
NOVEL ENTROPY FUNCTION BASED MULTI-SENSOR
FUSION IN SPACE AND TIME DOMAIN: APPLICATION IN

AUTONOMOUS AGRICULTURAL ROBOT
by

Md Nazmuzzaman Khan

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Mechanical Engineering

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Sohel Anwar (Co-Chair)

School of Mechanical Engineering

Dr. Gregory Shaver (Co-Chair)

School of Mechanical Engineering

Dr. George Chiu

School of Mechanical Engineering

Dr. Mohammad Al Hasan

School of Computer & Information Science

Approved by:

Dr. Nicole L. Key

2

To the healthcare workers who dedicated their lives during COVID-19 pandemic.

3

ACKNOWLEDGMENTS

First, I want to express my gratitude to my major co-advisor Dr. Sohel Anwar. Dr.

Anwar not only helped me with my research but also guided me through my PhD life. I

honestly believe that I am a better person now because of his mentorship. I also want to

thank my other major co-advisor Dr. Gregory Shaver. I remember the first day I met him

and presented my research ideas. Dr. Shaver told me that the work I am doing is very helpful

for the agriculture industry, which boosted my confidence. Dr. Shaver also introduced me

to industry personnel and helped me to find a job. I also want to thank Dr. Mohammad

Al Hasan for actively helping me with my research. Dr. Hasan helped me with improving

our machine learning algorithms and also helped me with my writing. I want to thank Dr.

George Chiu for being on my committee and help me with my research direction and goals.

I also want to thank my lab mates and people who worked on AgBot project. I have

learned more from them about problem solving under real-life conditions than any courses

I have taken. I want to thank the people from mechanical engineering department (Jerry,

Linda, Susan and many more) who helped me throughout this whole process with guidance.

I want to thank Dr. Sebastian Raschka (Assistant Professor of Statistics at University

of Wisconsin-Madison; author of the book “Python Machine Learning”), François Chollet

(author of the book “Deep Learning With Python”), Dr. Adrian Rosebrock (author of the

book “Deep Learning for Computer Vision with Python”) and Aurelien Geron (author of the

book “Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems”) for writing such interesting and easily readable

books. Also for open sourcing all the codes for easy implementation.

Finally, I want to thank my family (my family back at home and my wife Suchana who

is also a PhD student). During the highs and lows of this PhD life they stuck to me and I

am thankful for that.

4

TABLE OF CONTENTS

 LIST OF TABLES . 9

 LIST OF FIGURES . 10

 ABBREVIATIONS . 14

 ABSTRACT . 15

 1 INTRODUCTION . 17

 1.1 Motivation . 17

 2 RELATED STUDIES . 22

 2.1 Crop Row Detection . 22

 2.2 Computer Vision in Precision Farming . 23

 2.3 CNN based Plant/Weed Classification . 24

 2.4 Sensor Fusion . 26

 2.5 Object Detection and Fuzzy-fusion . 29

 3 CROP ROW DETECTION . 31

 3.1 Introduction . 31

 3.2 Methodology . 33

 3.3 Pseudocode (CAROLIF) . 39

 3.4 Methods Used for Comparison . 40

 3.5 Results . 42

 3.5.1 Qualitative Comparison . 42

 3.5.2 Quantitative Comparison . 43

 3.5.3 Processing Time . 47

 3.5.4 Performance on Video Input . 49

 3.5.5 Effectiveness of Projective Transformation 51

 3.6 KF based Crop Row Center Tracking . 53

 3.6.1 State Model . 53

5

 3.6.2 Measurement Equations . 54

 3.6.3 Update Equations . 54

 3.6.4 Correction Equations . 55

 3.7 Conclusions . 56

 4 CNN BASED WEED CLASSIFICATION . 58

 4.1 Methodologies . 58

 4.1.1 Weed Image Dataset and Image Processing 59

 4.2 CNN and Transfer-learning . 60

 4.2.1 CNN Models . 62

 6-layers CNN (Model-1) . 63

 Transfer-learning with VGG16 (Model-2) 64

 Transfer-learning with InceptionResNetV2 (Model-3) 65

 4.3 Classification Report . 67

 4.4 Real-time Classification from Video Input from Single Camera 69

 4.4.1 One Pigweed in Video (Fig. 4.8) . 69

 4.4.2 One Ragweed and One Pigweed in Video, Separately Placed (Fig. 4.9) 69

 4.4.3 Two Pigweeds and One Ragweed in Video Placed Together (Fig. 4.10) 70

 4.4.4 One Pigweed and One Ragweed in Video Placed Together (Fig. 4.11) 72

 4.5 Effect of Noise and Motion Blur on Classification Accuracy (model - 2) . . . 74

 4.6 Conclusions . 74

 5 ROBUST COLOR BASED WEED SEGMENTATION 77

 5.1 Color Based Image Segmentation . 77

 5.2 Histogram Based Image Statistics . 80

 5.3 Proposed Brightness/Contrast Control Steps 83

 5.3.1 How to Quantify ‘Good’ and ‘Bad’ Quality Image 86

 5.4 Conclusions . 88

 6 DECISION LEVEL SENSOR FUSION IN SPACE AND TIME DOMAIN 89

 6.1 Dempster-Shafer Evidence-based Combination Rule 90

6

 6.1.1 Frame of Discernment (FOD) . 90

 6.1.2 Basic Probability Assignment (BPA) / Mass Function 90

 6.1.3 Dempster-Shafer Rule of Combination 91

 6.1.4 Belief and Plausibility Function . 91

 6.2 Paradoxes (Source of Conflicts) in DS Combination Rule 92

 6.2.1 Completely Conflicting Paradox: . 93

 6.2.2 “One Ballot Veto” Paradox: . 93

 6.2.3 “Total Trust” Paradox: . 94

 6.3 Eliminating the Paradoxes of DS Combination Rule 94

 1. Modification of DS Combination Rule 94

 2. Revision of Original Evidence before Combination 95

 3. Hybrid Technique Combining both Modification of DS Rule and

Original Evidence . 96

 6.4 Entropy in Information Theory under DS Framework 97

 6.4.1 Properties of Proposed Entropy Function 98

 6.5 Proposed Steps to Eliminate Paradoxes in Space Domain 100

 6.6 Proposed Steps for Time-domain Data Fusion 105

 6.6.1 Anti-disturbing Ability and Transition Property of Proposed Algorithm 110

 6.6.2 Modification of BPA for CNN Based Object Classification under DS

Framework . 113

 6.6.3 Effect of Number of Time-steps (fusion-time) on Fused Output . . . 117

 6.7 Application of the Proposed Algorithm . 117

 6.7.1 Fusion when Faulty Sensor is Present in Sensor-array 118

 6.7.2 Fusion when Weed is Partially Occluded 120

 6.8 Conclusions . 123

 7 IMPROVING THE ROBUSTNESS OF OBJECT DETECTION THROUGH A

MULTI-CAMERA BASED FUSION ALGORITHM USING FUZZY LOGIC . . . 125

 7.1 Objectives . 125

 7.2 Projective Transformation . 126

7

 7.2.1 Homography Matrix Calculation . 129

 7.3 CNN based Weed Detection from Classification 130

 7.3.1 IOU Overlap Calculation . 131

 7.4 Fuzzy Logic . 133

 7.4.1 Fuzzy Steps and Rule-set: . 137

 7.5 Results . 139

 7.5.1 Scenario 1: High Confidence . 140

 7.5.2 Scenario 2: OK Confidence . 141

 7.5.3 Scenario 3: Low confidence . 142

 7.6 Conclusions . 143

 8 CONCLUSIONS . 146

 9 FUTURE WORKS . 149

 REFERENCES . 151

 A CODE: CHAPTER 3 - CROP ROW DETECTION 164

 B CODE: CHAPTER 5 - STATISTICS PARAMETERS OF IMAGE 169

 C CODE: CHAPTER 6 - MULTI-SENSOR TIME DOMAIN FUSION 171

 D CODE: CHAPTER 6 - MULTI-SENSOR SPACE DOMAIN FUSION 174

 VITA . 178

8

LIST OF TABLES

 3.1 Tuning parameters for CAROLIF. 39

 3.2 IOU value for different algorithms. 46

 3.3 Processing time for different algorithms. 49

 3.4 Performance of CAROLIF on real-time video. 52

 4.1 Weed image dataset. 60

 4.2 Confusion matrix based on test image set (Model-1). 64

 4.3 Confusion matrix based on test image set (model-2). 65

 4.4 Confusion matrix based on test image set (model-3). 66

 4.5 Sample confusion matrix. 67

 4.6 Classification report. C = Cocklebur, R = Ragweed and P = Pigweed. Inference
time (classifying image to infer a result) tested on a core-i5, 8gb ram machine. . 68

 5.1 Mean, variance, skewness, kurtosis values for ‘good-quality’ images in the three
R, G, B spectral channels. 86

 5.2 Mean, variance, skewness, kurtosis values for ‘bad-quality’ images in the three R,
G, B spectral channels. 87

 6.1 Bel and Pl values for Example 6.1 . 92

 6.2 Bel and Pl values for example 6.6 . 99

 6.3 Bel and Pl values for Example 6.7 . 102

 6.4 Evidence combination results based on different combination methods for Exam-
ple 6.7 . 104

 6.5 Input data of each time step for Example 6.8 110

 6.6 Data combination results based on different combination methods for Example 6.8 111

 6.7 Input data of each time step for Example 6.9 113

 6.8 Classification report of CNN classifier (Model-2). 115

 7.1 Optimization methods and reprojection error. 130

 7.2 Fuzzy rules. 142

9

LIST OF FIGURES

 1.1 Retrofitted Yamaha ATV - 2018 Agricultural Robot (AgBot). 18

 1.2 Graph showing herbicide resistance increases within selected countries. 19

 1.3 Research contributions and relation between them. Different color shows different
aspects of contribution. 20

 2.1 Sample images from different plant leaf datasets. 26

 2.2 Data fusion at three different levels. (a) Signal-level fusion, (b) feature-level
fusion, and (c) decision-level fusion. 28

 3.1 Steps of the proposed CAROLIF algorithm with images. 33

 3.2 (a) Projective transformation is used from Agricultural robot to transform camera
1 view to virtual camera 2 view. (b) For two camera planes, image planes are
related by projective transformation when all world points are co-planer. (c)
Original image from camera 1 view with boundary points. (d) Cropped image
using boundary points. (e) Transformed cropped image from camera 1 view to
camera 2 view. 34

 3.3 Comparison of Kmeans, MeanShift, Agglomerative and HDBSCAN clustering
algorithm on crop row detection. Run-time indicated on the top left corner of
each image. Different colors indicate different clusters. Black colors indicate
outliers. 37

 3.4 Example cases for easy and challenging scenario. 43

 3.5 Comparison of crop row detection in challenging scenarios for Hough transform,
Sliding window, TMGEM, Cluster-Least square and CAROLIF (proposed) meth-
ods with ground truth results.(Row 1) intermittent, very early crop growth, no
weed. (Row 2) early crop growth stage, high weed pressure, crop rows are con-
nected, crop rows and weed indistinguishable. (Row 3) early crop growth stage,
exceptionally big intermittent weed, curved crop rows. (Row 4) medium crop
growth, crop missing from rows, no weed. (Row 5) early crop growth stage -
intermittent, concentrated weed growth. 44

 3.6 IOU between a ground truth bounding box (in green) and a detected bounding
box from algorithm (in red). 45

 3.7 Actual bounding boxes. Red lines show ground truth detection and blue lines
show algorithm detection of crop rows. Green bounding boxes capture the height
and width of ground truth lines. Pink bounding boxes capture the height and
width of algorithm detection lines. 45

 3.8 Box plot comparison of IOU values for different methods under easy and chal-
lenging scenario. 46

10

 3.9 (left side) Ground truth value and boundary boxes from CRBD dataset. (right
side) CAROLIF detection and boundary boxes. 47

 3.10 Processing time of each step of CAROLIF crop row detection algorithm. ROI
size (120 by 80) pixels. 48

 3.11 Performance of CAROLIF on real-time video captured from an agricultural vehicle. 50

 3.12 Comparison of crop row detection results with and without projective transfor-
mation. Four different scenarios are chosen. (T1) and (T2): sunny, no weed, no
shadow, intermittent crop growth. (T3): sunny, no weed, shadow present. (T4):
high weed pressure, shadow, intermittent crop growth. 51

 3.13 KF based crop row center tracking. Orange colored ’plus’ signs show the calcu-
lated crop row center from CAROLIF output at time t. 56

 4.1 Classification and spray system pipeline of AgBot. 59

 4.2 Sample images of the weed dataset. 60

 4.3 Simple representation of Transfer-learning. 62

 4.4 6-layer end-to-end CNN architecture(Model-1). 64

 4.5 Training and validation accuracy (Model-1). 65

 4.6 Training and validation accuracy (model-2). 66

 4.7 Training and validation accuracy (model-3). 67

 4.8 Classification accuracy from video input using transfer-learning VGG16 (model-
2). Only one Pigweed plant on video. . 70

 4.9 Classification accuracy from video input using model-2. One Pigweed plant and
one Ragweed plant separately placed. 71

 4.10 Classification accuracy from video input using model-2. Two Pigweed plants and
one Ragweed plant on video, placed together. 72

 4.11 Classification accuracy from video input using model-2. One Pigweed plant and
one Ragweed plant on video, placed together. 73

 4.12 Effect of Gaussian and Salt-and-Pepper noise on classification accuracy. 75

 4.13 Effect of Gaussian and Salt-and-Pepper noise on classification accuracy. 76

 5.1 Block diagram of proposed image enhancement process. Blue arrow shows how
usually spray decision is made. Red arrow shows the redundant system for bad
quality image. 78

 5.2 (a)ExG, (b)ExGR, (c)CIVE and (d)GREEN based image segmentation. 80

 5.3 ExG, ExGR, CIVE and GREEN based image segmentation performance under
different lighting conditions. 81

11

 5.4 A good-quality image with histogram and statistics parameters for R, G and B
channels of the image. 83

 5.5 A bad-quality image with histogram and statistics parameters for R, G and B
channels of the image. 84

 5.6 Original bad-quality image, bad-quality image after CLAHE, visible spectral-
index based image segmentation (GREEN) on CLAHE applied image, histogram
of original image, histogram of CLAHE image. 85

 6.1 Comparison of convergence of evidence m(A) for Example 6.7. 106

 6.2 Simple representation of sensor-fusion in space and time domain. 107

 6.3 Comparison of anti-disturbing ability of several combination rules for Example 6.8. 112

 6.4 Transition property of the proposed algorithm for Example 6.9. 114

 6.5 Real-time weed classification from video input using CNN classifier (Model-2).
Classification % is showing CNN output of video feed at each time step. This
CNN output is used as BPA in fusion algorithm. 115

 6.6 Effect of considering precision and recall on updating BPA on real-time weed
classification. Classification % are showing BPA from equations (6.29) and (6.30)
[top figure]. Time-domain fusion of updated BPA for ts = 5. Classification %
showing fused results when BPA from equations (6.29) and (6.30) goes through
the proposed fusion algorithm [bottom figure]. 116

 6.7 Effect of fusion-time (ts) during time-domain sensor fusion on real-time weed
classification from video input. Classification % showing fused results when BPA
from Fig. 6.5 goes through the proposed time-domain fusion algorithm (step 1 -
step 8). from section 6.6 . 118

 6.8 Placement of multiple cameras on an AgBot. 119

 6.9 Reduced unstable classification with time domain sensor fusion. Reduce the effect
of faulty sensor evidence with space domain sensor fusion. 120

 6.10 Ground truth value for Ragweed and Pigweed at the top. (a) Classification accu-
racy from left, center and right camera for Pigweed. (b) Classification accuracy
from left, center and right camera for Rigweed. (c) Reduced unstable output
(smooth curve) with time domain fusion. Each line shows the classification % of
a specific weed for a specific camera. (d) Eliminated the effect of faulty sensor
(right camera) evidence on final classification output with space domain fusion. 121

 6.11 Improved classification for partially occluded weed data with space domain sensor
fusion. 122

12

 6.12 Ground truth value for Ragweed and Pigweed at the top. (a) Classification accu-
racy from left, center and right camera for Pigweed. (b) Classification accuracy
from left, center and right camera for Rigweed. (c) Reduced classification error
(smooth curve) with time domain fusion. (d) Eliminated the effect of partial
occlusion on final classification output with space domain fusion. 122

 7.1 (a) For multiple cameras, image planes are related by projective transformation
when all world points are co-planer. (b) Actual setup of two cameras with co-
planer checkerboard points. . 128

 7.2 Checkerboard corner points for left camera (camera 2). 131

 7.3 Checkerboard corner points for right camera (camera 1). 132

 7.4 Reprojection of camera 2 image to camera 1 image using homography matrix. . 133

 7.5 Steps to create a object detector from CNN classifier. 134

 7.6 How BB overlap changes when weed is placed at different distance from camera.
“Too far”, “Far”, “Close” and “Too close” represents the distance of the weed
from camera. “After reprojection” shows the BB overlap when left camera image
is reprojected using H. BB size, width: 500 pixels; height: 350 pixels. 135

 7.7 IOU overlap value with respect to distance from camera.(a) BB size, width: 500
pixels; height: 350 pixels.(b) BB size, width: 450 pixels; height: 300 pixels. . . . 136

 7.8 Fuzzy set for weed bounding box distance in camera view for right camera. [Input]. 137

 7.9 Fuzzy set for weed bounding box distance in camera view for left camera. [Input]. 138

 7.10 Fuzzy set for bounding box overlap between left and right camera [Input]. . . . 139

 7.11 Fuzzy set for fusion confidence [Output]. 140

 7.12 Basic configuration of the fuzzy system. 141

 7.13 Fuzzy confidence score measurement (High confidence). 143

 7.14 Fuzzy confidence score measurement (OK confidence). 144

 7.15 Fuzzy confidence score measurement (Low confidence). 145

13

ABBREVIATIONS

AgBot Agricultural Robot

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise

RANSAC Random Sample Consensus

CAROLIF Clustering Algorithm based RObust LIne Fitting

IoU Intersect over Union

TMGEM Template Matching followed by Global Energy Minimization

KF Kalman Filter

CNN Convolutional Neural Network

DS Dempster-Shafer

BB bounding-box

RGB Red, Green and Blue channel

LIDAR Light Detection and Ranging

TOF Time of Flight

BB Bounding Box

R-CNN Regions with CNN features

ROI Region of Interest

IoU Intersect over union

CLAHE Contrast Limited Adaptive Histogram Equalization

HE Histogram Enhancement

BPA Basic Probability Assignment

FOD Frame of Discernmen

14

ABSTRACT

How can we transform an agricultural vehicle into an autonomous weeding robot? A

robot that can run autonomously through a vegetable field, classify multiple types of weeds

from real-time video feed and then spray specific herbicides based of previously classified

weeds. In this research, we answer some of the theoretical and practical challenges regarding

the transformation of an agricultural vehicle into an autonomous weeding robot.

First, we propose a solution for real-time crop row detection from autonomous navigation

of agricultural vehicle using domain knowledge and unsupervised machine learning based

approach. We implement projective transformation to transform camera image plane to

an image plane exactly at the top of the crop rows, so that parallel crop rows remain

parallel. Then we use color based segmentation to differentiate crop and weed pixels from

background. We implement hierarchical density-based spatial clustering of applications with

noise (HDBSCAN) clustering algorithm to differentiate between the crop row clusters and

weed clusters. Finally we use Random sample consensus (RANSAC) for robust line fitting

through the detected crop row clusters. We test our algorithm against four different well

established methods for crop row detection in-terms of processing time and accuracy. Our

proposed method, Clustering Algorithm based RObust LIne Fitting (CAROLIF), shows

significantly better accuracy compared to three other methods with average intersect over

union (IoU) value of 73%. We also test our algorithm on a video taken from an agricultural

vehicle at a corn field in Indiana. CAROLIF shows promising results under lighting variation,

vibration and unusual crop-weed growth.

Then we propose a robust weed classification system based on convolutional neural net-

work (CNN) and novel decision-level evidence-based multi-sensor fusion algorithm. We cre-

ate a small dataset of three different weeds (Giant ragweed, Pigweed and Cocklebur) com-

monly available in corn fields. We train three different CNN architectures on our dataset.

Based on classification accuracy and inference time, we choose VGG16 with transfer learning

architecture for real-time weed classification.

To create a robust and stable weed classification pipeline, a multi-sensor fusion algorithm

based on Dempster-Shafer (DS) evidence theory with a novel entropy function is proposed.

15

The proposed novel entropy function is inspired from Shannon and Deng entropy but it shows

better results at understanding uncertainties in certain scenarios, compared to Shannon and

Deng entropy, under DS framework. Our proposed algorithm has two advantages compared

to other sensor fusion algorithms. First, it can be applied to both space and time domain

to fuse results from multiple sensors and create more robust results. Secondly, it can detect

which sensor is faulty in the sensors array and compensate for the faulty sensor by giving it

lower weight at real-time. Our proposed algorithm calculates the evidence distance from each

sensor and determines if one sensor agrees or disagrees with another. Then it rewards the

sensors which agrees with another according to their information quality which is calculated

using our novel entropy function. The proposed algorithm can combine highly conflicting

evidences from multiple sensors and overcomes the limitation of original DS combination

rule. After testing our algorithm with real and simulation data, it shows better convergence

rate, anti-disturbing ability and transition property compared to other methods available

from open literature.

Finally, we present a fuzzy-logic based approach to measure the confidence of the detected

object’s bounding-box (BB) position from a CNN detector. The CNN detector gives us the

position of BB with percentage accuracy of the object inside the BB on each image plane.

But how do we know for sure that the position of the BB is correct? When we are detecting

an object using multiple cameras, the position of the BB on the camera image plane may

appear in different places based on the detection accuracy and the position of the cameras.

But in 3D space, the object is at the exact same position for both cameras. We use this

relation between the camera image planes to create a fuzzy-fusion system which will calculate

the confidence value of detection. Based on the fuzzy-rules and accuracy of BB position, this

system gives us confidence values at three different stages (‘Low’, ‘OK’ and ‘High’). This

proposed system is successful at giving correct confidence score for scenarios where objects

are correctly detected, objects are partially detected and objects are incorrectly detected.

16

1. INTRODUCTION

With the world’s population exceeding 7 billion and still growing, there is an enormous

challenge to produce enough food. The growing population has growing food demand and

United Nation’s (UN) Sixty-fourth General Assembly says that we need to double the food

production by 2050 to meet the need [1]. With increasing costs of manual labor and chemicals

used in the current agricultural practices, an automated agricultural system may not only

be economically feasible, but also environmentally friendly.

Precision farming improves crop yields and makes farming environmentally friendly. Pre-

cision farming reduces environmental impact and lowers the usage of artificial chemicals.

Automation and robotics research in farming domain increased due to precision farming.

The overall goal is to increase the efficiency of the farming process and reduce herbicide

usage. Increase in herbicide resistance from various species of weeds have been observed

over the years [2]. To reduce labor, cost, and herbicide resistance of weeds; interest in agri-

cultural robots capable of autonomous weed detection and elimination has been growing.

To integrate innovative technologies to improve observation, intervention, analytic, and data

storage in agricultural robotics, an annual agricultural robotic competition dubbed “AgBot

Challenge” was initiated in 2016 at Rockville, Indiana (http://www.agbot.ag/). The goal is

to do the following:

• Autonomously drive 1000-ft rows and autonomously turn at each end.

• Autonomously observe crop plants growth and fertilize. Identify three common weeds

and spray herbicides based on detection.

Such a robot built by retrofitting a Yamaha Wolverine 4x4 vehicle with sensors and

actuators in the Mechatronics and Automotive Research Lab is shown in Fig. 1.1 .

1.1 Motivation

Many farms are using a zero-tillage approach to weed management where unwanted

plants are typically eliminated using a variety of different available herbicides. When ap-

plied in a blanket fashion, herbicides are applied indiscriminately to the entire field with no

17

Camera

Processing Unit

Spray System

Emergency Shut-Off

Brake & Throttle

Figure 1.1. Retrofitted Yamaha ATV - 2018 Agricultural Robot (AgBot).

specialization for individual plants. This widespread use of herbicides, however, has led to a

steady increase in herbicide resistance from various species of weeds over the years. This can

be seen graphically in Fig. 1.2 , which shows cases of herbicide resistances increasing over

time in selected countries since 1950, where each case as defined by [3] is “A unique pairing

of species and site of action (herbicide method of removal)” [4].

How the herbicide is sprayed is a important factor in optimizing herbicide performance

[5]. Herbicide spraying is a low precision method and only a small fraction reaches the actual

weeds. [6]. Also, pesticide application has been described as the “least effective industrial

process on earth” [7]. Herbicide resistance is a natural process and usually happens due to

over-application of herbicides. It happens through “repeated herbicide use to a point where

the weed population is no longer controlled by the herbicide at the recommended rate under

agricultural conditions” [8]. Herbicide resistant weeds can’t be eliminated but they can be

controlled. By rotating herbicide sites of action, herbicide mixture, herbicide resistant crops

and combination of all is used as integrated weed management. As a result, early individual

weed detection with automated herbicide spray will limit the use of herbicide use and can

be used as an integral part of weed management system.

18

Figure 1.2. Graph showing herbicide resistance increases within selected countries.

With rapidly increasing global population, the demand for higher crop yield is also in-

creasing rapidly. Weeds are one of the major culprits behind lower crop yield. They grow

randomly in field and compete with crops for water, nutrients and sunlight. To eliminate

weeds and reduce uncontrolled spray of herbicides, real-time detection of weeds with high

accuracy using low cost sensors is needed. Herbicide resistance is costly in terms of weed

control and yield loss. As a result, research is needed in precision weed management where

each species weed is classified and treated individually.

Conventional machinery sprays herbicides uniformly to the total field, which results in

high cost on herbicides [9] and catastrophic environmental pollution [10]. But research

suggests that weeds grow in patches, not homogeneously in fields. Marshall et al. [11] showed

that between 24% and 80% of the sample area was free of grass weeds, when he investigated

the presence of three different grass in crop fields. Jhonson et al. [12] investigated 7 maize

fields and 5 soybean fields for weeds. They reported that about 30% of the crop field area

was free of broad-leaf weeds. They also discovered that about 70% area was free of grass

weeds where no herbicide was applied. In [13] and [14], the authors stated that, based on

19

weed pressure and number of patches, reductions between 42% (soybean and maize) and

84% (maize) in the amount of applied herbicide could be achieved. This suggests that, if

individual weeds can be classified from continuous video feed, farmers can fine-tune (or an

autonomous system can automatically adjust) the rate of herbicide application. Such an

effort will reduce herbicide-resistant weeds and treatment cost significantly.

Multi- sensor
array

Crop row
detection

Autonomous
navigation

CNN based weed
classification

Decision level
multi sensor fusion

Weed detection
Fuzzy-fusion for

detection confidence
measurement

Spray Herbicide

Figure 1.3. Research contributions and relation between them. Different
color shows different aspects of contribution.

In this research, we propose a state-of-the-art individual weed classification system with

decision level sensor fusion. Individual weed classification is a complex problem under ad-

verse weather condition and few researches have been conducted for real-time application.

The proposed pipeline has a fail-safe for weed/non-weed classification for adverse weather

condition. Multi-sensor input improves the overall classification accuracy by increasing field

of view, adding multiple classifiers into the system and reducing the possibility of occlusion.

A real-time decision level sensor fusion algorithm is proposed to effectively combine all the

sensor outputs into a valid object classification. We also include a real-time crop row detec-

tion system for autonomous navigation of the vehicle. And finally, we add a fuzzy logic based

20

confidence measurement system for CNN based object detection to address the sub-optimal

detection of a CNN detector under noise or vibration. Fig. 1.3 shows the complete pipeline

of the proposed system and contribution of our research. Innovations of our work will try to

answer the following questions:

1. How to develop a real-time crop row detection system for autonomous navigation of

AgBot?

2. How to classify individual weeds of similar nature (color, shape, height) with reasonable

accuracy (> 95%) from a small weed dataset?

3. What steps are needed to deploy a weed classification system on an AgBot using

reasonable hardware? How to make classification real-time and robust against noise,

motion blur and occlusion?

4. How evidence-based decision level sensor fusion can improve the overall classification

accuracy beyond state-of-the-art?

5. What are the effects of evidence-based sensor fusion in both space and time domain?

6. How do we know the position of the BB given by a detector is correct? How can we

measure a confidence score of the BB position given by the detector?

21

2. RELATED STUDIES

2.1 Crop Row Detection

Autonomous navigation in agriculture has several advantages, like, reduce operator fa-

tigue, improve profit and efficiency, and enhance operation safety. To support autonomous

navigation, a crucial task is to develop the capability of computer vision based detection of

crop rows from image/video data. To address this, several methodologies have already been

proposed [15]–[18]; however, our analysis on these existing methodologies reveal that their

detection quality deteriorates significantly, when the crop row image is complex. Specifically,

the complexity arises due to two reasons: first, missing of crops in some segment of the crop

row causing discontinuity in a crop row, and the second, significant weed growth in the area

between the crop rows. When an image exhibits both the above reasons simultaneously,

distinguishing crop rows from the weed becomes very difficult, and mostly all the existing

methods fail to achieve a satisfactory performance in solving the crop row detection task.

The desiderata of a practical crop row detection method that works satisfactorily in

real-life deployment are below: (1) It is capable of detecting crop rows even with high weed

pressure; (2) It is applicable at different types of crop fields; (3) It is capable to detect crop

rows at different crop growth stages; (4) It is capable to detect straight and reasonably curved

crop rows; and finally, (5) The processing time of detection on an off-the-shelf computer

satisfy real-time requirements.

Basso and de Freitas [15] used a filtered Hough transform [16] method and achieved

around 30 frame per second(FPS) for 320x240 image resolution on RPi-3B embedded system.

Although they showed detailed results about how the algorithm performed for different image

sizes and frame rates (max speed used for good detection: 2 m/s), no detailed calculation is

showed about the effect of weed pressure and crop missing on row detection accuracy.

Zhang et al. [17] proposed a double thresholding (combining OTSU method with particle

swarm optimization) on segmented image with linear regression for line fitting. They said,

due to double thresholding their method can separate weed from crop rows. But how this

method performs under high weed pressure is not shown in detail. Also, least squares fitting

is highly affected by presence of weed in image.

22

Sainz-Costa et al. [18] analysed video sequences to detect crop rows. They used a five

step process to detect crop rows. First, they segmented the image. Then after clearing from

noise, they divided the image in horizontal stripes. Then from each strip crop centers are

extracted. This worked reasonably well in low weed pressure.

Vidovic et al. [19] applied the vanishing point principle to detect parallel crop rows.

Dynamic programming based optimization was applied for straight and curved crop row

detection. But for an image with resolution of 640x480 needed around 5 seconds of processing

time.

Tracking similar looking objects in a dynamic system increases complexity in computer

vision application. To make an overall robust system, tracking algorithm can be incorporated

with crop row detection. According to [20], three most common methods for object tracking

are: point tracking, kernel tracking and silhouette tracking. Point based tracking is very

useful in tracking small objects (like crop row centers) in video sequence. Within point

tracking; kalman filter, particle filter and multiple hypothesis tracking are the most common.

Kalman filter is a good option where number of objects to track are around 5 [21].

2.2 Computer Vision in Precision Farming

Automated crop yield estimation for corn [22], vineyard [23], pineapple [24] and apple

[25] using off the shelf RGB (red, green and blue) or stereo camera can be found in recent

literature. But the main constraints are weather conditions, specular reflection and color

heterogeneity. Artificial lighting and artificially placed landmarks [25] has been proposed to

overcome these constraints. In 3D vision application for plant phenotyping, it can be seen

that shadowing devices are commonly used to maintain constant lighting conditions when

used outside [26]. No artificial lighting is used for inside (greenhouse) application.

Piron et al. [27] used specific light based coding to detect crop and weed at early stage.

They used the difference in height as the main feature for differentiation. Some limiting

factors were dynamic range, reflection, occlusion, high weed growth stage and low crop

growth. Šeatovic et al. [28] used depth camera to detect broad-leafed weed in real-time.

They also integrated a spraying system. To reduce noise, they used cover to take images and

used clear soil background. This doesn’t reflect real-life scenario. As a result, their detection

23

decreased when noise was present in background. Spectral information gathered from ground

or air can be useful for vegetation detection. Strothmann et al. [29] used three wavelengths

(05, 532, and 650 nm) in a triangulation system to create 3D shape reconstruction and get

the reflectance information. This method was somewhat successful in detecting objects with

high water content at wavelength between 600 - 1000 nm.

