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PREFACE

My research started with writing a compiler for Bioinformatics and Genomics, which led

to research writing new assembly algorithms and parallelization of existing algorithms to

scale. I had a background in static and dynamic analysis, programming languages, com-

pilers and embedded systems. My work with Sandia National Laboratories integrated my

background into the vulnerability discovery and emulation space, and I was intrigued with

the relatively new area of Genomic Security. With my background in Bioinformatics and

analysis, it seemed to be the perfect fit. Originally this thesis was to be more focused on

the Genomic Systems side of things, but with the COVID-19 pandemic, the availability of

various firmwares and support from industry partners was reduced so that was not feasible.

During my Preliminary examination the feedback from committee members was that my

thesis should stay broader, as the work I proposed was beneficial to the emulation field in

general, not just genomic security. This led to the motivation of the work and research I

have done in emulation, firmware re-hosting and binary analysis.
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ABSTRACT

System emulation and firmware re-hosting are popular techniques to answer various se-

curity and performance related questions, such as, does a firmware contain security vulner-

abilities or meet timing requirements when run on a specific hardware platform. While this

motivation for emulation and binary analysis has previously been explored and reported,

starting to work or research in the field is difficult. Further, doing the actual firmware

re-hosting for various Instruction Set Architectures(ISA) is usually time consuming and dif-

ficult, and at times may seem impossible. To this end, I provide a comprehensive guide for

the practitioner or system emulation researcher, along with various tools that work for a large

number of ISAs, reducing the challenges of getting re-hosting working or porting previous

work for new architectures. I layout the common challenges faced during firmware re-hosting

and explain successive steps and survey common tools to overcome these challenges. I pro-

vide emulation classification techniques on five different axes, including emulator methods,

system type, fidelity, emulator purpose, and control. These classifications and comparison

criteria enable the practitioner to determine the appropriate tool for emulation. I use these

classifications to categorize popular works in the field and present 28 common challenges

faced when creating, emulating and analyzing a system, from obtaining firmware to post

emulation analysis. I then introduce a HALucinator [1 ]/QEMU [2 ] tracer tool named HQ-

Tracer, a binary function matching tool PMatch, and GHALdra, an emulator that works for

more than 30 different ISAs and enables High Level Emulation.
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1. INTRODUCTION

1.1 Motivation

The number of connected devices, from appliances to smart home and personal gadgets,

has increased dramatically with the explosion of Internet of Things (IoT). Along with these

everyday gadgets, large scale infrastructures such as the electric grid, cellular networks,

and other large control systems have become smarter, digital, and interconnected [3 ]–[7 ].

Understanding how these systems work and discovering vulnerabilities in their firmware is

an important and growing topic in academic and industrial research, with large companies

paying millions of dollars for bugs found in their devices [8 ]–[13 ]. The increased effort to

protect connected devices has come from an increased awareness of their vulnerability and the

attacks targeting them [14 ]–[22 ]. Many of these systems have access to sensitive financial

data, personal information, or control critical processes. Malicious actors are exploiting

vulnerabilities in these systems to cause harm to businesses, individuals, and critical systems

such as electrical grids and cellular infrastructure. Some countries have even started to ban

hardware made by certain companies because they fear the access these companies will give

to their home countries [23 ].

There are many approaches to protecting and fixing vulnerabilities in systems. Code

analysis at the source level is a popular option, including taint analysis, numerical analysis,

overflow analysis, binary hardening, obfuscation, etc. Other techniques include randomizing

inputs and sending them to the actual system. If this is done on real hardware it can ‘brick’

the hardware, and in many cases we have no idea why. Emulation has been a growing area of

interest for dynamic analysis because of the increasing compute capacity of common desktop

and laptop computers. Emulation is popular for architectures that are supported, and for

these architectures, emulation can help with Reverse Engineering (RE) certain firmware of

interest.

If you have a device that you want to determine is secure or has vulnerabilities, often times

you just have the device or maybe only the name of the device. To do an analysis you have

to first get the firmware for the device, then determine the architecture, the base address,

entry point, encryption, obfuscation techniques and more, all before you can even start to
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emulate. Then once you get to a point where you can emulate, you may not understand

what is going on because of hardware interactions that fail. It may be tempting to just give

up and try to analyze a system where you have source code. Because the binary world is so

detailed yet unknown, there is an openness and wildness that is intriguing.

1.2 Thesis Statement

This thesis provides a comprehensive systematization of knowledge in the area of system

emulation and firmware re-hosting, providing classification techniques and novel static and

dynamic analysis tools and techniques that enable system emulation to re-host firmware with

the least amount of effort for the greatest number of instruction set architectures.

To this end, I show that it is possible to reverse engineer and emulate systems to re-

host firmware for a wide variety of architectures, even if source code is not available. I first

provide a systematization of knowledge review with comprehensive classification techniques,

and classify the most popular available tools used for firmware re-hosting. I then discuss the

tools and software I have created to aid in Pre-Emulation, Emulation and Post-Emulation

challenges. Finally I show integration with the High Level Emulation approach presented

in HALucinator [1 ]. I show that the work done in collaboration with Sandia National Lab-

oratories where we explained and demonstrated how to extend HALucinator by creating a

Re-hosting Support Layer to work for the VxWorks RTOS [24 ] works for GHALdra, a Ghidra

HALucinator Emulator. I now introduce the different sections of contributions in high level

detail and in subsequent chapters these are discussed and explained in depth.

1.3 Systemization of Knowledge

The systematization of knowledge and classifications and techniques used on current tools

is encompassed in Chapter 2 , Chapter 3 , and Chapter 4 . I present the evolution of emulation

along with emulator bases in Chapter 2 , before introducing the most relevant works in the

area today. I introduce comparison metrics and classification techniques that will aid the

practitioner in determining which tool is best for their given use case in Chapter 3 . I elaborate

on the Fidelity classification and classify each of the surveyed tools. I then introduce key
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questions and challenges in the field of emulation and re-hosting, breaking down challenges

into Pre-Emulation, Emulation - Setup and Execution, and Post Emulation in Chapter 4 .

1.4 HQ-Tracer

When re-hosting a firmware using QEMU [2 ] or HALucinator [1 ], you will often get to

a point where you are unsure of what is happening or why the system is crashing. Using

a debugger, such as GDB, can be time consuming and, as the case for the base emulator

QEMU, these debugging tools may not have reverse debugging as a general feature (at least

not without manually creating checkpoints and such). PANDA [25 ] and other record and

replay tools can be helpful, but all of this is done in the terminal which makes it difficult

to visualize what code is actually being performed. Chapter 5 introduces HQ-Tracer that

uses HALucinator/QEMU traces to visualize and see state inside of Ghidra. This allows the

user to determine what is actually happening with a highlight view of execution and register

state while seeing the disassembled and decompiled code in Ghidra.

1.5 PMatch

Chapter 6 introduces PMatch, a Ghidra plugin that performs library matching. This

library matching is done at the Ghidra Pcode level, leveraging the intermediate representa-

tion to disambiguate binary matching at the strictly byte level (Pcode is Ghidra’s register

transfer language that is general in a way that it can model the behavior of essentially all

processors). It still uses hashing for the main matching technique allowing for fast execution,

but gives more flexibility than plain binary diffing tools, as it allows for partial matching as

well as the ability to change the matching algorithm. On the other hand it is not necessar-

ily as comprehensive as the control flow or data flow graph isomorphism approach, but it

strikes a balance between the two approaches, balancing speed and flexibility. I introduce

the motivation and show examples of what the RE process may look like when the practi-

tioner has performed function matching versus not performed function matching. I dive into

the implementation and discuss the limitations and benefits of using such an approach for

function matching and show an example of how to use the plugin.
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1.6 GHALdra

Chapter 7 introduces Ghidra HALucinator Emulator or GHALdra, which integrates High

Level Emulation and different Re-Hosting Support Layers into Ghidra. As mentioned in

the thesis statement, this tool enables emulation with the least amount of effort for the

greatest number of ISAs when compared to current tools and approaches. GHALdra is

implemented as a plugin with an Emulator Helper, an Intercept and Callback Master, a

Peripheral Server and models for peripherals and breakpoint handlers. I describe the design

and implementation of GHALdra and show an example of how it can be used and provide

real output.

1.7 Additional Solutions

To aid in overcoming emulation challenges that are not strictly overcome by using GHAL-

dra, I implement and provide tools to integrate with Ghidra and GHALdra that are discussed

in Chapter 8 . To aid in RE, I provide scripts to do graph creation and visualization, in-

cluding dataflow and control flow, binary searching for context switching, entry-points, and

functions of interest, string analysis and renaming in the Ghidra window, and loop analysis

that can be helpful when looking for hardware polling loops.

1.8 VxWorks Re-Hosting Support Layer

In the VxWorks chapter, Chapter 9 , I describe how adding a Re-hosting Support layer can

enable emulation for Special Purpose embedded systems, particularly for VxWorks, which

accounts for the largest number of non-linux embedded device operating systems today. I

go over the background of why to emulate this type of system, and introduce the VxWorks

system model, emulation utility scale and the actual re-hosting support layer. This work was

enabled by work done on HALucinator in conjunction with Sandia National Laboratories [26 ],

which I then tweaked to work with GHALdra.
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2. BACKGROUND

The goal of this chapter is to introduce relevant techniques and tools that are popular in

the emulation, firmware re-hosting, and binary analysis areas. This is not to mean that

the tools mentioned or surveyed are all encompassing, rather they are closely related to the

research I have performed and are the most relevant in my opinion. Because one of the main

reasons/benefits of firmware re-hosting and system emulation is vulnerability discovery and

security analysis, many of the tools focus on vulnerability discovery. Given this, I mention

a few related vulnerability techniques that are integrated into some of the tools.

2.1 Analysis and Reverse Engineering

In the binary vulnerability and analysis field, there are two general techniques for any

work: static and dynamic analysis. Static analysis is done without executing any lines of

code, and is complete (if we say there are no vulnerabilities, then there are none at run-time)

for the algorithms that it uses. If we didn’t have the aliasing problem there would probably

never be a need for dynamic analysis, but alas we are not so lucky. Because of aliasing and the

limits of static analysis, dynamic analysis is growing increasingly popular. This is partially

because of the ever increasing compute power and speed of emulation tools. Dynamic analysis

is when we do an analysis with, or on, executed instructions. This analysis is usually not as

“complete”, but is often more useful when trying to understand what is actually happening

in a binary. I will argue that dynamic analysis is not very useful without some form of

static analysis before-hand, as understanding dynamic traces in firmware requires some static

knowledge of a binary.

This leads to the general field of reverse engineering (RE) binaries, which is typical when

researching malware, vulnerabilities, and cyber security in general. While these terms are

ubiquitous for all types of hardware/software systems, I will focus on the assumption we are

looking at embedded systems.

Staples of binary static analysis include function start search and identification, data

identification, references and cross references, subroutine references, stack and argument

analysis, string analysis, encryption analysis, base address analysis, external entry analysis,
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disassembly and decompiler analysis, and address table analysis among a plethora of other

analysis. Even with all of these analysis that are very useful, many times we have code

pointers and aliasing problems, meaning that static analysis can only get so far. By using

just a little bit of dynamic analysis we can further our RE efforts and continue iterating with

static and dynamic analysis. Static analysis is essential for emulation to be able to get an

accurate enough understanding of functionality for anything in emulation to be useful.

2.2 Emulation

Emulation of embedded systems is an emerging technique to accelerate discovery and

mitigation of vulnerabilities in embedded system firmware. Embedded system emulation

has traditionally been used during development to allow embedded software to be written

and tested without the need for hardware. In cases where hardware is concurrently being

developed, is costly to have in quantity, or is susceptible to damage, emulation is an appealing

option. Just as emulation can be used to verify system behavior during development, it can

be used for vulnerability research and analysis. Emulation provides the ability to deeply

observe and instrument firmware in ways that are not possible on physical hardware. It

can help analyze what operations are actually being performed at a lower level than static

analysis of either the high level source code or even the binary level, and is a useful tool that

is the basis for a host of vulnerability discovering techniques [1 ], [27 ]–[34 ] among other uses

outlined in Chapter 2 .

For a practitioner to use emulation or re-host1
 a firmware, there is a learning curve and

a plethora of tools available. My primary purpose is to provide an end-to-end guide to

the practitioner for firmware re-hosting along with tools that will work with a wide variety

of Instruction Set Architectures (ISAs). I limit my focus on emulation and re-hosting to

the embedded space, as virtually any system will have embedded devices, from wearable

IoT devices to power plants, which if vulnerable will affect the entire system’s security

and functionality. I present an overview of current techniques/tools for the practitioner

along with classification categories and techniques for evaluating which tool is best for the
1↑ Re-hosting specifies that a binary that would run on a specific hardware is instead run on a host system
using system emulation, and is therefore “re-hosted”
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emulation task at hand. I provide tables for the practitioner to reference in subsequent

challenge sections that specify whether a tool attempts to address the presented challenges,

giving a starting point for the practitioner to evaluate the right tool to overcome challenges.

2.2.1 Evolution of Emulation

Since before the era of personal computers, emulation has been a technique used to

broaden hardware use and increase simulation speed. For example, most printing software

used to be designed for HP, so many non-HP printers would write an emulator to re-host

the software designed for HP [35 ]. Re-using HP software allowed for faster time to market

for new printers and reduced the development time and effort for creating new products.

Emulation theory was first developed in the early 1960s, with the 7070 Emulator for the

IBM System/360 series of mainframe computers being the first implemented emulator [36 ].

This emulator allowed IBM’s customers to continue running their existing applications after

upgrading their hardware. As was the case for the 7070 emulator, early uses of emulation were

to avoid obsolescence and increase hardware compatibility with the limited available software.

Over time, manufacturers started creating hardware emulators to allow software development

before the hardware production; decreasing product development time. Emulators are now

becoming a popular tool for security analysis and logic debugging [29 ]–[31 ], [37 ].

Around the same time frame, simulation was also used, but it allowed for executing and

expanding systems beyond what existed. Simulation is sometimes referred to in scientific

modeling and investigating, but in this context, simulation is another technique to model

the internals of a system. In the computer science context, simulation is modeling a system

with implementation of the internals, whereas emulation is modeling by replacing some of

the internals of the system. By replacing some of the internals, emulation can sometimes

reduce complexity or increase firmware re-hosting speed. Emulation will often allow for

original machine code to run directly on the emulator. Beyond the computer science context,

simulation and emulation are sometimes used interchangeably, with simulation sometimes

refering to a system being replaced by software. For our case, the distinction is not important,

but the tools I survey mostly refer to their techniques as emulation.
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One of the early emulation successes was Bochs [38 ], which was released in the early 90’s.

It emulated the underlying hardware needed for PC operating systems development, which

enabled completely isolating the OS from the hardware. This isolation enabled restarting

the emulator instead of reconfiguring hardware during OS development. Bochs was origi-

nally commercial licensed but was open sourced in 2000. In addition to Bochs, many other

emulators were created including DOSBox [39 ], FX!32[40 ], and PCem[41 ]. These solutions

were mainly geared for x86 or PC emulation.

As multiple emulators emerged, the execution and memory fidelity (i.e., how closely the

emulated system matches the real system, sometimes referred to as accuracy) varied from

high (cycle and register accurate) to low (module and black box accurate). I discuss fidelity

and give more classification points in Section 3.3 , but fidelity and emulator speed are perhaps

the greatest distinguishing factors between different emulators.

2.2.2 Emulation Bases

In the early 2000’s, Simics [42 ] was created and evolved to emulate multiple architectures

including Alpha, x86-64, IA-64, ARM, MIPS (32- and 64-bit), MSP430, PowerPC (32- and

64-bit), SPARC-V8 and V9, and x86 ISAs. It was originally developed by the Swedish

Institute of Computer Science (SICS) before moving to Virtutech and eventually working

its way to Wind River Systems, who currently sells it. Simics is designed to have fidelity at

the instruction level, allowing for interrupt testing to occur between any pair of instructions.

It also provides configuration management, scripting, automated debugging (forward and

reverse), and other built in static and dynamic analysis tools to help with constructing an

emulated system. One popular use for Simics was during the DARPA Cyber Grand Challenge

to automatically vet submissions to check whether the submitted binaries adhered to the

competition infrastructure [43 ].

In contrast to Simics and emulators that work at the instruction level fidelity, QEMU [2 ]

gives up some accuracy to improve emulation speed. Instead of working as a sub-instruction

simulator (performing multiple actions per instruction), QEMU execution and emulation

occurs at the basic block level (sequential, non-control flow instructions), by translating
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entire blocks of instructions to the host system’s instruction set and executing the translated

instructions. This allows QEMU to work much faster, as it does not have to check for

interrupts at each instruction, and caching of blocks greatly reduces translation overhead.

Because of its open-source license and community, QEMU has become one of the staples in

academia and industry professionals. It emulates the IA-32, x86, MIPS, SPARC, ARM, SH4,

PowerPC, ETRAX CRIS, MicroBlaze, and RISC-V architectures, and provides peripherals

for many systems, making it and Simics two of the most widely used emulators.

One of the newest emulators available is Ghidra Emulator. Ghidra [44 ] is an open

source software reverse engineering tool developed by the National Security Agency (NSA).

The initial release in March 2019 contains emulation tools that allow for traditional software

reverse engineering and emulation to be combined into the same environment. Because

of the richness of features in these tools, there has been a large user base since its release.

Ghidra uses their own processor modeling language called Sleigh and an intermediate register

transfer language called P-code, with each machine instruction translating to up to 30 P-

code instructions. This implies that the Ghidra Emulator works at the sub-instruction

level (multiple emulator instructions performed per machine instruction), giving a relatively

high execution fidelity as a base. Ghidra currently supports various existing architectures

including X86 16/32/64, ARM/AARCH64, PowerPC 32/64, VLE, MIPS, MSP430, Z80,

AVR, etc. To add a new architecture is simple in their framework, with the user only

specifying how the new architectures instructions are dissassembled into the intermediate

P-code language. Ghidra includes loaders, disassemblers, decompiler and analysis tools with

the base of supplied analyses written in Java. Beyond the built-in emulator, there have been

Ghidra P-code emulators emerging that allow for partial re-hosting of firmwares [45 ].

2.3 Related Vulnerability Discovery Techniques

As emulation has been used more frequently for vulnerability discovery, it is worth men-

tioning some closely related vulnerability discovery techniques that often leverage emulation.

The techniques introduced are integrated into some frameworks that work with the base em-

ulators, requiring at least some familiarity during discussion. I do not go into extensive depth
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in these areas, but rather overview the techniques briefly, and recommend further reading

for an in depth review. I mention some of the tools that are more popular, but it is not

necessary to understand their differences or techniques in the scope of this review, rather

the techniques are mentioned briefly in subsequent sections when integrated into a tool.

Symbolic Execution [46 ] is where symbols representing arbitrary values are supplied

as inputs to a program (similar to letters in algebra representing numbers). The goal of

symbolic execution is to analyze a program to determine what inputs can cause different

parts of a program to execute. Rather than analyze and follow a single path with concrete

values, a symbolic execution engine will use symbols to describe all program execution paths

that can execute by using constraints on symbols.

Concolic Execution is when the tool will switch between using symbolic symbols and

concrete symbols (like an algebra symbol having a set value, eg x=5) during emulation or

execution. When reverse engineering firmware, an analyst will occasionally want to determine

under what conditions a program will execute a certain portion of code. Symbolic and

Concolic execution are tools that help solve this problem among other vulnerability discovery

uses. Symbolic execution is now a common software testing practice, even though it was

introduced in the ’70s [47 ]. Commonly used symbolic and concolic execution tools include

[27 ], [48 ]–[64 ].

Fuzzing is an automated vulnerability/bug discovery technique where random inputs

are provided, and the system observed for undesired behavior (e.g., crashes). There are

many challenges to fuzzing and various tools that try to address these challenges. In the

context of emulation, fuzzers often leverage the visibility into, and control over, a binary’s

execution to optimize their random inputs to improve their exploration of the binary. Some

popular fuzzing tools that can be integrated with emulation are [65 ]–[89 ].

2.4 Surveyed Works

Prior to introducing emulation comparison axes, I introduce surveyed works that enable

emulation and firmware re-hosting. I do not discuss or reintroduce Simics, QEMU, or Ghidra

Emulator, as they are described in Section 2.2.2 , but they are the base emulators used in the
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tools introduced in this section. Base emulators can either run in user mode emulation (i.e.,

running only user level applications) or full system emulation; with full-system emulation

currently being the primary mode used for firmware re-hosting. Full-system emulation will

emulate the processor as well as hardware peripherals; however, the set of emulated periph-

erals available in the base emulators are small compared to the diversity of hardware found

in embedded systems. Much of the work in firmware emulation aims at solving this lack of

emulated peripherals.

Avatar2 [90 ] is a dynamic multi-target orchestration and instrumentation framework that

focuses on firmware analysis. This tool was created by the same group as Avatar, but is a

multi-target orchestration tool that has completely been re-designed from the original Avatar

implementation [91 ].

The main contribution of this tool is that it allows various other tools (angr, QEMU,

GDB) to interact and transfer data. Using these tools it can enable hardware in the loop

emulation, where portions of execution or memory accesses are carried out by physical hard-

ware.

angr [27 ] is a symbolic execution engine, that has been integrated with Avatar2 to enable

combining symbolic execution and other analysis into the concrete base QEMU emulator.

angr is a binary analysis framework that provides building blocks for many analyses, both

static and dynamic. angr provides an architecture library, an executable and library loader,

a symbolic execution engine, built in analyses, and a python wrapper around a binary code

lifter. It is actively developed and used in various other academic works including [65 ],

[92 ]–[99 ]. I include this as one of the surveyed works because of its ability to use base

emulators while providing new approaches and solutions to overcome emulation challenges

from beginning to end.

HALucinator [1 ] addresses the challenge of providing peripherals not implemented in

the base emulator by observing that the interactions with peripherals are often performed

by a Hardware Abstraction Layer (HAL). It uses Avatar2 and QEMU as bases to intercept

HAL calls and replace them. They do this by manually providing replacements for HAL

functions that execute during re-hosting. It uses a library matching tool to identify the

HAL functions in the firmware. The tool relies on the assumption that the majority of
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firmware programmers use Hardware Abstraction Libraries when writing firmware, which in

our experience is a relatively safe assumption.

PANDA [25 ] is an open-source platform that builds on top of the QEMU whole sys-

tem emulator that is used for architecture-neutral dynamic analysis. The main advantage

of PANDA is that it adds the ability to record and replay executions, allowing for deep,

whole-system analyses. System record has partially been addressed in a hardware-software

co-design approach [100 ] as well as under more restrictive assumptions, using a purely soft-

ware approach [101 ], [102 ]. Such whole system record and replay is challenging especially

considering the timing requirements. PANDA, using the QEMU base and abstracting some

of the analyses, allows for using a single analysis implementation across multiple computer

architectures while maintaining the speed of QEMU, allowing some timing challenges to be

addressed.

Muench2018, titled “What You Corrupt Is Not What You Crash: Challenges in Fuzzing

Embedded Devices” [103 ] demonstrate that tools used for desktop vulnerability discovery

and testing do not necessarily transfer to the embedded space. In their paper they present

different techniques used for vulnerability assessment implemented by instrumenting an the

emulator used for re-hosting the firmware. They implement segment tracking, format speci-

fier tracking, heap object tracking, call stack tracking, call frame tracking, and stack object

tracking by combining PANDA and Avatar2.

Using QEMU as a base, both Firmadyne [104 ] and Costin Firmware Analysis (re-

ferred herafter as CostinFA [21 ], [28 ] “A Large-Scale Analysis of the Security of Embed-

ded Firmwares” and “Automated Dynamic Firmware Analysis at Scale: A Case Study on

Embedded Web Interfaces”), will extract the filesystem from a given firmware and re-host

the filesystem on their own kernel. They perform system emulation using only software, not

involving any physical embedded devices. Their tools work only for software images that can

natively use chroot with QEMU. They then perform static and dynamic analysis on their

re-hosted firmware to report vulnerabilities. Recent efforts that use the same type of ap-

proach as Costin and Firmadyne is ARMX [33 ]. ARMX requires more user interaction and

configuration and only works for ARM architecture devices while requiring the rootfs from
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the firmware and the extracted NVRAM from the firmware. Given these extra requirements,

the results of the emulated devices using their technique is usually of high quality.

PROSPECT [105 ] and SURROGATES [106 ] enable emulation by forwarding hardware

and peripheral accesses to the actual device; a technique known as hardware in the loop.

PROSPECT forwards peripheral and hardware interactions through a normal bus connection

to the device, but allows for analysis and implementation without needing to know the details

about the peripherals and external hardware connected to the system. SURROGATES, in

contrast, uses a custom low-latency FPGA bridge between the host PCI Express bus and

the system under test, allowing forwarding and state transfer to and from the system’s

peripherals with transfers much faster than the original Avatar [91 ] system.

P2IM [107 ] uses a drop-in fuzzer (AFL[66 ]) to provide inputs to their base QEMU em-

ulator. They abstract peripheral and hardware IO and then use the fuzzer for providing

the feedback to the base emulator. Their approach is different from existing emulation ap-

proaches as it does not use hardware or detailed knowledge of the peripherals, as the fuzzer

provides interactions. The fuzzer enables executing firmware with simple peripherals to be

emulated, but its ability to enable emulation of firmware processing data from complex and

stateful hardware is unknown.

In contrast to using a random fuzzer, Pretender [108 ] attempts to re-host firmware by

using machine learning to provide models of hardware interactions. Their system will record

hardware interactions and all accesses to memory mapped input and output (interacting with

peripherals is done through a specified memory-mapped address - MMIO) regions along with

any interrupt that occurs during execution before performing a peripheral clustering and

dividing the recordings into sub-recordings for each peripheral. They then train a memory

model, trying to select and train on known models for each peripheral. The analyst then

decides how to introduce inputs into the system.

In summary of the tools that are surveyed (highlighted in bold throughout Chapter 2 

and Section 2.4 ) the general purpose emulators surveyed that have a wide variety of spe-

cialties and uses include Avatar2, CostinFA, Firmadyne, Ghidra, HALucinator, Muench2018,

PANDA, QEMU, and Simics. Emulators that use hardware in the loop include Avatar2, SUR-

ROGATES, and PROSPECT. Emulators that can use symbolic execution and/or fuzzing
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include angr, Ghidra, HALucinator, and P2IM. The only emulator that uses machine learn-

ing for models is Pretender, which at the moment to be successful requires fairly simple

firmware. If the reader is anxious for a flow-chart of which tool to use, refer to Figure 4.3 

that is explained in Section 4.7 . While this is not an exhaustive list of tools or methods, as

there are many more available including [16 ], [89 ], [109 ]–[128 ] among others, I believe the

scope of tools and their applicability is encompassed in the tools mentioned above.
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3. COMPARISON TECHNIQUES

Now that I have introduced the works that have been surveyed, this chapter focuses on

different comparison metrics and classifications. I first introduce axes over which the com-

parison of different emulators and tools can be compared. Various emulators and emulation

techniques are used for different purposes, and thus make different design decisions. Estab-

lishing common axes to evaluate emulators is necessary to enable the practitioner to do a

useful comparison before choosing the ideal emulation tool for their use.

