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ABSTRACT

Aerocapture has been envisioned as a potential orbit insertion technique for planetary

destinations with an atmosphere. Despite not being flight proven technique, many studies

found in the literature and recent mission proposals have employed aerocapture into their re-

spective mission designs. The potential varying levels of trajectory dispersions experienced

during atmospheric flight at each destination drives the need for robust and fuel-efficient

guidance and control solutions. Existing guidance algorithms have relied on tracking pre-

computed reference trajectories, which are computed using significant simplifications to the

flight mechanics, are not generally designed to be fuel-efficient, and require tedious perfor-

mance gain tuning. When simulated with higher levels of uncertainty, the existing algorithms

have been shown to produce large orbit insertion errors. Furthermore, existing flight control

methodologies have been limited in scope to bank angle modulation. While some studies

have introduced new methodologies, such as drag modulation and direct force control, they

haven’t been tested at the same level of rigor as the existing methods. Advances in on-board

computational power are allowing for modern guidance and control solutions, in the form of

numerical predictor-corrector algorithms, to be realized. This dissertation presents an aero-

capture guidance architecture based on a numerical predictor-corrector algorithm. Optimal

control theory is utilized to formulate and numerically obtain fuel-minimizing flight control

laws for lifting and ballistic vehicles. The unified control laws are integrated into a common

guidance algorithm. The architecture is utilized to conduct Monte Carlo simulation studies

of Discovery-class and SmallSat-class aerocapture missions at various planetary destinations.
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1. INTRODUCTION

This chapter surveys the concept of aerocapture from its historical conception to modern day

definition. In particular, a overview of the current technology state of aerocapture guidance,

navigation, and control is presented.

1.1 Aerocapture Overview

Aerocapture is a mission concept envisioned for orbit insertion about planetary bodies

that have a substantial atmosphere. This concept offers the potential to reduce both propul-

sive orbit insertion costs and time-of-flight to orbit by utilizing the atmosphere for capturing

an inbound hyperbolic trajectory. Like other aeroassist techniques including aerobraking

and aerogravity assist, aerocapture utilizes the planetary atmosphere for orbital energy dis-

sipation. During atmospheric flight, the spacecraft is actively guided to ensure sufficient

energy is dissipated and the desired orbit plane is achieved once atmospheric exit is reached.

After exiting the atmosphere, a series of propulsive burns are conducted to raise the orbit’s

periapsis out of the atmosphere, correct errors in orbit’s apoapsis, and adjust the orbital

plane (defined by either wedge angle1
 or inclination). Figure 1.1 provides a visualization of

the aerocapture mission concept.

Figure 1.1. Aerocapture concept of operations

The historical development of aerocapture stems from research in aeroassisted orbital

transfer. One of the earliest pioneering work was that of Howard London, who demonstrated
1↑ Spherical angle between current orbit’s and target orbit’s angular momentum vectors
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in his work the possibility of achieving orbital plane change at a lower cost than a fully propul-

sive maneuver by utilizing aerodynamic forces [1 ]. Much of the literature in aeroassist can

be categorized into three categories: 1) inclination change maneuvers, 2) energy reduction

maneuvers, and 3) planetary flyby applications [2 ]. Aerocapture falls under the second cat-

egory. Following the successes of the Apollo program, the National Aeronautics and Space

Administration (NASA) developed concepts for crewed missions to Mars. Aerocapture, not

to be confused with aerobraking in the early literature, was studied as a potentially enabling

orbit insertion technique. One such study assessed and demonstrated the feasibility of Mar-

tian aerocapture using an Apollo-based vehicle [3 ]. Other studies conducted investigation

utilizing high lift-to-drag (L/D) vehicles and discovered significant improvement in the de-

livery corridor width can be achieved [4 ], [5 ]. At the time, the overwhelming consensus was

that aerocapture can significantly reduce the propellant mass needed for orbit insertion both

at Mars and at other planetary destinations. In the mission design of the 2001 Mars Orbiter,

aerocapture was initially selected as the planned orbit insertion mode. However, the failures

of the Mars Climate Orbiter and Mars Polar Lander in 1999 derailed any further flight im-

plementation of aerocapture. Since then, a more conservative risk-based approach has been

taken by NASA regarding missions that employ atmospheric flight. Once propulsively cap-

tured into orbit, aerobraking has been successfully demonstrated at both Venus and Mars

for lowering orbit apogee by a handful of orbiters [6 ]. Some studies have shown using a

probabilistic risk assessment that aerocapture can have lower computed risk posture than

aerobraking [7 ]. In order to produce larger amounts of ∆V, aerocapture trajectories need to

descend deeper into the atmosphere as compared to aerobraking trajectories. Fortunately,

atmospheric probes deployed at Venus, Mars, Jupiter, and Titan have allowed for a better

understanding of the planetary atmospheres over a wide range of altitudes. Additionally, or-

bital flybys of Venus, Mars, Jupiter, Saturn, Titan, Uranus, and Neptune have also provided

valuable science data regarding the chemical composition of these atmosphere. In all, each

source of data has allowed for improvements in the knowledge of planetary atmosphere and

in turn has helped to reduce the potential risk posture posed by aerocapture.

From these improvement in 2004, NASA conducted a thorough systems engineering anal-

ysis of aerocapture at Venus [8 ], Mars [9 ], Titan [10 ], and Neptune [11 ].The overall goals of

20



these design reference mission (DRM) studies was to develop baseline mission concepts,

assess the feasibility and reliability of aerocapture, and identify areas of technological im-

provement given the current state at the time. Table 1.1 provides a comparison between the

mission designs for each planetary destination. With regards to the orbit insertion perfor-

mance capability at each destination, these studies serve as the current state-of-the-art and

will be subsequently referred to in later sections of this dissertation.

Table 1.1. Comparison of 2004 NASA aerocapture studies
Venus Mars Titan Neptune

Target Orbit Altitude (km x km) 300 x 300 500 x 500 1700 x 1700 3986 x 430,000
Target Orbit Inclination (deg) 90 45 100 153
Vehicle Satellite Sample return vehicle Satellite Satellite
Entry Velocity (km/s) 11.25 7.15 6.5 29
L/D 0.25 0.25 0.25 0.8
Ballistic Coefficient (kg/m2) 138 365 90 895
Entry Mass (kg) 1088 8279 1026 1834
Payload/Entry Mass Fraction 72.5% 85.6% 58.5% 51.7%
Aeroshell Geometry 70° Sphere-Cone 70° Sphere-Cone 70° Sphere-Cone Flat Bottom Ellipsled
GN&C Algorithm HYPAS HYPAS HYPAS HYPAS
Theoretical Corridor Width (deg) 1.55 2.42 3.5 2.27
Enhancing Technologies Guidance algorithm TPS Guidance algorithm None

Strongly Enhancing Technologies TPS None
TPS Guidance and Control algorithm

Atmosphere Modeling Alpha modulation
Atmosphere Modeling

Enabling Technologies None None None TPS

At each destination, aerocapture was shown to be feasible and robust with the given mis-

sion design. For Venus, Mars, and Titan, the NASA studies concluded that heritage blunt-

body sphere-cone aeroshells provide the sufficient control ability. For Neptune, a higher L/D

aeroshell via a slender body ellipsled was determined to be needed. The technological areas

of further investment are categorized as either enhancing, strongly enhancing, or enabling.

Thermal Protection System (TPS) is shown to be enhancing for Mars, strongly enhancing

for Venus, and enabling for Neptune. Since 2004, numerous landers at both Mars and Titan

and recent advancements in TPS technology may make these finding outdated. Due to the

much higher aerodynamic heating environments at both Venus and Neptune, investments in

high-performance TPS materials are warranted. With regards to atmospheric modeling, the

data provided by the Cassini orbiter and Huygens probe since the 2004 studies can serve

to significantly improve the atmospheric knowledge of Titan thereby potentially enhancing

aerocapture performance. Due to the only flight data source from the 1979 flyby of Neptune,

the atmospheric knowledge of Neptune is limited. With regards to guidance and control,

the current methods are generally sufficient for each destination with some destination po-

21



tentially achieving enhanced performance with further improvements. More details on this

specific technology area are explained in the subsequent sections.

Additional complementary studies were conducted to further quantify the benefit of ae-

rocapture for orbit insertion at other planetary destinations and target orbits as compared

to alternatives [12 ]. The results from the study indicate that mission sets of low circular

orbit insertion at Jupiter inside the rings and radiation belt (differing from Galileo’s highly

elliptical orbit insertion), high circular orbit insertion at Saturn for ring observations (dif-

fering from Cassini highly elliptical orbit insertion), elliptical orbit insertion at Uranus for

Titania flybys, and elliptical orbit insertion at Neptune for Triton flybys, cannot be accom-

plished in a cost-effective manner without utilizing aerocapture while missions sets at Venus,

Mars, and Titan can be enhanced by aerocapture through generous increase in payload de-

livered to orbit for the same launch vehicle. In 2016, a panel of aerocapture technologists

conducted a technical assessment of the current state of aerocapture [13 ]. The objectives of

the assessments included identifying the key technology areas needed for future aerocapture

orbital missions and determining if a technology demonstration mission is needed. Many key

finding were produced from the study and can be found in [14 ]. A portion of the findings

relevant to this dissertation are listed as follows. Firstly, no precursor technology demonstra-

tion mission is needed to flight prove aerocapture as the current technology state is ready

for flight implementation at Venus, Mars, and Titan. For Uranus and Neptune, further

technological development in the field of advanced guidance and control methods is needed.

Secondly, trade studies and DRM updates are needed in advance of flight implementation.

Such trade studies may investigate the range of potential aeroshell configurations and flight

control techniques to help better define technological requirements. Thirdly, determining

whether techniques beyond heritage hypersonic guidance and control are needed would be a

beneficial risk-mitigation activity.

22



1.2 State-of-the-Art Overview

The risk and reliability of planetary aerocapture is heavily driven by technology. One of

these technology areas is guidance, navigation, and control (GN&C). Aerocapture consists

of sequence of events that are heavily linked with GN&C [15 ]. On hyperbolic approach, the

vehicle is guided to a desired atmospheric interface point, which is defined at the location

when the vehicle enters the atmosphere. The delivery accuracy to this point is influenced

by the deep space navigation utilized in determining the final trajectory correction maneu-

ver burn before atmospheric flight begins. Once within the sensed atmosphere, the vehicle

guidance actively steers the vehicle by modulating the flight control surfaces such that atmo-

spheric exit is reached on the desired trajectory. To account for unforeseeable atmospheric

perturbations, the vehicle’s strapdown navigation system senses the vehicle’s acceleration

and subsequently determines the appropriate corrections to the onboard trajectory model.

Upon exiting the atmosphere, propulsive correction burns are conducted to raise periapsis

out of the atmosphere and correct for any remaining trajectory targeting errors. This state-

of-the-art assessment will primarily address the atmospheric flight phase of aerocapture.

1.2.1 Navigation Methods

Aerocapture navigation consists of the set of instruments that provide in-situ measure-

ments of the vehicle’s state, position, and velocity. The navigation can be broken up into

two phases, approach navigation and in-flight navigation.

Approach Navigation

Approach navigation pertains to vehicle orbital determination that occurs before atmo-

spheric interface while in the central body’s sphere-of-influence. The vehicle travels on a

hyperbolic approach trajectory that targets atmospheric entry at the interface point, com-

monly defined by a vector in the B-plane [16 ]. Figure 1.2 provides an example graphical

representation of the B-plane targeting for a Titan aerocapture trajectory.
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Figure 1.2. Sample B-Plane targeting visual. Image taken from Reference [16 ]

Trajectory correction maneuvers are conducted prior to the interface point. Using Earth-

based radiometric and/or in-orbit optical data, estimates of the vehicle’s position and velocity

can be obtained. The combination of orbit determination and maneuver execution errors

define the delivery errors at entry interface. Figure 1.3 provides a sample of such delivery

errors mapped to the entry interface for entry flight path angle (EFPA) and inertial entry

velocity.

 

Figure 1.3. Sample entry state dispersion distribution for Titan. Image taken
from Reference [16 ]

The resulting delivery errors can significantly impact the subsequent aerocapture tra-

jectory. The impact of the errors are typically assessed using dispersions in Monte Carlo

simulations. In particular, the impact of EFPA errors is commonly studied in aerocapture
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and EDL literature since it generally has the largest variance and effect on the entry trajec-

tory. Table 1.2 provides a comparison between EDL and aerocapture entry flight path angle

errors found in the literature.

Table 1.2. Comparison of entry flight path angle delivery accuracy
Mission Entry Radius/Altitude Nominal EFPA 3σ Error Source

EDL

Pathfinder 3522.2 km -14.2° ±1° [17 ]
Phoenix 3522.2 km -13° ±0.2° [18 ]

MER 3522.2 km -11.5° ±0.2° [19 ]
MSL 3522.2 km -15.2° ±0.11° [20 ]

InSight 3522.2 km -12° ±0.21° [21 ]
Galileo 450 km* -8.6° ±0.6° [22 ]

Cassini/Huygens 4174.58 km -63° ±3.0° [23 ]

Aerocapture
Venus 6201.8 km -6.12° ±0.4° [8 ]
Mars 3522.2 km -12.731° ±0.35° [9 ]
Titan 3574.7 km -36.03° ±0.6° [10 ]

Neptune 1000 km* -12.818° ±0.51° [11 ]
* Altitude defined relative to 1 bar atmospheric pressure

Many times, the delivery accuracy requirements are formulated as a function of EFPA.

From the statistical distribution of EFPA, the ±3σ variation about the nominal value is

reported. The aerocapture vehicle should be designed with sufficient control authority to

mitigate this delivery error. As a first-order metric, the vehicle’s theoretical entry flight path

angle corridor width is computed and compared against the delivery error. The corridor

width is defined by range of flight path angles about the nominal that allows for the target

apoapsis altitude to be reached given the vehicle’s control capability. Figure 1.4 provides a

sample corridor width contours computed for a Neptune aerocapture mission set for differing

vehicle L/D and entry velocities. As an example, given a delivery error spread of 1.02° found

in Table 1.2 , the contours in Figure 1.4 might suggest that low entry velocities with vehicles

with low L/D may not have enough control capability to overcome the anticipated delivery

dispersion.
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Figure 1.4. Sample entry flight path angle corridor width contours (in de-
grees). Image taken from Reference [24 ]

In-Flight Navigation

In-flight navigation pertains to estimates of the vehicle’s state throughout the aerocapture

sequence. A strapdown inertial measurement unit (IMU) can provide measurements of the

vehicle’s sensed translational and rotational accelerations. Integration of these measurements

can provide estimates for the vehicle’s attitude, position, and velocity along the aerocapture

trajectory. Furthermore, the addition of measurements from flush air data systems (FADS),

(e.g. pressure ports that measure the aeroshell pressure distribution during flight), allows for

on-board atmospheric estimates to be conducted and be utilized in on-board trajectory model

updates [25 ]. Effectively, the in-flight navigation system provides the closed-loop feedback

to the guidance algorithm. Feedback errors are driven by measurement error. Because of

the need for sensor specifications, most aerocapture guidance studies have assumed perfect

state knowledge for simulating in-flight navigation.

26



1.2.2 Flight Control Methods

Aerocapture flight control consists of the actuators that influence the vehicle’s motion

during atmospheric flight. This is accomplished by influencing the aerodynamic forces gener-

ated by the vehicle, which include lift, ~L, drag, ~D, and side-force, ~Q, as shown in Figure 1.5 .

ො𝑥𝑏

𝑉∞

+𝛽

+𝛼

+𝜎
ො𝑦𝑏

Ƹ𝑧𝑏

𝐿

𝑄

𝐷

Figure 1.5. Aerodynamic forces produced during aerocapture

The different types of flight control can be classified as either lifting or ballistic flight

control. In lifting flight control, the vehicle’s lift vector is utilized to influence the motion

of the vehicle. This can be achieved through rotation of the vector or direct control over

its magnitude. Lifting flight control can also control the lateral motion of the vehicle. This

can be accomplished by inducing a lateral component of the lift vector through rotation

or by generating aerodynamic side-force. The two types of lifting flight control studied in

literature include bank angle modulation and direct force control. In ballistic flight control,

the vehicle’s drag vector is primarily used to control the orbital energy (e.g. periapsis and

apoapsis altitudes). This is primarily achieved through control over the vehicle’s ballistic

coefficient. The two types of ballistic flight control studied in literature include staged

jettison drag modulation and continuously-variable drag modulation.
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Bank Angle Modulation

Bank angle modulation (BAM) utilizes bank angle, σ, as the primary flight control. As

shown in Figure 1.5 , σ is the clock angle of rotation of the lift vector about the free-stream

velocity vector, ~V∞. Full lift vector up orientation arises at 0° (12 o’clock) while full lift

vector down orientation arises at 180° (6 o’clock). The rotation of the lift vector about

these two orientations allows for lateral motion about the velocity vector to be induced. For

aerocapture, BAM generates coupled downrange and crossrange motion where downrange

motion is utilized for handling the orbital energy while crossrange motion is utilized for

handling the orbit plane. The BAM aerocapture concept of operations is shown in Figure 1.6 .