Weiss et al. [30] used a 3D LIDAR (pulse modulation-FX6 LIDAR by Nippon Signal)

for crop detection in indoor environment with different machine learning classifiers. Logistic

regression showed classification precision of nearly 99% for six different plant species. This

indicates that the dataset may have been too simple to mimic real-life scenarios. When

they used the same 3D LIDAR for plant detection and mapping at outdoor conditions, they

achieved accuracy of about 60%. The authors indicated the sensor’s low pixel resolution (29

x 59 pixels) as one of the main reasons for low accuracy. The authors considered 3D LIDAR

as the most promising sensor technology for agricultural robotics [26] due to the advantages

of the sensor (reliability under different light and weather conditions) over camera. Several

applications of LIDAR and TOF cameras for crop density measurements [31], inter-plant

spacing [32], automatic pruning [33] can be found in literature.

2.3 CNN based Plant/Weed Classification

Recent advancement in machine learning domain can now replace feature based plant

catalog and detection [34] which saves cost and time. In recent times, CNN classifier has

attracted substantial attention in the weed classification task due to its (CNN) superior

performance in large-scale image classification. For instance, Potena et al. [35] used two

different CNNs, to process RGB and near infrared (NIR) images for crop and weed detection.

A smaller CNN was used for vegetation segmentation, and a deeper CNN was used for crop

and weed classification. The classifier yielded the best mean average precision of 98.7%. Yu

et al. [36] used VGGNet architecture to detect weeds in bermuda grass. They achieved

over 95% F1 score and outperformed GoogleNet architecture. Suh et al. [37] compared the

performance of transfer learning with six different CNN architectures for sugar beet and

volunteer potato detection. VGG19 with transfer learning showed the highest performance

for this binary classification task with over 98% accuracy. However, Suh et al. stated

24

that classification is only one step in weed detection, and the real-time performance of a

complete pipeline for weed detection may be poorer. Olsen et al. [38] trained InceptionV3 and

ResNet50 CNN architectures from scratch with 17509 labeled images containing 8 different

weed classes. They achieved over 95% accuracy and the inference-time of their system was

reasonable for real-time applications. However, deep CNNs are particularly susceptible to

blur and noise [39]. As a result, their classification accuracy can deteriorate rapidly when

detecting weeds from video feed in presence of blur, noise, occlusion, vibration and different

lighting conditions. To spray herbicides correctly, a steady signal is needed from classifiers

which should be robust against these adverse conditions. A way to achieve this goal is to

use multiple sensors and a sensor fusion architecture, which combines classification results

from each sensor at the decision level.

Transfer learning means reusing a pre-trained machine learning model to complete a

similar but new task. Jeon and Rhee [40] used transfer learning with pre-trained GoogleNet

architecture to detect plant leaves with Flavia dataset [41]. Different image scales and

image colors are used as image augmentation techniques to increase the variability of the

dataset. They achieved over 99% accuracy for leaves with no damage and 94% accuracy

for leaves with 30% damage. Kaya et al. [42] tested four different transfer learning model

with four different publicly available plant leaf datasets. They compared their results with

other Deep Neural Nets (DNNs) and traditional machine learning based leaf classification

methods. Datasets used in this study are, Flavia (32 species and 1900 images), Swedish Leaf

Dataset [43] (15 tree classes, 1125 images), UCI leaf dataset [44] (40 species and 443 images)

and PlantVillage dataset [45] (14 species, 38 classes, 54306 images). Their comparison

showed that deep learning based models have supiority in classification accuracy compared

to traditional feature-based machine learning models. They also showed that CNN models

with transfer learning give better results than end-to-end CNN models. Fig. 2.1 shows

sample images from these datasets. It’s clear from the figure that they are clean images

with no luminance variation and they don’t usually represent a plant which is seen from an

AgBot on a field. As a result, these datasets are quite good for model testing and evaluation

but their performance may vary on real plant images taken from an AgBot. As a result,

25

research is needed on a dataset which represent actual field scenarios and implemented on

data similar to on field conditions.

Flavia Dataset

Swedish Leaf Dataset

UCI Leaf Dataset

PlantVillage Dataset

Figure 2.1. Sample images from different plant leaf datasets.

2.4 Sensor Fusion

Multi-sensor fusion overcomes the limitations of single information source by combining

information from multiple sensors in a meaningful way. Based on the identified strengths and

weaknesses of previous work, a principled definition of information fusion is proposed in [46]

“Information fusion is the study of efficient methods for automatically or semi-automatically

transforming information from different sources and different points in time into a rep-

resentation that provides effective support for human or automated decision making.” A

multi-sensor system has two distinct advantages over a single sensor system when used with

proper fusion algorithm:

• A single sensor is not suitable for redundant system. If that sensor is faulty, it will shut

down the whole system. A multi-sensor system on the other hand, provides diverse and

26

redundant information. Also, a proper sensor fusion algorithm can detect the faulty

sensor from the system and shut it down.

• Multiple heterogeneous sensors can provide diverse set of information and complement

each others limitations. It helps to create a system more robust against noise and

interference.

A robust decision level fusion algorithm can fuse data from multiple sensors and achieve

better object classification than single sensor. As shown in Fig. 2.2 , in terms of where

fusion in happening, there are three types of sensor fusion. At signal level, unfiltered signals

from sensors (example: image pixels from camera) are fused . At feature level, features are

calculated from sensor signals. Moment or area calculation of blobs from image pixel data

are one example of feature calculation. Then features are fused to achieve the objective of

the system. At decision level, object is already identified from each sensor. Then decision

is made by fusing the detected object from multiple sources and creating one detection

ID. Final classification accuracy is increased by taking advantage of the best classification

result from one of the sensors from the sensor array [47]. At decision level, a crucial issue

in multi-source information fusion is, how to represent and determine the imprecise, fuzzy,

ambiguous, inconsistent, and even incomplete information [48]. As a tool to manipulate

an uncertain environment, Dempster–Shafer evidence theory is an established system for

uncertainty management [49], [50].

Dempster-Shafer theory (short for DS theory), also called belief function theory, as in-

troduced and developed by Dempster and Shafer [51], [52], has emerged from their works

on statistical inference and uncertain reasoning. As a tool to manipulate an uncertain en-

vironment, DS evidence theory established a rounded system for uncertainty management

and information fusion [53]–[56]. Information can be fused in both space and time domain.

In space domain, information is fused at each time step. Information from multiple sources

are gathered at each time step and fused to reduce the effect of faulty sensor. However,

in real-time application of multi-sensor systems, time-domain information is also generated.

Here information from single sensor and multiple time steps are fused. At a certain time-

step noisy, distorted or even wrong results are obtained due to environmental noise or wrong

27

Sensor 1

Sensor 2

Sensor n

.

.

Sensor 1

Sensor 2

Sensor n

.

.

Sensor 1

Sensor 2

Sensor n

.

.

(a)

(b)

(c)

A
ss

o
ci

at
io

n Signal
level

fusion
Feature

extraction
ID

declaration

Fused
result

Feature
extraction

A
ss

o
ci

at
io

n Feature
level

fusion
ID

declaration

Fused
result

Feature
extraction

ID declaration

ID declaration

ID declaration

A
ss

o
ci

at
io

n Decision
level

fusion
Fused
result

Figure 2.2. Data fusion at three different levels. (a) Signal-level fusion, (b)
feature-level fusion, and (c) decision-level fusion.

output from sensors in space-domain. In time domain we by use the information avail-

able at previous time steps to capture the dynamic behavior of the system and reduce the

disturbance of the final output.

Time factor is considered in research on time-domain evidence combination under DS

theory. Hong and Lynch [57] applied the original DS method to time-domain fusion, but

didn’t mention how the limitations of the original DS method [58] can be reduced. Song

et al. [59], [60] assumed that the evidence will decay over time. They proposed a credi-

bility decay model. But his methods showed poor anti-disturbing ability when conflicting

(noisy) evidence is present in time-domain. Chengkun et al. [61] improved the credibility

decay model by using the exponential smoothing function. The anti-disturbing ability of

Chengkun’s method was better but the convergence rate was poor. Moreover, no research

method in time domain fusion under DS theory is applied on real-time data.

Unfortunately, application of decision level sensor fusion for crop/weed classification in

agricultural robotics is very limited. Most of the applications of sensor fusion in agricultural

28

robotics can be found in mapping and tracking. Both LIDAR sensor and vision systems

have been used separately or in fusion mode for crop row tracking in sugar beet [62] and rice

rows [63]. LIDAR and a color camera device for detecting tree trunks [64] and autonomous

tractor guidance in some crops [65] has been published. The aim of these works is to develop

a system which is able to track crop rows accurately in different fields and in diverse working

conditions. A recent study in Iowa state university [66] used depth and 2D color data

from Microsoft Kinect v2 for Lettuce and Broccoli detection. RANSAC is used for depth

curve fitting to detect ground, then green color pixels are detected in 2D images. Connected

component clustering method is used to detect plant features. Adaboost (adaptive boosting)

method uses set of weighted weak classifiers to generate a strong classifier. For this work,

Adaboost based classification model provided the lowest test error (6%), outperforming a

5-layer neural network (17%). However, this method may not be feasible for outdoor real-

time usage without modification, as Kinect v2 is an indoor sensor. Also, their model solves a

2-class (crop/non-crop) classification task, which is much simpler than classifying a handful

of weed species, often having similar features. Besides, none of the existing works show how

a sensor fusion algorithm can help to overcome some of the limitations of CNN based weed

classification.

2.5 Object Detection and Fuzzy-fusion

Real-time weed detection is an emerging field for agricultural robotics. DNNs are used

for real-time weed detection, crop management and path planning extensively [9], [67]. With

emergence of agricultural robotics, accurate identification of weeds and crops with deeper

understanding of overall object detection technology becomes more important. In general,

object detection systems detect a target object using classical computer vision and deep

learning techniques, determine the category of the detected object and create a bounding

box (BB) marking the position of the object [68], [69]. But real-time object detection is

a complex challenge due to the effect of background, noise, occlusion, resolution and scale

affecting the performance of the system [68]. In 2013, R-CNN (Regions with CNN features)

[70] showed much improvement in object detection compared to conventional computer vision

techniques and started the trend on CNN based object detection.

29

Many state-of-the-art CNN detector models like SPP-net [71], Fast R-CNN [70], YOLO

[72], RetinaNet [73] improved detection accuracy on standard image datasets using new CNN

architectures. But in most of cases, CNN models are trained with images without noise or

degradation. During training, image augmentation is used to introduce noise, to increase the

robustness of the model but sometimes they may fail to capture the real scenario. It is not

possible to include all probable type of noise during the training of a CNN. In real scenario,

noise can affect the quality of image due to sensor quality, lighting, vibration, exposure time

etc. It is already shown that introducing carefully selected noise can produce wrong results

even though they have no effect on visual recognition [74]. Prasun et al. [75] showed how

different image degradations can affect the performance of CNN models. They were unable

to come up with a solution which can produce a CNN architecture robust against image

degradation when large number of classes are present like ImageNet dataset. Morever, in

recent times, it is observed that the accuracy of CNNs reduces significantly when only tested

on negative images which shows an inherent bias towards positive training dataset [76]. In

this research, we want address this inherent limitation of CNN regarding uncertainty towards

correct object detection and BB creation with a multi-camera setup and fuzzy logic.

Fuzzy logic has high potential in understanding complex systems where analytical so-

lution may not exist or the system is not understood properly but can be observed [77].

According to T. Ross, fuzzy systems are useful in two scenarios: “(1) in situations involving

highly complex systems whose behaviors are not well understood and (2) in situations where

an approximate, but fast, solution is warranted” [77]. In agricultural robotics, fuzzy neural

network based sliding mode control is used to build apple picking robot [78]. Romeo et al.

used fuzzy clustering with dynamic threshold for greenness identification [79]. Meyer et al.

used fuzzy clustering for classifying plant and soil from color images [80]. Fuzzy classifier is

used to detect weeds in real-time in sugarcane fields [81]. Fuzzy expert system is used in soil

management [82], predict cotton yield [83] and crop disease management with text-to-talk

user interface [84]. In general, fuzzy logic is used as a classifier for crop or weed detection and

as an expert system for crop, weed and soil management. But no through research studies

are found which uses fuzzy logic to improve weed detection accuracy using multi-camera

setup.

30

3. CROP ROW DETECTION

Autonomous navigation of agricultural robot is an essential task in precision agriculture,

and success of this task critically depends on accurate detection of crop rows using computer

vision methodologies. This is a challenging task due to substantial natural variations in

crop row images due to various factors, including, missing crops in parts of a row, high and

irregular weed growth between rows, different crop growth stages, different inter-crop spacing,

variation in weather condition, and lighting. The processing time of the detection algorithm

also needs to be small so that the desired number of image frames from continuous video can

be processed in real-time. To cope with all the above mentioned requirements, we propose

a crop row detection algorithm consisting of the following three linked stages: (1) projective

transformation to transform camera view and color based segmentation for differentiating

crop and weed from background, (2) differentiating crop and weed pixels using clustering

algorithm and (3) robust line fitting to detect crop rows. We test the proposed algorithm

over a wide variety of scenarios and compare its performance against four different types of

existing strategies for crop row detection. The proposed algorithm achieves overall IOU of

0.73 and shows robustness under challenging scenarios with high weed growth. Experimental

results show that the proposed algorithm performs almost equal or better than the competing

algorithms with reasonable accuracy. We also perform additional experiment to test the

robustness of the proposed algorithm over different values of the tuning parameters and over

different clustering methods, such as, KMeans, MeanShift, Agglomerative, and HDBSCAN.

Additionally to increase the robustness of the proposed algorithm under vibration, a detailed

theoretical model of kalman filter based crop row center tracking from video feed is also

presented.

3.1 Introduction

The desiderata of a practical crop row detection method that works satisfactorily in

real-life deployment are below: (1) it is capable of detecting crop rows even with high weed

pressure; (2) it is applicable at different types of crop fields; (3) it is capable to detect crop

rows at different crop growth stages; (4) it is capable to detect straight and reasonably curved

31

crop rows; and finally, (5) the processing time of detection on an off-the-shelf computer satisfy

real-time requirements. In this work, we propose a Clustering Algorithm based RObust LIne

Fitting (CAROLIF) crop row detection method which satisfy all the above requirements. A

short summary of proposed crop row detection method is provided below.

The basic idea of our proposed method is to use a robust clustering method so that the

green weed pixels are detected as noise points, whereas the green crop row pixels are detected

as data clusters. We want each crop row to be detected as one distinct cluster so that we

can fit a regression line through that cluster which we can return as detected crop row. At

the first step, the input image is cropped, transformed to an image plane vertical to the crop

rows, segmented and cleared from small noise or weed segments. At this point the image has

two channels, black and white pixels. The black pixels contain background and the white

pixels contain crop and weed. Now the goal is to separate weed pixels from crop pixels, so

that lines can be fitted to the crop rows. A clustering algorithm is used which can cluster

each crop row pixels and separate weed pixels from the clusters. If the crop row clusters

contain weed pixels, they can hamper the accuracy of line fitting algorithm. As a result, a

robust line fitting algorithm is used to fit a line on each crop row cluster which omits the

effects of outlier points (weed or noise). Finally the fitted lines are plotted on the image and

returned as detected crop rows. All the steps of the proposed algorithm is visually presented

in Fig. 3.1 .

For autonomous agricultural robot navigation, CAROLIF must be able to process video

feed from moving camera. Moving camera on an agricultural robot introduces issues like

vibration and crops covered by moving machinery. These issues may reduce the detection

accuracy of CAROLIF, which may result in inaccurate navigation of the robot. To address

this issue, a kalman filter (KF) [85] based object tracking methodology is introduced in this

paper. KF based tracking system will keep track of the crop row centers even if accuracy of

CAROLIF is reduced or information is lost between the frames due to vibration. Moreover

kalman gain can be tuned for better crop row centers tracking for curved rows.

32

Input Image/Frame

1.1 Select ROI &
Projective transform

1.2 Segmentation

1.3 Morphological
open & close

2.1 Cluster
crop row
pixels

2.2 Do we have
correct number of
crop row clusters?

No

Delete
outliers and
cluster again

Yes

2.3 Are cluster
center distances
correct?

Yes

No

Remove incorrect
cluster

3.0 Fit line on crop
row clusters

Discard frame if
fitted lines intersect

Figure 3.1. Steps of the proposed CAROLIF algorithm with images.

3.2 Methodology

Step 1: Pre-processing (Step 1.1) First a region of interest (ROI) is selected which

contains 3 or more crop rows. All the algorithmic procedures are applied within this ROI.

Selecting this ROI has three advantages. First, green pixels near horizon are congested and

hard to separate. As a result, they increase false detection. Selecting this ROI eliminates

the need to process those green pixels. Secondly, this ROI is almost one-fourth the size of

the original image. So only operating in this section reduces the computational cost and

processing time. And third, curved rows within this small ROI are reasonably straight. We

are also using projective transformation to transform the crop rows converging at infinity to

actual parallel lines. As a result, fitting straight lines to these crop rows provide reasonable

result.

Projective Transformation: The relationship that maps a set of points from one image

plane to a set of points to another image plane is called projective transformation. Planar

homography is the projective mapping from one plane to another. According to Hartley and

Zisserman [86], projective transformation is defined as, “A planar projective transformation

33

Camera center 1
C

Camera center 2
C

(a) Projective transformation for crop row detection (b) Image planes are related by projective transformation

(c) Original image with boundary points

(d) Cropped image (e) Cropped image after projective
transformation

Figure 3.2. (a) Projective transformation is used from Agricultural robot to
transform camera 1 view to virtual camera 2 view. (b) For two camera planes,
image planes are related by projective transformation when all world points
are co-planer. (c) Original image from camera 1 view with boundary points.
(d) Cropped image using boundary points. (e) Transformed cropped image
from camera 1 view to camera 2 view.

is a linear transformation on homogeneous 3-vectors represented by a non-singular 3-by-3

matrix.”


x′

1

x′
2

x′
3

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33




x1

x2

x3

 (3.1)

Or in short, x′ = H.x, where H is the homography matrix. This homography matrix

relates the position of a point from source image plane (image plane 1 in Fig. 3.2 (a) and

(b)) to a destination image plane (image plane 2 in Fig. 3.2 (a) and (b)). (x′
1.x

′
2, x′

3)T

and (x1.x2, x3)T are coordinates of a single point on two image planes. There are eight

independent ratios in H (h33 is a scaling factor) which means a projective transformation

34

has eight degrees of freedom [86]. Here, homogeneous coordinates are used to represent the

points.

Let’s consider a pair of inhomogenious matching points (x, y) and (x′, y′) on image plane

1 and 2 respectively. We are considering inhomogenious coordinates because they can be

measured directly from image plane (coordinates of points in pixel). From equation (3.1):

x′ = x′
1

x′
3

= h11x + h12y + h13

h31x + h32y + h33
(3.2)

y′ = x′
2

x′
3

= h21x + h22y + h23

h31x + h32y + h33
(3.3)

After rearranging:

x′(h31x + h32y + h33) = h11x + h12y + h13 (3.4)

y′(h31x + h32y + h33) = h21x + h22y + h23 (3.5)

where, x = x1/x3 and y = x2/x3. Four points on each image plane will create eight linear

equations and four points are sufficient to solve for H between two image planes. The only

condition is, no three points can be collinear [86]. With scale factor h33 = 1 and four set of

points on each image plane, we get the following:



x1 y1 1 0 0 0 −x′
1x1 −x′

1y1

0 0 0 x1 y1 1 −y′
1x1 −y′

1y1

x2 y2 1 0 0 0 −x′
2x2 −x′

2y2

0 0 0 x2 y2 1 −y′
2x2 −y′

2y2

x3 y3 1 0 0 0 −x′
3x3 −x′

3y3

0 0 0 x3 y3 1 −y′
3x3 −y′

3y3

x4 y4 1 0 0 0 −x′
4x4 −x′

4y4

0 0 0 x4 y4 1 −y′
4x4 −y′

4y4





h11

h12

h13

h21

h22

h23

h21

h32



=



x′
1

y′
1

x′
2

y′
2

x′
3

y′
3

x′
4

y′
4



(3.6)

Boundary points (red dots on Fig. 3.2 (c)) are used to solve for the H matrix. These

points are selected by us so that the lines created by the two red dots along the crop rows are

35

parallel to the crop rows. The idea is that, after transforming the image from image plane 1

to image plane 2 (top view), the crop rows will be parallel to each other and will not meet at

infinity. This will help us to distinguish between the crop rows after clustering and we will

be able to impose strict straight line boundary condition to each fitted line. After H matrix

is calculated, it is then applied to the whole image plane 1 (Fig. 3.2 (d)) to convert it to

image plane 2 (Fig. 3.2 (e)). From Fig. 3.2 (e), it is clear that the crop rows are now parallel

to each other and not meeting at infinity. Fig. 3.12 shows the performance of CAROLIF

with and without perspective transformation.

(Step 1.2) Given an input image in RGB color space, each channel is separated by fol-

lowing system:

R = red channel of input image

G = green channel of input image

B = blue channel of input image

After splitting the channels, the following normalization scheme is applied, which is common

in agronomic image segmentation [87]:

r = Rn

Rn+Gn+Bn

g = Gn

Rn+Gn+Bn

b = Bn

Rn+Gn+Bn

(3.7)

where Rn, Gn and Bn are the normalized RGB coordinates ranging from 0 to 1 and are

obtained as follows:

Rn = R/Rmax, Gn = G/Gmax, Bn = B/Bmax (3.8)

where Rmax, Gmax andBmax are maximum values of R, G and B channels respectively. A

small number is added to the denominator of normalization step to avoid division by zero.

Green color (vegetation) can be extracted using the following equations [88]:

ExG = 2g − r − b (3.9)

36

(Step 1.3) Morphological opening and closing operation on the binary image to reduce

noise.

Step 2: Cluster An ideal clustering algorithm for crop row detection should have two spe-

cific features. First, the clustering algorithm should be able to differentiate between different

crop row clusters without any prior knowledge (we don’t know exactly how many crop rows

may appear inside ROI). Second, should have robust and intuitive tuning parameters to tune

the algorithm for wide variety of scenarios.

Figure 3.3. Comparison of Kmeans, MeanShift, Agglomerative and HDB-
SCAN clustering algorithm on crop row detection. Run-time indicated on the
top left corner of each image. Different colors indicate different clusters. Black
colors indicate outliers.

Four different types of clustering algorithms are tested and a sample output is presented

in Fig. 3.3 . Kmeans [89] fails because crop rows are anisotropic data which means they are

elongated along a specific axis. Because Kmeans treats every data point equally, it fails to

distinguish any local variation within a cluster. The advantage of Meanshift [90] over Kmeans

is that we don’t have to specify the number of clusters. Meanshift algorithm assumes an

underlying probability density function of the data and locates centroids at the maxima of

37

the density function. The default parameter bandwidth which dictates the size of the region

to search through in scikit-learn [91] shows wrong results. Also it is order of magnitudes

slower than other tested methods and not applicable for real-time usage. Agglomerative

clustering [91] is a hierarchical method which group data into clusters based on similarity.

It starts with treating each data point as a single cluster then merges clusters into a single

cluster until some criterion is met. But for this to work, ‘number of clusters’ has to be known

before hand. HDBSCAN [92] is a density based method which extends DBSCAN [93] into

a hierarchical clustering algorithm. The only tuning parameter used is min cluster size and

its effect is explained later. From Fig. 3.3 it is clear that HDBSCAN successfully clustered

the crop rows. It also identifies the outliers (black pixels) which is then omitted from output

clusters.

Preventive measures to reduce wrong clustering is implemented into the algorithm. If

number of cluster inside ROI is lower than three (Fig. 3.1 step 2.2), the algorithm assumes

some of the clusters are merged due to high amount of weed. It then iteratively deletes out-

liers (weeds) to find crop row clusters. Sometimes due to high weed growth or intermittent

crop growth, HDBSCAN creates multiple clusters for a single crop row. This can be con-

trolled by changing the min cluster size parameter. But for fixed min cluster size parameter,

crop row distance is used as a threshold parameter (Fig. 3.1 step 2.3). If multiple clusters

are close by (determined by the distance of crop rows), then the cluster with smaller data

points and smaller height will be deleted. In Fig. 3.1 , the green colored cluster (step 2.3)

will be deleted.

Step 3: Line fitting Random Sample Consensus (RANSAC) [94] is used for line fitting

on each cluster due to simple implementation and robustness. Because RANSAC iteratively

determines the best data points to fit a line in a cluster, it excludes the outliers (possibly

weed data points) and shows robust line fitting when weed is present.

The full algorithm for crop row detection is presented in Algorithm 1 . Some important

tuning parameters of the algorithm and their effects on crop row detection is discussed in

Table 3.1 .

38

Table 3.1. Tuning parameters for CAROLIF.
Parameter Value Description
ROI size (120 by 80), (160 by 80) This algorithm works better if there

are 3-4 crop rows inside the ROI.
Based on camera position and cam-
era viewing angle, the ROI size
should be fixed.

min cluster size 50, 100, 200 HDBSCAN parameter to affect clus-
tering. Set it to the smallest size
grouping that you wish to consider
a cluster. For big number (200):
at early crop growth stage, com-
bine multiple rows into one cluster.
For small number (50): at early in-
termittent crop growth stage, cre-
ate multiple clusters for one crop
row. As crop grows, shows less effect
on clustering. minclustersize = 50
shows reasonable results on CRBD
dataset for this study. Should be
tuned based on growth stage, ROI
size, crop type.

crop row distance 15, 25, 30 This is the pixel value of center dis-
tance between two consecutive crop
rows. Actual distance converted to
pixel. This value should be calcu-
lated based on actual crop row dis-
tance on field and camera parame-
ters.

3.3 Pseudocode (CAROLIF)

This section explains Algorithm 1 . The function ProjectiveTransformation takes a full

size RGB image, ROI size and boundary points as inputs. Input image is cropped using ROI

size (Table 3.1). Boundary points are four corners for the crop image to be transformed. This

function returns the projective transformed cropped image where crop rows are parallel to

each other. SegmentAndClean section of the code uses the cropped projective transformed

image as input. First, ExG and Otsu thresholding is used to create a binary image from the

color image where green pixels have value 255 and everything else is zero. Then morphological

39

OPEN and CLOSE operation cleans the image from noise. ClusterImage section of the

algorithm takes the clean segmented image as input. HDBSCAN is applied to the segmented

image to find individual clusters. Sometimes due to high weed pressure or unusual crop

growth, multiple crop rows are connected together. These clusters have a very high number

of data points compared to normal crop row clusters. When this scenario arises, an iterative

outliers deletion process starts and runs until connected crop rows are separated. The output

of this function is the number of clusters (with location of each cluster’s data point) which

are believed as crop rows. Then two checks are completed based on geometric knowledge of

the crop rows. First, the crop rows are usually a constant distance apart in 3D world. That

distance is transformed to pixel value (for the camera image plane) and checks are completed

to see if two clusters are within that distance. If yes, then it is assumed that one of them is

a weed cluster. We identify and delete the weed cluster based on height and number of data

points. After fitting straight lines through each cluster the final check is completed. Because

we are using projective transformation, each fitted line should have a slope close to 90◦. The

slope of the lines changes from 90◦ when the agricultural vehicle is turning. In this study,

we use a slope threshold of [70, 110] degree. Lines outside this slope range are omitted from

final output. Finally we show the plotted lines over the detected crop rows.

3.4 Methods Used for Comparison

Four different methods along with the proposed method is compared in this study. The

first one, Hough transform [16] is a feature extraction technique in digital image processing.

After step 1, Canny edge detection [95] is applied to extract the edges from the binary

image. With the coordinate transformation, the colinear points in edges of the binary image

converted to concurrent lines in parameter space by voting. Hough transform detects lines

by accumulating the votes. The main tuning parameter is threshold (The minimum number

of intersections to “detect” a line). But this parameter is not intuitive. Also changing the

parameter slightly drastically changes the output. Also Hough transform outputs a lot of

false positive lines without any filtering. In this paper we have filtered out the lines with low

slope and lines which are close by. But selecting the threshold for the slope and threshold

40

Algorithm 1 CAROLIF
1: INPUT : color image
2: OUTPUT : fitted lines over crop rows
3: Function ProjectiveTransformation (color image, ROI, boundary points):
4: Use ROI to crop the input image
5: Use boundary points for projective transformation
6: return transformed image
7: Function SegmentAndClean (transformed image):
8: Binary segment image using ExG and Otsu
9: Noise reduction with morphological operations

10: return binary segmented clean image
11: Function ClusterImage (segmented image):
12: Cluster segmented image with HDBSCAN
13: Check if correct number of clusters present
14: If not, delete outliers and check again
15: return crop row clusters
16: Check if crop row cluster’s distances are correct
17: Delete incorrect clusters
18: fit straight line on crop row clusters with RANSAC
19: plot straight lines over crop rows and show

to determine which lines are close by are not robust. Output changes drastically based on

these parameters.

The second method is named Sliding-window. After step 1 (Fig. 3.1), a window of size

(20 by 20) slides over the ROI and calculates the center points of the white pixel blobs inside

that window. After sliding over the whole ROI, we essentially have the center points of the

crop rows. Then least-square straight line is fitted on the crop row center points. Some

variant of this method is available in literature [17], [96]. One of the main limitations of this

method is to figure out where the crop row starts or the segments where each row resides.

As a result, high weed pressure drastically reduces the accuracy for this method.

The third method is Template Matching followed by Global Energy Minimization (TMGEM)

[19]. It uses dynamic programming for efficient global energy minimization. This method

can work without any prior knowledge of crop row number, reasonably insensitive to weed

and works with different crop growth stages. The authors of this paper also created Crop

row benchmark dataset (CRBD). This evaluation image set includes 281 images of maize,

celery, potato, onion, sunflower and soya bean crops. The images are taken at varying yaw,

41

pitch and roll angles; different amount of weed pressure and lighting conditions. This dataset

is used in this study for comparison and testing.

The fourth method is named Cluster - Least square. Here after step 2 (Fig. 3.1), least

square straight line fitting is used. Least square works by making the total square of error

as small as possible. As a result, this method is sensitive towards outliers. When outliers

(weed) are present then least square pulls the line toward it and decreases the accuracy of

crop row detection.

The final method is named CAROLIF and is the proposed method. Other than TMGEM,

all the other methods are built and implemented from scratch by us.

3.5 Results

Thirty different cases (images) from the CRBD dataset are used to test the effectiveness

of the CAROLIF algorithm. Two different scenarios are defined. “Easy scenario” is defined

when crop rows are reasonably separate, none or low weed pressure, crop rows are straight

or reasonably curved. “Challenging scenario” is defined when crop growth is intermittent

or crop missing from rows, weed pressure is high, crop rows are interconnected due to high

weed pressure, crop rows are curved. Fig. 3.4 shows some cases for easy and challenging

scenario. Fig. 3.5 qualitatively compares the results of five different methods.

3.5.1 Qualitative Comparison

In Fig. 3.5 (Row 1), very early stage of crop growth and crop rows are hard to see with

naked eye. Hough transform and Sliding window method fails to correctly detect the third

row in the image. TMGEM and the proposed method performs the best. In (Row 2), due to

high weed pressure and early crop growth stage, crop row 2 and 3 are connected. This is a

hard problem to solve because weeds are at high concentration and any line fitting algorithm

fits line through weed pixels. Hough transform and Sliding-window fit this trend. CAROLIF

shows the best result in this scenario. In (Row 3), weeds with unusually big size appears.

Any usual row detection algorithm will fail and fit lines over weed pixels due to unusually

high concentration. This is what happened for all the other methods. CAROLIF overcomes

42

Easy Scenario

Challenging Scenario

Figure 3.4. Example cases for easy and challenging scenario.

this because RANSAC iteratively finds 2 points with 99% probability to be inliers of a cluster

and fit lines over those two points. In (Row 4), top half of crop row is missing for the first

row. Also at the top left corner there are some green pixels from another crop row. Cluster

- least square fails because least square is not robust against outliers. CAROLIF overcomes

this problem. In (Row 5) CARLOLIF shows suboptimal results for the second crop row.

This happens because crop row growth is substantially less compared to weed growth. As a

result, clustering algorithm deletes the crop row part as outlier. This can be mitigated by

tuning the min cluster size parameter in HDBSCAN (use a smaller number).

