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ABSTRACT

The development of ultracold atom physics enables people to study fundamental ques-
tions in quantum mechanics within this highly-tunable platform. This dissertation focuses
on several topics of the dynamical evolution of quantum systems.

Chapter 2 and 3 talk about Loschmidt echo, a simple quantity that reveals many hidden
properties of a system’s time evolution. Chapter 2 looks for vanishing Loschmidt echo in
the complex plane of time and the corresponding dynamical quantum phase transitions
(DQPT) in the thermodynamic limit. For a two-site Bose-Hubbard model consisting of
weakly interacting particles, DQPTs reside at the time scale inversely proportional to the
interaction, where highly entangled pair condensates also show up. Chapter 3 discusses the
revival of Loschmidt echo in a discrete time crystal, a Floquet system whose discrete temporal
transition symmetry is spontaneously broken. We propose a new design and demonstrate
its robustness against the fluctuations in the driving field. It can also be used in precision
measurement to go beyond the Heisenberg limit. Experimental schemes are presented.

Out-of-time-order correlator (OTOC) is a more complicated variant of Loschmidt echo.
Experimentally it requires reversing the time evolution. In Chapter 4, by exploiting the
SU(1,1) symmetry of a weakly interacting BEC and connecting its quantum dynamics to a
hyperbolic space, we obtain a geometric framework that enables experimentalists to manip-
ulate the evolution with great freedom. Backward evolution is then realized effectively to
measure OTOC of such SU(1,1) systems.

Chapter 5 discusses the decoherence of a spin impurity immersed in a spinor BEC. Our
calculations show that by looking at the dynamics of the impurity’s reduced density matrix,
the phase of the spinor BEC can be detected.
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1. INTRODUCTION

In non-relativistic quantum mechanics, Schrödinger’s equation determines the dynamical
evolution of a physical system. For a closed system, the system’s Hamiltonian is time-
independent. The initial state of a system can be eigen-decomposed to linear superposition
of eigenstates of the Hamiltonian. As time goes on, every component gets a phase factor.
Namely, for any initial state |ψ0⟩, it evolves as

|ψ(t)⟩ =
∑

n

cne
−iEnt |φn⟩ , (1.1)

where En and |φn⟩ are eigenvalues and eigenstates of the Hamiltonian respectively and cn =

⟨φn|ψ0⟩. Although this basic law looks simple, it is much more complicated to theoretically
predict the behaviors of realistic physical systems’ quantum dynamics. The first challenge
is to have an appropriate model to write down the Hamiltonian. The interactions between
different constituents make the calculations more difficult. The dimension of the total Hilbert
space grows exponentially as the number of particles in a system increases, which makes
brute-force numerical simulations impractical.

Ultracold atoms uploaded into optical lattices have provided a quantum simulator for
physicists to solve the problem. The periodic potential created by lasers is clean and free
of defects. Its single-atom energy spectrum can be computed exactly. Also, the inter-atom
interaction, characterized by the scattering length as, can be measured accurately and tuned
with great freedom by Feshbach resonance [1]. Experimentalists can change the intensity,
the frequency, and the spatial layout of the laser beams. Thus it is possible to realize a lot of
models from bottom to top. Technique advances, such as optical tweezers [2–4] and single-
site fluorescence imaging [5, 6], also make manipulating and tracking single atoms feasible.
This dissertation is a theoretical study of several models that are within the current ultracold
atom experiments’ reach. The following sections give a brief background of these topics.

1.1 Bose-Einstein Condensates

For a non-interacting Bose gas in a uniform 3D space with total particle number N ,
volume V , and single particle mass M , once the temperature is below a critical value T0,

T0 =
2πℏ2

kBζ(
3
2
)
2
3M

(

N

V

)
2
3

, (1.2)
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where ζ is the Riemann zeta function, a fraction of bosons

N0

N
= 1−

(

T

T0

)
3
2

(1.3)

will be condensed to the ground state. This state of matter is called Bose-Einstein condensate
(BEC), first predicted by A. Einstein in 1924 following the Bose statistics proposed by
S. N. Bose.

For non-interacting Bose gases, BECs show up when a macroscopic number (proportional
to the total particle number) of bosons occupy the lowest single particle energy level, which
is not well defined when interactions present. Generally a BEC is identified through the
reduced single-particle density matrix ρ1 [7], whose element at row i and column j is

ρ1,ij = Tr
(

ρa†iaj

)

, (1.4)

where ρ is the total density matrix and a†i and ai are the creation and annihilation operators
of single particle basis state i. Its off-diagonal term ρ1,i ̸=j is called the one body correlation
function. A state is a BEC if its reduced single-particle density matrix has one or more
eigenvalues that are of the order of the total particle number. As an example, Let us consider
a two-level system containing N bosons. The ground and excited states are labeled by g and
e with energy 0 and ϵ respectively. A Fock state with n excited particles is |N − n, n⟩. For
a Fock state |N, 0⟩, its reduced single-particle density matrix is

ρ1 =





〈

a†gag
〉 〈

a†gae
〉

〈

a†eag
〉 〈

a†eae
〉



 =





N 0

0 0



 . (1.5)

It has one eigenvalue N , thus |N, 0⟩ is a condensate.
If the reduced single-particle density matrix has two or more eigenvalues of the order N ,

the state is a fragmented condensate [8]. In the example above, both
∣

∣

N
2
, N

2

〉

and 1√
2
(|N, 0⟩+

|0, N⟩) are fragmented condensates, since their reduced single-particle density matrix is

ρ1 =





N
2

0

0 N
2



 , (1.6)

which has two eigenvalues proportional to N .
Reduced m-particle density matrix ρm can be defined similarly

ρm,ij = Tr
(

ρa†mi amj

)

, (1.7)
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and their off-diagonal terms can be used to distinguish the states
∣

∣

N
2
, N

2

〉

and 1√
2
(|N, 0⟩ +

|0, N⟩) above. The former has vanishing m-body correlation functions ρm,i ̸=j for any m,
while the N -body correlation function of the latter is proportional to N !. A state with a
vanishing one-body correlation function and a two-body correlation function proportional
to N2 is called a pair condensate [9–11]. In Chapter 2, we study the states with prevailing
higher order correlation functions emergent in the quantum dynamics.

In experiments, many kinds of bosons forming BECs have internal degrees of freedom.
For example, 23Na, 39K, and 87Rb have hyperfine spin f = 1. A conventional magnetic trap
will align the spins of atoms and thus freeze their internal degrees of freedom. Scalar field
operators are enough to describe them [12]. On the other hand, the potential seen by an atom
in an optical trap does not depend on its internal state. The internal degrees of freedom are
therefore liberated and such a condensate is called a spinor Bose-Einstein condensate [13].
Because of the complex structure of mutual interactions when spins are involved, spinor
BECs host more quantum phenomena. For instance, depending on the competition between
interaction strengths of different total spin channels of two-body scattering, the ground state
of a spin-1 BEC might be a polar state or a ferromagnetic state as a mean field result [14].
Chapter 5 presents an example of different ground states of a spin-1 BEC interacting with a
spin-1/2 impurity immersed in it.

1.2 Disappearance and Revival of Loschmidt Echo

The Loschmidt echo describes the overlap of two final states coming from the same initial
state |ψ0⟩ with two different Hamiltonians. It is defined as

M(t) = | ⟨ψ0| eiH2te−iH1t |ψ0⟩ |2. (1.8)

It can also be understood as using Hamiltonian H2 to reverse the evolution caused by H1

and measuring how perfect the reversion is. Loschmidt echo has been studied in many
different scientific fields including quantum phase transitions, quantum chaos, and quantum
chemistry. Loschmidt echo is also related to quantum Fisher information [15], which is
defined as

Iϵ(t) = lim
ϵ→0

1− | ⟨ψ0| eiH(α+ϵ)e−iH(α)t |ψ0⟩ |2
ϵ2

. (1.9)
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Quantum Fisher information describes the sensitivity of the quantum evolution to the tun-
ning parameter α of the Hamiltonian.

One particular type of Loschmidt echo is

MG(t) = | ⟨ψ0| e−iHt |ψ0⟩ |2, (1.10)

where the bra ⟨ψ0| does not evolve. It describes a system’s memory of its initial state after
it has evolved for time t. MG(t) = 0 and MG(t) = 1 are of great interests. The former
means at some time the system completely forgets its initial state, and in the latter case,
the system comes back to its initial state exactly after a finite time interval.

1.2.1 Lee-Yang zeros and dynamical quantum phase transitions

We first focus on MG(t) = 0. Before discussing MG(t), let us first review the partition
function Z(T,X) in thermodynamics, which will be shown related to the Loschmidt echo
later. The partition function is defined as

Z(T,X) =
∑

l

ωl(X)e−βEl(X) (1.11)

where β = 1
kBT

, El(X) is the energy level, ωl(X) is the level degeneracy, and X represents
parameters in the Hamiltonian, such as a magnetic filed. The partition function gives all
information about a system at equilibrium. For example, the free energy F is given by

F = − lnZ(T,X)

β
(1.12)

For any finite-sized system, the partition function Z(T,X) is a positive and continuous
function of the temperature T and other parameters X, therefore the free energy should
also be a continuous and analytical function. However, in the thermodynamic limit, where
the number of particles N of a system goes to infinity, experimentalists may observe phase
transitions, where the free energy F shows non-analytical behaviors, such as a sudden jump
or a sharp kink, as the parameters change.

Mathematically, the free energy in the thermodynamic limit should be expressed by

F = − lim
N→∞

1

β
ln

( ∞
∑

l=0

ωle
−βEl

)

(1.13)

The appearance of the non-analytical behaviors is a result of the fact that the order of
the limit N → ∞ and the summation cannot be switched. Lee and Yang gave another
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interpretation [16]. They extended physical quantities, which should be real numbers, to
the complex domain, and found that the partition function Z vanishes at some places of
the complex plane. These zeros (called Lee-Yang zeros) correspond to the non-analytical
behaviors of the free energy. Without taking thermodynamic limit, all zeros of the partition
function are located away from the real axis, indicating that in a finite-sized system, physical
quantities are continuous and analytical. As the number of particles N goes to infinity, those
zeros gradually approach the real axis and trigger phase transitions. Lee-Yang zeros have
been observed experimentally in a system where a probe spin is coupled to an Ising-type
spin bath [17, 18].

Now if we write down the Loschmidt echo MG(t) using eigenstates of H,

MG(t) =

∣

∣

∣

∣

∣

∑

n

|cn|2e−itEn

∣

∣

∣

∣

∣

2

, (1.14)

we can see the similarity between MG(t) and Z(T,X): MG(t) is the partition function
with an imaginary temperature β = it if the initial state is an equal superposition of all
the eigenstates. This inspires people to study the Loschmidt echo in the complex plane of
time. Analogously, the zeros of Loschmidt echo result in the non-analytical properties of the
so-called dynamical free energy,

λ(t) = − 1

N
lnMG(t). (1.15)

The dynamical free energy is the probability rate for the system to return to its initial
state. Consequently these zeros define dynamical quantum phase transitions (DQPT) [19,
20]. Dynamical quantum phase transitions have been studied in many system and it is a
new method to study non-equilibrium quantum dynamics. It also has deep connections with
equilibrium quantum phase transitions [21]. In Chapter 2, we will use dynamical quantum
phase transition to study the emergence of highly entangled states in the dynamics of a
two-site Bose-Hubbard model.

1.2.2 Revival of initial states and time crystals

While a vanishing Loschmidt echo defines DQPT, a Loschmidt echo periodically coming
back to 1 introduces the concept of time crystals. Let us first review common crystals. It
is well known that, a crystal is an array of atoms that are invariant only under translations
by a linear combination of its lattice vectors. Thus its ground state only has discrete trans-
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lation symmetry, albeit it lives in a space with continuous translation symmetry. We then
conclude that a crystal breaks the continuous spatial translation symmetry spontaneously.
Similarly, in 2012, F. Wilczek proposed the idea of a time crystal, a system breaking the
temporal translation symmetry spontaneously [22, 23]. A trivial example of broken con-
tinuous temporal translation symmetry is a spinning object, which only gets back to the
initial orientation after one period. However, if we want to say “spontaneously”, we have to
consider ground states. Apparently a spinning object is not having the lowest energy. Its
lowest energy state has zero angular momentum and the continuous temporal translation
symmetry thus survives. Therefore the idea of time crystals results in a lot of debates [24–28].
In 2015, H. Watanabe and M. Oshikawa proved a no-go theorem ruling out the possibility
of a time crystal breaking the continuous time translation symmetry spontaneously in the
ground state or at thermal equilibrium [29].

The no-go theorem inspires people to switch to open quantum systems and discrete
temporal translation symmetries [29–41]. Consider a system under periodic drivings, which
means its Hamiltonian is time dependent and has period T : H(t + T ) = H(t). In this
case the Hamiltonian has discrete temporal translation symmetry. People want to explore
whether the system dynamics can break this symmetry of the Hamiltonian. From Floquet
theorem we know the system has Floquet eigenstates |ψn⟩ and eigenenergies En satisfying

U(T ) |ψn⟩ = e−iEnT |ψn⟩ (1.16)

where U(T ) is the time evolution operator for one period. If the system initially is prepared
in any Floquet eigenstates, the wavefunction |Ψ(t)⟩ of the system has period T (the overall
phase factor is ignored). Thus the discrete temporal translation symmetry remains. If a
Floquet eigenstate is a superposition of two macroscopically different states, for instance,
Floquet eigenstates |F±⟩ = 1√

2
(|M1⟩ ± |M2⟩) with Floquet eigenenergies E± and |M1,2⟩

are very different from each other, it is not hard to imagine that under any infinitesimal
perturbation, the states |F±⟩ will collapse to one of the two states, say |M1⟩. The system
turns into a superposition of two Floquet eigenstates, |M1⟩ = 1√

2
(|F+⟩+ |F−⟩), and as time

goes on, the wavefunction at the end of the m-th period is

|Ψ(t = mT )⟩ = 1√
2

(

|F+⟩+ ei(E+−E−)mT |F−⟩
)

. (1.17)

Depending on the values of E±, it is possible that only for some m > 1 can (E+ − E−)mT
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become a multiple of 2π. That means the dynamics of the system and correspondingly, some
physical observables, show a period of mT , m > 1. Because the response of the observable
does not have the same period as the driving field, we can conclude that such a system
spontaneously breaks the discrete temporal translation symmetry and is eligible to be called
a discrete time crystal (DTC).

The idea of DTC above has been realized in a disordered spin model with many body
localization [33–35]. While many researches have demonstrated the stability of such real-
izations against a few sources of imperfections, the spatial fluctuations of the driving filed
are completely ignored. In Chapter 3, we present a clean DTC model without disorder.
Stabilized by all-to-all interactions, it is robust against the imperfections from the driving
field.

1.3 Out-of-Time-Order Correlators and Backward Evolution

Recently the out-of-time-order correlators (OTOC) [42–50] has attracted attentions from
both the community of condensed matter physics and high energy physics. According to
Ref. [43, 45], the OTOC is defined as

C(t) = −⟨[W (t), V ]2⟩β (1.18)

where ⟨·⟩β denotes thermal average, and W and V are Hermitian operators. Such an OTOC
can be regarded as a quantum version of the Lyapunov exponent. In classical mechanics,
the Lyapunov exponent λ is defined as

λ = lim
t→∞

lim
|δx(0)|→0

1

t
ln

|δx(t)|
|δx(0)| , (1.19)

which indicates δx(t)
δx(0)

∼ eλt. It describes the sensitivity of a system’s coordinate x to the
initial condition x(0) after an infinite evolution time. For a classically chaotic system, the
position’s deviation is expected to grow exponentially. δx(t)

δx(0)
is also equal to the Poisson

bracket {x(t), p(0)}. Thus {x(t), p(0)} ∼ eλt. From classical mechanics to quantum mechan-
ics, we replace Poisson brackets {, } by operator commutators 1

iℏ
[, ]. Formally we can define

the Lyapunov exponent from quantum position operator x̂(t) and momentum operator p̂(0),
〈

(

1

iℏ
[x̂(t), p̂(0)]

)2
〉

= − 1

ℏ2
⟨[x̂(t), p̂(0)]2⟩ ∼ e2λt, (1.20)
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where ⟨·⟩ represents the expectation value for some quantum state. On the other hand,
the OTOC of position operator x̂ and momentum operator p̂ is C(t) = −⟨[x̂(t), p]2⟩, which
is just the quantity in Eq. (1.20). Further, reachers extend this definition to the OTOC
of any two Hermitian operators W and V and calculate the Lyapunov exponent through
ℏ
2e2λt = C(t) = −⟨[Ŵ (t), V ]2⟩.

There is also literature defining OTOC as

F (t) = ⟨Ψ|A(t)†B†A(t)B |Ψ⟩ , (1.21)

where A and B can be either unitary operators [44, 45, 50] or Hermitian operators [46, 48].
This definition can be understood in the following way,

|ψ1⟩ = A(t)B |Ψ⟩ = eiHtAe−iHtB |Ψ⟩ , (1.22)

|ψ2⟩ = BA(t) |Ψ⟩ = BeiHtAe−iHt |Ψ⟩ . (1.23)

|ψ1⟩ is obtained by first applying B on the initial state |Ψ⟩, evolving for t, applying A, and
back-evolving for t, and |ψ2⟩ is obtained by first evolving for t, applying A, back-evolving
for t, and applying B. F (t) is the overlap between the two final states. Therefore it can be
regarded as a more complicated Loschmidt echo and it describes the way A and B inhibit
the cancellation between forward e−iHt and backward eiHt evolution. For unitary operators
A and B,

2(1− ReF (t)) = ⟨|[A(t), B]|2⟩. (1.24)

In a many-body system, if A and B are two local operators far away from each other,
initially [A(0), B(0)] = 0. If A and B does not commute with the Hamiltonian and the
Hamiltonian is time-independent, the decrease of ReF (t) tells how A(t) gradually become
spatially extensive such that it eventually does not commute with B anymore. Therefore
F (t) can also be used to study the information spreading in quantum system evolution [43,
44, 49, 50].

No matter which specific definition is going to be used, experimentally, to measure OTOC,
an indispensable step to realize backward evolution eiHt. Generally, it is hard to completely
reverse the sign of a Hamiltonian since the kinetic energy is not as easy as the potential
energy to be reversed. In Chapter 4, we demonstrate a concrete example where we can use a
series of evolution to create an equivalent −H. It is similar to the traditional spin echo [51],
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but it applies to systems with SU(1,1) symmetry instead of SU(2).

1.4 Decoherence of a System Interacting with the Environment

Up to now we have been focusing on isolated systems. A wave function provides a
complete description of a physical system [52]. Whereas a measurement on this system may
still give us probability results, the probability comes from Heisenberg’s uncertainty principle,
which is a fundamental rule of the nature. On the other hand, in classical mechanics,
the concept “ensemble” describes a system in a few possible states with probabilities pi
(
∑

pi = 1). Here the probability, however, comes from our lack of information, which means
the system in fact is in some specific state, but the observer simply does not know which
state it is. If we are allowed to do enough measurements, we shall get enough information to
determine the system’s actual state. To describe an ensemble consisting of quantum states
|ψi⟩, we use a density matrix ρ =

∑

i pi |ψi⟩ ⟨ψi|. For instance, a canonical ensemble of
temperature T = 1/kBβ is

ρc =
∑

i

pi |Ei⟩ ⟨Ei| , pi =
e−βEi

Z . (1.25)

We shall be careful that ρc is different from a superposition of energy eigenstates

|Ψ⟩ =
∑

i

√
pi |Ei⟩ , (1.26)

which can be expressed by another density matrix

ρs = |Ψ⟩ ⟨Ψ| =
∑

i

pi |Ei⟩ ⟨Ei|+
∑

i ̸=j

√
pipj |Ei⟩ ⟨Ej| . (1.27)

All the off-diagonal terms (i ̸= j) are not present in ρc. If we measure an observable O of
the two states, for ρc, the averaged value is time independent ⟨O⟩c =

∑

i pi ⟨Ei|O |Ei⟩, while
for ρs,

⟨O⟩s =
∑

i

pi ⟨Ei|O |Ei⟩+
∑

i ̸=j

√
pipj ⟨Ei|O |Ej⟩ cos((Ei − Ej)t). (1.28)

We then say that in the classical ensemble, there are no definite phase coherence between
states.

For a system S interacting with the environment E, although the system S plus the
environment E can be viewed as a big isolated system, an observer may not have the ability

23



to include the whole environment into her measurements. In this case, from the view of the
observer, the system is described by a reduced density matrix

ρS = TrE |Ψ⟩ ⟨Ψ| , (1.29)

where |Ψ⟩ is the total wave function for the system plus the environment. ρS is obtained
from the partial trace of the total density matrix |Ψ⟩ ⟨Ψ| with respect to the environment.
Let us consider a simple example. If we have a spin-1/2 as the system interacting with
another spin-1/2 as the environment and the total Hamiltonian is

H = σz1 + σz2 + σz1 ⊗ σz2. (1.30)

For the total initial state,

|Ψ(0)⟩ = 1√
2
(|↑⟩1 + |↓⟩1)⊗

1√
2
(|↑⟩2 + |↓⟩2) , (1.31)

the reduced density matrix of the first spin is

ρ1(0) =
1

2
(|↑⟩ ⟨↑|+ |↓⟩ ⟨↓|) + 1

2
(|↑⟩ ⟨↓|+ |↓⟩ ⟨↑|). (1.32)

At time τ = π
4

(We set ℏ = 1 in this subsection), the total wave function becomes

|Ψ(τ)⟩ = 1

2
|↑⟩1 ⊗ (e−i 3

4
π |↑⟩2 + ei

π
4 |↓⟩2) +

1

2
|↓⟩1 ⊗ (ei

π
4 |↑⟩2 + ei

π
4 |↓⟩2), (1.33)

and the reduced density matrix of the first spin is

ρ1(τ) =
1

2
(|↑⟩ ⟨↑|+ |↓⟩ ⟨↓|). (1.34)

The off-diagonal terms disappears and the coherence are lost from the view of the observer.
The reason is apparent. Because of the interaction, the two states of the first spin, |↑⟩1 and
|↓⟩1, are coupled to two orthogonal states of the environment at τ such that the off-diagonal
terms vanishes after we do the partial trace.

For the example above, the off-diagonal terms only completely vanish at t = π
4
(1+2k), k ∈

Z. In reality, an environment is much more complex and contains more degrees of freedom.
It is not hard to imagine that, the two states of the system spin will be coupled to orthog-
onal environment states as time goes on. Further, in a relatively long time scale, while the
environment states evolve, they keep orthogonal to each other. To be more precise, the
overlaps between those environment states are scaled down exponentially as the size of the
environment increases [53, 54]. As a result, an observer only sees a density matrix without
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off-diagonal terms for during this long time scale. This process is called decoherence. Deco-
herence does not mean coherence disappears. Actually the coherence of the small subsystem
“flows” into the larger system including the environment, but because of the lack of the
information about the environment, an observer cannot see the coherence.

