-partitioning problem can be formulated as a Markov Decision Process

(MDP) [  18 ], where at each state it is required to assign an item (i.e., either a data tu-

ple or a key-value) to an existing or new data partition. The problem follows the Markov

Property [  18 ] where: (1) Each action requires the knowledge of the current state only, and

(2) The current state contains the accumulative results of all previous actions since the initial

state. However, formulating the distributed data-partitioning problem using one big space to

optimize the data-flow through an entire topology is not practical (i.e., training convergence

is not achievable).
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Figure 4.10. Localized Reward Shaping
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Applying state-space partitioning with localized reward shaping is crucial to realizing

a working solution. One example of state-space partitioning is to decouple the decision

of the number of data partitions from the process of applying balanced data assignment.

This approach chunks the complex problem into smaller solvable ones and paves the way to

introduce multiple agents. It simplifies the state-space of the agents, and increases training

efficiency (i.e., rate of convergence). Figure  4.11 gives an example, where a scheduler-agent

cooperates with the data-partitioner agent through “advising” on updating the number of

data partitions when necessary. Figure  4.10 demonstrates another issue of applying state-

space partitioning to the data partitioning problem in a streaming topology. In this topology,

two data partitioning agents are deployed, say DP1 and DP2. Assume that the average tuple

latency of the topology is increased due to unexpected DP2 behavior, while DP1 achieves

optimal load-balancing to its immediate downstream operators. One solution is to shape

the rewarding of each agent to its local environment (e.g., by using the run-time and load

statistics of the immediate downstream operators of a data partitioner instance). This

enables DP1 to avoid triggering any modifications, and limits the retraining work to DP2.

Moreover, Both DP1 and DP2 will not get affected by any other factors that contribute to

the average tuple latency of the entire topology.
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Figure 4.12. Actor-Critic Multi-Agent Training

4.8.2 Cooperative Multi-Agents

The data partitioning problem in distributed streaming topologies can be formulated in

the context of Multi-Agent DRL. The problem can be formulated as a multi-agent extension

of the traditional Markov Decision Processes (MDP), where a set of states S = S1, ..., Sn

represents all possible state-spaces of the agents (analogously, the set of action-spaces A =

A1, ..., An and the set of observations O = O1, ..., On for all agent). Each agent independently

leverages a policy πi to choose the next action and produce its next state. The reward of

each agent is defined as a function of its state and action. The environment provides each

of the agents a private observation correlated with the agent’s state and action. Each agent

aims to maximize its own reward Ri. Figure  4.11 demonstrates the use of cooperative agents

in the context of distributed micro-batched stream processing. Two types of agents are

utilized. One centralized-scheduler agent (SC) and multiple data-partitioners agents (DP).

All agents interact with the same environment. The centralized-scheduler learns an elasticity

policy to advise on the number of data blocks, and uses system-wide observations, e.g., the

relationship between batch interval and processing time. The DP agents learn a balanced

data partitioning policy and use local observation, e.g., balance key-assignments over data
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blocks. Furthermore, no assumptions are made on the communication pattern between the

agents. For instance, the deployed data-partitioning agents may not communicate (e.g., DP1

and DP2 in Figure  4.10 ), while the centralized-scheduler agent might communicate with a

data-partitioner agent to advise on the number of data partitions (Figure  4.11 ). The actor-

critic policy gradient methods can be extended to facilitate agents’ training in this setup [  19 ].

In this training scheme, each agent’s critic is enriched with the policies of other agents.