3.5.2 Quantitative Comparison

Intersect over union (IOU) parameter is calculated to quantitatively measure the accuracy

of each of the methods. Intersection Over Union (IOU) evaluates the overlap between two

bounding boxes. It requires a ground truth bounding box and a predicted bounding box.

Then it calculates the ratio of the area where two bounding boxes overlap to the total

combined area of the bounding boxes. Fig. 3.6 [97] shows the visual representation of the

43

Figure 3.5. Comparison of crop row detection in challenging scenarios for
Hough transform, Sliding window, TMGEM, Cluster-Least square and CAR-
OLIF (proposed) methods with ground truth results.(Row 1) intermittent,
very early crop growth, no weed. (Row 2) early crop growth stage, high weed
pressure, crop rows are connected, crop rows and weed indistinguishable. (Row
3) early crop growth stage, exceptionally big intermittent weed, curved crop
rows. (Row 4) medium crop growth, crop missing from rows, no weed. (Row
5) early crop growth stage - intermittent, concentrated weed growth.

IOU metric. Fig. 3.7 shows how the bounding boxes are created for the crop row detection

case. IOU is an intuitive parameter. A score of 1.0 means that the predicted bounding box

precisely matches the ground truth bounding box. A score of 0.0 means that the predicted

and true bounding box do not overlap at all.

Fifteen cases are tested for each scenario (easy and challenging). Only three rows are se-

lected in each case to generate the IOU value to correctly compare the results with TMGEM

(the authors of TMGEM has used three detected lines). Fig. 3.8 shows the performance

comparison of different algorithms under easy and challenging scenarios. For all the algo-

rithms, the IOU value is higher for easy scenario compared to challenging which implicates

that presence of weed deteriorates the accuracy for all the algorithms. TMGEM has the

44

Figure 3.6. IOU between a ground truth bounding box (in green) and a
detected bounding box from algorithm (in red).

Figure 3.7. Actual bounding boxes. Red lines show ground truth detection
and blue lines show algorithm detection of crop rows. Green bounding boxes
capture the height and width of ground truth lines. Pink bounding boxes
capture the height and width of algorithm detection lines.

highest median IOU for both easy and challenging scenario closely followed by CAROLIF.

In easy scenario, TMGEM has the lowest spread of IOU which means this is the most con-

sistent algorithm in terms of crop row detection in easy scenario. In challenging scenario,

CAROLIF has the lowest spread and highest minimum IOU value which means under ex-

treme condition CAROLIF performs better and consistently than other algorithms. Overall

hough transform and sliding window performs significantly worse compared to other three

algorithms. TMGEM, cluster-least sq. and CAROLIF shows comparable performance but

45

TMGEM performs slightly better than other two algorithms. Table 3.2 shows the mean IOU

value for each scenario and average IOU for all the algorithms.

Figure 3.8. Box plot comparison of IOU values for different methods under
easy and challenging scenario.

Table 3.2. IOU value for different algorithms.
Algorithm Mean IOU (Easy) Mean IOU (Challenging) Avg. IOU

Hough transform 0.64 0.53 0.58
Sliding window 0.66 0.55 0.61

Cluster - least sq. 0.72 0.67 0.7
CAROLIF 0.76 0.69 0.73
TMGEM 0.79 0.71 0.75

The overall slightly inferior performance of CAROLIF algorithm (or any color based

segmentation method) can be explained from the ground truth value of the CRBD dataset.

One example is presented in Fig. 3.9 . The ground truth detection lines (red lines) for the

left and center row are not exactly at the center of the rows. Ground truth value of left row

46

is biased towards left and for center row biased towards right. Any color based segmentation

method separates the green pixels from the background pixels and then plot the best fit lines

of the green pixels as detected rows. As a result, the best fit lines go through the center of

the detected crop rows. If the ground truth value is not at the center of the crop rows then

IOU value will be lower even though the algorithm outputs the best fit line. In Fig. 3.9 we

can argue that, for left and center row, the detected lines by CAROLIF are more accurate

than the ground truth value. The deviation of ground truth value of CRBD dataset can

be one of the main reasons behind the overall inferior IOU value. Although for comparison

purpose, this would be true for all the color based segmentation methods and the algorithm

with highest IOU value will be the better choice.

Ground Truth and Boundary
Boxes

CAROLIF Detection and
Boundary Boxes

Figure 3.9. (left side) Ground truth value and boundary boxes from CRBD
dataset. (right side) CAROLIF detection and boundary boxes.

3.5.3 Processing Time

For a real-time algorithm, processing time is important. the average time spent by each

step of the algorithm is presented in Fig. 3.10 . It is tested on a personal computer without

47

any parallel-processing or multi-threading techniques (which may reduce the processing time

significantly). Also processing time for image acquisition hardware is not included. The

algorithm takes 108 ms (around 10 frame per second (FPS)) to process each image. For

a slow moving agricultural vehicle, 10 FPS is a reasonable processing time for real-time

application. More than 90% of the time is spent by the clustering step. Step 2.2 (iteration)

only happens for challenging scenarios (high weed pressure or crop rows connected). For

normal crop growth and low weed pressure scenario, the algorithm bypasses step 2.2. With

the development of very powerful embedded hardware like Jetson TX2 which has built-in

video processing capabilities, the proposed algorithm is capable of real-time performance

even for high speed vehicles.

Figure 3.10. Processing time of each step of CAROLIF crop row detection
algorithm. ROI size (120 by 80) pixels.

Comparison of processing time is presented in Table 3.3 . Again it should be mentioned

that no parallel-processing or multi-threading techniques are applied which may reduce the

processing time significantly. Clustering methods take order of magnitude higher time com-

pared to Hough transform and Sliding window. TMGEM takes order of magnitude higher

48

time than clustering methods which makes it unavailable for real-time crop row detection

application.

Table 3.3. Processing time for different algorithms.
Algorithm Processing time (ms) Avg. FPS

Hough transform∗ 2.02 495
Sliding window∗ 2.88 347

Cluster - least sq.∗ 100.12 9.9
Proposed∗ 108.52 9.2
TMGEM∗∗ 1750 0.5

∗ core i5 dual-core 1.4GHz processor. (120 by 80) ROI size.
∗∗ core i5 quad-core 3.3GHz processor. (320 by 240) ROI size.

3.5.4 Performance on Video Input

Fig. 3.11 shows the crop row detection performance of CAROLIF algorithm on real-time

video captured from an agricultural vehicle. A GoPro camera with 4K resolution and 60

FPS video capture capabilities is used to capture the video. The camera was set at the front

of a tractor, tilted around 35 degrees and the tractor speed was around 10 miles per hour.

It’s a two minutes thirty seconds video where the tractor starts with straight crop rows with

ideal detection conditions; after about a minute there is a slight left turn and the last thirty

seconds covers an area with worst crop row detection conditions with shadows, intermittent

crop growth and high weed pressure. This video was captured at a corn field in Indianapolis,

Indiana on May 2020. Time step, t = 5 means, this frame is taken from video at time 2.5

seconds. t = 10 means, this frame is taken from video at time 5 seconds. For t = 5 to t = 20,

the crop rows are well lit by the sun and there is minimal weed growth. CAROLIF performs

strongly and detects all the crop rows correctly. At t = 22, there is weed growth between

the left two rows and also there is presence of shadow. As a result, detection of the left row

is not exactly accurate. But at t = 30, when we move to the good lighting area, detection

of all the crop rows becomes accurate. t = 35 and t = 38 are also challenging situations

due to high weed growth (height of weed is almost equal to height of crop) and shadows.

But Crop row detection accuracy is correct for all cases. For t = 40 to t = 60, there are

sparse shadows and light weed growth present. But CAROLIF performs well under these

49

t = 5 t = 10 t = 14 t = 20

t = 22 t = 30 t = 35 t = 38

t = 40 t = 50 t = 60 t = 67

t = 73 t = 77 t = 79 t = 83

Figure 3.11. Performance of CAROLIF on real-time video captured from an
agricultural vehicle.

moderately challenging scenarios and detects all crop rows correctly. At t = 67, the tractor

is turning left and the left crop row is outside the slope threshold ([70, 100] degree) and

omitted from the result. This can be circumvented by modifying the slope threshold. But

the other three crop crows are detected correctly. t = 73 and t = 77 are one of the most

challenging scenario a crop row detection system can face. There are shadows and sunlight,

weed growth is very high and crop growth is low and sparse. Even for human eyes, it is

not possible to detect crop rows correctly in these scenarios. As a result, the performance

of CAROLIF deteriorates. But as soon as we move to a slightly better condition at t = 79,

CAROLIF is able to detect all four crop rows correctly.

50

With Projective Without Projective

T1

T2

With Projective Without Projective

T3

T4

Figure 3.12. Comparison of crop row detection results with and without
projective transformation. Four different scenarios are chosen. (T1) and (T2):
sunny, no weed, no shadow, intermittent crop growth. (T3): sunny, no weed,
shadow present. (T4): high weed pressure, shadow, intermittent crop growth.

3.5.5 Effectiveness of Projective Transformation

Fig. 3.12 shows how projective transformation reduces false positive crop row detection

in complex situations. Four different frames with four different conditions are selected for

comparison. At T1 and T2, weather conditions are ideal with intermittent crop growth. With

projective transformation, clusters are parallel to each other and it is easier to distinguish

them. On the other hand, without projective transformation, clusters are haphazardly dis-

tributed and it is hard to distinguish them using crop row distance and strict straight line

threshold. As a result, without projective transformation, CAROLIF fits lines to wrong

clusters. T3 and T4 are more complex situations with shadow, high weed pressure and inter-

mittent crop growth. From the cluster output, we can see that after deleting the outliers,

there are a substantial number of cluster cores present. Using projective transformation,

with strict thresholds, incorrect cluster cores are eliminated and only correct lines are fitted.

Specially at T4, it is hard for naked human eyes to detect correct crop rows. But CARO-

51

LIF is successful at detecting three out of four crop rows. Moreover, only shows the lines

which fits correctly and doesn’t show the lines which may not be a good fit, hence reduc-

ing false positive detection. We measure the performance of CAROLIF on the video with

and without projective transformation. Without projective transformation, several frames

fail to produce any meaningful detection and we discard those frames from calculation. We

measure the number of false positive, false negative and true positive crop row detection

from the video and calculate accuracy, precision and recall. Table 3.4 shows this. CAROLIF

has over 90% accuracy on a real-time video with very complex scenarios including shadow,

intermittent crop growth and high weed pressure. It shows that performance of CAROLIF

is acceptable for real-time application. It also shows how projective transformation improves

the performance of CAROLIF in every aspect.

Table 3.4. Performance of CAROLIF on real-time video.
With Projective
Transformation

Without Projective
Transformation

Accuracy 90.5% 77.1%
Precision 96.6% 84.5%
Recall 93.3% 89.8%

It is clear that CAROLIF is able to detect crop rows in real-time with very high ac-

curacy under good and moderately challenging scenarios. In situations, when even naked

eyes may fail to detect crop rows correctly, detection accuracy deteriorates. But due to dis-

tance threshold and slope threshold, false positive detection of crop rows is low even in very

challenging scenarios. For real-time application, we can think of two ways to improve perfor-

mance, when crop row detection accuracy deteriorates. First, we can fall back to GPS signal

only until the tractor reaches a point where detection is correct for all four rows. Secondly,

we can add a tracking algorithm which can track the crop row centers when sensor output or

detection accuracy deteriorates due to very challenging scenarios. The next section explains

the theoretical background of how we can add a kalman filter based tracking to CAROLIF

to improve the overall robustness of the system.

52

3.6 KF based Crop Row Center Tracking

A successful tracking algorithm requires instantaneously predicting the state (location,

velocity etc.) of an object from sequence of frames (images). There is no single best model

and the success depends on the type of data and model being used. In this research we

propose a detection -to-track model. The goal is to find a method for estimating the position

of crop row centers (state vector) at time t, then update the estimation as new data arrives

with next frame with minimum estimation error and be practically feasible. We want to

predict the behaviour of a state vector of a linear stochastic system in a dynamic environment

based on its previous behavior by minimizing the mean-squared estimation error. Here the

description follows the approach taken by [98], [99] to describe the algorithm:

3.6.1 State Model

The crop row center tracking from video can be modeled using Newton’s dynamic equa-

tion:

xt = xt−1 + vx(∆t) + 1
2a(∆t)2 (3.10)

yt = yt−1 + vy(∆t) + 1
2a(∆t)2 (3.11)

here xt and yt are position of crop row center at time t in x and y direction respectively.

As shown in Fig. 3.13 , (xt, yt) can be calculated from the crop rows detected by CAROLIF.

∆t is the discrete time interval (frame interval in video sequence in this model). v and a are

velocity and acceleration of the vehicle respectively. Equation (4) and (5) can be re-written

in vector form:



x

y

vx

vy


=



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1





x

y

vx

vy


+ 1

2a(∆t)2 (3.12)

53

here ∆t = 1 (consecutive frame) and we can assume constant velocity model (a = 0). Then

we can re-write Equation (6).

xt = Axt−1 + wt−1 (3.13)

where xt is a state vector at time t, wt−1 is the Gaussian process noise with zero mean and

covariance Q, that needs to be determined. A is state transition matrix with value:

A =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


(3.14)

3.6.2 Measurement Equations

Measurement of the system:

zt = Hxt + νt (3.15)

where H is the measurement matrix and zt is the measurement observed at time t. νt is the

Gaussian measurement noise with zero mean and covariance R. H is given as:

H =

1 0 0 0

0 1 0 0

 (3.16)

Choosing the optimal R2x4 and Q4x4 matrices are an important factor in KF design. They

can be calculated empirically as part of system performance evaluation.

3.6.3 Update Equations

Measurement information from zt is used to predict the state xt. A priori estimate of

state x̂−
t and covarience error P −

t is computed:

x̂−
t = Ax̂t−1 + wt (3.17)

P −
t = APt−1A

T + Q (3.18)

54

3.6.4 Correction Equations

It consists of three steps:

• 1) Compute Kalman Gain

K = P −
t HT (HP −

t HT + R)−1 (3.19)

• 2) Update estimate with measurement zt

x̂t = x̂−
t + K(zt − Hx̂−

t) (3.20)

• 3) Update covariance error

Pt = (I − KH)P −
t (3.21)

where P is the prediction error covariance, R is the measurement error covariance and K is

the Kalman gain. Kalman gain depends on the accuracy of the system. If accuracy of the

measurement is high, the Kalman gain is high otherwise it’s relatively low.

The above mentioned method can track the crop row centers over consecutive frame

sequences. For a single crop row center, the above mentioned method is sufficient. For

multiple crop row centers tracking, a data association algorithm may be needed to correctly

associate each crop row center with a crop row center track. Hungarian algorithm [100] is

such an algorithm which can be used to match detected crop row centers with tracked crop

row centers, and determine which tracks have gone missing and which ones to be assigned

new track.

Now the question is, how the above mentioned KF based tracking method improve CAR-

OLIF based autonomous navigation? Let’s assume the left front wheel of the vehicle is placed

at the middle of the first two detected crop rows in Fig. 3.13 . What we want is to keep

the wheel at the middle of the two crop rows and move forward. Essentially what we want

is to track the crop row center in Fig. 3.13 . Then the position of the crop row center will

be used as an input for autonomous vehicle navigation. But the true location of the crop

row center is very difficult to measure accurately from continuous video feed. There are two

55

major problems: (1) It is hard to track an object if it moves beyond a searched region (this

can happen due to sudden vibration); (2) lighting and occlusion can affect the accuracy of

CAROLIF and thus making correct calculation of crop row center difficult. The first problem

can be solved by predicting the location of crop row center. But to do that, the prediction

method needs to be robust enough to handle the source of error. The above mentioned KF

based tracking addresses these problems.

h/2

h/2
d/2 d/2

t = t

t = t+1

t = t+2

xt

yt

Figure 3.13. KF based crop row center tracking. Orange colored ’plus’ signs
show the calculated crop row center from CAROLIF output at time t.

3.7 Conclusions

In this research, a new clustering based crop row detection algorithm is presented and

tested on static and video data. The proposed algorithm uses clustering and prior knowledge

of geometric structure of crop rows to differentiate weeds from crop rows. With the use of a

smaller ROI processing time is curtailed and straight lines are accurately fitted to reasonably

curved crop rows. The algorithm also uses RANSAC (a robust line fitting technique) to

further mitigate the effects of weeds on crop row detection. The proposed algorithm is

56

applicable for real-time usage on low spec hardware (without GPU) and shows good crop

row detection accuracy at very challenging scenarios. Compared to Hough transform (IOU

0.58), sliding window (IOU 0.61), cluster-least sq. (IOU 0.7), CAROLIF shows superior

performance (IOU 0.73). Moreover, for all the scenarios (easy and challenging) CAROLIF

successfully detects all the crop rows with reasonable accuracy, whereas the other methods

completely fails in some scenarios. Although CAROLIF shows slightly reduced performance

compared to TMGEM (IOU 0.75), that can be due to incorrect ground truth value of CRBD

dataset. Test on video data from an agricultural vehicle shows promising result for real-

time application. We achieve 90.5% accuracy, 96.6% precision and 93.3% recall on a video

containing very complex scenarios with shadow, intermittent crop growth and high weed

pressure. To make this algorithm more robust when performance deteriorates, a detailed

mathematical model of KF based crop row center tracking is presented. When correctly

tuned using video data from agricultural vehicle, this tracking method can also increase

detection accuracy of the whole system. The final goal of this work is to implement this

algorithm on an off the shelf single-board computer (Jetson TX2) for real-time detection of

crop rows from video input.

57

4. CNN BASED WEED CLASSIFICATION

In this chapter, we discuss the design and implementation of a convolution neural network

(CNN) and transfer-learning based weed classification system on an autonomous AgBot.

The United States leads in corn production and consumption in the world with an estimated

50 billion dollar in value per year. But young corn plants are vulnerable to weeds growing in

the field. Novel and efficient methods are needed to improve the detection and elimination

of weeds that is environmentally friendly, efficient, and more cost effective. In this work,

we develop and test three different CNN based classifiers. A dataset of weed images are

generated using artificially grown weeds in a greenhouse and naturally grown weeds in corn

fields. Each classifier is trained to classify three different types of weeds: Common Cocklebur

(Xanthium strumarium), Redroot Pigweed (Amaranthus retroflexus), and Giant Ragweed

(Ambrosia trifida). Pretrained classifiers are deployed on a Yamaha Wolverine 4-by-4 which

is retrofitted with autonomous navigation, weed detection and control capabilities in our

laboratory. The test results show that the VGG16 with transfer-learning based classifier

has the highest accuracy (99% training, 97% validation, 94% testing accuracy) for the same

epoch whereas the InceptionResNetV2 with transfer-learning based classifier shows lowest

overfitting but needs higher processing time to classify weeds from real-time video input.

4.1 Methodologies

We propose a weed classification system that contains two processes: weed classification

and spray control. The output from the weed classification process is used as an input to the

control spray mechanism. Classification and spray system pipeline of the proposed AgBot

is showed in Fig. 4.1 . An offline classification system uses supervised learning paradigm

to train a model. Once the model is trained, the model is deployed on AgBot, which can

classify a weed on the fly. After classification, a signal is sent to the spray system, which

sprays appropriate herbicide in the accurate amount on the exact location.

58

Figure 4.1. Classification and spray system pipeline of AgBot.

4.1.1 Weed Image Dataset and Image Processing

To build the dataset, a commonly available 16-megapixel digital camera is used to cap-

ture images. Common Cocklebur (Xanthium strumarium), Redroot Pigweed (Amaranthus

retroflexus) and Giant Ragweed (Ambrosia trifida), these three types of commonly found

corn weeds are grown in IUPUI Greenhouse to collect images. Additionally, authors have

visited actual corn fields during summer time to capture weed images. Sample images of the

dataset are presented in Fig. 4.2 . Maximum input image size in this study is 299-by-299

pixels, for which the usage of a 16-megapixel camera is sufficient.

The total image data is divided into three partitions: train dataset, validation dataset and

test dataset. The train-validation-test data split is roughly 80%-10%-10%, and the instances

in these datasets are disjoint to preserve the principle of supervised learning paradigm.

59

Table 4.1. Weed image dataset.
Dataset Cocklebur Pigweed Ragweed
Train image set (used for training the
classifiers)

544 505 552

Validation image set (used for tuning
hyper parameters)

65 62 69

Test image set (used for classification
report)

65 62 69

Image instances in the train dataset is used to train the CNN based classifiers; instances in

validation dataset is used to tune the hyper-parameters of classifier model, and finally, the

instances in the test dataset is used to report the performance of the model. The number of

images in each dataset is presented in Table 4.1 .

Figure 4.2. Sample images of the weed dataset.

4.2 CNN and Transfer-learning

CNN is a specific kind of deep neural network based classification model, which builds

image features at different level of abstractions at different layers of the network. At each

layer, a collection of kernels (or filters), which are in the form of 3 × 3 or 5 × 5 matrix, are

used to detect specific shapes (or objects) within the image representation from the previous

layer, by sliding the kernels over the 3D input feature map. The sliding process extracts

a feature representing the 3D local patch of an image through element-wise multiplication

60

of image data with the kernel matrices (a convolution operation, from which the name

originated) followed by a sum [101]. Layers of convolution enable the model to learn local

image features at increasingly higher level of abstraction.

For supervised classification setup, CNN consists of convolution base (which contains

several convolution layers) and fully-connected layers at the end. Convolution base creates a

feature representation vector of the image, and the fully-connected layer converts that vector

to a class label. This convolution characteristic gives CNN two interesting properties which

sets them apart from traditional neural networks [102]:

• CNN learns translation invariant properties. It means, features learned by CNN can

be applied to anywhere in an image for detection. As an example, if a CNN learns a

feature at upper right corner of an image, it can detect the same feature at lower left

corner of a new image.

• CNN learns spatial hierarchies of patterns. Convolution layers at the beginning will

learn rudimentary patters like edges and colors. Second layer of convolution will learn

patterns comprised of patterns from layer 1 (edges and colors), possibly colored edges

and so on. Higher up layers will learn more complex features. If the training images

are for cats, higher up layers will learn patterns like eyes and ears. This characteristic

of CNN enables it to utilize the benefit of transfer-learning, which we will discuss next.

Transfer-learning in the context of CNNmeans taking the convolution base of a previously

trained network, and use new training data to re-train final layers of CNN and create a new

classifier on top of it. The main motivation of transfer learning in CNN comes from the

fact that, at the early layers of the network, the model learns rudimentary patterns (edges,

color), which are seen ubiquitously in a diverse class of images; so the weights of those

layers can be frozen, and a new classifier can be built by re-training only the final few

layers of the CNN, enabling the CNN to learn higher level features from the input images

by utilizing pretrained rudimentary features from the early (base) layers. Transfer learning

has several benefits: it saves substantial computation time by using pretrained network,

which has substantially optimized weights at the early layers. As a result, good training

performance can be obtained. And most importantly for our task, only a small number of

61

Figure 4.3. Simple representation of Transfer-learning.

training instances are needed for a good performance. The last fact holds due to the fact

that for transfer learning, the number of weights that are being learned is small, so a small

number of training instances suffices for achieving good performance.

For a detailed discussion of CNN and transfer learning, we refer the user to the F. Chollet’s

book [102]. Fig. 4.3 shows a simple representation of transfer-learning architecture.

4.2.1 CNN Models

For this study we have considered 3 different CNN models. Model-1 is a 6-layer deep CNN

built from scratch (end-to-end model). Model-2 and model-3 are retrained (using transfer

learning) VGG16 [103] and InceptionResNetV2 [104] respectively. These two models are re-

trained using the small weed dataset and final layers are rearranged to classify three different

weeds. Transfer learning retrains the final layer of the VGG16 and InceptionResNetV2 model

62

to classify a new dataset by exploiting the large amount of visual knowledge already learned

from the Imagenet database. Previous research [45], [105], [106] has shown that transfer-

learning has much lower computational requirements than learning from scratch and can be

applied to various types of classification. All the training simulations were run on an intel

core-i7, 8gb ram, Nvidia GTX 1060 6gb workstation. Models are built with Keras [107] with

TensorFlow backend in Python 3.5.

We have selected epochs, learning rate, train batch size, validation batch size, optimizer

and loss-function as hyperparameters for tuning. An iteration over all training data is

called an epoch. Batch size determines how many times CNN has to update it’s internal

weights within each epoch. After each epoch, loss-function provides a loss value comparing

true targets and predicted targets. Optimizer uses this loss value to update the network’s

weights. The goal of the network is to minimize the loss value during training. In this study,

our goal is to achieve over 95% training and validation accuracy. An excellent explanation

on how hyper-parameters should be tuned can be found on chapter 11 of Goodfellow et al.’s

book [108]. Note that, random data augmentation is used during the training process of all

three CNN architectures. Random images (using rescaling, rotation, width and height shift,

zoom and horizontal flip) are generated during each training step to synthetically increase

the number of training images.

6-layers CNN (Model-1)

A small 6-layers CNN model is built from scratch to compare results with other two

models. Model-1 architecture is presented in Fig. 4.4 . This model can be seen as a shorter

VGG16 model to fit the small dataset. The structure of the model is same as VGG16 but

number of parameters (weights) are significantly lower. The model parameters implemented

in this study are learning rate (1e-04), optimizer (rmsprop), loss (sparse categorical cross-

entropy). Training and validation accuracy with confusion matrix is presented in Fig. 4.5

and Table 4.2 . respectively.

63

Figure 4.4. 6-layer end-to-end CNN architecture(Model-1).

Table 4.2. Confusion matrix based on test image set (Model-1).

True Label

Cocklebur 65 0 0
Ragweed 15 42 5
Pigweed 2 16 51

Cocklebur Ragweed Pigweed
Predicted label

Transfer-learning with VGG16 (Model-2)

VGG16 (developed by visual geometry group, 16-layers architecture) is a CNN first used

multiple small kernel filters instead of single large kernel filters. VGG16 is trained from the

ImageNet Large Visual Recognition Challenge using the data from 2012, where it was tasked

with classifying images into 1,000 classes. The top-5 error rate of VGG16 was 7.4% [103].

VGG16 is a bit older model but the structure is similar to model-1. This will give us an idea

how much the accuracy and processing time depends on model depth and Imagenet weights.

The model parameters implemented in this study included learning rate (1e-05), optimizer

64

Figure 4.5. Training and validation accuracy (Model-1).

(Adam), loss (sparse categorical cross-entropy). Accuracy plot and confusion matrix of

model-2 is presented in Fig. 4.6 and Table 4.3 respectively.

Table 4.3. Confusion matrix based on test image set (model-2).

True Label

Cocklebur 65 0 0
Ragweed 4 55 3
Pigweed 0 4 65

Cocklebur Ragweed Pigweed
Predicted label

Transfer-learning with InceptionResNetV2 (Model-3)

InceptionResNetV2 is a CNN model developed by Google which combines their previ-

ous Inception CNN architecture with Microsoft’s ResNet architecture. It is 164 layers deep,

trained from the ImageNet Large Visual Recognition Challenge using the data from 2012,

where it was tasked with classifying images into 1,000 classes. The top-5 error rate of In-

65

Figure 4.6. Training and validation accuracy (model-2).

ceptionResnetV2 was 3.08%[104]. InceptionResnetV2 is a newer model and the structure

is completely different than model-1. The model parameters implemented in this study in-

cluded learning rate (2e-05), optimizer (rmsprop), loss (sparse categorical cross-entropy).

Model-3 accuracy plot and confusion matrix is presented in Fig. 4.7 and Table 4.4 respec-

tively.

Table 4.4. Confusion matrix based on test image set (model-3).

True Label

Cocklebur 65 0 0
Ragweed 3 44 15
Pigweed 0 4 65

Cocklebur Ragweed Pigweed
Predicted label

From the confusion matrix it is clear that Ragweed is the hardest one to classify. Model-2

misclassifies Ragweed as Cocklebur/Pigweed in 7 instances. Model-3 performs a little worse

66

Figure 4.7. Training and validation accuracy (model-3).

(after 50 epoch) and misclassifies Ragweed as Cocklebur/Pigweed 18 times. Model-1 also

performs the worst for Ragweed and misclassifies it as Pigweed/Cocklebur 20 times.

4.3 Classification Report

Table 4.5. Sample confusion matrix.
Predicted class
A1 ...Aj... An

Actual class
A1 X11 ...X1j... X1n

...Ai... Xi1 ...Xij... Xin
An Xn1 ...Xnj... Xnn

From confusion matrix (Table 4.5) following parameters can be calculated:

Accuracy =

n∑
i=1

Xii

n∑
i=1
j=1

Xij

(4.1)

67

Precision = Xii
n∑

k=1
Xki

(4.2)

Recall = Xii
n∑

k=1
Xik

(4.3)

F1scorei = 2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

(4.4)

Confusion matrix is a simple metric which shows the actual and predicted labels of

a classifier. Accuracy is the most intuitive performance measure which is simply the ratio

of correctly predicted observations over all observations. Accuracy is a good performance

indicator for symmetric data set. Precision looks at the ratio of correct positive observations.

Low precision means false positives are high. Recall is a measure of the ability of a classifier to

select instances of a certain class from a data set. Low recall means false negatives are high.

The F1 score is the weighted average of Precision and Recall (harmonic mean of precision

and recall). Therefore, this score takes both false positives and false negatives into account.

Usually more useful for uneven class distribution. Classification report with inference time

is showed in Table 4.6 .

Table 4.6. Classification report. C = Cocklebur, R = Ragweed and P =
Pigweed. Inference time (classifying image to infer a result) tested on a core-
i5, 8gb ram machine.

model-1 model-2 model-3
C P R C P R C P R

Precision 0.79 0.74 0.89 0.94 0.94 0.96 0.96 0.92 0.79
Recall 1.0 0.68 0.74 1.0 0.89 0.94 1.0 0.7 0.94
F1 score 0.88 0.71 0.81 0.96 0.94 0.95 0.98 0.79 0.86
Training accuracy 0.85 0.99 0.97
Validation Accuracy 0.8 0.97 0.93
Testing Accuracy 0.81 0.94 0.88
Image size 150x150x3 150x150x3 299x299x3
Inference time 0.064 s 0.266 s 3.68 s

For all the models, Cocklebur shows perfect recall. Pigweed is the hardest one to classify.

Model-1 mostly false classifies Pigweed as Cocklebur and Model-2 mostly false classifies Pig-

68

weed as Ragweed. Pigweed is the hardest to classify as model-1 and model-3 show only 0.68

and 0.7 recall respectively. Model-2 consistently performs better than the other two models.

But model-1 and medel-2 show overfitting (training accuracy higher than validation accu-

racy). But model-3 shows almost no overfitting, means training this model for longer time

would have resulted better performance than model-2. But model-3 has 13 times higher in-

ference time compared to model-2, which made it unfit to use for real-time classification with

our hardware. Model-2 is chosen for real-time deployment which met all our requirements.

4.4 Real-time Classification from Video Input from Single Camera

Four scenarios are chosen to test the performance of model-2 from video feed. For 150 x

150 x 3 video input, frame per second (FPS) is around 5 for a core i5, 8gb ram machine and

around 30 FPS for a core i7 8gb ram and GTX 1060 6gb machine. Videos are taken by a

12-megapixel digital camera placed about 2 feet above the plant at 45-degree angle.

4.4.1 One Pigweed in Video (Fig. 4.8)

For 30 seconds of video input, a full Pigweed plant is present in video frame for 26

seconds. The classifier is successful at the Pigweed classification with about 100% accuracy

for the whole time. After 26 seconds, Pigweed plant is out of video frame and erroneous

classification starts. This classifier is successful at classification from real-time video input

when only one type of weed plant is present.

4.4.2 One Ragweed and One Pigweed in Video, Separately Placed (Fig. 4.9)

For 50 seconds of video input Ragweed is in frame for first 25 seconds and it gradually

goes out of the frame and Pigweed comes in. For Ragweed, we see variation in classification

accuracy between time 12-18 seconds. But overall, the model successfully classifies them

with close to 100% accuracy. The model is successful at transitioning from one type of plant

to another at real-time. These two scenarios are most commonly found in corn fields.

69

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 5 10 15 20 25 30

C
la

ss
if

ic
at

io
n

 %

time (s)

1 Pigweed

Cocklebur Pigweed Ragweed

Figure 4.8. Classification accuracy from video input using transfer-learning
VGG16 (model-2). Only one Pigweed plant on video.