Ultracold atom experiments provide a good platform for studying coherence, because
the cold atom system usually has little interactions with the environment and maintains
coherence for a relatively long time. Experimentalists thus can create an nearly isolated
system and take a small part as the subsystem and the remaining part as the environment. In
Chapter 5, we study an spin impurity interacting with a BEC. By looking at the decoherence
of this spin, we are able to infer the state of the environment BEC.
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2. DYNAMICAL QUANTUM PHASE TRANSITIONS IN
INTERACTING ATOMIC INTERFEROMETERS

This chapter is based on the published article [55] by C. Lyu and Q. Zhou, Dynamical
quantum phase transitions in interacting atomic interferometers, Phys. Rev. A 101, 043605
(2020). Copyright (2020) by the American Physical Society.

Applications of atomic interferometers span a wide spectrum of problems, ranging from
measuring the gravitational acceleration [56, 57] and the fine-structure constant [58] to de-
tecting gravitational waves [59, 60]. Ultracold atoms prompt a precise control of atomic
interferometers, including realizing highly tunable atomic beam splitters [61–65] and access-
ing an atomic Hong-Ou-Mandel interferometer using optical tweezers [3, 4, 66, 67]. Whereas
mutual interactions between particles may induce the decoherence of a subsystem [68–70],
they could also generate squeezing and multi-particle correlations unattainable in linear in-
terferometers [71].

Dynamical quantum phase transition has recently invoked enthusiasm in multiple disci-
plines [19–21, 72–79]. A particular type of Loschmidt echo,

|G(t)|2 = | ⟨ψ(0)| e− i
ℏ
Ĥt |ψ(0)⟩ |2,

where |ψ(0)⟩ is the initial state, is considered as the temporal analog of the partition function.
When |ψ(0)⟩ is an equal superposition of all energy eigenstates, |G(t)|2 is exactly the partition
function with an imaginary temperature T = 1

ikBt
. t is therefore identified as the tuning

parameter as analogous to the temperature in phase transitions at equilibrium. When G(t) =
0, the dynamical free energy λ(t) = − 1

N
ln |G(t)|2, which is the rate function of the probability

for the system to return to its initial state, manifests nonanalyticities and defines a critical
time tc. N is the number of degrees of freedom. Similar to conventional phase transitions
triggered by Lee-Yang zeros or Fisher zeros in the complex plane of certain parameters or the
temperature [16, 80], DQPTs can also be understood from zeros of G(t) in the complex plane
by extending the real time t to the complex domain, t → z ≡ t + iτ . With increasing N ,
discrete zeros merge to continuous manifolds and eventually touch the real t axis, making
physical observables nonanalytic. Whereas observations of DQPTs have been reported in
certain spin systems, showing deep connections with equilibrium quantum phase transition
and order-parameter dynamics [21, 72, 74, 76, 77, 79], such novel concept well deserves both
theoretical and experimental studies in a much broader range of systems.
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This chapter shows that interacting interferometers host DQPTs between highly entan-
gled quantum states. Starting from a Fock state, pair condensates, which are featured with
vanishing one-body correlation and prevailing two-body correlations [9–11], arise in non-
equilibrium quantum dynamics. In the large N limit, their appearance at critical times, tc,
is triggered by zeros of G(z) in the complex time plane that approach the real axis, signify-
ing DQPTs at which the many-body wave function becomes orthogonal to the initial state.
tc also characterizes transitions between NOON states, a particular type of Schrödinger’s
cat states formed by two Fock states. Such dynamically generated NOON states are much
more stable than those at equilibrium. The energy mismatch between the two single-particle
states only needs to be suppressed as a power-law of N , unlike the equilibrium case where
the energy mismatch has to be exponentially small.

Moreover, NOON states arise from an intriguing interplay between interactions and the
symmetry. When the Hamiltonian remains unchanged after swapping the two single-particle
states, the dynamical phase induced by interactions directly leads to a superposition of the
initial state and its counterpart created by the symmetry operator, say |N, 0⟩ and |0, N⟩.
Therefore, the NOON states are protected by the symmetry in the sense that any perturba-
tions respecting this symmetry are no longer important. For instance, adding weak multi-
particle interactions to the ordinary two-particle interactions does not affect any qualitative
results. Thus, our scheme applies to a large class of models and suggests a new mechanism
to access highly entangled states, which could be used to beat the standard quantum limit
and improve quantum sensing [81–84].

2.1 Loschmidt Echo of Two-Site Bose-Hubbard Model

We consider N bosonic atoms in an interferometer consisting of two quantum states. The
Hamiltonian, known as the two-site Bose-Hubbard model, reads

Ĥ = −J(â†1â2 + â†2â1) + g(n̂2
1 + n̂2

2) + 2g12n̂1n̂2, (2.1)

where J > 0 is the the coupling strength between the two quantum states, â†i is the creation
operator in the ith state, and n̂i = â†i âi. g and g12 are the intra- and inter-state interactions,
respectively. This Hamiltonian remains unchanged with two modes swapped. If we consider
two spatial modes, this is the inversion symmetry. Though our results apply to generic models
respecting this symmetry, we focus on two-particle interactions to concretize discussions.
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Figure 2.1: Dynamics of 8 bosons for U/J = 0.001. (a) Each blue dot represents a
simple zero of G(z) in the complex plane, where z is the complex time z = t + iτ .
(b) Normalized s-body correlation 2|g1|

N
, 4|g2|
N(N−1)

, 2|gN |
N !

along the real time axis of
(a). (c,d) and (e, f): Enlarged regimes of of (a,b) near t = 0 and t∗, respectively.
Each red dot in (c,e) is a zero of G(z) of the non-interacting systems described by
z = (k + 1/2)T, k ∈ Z. Each of them has multiplicity 8.
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Multi-particle interactions, which may arise from multi-band effects [85], are discussed in
Sec. 2.4.

The Hamiltonian can be rewritten as

Ĥ = −J(â†1â2 + â†2â1) +
Ū

2
(n̂1 + n̂2)

2 +
U

4
(n̂1 − n̂2)

2, (2.2)

where Ū = g+g12, U = 2(g−g12). Due to the conservation of the total particle number N =

n1+n2, Ū only contributes a trivial total phase of the wave function in the dynamics. We thus
focus on interaction effects caused by U . Though this Hamiltonian has been well studied [68,
71, 86–90], our results, including zeros of G(z) in the complex time plane, DQPTs, symmetry
protected pair condensates, elude the literature. We solidify the discussion for repulsive
interactions, U > 0. Attractive interactions lead to similar results, see Appendix 2.6.3.

We consider an initial state, |ψ(0)⟩ = |N, 0⟩ = 1√
N !
â†N1 |0⟩. The dynamical evolution,

|ψ(t)⟩ = e−
i
ℏ
Ĥt |ψ(0)⟩, is computed by expanding |ψ(0)⟩ using exact eigenstates of Ĥ.

Whereas this can be done for any parameters, we consider UN2 ≪ J . Such energy scale
separation leads to a time scale separation,

T ≡ πℏ

J
≪ t∗ ≡ πℏ

U
, (2.3)

which allows us to access quantum dynamical evolution exhibiting extraordinary features.
When U vanishes, the quantum dynamics is governed by

â†1 → cos
Jt

ℏ
â†1 + i sin

Jt

ℏ
â†2, (2.4a)

â†2 → i sin
Jt

ℏ
â†1 + cos

Jt

ℏ
â†2. (2.4b)

Thus, |ψo(t)⟩ = 1√
N !
(cos(Jt/ℏ)â†1+ i sin(Jt/ℏ)â

†
2)

N |0⟩, where the superscript o represents the
result of a non-interacting system. Extending t to the complex plane, we find that all zeros
of G(z) are located on the real axis with multiplicity N . When z = tok ≡ (k + 1/2)T , where
k is an integer, the quantum state becomes |0, N⟩ = 1√

N !
â†N2 |0⟩, and G(tok) = 0. One can

view each identical boson as a spin-1/2. All spin-1/2s initially at the north pole of the Bloch
sphere move to the south pole at the same times tok, leading to a vanishing G(z).

As shown in Fig. 2.1(c), a weak interaction satisfying UN2 ≪ J has negligible effects
at small times. A given multiple zero with multiplicity N now splits into N simple zeros,
all of which are close to zeros of non-interacting systems. Indeed, |ψ(t)⟩ is very similar to
that of a non-interacting case, as shown in Fig. 2.2(a-d). For instance, at time t = to ± T/4,
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|ψ(t)⟩ is well represented by 1√
2NN !

(â†1 ± iâ†2)
N |0⟩, corresponding to a binomial distribution

when expanded by Fock states |l⟩ ≡ |N/2 + l, N/2 − l⟩. To simplify notations, we consider
even N here. See Appendix 2.6.3 for results of odd N . However, at large times, even a weak
interaction has profound effects. As shown in Fig. 2.1(a), the separation between different
zeros of G(z) gets amplified greatly. Near t∗, these zeros deviate largely from those of non-
interacting systems. Whereas such zeros have finite imaginary parts, they intrinsically affect
physical observables in the real time axis, as shown later.

2.2 Dynamically Generated Entangled States

We evaluate generic s-body correlation functions in the real time axis,

gs = ⟨ψ(t)| â†s1 âs2 |ψ(t)⟩ , s ∈ Z
+.

At t = 0, the Fock state has vanishing gs for any s. As time goes on, gs increases as a result of
tunnelings between the two quantum states. When U = 0, the dynamics is fully captured by
Rabi oscillations. When U ̸= 0, Fig. 2.1(b) shows that one-body correlation function, g1(t),
decays due to interaction induced decoherence. However, higher order correlation functions
have distinct behaviors. Normalized two-body and N-body correlation functions, 4g2(t)

N(N−1)
and

2gN (t)
N !

, reach their maxima around t = t∗. In the vicinity of t∗, both |g2| and |gN | oscillate
with a period T/2. This indicates the rise of highly entangled states with multi-particle
correlations. As shown in Fig. 2.2(e-h), the four states showing up alternatively near t∗ are
well captured by

t̃0 = kT, |C−⟩ =
â†N1 − iâ†N2√

2N !
|0⟩ ,

t̃1 = kT +
T

4
, |P−⟩ =

N
∑

n=0

iN−n − in+1

n!(N − n)!
√

2N+1

N !

â†n1 â
†N−n
2 |0⟩ ,

t̃2 = kT +
2T

4
, |C+⟩ =

â†N1 + iâ†N2

i1−N
√
2N !

|0⟩ ,

t̃3 = kT +
3T

4
, |P+⟩ =

N
∑

n=0

iN−n + in+1

i1−Nn!(N − n)!
√

2N+1

N !

â†n1 â
†N−n
2 |0⟩ ,

(2.5)

where t̃ = t − t∗. |C±⟩ are NOON states with vanishing gs<N and |gN | = N !/2. We have
verified that any gs<N does vanish when NOON states arise. For clarity of the plots, g2<s<N
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Figure 2.2: (a-d) depicts the wave function |ψ(t)⟩ =
∑

ψl

∣

∣

N
2
+ l, N

2
− l
〉

expanded
by Fock states at four small times t = 0, T/4, 2T/4, 3T/4. (e-h) are the results at
four times near t∗. Numbers on top of bars represent relative phases of ψl. All
parameters are identical to those in Fig. 2.1.

are not shown in Fig. 2.1.
States |P±⟩ are called pair condensates, since their one-body correction function g1 van-

ishes, and their two-body correlation function g2 is of the order of N2. Correspondingly, their
two-body reduced density matrix, ⟨a†2i a2j⟩, has only one macroscopic eigenvalue proportional
to N2. Therefore, |P±⟩ and |C±⟩ have distinct properties. Eq. (2.4), which can be regarded
as a rotation of the quantization of axis, swaps |P±⟩ and |C±⟩. There are always two types
of such different entangled states in any reference frames. As shown later, when studying
|G(t)|2 = | ⟨ψ(0)| e− i

ℏ
Ĥt |ψ(0)⟩ |2 that characterizes the quantum memory of the initial state,

the chosen |ψ(0)⟩ fixes the quantization axis such that |P±⟩ in Eq. (2.5) becomes orthogonal
to |ψ(0)⟩ when N → ∞.

The energy spectrum in the limit UN2 ≪ J (Appendix 2.6.1), which is written as

En = An+Bn2, n = 0, 1, .., N, (2.6)

B = −U
2
, A =

UN

2
+ 2J, r ≡ A

B
. (2.7)

For any initial state |ψ(0)⟩ =
∑N

n=0 cn |En⟩, the wave function at a later time is given by
|ψ(t)⟩ =

∑N
n=0 cne

− i
ℏ
Ent |En⟩. Tuning J and U , when r = rm is satisfied, where rm = 4m+2
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or 4m, m ∈ Z, |C±⟩ can be easily identified. If r = 4m, we obtain

|Ψ(t∗)⟩ =
N
∑

n=0

cne
− i

ℏ
Ent∗ |En⟩ =

N
∑

n=0

cn
1− i(−1)n√

2
|En⟩ . (2.8)

Because of the aforementioned symmetry of H in Eq. (2.2), the energy eigenstates have well
defined parity,

P̂ |En⟩ = (−1)n |En⟩ , (2.9)

where P̂ is the inversion operator, P̂ |n1, n2⟩ = |n2, n1⟩ and [Ĥ, P̂ ] = 0. Using Eq. (2.8) and
(2.9), we conclude that |ψ(t∗)⟩ = (|ψ(0)⟩ − iP̂ |ψ(0)⟩)/

√
2. Whereas this result is valid for

any initial state, the initial state we chose gives rise to |C−⟩ emerging at t = t∗. Meanwhile,
interaction effects are negligible in a short time scale of a few T s. The time evolution in such
time scale is well captured by Eq. (2.4) if we replace t by t−t∗. Applying such transformation
to |C−⟩, it is straightforward to prove that the other three states in Eq. (2.5) show up in
corresponding times. If r = 4m + 2, the same discussions apply and the four states, |C+⟩,
|P+⟩, |C−⟩ and |P−⟩, show up at times t̃0, t̃1, t̃2, t̃3 in Eq. (2.5). It is also worth mentioning
that, for odd particle numbers, the pair condensates are described by another type of wave
functions ∼∑l ψ

′
lâ

†2l
1 â†N−2l

2 |0⟩ (Appendix 2.6.3).
When r ̸= rm, Eq. (2.8) can not be satisfied. Nevertheless, the states near t = t∗ are well

approximated by NOON states in the weakly interacting regime. We calculate the fidelity,

Q(t) = max(| ⟨C+|ψ(t)⟩ |2, | ⟨C−|ψ(t)⟩ |2). (2.10)

Near t∗, we obtain (Appendix 2.6.2)

Q(t) ≈
√

1

1 + N2

4
(π
2
− U

2ℏ
t)2

∑

k

∣

∣

∣

∣

∣

exp

(

− 1
2
N
+ i
(

π
2
− U

2ℏ
t
)

(

kπ

2
− πN

4
− Jt

ℏ

)2
)
∣

∣

∣

∣

∣

2

. (2.11)

Q(t) consists of multiple gaussian peaks centered at a series of discrete times with a separation
T/2. Since the width of those peaks is about ℏ√

NJ
, only one peak contributes to Q(t)

significantly at any t in the large N limit. Q(t) reaches its maximum at t∗′ = k0πℏ
2J

− πNℏ

4J
,

and

max[Q(t)] =

(

1 +

(

NπUd

8J

)2
)−1/2

, (2.12)

where k0 is the integer nearest to 2J
U
+ N

2
, k0 ≡ Int(2J

U
+ N

2
), and d ≡ |2J

U
+ N

2
−k0| ⩽ 1

2
. When
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Figure 2.3: The overlaps between the state |ψt⟩ and four entangled states defined
in Eq. (2.5) as a function of time. We have used N = 8 bosons and U/J = 0.001.
The inset zooms in to t = t∗.

r = rm, previous results are recovered because 2J
U
+N

2
= − rm

2
is an integer and max[Q(t)] = 1.

For generic r ̸= rm, the lower bound of max[Q(t)] is written as (1 + (πNU
16J

)2)−1/2. Thus, in
the weakly interacting limit, NOON states well represent |ψ(t∗′)⟩.

Away from t∗, there is no simple analytical expression for the overlap between |ψ(t)⟩
and the NOON states or pair condensates in Eq. (2.5). We thus evaluate such overlaps
numerically, as shown in Fig. 2.3. Around t∗ = πℏ

U
, the four states defined in Eq. (2.5) show

up alternatively. The overlaps reach maxima near t∗.
When r = rm is satisfied, since at t = t∗, |ψ(0)⟩ becomes |ψ(t∗)⟩ = 1√

2
(|ψ(0)⟩−iP̂ |ψ(0)⟩),

we can expect that another initial state P̂ |ψ(0)⟩ becomes 1√
2
(P̂ |ψ(0)⟩ − i |ψ(0)⟩) at t =

t∗. Combining these together, we conclude that the original initial state |ψ(0)⟩ becomes
−iP̂ |ψ(0)⟩ at t = 2t∗. Further, |ψ(4t∗)⟩ = − |ψ(0)⟩. Therefore after 4t∗, we see a revival of
the initial state. This is also referred as the revival of rotational wave packets [91, 92].

2.3 DQPT in the Large Particle Number Limit

In a short time scale of a few T s, the dynamics near t∗ is well captured by Eq. (2.4)
with the substitution t̃ = t− t∗. Zeros of G(z) are obtained analytically. For instance, when
r = 4m,

G(z) =
1√
2

(

(

cos
J(z − t∗)

ℏ

)N

− i

(

i sin
J(z − t∗)

ℏ

)N
)

. (2.13)

Fig. 2.4(a) shows that real parts of these zeros are given by Re z = t∗ + (π
4
+ m

2
π) ℏ

J
,m ∈ Z,

i.e., they are aligned in vertical lines in the complex plane. When N is odd, some zeros
reside on the real axis (Appendix 2.6.3). However, for a generic finite N , all zeros are away
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Figure 2.4: (a) Zeros of G(z) near t∗ for N = 40 particles (t̃ ≡ t−t∗). (b) Distances
between the real time axis and the nearest zeros around t∗ as a function of 1/N .
The blue line is the analytical result from Eq. (2.14) and the red dots are numerical
results. (c) The rate function λ(t). (d) λ(t) near t̃c. UN2/J = 0.01 has been used.

from the real axis. With increasing N , zeros become denser and gradually approach the real
axis. The distance between the real axis and the nearest zero is bounded by

Γ =
1

2
arcosh

1

| cos π
2N

| . (2.14)

In the large N limit, Γ ≈ π
4N

. Such scaling behavior is verified by numerical calculations in
Fig. 2.4(b). When N → ∞, straight lines formed by continuous zeros intersect with the real
axis and lead to a vanishingG(z) in the real axis. Correspondingly, λ(t) becomes nonanalytic,
signifying DQPTs. As shown in Fig. 2.4(c,d), near the transition point, λ(t) = ln 2−2J

ℏ
|t̃− t̃c|

when N → ∞, where t̃c = (π
4
+ m

2
π) ℏ

J
. Comparing DQPT points and the times given in

Eq. (2.5), we conclude that pair condensates, |P±⟩, reside at DQPT points and characterize
the DQPT between two different types of NOON states, |C±⟩. This can also been seen from
Fig. 2.1(e,f). Zeros of G(z) near t∗ are aligned in vertical lines, directly corresponding to
maximized g2’s.

2.4 Effects of Perturbations

Whereas essentially all parameters in Eq. (2.2) can be fine tuned, it is useful to consider
effects of perturbations. We consider two types of important perturbations. (a) With in-
creasing U , Eq. (2.6) includes high order terms ns>2. (b) An energy mismatch ∆(n1 − n2)
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breaks the inversion symmetry.
Consider (a), the lowest order contribution is a cubic term and we have En = An+Bn2+

Cn3, where Cn3 = −n3U2/(8J) (see Eq. (2.24)). The wave function is written as

|Ψ(t)⟩ =
n
∑

n=0

cne
− i

ℏ
(An+Bn2−U2

8J
n3)t, (2.15)

where cn = ( 2
πN

)
1
4 e−

1
N
(n−N

2
− U

16J
N2)2 . If U2

8J
n3t∗ ≪ 1 is satisfied, the extra phase introduced

by the cubic term is negligible within the time scale that is relevant to the emergent NOON
states and DQPTs. Since cn is a Gaussian with a width

√
N , which provides a natural

cutoff of n in the sum in Eq. (2.15), we replace n in the above inequality by
√
N and obtain

UN
3
2 ≪ J . Thus, when UN2 ≪ J is satisfied, all these corrections are negligible.
Similar conclusions apply to ns>2 caused by multi-body interactions. Interaction induced

inter-band couplings may lead to virtual transitions of particles from the lowest energy band
to higher bands [85]. When the band gap is small compared to the interaction strength,
there exist effective multi-body interactions. As for the three body interaction, U3(n

3
1 + n3

2),
it can be rewritten as U3(n1 + n2)

3 − 3U3n1n2(n1 + n2). Because of the conservation of the
total particle number, the first term is not relevant to the dynamics. The second term turns
the two-body interaction, U of Eq. (2.2), into U → U + 3U3N . So it does not change any
qualitative results. Other multi-body interactions do not change our results neither, provided
that they respect the inversion symmetry. As discussed in Sec. 2.2, NOON states emergent
in the dynamics are protected by the inversion symmetry. Any multi-body interactions,
Us>2(n

s
1 + ns

2), still respect this symmetry. Thus, the only effect that they have on the
dynamics is to add corrections, ns>2, to the energy spectrum in Eq. (2.6). Any such small
corrections would not affect the qualitative results of the dynamics in short times.

For symmetry-breaking terms in (b), our calculation shows that a finite ∆ suppresses gN
by a factor,

gN
g0N

= 1−
(

∆2N

2J2
+
U∆N(N − 1)

16J2

)

, (2.16)

where g0N = N !/2 is the N -body correlation function of a NOON state. Thus, when

8∆2N +∆UN(N − 1) ≪ 16J2, (2.17)

all characteristic features of NOON states retain.
We compare Eq. (2.17) to the criterion for a stable NOON state at equilibrium [93], where
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a finite ∆ strongly suppresses the superposition of |N, 0⟩ and |0, N⟩, as a large N amplifies the
energy penalty. Meanwhile, the effective tunneling between |N, 0⟩ and |0, N⟩ is exponentially
small, as it requires N steps of single-particle tunneling to couple them. ∆N ≪ Je−N is
then required, i.e., an exponentially small ∆ with increasing N . Here, such a constraint does
not apply in non-equilibrium dynamics. Eq. (2.17) shows that, with increasing N , ∆ only
needs to be suppressed as a power law. The dynamically generated NOON states are much
more stable than their counterparts at equilibrium. Thus, our results suggest a new route
to access NOON states that can be potentially used in precision measurements.