Space

Atmosphere

Planet

Hyperbolic
Atmospheric 
Entry

1

2

Begin Active 
Guidance

End Active 
Guidance

3 Atmospheric Exit 
on Elliptical 
Trajectory

4

Modulate bank angle magnitude to target desired orbit
0° ≤ 𝜎 ≤ 180°

Conduct bank reversals (sign) to manage orbit plane
𝜎(𝑡) = 𝑠𝑔𝑛 𝜎 𝜎

Bank angle steers the lift 
vector (clock angle)

Figure 1.6. Bank angle modulated aerocapture concept of operations

The guidance determines both the magnitude, |σ|, of the bank angle based upon achieving

the desired orbital energy and its corresponding sign, sgn(σ), for management of the orbit

plane. Commonly, the sign is computed from separate tuned lateral logic module in the

guidance algorithm.

Because of the dependence on the lift vector, BAM can only be applied to a lifting-body.

Typically, the vehicle is configured at a constant non-zero L/D by trimming the angle of

attack. The L/D and the imposed clock-angle limits on σ determine aero-maneuverability

of the vehicle. In EDL and aeroassist literature, BAM is the most commonly studied flight
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control. In addition, BAM has been implemented in numerous EDL missions. Portions of the

Apollo entry guidance were formulated utilizing bank angle as the steering mechanism [26 ].

Mars Science Laboratory (MSL) utilized bank angle commands for compensating trajectory

dispersions during hypersonic entry at Mars [27 ]. The Mars 2020 mission utilized a MSL-

derived bank angle guidance [21 ].

Direct Force Control

Direct force control (DFC) is a proposed and promising flight control methodology. It

utilizes the combination of angle of attack, α, and side-slip angle, β, as the primary flight

controls. This independent aerodynamic angle modulation can be accomplished propulsively

using thrusters, aerodynamically using flaps or other external actuators, or mechanically

using center of gravity offsets. As shown in Figure 1.5 , α and β orient the free-stream velocity

vector with respect to the vehicle’s principal body axes. This enables full decomposition of

horizontal, side, and vertical motion with respect to these axes. The concept of operation of

DFC aerocapture is shown in Figure 1.7 .
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Figure 1.7. Direct force control aerocapture concept of operations

For aerocapture, DFC decouples the downrange and crossrange motion. Angle of attack

is utilized for handling the orbital energy while side-slip angle is utilized for handling the orbit
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plane. Like BAM, DFC is primarily applicable to lifting bodies. However, the modulation

of angle of attack enables DFC higher control authority over the vehicle’s L/D. The overall

performance of DFC is linked to the vehicle’s aerodynamics and control actuator limits on

α and β.

Despite the potential benefits of an decoupled flight control strategy, there is limited

literature on DFC for aerocapture applications. Some early studies investigated hybrid bank

and angle of attack flight control. In this configuration, angle of attack is utilized to modify

the vehicle’s L/D and bank angle provides the crossrange motion. Angle of attack modulation

was integrated into the U.S. Space Shuttle bank-based re-entry guidance for aeroheating

regulation and short-period trajectory reference tracking [28 ]. Lafleur et al., demonstrated

the potential benefit of adding angle of attack modulation to an existing Mars bank angle

entry-to-terminal state guidance for achieving maximum altitude at a given termination

Mach number [29 ]. Jits et al., demonstrated the validity of a blended angle of attack and

bank angle aerocapture flight control methodology for Mars aerocapture [30 ] and thermal

protection system design for Neptune aerocapture [31 ]. Starr et al., discovered reduced

aerocapture risk and propellant consumption associated with the introduction of small angle

of attack modulation capability to existing Neptune bank angle guidance [32 ]. In these

studies, it was discovered that performance gains can be achieved through introduction of

angle of attack modulation. More recently, DFC has seen some developments in EDL and

aerocapture applications. Cianciolo et al, investigated the application of DFC for precision-

landing of Mars human-class payloads and demonstrated reductions in the landing ellipse

error can be achieved [33 ]. Matz et al., developed DFC flight control laws for application on

Mars aerocapture mission sets [34 ]. Deshmukh et al., demonstrated that DFC can enable

Neptune aerocapture using blunt body aeroshells [35 ].

Achieving control over angle of attack and side-slip angle have also been considered in

the literature. Korzun et. al, investigated the effectiveness of mechanically-deployed trim

tabs on blunt bodies for controlling the hypersonic angle of attack during flight [36 ]. This

trim tab design was considered for implementation on MSL during EDL [37 ]. The recent

Pterodactyl project at NASA aims at augmenting the current capability of the Adaptive

Deployable Entry and Placement Technology (ADEPT) vehicle platform to achieve DFC
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flight control. The project investigated the mechanical design trade space between achieving

DFC flight control with either flaps, center of mass offsets, or RCS thrusters [38 ]. The study

concluded that flaps and RCS thrusters provide promising control system capability without

much compromise to vehicle mass [39 ]. The Hypersonic Inflatable Aerodynamic Decelerator

(HIAD) vehicle platform has also seen recent analysis on achieving DFC flight control. As

part of the Mars Entry, Descent, and Landing Architecture Study, DFC flight control using

aerodynamic flap and morphing shape designs was shown to be mechanically feasible [40 ].

Drag Modulation

Drag Modulation (DM) is a recently studied flight control stratergy for aerocapture. The

principal performance metric of DM is the vehicle’s ballistic coefficient, BC, which is defined

in Equation (1.1 ) where m is the vehicle mass, CD is the vehicle coefficient of drag, and Aref
is the vehicle aerodynamic reference area. Ballistic coefficient is commonly defined as the

ratio of the inertial to drag forces.

BC = m

CDAref
(1.1)

An increase in BC implies either an increase in the influence of the inertial forces or a

decrease in the influence of the drag forces. The converse holds for a decrease in BC. In

particular, the drag force influences the rate of orbital energy depletion via the velocity vector

during atmospheric flight. Assuming no mass change, BC can be controlled though changes

in CD and/or Aref to allow for control over the downrange performance of the trajectory.

Consequently, DM on its own cannot actively orient the aerodynamic force vectors to regulate

crossrange motion. Despite the potential limitation in aero-maneuverability, the potential

simplicity of DM allows for application on non-lifting vehicles. Aerobraking orbiters at Venus

and Mars utilized a form of DM via solar panels during atmospheric flight for reducing

their apoapsis altitudes. With regards to aerocapture applications, DM can be potentially

utilized to augment the aeroshell geometry utilized during flight. Recent flight tests of HIAD

[41 ] and ADEPT [42 ] have demonstrated the feasibility of utilizing deployable aeroshell by
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either inflation or mechanical deployment, respectively. Consequently, much of the DM flight

control literature has utilized HIAD or ADEPT aeroshell platforms.

Two potential DM flight control techniques have be studied in the literature: staged

jettison (DMSJ) and continuously-variable (DMCV). DMSJ is a flight control strategy where

discrete control over the aerocapture trajectory arises from jettison(s) of a single or multiple

large area drag skirt(s). Figure 1.8 depicts the concept of operations of DMSJ for a single

drag skirt but the description can be generally extended to multi-staged jettisons.
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Figure 1.8. Staged Jettison drag modulated aerocapture concept of operations

Before the jettison time, the vehicle is configured with a large drag skirt that corresponds

to the lower ballistic coefficient. The guidance algorithm determines jettison time such that

the targeted orbit is met at atmospheric exit. At the jettison time, the vehicle jettisons

the large drag skirt and flies with the lower reference area that corresponds to the larger

ballistic coefficient. Despite being simplistic, jettison systems are potentially vulnerable to

dispersions as no control authority is left after the last jettison to correct for further trajectory

dispersions. On the other hand, DMCV provides continuous flight control throughout the

trajectory. As shown in Figure 1.9 , CV systems have the capability of modulating the

ballistic coefficient to any value within a prescribed control bound. The CV system may

expand/contract the aeroshell geometry, similar to opening and closing an umbrella, by
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mechanical actuation to achieve the necessary BC determined by the guidance algorithm

that achieves the targeted orbit at atmospheric exit. This system produces the highest

control authority out of all the DM concepts but is more mechanically complex due to the

required mechanical actuation capability. Simulation results from ADEPT show that CV

systems utilizing a mechanically deployable and retractable aeroshell may be feasible [43 ].
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Figure 1.9. Continuously variable drag modulated aerocapture concept of operations

DM flight control has been recently studied for aerocapture applications. Some of the

earliest studies investigated the application of an inflatable hypersonic decelerator known as

a ballute. The large drag area produced allowed for the potential to achieve the necessary ∆V

dissipation while achieving lower aerodynamic heating. Due to this potential performance

advantage, some studies have proposed the application of ballute aerocapture at Neptune

where the ballute is jettisoned in a DMSJ manner to provide the sufficient orbit insertion

capability [44 ], [45 ]. Putnam et al., identified both DMSJ and DMCV to be viable at Mars

and Titan while noting that improvements in thermal protection system are needed for

application at Venus [46 ]. To mitigate the potential risk associated with single-stage DMSJ,

Roelke et. al, investigated the application of multi-staged DMSJ and showed improvement

in orbit insertion performance can be achieved [47 ]. Werner et al., formulated a SmallSat-

based DMSJ vehicle for aerocapture application at Earth and Mars [48 ]. Similarly, Austin
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el al., has formulated a SmallSat-based DMSJ vehicle using a trailing-ADEPT and high

performance flexible TPS for aerocapture at Venus [49 ]. Despite being identified by Putnam

et al. as the highest performing DM flight controls, DMCV has not been widely addressed

in the literature.

1.2.3 Guidance

The objective of the aerocapture guidance is to steer the vehicle from atmospheric entry

to exit such that the vehicle’s trajectory at atmospheric exit matches the targeted apoapsis

altitude. The vehicle’s flight computer runs the guidance algorithm at a prescribed frequency,

typically between 0.1-1 Hz with variations depending on the flight control and planetary

destination. The guidance is driven by the flight control law, which must be closed-loop due

to the presence of in-flight trajectory dispersions. Typically, a feedback controller is designed

where trajectory estimations are derived from in-flight navigation data and are used to

update the on-board trajectory model each guidance cycle. Furthermore, the guidance must

be designed to be both robust to additional dispersions, such as delivery state errors, as well

as be computationally efficient due to the potentially limited on-board computational power.

Overall, the performance and reliability of aerocapture is driven by the designed guidance

algorithm. As a result, much emphasis has been placed on guidance algorithms in literature.

The guidance strategies studied in literature can be categorized into three methodologies:

1) Reference-based tracking, 2) Analytical Predictor-Corrector, and 3) Numerical Predictor-

Corrector.

Reference-Based Tracking

Reference-based tracking (RBT) guidance algorithms rely on the principle of having a

pre-computed on-board nominal flight profile. To mitigate trajectory dispersions from the

nominal profile, the RBT guidance commands trajectory corrections to steer back on pro-

file. Overall, the accuracy and robustness of the strategy depends on the designed nominal

profile. The Apollo capsules utilized an RBT guidance for Earth skip-entry [50 ]. The ear-

liest aerocapture guidance designs utilized RBT. In support of the Orbital Transfer Vehicle
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employing aeroassist techniques, an adaptive RBT guidance logic modeled after Apollo skip-

entry was developed in 1983 [51 ]. In support of the Mars 2001 Orbiter, an aerocapture

terminal point guidance was investigated in 1998 [52 ]. RBT guidance algorithms utilize a

perturbation feedback controller that aims to bring the perturbed trajectory back to the

nominal profile. Equation 1.2 provides a sample update equation for bank angle used by

RBT algorithms. The controller works on feedback terms relating to altitude rate, ḣ, and/or

drag acceleration, D. The feedback terms have gains associated to them, Gd and Gh, that

must be performance-tuned to the specific mission profile. In general, the laborious gain

tuning and difficulty in selection of a nominal profile for obtaining values such as σref , Dref ,

and ḣref , limits the guidance modularity and robustness of RBT algorithms.

cos(σcmd) = cos(σref ) +Gd(D −Dref ) −Gh(ḣ− ḣref ) (1.2)

Analytical Predictor-Corrector

Predictor-Corrector algorithms utilized in aerocapture guidance are a simplistic control

optimization routine. Utilizing a constant univariate control variable, the predictor predicts

the trajectory from the current vehicle location to atmospheric exit by utilizing the atmo-

spheric flight equations of motion. At atmospheric exit the objective function, e.g. apoapsis

altitude, and other performance metrics are computed. The corrector utilizes optimization

techniques, including unconstrained and constrained methods, to correct the control variable

until the objective function is minimized and/or orbit insertion constraints are satisfied. For

the case of analytical predictor-correctors (APC), analytical solutions to the equations of

motion are utilized by the predictor. For example, lifting bodies may utilize solutions ob-

tained from equilibrium glide [53 ] and ballistic bodies may utilize the Allen-Eggers solutions

[54 ]. In each formulation of analytical solutions, many fundamental assumptions, such as

small flight path angle, uncoupled longitudinal and lateral dynamics, and exponential atmo-

spheric density model, are made to simplify the highly non-linear and coupled atmospheric

flight differential equations. Although analytical expressions are ideally sought and allow for

significant reduction in computational complexity, the accuracy of assumptions utilized in
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the aerocapture flight regime may limit the accuracy and performance of the APC guidance

strategies. A variety of APC algorithms have been studied in literature. A hybrid RBT and

APC algorithm, known as the Analytic Drag Aerocapture Guidance (ADAC), was proposed

by Cerimele and Gamble in 1985 [55 ]. Successful proof-of-concept demonstration of ADAC

and performance benefit over RBT algorithms enabled its proposed application on the 2001

Mars Surveyor Program [56 ]. ADAC was later renamed the Hybrid Predictor-Corrector

Aerocapture Scheme (HYPAS) and over time has been extensively applied in numerical sim-

ulations at numerous aerocapture planetary destinations [57 ]. HYPAS was utilized as the

guidance algorithm for all the 2004 NASA aerocapture studies. More detailed performance

analysis of HYPAS was conducted at Titan [58 ] and Neptune [59 ]. Due to its rigorous testing

at numerous planetary destinations, HYPAS can be though of as the current state-of-the-

art guidance algorithm for aerocapture. A visual representation of the phases of HYPAS is

shown in Figure 1.10 . The first phase consists of the capture phase where the bank angle is

commanded to achieve equilibrium glide conditions. Once a specified velocity is reached, the

second (exit) phase begins where the bank angle is adjusted assuming a constant altitude to

analytically compute the necessary exit velocity that achieves the desired apoapsis. For this

phase, a RBT solution is utilized to update the bank commands.
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Figure 1.10. HYPAS guidance concept of operations. Image taken from Reference [10 ]

Numerical Predictor-Corrector

Unlike an APC, a numerical predictor-corrector (NPC) fully integrates the governing

non-linear differential equations. This allows for the highest level of accuracy in trajectory

prediction and correction at the price of computational cost and convergence guarantees. The

increasing advancements in space-rated flight computer computational power may enable the

applicability of on-board NPC algorithms. For the Aeroassist Flight Experiment in 1988,

Gamble et al., proposed the utilization of an NPC for aerocapture guidance [60 ]. In 1992,

Braun and Powell designed an NPC guidance algorithm for Mars aerocapture. Their 3DOF

BAM guidance algorithm enabled robust and accurate apoapsis targeting and orbit plane

control as well as incorporated a modest load relief logic [61 ]. The same algorithm was

investigated in 6DOF and demonstrated that the addition of vehicle dynamics does not

impact mission feasibility in the presence of atmospheric density uncertainties and vehicle

aerodynamic mispredictions [62 ]. Furthermore, Powell applied the designed NPC guidance

algorithm to the 2001 Mars Surveyor Program and demonstrated its applicability for both
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3DOF and 6DOF Monte Carlo simulations [63 ]. The recently designed Fully Numerical

Predictor Aerocapture Guidance (FNPAG) demonstrated predictive path handling for Earth

aerocapture applications [64 ] and human-scale vehicle Mars aerocapture [65 ].