Figure  4.12 demonstrates the training algorithm in action. An agent can use additional

information of the other agent policies during training, but it cannot be used at execution

time (i.e., test time). The learned policies of the DP agents can only use local information at

execution time (i.e., observation from the immediate local environment). The critics serve

to avoid possible inverse training of the agents. For instance, the data-partitioner agent

must be aware of the centralized-scheduler agent involvement if the load is beyond current

resources (i.e., the partitioning policy is balanced). Otherwise, the DP agent will mistakenly

explore other partitioning policies. Similarly, the training of the scheduler agent should not

get negatively affected by the data-partitioner decisions. The scheduler needs to be aware

when the data-partitioner must take responsibility for the current increase in average tuple

latency (e.g., when it is due to unbalanced partitioning). Algorithm  5 provides an example

of applying this training scheme.
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Algorithm 5: Distributed Multi-Agent Training
Input: M : Max. number of training episodes, N : Number of Agents, P : Random Action

Exploration Process, B: Replay Buffer, K: Max Batch-Size-Keys
Output: Trained N Agents

1 For i =1 to Max-Number-Episodes(M);
2 s<– Initial State; P<– Initial Action Exploration Process;
3 For k= 1 to Max-Episode-Length (K);
4 Foreach agent i ∈ N do;
5 Choose action ai according to current policy πi ;
6 Execute actions a1, ..., aN ;
7 obtain reward r and new state s;
8 Add new tuple (s,a,r,s’) to Replay Buffer(B);
9 set new state s‘ in s;

10 Foreach agent i ∈ N do;
11 Sample random batch from B: (s,a,r,s’);
12 Update critici by minimizing the Loss;
13 Update actori using policy gradient;
14 Update target network parameters for all agents i ∈ N ;
15 end for;
16 end for;

4.8.3 Distributed Learning

The real-time processing and the online-execution of streaming workloads requires effi-

cient and fast training of the agents’ policies. One possible approach is the distributed-mode

execution of the training through parallelization. We propose two execution schemes that

offer a trade-off between training convergence-speed and training overheads when learning a

data partitioning policy:

(1) All-at-once: In this scheme, the partitioning policy is trained by all operator instances.

Figure  4.13a gives an example. All the DP instances (e.g., Spouts in Storm) in the streaming

topology provide training episodes information necessary to update the learned policy (i.e.,

experience reply buffer). This scheme is centralized training but decentralized execution. It

serves to minimize the training time as much as possible.

(2) One-at-a-time: In this scheme, the data partitioning policy is only trained at one

operator instance until convergence, while other operator instances use a heuristic approach.

Figure  4.13b gives an example, where a single DP instance is used to train the data par-

titioning policy. When the learned policy converges and outperforms the heuristic, it is
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deployed to other DP instances. This is an example of centralized training and execution.

The objective is to limit the disruption in the execution of the streaming topology that can

be caused by the training. Algorithm  5 is centralized training with decentralized execution,

which is One-at-a-time. It can be easily altered to an All-at-once version.

4.9 Concluding Remarks

We envision that DRL can automate the operations of stream processing engines. We

showcase PartLy that demonstrates a potential for applying DRL to the data partitioning

problem in distributed stream processing. Data partitioning is the starting point to apply

DRL to streaming engines. However, the wide adoption of DRL techniques across the stream-

ing engine internals can significantly improve the performance and operating costs. It opens

the possibility of autonomous execution and reducing the overheads of tuning heuristics by

humans. We show how the nature of distributed stream processing provides hurdles for the

direct application of DRL techniques. We identify some of the major challenges and show

how recent advances in multi-agent DRL provide exciting research directions for addressing

these challenges.
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5. REALIZATION IN DISTRIBUTED MICRO-BATCH

STREAM PROCESSING SYSTEMS

In this chapter, we present the techniques of Prompt, Prompt+, and PartLy as a generic

abstraction that can be adopted in Distributed Micro-batch Stream Processing Systems. We

demonstrate how these techniques can be realized in three widely used stream processing

engines namely, Apache Spark [  61 ], Apache Flink [ 12 ] and Apache Storm [  48 ]. Figure  5.1 

depicts a five-technique abstraction applied to the generic concept of the micro-batch compu-

tational model. Using this abstraction, we discuss how the proposed schemes can be realized

to optimize windowed-aggregates streaming queries in these three systems when a batching

execution model is used.
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Figure 5.1. General Abstraction