3.1 Emulation Techniques

A significant challenge to re-hosting firmware is the large expanse of hardware peripherals

that need to be emulated; thus, one evaluation axis is the fundamental technique the emulator

uses to provide these peripherals. The technique employed will directly relate to another axis

of comparison – the complexity of the hardware that is feasible to emulate. Some systems

are simple with no peripherals, whereas others may be connected to Remote Terminal Units

(RTU), Programmable Logic Controllers (PLC), Field-Programable Gate Array (FPGAs),

multiple sensors, databases, Human Machine Interface controllers (HMI), etc. The amount

of hardware the practitioner wants to emulate will range from a single chip or sensor, all

the way up to the entire large scale system. The amount of hardware and complexity of the

hardware emulation is largely limited by the peripheral emulation technique used.

The main peripheral interaction techniques used include hardware in the loop (HITL),

learning, fuzzing, and abstraction replacement. HITL will use the emulator to perform in-

struction execution, but if accesses are made to hardware peripherals they are forwarded to

the actual hardware. Learning refers to using machine learning to provide hardware interac-

tions, whereas fuzzing will use random generation to provide simulated hardware interactions.

Abstraction replacement provides peripheral hardware functionality by identifying software

abstractions within the firmware and replaces execution of these abstractions with its own

implementations. Examples of surveyed works that allow HITL are SURROGATES[106 ] and

Avatar2 [90 ]. P2IM[107 ] uses fuzzing, and Pretender[108 ] uses learning, whereas Firmadyne

[104 ], CostinFA[21 ], [28 ], and HALucinator[1 ] use abstraction replacement.

31



3.2 Types of Systems

In addition to how hardware peripherals are provided, it is important to consider the

type of system the emulator is designed to support. The range and capabilities of embedded

systems ranges from large multi-processor systems running customized versions of desktop

OSes (e.g., Linux) to low cost, low power micro-controllers running a few KB of code without

an OS. The challenges and techniques in emulating these systems vary and may or may

not translate from system to system. I reuse the classification presented by Muench et al.

[103 ], though use our own names instead of numbers for the types of systems, splitting

the embedded system types into three different classes, based on the type of firmware they

execute.

General Purpose Embedded Systems (GPES): also known as Type 1 embedded

system, use a general purpose operating system that is primarily used on servers and desktop

systems. Examples include real-time Linux, embedded Windows, and Raspberry Pi. The

operating systems are retrofitted for the embedded space, but retain many desktop level

features, but with stripped down components, and are coupled with lightweight user space

environments such as busybox or uClibc. Tools such as Firmadyne and CostinFA require

the embedded system they work on to be Linux based systems and will only work on this

type of system. Emulating these types of systems greatly benefits from the work done to

enable emulation of desktop software and operating systems (e.g., QEMU directly supports

emulating the Linux Kernel).

Special Purpose Embedded System (SPES): (Type 2 devices from [103 ]) use op-

erating systems specifically developed for embedded systems. They are often commercial

products and closed source. Examples include, µClinux, ZephyrOS, and VxWorks. These

systems are usually single-purpose electronics or control systems. Some of the features that

distinguish these systems are that the OS and applications may be compiled separately

and the system is not derived from a desktop operating system. Thus, many emulation

techniques from the desktop space do not work, and emulation must start from scratch.

Re-hosting these systems requires re-hosting both the kernel and user space. Also adding to
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the challenge of emulating these systems is the fact that the separation between the Kernel

and user space is often blurred.

Bare-metal Embedded Systems (BMES): Type 3 devices are embedded systems

without a true OS abstraction that I refer to as bare-metal embedded systems (BMES).

They often do not have an OS, or may include a light-weight OS-Library. An example is an

Arduino system. In both cases, the application will directly access hardware and the OS (if

present) and applications are statically linked into a single binary. Recent work [1 ], [107 ],

[108 ] focuses on re-hosting these systems.

I find this axis of comparison useful as it helps to determine what emulation techniques

an analyst should consider for a given firmware. However, in practice, classifying a system

is not necessarily cut and dry. Rather the classification is a continuum on the embedded

space. For example, an embedded system that started out using UNIX OS 30 years ago may

have originally been classified as a GPES, but as the system morphed over time, the same

system currently may now be better classified as a SPES.

3.3 Fidelity

Introduced in Chapter 2 , fidelity is perhaps the most important comparison axis, but

also the most difficult to quantify. The difficulty comes from limited ability to inspect the

internal state of hardware, and is further complicated by the ability to compare states. In an

effort to enable better understanding of fidelity, I classify fidelity along the conceptual axis

of execution fidelity and data or memory fidelity. This enables comparison of the conceptual

limits of fidelity on a 2D plane. Work by Costin [28 ] has a general classification of emulators

that have kernels and applications. The classification I present here is more general, applies

to both re-hosting and emulators, has more classification points, and is applicable to all types

of systems – GPES, SPES and BMES. The fidelity classifications are from the perspective of

the firmware (software), and whether the emulation ”looks” and ”acts” like real hardware.

This implies that I do not need to differentiate between memory (whether DRAM, SRAM,

Flash, etc.) that looks the same to the firmware, I just refer to this as internal memory. If
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there is another driver required to use specific memory (such as an SD card), then I consider

this external memory.

Execution fidelity describes how closely execution in the emulator can match that of the

physical system. I bin techniques into the categories BlackBox, Module, Function, Basic

Block, Instruction, Cycle, and Perfect, with execution fidelity increasing from BlackBox

to Perfect. A system emulated with BlackBox fidelity exhibits the same (or sufficiently

similar) external behavior as the real system, but internally may or may not execute any

of the same instructions a real system would execute. Module fidelity provides fidelity

at the module level. For example, Firmadyne replaces the original firmware’s kernel with

its own to enable re-hosting the original firmware. Thus some modules of the firmware

are executed unmodified, and others completely replaced. Function level fidelity accurately

models the system at the function level (e.g., HALucinator replaces entire functions to enable

emulation). Similarly, basic block and instruction level fidelity accurately emulate at the

basic block and instruction level layers. Beyond instruction level is cycle level which faithfully

emulates to cpu instruction cycle (e.g., the gem5 [129 ] simulator). Perfect emulation means

that emulation is exactly the same as it would be on the actual hardware, which to our

knowledge no current emulator achieves.

I categorize data/memory fidelity increasing from the coarsest granularity to finest gran-

ularity as BlackBox, Internal Memory, Register, and Perfect. BlackBox fidelity means that

the data externally visible to the system or external memory (e.g., HDD or SDD) is the same

(e.g., for a given input I get the same output). Internal Memory means that the internal

memory (e.g., RAM) is consistent with hardware for a given point in execution. Register

level fidelity means that both internal memory and registers are correct at the given exe-

cution fidelity and perfect means that all memory components work the exact same as the

given system at the level of execution fidelity needed. In Blackbox, Internal Memory, and

Register Memory levels, these classifications are usually for specific areas of interest in the

firmware. This means that there is a blur between the classification points, as some sections

of the firmware may be at the Blackbox level where the user does not care much about

the internals, but in a few sections of high interest the firmware emulation may be at the

Internal or Register Level fidelity. The Perfect Emulation level is on the scale but currently
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is virtually unobtainable. Depending on the practitioner, Perfect Emulation level can mean

Register level throughout the entire firmware, or it could mean everything is exact, down to

the cache for every execution cycle. In Figure 3.1 I show how the most prevalent firmware

emulation techniques fit into this classification framework.

3.4 Purpose of emulator

Of the surveyed research works in firmware re-hosting, the main focus points have been

Creating Emulators, Dynamic Analysis, Static Analysis, and Fuzzing. Each of these focus

points enables the emulator to answer specific questions. The purpose of emulators include

vulnerability detection, enabling running legacy code, hardware replacement, development

assistance, and system behavioral analysis. The purpose of the emulator directly influences

the techniques employed, types of systems the emulator will work on and for, and determine

the fidelity of the system.

3.5 Level of Control

Another axis for comparison related to the purpose of the emulator, is the ability to

control the exploration in firmware and what the tool can/should be used for. Control may

perhaps be thought of as another axis in fidelity, quantifying whether you can control emula-

tion and what is actually executed during emulation. It also refers to the level of interaction

available to the practitioner. For example, HALucinator enables interactive emulation mak-

ing it suitable for building virtual testbeds, whereas P2IM enables fuzzing and would not be

a feasible tool for testbeds.

For visualization ease I do not combine fidelity and exploration, but it is important to

note that some tools and emulators do not allow for controlled exploration. For example,

if your emulator is just fuzzing everything from memory to inputs, it may have very high

execution fidelity, and low memory fidelity, but it has almost no exploration customization to

specify what to execute, it solely relies on a random generator. Randomization and fuzzing

enable high coverage fuzzing and vulnerability discovery, but it does not give a clear picture

of actual real possibilities of execution.
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Figure 3.1. Categories of Fidelity

3.6 Classification of Surveyed Works

Now that I have discussed different axes of fidelity, I further categorize and compare

surveyed works in firmware re-hosting and emulation. Figure 3.1 shows a 2D space of fidelity

categorization. On the horizontal axis is execution fidelity and on the vertical axis is data

fidelity. As can be seen in the figure, there is not a single point for each category, rather

a blurry bubble, emphasizing that fidelity categorizations are conceptual and a continuum

from black box to perfect fidelity. As can be seen in Figure 3.1 , the points on the plot range

from dark to light shading. The darker the circle indicates that the tools is more automated,

requiring less user interaction and requirements for setting up the tool. The lighter the

circle in the plot indicates that the default tool requires more user interaction to get the

tool setup. I purposefully do not give concrete numbers to the automation or the fidelity

levels, rather I visually categorize automation and place fidelity in regions to re-emphasize

that these categorizations are not concrete and may slightly move/change depending on tool

use and the practitioner’s opinions.
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3.6.1 Hardware In The Loop

As various works modify a core emulator, the fidelity can be improved or reduced. When

the fidelity is improved there is often a trade off made in performance or complexity. SUR-

ROGATES uses QEMU as a base emulator, but adds specialized hardware to enable faster

communication with real hardware. Specialized hardware allows for higher execution fidelity

as the peripheral access is then perfect. HITL also increases the data fidelity, as there is no

generalization for the peripheral model as is the case for PROSPECT. However, specialized

hardware and HITL in general increases the complexity and cost of performing emulation

while reducing scalability, as dedicated hardware is needed for each emulated system.

3.6.2 Instruction Level Execution Fidelity

I categorize Simics and Ghidra Emulator as instruction level execution fidelity while

also having register level data fidelity because of their sub-instruction execution. While

the coloring of the automation is the lightest of the works surveyed, there are ready made

implementations of both of these emulators that can be copied or used out of the box to

make the automation much closer to no interaction required. Yet, I color the automation

at this level because of the tools defaults and to show the open ended-ness of using one of

these emulators.

3.6.3 Basic Block Level Execution Fidelity

As mentioned previously, QEMU has basic block execution fidelity, and RAM fidelity

as a default on the data fidelity axis. These are the default categorizations, and they can

be affected by other tools. Muench2018, angr, PANDA, and HALucinator use QEMU as a

base emulator without HITL, so in general their fidelity will be less than or equal to that of

QEMU.

For any memory interaction, P2IM will do random fuzzing, meaning there is not even

blackbox fidelity for the data axis. Pretender uses machine learning to attempt to provide

peripheral software replacement modules, reducing the data fidelity but still has some internal
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memory correct and at least blackbox fidelity on the data axis. As these works reduce

fidelity (on either axis) they also decrease the amount of effort needed for their emulation.

Muench2018 and PANDA perform tracking/recording as mentioned in Section 2.4 . While

replaying and replication is enabled, the fidelity is still maxed out at the Basic Block and

Internal Memory/Register fidelity because of the QEMU base emulator fidelity.

angr also uses QEMU for the emulation part of the tool, while also using symbolic

execution. Symbolic execution is difficult to put on the emulation fidelity grid because it has

multiple states as it executes, but by using QEMU for concolic and concrete execution, angr

receives the same fidelity as the QEMU base. In contrast, Avatar2 enables the interaction

between virtually any of the tools, allowing the fidelity to be at any of the tools fidelity

categorization depending on what is programmed by the analyst, but I show its fidelity

point defaulting around QEMU, angr, PANDA, and HALucinator because they are default

tools that are easy to get running in the Avatar2 framework.

3.6.4 Module Level Execution Fidelity

Firmadyne and CostinFA lose both execution and data fidelity from their base QEMU

emulator as they only extract the filesystem and run the code through their own kernel.

However, by doing this they drastically increase the automation of their tools, making mass

analysis of firmware more scalable.
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4. QUESTIONS AND CHALLENGES

This chapter focuses on you, the analyst wanting to re-host a firmware, and discusses the

challenges that are encountered, along with techniques and tools that can be used to address

them. The challenges and tools surveyed provides a reference for the average practitioner or

a starting point for new researchers in the area of firmware re-hosting and system emulation.

4.1 Questions of Purpose and Value

Each emulation tool has requirements that must be met before being able to re-host

firmware. Some tools will bypass common emulation challenges with the technique they use.

Ideally the tool will overcome challenges automatically, otherwise the practitioner must do

so manually. Common preconditions are discussed in Section 4.4 , however this discussion

covers the challenges faced and not necessarily why they are encountered.

Before deciding to emulate a system or re-host a firmware, an analyst has a question they

want answered. The idea of why to emulate a system is key to building emulators and is often

not emphasized in emulation papers. When an analyst wants to find vulnerabilities, there

are vulnerabilities that may be discovered at each fidelity level. It is therefore important to

know what types of vulnerabilities you are looking for, e.g. is it a firmware logic error that

can be detected by just correctly emulating the memory, or is it an instruction or hardware

bug that needs higher execution fidelity?

Before emulating a system it is also important to do an analysis on the estimated cost

and value-for-money evaluation of getting the emulation to work correctly and the tools to be

used to perform emulation. To emulate some systems it may take a small team of engineers

6 months to a year to build and test for the desired system. This may be a bargain or may

be too expensive. Analyzing the tools available and how to use them can speed up or even

change the traditional approach of building an emulator (manually reverse-engineering the

hardware, re-hosting firmware until failure and incrementally adding functionality).
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4.2 Key Research Questions

I wish I could say that you should research one specific area, but for every solution/tool

that currently exists, there are shortcomings. To understand what is key to your research,

it is necessary to understand what you would like to solve with emulation. The key area I

see that needs addressed is speeding up the time to emulate a system – this includes tools

from all the subsequent sections to overcome the challenges. A script written for one tool

may work to address a specific challenge, but that script needs to be ported if using another

tool, e.g., a script for Ghidra to help find the entry point will not necessarily work with angr

or Simics.

This key research area of speeding up emulation really encompasses research across all

types of embedded systems (GPES, SPES and BMES) and includes new ways of overcoming

problems presented in Section 4.4 , Section 4.5 , and Section 4.6 . Any tool or technique that

more efficiently addresses the challenges is a useful area of research.

4.3 Challenges

Now that I have introduced surveyed works and classification criteria, I present some

of the core challenges faced during firmware re-hosting and system emulation. During the

emulation pipeline, various challenges are encountered and I split these challenges into:

• Pre-Emulation

• Emulation

• Post Emulation

Pre-Emulation are challenges that are pre-requisites to emulation execution and overcoming

these challenges enables executing the first instruction in the emulator. These challenges

include obtaining firmware, unpacking the firmware and gaining and understanding how to

configure the emulator to re-host the firmware. Once the first instruction is executed in

the emulator, I consider the Emulation stage to have been started, however, as execution

progresses, greater understanding of the firmware is obtained, which leads to refinement of the
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emulator configuration and implementation. Thus, I break Emulation into Emulator Setup

— challenges that enable further refinement of the emulator and more complete execution

— and Emulation Execution — challenges fundamental to emulation itself. Finally after

emulation there is the Post Emulation stage where the execution is analyzed and validated.

The challenges presented here have been mentioned in part and used as the foundation for

multiple industrial and academic works, but I present them in entirety here for completeness.

In the tables throughout the rest of the paper, I survey different techniques that attempt

to overcome the various challenges faced during emulation and binary analysis. If there is

a check-mark, then the tool attempts to address the issue; but, it does not necessarily solve

the problem and some tools work better than others, though I do not specify my opinions on

the matter. If there is a dash, that means the tool bypasses the challenge by the technique

they employ. If there is no mark or dash, then the tool does not address the challenge. In

some cases the tools have prerequisites to work correctly. The emulator may require the

analyst/user to figure out some of the challenges manually and pass the solution to the

emulator to get past the challenge.

I provide some of the flow and common challenges faced during emulation in Figure 4.1 ,

and Figure 4.2 though the figures do not encompass all the challenges that may be faced, with

some challenges left off the figures all together for brevity. These figures are general flows

and each bubble represents one or more challenges encountered through the process. The

different challenges are further addressed in detail in Section 4.4 , Section 4.5 , and Section 4.6 .

4.4 Pre-Emulation

In Figure 4.1 I show the flow that a practitioner will usually explore during the Pre-

Emulation stage of re-hosting a firmware. With each step indicating challenges that need

addressed before continuing to address the next. The challenges presented here are similar to

those presented by Costin [21 ]. Here I focus on the challenges of emulating and analyzing a

single firmware, whereas Costin focuses on challenges for acquiring and analyzing thousands

of firmwares available to download from the Internet automatically.
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Before re-hosting a firmware, an analyst or practitioner will usually have a system they

want to emulate or a firmware they want re-hosted. In some cases the system architecture

is unknown or the analyst may not even have the firmware (e.g., when working on a bug

bounty or proprietary hardware). Even after obtaining the system or firmware in mind, key

information must be identified prior to re-hosting a firmware. Steps and challenges prior

to setting up the emulator is what I refer to as the Pre-Emulation stage. This stage may

also include verification of information and understanding gained prior to actual emulation

(i.e., Disassembly, Initial Analysis, and CFG Recovery), though verification is not strictly

necessary. I note that verification of correctness (which can include formal verification and/or

behavioral verification) is useful when challenges in subsequent phases are encountered, as

it narrows down where certain problems stem from.

The information required to begin emulation varies by emulation technique but includes

obtaining firmware, determining memory layout, figuring out the instruction set architecture

(ISA), identifying the processor, analyzing the binary, lifting/disassembly of firmware, and

an initial firmware analysis. As a quick reference to the practitioner, different techniques that

attempt to address the challenges present in Pre-Emulation are summarized in Table 4.1 .

One of the main tools used to address these challenges is binwalk [117 ]. Binwalk is

mostly used for extraction of the content from firmware images, but has other features that

are useful. It can try to determine ISA (not necessarily the processor), extract files from a

blob, do a string search, find signatures such as common encryption formats, disassemble

using capstone [130 ], calculate entropy, and perform binary diffing. Some of the other tools

are mentioned in the subsequent subsections. A simple example of reverse engineering from

a blob that mentions some of the challenges below was presented at BlackHat 2013 [131 ].

They present an end-to-end unpacking of firmware with some of their formats that may be

helpful to reference for a newcomer in the field. Another helpful reference for IoT firmware

based on OpenWrt is maintained by OWASP. They provide a platform to educate software

developers and security professionals on vulnerabilities in IoT devices [132 ].
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4.4.1 Obtaining Firmware

The first challenge to re-hosting firmware is obtaining the firmware. In the simplest case

it can be downloaded from the vendor’s website. If not directly available from the vendor, 3rd

party sites, such as Github, have firmware available that has been used for academic research.

Other ways to get firmwares include obtaining example firmwares from development boards

that can be compiled with various operating systems and toolchains.

Downloading the firmware is not always possible, and even when possible, the firmware

can have embedded proprietary file formats that are not easily extracted. For example, files

can be compressed or contain firmware for multiple architecture files with final compilation

of the firmware being done on the hardware during boot-loading. In some cases, firmware is

combined with the operating system, such as the case of BMES or SPES types of systems,

whereas for others downloaded firmware is only the user level application and the operating

system kernel also must be obtained separately to perform full-system emulation as is some-

times the case for GPES. To overcome embedded unpacking issues, sometimes a network

capture tool (e.g., [133 ]–[144 ]) connected to the actual hardware may be used to capture

network traffic during a firmware update. The firmware is then extracted from the captured

packet payloads.

In addition to downloading, firmware can sometimes be extracted from hardware. Vasile

et al. [145 ] in their survey of hardware-based firmware extraction techniques showed a high

percentage of systems expose UART interfaces that are sufficient to obtain firmware dumps.

In addition to UART ports, debug ports (e.g., JTAG), and USB ports can be used to dump

firmware [146 ], [147 ]. On some devices, a physical acquisition my be achieved by using

the flash memory read command after reverse engineering the firmware update protocol in

the bootloader [148 ]. If these ports are locked and secured, another option is to remove

the memory from the circuit board and connect to another system to dump the firmware.

Removing memories from the printed circuit boards comes at considerable risk of damaging

or destroying the hardware. Using debug ports requires the debug port be present, and

unlocked, both of which are increasingly considered poor security design.
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Of the tools I surveyed, Firmadyne and CostinFA obtained firmware from vendor web-

sites, whereas P2IM, angr, and Pretender used firmware available from a 3rd party vendor

(Github). HALucinator and Pretender also used development examples from real embed-

ded boards in their evaluation. For the case of Simics, QEMU, and Ghidra they are base

emulator tools and not academic papers, hence they do not specify how to obtain firmware,

expecting the user to have a firmware before using the tool. The other surveyed works did

not specify how their firmware samples were obtained, just what the firmware was, or what

the system was that they did emulation for.

The authors of Firmadyne developed and released a scraper that crawls embedded system

vendors websites and downloads any firmware that they can identify. They then unpacked

the firmwares in a generic way and if the firmware unpacked correctly, Firmadyne would

continue with emulation, otherwise it would crash. Of the 23,035 firmwares Firmadyne

scraped, they extracted 9,486 of them. Of those extracted, 1,971 were successful in naive

emulation. The large percentage of failure ( 90%) shows obtaining and extracting firmware

is a real challenge and is difficult to overcome in many circumstances. CostinFA posted

URL publicly that would try to unpack and analyze a firmware [149 ]. CostinFA collected

an initial set of 759,273 files scraped from publicly accessible firmware update sites, and

filtered that down to 172,751 potential firmware images. A sampled set of 32,356 images

were then analyzed and 38 vulnerabilities were discovered [21 ], though it is unclear the

level of emulation or re-hosting involved. Other resources that may be helpful in obtaining

firmware include Python scraper tools and other open source repositories [150 ]–[153 ]

4.4.2 Instruction Set Architecture

After obtaining the firmware, it is necessary to determine what the instruction set ar-

chitecture (ISA) the firmware uses so that the emulator can disassemble the firmware into

the correct machine instructions, endianness (e.g., little- or big-endian), and word-size. In

addition to determining the ISA family (e.g ARM, PowerPC, X86, MIPS, ARM64, AVR,

etc.), sometimes the ISA version is needed to correctly disassemble instructions e.g., is it

ARM with Thumb support and floating point instructions or not?

45



The ISA can most commonly be determined from a datasheet of the processor being

emulated. If the hardware is unknown and a datasheet cannot be identified, static analysis

techniques can be used. These techniques first try to determine if the file format is of a

known file format (e.g., ELF, PE2, Mach-O) using the file utility, then looking at other

signatures in the firmware (e.g.,, encryption, compression, etc.), or analyzing strings in the

binary to guess the ISA. One well known tool that may help determine the ISA is binwalk

[117 ]. Binwalk will use the capstone disassembler and try disassembling the binary for various

types of ISA. If there are more than a specified number of instructions in a row (default 500)

of a given architecture, then that is a strong candidate for the ISA. Of the tools surveyed,

Firmadyne and CostinFA use binwalk and existing extraction tools to determine the ISA

and then extract the filesystem, or extract the filesystem first and then determine the ISA –

with the order of these two steps being highly specific to the firmware and analysis process at

hand. Ghidra has headless scripts that can be run to try and determine the ISA (including

one using binwalk), whereas angr provides the boyscout [154 ] tool that will try to determine

the architecture and the endianess of the firmware. The other surveyed tools expect the ISA

to be given to work correctly.

There is also recent research on using machine learning to classify ISA and endianness.

These techniques usually rely on doing a binary similarity detection. They will use known ar-

chitectures for training binaries, decomposing the binaries into smaller comparable fragments

and transforming them to vectors to work with machine learning and stochastic gradient de-

scent optimization methods. One such work by Clemens et al. [155 ] experiments on 16,785

different firmwares from 20 different architectures, and was accurate in classifying 17 of the

architectures over 99% of the time, and the remaining 3 architectures (mips, mipsel, cuda)

50% of the time. De Nicolao et al. [156 ] leverages supervised sequential learning techniques

to locate code section boundaries of binary files to help ease difficulty in analysis using a

similar sized database for learning. Kairajärvi et al. [157 ] uses the ideas from both Clemens

[155 ] and Nicolao [156 ] with improvements while using and publicly releasing a much larger

and more balanced database for learning and testing. Other machine learning techniques

that could be modified to determine the ISA are mentioned in[158 ] along with other machine
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learning techniques for binary analysis. These techniques require large datasets for training

to be accurate and will only work as well as their training data.

If the above automated methods fail, the practitioner can attempt to manually identify

the ISA by looking at signatures and strings in the firmware (certain compressions, signa-

tures, copyrights, etc.) and/or brute force decompilation and performing an “eye” test on

what looks promising.

4.4.3 Determine Base Address

In order for the firmware to execute in an emulator, it must be loaded at the correct

address(es). Determining the base address is difficult if the firmware being re-hosted is a

binary-blob (e.g. just a binary with no symbols or metadata). The base address where the

firmware should be loaded can sometimes be found by hardware datasheets (for firmware

executing from internal memory). If source and compilation tools are available, base address

information can be found in linker scripts.

Finding the base address is fundamental to many binary analysis techniques, and thus

techniques to (try to) automatically determine it have been researched. Zhu et al. use strings

and LDR instructions, comparing them and matching the offsets to determine the image base

of the firmware [159 ], [160 ]. This is similar to the technique of listing the dwords occurring

in a file with the list of strings in a file and lining up the distances between occurrences

if possible. If there is a match, then subtracting the offsets will give you the image base

address.

Firmalice [96 ] leverages jump tables in the binary by analyzing the jump table positions

and the memory access pattern of indirect jump instructions. In a jump table there are

a set of absolute code addresses which can give a better idea of where the firmware needs

to be located at for the absolute addresses to work correctly. To find the jump tables,

they scan through the binary for consecutive values that differ in their least significant two

bytes. Finding the jump table is successful in many cases as jump tables are typically stored

consecutively in memory. After finding the jump table, they then analyze all the indirect

jumps found in the disassembly phase and the memory locations that they read their jump
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targets from. The binary is then relocated so that the maximum number of these accesses

are associated with a jump table.

angr also attempts to determine the base address with their analysis script called girlscout

[161 ]. This script will try to decide the base address by looking at functions and doing a

statistical analysis to vote on the most likely base address. If automatic techniques do not

work, the base address may be discovered by brute force guessing and checking, as most base

addresses are multiples of powers of two.

In the case of Firmadyne and and CostinFA, the filesystem from the firmware is extracted

after determining the ISA, and then the filesystem is used in a custom kernel given to QEMU.

By using their own kernel, these tools bypass the need to determine the base address, but it

also reduces the execution fidelity, as it does not execute the original kernel. For the other

surveyed tools it is assumed the base address is provided by the practitioner.