Trajectory optimization forms the foundation of NPC algorithms. The optimization

problem can be formulated as the desire to exit the atmosphere on the targeted orbit while

not violating any structural or aerothermal limits. Trajectory path constraints on g-loading,

convective heating, and integrated heat load are rarely enforced due to their high variability

caused by a stochastic and potentially unknown planetary atmosphere. Rather, the tra-

jectory results from numerical simulations are utilized for formulating thermal protection

system and structural requirements. Almost every designed NPC algorithm in literature

seeks the control input(s) that minimizes the apoapsis orbit insertion error and regulates the

orbit plane error. A critical drawback to this problem formulation is the lack of consideration

of the periapsis raise maneuver cost. Aerocapture requires a propulsive periapsis raise burn

at minimum, which can be potentially expensive depending on the target orbit and planetary

destination. A potential solution to this limitation is to formulate the trajectory optimiza-

tion in terms of minimizing the two-burn combination of the periapsis raise and apoapsis

correction maneuvers. This formulation still preserves the apoapsis targeting as zero apoap-

sis error constitutes zero apoapsis correction maneuver cost. This new optimal aerocapture

problem formulation for NPC guidance has been investigated primarily for BAM. Miele et

al., investigated the optimal trajectories for the Aeroassited Flight Experiment and discov-

ered through simulation a two-subarc bang-bang bank angle control law provides the ∆V

minimal orbit insertion trajectory [66 ]. This work was further expanded to investigate simi-

lar fuel optimal trajectories but with the addition of angle of attack. Miele et al., introduced

a decomposition technique that separates the longitudinal motion control to angle of attack

and lateral motion to bank angle and shows numerically under certain underlying assump-

tions the optimal control law is constant for each flight control [67 ]. Lafleur et al., presented

the formulation of a two-burn ∆V-minimization mode utilizing a constant bank angle input

in the PreGuid+A NPC guidance algorithm [68 ]. Lu et al., investigated the optimal aero-

capture problem utilizing optimal control theory and mathematically demonstrated that the

optimal flight control law for BAM is bang-bang. A two-phase NPC guidance algorithm was
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formulated and was demonstrated numerically to provide a significant propellant savings

over the PreGuid+A NPC guidance algorithm [69 ]. This last work lays the foundations for

the research objectives and approach of the proposed investigation described in the next

section.

1.2.4 Limitation of the Approaches

The current methods for aerocapture GN&C can be thought of to be sufficient for aero-

capture. As shown in Table 1.1 , Mars is identified where current navigation methods, HYPAS

guidance algorithm, and bank angle modulation flight control don’t need further technologi-

cal investments. For Venus, Reference [8 ] states that “improvements in the guidance system

to further vehicle performance robustness to accommodate the small atmospheric scale height

at Venus was identified as an enhancing technology”. For Titan, Reference [10 ] noted that

“existing guidance algorithms have been demonstrated to provide acceptable performance,

improvements could provide increase robustness”. At Neptune, improvements in guidance al-

gorithms and α modulation are identified as a strongly enhancing technologies. Reference [11 ]

noted for both existing guidance algorithms that they “have been demonstrated to provide

adequate performance. However, improvements are possible to improve performance” as well

as noted for α modulation that it “reduces the dispersions in apoapsis, provides additional

and more rapid response to density perturbations, and provides additional margin for trim

angle of attack uncertainties”. A common theme from the excerpts is the need for the guid-

ance algorithm to be robust to potentially high levels of uncertainty. Due to the number of

missions to Mars, Mars may have much lower set of uncertainties than Neptune. Likewise,

the planetary atmospheres of each planet are inherently different thus making it important

for aerocapture guidance algorithm to be modular to these differences. Rather than utilizing

assumptions to the fundamental equations of motion like that of HYPAS, fully integrating

these equations in an NPC-manner may provide to be a better choice.

The design of aerocapture GN&C is very much control-specific. BAM is a commonly used

lifting flight control methodology. From the previous paragraph, modulating angle of attack

was identified as having the capability improve aerocapture performance and robustness.
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However, limited analysis has further investigated this flight control in the form of DFC.

Likewise, drag modulated aerocapture has mostly been studied in the form of staged-jettison

yet continuously-variable, with its potential robustness advantages, has lacked much further

analysis. Consequently, the analysis on advanced flight control techniques of DFC and

DMCV may lead to improvements in both aerocapture performance and robustness. In

order to assess such a benefit, a common architecture must be developed. However, much

of the literature has been focused on independent developments of GN&C technology. This

makes it difficult to conduct qualitative and quantitative comparisons between different flight

control methodologies on the same playing-field.

Despite the potential advantage of NPC algorithms over the current state-of-the-art,

many of the NPC algorithms found in the literature pose trajectory optimization in the form

of apoapsis targeting. This leaves the periapsis raise maneuver unchecked thereby leading

to trajectories that potentially have higher ∆V. Some authors have reformulated the NPC

algorithms to be ∆V minimizing but have not formulated such flight control laws for DFC

and drag modulation nor have assessed this benefit at different planetary destinations. This

thesis will provide a framework to addressing these current limitations to aerocapture GN&C

technology.

1.3 Contributions of This Dissertation

The primary contribution of this dissertation is the development of a modular aerocapture

guidance architecture that encompasses optimal control theory and NPC algorithm to enable

trade studies of aerocapture design reference missions.

1.3.1 Development of ∆V-Minimizing aerocapture flight control laws

This dissertation develops ∆V-minimizing flight-control laws for utilization in the NPC

guidance architecture. The optimal aerocapture problem is formulated to ascertain the

flight control laws for DM and DFC that minimize the in-plane two-burn ∆V cost. A similar

problem has been formulated previously for BAM by Lu et al. [69 ] and will serve as the

primary reference for the problem formulation. However, the work by Lu et al. utilizes
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many simplifying assumptions, including the simplification of the flight dynamics, that are

not appropriate for the generalization of aerocapture guidance. Furthermore, the work by

Lu et al. does not fully solve the optimal aerocapture problem. In this dissertation, the full

optimal aerocapture problem is formulated utilizing optimal control theory. A well-defined

two-point boundary value problem is formulated with the necessary algebraic expressions for

the state and co-state dynamics defined along with the optimal flight control law. Numerical

solutions to the optimal aerocapture problem for each flight control are computed. The

results are used in comparison to NPC-based solutions to determine its level of performance

and computational cost.

1.3.2 Formulation of a unified NPC guidance architecture

The similar flight control laws for BAM, DFC, and DM, enables a generalized numerical

predictor-corrector algorithm to be formulated. Unlike existing works that have developed

individual flight control algorithms, the algorithm in this work is developed to allow for

seamless simulation of aerocapture trajectories using different flight control laws under a

single common framework. The algorithm is integrated into a closed-loop guidance architec-

ture that allows for 3DOF aerocapture GN&C performance and robustness assessment in a

Monte Carlo environment. Having a common framework is essential for enabling controlled

Monte Carlo experiments where the same sets of dispersions and guidance routine can be

assessed on each candidate vehicle design.

1.3.3 Systems Analysis of Aerocapture design reference missions

The intended consequence of designing a modular aerocapture guidance architecture is

the capability to perform mission trade studies without the reliance on multiple indepen-

dently designed guidance algorithms. The modularity enables various vehicle payloads, in-

cluding satellite and SmallSats, vehicle designs, including rigid and morphable aeroshells,

flight controls, and planetary destinations to be simulated in a 3DOF environment. A se-

ries of Monte Carlo experiments are conducted to quantify each mission design robustness

and orbit insertion performance to varying levels of prescribed trajectory dispersions. Such
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experiments include the application of elevated atmospheric density dispersions and deliv-

ery state errors. The results from the trade studies will help further define technological

requirements need in preparation for future aerocapture flight projects.

1.3.4 Dissertation Outline

Chapter 1 has provided the motivation and literature review for the current methods of

aerocapture GN&C. Chapter 2 highlights the theory and background of formulation of ∆V-

minimizing aerocapture flight control laws. Chapter 3 formulates the modular NPC guidance

architecture. Chapter 4 documents the numerous aerocapture mission studies conducted

using the architecture. Chapter 5 summarizes significant results and suggests directions for

future work.
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2. THEORY AND BACKGROUND

This chapter highlights the theory and background of formulation of fuel-minimizing aero-

capture flight control laws.

2.1 Atmospheric Flight Mechanics

The equations of motion for atmospheric flight are important differential equations in

spaceflight mechanics. They define the vehicle’s flight dynamics in the presence of atmo-

spheric and gravitational forces. Such forces are important in aerocapture GN&C with

regards to understanding how each flight control affects the vehicle’s trajectory as well as

understanding the stability of the vehicle. For non-thrusting spacecraft, the central body’s

gravity and atmosphere are the two primary external forces acting on the vehicle. The planet

itself can be oblate leading to non-uniform gravitational acceleration, rotates about its axis

of rotation at a prescribed angular rate, and can have a unique atmospheric profile. There-

fore to achieve mission success, it is vital that the equations of motion for atmospheric flight

be derived and understood in the context of the mission application.

2.1.1 Derivation of kinematic equations of motion

The kinematic equations of motion define the point-mass evolution of the spacecraft’s

position and velocity. These 3DOF differential equations have been thoroughly studied in

the literature [53 ], [66 ], [67 ], [70 ]. However, the existing derivations have all utilized a

Newtonian dynamics approach: F=ma. Such an approach requires proper formulation of

coordinate frames, including an inertial frame, coordinate transformations, and expressions

for time derivatives of non-inertial vectors. As a result, the Newtonian-based derivation

can become cumbersome and tedious, especially when higher-order dynamical models are

introduced. The objective of this derivation is to utilize Lagrange’s equations to derive

the same equations of motion as found in literature while demonstrating its elegance in

deriving further expansions to the equations, including introduction of planetary oblateness

and aerodynamic side-force. As a point of reference, this derivation is validated against
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the existing Newtonian-based derivation found in Hypersonic and Planetary Entry Flight

Mechanics by Vinh, Busemann, and Culp [70 ].

Problem Formulation

Figure 2.1 illustrates the vehicle motion during atmospheric flight in a spherical rotating

planet. Let the inertial frame be defined by the planet-centered planet-fixed Basis I: ( î ĵ k̂ )

where k̂ is aligned with the planet’s rotational axis, î points in the vernal equinox direction

and ĵ is aligned with the planet’s equatorial plane. The planet rotates about the inertial

frame along the rotational axis at a constant rate of ω. Let the planet-relative frame be

defined by the planet-centered rotating Basis P: ( x̂ ŷ ẑ ) as shown in Figure 2.1 . It is assumed

that at time t = 0 the inertial and planet-relative frames are aligned. Basis P is important

as the equations of motion are derived with respect to it. The planet-relative position vector

~rR and velocity vector ~VR are shown in Figure 2.1 . These two kinematic vectors can be

defined by a suite of six state-vector parameters: ( r θ φ v γ ψ ) where r is the magnitude of

the planet-relative position vector, θ is the planet-relative longitude (positive eastwards), φ

is the planet-relative latitude (positive northwards), v is the magnitude of the planet-relative

velocity vector, γ is the flight path angle of the planet-relative velocity vector (positive above

the local horizon), and ψ is the heading angle of the planet-relative velocity vector (positive

in direction of the local parallel).

Although Basis P can be utilized to formulate ~rR and ~VR, it is more convenient to utilize

the local horizon frame Basis H: ( x̂H ŷH ẑH ) where x̂H is aligned in the direction of ~rR, ŷH
is aligned in the direction of ŷ and ẑH completes the right-handed triad. In Basis H, the

planet-relative position and velocity vectors are defined by the state-vector components as

shown in Eq. (2.1 ) and Eq. (2.2 ).

~rR = rx̂h (2.1)

~vR = (v sin γ)x̂h + (v cos γ cosψ)ŷh + (v cos γ sinψ)ẑh (2.2)
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Figure 2.1. Planet-relative motion of a spacecraft during atmospheric flight

Both Basis P and Basis H are rotating with respect to Basis I. For the former, the angular

velocity vector, ~ω, of Basis P with respect to Basis I in planet-relative coordinates is shown

in Eq. (2.3 ).

~ω = ωẑ (2.3)

To transform Eq. (2.3 ) to local horizon coordinates, a change of coordinates matrix is

utilized, which is shown in Eq. (2.4 ).


x̂H

ŷH

ẑH

 =


cos θ cosφ sin θ cosφ sinφ

− sin θ cos θ 0

− cos θ sinφ − sin θ sinφ cosφ




x̂

ŷ

ẑ

 (2.4)

Substituting Eq. (2.3 ) into right-hand side of Eq. (2.4 ) yields the angular velocity vector

of Basis P with respect to Basis I in local horizon coordinates as shown in Eq. (2.5 ).

~ω = (ω sinφ)x̂H + (ω cosφ)ẑH (2.5)
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The state vector parameters θ and φ can be utilized to model the angular velocity vector

of Basis H with respect to Basis P. This angular velocity vector, ~Ω, is composed of two parts

as shown in Eq. (2.6 ) where θ̇ and φ̇ are the planet-relative time derivatives of θ and φ.

~Ω = θ̇ẑ − φ̇ŷH (2.6)

Taking the first component of Eq. (2.6 ) and transforming to the local horizon frame using

Eq. (2.4 ) yields the angular velocity vector of Basis H with respect to Basis P in local horizon

coordinates as shown in Eq. (2.7 ).

~Ω = (θ̇ sinφ)x̂H − φ̇ŷH + (θ̇ cosφ)ẑH (2.7)

The last component in the problem formulation is the aerodynamic forces. During atmo-

spheric flight, the spacecraft generates aerodynamic forces that can be modeled in either the

body-frame or wind-frame. Let the body-frame be defined by Basis B: ( x̂B ŷB ẑB ) where the

axes correspond to the principal axes of the vehicle’s geometry as shown in Figure 2.2 . Let the

wind-frame be defined by Basis W: ( ˆxW ˆyW ˆzW ) where x̂W is aligned with the planet-relative

velocity vector, ŷW is aligned with the side-force vector and ˆzW is aligned anti-parallel to the

lift vector. Both frames are related through the angle of attack, α, and side-slip angle, β.

Figure 2.2. Visualization of aerodynamic forces generated by vehicle during
planetary atmospheric flight. Modulating bank angle causes rotation of the
lift-drag plane about the planet-relative velocity vector.
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Since the drag vector, ~D, is aligned anti-parallel to the relative-velocity vector, Eq. (2.2 )

can be utilized with the substitution v = -D to formulate the drag vector equation in the

local horizon frame as shown in Eq. (2.8 ). Here, D is defined as the drag vector magnitude.

~D = (−D sin γ)x̂h − (D cos γ cosψ)ŷh − (D cos γ sinψ)ẑh (2.8)

To ascertain the lift vector equation, the influence of the vehicle’s bank angle, σ, must

be identified. Bank angle is defined as the rotation angle of the lift vector about the planet-

relative velocity vector1
 (positive rotation in direction of relative-velocity vector) as shown

in Figure 2.2 . This causes an effective rotation of the lift-drag plane away from the wind

plane. Let the lift-drag plane be defined by the vectors x̂P and ŷP in Basis L: ( x̂P ŷP ẑP ) as

shown in Figure 2.2 . By convention, full lift vector up occurs at 0° bank angle and full lift

vector down occurs at 180° bank angle. The vertical component of lift, denoted by Lcosσ

remains aligned with x̂P while the out-of-plane component of lift, denoted by Lsin σ remains

aligned with ẑP . Nevertheless, the lift vector in Basis L is defined as shown in Eq. (2.9 )

where L is the magnitude of the lift vector.

~L = (L cosσ)x̂P + (L sin σ)ẑP (2.9)

The influence of bank angle on side-force, ~Q, is addressed later in this section. The

transformation matrix from Basis L to the Basis H can be formulated by a two-rotation

sequence by angles ψ and γ resulting in the matrix shown in Eq. (2.10 ).


x̂h

ŷh

ẑh

 =


cos γ sin γ 0

− sin γ cosψ cos γ cosψ − sinψ

− sin γ sinψ cos γ sinψ cosψ




x̂P

ŷP

ẑP

 (2.10)

Substituting Eq. (2.9 ) into right-hand side of Eq. (2.10 ) yields the lift vector expressed

in local horizon coordinates as shown in Eq. (2.11 ).

(2.11)~L = (L cosσ cos γ)x̂h − (L cosσ sin γ cosψ + L sin σ sinψ)ŷh
− (L cosσ sin γ sinψ − L sin σ cosψ)ẑh

1↑ Assume freestream and planet-relative velocity vectors are identical
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Application of Lagrange’s Equations

In classical dynamics, Lagrange’s Equations provide an analytical assessment of the sys-

tem dynamics meaning that the system as a whole can be described by scalar kinetic and

potential energy functions. This is in contrast to Newtonian dynamics, commonly denoted

as vectorial dynamics, where the forces and motion of individual parts of the systems are

analyzed. For complex systems, solving for the constraint forces may be necessary when uti-

lizing Newtonian dynamics; however, solving for such constraint forces is not necessary when

using Lagrangian dynamics. Furthermore, the scalar functions are invariant to coordinate

system chosen. On the contrary, the results obtained from Newtonian dynamics require an

inertial coordinate frame to be specified. These philosophical differences make Lagrangian

dynamics much more appealing for solving complex and difficult problems [71 ], [72 ].

The beauty of Lagrangian dynamics is that if the system being analyzed is holonomic,

then the equations of motion of the system can be obtained from Lagrange’s Equations,

which is shown in Eq. (2.12 ).

d

dt

(
∂L̃

∂q̇i

)
− ∂L̃

∂qi
= Fi (i = 1, 2, ..., n) (2.12)

In Eq. (2.12 ), L̃ denotes the Lagrangian function, which is defined by the difference

between the kinetic energy, T , and potential energy, V , of the system as shown in Eq. (2.13 ).