The first two techniques, namely Frequency-aware Buffering and Early-Batch-Release,

facilitate data partitioning. Frequency-aware Buffering collects data statistics to facilitate

the subsequent partitioning step. In contrast, Early-Batch-Release makes time for applying

optimized data-partitioning without violating the synchronization between the subsequent

batch computations. The third and fourth techniques, namely Balanced Micro-batch Data

Partitioning and Balanced Key Allocator, are responsible for partitioning the batched data

and the intermediate query results, respectively. The last technique, namely Elastic Micro-

batch Scheduling is responsible for enforcing latency by dynamically varying the number of

execution-tasks in response to variation in the workload. The realization of PartLy include
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the first two techniques. The first four techniques represent Prompt while the fifth technique

represent Prompt+. We use this abstraction to demonstrate how to the proposed optimiza-

tions in the studied systems. For each of the systems, we present a brief overview of the

system’s architecture, and then discuss how the proposed scheme can be realized within that

system’s architecture.

5.1 Spark Streaming

5.1.1 Architecture of Spark

Spark Streaming [  61 ] is a native micro-batch stream processing engine. It operates by

dividing the continuous data stream tuples into batches that are then processed by the Spark

data processing engine [ 60 ]. The results are generated in a stream of batches. Its in-memory

data abstraction, DStream (short for a Discretized Stream), represents a stream of data tuples

that is divided into small batches. The DStreams are built over the Spark’s main data type

(i.e., the Resilient Distributed Datasets (RDD, for short) [  59 ]). Figure  5.2 demonstrates the

batching and execution cycles within the Spark Streaming engine. A Data Receiver process

buffers the input data stream for a predefined batch interval. The Data Receiver partitions

the batch into smaller data blocks. The Block Manager stores the data blocks in the memory

of the worker nodes, and informs the master node of the block’s address. The master node,

termed the Driver, continuously runs administrative processes to manage the execution.
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Figure 5.2. Data Flow in Spark Streaming
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The Job Generator is responsible for generating the execution graph (e.g., see Figure  1.1 ).

The Receiver Tracker keeps tracks of the addresses of the data blocks stored in the workers’

memory. It also holds the data dependencies between the subsequent batches and the inter-

mediate results. This information is leveraged by the Task Scheduler to initiate Map-Reduce

execution tasks over the data-blocks. The Spark Streaming engine relies on sending com-

putation to data, and uses short-lived tasks to perform computation over the accumulated

batches of the streaming data.
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Figure 5.3. Realization in Spark Streaming

5.1.2 Realization in Spark Streaming

The proposed schemes are realized in Spark Streaming [  61 ] by modifying four compo-

nents. Figure  5.3 presents the realization of the generic abstraction in the Spark Stream-

ing engine. Frequency-aware Data Buffering is implemented as a customized data receiver.

The customized data-receiver ingests the data tuples and maintains the two data struc-

tures CountTree and BatchedData. The two data structures are leveraged to apply Balanced

Micro-batch Data Partitioning at the end of the batch interval. Early Micro-batch Release is

implemented in the Block Manager process. It maintains synchronization by sealing and se-

rializing the data blocks and placing them in the memory of the worker nodes. The Balanced
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Key Allocator is implemented in the shuffle phase of the mappers. The Elastic Micro-batch

Scheduler is realized using the following two processes: (1) The Task Scheduler within the

driver node, (2) a new process, termed Local Scheduler within each of the worker nodes. The

first process is modified to allow for dynamically deciding the number of mappers and reduc-

ers for each micro-batch computation. The Local Scheduler enables group-ahead scheduling.

It maintains the scheduled Map-Reduce execution tasks and executes them at the designated

batch intervals.

5.2 Apache Flink

Apache Flink is a distributed data processing engine. It supports both tuple-at-a-time

stream processing and batch processing. In this section, we illustrate Flink’s execution

model for data streams, and then we show how our generic abstraction can be realized in its

streaming workloads.