4.4.3 Two Pigweeds and One Ragweed in Video Placed Together (Fig. 4.10)

Now we introduce a more complicated scenario. Here, Pigweed has higher quantity than

Ragweed in the video. As a result, Pigweed should be classified with higher accuracy. Other

than 15 seconds and 30 seconds mark in video, the model classifies Pigweed consistently.

Ragweed leaves have a very specific 3-pronged feature. And around those specific times, the

camera is focused on the Ragweed leaves and picked up this feature. That’s when Ragweed

70

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10 15 20 25 30 35 40 45 50

C
la

ss
if

ic
at

io
n

 %

time(s)

1 Ragweed-1 Pigweed : Separate

Cocklebur Pigweed Ragweed

Figure 4.9. Classification accuracy from video input using model-2. One
Pigweed plant and one Ragweed plant separately placed.

classification accuracy increases. This shows, how presence of a foreign object can decrease

the classification accuracy of a CNN classifier. It also shows that specific structures of leaves

are important for correct weed classification. If these structures are occluded due to wind or

camera position, CNN classification accuracy can change rapidly.

71

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 5 10 15 20 25 30 35

C
la

ss
if

ic
at

io
n

 %

time(s)

1 Ragweed-2 Pigweed : Together

Cocklebur Pigweed Ragweed

Figure 4.10. Classification accuracy from video input using model-2. Two
Pigweed plants and one Ragweed plant on video, placed together.

4.4.4 One Pigweed and One Ragweed in Video Placed Together (Fig. 4.11)

This is the most complex scenario because both the weed plants have same quantity

and equal probability of classification. We can’t predict how the classifier is going to act.

From Fig. 4.11 , it is seen that the model classifies the weed depending on which features

it is looking at. Between 5 to 12 seconds, the classification changes a lot between Ragweed

and Pigweed. Between 12 to 20 seconds, it classifies Pigweed with higher accuracy. At the

end, the classifier picks up the Ragweed leaves and classifies it with higher accuracy than

Pigweed.

72

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 5 10 15 20 25 30

C
la

ss
if

ic
at

io
n

 %

time(s)

1 Ragweed-1 Pigweed : Together

Cocklebur Pigweed Ragweed

Figure 4.11. Classification accuracy from video input using model-2. One
Pigweed plant and one Ragweed plant on video, placed together.

It is evident that, classification accuracy varies based on different scenarios. Also output

from CNN classifier is not always stable and does have wrong classification output. But a

stable and correct weed classification output is needed for correct herbicide spray system. In

Fig. 4.9 , if we look into time-steps 8-18, it is clear that the output from the CNN classifier

is not clear to send a signal to the herbicide spray system. A decision level multi-sensor

fusion algorithm is proposed in the next chapter to overcome this limitation and improve

the overall system robustness.

73

4.5 Effect of Noise and Motion Blur on Classification Accuracy (model - 2)

Model-2’s robustness is tested with artificially induced noise in images (gaussian and salt

& paper noise). Field condition and low-quality sensor can cause noise in images. Noise

can affect the accuracy of a classifier. In this case, gaussian and salt-and-pepper noise is

artificially introduced in images to evaluate classifier performance. As seen from Fig. 4.12 ,

noise doesn’t affect the classifier accuracy. Varying the intensities of noises within a certain

degree also doesn’t affect the classification. This could be due to the deeper structure of the

VGG16 network, which allows the networks more room to learn features that are not affected

by noise [39]. The earlier layers are more affected by the high frequency noise. Responses

of the last layers are less affected by noises than first layers. Using transfer learning, we

only retrained the final layers of the VGG16 network. This could be another reason for this

classifier to be more robust against noise. It should be mentioned that, at the noise level

used in this paper, a human observer should be able to correctly classify the weeds. But,

more detailed and systematic experiment is needed before drawing any concrete conclusions.

Image capturing from a vehicle on a corn field may produce blurriness, which will affect

the classification accuracy. 3 stages of linear motion blurriness (low (10%), medium (25%),

high (40%)) is artificially induced on 2 sets (near and far field) of images (Fig. 4.13).

For low blur, both near and far field image is correctly classified. For near-field, incorrect

classification occurs at medium and high blur. For far-field, incorrect classification occurs at

only high-blur. Motion blur has higher impact on near-field image classification inaccuracy

than far-field image. This leads to the conclusion that, camera should be set at a distance

which correctly captures the features of the weed plants from as far as possible. Also,

traditional masks (Unsharp Mask and Gaussian Mask) fails to correct the motion blurriness

at high blur. Which indicates, when information is lost due to motion blur, it is hard to

recapture.

4.6 Conclusions

This work presents an improved weed classification system using visual data for enabling

autonomous precision weeding with transfer learning from the CNN, assuming prior weed

74

Figure 4.12. Effect of Gaussian and Salt-and-Pepper noise on classification accuracy.

species knowledge. The dataset is important because this dataset contains weed images

which captures real life scenarios, which is not always the case for published work in weed

classification. Transfer learning avoids the complex and labor-intensive step of hard-coded

feature extraction from images and provides higher accuracy compared to end-to-end CNN

model. We introduce a practical three-stage pipeline consisting of offline classifier training,

autonomous field traversal, and herbicide spraying. The details for offline classifier training

and real-time video input steps are summarized in this section. We have tested three different

CNN structures, among which VGG16 based transfer learning shows highest testing accuracy

(94%) and moderate classification time (0.266 sec on only CPU and 0.032 secs on GPU based

system). Real-time classification from video input shows that the model is very accurate in

classifying weed plants if only single type of weed is present in the frame, which is expected.

75

Figure 4.13. Effect of Gaussian and Salt-and-Pepper noise on classification accuracy.

When multiple types of weeds are present on a single frame, the model classifies the weed

based on the dominating features of the plants that the camera pick up. A CNN detector

instead of classifier can detect multiple objects in a single frame and create a bounding box

to mark the object’s position. We also show the importance of sensor placement and need

of decision level fusion algorithm for accurate weed classification. It is also observed that

CNN based classifier performs better for far-field images because the near-field images lost

more information for the same amount of blur. Classification accuracy for this method is

unaffected by Gaussian and salt-and-pepper noises but more testing is needed before drawing

concrete conclusions. This study essentially shows that transfer learning is a viable method

to successfully classify harmful weeds in real-time with a relatively small dataset from an

autonomous robot.

76

5. ROBUST COLOR BASED WEED SEGMENTATION

Current image classification techniques for weed detection (classic vision techniques and

deep-neural net) provide encouraging results under controlled environment. But accuracy

can vary based on different real-world scenarios. Different lighting conditions and shadows

directly impact vegetation color. Varying outdoor lighting conditions create different colors,

noise levels, contrast and brightness. High component of illumination causes sensor (indus-

trial camera) saturation. As a result, threshold-based classification algorithms may fail. To

overcome this shortfall, we used visible spectral-index based segmentation to segment the

weeds from background. Mean, variance, kurtosis, and skewness are calculated for each in-

put image and image quality (good or bad) is determined. Bad quality image is converted to

good-quality image using contrast limited adaptive histogram equalization (CLAHE) before

segmentation. The main objective of this chapter’s work is to construct a redundant system

which can segment weed and crop (green pixels) under varying outdoor condition.

A version of this chapter was previously published by:

[ASME] [109] [https://doi.org/10.1115/IMECE2019-11077]

5.1 Color Based Image Segmentation

In this study, we have proposed a histogram-based image statistics system to identify

image quality. If image is low-quality, it passes through CLAHE step for histogram equaliza-

tion. Eventually good-quality image is passed to visible spectral based segmentation step for

weed segmentation from background. Same good-quality image is passed through transfer-

learning based CNN classifier for weed classification. Both the segmented weed image and

classified weed image is passed to a decision-making system (future implementation). Based

on illumination, noise and motion blur, CNN based weed classification accuracy can vary.

Visible spectral based weed segmentation is a fail-safe to the CNN classifier, so that spraying

herbicide on weed is not missed due to bad image quality. Fig. 5.1 shows the block diagram

of the process.

Given an input image in RGB color space, each channel is separated by following system:

R = red channel of input image

77

Figure 5.1. Block diagram of proposed image enhancement process. Blue ar-
row shows how usually spray decision is made. Red arrow shows the redundant
system for bad quality image.

G = green channel of input image

B = blue channel of input image

After splitting the channels, the following normalization scheme is applied, which is common

in agronomic image segmentation [87]:

r = Rn

Rn+Gn+Bn

g = Gn

Rn+Gn+Bn

b = Bn

Rn+Gn+Bn

(5.1)

where Rn, Gn and Bn are the normalized RGB values ranging from 0 to 1 and are

obtained as follows:

Rn = R/Rmax, Gn = G/Gmax, Bn = B/Bmax (5.2)

78

where Rmax, Gmax andBmax are maximum values of R, G and B channels respectively. A

small number is added to the denominator of normalization step to avoid division by zero.

Green color (vegetation) can be extracted using the following equations [88]:

Excess Green , ExG = 2g − r − b (5.3)

Excess green minus excess red [110]:

ExGR = ExG − 1.4r − g (5.4)

Color index of vegetation extraction [111]:

CIV E = 0.441r − 0.811g + 0.385b + 18.78745 (5.5)

The above three methods are combined to get the resulting green color segmentation:

GREEN = wExG ∗ ExG + wExGR ∗ ExGR + wCIV E ∗ CIV E (5.6)

where wExG, wExGR and wCIV E are weights for each color extraction method. The follow-

ing weight values are used in this study: wExG = 0.28, wExGR = 0.34, wCIV E = 0.38. The

resulting combined image (GREEN), is linearly mapped to range in [0, 255], after which, it is

thresholded by applying the Otsu’s [112] method, obtaining a binary (single channel) image.

Otsu’s method assumes bi-modal distribution of histogram and calculates the value between

two histogram peaks. In this study, we are segmenting weed from background (foreground-

background segmentation) which is bi-modal. So, using Otsu’s method is justifiable. The

binary image then converted back to RGB (3 channel) image. Here green pixels identify

plants and white pixels identify the background. This method is designed to cope with the

variability of natural daylight illumination. Fig 5.2 shows how image is segmented using 4

different methods.

Fig. 5.3 shows performance of different segmentation methods under dark and bright

lighting conditions. Under dark condition, ExGR performs better and is able to segment

79

Figure 5.2. (a)ExG, (b)ExGR, (c)CIVE and (d)GREEN based image segmentation.

the weed properly. GREEN is able to capture most of the plant. Under bright light, ExGR

fails completely to segment the weed from background. ExG and CIVE is able to segment

most of the weed from background. This implicates two things. Firstly, although visible

spectral-index based image segmentation is designed to cope with the variability of natural

daylight illumination, they may fail under extreme condition. As a result, combination of

different methods will be more robust and will be better at segmentation under different

condition. Secondly, to prevent segmentation from failing, we have to understand when it

is happening. We have to quantitatively measure the difference between ‘good-quality’ and

‘bad-quality’ image and convert the ‘bad-quality’ image into ‘good-quality’ image. That’s

where the histogram-based image statistics comes in.

5.2 Histogram Based Image Statistics

A histogram represents the distribution of pixel intensities (color or gray scale) in an

image. When plotting the histogram, the X-axis serves as pixel values. For RGB color

space, each channel will have pixel values in the range of 0 to 255 (for 8-bit image). The

Y-axis indicates number of pixels. When we construct a histogram with 0-255 pixel values

(bins), we are effectively counting the number of times each pixel value occurs at a certain

80

Figure 5.3. ExG, ExGR, CIVE and GREEN based image segmentation
performance under different lighting conditions.

bin. If number of pixels (Y-axis) is high at bin (X-axis) value 0, the image is generally

darker. If number of pixels (Y-axis) is high at bin (X-axis) value 255, the image is generally

brighter. Examining the histogram of an image, a general idea of the contrast, brightness

and intensity distribution can be achieved.

For gray image (single channel), histogram is defined by discrete function h(a) = na,

where ‘a’ represents gray level (X-axis) and na represents number of pixels (Y-axis) for each

value of ‘a’. Probability of each ‘a’, p(a) = h(a)/(M ∗ N), where M and N are rows and

columns of the image respectively. Let ‘a’ be a random variable denoting gray levels, the

nth moment of ‘a’ about the mean is defined as [113]:

µn =
∑

a

(n(a) − m)n.p(a) (5.7)

81

Where m is mean value of sum of n(a)

m =
∑

a

n(a).p(a) (5.8)

Following additional statistical parameters are calculated:

variance = µ2(a)

skewness = µ3(a)
µ1.5

2 (a)

kurtosis = µ4(a)
µ2

2(a)

(5.9)

Following information can be summarized from the statistical parameters [79]. The mean

determines the average level of brightness. Variance is a measure of gray-level contrast, where

high values indicate dispersion of values around the mean and low values are indicative of

a high concentration of values around the mean. The skewness measures the asymmetry in

the distribution. A positive skewness is presented when the histogram has low values around

high brightness (around X-axis pixel value 255) and high values in the part of low brightness

values (around X-axis pixel value 0). In the opposite case the skewness is negative. The

kurtosis provides information about how the distribution behaves around the peak. Low

kurtosis indicates flat top parts in the histogram around the mean but high values are

indicative of peaks around the mean with high slopes. Skewness and kurtosis are both zero

for Gaussian distributions.

According to Romeo et al. [79], images highly contrasted are considered as images with

sufficient quality and vice versa. An image with sufficient contrast should be identified

by mean values in the central part of histogram, high variance, low skewness (positive or

negative) and high kurtosis. On the contrary, an image with insufficient contrast is identified

by mean values either low or high, high skewness (positive or negative) and low kurtosis.

The next step is to determine the ranges of variability for the above parameters. The goal

is to use these parameters to convert low quality images into high quality images.

82

Figure 5.4. A good-quality image with histogram and statistics parameters
for R, G and B channels of the image.

5.3 Proposed Brightness/Contrast Control Steps

The shortcoming of histogram enhancement (HE) is over-enhancement in images with

large smooth area. For images captured under low light condition, HE causes over-enhancement

after contrast enhancement and increases the noise. Contrast limited adaptive histogram

equalization (CLAHE) overcomes the over-enhancement problem of HE by minimizing noise-

like artifacts in homogeneous regions [114]. As we have seen already, visible spectral-index

based image segmentation may fail for bad-quality image. Applying CLAHE to bad-quality

image before segmentation will solve this problem. In this study we propose an automatic

method to define image quality based on image histogram statistics so that low-quality im-

ages can be converted to high quality images. We have tested the effects of CLAHE’s ‘clip-

83

Figure 5.5. A bad-quality image with histogram and statistics parameters
for R, G and B channels of the image.

limit’ and ‘step-size’ variables on histogram enhancement and clip-limit = 3.0 and grid-size

= (8x8) is fixed for this application. Steps are as follows:

1. Determine the ranges of good quality image parameters (mean, variance, skewness and

kurtosis) using a set of training images. See equation (5.10) for parameters.

2. Calculate mean, variance, skewness and kurtosis of test image for R, G and B channels.

In this case only mean and kurtosis according to equation (5.10). Determine if good

or bad quality image.

3. For bad-quality image, apply CLAHE to convert it to good-quality image.

4. Apply visible spectral-index based image segmentation (GREEN) on good-quality im-

age.

84

5. Apply morphological operation (opening and closing) on segmented image to fill-up

void and reduce noise.

Fig. 5.4 and 5.5 shows example of good-quality and bad-quality images respectively.

Good-quality image has mean at the center (relatively), higher variance and lower skew

and lower kurtosis compared to bad quality image. Fig. 5.6 shows how CLAHE affects

the histogram. GREEN segmentation fails to process original image because blue-channel

is left tilted (low-quality image). CLAHE equalized the histogram and GREEN can then

successfully segment the image. CLAHE step needs 0.212 seconds to process a 150x150x3

image.

Figure 5.6. Original bad-quality image, bad-quality image after CLAHE,
visible spectral-index based image segmentation (GREEN) on CLAHE applied
image, histogram of original image, histogram of CLAHE image.

85

5.3.1 How to Quantify ‘Good’ and ‘Bad’ Quality Image

Now that we have an idea how good-quality and bad-quality images affect the histogram-

based statistics parameters, we need to determine the ranges of these parameters. When

proper ranges of good-quality image parameters are determined, CLAHE can be applied

on bad-quality images to convert them into good-quality images. Table 5.1 and 5.2 shows

mean, variance, skew and kurtosis (statistics parameters) values in R, G, B channels for

good-quality and bad-quality images respectively. 15 images are selected for both (good and

bad) cases and their minimum, maximum and average values are shown here.

Table 5.1. Mean, variance, skewness, kurtosis values for ‘good-quality’ images
in the three R, G, B spectral channels.

R G B
Max 663.5 411.1 365.5

Mean Min 157.5 170.8 153.4
Avg 288.8 253.6 243.2
Max 246758.1 96448.5 68238.1

Variance Min 7472.2 7577.2 5685.2
Avg 54515.4 30349.6 24210.3
Max 0.37 0.32 0.34

Skew Min 0.009 0.021 0.013
Avg 0.19 0.29 0.16
Max 1.73 2.07 1.98

Kurtosis Min 1.47 1.5 1.52
Avg 1.64 1.77 1.69

From Table 5.1 and 5.2 , several observations can be made. In general, good quality image

(Table 5.1) has mean at the center (relatively), higher variance and lower skew and kurtosis

compared to bad quality (Table 5.2) image. For all three channels, parameter values overlap

for mean, variance and skew; for good and bad quality images. Bad quality maximum mean

value is higher than good quality minimum mean value. Same is also true for variance

and skew. For kurtosis, overlapping occurs for G and B channels. This indicates that the

training weed dataset available to the authors are not diverse enough to clearly distinguish

between good quality and bad quality images. But from Table 5.1 , statistics features for

good quality images are clearly identified. Skew and kurtosis parameters are chosen because

86

they are reasonably distinguishable between good and bad quality images. This step needs

an average 0.0023 seconds to process a 150x150x3 image.

Table 5.2. Mean, variance, skewness, kurtosis values for ‘bad-quality’ images
in the three R, G, B spectral channels.

R G B
Max 391.1 368.5 436.6

Mean Min 96.4 99.2 140.4
Avg 198.4 192.4 235.4
Max 33391.4 35723.3 53021.5

Variance Min 646.9 841.8 9955.4
Avg 11090.1 11355.6 22818.8
Max 1.15 0.87 3.72

Skew Min 0.35 0.10 0.32
Avg 0.76 0.54 2.06
Max 5.13 4.6 18.8

Kurtosis Min 2.06 1.88 1.87
Avg 3.27 2.78 10.13

The following criteria are chosen to distinguish the bad quality image from good quality

image. Good quality image criteria are:

R channel kurtosis < 1.73

G channel kurtosis < 2.07

B channel kurtosis < 1.98

R channel skew < 0.37

G channel skew < 0.62

B channel skew < 0.34

(5.10)

In conclusion, for every image kurtosis and skew will be calculated. If skew and kur-

tosis are within range of Eq. (5.10), it is good quality image and GREEN is applied for

segmentation. If bad quality, CLAHE will be applied to make the image good quality. Then

segmentation will be applied.

87

5.4 Conclusions

The proposed algorithm using histogram-based image statistics for image quality deter-

mination and brightness control, significantly improves the inherent limitation of color-based

segmentation (bad performance under extreme lighting) under various test conditions. The

real-time processing of the histogram based statistical algorithm is only 0.0023 seconds which

is significantly shorter than that of classification (0.266 seconds) and CLAHE (0.212 seconds)

methods. Such a fast processing time of the proposed histogram-based algorithm is suitable

for real-time control applications.

88

6. DECISION LEVEL SENSOR FUSION IN SPACE AND TIME

DOMAIN

Multi-sensor data fusion technology in an important tool in building real-time decision mak-

ing applications. Modified Dempster-Shafer (DS) evidence theory can handle conflicting

sensor inputs and can be applied without any prior information. As a result, DS based

information fusion is very popular for decision making application. But original DS theory

produces counter-intuitive results when combining highly conflicting evidences from mul-

tiple sensors. An algorithm which is successful in fusing highly conflicting information in

spatial and time domain is not easy to find. In this chapter, we tackle these complications of

original Dempster-Shafer (DS) framework. An eight-step algorithm is proposed which can

eliminate the inherent paradoxes of classical DS theory. A novel entropy function is proposed

based on Shannon entropy which is better at capturing uncertainties compared to Shannon

and Deng entropy. Multiple examples are presented to show that the proposed method

is effective in handling conflicting information in spatial domain. Simulation results show

that, proposed algorithm has the best convergence rate in space domain fusion and accuracy

compared to other “revision of original evidence before combination” methods from open lit-

erature. Proposed eight-step algorithm is slightly modified and then applied to time domain

to achieve the sequential combination of time-domain evidence. Simulation results show that

this method is successful in capturing the changes (dynamic behavior) in time-domain object

classification. This method also shows better convergence rate, anti-disturbing ability and

transition property compared to other methods available from literature.

A portion of this chapter was previously published in:

[Sensors] [115] [https://doi.org/10.3390/s19235187]

[Sensors] [116] [https://doi.org/10.3390/s19214810]

89

6.1 Dempster-Shafer Evidence-based Combination Rule

6.1.1 Frame of Discernment (FOD)

The frame of discernment contains M mutually exclusive and exhaustive events (also

represented by X in this research).

X = Θ = {θ1, θ2,, θM} (6.1)

The representation of uncertainties in the DS theory is similar to that in conventional prob-

ability theory and involves assigning probabilities to the space Θ. However, the DS theory

has one significant new feature: it allows the probability to be assigned to subsets of Θ as

well as the individual element θi. Accordingly, we can derive the power set 2Θ of DS theory:

2Θ = {φ, {θ1}, {θ2},, {θ1, θM},, Θ} (6.2)

where φ is empty set. It is clearly seen in (6.2) that the power set 2Θ has 2M propositions.

Any subset except singleton of possible values means their union. For example, {θ1, θ2, θ3} ≡

{θ1 ∪ θ2 ∪ θ3}. Complete probability assignment to power set is called basic probability

assignment (BPA).

6.1.2 Basic Probability Assignment (BPA) / Mass Function

Evidences in DS theory are acquired by multi-sensor information. Mass function (mass)

is a function, m : 2Θ → [0, 1] that satisfies (6.3) and (6.4):

m(φ) = 0 (6.3)

∑
{m(θ)∀θ ∈ 2Θ} (6.4)

m is called basic probability assignment. Elements of power set having m(θ) > 0 is called

focal elements. This can be explained with the help of a simple example. Let the three objects

to be detected be, Θ = {a, b, c}. Powerset, 2Θ = 23 = {φ, a, b, c, {a, b}, {a, c}, {b, c}, Θ}.

90

From a sensor or by an expert following mass values are assigned, m(a) = 0.2, m(b) =

0.3, m(a, b) = 0.4, m(a, b, c) = 0.1.The four subsets are called focal elements.

6.1.3 Dempster-Shafer Rule of Combination

The purpose of data fusion is to summarize and simplify information rationally, obtained

from independent and multiple sources. DS combination rule emphasizes on the agreement

between multiple sources and ignores all the conflicting evidences through normalization.

Any two mass functions B and C over same FOD with atleast one focal element in common

can be combined into a new mass function using DS combination rule. The combination

of two mass functions can also be said as taking the orthogonal sum, ⊕. The combination

of two mass functions the DS combination rule for combining two evidences m1 and m2 is

defined:

m12(A) =
∑

B∩C{m1(B).m2(C)}
1 − K

(6.5)

When A 6= φ and m(φ) = 0.

K =
∑

B∩C=φ

{m1(B).m2(C)} (6.6)

where K is the degree of conflict in two sources of evidences. The denominator (1 − K) is a

normalization factor, which helps aggregation by completely ignoring the conflicting evidence

and is calculated by adding up the products of BPA’s of all sets where intersection is null.

DS combination rule in (6.5) and (6.6) conforms to both commutative law and associate law.

m1 ⊕ m2 = m2 ⊕ m1

(m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3)

6.1.4 Belief and Plausibility Function

Given a basic assignment m we can define a belief function: Bel : m : 2Θ → [0, 1], such

that for any A ⊂ Θ:

Bel(A) =
∑

B⊆A

{m(B)} (6.7)

91

Bel(A measures the belief that the element is member of A. m(A) measures the amount of

belief that one commits exactly to A alone, Bel(A) measures the total belief that the special

element is in A. Based on the same premise,

Pl(A) = 1 − Bel(Ā) (6.8)

Pl(A) measures the degree to which one fails to doubt A. Pl(A) measures the total belief

mass that can move into A, whereas Bel(A) measures the total belief mass that is constrained

to A.

Example 6.1: Given, m(A) = 0.48, m(B) = 0.24, m(C) = 0.08, m(Θ) = 0.2

Bel (A,B) = m(A) + m(B) + m(A,B) = 0.48 + 0.24 = 0.72

Pl (A,B) = m(A) + m(B) + m(A,B) + m(A,C) + m(B,C) + m(A,B,C) = 0.48 + 0.24 +0.2

= 0.92

Similarly, Bel and Pl values can be calculated for all the BPA which is shown in Table

 6.1 .

Table 6.1. Bel and Pl values for Example 6.1

A B C A,B A,C B,C A,B,C

Bel(.) 0.48 0.24 0.08 0.72 0.56 0.32 1.0

Pl(.) 0.68 0.44 0.28 0.92 0.76 0.52 1.0

6.2 Paradoxes (Source of Conflicts) in DS Combination Rule

DS theory introduced and developed by Dempster and Shafer [52], [117], [118], has many

merits by contrast to Bayesian probability theory [119]. But to use DS sensor fusion al-

gorithm for robust application, we have to overcome the fusion paradoxes. Based on the

application in a multi-sensor system, this theory also has its shortcomings [120]. The differ-

ent levels of performance of sensors, cluster, and interference of a complex environment may

lead to conflicts among evidences. When evidences are highly conflicting, the fusing results

92

obtained by the DS combination method are normally contrary to common sense. When

the conflicting factor K is close to 1, this rule cannot obtain reasonable fusing results as the

denominator is approximate to 0. These counter-intuitive phenomena of the DS theory are

called paradoxes. According to [58], there are mainly three types of paradoxes.

6.2.1 Completely Conflicting Paradox:

In this situation, there are two sensors and one sensor output completely contradicts the

other sensor output. Following example depicts the situation:

Example 6.2: In the multi-sensor system, assume that there are two evidences in the

frame, Θ = {A, B, C} and proposition A is true.

Sensor 1 : m1(A) = 0.7, m1(B) = 0.2, m1(C) = 0.1,

Sensor 2 : m2(A) = 0.0, m2(B) = 1, m2(C) = 0,

Here two sensors are completely conflicting each other. The conflicting factor in (6.6) is

K = 1, which reports that evidences from sensor 1 and sensor 2 are completely conflicting.

Under such circumstances, the DS combination rule cannot be applied.

6.2.2 “One Ballot Veto” Paradox:

For a multi-sensor system (more than two sensors), one sensor completely contradicts all

other sensor output. Following example depicts the situation:

Example 6.3: In the multi-sensor system, assume that there are four evidences in the

frame, Θ = {A, B, C} and proposition A is true.

Sensor 1 : m1(A) = 0.7, m1(B) = 0.2, m1(C) = 0.1,

Sensor 2 : m2(A) = 0, m2(B) = 0.9, m2(C) = 0.1,

Sensor 3 : m3(A) = 0.75, m3(B) = 0.15, m3(C) = 0.1,

Sensor 4 : m4(A) = 0.8, m4(B) = 0.1, m4(C) = 0.1,

Clearly, sensor 2 is faulty and contradicts the results of other 3 sensors. Applying DS

combination rule we get: K = 0.9, m1−2−3−4(A) = 0/0.1 = 0, m1−2−3−4(B) = 0.097/.01 =

0.97, m1−2−3−4(C) = 0.003/0.1 = .03.

93

Fusing results are contrary to the assumed proposition that A is true. High value of K

proposes high contradiction among sensors. This counterintuitive result is caused by the

erroneous sensor 2 values. Interestingly, DS combinatio rule completely omits a proposition

even if a single sensor outputs zero evidence.

6.2.3 “Total Trust” Paradox:

Here, one sensor highly contradicts the other sensor. But both of them have common

focal element with low evidence. Following example depicts the situation:

Example 6.4: In the multi-sensor system, assume that there are two evidences in the

frame, Θ = {A, B, C}.

Sensor 1 : m1(A) = 0.95, m1(B) = 0.05, m1(C) = 0,

Sensor 2 : m2(A) = 0.0, m2(B) = 0.1, m2(C) = 0.9,

Applying DS combination rule: m1−2(A) = 0, m1−2(B) = 1, m1−2(C) = 0, K = 0.99. Here,

common sense suggests that either m(A) or m(C) is correct. But, the wrong proposition B

is identified to be true with total confidence even though sensor 1 and 2 nearly negates this

idea.

6.3 Eliminating the Paradoxes of DS Combination Rule

Existing modified methods are divided mainly into three categories:

1. Modification of DS Combination Rule

Smet’s rule [121] is essentially the Dempster rule applied in Smet’s transferable belief

model. Smet believed that conflict is caused by incompleteness of frame of discernment,

Θ and moved mass of conflict directly to φ as an unknown proposition. This model is

slightly different formulation of DS theory, but the ideas are essentially the same. In Yager’s

rule [122], the mass associated with conflict is directly given to universal set Θ. Yager’s

rule provide the same results when conflict is zero. Although these two methods solve the

conflict situation theoretically, the uncertainty of the system still exists. Bicheng et al. [123]

modified Yager’s rule and conflicting probability of the evidences are distributed to every

94

proposition based on average support. Inagaki [124] defined a continuous parameter class of

combination operations which subsumes both DS and Yager’s rule. Depending on conflict

of information his combination rule changed between DS and Yager combination rule. But,

based on experience, if an engineer applied a weighting factor to one of the sensors credibility,

this rule can’t be applied. Zhang [125] pointed out that DS rule fails to take into account the

focal element intersection. He presented the ‘two frame’ representation of DS theory where

he measured focal element intersections based on cardinality. Li [126] used the interaction

between focal elements and proposed two weighted redistribution method which considers

the associative relationship among the evidences collected from multi-sources. His argument

was, if a body of evidence is greatly supported by others, this piece of evidence should be

more important and has great effect on the final combination results. On the contrary, if

a body of evidence is highly conflicting with others, this piece of evidence should be less

important and has little effect on the final combination results. But, all these methods

sometimes violate the theoretical properties of DS combination rule like commutativity and

associativity.

2. Revision of Original Evidence before Combination

Commutative and associative properties of DS rule are important for multi-sensor in-

formation fusion which may get lost when the original rule is tampered with. As a result,

the propositions are modified so that conflict among the evidences are resolved before ap-

plying them in DS combination rule. Chen et al. [127] used triangular functions to set a

fuzzy model for each sensor. Assuming each sensor output is gaussian, BPA was determined

from the sensor outputs using the fuzzy model. Then the raw BPA was weighted using the

credibility of each BPA before fusing. Sun [128] also used fuzzy membership function to

convert sensor value to fuzzy value. Support degree was calculated using an error distance

function. If sensor output is not gaussian, then fuzzy set methods can’t be applied. Instead

of distance function, an entropy function (Deng entropy [119]) was used to calculate the

credibility of evidence in [129]. This was inspired by Murphy’s method [130], which used

an average of BPAs. Murphy’s method had fast convergence rate but failed to consider the

relation between focal elements. Jiang [131] used an entropy function to measure the weight

95

of the evidence to modify them before applying to DS rule. Xiao [132] used almost the

same procedure as Jiang but with a different distance function to measure the credibility.

Murphy’s method is the simplest to implement and most of the methods within this type is

inspired by his method.

3. Hybrid Technique Combining both Modification of DS Rule and Original
Evidence

Through the comparison between two kinds of conflict resolutions, it is easy to see the

underlying logic of two methods. Method 1 cancels the normalization step in DS theory and

redistribute the conflict with different measure. Method 2 consider the essential differences

between propositions of each sensor in multi-sensor systems and solve the conflict by modi-

fying the original evidence. If method 1 and 2 is combined, then the inherent paradoxes of

DS rule are solved. Building on this idea, Lin et al.[133] and Ye Fang et al. [134] published

several new improvements of original DS combination rule. They improve the fusion results

but often too complicated and over-engineered to apply for real-time use. These methods

also loose commutative and associative properties of DS rule.