2.5 Experimental Realizations and Conclusions

Whereas our results apply to generic atomic interferometers with any particle number,
we comment on possible sceneries directly related to current experiments. Two coupled
optical tweezers have been used to create an atomic Hong-Ou-Mandel interferometer [3, 4].
Each single tweezer corresponds to a quantum state in Eq. (2.2), and both the interaction U
and tunneling J can be tuned. Starting from an initial state, |2, 0⟩, i.e., two bosons occupy
the same optical tweezer, the time evolution of the correlation functions can be calculated
analytically,

g1 = − 2U√
16J2 + U2

αβ sin2

√
16J2 + U2t

2ℏ
+ i2αβ sin

√
16J2 + U2t

2ℏ
cos

Ut

2ℏ
(2.18)

g2 =
α4 + β4 − 1

2
+ α2β2 cos

√
16J2 + U2t

ℏ
+ i

(

sin
Ut

2ℏ
cos

√
16J2 + U2t

2ℏ

− U√
16J2 + U2

cos
Ut

2ℏ
sin

√
16J2 + U2t

2ℏ

)

,

(2.19)

α =
1√
2

√

1− U√
16J2 + U2

, β =
1√
2

√

1 +
U√

16J2 + U2
. (2.20)

If the parameters are fine tuned such that
√
16J2+U2

U
= 2k, k ∈ Z, we obtain, g1 = 0, g2 =

i(−1)k, and a small NOON state |2,0⟩+i(−1)k|0,2⟩√
2

at t = πℏ
U

. Using realistic experimental
parameters in Ref. [4], J/2π = 262(4)Hz and U/J = 0.22(2), the correlation functions and
the zeros of G(z) are displayed in Fig. 2.5. When U ≪ J ,

√
16J2+U2

U
= 2k corresponds to

the condition r = rm in Sec. 2.2. Without fine tuning experimental parameters, there are
corrections to the small NOON state at t∗, similar to the results discussed in the previous
sections. It is worth mentioning that, starting from |1, 1⟩, the current experiment has shown
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Figure 2.5: Zeros of G(z) in the complex plane and normalized correlation functions
for 2 particles in optical tweezers. U/J = 0.22 and J/2π = 262Hz.

that a small NOON state can be produced in a Hong-Ou-Mandel interferometer. However,
this is only true when interactions are ignored. We have verified that, in the presence of
interactions, |1, 1⟩ cannot produce an exact small NOON state. Instead, |2, 0⟩ should be
used, as shown by the previous discussions.

It is possible that optical tweezers could trap multiple particles [2, 94]. For 8 particles,
UN2 ≪ J is no longer satisfied if U/J = 0.22(2). Nevertheless, qualitative results remain
unchanged. As shown in Fig. 2.6, g8 is maximized near t∗ while other correlation functions
are suppressed. With U/J decreased down to 0.022, all results in the previous sections are
recovered and the predicted NOON states and DQPTs can be observed around t = 86ms.

Beside optical tweezers, other systems ranging from double-well optical lattices to meso-
scopic traps [95–98], in which the total particle number can be controlled precisely, are
also suitable for testing our theoretical results. In addition, H in Eq. (2.2) can be mapped
to a spin-1/2 model with all-to-all interactions [37], which offers another realization of our
schemes in spin systems.

Conclusions. We have studied DQPTs in interacting atomic interferometers and shown
that dynamically generated entangled states have deep connections with zeros of Loschmidt
echo in the complex plane. DQPTs provide us with a new angle to understand non-
equilibrium dynamics. We hope that our work will stimulate more interests of using in-
teracting interferometers to explore DQPTs and to produce novel entangled quantum states.
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Figure 2.6: Zeros of G(z) in the complex plane and normalized correlation functions
for 8 particles in optical tweezers. J/2π = 262Hz. (a,b): U/J = 0.22. (c-e):
U/J = 0.022.

2.6 Appendix

2.6.1 Eigenstates and energy spectrum of the Hamiltonian

We consider the Hamiltonian

Ĥ = −J(â†1â2 + â†2â1) +
Ū

2
(n̂1 + n̂2)

2 +
U

4
(n̂1 − n̂2)

2 +∆(n̂1 − n̂2).

When U = ∆ = 0, the eigenenergies E0
n and eigenstates |E0

n⟩ are

E0
n = 2J(n− N

2
), (2.21)

∣

∣E0
n

〉

=
1

√

n!(N − n)!
(
â†1 + â†2√

2
)N−n(

â†1 − â†2√
2

)n |0⟩ . (2.22)

When U,∆ ≪ J , the first and second order corrections to the eigenenergies are

E1
n =

U

4
(2nN − 2n2 +N), (2.23)

E2
n =

U2

32J
(2n−N)(N − 1 + 2Nn− 2n2) +

∆2

2J
(2n−N). (2.24)
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The eigenstates are

|En⟩ =
∣

∣E0
n

〉

− ∆

2J

√

(n+ 1)(N − n)
∣

∣E0
n+1

〉

+
∆

2J

√

n(N − n+ 1)
∣

∣E0
n−1

〉

− U

4

√

(N − n)(N − n− 1)(n+ 1)(n+ 2)

4J

∣

∣E0
n+2

〉

+
U

4

√

(n− 1)n(N − n+ 1)(N − n+ 2)

4J

∣

∣E0
n−2

〉

.

(2.25)

2.6.2 Analyses of perturbations

When ∆ = 0, the initial state |N, 0⟩ can be expanded by energy eigenstates and the
coefficients cn are

|cn|2 = | ⟨En|N, 0⟩ |2 =
∣

∣

∣

∣

∣

1

2N/2

√

N !

n!(N − n)!

(

1− (N − 2n)
U(N − 1)

16J

)

∣

∣

∣

∣

∣

2

≈
√

2

πN
e−

2
N (n−

N
2
−UN(N−1)

16J )
2

.

(2.26)

Assuming En = Cn3 +Bn2 +An and B < 0, the overlap between |ψt⟩ and the NOON state
(|N, 0⟩+ i |0, N⟩)/

√
2 is

⟨C+|ψ(t)⟩ =
N
∑

n=0

|cn|2e−i(π
2
n2+nπ)e−

i
ℏ
Ent

=
∑

m

√

2

πN
e−

2
N
m2− iCt

ℏ
m3−i(π

2
−H2t)m2+i(G1−π−H1t)m,

(2.27)

where m = n− N
2
+ UN2

16J
and

H2 =
|B|
ℏ

− 3CN2U

16ℏJ
− 3CN

2ℏ
, (2.28)

H1 =
A

ℏ
− |B|N2U

8ℏJ
− |B|N

ℏ
+

3CN4U2

256ℏJ2
+

3CN3U

16ℏJ
+

3CN2

4ℏ
, (2.29)

G1 = −πN
2U

16J
− πN

2
. (2.30)

What is required is that the phase contributed by the cubic term is negligible when t ∼ πℏ
U

.
Since the width of the gaussian factor is

√
N , we require

∣

∣

∣

∣

Ct

ℏ
m3

∣

∣

∣

∣

=

∣

∣

∣

∣

U2

8J

π

U
N3/2

∣

∣

∣

∣

≪ 1 ⇒
∣

∣

∣

∣

UN3/2

J

∣

∣

∣

∣

≪ 1, (2.31)
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where we have used the energy spectrum obtained from second order perturbation. The
cubic term is then dropped and we employ Poisson summation formula to obtain

⟨C+|ψ(t)⟩ =
∑

k

√

1

1 + iN
2
(G2 −H2t)

exp

(

− 1
2
N
+ i(G2 −H2t)

(

(2k − 1)π +G1

H1

− t

)2
H2

1

4

)

.

(2.32)

Similarly, we obtain

⟨C−|ψ(t)⟩ =
∑

k

√

1

1 + iN
2
(G2 −H2t)

exp

(

− 1
2
N
+ i(G2 −H2t)

(

(2k)π +G1

H1

− t

)2
H2

1

4

)

.

(2.33)

When Eq. (2.31) is satisfied, H2 ≈ |B|
ℏ

≈ U
2ℏ

, H1 ≈ A
ℏ
≈ 2J

ℏ
, and G1 ≈ −πN

2
. We define

the probability of finding a NOON state as Q(t) = max(| ⟨C+|ψ(t)⟩ |2, | ⟨C−|ψ(t)⟩ |2). Near
t = G2

H2
, Q(t) can be written as

Q(t) ≈
√

1

1 + N2

4
(π
2
− U

2ℏ
t)2

∑

k

∣

∣

∣

∣

∣

exp

(

− 1
2
N
+ i(π

2
− U

2ℏ
t)

(

kπℏ

2J
− πNℏ

4J
− t

)2
J2

ℏ2

)∣

∣

∣

∣

∣

2

. (2.34)

Q(t) consists of multiple gaussian functions whose peaks are located at t = kπℏ
2J

− πNℏ

4J
, k ∈ Z,

and their separation is πℏ
2J

. There is also a factor (1+N2

4
(π
2
− U

2ℏ
t)2)−1/2, which suppresses peak

heights. If the parameters are fine tuned such that an integer k0 satisfies π
2
− U

2ℏ
(k0πℏ

2J
− πNℏ

4J
) =

0, then Q(t) = 1 at t = k0πℏ
2J

− πNℏ

4J
. We thus obtain a perfect NOON state. Without fine

tuning the parameters, we consider t = πℏ
U

that lies in the middle of two peaks. The two
peaks get a suppression of (1 + (πNU

16J
)2)−1/2. Again, because of Eq. (2.31), this factor is

negligible when N is large.
If the energy mismatch ∆ is finite, we separate the eigenstates into two parts according

to their spatial parity,

|En⟩ = αn |En⟩s + βn |En⟩a , (2.35)

P̂ |Em⟩ = αn(−1)n |En⟩s + βn(−1)n+1 |En⟩a . (2.36)

The time evolution of the wave function is written as

|N, 0⟩ → |ψt⟩ =
N
∑

n=0

cnαne
−iEnt |En⟩s + cnβne

−iEnt |En⟩a .

From Eq. (2.24), we see that, up to the second order of ∆, the quadratic term in En remains
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unchanged. Thus, when t∗ = πℏ
U

, e−iEnt∗ = 1+i(−1)n√
2

is satisfied, and we obtain

|ψ(t∗)⟩ =
N
∑

n=0

αncn
1 + i(−1)n√

2
|En⟩s + βncn

1 + i(−1)n√
2

|En⟩a = |cat⟩+ |err⟩ , (2.37)

where |err⟩ =∑N
n=0 i

√
2(−1)ncnβn |En⟩a is the correction to the NOON state at t∗, and

gN = ⟨ψt∗ | â†N1 âN2 |ψt∗⟩ = g0N +
N !√
2
⟨0, N |err⟩+ i

N !√
2
⟨err|N, 0⟩+ ⟨err| â†N1 âN2 |err⟩ . (2.38)

Using Eq. (2.25), we obtain

βn |En⟩a = − ∆

2J

√

(n+ 1)(N − n)
∣

∣E0
n+1

〉

+
∆

2J

√

n(N − n+ 1)
∣

∣E0
n−1

〉

. (2.39)

Up to the first order of U and ∆,

|err⟩(1) = ∆

2J

N
∑

n=0

i
√
2
(−1)n+1

2N/2

√

N !

n!(N − n)!
(N − 2n)

∣

∣E0
n

〉

. (2.40)

It is straightforward to verify that ⟨0, N |err⟩(1), ⟨err|(1) |N, 0⟩, and â†N1 âN2 |err⟩(1) vanish. Then
we have to go to the second order of U and ∆,

|err⟩(2) = ∆

2J

(

∆

2J
+
U(N − 1)

16J

) N
∑

n=0

i
√
2
(−1)n+1

2N/2

√

N !

n!(N − n)!
(N − 2n)2

∣

∣E0
n

〉

, (2.41)

So,

⟨0, N |err⟩(2) = −i
√
2
∆

2J

(

∆

2J
+
U(N − 1)

16J

)

N !

(N − 1)!
, (2.42)

⟨err|(2) |N, 0⟩ = 0. (2.43)

Therefore,

gN = ⟨ψ(t∗)| â†N1 âN2 |ψ(t∗)⟩ = i
N !

2
− i

(

∆

2J

(

∆

2J
+
U(N − 1)

16J

))

N !2

(N − 1)!

= g0N

(

1− 2N

(

∆

2J

(

∆

2J
+
U(N − 1)

16J

)))

.

(2.44)

2.6.3 Results for attractive interactions and odd number of particles

Attractive interactions As discussed in the main text, when U > 0, t∗ = πℏ
U

, and
rm = 4m, |C−⟩, |P−⟩, |C+⟩, and |P+⟩ show up in order starting from t∗. In contrast,
rm = 4m+ 2, |C+⟩, |P+⟩, |C−⟩, and |P−⟩ show up in order starting from t∗.
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Here we discuss U < 0 and t∗ = πℏ
|U | .

• For rm = 4m, |C+⟩, |P+⟩, |C−⟩, and |P−⟩ show up in order starting from t∗, and
G(z) = 1√

2
((cos J(z − t∗)/ℏ)N + i(i sin J(z − t∗)/ℏ)N).

• For rm = 4m + 2, |C−⟩, |P−⟩, |C+⟩, and |P+⟩ show up in order starting from t∗, and
G(z) = 1√

2
((cos J(z − t∗)/ℏ)N − i(i sin J(z − t∗)/ℏ)N).

If rm is not an even integer, Eq. (2.11) can be generalized to

Q(t) ≈
√

1

1 + N2

4
(π
2
− |U |

2ℏ
t)2

∑

k

∣

∣

∣

∣

∣

exp

(

− 1
2
N
+ i U

|U |(
π
2
− |U |

2ℏ
t)
(
kπ

2
− πN

4
− Jt

ℏ
)2

)∣

∣

∣

∣

∣

2

. (2.45)

Odd number of particles The zeros of G(z) = 1√
2
((cos J(z − t∗)/ℏ)N ± i(i sin J(z −

t∗)/ℏ)N) are written as

Re
J(z − t∗)

ℏ
=
π

4
+
l

2
π, l ∈ Z, (2.46)

Im
J(z − t∗)

ℏ
=

1

2
arcosh

1

| cos π(1+2k∓1/2
N

− 1
2
)|
sgn sin π

(

1 + 2k ∓ 1/2

N
− 1

2

)

,

k = 1, 2, ..., N.

(2.47)

For a finite even N , zeros have finite imaginary parts. For a finite odd N , some zeros reside
on the real time axis, as shown in Fig. 2.7.

In the large N limit:

• If N is even,
lim

N→∞
λ(t) = −2 ln[max(| cos Jt̃/ℏ|, | sin Jt̃/ℏ|)],

which has been analyzed in the main text.

• If N is odd,
λ±(t) = − 1

N
ln

(

1

2
| cosN Jt̃/ℏ± sinN Jt̃/ℏ|2

)

.

The sign ± is determined by the sign before i in G(t) and whether N = 4p+1 or 4p+3,
p ∈ Z. λ±(t) is nonanalytic at t̃c = ℏ

J
(π
4
+ k π

2
), k ∈ Z, when N → ∞. Especially,

lim
N→∞

λ−(t) = −2 ln[max(| cos Jt̃/ℏ|, | sin Jt̃/ℏ|)]

except at t̃c1 = ℏ

J
(π
4
+ kπ), k ∈ Z. As shown in Fig. 2.7(d), λ−(t) diverges at t̃c1 for

any finite odd N . Similar conclusions apply to λ+(t).
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Figure 2.7: (a) Zeros of G(z) in the complex plane of time for 7 particles. (b)
The corresponding normalized correlation functions along the real time axis in (a).
(d-g) The wave functions at four times picked up from (b). (c) The rate function
λ−(t). (h) and (i) show details of λ−(t) near tc. The hollow dot in (h) represents
the discontinuity of λ−(t) at t̃c1 where it approaches infinity. In all panels U and J
are fine tuned such that |ψ(t∗)⟩ = |C−⟩.

The emerged pair condensates near t∗ for odd N are also different from those for even
N , Using Eq. (2.5), for N = 2m+ 1,m ∈ Z, we obtain,

|P−⟩ =
N
∑

n=0

iN−n − in+1

pn
â†n1 â

†N−n
2 |0⟩ =

N
∑

n=0

in+1((−1)m+n − 1)

pn
â†n1 â

†N−n
2 |0⟩ , (2.48)

|P+⟩ =
N
∑

n=0

iN−n + in+1

pn
â†n1 â

†N−n
2 |0⟩ =

N
∑

n=0

in+1((−1)m+n + 1)

pn
â†n1 â

†N−n
2 |0⟩ . (2.49)

Thus, some Fock states are suppressed by the factor (−1)m+n−1. For instance when N = 7,
|P−⟩ only contains |0, 7⟩ , |2, 5⟩ , |4, 3⟩ , |6, 1⟩. Apparently both one-body correction g1 and
G(t) = ⟨7, 0|P−⟩ vanishes.
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3. DISCRETE TIME CRYSTAL STABILIZED BY
ALL-TO-ALL INTERACTIONS

This chapter is based on the published article [99] by C. Lyu, S. Choudhury, C. Lv, Y.
Yan, and Q. Zhou, Eternal discrete time crystal beating the Heisenberg limit, Phys. Rev. Re-
search 2, 033070 (2020). Copyright (2020) by the American Physical Society.

A discrete time crystal (DTC) [30–40] repeats itself with a rigid rhythm, mimicking
a ticking clock set by the interplay between its internal structures and an external force.
DTCs promise profound applications in precision timekeeping and other quantum tech-
niques. However, it has been facing a grand challenge of thermalization. The periodic
driving may continuously pump energies into a discrete time crystal and heat it up to the
infinite temperature eventually [100–102]. A number of schemes have been proposed to slow
down the thermalization, such as the many-body localization (MBL) [31–33] and the Floquet
prethermalization [36]. Compared with other schemes only retaining the coherence of DTCs
within certain time scales, MBL is of particular interest. Disorder breaks an interacting
system into localized l-bits to encode the memory of the initial state [103], and suppresses
thermalization up to an arbitrarily long time scale. However, most studies have considered
homogeneous drivings so far. In practice, the driving field may vary across a DTC and local
perturbations may further amplify the spatial inhomogeneities, both preventing individual
constituents of the DTC from synchronization and impeding applying DTCs in quantum
technologies. Whereas MBL could stabilize a DTC against weak inhomogeneous perturba-
tions to π-rotations [104], it is no longer powerful in the presence of strong inhomogeneities,
as the exponentially decayed couplings between l-bits in MBL have readily weakened the
synchronization between remote parts of a DTC in spite of the presence of interactions.

Fundamental questions naturally arise. (1) How to access a DTC that could maintain
quantum coherence and quantum synchronization in the presence of arbitrarily strong inho-
mogeneous driving fields and local perturbations? (2) Furthermore, how to implement such
a DTC to promote the precision of quantum metrology?

In this chapter, we present a new type of DTC that has a number of unique features
distinct from previously studied ones. DTCs in the literature survive a small deviation of
the driving fields from uniform π pulses. In contrast, our DTC is stable against arbitrarily
strong perturbations in both homogeneous and inhomogeneous pulses. It could also start
from any initial state, not necessarily a superposition of only two eigenstates of the Floquet
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operator [33]. Meanwhile, the hypersensitivity of our DTC to interaction strength makes
it a promising quantum device to measure interactions beyond the Heisenberg limit, unlike
other DTCs not sensitive to interactions within a finite range.

3.1 Quantum Revival of Spins with All-to-All Interactions

We consider N spin-1/2s described by a Hamiltonian, H = Hint +
∑

nHpulδ(t − nT ),
where

Hint = 2J
∑

i<j

Sz
i S

z
j , Hpul =

N
∑

i

θiS
y
i . (3.1)

As shown in Fig. 3.1(a), J is the strength of an all-to-all interaction, which has been consid-
ered in the Lipkin-Meshkov-Glick model [105]. S⃗i =

1
2
σ⃗i and σ⃗i are Pauli matrices (we have

set ℏ = 1). Hpul represents periodic pulses applied on spins. θi determines the angle rotated
by the ith spin about the y-axis. The dependence of θi on i characterizes the spatial inhomo-
geneity of pulses. In the time evolution, Hint and Hpul control the dynamical phases and the
geometric phases respectively, both of which depend on the number of spin excitations. As
shown later, the interplay of Hint and Hpul will lead to a perfect revival of the initial state.
Eq. (3.1) can be realized using spin-1/2s coupled to a cavity or a waveguide [106, 107], or
particles with long-range interactions whose ranges are much larger than the system size.
The equivalence between spin-1/2s and bosons also provides a natural realization of such
interaction [37].

We prove that, when JT = π is satisfied, any initial state returns to itself at t = 2nT−

for any even N ∈ 2Z and any θi as an arbitrary function of i. t− (t+) denotes the time right
before (after) a pulse is applied. This perfect revival delivers an eternal DTC that evades
thermalization and is equipped with a strong synchronization even in the presence of a noisy
environment. Previous works on normalized all-to-all interactions have considered the small
J limit of Eq. (3.1) [37], not the optimal choice of JT discussed here.

Consider an initial state with m spin-ups and N − m spin-downs, |Ψ(0−)⟩ =
∏

i |η⟩i,
where η =↑, ↓. After the first pulse,

|↑⟩i → +cos

(

θi
2

)

|↑⟩i + sin

(

θi
2

)

|↓⟩i , (3.2)

|↓⟩i → − sin

(

θi
2

)

|↑⟩i + cos

(

θi
2

)

|↓⟩i , (3.3)
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Figure 3.1: A DTC induced by an all-to-all interaction. (a)All-to-all interactions
(brown arrows) between spin-1/2s (blue spheres attached to arrows). (b)A perfect
revival of an arbitrary initial state due to constructive interference among all path-
ways. Dashed and solid boxes highlight the k spin-ups and s spin-downs flipped
by the first pulse, leading to geometric phases, (−1)k and (−1)s, respectively. Tri-
angles on the time axis represent Hpul. (c)Rotations of a spin-L (yellow arrow) on
the Bloch sphere. When JT = π, the non-linear term, JL2

z, leads to an effective π
rotation about the z axis between 2nT+ and (2n+1)T− such that any initial state
returns to itself after 2T for any θ.
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|Ψ(0+)⟩ becomes a superposition of 2N states, each of which is obtained from flipping s spin-
ups and k spin-downs of |Ψ(0−)⟩, as shown in Fig. 3.1(b). Each state acquires a dynamical
phase, e−iφ1 , imposed by Hint from t = 0+ to t = T−. The second pulse flips the spins again,
followed by Hint imposing another dynamical phase, e−iφ2 , from t = T+ to t = 2T−, and

∣

∣Ψ(2T−)
〉

= A
∣

∣Ψ(0−)
〉

+ ..., (3.4)

where “...” represents states different from |Ψ(0−)⟩.
To return to |Ψ(0−)⟩, the s (k) spin-ups (spin-downs) flipped by the first pulse need to

be flipped back to spin-ups (spin-downs) during the second pulse. 2N such pathways allow
the system to come back to |Ψ(0−)⟩. The contribution to A from each pathway is written
as (−1)k+s

∏

j∈F̄ cos2(
θj
2
)
∏

i∈F sin2( θi
2
), where (−1)k+s comes from flipping k + s spin-1/2s

twice, equivalent to the geometric phase from rotating these spins about the y axis for 2π.
F (F̄ ) denotes the collection of flipped (unflipped) spins. As each of these 2N states is an
eigenstate of Hint, φ1 = (m− s+ k)(m− s+ k−N)π, and φ2 = m(m−N)π when JT = π.
m-independent terms have been dropped. The total dynamical phase accumulated from 0−

to 2T− is e−i(φ1+φ2) = eiπ{2[m
2+m(k−s−N)−ks]+N(s−k)+k2+s2} = (−1)k+s. We have used N ∈ 2Z,

and eiZ
2π = eiZπ = (−1)Z for any integer Z. This dynamical phase factor cancels exactly

the previously obtained geometric phase, and thus A =
∑

F

∏

j∈F̄ cos2(
θj
2
)
∏

i∈F sin2( θi
2
).
∑

F

denotes the sum over all 2N choices of flipping the N spins in |Ψ(0−)⟩. Since F is an arbitrary
choice from the N spins,

A =
∏

i

(sin2(
θi
2
) + cos2(

θi
2
)) = 1. (3.5)

These discussions apply to any initial product state and any t ∈ [2nT−, 2(n+ 1)T−]. Thus,
any initial state returns to itself at t = 2nT−. Unlike traditional spin-echo schemes using
tailored pulses to restore quantum coherence [108], we implement interactions, one source
of the decoherence, to overcome the other, the inhomogeneities, so as to access a perfect
dynamical localization, an analogy to the Anderson localization in the Hilbert space [109].
Therefore, this interaction induced spin-echo could be used in a broad class of systems to
extend the coherence time.