4.4.4 Finding Entry Point

After determining the base address of the firmware, the practitioner needs to determine

the entry point (i.e., address from where to start execution). Entry point information can

be encoded in the binary (e.g., Executable Linker Format, ELF defines the entry point in

metadata), or different analysis can be run to help give the practitioner entry point options.

For binary-blob firmware, angr, Ghidra, and IDA[124 ] have scripts that scan through

the binary attempting to find function prologue instructions and function returns. From

function information a directed function call graph can be generated and analyzed. Any

root node of a weakly-connected component in the call graph can be treated as a potential

entry point. Function call graph creation and analysis requires that you already know the

ISA (so the function prologue, function epilogue, and call instructions can be analyzed). The

call graph technique often returns multiple entry points, from which the correct entry point

for emulation must be identified. Additionally, firmware will often have multiple valid entry

points (e.g., bootloader and interrupt service routines).

Instead of looking at the firmware to identify the entry point, some techniques rely

on knowledge of the hardware they support to determine the entry point. For example,

48



HALucinator targets ARM Cortex-M devices. The Cortex-M architecture defines that the

initial program counter’s value be stored at address 0x4 on reset. Thus, HALucinator finds

the entry point by looking at address 0x4. If the hardware is known, the datasheet will likely

provide information about how the system begins execution.

For techniques that use a replacement kernel, as is the case for CostinFA and Firmadyne,

finding the entry point challenge is essentially bypassed, as the entry point of the kernel is

known because they built the kernel themselves. If the practitioner is dealing with a known

operating system or compiler toolchain, the entry point function name may be specified

(such as _start or _init). There are then techniques that can do function matching giving

you the actual entry point. One such example is VxHunter[162 ] that will work for many

firmwares with the VxWorks OS and compilation toolchain.

4.4.5 Determine Memory Layout

Determining the memory layout enables configuring where in the processors layout dif-

ferent types of memory are located. It sets the address for RAM, Flash, and MMIO. If the

system is available with specifications, usually the memory layout can be determined from

datasheets. For ARM systems, there may be a CMSIS-SVD file that also defines the memory

layout. These files are in a specified format that can be loaded into a reverse engineering

(RE) tool such as Ghidra or IDA and an automatic analysis can be run to update the mem-

ory layout [163 ]. Other types of files that sometimes specify memory layout include EDC

files and hwconf files.

If no documentation exists and RE tools fail, physical examination of the components on

the device that is being emulated may help to determine memory layout. Often markings

and manufacture printing on the parts can be used to identify datasheets for the parts. If

the memory layout is still unknown, the emulator can be over provisioned with memory

(e.g., giving significantly more memory than the physical system) and trial and error must

be used to determine where code is located and where external peripherals are, then these

interactions are usually mapped into memory mapped IO. Of the surveyed tools, memory
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layout must be specified by the practitioner, though in some cases tools make it easier e.g.,

Ghidra when CMSIS-SVD file is present.

4.4.6 Identify Processor and/or Board Support Package (BSP)

Depending on the fidelity the practitioner is targeting, often times identifying the exact

processor is not necessary. As the case is with QEMU, the emulator only works off the ISA

level features. For fidelity at the cycle level of emulation, tools such as gem5 [129 ] require

knowing the exact processor as the same ISA instruction can be implemented differently at

the cycle level for various processors. In QEMU, if a versatile machine is not used, there can

also be errors, even if the ISA specified is correct.

In the case that the practitioner needs to solve the challenge of identifying the processor,

solving memory layout may help. However, if the processor is known, often the documenta-

tion for the processor will specify the memory layout. If you have access to the hardware,

most likely the processor will be labeled, solving the challenge.

If you do not have access to the hardware, the practitioner could do an aggressive instruc-

tion finding, followed by an analysis on how the instructions interact with memory. This

analysis can then be compared against analysis on known processors to narrow down the

processor candidates. This is still a manual process for the practitioner to then select and

test different processors. If the vendor is known, projects that leverage known information

from other reversed firmware may be used [164 ]. If the previous analysis are unsuccessful,

the practitioner could run a brute force script to test all available processors in the base

emulator. If still not successful, access to labeled hardware is required. For surveyed works

based off QEMU, identifying the processor is not strictly necessary in all cases, though if the

QEMU target is not versatile it may be required.

4.4.7 Disassembly, Initial Analysis, and CFG Recovery

As mentioned at the beginning of Pre-Emulation, disassembly, initial analysis, and recov-

ering the Control Flow Graph (CFG) are not strictly Pre-Emulation challenges. However, it

is important to verify that the work the practitioner has performed and challenges addressed
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to this point in time are correct. Verification of previous work is perhaps skipped in some

pipelines, but I have found that verification before continuing on to the next stages will

save time and reduce headaches in the Emulation phase, e.g., when multiple possible entry

points (which may occur when there is a bootloader in addition to the main firmware under

analysis), doing a validation and verification that you have the right entry point is worth the

extra time to save the practitioner from wasting time re-hosting the bootloader that may

not answer the emulation question at hand.

In the case that the practitioner has an idea of what the firmware is doing, such as is

usually the case when the hardware is known, analyzing the CFG can help determine if the

previous challenges such as base address, ISA, entry point are correct. When the CFG is

recovered, it also conveys how well the disassembler and decompiler performed. This will

give an idea of how successful emulation execution will be and/or the fidelity of emulation

moving forward. Of the works surveyed, there are relatively few core disassemblers. angr uses

capstone for parts of its disassembler, whereas QEMU and Ghidra use C/C++ to implement

their disassembly. The other surveyed tools use a base emulator that will reuse one of these

disassembly implementations. If the disassembler works perfectly, then the instructions have

been disassembled correctly and the CFG can be recovered trivially if the control flow does

not leave the main processor.

If the control flow leaves the main processor and goes to a co-processor (e.g., GPU or

DSP) chip for initialization, it is near impossible to recover the CFG for what occurs in the

co-processor. The practitioner at this point can try to determine what state and memory

changes occur by comparing the state of memory before and after control is passed to the

co-processor. If control flow leaves the emulated processor, fidelity of emulation is limited

for that portion of the re-hosting, but in most cases is not a limiting factor in emulation.

If the hardware is not known and the practitioner does not have any idea of the control

logic the firmware is trying to perform, disassembly and analysis can still be of use for

validation. Disassembly will ensure the correct ISA is known and possibly help validate the

processor. A control flow graph can still be created and analyzed to determine if there are

valid flows throughout the graph, giving at least a weak reassurance that the base address

and entry point are correct.
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Disassembly and analysis are iterative, meaning the practitioner will perform the disas-

sembly, then analyze the results in iterations. Between iterations, they will then modify the

inputs and parameters to the disassembly slightly depending on the analysis results. This

process will continue until the analysis results match what is expected from the practitioner.

During this iteration process, there will be tweaks to the ISA, processor, base address, entry

point, memory layout, etc. To solidify the ISA, processor and memory layout, the practi-

tioner may analyze multiple firmwares for the same system concurrently, aggregating the

analysis results to solidify results.

4.5 Emulation

In Figure 4.2 I show the flow that a practitioner will usually explore during Emulation

setup and execution stages of re-hosting a firmware. The stages will usually be interspersed

during iterations of emulator development. These challenges generally are not linear, but

rather occur in different orders depending on the firmware being re-hosted.

After the practitioner has determined the processor, memory layout, entry point and

base address of the firmware, verifying support in the base emulator is performed. Ideally

the base emulator has support for the processor, if not, the practitioner will have to create

a new specification for the base emulator. QEMU and Ghidra have instructions on how to

add support for a new processor [169 ], [170 ]. After a base emulator is available, the next

challenges can be addressed.

Overcoming the challenges in pre-emulation enables loading the firmware into the emula-

tor and beginning execution. For the execution to be faithful to the real system, additional

challenges must be overcome. I break these challenges into sub-categories– setup and ex-

ecution. Setup challenges are usually done statically when the emulator is either paused

or stopped whereas execution challenges are when the emulator is actually running. As a

reference to the practitioner, I provide Table 4.2 , but do not provide a reference table for

the execution, as all the surveyed works attempt to overcome the given challenges.
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Table 4.1. Pre-Emulation Challenges
Paper/Technique Obtaining

Firmware
Determine

ISA
Finding

Base Address
Finding

Entry Point
Determine

Memory Layout
Identify
Processor

Disassembly/
Recover CFG

angr [27 ]
Avatar2 [90 ]

CostinFA [21 ], [28 ] — — — —
Firmadyne [104 ] — — — — —

Ghidra [44 ]
HALucinator [1 ] —

Muench2018 [103 ]
P2IM [107 ]

PANDA [25 ]
Pretender [108 ]

PROSPECT [105 ]
QEMU [2 ]
Simics [42 ]

SURROGATES [106 ]
ARMX [33 ] — — — — — —
BANG [116 ]
BAT [165 ]

Binwalk [117 ]
CLIK on PLCs [16 ]

Datasheets
Dtaint [166 ]
Dytan [118 ]
FIE [119 ] —

Firmalice [96 ]
firminsight [150 ]

firmware-mod-kit [120 ]
firmwaredb [151 ]
FirmUSB [121 ] —
HumIDIFy [122 ]
ICSREF [123 ]
IDA-PRO [124 ]
Inception [125 ]
KLEE [59 ]

OFFDTAN [167 ]
PIE: Parser [168 ]
Radare2 [115 ]

Scraper (python)
subzero [164 ]
Spedi [126 ]

strings (linux command)
means the tool attempts to address the given challenge. ‘—’ means the tool bypasses this

challenge, usually by the emulation technique used. A blank means the tool does not address the
challenge. The first 14 entries in the table are bolded and are the main tools profiled in detail
throughout.
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Peripherals 
and Models

Specify
Mem

Interactions

Handle 
Interrupts

Configure 
Hardware

Identify 
Functions

Identify 
Tasks

Manage 
Memory 
Accesses

Handle 
Hardware 

Interactions
Debug

Emulation

Emulation Setup

Emulation Execution

Figure 4.2. Categorization and flow of some of the steps required for system
emulation during Emulation Setup and Execution
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4.5.1 Emulation Setup

After you have overcome the challenges in Pre-Emulation, now you need to determine how

to handle configuration, external interactions and memory. Emulation setup encompasses

these problems and is closely tied with the actual emulation execution. Setup is often

iterative between execution stages, and with each iteration more knowledge is gained about

the firmware and its dependencies on the emulator and peripherals. The emulator is improved

and execution of the firmware is also iteratively performed. This continues until the question

the analyst was trying to address has been answered.

As mentioned in Section 3.1 , the scope of emulation may vary from a single chip or

micro-controller to a subsystem or a large distributed system. The scope of emulation that

is targeted will affect the challenges faced during emulation. The problems I discuss here are

not all encompassing, though I believe it is a sufficient basis to demonstrate major challenges

currently faced during the Emulation Setup phase.

Peripherals, External Hardware, and Modeling

Handling peripheral accesses is where a large amount of research is currently focused.

Because of the variety of peripherals and vendors, it is likely the peripheral that is be-

ing accessed by the firmware is not implemented in the base emulator. Handling External

Hardware and Peripheral interactions encompasses how to handle or represent interactions

between the emulator and the peripherals. As mentioned in Section 4.4.5 , statically deter-

mining the memory map will specify where the peripherals are located, not if they are used or

when they are used. Dynamic analysis and execution can provide some of this information,

discovering what peripherals are used when valid inputs for the given subset of peripherals

analyzed. Depending on the fidelity of the peripheral model, i.e. the extent to which the

peripherals are modeled, will constrain the dynamic execution to specific paths. Providing

more realistic peripheral models will increase the amount of code executed and result in valid

accesses to more peripherals that may not otherwise be accessed. During dynamic execution,

if the emulator has an exception or crashes due to trying to access peripherals that are not

mapped, this usually occurs when there is an aliasing problem. Solving the alias problem
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is sometimes feasible statically, but may have to be solved dynamically during execution by

keeping track of various addresses and using this information to update peripheral models

for the emulator.

Handling peripheral interactions can be done by emulating the external device, by using

the actual hardware (HITL), or by patching the firmware to bypass the interaction. The

firmware modification may ignore some of these accesses (such as setting CPU clock rates),

always give an increasing value, or read from a file of expected inputs. The necessary

operation will partially be determined by the firmware being re-hosted. Using HITL will

give the highest fidelity for execution and memory, but will prohibit the parallelization of

emulation as it is constrained to availability of the connected hardware. HITL emulation

also has significant challenges in synchronizing states between the emulator and hardware.

For example, a timer may generate an interrupt on the hardware, causing it to be stuck

continuously processing the timer’s ISR, while the emulator has no timer and thus is not

processing any interrupts, or another example is when the watchdog timer interrupt kicks in

while the analyst is slowly emulating or using a debugger (such as GDB).

Providing abstractions requires manual effort and a thorough understanding of what the

peripheral is performing, but it does provide high fidelity. Tools that use this approach

include QEMU, HALucinator, PANDA, and Muench2018. Using a fuzzer, on the other

hand, does not require device specific knowledge but may not give sufficient fidelity for many

questions you want answered and is usually only useful to help find bugs and vulnerabilities.

P2IM uses the fuzzer approach and is successful with finding some vulnerabilities. Using

machine learning, as Pretender does, is appealing as fidelity is perhaps slightly affected but

could still give valuable insights beyond simple software bugs. The results of current machine

learning approaches only show proof of concept on simple peripherals (e.g., serial/UART port

being the most complicated) at this point, and it is still unclear if the approach will work

for arbitrary hardware peripherals.

Of the other surveyed tools, Firmadyne and CostinFA assume the peripherals are part of

their core kernel, otherwise the emulator will crash. They do not provide techniques around

such challenges. SURROGATES and PROSPECT will forward peripheral accesses to the
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actual hardware, bypassing the modeling, but it introduces the state synchronization and

delay of emulation challenges.

Memory Interactions and Setup

Most emulators allow the practitioner to specify where data, code, and peripherals are

located. Doing so allows the emulator to set restrictions on emulation, such as crashing

or notifying the practitioner if data is trying to be executed. Emulation setup will usually

allow specifying different memory regions and types of interactions such as where RAM, Flash

and Memory Mapped peripherals are located. This emulation setup can also be described

as configuring the emulator, which is necessary to start the emulator. Setup will include

providing the information discovered during Pre-Emulation, including specifying the base

address and entry point along with the memory layout and amount of memory available.

If a tool does not have built in support for memory, reusing the base emulator support

or providing the interaction through software are feasible options for the practitioner. In

specialized cases such as SURROGATES and PROSPECT, interactions can be forwarded to

the actual hardware. For HALucinator, Ghidra, PANDA, PROSPECT and Muench2018 it is

expected the practitioner will either use the built-in memory handlers or provide modules to

allow memory interactions to perform correctly. For Firmadyne and CostinFA the memory

and handling of memory is built directly into the kernel, so if there is an error with the

memory or interactions that is not a firmware bug, their kernels will need to be modified.

Configuring Hardware

Setting up hardware is a challenge for emulation using HITL. This requires initializing it

state such that its can be used, and then bringing it into the loop. To do this the practitioner

will need to specify in the emulator how and when to forward interactions to the hardware.

This may also require delays or using specialized hardware execute fast enough to be usable,

as is the case for SURROGATES or Aveksha [100 ]. Aveksha is a system for nonintrusive

tracing of execution at a high spatial and temporal granularity suitable for an embedded
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wireless node. Avatar2 is a powerful tool when configuring hardware, and the provided

framework is closest thing to allowing plug and play integration for HITL.

Missing Code

In some cases, as you recover the CFG you may notice you have missing code. Missing

code usually occurs when either the wrong entry point has been specified, there is patched

out functionality that may write code (such as a bootloader), the firmware is not complete

(e.g., either a partial firmware-update or unpacking was only partially successful), or if there

is code on ROM chips in the device. Missing code is more common if the firmware is ripped

off the actual hardware device. In some cases it is possible to patch out the missing code and

still obtain the level of emulation fidelity the practitioner cares about, otherwise, missing

code may make emulation infeasible.

If the emulator tries to execute missing code, usually the system will throw an exception

or crash altogether. The only technique I am aware of to overcome this challenge is replacing

the code with models or skipping the code altogether. HALucinator replaces the code by

using function intercept techniques that then allow for replacing such functionality with

manually written models. For other surveyed tools, missing code will require some sort

of manual intervention to overcome, perhaps manually providing the same functionality as

HALucinator.

Function Identification and Labeling

Function Identification is necessary for some emulation techniques but not all. If emula-

tion fidelity is at the module or function level, the practitioner may want to determine certain

functions, such as Hardware Abstraction Library (HAL) calls, and provide abstractions for

these functions. Function identification is not an easy problem and is the basis of a plethora

of papers and is still a very active area of research [171 ]–[183 ].

Of the surveyed works, angr, Ghidra, and HALucinator have library matching built in

to their frameworks. The other works either do not need to overcome such problems or

they do not address function identification. angr, Ghidra and HALucinator will use existing
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Table 4.2. Emulation Setup Challenges
Paper/Technique External Hardware

and Peripherals
Mem Interactions/

Setup
Configure
Hardware

Missing
Code

Function Identification
and Labeling

angr [27 ]
Avatar2 [90 ]

CostinFA [21 ], [28 ]
Firmadyne [104 ] — —

Ghidra [44 ]
HALucinator [1 ]

Muench2018 [103 ]
P2IM [107 ]

PANDA [25 ]
Pretender [108 ]

PROSPECT [105 ]
QEMU [2 ]
Simics [42 ]

SURROGATES [106 ]
ARMX [33 ]
Datasheets

Firmalice [96 ]
ICSREF [123 ]
IDA-PRO [124 ]
Inception [125 ]
KLEE [59 ]

OFFDTAN [167 ]
PIE: Parser [168 ]
Radare2 [115 ]
Spedi [126 ]

means the tool attempts to address the given challenge. ‘—’ means the tool bypasses this
challenge, usually by the emulation technique used. A blank means the tool does not address the
challenge. The first 14 entries in the table are bolded and are the main tools profiled in detail
throughout.

techniques to try to identify some functions, such as using IDA FLIRT signatures, loading

libraries and trying to match, and compiling existing HALs and comparing the re-hosted

firmware to a database. Other techniques include identifying functions from their side effects

such as is the case with Sibyl [184 ].

4.5.2 Emulation Execution

Execution deals with the classical problems of emulation as mentioned in [2 ], expanding

to include problems that are arising with the increasing uses of emulation. The different

fidelities of execution will also use different techniques for emulation. Tools that are cycle

accurate, such as gem5 [129 ], will decode the instruction depending on the processor and use
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the same depth and stages of the CPU pipeline as the original processor when emulating the

instructions. Simics [42 ] has instruction level fidelity and will thus decode the instructions

and update state after each instruction. QEMU uses basic block fidelity and does a transla-

tion from the basic block instructions of the target architecture to machine host instructions

using QEMU’s Tiny Code Generator(TCG). Ghidra Emulator will translate instructions to

P-code, with each machine instruction translated generating up to 30 P-code instructions.

Others will use various other intermediate representations including LLVM IR [185 ], VEX

[186 ], REIL[187 ], BAP’s BIL [112 ], Binary Ninja LLIL[109 ] and more. Of the surveyed tools,

angr will translate to VEX. Each of these techniques have their own challenges and trade-offs,

which is why there is still research in this area.

For each of the surveyed tools there is a base emulator. angr, Avatar2, CostinFA,

Firmadyne, HALucinator, P2IM, PANDA, Pretender, PROSPECT, SURROGATES and

Muench2018 all use QEMU as their base emulator. angr also uses CLE loader to allow

Avatar2 targets to run concretely in their framework through what they term angr_symbion

that combines symbolic execution and concrete execution. Cross tool integration essentially

opens the door for any emulator to work with any other analysis tool, symbolic engine, or

fuzzer. For traditional execution challenges (the different subsections below), the base em-

ulator will usually address and overcome the challenge. Because the base emulator solves

the challenges throughout execution challenges, I do not specify what each tool does for

overcoming the given challenge, rather I address more generally what QEMU, Simics and

Ghidra Emulator do.

Register Allocation

Each architecture will have different registers and different conventions. For example,

the program counter (PC) on different architectures will be different registers such as R15

for ARM, PC for x86/x86-64/PowerPC, R0 for TI-MSP430. Most emulators will map each

register to a concrete fixed host memory address or register. Mapping the registers to fixed

host memory is versatile and probably the most portable solution and is done for QEMU,

Simics and Ghidra Emulator.
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Direct Block Chaining

Block Chaining is directly related to QEMU, as Simics does a sub-instruction level emu-

lation and execution, leaving the chaining to occur naturally with fall through if the instruc-

tion does not modify control flow. Ghidra will allow natural fall through, but allows for flow

modification in their UI.

If the emulator does a translation, such as QEMU and the translation of entire basic

blocks, then the emulator has a simulated program counter which is used to find the next

blocks of code to be executed. These blocks are usually cached in memory to speed up

execution, so there is a lookup in a hash table to retrieve the correct block. For some

emulators, they will add instructions at the end of blocks to directly chain to the next block

of instructions to execute.

Self-modifying code and translated code invalidation

On some CPUs self modifying code is not a problem, as there is a specific code cache

invalidation instruction executed when code is modified. On other CPUs though, there may

not be an invalidation instruction, so this becomes more difficult. In [2 ], they handle self

modifying code by keeping track of translated code and the corresponding host page as read

only. If a write is performed to the code, then they invalidate the translated code allowing for

the code to be rewritten. They do some more clever things when using a software MMU, as

they don’t always have to invalidate the code when only data is changed. Ghidra Emulator

has permissions for writing and code is read only. Therefore if code is written the emulator

will throw an error and exit. It is not clear how or if Simics supports self-modifying code.

Non-Volatile Memory

Non-Volatile Memory (NVM) are becoming more popular because of the improved la-

tency and power efficiency compared to flash and other hard drives. Traditionally NVM has

not been a challenge faced as it is now becoming more prevalent. Because NVM is relatively

new, on boards that have NVM, most current system emulators are probably lacking in
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support. Some vendors give instructions on how to enable an emulated environment where

you can build persistent memory (PMEM) applications without having the actual hardware.

To overcome the NVM or PMEM challenges in system emulation, you need to determine

how the memory interacts and provide a handler for it, much like QEMU does for normal

memory. The instructions given by different PMEM hardware vendors on how to emulate

their hardware will be crucial during implementation. QEMU, Simics and Ghidra Emulator

handle NVM by allocating memory in the host system and having hardware interactions

modeled by the analyst [188 ]. For QEMU, some tools provide some interactions such as

NVRAM [189 ].

Direct Memory Accesses (DMA)

In some cases co-processors may use direct memory access (DMA) for initialization, or pe-

ripherals may write directly to memory. DMA can be addressed by emulating co-processors,

using HITL emulation, or if the firmware uses known function calls for DMA, the func-

tionality can be replaced by intercepting and replacing the functionality. QEMU has been

expanded by Avatar2 in software, and SURROGATES using hardware, to allow for forward-

ing peripheral acesses to the actual hardware. Simics is usually a more custom solution and

also allows for HITL with given modifications. HALucinator will handle DMA by intercept-

ing HAL calls that perform DMA and will implement the needed memory modifications with

manually implemented functionality.

Handling Interrupts

There are various ways to handle interrupts. Handling interrupts is another active re-

search area as there are multiple ways to accomplish the interrupt handling. The emulator

may or may not check at each instruction or translated block for interrupts, with tradeoffs

for different implementations. In some cases the emulator may require that the user trigger

interrupts, call the interrupt handler, or patch an automatic call at certain parts in the

firmware. There are pros an cons to each of these techniques. For the case of QEMU, they

do not check at each translated block whether there is a hardware interrupt pending, rather
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it relies on the user to asynchronously call a specific function and specify that an interrupt is

pending. At that point the function resets the chaining of the current executing translated

block, ensuring that execution goes to the main loop of the CPU emulation. In this main

loop it looks to see if there is a hardware interrupt pending. By requiring user asynchronous

interrupt calls and checking after basic blocks for interrupts, it allows the emulator to be

much faster with less overhead while still supporting interrupts. Simics will allow for inter-

rupts between each instruction by contrast, allowing for a higher execution fidelity at the

cost of speed. Ghidra Emulator can also have interrupts at the sub-instruction level between

different P-code operations.

In both cases, if you are testing something such as an interrupt storm (sending multiple

interrupts with various orders and frequencies), you will most likely have to asynchronously

specify interrupts to the base emulator. When those interrupts are handled will affect the

fidelity of the system.

Multi-Threading

In some systems, multi-threading is enabled. Applications that use multiple threads may

use locks/semaphores for inter-thread communication, but this requires that your system

emulator allow multiple threads to “run” at the same time as well. If the system allows

multiple applications to be run, they will employ a scheduler and use either pre-emptive or

co-operative scheduling. With co-operative scheduling the emulator essentially just needs

to allow the multiple threads to execute, and those threads will manage themselves during

interaction. For pre-emptive, this will require trigging an interrupt to cause the scheduler

to run and perform context switching between the threads. During emulation, usually the

practitioner will start with single threaded applications, running one at a time and gradually

increase the complexity and number of threads as the system gains more functionality and

fidelity.

As mentioned throughout, with the ability to have fidelity at the instruction level, Simics

is known for being more useful when debugging multi-threaded firmwares or systems. QEMU

is able to emulate such systems, but in some cases it will give a false sense of correctness
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because threads can only interact at the end of basic blocks for QEMU, whereas Simics

and Ghidra Emulator allow thread interaction between any pair of instructions, even in the

middle of a basic block. QEMU can attempt to overcome this limitation by setting break-

points at every instruction, which essentially makes each instruction a basic block, but this

dramatically slows down the system to the point that the emulation is not useful.

Debugging

During system emulation, undoubtedly you will run into some errors, whether they are

errors in the actual firmware and/or system, or your emulator has errors and bugs. In either

case, you need to be able to integrate some debugging. GNU GDB is a popular option to

integrate into tools, having plugins for some of the major softwares including Avatar2, angr,

Ghidra, QEMU, etc. Another option I have found useful is first emulating a serial port or

other form of printing messages, enabling “printf” style debugging. In addition to printing,

directly inserting function calls into the firmware can be useful for debugging purposes.

QEMU works as well as the debuggers that connect to it, with logging and setting some

break points which should be familiar for those who have used GDB. Ghidra Emulator also

allows for a GDB bridge to be connected for debugging. Simics employs integrated debugger

support with both forward and reverse direction debugging available.

Timing Constraints

If the purpose of your emulation is to answer questions regarding timing, you may be

limited by the emulation approach and tools you use. In some cases you may be able to use a

hardware integration solution such as SURROGATES, with specialized hardware to forward

memory or peripheral accesses to an actual device. If you need to parallelize your emulation,

HITL may not be feasible. In such circumstances, the practitioner may have to implement

their own timing. Implemented timing can be cycles, instructions, basic blocks or something

similar. Timing is in many cases closely related to enabling interrupts, as some interrupts

are timing or watchdog interrupts and in those cases require some sort of triggering or timing

implementation in your emulator.
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If the base emulator is Simics, the emulator has a better idea of the number of cycles

required for emulation, even if the emulator is slower to perform the operations. QEMU, in

contrast, will be faster, but non-deterministic in execution time, which may be unsuitable if

timing guarantees are needed.