How to accurately measure the conflicting evidences under DS framework is still an open

issue. Keeping the commutative and associative properties of the original DS combination

rule and eliminating the paradoxes are critical for multi-sensor fusion. There is still room for

improvement to properly measure the conflicts between evidences and obtain appropriate

weights for each evidence. Based on this, an improved combination method is proposed

which follows “Revision of Original Evidence before Combination” method. A novel entropy

function is proposed which can better capture the conflicts between evidences. Reward and

penalty is imposed to evidences based on how they agree or disagree with each other. The

amount of reward or penalty is determined by the entropy function. Then, the modified

weight value (reward or penalty) is applied in adjusting the body of the evidences before

using the Dempster’s combination rule (n - 1) times, when there are n number of evidences

(sensors). The experiments illustrate that the proposed method is reasonable and efficient

in coping with the conflicting evidences.

96

6.4 Entropy in Information Theory under DS Framework

Information is a measure of the compactness of a distribution; logically if a probability

distribution is spread evenly across many states, then it’s information content is low, and

conversely, if a probability distribution is highly peaked on a few states, then it’s information

content is high [135]. Information is a function of distribution. Entropy measures the

compactness of a distribution of information. Entropy is zero when BPA is assigned to a

single element, thus creating the most informative distribution. When BPA is uniformly

distributed, entropy is at maximum, agrees with the idea of least informative distribution.

In information theory, Shannon entropy [136] is often used to measure the “amount of

information” in a variable.

ESh = −
n∑

i=1
pi.log2(pi) (6.9)

where n is the amount of basic states in a state space, pi is the probability of state i.

It is clear that the quantity of entropy is always associated with the amount of states in a

system. In the framework of DS evidence theory, the uncertain information is represented

by both mass functions and the FOD. Deng entropy [119] considers both.

EDeng = −
∑

m(A).log2
m(A)

(2|A| − 1) (6.10)

where |A| denotes the cardinality of the focal element A. Other works related to entropy

under DS framework can be found in the literature [137]. Based on Shannon and Deng

entropy, We propose a new belief entropy, which considers Bel and Pl of mass function,

cardinality of focal elements and number of elements in FOD. The goal of the proposed

entropy is to capture the uncertainty of information under DS framework which are omitted

by Shannon and Deng entropy.

Proposed Entropy, Ep = −
∑ Bel(A) + Pl(A)

2 . log2(
Bel(A) + Pl(A)

2.(2|A| − 1) . exp(|A|−1
|X|)) (6.11)

where |X| denotes the cardinality of X, which represents the number of element in

FOD. The exponential factor exp(|A|−1
|X|) in the new belief entropy represents the uncertain

information in number of elements of FOD that has been ignored by Deng entropy. This

97

probability interval considers lower and upper bounds of evidence that are the Bel and the

Pl, respectively. The new belief entropy can better measure the uncertainty of BPA.

6.4.1 Properties of Proposed Entropy Function

Property 1: Mathematically, the value range of the new belief entropy is (0, +∞).

According to DS evidence theory, a focal element A consists at least one element and the

limit of it’s element number is the scale of FOD. FOD consists at least one element and

there is no maximum limit, thus the range of |A| and |X| are the same, denoted as [1, +∞).

The range of a mass function m(A) is (0, 1]. Depending on value of |A|, believe (Bel) and

plausibility (Pl) range could be between (0, +∞]. In proposed entropy equation, where

|A| ∈ [1, +∞), |X| ∈ [1, +∞), Bel(A) ∈ (0, +∞] and Pl(A) ∈ (0, +∞]. Thus the range of

the proposed entropy can be denoted (0, +∞).

Property 2: New belief entropy can degenerate to the Shannon entropy when the mass

function is Bayesian. If the mass function m(A) is Bayesian, then BPA is assigned only on

single element subset, then |A| = 1. In this case, the new belief entropy can degenerate to

the following equation which is exactly equal to Shannon entropy:

= − ∑ mi+mi
2 .log2((mi+mi

2.(21−1)). exp(1−1)/|X|) = − ∑
m(A).log2(m(A))

Property 3: Non-negativity. We know that, 0 < (Bel(mi)+Pl(mi))/2 < 1. As a result,

Entropy(m) > 0. Only if m(A) = 1 and only if A is Bayesian, then Entropy (m) = 0. Thus,

new entropy satisfies the non-negativity property.

Property 4: Consistency with DS theory framework. The new entropy is consistent

with DS theory framework. Thus, it satisfies the consistency with DS theory framework

properties.

Property 5: Probability consistency. If m is Bayesian, then m(A) = Bel(A) = Pl(A),

for all A ∈ X. Thus, new entropy satisfies the probability consistency property.

The following example shows the properties of proposed entropy and how it is better at

capturing uncertainties compared to Shannon and Deng entropy.

Example 6.5: Given a frame of discernment Θ = {a, b, c}, for a mass function m(a)

= m(b) = m(c) = 1/3.

ESh = −(1
3 log2

1
3 + 1

3 log2
1
3 + 1

3 log2
1
3) = 1.585

98

EDeng = (1
3 log2

1/3
21−1 + 1

3 log2
1/3

21−1 + 1
3 log2

1/3
21−1 = 1.585

EP = −((1/3+1/3)
2 log2

(1/3+1/3)
2.(21−1) . exp(1−1

3) + (1/3+1/3)
2 log2

(1/3+1/3)
2.(21−1) . exp(1−1

3) +
(1/3+1/3)

2 log2
(1/3+1/3)
2.(21−1) . exp(1−1

3)) = 1.585

This showed that the result of proposed entropy is identical to Shannon entropy and Deng

entropy when the belief is only assigned on single elements (or Bayesian).

Example 6.6: Given a frame of discernment Θ = {a, b, c}, mass function m(a) = m(b)

= m(c) = m(a, b) = m(a, c) = m(b, c) = m(a, b, c) = 1/7.

Table 6.2. Bel and Pl values for example 6.6

a b c a,b a,c b,c a,b,c

Bel(.) 1/7 1/7 1/7 3/7 3/7 3/7 1.0

Pl(.) 4/7 4/7 4/7 6/7 6/7 6/7 1.0

Shannon and Deng entropy is calculated to compare with the values from proposed

entropy.

ESh = −(1
7 log2

1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7) = 2.8074

EDeng = −(1
7 log2

1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1

3∗7 + 1
7 log2

1
3∗7 + 1

7 log2
1

3∗7 + 1
7 log2

1
7∗7) = 3.887

EP = −(5
2∗7 log2

5
2∗7 + 5

2∗7 log2
5

2∗7 + 5
2∗7 log2

5
2∗7 + 9

2∗7 log2(9
2∗3∗7 . exp(1/3)) +

9
2∗7 log2(9

2∗3∗7 . exp(1/3)) + 9
2∗7 log2(9

2∗3∗7 . exp(1/3)) + log2(1
7 . exp(2/3))) = 6.79

Shannon entropy only considers mass function value and has the lowest entropy. Deng

entropy considers both mass function value and cardinality on focal elements. It calculates

higher entropy than Shannon. Proposed entropy considers mass function value (central value

of probability interval), cardinality of both focal elements and FOD. It results into highest

entropy value compared to Shannon and Deng. If a FOD consists of 7 elements compared to

say 3 elements, intuitively it can be said, 7 elements FOD should have higher entropy because

it is less compact. Also, because proposed entropy considers central value of probability

interval (Bel+P l)
2 , it is capturing more uncertainty compared to only mass function. As a

result, the proposed entropy function abides by the DS framework and superior in capturing

uncertainty compared to Shannon and Deng entropy.

99

6.5 Proposed Steps to Eliminate Paradoxes in Space Domain

With increasing use of sensors application in real-time decision making, we need algo-

rithm which can fuse sensor outputs both in space-domain and time-domain. The goal of

the proposed method is to eliminate the paradoxes of original DS combination rule and

work as a decision level sensor fusion algorithm in both space and time domain. We are

adopting ‘revision of original evidence before combination’ because we don’t want to lose

the associative and commutative properties of the original DS rule. The proposed method is

a distance-based method. It calculates the relative distances between the sensor evidences

(classification output). Then based on average distance, it classifies which sensor output is

credible and which sensor output is incredible. Then it penalizes the incredible sensor output

using the novel entropy function so that incredible sensor has less effect on fused output. It

also rewards the credible sensor input so that credible sensor carries more weight towards

fused output. At the end, modified evidence is fused using original DS sensor fusion equa-

tion. Following example is used to showcase the steps and compare the final fused results

with works from open literature.

Example 6.7 : In a multi-sensor target recognition system, assume there are totally

three types of targets to be recognized = {A, B, C}. Suppose there are five sensors. They

could be any types of sensors. After data acquisition at a specific moment by five sensors,

data are processed and classification IDs are generated. Generated IDs from five sensors are

listed as BPAs:

Sensor 1: m1 : m1(A) = 0.41, m1(B) = 0.29, m1(C) = 0.30

Sensor 2: m2 : m2(A) = 0.00, m2(B) = 0.90, m2(C) = 0.10

Sensor 3: m3 : m3(A) = 0.58, m3(B) = 0.07, m3(A, C) = 0.35

Sensor 4: m4 : m4(A) = 0.55, m4(B) = 0.10, m4(A, C) = 0.35

Sensor 5: m5 : m5(A) = 0.60, m5(B) = 0.10, m5(A, C) = 0.30

This is a classic example of ‘one-ballot veto’ paradox.

100

Step 1: Build a multi-sensor information matrix. Assume for a multi-sensor system,

there are N evidences (sensors) in the frame Θ = {H1, H2,, HM} (objects to be detected).



m1(H1) m1(H2) . . . m1(HM)

m2(H1) m2(H2) . . . m2(HM)
...

mN(H1) mN(H2) . . . mN(HM)


=



.41 .29 .3 0

.0 .9 .1 0

.58 .07 0 .35

.55 .1 0 .35

.6 .1 0 .3


(6.12)

Step 2: Measure the relative distance between evidences. Several distance function

can be used to measure the relative distance. They all have their own advantages and

disadvantages regarding runtime and accuracy. We have used Jousselme’s distance [138]

function. Jousselme’s distance function uses cardinality in measuring distance which is an

important metric when multiple elements are present in one BPA under DS framework.

Effect of different distance functions (Euclidean, Jousselme, Minkowsky, Manhattan and

Camberra distance function) on simulation time and information fusion can be found in

literature [139]. Assuming that there are two mass functions indicated by mi and mj on the

discriminant frame Θ, the Jousselme distance between mi and mj is defined as:

DM(mi, mj) =
√

1
2 .(mi − mj).D.(mi − mj)T (6.13)

Where D = |A∩B|
|A∪B| , and |.| represents cardinality.

Step 3: Calculate sum of evidence distance for each sensor.

di =
N∑

j=1 & j6=i
DM(mi, mj) =



1.5449

2.9284

1.2311

1.1761

1.1944


(6.14)

101

Step 4: Calculate global average of evidence distance.

d̄ =
∑N

i=1 di

N
= 1.615 (6.15)

Step 5: Calculate belief entropy for each sensor using (6.11) and normalize.

Table 6.3. Bel and Pl values for Example 6.7

m(A) m(B) m(C) m(A,C)

m1 Bel=0.42, Pl=0.41 Bel=0.29,Pl=0.29 Bel=0.3,Pl=0.3 Bel=0,Pl=0

m2 Bel=0, Pl=0 Bel=0.9,Pl=0.9 Bel=0.1,Pl=0.1 Bel=0,Pl=0

m3 Bel=0.93, Pl=0.93 Bel=0.07,Pl=0.07 Bel=0,Pl=0.35 Bel=0.93,Pl=0.93

m4 Bel=0.9, Pl=0.9 Bel=0.1,Pl=0.1 Bel=0,Pl=0.35 Bel=0.9,Pl=0.9

m5 Bel=0.9, Pl=0.9 Bel=0.1,Pl=0.1 Bel=0,Pl=0.3 Bel=0.9,Pl=0.9

It is interesting to note that, although m3, m4, m5 has zero m(C) values, it has non-zero

Pl values. As a result, it will consider non-zero Pl values of m(C) when calculating entropy.

EP (m1) = 1.5664, EP (m2) = 0.469, EP (m3) = 1.3861, EP (m4) = 1.513, EP (m5) = 1.483.

Normalize the entropy:

EP (mi) = Ep(mi)∑
Ep(mi)

(6.16)

Step 6: The evidence set is divided into two parts: the credible evidence and the

incredible evidence. From (14) and (15):

If di ≤ d̄, mi is credible evidence

If di > d̄, mi is incredible evidence
(6.17)

The intuition is that, if an evidence has higher distance than average distance (which is

calculated using all the evidences) then probably that evidence is faulty and should be

penalized (incredible evidence). If an evidence distance is lower than average, then that

evidence is in harmony with other evidence and should be rewarded (credible evidence).

Lower entropy means lower uncertainty and that evidence should be rewarded more for

102

credible evidence. Opposite is true for incredible evidence. So, we needed a function which

has large slope as it goes near to zero. Natural log function fits the bill. As a result, following

Reward and Penalty function is proposed:

For credible evidence, Reward function = −ln(EP (m))

For incredible evidence, P enalty function = −ln(1 − EP (m))
(6.18)

Using (6.16), (6.17) and (6.18) calculate reward and penalty value for each evidence.

Reward1 = 1.4103, P enalty2 = 0.0759, Reward3 = 1.5326, Reward4 = 1.445, Reward5 =

1.4647.

Normalize Reward and Penalty values to get evidence weights.

w1 = 0.2379, w2 = 0.0128, w3 = 0.2585, w4 = 0.2437, w5 = 0.2471. Obviously, we can

observe that there is a high conflict between the evidence m2 and other evidences. So m2 is

defined as an incredible evidence, and has very low weight. Other evidences are supported

by each other, so their weights are higher than m2.

Step 7: Modify the original evidences.

m(A) =
N∑

i=1
mi(A).wi (6.19)

Resulting modified evidence, m(A) = 0.5298, m(B) = 0.1477, m(C) = 0.0726, m(A,C) =

0.2499.

Step 8: : Combine modified evidence for (n-1) times (for this example 4 times) with

DS combination rule using (6.5) and (6.6). How to apply the fusion rule is important.

For this example, if evidence m1 and m2 is fused with modified evidence, then, m12(A) =

0.8125, m12(B) = 0.0325, m12(C) = 0.062, m12(A, C) = 0.093. Now to get m123, if m12

values are fused with m12 values using (6.5) and (6.6), that would be wrong. To get m123,

m12 values should be fused with the original modified evidence from step 7. It is also evident

that, for single elements, if that element has higher value after step 7, it will have highest

value after fusing (n-1) times. The higher the value after step 7, the higher the value after

fusion.

103

Table 6.4 compares the results of the proposed algorithm with other combination methods

from open literature for Example 6.7.

Table 6.4. Evidence combination results based on different combination
methods for Example 6.7

Methods m12 m123 m1234 m12345

Dempster
[118]

m(A) = 0, m(B)
= 0.8969, m(C)
= 0.1031

m(A) = 0, m(B)
= 0.8969, m(C)
= 0.1031

m(A) = 0, m(B)
= 0.8969, m(C)
= 0.1031

m(A) = 0, m(B)
= 0.8969, m(C) =
0.1031

Murphy
[130]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,
m(AC) = 0

m(A) = 0.4619,
m(B) = 0.4497,
m(C) = 0.0794,
m(AC) = 0.0090

m(A) = 0.8362,
m(B) = 0.1147,
m(C) = 0.0410,
m(AC) = 0.0081

m(A) = 0.9620,
m(B) = 0.0210,
m(C) = 0.0138,
m(AC) = 0.0032

Deng [140]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,
m(AC) = 0

m(A) = 0.4974,
m(B) = 0.4054,
m(C) = 0.0888,
m(AC) = 0.0084

m(A) = 0.9089,
m(B) = 0.0444,
m(C) = 0.0379,
m(AC) = 0.0089

m(A) = 0.9820,
m(B) = 0.0039,
m(C) = 0.0107,
m(AC) = 0.0034

Han [141]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,
m(AC) = 0

m(A) = 0.5188,
m(B) = 0.3802,
m(C) = 0.0926,
m(AC) = 0.0084

m(A) = 0.9246,
m(B) = 0.0300,
m(C) = 0.0362,
m(AC) = 0.0092

m(A) = 0.9844,
m(B) = 0.0023,
m(C) = 0.0099,
m(AC) = 0.0034

Wang[142]
recalcu-
lated

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,
m(AC) = 0

m(A) = 0.6495,
m(B) = 0.2367,
m(C) = 0.1065,
m(AC) = 0.0079

m(A) = 0.9577,
m(B) = 0.0129,
m(C) = 0.0200,
m(AC) = 0.0094

m(A) = 0.9867,
m(B) = 0.0008,
m(C) = 0.0087,
m(AC) = 0.0035

Jiang [129]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,
m(AC) = 0

m(A) = 0.7614,
m(B) = 0.1295,
m(C) = 0.0961,
m(AC) = 0.0130

m(A) = 0.9379,
m(B) = 0.0173,
m(C) = 0.0361,
m(AC) = 0.0087

m(A) = 0.9837,
m(B) = 0.0021,
m(C) = 0.0110,
m(AC) = 0.0032

Proposed

m(A) = 0.00573,
m(B) = 0.96906,
m(C) = 0.02522,
m(AC) = 0

m(A) = 0.7207,
m(B) = 0.1541,
m(C) = 0.1178,
m(AC) = 0.007

m(A) = 0.9638,
m(B) = 0.0019,
m(C) = 0.0224,
m(AC) = 0.0117

m(A) = 0.9877,
m(B) = 0.0002,
m(C) = 0.0087,
m(AC) = 0.0034

As seen from Table 6.4 , when evidences are in high conflict, classical Dempster’s combi-

nation rule produces counterintuitive results that is not correct. With increase in number

of sensors, Murphy’s simple averaging, Deng’s weighted averaging, and Han’s novel weight

averaging, Wang’s weighted evidence, Jiang’s uncertainty measure all give reasonable results,

although their final combination results are slightly inferior to the outcomes of our proposed

approach. Wang et al. [142] showed in his paper that the modified evidences before the

fusion steps are m(A) = 0.5048, m(B) = 0.184, m(C) = 0.068, m(AC) = 0.243. Now the

104

modified evidence for m(A) is lower than our proposed method as stated in step 7. Also

as explained in step 8, it is unlikely that after fusing these evidences (n - 1) times (4 for

this example) using original DS combination rule, the fused m12345(A) will be higher than

our proposed method. Using the evidences presented in Wang’s work, the recalculated fused

evidences are presented in Table 6.4 . The proposed method also has the highest convergence

rate (rate of m(A) value goes towards 1) after sensor 3. It is reasonable to say that, proposed

method overcomes the paradoxes of classical DS rule and produces competitive fusion result

compared to other combination rules available in open literature. Fig. 6.1 shows how fused

evidence of m(A) changes with addition of new sensors and compares multiple methods from

the literature. As m(A) is the correct evidence, how it is changing with inclusion of new

sensor evidence is important for justification of fused result. The proposed method penalizes

m(A) when only two sensors are used. As a result, m(A) starts with lower evidence for the

proposed method compared to other methods (number of sensors = 2). But with inclusion

of correct evidences from sensor 3 and 4, m(A) converges towards 1 quickly for the proposed

method, compared to other methods. As m(A) evidence converges towards 1, convergence

rate becomes slow for all the methods. Zoomed in view shows that the proposed method

has higher m(A) evidence after fusing 5 sensor evidences, compared to other methods from

literature.

It can be seen from Example 6.7 that, this method is applicable for any multi-sensor

system because fusion occurs after classification ID is created from sensor output. As an

example, let’s assume multiple cameras are used for object classification. Camera output

(video/image) will go through a classifier (example: neural-network) for object ID classi-

fication. After classification, output may have similar syntax to Example 6.7. Then the

proposed method can be applied to find out which sensor is providing erroneous data and

fuse them accordingly.

6.6 Proposed Steps for Time-domain Data Fusion

The same eight-step algorithm is slightly modified to fit time-domain sensor fusion

paradigm. It calculates the relative distances between the sensor data at each time step

(classification output). Then based on average distance, it classifies which time-step output

105

Figure 6.1. Comparison of convergence of evidence m(A) for Example 6.7.

is credible and which time-step output is incredible. Then it penalizes the incredible time-

step output using the entropy function so that incredible time-step has less effect on fused

output. It also rewards the credible time-step input so that credible time-step carries more

weight towards fused output. Credible time step is the time-step which contains credible

or true data. Incredible time step contains untrue or unreliable data. At the end, modified

evidence is fused using original DS sensor fusion equation. The proposed algorithm can

also be applied to space-domain sensor fusion with some minor modification [143]. As an

example, each sensor could be a camera. From each camera, multiple object classification

output can be obtained when video feed goes through a neural-network type classifier. Clas-

sification ID’s from multiple cameras can be fused together using the proposed algorithm.

Due to faulty sensors or obstructed view, neural-network output from cameras can generate

wrong classification ID. In space-domain, the proposed algorithm finds out which sensors

are generating wrong classification ID and penalizes the wrong classification ID by assigning

less weight to that sensor output.

The proposed decision level sensor fusion algorithm has multiple advantages:

106

𝑚1(𝐻1) 𝑚1(𝐻2) ⋯ ⋯ 𝑚1(𝐻𝑀)
⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮

𝑚𝑁(𝐻1) 𝑚𝑁(𝐻2) ⋯ ⋯ 𝑚𝑁(𝐻𝑀)

Object M

Sensor 2

Sensor N

⋮

Object 1 Object 2

Sensor 1

⋯

t1

t2

ts

Time-steps

Information Matrix

Step 2 – Step 8:
Time - domain
fusion

𝑚1 𝐻1
𝑚1(𝐻2) ⋯ ⋯ 𝑚1(𝐻𝑀)

⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮

𝑚𝑁(𝐻1) 𝑚𝑁(𝐻2) ⋯ ⋯ 𝑚𝑁(𝐻𝑀)

Step 2 – Step 8:
Space - domain
fusion

(t1 – ts)

𝑚 𝐻1
𝑚 𝐻2

⋯ ⋯ 𝑚(𝐻𝑀)

(t1 – ts)(m1 – mN)

Figure 6.2. Simple representation of sensor-fusion in space and time domain.

107

• Improves the limitations of the original DS combination rule.

• Combines results from both homo-genius and hetero-genius sensors at decision level.

• Can detect faulty sensors in a system and compensate so that faulty sensor doesn’t

affect fused results.

Simplified format of this process with resulting output is presented in Fig. 6.2 . First,

a 3-dimensional information matrix is created which contains all the sensor evidences from

time step t1 − ts. At time-domain fusion, information from all the selected time-steps are

fused and output is a 2-dimensional matrix. At space-domain fusion, information from all

the sensors are fused and output is a vector which contains classification evidence (% output)

for each object. Following steps show the modified algorithm for time-domain fusion:

Step 1: Build a multi-time-steps information matrix. Assume there are N time-steps in

the frame Θ = {H1, H2,, HM}.



m1(H1) m1(H2) . . . m1(HM)

m2(H1) m2(H2) . . . m2(HM)
...

mN(H1) mN(H2) . . . mN(HM)


=



t1

t2
...

ts


(6.20)

Step 2: Measure the relative distance between each time-step data. Assuming that there

are two mass functions indicated by mi and mj on the discriminant frame Θ, the Jousselme

distance between mi and mj is defined as:

DM(mi, mj) =
√

1
2 · (mi − mj) · D · (mi − mj)T (6.21)

where D = |A∩B|
|A∪B| , and |.| represents cardinality.

Step 3: Calculate sum of distance for each time-step.

di =
N∑

j=1 & j6=i
DM(mi, mj) (6.22)

108

Step 4: Calculate global average of distance for all time-steps considered.

d̄ =
∑N

i=1 di

N
(6.23)

Step 5: Calculate belief entropy for each time-step using (6.11) and normalize:

EP (mi) = Ep(mi)∑
Ep(mi)

(6.24)

Step 6: The time-step data set is divided into two parts: the credible time-step and the

incredible time-step.
If di ≤ d̄, mi is credible time step

If di > d̄, mi is incredible time step
(6.25)

The intuition is that, if data at a specific time-step has higher distance than average distance

then probably that time-step is faulty and should be penalized (incredible time-step). If data

at a specific time-step is lower than average, then that time-step is in harmony with other

time-steps and should be rewarded (credible time-step). As a result, following Reward and

Penalty function is proposed:

For credible time step, Reward function = −ln(EP (m))

For incredible time step, P enalty function = −ln(1 − EP (m))
(6.26)

Reward and penalty values are normalised to get the weight of each time-step.

wi = Reward or P enalty∑
Reward or P enalty

(6.27)

Step 7: Modify the original data of each time-step.

m(A) =
s∑

i=1
mi(A).wi (6.28)

Step 8: : Combine modified data of s time-steps for (s − 1) times with DS combination

rule using (6.5) and (6.6).

109

6.6.1 Anti-disturbing Ability and Transition Property of Proposed Algorithm

The goal of the time domain fusion is to deal with the conflict between time domain

data. Time domain fusion works as a damper for sudden changes. It also improves accuracy

if evidences are credible. Following example is used to compare results from the literature.

Example 6.8: Assuming that the discriminant frame of a mid-course ballistic target inte-

grated identification system is Θ = {A, B, C}. Multiple sensors have identified the targeted

category at five consecutive moments, as shown in Table 6.5 .

Table 6.5. Input data of each time step for Example 6.8
time-steps m(A) m(B) m(C)

T1 = 0 0.6 0.1 0.3
T2 = 1 0.65 0.15 0.2
T3 = 2 0.6 0.2 0.2
T4 = 3 0 0.85 0.15
T5 = 4 0.55 0.2 0.25

From Table 6.6 , it is evident that when the sensors provide the undisturbed data at time

step T1 − T3, Dempster’s rule, Song-1 method, Song-2 method, Chengkun’s method and

the proposed method can make a correct decision at any moment. When the sensors are

disturbed at time T4, Dempster’s rule has fallen into the trouble of ‘one-ballot veto’ paradox

and failed to correctly identify m(A). Song-2 method shows slightly better performance

against the adversarial information at T4 compared to Song-1 but fails to correctly identify

m(A). Chenkung’s method shows better robustness against change compared to Song’s

method.

110

Table 6.6. Data combination results based on different combination methods
for Example 6.8

Methods T2 = 1 T3 = 2 T4 = 3 T5 = 4

Dempster

[51]

m(A) = 0.838,

m(B) = 0.032,

m(C) = 0.129

m(A) = 0.939,

m(B) = 0.012,

m(C) = 0.048

m(A) = 0,

m(B) = 0.586,

m(C) = 0.413

m(A) = 0,

m(B) = 0.531,

m(C) = 0.468

Song-1 [60]

m(A) = 0.767,

m(B) = 0.076,

m(C) = 0.155

m(A) = 0.797,

m(B) = 0.091,

m(C) = 0.111

m(A) = 0.0,

m(B) = 0.843,

m(C) = 0.157

m(A) = 0.317,

m(B) = 0.458,

m(C) = 0.224

Song-2 [59]

m(A) = 0.665,

m(B) = 0.077,

m(C) = 0.182,

m(φ) = 0.075

m(A) = 0.664,

m(B) = 0.089,

m(C) = 0.137,

m(φ) = 0.109

m(A) = 0.246,

m(B) = 0.471,

m(C) = 0.135,

m(φ) = 0.146

m(A) = 0.503,

m(B) = 0.27,

m(C) = 0.194,

m(φ) = 0.032

Chengkun

[61]

m(A) = 0.746,

m(B) = 0.09,

m(C) = 0.163

m(A) = 0.771,

m(B) = 0.106,

m(C) = 0.123

m(A) = 0.679,

m(B) = 0.191,

m(C) = 0.128

m(A) = 0.708,

m(B) = 0.138,

m(C) = 0.153

Proposed

m(A) = 0.833,

m(B) = 0.033,

m(C) = 0.133

m(A) = 0.943,

m(B) = 0.017,

m(C) = 0.039

m(A) = 0.971,

m(B) = 0.007,

m(C) = 0.022

m(A) = 0.987,

m(B) = 0.002,

m(C) = 0.01

From Fig. 6.3 , it is obvious that at time step T4 = 3, the fluctuation of m(A) in the

proposed method is non-existent. All the other methods show some extent of fluctuation

towards lower m(A) data. But the proposed method penalizes that time-step data and keeps

improving m(A). This shows that the proposed method can effectively handle the conflicting

information of time-domain data and has stronger anti-disturbing ability.

Proposed algorithm puts higher weights on time-steps when data agrees with one another.

Also if at T4, a small value of m(A) was used instead of zero (say, m(A) = 0.05), the proposed

algorithm would still produce superior fusion results. At T4, m(A) value for original DS fusion

rule wouldn’t go to zero but still would be a very small number. Chengkun, Song-1 and Song-

111

1
2

Figure 6.3. Comparison of anti-disturbing ability of several combination rules
for Example 6.8.

2 would produce slightly better fused result with less deviation (or dip) compared to current

result but would still contain downward deviation for fused m(A). On the other hand, the

proposed method would use the small value of m(A) as a positive reinforcement and would

produce higher fused m(A) value compared to the results from Fig. 6.3 . When time-step

data are transitioning from one BPA to another in time domain, it would be interesting to

see how the proposed algorithm cope with the new time-steps which have higher evidence on

a different BPA. Also, how quickly the algorithm can response along the transition. Example

6.9 shows the transition property of our algorithm.

Example 6.9: Assuming that the discriminant frame of a mid-course ballistic target

integrated identification system is Θ = {A, B, C}. Multiple sensors have identified the

targeted category at five consecutive moments. As shown in Table 6.7 . The target has

changed from A to B after time step T2.

112

Table 6.7. Input data of each time step for Example 6.9

time-steps m(A) m(B) m(C)

T1 = 0 0.6 0.1 0.3

T2 = 1 0.65 0.15 0.2

T3 = 2 0.2 0.6 0.2

T4 = 3 0.1 0.8 0.1

T5 = 4 0.15 0.75 0.1

At time domain fusion, another important goal is to make the system robust so that

time-step data can transition quickly between one another. As seen from Fig. 6.4 , proposed

method shows reasonable results for transition between time-step data. Time-step data of

m(B) stars to rise after T2. But fused m(B) stars to rise after T4. Based on input evidences,

it can be said that the proposed method takes 2 time steps for time-step data transition

which is quite robust for real time object classification application. As an example, let’s

say, camera can process video at 30 frames per second (FPS). Each time-step for this case

is, time needed to process each frame. Because new time-step data are gathered with each

frame. For 30 FPS, each time-step = (1/30) = 0.03 sec. If 2 time-steps are needed for proper

transition from one fused time-step data to another, it will take (2*0.03) = 0.06 sec, which

is quite robust for real-time application.

6.6.2 Modification of BPA for CNN Based Object Classification under DS
Framework

The goal is to understand the uncertainties related to CNN classifier and include that

within our DS framework. Classification report of model-2 from chapter 4 is presented in

Table 6.8 . Fig. 6.5 shows how the CNN classifier performs when a Pigweed plant and a

Ragweed plant placed separately. This is same as Fig. 4.9 . As we have seen, precision

and recall are good measures of how well the classifier works at weed classification. The

intuition is, the classifier is never 100% certain about any classification even if it shows 100%

classification output for any object, because the recall and precision value is not 1.0. Say

113

Original
evidence
change
start

Fused
evidence
change
start

Figure 6.4. Transition property of the proposed algorithm for Example 6.9.

for an image, the classifier outputs 100% that it is Ragweed. But among those 100%, only

96% are possibly relevant (Ragweed has 0.96 precision). And among those 96%, only 94%

is correctly classified (Ragweed has 0.94 recall). We can include these uncertainties into our

BPA using the following equations:

m(Hi)updated = Precisioni ∗ Recalli ∗ m(Hi) (6.29)

m(Θ) = 1 −
n∑

i=1
m(Hi)updated (6.30)

where Θ = {Ragweed, P igweed, Cocklebur}, is the universal set (Θ in Fig. 6.6) which

contains evidence for all three weeds.

114

Table 6.8. Classification report of CNN classifier (Model-2).

Cocklebur Pigweed Ragweed

Precision 0.94 0.94 0.96

Recall 1.0 0.89 0.94

Training accuracy 0.99 0.99 0.99

Figure 6.5. Real-time weed classification from video input using CNN classi-
fier (Model-2). Classification % is showing CNN output of video feed at each
time step. This CNN output is used as BPA in fusion algorithm.

Fig. 6.6 shows how incorporating precision and recall into BPA affects real-time weed

classification using CNN classifier. Top figure shows the classification results before fusion.