5.2.1 Architecture of Flink

Flink expresses and executes streaming queries as pipelined dataflow programs. A Flink’s

dataflow program is a directed acyclic graph (DAG) that represents operators and their data

dependencies. The basic data abstraction in Flink is data streams. A data stream represents

the input and output of the processing operators. The data dependencies show how data

streams produced by an operator are consumed by other operators. Flink’s core runtime

engine can be seen as a streaming dataflow engine. As depicted in Figure  5.4 , Flink has

three types of processes: client, Job Manager, and Task Manager. The client transforms

the program code into a dataflow graph, and sends it to the JobManager. The JobManager

schedules the execution of the operators within the dataflow over the TaskManager(s). It

keeps track of each operator’s progress. The TaskManagers are responsible for the actual

execution of the operators. The TaskManagers communicate the status of the running op-

erators to the JobManager. Each of the TaskManagers maintain two sets of pools: (1) The

buffer pool: Hold the outputs of the operators (i.e., the data streams), and (2) The network

connections pool: Transfer the data streams between the operators over the network. The
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dataflow graphs are executed in parallel. The operators are parallelized into one or more

instances, referred to as subtasks, and the data streams are split into one or more stream

partitions (i.e., one partition per consuming subtask). The operators implement the query

processing logic (e.g., filters). Flink’s intermediate data transfers are implemented through

the exchange of buffers. When a data record is ready on the producer side (i.e., on an up-

stream operator instance), the data record is serialized and can be split into one or more

buffers (a buffer can also fit multiple records) that can be forwarded to consumers (i.e., to

a downstream operator instance). A buffer is sent to its designated consumer(s) as soon

as it is full or when a timeout condition is triggered. This enables Flink to provide higher

throughput by setting the size of buffers to a high value (e.g., a few kilobytes), or provide

low latency by setting the buffer timeout condition to a low value (e.g., a few milliseconds).
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5.2.2 Realization in Flink

The realization of the abstraction in Flink relies on some core components within Flink’s

runtime engine. Figure  5.5 illustrates the architecture of Flink, and how the abstraction’s

five-techniques are adopted. The Frequency-aware Data Buffering technique 1© is imple-

mented in the SourceReader process. The SourceReader, analogous to a receiver in Spark, is

responsible for ingesting the input data stream and for splitting it in memory to be consumed

by the operators. The SourceReader process is to be enriched with the two data structures,

CountTree and BatchData. The Blocking Intermediate Data Streams is the core abstrac-

tion for data-exchange between operators. An intermediate data stream represents a logical

handle to the data that is produced by an operator, and can be consumed by one or more

operators. It buffers all of the producing operator’s data before making the data available for

consumption, thereby separating the producing and consuming operators into different stages

(i.e., batching and processing). The SourceReader applies the Balanced Micro-batch Data

Partitioning 3© using the statistics collected in CountTree and BatchData, and emit balanced

input into intermediate data stream buffers. The Buffers are used as a data-exchange mech-

anism to transfer intermediate results between operators. The Early Micro-batch Release 2©

leverages the blocking property of the buffers to synchronize the processing of the operators.

The Balanced Key Allocator 4© leverages the Custom Broadcasting of the intermediate data

buffers to enable balanced input to the aggregation stage of the dataflow (i.e., the Reduce

stage). For correctness, and due to the continuous nature of the operator processes, Control

Events are used to synchronize the boundaries of consecutive batches over all the operator

instances. Control Events are special tuples that can be injected into the data stream by

operators to communicate signals with downstream operators. For instance, a watermark

control event includes a time attribute t indicating that all tuples with timestamps lower

than t have already been processed by the upstream operator. These watermark control

tuples are used as a unified measure of progress, and aids the execution engine in processing

tuples in the correct event order, and serializes the operations, e.g., window computations

via a unified measure of progress. Watermarks originate at the sources of a dataflow, and
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propagate from the source-readers throughout the downstream operators of the dataflow.

Finally, the JobManager is responsible for the Elastic Scheduling 5© of the operators.