4.6 Post Emulation

Post Emulation challenges are usually directly related to the purpose of emulation. Some

of the challenges include determining/patching vulnerable code, comparing actual vs wanted

behavior, finding vulnerabilities, visualizing emulation results, and automating the previous

steps overcoming challenges.

4.6.1 Finding Vulnerabilities

Finding vulnerabilities is arguably the most popular reason for system emulation. There

are many techniques to find vulnerabilities, with fuzzing being one of the most popular

techniques.

There are many other techniques used to find vulnerabilities, including data flow analy-

sis, taint analysis, control flow analysis, record and replay execution analysis, dynamic and

symbolic execution. Some tools use supervised machine learning for vulnerability assess-

ment, e.g., Costin et al. [190 ] use ML to classify firmware to help both address firmware

vulnerability discovery and vulnerable device discovery. With the vast amount of work in

vulnerability discovery, in depth discussion and scope is not feasible in this paper, so I suffice

to say these methods exists, and refer the readers to existing evaluation articles, including

[191 ]–[193 ].

4.6.2 Verification

Once you have a system emulator, whether your first version emulator or a polished ver-

sion, the problem of verifying that the emulator does what it is supposed to do arises. While

verification of SoC chip functionality before taping and production of a whole circuit system

is well studied[194 ], verification of emulated systems and re-hosted firmwares seems to be
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lacking. None of the current tools verify whether they are correctly emulating the re-hosted

firmware, beyond black box behavior comparisons. In addition, there are no real bench-

marks or verification techniques that are standard to test emulators. With the expansion

of firmware emulation as an area of research, verification of the emulators and of re-hosted

firmware execution is a critical need.

4.6.3 Analysis

As with normal hardware/software systems, emulated systems also are tested and ana-

lyzed after “completion”. The firmware used during emulation may be analyzed and tested

for bugs. The emulator itself may be analyzed to help with hardening firmwares that run

on actual hardware. Analysis and post emulation includes vast amounts of effort in binary

hardening, vulnerability detection and other cyber security efforts. All of the surveyed tools

do some sort of post emulation analysis.

4.7 Considerations

When determining what base emulator or the different techniques/tools to use, there are

pros and cons to each solution. Some of the main considerations I contemplate before choos-

ing specific tools include hardware support, fidelity, performance, debug support/availability,

and usability/control. These considerations are subject to the practitioner’s opinion, though

I have tried to objectively classify the tools fidelity and automation as shown in Figure 3.1 .

In Figure 4.3 I provide an overview for giving a decision flowchart on choosing a tool,

though I leave out a definitive path when trying to narrow tool use based on debug support,

usability and control, as I have found opinions vary greatly for the various tools. On the left

of the figure in a big box are all the surveyed tools. Following the arrows from there gives

the key difference between the emulators. If the analyst is interested in machine learning,

Pretender will be a good place to start looking. Likewise, if interested in finding bugs/vulner-

abilities using symbolic execution and fuzzing, then angr, Ghidra, HALucinator, and P2IM

are a promising starting points. If you are interested in using actual hardware along with

emulation, Avatar2, SURROGATES, and PROSPECT are appropriate. Otherwise, general
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Figure 4.3. Flow Chart to Choose Emulator

purpose emulators that have different strengths and uses include PANDA, Muench2018,

Avatar2, HALucinator, QEMU, Firmadyne, CostinFA, Ghidra, and Simics. Once you have

narrowed down the potential tools to a group of tools the following considerations should be

evaluated.

Hardware support has perhaps been the most significant reason emulation has not been

used in the past. The effort to emulate a system or re-host a firmware has traditionally been

difficult to get working with systems (and some argue still is). This is slowly being remedied,

with the core emulators having support for a wide variety of hardware. In addition, there is

an increased effort to make adding new hardware and processors simpler and easier. One of

the first considerations will still be if the tool you want to use has existing support for the

hardware you want to emulate.

Emulator fidelity, as mentioned in Section 3.3 , will narrow down which tools can be used

to answer the question the practitioner is using emulation for. In some cases, symbolic

execution is a feasible option to answer the emulation question at hand. In such cases,

angr is the best option surveyed, being user friendly with a dedicated Slack[195 ] group with
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help and development channels. If symbolic execution will not work, the practitioner can

reference Figure 3.1 for help in narrowing down which surveyed tools can be used for the

needed fidelity.

After considering fidelity, performance and debugging support also need considered. De-

pending on the emulation question, one of these attributes will be more important than

the other. One of the main reasons emulation has not been used extensively in the past is

because of the overhead and slow performance of emulators, but as software and hardware

become more powerful, performance issues are being overcome.

When the performance of the emulator is a hindrance, partial emulation or specialized

hardware are possible solutions. Ghidra Emulator allows for partial emulation, letting the

practitioner start emulation at specific functions given they specify necessary inputs. SUR-

ROGATES provides specialized hardware to interact with memory faster. HALucinator

sets breakpoints on user specified addresses provided in a YAML file. By analyzing only

the necessary memory to answer a specific emulation question emulation performance can

improved.

Debugging support is also a key attribute to consider. If the practitioner is re-hosting

a firmware with limited knowledge of what the firmware is doing, more debugging support

will be essential. As noted, one of the benefits of emulation is being able to examine mem-

ory at each point during the firmware re-hosting. Examining memory requires the use of

debugging tools or logging. For base emulators, QEMU and Ghidra (through [196 ]) have

GDB integration. Using GDB, break points can be used to step through emulation. Simics

also has built-in debugging and allows for break points, along with stepping forward and

backward through emulation. It is important to note that debugging support will affect

performance, as the more break points and tracking needed will slow down the emulator.

Both performance and debugging support are active areas in research, with base emulators

trying to implement faster tools while monitoring and debugging.

Usability is a combination of exploration and control as referenced in Section 3.5 and tool

automation. If a tool is automated, performs fast enough, and can answer the emulation

question at hand, that tool is obviously the best option. However, at the moment, this is

not a common scenario, and thus how much control the practitioner has with exploring and
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executing re-hosted firmware is also an attribute that must be considered. Tools with GDB

integration allow for expanded control. Tools that use fuzzing or randomization have less

control and may or may not be useful for the practitioner in some cases. In essentially all

the tools surveyed, debugging is built in to the base emulators and/or is available through

plugins or default built in.

4.8 Summary

As a practitioner is contemplating the correct tool to use for firmware re-hosting and

system emulation, I suggest using the provided emulation comparison techniques and con-

siderations I have presented here. I have discussed comparing emulation tools by the tech-

niques they employ, the types of systems they work for, the purpose of the tool, how much

exploration the tool can achieve, and the most useful classification technique, fidelity.

Along with comparison techniques, I have shown classification of surveyed works includ-

ing angr, Avatar2, CostinFA, Firmadyne, Ghidra, HALucinator, P2IM, PANDA, Pretender,

PROSPECT, QEMU, Simics, SURROGATES, and Meunch2018. These techniques and

their differences were discussed as I presented the core challenges faced during emulation

and firmware re-hosting, giving an overview for the new practitioner or researcher looking

on where to begin and further research in the firmware re-hosting and emulation field. Au-

tomation in current tools reduces the fidelity of the system dramatically, but in many cases

is still sufficient for some emulation questions to be answered. The endeavor to automate

current tools is difficult because of the wide coverage of embedded systems, but I note the

valiant effort the surveyed tools have made and recognize the importance of making tools

easier and automated for practitioners to use.

System emulation and firmware re-hosting has mutated and evolved dramatically since

its inception. The challenges faced when trying to emulate a system/re-host a firmware

have grown as emulation has improved. I have highlighted the need for further research and

tools to address Pre-Emulation, Emulation, and Post Emulation challenges. As tools and

solutions are invented and released, I have provided classifications and criteria on how to

evaluate such tools.

69



5. HQ-TRACER

When trying to re-host a firmware, you will come to a point where you can boot the firmware

in your emulated system, but you don’t really know what is happening, let alone what

is supposed to happen. Ideally, you want a tool that helps visualize what is happening,

which leads naturally to a reverse engineering platform such as Ghidra or IDA. Because IDA

requires a paid license and there is less open source contribution, I see Ghidra as the obvious

choice for visualization.

The decompiler in Ghidra does well in most areas, and if it struggles on certain things, the

user can tweak the decompilation rather easily. One of the most useful reverse engineering

efforts in my opinion is function matching and decompilation. In Chapter 6 I go into more

depth on function name matching, but even after you have matched and done some RE,

static analysis only gets you so far. I know this might be blasphemy for some, but dynamic

analysis combined with static analysis helps give a better understanding of what is actually

happening in a firmware when compared to either static or dynamic analysis alone. To this

end, I wanted to incorporate both static analysis performed into Ghidra, using the dynamic

traces that occur in an emulator in conjunction with built-in Ghidra static analysis.

QEMU is probably the most widely used emulator base at the moment, so I looked to

incorporate traces performed in QEMU into Ghidra. I see colossal benefit of using a technique

such as HALucinator when trying to scale dynamic analysis. Because HALucinator also

uses QEMU as a base emulator, I created a Ghidra plugin to visualize HALucinator/QEMU

traces, hence the tool name HQ-Tracer.

The typical debugging that occurs with QEMU is done by using GDB to single-step

execution. But QEMU does basic block translation and caching to speed up execution,

which makes tracing what is happening difficult, especially if you think you are single-

stepping when in reality you are actually executing multiple loops or blocks. This does not

mean it is infeasible to single-step, rather it is not the default expected result for a more

novice user.

Logging is another option for debugging with QEMU, with many options to log and

print different things during QEMU execution. Using the output logs/traces from QEMU
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Table 5.1. HALucinator Argument Passthrough Table
HALucinator option Passthrough Argument

–singlestep -singlestep
–log-blocks=exec -d exec
–log-blocks=trace -d in_asm,exec
–log-blocks=trace-nochain -d in_asm,exec,nochain
–log-blocks=regs -d in_asm,exec,cpu
–log-blocks=regs-nochain -d in_asm,exec,cpu,nochain
–log-blocks=irq -d in_asm,exec,int,cpu,guest_errors,avatar,trace:nvic*

Passing the command line argument to HALucinator in the left column corresponds to the
Avatar/QEMU passthrough argument in the right column.

have a lot of information and are relatively straight-forward to integrate into Ghidra for

visualization. If one would like to debug using the single-stepping using GDB, there are

tools to integrate GDB with Ghidra, which highlight instructions currently being executed

by GDB inside of a Ghidra window. This can be useful, but getting it setup with QEMU

and GDB is difficult, and I, as a user, prefer the logging approach because of the ease and

speed.

In HALucinator there are options that pass through logging options to Avatar2 and even-

tually QEMU. In Table 5.1 I specify the arguments that can be passed to HALucinator in the

left column and the corresponding translations to QEMU in the right column. I added the

regs-nochain and singlestep options to HALucinator for more detailed logging, though

in practice I usually use --log-blocks=regs --singlestep, and when more detailed infor-

mation is required I will use --log-blocks=regs-nochain --singlestep. I will mention

that the -nochain on any of the options makes the logs much larger and makes the logging

and subsequent HQ-Tracer slower.

The --singlestep will break basic-blocks in QEMU into single instructions. This is

especially useful when taking advantage of register tracking abilities in QEMU. Again this

will make the logs larger, but it also enables the HQ-Tracer to have register state at each

instruction in the trace.
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5.1 HQ-Tracer Options

Above we see some of the options required to perform logging at the HALucinator/QEMU

levels, but now I will introduce some of the options for the HQ-Tracer tool. I go into more

detail on implementation in Section 5.2 , but this section discusses what the options and

commands are for the plugin.

HALucinator will keep statistics and information on all of the functions that it intercepts

and put these statistics into a YAML formatted file. When running the plugin, the user

is prompted whether the trace being loaded is a QEMU only trace, or if HALucinator is

used as well. If HALucinator was used, the plugin will also highlight functions that were

intercepted, even though not every instruction was executed. This is for visual effectiveness

to show that there was execution occuring at that point in the program.

HQ-Tracer will load the logs into Ghidra and highlight all of the instructions in the trace

in yellow. It then highlights the current instruction in green. This current instruction might

be visualized as the execution point, even though emulation has already occurred and the

execution trace is just being visualized. The HQ-Tracer commands that are available at this

point are summarized in Table 5.2 .

The normal forward ‘execution’ is available using the n command or the s command.

The difference is that n will move forward by instructions in the trace, whereas the s will

try to move forward in the trace to the next instruction in address order. This means that

a branching or calling instruction will not be stepped ‘into’ when using s, rather it will try

to go to the next instruction right after that branching. This makes it similar to GDB or

other debuggers where the user can step into a function or step over a function call. Another

forward command is the o, which attempts to continue stepping forward until the function

changes. This can be at the end of a function or in the middle of a function if there is an

embedded function call.

Backward ‘execution’ is also available, which is useful when you go to the end of a trace

and want to track back to see how you got to a certain point. The p steps backward, doing

a ‘reverse’ execution. Other options include searching for a specific address/instruction in

the trace by a search next or search previous command.
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Table 5.2. HQ-Tracer Command Options
Comand Command Explanation

e executes your command (useful for debugging this plugin)
example: e print(”Hello World”)

h help - print all the available commands

n
step over/next
example: ”n” will move forward 1 instruction in the trace.
”n 10” will move forward 10 instructions in the trace.

o
performs the ‘n’ command until out of function.
Perform the ‘next‘ command until we leave this function
Will stop at first function call or the return

p
step backward
example: ”p” will move backward 1 instruction in the trace.
”p 10” will move backward 10 instructions in the trace.

q quit - shutdown the plugin

s
Step Over - Get next instruction in address order,
perform ‘next‘ command until we reach this instruction
If the next instruction is not in the trace it will fail.

t Toggle Stack Tracing - enable/disable return address stack tracing

sn search next (sn) - search for the specified address going forward.
example: ”sn 0x0” or ”sn 0” will search for the address 0

sp search previous (sp) - search for the specified address going backward.
example: ”sp 0x0” or ”sp 0” will search for the address 0

Another useful tool, specifically for users wanting to extend or debug the tool, is the

use of the e command. This command allows you to type any valid python/jython code in

the command box and have it execute at the plugin/object level. There are experimental

functions that can load multiple traces and highlight the intersection of the multiple traces,

but this functionality is not a default capability. By using the e command the user could call

these experimental capabilities, though it requires a more intimate knowledge of the plugin.

A heuristic return address stack tracer is also included, though it is not very accurate

for multi-threaded traces. For traces that are single-threaded it performs relatively well,

though our experiments are limited on the number of firmwares we tested on. Because of

this limitation the functionality is turned off by default, though it can be enabled by using

the t command.
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5.2 HQ-Tracer Implementation

In this section I break down how this plugin was implemented, getting into more of

the gritty details of things. It is important to note the default programming language of

Ghidra is Java. They also provide a standalone Jython executable inside their deployment,

which currently is version 2.7.2. This means that any Python code needs to work through

the Jython interpreter. To do this there are usually a few options. It is possible to use

the Jython version of ‘pip’ for installing many of the Python libraries, but you are usually

restricted to packages that do not use any C compiling. This can be very limiting, and in

such cases I have found it useful to look for Java libraries that attempt to provide the same

functionality.

I implemented the plugin entirely in Python. I separated the functionality into 4 main

files, namely the GUI, Plugin, Start, and Main. The GUI is straight-forward, using javax.swing

and java.awt to import dimensions, constraints, buttons, labels, lists, panels, etc. In my

opinion the GUI just needs to be intuitive enough to be useful and not too complicated to

introduce bugs or inhibit use. To fulfill these very stringent requirements, I include a ‘Start’

button, a ‘Quit’ button, and a command text box that you can type commands into. There

are labels that specify whether you have started the plugin, and it has a little prompt above

the input text box that tells you to type ‘h’ if you need help with the commands.

When the trace has registers enabled, there is a box below the input command that

will show the state of the registers at the end of the given basic block. This is why the

--singlestep command is so important to enable on the logs, as it will give you the register

state at each instruction when enabled.

The window for the plugin can be moved and docked anywhere in Ghidra, which is one of

the benefits of using the GUI packages mentioned. In this GUI file, I have button handlers

and a handler for the command line box that will pass the actions to the Plugin class. The

Plugin class integrates the GUI and the brains of the plugin into Ghidra. It provides functions

for getting the monitor, state, view, etc. from Ghidra. It also has commands to update

the GUI view and sync the highlighting/coloring inside the Ghidra Listing and Decompile

windows. The Plugin class will take the text from the command line GUI, initialize the plugin
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if it hasn’t previously been started, and call the command execution handlers inside the Main

file. Lastly, it provides the functionality to remove the Plugin from Ghidra, releasing all state

and returning resources.

The Main file requires YAML to work with HALucinator. In my release I include the

PyYaml required files for import yaml to work, though the practitioner can use any PyYaml

version >= 5.2 and it will work correctly. The PyYaml is used to read the HALucinator

stats file. During initialization, the Tracer will register the current Ghidra state, making

sure that there is a valid open file to be worked on. It will initialize a list of instructions

with an empty register state and set the current execution point to be 0. It initializes all of

the command handlers and will ask the user to input the name of the log file. I prefer to

have an empty line that I can copy and paste the complete path of the file into, so I chose

this option for the input. If a user prefers a prompt to pop up and let them navigate the

filesystem to select the file it is as simple as changing one function call name in the Main

from askString to askFile.

This is where the implementation details of QEMU and Ghidra collide and don’t work as

well. When printing the register state, QEMU will print the registers with different names

and capitalization than Ghidra. For example, for an ARM v4-Thumb ISA, QEMU will

print out ‘R00’, ‘R01’,...‘R15’. In contrast, when getting the registers from Ghidra, it will

return ‘r0’, ‘r1’, ...‘r12’, ‘lr’, ‘sp’, ‘pc’ along with other registers (such as ‘r13_svc’, ‘r14_svc’,

‘spsr_svc’, etc). For this reason, when matching registers from QEMU to Ghidra, I rely on

user specified registers, as the logic required for the > 30 ISAs to parse the differences from

QEMU to Ghidra is not realistic for this plugin.

Inside of the QEMU log parsing, I check to see if the line is an address, part of the register

state, or something else. Because the stack tracking and register tracking logic is a little

more complicated, I will first explain what happens just with the addresses, then branch out

in my explanation. During parsing of the log, if the line in question is an address I will save

the address into a Ghidra address set and a list for indexing and highlighting. When adding

register tracking, usually the register state in QEMU is multiple lines in a log file. Because

of this, there are flags to determine if the previous line we read was also part of the register

state. We gather all of the register state for the given block in the trace together, and save
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this state, linking it to the instruction in the indexing list (explained in the simple case).

When adding the stack tracking logic, we check whether the given instruction is in the same

function as the previous instruction, or if it is different, and then assign an add, delete, or

nothing action. The action we determine is linked to the corresponding instruction in the

indexing list. If the new instruction is in a different function than the previous instruction,

we then inspect the current function stack. If the function that contains the new instruction

is currently on the stack, we attach a delete action. If it is not on the stack, we attach

the add action. If the new instruction is in the same function as the previous instruction,

we add a nothing action. This is where we run into trouble with heuristics though, as

some functions will share code, for example, a context switch and exit task. Depending on

Ghidra and how the compiler chain implemented compilation, these may show as 2 different

functions, or a single function. Another issue that may affect heuristics is a tail return,

where some of the functions will stay on the call stack even when they should be removed

at a return.

In the Main file is code to update the highlighting and execute each of the commands

mentioned in Table 5.2 . Because we did most of the algorithmic work in the loading and

initialization, the commands that we have will essentially index into our list and display the

stack and registers associated with the instruction while highlighting the current index in

green.

The final file is a very short start script that can be run from Ghidra’s script manager. To

run the plugin, the user will download the source files; then inside your Ghidra environment

enter the script manager (shortcut by using the green and white play button on the toolbar),

and click on manage script directories button (this is 3 lines towards the right of the window).

The user will then press the add button and navigate to where the source code is located and

press OK. To start the plugin after it has been enabled, the user will run hqtrace_start.py

from the script manager. This design is simpler than the default plugin and extension

enabling required. This start script will pop-up the actual plugin window. The window is

modular and like other Ghidra windows can be docked anywhere inside the environment or

stay stand-alone. Visual examples are provided in Section 5.3 below.
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5.3 HQ-Tracer Example

Because of the nature of binaries and intellectual properties, I will show examples on open

source firmware that is released with permisive licensing. This means that the example shown

is simple and can be redistributed in source and binary forms with or without modifications

as long as I provide the license copyright notice with it. For this example I am using an

STMicroelectronics STM32469I-EVAL firmware. The hardware has a SYSCLK that runs at

180 MHz for the STM32F4xx device. The UART peripheral in the hardware allows data

transmission of a predefined data buffer. In the example firmware the TxBuffer and RxBuffer

size is limited to 10 characters as set in the source code. The firmware has 3 LEDs, a clock

and UART peripheral as hardware that will be intercepted by HALucinator. The firmware

will initialize and then ask the user to input 10 characters. It will then block until it receives

the characters. When the rx buffer is full, the firmware will then print out the buffer and go

into an infinite do/while loop.

Now that we know what the firmware will do, let us give some figures and examples of

using HQ-Tracer. Figure 5.1 shows an example of what it looks like before launching the

HQ-Tracer plugin. To run, the user will navigate to the script and press the green play

button. Figure 5.2 shows the plugin asking the user to input the QEMU log file and shows

the plugin docked right below the listing window in Ghidra. Figure 5.3 shows an example

of what the plugin looks like with register state showing and the stack tracking enabled. In

this case the execution starts in Reset_Handler and also goes to __libc_init_array and

then to main. This figure shows the yellow and green highlighting of the program in the

listing window (the left hand dock above the plugin), and in the decompile window, it has

the current instruction highlighted in green. Figure 5.4 shows the end of trace, and you will

see that the stack has the functions that it doesn’t return to on the stack because of the

infinite do/while loop.
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Figure 5.1. Example Ghidra window to start HQ-Tracer

Figure 5.2. Example HQ-Tracer Prompt for entering QEMU asm log file
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Figure 5.3. Example of HQ-Tracer Stack Tracing

Figure 5.4. The end of an HQ-Tracer execution
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6. PMATCH

This chapter discusses the need for function matching along with some of the approaches and

their shortcomings and benefits. I introduce Pcode libMATCH (PMatch) and go through

an example.

6.1 Motivation

Usually during RE we want to separate library functionality from the more interesting

algorithmic code. In our case though, the library code is essential, as those are usually

the functions that HALucinator will want to intercept. Because HALucinator will intercept

hardware abstraction libraries, it is essential to actually know where to intercept, usually at

hardware abstraction library functions.

It can be very difficult to understand what is happening in binary code, even when the

disassembler and decompiler are working correctly. For example, in Figure 6.1 on the left

hand side, we see what a partial flow graph would look like for the UART example from

Section 5.3 . Ghidra disassembles and decompiles correctly, but, as can be seen, it is a little

difficult to determine what is actually happening. Contrast this with the right hand side of

the figure, and we see that it is relatively easy to understand what is happening because of

the useful function matching that has been performed.

Library or function matching is a difficult task, but is also one of the most useful tasks

during reverse engineering. Understanding what occurs inside a binary is difficult, so when

you have a binary/firmware that uses a library or functionality that you can match, it can be

a huge time saver. A simple Hello World” program in C/C++ for example may have 1 main

function, and 10 to >50 library functions in the compiled binary. By automatically separating

and labeling the library functions, the algorithmic analysis, or library intercepting, can be

performed rapidly without spending unnecessary time labeling. When matching functions,

there are pros and cons for each technique. The most common ways to perform matching

including binary code similarity analysis, hashing, and graph matching.

Because my prefered RE platform is Ghidra (for reasons mentioned previously), I wanted

a plug and play tool integrated into my RE platform for function matching. I also wanted
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Figure 6.1. Example in Ghidra of a partial flow graph without function
matching vs with function matching
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a tool that could be fast for exact matches or that could allow for partial matching if there

weren’t exact matches. Before describing the implementation of PMatch, I elaborate slightly

on popular matching techniques and mention the tools I have tried.

6.2 Approaches

Control Flow graph or Data Flow graph techniques will build a graph of the ”database”

functions, usually storing edges, nodes and other information such as strings or constants

into the database. This can create large databases and take up a lot of memory quickly if the

algorithm is not very efficient. After the graph database creation phase, during the matching

phase, the tool/algorithm will attempt to solve the graph isomorphism problem (are 2 graphs

equal). Depending on how large the functions are, and the extra data incorporated to the

algorithm, this can be very slow.

Besides the graph matching technique, there is hashing. Hashing is probably the most

popular way to do library matching. The technique is just as it sounds, taking a number of

bytes from each function and hashing them. The number of bytes hashed, the techniques

for storing, and the techniques used when there is a collision are the distinguishing factors

between approaches using hashing. I will now briefly discuss the main hashing implemen-

tations in IDA and Ghidra, and then discuss the short comings of the libmatch tool that

HALucinator was distrubuted with.

Hex-Rays created Fast Library Identification and Recognition Technology (F.L.I.R.T. or

FLIRT) signatures [197 ] that will hash the bytes in each function in a library and create

a signature database file. One of the goals of FLIRT is to reduce the amount of space

needed when analyzing a binary to determine if there are library functions in it. Because

of this, FLIRT will store bytes of the database functions in a compact tree structure for

space savings and matching speed. One of the limits of this is that the tree structure is

limited to 32 bytes, and if there are multiple functions that end up in the same leaf of the

tree (all 32 bytes match), then they also store the CRC16 of the functions in the same leaf

node from byte 33 until the first variant byte. This allows them to keep the database rather

small. After you have FLIRT signatures and files loaded into your RE platform (in this case
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IDA), during decompiling each byte is checked to see if it could be the start of a library

function. It will match against the tree to see if there are any leaves in the signature file that

matches, and if so will name the function. The downfall is that if different registers are used,

or something minor is changed in the librar,y there will be no match. Another limitation

is that short functions or functions without differentiable instructions are usually left out.

This is usually ok, but it would be nice to be able to set the threshold manually for this.

Ghidra has what is called FIDB and Function ID matching. This is an extension built-

in to Ghidra that is disabled by default. Ghidra’s Function ID does something similar to

FLIRT, hashing on the beginning bytes of each function. It is, however, relatively easy

to create new database files with .fidb extensions to match against in Ghidra. While this

technique is useful and we employ this on every firmware we RE, it is usually limited by

access to compilers and source code, as for every signature file, is it necessary to have a

compiled binary to create the database from. For proprietary compilers/tool-chains, such as

VxWorks, this can severely limit this approach. To be the most successful, there needs to be

a different signature file for each compiler and configuration, which is not always possible.

Hashing is closely related to binary code similarity where you compare two or more

binaries against each other to see where there are similarities and differences. This approach

is more useful when the user does not have the source code or access to a specific compiler

toolchain, but they do have access to multiple binaries where at least one has functions

labeled already.