As expected, around 20% evidence is placed on Θ (universal set) for all time steps, which

contains evidence for all three weeds. Also, classification accuracy for Ragweed or Pigweed

never reaches 100% because remaining evidences are placed in Θ. Effectively, the summation

of uncertainties related to CNN classifier is placed into Θ. Which is another way of saying

that the classifier is not sure about the exact type of weed, so that percentage is placed into

115

Θ because it contains possibility of all three weeds. Bottom figure shows the time-domain

sensor fusion (time-step, ts = 5 used) after evidence update. With updated evidence, time-

domain fusion is still successful in filtering noise (reduce sudden changes – smoother curves)

from weed classification output and transition from one weed to another. One interesting

thing is, Θ value goes to zero which seems counter-intuitive. But Θ is a set which contains

evidence for all three weeds under closed world assumption. During each fusion step (we are

using ts = 5, we have 4 time-domain fusion steps), evidences from the universal set (Θ) is

distributed among all three weed evidences. As a result, Θ value goes down with each fusion

step.

Figure 6.6. Effect of considering precision and recall on updating BPA on
real-time weed classification. Classification % are showing BPA from equations
(6.29) and (6.30) [top figure]. Time-domain fusion of updated BPA for ts = 5.
Classification % showing fused results when BPA from equations (6.29) and
(6.30) goes through the proposed fusion algorithm [bottom figure].

116

6.6.3 Effect of Number of Time-steps (fusion-time) on Fused Output

Number of time-steps considered for time-domain fusion has direct impact on fused out-

put because with increased number of time-steps, higher volume of data is considered for

fusion. Fig. 6.7 shows the effect of fusion-time on time-domain sensor fusion. In this figure,

fusion-time, ts = 3 means we consider time steps (t1, t2, t3) for time-domain sensor fusion.

At the next time step t4, we discard t1 and consider (t2, t3, t4) for time-domain fusion and the

classification output is the fused result of this three time-steps. And this goes on until we

reach the end. In this same manner, ts = 5 means we consider five time steps (t1, t2, t3, t4, t5)

for time-domain sensor fusion. From Fig. 6.7 it can be seen that, fused results for all the

time steps are successful in filtering noise (reduce sudden changes – smoother curves) from

weed classification output and transition from one weed to another. In other words, proposed

algorithm captures the weed classification dynamics from video feed. Lower ts (ts = 3 and 5)

results are more responsive to changes compared to higher ts (ts = 10 and 15) results. Fused

weed classification outputs are basically weighted average of the classification values of the

fusion-time (ts) considered. As a result, if we consider high ts (say ts = 15), fused output

wouldn’t change much when at each step, only 1 set of new data is added to a set already

containing 15 sets of classification data. This shows that, ts is a tuning parameter for time-

domain fusion and this can be tuned based on better response (lower ts) or better robustness

(higher ts).

6.7 Application of the Proposed Algorithm

Using the proposed sensor fusion algorithm, we will try to analyze and improve three

limitations of single-camera based CNN classifications system:

• When faulty sensor is present.

• Unstable and possibly wrong classification ID from video feed.

• Unstable and possibly wrong classification due to partial occlusion of weed from camera

view.

117

Figure 6.7. Effect of fusion-time (ts) during time-domain sensor fusion on
real-time weed classification from video input. Classification % showing fused
results when BPA from Fig. 6.5 goes through the proposed time-domain fusion
algorithm (step 1 - step 8). from section 6.6

6.7.1 Fusion when Faulty Sensor is Present in Sensor-array

In a perfect world, the moment a CNN classifier sees an object, it should classify that

object with 100% classification accuracy. But in real world, the classification accuracy varies

a lot due to noise, lighting, vibration, occlusion etc. A steady output is needed from object

classification system to spray system to spray herbicides accurately. A multi-sensor fusion

architecture with capability to fuse evidence in time and space domain is proposed (Fig.

 6.9) to create a steady classification output. In time domain, a certain number of time-steps

(ts = 10 for this case) is chosen to fuse the evidences for each sensor. Because evidences

are weighted by the fusion algorithm, if at a certain time step, a sensor output disagrees

with other time steps (wrong classification), it will be given less weight. If higher number

of ts is considered for time domain fusion, the output will be more robust against wrong

classification (smoother curve) but the response time (rate of change of classification output)

will be slower. ts is a tuning parameter for time-domain fusion and this can be tuned based

118

on faster response (lower ts) or better robustness (higher ts). An artistic representation of

how multiple cameras can be placed on an AgBot is shown in Fig. 6.8 .

Figure 6.8. Placement of multiple cameras on an AgBot.

With increasing number of sensors, the possibility of finding a faulty sensor also increases.

Any multi-sensor fusion algorithm should be able to find the faulty sensor in the system and

compensate for that in fusion architecture. The proposed algorithm is able to find the faulty

sensor in space domain fusion step because faulty sensor disagrees with the evidences from

other sensors. The algorithm compensates for that by applying less weight to the faulty

sensor evidences so that it has less effect on final classification output. Fig. 6.10 shows the

classification outputs at each step depicted by Fig. 6.9 . At the top, Fig. 6.10 shows the

time steps where Ragweed and Pigweed should be classified with 100% accuracy (ground

truth). Fig. 6.10 (a) and (b) shows the classification output from each camera for Pigweed

and Ragweed respectively. Between time steps 20 - 40 and 60 - 100, CNN is showing wrong

classification (between 20 - 40 it’s not 100% classification output for Ragweed) possibly due

to noise and vibration. Also in this scenario, right camera (synthetically introduced data:

faulty sensor) is showing contradicting output compared to center and left camera. The goal

is to observe how the fusion algorithm handles the faulty evidence from right camera. Right

camera is showing higher accuracy of Pigweed for time steps 20 - 80 (where it should be

high accuracy for Ragweed from ground truth) and for time steps 100 - 150 showing higher

119

accuracy for Ragweed (where it should be Pigweed). After time step fusion (Fig. 6.10 (c)),

unstable outputs are reduced (smoother curve) but right camera still showing wrong output.

After space fusion (Fig. 6.10 (d)), the faulty evidence from right camera is compensated

with lower weights. Final output shows steady and accurate weed classification depicting

ground truth values.

Camera - Left Camera - Center Camera - Right

CNN Classifier -> ID Declaration

Time domain fusion -> Stabilize classification output

Space domain fusion -> Faulty sensor detect and contain
Final Object
Classification

Camera Region of interest
Ragweed

Pigweed

Camera moving
direction

Figure 6.9. Reduced unstable classification with time domain sensor fusion.
Reduce the effect of faulty sensor evidence with space domain sensor fusion.

6.7.2 Fusion when Weed is Partially Occluded

Partial occlusion can occur in the field due to wind, bumpiness or weed growing outside

the region of interest of the camera. Fig. 6.11 shows partial occlusion scenario for our multi-

sensor setup. Zoomed in image showing the views of different cameras. For the first half

of the video, Pigweed is partially occluded for center and left camera but full exposure for

right camera. For the last half of the video, Ragweed is partially occluded for center and

right camera but full exposure for left camera. Potted plants are carefully placed to create

this scenario of partial occlusion.

Classification accuracy and fusion steps are shown in Fig. 6.12 . Ground truth values for

the time steps are shown at the top. Between time step 20 - 30, left camera shows loss in

120

Figure 6.10. Ground truth value for Ragweed and Pigweed at the top. (a)
Classification accuracy from left, center and right camera for Pigweed. (b)
Classification accuracy from left, center and right camera for Rigweed. (c)
Reduced unstable output (smooth curve) with time domain fusion. Each line
shows the classification % of a specific weed for a specific camera. (d) Elimi-
nated the effect of faulty sensor (right camera) evidence on final classification
output with space domain fusion.

classification accuracy (Fig. 6.12 (a)) for Pigweed, possibly due to partial occlusion. Between

time step 70 - 80, right and center camera show loss in classification accuracy (Fig. 6.12 (b))

for Pigweed. A small time step (ts = 3) is used for time domain fusion step to capture the

dynamics of the system. In space domain fusion, error classification due to partial occlusion

is reduced by the algorithm. As an example, between time step 20 - 30, evidence from left

camera contradicts with right and center camera. Right and center camera are showing high

evidence for Pigweed, whereas left camera is showing contradicting evidence. As a result,

evidences from left camera are penalized during these time steps. Final fused classification

output is able to capture the classification accuracy of the ground truth value which is

marked at the top of the figure.

121

Camera - Left Camera - Center Camera - Right

CNN Classifier -> ID Declaration

Time domain fusion -> Stabilize classification output

Space domain fusion -> Improve partially occluded classification
Final Object
Classification

Partially occluded Pigweed

Partially occluded Ragweed

Camera moving
direction

Left
camera

Center
camera

Right
camera

Left
camera

Center
camera

Right
camera

Figure 6.11. Improved classification for partially occluded weed data with
space domain sensor fusion.

Figure 6.12. Ground truth value for Ragweed and Pigweed at the top. (a)
Classification accuracy from left, center and right camera for Pigweed. (b)
Classification accuracy from left, center and right camera for Rigweed. (c)
Reduced classification error (smooth curve) with time domain fusion. (d)
Eliminated the effect of partial occlusion on final classification output with
space domain fusion.

122

6.8 Conclusions

An eight step algorithm under DS framework is introduced as an innovative methodology

that can be used to better capture uncertainties related to decision level multi-sensor fusion.

A novel entropy function is proposed based on Shannon entropy which takes into account

the central value of probability interval and cardinality of both focal elements and FOD. As

a result, it is better at capturing uncertainties under DS framework compared to Shannon

and Deng entropy. The proposed algorithm calculates distances between multiple evidences

(sensors). Based on evidence distance, it rewards the evidence which agrees with one another

and penalizes the evidences which disagrees. The proposed entropy function is used to

calculate the weights of the evidences. Conflicting evidences are modified before using them

for spatial domain fusion. Classical DS combination rule is used for decision-level sensor

fusion; as a result, associative and commutative properties are kept. The proposed method

is able to suppress the paradoxes of classical DS combination rule. Detailed example shows

that the proposed method produces competitive convergence rate and fusion accuracy in

terms of combining the conflicting evidences in spatial domain. In time domain, transition

property of proposed method from one evidence to another proved to be compatible for real

time application. Uncertainties of CNN based classifier are included into the fusion algorithm

using reconstructed BPA with precision and recall values from the classifier. Evidence fusion

algorithm is tested with real-time video input for weed classification. Number of times-steps

(ts) considered for time-domain data fusion is an important tuning parameter. Smaller ts

value shows fast-response in classification output, bigger ts value shows more robustness.

Results show that proposed algorithm is able to include CNN uncertainties into the evidence

fusion framework and applicable for real-time object classification from video feed. Also for

real life application, multiple sensors are needed to correctly classify weeds from multiple

points of view. The fusion algorithm is able to stabilize classification output from CNN with

time domain fusion. Using space domain fusion, faulty sensor can be detected (if present in

the sensor array) and its effect on final classification output is successfully minimized. The

proposed fusion algorithm is also able to reduce classification error introduced by partial

123

occlusion of weeds from camera view. Final weed classification output from the fusion

algorithm is correct, robust and stable in these challenging scenarios.

124

7. IMPROVING THE ROBUSTNESS OF OBJECT

DETECTION THROUGH A MULTI-CAMERA BASED

FUSION ALGORITHM USING FUZZY LOGIC

A single camera creates bounding box (BB) for the detected object with certain accuracy

through Convolution neural network (CNN). However, a single RGB camera may not be

able to capture the actual object within the BB even if the CNN detector accuracy is high

for the object. In this research, we present a solution to this limitation through the usage of

multiple cameras, projective transformation, and a fuzzy-logic based fusion. The proposed

algorithm generates a ‘confidence score’ for each frame to check the trustworthiness of the

BB’s generated by the CNN detector. As a first step toward this solution, we created a

two-camera setup to detect objects. Agricultural weed is used as objects to be detected.

A CNN detector generates BB for each camera when weed is present. Then a projective

transformation is used to project one camera’s image plane to another camera’s image plane.

The intersect over union (IOU) overlap of the BB’s is computed when objects are detected

correctly. Four different scenarios are generated based on how far the object is from the multi-

camera setup and IOU overlap is calculated for each scenario (ground truth). When objects

are detected correctly and bounding boxes are at correct distance, the IOU overlap value

should be close to the ground truth IOU overlap value. On the other hand, IOU overlap

value should differ if BB’s are at incorrect positions. Mamdani fuzzy rules are generated

using this reasoning and three different confidence scores (‘High’, ‘OK’, ‘Low’) are given to

each frame based on accuracy and position of BB’s. The proposed algorithm was then tested

under different conditions to check it’s validity. The confidence score of the proposed fuzzy

system for three different scenarios supports the hypothesis that the multi-camera based

fusion algorithm improved the overall robustness of the detection system.

7.1 Objectives

Weed can be detected with a CNN based detector with very high accuracy and at real-

time. If we use multiple cameras then the robustness of the overall system increases. When

we use a detector to create a BB, it gives us the accuracy percentage of objects inside the

125

BB and the position of the BB. In this chapter, we explore the possibility of improving the

overall system robustness by measuring the “confidence” of BB position of multiple cameras.

The detector will give us the position of BB on each image plane. But how do we know for

sure that the position of the BB is correct? When we are detecting an object using multiple

cameras, the position of the BB on the camera image plane may appear in different places

based on the detection accuracy and the position of the cameras. But in 3D space, the

object is at the exact same position for both cameras. We will manipulate this information

to calculate the confidence score of the BB position using projective transformation, IOU

overlap value and fuzzy logic based fusion. We will complete the following steps to calculate

the confidence score:

• Create a two-camera setup and calculate the homography between the two cameras.

• Place weed (object) at different specific distances from the camera setup.

• Use a CNN detector to create BB of detected weed on both camera. Use best possible

detection BB so that the weed is perfectly detected and inside the BB.

• Use homography matrix to project one camera image plane over another and then

calculate the IOU overlap values of the BBes after projection for different weed position.

• The logic is, if perfect BB is created at a certain distance of weed position then it will

have a specific IOU overlap value. We will have “High” confidence for this scenario.

If the position or IOU value deviates from perfect condition then we will have “less

than High” confidence on the detection. Use fuzzy “If-then” rules to capture these

conditions.

• Use defuzzification to get the crisp “confidence” value for different scenarios.

7.2 Projective Transformation

In a pinhole camera model, a point in 3D space is projected onto an imaging surface

which is called image plane [144]. All rays (or points) of light passes through a single point

which is called camera center. The size of the object on image plane can be calculated from

126

similar triangle. Assuming the camera is calibrated or there are no distortions (radial and

barrel distortion), a point (X, Y, Z) in physical world is projected onto image plane at (x, y)

location with following equations:

x = f.X/Z (7.1)

y = f.Y/Z (7.2)

where, f is the focal length.

The relationship that maps a set of points from one image plane to a set of points to

another image plane is called projective transformation. Planar homography is the projective

mapping from one plane to another. According to Hartley and Zisserman [86], projective

transformation is defined as, “A planar projective transformation is a linear transformation

on homogeneous 3-vectors represented by a non-singular 3-by-3 matrix.”


x1

x2

x3

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33




x1

x2

x3

 (7.3)

Or in short, x = H.x, where H is the homography matrix. This homography matrix

relates the position of a point from source image plane (image plane 1 in Fig. 7.1 (a)) to

a destination image plane (image plane 2 in Fig. 7.1 (a)). (x1.x2, x3)T and (x1.x2, x3)T are

coordinates of a single point on two image planes. Also, H is a homogeneous matrix, which

means only the ratio of the matrix elements are important. There are eight independent

ratios in H (h33 is a scaling factor) which means a projective transformation has eight

degrees of freedom [86]. Here, homogeneous coordinates are used to represent the points. In

homogeneous coordinate system n dimensional vector is represented as a (n+1) dimensional

vector ((x, y) coordinate becomes (x, y, z)). Homogeneous coordinates can be converted to

inhomogeneous coordinates very easily (x = x/z and y = y/z). This is a mathematical trick

to represent rays of light as points, because image plane projects a ray of light on a point.

127

x1

x2

x3

x4

x1
x2

x3

x4

Image plane 1
Image plane 2

Camera center 1
C

Camera center 2
C

World plane

(a) (b)

Camera 1 Camera 2

Coplanar world points
on checkerboard

Figure 7.1. (a) For multiple cameras, image planes are related by projective
transformation when all world points are co-planer. (b) Actual setup of two
cameras with co-planer checkerboard points.

Let’s consider a pair of inhomogenIOUs matching points (x, y) and (x, y) on image plane

1 and 2 respectively. We are considering inhomogenIOUs coordinates because they can be

measured directly from image plane (coordinates of points in pixel). From equation (7.3):

x = x1

x3
= h11x + h12y + h13

h31x + h32y + h33
(7.4)

y = x2

x3
= h21x + h22y + h23

h31x + h32y + h33
(7.5)

After rearranging:

x(h31x + h32y + h33) = h11x + h12y + h13 (7.6)

y(h31x + h32y + h33) = h21x + h22y + h23 (7.7)

128

Four points on each image plane will create eight linear equations and four points are

sufficient to solve for H between two image planes. The only condition is, no three points

can be collinear [86]. After H matrix is calculated, it is then applied to the whole image

plane 1 to convert it to image plane 2.

Few important remarks:

1. Camera intrinsic parameters or pose are not needed to calculate H.

2. If only four points are used to calculate H, outliers can create incorrect H matrix.

3. Including more points and using robust method to minimize reprojection error will

help to calculate correct H matrix.

7.2.1 Homography Matrix Calculation

We have established that no camera or pose parameters are needed to calculate homog-

raphy matrix, H. As a result the following steps are followed to calculate H:

1. Place a printed checkerboard pattern infront of the cameras (Fig. 7.1 (b)).

2. Measure the pixel locations of checkerboard corners for each camera (Fig. 7.2 and Fig.

 7.3).

3. Calculate the reprojection error which is the sum of squared euclidean distances be-

tween H times the camera 2 checkerboard corner points and camera 1 checkerboard

corner points.

4. Use an optimization algorithm to minimize reprojection error for a specific H matrix.

We have tested four different optimization algorithm for H matrix calculation. Then we

calculate the projection error between the actual checkerboard corner location and projected

checkerboard corner location. Error is calculated interms of how much each corner point

deviate from actual corner location in terms of pixels. All results are presented in Table

 7.1 . Because we are measuring the corner locations offline, robust methods are specifically

necessary for our use case. Once the H matrix is calculated, that will remain same as long as

129

camera positions are constant. As table 7.1 shows both least mean square and least median

square resulted minimum reprojection error. The H matrix calculated is:

H =


9.29968576e − 01 −8.34785721e − 01 3.28368011e + 02

3.21580417e − 01 9.89425377e − 01 −3.15245367e + 02

−7.93435882e − 05 5.73575359e − 05 1.0

 (7.8)

Fig. 7.4 shows how H matrix is used to reproject camera 2 view into camera 1 view. Left

image of Fig. 7.4 is the actual left camera view (Fig. 7.2) multiplied by H which projects

the left camera view into right camera view.

Table 7.1. Optimization methods and reprojection error.

Method Reprojection error (pixel/point)

Least mean square 1.621

RANSAC [94] 1.715

Least median square [145] 1.621

PROSAC [146] 1.961

7.3 CNN based Weed Detection from Classification

We want to calculate the value of IOU overlap when weed is detected on both camera.

To do that, first we need the bounding box (BB) for the detected weed. Until now we have

trained a CNN classifier (VGG16 with transfer learning) in Chaper 4. Now we will fit a

detector on top of the classifier to get the BB. We should mention that, we are just fitting a

detector, we are not training the detector for better performance. The steps to fit a detector

on top of the classifier is shown in Fig. 7.5 .

First an image pyramid is created to deal with different scale factors. The reason is to

detect objects at different scale. As image pyramid grows bigger, it will help to detect bigger

objects. Then we run a sliding window at each scale of the pyramid. The size of the sliding

window should depend on the size of the object to be detected. At each position of the

130

Figure 7.2. Checkerboard corner points for left camera (camera 2).

sliding window, we are passing it through the CNN classifier and saving the class label with

% accuracy. Basically we are creating a lot of bounding boxes with class label accuracy and

saving their location. Then we pass all the BBs through an algorithm called non maximum

suppression (NMS). NMS takes a BB, then calculates IOU with all the other BBs. If IOU

value is over some predetermined threshold then that BB is discarded, else that BB is kept.

Basically NMS tries to figure out which one is the unique BB. These steps are standard and

close to the steps followed in SSD [147] but without the training.

7.3.1 IOU Overlap Calculation

Now that we have the BB from detector, we want to calculate the IOU value for left and

right camera BB. We want to see how the IOU value changes before and after reprojection

when weed is detected correctly and BB is created. We also want to see how IOU value

changes when weed is detected at different distances from camera.

Fig. 7.6 shows how BBes from both cameras overlap each other at different distances.

“Too far” is about 36 inches away from camera and “too close” is about 8 inches away from

131

Figure 7.3. Checkerboard corner points for right camera (camera 1).

camera. BB sizes are fixed for both camera. We also assume perfect detection. As the weed

move closer to the camera, we can see that the BB overlap is decreasing and for “Too close”

position, without reprojection BB overlap is zero. With reprojection (Left camera image is

reprojected using H) BB overlap still decreases as weed moves closer to camera. Homography

is 2D transformation from one camera image plane to another camera image plane. But the

object (weed) we are detecting is actually 3D. As a result, as we move closer to camera, BB

overlap decreases because projection of the 3D object onto a 2D plane deviates more. If the

objects we are detecting were 2D then after reprojection, BB overlap would remained more

or less the same.

Fig. 7.7 shows how IOU value changes when weed distance changes for two different

BB sizes. IOU overlap after reprojection is always bigger than before reprojection. As we

move farther, the difference between two different systems reduces. Also for smaller BB size,

IOU before projection goes to zero when weed at “close” position. This makes sense because

smaller BB has smaller chance of overlap. IOU overlap between two different camera BB

changes with BB size. In actual scenario, a CNN detector will create BB based on the size

132

Reprojected Camera 2 view

Camera 1 view
H . Actual Camera 2 view

Figure 7.4. Reprojection of camera 2 image to camera 1 image using homog-
raphy matrix.

or shape of the object and they will be different based on scenario. But for this study, we

have kept the BB size constant (BB width: 500 pixels, height: 350 pixels). But in future,

different BB sizes could be considered and IOU value should be calculated for a range of BB

sizes.

7.4 Fuzzy Logic

Fuzzy logic was invented by Lotfi Zadeh [148] by combining crisp logic and set theory.

In reality, many concepts are better defined by human words than by mathematics. Zadeh

tried to capture that link between human language and mathematics. Zadeh used fuzzy sets

to capture that relationship. If there is uncertainty about membership data regarding that

data belonging to a particular set, fuzzy sets are used to define that data to a partial set.

As an example, if fuzzy sets are used to define the bounding box position of weed that can

be defined as “too close”, “close”, “far” or “too far”; and for confidence of fused bounding

box as “low”, “OK” and “high”. The membership degree quantifies the level of how that

data belongs to that set. As an example, in the case of bounding box distance from camera

center:

133

Input Image

Build Image Pyramid with scale factor

Run sliding window at each scale of image pyramid

Pass each sliding window through CNN classifier

Record class label and bounding box location

Apply Non-maximum Suppression

Get Final detection bounding box

Figure 7.5. Steps to create a object detector from CNN classifier.

134

Too far

Far

Close

Too close

Left camera Right camera
BB overlap before
reprojection

BB overlap after
reprojection

Figure 7.6. How BB overlap changes when weed is placed at different distance
from camera. “Too far”, “Far”, “Close” and “Too close” represents the distance
of the weed from camera. “After reprojection” shows the BB overlap when left
camera image is reprojected using H. BB size, width: 500 pixels; height: 350
pixels.

mdistance(y) ∈ [0, 1] (7.9)

where mdistance(y) is the degree of membership y has in fuzzy set of “distance in camera

view” and y is the vertical distance from top of the camera view in pixel value. Fig. 7.8

shows this.

Membership function expresses various degrees of strength between the elements in fuzzy

set. If likelihood is higher that an element belongs to a certain set then the membership

strength is also higher. Membership strength of zero means that the element doesn’t belong

to that set, and membership strength of one means that the element definitely belongs to

that set. In this study, fuzzy sets are used to define the distance of bounding box, IOU

overlap and confidence in bounding box position.

135

(a) (b)

Figure 7.7. IOU overlap value with respect to distance from camera.(a) BB
size, width: 500 pixels; height: 350 pixels.(b) BB size, width: 450 pixels;
height: 300 pixels.

The membership function design is based on a combination of our personal experience and

the knowledge we gained from the camera setup testing. In Fig. 7.8 and 7.9 the membership

function for right and left camera bounding box position is presented respectively. Weed

is placed at four different distances in-front of the camera as shown in Fig. 7.6 . Fuzzy

names are selected based on their position (“too far”, “close” etc.). Triangular membership

functions are selected to represent their strength. As an example, in Fig. 7.8 , for “too far”

position, BB distance has maximum degree of membership (one) at position 150 (pixel).

Which means when weed is placed at “too far” position and the best BB is generated by the

CNN detector, the BB y-position center (vertical distance) is found at 150 pixels from the

top position of the camera view. In Fig. 7.10 the membership function for IOU overlap is

presented. It’s derived from Fig. 7.7 (a). As an example, for “close” position the IOU overlap

value from Fig. 7.7 (a) is 15%. Which means, when weed is placed at “close” position and BB

is created from CNN detector, for perfect detection (best possible fit of BB over the weed for

our test set) the IOU overlap value will be 15%. The overlap value will be different if it’s not

136

distance, y

Figure 7.8. Fuzzy set for weed bounding box distance in camera view for
right camera. [Input].

a perfect detection at this position. Gaussian membership function is used to represent this.

Fig. 7.11 shows the confidence membership function. If the BB distance and IOU overlap

value perfectly match then they will have “High” confidence. And based on their deviation

from perfect condition and the fuzzy rule-set, they can be “OK” or “Low”.

7.4.1 Fuzzy Steps and Rule-set:

The overall fuzzy system with inputs, rule evaluations, defuzzification (output) is pre-

sented in Fig. 7.12 . Following steps are followed for the application of fuzzy analysis:

1. Identify inputs with their ranges and name them: In this study, the subsets for weed

distance and IOU overlap are too close, close, far, too far.

2. Identify output with their ranges and name them: In this study, the subsets for confi-

dence are Low, OK and High.

137

Figure 7.9. Fuzzy set for weed bounding box distance in camera view for left
camera. [Input].

3. Create degree of fuzzy membership function for inputs and output: Fig. 7.7 (a), 7.8 ,

 7.9 , 7.10 and Fig. 7.11 shows this.

4. Construct the rule base for the system based on expert judgement: The rules cre-

ates a linguistic relationship between the input variables and the output. In a fuzzy

“IF..THEN” rule, the IF part is the premise and the THEN part is the output based

on premise. The rules can be combined with logical “or” or logical “and”. Here, the

three input variables are: RightCam BB (right camera BB distance), LeftCam BB

(left camera BB distance, and IOU overlap, and the output variable is Confidence.

The generic conditional statement used in this study is:

Rn : IF RightCam BB is A(n) and LeftCam BB is B(n)

and IOU overlap is C(n)

THEN Conf idence is D(n)

(7.10)

138

Figure 7.10. Fuzzy set for bounding box overlap between left and right camera [Input].

here, A(n), B(n) and C(n) are too close, close, far, too far and D(n) is Low, OK and

High. Twenty fuzzy rules are designed to optimize for the relationship between output

and inputs. All rules are not valid for this problem. Some rules might not get triggered

at all based on BB position and IOU overlap value. All rules are given equal weight

of one. The final output, Confidence is the union of the output fuzzy subsets for the

activated rules. In this research, Mamdani [149] inference is used. All the rules are

presented in Table 7.2 .

5. Defuzzification: Centroid defuzzification method is used in this research [77].

7.5 Results

Three scenarios are created and tested to check the performance of the fuzzy system. In

all the following scenario we are assuming that, the CNN detector is detecting the weed with

139

Figure 7.11. Fuzzy set for fusion confidence [Output].

100% accuracy inside the BB, the whole weed plant is visible from both cameras and there

is no occlusion.

7.5.1 Scenario 1: High Confidence

Weed at position “too close” is chosen to test the performance of the system. Fig. 7.13

shows all the steps of the fuzzy confidence score measurement system. For ‘High confidence’

situation, the CNN detector detects the weed correctly. The BB covers the whole weed for

both cameras and the weed is usually at the center of the BB. As three inputs, we measure

the vertical center distance of the BB for both cameras and the IOU overlap score. All three

inputs goes into the fuzzy rule-set. For a specific position of the weed in 3D world, if the

weed is detected by both cameras correctly then they should have a specific IOU overlap

value which we receive from Fig. 7.7 (a). As a result, all these inputs trigger the fuzzy-rule

4 (R4 in Table 7.2). This follows one of the rules for High confidence. After defuzzification

we receive a confidence score of 88.6%. The fuzzy system gives a high confidence score

140

Figure 7.12. Basic configuration of the fuzzy system.

because the weed is detected correctly by both cameras. One important thing is, because

we are using gaussian membership function and centroid defuzzification, for high confidence

score will always provide a value between 70% and 100% but not exactly 100% even if the

detection meets all the criteria (rules) for perfect detection.

7.5.2 Scenario 2: OK Confidence

Weed at position “too close” is chosen to test the performance of the system. Fig. 7.14

shows all the steps of the fuzzy confidence score measurement system for ‘OK confidence’

situation. Here the right camera detects the weed correctly but the left camera detection is

partially correct and detecting the weed at a slightly left position than the actual position.

Although the BB center vertical distance for both right and left camera is correct and

comparable to ‘High confidence’ situation. But because left camera is detecting at a partially

correct position, this deviates the IOU overlap value and triggers rule 20 (R20 in Table 7.2).

As a result the fuzzy system gives it a confidence score of 50% which is a reasonable value

given the partial detection.

141

Table 7.2. Fuzzy rules.
Rules description

R1
IF (RightCam BB is too far) and (IOU overlap is too far) and
(LeftCam BB is too far) THEN (Confidence is High)

R2
IF (RightCam BB is far) and (IOU overlap is far) and (LeftCam
BB is far) THEN (Confidence is High)

R3
IF (RightCam BB is close) and (IOU overlap is close) and (Left-
Cam BB is close) THEN (Confidence is High)

R4
IF (RightCam BB is too close) and (IOU overlap is too close) and
(LeftCam BB is too close) THEN (Confidence is High)

R5 IF (RightCam BB is too far) and (LeftCam BB is too close) THEN (Confidence is Low)
R6 IF (RightCam BB is too far) and (LeftCam BB is close) THEN (Confidence is Low)
R7 IF (RightCam BB is too far) and (LeftCam BB is far) THEN (Confidence is Low)
R8 IF (RightCam BB is far) and (LeftCam BB is too far) THEN (Confidence is Low)
R9 IF (RightCam BB is far) and (LeftCam BB is close) THEN (Confidence is Low)
R10 IF (RightCam BB is far) and (LeftCam BB is too close) THEN (Confidence is Low)
R11 IF (RightCam BB is close) and (LeftCam BB is too far) THEN (Confidence is Low)
R12 IF (RightCam BB is close) and (LeftCam BB is far) THEN (Confidence is Low)
R13 IF (RightCam BB is close) and (LeftCam BB is too close) THEN (Confidence is Low)
R14 IF (RightCam BB is too close) and (LeftCam BB is close) THEN (Confidence is Low)
R15 IF (RightCam BB is too close) and (LeftCam BB is far) THEN (Confidence is Low)
R16 IF (RightCam BB is too close) and (LeftCam BB is too far) THEN (Confidence is Low)

R17
IF (RightCam BB is too far) and (IOU overlap is Not too far) and
(LeftCam BB is too far) THEN (Confidence is OK)

R18
IF (RightCam BB is far) and (IOU overlap is Not far) and (Left-
Cam BB is far) THEN (Confidence is OK)

R19
IF (RightCam BB is close) and (IOU overlap is Not close) and
(LeftCam BB is close) THEN (Confidence is OK)

R20
IF (RightCam BB is too close) and (IOU overlap is Not too close)
and (LeftCam BB is too close) THEN (Confidence is OK)

7.5.3 Scenario 3: Low confidence

Weed at position “too close” is chosen to test the performance of the system. Fig. 7.15

shows all the steps of the fuzzy confidence score measurement system for ‘Low confidence’

situation. Here the right camera detects the weed correctly but the left camera detection

is less than partially correct and detecting the weed at a higher position than the actual

position. As a result, the BB center vertical distance is not comparable with ‘High confidence’

situation. This triggers rule 15 (R15 in Table 7.2). As a result the fuzzy system gives it a

confidence score of 10.8% which is a reasonable value given the less than partial detection.