Fi are the generalized forces not derivable from a potential function. One such example are

aerodynamic forces.

L̃ = T − V (2.13)

The qi are the generalized coordinates of the system. They can be chosen arbitrarily

so as long as they are independent. For the atmospheric flight problem, let the generalized

coordinates be the components of the inertial position vector, xI , yI , zI , and the inertial
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velocity vector, vxI , vyI , vzI , as expressed in the local horizon frame as shown in Eq. (2.14 )

and Eq. (2.15 ). In the local horizon frame, xI = r and yI = zI = 0.

~rI = xI x̂h (2.14)

~vI = vxI x̂h + vyI ŷh + vzI ẑh (2.15)

The kinetic energy of the system is defined by Eq. (2.16 ) utilizing the inertial velocity

vector.

T = 1
2m(~vI · ~vI) (2.16)

The potential energy of the system is derivable from a scalar potential being the spherical

gravity gradient of the central body. Denoting µ as the gravitational parameter of the

planet, the potential energy of the system is modeled by Eq. (2.17 ). The effects of planetary

oblateness are addressed later in this section.

V = −mµ

xI
(2.17)

The generalized forces come from lift and drag, which are modeled in the local horizon

frame component-wise as shown in Eq. (2.18 ) and Eq. (2.19 ).

~L = Lxx̂h + Lyŷh + Lz ẑh (2.18)

~D = Dxx̂h +Dyŷh +Dz ẑh (2.19)

Summing the lift and drag forces yields the generalized force vector, ~F , as shown in

Eq. (2.20 ).
~F = ~L+ ~D (2.20)
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Next, the Lagrangian is built by substituting Eq. (2.16 ) and Eq. (2.17 ) into Eq. (2.13 )

to yield Eq. (2.21 ).

L̃ = 1
2m(vxI 2 + vyI

2 + vzI
2) + mµ

xI
(2.21)

Now, Lagrange’s Equation is applied to the generalized coordinates. First, the partials of

the Lagrangian (Eq. (2.21 )) with respect to the inertial position vector (Eq. (2.14 )) and iner-

tial velocity vector (Eq. (2.15 )) are taken with the corresponding results shown in Eq. (2.22 )

and Eq. (2.23 ), respectively. Note that ~vI = ~̇rI by definition.

∂L̃

∂ ~rI
= −µm

r2 x̂h (2.22)

∂L̃

∂ ~vI
= (mvxI )x̂h + (mvyI )ŷh + (mvzI )ẑh (2.23)

Next, the inertial time derivative of Eq. (2.23 ) is taken. Rather than taking the derivative

explicitly, this derivative is expanded to allow for the planet-relative position and velocity

vectors to be introduced into the problem. Eq. (2.23 ) can be rewritten to yield Eq. (2.24 )

assuming constant mass.

dI

dt
( ∂L̃
∂ ~vI

) = dI

dt
(m~vI) = m

dI

dt
(~vI) (2.24)

Using the Transport Theorem [73 ], the inertial time derivative of the inertial velocity

vector can be decomposed into the planet-relative time derivative of the velocity vector plus

the cross product of the rotation rate of the planet-relative frame with the velocity vector

yielding Eq. (2.25 ).

dI

dt
(~vI) = dP

dt
(~vI) + ~ω × ~vI . (2.25)

The inertial velocity vector is the inertial time derivative of the position vector. Likewise,

this time derivative can also be decomposed based off the planet-relative time derivative as
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shown in Eq. (2.26 ) where planet-relative time derivative yields the planet-relative velocity

vector.

~vI = dI

dt
(~rI) = dP

dt
(~rI) + ~ω × ~rI = ~vR + ω × ~rI . (2.26)

Substituting Eq. (2.26 ) into Eq. (2.25 ), simplifying and substituting the result into

Eq. (2.24 ) yields the inertial time derivative of the partial of the Lagrangian with respect to

the inertial velocity vector as a function of the planet-relative velocity vector, planet-relative

rotation rate vector, and planet-relative position vector (note that the planet-relative and

inertial position vectors are the same when using local horizon coordinates) as shown in

Eq. (2.27 ).

dI

dt
( ∂L̃
∂ ~vI

) = m(d
P

dt
( ~vR) + 2(~ω × ~vR) + ~ω × (~ω × ~rR)) (2.27)

Finally, putting together the pieces of Lagrange’s Equation(Eq. (2.12 )) with Eq. (2.20 ),

Eq. (2.22 ), and Eq. (2.27 ) yields Eq. (2.28 ).

m(d
P

dt
( ~vR) + 2(~ω × ~vR) + ~ω × (~ω × ~rR)) + µm

r2 x̂h = ~F (2.28)

Eq. (2.28 ) represents the foundational equation for computing the planet-relative param-

eter differential equations. One can easily notice that the equation resembles a form that

can be derived from the application of Newton’s F=ma equation; in fact, this is precisely

the case as Eq. (2.28 ) matches the form derived using a Newtonian method in Reference [70 ]

pp. 22 Eq 2-13.

Now Lagrange’s equations are utilized to obtain the planet-relative differential equations.

The local horizon frame is used as the working frame. Let the planet-relative velocity vector

be defined component-wise by Eq. (2.29 ).

~vR = vxx̂h + vyŷh + vz ẑh (2.29)

Because local horizon coordinates are utilized, the planet-relative time derivative found

in Eq. (2.28 ) must be found using the Transport Theorem where the rotation rate of the local
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horizon frame (Basis H) with respect to the planet-relative frame (Basis P) is incorporated

as shown in Eq. (2.30 ).

dP

dt
( ~vR) = v̇xx̂h + v̇yŷh + v̇z ẑh + ~Ω × ~vR (2.30)

Substituting Eq. (2.7 ) into Eq. (2.30 ) for ~Ω yields Eq. (2.31 ).

dP

dt
( ~vR) = (v̇x−φ̇vz−θ̇vy cosφ)x̂h+(v̇y+θ̇vx cosφ−θ̇vz sinφ)ŷh+(v̇z+φ̇vx+θ̇vy sinφ)ẑh (2.31)

Substituting Eq. (2.6 ) and Eq. (2.31 ) into Eq. (2.28 ) and decomposing the resulting vector

equation about each coordinate axis yields three scalar differential equations as shown by

Eq. (2.32 ), Eq. (2.33 ), and Eq. (2.34 ).

−Dx − Lx + µm

r2 +m(v̇x − φ̇vz − θ̇vy cosφ− 2vyω cosφ− rω2 cosφ2) (x̂h) (2.32)

−Dy − Ly +m(v̇y + θ̇vx cosφ− θ̇vz sinφ− 2(vxω cosφ− vzω sinφ)) (ŷh) (2.33)

−Dz − Lz +m(v̇z + φ̇vx + θ̇vy sinφ+ 2vyω sinφ+ rω2 cosφ sinφ) (ẑh) (2.34)

In Eq. (2.32 ), Eq. (2.33 ), and Eq. (2.34 ), the local horizon components of the planet-

relative velocity vector are present. In fact, Eq. (2.2 ) provides the expression for these

components as a function of the planet-relative parameters. Taking the time derivative
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of Eq. (2.2 ) components yields three equations for v̇x, v̇y, and v̇z as seen by Eq. (2.35 ),

Eq. (2.36 ), and Eq. (2.37 ).

v̇x = v̇ sin γ + v cos γγ̇ (2.35)

v̇y = v̇ cos γ cosψ − v sin γ cosψγ̇ − v cos γ sinψψ̇ (2.36)

v̇z = v̇ cos γ sinψ − v sin γ sinψγ̇ + v cos γ cosψψ̇ (2.37)

Eq. (2.8 ) and Eq. (2.11 ) provide the necessary expressions for Dx, Dy, Dz, Lx, Ly, and

Lz. There are six unknowns (ṙ, θ̇, φ̇, v̇, γ̇, and ψ̇) with only three equations from Eq. (2.35 ),

Eq. (2.36 ), and Eq. (2.37 ).

The remaining three equations can be computed by linking known ~vR to the planet-

relative time derivative of the position vector ~rR. Using the Transport Theorem, the planet-

relative time derivative of Eq. (2.1 ) is taken where the rotation rate of the local horizon

frame (Basis H) with respect to the planet-relative frame (Basis P) is incorporated as shown

in Eq. (2.38 ).

dP

dt
( ~rR) = ṙx̂h + ~Ω × ~rR = ṙx̂h + rθ̇ cosφŷh + φ̇ẑh (2.38)

Equating Eq. (2.38 ) to Eq. (2.2 ) and solving for ṙ, θ̇, and φ̇ yields the Kinematic Scalar

Differential Equations as shown by Eq. (2.39 ), Eq. (2.40 ), and Eq. (2.41 ). These differential

equations represent the evolution of the planet-relative position vector. The position vector

magnitude rate of change (or altitude rate of change) depends on the flight path angle. For

positive flight path angles, the altitude rate is positive thereby indicating increase in altitude.

Conversely, negative flight path angles result in negative altitude rate and thereby indicate

decrease in altitude. The planet-relative longitude and latitude rates differ with regards to

longitude and heading angle terms. Longitude does not appear explicitly in these kinematic
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equations nor will they appear in the force equations below. As a result, longitude can be

classified as an ignorable coordinate.

ṙ = v sin γ (2.39)

θ̇ = v cos γ cosψ
r cosφ (2.40)

φ̇ = v cos γ sinψ
r

(2.41)

Finally, expressions found from Eq. (2.39 ), Eq. (2.40 ), and Eq. (2.41 ) are used to solve

for v̇, γ̇, and ψ̇ with the results shown below in Eq. (2.42 ), Eq. (2.43 ), and Eq. (2.44 ). These

three equations represent the force equations that explain the evolution of the planet-relative

velocity vector. The velocity vector magnitude rate of change is influenced by both gravity

and the aerodynamic drag. The flight path angle sign dictates gravity’s influence on the

increase or decrease in the rate of change of velocity. Drag decreases the rate of change

of velocity. In the flight path angle dynamics, gravity acts to counteract the centripetal

acceleration of the trajectory (v2

r
) while the bank angle serves to control the lift vector’s

effect. Likewise, bank angle also influences the lift vector’s effect on the heading angle

dynamics. Steering the lift vector to the right of the velocity vector (positive bank) increases

the rate of change of heading angle while steering to the left (negative bank) decreases the

rate of change of the heading angle. Present in all three equations is the influence of the

planet’s rotation rate (ω). The 2ωv term is the Coriolis acceleration and directly influences

the flight path angle and heading angle evolution.

v̇ = −D

m
− µ sin(γ)

r2 + rω2 cos(φ)(sin(γ) cos(φ) − cos(γ) sin(ψ) sin(φ)) (2.42)

(2.43)
vγ̇ = L cos(σ)

m
− µ cos(γ)

r2 +rω2 cos(φ)(sin(γ) sin(ψ) sin(φ)+cos(γ) cos(φ))

+ v2 cos(γ)
r

+ 2vω cos(ψ) cos(φ)
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(2.44)
vψ̇ = L sin(σ)

m cos(γ) − (rω2) cos(ψ) sin(φ) cos(φ)
cos(γ)

− v2 cos(γ) cos(ψ) tan(φ)
r

+ 2vω(tan(γ) sin(ψ) cos(φ) − sin(φ))

The results obtained from the application of Lagrangian dynamics can be compared to

an existing derivation produced using Newtonian dynamics. A comparison of the Kinematic

Scalar Differential Equations from Eq. (2.39 ), Eq. (2.40 ), and Eq. (2.41 ) to Reference [70 ]

pp. 26 Eq 2-28 indicate complete mathematical agreement. Similarly, comparison of the

force equations from Eq. (2.42 ), Eq. (2.43 ), and Eq. (2.44 ) to Reference [70 ] pp. 27 Eq

2-31 indicate complete mathematical agreement. Therefore, it has been shown and verified

that the equations of motion for atmospheric flight in a spherical planet can be successfully

derived using Lagrangian dynamics.

Further Expansion to the Equations of Motion

The equations of motion have been derived for atmospheric flight in a spherical rotating

planet. It was assumed that the central body is perfectly spherical with a spherical gravity

potential (i.e. gravitational acceleration strictly a function of radial distance only). However,

not every planet is a perfect sphere but rather resembles an ellipsoid. The oblateness of the

planet due to non-uniform distribution of mass leads to non-radial gravitational acceleration

components. Zonal harmonics can be utilized to model such a non-uniform gravity potential.

Consequently, this modification can be handled in the equation of motion derivation by

modifying the potential energy of the system. Furthermore, it was shown that bank angle

can be utilized as a flight control parameter for influencing the equations of motion. During

atmospheric flight, the vehicle can also modulate its aerodynamic reference area, its angle

of attack, and/or its side-slip angle to influence the equations of motion. All three of these

parameters affect the aerodynamic forces; but, the latter introduces an additional force

not modeled by the current derivation. This force is side-force and along with lift and

drag complete an orthogonal force triad. Consequently, this modification can be handled

in the equation of motion derivation by adding side-force to the generalized forces. These
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two components are included in this derivation to demonstrate the simplistic approach in

improving the fidelity of the equations of motion utilizing Lagrangian dynamics.

Planetary Oblateness

To introduce planetary oblatness into the model, the central body is modeled by an ellipsoid

where Re is the equatorial radius and Rp is the polar radius. Spherical coordinates (r, θ, φ)

are still utilized to model the position vector. The velocity vector parameterization (v, γ,

ψ) is unaffected by this modification. The potential energy of the system is derived from

the gravitational potential function, U . Using zonal harmonics, the gravitational potential

for an oblate ellipsoidal planet can be approximated as shown in Eq. (2.45 ). Despite the

gravitational potential being truncated to the J2 zonal term, the potential can be readily

expanded to incorporate additional perturbation terms.

U = −
µ
(
J2
(
Re
r

)2 (3
2 − 9 sin2(φ)

2

)
+ 1

)
r

(2.45)

Eq. (2.45 ) models latitudinal gravitational potential in addition to the radial component.

The modified potential energy of the system can be modeled using Eq. (2.46 ). Note that if

J2 is zero, then the existing potential energy of the system, Eq. (2.17 ), can be obtained.

V = mU (2.46)

The Lagrangian is modified by substituting Eq. (2.46 ) into Eq. (2.13 ). The planetary

oblateness only affects the potential energy of the system and subsequently the partial of

the Lagrangian with respect to the inertial position vector, Eq. (2.22 ). Because this partial

derivative only depends on the potential energy of the system, it can be decomposed using

the chain rule to incorporate the planet-relative components defining the potential function

as shown in Eq. (2.47 ).

∂L

∂~rI
= ∂L

∂r
x̂h + 1

r

∂L

∂φ
ẑh (2.47)
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Expanding the scalar partial derivatives with respect to r and φ yields Eq. (2.48 ) and

Eq. (2.49 ).

∂L

∂r
= −m∂U

∂r
(2.48)

∂L

∂φ
= −m∂U

∂φ
(2.49)

Indeed, these partial derivatives of the gravitational potential function yield the radial

and latitudinal gravitational accelerations, gr and gφ, as shown in Eq. (2.50 ) and Eq. (2.51 ).

∂U

∂r
= µ

r2 (1 + J2(
Re

r
)2)(3

2 − 9
2 sin2 φ) = gr (2.50)

1
r

∂U

∂φ
= µ

r2 (J2(
Re

r
)2)(3 sinφ cosφ) = gφ (2.51)

Thus, the expanded partial derivative represents the gravitational force of the planet

derived from a potential function as shown in Eq. (2.52 ).

∂L

∂~rI
= −mgrx̂h −mgφẑh (2.52)

Aerodynamic Side-Force

During atmospheric flight, side force can be generated by side-slipping the vehicle. This

can be thought of as yawing the vehicle by modulating the side-slip angle β as shown in

Figure 2.2 . Like lift, modulating bank angle results in a rotation of the side force about the

relative-velocity vector. Nevertheless, the side force vector in Basis L is defined as shown in

Eq. (2.53 ) where Q is the magnitude of the side force vector.

~Q = (Q sin σ)x̂P − (Q cosσ)ẑP (2.53)

Eq. (2.53 ) is subsequently transformed to local horizon coordinates via Eq. (2.10 ). The

resulting expression is appended to the generalized force expression, Eq. (2.20 ).
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Atmospheric Winds

During atmospheric flight, atmospheric winds can be present. The speed of these winds

can vary depending on the planetary atmosphere. Generally, these winds are much smaller

when compared to the vehicle’s velocity. The aerodynamic forces produced by the vehicle

are dependent on the freestream velocity vector, ~v∞. In the absence of winds, the relative-

velocity vector matches the freestream vector; thus, the absence of winds were assumed in

the previous derivation. Commonly, the wind vector is defined by its north-south, east-

west, and down-up components. These components refer to a reference frame known as

the North-East-Down frame. Let the frame be defined by Basis NED: ( N̂ Ê D̂ ) where N̂ is

aligned anti-parallel to ~yH , Ê is aligned in the direction of ẑH and D̂ completes the right-

handed triad. The wind vector, ~vw, can be mathematically modeled by Eq. (2.54 ) where vN ,

vE, and vD represent the positive wind components in the north, east, and down directions

respectively.