HALucinator comes with a library matching tool [198 ] that uses angr, but it specifies

that it is a preliminary tool and uses a lot of memory. This makes analyzing libraries with

a large number of functions or a binary that has more than 50 functions difficult on a

normal RE desktop/laptop. Beyond that, the tool was tested extensively for ARM Cortex+

architectures extensively but not other architectures. Other matching tools we have tried

include Diaphora[199 ], REveal[200 ], among other binary diffing programs such as bsdiff[201 ],

JojoDiff[202 ], HDiffPatch[203 ] and xdelta[204 ].

As a side note, some tool-chains make the function labeling process trivial, by embedding

the symbol table into the binary, as is the case for VxWorks. However, if you are not so lucky

as to have an embedded symbol table, reverse engineering one binary and reusing the work
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for another binary (one that you suspect has the same tool-chain compilation and libraries

included), would be ideal. This is where Pcode-libMATCH (PMatch) comes into play.

6.3 Implementation

PMatch was created with the goal of allowing matching between binaries or library/bi-

nary to allow the re-use of RE efforts. When using the emulation technique of Hardware

Abstraction Layer replacement or High Level Emulation techniques in general, we want to

specify addresses or symbols that we want to intercept and provide functionality stubs for.

PMatch is split into two different scripts. The first script (database script or DS) will be

run on an existing binary that you have function names and symbols for functions of interest.

The second script(matching script or MS) will be run on the binary you are analyzing that

you do not have function names for.

The DS will cycle through every function and create a yaml database. This is not the

most efficient way to store data, but it allows for tweaking the matching algorithm in the

MS, rather than having to rebuild the database for matching. The DS will ask the user for

the database file to save into. If this file doesn’t exist, it will create a new file. It is important

to note that it will append to the database without checking other entries in the database.

This means there can be duplicates in the database, which can hurt the MS. The database

saving algorithm will visit each function in the binary and save collected information to the

database. Information that is gathered includes the main functions converted Pcode, all

contants in the function, all strings in the function, the parameter count, the number of

variables used, along with the pcode, contstants, and strings for any function that is called

from within this main function. While I have found that not all of these are necessary for

matching, it can be helpful when trying to differentiate various matches in the second script.

In the MS, the user is prompted for where the database YAML file is located, then they

are asked for a filename where they want to save any resulting matches with addresses. While

this is not strictly necessary, it is helpful when you want to test matches without actually

renaming any functions in Ghidra. This MS algorithm will then read in the database and

create a hash used for the actual matching. In this hash, the user can decide which things
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from the database to include. They can also specify the minimum hash length, the max

amount of time allowed for trying to match one function, and whether to allow a similarity

matching. When similarity matching is enabled, the hashes are made into strings and an edit

distance is used for matching the string hashes. This works because the hashes are number

strings to begin with, so it will perform well if there are localized changes, but it will not

perform as well when there are large reorganizations of code, such as basic block reordering

or obfuscation.

In practice, this approach works well for exact matches, but depending on the metrics

used for the database creation and matching, there is a wide range of success for similarity

matching, with some binaries matching very well, and others performing at an unusable

level. This is where tweaking the algorithm in the MS is useful, as changing a few things

can make a big difference, especially when using similarity matching.

Another useful feature of the approach in Ghidra is that we can save memory by building

the database file by file, not requiring the data to stay in memory. We can then create

a database with a whole library by using the Ghidra headless analyzer. Some example

commands of using this tools would be as follows (setting $GHIDRA_HOME to the path of the

Ghidra installation). To first create the Pcode database for a given library (in this case for

the cortexm3 library cross-compiled using arm-none-eabi-gcc) you would first run the DS

(pmatch_make_db.py):

$GHIDRA_HOME/support/analyzeHeadless /home/someUser/someFolder PcodeDB

-scriptPath /home/someUser/PMatch/ -postScript pmatch_make_db.py

/home/someUser/ghidra_outputs/func_pcode_db.yaml -import

/home/someUser/PMatch/libmatch_tests/objects/arm-none-eabi/libmbed-cortexm3/*.o

-recursive

Then, for matching, you would open the binary you want to name functions in and run

the pmatch_match_funcs.py. This will prompt you to enter a path for the yaml database,

in our case it would be

/home/someUser/ghidra_outputs/func_pcode_db.yaml
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You will then be prompted for the file of where you would like to save the matches (again

in yaml format). This will save the matches into the file and if you would like to see how

accurate the matching was you can then run pmatch_match_funcs.py. This will tell you

what functions matched correctly and what functions matched incorrectly.

6.4 Example

Using the same example as in Chapter 5 , I show a sample output from running the

making database script and then matching against from the Ghidra GUI. This assumes you

are creating the database from a single binary and matching against another binary. In this

example, I use the .elf file to create the yaml database, then I match against a stripped elf

and obj-dump into a binary format for matching against. In this way we know the ground

truth and we also see the reliability that this technique has on the disassembler in Ghidra.

Figure 6.2 shows the start of the script for making the database and it shows the prompt

asking for the full path of where to save the pcode database, including the extension. Fig-

ure 6.3 shows that we successfully finished running the database creation script and in this

case there were 76 functions and their data saved to the database. Figure 6.4 shows the

start of running the matching script, where it asks for the database filename and then an

output filename of where to save the functions it matches on. Figure 6.5 shows the comple-

tion of matching and prints the number of functions that were in the database, how many

non-conflicting hashes could be created.

In this example, only 68 of the 76 functions could have hashes created because the others

conflicted. When manually checking the results, these functions had the exact same hashes

and were short functions. PMatch also prints some of the statistics of the matching, and for

this case we matched on 51 functions. Upon running a scoring script that takes in the ground

truth and the output from this script, all 51 functions are correct matches, with 0 mistakes.

However, you can see that this binary only has 61 functions (compared to 76 in the ground

truth) that are recognized by Ghidra using the Auto Analysis, which is part of the reason

more functions were not matched. When manually creating more functions in Ghidra at the

spots that need functions, we can increase the matching to 63 functions out of the 76 in the
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Figure 6.2. Example Ghidra window when prompting for the PMatch database creation

ground truth. Of these 13 non-matched functions, there are 8 that are discarded because of

hash collisions.

In Table 6.1 you can see the addresses, ground truth function names and the names

PMatch had a match on when using the default Ghidra analysis (not adding functions that

Ghidra missed when comparing to the ground truth). As can be seen, there are no errors

with the function names that were matched. This is not to imply that the tool is perfect or

doesn’t make errors, rather that with the right parameters and database, it can be useful in

function matching.
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Figure 6.3. Example Ghidra window when PMatch database creation finishes

Figure 6.4. Example Ghidra window when prompting for the PMatch matching
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Figure 6.5. Example Ghidra window when PMatch matching finishes
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Table 6.1. PMatch example matches with addresses
Address GroundTruth PMatchName Address GroundTruth PMatchName
0x80001b5 deregister_tm_clones 0x80016b5 UART_Transmit_IT UART_Transmit_IT
0x80001d5 register_tm_clones 0x8001761 UART_EndTransmit_IT UART_EndTransmit_IT
0x80001f9 __do_global_dtors_aux __do_global_dtors_aux 0x8001791 UART_Receive_IT UART_Receive_IT
0x8000221 frame_dummy 0x8001885 UART_SetConfig UART_SetConfig
0x8000259 __aeabi_uldivmod 0x8001cb9 HAL_UART_MspInit HAL_UART_MspInit
0x800025a FUN_08000259 0x8001d6d HAL_DMA_Abort_IT HAL_DMA_Abort_IT
0x8000289 __gnu_ldivmod_helper __gnu_ldivmod_helper 0x8001db1 HAL_RCC_OscConfig HAL_RCC_OscConfig
0x80002b9 __gnu_uldivmod_helper __gnu_uldivmod_helper 0x8002231 HAL_PWREx_EnableOverDrive HAL_PWREx_EnableOverDrive
0x80002e9 __aeabi_idiv0 0x80022cd BSP_LED_Init BSP_LED_Init
0x80002ed __divdi3 __divdi3 0x8002341 BSP_LED_On
0x8000599 __udivdi3 __udivdi3 0x8002375 NMI_Handler
0x8000809 Reset_Handler Reset_Handler 0x8002381 HardFault_Handler
0x8000859 DMA1_Stream3_IRQHandler 0x8002389 MemManage_Handler
0x800085d HAL_RCC_ClockConfig HAL_RCC_ClockConfig 0x8002391 BusFault_Handler
0x8000a21 HAL_RCC_GetSysClockFreq HAL_RCC_GetSysClockFreq 0x8002399 UsageFault_Handler
0x8000b6d HAL_RCC_GetHCLKFreq 0x80023a1 SVC_Handler
0x8000b85 HAL_RCC_GetPCLK1Freq HAL_RCC_GetPCLK1Freq 0x80023ad DebugMon_Handler
0x8000bad HAL_RCC_GetPCLK2Freq HAL_RCC_GetPCLK2Freq 0x80023b9 PendSV_Handler
0x8000bd5 HAL_GPIO_Init HAL_GPIO_Init 0x80023c5 SysTick_Handler SysTick_Handler
0x8000f21 HAL_GPIO_WritePin HAL_GPIO_WritePin 0x80023d1 USART1_IRQHandler USART1_IRQHandler
0x8000f51 HAL_Init HAL_Init 0x80023e1 SystemInit SystemInit
0x8000f95 HAL_MspInit 0x800243d NVIC_SetPriorityGrouping NVIC_SetPriorityGrouping
0x8000fa1 HAL_InitTick HAL_InitTick 0x8002485 NVIC_GetPriorityGrouping NVIC_GetPriorityGrouping
0x8001001 HAL_IncTick HAL_IncTick 0x80024a1 NVIC_EnableIRQ NVIC_EnableIRQ
0x8001025 HAL_GetTick 0x80024d1 NVIC_SetPriority NVIC_SetPriority
0x800103d main main 0x8002525 NVIC_EncodePriority NVIC_EncodePriority
0x8001135 SystemClock_Config SystemClock_Config 0x8002589 SysTick_Config SysTick_Config
0x8001215 Error_Handler Error_Handler 0x80025cd HAL_NVIC_SetPriorityGrouping HAL_NVIC_SetPriorityGrouping
0x8001221 HAL_UART_TxCpltCallback HAL_UART_TxCpltCallback 0x80025e1 HAL_NVIC_SetPriority HAL_NVIC_SetPriority
0x8001235 HAL_UART_RxCpltCallback HAL_UART_RxCpltCallback 0x8002619 HAL_NVIC_EnableIRQ HAL_NVIC_EnableIRQ
0x8001249 HAL_UART_ErrorCallback HAL_UART_ErrorCallback 0x8002635 HAL_SYSTICK_Config
0x800125d HAL_UART_Init HAL_UART_Init 0x800264d atexit
0x80012f9 HAL_UART_Transmit_IT HAL_UART_Transmit_IT 0x8002659 __libc_fini_array
0x8001385 HAL_UART_Receive_IT HAL_UART_Receive_IT 0x8002685 __libc_init_array
0x8001421 HAL_UART_IRQHandler HAL_UART_IRQHandler 0x80026d5 __register_exitproc
0x8001615 HAL_UART_GetState HAL_UART_GetState 0x8002779 register_fini
0x8001651 UART_EndRxTransfer UART_EndRxTransfer 0x800278d _init _init
0x800168d UART_DMAAbortOnError UART_DMAAbortOnError 0x8002799 _fini _fini

The address column shows the address in the binary. The Ground Truth column was obtained by
using an .ELF file. The PMatchName column is the name that PMatch matched against in its
database. An empty box means that PMatch did not match the function name.
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7. GHALDRA

Ghidra HALucinator Emulator, or GHALdra (gawl-dra), is a Ghidra plugin for doing full

or partial emulation. To understand why we made this tool and how it can be useful, I will

first do another quick review of QEMU and HALucinator and compare.

QEMU is a quick emulator for multiple architectures. It is fast because it translates

the firmware instructions to native host instructions as basic blocks, and then caches those

blocks for faster emulation. With many applications performing computation in loops, this

makes QEMU ideal for quick emulation. It also has support for a few peripherals along with

the built-in support for many popular intruction set architectures. However, it is limited

to the approximately 10 architectures that it supports. As anyone that has done hacking

on QEMU can attest to, it is not always easy and can be a major pain to get things to

work correctly. Adding new support and new devices is not trivial and can be a long painful

process. This is where HALucinator can help tremendously. By using the technique of

intercepting at certain breakpoints and providing stubbed functionality before changing the

program counter, HALucinator allows for adding multiple peripherals without having to

hack on QEMU. It is limited to the architectures QEMU supports, but for a large number

of devices this is sufficient.

As alluded to above, the limits for both QEMU and HALucinator is the lack of ISAs that

are supported. This is where Ghidra shines, as it has built-in support for >30 ISAs and there

are more that are open sourced on Github. If however, the architecture you need support

for by some chance does not exist in Ghidra, it is relatively straightforward to add support

by providing a specification of how each instruction in your ISA translates into Ghidra’s

Pcode. After providing a few spec files, GHALdra and regular Ghidra emulation will work

right away.

7.1 Ghidra Emulator

Ghidra has a built-in emulator in the ghidra.pcode.emulate class and functionality. In

the Ghidra release you will find 2 example .c files under the docs and Emulation folder (doc-

s/GhidraClass/ExerciseFiles/Emulation/Source) and 2 scripts that use the built-in emulator
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to perform emulation. The DeobfuscateExample shows how to use some of Ghidra emulation

functions to do dynamic analysis. The DeobfuscateHookExample puts a break point in the

execution, showing how you can break and hook in the emulator. Using these examples and

other examples online [45 ], [205 ], [206 ], we see that Ghidra has built-in writing memory,

stack values, setting breakpoints, removing breakpoints and many other functionalities.

When searching for Ghidra emulators or tools, two tools stick out: TheRomanXpl0it

user on Github with the repository ghidra-emu-fun [206 ] and the kc0bfv Github user and

their repository pcode-emulator [45 ]. Each can emulate simple functions, but have different

approaches behind them. TheRomanXpl0it uses the built-in Ghidra emulator whereas the

kc0bfv gets the Pcode from Ghidra and then does execution of this Pcode itself. There is

tremendous value in both approaches, with the emulation of Pcode standalone having an

effect on external tools, with possible integration into those tools. In contrast, reusing the

Ghidra Emulator will reuse many man hours of work from the NSA to get things working.

The work I have done here has been concurrent with both of these other repositories, with my

work starting on this emulator starting in May of 2019. The release of Ghidra was in March

of 2019, and many users are currently working on emulation tools. I have implemented ideas

from HALucinator, but these ideas have some support built-in to Ghidra and there is overlap

between my emulator and these other emulators. The difference between HALucinator and

my contributions are the way I have enabled partial emulation, allowing the user to start

at various functions throughout a binary while still enabling intercepting and hooking of

functions during emulation.

7.2 GHALdra Design

GHALdra used a skeleton framework from HQ-Tracer and integrated portions of both

TheRomanEXpl0it and HALucinator into the framework. As such, GHALdra includes func-

tionality from both of these tools in addition to new functionality. An overview of GHALdra

design can be seen in Figure 7.1 . The plugin is the primary of the whole design (controller).

This plugin interacts with the emulator, the helpers, the intercept and callback master and

the peripheral server.
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Plugin Commands:
• Add/Remove Breakpoints (BP)
• Continue emulating to next BP
• Step over instruction
• Single step into instruction
• Read/Write Emulator Memory
• Read/Write Registers
• Start/Stop peripheral Server
• Hook an address/function with user 

supplied implementation (Either 
intercept or just run extra code)

• Quit and Exit
• Debugging:

• Print Execution Path
• Print Command History
• Print Log History
• Set the timeout number of 

instructions
• Evaluate python expression 

from the ghidraEmulator
class (e.g. `e print(”HELLO 
WORLD”)` )

Figure 7.1. Design Overview for GHALdra

93



For the user to interact with the tool, there is a simplified interaction and a complex

interaction available. The simple interaction includes starting the plugin and interacting

with only the Ghidra emulator and emulator helper. If the user does not need to intercept

or send information to/from the emulator to peripheral devices this interaction model works

comprehensively. This type of interaction can be useful for reverse engineering software

libraries inside firmware. In Figure 7.1 , this interaction would include the boxes that are on

the left hand side, colored in the teal and navy boxes.

An example usage for this type of GHALdra use would be if the user needed to RE a

proprietary chip that does some sort of floating math operations but the chip you are RE

does not include hardware support for floating point. In this case, most likely the operations

are done with a software floating point library. When RE this type of situation, it can

be helpful to emulate just the function, starting with various values and recording what

mathematical operations are being done. In this way some functions can be named, such as

add, subtract, etc.

For the complex interaction, it can be broken down in 2 sections, the Intercept Callback

Master and the Peripheral Server. The simpler of these is when the Plugin interacts with

the Intercept and Callback Master along with the Emulator and Helper. In Figure 7.1 the

boxes included in this type of interaction will be the teal and navy boxes as before, but

now it will include the yellow boxes as well. In this case, the user will intercept at certain

addresses/functions and provide functionality of what to do, usually with a Python function.

For example, if there is an external puts function or printf function, this is where the

user could provide their own implementation of that functionality in Python and hook at

that function. The user will also specify if they want to intercept the function, or if they

want to just insert added code for functionality/book keeping. An example of where the user

would not want to intercept the function is when they want to log or print a function for

a subsequent frequency execution analysis of the function. This would be accomplished by

hooking the function/address but not intercepting, as intercepting will change the normal

execution flow of the binary.

In the most complex interaction model, the Plugin will interact with Emulator, Helper,

Intercept and Callback Master, and the Peripheral Server. In Figure 7.1 this includes all of
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the boxes in the figure. The Plugin will start the Emulator and the Helper, register intercepts

and callbacks with the Intercept and Callback Master, and it will also start the Peripheral

Server. In turn, the Peripheral Server will also interact with the Intercept and Callback

Master. The Intercept and Callback Master will also be triggered by any break point in the

Emulator. This is useful when performing Emulation with the need to allow asynchronous

external events to influence execution, such as when receiving UART communication via

an interrupt, where the user will provide intercepts handlers for peripherals and anytime

the Emulator, or Intercepts, try to interact with that hardware, it will communicate with

the Peripheral Server and the models/handlers at that level. An example of this type of

interaction is detailed in Section 7.4 .

7.3 GHALdra Implementation

The base of GHALdra is similar to the HQ-Tracer Plugin. The GUI has handlers to

send actions to the Plugin when the ‘Start’ and ‘Quit’ buttons are pressed, and it also has

a message label that tells the user whether the plugin has been started or not. The register

state is shown below the comand input box. This register state is updated every time the

emulator is stopped or every 100 instructions, whichever is less, as this allows the user to

see the emulator is indeed working. The command input works in the same way that the

HQ-Tracer worked, by sending the entire input to the Plugin.

The Plugin will interact between the GUI and the main GHALdra class and action algo-

rithms. The plugin will take commands from the GUI and if they are emulating commands

will start those commands in a thread, setting the thread as a daemon. This allows the user

to send other commands to the plugin even if it is busy executing instructions in the emula-

tor. This allows for breaking the execution without having to close Ghidra, as the monitor

for plugins does not pop up in the same way as an execution script. If the command sent

is not an emulation command then the plugin will send the command to execute with the

main logic in the main thread. As the non-emulating commands are quick to complete, this

ensures less opportunity to crash the plugin, even with rapid command entry. I also enabled

fuzzing of commands and data from TheRomanExpl0it repository. This enables fuzzing the
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inputs to the function that you want to emulate in Ghidra. This means that the input bytes

are randomly generated from the available ranges specified by the user, and then emulation

is started. All additions are noted in the software when any other code was used, and the

license was checked and verified to ensure using the code would be in compliance.

Part of design decision when creating GHALdra was to enable reuse of as many handlers

as possible from HALucinator. HALucinator has handlers that work for Atmel ASF v3,

MBed, STM32f4, and some VxWorks operating system handlers. These handlers include

functionality for ethernet, bluetooth, rf233, certain sd cards, timers, uarts, usarts, serial

ports, spi, wifi, and other gpio. These do not work for every architecture, but the reuse value

in them is very high. In recent work in collaboration with Sandia National Laboratories we

have used HALucinator to partially emulate VxWorks OS based devices. These are real world

devices including a Schneider Electric SCADAPack 350 remote terminal unit, a Schneider

Electric Modicon 34- programmable logic controller, and a Hughes 9201 BGAN inmarsat

terminal.

To be able to reuse the work on these devices, the VxWorks handlers and the other han-

dlers for GHALdra, part of the design decision included making the design compatible with

HALucinator. To accomplish this I implemented a master intercepter that works similar to

how Avatar2 registers breakpoints for QEMU. This master class will do all of the intercepting

and registering at the address we want to hook at, along with what class to call when the

breakpoint is actually triggered. This will interact with the break point handler class that

does the registering and the individual intercepts. When the breakpoint is triggered, the

address will be looked up in the master interceptor before calling the relevant implementa-

tion. If the handler returns True, then the value returned along with the boolean will be

saved in the return location and the function will be skipped. We then skip the function

by attempting to go the next address in address-order from where the function was called.

We rely on getting this information from Ghidra, and if there is an error during emulation,

it is expected the user will manually fix the binary or fix the error by setting the program

counter manually in the handler.

Because HALucinator allows for intercepting an address or a function, I also implemented

an address interceptor that will not change the program counter or try to save return infor-
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mation to the return location (depending on the language specification). This functionality

is similar to the function interceptor, but it allows the user to specify in the configuration file

whether each intercept is an address intercept or not. This address interceptor functionality

is also the backup implementation if the function interceptor has an issue during hooking,

as the address interceptor has less logic where it can fail.

After the basic interceptors were working, I branched out to more complex handers,

where the peripheral server is required. This required implementing the peripheral server in

a way that works with HALucinator. HALucinator uses the Python ZMQ implementation

to send messages between the handlers and the peripheral server. This is a problem because

the Python ZMQ library uses C compiled libraries, and hence will not work with Jython.

To work around this, we need to integrate the Java implementation of ZMQ (JeroMQ [207 ])

into Ghidra and slightly change the handlers API. To accomplish this in Ghidra version

<= 9.1, it is possible to download the JeroMQ, use Maven to build it and then add the

target/classes/ folder to the LD_LIBRARY_PATH. Another option would be to instead add

the JeroMQ .jar to the plugins folder instead. This did not work for me in Ghidra >= 9.2,

rather we have to build with maven, then copy the target/jeromq-0.5.3-SNAPSHOT.jar

into the Ghidra/patch/ folder. This should work if you are able to download just the .jar

file for your architecture as well, it is not necessary to build the .jar yourself. This is also

how a user can use other Java libraries that are not included in Ghidra without having to

build Ghidra from scratch.

As a side note, to install Python libraries such as NetworkX or PyYaml, it is possible to

use the built-in Jython package manager. If the library has any C compiled portions, this will

usually not work. However, many packages will have a pure Python implementation that is

a little slower than the C compiler version, but it will work with a special compile command.

To enable shorter examples, I will show a few commands that I will use so that things are

setup properly in the environment. I assume that $GHIDRA_HOME has been exported correctly

and is in your startup script.

`alias jython='java -Dpython.cachedir.skip=false -jar

$GHIDRA_HOME/Ghidra/Features/Python/lib/jython-standalone-2.7.2.jar`

`jython -m ensurepip`
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`rm $GHIDRA_HOME/Ghidra/Features/Python/data/jython-2.7.2/Lib/site-packages -r`

`ln -s $GHIDRA_HOME/Ghidra/Features/Python/lib/Lib/site-packages

$GHIDRA_HOME/Ghidra/Features/Python/data/jython-2.7.2/Lib/site-packages`

Now that this has been done (only one time per Ghidra release) I can show a short example

of how to install PyYaml. These commands are relatively straightforward:

`git clone https://github.com/yaml/pyyaml.git`

`cd pyyaml`

`jython setup.py --without-libyaml install`

For simpler packages where you don’t need to use an extra flag you should be able to

install using:

`jython -m pip install networkx=2.2`

7.3.1 GHALdra Options

The command line options that have special handlers are shown in Table 7.1 . These are

the built-in forward facing commands, but there are other commands that can be executed by

using the e command that is forward facing. These commands include loading an HQ-Trace

and playing with the address set for coloring in Ghidra, changing memory and printing

debugging support messages. Interesting commands for changing execution of the binary

include the hook, wm, wr. These commands allow the user to dynamic change the memory

or registers as they are emulating the binary.

7.4 Example

I will use the running STM32 UART example from Chapter 5 . In Listing 7.1 the config

file is shown. As can be seen, the UART and other Hardware Abstraction Libraries are

intercepted. In most cases all we need to do is return a 0 or skip the function. In the case

of the trasmit and receive for the UART, we will actually intercept them. The handlers will

interact with the peripheral server, sending ZMQ messages between the emulator and the

external device. For the full example to work like the actual hardware, we will need to open
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Table 7.1. GHALdra Command Options
Command Explanation

b ‘b 0xXXXXXXXX’ - add breakpoint (‘hex_address’)

prukraintpath print the last X instructions executed
(x is specified as numInstrToSave in config file)

c continue - execute up to sys.maxint or timeout
number of instructions in program

read read memory addr (either ‘hex_from:hex_to’ or ‘hex_from size’)
d d: ‘d 0xXXXXXXXX’ - remove breakpoint (‘hex_address’)

break break: break at the current instruction.
Can be used to jump out of infinite loop

e executes your command. e.g. ‘e print(”Hello World”)’
h help - prints all the available commands
l prints a serialized version of this debugging session

n n: ‘n [x]’ - This will step over x instructions. It will count any function
call as a single instruction, executing the whole function

timeout timeout: ‘timeout x’ Set number of instructions to timeout on to x.
e.g. ‘timeout 10’ followed by c will execute 10 instructions

p print state
q Quit

s ‘s [x]’ - This will execute [x] instructions, even if it steps into a function.
If x is not specified it defaults to 1

hook
‘hook address module.function’
Replaces a function with a python implementation
e.g. hook 0x080355d8 halucinator.bp_handlers.SkipFunc

wm ‘wm hex_addr hex_bytes’ - write memory addr
e.g. wm 0x0 1a2b

wr ‘wr reg_name value’ - write a register
e.g. ‘wr r2 2960982560’ or ‘wr pc 0x01234’)

a separate terminal and run the UART external device. When we do this it will act as if it is

the other device we are communicating with in the firmware. The example command for this

case would be jython halucinator/external_devices/uart.py -i=1048896 (the jython

in this case is an alias for the stand-alone jython.jar is located in Ghidra).