One limitation of this fuzzy confidence measurement system is, this inherently assumes

one of the camera detection is correct. But if both of them are incorrect then this system

142

LeftCam y = 535 pixels

RightCam y = 525 pixels

IoU overlap = 2.1%

Fuzzy
Rule-set

Defuzzification

Confidence score = 88.6%

Figure 7.13. Fuzzy confidence score measurement (High confidence).

may produce less than ideal confidence score. There are two ways to tackle this limitation.

First, for video input, we can incorporate a tracking algorithm for each BB. If a BB position

deviates more than a threshold value than previous position and doesn’t follow a trend then

we can either discard that frame or discard that BB from fuzzy system to produce better

results. Secondly, we can incorporate more that two cameras into the system. Then we can

calculate the evidence distance (in this case BB position) for each camera and then discard

or give lower weight to the BB which deviates from usual norm. If we incorporate these into

the fuzzy system, then the system becomes more complex and losses the inherent advantage

of a fuzzy system which is easy to interpret.

7.6 Conclusions

In this research we use a fuzzy system to calculate the confidence score of the multi-

camera CNN object detector based on BB position and IOU overlap. First, we use a CNN

based object detector to detect weed at multiple positions in-front of the multi-camera setup.

Then we use projective transformation to project one camera’s image plane to another cam-

143

RightCam y = 525 pixels
Fuzzy
Rule-set

Defuzzification

Confidence score = 50%

LeftCam y = 535 pixels

IoU overlap = 17%

Figure 7.14. Fuzzy confidence score measurement (OK confidence).

era’s image plane. Then we calculate the IOU overlap value at each different position of the

weed for perfect detection. When we are detecting an object using multiple cameras, the

position of the BB on the camera image plane may appear in different places based on the

detection accuracy and the position of the cameras. But in 3D space, the object is at the

exact same position for all cameras. As a result, there is a relationship between IOU overlap

value of the BBes and the position of the BB on a camera image plane. If BB position or

IOU overlap value deviate from ideal condition, that gives us information regarding less than

perfect detection. We generate fuzzy rule-set using the relationship between BB position of

each camera and IOU overlap value. We test our fuzzy system for three different scenarios

which are ideal detection (High confidence), less than ideal detection (OK confidence) and

wrong detection (Low confidence). The confidence score of our fuzzy system for three differ-

ent scenarios proves our hypothesis regarding a relationship between IOU overlap and BB

position and makes a more robust overall multi-camera detection system.

144

RightCam y = 525 pixels
Fuzzy
Rule-set

Defuzzification

Confidence score = 10.8%

LeftCam y = 375 pixels

IoU overlap = 0%

Figure 7.15. Fuzzy confidence score measurement (Low confidence).

145

8. CONCLUSIONS

1. In this research, we propose a complete methodology to convert an agricultural vehicle

into an autonomous weeding robot. This robot should be able to detect crop rows

for autonomous navigation through crop fields, classify multiple weeds using a multi-

sensor array and send a robust, stable signal to the spray system for accurate herbicide

spray.

2. We propose and apply an unsupervised machine learning (clustering) based approach

for crop row detection. We incorporate classical computer vision technique to trans-

form camera image plane for better crop row detection. We also incorporate geometric

domain knowledge (crop row distance, size of weed and crop etc.) into our algorithm

to reduce false positive detection of crop rows. The proposed algorithm is applica-

ble for real-time usage on low spec hardware (without GPU) and shows good crop

row detection accuracy at very challenging scenarios. CAROLIF has average 9.2 FPS

inference on a dual-core cpu which is reasonable for real-time implementation in agri-

cultural robotics. Compared to Hough transform (IOU 0.58), sliding window (IOU

0.61), cluster-least sq. (IOU 0.7), CAROLIF shows superior performance (IOU 0.73).

Test on video data from an agricultural vehicle shows promising result for real-time

application. We achieve 90.5% accuracy, 96.6% precision and 93.3% recall on a video

containing very complex scenarios with shadow, intermittent crop growth and high

weed pressure. In situations, when even naked eyes may fail to detect crop rows cor-

rectly, detection accuracy deteriorates. But due to incorporating geometric domain

knowledge into algorithm, false positive detection of crop rows is low even in very

challenging scenarios.

3. We use histogram-based image statistics for image quality determination. Color based

image segmentation (segmenting green pixels from background) methods have reduced

performance under extreme lighting (solar glaring or dark shadows). We calculate the

quality of an image using the mean, variance, skew and kurtosis values of that image.

Good quality image has mean at the center (relatively), higher variance and lower skew

and lower kurtosis compared to bad quality image. If an image has bad quality criteria,

146

then we apply CLAHE to shift the pixel values towards good quality criteria. Test

shows that, changing image quality helps to improve the performance of segmentation

methods under extreme conditions. The processing time is fast (0.214 seconds) and

suitable for real-time control application.

4. For real-time weed classification, we propose and implement a transfer learning based

CNN method. We collect weed images from fields and greenhouse plants and create

our own dataset. The dataset is important because this dataset contains weed images

which captures real life scenarios, which is not always the case for published works

in weed classification. We train three different architectures on the dataset. End-

to-end CNN has the smallest inference time (0.064 seconds) but also the lowest test

accuracy (81%). VGG16 with transfer learning has highest test accuracy (94%) and

moderate inference time (0.266 seconds). Inception-ResNetV2 with transfer learning

has moderate test accuracy (88%) and highest inference time (3.68 seconds). This

study shows how different CNN architectures can affect the inference time and weed

classification accuracy when trained on a small dataset. Test on video data shows

that, CNN model is usually good at classifying weeds. But if there is a noise or foreign

objects that may be present, classification accuracy deteriorates and sometimes become

unstable. It shows the necessity of a decision level sensor fusion algorithm for robust

and accurate weed classification.

5. For robust and stable weed classification, we propose a novel entropy function based

space and time domain decision level sensor fusion algorithm. Our novel entropy

function shows better result at capturing uncertainties under DS framework compared

to Shannon and Deng entropy. In space domain fusion, our algorithm is able to fuse

conflicting evidences from sensor array and overcomes the limitations of original DS

fusion algorithm. Results show that, our algorithm has higher fusion evidence (m(A) =

98.77%) compared to other fusion algorithms from literature (Dempster: m(A) = 0%,

Murphy: m(A) = 96.2%, Deng: m(A) = 98.2%, Han: m(A) = 98.44%, Wang: m(A) =

98.67%, Jiang: m(A) = 98.37%). In space domain fusion, our algorithm shows better

convergence rate.

147

6. In time domain fusion, the proposed algorithm is able to capture the dynamics of

the system. It is also able to suppress noise and instabilities from the classification

ID signal, which comes from the CNN. Results show that the proposed algorithm is

better at capturing system dynamics when conflicting evidence is present (m(A) =

98.7%) compared to other well established methods (Dempster: m(A) = 0%, Song-1:

m(A) = 31.7%, Song-2: m(A) = 50.3%, Chengkun: m(A) = 70.8%). The only tuning

parameter is number of time-steps (ts) considered for time domain fusion. Lower ts

value shows faster response and higher ts value shows better robustness.

7. Space and time domain fusion algorithm is applied to real-time output from CNN

video feed. The algorithm is tested in two challenging scenarios: (1) when faulty

sensor is present in sensor array and, (2) weed is partially occluded. Space domain

fusion is able to catch the faulty sensor from sensor array and reduce it’s effect on

final classification result. Time domain fusion is able to compensate for performance

deterioration introduced by partial occlusion. Final weed classification output from

the fusion algorithm is correct, robust and stable in these challenging scenarios.

8. CNN based object detector will provide us the position of BBes of the detected objects.

But how do we know for sure that the position of the BB is correct? To answer this

question, we implement a fuzzy-fusion expert system. We use the predefined BB

positions from multiple cameras and their IoU overlap values to generate fuzzy rules.

Experimental test shows that, for perfect detection in both cameras, the fuzzy system

gives us a confidence score of 88.6%. For partial detection in one of the cameras, the

system gives a confidence score of 50%. For wrong detection in one of the cameras,

the system gives a score of 10.8%. This confidence score will create an extra layer of

information, which will help us to make the overall system more robust. Moreover, this

confidence score can be used as a weight in time domain fusion for that specific frame

when video data is processed. One limitation of this system is that, it always considers

one of the sensor is correct. More sensors or tracking algorithm can be incorporated

to mitigate this limitation, but will create a more complex set of fuzzy rules.

148

9. FUTURE WORKS

This research can further be enhanced by addressing the following ideas:

1. Agricultural navigation has four operations: field layout planning, route planning,

vehicle path planning and vehicle auto guidance. Most of the navigation is done

with fixed sensors on an AgBot. But fixed position of sensors introduce problems

like vibration and limited maneuverability. Also fast storage and processing units for

real-time application are costly. As a result, field data can be collected at first stage.

Then at second stage, processing can be done offline. Finally application of fertilizers

or chemicals can be done using the AgBots. To reduce fuel and operational costs,

unmanned aerial vehicles (UAVs) can be used to solve some of these problems. A

group of UAVs can be used to complete the field planning, route planning, and path

planning. Then those GPS information can be uploaded to the big AgBot. Only

sensors needed on the AgBot are for vehicle auto guidance and obstacle detection.

Research is needed on UAV deployment, UAV and AgBot positioning alignment, and

optimizing the number of sensors on AgBot.

2. For route and path planning, it is usually assumed that rows are traversed consecu-

tively. It is also assumed that the field will be covered by one AgBot or a group of

AgBots with same operating conditions [67]. Research is needed on optimizing AgBot

operating conditions and field traversing conditions.

3. Crop rows are usually straight because it was easier to achieve with animals and simple

machines. For better growth, equal nourishment is needed for crops. Optimal grid

patterns suitable for field/terrain conditions can be achieved with smaller AgBots.

Research is needed in optimal seeding pattern recognition.

4. For crop row detection, most of the published work use monocular camera. Few stereo

camera work is also published. But at early crop growth stage, stereo data is not

always reliable for crop height measurement. Incorporation of cheap 3D lidar can

improve performance and robustness of crop row detection algorithms.

149

5. Diversity of crops and cropping systems are quite extensive. It makes sense that

application targeted algorithms will perform better than generic algorithms. How user

inputs can be incorporated with generic algorithms to make them target-specific is also

an open question. As an example, CAROLIF can be tuned by changing the ‘cluster

size’ parameter. But data is needed to make a connection between crop growth stage

and the ‘cluster size’ parameter. Research work is needed regarding what user inputs

can improve the performance of crop row detection algorithm. The generation of

publicly available data sets with accompanying ground truth for crop lines would also

help to evaluate and compare approaches. At the time of this writing, no video data

with ground truth is available for row detection. Also, no research is conducted to

evaluate how tracking algorithms can affect detection accuracy (due to lack of publicly

available video data).

6. For crop/weed detection, accuracy of CNN may deteriorate due to occlusion, damaged

leaves, varying lighting conditions, shadow, different growth stages of crops/weeds. An

encoder-decoder based CNN can be used to learn the position of weeds on an image

and another CNN trained to classify weeds can be applied to those specific pixels to

improve classification accuracy.

7. A wide variety of research is trying to retrofit current conventional agricultural vehicle

with automation technologies. Proper research is needed towards the optimized shape,

size and design of the AgBot. Topology of the AgBot can be optimized (in terms

of maximum load carrying capacity, range of vehicle, sensor placement etc.) because

cabin space is not needed. Can small, lightweight robots be a viable option to replace

large, heavy machines, primarily to reduce soil compaction is an open question.

8. “As much as USD 319,864 for an 850 hector farm is required for investment in intelligent

machines to achieve maximum break‐even point. Fortunately, farming robots would

bring profitable business to farmers because robots can reduce 20% of the scouting

costs for cereals, 12% for sugar beet weeding, and 24% for inter‐row weeding [150].”

More comprehensive research is needed in this field to convince the farmers about the

cost benefits of using robots.

150

REFERENCES

[1] U. G. Assembly, “Food production must double by 2050 to meet demand from world’s
growing population,” Press Release, October, vol. 9, p. 2009, 2009.

[2] N. Gilbert, “A hard look at gm crops,” Nature, vol. 497, no. 7447, p. 24, 2013.

[3] I. Heap, “The international survey of herbicide resistant weeds,” http://www. weed-
science. com, 2009.

[4] D. R. Hall, “A rapidly deployable approach for automated visual weed classifica-
tion without prior species knowledge,” Ph.D. dissertation, Queensland University of
Technology, 2018.

[5] P. Kudsk and J. Streibig, “Herbicides–a two-edged sword,” Weed Research, vol. 43,
no. 2, pp. 90–102, 2003.

[6] I. Graham-Bryce, “Crop protection: A consideration of the effectiveness and disad-
vantages of current methods and of the scope for improvement,” Philosophical Trans-
actions of the Royal Society of London. B, Biological Sciences, vol. 281, no. 980,
pp. 163–179, 1977.

[7] I. Rutherford, “Characteristics of boom and nozzle spraying—a robust, safe and effi-
cient system for the future?” Application and Biology, pp. 5–9, 1985.

[8] I. Heap, “Global perspective of herbicide-resistant weeds,” Pest management science,
vol. 70, no. 9, pp. 1306–1315, 2014.

[9] A. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based
machine vision and image processing techniques,” Computers and electronics in agri-
culture, vol. 158, pp. 226–240, 2019.

[10] M. Rodrigo, N. Oturan, and M. A. Oturan, “Electrochemically assisted remediation of
pesticides in soils and water: A review,” Chemical reviews, vol. 114, no. 17, pp. 8720–
8745, 2014.

[11] E. Marshall, “Field-scale estimates of grass weed populations in arable land,” Weed
Research, vol. 28, no. 3, pp. 191–198, 1988.

[12] G. A. Johnson, D. Mortensen, and A. Martin, “A simulation of herbicide use based
on weed spatial distribution,” Weed Research, vol. 35, no. 3, pp. 197–205, 1995.

151

[13] L. Tian, J. F. Reid, and J. W. Hummel, “Development of a precision sprayer for
site-specific weed management,” Transactions of the ASAE, vol. 42, no. 4, p. 893,
1999.

[14] C. R. Medlin and D. R. Shaw, “Economic comparison of broadcast and site-specific
herbicide applications in nontransgenic and glyphosate-tolerant glycine max,” Weed
Science, vol. 48, no. 5, pp. 653–661, 2000.

[15] M. Basso and E. P. de Freitas, “A uav guidance system using crop row detection and
line follower algorithms,” Journal of Intelligent & Robotic Systems, pp. 1–17, 2019.

[16] P. V. Hough, Method and means for recognizing complex patterns, US Patent 3,069,654,
Dec. 1962.

[17] X. Zhang, X. Li, B. Zhang, J. Zhou, G. Tian, Y. Xiong, and B. Gu, “Automated
robust crop-row detection in maize fields based on position clustering algorithm and
shortest path method,” Computers and electronics in agriculture, vol. 154, pp. 165–
175, 2018.

[18] N. Sainz-Costa, A. Ribeiro, X. P. Burgos-Artizzu, M. Guijarro, and G. Pajares, “Map-
ping wide row crops with video sequences acquired from a tractor moving at treatment
speed,” Sensors, vol. 11, no. 7, pp. 7095–7109, 2011.

[19] I. Vidović, R. Cupec, and Ž. Hocenski, “Crop row detection by global energy mini-
mization,” Pattern Recognition, vol. 55, pp. 68–86, 2016.

[20] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey’acm computing surveys
(csur),” 2006.

[21] M. Marron, J. Garcia, M. Sotelo, M. Cabello, D. Pizarro, F. Huerta, and J. Cerro,
“Comparing a kalman filter and a particle filter in a multiple objects tracking ap-
plication,” in 2007 IEEE International Symposium on Intelligent Signal Processing,
IEEE, 2007, pp. 1–6.

[22] J. Geipel, J. Link, and W. Claupein, “Combined spectral and spatial modeling of corn
yield based on aerial images and crop surface models acquired with an unmanned
aircraft system,” Remote Sensing, vol. 6, no. 11, pp. 10 335–10 355, 2014.

[23] M. Herrero-Huerta, D. González-Aguilera, P. Rodriguez-Gonzalvez, and D. Hernández-
López, “Vineyard yield estimation by automatic 3d bunch modelling in field condi-
tions,” Computers and electronics in agriculture, vol. 110, pp. 17–26, 2015.

[24] J. Moonrinta, S. Chaivivatrakul, M. N. Dailey, and M. Ekpanyapong, “Fruit detection,
tracking, and 3d reconstruction for crop mapping and yield estimation,” in 2010 11th

152

International Conference on Control Automation Robotics & Vision, IEEE, 2010,
pp. 1181–1186.

[25] Q. Wang, S. Nuske, M. Bergerman, and S. Singh, “Automated crop yield estimation
for apple orchards,” in Experimental robotics, Springer, 2013, pp. 745–758.

[26] M. Vázquez-Arellano, H. Griepentrog, D. Reiser, and D. Paraforos, “3-d imaging
systems for agricultural applications—a review,” Sensors, vol. 16, no. 5, p. 618, 2016.

[27] A. Piron, V. Leemans, F. Lebeau, and M.-F. Destain, “Improving in-row weed detec-
tion in multispectral stereoscopic images,” Computers and electronics in agriculture,
vol. 69, no. 1, pp. 73–79, 2009.

[28] D. Seatovic, H. Kutterer, T. Anken, and M. Holpp, “Automatic weed detection in
grassland,” in 67th Conference Agricultural Engineering, Land-Technik-AgEng 2009,
Hannover, Germany, 06-07 November 2009, VDI Verlag, 2009, pp. 187–192.

[29] W. Strothmann, “Multi-wavelength laser line profile sensing for agricultural applica-
tions.,” Ph.D. dissertation, University of Osnabrück, Germany, 2016.

[30] U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a
3d lidar sensor,” Robotics and autonomous systems, vol. 59, no. 5, pp. 265–273, 2011.

[31] W. Saeys, B. Lenaerts, G. Craessaerts, and J. De Baerdemaeker, “Estimation of the
crop density of small grains using lidar sensors,” Biosystems Engineering, vol. 102,
no. 1, pp. 22–30, 2009.

[32] A. D. Nakarmi and L. Tang, “Inter-plant spacing sensing at early growth stages using
a time-of-flight of light based 3d vision sensor,” in 2010 Pittsburgh, Pennsylvania, June
20-June 23, 2010, American Society of Agricultural and Biological Engineers, 2010,
p. 1.

[33] B. Adhikari and M. Karkee, “3d reconstruction of apple trees for mechanical pruning,”
in 2011 Louisville, Kentucky, August 7-10, 2011, American Society of Agricultural and
Biological Engineers, 2011, p. 1.

[34] G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, “Deep learning for
plant identification using vein morphological patterns,” Computers and Electronics
in Agriculture, vol. 127, pp. 418–424, 2016.

[35] C. Potena, D. Nardi, and A. Pretto, “Fast and accurate crop and weed identification
with summarized train sets for precision agriculture,” in International Conference on
Intelligent Autonomous Systems, Springer, 2016, pp. 105–121.

153

[36] J. Yu, S. M. Sharpe, A. W. Schumann, and N. S. Boyd, “Deep learning for image-
based weed detection in turfgrass,” European journal of agronomy, vol. 104, pp. 78–
84, 2019.

[37] H. K. Suh, J. Ijsselmuiden, J. W. Hofstee, and E. J. van Henten, “Transfer learn-
ing for the classification of sugar beet and volunteer potato under field conditions,”
Biosystems Engineering, vol. 174, pp. 50–65, 2018.

[38] A. Olsen, D. A. Konovalov, B. Philippa, P. Ridd, J. C. Wood, J. Johns, W. Banks, B.
Girgenti, O. Kenny, J. Whinney, et al., “Deepweeds: A multiclass weed species image
dataset for deep learning,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[39] S. Dodge and L. Karam, “Understanding how image quality affects deep neural net-
works,” in 2016 eighth international conference on quality of multimedia experience
(QoMEX), IEEE, 2016, pp. 1–6.

[40] W.-S. Jeon and S.-Y. Rhee, “Plant leaf recognition using a convolution neural net-
work,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 17, no. 1,
pp. 26–34, 2017.

[41] S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang, “A leaf
recognition algorithm for plant classification using probabilistic neural network,” in
2007 IEEE international symposium on signal processing and information technology,
IEEE, 2007, pp. 11–16.

[42] A. Kaya, A. S. Keceli, C. Catal, H. Y. Yalic, H. Temucin, and B. Tekinerdogan, “Anal-
ysis of transfer learning for deep neural network based plant classification models,”
Computers and electronics in agriculture, vol. 158, pp. 20–29, 2019.

[43] O. Söderkvist, Computer vision classification of leaves from swedish trees, 2001.

[44] P. F. Silva, A. R. Marcal, and R. M. A. da Silva, “Evaluation of features for leaf dis-
crimination,” in International Conference Image Analysis and Recognition, Springer,
2013, pp. 197–204.

[45] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based
plant disease detection,” Frontiers in plant science, vol. 7, p. 1419, 2016.

[46] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data fusion:
A review of the state-of-the-art,” Information fusion, vol. 14, no. 1, pp. 28–44, 2013.

[47] Y. Ban, H. Hu, and I. M. Rangel, “Fusion of quickbird ms and radarsat sar data for
urban land-cover mapping: Object-based and knowledge-based approach,” Interna-
tional Journal of Remote Sensing, vol. 31, no. 6, pp. 1391–1410, 2010.

154

[48] W. Jiang, Y. Luo, X.-Y. Qin, and J. Zhan, “An improved method to rank generalized
fuzzy numbers with different left heights and right heights,” Journal of Intelligent &
Fuzzy Systems, vol. 28, no. 5, pp. 2343–2355, 2015.

[49] E. Bossé and J. Roy, “Fusion of identity declarations from dissimilar sources using
the dempster-shafer theory,” Optical Engineering, vol. 36, 1997.

[50] K. Coombs, D. Freel, D. Lampert, and S. J. Brahm, “Using dempster-shafer methods
for object classification in the theater ballistic missile environment,” in Sensor Fusion:
Architectures, Algorithms, and Applications III, International Society for Optics and
Photonics, vol. 3719, 1999, pp. 103–113.

[51] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,”
in Classic works of the Dempster-Shafer theory of belief functions, Springer, 2008,
pp. 57–72.

[52] G. Shafer, A mathematical theory of evidence. Princeton university press, 1976, vol. 42.

[53] F. Xiao, “Multi-sensor data fusion based on the belief divergence measure of evidences
and the belief entropy,” Information Fusion, vol. 46, pp. 23–32, 2019.

[54] P. Smets, “Data fusion in the transferable belief model,” in Proceedings of the third
international conference on information fusion, IEEE, vol. 1, 2000, PS21–PS33.

[55] R. R. Yager, “On the dempster-shafer framework and new combination rules,” Infor-
mation sciences, vol. 41, no. 2, pp. 93–137, 1987.

[56] W. Jiang, M. Zhuang, X. Qin, and Y. Tang, “Conflicting evidence combination based
on uncertainty measure and distance of evidence,” SpringerPlus, vol. 5, no. 1, p. 1217,
2016.

[57] L. Hong and A. Lynch, “Recursive temporal-spatial information fusion with appli-
cations to target identification,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 29, no. 2, pp. 435–445, 1993.

[58] F. Ye, J. Chen, and Y. Tian, “A robust ds combination method based on evidence
correction and conflict redistribution,” Journal of Sensors, vol. 2018, 2018.

[59] Y. Song, X. Wang, and L. Lei, “Combination of temporal evidence sources based on
intuitionistic fuzzy sets,” Acta Automatica Sinica, vol. 42, no. 9, pp. 1322–1338, 2016.

[60] Y. Song, X. Wang, L. Lei, and Y. Xing, “Credibility decay model in temporal evidence
combination,” Information Processing Letters, vol. 115, no. 2, pp. 248–252, 2015.

155

[61] L. Chengkun, C. Yunxiang, X. Huachun, W. Weijia, and W. Zezhou, “Evidence com-
bination method in time domain based on reliability and importance,” Journal of
Systems Engineering and Electronics, vol. 29, no. 6, pp. 1308–1316, 2018.

[62] B. Åstrand and A.-J. Baerveldt, “An agricultural mobile robot with vision-based
perception for mechanical weed control,” Autonomous robots, vol. 13, no. 1, pp. 21–
35, 2002.

[63] Y.-K. Choi and S.-J. Lee, “Development of advanced sonar sensor model using data
reliability and map evaluation method for grid map building,” Journal of Mechanical
Science and Technology, vol. 29, no. 2, pp. 485–491, 2015.

[64] N. Shalal, T. Low, C. McCarthy, and N. Hancock, “A preliminary evaluation of vision
and laser sensing for tree trunk detection and orchard mapping,” in Proceedings of
the Australasian Conference on Robotics and Automation (ACRA 2013), Australasian
Robotics and Automation Association, 2013, pp. 1–10.

[65] M. C. Garcia-Alegre, D. Martin, D. M. Guinea, and D. Guinea, “Real-time fusion
of visual images and laser data images for safe navigation in outdoor environments,”
Sensor Fusion-Foundation and Applications, Published, 2011.

[66] J. Gai, L. Tang, and B. Steward, “Plant localization and discrimination using 2d+ 3d
computer vision for robotic intra-row weed control,” in 2016 ASABE Annual Inter-
national Meeting, American Society of Agricultural and Biological Engineers, 2016,
p. 1.

[67] S. G. Vougioukas, “Agricultural robotics,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 365–392, 2019.

[68] W. Zhiqiang and L. Jun, “A review of object detection based on convolutional neural
network,” in 2017 36th Chinese Control Conference (CCC), IEEE, 2017, pp. 11 104–
11 109.

[69] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[70] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac-
curate object detection and semantic segmentation,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2014, pp. 580–587.

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

156

[72] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

[73] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
2017, pp. 2980–2988.

[74] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and accurate
method to fool deep neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2574–2582.

[75] P. Roy, S. Ghosh, S. Bhattacharya, and U. Pal, “Effects of degradations on deep
neural network architectures,” arXiv preprint arXiv:1807.10108, 2018.

[76] H. Hosseini, B. Xiao, M. Jaiswal, and R. Poovendran, “On the limitation of convo-
lutional neural networks in recognizing negative images,” in 2017 16th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA), IEEE, 2017,
pp. 352–358.

[77] T. J. Ross et al., Fuzzy logic with engineering applications. Wiley Online Library,
2004, vol. 2.

[78] W. Chen, T. Xu, J. Liu, M. Wang, and D. Zhao, “Picking robot visual servo control
based on modified fuzzy neural network sliding mode algorithms,” Electronics, vol. 8,
no. 6, p. 605, 2019.

[79] J. Romeo, G. Pajares, M. Montalvo, J. M. Guerrero, M. Guijarro, and J. M. de
la Cruz, “A new expert system for greenness identification in agricultural images,”
Expert Systems with Applications, vol. 40, no. 6, pp. 2275–2286, 2013.

[80] G. E. Meyer, J. C. Neto, D. D. Jones, and T. W. Hindman, “Intensified fuzzy clusters
for classifying plant, soil, and residue regions of interest from color images,” Comput-
ers and electronics in agriculture, vol. 42, no. 3, pp. 161–180, 2004.

[81] M. Sujaritha, S. Annadurai, J. Satheeshkumar, S. K. Sharan, and L. Mahesh, “Weed
detecting robot in sugarcane fields using fuzzy real time classifier,” Computers and
electronics in agriculture, vol. 134, pp. 160–171, 2017.

[82] E. M. López, M. Garcı́a, M. Schuhmacher, and J. L. Domingo, “A fuzzy expert system
for soil characterization,” Environment international, vol. 34, no. 7, pp. 950–958, 2008.

[83] E. I. Papageorgiou, A. T. Markinos, and T. A. Gemtos, “Fuzzy cognitive map based
approach for predicting yield in cotton crop production as a basis for decision support

157

system in precision agriculture application,” Applied Soft Computing, vol. 11, no. 4,
pp. 3643–3657, 2011.

[84] S. Kolhe, R. Kamal, H. S. Saini, and G. K. Gupta, “An intelligent multimedia interface
for fuzzy-logic based inference in crops,” Expert Systems with Applications, vol. 38,
no. 12, pp. 14 592–14 601, 2011.

[85] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[86] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge
university press, 2003.

[87] C. Gée, J. Bossu, G. Jones, and F. Truchetet, “Crop/weed discrimination in perspec-
tive agronomic images,” Computers and Electronics in Agriculture, vol. 60, no. 1,
pp. 49–59, 2008.

[88] A. Ribeiro, C. Fernández-Quintanilla, J. Barroso, M. Garcı́a-Alegre, J. Stafford, et al.,
“Development of an image analysis system for estimation of weed pressure,” Precision
agriculture, vol. 5, pp. 169–174, 2005.

[89] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,”
Stanford, Tech. Rep., 2006.

[90] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space
analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24,
no. 5, pp. 603–619, 2002.

[91] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[92] L. McInnes, J. Healy, and S. Astels, “Hdbscan: Hierarchical density based clustering,”
The Journal of Open Source Software, vol. 2, no. 11, Mar. 2017. doi: 10.21105/joss.
00205 . [Online]. Available: https://doi.org/10.211052Fjoss.00205 .

[93] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, 1996,
pp. 226–231.

[94] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Communi-
cations of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

158

https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
https://doi.org/10.211052Fjoss.00205

[95] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[96] I. D. Garcı́a-Santillán, M. Montalvo, J. M. Guerrero, and G. Pajares, “Automatic
detection of curved and straight crop rows from images in maize fields,” Biosystems
Engineering, vol. 156, pp. 61–79, 2017.

[97] S. L. N. Rafael Padilla and E. A. B. da Silva, “Survey on performance metrics for
object-detection algorithms,” International Conference on Systems, Signals and Image
Processing (IWSSIP), 2020.

[98] E. Hamuda, B. Mc Ginley, M. Glavin, and E. Jones, “Improved image processing-
based crop detection using kalman filtering and the hungarian algorithm,” Computers
and Electronics in Agriculture, vol. 148, pp. 37–44, 2018.

[99] S. S. Pathan, A. Al-Hamadi, and B. Michaelis, “Intelligent feature-guided multi-object
tracking using kalman filter,” in 2009 2nd International Conference on Computer,
Control and Communication, IEEE, 2009, pp. 1–6.

[100] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[101] A. Rosebrock, Deep Learning for Computer Vision with Python: Starter Bundle.
PyImageSearch, 2017.

[102] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwick-
ler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.

[103] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[104] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[105] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

[106] A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, and D. Hughes,
“Using transfer learning for image-based cassava disease detection,” arXiv preprint
arXiv:1707.03717, 2017.

[107] F. Chollet, Keras, https://github.com/fchollet/keras , 2015.

159

https://github.com/fchollet/keras

[108] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[109] M. N. Khan and S. Anwar, “Robust weed recognition through color based image
segmentation and convolution neural network based classification,” in ASME In-
ternational Mechanical Engineering Congress and Exposition, American Society of
Mechanical Engineers, vol. 59414, 2019, V004T05A045.

[110] J. Camargo Neto, A combined statistical-soft computing approach for classification
and mapping weed species in minimum-tillage systems. The University of Nebraska-
Lincoln, 2004.

[111] T. Kataoka, T. Kaneko, H. Okamoto, and S. Hata, “Crop growth estimation system
using machine vision,” in Proceedings 2003 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM 2003), IEEE, vol. 2, 2003, b1079–b1083.

[112] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transac-
tions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[113] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MAT-
LAB. Pearson Education India, 2004.

[114] Y. Chang, C. Jung, P. Ke, H. Song, and J. Hwang, “Automatic contrast-limited
adaptive histogram equalization with dual gamma correction,” IEEE Access, vol. 6,
pp. 11 782–11 792, 2018.

[115] M. N. Khan and S. Anwar, “Time-domain data fusion using weighted evidence and
dempster–shafer combination rule: Application in object classification,” Sensors, vol. 19,
no. 23, p. 5187, 2019.