1

5
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3
4

Figure 5.5. Realization in Apache Flink

5.3 Apache Storm

5.3.1 Architecture of Storm

Apache Storm is a distributed stream processing engine [ 48 ]. It has been widely used in

industries and research institutions [  54 ]. Originally, Storm’s execution engine has adopted

the tuple-at-a-time stream processing model. Nevertheless, Trident has been introduced to

enable the micro-batch processing model on-top of Storm’s engine [  1 ]. Trident is an ab-

straction that is built over Storm to achieve higher-throughput processing. Storm’s engine

executes each streaming query as a topology of operators (e.g., see Figure  5.6 ). Similar to

Spark and Flink, each topology is represented as a directed acyclic graph of tasks that are de-

ployed over a cluster of machines. Storm’s cluster includes a master machine and one or more
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worker machines. The master runs the Nimbus process that is similar to Flink’sJobManager.

Nimbus is responsible for orchestrating the execution of the topology (e.g., assigning tasks

to worker machines, and monitoring failures). Each worker runs a Supervisor instance. The

supervisor continuously listens to Nimbus for assignments (i.e., tasks to execute). The su-

pervisor starts and stops tasks on its worker machine according to Nimbus’s assignments. In

this setup, each supervisor executes a subset of the topology (i.e., a user’s query). Typically,

the topology consists of several tasks that are spread across the worker’s machines. The core

abstraction in Storm are the spout and bolt tasks. The spout connects to the stream source

to ingest the input data tuples. The bolt performs the query operations on the input stream,

and emits new processed streams. A bolt can consume multiple input streams and partitions

its output to multiple bolts (i.e., downstream processes). The spouts and the bolts apply

data-partitioning to send tuples to downstream processes (e.g., Shuffling or Key-grouping).

Trident differs from the original Storm by applying the partitioning decision for a batch of

tuples instead of tuple-at-a-time. In the next section, we show how the generic abstraction

can be applied to Storm’s Trident.

Batching and Partitioning

Output

Processing Bolts 
for Data Blocks 

Aggregation
Bolts

Spout
Data Stream

Shuffle Grouping
Key Grouping

Data Block

Figure 5.6. Apache Storm Topology

5.3.2 Realizing in Storm

The realization of the proposed schemes in Apache Storm is applied to its Trident ab-

straction. Both Storm and the Trident share the same architecture explained in Section  5.3.1 .
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However, Trident processes data streams as a series of batches that are referred to as trans-

actions. In a Trident topology, the spout buffers the data tuples to accumulate small data

batches. The size of these batches can be on the order of millions of tuples. These batches are

partitioned into data-blocks, and are sent to downstream bolts (See Figure  5.6 ). The bolts

operate on the granularity of data blocks. Figure  5.7 illustrates how the abstraction’s five

techniques can be deployed on a Trident’s topology. In this topology, one spout is responsible

for ingesting the input data source and two tiers of bolts are responsible for the processing.

The first tier of bolts applies a parallel function analogous to Map while the second tier

performs the aggregation (i.e., analogous to Reduce). The Frequency-aware Buffering 1© is

applied at the spout process. The two data structures CountTree and BatchData get popu-

lated as the spout ingest the input data tuples. The spout carries the Balanced Micro-batch

Data Partitioning 3© to provide even-input to the downstream bolts. The Early Micro-batch

Release 2© allows the spout to partition the data batch at hand while continuously ingesting

data tuples of the next data batch. The bolts on the first-tier applies the Balanced Key

Allocator 4© to provide balanced input to the aggregation bolts. The Nimbus process moni-

tors the run-time statistics of the topology (e.g., the variance in the bolts’ throughputs) and

triggers Elastic Scheduling 5© when necessary to adjust the number of bolts according to

workload changes.