~vw = vNN̂ + vEÊ + vDD̂ (2.54)

Using the orientation of Basis NED to Basis H, the wind vector can be expressed in the

local horizontal frame as shown by Eq. (2.55 )

~vw = −vDx̂H + −vN ŷH + vE ẑH (2.55)

The freestream velocity vector can then simply be computed by subtracting the relative-

velocity vector, Eq. (2.2 ), from the wind vector, Eq. (2.55 ). Doing so yields Eq. (2.56 )

~v∞ = (v sin γ + vD)x̂h + (v cos γ cosψ + vN)ŷh + (v cos γ sinψ − vE)ẑh (2.56)
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Modified Equations of Motion

The new expressions for potential energy and side force are substituted into Lagrange’s equa-

tions. The same methodology as that presented in this section is applied. The modifications

only affect the resulting force equations and not the kinematic equations. The resulting

force equations from solving Lagrange’s equations are shown in Eq. (2.57 ), Eq. (2.58 ), and

Eq. (2.59 ).

v̇ = −D

m
− gr sin γ − gφ cos γ sinψ + rω2 cosφ(sin γ cosφ− cos γ sinψ sinφ) (2.57)

(2.58)vγ̇ = L cosσ
m

+ Q sin σ
m

+ (v
2

r
− gr) cos γ + gφ sin γ sinψ

+ rω2 cosφ(sin γ sinψ sinφ+ cos γ cosφ) + 2vω cosψ cosφ

(2.59)
vψ̇ = L sin σ

m cos γ − Q cosσ
m cos γ − gφ

cosψ
cos γ − rω2 cosψ sinφ cosφ

cos γ

− v2 cos γ cosψ tanφ
r

+ 2vω(tan γ sinψ cosφ− sinφ)

The resulting force equations are identical to those presented previously with the excep-

tion of the terms arising from the introduction of side force and planetary oblateness. The

relative-velocity vector magnitude dynamics are influenced by both the radial and latitudi-

nal gravitational acceleration but is not influenced directly by side force. On the contrary,

both flight path angle and heading angle dynamics are directly influenced by side force.

Bank angle regulates the sign and determines whether lift and side force constructively or

destructively oppose one another’s influence on the respective dynamics. For a full-lift vector

up or down trajectory, the flight path angle dynamics are directly influenced by lift vector

only while the heading angle dynamics are directly influenced by side-force vector only. The

latitudinal gravitational acceleration influences both flight path angle and heading angle

dynamics.

In summary, the 3DOF kinematic equations of motion for atmospheric flight in an el-

lipsoidal rotating planet are modeled using Eq. (2.39 ), Eq. (2.40 ), Eq. (2.41 ), Eq. (2.57 ),
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Eq. (2.58 ), and Eq. (2.59 ). These equations represent a cylindrical parameterization of the

time-evolution of the planet-relative position and velocity vectors.

2.1.2 Derivation of rotational equations of motion

The rotational equations of motion represent the evolution of the vehicle attitude. In

addition to controlling the trajectory of the vehicle, it is important that the vehicle attitude is

controlled as well. The vehicle’s attitude is influenced by external torques that act to rotate

the vehicle about its center of mass. During atmospheric flight, the two primary torques

include aerodynamic and propulsive moments. Figure 2.3 illustrates the aerodynamic forces

and moments produced by the vehicle.

ො𝑥𝑏

𝑉𝑅

+𝛽

+𝛼

+𝜎
ො𝑦𝑏

Ƹ𝑧𝑏

ො𝑦𝑤

ො𝑥𝑤

− Ƹ𝑧𝑤
+𝐶𝐿

+𝐶𝑄

+𝐶𝐷

+𝐶𝑚
+𝐶𝑛

+𝐶𝑙

+𝐶𝐴

+𝐶𝑁

+𝐶𝑌

Figure 2.3. Visualization of vehicle aerodynamic force and moments coeffi-
cients generated by vehicle during planetary atmospheric flight.
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Rotational Dynamics

To derive the rotational dynamics of the vehicle during flight, Euler’s equation of motion

is utilized as shown by Eq. (2.60 ) where ~M are the external moments acting on the vehicle

and ~H is the vehicle’s angular momentum vector. The reference frame utilized include:

inertial frame (Basis I), body-frame (Basis B), and wind-frame (Basis W). The definition of

each frame can be found in Section 2.1.1 .

∑
~M = dI

dt
( ~H) (2.60)

The angular momentum vector itself is defined by Eq. (2.61 ) where ~ωb is the angular

velocity vector of the body-frame to the inertial frame and ¯̄Ib is the vehicle inertia tensor

with respect to the body axis.

~H = ¯̄Ib~ωb (2.61)

Depending on the body axes chosen, the inertia tensor may be diagonal or fully defined.

The former case is generally true when the body axes are aligned with the principal axes.

This is generally the case for most aerocapture vehicles. Eq. (2.62 ) defines a generalized fully

defined inertia tensor.

¯̄Ib =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 (2.62)

The angular velocity vector can be decomposed with respect to each body axis. Eq. (2.63 )

highlights this decomposition where ṡ is the roll rate, ṗ is the pitch rate, and q̇ is the yaw

rate.

~ωb = ṡx̂b + ṗŷb + q̇ẑb (2.63)

To obtain the inertial time derivative of the angular momentum vector, the Transport

Theorem is applied. When taking this time derivative of Eq. (2.61 ), the inertia tensor is
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assumed to be time-invariant. This is generally a good first-order assumption for aerocapture

vehicles. The result of the integration is subsequently combined with Eq. (2.60 ) with its

vector components shown in Eq. (2.64 ).

Ml = Ixyp̈+ Ixz q̈ + Ixxs̈− q̇ (Iyyṗ+ Iyz q̇ + Ixyṡ) + ṗ (Iyzṗ+ Izz q̇ + Ixz ṡ)

Mm = Iyyp̈+ Iyz q̈ + Ixys̈+ q̇ (Ixyṗ+ Ixz q̇ + Ixxṡ) − ṡ (Iyzṗ+ Izz q̇ + Ixz ṡ)

Mn = Iyzp̈+ Izz q̈ + Ixz s̈− ṗ (Ixyṗ+ Ixz q̇ + Ixxṡ) + ṡ (Iyyṗ+ Iyz q̇ + Ixyṡ)

(2.64)

Given the external moments, the body-frame rotational accelerations can be solved for.

Eq. (2.66 ), Eq. (2.67 ), Eq. (2.65 ) provides the general-form solution to the body-frame ro-

tational dynamics of the vehicle where p̈, q̈, s̈ are the pitch, yaw, and roll accelerations

respectively.

s̈ = − 1
Ixzden

[IxxIxyIxzIyzṗṡ+ IxxIxyIxzIzz q̇ṡ− IxxI
2
xzIyyṗṡ− IxxI

2
xzIyz q̇ṡ+ I2

xyIxzIyzṗ
2

−I2
xyIxzIyz ṡ

2 + I2
xyIxzIzzṗq̇ − IxyI

2
xzIyyṗ

2 + IxyI
2
xzIyyṡ

2 + IxyI
2
xzIzz q̇

2

−IxyI2
xzIzz ṡ

2 − IxyIxzIyyIyzṗṡ+ IxyIxzIyyIzz q̇ṡ− 2IxyIxzI2
yz q̇ṡ

−IxyIxzIyzIzzṗṡ+ IxyIxzIyzMn − IxyIxzI
2
zz q̇ṡ− IxyIxzIzzMm

−I3
xzIyyṗq̇ + I3

xz(−Iyz)q̇2 + I3
xzIyz ṡ

2 + I2
xzI

2
yyṗṡ+ I2

xzIyyIyz q̇ṡ

−I2
xzIyyIzzṗṡ− I2

xzIyyMn + 2I2
xzI

2
yzṗṡ+ I2

xzIyzIzz q̇ṡ+ I2
xzIyzMm

+IxzI2
yyIzzṗq̇ − IxzIyyI

2
yzṗq̇ − IxzIyyIyzIzzṗ

2 + IxzIyyIyzIzz q̇
2

−IxzIyyI2
zzṗq̇ + IxzIyyIzzMl + IxzI

3
yzṗ

2 − IxzI
3
yz q̇

2 + IxzI
2
yzIzzṗq̇

−IxzI2
yzMl]

(2.65)
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p̈ = − 1
den

[ − I2
xxIyzṗṡ− I2

xxIzz q̇ṡ+ IxxIxyIxzṗṡ− IxxIxyIyzṗ
2 + IxxIxyIyz ṡ

2 − IxxIxyIzzṗq̇

+IxxI2
xz q̇ṡ− IxxIxzIyzṗq̇ − IxxIxzIzz q̇

2 + IxxIxzIzz ṡ
2 + IxxIyyIyzṗṡ+ IxxI

2
yz q̇ṡ

+IxxIyzIzzṗṡ− IxxIyzMn + IxxI
2
zz q̇ṡ+ IxxIzzMm + I2

xyIxzṗ
2 − I2

xyIxz ṡ
2

−I2
xyIzz q̇ṡ+ 2IxyI2

xzṗq̇ − IxyIxzIyyṗṡ+ IxyIxzIzzṗṡ+ IxyIxzMn − IxyIyyIzzṗq̇

+IxyIyzIzzṗ2 − IxyIyzIzz q̇
2 + IxyI

2
zzṗq̇ − IxyIzzMl + I3

xz q̇
2 − I3

xz ṡ
2 − 2I2

xzIyzṗṡ

−I2
xzIzz q̇ṡ− I2

xzMm + IxzIyyIyzṗq̇ − IxzI
2
yzṗ

2 + IxzI
2
yz q̇

2 − IxzIyzIzzṗq̇

+IxzIyzMl]
(2.66)

q̈ = − 1
den

[I2
xxIyyṗṡ+ I2

xxIyz q̇ṡ− IxxI
2
xyṗṡ− IxxIxyIxz q̇ṡ+ IxxIxyIyyṗ

2 − IxxIxyIyyṡ
2

+IxxIxyIyzṗq̇ + IxxIxzIyyṗq̇ + IxxIxzIyz q̇
2 − IxxIxzIyz ṡ

2 − IxxI
2
yyṗṡ− IxxIyyIyz q̇ṡ

+IxxIyyMn − IxxI
2
yzṗṡ− IxxIyzIzz q̇ṡ− IxxIyzMm + I3

xy

(
−ṗ2

)
+ I3

xyṡ
2

−2I2
xyIxzṗq̇ + I2

xyIyyṗṡ+ 2I2
xyIyz q̇ṡ− I2

xyMn − IxyI
2
xz q̇

2 + IxyI
2
xz ṡ

2

−IxyIxzIyy q̇ṡ+ IxyIxzIzz q̇ṡ+ IxyIxzMm + IxyIyyIyzṗq̇ − IxyI
2
yzṗ

2 + IxyI
2
yz q̇

2

−IxyIyzIzzṗq̇ + IxyIyzMl + I2
xzIyyṗṡ− IxzI

2
yyṗq̇ + IxzIyyIyzṗ

2 − IxzIyyIyz q̇
2

+IxzIyyIzzṗq̇ − IxzIyyMl]
(2.67)

The above equations have a common denominator term, denoted den. Its equation is

represented by Eq. (2.68 )

den = −IxxIyyIzz + IxxI
2
yz + I2

xyIzz − 2IxyIxzIyz + I2
xzIyy (2.68)

If the body-axes are assumed to be principal axes such that Ixy, Ixz, and Iyz are zero, then

the rotational dynamics simplify significantly. Substituting these conditions into Eq. (2.66 ),

Eq. (2.67 ), and Eq. (2.65 ) yield the principal axes rotational equations of motion as shown
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in Eq. (2.69 ). The remainder of this derivation will retain the assumption of principal axes.

If non-principal axes are desired, the analysis can still utilize the same methodology.

s̈ = Ml + (Iyy − Izz) ṗq̇
Ixx

p̈ = Mm + (Izz − Ixx) q̇ṡ
Iyy

q̈ = Mn + (Ixx − Iyy) ṗṡ
Izz

(2.69)

Eq. (2.69 ) can be numerically integrated to provide the vehicle attitude evolution with

respect to the principal body axis. For applications of aerodynamic control surfaces, it maybe

desirable to express the vehicle attitude with respect to the wind-axes. Both axes can be

related through angle of attack and side-slip angle. In fact, these two angles along with

bank angle serve as Eulerian rotational angles. Using Figure 2.3 as a reference, the change

of coordinates matrix from wind to body can be computed, which is shown in Eq. (2.70 ).


x̂b

ŷb

ẑb

 =


cosα cos β − cosα sin β − sinα

sin β cos β 0

sinα cos β − sinα sin β cosα




x̂w

ŷw

ẑw

 (2.70)

The angular velocity vector of Basis W with respect to Basis I can be modeled by

Eq. (2.71 ) where σ̇ is the bank angle rate of change, α̇ is the angle of attack rate of change,

and β̇ is the rate of change of side-slip.

~ωw = σ̇x̂w + α̇ŷw + β̇ẑw (2.71)

Substituting Eq. (2.71 ) into Eq. (2.70 ) allows for the wind-frame angular velocity to

be related to the body-frame angular velocity. To link the angular accelerations, the time

64



derivative of this substitution is taken. Doing so component-wise yields Eq. (2.72 ), Eq. (2.73 ),

and Eq. (2.74 ).

s̈ = [ − α̇σ̇ sin(α) cos(β) − β̇σ̇ cos(α) sin(β) + α̇2 sin(α) sin(β) − α̇β̇ cos(α)

−α̇β̇ cos(α) cos(β) − α̈ cos(α) sin(β) − β̈ sin(α) + σ̈ cos(α) cos(β)]
(2.72)

p̈ = [ − α̇β̇ sin(β) + α̈ cos(β) + β̇σ̇ cos(β) + σ̈ sin(β)] (2.73)

q̈ = [ − β̇σ̇ sin(α) sin(β) + α̇σ̇ cos(α) cos(β) − α̇β̇ sin(α) + α̇2(− cos(α)) sin(β)

−α̇β̇ sin(α) cos(β) − α̈ sin(α) sin(β) + β̈ cos(α) + σ̈ sin(α) cos(β)]
(2.74)

Using Eq. (2.72 ), Eq. (2.73 ), , Eq. (2.74 ), and Eq. (2.71 ), expressions for s̈, p̈, q̈, ṡ, ṗ, and

q̇ can be substituted into Eq. (2.69 ). Solving for α̈, β̈, and σ̈ yields the wind-frame rotational

equations of motion for as shown in Eq. (2.75 ), Eq. (2.76 ), and Eq. (2.77 ).

σ̈ = − sin(β)[β̇σ̇ cos(β) − α̇β̇ sin(β) − Mm

Iyy

+Izz − Ixx
Iyy

(σ̇ cos(α) cos(β) − β̇ sin(α) − α̇ cos(α) sin(β))(β̇ cos(α)

+ sin(α) (σ̇ cos(β) − α̇ sin(β)))] − cos(β)
4Ixx

[−4Ml cos(α)

+ 1
Izz

[−4IxxMn sin(α) − 2β̇ cos(2α)(Ixx − Izz)(Ixx − Iyy + Izz)(α̇ cos(β)

+σ̇ sin(β)) + 2β̇(σ̇ sin(β)
(
I2
xx − Ixx(Iyy + 2Izz) + Izz(Izz − Iyy)

)
+α̇

(
cos(β)

(
−Izz(2Ixx + Iyy) + Ixx(Ixx − Iyy) + I2

zz

)
− 2IxxIzz

)
)

+ sin(2α)(Ixx − Izz)(Ixx − Iyy + Izz)
((
α̇2 − σ̇2

)
sin(2β) − 2α̇σ̇ cos(2β)

)
]]
(2.75)
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α̈ = cos2(β)
IxxIyyIzz

[IxxIzzβ̇2 sin(α) cos(α) sec(β) (Ixx − Izz)

+1
4 sec(β)[−4IxxIyyMn sin(α) tan(β) + 4IxxIzzMm − 4IyyIzzMl cos(α) tan(β)

− sin(2α)(Ixx − Izz)(σ̇ − α̇ tan(β))[α̇ sin(2β)(Ixx − Iyy)(Iyy − Izz)

+σ̇(− cos(2β)(Ixx − Iyy)(Iyy − Izz) + Izz(Ixx + Iyy) + Iyy(Ixx − Iyy))]]

+1
2 β̇[−2α̇ tan(β)[IyyIzz cos2(α)(Ixx sec(β) + Iyy − Izz)

+IxxIyy sin2(α)(−Ixx + Iyy + Izz sec(β)) + IxxIzz sin4(α)(Ixx − Izz)

+IxxIzz cos4(α)(Izz − Ixx)] + σ̇[2Ixx sin2(α)(−Izz
(
sin2(α)(Izz − Ixx) + Iyy

)
−Iyy tan2(β)(−Ixx + Iyy + Izz)) + IyyIzz cos2(α) sec2(β)(−2Ixx

+ cos(2β)(Iyy − Izz) − Iyy + Izz) + 2IxxIzz cos4(α)(Izz − Ixx)]]]
(2.76)

β̈ = 1
4IxxIzz

[4IxxMn cos(α) − 4α̇IxxIzzσ̇ cos(β)

+2 cos(2β)α̇σ̇(I2
xx − IxxIyy + Izz(Izz − I + yy)) − 4IzzMl sin(α) + 4α̇2IxxIzz sin(β)

−2β̇ sin(2α)(Ixx − Izz)(Ixx − Iyy + Izz) (α̇ cos(β) + σ̇ sin(β))

+
(
σ̇2 − α̇2

)
sin(2β)

(
I2
xx − IxxIyy + Izz(Izz − Iyy)

)
+ cos(2α)(Ixx − Izz)(Ixx − Iyy + Izz)

((
σ̇2 − α̇2

)
sin(2β) + 2α̇σ̇ cos(2β)

)
]

(2.77)

Even with the assumption of principal axes, the above equations illustrate the highly

coupled attitude dynamics as expressed in the wind-frame. The advantage of utilizing the

wind-frame over the body-frame for expressing the attitude dynamics is that the dynamics

can be directly mapped to both the flight control variables as well as the kinematic flight

dynamics. For BAM and DFC, the dynamics of the control variables of σ, α, and β are ex-

plicitly modeled. This can allow for the flight controller to be designed using these governing

dynamics for the purpose of achieving the control commands from the guidance algorithm.
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Additionally, the wind-frame attitude dynamics naturally couple with the kinematics equa-

tions of motion to provide a full 6DOF characterization of the flight dynamics.