For spatially uniform pulses, a simpler proof exists. H is rewritten as

Hhom = JL2
z + θLy

∑

n

δ(t− nT ), (3.6)
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where L⃗ =
∑

i S⃗i. Eq. (3.6) is equivalent to the kicked top model describing a periodically
driven spin-L [110], where L = N

2
. The propagator from t = 2nT− to t = 2(n + 1)T− is

written as

UJT (2T ) = e−iJTL2
ze−iθLye−iJTL2

ze−iθLy . (3.7)

As e−iπL2
z = e−iπLz applies to any integer L (or even N),

Uπ(2T ) = e−2iπLzee
iπLz (−iθLy)e−iπLz

e−iθLy = 1. (3.8)

As shown by Fig. 3.1(c), any state on the Bloch sphere of a spin-L returns to the original
place after 2T . If N is odd, e−iπL2

z and e−iπLz are no longer identical. Such DTC with a
period of 2T does not exist. In contrast, if we consider spin-1 instead of spin-1/2 in Eq. (3.1),
such even-odd effect is absent, as L is always an integer for both even and odd N .

Uπ(2T ) = 1 means that the quasi-energy spectrum of Heff, where UJT (2T ) = e−iHeff , has
2N degenerate eigenstates. Whereas this looks similar to the non-interacting case when
θi = π, a conceptual difference is that, the degeneracy here is stable against any per-
turbations in θi, unlike non-interacting systems, where any infinitesimal deviation from a
homogeneous π-pulse lifts the degeneracy, breaks the integrability, and suppresses DTCs.
Similar to other models the period doubling comes from the spontaneous time-translation
symmetry breaking [31, 32, 37, 104]. When JT = π, the Floquet eigenstates are |±⟩ =

1√
2
|ψ(0)⟩ ± 1√

2
Uπ(T ) |ψ(0)⟩, where |ψ(0)⟩ is an arbitrary initial state. Equivalently, every

state |+⟩ with quasi-energy 0 has a partner |−⟩ with quasi-energy π/T . Choosing the initial
state as |ψ(0)⟩ = 1√

2
(|+⟩ + |−⟩), the Rabi oscillation between the two Floquet eigenstates

leads to a period of 2T . Previous works have been mainly focusing on uniform π-pulses,
where the Floquet eigenstate, 1√

2
|↑↑ ...⟩ ± 1√

2
|↓↓ ...⟩, is a special case of our results. In

particular, results here apply to any uniform and nonuniform pulses and thus are far more
general.

3.2 Stability Against Spatial Inhomogeneities

We compare the all-to-all interaction model to the power-law interaction model,

H ′ = H ′
int +

∑

n

Hpulδ(t− nT ), H ′
int = 2J

∑

i<j

Sz
i S

z
j

|i− j|α . (3.9)
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Starting from |Ψ(0−)⟩ =
∏

i |↑⟩i, we compute some quantities for both interactions using
exact diagonalization,

P (2nT−) = |
〈

Ψ(0−)
∣

∣Ψ(2nT−)
〉

|2, (3.10)

Mz(2nT
−) = 2

〈

Ψ(2nT−)
∣

∣Lz

∣

∣Ψ(2nT−)
〉

/N, (3.11)

E(2nT−) =
〈

Ψ(2nT−)
∣

∣Hint
∣

∣Ψ(2nT−)
〉

, (3.12)

S(2nT−) = −Tr(ρB ln ρB). (3.13)

P (2nT−) characterizes the quantum memory of the initial state, Mz(2nT
−) denotes the z-

component of the total spin, E(2nT−) (or E ′(2nT−) = ⟨Ψ(2nT−)|H ′
int |Ψ(2nT−)⟩) captures

the absorption of energy, and S(2nT−) is the bipartite entanglement entropy using ρB, the
reduced density matrix of half of the system.

When θi = θ̄ for any i, a finite J in Eq. (3.9) restores the quantum coherence, if ϵ = θ̄−π
is small [33–35]. However, with increasing ϵ, both P (2nT−) and Mz(2nT

−) get suppressed,
as depicted in Fig. 3.2(a-d). Meanwhile, Q and S grow quickly, where we have used Q =
E(2nT−)−E(0)

E∞−E(0)
to characterize the absorption of the energy. E∞ = 2−N

∑

j ⟨j|Hint |j⟩ is the
energy at the infinite temperature and |j⟩ denotes the 2N eigenstates of Hint. These results
signify the thermalization at large ϵ.

We further take into account the spatial inhomogeneity. As shown in Fig. 3.2(e-h), we
choose a random θi from [θ̄ − ws, θ̄ + ws] with an equal probability. When ws is finite, the
thermalization becomes even faster and Q approaches 1, indicating that the system thermal-
izes to the infinite temperature. For power-law interactions, dynamical phases controlled by
interactions cannot cancel geometric phases induced by pulses. It is impossible to obtain
a constructive interference between all pathways. When θ̄ deviates from π, as shown in
Fig. 3.3(a-d), P and Mz are suppressed more quickly and S and Q grow faster than the
results of θ̄ = π. If θ̄ is further decreases down to 0.8π, this tendency continues, showing
that the power-interaction cannot synchronize spins when pulses are not uniform.

In contrast, P (2nT−) and Mz(2nT
−) of the all-to-all interaction are unaffected by ws and

remain unity, and both Q(2nT−) and S(2nT−) remain zero, directly reflecting the robustness
of this eternal DTC against arbitrarily strong spatial inhomogeneities and representing the
most synchronized DTC.

The onsite disorder is often considered in DTC to introduce many-body localization [33–
35]. Since the coupling between l-bits decays exponentially with increasing their distance,
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Figure 3.2: Comparison between the all-to-all interaction and a power-law potential
with α = 3. Here N = 14. (a-d) Uniform rotations of spins, ws = 0. The DTC
with all-to-all interactions (dots) is unaffected by ϵ, the deviation of θ̄ from π. With
the power-law potential (curves), increasing ϵ leads to the suppression of P (2nT )
and Mz(2nT ), and the growth of S(2nT ) and Q(2nT ). (e-h) Keeping θ̄ = π and
increasing the spatial inhomogeneities ws, the DTC with the power-law potential
is suppressed. The DTC with all-to-all interactions remains stable.
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Figure 3.3: Results of inhomogeneities pulses for a power-law potential with α = 3.
Parameters are the same as Fig. 3.2(e-h), except here in (a-b), θ̄ = 0.9π and in (e-h)
θ̄ = 0.8π.
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Figure 3.4: Effects of inhomogeneous θi on MBL. θi is chosen from a uniform
distribution [−ws + θ̄, θ̄ + ws]. The onsite disorder is chosen from [0,W ], where
W = 40J, α = 3, θ̄ = π, N = 14.

this could slow down the thermalization, provided that θi is spatially uniform. However, this
mechanism of suppressing the thermalization automatically weakens the synchronization be-
tween different spatial parts of the system. Thus, when θi has strong spatial inhomogeneities,
the onsite disorder cannot stabilize the DTC. Consider the Hamiltonian,

H = 2J
∑

i<j

Sz
i S

z
j

|i− j|α +
∑

n

δ(t− nT )
N
∑

i=1

θiS
y
i + 2

N
∑

i=1

∆iS
z
i , (3.14)

where θi has a uniform distribution in [θ̄−ws, θ̄+ws], similar to Fig. 3.2. The onsite disorder,
∆i, has a uniform distribution in [0,W ]. As shown in Fig. 3.4, for a given W , with increasing
ws, P (2nT ) and Lz(2nT ) are suppressed down to zero. Meanwhile, the entropy S(2nT ) and
Q(2nT ) grow faster, signifying the thermalization of the DTC.

3.3 Applications in Precision Measurement

As aforementioned, the perfect revival at t = 2nT− comes from the same dynamical
phase of all 2N pathways of returning to |Ψ(0)⟩ when JT = π. Once JT ̸= π, these
dynamical phases are no longer the same. In particular, the larger N is, the more rapidly
the dynamical phase varies with changing the pathways. In the large N limit, this DTC
becomes supersensitive to the value of JT and serves as a high precision device to measure
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either J or T .
Since it is time-consuming to solve more than 14 lattice sites using exact diagonalization

when inhomogeneities exist, we focus on homogeneous systems. It is expected that the
lower bound of the results of an inhomogeneous distribution, θi ∈ [θ̄ − ws, θ̄ + ws], could be
estimated using homogeneous θi = θ̄ ± ws. As an example, we consider θi fixed at π/4. As
shown in Fig. 3.5(a), P (2nT−) quickly vanishes if |δ| ≫ π/N

3
2 , where δ = JT−π. It is known

that the Heisenberg limit, 1/N , sets the bound of the precision in linear metrology, whereas
non-linearity allows going beyond this limit [111]. The DTC discussed here represents a new
category of nonlinear quantum metrology using periodic drivings.

We evaluate some observables to quantitatively characterize the sensitivity. P (2T ), the
returning probability to |Ψ(0−)⟩ after two periods, captures short time dynamics. Fig. 3.5(c)
shows that the dependence of P (2T ) on JT has a narrow peak centered at π, whose width
is of the order of 1/N

3
2 . Such scaling can be obtained analytically (Appendix 3.5.1), and

is verified numerically, as shown in the inset of Fig. 3.5(c). Another quantity is the power
spectrum, P̃ (f) = 1

M

∑M−1
n=0 ei2πnTfP (nT ). We are particularly interested in P̃ (f = 1

2T
)

characterizing the response of the DTC at half of the frequency of the periodic driving.
The dependence of P̃ (f) on JT also has a peak around π. We define the full width at
half maximum (FWHM) as ∆JT , and find both numerically and analytically that ∆JT is
proportional to 1/N

3
2 (Appendix 3.5.1).

To gain insights into the scalings, we consider the quantum Fisher information,

IJT (2nT ) = lim
ϵ→0

4
1− Fϵ

ϵ2
, (3.15)

Fϵ = |
〈

Ψ(0−)
∣

∣UJT (2nT )UJT+ϵ(−2nT )
∣

∣Ψ(0−)
〉

|2, (3.16)

where Fϵ is the Loschmidt echo. The squared root of the quantum Fisher information limits
the precision of a phase measurement [15]. The uncertainty of JT is bounded by

√

IJT (2nT ),
i.e., ∆JT ≥ 1/

√

IJT (2nT ). We have found analytically that (Appendix 3.5.1),

Iπ(2nT ) =
n2

4
[sin2(2θ̄)N3 + 2 sin4(θ̄)N2]. (3.17)

When θ̄ ̸= 0,±π/2, π, Iπ(2nT ) ∼ n2N3, provided that sin2(2θ̄)N3 ≫ 2 sin4(θ̄)N2. Thus,
Iπ(2nT ) scales with n2N3 in the large N limit, as shown in Fig. 3.5(g,h). Correspondingly,
∆JT ≥ 1/

√

Iπ(2nT ) ∼ n−1N− 3
2 . This is precisely what we have obtained in Fig. 3.5(c,e).

DTCs previously discussed in the literature are stable within a finite range of both
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Figure 3.5: Sensitivity to JT . Curves (dots) are numerical (analytical) results.
θi = π/4 is used in all panels. The legend of (g) also applies to (c-f). (a,b) P (2nT )
and Mz(2nT ) as functions of n at various JT . When |JT − π| ≫ π/N3/2, both
quantities decrease down to zero quickly. N = 200. (c,d) P (2T ) and Mz(2T ) as
functions of JT . For a fixed N , P (2T ) and Mz(2T ) have narrow peaks centered
at JT = π. Mz(2T ) has an extra fast oscillation. The dashed curve highlights
the analytical result of its profile, whose width is denoted by black arrows. (e,f)
The power spectra, P̃ (1/2T ) and M̃z(1/2T ), which contain information of both
short and long-time dynamics, are also featured by narrow peaks around JT = π.
M = 200. (g) The quantum Fisher information Iπ(2nT ) as a function of n. (h)
Iπ(2nT ) is proportional to N3. Insets show the scaling of the peak widths with N .
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the interaction strength and a uniform deviation of θi from π. In contrast, the all-to-all
interaction induced DTC is stable against any spatial fluctuations in θi and meanwhile
supersensitive to JT . In practice, it is much easier to control J and T other than the N
local parameters θi in a noisy environment, where θi’s may not have any correlations at
different locations. Moreover, our DTC could be used to measure JT with high precision
beyond the Heisenberg limit. It mimics a supersensitive clock. If the frequency of the
external field, ωd = 1/T , is fixed, J , which corresponds to some internal parameter of a
clock, for instance, the length of a pendulum clock, needs to be tuned with a precision of
1/N

3
2 to deliver rigid ticks at t = 2nT . Otherwise, as shown in Fig. 3.5(c,e), once JT is

out of the window of length 1/N3/2 centered at JT = π, both P (2T ) and P̃ (f) quickly
decrease and the DTC stalls to avoid errors in the timekeeping. Our results thus lead to a
new type of precision measurement of J . From JT = π, the precision of J can be estimated
as ∆J/J ≈ ∆d/ωd +N− 3

2 , where ∆d/ωd characterizes the precision of the driving frequency.
When N− 3

2 ≫ ∆d/ωd, ∆J/J scalings with N− 3
2 . When N → (∆d/ωd)

−2/3, the uncertainty
of J eventually approaches the precision limit of ∆d/ωd. Whereas the precision of ∆d/ωd

is up to 10−19 in the THz regime [112], typical experiments on ultracold atoms, ion traps
and NV centers have interaction strengths ∼ 102 − 105Hz. In such regime, the precision of
∆d/ωd could be 10−6 and above. Our results thus provide a new application of precision
timekeeping in many-body physics.

Alternatively, if J is fixed, the DTC discussed here could gauge the frequency, as only a
driving field, whose T deviates from π/J within 1/N

3
2 , could induce its long-lasting dynamics.

Different from atomic clocks using a transition with a narrow line width, the selection of the
driving frequency here entirely comes from the many-body effect we previously discussed.
In particular, the rotated angle, θ̄, can be arbitrary such that the DTC could function in
a non-ideal environment, unlike previous works requiring a precise control of pulses in non-
linear metrology without periodic driving [113–115]. Though 1/J may not be as precise as
transition frequencies in atomic clocks, the many-body effect induced 1/N

3
2 scaling could

make this DTC a useful gauge of the frequency or time.
We have also studied the scalings of other quantities. We have found that Mz(2T

−) and
M̃( 1

2T
) scale with 1/N

1
2 and 1/N , respectively, as shown by Fig. 3.5(b,d,f). Similar scalings

are obtained for other uniform rotations. For instance, when θi = π/2, ∆JT of either P̃ ( 1
2T
)

or M̃z(
1
2T
) scales with 1/N (Appendix 3.5.1).
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Figure 3.6: Power-law potentials for N = 14. (a,b) Uniform rotations with θ̄ =
0.95π. α = 0 corresponds to the all-to-all interaction. With decreasing α, the
results of the power-law potentials approach those of the all-to-all interaction. All
parameters are the same in (a) and (b). (c,d) Inhomogeneous rotations with θ̄ = π
and ws = 0.1π.

Whereas we have been focusing on the all-to-all interaction, similar conclusions apply to
a generic long-range interaction, provided that its range is much larger than the size of the
system. For instance, with decreasing α, the range of the a power-law potential in Eq. (3.9)
increases. When α = 0, it is equivalent to the all-to-all interaction. Fig. 3.6 shows the results
for N = 14. With decreasing α down to zero, P (2nT ) and Mz(2nT ) increase and eventually
approach the result of the all-to-all interaction. A small α = 0.04 readily provides us with a
good approximation of the all-to-all interaction in such a finite system.

Another application of the all-to-all interaction is to create a DTC of highly entangled
states. To this end, we consider a uniform θi. When JT = π/2, θi = π/2, starting from
|Ψ(0−)⟩ =

∏

i |↑⟩i, as depicted in Fig. 3.1(d), the first pulse rotates the initial state to
the equator, and |Ψ(0−)⟩ = |π/2, 0⟩c, where |ϕ, φ⟩c denotes the coherent state specified by
two angles ϕ and φ. Then the operator e−iπ

2
J2
z = 1−i

2
(I + ie−iπJz) creates a superposition,

|Ψ(T−)⟩ = 1√
2
(|π/2, 0⟩c + iN+1 |π/2, π⟩c), a Schrödinger’s cat state formed by two coherent

states. The second pulse rotates this cat state by π/2 about the y-axis, creating a NOON
state, |Ψ(T+)⟩ = 1√

2
(iN+1

∏

i |↑⟩i+
∏

i |↓⟩i) = 1√
2
(iN+1 |N/2⟩+ |−N/2⟩), a cat formed by two

Fock states. We have defined the eigenstate of Lz via Lz |l⟩ = l |l⟩. Similar Schrödinger’s cat
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Figure 3.7: A DTC with a lattice spacing of 8T in time. Graphs under the Bloch
spheres show the expansion of the wavefunctions in the basis of |l⟩, the eigenstates
of Lz, i.e., |Ψ(t)⟩ =

∑

l ψl |l⟩. After the first π/2 pulse, |Ψ(0+)⟩ becomes a coherent
state and ψl is a binomial distribution. When JT = π/2, the non-linear term creates
a superposition of two coherent states, |Ψ(T−)⟩ = (|π/2, 0⟩c + iN+1 |π/2, π⟩c)/

√
2.

ψl remains a binomial distribution but the phases alternate between 1 and i. The
second π/2-pulse creates a NOON state, |Ψ(T+)⟩ = (iN+1 |N/2⟩ + |−N/2⟩)/

√
2 =

|Ψ(2T−)⟩. The third π/2 pulse rotates the NOON state to the equator, |Ψ(2T+)⟩ =
(iN+1 |π/2, 0⟩c + |π/2, π⟩c)/

√
2, which is then turned into a coherent state |π/2, 0⟩c

at t = 3T− by the non-linear term. The fourth π/2 pulse rotates this coherent state
to the south pole, which then becomes |−N/2⟩ at t = 4T−. Similar steps repeat
and the system returns to the initial state at t = 8T−

states emerge as time goes on, as depicted in Fig. 3.7, leading to a unique DTC with a lattice
spacing of 8T in time. Its unit cell includes multiple Schrödinger’s cat states. Whereas the
nonlinear operator e−iπ

2
J2
z has been used to squeeze a spin and create a NOON state [82, 116],

a unique feature here is that Schrödinger’s cat states repeatedly emerge in time, forming an
intriguing DTC distinct from previously found ones that have simple unit cells containing
trivial Fock states. As Schrödinger’s cat states are fundamental ingredients in beating the
standard quantum limit [81–84], this DTC gives rise to a sustainable source of such high
entangled states for quantum metrology.
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3.4 Experimental Realizations

In this section, we discuss the experimental realization of our model. Whereas we have
used idealized delta-like kicks in the discussions of previous sections, our results can be
straightforwardly generalized to pulses with finite widths. If we consider the Hamiltonian,

H =







2J
∑

i<j S
z
i S

z
j , nT < t < (n+ 1)T − τ

∑N
i

θi
τ
Sy
i , (n+ 1)T − τ < t < (n+ 1)T ,

(3.18)

where τ represents the finite width, we only need to replace JT = π by J(T − τ) = π and
other results remain unchanged.

In a finite system, as shown in Fig. 3.6, to qualitatively demonstrate our results for a
system consisting of 14 spins, a power-law interaction width α = 0.04 readily provides us
with a good approximation of the all-to-all interaction. In fact, the only requirement is that
the range of interaction is much larger than the size of the system. Meanwhile, the all-to-all
interaction can be accessed by using photons in cavities or waveguides to couple atoms at
different locations. We consider the following Hamiltonian,

H = ℏωb†b+ Ω(b† + b)
∑

i

(S+
i + S−

i ), (3.19)

where the first term represents a single photon mode and the second term denotes the
interaction between photons and atoms. We have assumed that the local Hamiltonian acting
on each spin vanishes. S±

i = Sx
i ± Sy

i . Without the second term, the eigenstates are
|n⟩
∏

i |ηi⟩, representing n photons and a Fock state of atoms, and η =↑, ↓. Consider two
specific atoms at sites i ̸= j, their couplings induced by the photon can be derived using
second order perturbation. For instance, the off-diagonal term is written as,

1

−ℏω
Ω2 ⟨n| ⟨↓i↑j|

∏

k ̸=i,j

⟨ηk| bS+
j |n+ 1⟩ |↓i↓j⟩

∏

k ̸=i,j

|ηk⟩

× ⟨n+ 1| ⟨↓i↓j|
∏

k ̸=i,j

⟨ηk| b†S−
i |n⟩ |↑i↓j⟩

∏

k ̸=i,j

|ηk⟩

+
1

ℏω
Ω2 ⟨n| ⟨↓i↑j|

∏

k ̸=i,j

⟨ηk| b†S+
j |n− 1⟩ |↓i↓j⟩

∏

k ̸=i,j

|ηk⟩

× ⟨n− 1| ⟨↓i↓j|
∏

k ̸=i,j

⟨ηk| bS−
i |n⟩ |↑i↓j⟩

∏

k ̸=i,j

|ηk⟩ = −Ω2

ℏω
.

(3.20)

This is equivalent to adding a term −Ω2

ℏω
S+
j S

−
i to the unperturbed Hamiltonian. The diagonal
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couplings can be obtained in a similar means. The full effective Hamiltonian after eliminating
the photon mode is written as,

Heff = −Ω2

ℏω

∑

i,j

S+
j S

−
i + h.c., (3.21)

which can be further simplified as

Heff = −2Ω2

ℏω
(
∑

i

S⃗i)
2 +

2Ω2

ℏω

∑

i

(Sz
i )

2 +
4Ω2

ℏω

∑

i<j

Sz
i S

z
j . (3.22)

Since
∑

i S⃗i is conserved, the first two terms commute with the last term and the last
term exactly matches an all-to-all interaction, we thus created all-to-all interaction with an
equivalent strength J = 2Ω2

ℏω
. Whereas the above discussions do not require the leakage of

photons from the cavity, a “bad” cavity with leaking photons has the unique advantage of
suppressing the heating that may be caused by the driving [117]. Thus, our results can be
generalized to the full model including both the atoms and photons.