In Figure 7.2 we see the typical Ghidra window before any plugins are activated. To

start GHALdra, type in ghaldra and select the ghaldra_start.py script before pressing

the play/run button. During initialization, GHALdra will ask the user for a configuration

file, which in this case is shown in Listing 7.1 . This will specify the entry point for where
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Listing 7.1GHALdra Config Example
logfilename: /home/someUser/ghidra_outputs/ghidra-emu.log
output_directory: /home/someUser/ghidra_outputs/
debug: False
numInstrToSave: 10
entry_point: 0x0800103c
breakpoints:
- 0x0

intercepts:
# -------------------------------UART ----------------------------------------
- class: halucinator.bp_handlers.stm32f4.stm32f4_uart.STM32F4UART
function: HAL_UART_Init
addr: 0x0800125c

- class: halucinator.bp_handlers.stm32f4.stm32f4_uart.STM32F4UART
function: HAL_UART_GetState
addr: 0x08001614

- class: halucinator.bp_handlers.stm32f4.stm32f4_uart.STM32F4UART
function: HAL_UART_Transmit_IT
addr: 0x080012f8

- class: halucinator.bp_handlers.stm32f4.stm32f4_uart.STM32F4UART
function: HAL_UART_Receive_IT
addr: 0x08001384

# # -------------------------------Generic ------------------------------------
- class: halucinator.bp_handlers.generic.timer.Timer
function: HAL_GetTick
addr: 0x08001024

- class: halucinator.bp_handlers.ReturnZero
function: HAL_Init
addr: 0x08000f50

- class: halucinator.bp_handlers.ReturnZero
function: HAL_InitTick
addr: 0x08000fa0

- class: halucinator.bp_handlers.Counter
function: HAL_IncTick
addr: 0x08001000

- class: halucinator.bp_handlers.ReturnZero
function: HAL_MspInit
addr: 0x08000f94

- class: halucinator.bp_handlers.ReturnZero
function: HAL_RCC_ClockConfig
addr: 0x0800085c

- class: halucinator.bp_handlers.ReturnZero
function: HAL_RCC_GetHCLKFreq
addr: 0x08000b6c

- class: halucinator.bp_handlers.ReturnZero
function: HAL_RCC_GetPCLK1Freq
addr: 0x08000b84

- class: halucinator.bp_handlers.ReturnZero
function: HAL_RCC_GetSysClockFreq
addr: 0x08000a20

- class: halucinator.bp_handlers.ReturnZero
function: HAL_RCC_OscConfig
addr: 0x08001db0

- class: halucinator.bp_handlers.ReturnZero
function: HAL_SYSTICK_Config
addr: 0x08002634

- class: halucinator.bp_handlers.ReturnZero
function: HAL_PWREx_EnableOverDrive
addr: 0x08002230
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Figure 7.2. Example Ghidra window to start GHALdra
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Figure 7.3. Example Ghidra window during initialization of GHALdra

we want to start emulating, a few output options, as well as any breakpoints and intercepts.

GHALdra will read this information in, set the appropriate settings and attempt to hook all

of the intercepts and set all of the breakpoints. As seen in Figure 7.4 , after initialization,

GHALdra will start the emulator and jump to the entry point. The registers are not shown

at this point because no instructions have been executed. As soon as a single instruction

has been executed, the registers will show up in the box below the command entry as seen

in Figure 7.5 . We can then use the ‘continue’ command c and the emulation will continue.

Seen in Figure 7.6 , at this point the emulator is blocking, waiting for input into the RX

buffer. On the terminal that is acting as our peripheral device we see the message that

the emulator sent over the UART through the peripheral server Figure 7.7 . It asks us to

input 10 characters using the keyboard. At this point we type in some characters and press

enter. If we don’t enter 10 characters the emulator will still block until the buffer has 10

characters. In this example I entered more than 10 characters, as only the first 10 are put

into the buffer. We press enter and at this point the emulator will start running again, and

in our TX handler we print what we put into the buffer, so it shows only the 10 characters in
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Figure 7.4. Example Ghidra window after configuration is loaded GHALdra

Figure 7.5. Example Ghidra window after doing a single-step in GHALdra
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Figure 7.6. Example Ghidra window after continuing in GHALdra

Figure 7.7. Example Terminal window running UART external device com-
municating with GHALdra through the peripheral server
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Figure 7.8. Example Terminal window running UART external device after
we enter in our characters and press ‘Enter’ which sends the data through the
peripheral server to GHALdra

the buffer Figure 7.8 . Back in the Ghidra window we can then see that we get to an infinite

loop Figure 7.9 , which for embedded firmware is essentially the exit point if we are not using

interrupts.

7.5 Interrupts

In many firmware applications that are simple, we do not care about intercepts as they

do not utilize them. So, supporting intercepts may not be necessary depending on your

reasons for emulation. If, for example, you just want to see the software functionality of

certain functions, interrupts are not necessary. However, if you have multiple tasks that you

want to see how they interact, you may need the interrupts. I will mention that GHALdra

is probably not the most efficient for this use case, as Ghidra Emulator in general does not

do the caching like QEMU does for faster emulation. GHALdra is meant to be seen in real

time, meaning slower execution and not for timing analysis.

With this disclaimer, GHALdra has support for interrupts. To be compatible with HALu-

cinator we have handlers that act like QEMU does with qmp. It will allow you to send

interrupts and stop emulation with the IRQ or FIQ, and it will save the current register

context, but it does not know where the handlers are located. The user will have to provide

the handlers, or locations in the firmware for the handlers, before the interrupts will work

correctly.
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Figure 7.9. Example Ghidra window when GHALdra has finished re-hosting
the UART firmware
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While GHAldra can do many things, I do not see it as a kill-all, rather as a tool that can

be used to help RE, find vulnerabilities, help understand a firmware, and even help create a

specialized emulator when needing timing or interrupt analysis. Depending on the hardware

we run Ghidra on, and the speed of the system we are emulating, GHALdra may be a

sufficient solution, but that is not its primary purpose. The primary purpose is to emulate

parts of firmware such as a single task, like a terminal application. For example, VxWorks

embeds a terminal into firmware. This terminal may be disabled by the firmware, but using

this tool we can jump to the terminal and interact with the firmware to understand what is

happening and what the functionality is in the firmware.

107



8. ADDITIONAL SOLUTIONS

GHALdra is a wonderful solution for many challenges encountered during firmware re-

hosting, but it does not have tools built-in to address all challenges. To this end, I include

other reverse engineering tools and scripts that I have created that integrate into Ghidra so

that the platform can be as comprehensive as possible when addressing challenges.

While the newest release of Ghidra (v9.2.2) has some graphing capabilities, I have found

them to be lacking in certain areas. Before a graphing service was included in Ghidra, I

developed scripts that use Python NetworkX library to do graphing of control flow and data

flow. This is similar to Ghidra’s built-in graphing, using varnodes in Ghidra as nodes in the

graph for data flow analysis and instructions for control flow analysis. NetworkX is already

integrated with various printing and visualizing techniques included the universal .dot graph

formats that can be imported to many graph visualization tools.

In Ghidra, writing scripts to do various static analysis tasks is relatively straightforward,

even if there is not a lot of documentation outside of doxygen for certain classes. This

enabled writing loop analysis scripts to search for infinite loops inside a firmware (as infinite

loops are usually a bug, rely on an interrupt, or expect interaction from hardware). In these

scripts, it is useful to create bookmarks for quick navigation to loop, and it is also useful

when scrolling through code to see the colored loops quickly in the disassembler window.

Searching is a common task in static analysis and reverse engineering. I have created

scripts that attempt to find certain functions of interest, including context switches, en-

trypoint, printf and other library functions. This is accomplished by specifying patterns

and searching through Ghidra functions. For example, to search for a context switch in an

ARM binary you will usually look for most of the registers to be saved along with the stack

pointer, link register, and pc (for ARM). By searching for functions that either save to, or

save from, all of these registers greatly reduces the number of functions that we need to

analyze to find the context switch. Using this same kind of technique, I have written an

escapes analysis which will try to determine the variables inside functions that access global

functions/variables or stack variables. By doing something like this we could determine
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whether a function is safe to skip or return a constant from when performing High Level

Emulation using intercepts and hooking.

When analyzing a binary, it is also necessary to determine the instruction set architecture,

the base address, and the entry point. I have provided brute force scripts that import a given

binary into Ghidra for all possible architectures, does a static auto analysis, and saves the

stats into a yaml file for digesting by the user. This can help narrow down the architecture a

given binary was created for. Beyond the architecture script I have also included a script that

attempts to guess the base address of the firmware by doing a strings and dword comparison.

While these scripts are not encompassing, or complete by any stretch of the imagination,

they have been useful when trying to RE and emulate real world binaries.
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9. VXWORKS

This chapter focuses on how HALucinator and GHALdra was extended to work with Vx-

Works by creating a Re-hosting Support Layer. This work was first done on HALucinator

in collaboration with Sandia National Laboratories and a modified part of this chapter was

published at Binary Analysis Research (BAR) an NDSS workshop in 2021 [26 ]. Challenges

that were encountered this chapter are discussed throughout the thesis and specifically in

[208 ]. In this chapter I will discuss how this is done with regards to HALucinator and GHAL-

dra interchangeably, as the GHALdra design was implemented so that it would work and

integrate with HALucinator.

VxWorks is a popular Real Time Operating System (RTOS) from Wind River, that is

estimated to be run on over 2 billion devices [209 ] and has been on embedded systems for

over 30 years, after starting out as VRTX [210 ]. It is commonly found in safety-critical

industries such as aerospace, automotive, medical, and manufacturing [211 ]–[213 ]. It is

used extensively by major companies including Siemens, Boeing, Bosch, Huawei, Northrop

Grumman, and others. Probably the most publicized use of VxWorks was in the Mars

Rover, where NASA Jet Propulsion Laboratory (JPL) used VxWorks in the Mars Exploration

Rover [214 ]. VxWorks has also been demonstrated to have critical vulnerabilities [215 ], [216 ].

Originally, HALucinator was designed for Bare Metal Embedded Systems (BMES). Other

efforts such as Firmadyne and Costin work at the General Purpose Embedded System

(GPES) space, meaning that there is no real convenient or usable tool for the Special Pur-

pose Embedded system(SPES) emulation area. To fill this gap, and advance the state of the

art, HALucinator and GHALdra were extended to work with SPES, specifically in this case

VxWorks. It is important to note that adding support for other SPES operating systems

would follow the same procedure.

By adapting the techniques used for HALucinator in intercepting and replacing function-

ality, we created a Re-hosting Support Layer which is a layer of intercepts at key VxWorks

functions to enable file system operations, asynchronous tasks, and interactive communica-

tion for ethernet and serial ports. By using this VxWorks RSL, it is possible to partially

emulate a Schneider Electric SCADAPack 350 Remote Terminal Unit, a Schneider Electric
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Modicon 340 Programmable Logic Controller and a Hughes 9201 BGAN inmarsat termi-

nal. By using these real devices it shows that this approach is tractable for real RE and

vulnerability research.

9.1 Background

Firmware that include VxWorks as the operating system have both VxWorks code and

device specific code. In this work, the VxWorks versions that were targeted were 5.5 and

6.4. While these may seem old or out-dated (pre 2014), think about the last time that

control firmware or hardware was updated at places near you. The stoplights you may drive

past, the electric grid components around you, water systems, etc. All of these systems have

control units and embedded devices integrated into their systems. You can probably guess

at how many of these devices have been replaced since 2014 when VxWorks 7 came out,

meaning that there are plenty of devices running VxWorks 5.5 and 6.4. I should also note

that the techniques here will work for VxWorks 7, they have just not been tested on it.

Emulating these devices allows for scalable dynamic testing, allowing for vulnerability

discovery and research and if the emulation is high enough, we can use the emulation for vir-

tual testbeds. We now discuss how to determine emulation uses and where a given emulation

fidelity is on the emulation utility scale.

9.1.1 Emulation Utility Scale

To aid in communicating the utility of an emulated system, we have created a scale to

describe the capabilities a re-hosted firmware provides. The level of utility needed from an

emulated system depends on the reason for emulating it. The scale is inspired by the levels

of autonomous driving [217 ]. Our scale goes from zero to five, with zero having the least

utility and five having the most. This scale is related to Figure 3.1 .

As can be seen in the Figure 9.1  , Level 0, means that at least one instruction executes

in the emulator, implying that we have the ISA identified correctly and firmware loaded at

the correct base address. At this point we can choose any address and start executing from

it, but execution will likely not be meaningful. Level 1 begins when execution starts at
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the correct entry point and the system starts to properly initialize. At this point we likely

have missing hardware requirements that will cause the firmware to not finish initialization.

Levels 0 and 1 enable inspecting execution, but is not useful for much more than manual

analysis of a few key points.

Level 2 begins when at least one bi-directional interface is working. Examples include

reading/writing files, networking, serial ports, or an interactive shell. At Level 3 all the

core OS functions are working including file system, task scheduling, and networking. With

a functional interface, levels 2 and 3 become useful for manual and automated vulnerability

research like fuzzing.

After completing core OS functionality, device specific applications should be at least

partially functional. Level 4 begins when one or more of the device specific applications are

working and it implies that select applications should behave similar to the physical system.

Level 5 is achieved when all OS and device specific applications are working. At this point,

from an external – black box perspective – the emulated system should behave like the real

system. It is important to note that Level 5 does not mean it is identical to the real system,

as there are likely differences in timing and internal state from the real system. If you want

perfectly fidelity you probably need to use the real system. The process of developing and

adding our re-hosting layer follow the pattern of pushing the utility of the emulated system

up this scale by focusing on the interfaces and software layers needed to move from one level

to the next.

9.1.2 VxWorks

Starting at the top of Figure 9.2  we have a set of applications that are implemented as

tasks in VxWorks. A number of these are provided with VxWorks and others are device

specific. Not all the VxWorks applications will be present or executing on every system.

Below the application layer, VxWorks provides a POSIX-like API through its IO Subsystem.

It provides functions such as open, close, read, write, etc. This is a thin layer that looks up

the driver that should handle the operation, and forwards the parameters to the appropriate

driver functions. Drivers are registered with VxWorks by using calls to iosDrvInstall which
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registers the Create, Remove, Open, Close, Read, Write, and IOCTL functions for the driver

and returns a driver. The driver is then passed to iosDrvAdd which associates it with a path.

These two functions and the drivers associated with them are featured prominently in our

re-hosting support layer.

VxWorks provides drivers for file systems (e.g., DosFs) tty devices (serial ports), and

network devices. In addition to drivers provided by VxWorks,device specific drivers can also

be added. The VxWorks drivers rely on device specific BSP implementations to perform

their operations. VxWorks provides its own TCP/IP stack with the ability to register device

specific protocols in the networking stack. Connection of these protocol stacks is done

through VxWorks’ Networking Mux interface. This provides an interface to register device

specific drivers conforming to the MUX API. Implementing these functions enables data to

be sent and received over the network. One of these types of interfaces is the Extended

Network Device (END), which is used for Ethernet devices and is the most applicable to our

re-hosting support layer.

9.2 VxWorks Re-Hosting Support Layer

VxWorks further makes RE simpler by embedding partial symbol tables into the firmware.

To retrieve symbols inside of Ghidra we can run the VxWorksSymTab_Finder.java script

[218 ] and it will search the entire binary and parse the symbol tables. VxWorks Manuals

[24 ], [219 ], [220 ], programmers guides [221 ] and headers [222 ] along with the ARM manual

[223 ] were very helpful to parsing how VxWorks actually behaved in conjunction with ARM,

making it possible to RE and re-host firmware. With the knowledge contained in these

resources, we somewhat understand the VxWorks design at a sufficient level where I can

briefly describe the VxWorks Re-Hosting Support Layer. First logging and error messag-

ing is enabled by capturing errnoSet and mapping the error number with a reading string

found online [224 ]. Initialization code that occurs is device specific, and usually occurs from

usrRoot. Intercepting and replacing hardware interactions at this point is critical to en-

able re-hosting. When looking at the different hardware interactions available, it is usually
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recommended to disable everything, and enable one part at a time to get that component

working, delaying any scheduler or scheduling of tasks for as long as possible.

This is when supporting asynchronous tasks comes into play. For GHALdra to work in

conjunction with HALucinator I had to allow sending interrupts and triggering the clock.

This re-used static analysis work that examined calls to intConnect and the call tree of

sysClkInit.
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To reuse other handlers and support from the HALucinator effort in the VxWorks RSL,

the changes were very minor, requiring only changing the messaging from the Python imple-

mentation of ZMQ to JeroMQ and any Python3 only code to be compatible with Python2.7.

Libraries that do not work will with Jython were also removed, including IPython.
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10. SUMMARY

Embedded systems will continue to grow in number and applicability, with billions of devices

being prevalent in our every day lives. These devices, while helpful and useful bring with

them an inherent risk and vulnerability that should be understood. To determine these risks

and vulnerabilities I have presented both static and dynamic analysis techniques, and have

shown that emulation can truly be used on a large scale in the near future for virtually any

device architecture.

10.1 Current State of Things

In Figure 10.1 I replicate the figure from Figure 3.1 , but make changes to the current

state of things after the inclusion of my work. The figure had to be changed somewhat,

as now there are multiple automation levels at the HALucinator and GHALdra bubbles of

classification at the conclusion of this work. As can be seen, HALucinator is now more

automated, and is classified at the Register Data Fidelity/Basic Block Execution Fidelity

and GHALdra is created at the Register Data Fidelity/Instruction Execution Fidelity with

a relatively high level of automation. The bubbles for the fidelity of each tool is located at

the same position, but now the automation level needs distinguished at the same point on

the graph.

While these tools are not all encompassing of related existing tools, I have reviewed the

most relevant tools related this work, described their functionalities, and given the practi-

tioner knowledge and flow charts to aid in selecting the right tool for their purpose.

10.2 Future Work

I plan to continue work integrating the PMatch library and function matching into the

GHALdra emulation to allow for a dynamic library matching that may work cross platform or

for various compilers, versions, and compilation arguments. Continuation of work GHALdra

and HALucinator will be useful in my future work at Sandia National Laboratories. I also

believe that the area would benefit tremendously from a stand alone Pcode emulator that
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does caching and is fast like QEMU. In this way we can have a very fast emulator for virtually

all architectures with minimal effort.

10.3 Conclusion

In summary, I have provided a comprehensive review and systematization for the area

of system emulation and firmware re-hosting. In Chapter 1 , I introduced the motivation

for my research and work in emulation, firmware re-hosting and analysis. In Chapter 2 , I

presented the history and evolution of emulation along with the main base emulators in the

space. In Chapter 3 , I present classification techniques for analyzing the various tools in

the field before classifying the most relevant tools related to my research. In Chapter 4 , I

do a comprehensive explanation and breakdown of the process of emulating a system and

re-hosting a firmware. I have shown how using my contributions of GHALdra, PMatch,

HQ-Tracer presented in Chapter 5 , Chapter 6 , and Chapter 7 repectively, can reduce the

amount of effort needed to re-host a firmware. The approach of doing partial emulation is

a powerful tool, and is perhaps the most practical real world use of my contributions. In

Chapter 8 , I explain other scripts that are useful in overcoming emulation challenges, and

in Chapter 9 , I share how GHALdra integrates the VxWorks Re-hosting Support Layer to

enable emulation for Special Purpose Embedded Systems.

I have provided examples showing how to use the software included in this research

and show that by using said software the practitioner can successfully emulate and re-

host firmware from real world devices. Devices emulated including an STMicroelectonics

STM32469I-EVAL firmware, a Schneider Electric SCADAPack 350 remote terminal unit, a

Schneider Electric Modicon 340 programmable logic controller, and a Hughes 9201 BGAN

inmarsat terminal.

119



REFERENCES

[1] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz, C. Kruegel,
G. Vigna, S. Bagchi, and M. Payer, “Halucinator: Firmware re-hosting through ab-
straction layer emulation,” in 29th USENIX Security Symposium (USENIX Security
20), USENIX Association, Aug. 2020, pp. 1201–1218, isbn: 978-1-939133-17-5. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity20/presentation/
clements .

[2] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings of the An-
nual Conference on USENIX Annual Technical Conference, Anaheim, CA: USENIX
Association, 2005, pp. 41–41. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1247360.1247401 .

[3] K. Wiles, First all-digital nuclear reactor system in the u.s. installed at purdue uni-
versity, Jul. 2019. [Online]. Available: https://www.purdue.edu/newsroom/releases/
2019/Q3/first-all-digital-nuclear-reactor-control-system-in-the-u.s.-installed-at-
purdue-university.html .

[4] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang, “Intelligent 5g:
When cellular networks meet artificial intelligence,” IEEE Wireless Communications,
vol. 24, no. 5, pp. 175–183, 2017.

[5] U. D. of Energy, The smart grid, May 2020. [Online]. Available: https : / /www .
smartgrid.gov/the_smart_grid/smart_grid.html .

[6] P. Gandhi, S. Khanna, and S. Ramaswamy, Which industries are the most digital
(and why)? Oct. 2017. [Online]. Available: https://hbr.org/2016/04/a-chart-that-
shows-which-industries-are-the-most-digital-and-why .

[7] J. Manyika, S. Ramaswamy, S. Khanna, H. Sarrazin, G. Pinkus, G. Sethupathy,
and A. Yaffe, Digital america: A tale of the haves and have-mores, Dec. 2015. [On-
line]. Available: https : / /www.mckinsey . com/ industries / technology -media - and -
telecommunications/our- insights/digital -america-a-tale -of - the-haves-and-have-
mores .

[8] C. Cimpanu, Android exploits are now worth more than ios exploits for the first time,
Sep. 2019. [Online]. Available: https://www.zdnet.com/article/android-exploits-are-
now-worth-more-than-ios-exploits-for-the-first-time/ .

[9] C. Reichert, Google’s android bug bounty program will now pay out $1.5 million, Nov.
2019. [Online]. Available: https://www.cnet.com/news/googles-android-bug-bounty-
program-will-now-pay-out-1-5-million/ .

120

https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://www.purdue.edu/newsroom/releases/2019/Q3/first-all-digital-nuclear-reactor-control-system-in-the-u.s.-installed-at-purdue-university.html
https://www.purdue.edu/newsroom/releases/2019/Q3/first-all-digital-nuclear-reactor-control-system-in-the-u.s.-installed-at-purdue-university.html
https://www.purdue.edu/newsroom/releases/2019/Q3/first-all-digital-nuclear-reactor-control-system-in-the-u.s.-installed-at-purdue-university.html
https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://www.zdnet.com/article/android-exploits-are-now-worth-more-than-ios-exploits-for-the-first-time/
https://www.zdnet.com/article/android-exploits-are-now-worth-more-than-ios-exploits-for-the-first-time/
https://www.cnet.com/news/googles-android-bug-bounty-program-will-now-pay-out-1-5-million/
https://www.cnet.com/news/googles-android-bug-bounty-program-will-now-pay-out-1-5-million/


[10] B. Hesse, Earn up to $1 million from apple’s expanded bug bounty program, Aug.
2019. [Online]. Available: https://lifehacker.com/earn-up-to-1-million-from-apples-
expanded-bug-bounty-p-1837106598 .

[11] L. H. Newman, Facebook bug bounty program makes biggest reward payout yet, Dec.
2018. [Online]. Available: https ://www.wired . com/story/ facebook -bug -bounty -
biggest-payout/ .

[12] Cisomag, Tesla offers us$1 million and a car to hack its model 3 car, Jan. 2020.
[Online]. Available: https://www.cisomag.com/tesla-offers-us1-million-and-a-car-as-
bug-bounty-reward/ .

[13] M. Mickos, $20m in bounties paid and $100m in sight, Aug. 2017. [Online]. Available:
https://www.hackerone.com/blog/20M-in-bounties-paid-and-100M-in-sight .

[14] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical system security,”
in 37th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2011,
pp. 4490–4494. doi: 10.1109/IECON.2011.6120048 .

[15] I. Ahmed, S. Obermeier, M. Naedele, and G. G. Richard III, “Scada systems: Chal-
lenges for forensic investigators,” Computer, vol. 45, no. 12, pp. 44–51, Dec. 2012,
issn: 1558-0814. doi: 10.1109/MC.2012.325 .

[16] S. Kalle, N. Ameen, H. Yoo, and I. Ahmed, “Clik on plcs! attacking control logic with
decompilation and virtual plc,” in Workshop on Binary Analysis Research 2019, San
Diego, California, USA, Feb. 2019. doi: 10.14722/BAR.2019.23074 .

[17] U. Lindqvist and P. G. Neumann, “The future of the internet of things,” Commun.
ACM, vol. 60, no. 2, pp. 26–30, Jan. 2017, issn: 0001-0782. doi: 10.1145/3029589 .
[Online]. Available: http://doi.acm.org/10.1145/3029589 .

[18] K. S. L. Tencent, Car hacking research: Remote attack tesla motors, Sep. 2016. [On-
line]. Available: https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-
Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/ .

[19] C. Miller and C. Valasek, Remote Exploitation of an Unaltered Passenger Vehi-
cle, Aug. 2015. [Online]. Available: %7Bhttp : / / illmatics . com/Remote%20Car%
20Hacking.pdf%7D .

[20] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats, vulnerabil-
ities, and attack taxonomy,” in 2015 13th Annual Conference on Privacy, Security
and Trust, Jul. 2015, pp. 145–152. doi: 10.1109/PST.2015.7232966 .

121

https://lifehacker.com/earn-up-to-1-million-from-apples-expanded-bug-bounty-p-1837106598
https://lifehacker.com/earn-up-to-1-million-from-apples-expanded-bug-bounty-p-1837106598
https://www.wired.com/story/facebook-bug-bounty-biggest-payout/
https://www.wired.com/story/facebook-bug-bounty-biggest-payout/
https://www.cisomag.com/tesla-offers-us1-million-and-a-car-as-bug-bounty-reward/
https://www.cisomag.com/tesla-offers-us1-million-and-a-car-as-bug-bounty-reward/
https://www.hackerone.com/blog/20M-in-bounties-paid-and-100M-in-sight
https://doi.org/10.1109/IECON.2011.6120048
https://doi.org/10.1109/MC.2012.325
https://doi.org/10.14722/BAR.2019.23074
https://doi.org/10.1145/3029589
http://doi.acm.org/10.1145/3029589
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
%7Bhttp://illmatics.com/Remote%20Car%20Hacking.pdf%7D
%7Bhttp://illmatics.com/Remote%20Car%20Hacking.pdf%7D
https://doi.org/10.1109/PST.2015.7232966


[21] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale analysis of
the security of embedded firmwares,” in 23rd USENIX Security Symposium, San
Diego, CA: USENIX Association, Aug. 2014, pp. 95–110, isbn: 978-1-931971-15-7.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/costin .

[22] M. Yu, J. Zhuge, M. Cao, Z. Shi, and L. Jiang, “A survey of security vulnerability
analysis, discovery, detection, and mitigation on iot devices,” Future Internet, vol. 12,
no. 2, p. 27, Feb. 2020, issn: 1999-5903. doi: 10.3390/fi12020027 . [Online]. Available:
http://dx.doi.org/10.3390/fi12020027 .

[23] E. Feng and A. Cheng, China’s tech giant huawei spans much of the globe despite u.s.
efforts to ban it, Oct. 2019. [Online]. Available: https://www.npr.org/2019/10/24/
759902041/chinas-tech-giant-huawei-spans-much-of-the-globe-despite-u-s-efforts-to-
ban-it .

[24] VxWorks, Vxworks reference manual : Libraries, Dec. 2020. [Online]. Available: https:
//www.ee.ryerson.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/
ref/libIndex.html .

[25] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeatable reverse
engineering with panda,” in Proceedings of the 5th Program Protection and Reverse
Engineering Workshop, Los Angeles, CA, USA: ACM, 2015, 4:1–4:11, isbn: 978-1-
4503-3642-0. doi: 10.1145/2843859.2843867 . [Online]. Available: http://doi.acm.org/
10.1145/2843859.2843867 .

[26] A. Clements, L. Carpenter, W. A. Moeglein, and C. Wright, “Is your firmware real
or re-hosted? a case study in re-hosting vxworks control system firmware,” Workshop
on Binary Analysis Research (BAR), Feb. 2021.