External Moments

The forces and moments acting on the vehicle act at the aerodynamic reference point,

( xref yref zref ), which can be offset from the center of mass, ( xcg ycg zcg ). The offset distance

is normalized by reference length, d, when computing the aerodynamic coefficient induced

moments. The aerodynamic pitch, yaw, and roll moments about Basis B are modeled using

Eq. (2.78 ), Eq. (2.79 ), Eq. (2.80 ) respectively. In these three equations, q∞ is the freestream

dynamic pressure.

~Mm,aero =
[
Cm + CA

(
zcg − zref

d

)
− CN

(
xcg − xref

d

)]
q∞Arefd (2.78)

~Mn,aero =
[
Cn − CY

(
xcg − xref

d

)
− CA

(
ycg − yref

d

)]
q∞Arefd (2.79)

~Ml,aero =
[
Cl + CN

(
ycg − yref

d

)
+ CY

(
zcg − zref

d

)]
q∞Arefd (2.80)

In addition to the natural moments produced by the vehicle, external moments can be

produced through the deflection of aerodynamic control surfaces or propulsively through

RCS thrusters. These external pitch, yaw, and roll moments about Basis B are modeled

using Eq. (2.81 ), Eq. (2.82 ), Eq. (2.83 ) respectively. The effectiveness of the aerodynamic

control surfaces is directly dictated by the dynamic pressure while the effectiveness of the

RCS thrusters as generally invariant to dynamic pressure.

~Mm,ext = q∞ArefdCm,acs +Mm,RCS (2.81)

~Mn,ext = q∞ArefdCn,acs +Mn,RCS (2.82)
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~Ml,ext = q∞ArefdCl,acs +Ml,RCS (2.83)

Putting all together, the pitch, yaw, and roll moments can be computed using Eq. (2.84 ),

Eq. (2.85 ), and Eq. (2.86 ). These equations are used as inputs into the rotational equations

of motion.

Mm = Mm,aero +Mm,ext (2.84)

Mn = Mn,aero +Mn,ext (2.85)

Ml = Ml,aero +Ml,ext (2.86)

This completes the derivation of the rotational equations of motion. Subsequent analysis

in this dissertation will focus on 3DOF translational motion. The rotational equations of

motion are provided in this dissertation to demonstrate the coupled dynamics between the

flight controls of interest (BAM with σ, DFC with α and β) and the attitude of the vehicle.

The future work related to studies on 6DOF motion can utilize these equations.

2.1.3 Analytical Hypersonic Aerodynamics

Motivation

Understanding the vehicle aerodynamic properties are a fundamental characteristic needed

for aerocapture. This understanding can be accomplished through application of computa-

tional fluid dynamic (CFD) codes that simulate the flow physics. A typical aerocapture

trajectory consists of a large range of velocities and atmosphere densities. As a result,

numerous CFD runs would need to be conducted for a single aerocapture trajectory. The

trajectories can vary depending on the vehicle chosen and the planetary destination assessed.

The cumulative result is a laborious and potentially computationally-expensive process for

assessing the vehicle aerodynamics.
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Fortunately, first-order methods have been developed for assessing the vehicle aerody-

namics. Aerocapture trajectories spend nearly their entire flight profile in the hypersonic

flow regime. Subsequently, the hypersonic aerodynamics can be sufficiently approximated

using Newtonian flow theory [74 ]. Issac Newton in his work Principia [75 ] first introduced

the concept of modeling flow of a fluid as a system of particles moving in uniform motion. If

a body is introduced to the flowfield, then the particles would impact the body in a manner

such that the momentum perpendicular to the body is lost and the momentum tangential

to the body is conserved. The momentum transfer normal to body leads to a pressure force

that the fluid exerts on the body. Assuming pressure as the only force imparted by the fluid

onto to body leads to the formulation of a sine-squared law for the pressure coefficient Cp.

Cp = 2sin2(η) (2.87)

In Eq. (2.87 ), Cp depends only on the local inclination of the flow to the body and not on

the freestream properties itself. At hypersonic speeds, the presence of a bow shock upstream

of the vehicle affects the motion of the particles. Lees suggested a modification to the theory

in which the conditions at the stagnation point are met [76 ]. This modified Newtonian theory

has Eq. (2.87 ) written in the form of Eq. (2.88 ) where K is equal to the maximum value of

the pressure coefficient evaluated at the stagnation point of the normal shock.

Cp = Ksin2(η) (2.88)

Using normal shock relations, K can written in the form of Eq. (2.89 ) where M∞ is the

freestream Mach number and γ̄ is the specific gas constant of the freestream.

K = 2
γ̄M2

∞


(

(γ̄+1)2M2
∞

4γ̄M2
∞−2(γ̄−1)

) γ̄
γ̄−1 (1 − γ̄ + 2γ̄M2

∞)
γ̄ + 1 − 1

 (2.89)
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With modified Newtonian theory, Cp and thus the vehicle aerodynamics depend on the

freestream properties. For M∞ → ∞, Eq. (2.89 ) converges to

K =
[

(γ + 1)2

4γ

] γ
γ̄−1

[
4

γ + 1

]
(2.90)

For γ = 1, Eq. (2.90 ) equals 2. This indicates that traditional Newtonian theory can be

recovered under a certain set of assumptions. Modified Newtonian is generally more accurate

for predicting pressure distributions over blunt bodies as compared to slender bodies. Con-

versely, traditional Newtonian is generally more suitable for application on slender bodies.

The subtle differences in the models can be attributed to constant K.

𝛼

𝑉∞

Shadowed Region
𝐶𝑝 = 0

Unshadowed Region
𝐶𝑝 = 𝐾 sin2 𝜂

𝜂

Figure 2.4. Newtonian Aerodynamics Visualization. Imaged adapted from [74 ]

Figure 2.4 shows a high-level representation of the Newtonian aerodynamics model. For

portions of the body that are not exposed to the flowfield, known as the shadowed region,

no momentum transfer occurs and thus Cp = 0. Integrating the pressure coefficient around

the body surface in the unshadowed region allows for the vehicle aerodynamic forces and

moments to be computed. The result of Newtonian flow theory is that the aerodynamics

can be parameterized based off the shape of the vehicle. For simple shapes, exact analytical
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relations for the vehicle aerodynamics can be achieved. This lends itself to use in the math-

ematical formulation of aerocapture flight control laws. It is important to keep in mind that

Newtonian flow theory provides an inviscid solution to the hypersonic aerodynamics. Vis-

cous effects, such as shock-body and shock-boundary layer interactions, that tend to worsen

the aerodynamic capability of the vehicle are not captured in the theory. These effects are

typically assessed using CFD codes. The subsequent errors in vehicle aerodynamics can be

can be addressed in a Monte Carlo setting though simulation of aerodynamic uncertainty.

Methodology

The application of Newtonian theory to hypersonic vehicle aerodynamics has been studied

extensively in literature [77 ]–[80 ]. The methodology utilized in this work will generally follow

the methodology introduced by Grant [81 ] and will focus on sphere-cone aeroshell geometries

assuming flight conditions that lead to no shadowed regions. To handle analytical integration,

Mathematica is utilized.

The methodology decomposes a vehicle aeroshell into basic shapes. A sphere-cone con-

sists of a hemispherical nose and a conical frustrum. For each shape, a series of five steps

are conducted to obtain their respective body-frame aerodynamic coefficients.

In the first step, the surface of the shape is parameterized such that a position vector,

r, is defined by two independent variables, u and v. Using vector calculus, the surface

normal vector can be calculated using ~ru × ~rv where ru = ∂~r
∂u

and rv = ∂~r
∂v

. Additionally,

the differential area of the surface, dA, under which the analytical integration occurs can be

computed by dA = ||~ru × ~rv||.

In the second step, the pressure coefficient is computed. From Figure 2.4 , the sin(η) can

be computed by sin(η) = V̂ T
∞n̂. The unit normal vector, n̂ can be computed by n̂ = ~ru×~rv

dA
.

In the wind-frame, the free-stream velocity vector is ~V∞ = −V∞x̂w. Transforming to the

body-frame using Eq. (2.70 ) yields

~V∞ = V∞[− cos(α) cos(β)x̂b − sin(β)ŷb − sin(α) cos(β)ẑb] (2.91)
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The third step is to compute the surface integrals for calculations of the body-frame

aerodynamic force and moment coefficients. The aerodynamic coefficients are computed

using Eq. (2.92 ) and the moment coefficients are computed using Eq. (2.93 ). The reference

area, Aref , is selected as the projected area of the shape on the y-z plane. For sphere-

cone shapes, this area is typically circular. The reference length, lref , is selected to be the

maximum span of the shape in the x-direction.


−CA
CY

−CN

 = 1
Aref

∫∫
S
Cp


n̂T x̂

n̂T ŷ

n̂T ẑ

 dA (2.92)


Cl

Cm

Cn

 = 1
Aref lref

∫∫
S
Cp


(~r × ~n)T x̂

(~r × ~n)T ŷ

(~r × ~n)T ẑ

 dA (2.93)

The fourth step is the superposition of shapes to form the aeroshell. Due to varying sizes

of each shape, the aerodynamic coefficients and moments are scaled using a common reference

area and length. For a sphere-cone, the common reference area and length is assumed to be

the overall sphere-cone reference area and overall sphere-cone span, respectively.

The fifth step is the transformation of body-frame aerodynamic coefficients to the wind-

frame and simplification of the analytic equations. This step is not explicitly utilized by

Grant in his work. This step is intended to link the analytical expressions obtained from

the Newtonian aerodynamic model to the formulation of aerocapture flight control laws.

The analytical results from Eq. (2.92 ) can be rotated to the wind-frame using the inverse

of Eq. (2.70 ). The resulting equations are non-linear and define the vehicle’s lift, drag, and

side-force coefficients as functions of the freestream conditions, via K , aeroshell geometry,

as well as angle of attack and side-slip angle. The latter terms may appear as trigonometric

terms in the aerodynamic equations. This makes it difficult to obtain closed-form control

laws for DFC, especially when root-solving an equation of the form A cos(α) +B sin(α) = 0

for α. For a sphere-cone, it is common for small angles about zero total angle of attack to

be commanded. At this reference point, a first-order and second-order Taylor Series approx-
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imation is done to simplify the non-linear expressions into simpler mathematical forms. The

accuracy of these approximations is explored.

Morphable Sphere-Cone

A morphable sphere-cone consists of a rigid hemispherical nose and a morphable conical

frustrum as shown in Figure 2.5 . The key difference from a traditional sphere-cone is that

the conical frustrum’s cone angle can change. A base cone angle, δc,base can be selected to

enable a smooth transition between the nose and frustrum; but, modifying the cone angle

from the base will lead to non-smooth transition. At the transition point, ωmax = 90°−δc,base.

This variant of the sphere-cone is envisioned for application on DMCV aerocapture vehicles

where modulating the cone angle from the base can allow for the vehicle ballistic coefficient

to change through the reduction in the vehicle drag coefficient and reference area. Due

to the morphing geometry, the aeroshell payload fairing is cylindrical. The aeroshell nose

radius is thereby constrained by the diameter of the cylinder, d, such that d = rn sin(ωmax).

During launch, the aeroshell stows into a compact form such δc = 0 and length of aeroshell is

rn (1 − cos(ωmax)) + S. A morphable sphere-cone has a constant conical frustrum diagonal

length, S, rather than a constant rc. This leads to the geometry being fully defined by S, d,

and δc,base.

A polar parameterization of the nose is utilized. Parameters include the elevation angle

in the x̂b − ẑb plane, which ranges from 0° to ωmax, and rotational angle in the ŷb − ẑb plane,

which ranges from 0° to 360°. Circular reference area of radius rn and reference length of

rn is assumed for the nose. A cylindrical parametrization of conical frustrum is utilized.

Parameters include the cross-sectional radius in the ŷb − ẑb, which ranges from rn sin(ωmax)

to rc, and rotational angle in the ŷb − ẑb plane, which ranges from 0° to 360°. Circular

reference area of radius rc is assumed for the frustrum. The reference length of the frustrum

is computed geometrically to be rn sin(ωmax)
tan(δc) . Superposition of the two shapes is done with

a circular base reference area of radius rc and base reference length equal to the reference

length of the frustrum plus rn (1 − cos(ωmax)). Note that rn and rc are both utilized to
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Figure 2.5. Morphable Sphere-Cone Shape Decomposition

provide a natural analogy to the rigid sphere-cone. Geometrical relations to d and S include

rn = d
sin(ωmax) and rc = S sin(δ) + rn sin(ωmax).

The resulting full non-linear analytical aerodynamic coefficient equations are shown in

Eq. (2.94 ), Eq. (2.95 ), and Eq. (2.96 ). For zero total angle of attack, CD is non zero. For

zero angle of attack, CL equals zero. Likewise for zero side-slip angle, CQ equals zeros. These

are simple sanity checks on the analytical expressions that produce results expected for an

axisymmetrical sphere-cone.

CD = K cos(α) cos(β)
64r2

c

[(
−2 cos(2δc)

(
6 cos2(α) cos(2β) + 3 cos(2α) − 1

)
+ cos(2(α− β))

+ cos(2(α + β)) + 2 cos(2α) + 2 cos(2β) + 10
) (

2r2
c − r2

n cos(2δc,base) − r2
n

)
+ 2r2

n cos2(δc,base)
(
2 cos2(α) cos(2β)(5 − 3 cos(2δc,base))

+ cos(2α)(5 − 3 cos(2δc,base)) + cos(2δc,base) + 9
)

− 16 tan(β) sin(2β)
(
cos2(δc)

(
−2r2

c + r2
n cos(2δc,base) + r2

n

)
− r2

n cos4(δc,base)
)

+ 16 tan(α) sin(2α) cos2(β)
(
cos2(δc)

(
2r2

c − r2
n cos(2δc,base) − r2

n

)
+ r2

n cos4(δc,base)
)]

(2.94)
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CL = K sin(α)
64r2

c

[
16 sin(2α) cot(α) cos2(β)

(
cos2(δc)

(
2r2

c − r2
n cos(2δc,base) − r2

n

)
+ r2

n cos4(δc,base)
)

−
(
−2 cos(2δc)

(
6 cos2(α) cos(2β) + 3 cos(2α) − 1

)
+ cos(2(α−β))

+ cos(2(α + β)) + 2 cos(2α) + 2 cos(2β) + 10
) (

2r2
c − r2

n cos(2δc,base) − r2
n

)
+ 2r2

n cos2(δc,base)
(
2 cos2(α) cos(2β)(5 − 3 cos(2δc,base))

+ cos(2α)(5 − 3 cos(2δc,base)) + cos(2δc,base) + 9
)]

(2.95)

CQ = K cos(α) sin(β)
64r2

c

[(
−2 cos(2δc)

(
6 cos2(α) cos(2β) + 3 cos(2α) − 1

)
+ cos(2(α− β))

+ cos(2(α + β)) + 2 cos(2α) + 2 cos(2β) + 10
) (

2r2
c − r2

n cos(2δc,base) − r2
n

)
+ 2r2

n cos2(δc,base)
(
2 cos2(α) cos(2β)(5 − 3 cos(2δc,base))

+ cos(2α)(5 − 3 cos(2δc,base)) + cos(2δc,base) + 9
)

+ 16 tan(α) sin(2α) cos2(β)
(
cos2(δc)

(
2r2

c − r2
n cos(2δc,base) − r2

n

)
+ r2

n cos4(δc,base)
)

+ 16 sin(2β) cot(β)
(
cos2(δc)

(
−2r2

c + r2
n cos(2δc,base) + r2

n

)
− r2

n cos4(δc,base)
)]

(2.96)

The resulting full non-linear analytical body-frame aerodynamic moment equations are

shown in Eq. (2.97 ), Eq. (2.98 ), and Eq. (2.99 ). As expected for an axisymmetrical sphere-

cone, the roll moment coefficient is zero. For zero angle of attack, Cm is zero. Likewise for

zero side-slip angle, Cn is zero.