Batching and Partitioning
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Processing Bolts 
for Data Blocks 

Aggregation
Bolts

Spout
Data Stream

Custom Grouping
Custom Grouping

Data Block
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Nimbus

Figure 5.7. Realization in Apache Storm
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5.4 Discussion on Performance Contributions

In this section, we discuss the performance gains expected in the three streaming en-

gines, Spark, Flink and Storm, when adopting the five-techniques. In general, increasing the

batch interval increases throughput and latency specially if the network bandwidth is not

a bottleneck. In addition, when resources are not over-stressed (i.e., when batch interval ≥

processing time), latency is bounded by the batch interval. However, each of the three sys-

tems, Flink, Spark, and Storm, has distinct design features that lead to different degrees of

throughput gains when adopting Prompt, Prompt+ or PartLy. We categorize these design

features into five categories:

(1) In-Memory Data Management: Compared to Flink and Storm, Spark’s execution

cycle includes more data-transformation overheads. For instance, Spark requires the batched

data to be transferred from the data receiver to the computing nodes through a block man-

ager. This transfer is responsible for putting the data into the Spark Streaming abstract

data type (i.e., a group of RDDs referred to as DStream). Even with the synchronization

component of Early Micro-batch Release, the repetition of this operation for each batch is

an overhead and contributes to the execution time. The Early-batch Release is able to make

room for the data partitioning within the receiver processes but does not interfere with the

memory management or the execution engine. Hence, this data transformation reflects on

the overall system throughput. In contrast, Flink and Storm apply a simple data movement

procedure. The batched data is directly moved from the data ingestion processes to the

execution tasks (e.g., from the Spout to the Bolt in the Storm case). This simplicity enables

Flink and Storm to have higher gains in throughput when optimized data-partitioning is

applied.

(2) Physical Query Execution: Spark executes queries as a set of blocking transforma-

tions applied to the RDDs. The logical to physical execution of the transformation is not

always one-to-one. For example, in the case of the Reduce stage, the transformation is exe-

cuted by creating three types of RDDs (i.e., MappedValuesRDD followed by  ShuffledRDD

and CoGroupedRDD). Flink and Storm use a straightforward non-blocking operation, where

the before-mentioned Reduce stage is executed as a single operation. This avoids expensive
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in-memory data migration and enables Flink and Storm to benefit more from the optimized

data partitioning.

(3) Back Pressure Mechanism: All three engines have a back-pressure mechanism to

notify the data source if the data arrival rate is beyond the system’s capacity. The three

systems differ in their implementations of the back-pressure mechanism, which results in

fluctuating the sizes of the micro-batched data over time. For example, Storm’s back-pressure

implementation is known for its fluctuating input rate [  54 ]. Given a sinusoidal (i.e., variable)

data rate, each of the systems will vary in their ingestion rates, and hence the micro-batch

sizes and system throughputs.

(4) Scheduling Strategy: Spark would benefit the most from applying the elastic schedul-

ing technique of Prompt+. The overhead of the centralized scheduler is a major bottleneck

in Spark’s performance. The main reason is due to Spark’s reliance on short-lived compu-

tation tasks. This is in contrast to Flink and Storm that make use of continuous tasks and

apply the data-to-computation principle. On the other hand, when the data arrival rate

increases, the system has to adapt (e.g., by scaling out) in order to handle the increased

arrival rate and process tuples without exhibiting back-pressure. Unlike Flink and Spark,

Storm does not provide means to dynamically change the number of execution tasks (e.g.,

the number of bolts) during query execution. Hence there is no way to provide elasticity

except by over-provisioning the execution tasks, and sharing them on concurrent queries.

(5) Fault Tolerance: Finally, the proposed techniques do not affect the fault tolerance

mechanisms or exactly-once semantics provided by the underlying systems. For instance,

the driver process in Spark may decide to apply parallel recovery in response to a failed

worker. Similarly, Apache Flink may apply asynchronous incremental snapshots to provide

periodic checkpoints. In both scenarios, the underlying system relies on the data dependen-

cies in the execution graph to recover only the lost data due to failures and avoids repeating

entire computations. The proposed techniques do not interfere with the generation of the

data dependencies between the execution-tasks. However, it only changes how data keys

are assigned to the data-blocks communicated through the data dependencies between the

execution-tasks. Nevertheless, unlike the advanced recovery mechanisms in Spark and Flink,

Storm replays the entire micro-batch through the processing topology in case of a failed task.
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Even with an optimized data partitioning scheme in place, Storm’s throughput will suffer in

the case of failures.