Whereas the above scheme is relevant to small systems, in which a fine tune of the local
effective magnetic field is doable, our model can also be implemented by a two-mode bosonic
system, in which the all-to-all interaction naturally exists. For instance, we consider a BEC
in a double-well potential,

H = g1
nl(nl − 1) + nr(nr − 1)

2
+ g2nlnr +

∑

n

(θa†lar + h.c.)δ(t− nT ), (3.23)

where g1 and g2 representonsite and intersite interactions and θ denotes the tunneling. If we
map the left and the right site to the spin-up and the spin-down, respectively, J = g1 + g2

directly corresponds to the all-to-all interaction, and the tunneling term is mapped to Hpul.
Such a mapping allows us to implement all results in the spin model to a large bosonic
system with 104 particle and more.
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3.5 Appendix

3.5.1 Scalings of physical quantities with particle numbers

We have analytically obtained how the dependence of P (2T ) (Mz(2T )) on JT scales with
the particle number N ,

P ′(δ) ≡ P (2T ; JT = π + δ) = (1 +
N2δ2 sin4 θ

4
)−1/2e

− 1
4N2δ2 sin4 θ+16

sin2(2θ)δ2N3

, (3.24)

M ′
z(δ) ≡Mz(2T ; JT = π + δ) = cos2 θ + sin2 θ cos(cos θNδ)e−

N
2
δ2 sin2 θ. (3.25)

When θ = π/2, sin(2θ) = 0. The exponential function in Eq. (3.24) becomes identity, and
P ′(δ) = (1 + N2δ2 sin4 θ

4
)−1/2. Thus, the peak width shown in Fig. 3.8 scales with 1/N . The

same scaling applies to θ near 0 and π. In contrast, when θ is away from 0, π/2 and π, the
exponential function becomes dominant, and P (2T ) decays faster, as shown in Fig. 3.5(c).
In particular, the peak width of P (2T ) in Fig. 3.5(e) scales with 1/N3/2.

In Eq. (3.25), the Nδ term in the cosine function leads to a fast oscillation, and the
Nδ2 term in the exponential function leads to the 1/N1/2 scaling of the profile of Mz(2T ),
regardless of θ, as shown in the insets of Fig. 3.8(d) and Fig. 3.5(d).

To derive Eq. (3.24) and Eq. (3.25), we consider an initial state, |Ψ(0−)⟩ =
∏

i |↑⟩i =
∣

∣

N
2
, N

2

〉

, where Lz

∣

∣

N
2
, l
〉

= l
∣

∣

N
2
, l
〉

and N
2
= L is the total angular momentum.

P ′(δ) =|
〈

Ψ(0−)
∣

∣ e−i(π+δ)L2
ze−iθLye−i(π+δ)L2

ze−iθLy
∣

∣Ψ(0−)
〉

|2

=|e−i(π+δ)(N
2
)2
〈

Ψ(0−)
∣

∣ e−iθLye−i(π+δ)L2
ze−iθLy

∣

∣Ψ(0−)
〉

|2.
(3.26)

As discussed in Sec. 3.1, e−iπL2
z = e−iπLz is satisfied for any even particle number N . When

δ is small, e−iδL2
z can be written as

e−iδL2
z ≈

∫ Nδ

−Nδ

dke−ik2/4δ 1

2π

√
π√
−iδ

e−ikLz . (3.27)

We thus obtain

P ′(δ) = |e−i(π+δ)(N
2
)2
∫ Nδ

−Nδ

dke−ik2/4δ 1

2π

√
π√
−iδ

I(θ, k)|2, (3.28)

I(θ, k) =
〈

Ψ(0−)
∣

∣ e−iθLye−iπLze−ikLze−iθLy
∣

∣Ψ(0−)
〉

. (3.29)

Note that e−iθLy |Ψ(0−)⟩ = |θ, 0⟩c, eiπLzeiθLy |Ψ(0−)⟩ = (−1)
N
2 |θ, 0⟩c, we obtain

I(θ, k) = (−1)
N
2 ⟨θ, 0|c e−ikLz |θ, 0⟩c = (−1)

N
2 eik

N
2 (

1

1 + α
)N(e−ikα + 1)N , (3.30)
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where α ≡ tan2 θ
2

and

|θ, ϕ⟩c =
N/2
∑

l=−N/2

√

N !

(N
2
+ l)!(N

2
− l)!

(cos θ)
N
2
+l(sin θ)

N
2
−leiϕ(

N
2
−l) |l⟩ (3.31)

is a coherent state pointing along θ, ϕ. In the large N limit,

I(θ, k) ≈ (−1)
N
2 e−ikN

2
+i N

1+α
ke

−N
2

α

(1+α)2
k2
, (3.32)

which represents a narrow Gaussian centered at k = 0. Substituting I(θ, k) in Eq. (3.28) by
Eq. (3.32), we obtain Eq. (3.24).

As for M ′
z(δ), using the time evolution operator U(T ) = e−iL2

zJT e−iLyθ, we obtain the
Heisenberg equations, which provide us with the nonlinear recursion relations as shown
in [110],

L′
x = U−1(T )LxU(T ) =

1

2
(Lx cos θ + Lz sin θ + iLy)e

i2JT (Lz cos θ−Lx sin θ+ 1
2
) + h.c.

L′
y = U−1(T )LyU(T ) =

1

2i
(Lx cos θ + Lz sin θ + iLy)e

i2JT (Lz cos θ−Lx sin θ+ 1
2
) + h.c.

L′
z = U−1(T )LzU(T ) = Lz cos θ − Lx sin θ.

(3.33)

Since Mz(2T ) =
2
N
⟨Ψ(0−)|U−1(T )U−1(T )LzU(T )U(T ) |Ψ(0−)⟩, we obtain,

M ′
z(δ) =

2

N

〈

Ψ(0−)
∣

∣ [(Lz cos θ − Lx sin θ) cos θ

− (
1

2
(Lx cos θ + Lz sin θ + iLy)e

i2JT (Lz cos θ−Lx sin θ+ 1
2
) + h.c.) sin θ]

∣

∣Ψ(0−)
〉

=cos2 θ − (−1)
N
2 sin θ[sin θ cosN

Θ

2
cos(JT −NΦ)

+ (cos θ + 1) cosN
Θ

2
tan

Θ

2
cos(Φ + JT −NΦ)]

= cos2 θ + (−1)
N
2 sin θ cosN(

Θ

2
)[sin θ cos(δ −NΦ)

+ (cos θ + 1) tan
Θ

2
cos(Φ + δ −NΦ)]

≈ cos2 θ + sin2 θ cos(cos θNδ)e−
N
2
δ2 sin2 θ

(3.34)

where Θ = arccos
(

cos2 θ + cos(2δ) sin2 θ
)

, Φ = arctan
(

− sin θ sin(2δ)
cos θ sin θ(−1+cos(2δ))

)

. The expression
which contains Θ and Φ is exact for any θ and δ’s. The final approximation comes from Θ2 =

4 sin2 θδ2+O(δ4), Φ = π/2−cos θδ+O(δ3) and cosN Θ
2
≈ e−Nδ2 sin2 θ/2 when δ is small and N

is large. The overall profile as shown in Fig. 3.5(d) is thus given by e−N
2
sin2 θδ2 sin2 θ+cos2 θ.

We have also obtained an analytical form for P̃ (f), the Fourier transform of P (2nT ).
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Figure 3.8: Sensitivity of the DTC to JT when θi = π/2. Dots (curves) are
analytical (numerical) results. The legend of (g) also applies to (c-f). (a,b) P (2nT )
and Mz(2nT ) as functions of n for various JT . When |JT − π| ≫ π/N (here
N=200), both quantities quickly decrease down to zero. (c,d) P (2T ) and Mz(2T )
as functions of JT . For a fixed N , both quantities are featured with narrow peaks
centered at JT = π. (e,f) The power spectra P̃ (1/2T ) and M̃z(1/2T ) are also
featured with narrow peaks around JT = π. Whereas they exhibit non-monotonic
behaviors near JT = π, both quantities vanish when |JT − π| ≫ π/N . (g) The
quantum Fisher information Iπ(2nT ) as a function of n. (h) Iπ(2nT ) is proportional
to N2. θi = π/2 is used in all panels. Insets show the scalings of the widths of the
peaks with N .
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Figure 3.9: The approximation used to derive P (2nT ). When t = T−, the nonlinear
operator e−iJTL2

z creates a superposition of coherent states, which spans a length
scale ∼ δ in the latitude direction, as shown in (c). This length scale is transferred
to the longitude direction around the north pole by the pulse at t = T+, as shown
in (d). Then the nonlinear operator creates a superposition of coherent states in
the region highlighted by the red color at t = 2T−. The length scales of this region
in the longitude and latitude directions are δ and δ2 respectively, as shown in (e).
Replacing the second nonlinear operator e−iJTL2

z by e−iπL2
z , as shown in (f), we have

ignored the expansion of the wavefunction in the latitude direction that gives rise
to a high order correction to P (2nT ) at small times.

As shown in Fig. 3.9, starting from an initial state at the north pole, the state at t = 2T−

covers a finite small region near the north pole, if δ = JT − π is small. The length scales of
the longitude and latitude directions are proportional to δ and δ2, the latter of which can be
ignored in the small δ limit. Thus, we make use of the following approximation to capture
the dynamics in the small δ limit,

U(2T ) = e−iJTL2
ze−iθLye−iJTL2

ze−iθLy ≈ e−iπL2
ze−iθLye−iJTL2

ze−iθLy . (3.35)

P (2nT ) is written as

P (2nT ) = |
〈

Ψ(0−)
∣

∣ (e−iπL2
ze−iθLye−i(π+δ)L2

ze−iθLy)n
∣

∣Ψ(0−)
〉

|2. (3.36)

Using the identities, e−iπL2
z = e−iπLz and e−iπLze−iθLye−iπLz = eiθLy , the equation above can

be written as

P (2nT ) = |
〈

Ψ(0−)
∣

∣ (eiθLye−iδL2
ze−iθLy)n

∣

∣Ψ(0−)
〉

|2

= |
〈

Ψ(0−)
∣

∣ eiθLye−inδL2
ze−iθLy

∣

∣Ψ(0−)
〉

|2.
(3.37)

Applying Eq. (3.24), we obtain

P (2nT ) = e
− n2 sin2(2θ)δ2N3

4N2n2δ2 sin4 θ+16 (1 +
n2N2δ2 sin4 θ

4
)−1/2. (3.38)

Eq. (3.38) recovers Eq. (3.24) when n = 1. As shown in Fig. 3.8(a), this expression well
captures the initial decay of P (2nT ). However, it cannot describe the revival of P (2nT ) in
later times for certain JT due to the made approximation in Eq. (3.35).
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The power spectrum is therefore written as

P̃ (1/2T ) =
1

M

M−1
∑

n=0

P (nT )ei
2π
2T

nT =
1

M

M−1
∑

n=0

P (nT )(−1)n ≈ 1

M

M/2−1
∑

n=0

P (2nT ), (3.39)

where M is the cutoff required in numerics. In the last step, we have used the fact that, for
small n, |ψ(2nT + T )⟩ is located at a place on the Bloch sphere away from the north pole,
provided that θ is not small, and thus,

P (2nT + T ) = |
〈

Ψ(0−)
∣

∣ψ(2nT + T )
〉

|2 ≈ 0. (3.40)

When nNδ ≪ 1 and θ ̸= 0, π/2, π, Eq. (3.38) becomes P (2nT ) = e−
n2 sin2(2θ)δ2N3

16 , and
Eq. (3.39) is rewritten as

P̃ (1/2T ) ≈ 2
√
πErf(1

8
δMN 3/2 sin(2θ))

sin(2θ)δMN 3/2
, (3.41)

In the limit M → ∞, P̃ (1/2T ) → 1
2
√
π
e−

1
64

δ2N3M2 . To compare with numerical result, we
choose θ = π/4 and M = 200. Eq. (3.41) becomes

P̃ (1/2T ) ≈ 2
√
πErf(25δN3/2)

200δN3/2
, (3.42)

which shows the 1/N3/2 scaling. Erf is the error function. The comparison between this
analytical result and the numerical one is shown in Fig. 3.5(e).

When θ = π/2, the exponential term in Eq. (3.38) becomes identity. We obtain

P̃ (1/2T ) ≈ arcsinh(δMN/4)

δMN/2
. (3.43)

As mentioned in Fig. 3.8, when θ = π/2, the dependence of P̃ (1/2T ) on JT is not monotonic.
With increasing δ, P̃ (1/2T ) first quickly decreases and then increases before it eventually
vanishes when δ > π/N . Eq. (3.43) captures the narrow peak, whose width is much smaller
than π/N , near δ = 0. The broader peak scales with 1/N as shown in Fig. 3.8(f). When θ

deviates from π/2, the broader peak gets suppressed as shown in Fig. 3.10. When θ = π/4,
only the central narrow peak is visible, whose width scales with 1/N3/2, as discussed before.

Mz(2nT ) and M̃z(1/2T ) do not have simple analytical forms. We have numerically
evaluated them and the scaling of M̃z(1/2T ) with N is shown in Fig. 3.8(b, e).
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Figure 3.10: The power spectra P̃ (1/2T ) for different pulses for N = 100, M = 200.
(a) It is identical to the curve for N = 100 in Fig. 3.8(e). The central sharp peak
at JT = π for π/2 pulse is well approximated by the analytical result (blue dots)
shown in Eq. (3.43). (b-f) When θ decreases, the two broader peaks gradually
vanish. When the exponential term in Eq. (3.38) dominates, the central peak is
described by Eq. (3.41) (green dots). Enlarging (f) around JT = π gives rise to
Fig. 3.5(e).
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When JT = π, the quantum Fisher information is written as

Iπ(2nT ) = lim
ϵ→0

4
1− Fϵ

ϵ2
, (3.44)

Fϵ = |
〈

Ψ(0−)
∣

∣Uπ(−2nT )Uπ+ϵ(2nT )
∣

∣Ψ(0−)
〉

|2. (3.45)

As Uπ(2nT ) |Ψ(0−)⟩ = |Ψ(0−)⟩ or equivalently, ⟨Ψ(0−)| Uπ(−2nT ) = ⟨Ψ(0−)|, the Loschmidt
echo is identical to the quantum memory of the initial state, Fϵ. Using Eq. (3.38) and
replacing ϵ by δ, we obtain

Iπ(2nT ) = lim
δ→0

4
1− P (2nT )

δ2
=
n2N3 sin2(2θ)

4
+
n2N2 sin4 θ

2
. (3.46)

3.5.2 Numerical simulation methods

In this section, we present some details of the numerical simulations used to produce
Fig. 3.2, 3.5, and Fig. 3.8. We write the time-dependent many-body wavefunction, |Ψ(t)⟩, as
superposition of Fock states, which are eigenstates of Sz. In the presence of Hint, every Fock
state acquires an dynamical phase factor. Hpul is then applied to flip the spins at t = nT to
obtain the evolution of the many-body wavefunction.

The entanglement entropy S in Fig. 3.2 is calculated by first tracing out half of the system
and obtaining a density matrix ρB for the other half of the system. We then diagonalize ρB
and obtain all its eigenvalues vi. S is then calculated by using S = −

∑

i vi ln(vi).
The power spectra shown in Fig. 3.5 and Fig. 3.8 are obtained as follows. P (t) and

Mz(t) are evaluated in the time interval between t = 0 and t =MT where M represents the
longest time we considered in the simulation. We then use P̃ (f) = 1

M

∑M−1
n=0 ei2πnTfP (nT )

to calculate the power spectra.
We have used to the full width at half maximum to characterize the width of power

spectrum. Namely, when the value of P or Mz is decreased to half of its maximum, we
define the twice of the deviation of JT from π as the width.
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4. GEOMETRIZING QUANTUM DYNAMICS OF A
BOSE-EINSTEIN CONDENSATE

This chapter is based on the published article [118] by C. Lyu, C. Lv, and Q. Zhou, Ge-
ometrizing quantum dynamics of a Bose-Einstein condensate, Phys. Rev. Lett. 125, 253401
(2020). Copyright (2020) by the American Physical Society.

The importance of geometry in physics has been well established in general relativity
and many other topics. More strikingly, geometries arise as emergent phenomena in certain
quantum systems. For instance, AdS/CFT has revolutionized our understandings of the
space-time by establishing the duality between a quantum field theory and a gravity in a
higher dimension, where the hyperbolic geometry is essential [119, 120]. It has also been
conjectured that two entangled copies of quantum field theories, which is described by a
thermofield double state (TFD) living on the boundaries, are dual to an Einstein-Rosen
wormhole in the bulk [121–124]. The hyperbolic geometry also occurs in scale invariant tensor
networks that have offered physicists a new scheme of exploring quantum entanglement [125–
128]. In these known examples, a prerequisite for the emergent geometries is the existence
of strong correlations in quantum many-body systems. A question thus arises as to whether
one could use weakly interacting systems, where gauge theory/gravity duality is unavailable
at the moment, to reveal some intriguing geometries.

In this chapter, by revealing the SU(1,1) symmetry, we show that quantum dynamics
of weakly interacting bosons have deep roots in the hyperbolic geometry. A wide range of
quantum dynamical phenomena, including stable and unstable excitation modes of a Bose-
Einstein condensate (BEC) [129–138], have direct geometric interpretations using closed
or open trajectories on a Poincaré disk, a prototypical model for the hyperbolic surface
(Sec. 4.3). This geometric approach allows us to correlate the time, the most fundamental
measure of quantum dynamics, to the length in the hyperbolic space, and to the temper-
ature that captures thermalization of a subsystem in TFD. The overlap between two close
TFDs are is related to the metric of a Poincaré disk. In addition to fundamental insights,
our geometric scheme provides us with a powerful tool to coherently control the quantum
dynamics (Sec. 4.4). For instance, using periodical drivings, we could pump bounded sta-
ble modes to arbitrarily large occupations or coherently slow down the inflation of unstable
modes. In particular, a Poincaré disk encodes SU(1,1) echoes that deliver quantum revivals
of any initial state. Analogous to conventional echoes in spin systems, which are based on
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su(2) algebra, SU(1,1) echoes offer a broad range of bosonic systems a powerful scheme to
reverse their quantum dynamics and explore information scrambling via out-of-time ordering
correlators (OTOC) [42, 43, 46, 47].

4.1 Introduction

We consider the Hamiltonian describing weakly interacting bosons

H =
∑

k⃗

Ek⃗c
†
k⃗
ck⃗ +

Ũ

2V

∑

k⃗,k⃗′,q⃗

c†
k⃗+q⃗

c†
k⃗′−q⃗

ck⃗′ck⃗, (4.1)

where the interaction strength Ũ = 4πℏ2 as
m

is determined by the scattering length as(t)

and the mass m. c†
k⃗

and ck⃗ are the creation and annihilation operators for bosons at the
momentum k⃗. At the initial state, the scattering length is fixed at a small value, as(t = 0).
The ground state is a BEC at k⃗ = 0 with small depletions at finite momenta. Starting
from t = 0, as(t) is tuned dynamically using the magnetic or optical Feshbach resonance [1],
as shown in Fig. 4.1. We are interested in an arbitrary as(t), including negative scattering
lengths. Though the ground state of a BEC with attractive interactions is not stable [129,
133, 134, 138], coherent dynamics is still achievable within a timescale before the loss of
particles begins to happen, as shown by a recent experiment [139]. Indeed, we focus on
short-time dynamics in which the particle number at a finite momentum, Nk⃗ ̸=0, is small
enough such that interactions among excitations, such as Nk⃗ ̸=0Nk⃗′ ̸=0, are negligible. The
quantum dynamics is therefore governed by a Hamiltonian, Heff =

∑

k⃗Hk⃗,

Hk⃗(t) = ξ0(k⃗)K0 + ξ1(k⃗)K1 + ξ2(k⃗)K2, (4.2)

where

K0 =
1

2
(c†

k⃗
ck⃗ + c−k⃗c

†
−k⃗
), K1 =

1

2
(c†

k⃗
c†−k⃗

+ ck⃗c−k⃗), K2 =
1

2i
(c†

k⃗
c†−k⃗

− ck⃗c−k⃗) (4.3)

ξ0(k⃗) = 2(Ek⃗ + Ũ |Ψ0|2), ξ1(k⃗) = 2ReU , ξ2(k⃗) = −2 ImU , U = ŨΨ2
0, and Ψ0 =

√

N0/V e
iθ is

the condensate wavefunction. The above equations show that we could discuss the dynamics
at different k⃗ separately. Since all microscopic parameters in Hk⃗(t), including Ek⃗, Ũ and θ,
are tunable, we could focus on a single Hk⃗. As shown in later sections, this model can be
realized using a wide range of apparatuses, and thus our results are applicable to a variety
of systems.
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Figure 4.1: Geometrization of quantum dynamics. (a) A time-dependent interac-
tion scatters pairs of bosons from the condensate to states with opposite momenta.
When the interaction strength is negative, states with small kinetic energies have
exponentially growing occupations, referred to as unstable modes. Occupations at
stable modes with large kinetic energies have upper bounds. (b) Each point on a
Poincaré disk represents a TFD. The color scale highlights the particle number or
equivalently, the effective temperature of each TFD. Dashed straight lines pass-
ing through the origin and arcs perpendicular to the boundary circle represent the
geodesics. Arrowed curves denote trajectories representing dynamical evolution of
the quantum system. The blue curve following the geodesic corresponds to an ex-
treme of the time spent in a quench dynamics.
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As the first trial to understand the Hamiltonian Eq. (4.2), let us first set ξ2 = 0, ξ0 > 0,
ξ1 > 0 and view ck⃗ and c−k⃗ as the ladder operators of two harmonic oscillators. Introducing

x1 =
1√
2
(c†

k⃗
+ ck⃗), p1 =

i√
2
(c†

k⃗
− ck⃗), (4.4)

x2 =
1√
2
(c†−k⃗

+ c−k⃗), p2 =
i√
2
(c†−k⃗

− c−k⃗), (4.5)

The Hamiltonian becomes two coupled harmonic oscillators,

H =
ξ0
2
(
1

2
x21 +

1

2
p21 +

1

2
x22 +

1

2
p22) +

ξ1
2
(x1x2 − p1p2). (4.6)

Further introducing

X1 =
1√
2
(x1 + x2), P1 =

1√
2
(p1 + p2), (4.7)

X2 =
1√
2
(x1 − x2), P2 =

1√
2
(p1 − p2), (4.8)

we get two decoupled harmonic oscillators,

H =
ξ0 + ξ1

4
X2

1 +
ξ0 − ξ1

4
P 2
1 +

ξ0 − ξ1
4

X2
2 +

ξ0 + ξ1
4

P 2
2 . (4.9)

It is now clear that

• when ξ0 > ξ1, these are two ordinary oscillators.

• when ξ0 < ξ1, the first oscillator has a negative kinetic energy and the second oscillator
sees a parabolic potential with its opening facing down. This results in dynamic
instability shown in later sections.