[27] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War: Of-
fensive Techniques in Binary Analysis,” in IEEE Symposium on Security and Privacy,
2016.

[28] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware analysis at
scale: A case study on embedded web interfaces,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, Xi’an, China: ACM,
2016, pp. 437–448, isbn: 978-1-4503-4233-9. doi: 10.1145/2897845.2897900 . [Online].
Available: http://doi.acm.org/10.1145/2897845.2897900 .

122

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://doi.org/10.3390/fi12020027
http://dx.doi.org/10.3390/fi12020027
https://www.npr.org/2019/10/24/759902041/chinas-tech-giant-huawei-spans-much-of-the-globe-despite-u-s-efforts-to-ban-it
https://www.npr.org/2019/10/24/759902041/chinas-tech-giant-huawei-spans-much-of-the-globe-despite-u-s-efforts-to-ban-it
https://www.npr.org/2019/10/24/759902041/chinas-tech-giant-huawei-spans-much-of-the-globe-despite-u-s-efforts-to-ban-it
https://www.ee.ryerson.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/libIndex.html
https://www.ee.ryerson.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/libIndex.html
https://www.ee.ryerson.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/libIndex.html
https://doi.org/10.1145/2843859.2843867
http://doi.acm.org/10.1145/2843859.2843867
http://doi.acm.org/10.1145/2843859.2843867
https://doi.org/10.1145/2897845.2897900
http://doi.acm.org/10.1145/2897845.2897900


[29] B. Van Leeuwen, V. Urias, J. Eldridge, C. Villamarin, and R. Olsberg, “Cyber security
analysis testbed: Combining real, emulation, and simulation,” in 44th Annual 2010
IEEE International Carnahan Conference on Security Technology, Oct. 2010, pp. 121–
126. doi: 10.1109/CCST.2010.5678720 .

[30] C. Kruegel, “Full system emulation: Achieving successful automated dynamic analysis
of evasive malware,” in black hat USA 2014 Workshop, Las Vegas, NV, USA: black-
hat.com, Aug. 2014. [Online]. Available: https://www.blackhat.com/docs/us-14/
materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-
Dynamic-Analysis-Of-Evasive-Malware-WP.pdf .

[31] F. D. Tanasache, M. Sorella, S. Bonomi, R. Rapone, and D. Meacci, “Building an
emulation environment for cyber security analyses of complex networked systems,”
Proceedings of the 20th International Conference on Distributed Computing and Net-
working, 2019. doi: 10.1145/3288599.3288618 .

[32] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshitaishvili, C.
Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-binary interactions in
embedded firmware,” in Proceedings of the IEEE Symposium on Security and Privacy,
May 2020.

[33] S. Shah, The arm-x firmware emulation framework, May 2020. [Online]. Available:
https://github.com/therealsaumil/armx .

[34] J. Viega and H. Thompson, “The state of embedded-device security (spoiler alert:
It’s bad),” IEEE Symposium on Security and Privacy, vol. 10, no. 5, pp. 68–70, Sep.
2012. doi: 10.1109/MSP.2012.134 .

[35] J. Hall, Hp laserjet the early history. [Online]. Available: http ://hparchive . com/
seminar%5C_notes/HP%5C_LaserJet%5C_The%5C_Early%5C_History%5C_
by%5C_Jim%5C_Hall%5C_110512.pdf .

[36] A. Kaluszka, Computer emulation history. [Online]. Available: https://kaluszka.com/
vt/emulation/history.html .

[37] R. Phillips and B. Montalvo, “Using emulation to debug control logic code,” Proceed-
ings of the 2010 Winter Simulation Conference, 2010. doi: 10.1109/wsc.2010.5678904 .

[38] K. P. Lawton, “Bochs: A portable pc emulator for unix/x,” Linux J., vol. 1996,
no. 29es, Sep. 1996, issn: 1075-3583. [Online]. Available: http://dl.acm.org/citation.
cfm?id=326350.326357 .

[39] DOSBox, DOSBox, Sep. 2019. [Online]. Available: https://www.dosbox.com/ .

123

https://doi.org/10.1109/CCST.2010.5678720
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware-WP.pdf
https://doi.org/10.1145/3288599.3288618
https://github.com/therealsaumil/armx
https://doi.org/10.1109/MSP.2012.134
http://hparchive.com/seminar%5C_notes/HP%5C_LaserJet%5C_The%5C_Early%5C_History%5C_by%5C_Jim%5C_Hall%5C_110512.pdf
http://hparchive.com/seminar%5C_notes/HP%5C_LaserJet%5C_The%5C_Early%5C_History%5C_by%5C_Jim%5C_Hall%5C_110512.pdf
http://hparchive.com/seminar%5C_notes/HP%5C_LaserJet%5C_The%5C_Early%5C_History%5C_by%5C_Jim%5C_Hall%5C_110512.pdf
https://kaluszka.com/vt/emulation/history.html
https://kaluszka.com/vt/emulation/history.html
https://doi.org/10.1109/wsc.2010.5678904
http://dl.acm.org/citation.cfm?id=326350.326357
http://dl.acm.org/citation.cfm?id=326350.326357
https://www.dosbox.com/


[40] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. Bharadwaj
Yadavalli, and J. Yates, “Fx!32 a profile-directed binary translator,” IEEE Micro,
vol. 18, no. 2, pp. 56–64, Mar. 1998. doi: 10.1109/40.671403 .

[41] PCem, PCem, Sep. 2019. [Online]. Available: https://github.com/Anamon/pcem .

[42] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, 2002.

[43] M. F. Thompson and T. Vidas, Cgc monitor: A vetting system for the darpa cyber
grand challenge, 2018. [Online]. Available: https://calhoun.nps.edu/handle/10945/
59209 .

[44] NSA, Ghidra, version 9.0.4, Sep. 2019. [Online]. Available: https://ghidra-sre.org/ .

[45] Sickendick, Karl, pcode-emulator, Nov. 2019. [Online]. Available: https://github.com/
kc0bfv/pcode-emulator .

[46] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976, issn: 0001-0782. doi: 10.1145/360248.360252  .
[Online]. Available: http://doi.acm.org/10.1145/360248.360252 .

[47] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and W.
Visser, “Symbolic execution for software testing in practice: Preliminary assessment,”
in Proceedings of the 33rd International Conference on Software Engineering, Waikiki,
Honolulu, HI, USA: Association for Computing Machinery, 2011, pp. 1066–1071, isbn:
9781450304450. doi: 10.1145/1985793.1985995  . [Online]. Available: https://doi.org/
10.1145/1985793.1985995 .

[48] BE-PUM, BE-PUM, Sep. 2019. [Online]. Available: https://github.com/NMHai/BE-
PUM .

[49] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M.-L. Potet, and J.-Y. Marion,
“Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis,” in IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering,
Los Alamitos, CA, USA: IEEE Computer Society, Mar. 2016, pp. 653–656. doi: 10.
1109/SANER.2016.43  . [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SANER.2016.43 .

124

https://doi.org/10.1109/40.671403
https://github.com/Anamon/pcem
https://calhoun.nps.edu/handle/10945/59209
https://calhoun.nps.edu/handle/10945/59209
https://ghidra-sre.org/
https://github.com/kc0bfv/pcode-emulator
https://github.com/kc0bfv/pcode-emulator
https://doi.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1145/1985793.1985995
https://github.com/NMHai/BE-PUM
https://github.com/NMHai/BE-PUM
https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/SANER.2016.43
https://doi.ieeecomputersociety.org/10.1109/SANER.2016.43
https://doi.ieeecomputersociety.org/10.1109/SANER.2016.43


[50] B. Loring, D. Mitchell, and J. Kinder, “Expose: Practical symbolic execution of stan-
dalone javascript,” in Proceedings of the 24th ACM SIGSOFT International SPIN
Symposium on Model Checking of Software, Santa Barbara, CA, USA: ACM, 2017,
pp. 196–199, isbn: 978-1-4503-5077-8. doi: 10.1145/3092282.3092295 . [Online]. Avail-
able: http://doi.acm.org/10.1145/3092282.3092295 .

[51] D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant, and D. Song,
“Transformation-aware exploit generation using a hi-cfg,” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/EECS-2013-85, May 2013. [Online].
Available: http : //www2 . eecs . berkeley . edu/Pubs/TechRpts/2013/EECS-2013 -
85.html .

[52] BitBlaze, FuzzBALL, Sep. 2019. [Online]. Available: https://github.com/bitblaze-
fuzzball/fuzzball .

[53] Samsung, Jalangi2, Sep. 2019. [Online]. Available: https://github.com/Samsung/
jalangi2 .

[54] Janala2, Janala2, Sep. 2019. [Online]. Available: https : / / github . com / ksen007 /
janala2 .

[55] J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner, “Javert 2.0: Com-
positional symbolic execution for javascript,” Proceedings of the ACM on Princi-
ples of Programming Languages, vol. 3, 66:1–66:31, Jan. 2019, issn: 2475-1421. doi:
10.1145/3290379 . [Online]. Available: http://doi.acm.org/10.1145/3290379 .

[56] P. Braione, G. Denaro, and M. Pezzè, “Symbolic execution of programs with heap
inputs,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, Bergamo, Italy: ACM, 2015, pp. 602–613, isbn: 978-1-4503-3675-8. doi:
10.1145/2786805.2786842 . [Online]. Available: http://doi.acm.org/10.1145/2786805.
2786842 .

[57] P. Braione, G. Denaro, and M. Pezzè, “Enhancing symbolic execution with built-in
term rewriting and constrained lazy initialization,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, Saint Petersburg, Russia:
ACM, 2013, pp. 411–421, isbn: 978-1-4503-2237-9. doi: 10.1145/2491411.2491433 .
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491433 .

[58] Sen, Koushik, jCUTE, Sep. 2019. [Online]. Available: https://github.com/osl/jcute .

125

https://doi.org/10.1145/3092282.3092295
http://doi.acm.org/10.1145/3092282.3092295
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-85.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-85.html
https://github.com/bitblaze-fuzzball/fuzzball
https://github.com/bitblaze-fuzzball/fuzzball
https://github.com/Samsung/jalangi2
https://github.com/Samsung/jalangi2
https://github.com/ksen007/janala2
https://github.com/ksen007/janala2
https://doi.org/10.1145/3290379
http://doi.acm.org/10.1145/3290379
https://doi.org/10.1145/2786805.2786842
http://doi.acm.org/10.1145/2786805.2786842
http://doi.acm.org/10.1145/2786805.2786842
https://doi.org/10.1145/2491411.2491433
http://doi.acm.org/10.1145/2491411.2491433
https://github.com/osl/jcute


[59] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, San Diego, California:
USENIX Association, 2008, pp. 209–224. [Online]. Available: http ://dl .acm.org/
citation.cfm?id=1855741.1855756 .

[60] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brun-
son, and A. Dinaburg, Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts, 2019. arXiv: 1907.03890 [cs.SE] .

[61] ConsenSys, Mythril, Sep. 2019. [Online]. Available: https://github.com/ConsenSys/
mythril .

[62] A. Sharma, “Exploiting undefined behaviors for efficient symbolic execution,” in Com-
panion Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, India: ACM, 2014, pp. 727–729, isbn: 978-1-4503-2768-8. doi: 10.1145/
2591062.2594450 . [Online]. Available: http://doi.acm.org/10.1145/2591062.2594450 .

[63] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-path
analysis of software systems,” SIGARCH Computer Architecture News, vol. 39, no. 1,
pp. 265–278, Mar. 2011, issn: 0163-5964. doi: 10.1145/1961295.1950396  . [Online].
Available: http://doi.acm.org/10.1145/1961295.1950396 .

[64] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary
code,” in IEEE Symposium on Security and Privacy, Washington, DC, USA: IEEE
Computer Society, 2012, pp. 380–394, isbn: 978-0-7695-4681-0. doi: 10 .1109/SP.
2012.31 . [Online]. Available: https://doi.org/10.1109/SP.2012.31 .

[65] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic
execution,” in Proceedings of the 2016 Network and Distributed System Security Sym-
posium, 2016.

[66] AFL-Fuzz, Afl-fuzz, Sep. 2019. [Online]. Available: https://github.com/google/AFL .

[67] radamsa, Radamsa, Sep. 2019. [Online]. Available: https://gitlab.com/akihe/radamsa .

[68] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A practical concolic execu-
tion engine tailored for hybrid fuzzing,” in 27th USENIX Security Symposium, 2018,
pp. 745–761.

[69] K. Serebryany, Oss-fuzz-google’s continuous fuzzing service for open source software,
2017.

126

http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://arxiv.org/abs/1907.03890
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://doi.org/10.1145/2591062.2594450
https://doi.org/10.1145/2591062.2594450
http://doi.acm.org/10.1145/2591062.2594450
https://doi.org/10.1145/1961295.1950396
http://doi.acm.org/10.1145/1961295.1950396
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://github.com/google/AFL
https://gitlab.com/akihe/radamsa


[70] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-
aware evolutionary fuzzing.,” in Network and Distributed Systems Security Sympo-
sium, vol. 17, 2017, pp. 1–14.

[71] D. Maier, B. Radtke, and B. Harren, “Unicorefuzz: On the viability of for kernelspace
fuzzing,” in 13th USENIX Workshop on Offensive Technologies, Santa Clara, CA:
USENIX Association, Aug. 2019. [Online]. Available: https : / /www . usenix . org /
conference/woot19/presentation/maier .

[72] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. L. Cheong, M. Sun, R. Yang,
and K. Zhang, “Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing,” in 25th Annual Network and Distributed System Security Symposium, 2018,
San Diego, California, USA, February 18-21, 2018, 2018. [Online]. Available: http:
//wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%
5C_01A-1%5C_Chen%5C_paper.pdf .

[73] Google, honggfuzz, Sep. 2019. [Online]. Available: https : / / github . com / google /
honggfuzz .

[74] Google, clusterfuzz, Sep. 2019. [Online]. Available: https : / / github . com/ google /
clusterfuzz .

[75] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox fuzz testing,” in
Network and Distributed Systems Security Symposium, 2008.

[76] Google, Syzkaller, Sep. 2019. [Online]. Available: https : / / github . com / google /
syzkaller .

[77] X. Mendez, Wfuzz, Sep. 2019. [Online]. Available: https://github.com/xmendez/
wfuzz .

[78] Google, winafl, Sep. 2019. [Online]. Available: https://github.com/googleprojectzero/
winafl .

[79] G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An automatic random fuzzer for
common file formats,” in Proceedings of the 9th International Symposium on Haskell,
Nara, Japan: ACM, 2016, pp. 13–20, isbn: 978-1-4503-4434-0. doi: 10.1145/2976002.
2976017 . [Online]. Available: http://doi.acm.org/10.1145/2976002.2976017 .

[80] boofuzz, Boofuzz, Sep. 2019. [Online]. Available: https : //github . com/ jtpereyda/
boofuzz .

[81] Google, Domato, Sep. 2019. [Online]. Available: https://github.com/googleprojectzero/
domato .

127

https://www.usenix.org/conference/woot19/presentation/maier
https://www.usenix.org/conference/woot19/presentation/maier
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_01A-1%5C_Chen%5C_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_01A-1%5C_Chen%5C_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_01A-1%5C_Chen%5C_paper.pdf
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/2976002.2976017
http://doi.acm.org/10.1145/2976002.2976017
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato


[82] SSRFmap, Ssrfmap, Sep. 2019. [Online]. Available: https://github.com/swisskyrepo/
SSRFmap .

[83] Google, fuzzilli, Sep. 2019. [Online]. Available: https://github.com/googleprojectzero/
fuzzilli .

[84] D. Jones, “Trinity: A system call fuzzer,” in Proceedings of the 13th Ottawa Linux
Symposium, 2011.

[85] Google, Gofuzz, Sep. 2019. [Online]. Available: https://github.com/google/gofuzz .

[86] C. Domas, “Breaking the x86 isa,” in black hat USA 2017 Workshop, Las Vegas, NV,
USA: blackhat.com, Jul. 2017. [Online]. Available: https://www.blackhat.com/docs/
us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf .

[87] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna,
“Difuze: Interface aware fuzzing for kernel drivers,” in ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2017, pp. 2123–2138.

[88] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program transforma-
tion,” in IEEE Symposium on Security and Privacy, IEEE, 2018, pp. 697–710.

[89] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “Firmfuzz: Auto-
mated iot firmware introspection and analysis,” Proceedings Of The 2nd International
ACM Workshop On Security And Privacy For The Internet-Of-Things, pp. 15–21,
2019. doi: 10.1145/3338507.3358616 . [Online]. Available: http://infoscience.epfl.ch/
record/276976 .

[90] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar2: A multi-target orches-
tration platform,” in Workshop on Binary Analysis Research, colocated with Network
and Distributed Systems Security Symposium, San Diego, USA, San Diego, UNITED
STATES, Feb. 2018. [Online]. Available: http://www.eurecom.fr/publication/5437 .

[91] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A framework to
support dynamic security analysis of embedded systems’ firmwares,” in Network and
Distributed Systems Security Symposium, Feb. 2014, isbn: 1-891562-35-5. doi: 10.
14722/ndss.2014.23229 .

[92] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your Exploit is Mine: Auto-
matic Shellcode Transplant for Remote Exploits,” in IEEE Symposium on Security
and Privacy, 2017.

128

https://github.com/swisskyrepo/SSRFmap
https://github.com/swisskyrepo/SSRFmap
https://github.com/googleprojectzero/fuzzilli
https://github.com/googleprojectzero/fuzzilli
https://github.com/google/gofuzz
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://doi.org/10.1145/3338507.3358616
http://infoscience.epfl.ch/record/276976
http://infoscience.epfl.ch/record/276976
http://www.eurecom.fr/publication/5437
https://doi.org/10.14722/ndss.2014.23229
https://doi.org/10.14722/ndss.2014.23229


[93] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang, A. Bianchi,
Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang: Exploiting the semantic gap in
trusted execution environments,” in Proceedings of the 2017 Network and Distributed
System Security Symposium, 2017.

[94] R. Wang, Y. Shoshitaishvili, A. Bianchi, M. Aravind, J. Grosen, P. Grosen, C. Kruegel,
and G. Vigna, “Ramblr: Making Reassembly Great Again,” in Proceedings of the 2017
Network and Distributed System Security Symposium, 2017.

[95] Shellphish, Cyber grand shellphish, 2017. [Online]. Available: http : //phrack .org/
papers/cyber%5C_grand%5C_shellphish.html .

[96] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice - au-
tomatic detection of authentication bypass vulnerabilities in binary firmware,” in
Proceedings of the 2015 Network and Distributed System Security Symposium, 2015.

[97] R. Parvez, P. A. S. Ward, and V. Ganesh, “Combining static analysis and targeted
symbolic execution for scalable bug-finding in application binaries,” in 26th Annual
International Conference on Computer Science and Software Engineering, Toronto,
Ontario, Canada: IBM Corp., 2016, pp. 116–127. [Online]. Available: http://dl.acm.
org/citation.cfm?id=3049877.3049889 .

[98] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-architecture bug
search in binary executables,” in IEEE Symposium on Security and Privacy, IEEE,
2015, pp. 709–724.

[99] S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert, and T. Holz, “Dynamic
Hooks: Hiding Control Flow Changes Within Non-Control Data,” in 23rd USENIX
Security Symposium, 2014, pp. 813–328.

[100] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan, “Aveksha: A hardware-
software approach for non-intrusive tracing and profiling of wireless embedded sys-
tems,” in Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems, ACM, 2011, pp. 288–301.

[101] V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic tracing for wireless
sensor networks,” in Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, ACM, 2010, pp. 169–182.

[102] M. Tancreti, V. Sundaram, S. Bagchi, and P. Eugster, “Tardis: Software-only system-
level record and replay in wireless sensor networks,” in Proceedings of the 14th In-
ternational Conference on Information Processing in Sensor Networks, ACM, Seat-
tle, Washington: ACM, 2015, pp. 286–297, isbn: 978-1-4503-3475-4. doi: 10.1145/
2737095.2737096 . [Online]. Available: http://doi.acm.org/10.1145/2737095.2737096 .

129

http://phrack.org/papers/cyber%5C_grand%5C_shellphish.html
http://phrack.org/papers/cyber%5C_grand%5C_shellphish.html
http://dl.acm.org/citation.cfm?id=3049877.3049889
http://dl.acm.org/citation.cfm?id=3049877.3049889
https://doi.org/10.1145/2737095.2737096
https://doi.org/10.1145/2737095.2737096
http://doi.acm.org/10.1145/2737095.2737096


[103] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What You Cor-
rupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices,” in Network
and Distributed System Security Symposium, San Diego (USA), Feb. 2018.

[104] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated dynamic
analysis for linux-based embedded firmware,” in 23rd Annual Network and Distributed
System Security Symposium, 2016, San Diego, California, USA, February 21-24, 2016,
2016. [Online]. Available: http://wp.internetsociety.org/ndss/wp-content/uploads/
sites/25/2017/09/towards-automated-dynamic-analysis - linux-based-embedded-
firmware.pdf .

[105] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: Peripheral proxying sup-
ported embedded code testing,” in Proceedings of the 9th ACM Symposium on Infor-
mation, Computer and Communications Security, Kyoto, Japan: ACM, 2014, pp. 329–
340, isbn: 978-1-4503-2800-5. doi: 10 . 1145/2590296 .2590301 . [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590301 .

[106] K. Koscher, T. Kohno, and D. Molnar, “Surrogates: Enabling near-real-time dynamic
analyses of embedded systems,” in 9th USENIX Workshop on Offensive Technologies,
Washington, D.C.: USENIX Association, Aug. 2015. [Online]. Available: https : //
www.usenix.org/conference/woot15/workshop-program/presentation/koscher .

[107] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling (extended version),” ArXiv, vol. abs/1909.06472,
2019.

[108] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratantonio, D.
Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, et al., “Toward the analysis of
embedded firmware through automated re-hosting,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, 2020.

[109] Vector 35, Binary Ninja, Sep. 2019. [Online]. Available: https://binary.ninja/ .

[110] J. Broome and D. Marx, Method and iimplementation for intercepting and processing
system calls in programmed digital computer to emulate retrograde operating system,
US Patent 6,086,623, Jul. 2000.

[111] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. New-
some, P. Poosankam, and P. Saxena, “Bitblaze: A new approach to computer security
via binary analysis,” in International Conference on Information Systems Security,
Springer, 2008, pp. 1–25.

130

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://doi.org/10.1145/2590296.2590301
http://doi.acm.org/10.1145/2590296.2590301
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://binary.ninja/


[112] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis
platform,” in International Conference on Computer Aided Verification, Springer,
2011, pp. 463–469.

[113] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits through
binary analysis,” in 20th Annual Computer Security Applications Conference, IEEE,
2004, pp. 91–100.

[114] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automating mimicry
attacks using static binary analysis,” in 14th USENIX Security Symposium, vol. 14,
2005, pp. 11–11.

[115] R. Team, Radare2 Book. GitHub, 2017.

[116] Hemel, Armijn, BANG - Binary Analysis Next Generation, Sep. 2019. [Online]. Avail-
able: https://github.com/armijnhemel/binaryanalysis-ng .

[117] ReFirm Labs, binwalk, Sep. 2019. [Online]. Available: https://github.com/ReFirmLabs/
binwalk .

[118] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis framework,”
in Proceedings of the 2007 International Symposium on Software Testing and Analysis,
London, United Kingdom: ACM, 2007, pp. 196–206, isbn: 978-1-59593-734-6. doi:
10.1145/1273463.1273490 . [Online]. Available: http://doi.acm.org/10.1145/1273463.
1273490 .

[119] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware: Finding vul-
nerabilities in embedded systems using symbolic execution,” in 22nd USENIX Secu-
rity Symposium, Washington, D.C.: USENIX Association, Aug. 2013, pp. 463–478,
isbn: 978-1-931971-03-4. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/davidson .

[120] firmware-mod-kit, firmware-mod-kit, Sep. 2019. [Online]. Available: https://github.
com/rampageX/firmware-mod-kit .

[121] G. Hernandez, F. Fowze, D. ( Tian, T. Yavuz, and K. R. Butler, “Firmusb: Vetting
usb device firmware using domain informed symbolic execution,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS
’17, Dallas, Texas, USA: Association for Computing Machinery, 2017, pp. 2245–2262,
isbn: 9781450349468. doi: 10 . 1145 / 3133956 . 3134050  . [Online]. Available: https :
//doi.org/10.1145/3133956.3134050 .

131

https://github.com/armijnhemel/binaryanalysis-ng
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://doi.org/10.1145/1273463.1273490
http://doi.acm.org/10.1145/1273463.1273490
http://doi.acm.org/10.1145/1273463.1273490
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://github.com/rampageX/firmware-mod-kit
https://github.com/rampageX/firmware-mod-kit
https://doi.org/10.1145/3133956.3134050
https://doi.org/10.1145/3133956.3134050
https://doi.org/10.1145/3133956.3134050


[122] S. Thomas, F. Garcia, and T. Chothia, “Humidify: A tool for hidden functionality
detection in firmware,” Jun. 2017, pp. 279–300, isbn: 978-3-319-60875-4. doi: 10 .
1007/978-3-319-60876-1\_13 .

[123] A. Keliris and M. Maniatakos, “Icsref: A framework for automated reverse engineering
of industrial control systems binaries,” in Network and Distributed Systems Security
Symposium, Feb. 2019.

[124] H. Rays. [Online]. Available: https://hex-rays.com/products/ida/ .

[125] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-wide security
testing of real-world embedded systems software,” in 27th USENIX Security Sym-
posium, Baltimore, MD: USENIX Association, Aug. 2018, pp. 309–326, isbn: 978-1-
939133-04-5. [Online]. Available: https://www.usenix.org/conference/usenixsecurity18/
presentation/corteggiani .

[126] M. A. B. Khadra, D. Stoffel, and W. Kunz, “Speculative disassembly of binary
code,” in Proceedings of the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, Pittsburgh, Pennsylvania: ACM, 2016, 16:1–
16:10, isbn: 978-1-4503-4482-1. doi: 10.1145/2968455.2968505  . [Online]. Available:
http://doi.acm.org/10.1145/2968455.2968505 .

[127] Avast Software, RetDec: A retargetable machine-code decompiler, https : / / retdec .
com/ .

[128] Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the integrity of peripherals’
firmware,” in 18th ACM Conference on Computer and Communications Security,
Chicago, Illinois, USA: Association for Computing Machinery, 2011, pp. 3–16, isbn:
9781450309486. doi: 10.1145/2046707.2046711  . [Online]. Available: https://doi.org/
10.1145/2046707.2046711 .

[129] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, Aug. 2011, issn: 0163-5964. doi: 10.1145/2024716.2024718  .
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718 .

[130] Capstone, Capstone Disassembler, Sep. 2019. [Online]. Available: http://www.capstone-
engine.org/ .

[131] A. Costin and J. Zaddach, “Embedded devices security and firmware reverse engineer-
ing,” in black hat USA 2013 Workshop, Las Vegas, NV, USA: blackhat.com, Jul. 2013.
[Online]. Available: https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-
on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-WP.pdf .