(2.97)Cl = 0

(2.98)
Cm = K sin(2α) cos2(β) cot(δc)

24r2
c (cot(δc)(rc − rn cos(δc,base)) + rn(− sin(δc,base)) + rn)(rc

− rn cos(δc,base))
(
6rc cos(2δc)(rc + rn cos(δc,base))

− 2
(
r2
c + rcrn cos(δc,base) + 2r2

n cos(2δc,base) + 2r2
n

))

Cn = K cos(α) sin(2β) cot(δc)
12r2

c (cot(δc)(rc − rn cos(δc,base)) + rn(− sin(δc,base)) + rn)(rc − rn cos(δc,base))
(
r2
c

− 3rc cos(2δc)(rc + rn cos(δc,base)) + rcrn cos(δc,base) + 2r2
n cos(2δc,base) + 2r2

n

)
(2.99)
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The pitching stability derivative can be computed by taking the partial of Eq. (2.98 )

with respect to α. The yawing stability derivative can be computed by taking the partial

of Eq. (2.99 ) with respect to β. The roll stability derivative can be computed by taking

the partial of Eq. (2.97 ) with respect to β. However do so would be trivial. The resulting

pitching and yawing stability derivatives are shown in Eq. (2.100 ) and Eq. (2.101 ).

(2.100)
Cmα = K cos(2α) cos2(β) cot(δc)

12r2
c (cot(δc)(rc − rn cos(δc,base)) + rn(− sin(δc,base)) + rn)(rc

− rn cos(δc,base))
(
6rc cos(2δc)(rc + rn cos(δc,base))

− 2
(
r2
c + rcrn cos(δc,base) + 2r2

n cos(2δc,base) + 2r2
n

))

Cnβ = K cos(α) cos(2β) cot(δc)
6r2

c (cot(δc)(rc − rn cos(δc,base)) + rn(− sin(δc,base)) + rn)(rc − rn cos(δc,base))
(
r2
c

− 3rc cos(2δc)(rc + rn cos(δc,base)) + rcrn cos(δc,base) + 2r2
n cos(2δc,base) + 2r2

n

)
(2.101)

The ability of a morphable sphere-cone to modulate ballistic coefficient can be numerically

simulated using the analytical Newtonian aerodynamic solutions. To validate the solutions,

the Configuration Based Aerodynamics (CBAERO) tool is utilized [82 ]. CBAERO is a

widely-used software for conceptual vehicle aero-thermodynamic analysis. It utilizes a panel

method approach for computation of pressure distribution over a gridded surface mesh of

the aeroshell geometry. The validation process utilizing CBAERO is identical to the one

outlined by Grant [81 ]. CAD geometries of the aeroshell at each deflected cone angle is

produced and is subsequently meshed for each CBAERO run.

A conceptual morphable sphere-cone geometry is assumed such that δc,base = 70°, rn =

5.848m, and S = 3.5m. The value for K is assumed to be 2 for illustrative purposes. The

total angle of attack is assumed to be zero degrees to emulate ballistic flight. Using Eq. (2.94 )

to obtain CD and the geometrical relationship between rc and S to obtain Aref , the ballistic

coefficient can be computed as a function of δc. The ballistic coefficient ratio is assumed to

be defined as the ballistic coefficient divided by the ballistic coefficient at δc,base. Figure 2.6 

depicts the ballistic coefficient ratio and ballistic coefficient trends for modulation of the

aeroshell cone angle. The analytical solutions are shown to be in well agreement with the

76



CBAERO runs. Trends indicate a quadratic growth in BCR and ballistic coefficient with

reductions in cone angle.

Figure 2.6. Morphable sphere-cone ballistic flight validation

With the analytical model validated, vehicle design trade studies can be conducted.

Given a prescribed cone angle bounds, the control capability of a ballistic trajectory can

be influenced by the geometrical form-factor of the morphable sphere-cone. Launch vehicle

payload fairing constraints impose constraints on the geometry of the sphere-cone. The

conical frustrum diagonal length influences the stowed length of the aeroshell where this

stowed length must conform to the maximum value specified by the fairing constraint. Due

to the lack of a backshell, the satellite payload must be housed inside of the cylindrical

payload fairing. The cylinder’s diameter, d, is influenced by the form-factor of the satellite.

Commonly, the satellite’s antenna is the largest sized component and must be contained

within the aeroshell. Consequently, d must be properly sized to allow for proper stowage.

Different satellite classes may utilize differently sized antennas. Discovery-class satellites

delivered to orbit may have antennas with diameters greater than 1m. Small Satellites
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delivered to orbit may have antennas with diameters less than 1m. Figure 2.7 and Figure 2.8 

depict the morphable sphere-cone design trade space for Satellite and SmallSat payloads.

Figure 2.7. Ballistic Coefficient Ratio control capability for different mor-
phable sphere-cone geometries housing Satellite-class payloads

Figure 2.8. Ballistic Coefficient Ratio control capability for different mor-
phable sphere-cone geometries housing SmallSat-class payloads
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Despite having different values for S and d, both sets of data produce nearly identical

trends and results. For a given value of S and cone angle, decreasing d increases the BCR

capability. Similarly for a given value of d and cone angle, increasing S increases the BCR

capability. This trend suggests the largest BCR values can be achieved by making the

morphable sphere-cone more slender through reduction in nose radius and increase in the

overall deflected length of the aeroshell. A caveat to the increase in BCR is the potential

increase in aerodynamic heating. Subsequently, the TPS capability utilized by the aeroshell

may cap the achievable BCR.

Rigid Sphere-Cone

The geometrical formulation of a rigid sphere-cone is nearly identical to a morphable

sphere-cone. The only difference is δc,base = δc. This leads to a smooth transition between

the hemispherical blunt nose and conical frustrum as shown in Figure 2.9 . Overall, the

sphere-cone geometry can be fully defined by rc, rn, and δc.

The application of Newtonian aerodynamics methods yields identical analytical solutions

for the aerodynamic coefficient, moment, and stability derivative equations as the morphable

aeroshell solutions with the substitution δc,base = δc. Using the full non-linear wind-frame

aerodynamics, a first and second-order Taylor Series approximation is done about zero total

angle of attack. The resulting expressions are shown in Eq. (2.102 ) and Eq.(2.103 ). The

second-order model is identical to the first-order model except for CD, which is quadratic

with respect to α and β. The first-order model produces CD that is not an explicit function

of α and β while producing CL to be a linear function of α as well as CQ to be a linear

function of β.

CD = K

16r2
c

(−
(
3α2 + 3β2 − 1

) (
4 cos(2δc)

(
r2
n − 2r2

c

)
+ r2

n cos(4δc)
)

+ 8r2
c − 3r2

n

(
3α2 + 3β2 − 1

)
)

CL = −αK

8r2
c

(
4 cos(2δc)

(
r2
n − 2r2

c

)
+ r2

n(cos(4δc) + 3)
)

CQ = βK

8r2
c

(
4 cos(2δc)

(
r2
n − 2r2

c

)
+ r2

n(cos(4δc) + 3)
)

(2.102)
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Figure 2.9. Rigid Sphere-Cone Shape Decomposition

CD = K

16r2
c

(
4 cos(2δc)

(
r2
n − 2r2

c

)
+ 8r2

c + r2
n cos(4δc) + 3r2

n

)
CL = −αK

8r2
c

(
4 cos(2δc)

(
r2
n − 2r2

c

)
+ r2

n(cos(4δc) + 3)
)

CQ = βK

8r2
c

(
4 cos(2δc)

(
r2
n − 2r2

c

)
+ r2

n(cos(4δc) + 3)
)

(2.103)

The accuracy of the analytic Newtonian models can be compared numerically to a

higher-fidelity aerodynamic model. An MSL-derived aeroshell geometry is assumed such

that δc = 70°, rn = 1.125m, and rc = 2.25m. The MSL aerodatabase is utilized as the

high-fidelity aerodynamic model [83 ]. The aerodatabase contains static hypersonic and su-

personic aerodynamic coefficient data for a wide range of Mach numbers and total angles of

attack. The continuum data is generated using the Langley Aerothermal Upwind Relaxation

Algorithm (LAURA) viscous CFD code. The aerodatabase is queried for a wide range of
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angles of attack and side-slip angles at a constant Mach number of 20. For this value and

specific gas constant of Mars atmosphere of 1.3, Eq. (2.89 ) provides K = 1.89.

Figure 2.10 provides a comparison of the aerodynamic coefficients and Figure 2.11 pro-

vides the corresponding coefficient percent error from the MSL aerodatabase solution. For

zero side-slip angle, the full analytic model for CL agrees well within 10% of the aerodatabase

solution. The linear and 2nd order models for CL generally agree well within 10% of the

aerodatabase solution up until ±15°. For angles of attack past this point, the two models

tend to overestimate CL. At ±30°, both models overestimate CL by 50%. For zero angle

of attack, all three models for CQ agree well within 10% of the aerodatabase solution for

side-slip angles as high as ±10°. For zero side-slip angle, varying trends can be seen for

CD and L/D. The analytical solutions underestimate CD for α near zero. This can be at-

tributed to the viscous drag contributions not captured by the inviscid Newtonian solutions.

Nevertheless, the full model generally agrees well within 5% of the aerodatabase solution.

The linear model accuracy for CD significantly degrades the further moved away from zero

angle of attack. At ±10°, ±20°, and ±30°, the error is within 5%, 20%, and 50%, respec-

tively. On the contrary, the 2nd order model generally agrees well with the aerodatabase

with the error within 5% for the range of angles of attack simulated. The consequence of

the inaccuracy with the linear model is primarily an underestimation of the vehicle ballistic

coefficient. Despite this inaccuracy, the linear model agree very well with the aerodatabase

with regards to L/D for the range of angles of attack simulated. This trend can also be seen

with the full model. The 2nd order model agrees well with the aerodatabase up until ±15°.

Angles of attack past this point lead to the 2nd order model overestimating L/D with an

error of 50% at ±30°.

Figure 2.12 provides an extension of the aerodynamic coefficient profiles to the complete

range of angles of attack and side-slip angles. Non-zero side-slip introduces non-linearity

into the CL contours that increase for large angles of attack. Similar observation can be

seen in the CQ contours where non-linearity increases for large side-slip angles. The 2nd

order model agrees well with the aerodatabase with regards to CD over the entire simulated

domain. Likewise, the linear model agrees well with the aerodatabase with regards to L/D.
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Figure 2.10. Comparison of analytical aerodynamic profiles for MSL-derived aeroshell

Figure 2.11. Percent Error of analytical aerodynamic profiles from MSL aerodatabase

The full model can be shown to provide an excellent agreement for the vehicle aerodynamic

coefficients as compared to the aerodatabase solution.

In summary, analytical aerodynamics for a sphere-cone aeroshell can be ascertained us-

ing Newtonian aerodynamic theory. As compared to higher-fidelity aerodynamic models,

the inviscid analytical solutions provide a sufficient approximation to the hypersonic aero-
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Figure 2.12. Comparison of analytical aerodynamic contours for MSL-derived aeroshell

dynamics. Simplifications to the resulting non-linear analytical expressions allows for 1st

and 2nd order expressions, which are mathematically easier to manipulate, to be generated.

Both models provide good estimations of CQ for a wide range of angles of attack but small

range of side-slip angles. The 2nd order model provides a much better representation of the

drag coefficient but a poorer representation of the L/D as compared to the simplistic 1st

order model. Achieving proper estimation of vehicle L/D is primarily important for lifting

flight control. Consequently, the application of a linear aerodynamics model for formulating

DFC flight control laws is suitable.

2.1.4 Planetary Atmospheres

The performance and robustness of aerocapture is planet-dependent. Each planetary

destination has a distinct atmosphere and gravity well that can affect the outcome of the

orbit insertion. In this section, the planetary geodesy and atmosphere of potential planetary

destinations for aerocapture are introduced. The planetary destinations highlighted include

Venus, Earth, Mars, Titan, and Neptune.

The gravitational well of each planetary destination is unique. The level of fidelity of each

destination will depend on the current understanding. Commonly, a zonal harmonic gravity
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model is used as an engineering model. As most planetary bodies are not perfect spheres,

ellipsoidal representations are utilized. The zonal harmonics are modeled using Legendre

polynomials. The polynomials are utilized in the formulation of the gravitational potential.

Eq. (2.45 ) provided a sample mathematical construct of the gravitational potential with

utilization of the 2nd order Legendre polynomial. This truncates the zonal terms up to the

J2 term. This model neglects potential tesseral terms are they are generally much smaller

than the J2 term. Table 2.1 shows a comparison of the gravitational model parameters

between each planetary destination.

Table 2.1. Comparison of planetary gravity models. Values obtained from
NASA Planetary Fact Sheets (https://nssdc.gsfc.nasa.gov/planetary/planet-
fact.html)

Venus Earth Mars Titan Neptune
Gravitational Parameter, km3/s2 324859 398600 42828 8980 6836527
J2 zonal term, nd 4.5E-06 1.1E-03 2.0E-03 3.2E-05 3.4E-03
Rotational Rate, rad/s 3.0E-07 7.3E-05 7.1E-05 4.6E-06 1.1E-04
Equatorial Radius, km 6052 6378 3396 2575 24764
Polar Radius, km 6052 6357 3376 2575 24341
Escape Velocity, km/s 10.4 11.2 5.0 2.6 23.5

Both Venus and Earth have similar gravitational wells as indicated by the gravitational

parameter. This results in similar escape velocities for each planet, which for the same entry

velocity indicates similar dissipated ∆V requirements needed for elliptical orbit insertion.

Moreover, Venus has a much slower rotation rate, much smaller J2 zonal term, and has a

more spherical shape as compared to Earth. As compared to Earth, Mars has a much weaker

gravity well and smaller escape velocity but has similar J2 zonal term and rotation rate. Due

to its diminutive mass, Titan has a weak gravity well. This leads to a very small escape

velocity. Size-wise, Titan is somewhat comparable to Mars being 800 km smaller in radius.

Like Venus, Titan is nearly spherical with a small J2 zonal term and slow rotation rate.

The sheer mass of the ice-giant Neptune leaves it in a category of its own. The immense

gravity well yields significantly higher escape velocity. Out of the five planetary destinations,

Neptune exhibits the fastest rotation completing 1 revolution in 16 hrs. The J2 zonal term

of Neptune is comparable in magnitude to Earth and Mars.
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The atmospheres of each planetary destination are unique as well. Table 2.2 highlights

the atmospheric chemical composition comparison between each planetary atmosphere.

Table 2.2. Comparison of planetary atmospheres. Values obtained from
NASA Planetary Fact Sheets (https://nssdc.gsfc.nasa.gov/planetary/planet-
fact.html)

Venus Earth Mars Titan Neptune

Atmosphere Composition 96.5% CO2
3.5% N2

78.1% N2
21.0% O2

95.1% CO2
2.6% N2

94.2% N2
5.6% CH4

80% H2
19% He

Both Venus and Mars are carbon dioxide-rich atmospheres with small amounts of nitro-

gen. Earth and Titan are nitrogen-rich atmosphere with Earth’s having a significant con-

tribution due to oxygen. As an ice-giant, Neptune contains a hydrogen-based atmosphere

with significant contribution due to helium. The atmospheric properties of each planet are

modeled using the Global Reference Atmospheric Models (GRAM). The GRAM models are

engineering-level atmospheric models that have been developed and utilized by NASA for

aerocapture studies [84 ]. Earth-GRAM is developed for Earth using a mixture of datasets

from satellite, rocket, balloon and remote sensing data [85 ]. Mars-GRAM is developed using

both the NASA Ames Mars General Circulation Model and the University of Michigan Mars

Thermospheric General Circulation Model, and has been validated using radio science flight

data [86 ]. Venus-GRAM is developed on the Venus International Reference Atmosphere,

which incorporate flight data obtained from atmospheric probes and in-orbit measurements

[87 ]. Titan-GRAM is developed using engineering model profile envelopes developed by Yelle

et. al [88 ]. Despite the existence of current flight data from the Cassini/Huygens mission,

the current Titan-GRAM version does not incorporate the data. Neptune-GRAM is a basic

engineering model derived from Voyager observations and limited Earth-based measurements

[89 ].