• ξ0 = ξ1 corresponds to a critical point between the two phases above. Naively speaking,
the Hamiltonian is a massless oscillator plus a free particle.

4.2 SU(1,1) Symmetry of Weakly Interacting Bose Gas

The generic form of the Hamiltonian in Eq. (4.2) is a combination of three operators that
satisfy the commutation relations of su(1,1) algebra

[K1, K2] = −iK0, [K0, K1] = iK2, [K2, K0] = iK1. (4.10)

Therefore, any propagator,
P (t) = Te−i

∫ t
0 dt′H

k⃗
(t′), (4.11)
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where T is the time-ordering operator, is an element in SU(1,1) group[140]. The three
coefficients ξ0,1,2 form an external field ξ⃗ = {ξ0, ξ1, ξ2}, analogous to the magnetic field in the
case of spin-1/2, and its strength ξ =

√

ξ20 − ξ21 − ξ22 characterizes the energy scale of the
Hamiltonian. For instance, when ξ20 > ξ21 + ξ22 , using standard Bogoliubov transformation,
the energy spectrum is given by mξ, where m is an integer.

Since the global U(1) phase does not affect physical observables, we consider the quotient,
SU(1,1)/U(1), which has a dimension of two, i.e., each group element can be parameterized
by two real numbers, similar to SU(2)/U(1). An element of this group can be explicitly
created by a combination of two operations,

R(φ0) = e−iφ0K0 , (4.12)

B(φ1, 0) = e−iφ1K1 , (4.13)

which correspond to a rotation and a boost respectively. A generic expression of the boost
is given by B(φ1, φ2) = e−i(φ1K1+φ2K2), which amounts to boosts along different directions.
Eqs. (4.12, 4.13) provide us with a parameterization of the propagators determined by Hk⃗.
It is well-known that SU(1,1)/U(1) has a nice geometric representation using a Poincaré
disk [140, 141], a fundamental model for the hyperbolic surface. It is defined in a unit circle
with the metric

ds2 ≡ 4(dx2 + dy2)

(1− x2 − y2)2
, (4.14)

where (x, y) denotes Cartesian coordinates. Geodesics in this curved space are either diam-
eters through the center of the disk or circles perpendicular to the boundary, as shown in
Fig. 4.1(b). A similar approach was revisited very recently to consider geometric phases in
the adiabatic limit [142].

The above observation of the symmetry inspires us to establish a one-to-one correspon-
dence between the quantum dynamics of the BEC and a Poincaré disk. Such a mapping
requires two steps. First, we need to assign each point on the Poincaré disk a unique quantum
state. Second, the metric of a Poincaré disk need to be associate with a physical quantity of
the dynamics.

We consider the vacuum as the initial state, |Ψ(0)⟩ = |0⟩k⃗|0⟩−k⃗, where ck⃗|0⟩k⃗ = 0. The
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two operators in Eqs. (4.12, 4.13) deliver a wavefunction, which is written as

|z⟩ =R(φ0)B(φ1, 0)R
†(φ0) |Ψ(0)⟩

=R(φ0)e
i
φ0
2 e

−i
φ1
2
(c†

k⃗
c†
−k⃗

+c
k⃗
c−k⃗

) |0⟩k⃗ |0⟩−k⃗

=
√

1− |z|2
∑

n

zn |n⟩k⃗ |n⟩−k⃗ ,

(4.15)

where z = −ie−iφ0 tanh φ1

2
and |n⟩k⃗ = c†n

k⃗
|0⟩/

√
n!. The expression in Eq. (4.15) is a TFD,

which has a wide range of powerful applications in high energy physics, condensed matter
physics, and quantum information [42, 43, 121–124]. Since |z| ≤ 1, if we choose z = x+ iy,
we could identify each TFD in Eq. (4.15) with a unique point on the Poincaré disk. The
expectation value of excited particle number of a TFD is

Nk⃗ = (1− |z|2)
∑

n

|z|2nn =
|z|2

1− |z|2 . (4.16)

An intriguing property of TFD is that tracing half of the system in such a pure state leaves
the other half with a thermal density matrix,

ρk⃗ = Tr−k⃗ |z⟩ ⟨z| = Z−1
∑

n

e
−

nE
k⃗

kBT |n⟩k⃗ ⟨n|k⃗ , (4.17)

similar to Hawking radiation and Unruh effects [143, 144]. In Eq. (4.17), we have identified
the Euclidean distance to the center of the disk, |z|, with a temperature,

T̃ ≡ kBT

Ek

= −1

2
ln−1 |z|, (4.18)

and Z = 1 − e
−

E
k⃗

kBT . Therefore, each point on the Poincaré disk can be assigned with a
temperature. In particular, the boundary circle corresponds to an infinite temperature.

Next, we evaluate the fidelity between TFDs, Fz,z′ = |⟨z′|z⟩|2, we obtain,

|⟨z|z′⟩|2 = (1− |z|2)(1− |z′|2)
|1− z∗z′|2 . (4.19)

Consider two TFDs close to each other on the Poincaré disk, i.e., z′ = z+dz, from the above
expression, we immediately obtain

ds2 = 4(1− Fz,z+dz). (4.20)

We conclude that the fidelity between TFDs corresponds to the metric of a Poincaré disk.
The mapping to a Poincaré disk is now established and it unfolds the intrinsic geometric
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nature of the quantum dynamics as shown in the following sections.

4.3 Quantum Quench Dynamics on the Poincaré Disk

As the first example, we consider the quench dynamics, where the scattering length as is
quenched from 0 to a finite negative value at t = 0. This means the Hamiltonian is quenched
from Hk⃗ = 2Ek⃗K0 to

Hk⃗ = 2(Ek⃗ − |U |)K0 − 2|U |K1. (4.21)

Thus the system is initially located at the center of the Poincaré disk and then starts to
move. Depending on the parameters Ek and U in Eq. (4.2), there are 3 types of dynamical
evolution.

• When Ek⃗ > 2|U | or equivalently, ξ2 > 0, the growth of particle number Nk⃗ is bounded
from above and is referred as to a stable mode, which is the result from Bogoliubov
theory. On the Poincaré disk, the trajectory of the evolution is described by a closed
loop, as shown in Fig. 4.2(b).

• When Ek⃗ = 2|U |, ξ vanishes at this critical point and the topology of the trajectory
begins to change. On the Poincaré disk, the trajectory becomes tangent to the bound-
ary of the Poincaré disk in the limit of t → ∞ (Appendix 4.7.3), as shown by the
brown curve in Fig. 4.2(b).

• When Ek⃗ < 2|U |, i.e., ξ2 < 0, the well-known dynamical instability occurs and
Nk⃗ grows exponentially as a function of t, mimicking the inflation in the early uni-
verse [132]. On the Poincaré disk, these unstable mode corresponds to an open trajec-
tory, starting from the origin and extending to the infinity, i.e., the circular boundary.
However, it takes infinite time to reach the boundary circle, providing a transparent
interpretation of a basic phenomenon in hyperbolic geometry that the boundary circle
of the Poincaré disk corresponds to infinity.

The most interesting result becomes clear if we consider the resonant mode, Ek⃗ = |U |.
Starting from the center of the Poincaré disk that represents the vacuum, the trajectory
follows the diameter, which is precisely a geodesic. In fact, in a quench dynamics, the
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Figure 4.2: The growth of the particle number and the temperature in quench dy-
namics. (a) The dependence of Nk⃗ (left vertical axis) and the rescaled temperature
T̃ (right vertical axis) as a function of time. Ẽk⃗ = Ek⃗/|U |. The initial state is cho-
sen as a vacuum. Nk⃗ and T̃ of stable modes oscillate periodically. Unstable modes
have exponential increases of Nk⃗ and T̃ . When U is fixed and Ek⃗ changes, the
resonant mode has the fastest growth. (b) The stable(unstable) modes are mapped
to closed(open) trajectories on the Poincaré disk. The resonant mode moves along
the geodesic. (c) When |ξ| or equivalently,

√

Ek⃗(2|U | − Ek⃗), is fixed, the resonant
mode has the slowest growth. (d) A Möbius transformation maps an arbitrary ini-
tial state to the vacuum at the center of the Poincaré disk. The geodesic becomes
a straight line and retains its length.

74



Euclidean distance to the center of the disk is written as

|z(t)| =
{

(

1− ξ2

ξ21+ξ22

1

sinh2(
|ξ|t
2

)

)− 1
2

, ξ2 < 0

(

1 + ξ2

ξ21+ξ22

1

sin2(
|ξ|t
2

)

)− 1
2

, ξ2 > 0.

(4.22)

From Eq. (4.22), we see that on the unstable side, ξ2 < 0, if we fix ξ21 + ξ22 , |z(t)| does grow
fastest when ξ0 = 0, i.e., when the system moves along the geodesic. Under this situation,

|z(t)|g = tanh

( |ξ|
2
t

)

. (4.23)

On the Poincaré disk, the length should be evaluated based on the metric shown in Eq. (4.14),
which leads to the length along the geodesic

L̃ =

∫ |z(t)|g

0

2dx

1− x2
= |ξ|t. (4.24)

Using Eq. (4.18), Eq. (4.23) and Eq. (4.24), we can also get

T̃ = −1

2
ln−1 tanh

(

L̃

2

)

. (4.25)

Thus the three fundamental quantities, including the time, the length in the hyperbolic
space, and the temperature are all correlated together.

It is worth pointing out that, once |ξ| is fixed, Eq. (4.22) shows that the geodesic actually
corresponds to the slowest growth among all unstable modes. In Fig. 4.2(c), we plot the
occupation as a function of rescaled time, |ξ|t, we do see that the resonant mode grows
slower than other unstable modes.

If the initial scattering length is finite, the ground state is no longer a vacuum and the
quantum dynamics starts from a point away from the center of the Poincaré disk. Neverthe-
less, we can always find an appropriate unitary transformation such that in the new basis,
the initial state is a vacuum. Mathematically, this corresponds to a Möbius transformation
of the Poincaré disk,

z′ = M(z) =
αz + β

β∗z + α∗ , |α|
2 − |β|2 = 1 (4.26)

which preserves the metric Eq. (4.14). Thus all phenomena remain the same compared with
starting from a vacuum. In fact, if we pick up |z1⟩ and |z2⟩ as the initial and the final state,
respectively, we could always allow the quantum dynamics to follow the geodesic, which in
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general is not a straight line (Fig. 4.2(d)), using a Hamiltonian (see Appendix 4.7.2),

H

|ξ| =
− Im z1z

∗
2

|z1 − z2||z1z∗2 − 1|(c
†
k⃗
ck⃗ + c†−k⃗

c−k⃗)

+
i(z2 − z1 + |z1|2z2 − |z2|2z1)

2|z1 − z2||z1z∗2 − 1| c†
k⃗
c†−k⃗

+ h.c..
(4.27)

To realize the Hamiltonian in Eq. (4.27), it is required that one could tune θ in Eq. (4.2).
This can be achieved using a variety of techniques as shown in Sec. 4.5.

4.4 Periodic Drivings and SU(1,1) Spin Echo

We could also use this geometric approach to study periodic drivings. Consider an
example that is directly relevant to current experiments [132],

H1 = 2(Ek⃗ + U)K0 + 2UK1, 0 < t < t1, (4.28)

H2 = 2Ek⃗K0, t1 < t < Td, (4.29)

where the period Td = t1 + t2. It corresponds to periodically modifying the interaction
strength in Eq. (4.1). We note that when as = 0, the propagator from t = t1 to t = Td is given
by Eq. (4.12), i.e., a rotation about the center of the Poincaré disk. Though during this time
interval, Nk⃗ and T̃ remain unchanged, starting from t = Td, the dynamics becomes drastically
different when the interaction is turned on again. Depending on where the trajectory ends
at t = Td, the growth of Nk⃗ and T̃ in the second period can be faster or slower than the
first period for both the stable and unstable modes. For instance, for a stable mode, in a
single quench dynamics, Nk⃗ is always bounded from above. In contrast, a periodic driving
can systematically move the system to circles further and further away from the center, and
even the stable mode could reach any desired Nk⃗, mimicking a classical object, like a satellite
changing its orbitals around the earth step by step. We have verified this phenomenon from
numerical calculations as shown in Fig. 4.3(c, d). The growth of Nk⃗ and T̃ can also be
slowed down, provided that the trajectory in the second period moves towards the center
of the Poincaré disk. For instance, the inflation in an unstable mode can be significantly
slowed down, as shown in Fig. 4.3(a, b).

A particularly interesting case is a quantum revival of the initial state at the end of the
second period. We emphasize that such a revival is accessible for any initial state, and any
H1 in Eq. (4.28), not requiring a vacuum as the initial state nor a Hamiltonian satisfying the
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Figure 4.3: Controllable dynamics using periodic drivings. t1|U | = 0.5. (a, b)
and (c, d) show results of a stable mode, Ek⃗/|U | = 2.2, and an unstable mode,
Ek⃗/|U | = 0.3, respectively. Dashed curves in (a, c) show results of a single quench
for comparison, i.e., t2 = 0. Choosing an appropriate t2, the periodic driving
could significantly slow down the dynamics for an unstable mode or speed up the
dynamics for a stable mode.
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resonant condition [132, 145], provided that appropriate H2 and t2 are chosen. We consider
an arbitrary H1 = w0K0 + w1K1 + w2K2 with a field strength w =

√

w2
0 − w2

1 − w2
2. The

propagator U1 = e−iH1t1 can be decomposed (see derivations in Appendix 4.7.1) as

U1 = e−iζ1K0e−iη1(K1 cosϕ1+K2 sinϕ1)e−iζ1K0 , (4.30)

where

ζ1 = arctan

(

w0

w
tan

wt1
2

)

(4.31)

ϕ1 = arccos

(

w1
√

w2
1 + w2

2

)

(4.32)

η1 = 2arsinh

(

√

w2
1 + w2

2

w
sin

(

wt1
2

)

)

(4.33)

A quantum revival requires that (U2U1)
2 = eiγ , where eiγ is a global phase factor. Using the

identity

B(η cosϕ, η sinϕ)R(π)B(η cosϕ, η sinϕ) = R(π), (4.34)

where ϕ and η are two arbitrary real numbers, we conclude that the propagator of H2,
U2 = e−iH2t2 , should satisfy

U2 = R(π)B(η cosϕ, η sinϕ)U−1
1 = e−iπK0e−iη(K1 cosϕ+K2 sinϕ)U−1

1 , (4.35)

such that (U2U1)
2 = R(π)R(π) = R(2π). For the system we considered in this section, R(2π)

corresponds to a phase factor −1. We thus get an echo which is analogous to the standard
spin echo using SU(2) [51], and is applicable in a variety of bosonic systems. Though spin
echoes have laid the foundation for many modern quantum techniques, they only apply to
systems whose constituents are governed by the su(2) algebra. Echoes have never been
implemented in bosonic systems where the su(2) algebra is no longer relevant. Here, the
SU(1,1) echo is applicable in a variety of bosonic systems. U2U1 corresponds to an arbitrary
boost followed by a π-rotation, U2U1 = R(π)B(η cosϕ, η sinϕ). Eq. (4.35) readily determines
H2 and t2. Since ϕ and η are arbitrary, for any H1, there is a family of H2, not just a single
Hamiltonian, that could lead to the revival.
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As an example, if we take η = η1, ϕ = ϕ1 − ζ1, from Eq. (4.35) and (4.30),

U2 = e−iπK0e−iη(K1 cosϕ+K2 sinϕ)eiζ1K0eiη1(K1 cosϕ1+K2 sinϕ1)eiζ1K0

= e−i(π−ζ1)K0e−iζ1K0e−iη(K1 cosϕ+K2 sinϕ)eiζ1K0eiη1(K1 cosϕ1+K2 sinϕ1)eiζ1K0

= e−i(π−ζ1)K0e−iη(K1 cos(ϕ+ζ1)+K2 sin(ϕ+ζ1))eiη1(K1 cosϕ1+K2 sinϕ1)eiζ1K0 ,

= e−i(π−2ζ1)K0 ,

(4.36)

where the corresponding Hamiltonian and evolution time are

H2 = u0K0, t2 =
π − 2ζ1
u0

, (4.37)

and u0 is an arbitrary number characterizing the energy scale. This means that quenching
the scattering length back to zero in Eq. (4.2) during the time interval from t1 to t1 + t2 will
reverse the quantum dynamics at the end of the second period t = 2Td = 2(t1 + t2), which
is precisely what we have seen from the numerical results shown in Fig. 4.4. Alternatively,
if we choose different η and ϕ, which correspond to quenching the scattering length to a
different value, the trajectory from t = t1 to t = t1 + t2 is no longer a concentric circle on
the Poincaré disk. However, an appropriate t2 still leads to a quantum revival, as shown in
Fig. 4.4(c,d).

If we define B(η cosϕ, η sinϕ)|z0⟩ = |z′1⟩, B(η cosϕ, η sinϕ)|z1⟩ = |z′0⟩, we see that z0 =

−z′0 and z1 = −z′1 are satisfied by both cases, providing us with a geometric interpretation of
the quantum revival (Fig. 4.4(b,d)). We thus conclude, for any H1 and t1, there is a family
of H2 to deliver e−iH2t2e−iH1t1e−iH2t2 = eiH1t1 (up to a global phase faster). The SU(1,1)
echo thus effectively creates a reversed evolution based on −H1, an essential ingredient in
studying OTOC [42, 43, 46, 47].

4.5 Experimental Realizations

There are multiple means to realize the model in Eq. (4.1).

Shaken lattices In shaken lattices, the single-particle energy can be tuned by hybridizing
different bands. In particular, one could create a double-well structure in the momentum
space [137]. Therefore, starting from a conventional band structure where a condensate
occupies the zero momentum state, suddenly changing the band structure to a double-well
one, a pair of particles can be scattered from a condensate to states with opposite momenta.
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Ũ
(t
)

t
Ũ1
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Figure 4.4: Reversing the quantum dynamics. (a,b) and (c,d) show the results
of quenching the interaction from U1 to 0 and U1

2
e−iπ/2 respectively, in the time

interval from t = t1 to t2. t1|U1| = 0.8, Ek/|U1| = 1.3. Insets show the modulation of
interaction strength. In both cases, starting from any initial state z0, an appropriate
t2 guarantees that the system returns to the initial state after two periods of driving.
Blue and green arrowed curves represent U1 and U2, respectively. Red dashed curves
with single and double arrows denote the boost, B(η cosϕ, η sinϕ), and the rotation,
R(π), respectively, of U1U2.
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The resultant dynamics become similar to the ones discussed in the previous sections.

Spin-orbit coupling A double-well structure in the momentum space can also be created
using spin-orbit coupling, as the single-particle dispersions of spin-up and spin-down atoms
move towards opposite directions in the k-space [146]. Moreover, the interaction strength also
becomes momentum dependent, as the eigenstate is a momentum-dependent superposition
of spin-up and spin-down [147]. This provides experimentalists with a new degree of freedom
to tune parameters in the model in Eq. (4.1).

Periodic driving Periodically modifying the scattering length could resonantly couple
the condensate at zero momentum to a pair of states with opposite momenta. In the ro-
tating wave approximation, the model is the same as the one discussed in the previous
section. This scheme was implemented in an experiment done at Chicago [132]. A the-
oretical work [145] has also studied corrections beyond the rotating wave approximation
and used the su(1,1) algebra in the calculations to discuss a revival scheme similar to ours.
However, the geometrization to hyperbolic surface was not discussed. Another theoretical
work [142] discussed the parameterization to the hyperbolic surface but the metric was not
explored. Geodesics and their physical meanings, as well as schemes of coherently controlling
the dynamics, eluded this work.

Spinor condensates In spinor condensate, there is a well-known spin-mixing term in the
Hamiltonian, a†20 a1a−1 + h.c, where am=0,±1 are the creation operators at mF = 0,±1 states
in the F = 1 manifold [14, 148]. This term precisely corresponds to K1 and K2 in Eq. (4.3).
Using a combination of the magnetic field and the couplings to F = 2 manifold, the energy of
the three hyperfine spin states are also tunable such that we have (ϵ1+ϵ−1)(a

†
1a1+a

†
−1a−1)/2 in

the Hamiltonian [149]. Prepare the initial state as a condensate occupying mF = 0, density-
density interactions can be ignored in the timescale where the population at mF = ±1 is
much smaller than that at mF = 0. The model becomes identical to ours. We point out that,
the linear Zeeman splitting, (ϵ1 − ϵ−1)(a

†
1a1 − a†−1a−1)/2, commutes with our Hamiltonian

and has no effect on the dynamics.

Two-mode squeezing in optics In non-linear medium inside a resonant cavity, the pump
beam undergoes spontaneous parametric down-conversion (SPDC) and generates entangled
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Figure 4.5: (a) Shaking an optical lattice quenches the band structure to a double-
well potential in the momentum space. (b) Spin-orbital coupling could also create
two minima in the kinetic energy. (c) Periodical driving the interaction strength
couples the condensate to a pair of states with opposite momenta. (d) Spin mixing
interaction couples the condensate initially occupying mF = 0 to mF = ±1. Cou-
pling |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩ allows one to control the phase of U .

photon pairs, which couples resonant modes and causes two-mode squeezing. The coupling
term is controlled by the external pump field [150]. Starting from the two-modes vacuum
and turning on the pump field, the dynamics is captured by Eq. (4.1).

4.5.1 Changing the phase of U

As for the realization discussed in Sec. 4.1, since U = 4πℏas
m

Ψ2
0, adding a phase to Ψ0

could change the phase of U . This can be achieved using a pulse of Bragg scattering, as
shown in Fig. 4.6. The Bragg beams couple a momentum state |⃗k⟩ to another one |⃗k + Q⃗⟩.
When the transition is off-resonance, the Bragg coupling leads to a shift of the energy of |⃗k⟩,

δEk⃗ = −Ω2

∆k⃗

= − Ω2

Ek⃗+Q⃗ − Ek⃗ − ℏω
, (4.38)

where Ω is the coupling strength of Bragg scattering, ω and Q⃗ are the differences in the
frequency and momentum of these two beams. Therefore, such a pulse provides |⃗k⟩ a phase
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Figure 4.6: A Bragg scattering couples |⃗k⟩ and |⃗k + Q⃗⟩. An off-resonance coupling
shifts the energy of |⃗k⟩ by δEk⃗ and a pulse with duration τ adds a phase to the
Hamiltonian in Eq. (4.1).

shift e−iδφ
k⃗ = e−iδE

k⃗
τ , where τ is the duration of the pulse. For fixed Q⃗ and ω, δEk⃗ is a

linear function of k⃗. Therefore, the condensate at zero momentum acquires a different phase
compared to state at a finite momentum k⃗ that we are interested in. Effectively, we have
added an phase ϕ = 2δφ0− δφk⃗ − δφ−k⃗ to the Hamiltonian in Eq. (4.1). This method is also
applicable to the first three realizations discussed in the previous section.

As for spinor condensate, this scheme can be even simpler as we have discrete hyperfine
spin states other than the continuum in the momentum space. We could selectively couple
|1, 0⟩ to a state in the F = 2 manifold, such as |2, 0⟩, as shown in Fig. 4.5(d). The other
two hyperfine spin states are not affected or weakly coupled. Then the phase of U is also
controllable. As for two-mode squeezing, U corresponds to an external field and its phase
can be easily controlled.