[116] M. N. Khan and S. Anwar, “Paradox elimination in dempster–shafer combination
rule with novel entropy function: Application in decision-level multi-sensor fusion,”
Sensors, vol. 19, no. 21, p. 4810, 2019.

[117] R. R. Yager and L. Liu, Classic works of the Dempster-Shafer theory of belief functions.
Springer, 2008, vol. 219.

[118] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,”
in Classic works of the Dempster-Shafer theory of belief functions, Springer, 2008,
pp. 57–72.

[119] Y. D. e. Deng, “A generalized shannon entropy to measure uncertainty,” viXra 1502.0222,
vol. 2015,

160

[120] K. Guo and W. Li, “Combination rule of d–s evidence theory based on the strategy
of cross merging between evidences,” Expert Systems with Applications, vol. 2011,
pp. 1360–1336,

[121] P. Smets, “Data fusion in the transferable belief model,” Information Fusion, IEEE,
vol. 2000,

[122] R. R. Yager, “On the dempster-shafer framework and new combination rules,” Infor-
mation sciences, vol. 1987, pp. 93–137,

[123] L. Bicheng, H. Jie, and Y. Hujun, “Two efficient combination rules for conflicting belief
functions,” Artificial Intelligence and Computational Intelligence, IEEE, vol. 2009,

[124] T. Inagaki, Interdependence between safety-control policy and multiple-sensor schemes
via Dempster-Shafer theorys. John Wiley and Sons, Inc, 1994.

[125] L. R. Zhang, “Independence, and combination of evidence in the dempster-shafer
theory,” IEEE Transactions on Reliability, vol. 1991, pp. 182–188,

[126] Y. Li, J. Chen, and L. Feng, “Dealing with uncertainty: A survey of theories and prac-
tices,” IEEE Transactions on Knowledge and Data Engineering, vol. 2013, pp. 449–
460,

[127] S. Chen, Y. Deng, and J. Wu, “Fuzzy sensor fusion based on evidence theory and its
application,” Applied Artificial Intelligence, vol. 2013, pp. 235–248,

[128] S. Sun, J. Gao, M. Chen, B. Xu, and Z. Ding, “Fs-ds based multi-sensor data fusion.,”
JSW, vol. 8, no. 5, pp. 1157–1161, 2013.

[129] W. Jiang, B. Wei, C. Xie, and D. Zhou, “Evidential sensor fusion method in fault
diagnosis,” Advances in Mechanical Engineering, vol. 2016,

[130] R. R. Murphy, “Dempster-shafer theory for sensor fusion in autonomous mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 1998, pp. 197–206,

[131] W. Jiang, M. Zhuang, X. Qin, and Y. Tang, “Conflicting evidence combination based
on uncertainty measure and distance of evidence,” SpringerPlus, vol. 5, no. 1, p. 1217,
2016.

[132] F. Xiao, “An improved method for combining conflicting evidences based on the sim-
ilarity measure and belief function entropy,” International Journal of Fuzzy Systems,
vol. 2018, pp. 1256–1266,

161

[133] Y. Lin, C. Wang, C. Ma, Z. Dou, and X. Ma, “A new combination method for multi-
sensor conflict information,” The Journal of Supercomputing, vol. 72, no. 7, pp. 2874–
2890, 2016.

[134] F. Ye, J. Chen, and A. Y. Tian, “Robust ds combination method based on evidence
correction and conflict redistribution,” Journal of Sensors, vol. 2018,

[135] H. Durrant-Whyte and T. C. Henderson, “Multisensor data fusion,” in handbook of
robotics 2008, pp. 585–610.

[136] C. E. Shannon, “A mathematical theory of communication,” Bell system technical
journal, vol. 1948, pp. 379–423,

[137] L. Pan and Y. Deng, “A new belief entropy to measure uncertainty of basic probability
assignments based on belief function and plausibility function,” Entropy, vol. 20,
no. 11, p. 842, 2018.

[138] A.-L. Jousselme and D. a. Grenier, “A new distance between two bodies of evidence,”
Information fusion, vol. 2001, pp. 91–101,

[139] J. Chen, F. Ye, and T. Jiang, “, numerical analyses of modified ds combination meth-
ods based on different distance functions,” Progress in Electromagnetics Research
Symposium-Fall, IEEE, vol. 2017, pp. 2169–2175,

[140] D. Yong, S. WenKang, Z. ZhenFu, and L. Qi, “Combining belief functions based on
distance of evidence,” Decision support systems, vol. 38, no. 3, pp. 489–493, 2004.

[141] D.-Q. Han, Y. Deng, C.-Z. Han, and Z. Hou, “Weighted evidence combination based
on distance of evidence and uncertainty measure,” J. Infrared Millim. Waves, vol. 30,
no. 5, pp. 396–400, 2011.

[142] J. Wang, F. Xiao, X. Deng, L. Fei, and Y. Deng, “Weighted evidence combination
based on distance of evidence and entropy function,” International journal of dis-
tributed sensor networks, vol. 12, no. 7, p. 3 218 784, 2016.

[143] M. N. Khan and S. Anwar, “Paradox elimination in dempster–shafer combination
rule with novel entropy function: Application in decision-level multi-sensor fusion,”
Sensors, vol. 19, no. 21, p. 4810, 2019.

[144] A. Kaehler and G. Bradski, Learning OpenCV 3: computer vision in C++ with the
OpenCV library. ” O’Reilly Media, Inc.”, 2016.

[145] K. Inui, S. Kaneko, and S. Igarashi, “Robust line fitting using lmeds clustering,”
Systems and Computers in Japan, vol. 34, no. 14, pp. 92–100, 2003.

162

[146] H. Bazargani, O. Bilaniuk, and R. Laganiere, “A fast and robust homography scheme
for real-time planar target detection,” Journal of Real-Time Image Processing, vol. 15,
no. 4, pp. 739–758, 2018.

[147] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in European conference on computer vision, Springer,
2016, pp. 21–37.

[148] L. A. Zadeh, “Fuzzy sets,” in Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers
by Lotfi A Zadeh, World Scientific, 1996, pp. 394–432.

[149] E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,”
in Proceedings of the institution of electrical engineers, IET, vol. 121, 1974, pp. 1585–
1588.

[150] K. G. Fue, W. M. Porter, E. M. Barnes, and G. C. Rains, “An extensive review of mo-
bile agricultural robotics for field operations: Focus on cotton harvesting,” AgriEngi-
neering, vol. 2, no. 1, pp. 150–174, 2020.

163

A. CODE: CHAPTER 3 - CROP ROW DETECTION

This code shows the crop row detection process described in Chaper 3. More can be found
at https://github.com/mdkhan48.

import cv2
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.gridspec as gridspec
import numpy.polynomial.polynomial as poly
import time
import hdbscan
import pandas as pd
from sklearn import linear_model
import pickle
import math

def combined (img):
#b, g, r = cv2.split(img)
b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]
r_max = np.amax(r)
g_max = np.amax(g)
b_max = np.amax(b)

red_norm = r/r_max
green_norm = g/g_max
blue_norm = b/b_max

norm = red_norm + blue_norm + green_norm

small_num = 0.0001
r = red_norm/(norm+small_num)
g = green_norm/(norm+small_num)
b = blue_norm/(norm+small_num)

ExG = 2*g - r - b #excess green

return ExG

origimg = cv2.imread(r'image location')
plt.imshow(origimg)
plt.show()

164

height = origimg.shape[0]
width = origimg.shape[1]
crop_img = origimg[int(height / 5):int(height / 2), int(width / 3):int(400+(width / 3))]
cropheight = img.shape[0]
cropwidth = img.shape[1]

max_value = np.max(combined(img))
min_value = np.min(combined(img))

new_min = 0
new_max = 255
old_range = max_value - min_value
new_range = new_max - new_min
lin_map = (((combined(img).astype(np.float64) - min_value) * new_range) / old_range) + new_min
image_map = lin_map.astype(np.uint8)
thresh_val,thresh_img = cv2.threshold(image_map,0,255,cv2.THRESH_OTSU)

kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh_img, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)

indices = np.where(closing == [255])
coordinates = list(zip(indices[0], indices[1]))
data = np.array(coordinates)
y_x_data = np.flip(data)
cluster_size = 500
clusters = hdbscan.HDBSCAN(min_cluster_size=cluster_size).fit(y_x_data)
labels = clusters.labels_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
print("clusters:", n_clusters)
good_points = clusters.exemplars_ #getting GOOD points using .exempler_ method
subtract_data = y_x_data

iteration = 0
least_clusters_amount_in_ROI = 3
percent_of_data_to_keep = 0.85
cluster_num_threshold = 2
iteration_break = 3

while (n_clusters < least_clusters_amount_in_ROI): #assuming there will be 3 or 4 clusters inside ROI

clusters = hdbscan.HDBSCAN(min_cluster_size= cluster_size).fit(subtract_data)
labels = clusters.labels_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)

165

if (n_clusters > cluster_num_threshold) or (iteration > iteration_break):
break

threshold = pd.Series(clusters.outlier_scores_).quantile(percent_of_data_to_keep)
outliers = np.where(clusters.outlier_scores_ > threshold)[0]
subtract_data = np.delete(subtract_data,outliers,axis=0)
iteration = iteration+1
print("iteration", iteration)
labels = clusters.labels_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)

Xdata_points = subtract_data.T[1]

data_points = [] #store number of (x,y) of a cluster on a list to see if there is big cluster
for i in range(0,n_clusters):

data_points.append(Xdata_points[labels == i].shape[0])

good_data = np.empty((0,2))
for i in range(0,n_clusters):

good_data = np.append(good_data,good_points[i],axis = 0)

cluster_data_threshold = 5000
data_points = np.sort(data_points)[::-1]

if (data_points[0] > cluster_data_threshold):

good_clusters = hdbscan.HDBSCAN(min_cluster_size=100).fit(good_data)
labels_good = good_clusters.labels_
n_good_clusters = len(set(labels_good)) - (1 if -1 in labels_good else 0)
Ydata_g = good_data.T[0] #we plot this on x-axis
Xdata_g = good_data.T[1] #we plot this on y_axis
for j in range(0,n_good_clusters):

plt.scatter(np.array(Ydata_g[labels_good == j]), np.array(Xdata_g[labels_good == j]))

subtract_data = good_data
n_clusters = n_good_clusters
labels = labels_good

subtract_data = np.array(subtract_data)

Ydata = subtract_data.T[0] #we plot this on x-axis
Xdata = subtract_data.T[1] #we plot this on y_axis

y_center = []
x_center = []

166

for i in range(0,n_clusters):
y_center.append(int(np.mean(np.array(Ydata[labels == i]))))
x_center.append(int(np.mean(np.array(Xdata[labels == i]))))

plt.scatter(np.array(Ydata[labels == i]), np.array(Xdata[labels == i]))
plt.plot(y_center[i],x_center[i], "kv",markersize=12)
plt.text(y_center[i] + 5,x_center[i], s = i+1, fontsize =10)
print("cluster ",i+1,"center ", y_center[i])

cluster_distance_threshold = 50
center_distance = 0
center_sort = np.sort(y_center)
percentage = 0.3

keep = 10
delete = 10

deleted_cluster = []

for i in range(0,n_clusters-1):
for j in range(i+1,n_clusters):

cluster_distance = np.abs(y_center[i] - y_center[j])

if (cluster_distance < (cluster_distance_threshold - percentage * cluster_distance_threshold)):
cluster_i_points = Xdata[labels == i].shape[0]
cluster_j_points = Xdata[labels == j].shape[0]
cluster_i_height = np.abs(max(Xdata[labels == i]) - min(Xdata[labels == i]))
cluster_j_height = np.abs(max(Xdata[labels == j]) - min(Xdata[labels == j]))

if ((cluster_i_height >= cluster_j_height) & (cluster_i_points >= cluster_j_points)):
keep = i
delete = j

else:
keep = j
delete = i

print("delete",delete+1)
deleted_cluster.append(delete)

straight = 1
curve = 2
ransac = linear_model.RANSACRegressor()

color = ['red', 'blue', 'cyan', 'magenta', 'yellow','black','green','red', 'blue', 'cyan']
vertical_ROI_height = 290
total_points = 1000

167

for i in range(0,n_clusters):
if (any(i == item for item in deleted_cluster)):

pass
else:

ransac.fit(Xdata[labels == i].reshape(-1,1), Ydata[labels == i].reshape(-
1,1))

xnew_cluster = np.linspace(0, vertical_ROI_height, 1000)
y1 = xnew_cluster[0]
y2 = xnew_cluster[999]
ffit_cluster = ransac.predict(xnew_cluster.reshape(-1,1))
x1 = ffit_cluster[0]
x2 = ffit_cluster[999]

168

B. CODE: CHAPTER 5 - STATISTICS PARAMETERS OF

IMAGE

This code shows how the mean, variance, skew and kurtosis is calculated from an image
histogram.

import numpy as np
import matplotlib.pyplot as plt
import cv2

img = cv2.imread('image location')
rows, cols, _ = img.shape

def plot_histogram(img,title):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.figure()
plt.title(title)
plt.xlabel("Gray level, a")
plt.ylabel("# of Pixels with a, n(a)")
plt.hist(gray.ravel(), 256, [0, 256])
plt.show()

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hist_gray = cv2.calcHist([gray],[0],None,[256],[0,256])
hist_blue = cv2.calcHist([img],[0],None,[256],[0,256])
hist_green = cv2.calcHist([img],[1],None,[256],[0,256])
hist_red = cv2.calcHist([img],[2],None,[256],[0,256])

probability_pa = hist_gray/(rows*cols)
a = np.arange(256)

m = summation (a . pa)
m = np.sum(a*probability_pa)
print("mean", m)

#1st moment
mu_1 = np.sum((a - m) * probability_pa)
print("1st moment mu1",mu_1)

#2nd moment
mu_2 = np.sum(np.power((a - m),2) * probability_pa)
print("2nd moment mu2 (variance)",mu_2)

169

#3rd moment
mu_3 = np.sum(np.power((a - m),3) * probability_pa)

#4th moment
mu_4 = np.sum(np.power((a - m),4) * probability_pa)

skewness = mu_3/(np.power(mu_2,1.5))
print("skewness", skewness)
print("abs. skewness", np.absolute(skewness))

kurtosis = mu_4/(np.power(mu_2,2))
print("Kurtosis", kurtosis)

170

C. CODE: CHAPTER 6 - MULTI-SENSOR TIME DOMAIN

FUSION

This code shows how time domain fusion is done using information from multiple sensors.
This is the time domain fusion step of Fig. 6.11. Matlab 2018b is used.

left_camera_weed_data = readtable('load camera data');
center_camera_weed_data = readtable('load camera data');
right_camera_weed_data_faulty = readtable('load camera data');

time_step = left_camera_weed_data(:,1);

time = table2array(time_step);

left_pigweed = table2array(left_camera_weed_data(:,2));
left_ragweed = table2array(left_camera_weed_data(:,3));

center_pigweed = table2array(center_camera_weed_data(:,2));
center_ragweed = table2array(center_camera_weed_data(:,3));

right_pigweed = table2array(right_camera_weed_data_faulty(:,2));
right_ragweed = table2array(right_camera_weed_data_faulty(:,3));

left_M = [left_pigweed left_ragweed]; %information matrix-Left Camera
center_M = [center_pigweed center_ragweed]; %information matrix-Center Camera
right_M = [right_pigweed right_ragweed]; %information matrix-Right Camera

ts = 3; %5 time steps
object = 2; % number of object to be classified
D_jos = [1 0;

0 1];

M = right_M; % could be left, center, right based on camera

total_time_steps = size(M,1); %number of row of M

%Sensor fusion DS
for count = 1 : (total_time_steps - ts + 1)

for row_d = count : ts+count-1
for column_d = count : ts+count-1

D(row_d-count+1,column_d-count+1) = sqrt (.5 * (M(row_d,:) - M(column_d,:)) * D_jos * transpose(M(row_d,:) - M(column_d,:)));
end

171

d(row_d-count+1) = sum(D(row_d-count+1,:));
end
d_avg = sum(d)/length(d);
for e_row = count : ts+count-1

entropy(e_row-count+1) = 0.0001;
for col = 1:object

if (M(e_row,col)==0)
;

else
entropy(e_row-count+1) = entropy(e_row-count+1) + (-(M(e_row,col)*log2(M(e_row,col))));

end
end

end

norm_entropy = entropy./sum(entropy);

for row = 1:ts
if (d(row) <= d_avg)

reward(row) = -log(norm_entropy(row));
else

reward(row) = -log(1 - norm_entropy(row)); %penalty
end

end

weight = reward./sum(reward);

for i = 1:object
evidence(i) = weight * M(count:ts+count-1,i);

end

evidence_new = evidence;

for fus = 1:ts-1
for row = 1:object

for col = 1:object
fusion(row,col,fus) = evidence(row)*evidence_new(:,col,fus);

end
end
k(fus) = fusion(1,2,fus)+fusion(2,1,fus);
den(fus) = 1 - k(fus);
evidence_new(:,:,fus+1) = [fusion(1,1,fus) fusion(2,2,fus)]./den(fus);

end

fused_evidence(:,:,count) = evidence_new;
end

172

orig_time_steps = 1:total_time_steps;
time_steps = ts:total_time_steps;

fused_ragweed = squeeze(fused_evidence(2,ts,:));
fused_pigweed = squeeze(fused_evidence(1,ts,:));

subplot(2,1,1)
plot(orig_time_steps,right_pigweed*100,'r',orig_time_steps,right_ragweed*100,'b')
xlabel('time steps')
ylabel('classification %')
ylim([0 100])
title('Partial occlusion: original')
legend('Pigweed','Ragweed')

subplot(2,1,2)
plot(time_steps,fused_pigweed*100,'r',time_steps,fused_ragweed*100,'b')
title('Partial occlusion: time fused')
xlabel('time steps')
ylabel('classification %')
ylim([0 100])
legend('fused Pigweed','fused Ragweed')

173

D. CODE: CHAPTER 6 - MULTI-SENSOR SPACE DOMAIN

FUSION

This code shows how space domain fusion is done using information from multiple sensors.
This is the space domain fusion code for example 6.7. Matlab 2018b is used.

% Step 1: Information matrix
% A B C A,C
M = [.41 .29 .3 0;

0 .9 .1 0;
.58 .07 0 .35;
.55 .1 0 .35;
.6 .1 0 .3];

% Step 2: Distance matrix

% D for jousselme distance
D_jos = [1 0 0 .5;

0 1 0 0;
0 0 1 .5;

.5 0 .5 1];

D12 = sqrt (.5 * (M(1,:) - M(2,:)) * D_jos * transpose(M(1,:) - M(2,:)));
D13 = sqrt (.5 * (M(1,:) - M(3,:)) * D_jos * transpose(M(1,:) - M(3,:)));
D14 = sqrt (.5 * (M(1,:) - M(4,:)) * D_jos * transpose(M(1,:) - M(4,:)));
D15 = sqrt (.5 * (M(1,:) - M(5,:)) * D_jos * transpose(M(1,:) - M(5,:)));
D23 = sqrt (.5 * (M(2,:) - M(3,:)) * D_jos * transpose(M(2,:) - M(3,:)));
D24 = sqrt (.5 * (M(2,:) - M(4,:)) * D_jos * transpose(M(2,:) - M(4,:)));
D25 = sqrt (.5 * (M(2,:) - M(5,:)) * D_jos * transpose(M(2,:) - M(5,:)));
D34 = sqrt (.5 * (M(3,:) - M(4,:)) * D_jos * transpose(M(3,:) - M(4,:)));
D35 = sqrt (.5 * (M(3,:) - M(5,:)) * D_jos * transpose(M(3,:) - M(5,:)));
D45 = sqrt (.5 * (M(4,:) - M(5,:)) * D_jos * transpose(M(4,:) - M(5,:)));

DM = [0 D12 D13 D14 D15;
D12 0 D23 D24 D25;
D13 D23 0 D34 D35;
D14 D24 D34 0 D45;
D15 D25 D35 D45 0];

%Step 3 calculate average evidence distance
d1 = sum(DM(1,:));
d2 = sum(DM(2,:));
d3 = sum(DM(3,:));

174

d4 = sum(DM(4,:));
d5 = sum(DM(5,:));

%Step 4 calculate global average evidence distance
d = (d1+d2+d3+d4+d5)/5;

entropy_m1 = - (.41* log2(.41)+ .29* log2(.29)+ .3* log2(.3))
entropy_m2 = - (.9* log2(.9)+ .1* log2(.1))
entropy_m3 = - (.93* log2(.93)+ .07* log2(.07)+(.35/2)*log2(.35/2)+ .93* log2((.93/2)*exp(1/3)))
entropy_m4 = - (.9* log2(.9)+ .1* log2(.1)+(.35/2)*log2(.35/2)+ .9* log2((.9/2)*exp(1/3)))
entropy_m5 = - (.9* log2(.9)+ .1* log2(.1)+(.3/2)*log2(.3/2)+ .9* log2((.9/2)*exp(1/3)))
%normalize entropy
norm_entropy_m1 = entropy_m1/(entropy_m1+entropy_m2+entropy_m3+entropy_m4+entropy_m5);
norm_entropy_m2 = entropy_m2/(entropy_m1+entropy_m2+entropy_m3+entropy_m4+entropy_m5);
norm_entropy_m3 = entropy_m3/(entropy_m1+entropy_m2+entropy_m3+entropy_m4+entropy_m5);
norm_entropy_m4 = entropy_m4/(entropy_m1+entropy_m2+entropy_m3+entropy_m4+entropy_m5);
norm_entropy_m5 = entropy_m5/(entropy_m1+entropy_m2+entropy_m3+entropy_m4+entropy_m5);

%step 6 Normalize evidence Reward and Penalty to get evidence weight.
reward_1 = -log(norm_entropy_m1) %d1>d
penalty_2 = -log(1-norm_entropy_m2)%d2<d
reward_3 = -log(norm_entropy_m3) %d3>d
reward_4 = -log(norm_entropy_m4) %d4>d
reward_5 = -log(norm_entropy_m5) %d5>d

w1 = reward_1/(reward_1+penalty_2+reward_3+reward_4+reward_5);
w2 = penalty_2/(reward_1+penalty_2+reward_3+reward_4+reward_5);
w3 = reward_3/(reward_1+penalty_2+reward_3+reward_4+reward_5);
w4 = reward_4/(reward_1+penalty_2+reward_3+reward_4+reward_5);
w5 = reward_5/(reward_1+penalty_2+reward_3+reward_4+reward_5);

%Step 7: Modify the original evidence
weight = [w1 w2 w3 w4 w5]

m_A = weight * M(:,1);
m_B = weight * M(:,2);
m_C = weight * M(:,3);
m_A_C = weight * M(:,4);

%step 8 combine for (n-1) times with DS combination rule
% m(A) m(A) k k m(A)
% m(B) k m(B) k k
% m(C) k k m(C) m(C)
% m(A,C) m(A) k m(C) m(A,C)

175

%fusion 1-2
m1 = [m_A m_B m_C m_A_C]
fus12 = [m1(1,1)*m1(1,1) m1(1,1)*m1(1,2) m1(1,1)*m1(1,3) m1(1,1)*m1(1,4);

m1(1,2)*m1(1,1) m1(1,2)*m1(1,2) m1(1,2)*m1(1,3) m1(1,2)*m1(1,4);
m1(1,3)*m1(1,1) m1(1,3)*m1(1,2) m1(1,3)*m1(1,3) m1(1,3)*m1(1,4);
m1(1,4)*m1(1,1) m1(1,4)*m1(1,2) m1(1,4)*m1(1,3) m1(1,4)*m1(1,4)];

k12 = fus12(1,2)+fus12(1,3)+fus12(2,1)+fus12(2,3)+fus12(2,4)+fus12(3,1)+fus12(3,2)+fus12(4,2);
den12 = 1-k12;
m12_A = (fus12(1,1)+fus12(1,4)+fus12(4,1))/den12;
m12_B = (fus12(2,2))/den12;
m12_C = (fus12(3,3)+fus12(3,4)+fus12(4,3))/den12;
m12_A_C = (fus12(4,4))/den12;

%fusion 1-2-3
disp("sensor 1-2 fusion")
m12 = [m12_A m12_B m12_C m12_A_C]
fus123 = [m12(1,1)*m1(1,1) m12(1,1)*m1(1,2) m12(1,1)*m1(1,3) m12(1,1)*m1(1,4);

m12(1,2)*m1(1,1) m12(1,2)*m1(1,2) m12(1,2)*m1(1,3) m12(1,2)*m1(1,4);
m12(1,3)*m1(1,1) m12(1,3)*m1(1,2) m12(1,3)*m1(1,3) m12(1,3)*m1(1,4);
m12(1,4)*m1(1,1) m12(1,4)*m1(1,2) m12(1,4)*m1(1,3) m12(1,4)*m1(1,4)];

k123 = fus123(1,2)+fus123(1,3)+fus123(2,1)+fus123(2,3)+fus123(2,4)+fus123(3,1)+fus123(3,2)+fus123(4,2);
den123 = 1-k123;
m123_A = (fus123(1,1)+fus123(1,4)+fus123(4,1))/den123;
m123_B = (fus123(2,2))/den123;
m123_C = (fus123(3,3)+fus123(3,4)+fus123(4,3))/den123;
m123_A_C = (fus123(4,4))/den123;

%fusion 1-2-3-4
disp("sensor 1-2-3 fusion")
m123 = [m123_A m123_B m123_C m123_A_C]
%m1_new = M(4,:); %sensor4

fus1234 = [m123(1,1)*m1(1,1) m123(1,1)*m1(1,2) m123(1,1)*m1(1,3) m123(1,1)*m1(1,4);
m123(1,2)*m1(1,1) m123(1,2)*m1(1,2) m123(1,2)*m1(1,3) m123(1,2)*m1(1,4);
m123(1,3)*m1(1,1) m123(1,3)*m1(1,2) m123(1,3)*m1(1,3) m123(1,3)*m1(1,4);
m123(1,4)*m1(1,1) m123(1,4)*m1(1,2) m123(1,4)*m1(1,3) m123(1,4)*m1(1,4)];

k1234 = fus1234(1,2)+fus1234(1,3)+fus1234(2,1)+fus1234(2,3)+fus1234(2,4)+fus1234(3,1)+fus1234(3,2)+fus1234(4,2);
den1234 = 1-k1234;
m1234_A = (fus1234(1,1)+fus1234(1,4)+fus1234(4,1))/den1234;
m1234_B = (fus1234(2,2))/den1234;
m1234_C = (fus1234(3,3)+fus1234(3,4)+fus1234(4,3))/den1234;

176

m1234_A_C = (fus1234(4,4))/den1234;

%fusion 1-2-3-4-5
disp("sensor 1-2-3-4 fusion")
m1234 = [m1234_A m1234_B m1234_C m1234_A_C]
%m1_new = M(5,:); %sensor5

fus12345 = [m1234(1,1)*m1(1,1) m1234(1,1)*m1(1,2) m1234(1,1)*m1(1,3) m1234(1,1)*m1(1,4);
m1234(1,2)*m1(1,1) m1234(1,2)*m1(1,2) m1234(1,2)*m1(1,3) m1234(1,2)*m1(1,4);
m1234(1,3)*m1(1,1) m1234(1,3)*m1(1,2) m1234(1,3)*m1(1,3) m1234(1,3)*m1(1,4);
m1234(1,4)*m1(1,1) m1234(1,4)*m1(1,2) m1234(1,4)*m1(1,3) m1234(1,4)*m1(1,4)];

k12345 = fus12345(1,2)+fus12345(1,3)+fus12345(2,1)+fus12345(2,3)+fus12345(2,4)+fus12345(3,1)+fus12345(3,2)+fus12345(4,2);
den12345 = 1-k12345;
m12345_A = (fus12345(1,1)+fus12345(1,4)+fus12345(4,1))/den12345;
m12345_B = (fus12345(2,2))/den12345;
m12345_C = (fus12345(3,3)+fus12345(3,4)+fus12345(4,3))/den12345;
m12345_A_C = (fus12345(4,4))/den12345;

disp("sensor 1-2-3-4-5 fusion")
m12345 = [m12345_A m12345_B m12345_C m12345_A_C]

177

VITA

Md Nazmuzzaman Khan

Education

• PhD in Mechanical Eng. (GPA: 3.6/4)

Purdue University

2016 - 2021 | Indiana, USA

• MSc. in Mechanical Eng. (GPA: 3.7/4)

Indiana University Purdue University Indianapolis

2013 - 2015 | Indiana, USA

• BSc. in Mechanical Eng. (GPA: 3.6/4)

Bangladesh University of Engineering & Technology

2007 - 2012 | Dhaka, Bangladesh

Experiences

• Sr. Research Engineer, Raven Industries, 2021 - current

Responsible for the research and development of systems that incorporate the use of

various sensors such as camera, radar, and lidar, individually and through the use

of sensor fusion, to detect and classify objects encountered in autonomous vehicle

operations.

• Team Lead - Agricultural robot, IUPUI, 2017 - 2019

We participated in three international robotics competitions, where our team won 2nd

place twice because our vision module outperformed all other teams.

178

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Motivation

	Related Studies
	Crop Row Detection
	Computer Vision in Precision Farming
	CNN based Plant/Weed Classification
	Sensor Fusion
	Object Detection and Fuzzy-fusion

	Crop row detection
	Introduction
	Methodology
	Pseudocode (CAROLIF)
	Methods Used for Comparison
	Results
	Qualitative Comparison
	Quantitative Comparison
	Processing Time
	Performance on Video Input
	Effectiveness of Projective Transformation

	KF based Crop Row Center Tracking
	State Model
	Measurement Equations
	Update Equations
	Correction Equations

	Conclusions

	CNN based Weed Classification
	Methodologies
	Weed Image Dataset and Image Processing

	CNN and Transfer-learning
	CNN Models
	6-layers CNN (Model-1)
	Transfer-learning with VGG16 (Model-2)
	Transfer-learning with InceptionResNetV2 (Model-3)

	Classification Report
	Real-time Classification from Video Input from Single Camera
	One Pigweed in Video (Fig. 4.8)
	One Ragweed and One Pigweed in Video, Separately Placed (Fig. 4.9)
	Two Pigweeds and One Ragweed in Video Placed Together (Fig. 4.10)
	One Pigweed and One Ragweed in Video Placed Together (Fig. 4.11)

	Effect of Noise and Motion Blur on Classification Accuracy (model - 2)
	Conclusions

	Robust color based weed segmentation
	Color Based Image Segmentation
	Histogram Based Image Statistics
	Proposed Brightness/Contrast Control Steps
	How to Quantify `Good' and `Bad' Quality Image

	Conclusions

	Decision level sensor fusion in space and time domain
	Dempster-Shafer Evidence-based Combination Rule
	Frame of Discernment (FOD)
	Basic Probability Assignment (BPA) / Mass Function
	Dempster-Shafer Rule of Combination
	Belief and Plausibility Function

	Paradoxes (Source of Conflicts) in DS Combination Rule
	Completely Conflicting Paradox:
	``One Ballot Veto” Paradox:
	“Total Trust” Paradox:

	Eliminating the Paradoxes of DS Combination Rule
	1. Modification of DS Combination Rule
	2. Revision of Original Evidence before Combination
	3. Hybrid Technique Combining both Modification of DS Rule and Original Evidence

	Entropy in Information Theory under DS Framework
	Properties of Proposed Entropy Function

	Proposed Steps to Eliminate Paradoxes in Space Domain
	Proposed Steps for Time-domain Data Fusion
	Anti-disturbing Ability and Transition Property of Proposed Algorithm
	Modification of BPA for CNN Based Object Classification under DS Framework
	Effect of Number of Time-steps (fusion-time) on Fused Output

	Application of the Proposed Algorithm
	Fusion when Faulty Sensor is Present in Sensor-array
	Fusion when Weed is Partially Occluded

	Conclusions

	Improving the Robustness of Object Detection through a Multi-camera based Fusion Algorithm using Fuzzy Logic
	Objectives
	Projective Transformation
	Homography Matrix Calculation

	CNN based Weed Detection from Classification
	IOU Overlap Calculation

	Fuzzy Logic
	Fuzzy Steps and Rule-set:

	Results
	Scenario 1: High Confidence
	Scenario 2: OK Confidence
	Scenario 3: Low confidence

	Conclusions

	Conclusions
	Future Works
	REFERENCES
	Code: Chapter 3 - Crop row detection
	Code: Chapter 5 - Statistics Parameters of image
	Code: Chapter 6 - Multi-sensor time domain fusion
	Code: Chapter 6 - Multi-sensor space domain fusion
	VITA