132

https://doi.org/10.1007/978-3-319-60876-1\_13
https://doi.org/10.1007/978-3-319-60876-1\_13
https://hex-rays.com/products/ida/
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://doi.org/10.1145/2968455.2968505
http://doi.acm.org/10.1145/2968455.2968505
https://retdec.com/
https://retdec.com/
https://doi.org/10.1145/2046707.2046711
https://doi.org/10.1145/2046707.2046711
https://doi.org/10.1145/2046707.2046711
https://doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-WP.pdf
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-WP.pdf


[132] OWASP, Iotgoat, May 2020. [Online]. Available: https : / / github . com/OWASP/
IoTGoat .

[133] Wireshark, Wireshark, Sep. 2019. [Online]. Available: https://www.wireshark.org/ .

[134] EtherApe, EtherApe, Sep. 2019. [Online]. Available: https://etherape.sourceforge.io/ .

[135] TCPDump, TCPDump, Sep. 2019. [Online]. Available: http://www.tcpdump.org/ .

[136] Netresec, NetworkMiner, Sep. 2019. [Online]. Available: https://www.netresec.com/
?page=NetworkMiner .

[137] Kismet, Kismet, Sep. 2019. [Online]. Available: https://www.kismetwireless.net/ .

[138] Telerik, Fiddler, Sep. 2019. [Online]. Available: https://www.telerik.com/fiddler .

[139] NetWorkPacketCapture, NetWorkPacketCapture, Sep. 2019. [Online]. Available: https:
//github.com/huolizhuminh/NetWorkPacketCapture .

[140] Cisco, Joy, Sep. 2019. [Online]. Available: https://github.com/cisco/joy .

[141] PixelCyber, Thor, Sep. 2019. [Online]. Available: https://github.com/PixelCyber/
Thor .

[142] PcapPlusPlus, PcapPlusPlus, Sep. 2019. [Online]. Available: https ://github.com/
seladb/PcapPlusPlus .

[143] Malcolm, Malcolm, Sep. 2019. [Online]. Available: https ://github.com/idaholab/
Malcolm .

[144] DroidSniff, DroidSniff, Sep. 2019. [Online]. Available: https ://github.com/evozi/
DroidSniff .

[145] S. Vasile, D. Oswald, and T. Chothia, “Breaking all the things—a systematic survey
of firmware extraction techniques for iot devices,” in Smart Card Research and Ad-
vanced Applications, B. Bilgin and J.-B. Fischer, Eds., Cham: Springer International
Publishing, 2019, pp. 171–185, isbn: 978-3-030-15462-2.

[146] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass, A. Francillon, T. Goodspeed,
M. Gupta, and I. Koltsidas, “Implementation and implications of a stealth hard-
drive backdoor,” in Proceedings of the 29th Annual Computer Security Applications
Conference, New Orleans, Louisiana, USA: Association for Computing Machinery,
2013, pp. 279–288, isbn: 9781450320153. doi: 10.1145/2523649.2523661  . [Online].
Available: https://doi.org/10.1145/2523649.2523661 .

133

https://github.com/OWASP/IoTGoat
https://github.com/OWASP/IoTGoat
https://www.wireshark.org/
https://etherape.sourceforge.io/
http://www.tcpdump.org/
https://www.netresec.com/?page=NetworkMiner
https://www.netresec.com/?page=NetworkMiner
https://www.kismetwireless.net/
https://www.telerik.com/fiddler
https://github.com/huolizhuminh/NetWorkPacketCapture
https://github.com/huolizhuminh/NetWorkPacketCapture
https://github.com/cisco/joy
https://github.com/PixelCyber/Thor
https://github.com/PixelCyber/Thor
https://github.com/seladb/PcapPlusPlus
https://github.com/seladb/PcapPlusPlus
https://github.com/idaholab/Malcolm
https://github.com/idaholab/Malcolm
https://github.com/evozi/DroidSniff
https://github.com/evozi/DroidSniff
https://doi.org/10.1145/2523649.2523661
https://doi.org/10.1145/2523649.2523661


[147] FaceDancer, FaceDancer, Apr. 2019. [Online]. Available: https://github.com/usb-
tools/Facedancer .

[148] S. J. Yang, J. H. Choi, K. B. Kim, and T. Chang, “New acquisition method based on
firmware update protocols for android smartphones,” Digital Investigation, vol. Vol-
ume 14, S68–S76, 2015, The Proceedings of the Fifteenth Annual DFRWS Conference,
issn: 1742-2876. doi: https://doi.org/10.1016/j.diin.2015.05.008 . [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287615000535 .

[149] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, Firmware.re, May 2020.
[Online]. Available: http://firmware.re/usenixsec14/ .

[150] firminsight, Firminsight, May 2020. [Online]. Available: https://github.com/ilovepp/
firminsight .

[151] T. Vea, Firmwaredb, May 2020. [Online]. Available: https : / /github . com/kvisle /
firmwaredb .

[152] C. Schultz, Firmware_collection, May 2020. [Online]. Available: https://github.com/
f47h3r/firmware%5C_collection .

[153] Praetorian, The damn vulnerable router firmware project, May 2020. [Online]. Avail-
able: https://github.com/praetorian-code/DVRF .

[154] angr, boyscout, Sep. 2019. [Online]. Available: https://github.com/angr/angr/blob/
master/angr/analyses/boyscout.py .

[155] J. Clemens, “Automatic classification of object code using machine learning,” Digital
Investigation, vol. 14, no. S1, S156–S162, Aug. 2015, issn: 1742-2876. doi: 10.1016/
j.diin.2015.05.007 . [Online]. Available: https://doi.org/10.1016/j.diin.2015.05.007 .

[156] P. De Nicolao, M. Pogliani, M. Polino, M. Carminati, D. Quarta, and S. Zanero,
“Elisa: Eliciting isa of raw binaries for fine-grained code and data separation,” in
Detection of Intrusions and Malware, and Vulnerability Assessment, C. Giuffrida, S.
Bardin, and G. Blanc, Eds., Cham: Springer International Publishing, 2018, pp. 351–
371, isbn: 978-3-319-93411-2.

[157] S. Kairajärvi, A. Costin, and T. Hämäläinen, “Isadetect: Usable automated detec-
tion of cpu architecture and endianness for executable binary files and object code,”
in Tenth ACM Conference on Data and Application Security and Privacy, New Or-
leans, LA, USA: Association for Computing Machinery, 2020, pp. 376–380, isbn:
9781450371070. doi: 10.1145/3374664.3375742  . [Online]. Available: https://doi.org/
10.1145/3374664.3375742 .

134

https://github.com/usb-tools/Facedancer
https://github.com/usb-tools/Facedancer
https://doi.org/https://doi.org/10.1016/j.diin.2015.05.008
http://www.sciencedirect.com/science/article/pii/S1742287615000535
http://firmware.re/usenixsec14/
https://github.com/ilovepp/firminsight
https://github.com/ilovepp/firminsight
https://github.com/kvisle/firmwaredb
https://github.com/kvisle/firmwaredb
https://github.com/f47h3r/firmware%5C_collection
https://github.com/f47h3r/firmware%5C_collection
https://github.com/praetorian-code/DVRF
https://github.com/angr/angr/blob/master/angr/analyses/boyscout.py
https://github.com/angr/angr/blob/master/angr/analyses/boyscout.py
https://doi.org/10.1016/j.diin.2015.05.007
https://doi.org/10.1016/j.diin.2015.05.007
https://doi.org/10.1016/j.diin.2015.05.007
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742


[158] H. Xue, S. Sun, G. Venkataramani, and T. Lan, “Machine learning-based analysis of
program binaries: A comprehensive study,” IEEE Access, vol. Volume 7, pp. 65 889–
65 912, 2019.

[159] R. Zhu, Y.-a. Tan, Q. Zhang, Y. Li, and J. Zheng, “Determining image base of
firmware for arm devices by matching literal pools,” Digital Investigation, vol. Vol-
ume 16, pp. 19–28, 2016, issn: 1742-2876. doi: https ://doi .org/10 .1016/j .diin .
2016.01.002  . [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1742287616000037 .

[160] R. Zhu, B. Zhang, J. Mao, Q. Zhang, and Y.-a. Tan, “A methodology for determin-
ing the image base of arm-based industrial control system firmware,” International
Journal of Critical Infrastructure Protection, vol. Volume 16, pp. 26–35, 2017, issn:
1874-5482. doi: https://doi.org/10.1016/j. ijcip.2016.12.002  . [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1874548216300014 .

[161] angr, girlscout, Sep. 2019. [Online]. Available: https://github.com/angr/angr/blob/
master/angr/analyses/girlscout.py .

[162] PAGalaxyLab, vxhunter, Oct. 2019. [Online]. Available: https://github.com/PAGalaxyLab/
vxhunter .

[163] Leveldown Security, SVD-Loader-Ghidra, Dec. 2019. [Online]. Available: https : / /
github.com/leveldown-security/SVD-Loader-Ghidra .

[164] T. Reed, Subzero, May 2020. [Online]. Available: https ://github . com/theopolis/
subzero .

[165] A. Hemel and S. Coughlan, Binary analysis toolkit, May 2020. [Online]. Available:
http://www.binaryanalysis.org/old/home .

[166] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang, “Dtaint: Detect-
ing the taint-style vulnerability in embedded device firmware,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, Jun.
2018, pp. 430–441. doi: 10.1109/DSN.2018.00052 .

[167] X. Wang, R. Ma, B. Dou, Z. Jian, and H. Chen, “OFFDTAN: A New Approach of
Offline Dynamic Taint Analysis for Binaries,” Security and Communication Networks,
vol. Volume 2018, p. 13, 2018. [Online]. Available: 10.1155/2018/7693861 .

135

https://doi.org/https://doi.org/10.1016/j.diin.2016.01.002
https://doi.org/https://doi.org/10.1016/j.diin.2016.01.002
http://www.sciencedirect.com/science/article/pii/S1742287616000037
http://www.sciencedirect.com/science/article/pii/S1742287616000037
https://doi.org/https://doi.org/10.1016/j.ijcip.2016.12.002
http://www.sciencedirect.com/science/article/pii/S1874548216300014
https://github.com/angr/angr/blob/master/angr/analyses/girlscout.py
https://github.com/angr/angr/blob/master/angr/analyses/girlscout.py
https://github.com/PAGalaxyLab/vxhunter
https://github.com/PAGalaxyLab/vxhunter
https://github.com/leveldown-security/SVD-Loader-Ghidra
https://github.com/leveldown-security/SVD-Loader-Ghidra
https://github.com/theopolis/subzero
https://github.com/theopolis/subzero
http://www.binaryanalysis.org/old/home
https://doi.org/10.1109/DSN.2018.00052
10.1155/2018/7693861


[168] L. Cojocar, J. Zaddach, R. Verdult, H. Bos, A. Francillon, and D. Balzarotti, “Pie:
Parser identification in embedded systems,” in Proceedings of the 31st Annual Com-
puter Security Applications Conference, Los Angeles, CA, USA: Association for Com-
puting Machinery, 2015, pp. 251–260, isbn: 9781450336826. doi: 10.1145/2818000.
2818035 . [Online]. Available: https://doi.org/10.1145/2818000.2818035 .

[169] M. Vasut, Adding new architecture to qemu, Jun. 2017. [Online]. Available: https:
//events17.linuxfoundation.org/sites/events/files/slides/ossj-2017.pdf .

[170] NationalSecurityAgency, Nationalsecurityagency/ghidra. [Online]. Available: https://
github.com/NationalSecurityAgency/ghidra/wiki/Frequently-asked-questions .

[171] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: Cryptographic function iden-
tification in obfuscated binary programs,” in ACM Conference on Computer and
Communications Security, ACM, 2012, pp. 169–182.

[172] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight: Learning to
recognize functions in binary code,” in 23rd USENIX Security Symposium, 2014,
pp. 845–860.

[173] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in binaries with
neural networks,” in 24th USENIX Security Symposium, 2015, pp. 611–626.

[174] E. R. Jacobson, N. Rosenblum, and B. P. Miller, “Labeling library functions in
stripped binaries,” in 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools, ACM, 2011, pp. 1–8.

[175] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping,” in IEEE Symposium on Security and Privacy,
IEEE, 2017, pp. 921–937.

[176] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of obfuscated
binaries,” in 13th USENIX Security Symposium, vol. 13, 2004, pp. 18–18.

[177] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn function type
signatures from binaries,” in 26th USENIX Security Symposium, 2017, pp. 99–116.

[178] R. Qiao and R. Sekar, “Function interface analysis: A principled approach for function
recognition in cots binaries,” in 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, IEEE, 2017, pp. 201–212.

[179] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “Fossil: A resilient and efficient
system for identifying foss functions in malware binaries,” ACM Transactions on
Privacy and Security, vol. 21, no. 2, p. 8, 2018.

136

https://doi.org/10.1145/2818000.2818035
https://doi.org/10.1145/2818000.2818035
https://doi.org/10.1145/2818000.2818035
https://events17.linuxfoundation.org/sites/events/files/slides/ossj-2017.pdf
https://events17.linuxfoundation.org/sites/events/files/slides/ossj-2017.pdf
https://github.com/NationalSecurityAgency/ghidra/wiki/Frequently-asked-questions
https://github.com/NationalSecurityAgency/ghidra/wiki/Frequently-asked-questions


[180] H. Mohanan, P. Bendapudi, A. Kumarasubramanian, R. Jalan, and R. Venkatesan,
Function matching in binaries, US Patent 8,166,466, Apr. 2012.

[181] Y. Liao, R. Cai, G. Zhu, Y. Yin, and K. Li, “Mobilefindr: Function similarity identi-
fication for reversing mobile binaries,” in European Symposium on Research in Com-
puter Security, Springer, 2018, pp. 66–83.

[182] R. Qiao and R. Sekar, “Effective function recovery for cots binaries using interface
verification,” Technical report, Secure Systems Lab, Stony Brook University, Tech.
Rep., 2016.

[183] G. Mittal, D. Zaretsky, G. Memik, and P. Banerjee, “Automatic extraction of function
bodies from software binaries,” in Proceedings of the ASP-DAC 2005. Asia and South
Pacific Design Automation Conference, 2005., IEEE, vol. 2, 2005, pp. 928–931.

[184] Sibyl, Sibyl, Sep. 2019. [Online]. Available: https://github.com/cea-sec/Sibyl .

[185] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program anal-
ysis transformation,” in International Symposium on Code Generation and Optimiza-
tion, 2004, pp. 75–86.

[186] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic bi-
nary instrumentation,” in Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, San Diego, California, USA: As-
sociation for Computing Machinery, 2007, pp. 89–100, isbn: 9781595936332. doi:
10.1145/1250734.1250746  . [Online]. Available: https://doi.org/10.1145/1250734.
1250746 .

[187] T. Dullien and S. Porst, “Reil: A platform-independent intermediate representation
of disassembled code for static code analysis,” Zynamics, 2009. [Online]. Available:
https://static.googleusercontent.com/media/www.zynamics.com/en//downloads/
csw09.pdf .

[188] Craig, Emulating nvram in qemu, Mar. 2012. [Online]. Available: http : / / www .
devttys0.com/2012/03/emulating-nvram-in-qemu/ .

[189] Firmadyne, Firmadyne/libnvram, Aug. 2018. [Online]. Available: https://github.com/
firmadyne/libnvram .

[190] A. Costin, A. Zarras, and A. Francillon, “Towards automated classification of firmware
images and identification of embedded devices,” in ICT Systems Security and Privacy
Protection, S. De Capitani di Vimercati and F. Martinelli, Eds., Cham: Springer
International Publishing, 2017, pp. 233–247, isbn: 978-3-319-58469-0.

137

https://github.com/cea-sec/Sibyl
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://static.googleusercontent.com/media/www.zynamics.com/en//downloads/csw09.pdf
https://static.googleusercontent.com/media/www.zynamics.com/en//downloads/csw09.pdf
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
https://github.com/firmadyne/libnvram
https://github.com/firmadyne/libnvram


[191] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, Canada: ACM, 2018, pp. 2123–2138, isbn: 978-1-4503-5693-0. doi:
10.1145/3243734.3243804 . [Online]. Available: http://doi.acm.org/10.1145/3243734.
3243804 .

[192] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask),” in IEEE Symposium on Security and Privacy, Washington, DC, USA: IEEE
Computer Society, 2010, pp. 317–331, isbn: 978-0-7695-4035-1. doi: 10 .1109/SP.
2010.26 . [Online]. Available: https://doi.org/10.1109/SP.2010.26 .

[193] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” ACM Computing Surveys, vol. 51, no. 3, 50:1–50:39,
May 2018, issn: 0360-0300. doi: 10.1145/3182657 . [Online]. Available: http://doi.
acm.org/10.1145/3182657 .

[194] P. Liu, C. Xiang, X. Wang, B. Xia, Y. Liu, W. Wang, and Q. Yao, “A noc em-
ulation/verification framework,” in Sixth International Conference on Information
Technology: New Generations, IEEE, 2009, pp. 859–864.

[195] Slack, Slack, Sep. 2019. [Online]. Available: https://angr.slack.com .

[196] Comsecuris, GDB Ghidra, Sep. 2019. [Online]. Available: https : / / github . com /
Comsecuris/gdbghidra .

[197] H. Rays, Ida f.l.i.r.t. technology: In-depth. [Online]. Available: https ://www.hex-
rays.com/products/ida/tech/flirt/in_depth/ .

[198] E. Gustafson, Libmatch, Dec. 2020. [Online]. Available: https://github.com/subwire/
libmatch .

[199] J. Koret, Diaphora: A free and open source program diffing tool, 2015. [Online]. Avail-
able: https://github.com/joxeankoret/diaphora .

[200] C. Karamitas and A. Kehagias, “Efficient features for function matching between bi-
nary executables,” in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2018, pp. 335–345. doi: 10.1109/SANER.
2018.8330221 .

[201] C. Percival, “Binary diff/patch utility,” URL: http://www. daemonology. net/bsdiff,
2003.

138

https://doi.org/10.1145/3243734.3243804
http://doi.acm.org/10.1145/3243734.3243804
http://doi.acm.org/10.1145/3243734.3243804
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/3182657
http://doi.acm.org/10.1145/3182657
http://doi.acm.org/10.1145/3182657
https://angr.slack.com
https://github.com/Comsecuris/gdbghidra
https://github.com/Comsecuris/gdbghidra
https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
https://github.com/subwire/libmatch
https://github.com/subwire/libmatch
https://github.com/joxeankoret/diaphora
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/SANER.2018.8330221


[202] J. Heirbaut, Jojodiff - diff utility for binary files, Jun. 2002. [Online]. Available: http:
//jojodiff.sourceforge.net/ .

[203] sisong, HDiffPatch, Sep. 2019. [Online]. Available: https : / / github . com / sisong /
HDiffPatch .

[204] J. P. MacDonald, “Xdelta: Open-source binary diff, differential compression tools,
vcdiff (rfc 3284) delta compression,” http://xdelta. org/,

[205] syscall7, Machine Emulation With Ghidra, Mar. 2021. [Online]. Available: https://
syscall7.com/machine-emulation-with-ghidra/ .

[206] TheRomanXpl0it, ghidra-emu-fun, Mar. 2021. [Online]. Available: https://github.
com/TheRomanXpl0it/ghidra-emu-fun .

[207] ZeroMQ, JeroMQ, Mar. 2021. [Online]. Available: https : / / github . com/ zeromq/
jeromq .

[208] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements, “Challenges
in firmware re-hosting, emulation, and analysis,” ACM Computing Surveys, 2021.

[209] Wind River, Functional safety, Dec. 2020. [Online]. Available: https://www.windriver.
com/functionalsafety .

[210] J. F. Ready, “Vrtx: A real-time operating system for embedded microprocessor appli-
cations,” IEEE Micro, vol. 6, no. 4, pp. 8–17, 1986. doi: 10.1109/MM.1986.304774 .

[211] Command & data-handling systems, Dec. 2020. [Online]. Available: https://mars.
nasa.gov/mro/mission/spacecraft/parts/command/ .

[212] J. Laukkonen, Will bmw’s infotainment solution idrive you up the wall? Feb. 2020.
[Online]. Available: https://www.lifewire.com/examining-the-bmw-idrive-interface-
534742 .

[213] Customer success: Varian medical systems. [Online]. Available: https://www.windriver.
com/customers/customer-success/medical/varian/ .

[214] A. Volosincu, Vxworks: Past and future, Jul. 2018. [Online]. Available: https://blogs.
windriver.com/wind%5C_river%5C_blog/2018/07/vxworks-past-and-future/ .

[215] CVE-2019-12257. Available from MITRE, CVE-ID CVE-2019-12257. Dec. 2019. [On-
line]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12257 .

139

http://jojodiff.sourceforge.net/
http://jojodiff.sourceforge.net/
https://github.com/sisong/HDiffPatch
https://github.com/sisong/HDiffPatch
https://syscall7.com/machine-emulation-with-ghidra/
https://syscall7.com/machine-emulation-with-ghidra/
https://github.com/TheRomanXpl0it/ghidra-emu-fun
https://github.com/TheRomanXpl0it/ghidra-emu-fun
https://github.com/zeromq/jeromq
https://github.com/zeromq/jeromq
https://www.windriver.com/functionalsafety
https://www.windriver.com/functionalsafety
https://doi.org/10.1109/MM.1986.304774
https://mars.nasa.gov/mro/mission/spacecraft/parts/command/
https://mars.nasa.gov/mro/mission/spacecraft/parts/command/
https://www.lifewire.com/examining-the-bmw-idrive-interface-534742
https://www.lifewire.com/examining-the-bmw-idrive-interface-534742
https://www.windriver.com/customers/customer-success/medical/varian/
https://www.windriver.com/customers/customer-success/medical/varian/
https://blogs.windriver.com/wind%5C_river%5C_blog/2018/07/vxworks-past-and-future/
https://blogs.windriver.com/wind%5C_river%5C_blog/2018/07/vxworks-past-and-future/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12257


[216] Wind River, Security vulnerability response information: Tcp/ip network stack (ipnet,
urgent/11), Dec. 2020. [Online]. Available: https://www.windriver.com/security/
announcements/tcp-ip-network-stack-ipnet-urgent11/ .

[217] The 6 levels of vehicle autonomy explained. [Online]. Available: https : / / www .
synopsys.com/automotive/autonomous-driving-levels.html .

[218] NSA, Vxworkssymtab_finder.java, Dec. 2020. [Online]. Available: https : //github .
com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/
Ghidra/Features/GnuDemangler/%20ghidra%5C_scripts/VxWorksSymTab%5C_
Finder.java .

[219] Vxworks network protocol toolkit user’s guide, Wind River, 500 Wind River Way,
Alameda, CA, 94501, Aug. 2002.

[220] Vxworks network programmer’s guide 5.5, Wind River, 500Wind River Way, Alameda,
CA, 94501, Aug. 2002. [Online]. Available: http://www.ing.iac.es/~docs/external/
vxworks.old/Network-Guide-5.5.pdf .

[221] Vxworks kernel programmer’s guide 6.2, Wind River, 500 Wind River Way, Alameda,
CA, 94501, Oct. 2005.

[222] E. Perez, 400plus/iolib.h, Dec. 2020. [Online]. Available: https://github.com/400plus/
400plus/blob/master/vxworks/ioLib.h .

[223] A. Limited, Arm architecture reference manual, English, version Version 5t, ARM,
Jul. 2005, 1138 pp. [Online]. Available: https://developer.arm.com/documentation/
ddi0100/latest/ , July, 2005.

[224] C. Co, Vxworks error codes, Dec. 2014. [Online]. Available: http://blog.lovecoco.net/
168 .

140

https://www.windriver.com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/
https://www.windriver.com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/%20ghidra%5C_scripts/VxWorksSymTab%5C_Finder.java
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/%20ghidra%5C_scripts/VxWorksSymTab%5C_Finder.java
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/%20ghidra%5C_scripts/VxWorksSymTab%5C_Finder.java
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/%20ghidra%5C_scripts/VxWorksSymTab%5C_Finder.java
http://www.ing.iac.es/~docs/external/vxworks.old/Network-Guide-5.5.pdf
http://www.ing.iac.es/~docs/external/vxworks.old/Network-Guide-5.5.pdf
https://github.com/400plus/400plus/blob/master/vxworks/ioLib.h
https://github.com/400plus/400plus/blob/master/vxworks/ioLib.h
https://developer.arm.com/documentation/ddi0100/latest/
https://developer.arm.com/documentation/ddi0100/latest/
http://blog.lovecoco.net/168
http://blog.lovecoco.net/168


VITA

Christopher Wright is a Ph.D. candidate in the School of Electrical and Computer En-

gineering at Purdue University, West Lafayette, Indiana, USA and is advised by Professor

Milind Kulkarni. He obtained his Bachelor’s of Science (BS) in Computer Engineering from

Utah Valley University in 2015. He is a member of the PLCL laboratory at Purdue, is

a member of ACM, IEEE, and Eta Kappa Nu (HKN). During his tenure as a student at

Purdue he has collaborated with and worked at Lawrence Livermore National Laboratories,

Pacific Northwest National Laboratories, Sandia National Laboratories and Facebook. He

is interested in the broad areas of systems research and cyber-security, including emulation,

embedded systems, distributed computing, compilers, and programming languages.

141


	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Motivation
	Thesis Statement
	Systemization of Knowledge
	HQ-Tracer
	PMatch
	GHALdra
	Additional Solutions
	VxWorks Re-Hosting Support Layer

	BACKGROUND
	Analysis and Reverse Engineering
	Emulation
	Evolution of Emulation
	Emulation Bases

	Related Vulnerability Discovery Techniques
	Surveyed Works

	COMPARISON TECHNIQUES
	Emulation Techniques
	Types of Systems
	Fidelity
	Purpose of emulator
	Level of Control
	Classification of Surveyed Works
	Hardware In The Loop
	Instruction Level Execution Fidelity
	Basic Block Level Execution Fidelity
	Module Level Execution Fidelity


	QUESTIONS AND CHALLENGES
	Questions of Purpose and Value
	Key Research Questions
	Challenges
	Pre-Emulation
	Obtaining Firmware
	Instruction Set Architecture
	Determine Base Address
	Finding Entry Point
	Determine Memory Layout
	Identify Processor and/or Board Support Package (BSP)
	Disassembly, Initial Analysis, and CFG Recovery

	Emulation
	Emulation Setup
	Peripherals, External Hardware, and Modeling
	Memory Interactions and Setup
	Configuring Hardware
	Missing Code
	Function Identification and Labeling

	Emulation Execution
	Register Allocation
	Direct Block Chaining
	Self-modifying code and translated code invalidation
	Non-Volatile Memory
	Direct Memory Accesses (DMA)
	Handling Interrupts
	Multi-Threading
	Debugging
	Timing Constraints


	Post Emulation
	Finding Vulnerabilities
	Verification
	Analysis

	Considerations
	Summary

	HQ-TRACER
	HQ-Tracer Options
	HQ-Tracer Implementation
	HQ-Tracer Example

	PMATCH
	Motivation
	Approaches
	Implementation
	Example

	GHALDRA
	Ghidra Emulator
	GHALdra Design
	GHALdra Implementation
	GHALdra Options

	Example
	Interrupts

	ADDITIONAL SOLUTIONS
	VXWORKS
	Background
	Emulation Utility Scale
	VxWorks

	VxWorks Re-Hosting Support Layer

	SUMMARY
	Current State of Things
	Future Work
	Conclusion

	REFERENCES
	VITA