4.5.2 Modulating the scattering length

The magnetic Feshbach resonance is a standard technique to deliver a time-dependent
scattering length, as(t). For instance, the experiment done at Chicago used BEC of 133Cs
atoms in the hyperfine state |F = 3,mF = 3⟩ [132]. An external magnetic field was modu-
lated around 17.22G such that the scattering length oscillates in a fashion of adc+ aac sinωt,
where ω is the modulation frequency of the magnetic field, adc is the stationary part of as
and aac denotes the amplitude of the oscillation.

In reality, it takes a a finite time to change the magnetic field unlike the optical Feshbach
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Figure 4.7: (a) U(t) is linearly turned on and off within a time τ . |U |τ = 0.75, and
|U |t1 = 2.0. |U |t2 is obtained from numerics such that the mode with Ek⃗/|U | = 1
is recovered by the echo. (b) The corresponding trajectory on the Poincaré disk.
The initial state is chosen as the vacuum. Solid and dotted curves represent U1 and
U2, respectively.

resonance that could easily give rise to an abrupt change in as. It is, therefore, desired
to consider a generic time-dependence of as in addition to the quench dynamics. For any
time-dependent Hamiltonian, H(t) = 2(Ek⃗ +U(t))K0+2U(t)K1, where U(t) = 4πℏ2 as(t)

M
Ψ2

0.
For an arbitrary U(t), the propagator Te

∫ t1
0 −iH(t′)dt′ , where T is the time-ordering operator,

is still an element in the SU(1,1) group. It thus can be rewritten as exp(−iHefft1), where
Heff = w0K0 + w1K1 + w2K2 is time-independent. Whereas the exact expressions of w0,1,2

depend on the explicit form of U(t), exp(−iHefft1) can always be decomposed to a boost and
a rotation, as discussed in Sec. 4.4. Therefore the SU(1,1) echoes still apply.

To demonstrate the SU(1,1) echoes for a generic U(t), we consider linearly turning on
and off the scattering length as. The time dependent U(t) is shown in Fig. 4.7. The Heff and
the corresponding t2 required for the SU(1,1) echo is obtained numerically. The trajectory
on the Poincaré disk is also shown.

Alternatively, the optical Feshbach resonance could be implemented so as to change the
scattering length fast enough compared to other time scales relevant to many-body physics
such as the interaction strength [151, 152]. A quench dynamics can then be realized.

4.6 Conclusions and Outlook

In this chapter, we have geometrized quantum dynamics of weakly interacting BECs.
From the theoretical side, this approach unfolds the intrinsic geometry behind the dynami-
cal instability and a wide range of other quantum dynamical phenomena. It also allows us to
correlate fundamental quantities, including the time, the temperature, the length, and the
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fidelity, on a Poincaré disk. In practice, this geometric scheme allows us to design SU(1,1)
echoes to coherently control many-body dynamics of bosonic systems. Since constituents of
these systems do not satisfy the su(2) algebra, the celebrated spin echoes no longer apply.
Our SU(1,1) echoes serve as a new tool to manipulate quantum dynamics of such bosonic
systems. For instance, starting from any initial state, the Poincaré disk allows us to design a
family of Hamiltonians that could reverse the dynamical evolution, providing experimental-
ists a powerful scheme to recover the initial state without changing the sign of the original
Hamiltonian.

To concretize the discussions, we have been focusing on a class of systems correspond-
ing to one representation of the SU(1,1) group. We need to emphasize that our results are
very generic and this geometric approach applies to systems corresponding to other rep-
resentations of the SU(1,1) group. In ultracold atoms, three-dimensional unitary fermions
and two-dimensional bosons and fermions with contact interactions are well-known sys-
tems that also exhibit the SU(1,1) (or SO(2,1)) symmetry [153, 154]. Our results can be
straightforwardly generalized to those systems. For instance, the underlying symmetry of
two-dimensional BECs was recently studied in an elegant experiment [155]. The Poincaré
disk and our SU(1,1) echoes could be directly implemented to control quantum dynamics of
these BECs and understand the distinct behaviors of breathers of different shapes.

Whereas we have discussed propagators generated by su(1,1), our geometric approach
can be generalized to a broad class of models that are captured by other algebras. We hope
that our work will stimulate more theoretical and experimental efforts to unfold the intrinsic
entanglement between dynamics, algebras, and geometries.

4.7 Appendix

4.7.1 Calculations in the Heisenberg picture

In this section, we show how to calculate the dynamical evolution in the Heisenberg
picture as a supplement to Sec. 4.3 and 4.4. We consider the Hamiltonian of the following
form,

H = 2ϵ0K0 + 2ϵ1K1 cos θ + 2ϵ1K2 sin θ (4.39)

= ϵ0(c
†
k⃗
ck⃗ + c−k⃗c

†
−k⃗
) + e−iθϵ1c

†
k⃗
c†−k⃗

+ h.c. (4.40)
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where we assume that ϵ0, ϵ1, θ ∈ R. We focus on how the creation and annihilation operators,
c†
k⃗
(t) and ck⃗(t), evolve in the Heisenberg picture,

dck⃗(t)

dt
= i[H, ck⃗(t)] = −iϵ0ck⃗(t)− ie−iθϵ1c

†
−k⃗
(t), (4.41)

dc†−k⃗
(t)

dt
= i[H, c†−k⃗

(t)] = iϵ0c
†
−k⃗
(t) + ieiθϵ1ck⃗(t). (4.42)

The solution for ϵ20 ̸= ϵ21 is




ck⃗(t)

c†−k⃗
(t)



 =





cos ϵt− i ϵ0
ϵ
sin ϵt −ie−iθ ϵ1

ϵ
sin ϵt

ieiθ ϵ1
ϵ
sin ϵt cos ϵt+ i ϵ0

ϵ
sin ϵt









ck⃗

c†−k⃗



 , (4.43)

where ϵ =
√

ϵ20 − ϵ21. For ϵ20 = ϵ21,




ck⃗(t)

c†−k⃗
(t)



 =





1− iϵ0t −ie−iθϵ1t

ieiθϵ1t 1 + iϵ0t









ck⃗

c†−k⃗



 . (4.44)

We then define

Γ(ϵ0, ϵ1, θ, t) =





cos ϵt− iϵ0t sinc ϵt −ie−iθϵ1t sinc ϵt

ieiθϵ1t sinc ϵt cos ϵt+ iϵ0t sinc ϵt



 , (4.45)

which covers both the two cases.

Decomposition of an arbitrary propagator With Eq. (4.45), to prove the decomposi-
tion of the propagator in Eq. (4.30), we just need show that

Γ(
w0

2
,

√

w2
1 + w2

2

2
, arctan

(

w2

w1

)

, t1) = Γ(
ζ1
2
, 0, 0, 1)Γ(0,

η1
2
, ϕ1, 1)Γ(

ζ1
2
, 0, 0, 1), (4.46)

which can be verified by simple matrix multiplications.

Particle number growth Now we can calculate the quench dynamics in Sec. 4.3. In the
Hamiltonian after quench (Eq. (4.21)),

ϵ0 = Ek − |U |, ϵ1 = −|U |, θ = 0. (4.47)

The initial state is a vacuum, so particle number at any time t is

Nk⃗(t) = ⟨0, 0| c†
k⃗
(t)ck⃗(t) |0, 0⟩ . (4.48)
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Eq. (4.45) tells us the analytical expressions of the creation and annihilation operators at
any time t. Therefore it can be shown that

Nk⃗(t) = |U |2t2 sinc2
√

(Ek − |U |)2 − |U |2t, (4.49)

which applies to both stable and unstable modes. Therefore we see when (Ek−|U |)2−|U |2 > 0

or Ek > 2|U |, Nk⃗(t) is bounded, while when (Ek−|U |)2−|U |2 < 0 or Ek < 2|U |, sin becomes
sinh and Nk⃗(t) grows exponentially. Eq. (4.49) can also be derived from Eqs. (4.16) and
(4.30).

SU(1,1) spin echo We first prove the identity Eq. (4.34). Using the conclusions above,
we need to verify

Γ(0,
η

2
, ϕ, 1)Γ(

π

2
, 0, 0, 1)Γ(0,

η

2
, ϕ, 1) = Γ(

π

2
, 0, 0, 1), (4.50)

that is,




cosh η
2

−ie−iϕ sinh η
2

ieiϕ sinh η
2

cosh η
2









−i 0

0 i









cosh η
2

−ie−iϕ sinh η
2

ieiϕ sinh η
2

cosh η
2



 =





−i 0

0 i



 , (4.51)

which is easy to be done.
Next, we can double-check Eq. (4.37), the Hamiltonian that is used to reverse a previous

Hamiltonian and make an echo. We need to show such a Hamiltonian can satisfy Eq. (4.35):

U2U1 = e−iH2t2e−iH1t1 = R(π)B(η cosϕ, η sinϕ). (4.52)

Again, using the method above, we just need to verify

Γ(2u0, 0, 0,
π − 2ζ1
u0

)Γ(Ek⃗ + U,U, 0, t1) = Γ(
π

2
, 0, 0, 1)Γ(0,

η

2
, ϕ, 1), (4.53)

where η = η1, ϕ = ϕ1 − ζ1. Using the definition of η1 and ϕ1 from Eq. (4.30), this equation
can be verified.

4.7.2 Connecting two states along a geodesic

We now find out the Hamiltonian that can evolve one TFD |z1⟩ to another |z2⟩ along the
geodesic of the Poincaré disk, which is the one in Eq. (4.27). Our strategy is first considering
the simple case where z1 = 0. Then for the general case, we do a unitary transformation such
that z1 becomes 0 and z2 becomes z′2 and we can therefore use the result from the simple case.
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Finally we transform the result back to the original basis. This implies a prerequisite, that if
the system is moving along a geodesic of the Poincaré disk, after any unitary transformation
of the basis, it will also move along a geodesic in the new basis. To prove this, we consider
an arbitrary TFD state |z⟩ and an arbitrary unitary transformation in the SU(1,1) group
U = e−i(x0K0+x1K1+x2K2). With the decomposition in Eq. (4.30),

U |z⟩ =e−iζK0e−iη(K1 cosϕ+K2 sinϕ)e−iζK0
√

1− |z|2
∑

n

zn |n⟩k⃗ |n⟩−k⃗

=e−iζK0e
−i η

2
(e−iϕc†

k⃗
c†
−k⃗

+eiϕc
k⃗
c−k⃗

)
e−i ζ

2

√

1− |z|2
∑

n

(ze−iζ)n |n⟩k⃗ |n⟩−k⃗ ,
(4.54)

where

ζ = arctan
(x0
x

tan
x

2

)

, (4.55)

ϕ = arccos
x1

√

x21 + x22
, (4.56)

η = 2arsinh(

√

x21 + x22
x

sin
x

2
), (4.57)

x =
√

x20 − x21 − x22. (4.58)

Introducing d†
k⃗
= e−iϕc†

k⃗
and defining |n⟩′k⃗ = 1√

n!
d†n
k⃗
|0⟩k⃗,

U |z⟩ = e−iζK0e
−i η

2
(d†

k⃗
c†
−k⃗

+d
k⃗
c−k⃗

)
e−i ζ

2

√

1− |z|2
∑

n

(ze−i(ζ−ϕ))n |n⟩′k⃗ |n⟩−k⃗

= e−iζK0e
−i η

2
(d†

k⃗
c†
−k⃗

+d
k⃗
c−k⃗

)
e−i ζ

2

√

1− |z|2
sech γ

2

sech
γ

2

∑

n

(−i tanh γ
2
)n |n⟩′k⃗ |n⟩−k⃗ ,

(4.59)

where γ = 2artanh ize−i(ζ−ϕ). To proceed the derivation, we will use the identity

e−i y
2
(a†b†+ab) |0⟩a |0⟩b = sech

y

2

∑

n

(−i tanh y
2
)n |n⟩a |n⟩b , y ∈ R, (4.60)
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and analytically extend y from R to C. Then

U |z⟩ = e−i ζ
2

√

1− |z|2
sech γ

2

e−iζK0e
−i η+γ

2
(d†

k⃗
c†
−k⃗

+d
k⃗
c−k⃗

) |0⟩k⃗ |0⟩−k⃗

= e−i ζ
2

√

1− |z|2
sech γ

2

e−iζK0 sech
η + γ

2

∑

n

(−i tanh η + γ

2
)n |n⟩′k⃗ |n⟩−k⃗

= e−iζ

√

1− |z|2
sech γ

2

sech
η + γ

2

∑

n

(−ie−iζ tanh
η + γ

2
)n |n⟩′k⃗ |n⟩−k⃗

= e−iζ

√

1− |z|2
sech γ

2

sech
η + γ

2

∑

n

(−ie−i(ζ+ϕ) tanh
η + γ

2
)n |n⟩k⃗ |n⟩−k⃗ .

(4.61)

Now we know that the final state |z′⟩ is located at

z′ =− ie−i(ζ+ϕ) tanh
η + γ

2
(4.62)

=− ie−i(ζ+ϕ) tanh
(η

2
+ artanh ize−i(ζ−ϕ)

)

(4.63)

=− ie−i(ζ+ϕ) e
−i(ζ−ϕ)(eη + 1)z + i(1− eη)

e−i(ζ−ϕ)(eη − 1)z − i(eη + 1)
(4.64)

=
ze−iζ cosh η

2
− ie−iϕ sinh η

2

zieiϕ sinh η
2
+ eiζ cosh η

2

(4.65)

This is actually a Möbius transformation defined in Eq. (4.26) where

α = e−iζ cosh
η

2
, β = −ie−iϕ sinh

η

2
. (4.66)

Mathematicians already tell us that such a Möbius transformation preserves the metric,
so an original geodesic is still a geodesic in the new basis. Therefore we have proved the
prerequisite.

Now as planed, first, we notice that starting from the center of the Poincaré disk, z = 0,
which is a vacuum, a pure boost along a fixed direction ϕ will move the system along a radius
of the disk,

B(η cosϕ, η sinϕ) |0⟩ = e
−i η

2
(c†

k⃗
c†
−k⃗

e−iϕ+c
k⃗
c−k⃗

eiϕ) |0⟩ =
∣

∣

∣
z = −ie−iϕ tanh

η

2

〉

. (4.67)

As η grows, the final point z moves along the direction ϕ until tanh η approaches 1, which
is the boundary of the Poincaré disk. On the other hand, we know any straight line passing
through the center of the Poincaré disk is one of its geodesics. Therefore, if z1 = 0, to
connect z1 with z2 along a geodesic, we just need a Hamiltonian corresponding to a pure
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boost. To be specific, the Hamiltonian should be of the following form

H

|ξ| =
iz2
2|z2|

c†
k⃗
c†−k⃗

+ h.c. (4.68)

Next, if z1 is not zero, we first introduce a transformation U that transforms z1 to 0.
From Eq. (4.15), by definition, such a transformation is

U = R(−φ0)
†B(−φ1)R(−φ0), (4.69)

φ0 = i ln
iz1
|z1|

, φ1 = 2artanh |z1|. (4.70)

At the same time, z2 is transformed to z′2,

U |z2⟩ = e−iφ0K0eiφ1K1eiφ0K0 |z2⟩ (4.71)

= e−2iφ0K0eiφ0K0eiφ1K1eiφ0K0 |z2⟩ (4.72)

From Eq. (4.65), After the first 3 operators, z2 is transformed to z′′2

z2 → z′′2 =
z2e

iφ0 cosh φ1

2
+ i sinh φ1

2

−iz2 sinh φ1

2
+ e−iφ0 cosh φ1

2

=
z∗1
z1

· z2 − z1
z2z∗1 − 1

, (4.73)

and the final e−2iφ0K0 transforms z′′2 to z′2,

z′2 = e−2iφ0 · z
∗
1

z1
· z2 − z1
z2z∗1 − 1

=
z1 − z2
z∗1z2 − 1

. (4.74)

Using the previous result Eq. (4.68), the Hamiltonian that connects z′2 and 0 along the
geodesic is

H

|ξ| =
iz′2
2|z′2|

c
′†
k⃗
c
′†
−k⃗

+ h.c., (4.75)

where c′†
k⃗

and c′
k⃗

are the creation and annihilation operators transformed from c†
k⃗

and ck⃗ by
U . Using the results from Appendix 4.7.1,





c′
k⃗

c
′†
−k⃗



 = Γ(
φ0

2
, 0, 0, 1)Γ(0,−φ1

2
, 0, 1)Γ(−φ0

2
, 0, 0, 1)





ck⃗

c†−k⃗



 (4.76)

After we do the substitution, we will get Eq. (4.27).

4.7.3 Trajectory of the quench dynamics at the critical point

In this section we discuss the critical point Ek = 2|U | in Sec. 4.3, where the field strength
ξ2 vanishes. Assuming the initial state is vacuum, from Eq. (4.30), we get the position of
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the system on the Poincaré disk at any time t,

z = −i tanh arsinh(ξ0
ξ
sin

(

ξ

2
t

)

)e−i arctan( ξ0
ξ

tan( ξ
2
t)). (4.77)

The polar coordinates (r, θ) are

r = tanh arsinh(
ξ0
ξ
sin

(

ξ

2
t

)

), (4.78)

θ = − arctan

(

ξ0
ξ
tan

(

ξ

2
t

))

− π

2
. (4.79)

We also evaluate the velocity,

vr = ṙ =
ξ0 cos

ξt
2

2(1 +
ξ20
ξ2
sin2 ξt

2
)3/2

, (4.80)

vθ = rθ̇ = −
ξ0
ξ
sin
(

ξ
2
t
)

√

1 +
ξ20
ξ2
sin2 ξt

2

ξ0 sec
2 ξt

2

2 + 2
ξ20
ξ2
tan2 ξt

2

(4.81)

The ratio is

vr
vθ

= −
1 +

ξ20
ξ2
tan2 ξt

2

1 +
ξ20
ξ2
sin2 ξt

2

cos3 ξt
2

ξ0
ξ
sin ξt

2

(4.82)

For the unstable modes, ξ is imaginary. In the limit of t→ ∞,

lim
t→∞

vr
vθ

= −
1 +

ξ20
|ξ|2

ξ30
|ξ|3

. (4.83)

This means the trajectory will eventually intersect with the boundary of the Poincaré disk.
Now we take the limit ξ → 0,

lim
ξ→0

lim
t→∞

vr
vθ

= 0. (4.84)

So for the critical point ξ = 0, the velocity is perpendicular to the radial direction and the
trajectory becomes tangent to the boundary of the Poincaré disk.
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5. DETECTING QUANTUM MANY-BODY PHASES FROM
THE DECOHERENCE OF A SINGLE IMPURITY

One of the goals of quantum simulation is to explore the rich properties of quantum
many-body physics and one long-term aim is to gain a better understanding of the thermal-
ization process of a local subsystem interacting with the remaining part. Ultracold atom
experiments studying impurities immersed in a Bose-Einstein condensate [156–160] or a
Fermi gas [161–164] have provided a fascinating platform, because of the ability to engineer
the quantum states of both the subsystem and remaining environment and fine tune the in-
between interaction. With the proceedings in single particle control [5, 6], experimentalists
have been able to embed an individual charged or neutral particle into a condensate and
track the position or spin degree of freedom in the single particle level. By studying the dy-
namics of the impurity, the information about the external condensate, such as the density
distribution [156, 159, 165, 166], the phononic excitations [167], and temperature fluctu-
ations [160], can be extracted. The technique of tuning and tracking the interaction also
opens new perspectives for engineering quantum states [168, 169] and cooling qubits [170],
which have potential applications in quantum computing.

Motivated by the recent experiments by Schmidt, et al. [159], instead of considering
a spin-3 impurity, in this chapter, we study the dynamics of a single spin-1/2 impurity
interacting with a spin-1 BEC of various initial states. We provide a concrete example of
determining the phase of the environment BEC by looking at the dynamics of the impurity.
We find that, depending on the initial state of the environment, the coherence of the spin
impurity has different behaviors. If the environment is a spin singlet, the spin impurity
keeps in a pure state. If the environment is a ferromagnetic state, the coherence of the
impurity shows simple oscillations. Thus in these two cases no decoherence occurs. However
if the environment is a polar state, at the time inversely proportional to the impurity-BEC
interaction strength, the coherence of the impurity quickly decreases to a finite value and
revives after a longer time scale. The residual coherence is also affected by external magnetic
fields. Thus by measuring the coherence of the single impurity embedded in the condensate,
we can detect the phase of a spinor condensate. Our work is in well reach of current ultracold
atom experimental platforms.
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5.1 Spin Impurity Interacting with a Spinor BEC

We consider a single spin-1/2 impurity immersed in a spin-1 condensate containing N

bosons. The impurity has Heisenberg interactions with all the bosons. Therefore the BEC
is the environment seen by the impurity. The total Hamiltonian is

H = BsSz + c2

(

N
∑

i=1

I⃗i

)2

+Be

N
∑

i=1

Iiz + ΩS⃗ ·
N
∑

i=1

I⃗i, (5.1)

where S⃗ and I⃗i are the spin operators of the impurity and the i-th condensate boson respec-
tively. Ω is the impurity-boson interaction strength and c2 is the boson-boson interaction
strength. The impurity-boson interaction includes both spin-exchange and density-density
interactions. Be and Bs describe the magnetic fields seen by the impurity and bosons re-
spectively. In the following texts, we study the reduced density matrix ρ of the impurity
interacting with different initial states of the environment, which are polar states, ferro-
magnetic states, and spin singlet states. Before proceeding, we notice that the boson-boson
interaction operator c2(

∑

I⃗i)
2 commutes with all other terms in the Hamiltonian, therefore

the boson-boson interaction will not affect the results and we will neglect it in the following
discussions.

5.2 Decoherence of the Spin Impurity

5.2.1 Spin singlet and ferromagnetic state BEC

A condensate of a spin singlet can be described by |I = 0,mI = 0⟩. It is the ground state
of a spin-1 BEC in the zero magnetic field [148, 171]. Since the total spin and the spin z-
component are both zero, the interaction term in the Hamiltonian Eq. (5.1) can not exchange
spin angular momenta among the environment and the impurity. Thus the impurity keeps
in a pure state.

On the other hand, in a spin-1 condensate of ferromagnetic state, the state of a single
boson is [14]

eiτ
(

e−iφ cos2
θ

2
|m = 1⟩+

√
2 cos

θ

2
sin

θ

2
|m = 0⟩+ eiφ sin2 θ

2
|m = −1⟩

)

. (5.2)

We choose the quantization axis such that every boson is in the state |m = 1⟩ and the
condensate can be described by a Fock state |N1 = N,N0 = 0, N−1 = 0⟩. For any initial
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state of the impurity, α |↑⟩+β |↓⟩, only β |↓⟩ is able to interact with the condensate through
spin exchanges. Thus the total system is equivalent to a two-level system and the reduced
density matrix of the impurity can be calculated analytically,

ρ↑↑ = |α|2 + 2|β|2 2N

(2N − γ − 1)2 + 8N

(

1− cos

√

(2N − 1− γ)2 + 8NΩt

2

)

(5.3)

ρ↑↓ = αβ∗e−it(Be+Bs
2

+Ω
4
(1+2N))

(

cos

√

(2N − 1− γ)2 + 8NΩt

4

− i
2N − 1− γ

√

(2N − 1− γ)2 + 8N
sin

√

(2N − 1− γ)2 + 8NΩt

4

) (5.4)

γ =
2(Be − Bs)

Ω
(5.5)

Since the dynamics only involve two energy levels, the reduced density matrix simply shows
sinusoidal oscillations. External magnetic fields only change the frequency and the amplitude.
Thus in this case decoherence does not happen either.