5.5 Concluding Remarks

In this chapter, we show how the proposed techniques in Prompt, Prompt+,

and PartLy can be realized in three widely-used stream processing systems. We provide

a discussion on the expected performance gains due to the design differences in these sys-

tems.
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6. CONCLUSIONS

In this dissertation, we study efficient data processing over micro-batched stream processing

systems. In Chapter  1 , we investigate the micro-batching paradigm and pinpoint some of its

design principles that can benefit from further optimization. We show that existing micro-

batch stream processing systems lack Load-awareness optimizations that are necessary to

maintain performance and enhance resource utilization. We provide motivating break-down

analysis of the micro-batching computational model and highlight the need for mitigating

three challenges. These challenges are data partitioning, centralized-scheduling, and perfor-

mance stability.
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Synchronization

5
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Figure 6.1. Optimizations in Micro-batched Stream Processing Systems

Chapter  2 presents an efficient data-partitioning for the micro-batch processing model.

We formulate the problem of data partitioning in distributed micro-batch stream processing

systems and prove that this problem in both the batching and processing phases is NP-hard.

The data partitioning problems in the batching and processing phases are reduced to two

new variants of the classical Bin Packing problem. We introduce Prompt, a data partitioning

scheme tailored to distributed micro-batch stream processing systems. Prompt leverages a

look-ahead data partitioning strategy that optimizes the performance of the micro-batch

processing model [  2 ]. Prompt improves system throughput by up to 2x using real and

synthetic datasets over state-of-the-art techniques.
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(a) Micro-batch Processing (b) Optimized Micro-batch Processing

Figure 6.2. Processing Time Breakdown of Micro-batch Computations

Chapter  3 provides a solution to mitigate the centralized-scheduling bottleneck and the

performance stability concerns of the micro-batching computational model. We introduce

Prompt+ with an elastic-scheduling technique for the micro-batching model. Prompt+ aims

to overcome the overheads of task scheduling (i.e., serialization and communication) and

maintaining resource utilization while enforcing latency. Prompt+ schedules multiple batch-

computations at once to amortize the scheduling cost over a group of batches. In addition,

Prompt+ uses three elasticity zones to monitor system stability and updates the degree of

task-parallelism without interrupting the execution. Prompt+ is robust to fluctuations in

data distribution and arrival rates. Experiments on the evaluation of the proposed elastic-

scheduling technique and the combined effect, when applied along with the data partitioning

techniques, show up to 5x improvement in throughput while enforcing latency guarantees.

Chapter  4 introduces PartLy, a learning-based technique to provide efficient data-

partitioning of micro-batched data over execution tasks. PartLy leverages deep reinforcement

learning model to learn a data partitioning policy using the run-time statistics of the execu-

tion tasks. PartLy enhances over Prompt through reducing the variance of execution-tasks.

We formulate the data partitioning of the micro-batching model in the context of deep re-

inforcement learning. PartLy opens the possibility of autonomous execution and reduces

the overheads of tuning heuristics by humans. We provide directions on how to extend this

strategy to enable fully-autonomous stream processing systems.
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Finally, Chapter  5 studies the realization of the proposed techniques in Prompt,

Prompt+, and PartLy within three widely adopted micro-batched stream processing sys-

tems. We demonstrate how the ideas proposed in this dissertation are general and are

applicable in Spark Streaming [ 61 ], Apache Flink [  12 ] and Apache Storm [ 48 ]. Figure  6.2 

summarizes the effect of all the proposed techniques on improving the ratio of data execution

in a micro-batch processing time.
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