5.2.2 Polar state BEC

A polar state of a spin-1 boson has the following form [14]

eiτ
(

− 1√
2
e−iφ sin θ |m = 1⟩+ cos θ |m = 0⟩+ 1√

2
eiφ sin θ |m = −1⟩

)

. (5.6)

We first consider the case without magnetic fields, Be = Bs = 0. Again we can choose
an appropriate quantization axis such that every boson is in the state |m = 0⟩ and the
condensate can be simply described by a Fock state |N1 = 0, N0 = N,N−1 = 0⟩. The total
initial state is

|ψ0⟩ = (α |↑⟩+ β |↓⟩)⊗ |0, N, 0⟩ . (5.7)

Fig. 5.1(a) illustrates the numerical results of the spin’s reduced density matrix ρ as a
function of time. Both the diagonal and off-diagonal terms quickly decrease to constant
values. The two diagonal terms ρ↑↑ and ρ↓↓ are stabilized to 1/2 while the the off-diagonal
term ρ↑↓ is stabilized to one half of its initial value, indicating that there is still residual
coherence between |↑⟩ and |↓⟩ when the impurity reaches equilibrium. After a relatively long
time scale, both the diagonal and off-diagonal elements oscillate for a short time. And then
this pattern repeats.
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Figure 5.1: Numerical simulation results of a spin impurity embedded in a polar
state BEC. The initial state of the impurity is

√
3
2
|↑⟩+ 1

2
|↓⟩. Bs = Be = 0. The BEC

has N = 100 bosons. (a) The impurity’s reduced density matrix elements. Dots
are numerical results from exact diagonalization. Curves are analytical solutions
Eqs. (5.24)฀(5.25). χ = 0.706 is used. (b-c) The wave function |ai| on the up-chain
at t1 = 5π/3Ω and t2 = 0.97π/Ω. Red and blue bars correspond to red diamonds
and blue squares in Fig. (5.2) respectively.
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|↑⟩

|↓⟩

...

...

0 1 2 3 ... N − 1 N

Figure 5.2: When the initial environment is a polar state, the total Hilbert space can
be viewed as two twisted but decoupled chains: up-chain (black) and down-chain
(green). Red diamonds at even site 2k represent Fock states |k,N − 2k, 2k⟩ of the
environment. At odd site 2k+1, blue circles represent |k,N − (2k + 1), k + 1⟩ and
blue squares represent |k + 1, N − (2k + 1), k⟩. Black and green stripes represent
the spin exchange interactions.

To understand the numerical results, we first inspect the evolution in the Fock space.
Without loss of generality, we consider even number of bosons in the BEC. It is easy to see
that for the term α |↑⟩ ⊗ |0, N, 0⟩ in the initial state, as time goes on, the wave function
moves on a one-dimensional chain as illustrated in Fig. 5.2,

|↑⟩ |0, N, 0⟩ , |↓⟩ |1, N − 1, 0⟩ , |↑⟩ |1, N − 2, 1⟩ , ..., |↑⟩
∣

∣

∣

∣

N

2
, 0,

N

2

〉

(5.8)

We call it up-chain. Similarly, the term |↓⟩ ⊗ |0, N, 0⟩ moves on the down-chain,

|↓⟩ |0, N, 0⟩ , |↑⟩ |0, N − 1, 1⟩ , |↓⟩ |1, N − 2, 1⟩ , ..., |↓⟩
∣

∣

∣

∣

N

2
, 0,

N

2

〉

(5.9)

These two chains do not overlap. Further we notice that once we reverse the direction of the
quantization axis, one chain turns into the other one. Such an inversion symmetry guarantees
that these two chains have the same energy spectrum. At any time, the total wave function
is expanded as

|Ψ(t)⟩ =
N
∑

i=0,even

ai(t) |↑⟩
∣

∣

∣

∣

i

2
, N − i,

i

2

〉

+
N
∑

i=1,odd

ai(t) |↓⟩
∣

∣

∣

∣

i+ 1

2
, N − i,

i− 1

2

〉

+
N
∑

i=0,even

bi(t) |↓⟩
∣

∣

∣

∣

i

2
, N − i,

i

2

〉

+
N
∑

i=1,odd

bi(t) |↑⟩
∣

∣

∣

∣

i− 1

2
, N − i,

i+ 1

2

〉

,

(5.10)

where ai and bi represent the probability amplitudes on the two chains respectively. Since
the initial state Eq. (5.7) only occupies the leftmost site of the two chains, as a result of
the inversion symmetry, at any time, the probability amplitudes on the two chains are only
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differed by an overall factor,

∀i, ai(t)
bi(t)

=
α

β
. (5.11)

Initially ρ↑↑ = |α|2, ρ↓↓ = |β|2, ρ↑↓ = αβ∗. Later the wave function evolves and extends over
many vertices. Focusing on one chain, if the number of vertices is large enough and the wave
function is a slowly varying function of the site index i, the summation of the probabilities
on even-i sites (red vertices in Fig. 5.2) should be approximately equal to the sum on odd-i
sites (blue vertices). In other words, if we plot out the probability distribution |ai|2 and |bi|2,
as displayed in Fig. 5.1(b), the area of red bars should be equal to blue bars, given the width
of a single bar is much smaller than the width of the wave function. Such an intuition allows
us to calculate ρ↑↑ and ρ↓↓,

ρ↑↑ =
N
∑

i=0,even

|ai|2 +
N
∑

i=1,odd

|bi|2 ≈
1

2

(

N
∑

i=0

|ai|2 +
N
∑

i=0

|bi|2
)

=
1

2
, (5.12)

ρ↓↓ =
N
∑

i=1,odd

|ai|2 +
N
∑

i=0,even

|bi|2 ≈
1

2

(

N
∑

i=0

|ai|2 +
N
∑

i=0

|bi|2
)

=
1

2
. (5.13)

Similarly, to calculate the off-diagonal term ρ↑↓, we notice in the total wave function, only
the terms where the impurity is coupled with environment Fock states |m,N − 2m,m⟩ have
non-zero contributions to ρ↑↓. To put it another way, we only need to take into consideration
the red vertices in Fig. 5.2,

ρ↑↓ =
N
∑

i=0,even

aib
∗
i =

N
∑

i=0,even

αbi
β
b∗i ≈

α

β

1

2

N
∑

i=0

bib
∗
i =

α

2β
|β|2 = 1

2
αβ∗. (5.14)

When the wave packet spreads to the end of a chain, which is the case shown in Fig. 5.1(c),
it is no longer a spatially slowly-varying function. This corresponds to the short oscillations
of the reduced density matrix elements in Fig. 5.1(a).

With the simple picture above, now we calculate the reduced density matrix analytically.
Consider the Hilbert subspace associated with up-chain Eq. (5.8). The initial polar state is a
superposition of different eigenstates |I, 0⟩ of the total spin operator I⃗2 and its z-component
Iz, where the quantum number I can take even values 0, 2, 4, ..., N . The spin exchange
interaction couples |↑⟩⊗|I, 0⟩ to |↓⟩⊗|I, 1⟩. The Hamiltonian is then 2×2 block-diagonalized
in this representation, except |↑⟩⊗|0, 0⟩. We can work out all the eigenstates and eigenvalues
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in this subspace:

Eu1,I =
I

2
Ω, |Eu1,I⟩ =

√

1 + I

1 + 2I
|↑⟩ |I, 0⟩+

√

I

1 + 2I
|↓⟩ |I, 1⟩ , (5.15)

Eu2,I = −1 + I

2
Ω, |Eu2,I⟩ =

√

I

1 + 2I
|↑⟩ |I, 0⟩ −

√

1 + I

1 + 2I
|↓⟩ |I, 1⟩ . (5.16)

The subscript u denotes that they are associated with the up-chain. Similarly for the down-
chain,

Ed1,I =
I

2
Ω, |Ed1,I⟩ =

√

1 + I

1 + 2I
|↓⟩ |I, 0⟩+

√

I

1 + 2I
|↑⟩ |I,−1⟩ , (5.17)

Ed2,I = −1 + I

2
Ω, |Ed2,I⟩ =

√

I

1 + 2I
|↓⟩ |I, 0⟩ −

√

1 + I

1 + 2I
|↑⟩ |I,−1⟩ . (5.18)

Thus we are able to write down the the wavefunction at any time,

|Ψ(t)⟩ =
N
∑

I=0

α
(

cIe
−itEu1,I |Eu1,I⟩+ dIe

−itEu2,I |Eu2,I⟩
)

+β
(

cIe
−itEd1,I |Ed1,I⟩+ dIe

−itEd2,I |Ed2,I⟩
)

,

(5.19)

where cI =
√

1+I
1+2I

pI , dI =
√

I
1+2I

pI , pI = ⟨I, 0|0, N, 0⟩. The elements of the reduced density
matrix are

ρ↑↓ = αβ∗
N
∑

I=0

|pI |2
(

1 + I

2I + 1
e−itEu1,I +

I

2I + 1
e−itEu2,I

)

·
(

1 + I

2I + 1
eitEd1,I +

I

2I + 1
eitEd2,I

)

,

(5.20)

ρ↑↑ =
N
∑

I=0

|pI |2
(

|α|2
∣

∣

∣

∣

1 + I

2I + 1
e−itEu1,I +

I

2I + 1
e−itEu2,I

∣

∣

∣

∣

2

+|β|2
∣

∣e−itEd1,I − e−itEd2,I
∣

∣

2 I(I + 1)

(2I + 1)2

)

.

(5.21)

We now exploit the following approximation [172],

1 + I

2I + 1
≈ I

2I + 1
≈ 1

2
, (5.22)

⟨I, 0|0, N, 0⟩ ≈ 4

√

4

Nπ
e−

2
N
( I
2
−χ
√

N
2
)2 , I ∈ 2Z. (5.23)
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where χ is a fitting parameter,

ρ↑↓ ≈
αβ∗

2
+
αβ∗

2
cos

((

1

2
+ χ

√
2N

)

Ωt

) ∞
∑

n=0

e−
NΩ2

4
(t−nπ

Ω
)2 , (5.24)

ρ↑↑ ≈
1

2
+

|α|2 − |β|2
2

cos

((

1

2
+ χ

√
2N

)

Ωt

) ∞
∑

n=0

e−
NΩ2

4
(t−nπ

Ω
)2 . (5.25)

Eq. (5.24) tells that ρ↑↓ is a series of gaussian peeks with separation Tr = π
Ω

and width
τ = 2

Ω
√
N

, plus a constant term αβ∗/2, corresponding to the residual coherence. The actual
shapes of the gaussian peaks are also determined by the cosine factor, therefore in Fig. 5.1(a)
some peaks go up while some go down. Similar conclusions apply to the diagonal terms.

In a time window of the scale Tr, the reduced density matrix of the impurity keeps
constant,

ρ =





1
2

1
2
αβ∗

1
2
α∗β 1

2



 . (5.26)

The impurity thus reaches a thermalized equilibrium state. We can work out the eigenvalues
of ρ, λ = 1

2
(1 ± |αβ|). If we view the impurity as a two level system with energy splitting

∆E, we can define a temperature T for the impurity,

kBT

∆E
=

1 + |αβ|
1− |αβ| . (5.27)

The temperature T is only a function of the initial coherence of the impurity |αβ|. A larger
initial coherence leads to a higher equilibrium temperature.

5.2.3 Polar state BEC with external fields

Now we consider an external magnetic field along the z axis such that Bs and Be are
finite. The numerical results in Fig. 5.3(a) indicate that, for a weak magnetic field γ =

2(Be −Bs)/Ω ≪ 1, while the diagonal terms do not change too much, the original constant
term of ρ↑↓ gradually decreases. From Eq. (5.20), we know that the constant term αβ∗/2 in
Eq. (5.24) comes from the fact that the energy spectra of the two subspaces are identical.
For instance, αcIe−itEu1,I |Eu1,I⟩ and βcIe

−itEd1,I |Ed1,I⟩ contribute αβ∗|cI |2eit(Eu1,I−Ed1,I) 1+I
1+2I

to ρ↑↓. Since without the magnetic filed, Eu1,I = Ed1,I , this contribution is a constant. In
other words, the inversion symmetry is crucial for the finite residual coherence when the
impurity reaches equilibrium. However, an external filed breaks the inversion symmetry. As
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Figure 5.3: With the presence of magnetic fields along the quantization axis, the
constant term in ρ↑↓ gradually decreases in a time scale ∝

√
N/γ. The two panels

exhibit results in short and long time scales respectively. Here the numerical pa-
rameters are the same as Fig. 5.1 except γ = 0.1. The green curve is the first term
in Eq. (5.32). The lower panel indicates that the analytical expression is not valid
for very long time scales ∝ T1 because of the approximations we have used.
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a result, the two chains are no longer mirrors of each other. As shown in Appendix 5.4, the
magnetic filed only adds diagonal terms to the total Hamiltonian, therefore the two chains
are still decoupled, but the energy spectra are changed. A special case is Be = Bs, where the
magnetic filed simply adds Bs/2 to every vertex of the up-chain and −Bs/2 to every vertex
of the down-chain. The two subspaces are essentially still the same, only a phase factor is
added to the constant term of ρ↑↓. For a small γ, as an approximation, we consider the
eigenstates to the zero-th order and eigenenergies to the first order of γ,

Eu1,I ≈
Ω

2
(I +

1

2
(1− 1

1 + 2I
)γ) +

Bs

2
, (5.28)

Eu2,I ≈
Ω

2
(−I − 1 +

1

2
(1 +

1

1 + 2I
)γ) +

Bs

2
, (5.29)

Ed1,I ≈
Ω

2
(I − 1

2
(1− 1

1 + 2I
)γ)− Bs

2
, (5.30)

Ed2,I ≈
Ω

2
(−I − 1− 1

2
(1 +

1

1 + 2I
)γ)− Bs

2
, (5.31)

which gives

ρ↑↓ ≈
αβ∗

2
e−iBet cos

γΩt

2(1 + 2χ
√
2N)

∞
∑

n=0

e
− Nγ2Ω2

4(1+2χ
√
2N)4

(

t−nπ(1+2χ
√
2N)2

γΩ

)2

+
αβ∗

2
e−iBet cos

(1 + 2χ
√
2N)Ωt

2

∞
∑

n=0

e−
NΩ2

4 (t−nπ
Ω )

2

.

(5.32)

Comparing Eq. (5.24) and Eq. (5.32), we see that the original constant term αβ∗/2 becomes
a series of gaussian peaks. There are three time scales, the period T1 of the cosine function,
the width τ ′ of the gaussian, and the distance T2 between two neighboring peaks,

T1 =
4π(1 + 2χ

√
2N)

γΩ
, τ ′ =

2(1 + 2χ
√
2N)2√

NγΩ
, T2 =

π(1 + 2χ
√
2N)2

γΩ
(5.33)

Fig. 5.3 demonstrates the numerical results compared with the first term of Eq. (5.32).
Although in the time scale larger than T1/2, a large deviation manifests because of the
approximations we have used, the analytical expression well captures the numerical results
within τ ′. In the thermodynamic limitN → ∞, both T1 and τ ′ are proportional to

√
N/γ and

T2 is proportional to N/γ. This means once γ is fixed, the life time of the residual coherence is
longer if there are more bosons in the environment, which is contradictory to our experience
that the coherence time of a system becomes shorter if there are more particles interacting
with it in the environment [52]. This result can be understood from the dependence of the
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energy splittings on the quantum number I. Consider the term
∑ |pI |2 1+I

2I+1
e−it(Eu1,I−Ed1,I) in

Eq. (5.20). The time dependence of ρ↑↓ comes from the energy splitting,

∆E1I = Eu1,I − Ed1,I ≈
Ω

2
γ

(

1− 1

1 + 2I

)

+Bs. (5.34)

If ∆E1I were independent of I, the time dependence is only in an overall factor and the
constant term will not decrease. On the other hand, ∆E1I is a smoother function in the
region of larger I’s. Moreover, Eq. (5.23) tells that, pI is a gaussian and as N increases, the
center of the gaussian also moves to the region of larger I’s. Combining these observations
together, we can conclude that as the number of bosons in the environment increases, the
effect brought by a fixed γ is smaller and therefore, the residual coherence lives for a longer
time scale.

The diagonal terms of the impurity’s reduced density matrix can also be computed,

ρ↑↑ ≈
1

2
+

|α|2
2

cos
(1 + 2χ

√
2N)Ω1t

2

∞
∑

n=0

e
−NΩ2

2
4

(t−nπ
Ω2

)2

−|β|2
2

cos
(1 + 2χ

√
2N)Ω2t

2

∞
∑

n=0

e
−NΩ2

1
4

(t−nπ
Ω1

)2
,

(5.35)

Ω1 = Ω

(

1− γ

(1 + 2χ
√
2N)2

)

, Ω2 = Ω

(

1 +
γ

(1 + 2χ
√
2N)2

)

. (5.36)

Comparing Eq. (5.35) and Eq. (5.25), ρ↑↑ remains 1/2 when the impurity is thermalized,
which is verified by the numerical result in Fig. 5.3. Our previous arguments still apply since
we only require that the wave function on the two chains is a slowly-varying function of the
site index, which still holds with the presence of magnetic fields.

5.3 Summary

Table 5.1: The dependence of the spin impurity’s reduced density matrix on the
initial state of the environment BEC.

spin singlet pure state
ferromagnetic state sinusoidal oscillations, frequency and amplitude changed by γ

polar state
decoherence occurs. coherence time ∝ 1

Ω
√
N

, revival time ∝ 1
Ω

,
lifetime of residual coherence ∝

√
N
γ

.

In conclusion, we have studied the dynamics of a single spin-1/2 impurity interacting with
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a spin-1 BEC of different phases. The coherence of the impurity shows different behaviors
depending on the initial state of the BEC, as summarized by Table 5.1. Analytical and
numerical results are presented. These conclusions can be used by experimentalists to detect
the state of a spinor BEC.

5.4 Appendix

The eigenenergies and eigenstates of the Hamiltonian with the presence of a magnetic
field along the z direction,

Eu1,I =
Ω

4
(P +

√
P 2 +R) +

Bs

2
, (5.37)

|Eu1,I⟩ =

√√
P 2 +R− P

2
√
P 2 +R

|↑⟩ |I, 0⟩+

√√
P 2 +R + P

2
√
P 2 +R

|↓⟩ |I, 1⟩ , (5.38)

Eu2,I =
Ω

4
(P −

√
P 2 +R) +

Bs

2
, (5.39)

|Eu1,I⟩ =

√√
P 2 +R + P

2
√
P 2 +R

|↑⟩ |I, 0⟩ −

√√
P 2 +R− P

2
√
P 2 +R

|↓⟩ |I, 1⟩ , (5.40)

Ed1,I =
Ω

4
(Q+

√

Q2 +R)− Bs

2
, (5.41)

|Ed1,I⟩ =
√

√

Q2 +R−Q

2
√

Q2 +R
|↑⟩ |I, 0⟩+

√

√

Q2 +R +Q

2
√

Q2 +R
|↓⟩ |I,−1⟩ , (5.42)

Ed2,I =
Ω

4
(Q−

√

Q2 +R)− Bs

2
, (5.43)

|Ed1,I⟩ =
√

√

Q2 +R +Q

2
√

Q2 +R
|↑⟩ |I, 0⟩ −

√

√

Q2 +R−Q

2
√

Q2 +R
|↓⟩ |I,−1⟩ , (5.44)

P = γ − 1, Q = −γ − 1, R = 4I(I + 1), γ =
2(Be − Bs)

Ω
. (5.45)
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6. SUMMARY

This dissertation focuses on the the dynamical evolution of several models consisting of
ultracold atoms. We have used theoretical tools such as Loschmidt echo, SU(1,1) group, and
reduced density matrices. Our theoretical calculations revealed the hidden properties of the
evolution and discovered emergent highly entangled states.

In Chapter 2, we studied a generic two-mode bosonic model with weak on-site inter-
actions. By extending the real time to the complex domain and working out the zeros of
the Loschmidt echo, we found that near a time scale inversely proportional to the inter-
action strength, those zeros with finite real parts gradually approach the real time axes as
the particle number grows, which leads to dynamical quantum phase transitions. We also
discovered that right located at these transition points, the system evolves into one type of
highly entangled state, pair condensate. Between two pair condensates, two different types
of Schrödinger’s cat states exist. The correspondence of the transition points and the highly
entangled states shows that DQPT is a powerful tool to study the non-equilibrium quantum
dynamics.

In Chapter 3, we proposed a new design of discrete time crystals. Different from models
stabilized by many-body localization in the literature, here in a clean system composed of
interacting two-component bosonic particles, we utilized all-to-all interactions to deliver a
perfect revival of the initial state. These revivals are stable against any imperfections in
the driving filed, such as the spatial randomness, given that the interaction J and driving
period T satisfy JT = π. We further demonstrated that this super-sensitivity on JT can
be used in precision measurement (for example, gauging frequencies of different pulses and
tunning the scattering length of interacting particles) to the precision of 1/N3/2, which beats
the Heisenberg limit. On the other hand, if the interaction J is tuned to JT = π/2, we can
create a DTC composed of highly entangled Schrödinger’s cat states.

In Chapter 4, we studied the dynamical evolution of weakly interacting bose gases. By
unfolding the SU(1,1) symmetry, we established a one-to-one correspondence between a
BEC and a Poincaré disk. This geometric framework correlates fundamental quantities such
as time, length, and temperature all together. More importantly, it provides recipes for
experimentalists to control the dynamical evolution, such as accelerating and slowing down
the particle excitation, or reversing the dynamics. Backward evolution is a critical step in
measuring OTOC, our results thus provides a concrete example of reversing the dynamics
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effectively.
In Chapter 5, we calculated the reduced density matrix of a spin-1/2 impurity inside a

spinor BEC, which is viewed as a subsystem interacting with the environment. We discussed
different environment states and particularly focused on polar states. The coherence of the
impurity decreases. However a residual coherence is protected by the inversion symmetry
when magnetic fields is absent. We also analyzed the effects of finite magnetic fields analyti-
cally. An counterintuitive dependence of the residual coherence on the environment particle
number was addressed. Because the coherence of the impurity responds differently to dif-
ference phase of the environment spinor BEC, thus experimentalists can use it to detect the
environment’s state.

While this thesis only explored a small corner of the fascinating world of quantum evo-
lution, it already demonstrated that cold atoms are suitable candidates for construct and
realize theoretical models. It is expected that many topics like entanglement growth, quan-
tum information scrambling, non-Hermitian physics, and physics in non-Euclidean spaces,
can get further investigated within this platform.
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