Figure 2.13 provides a comparison of the nominal atmospheric profiles generated by the

GRAM models for each planetary destination. The density profiles illustrate the uniqueness

of each planetary atmosphere. At Venus, the density rapidly increases with small reduc-

tions in altitude. Conversely, Mars exhibits a slow increase despite having similar chemical

composition as Venus. Titan and Neptune both have dense atmosphere that have sufficient
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density at much higher altitudes as that of Venus, Earth, and Mars. The Yelle maximum

and minimum profiles are also plotted for both planets. These profiles are meant to exhibit

the range of uncertainty in each planet’s nominal atmospheric profile. As Figure 2.13 shows,

the uncertainty is the most pronounced at high altitudes and gradually tapers down as the

altitude decreases.

Figure 2.13. Sample nominal atmospheric density profiles generated by
GRAM models for each planetary destination. Altitude range selected from
atmospheric interface to surface.

Another important quantity that can be derived from the GRAM models is density

scale height. The scale height is a metric utilizes to assess how much altitude is needed to

change the density by a factor of e in an isothermal atmosphere. The smaller the number,

the faster the atmosphere density changes. Commonly, scale height is used in exponential

density models. From hydrostatic equilibrium and a constant temperature atmosphere, an

analytical density model can be derived of the form shown in Eq. (2.104 ) where ρ0 is the

reference density, h0 is the reference altitude, and Hρ is the density scale height. With this

model, density ρ becomes a function of altitude h.

ρ = ρ0 exp −(h− h0)
Hρ

(2.104)
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Despite the advantages of being a continuous-function, the model’s accuracy is limited

by the scale height chosen. In existing APC guidance algorithms, a constant scale height

assumption along with an exponential atmospheric model is commonly made. Figure 2.14 

provides a sample density scale height profile computed from nominal atmospheric profiles

using each GRAM model. For certain altitudes and planets, the constant scale height as-

sumption might be adequate. But, the assumption in general is not accurate. The potential

consequence of an incorrect scale height can result in an overestimation of the atmosphere

leading to insufficient orbital energy depletion.

Figure 2.14. Sample nominal atmospheric density scale height profiles gen-
erated by GRAM models for each planetary destination.

Atmospheric uncertainty is an important environmental perturbation that can affect

both the performance and robustness of aerocapture. Figure 2.15 provides a comparison

of sample atmospheric uncertainties generated by each GRAM model. The uncertainties

at Venus, Earth, and Mars exhibit a tornado-like structure with large density perturbation

at high altitudes that taper down with decreasing altitude. The relative uncertainty in

atmospheric knowledge of Titan and Neptune, as compared to Venus, Earth, and Mars,

adds an additional risk to aerocapture performance that must be addressed. Figure 2.15 

also shows the uncertainties applied to the Yelle minimum and maximum profiles. For both

destinations, the potential density perturbations can be as high as 10 times mean profile.
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Figure 2.15. Atmospheric uncertainty simulated using GRAM models for
each planetary destination

In addition to atmospheric perturbations, atmospheric winds can potentially impact the

vehicle during atmospheric flight. Figure 2.16 shows a sample set of atmospheric winds

generated by each GRAM model. The wind speeds significantly vary for each planetary

destination. At Mars and Earth, the winds are relatively small in magnitude and are expected

to be much smaller than the velocity of the vehicle. At Venus, Titan, and Neptune, the winds

can potentially be of excess of 100 m/s.
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Figure 2.16. Sample atmospheric wind profiles generated by GRAM models
for each planetary destination.

2.1.5 Aerothermodynamic Heating and Aerodynamic Loading

In this section, models for estimating aerothermodynamic heating and aerodynamic load-

ing are presented.

Aerothermodynamic Heating

Heat transfer is an important physical phenomena that occurs during aerocapture. Dur-

ing hypersonic flight, the majority of the trajectory’s energy is dissipated through aerother-

modynamic heat transfer. The heat transfer from the flowfield to the vehicle is predominantly

convective and radiative [90 ]. The aeroshell’s thermal protection system must be designed

with the proper material to withstand the peak heat flux while being thick enough to with-

stand the integrated heat load over the duration of the atmospheric pass. The selection of

vehicle shape and TPS material can affect certain aspects of the heating. Slender vehicles

tend to have higher L/D and larger convective heating than blunt vehicles. The strong

detached shock waves associated with blunt bodies significantly dissipate the flowfield en-

ergy. This results in an increase in the chemical energy of gas directly in front of the vehicle

geometry. Although most of the energy is convected to the vehicle wake, some energy is
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convected to the vehicle surface. The increase in chemical energy may disassociate and ion-

ize the gas leading to radiation being emitted. The heat flux imparted on the TPS material

may produce chemical reactions through the form of ablation yielding catalytic heating.

Furthermore, boundary layer interaction with the shock wave and potentially shock-shock

interactions produced by protruding aerosurfaces may serve to increase the heating imparted

on the vehicle. The assessment of aerocapture aerothermodynamic heating is best done using

high-fidelity CFD codes. However similar to the aerodynamic CFD codes, achieving solu-

tions over the entire trajectory is time and computationally expensive. Fortunately, some

engineering methods exists that allow for a simplified assessment of the heating environment.

Convective heat transfer models assess the heat flux at the stagnation point of a hemi-

spherical nose of radius rn. Fay and Riddell [91 ] developed analytic expressions using bound-

ary layer and stagnation point theories. This model consisted of flowfield properties that are

not generally known without a full analytic solution of the flowfield. Both Chapman [92 ] as

well as Sutton and Graves [93 ] developed analytical models relating stagnation point convec-

tive heat flux of a fully catalytic wall to freestream and geometrical properties. The latter

model, shown mathematically in Eq. (2.105 ), has been widely used in conceptual design for

estimating convective heat flux, q̇c. The Sutton-Graves constant, k, varies for each planetary

destination. The values assumed in this dissertation are shown in Table 2.3 . The model

indicates that for the same freestream conditions, the convective heat flux increases as the

nose radius of the aeroshell decreases. Likewise, the heat flux increases with the square root

of density but increases with cube of velocity.

q̇c = k
(
ρ

rn

) 1
2
V 3 (2.105)

Table 2.3. Sutton-Graves Constants for Convective Heat Flux Model
Venus Earth Mars Titan Neptune

k, kg0.5

m
1.986e-4 1.74153e-4 1.898e-4 1.7407e-4 6.79e-5

Radiative heat transfer models similarly assess the heat flux at the stagnation point

of a hemispheric nose. However, the engineering models are more complicated due to the
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associated gas chemistry. A common model utilized in radiative heat flux estimates is the

Tauber-Sutton model [94 ]. The model consists of the mathematical form shown in Eq. (2.106 )

where q̇r is the stagnation point radiative heat flux, C is the Tauber-Sutton constant that

depends on the planetary atmosphere, f(V ) is tabulated data that depends on velocity, and

a and b are functions that depends on density and velocity. The model indicates a linear

relationship between q̇r and rn for a values greater than zero. Larger nose radii may increase

the radiative heat flux imparted on the aeroshell. Nevertheless, the challenge with utilizing

this model is its dependence on tabulated and empirical model fits to limited experimental

data. This in turn limits its applicability for utilization on aerocapture trajectories where

no experimental data is present as well as its range of validity for given experimental data.

Better calculations can be achieved using CFD codes beyond the scope of this dissertation.

As a result, radiative heating calculations are omitted in this dissertation.

q̇r = Cranρ
bf(V ) (2.106)

The total integrated heat load imparted on the vehicle can be assessed by numerically

integrating the heat flux over the entire trajectory. The stagnation point is utilized to assess

heat load. Neglecting radiative heat flux, the integrated heat load, J , can be estimated using

Eq. (2.107 ) where q̇ is the total stagnation point heat flux.

J =
∫ tf

t0
q̇ dt (2.107)

Aerodynamic Loading

Aerodynamic loading pertains to the sensed aerodynamic forces experienced during at-

mospheric flight. The load factor, n, can be calculated using Eq. (2.108 ) where the root sum

square of the sensed lift, aL, drag, aD, and side-force, aQ, accelerations as expressed in Earth

g’s.

n =
√
a2
L + a2

D + a2
Q (2.108)
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For cases where no side-force is present, Eq. (2.108 ) can be written as a function of BC

and L/D as shown in Eq. (2.109 ) where g0 is Earth sea-level gravitational acceleration. In

this form, it can be seen that the load factor increases with increasing vehicle L/D and

decreases with increasing vehicle BC.

n = ρv2

2BCg0

√(
L

D

)2
+ 1 (2.109)

2.2 Optimal Aerocapture

This section provides the derivation and numerical solution of fuel-minimizing flight con-

trol laws pertaining to bank angle modulation, direct force control, and drag modulation.

2.2.1 Problem formulation

Cost Functional Definition

To ascertain the ∆V-minimizing flight control laws, the cost functional must first be

defined. From the aerocapture problem depicted in Figure 1.1 , the cost functional, P , can

be defined in many ways. Existing cost functional formulations for aerocapture guidance

have almost entirely minimized the apoapsis radius error using a form shown by Eq. (2.110 )

where ra is the post aerocapture apoapsis radius and rta is the target apoapsis radius.

P =
∣∣∣ra − rta

∣∣∣ (2.110)

A limitation to this approach is the periapsis raise maneuver cost remains unchecked,

which can be expensive depending on the planetary destination and target periapsis radius,

rtp. An alternative approach is to explicitly incorporate the periapsis raise maneuver into the

cost function. The periapsis raise maneuver, ∆V1 in Eq. (2.111 ), can be modeled using two-

body orbital mechanics where the maneuver depends on ra, rta, rtp, as well as the semi-major

axis, a, and central body gravitational constant, µ.

|∆V 1| =
√

2µ
∣∣∣∣∣∣
√√√√ 1
ra

− 1
ra + rtp

−
√

1
ra

− 1
2a

∣∣∣∣∣∣
 (2.111)
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The apoapsis correction maneuver, ∆V2 in Eq. (2.112 ), can also be similarly defined.

Note that when ra = rta the apoapsis correction maneuver is zero. This indicates that if

the the apoapsis radius boundary condition is not explicitly enforced, then the apoapsis

correction maneuver should be incorporated into the cost function.

|∆V 2| =
√

2µ
∣∣∣∣∣∣
√√√√ 1
rtp

− 1
rtp + rta

−
√√√√ 1
rtp

− 1
ra + rtp

∣∣∣∣∣∣
 (2.112)

To visualize the orbit insertion cost at each planetary destination, a parametric evaluation

of Eq. (2.111 ), Eq. (2.112 ), and Eq. (2.114 ) is conducted over a range of different inertial

exit flight path angles and velocities. Figure 2.17 , Figure 2.18 , Figure 2.19 , Figure 2.20 , and

Figure 2.21 depict the trade space for Venus, Earth, Mars, Titan, and Neptune respectively.

In each figure the targeted apoapsis contour, denoted by the red dashed line, is superimposed

on the in-plane ∆V and periapsis altitude subplots. These contours are representative of

what the current state-of-the-art guidance optimization algorithms seek to achieve. Despite

achieving the proper apoapsis, the resulting exit conditions may achieve larger in-plane

∆V costs associated with more negative post-aerocapture periapsis altitudes. The resulting

penalty can vary between each planet. At Venus, the in-plane ∆V can increase by as much

as 300 m/s with respect to the theoretical minimum value. Similar calculations show an

increase by as much as 220 m/s, 100 m/s, 140 m/s, and 90 m/s for Earth, Mars, Titan, and

Neptune, respectively. Of course, some exit conditions may not be feasible. The theoretical

minimum for each planet arises at a flight path angle of zero, which indicates the exit state

is at periapsis. Since the in-bound hyperbolic trajectory must fly through the atmosphere,

the subsequent periapsis altitude must be inside of the atmosphere making achieving this

theoretical minimum solution physically impossible. Moreover, lower in-plane ∆V/higher

periapsis altitudes can be achieved on the red contours with smaller exit flight angles. As

a result, the aerocapture guidance algorithm must seek to remain on these contours while

ensuring the post-aerocapture periapsis altitude is as positive as possible.

Furthermore, the additional contours in the figures below also show the sensitivity of the

orbit insertion performance to deviations from the superimposed red dashed contour. The

addition of trajectory dispersions can cause these small deviations to arise. For the same
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exit flight path angle, small errors in the orbital energy depletion (e.g. exit velocity) can

potentially cause larger errors in the post-aerocapture apoapsis altitude. Similar observation

can be seen for small errors in exit flight path angle for a given exit velocity. Despite the

potential apoapsis altitude errors on the order of a few hundreds of km (with the exception

of Neptune which itself is a few tens of thousands of km), the resulting in-plane ∆V cost (e.g.

apoapsis correction cost) may increase on the order of a few tens of m/s. On the contrary,

a change in a few hundreds of km in periapsis altitude will lead to a substantial increase in

the in-plane ∆V cost (e.g. periapsis raise cost).

Figure 2.17. Orbit insertion trade space for Venus aerocapture into a 300
km circular orbit
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Figure 2.18. Orbit insertion trade space for Earth aerocapture into a 500 km
circular orbit

Figure 2.19. Orbit insertion trade space for Mars aerocapture into a 400 km
circular orbit
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Figure 2.20. Orbit insertion trade space for Titan aerocapture into a 1700
km circular orbit

Figure 2.21. Orbit insertion trade space for Neptune aerocapture into a 3986
x 430000 km orbit
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In the optimal aerocapture formulation derived in this section, the apoapsis radius bound-

ary condition is enforced in the problem formulation. Formally, the formulation seeks the

optimal flight control law that minimizes the absolute value of the propulsive periapsis raise

maneuver with a cost functional defined by Eq. (2.113 ).

P = |∆V 1| (2.113)

After exiting the atmosphere, the governing flight dynamics of the vehicle can be modeled

using two-body orbital mechanics. Subsequently, post-aerocapture orbital parameters can be

mapped to the inertial state vector at atmospheric exit. The semi-major axis and apoapsis

radius are functions of the position vector magnitude, r, inertial flight path angle, γI , and

inertial velocity vector magnitude, vI , as computed at atmospheric exit.

a = µ
2µ
r

− vI2 (2.114)

ra = a

1 +

√√√√1 − (vI r cos (γI))2

µa

 (2.115)

The atmospheric flight dynamics of the aerocapture vehicle can be modeled using the

3DOF dynamics for flight relative to an ellipsoidal rotating planet. These differential equa-

tions model the evolution of the planet-relative position and velocity vector from atmospheric

entry to exit. These two vectors can be parameterized by a set of six generalized coordi-

nates where r is the position vector magnitude, θ is the planeto-centric longitude, φ is the

planeto-centric latitude, V is the planet-relative velocity vector magnitude, γ is the flight

path angle of the planet-relative velocity vector, and ψ is the azimuth angle of the planet-

relative velocity vector.

~x =
[
r θ φ V γ ψ

]T
(2.116)

The state vector equations of motion can be written in the form ~̇x = f(~x, ~u, t) where ~u is

the flight control vector and t is time. The coupled differential equations for the state vector

97



components can be found in Eq. (2.39 ), Eq. (2.40 ), Eq. (2.41 ), Eq. (2.57 ), Eq. (2.58 ), and

Eq. (2.59 ). The equations include vehicle aerodynamics and destination dependent terms.

The wind-frame aerodynamic terms include lift, L, drag, D, and side-force, Q. Each term

depends on the atmospheric density, the freestream velocity, and the aerodynamic reference

area. The corresponding aerodynamic coefficients may depend on the Mach number, angle

of attack and side-slip angle.

L = 1
2ρV

2
∞ArefCL (M,α, β) (2.117)

D = 1
2ρV

2
∞ArefCD (M,α, β) (2.118)

Q = 1
2ρV

2
∞ArefCQ (M,α, β) (2.119)

In this analysis, a few assumptions are made regarding the aerodynamic and destination

dependent terms. The aerodynamic coefficients are assumed to come from the analytical

expressions introduced in the previous section. Due to the high orbital velocities associated

with aerocapture, the Mach Independence principle is applied to the vehicle aerodynamics.

This yields the aerodynamic coefficients as solely functions of angle of attack and side-

slip angle. The presence of winds are neglected such that V∞ ≈ V . Atmospheric density

is assumed to be a strong function of position only with the values calculated from the

nominal density profile produced by each planet respective GRAM model. A oblate gravity

model with zonal harmonics up to the J2 term is assumed. The model was introduced in the

previous section with the radial and latitudinal gravitational accelerations modeled using

Eq. (2.50 ) and Eq. (2.51 ).

Since the state vector is defined using planet-relative parameters and the cost functional

is defined using inertial parameters, conversion relations between the two are needed. From

Reference [66 ], the transformation from planet-relative to inertial coordinates are shown

in Eq. (2.120 ). The equations can be used for converting numerical integration result at

atmospheric exit to inertial coordinates for subsequent calculations of cost functional. Note
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that when the rotation rate of the planet approaches zero, then θI ≈ θ, vI ≈ v, γI ≈ γ, and

ψI ≈ ψ. This trend is leveraged in the bank angle formulation.

rI = r

θI = θ + ωt

ψI = ψ

vI =
√
v2 + 2ωrv cos γ cosψ cosφ+ (ωr cosφ)2

tan γI = v sin γ√
(v cos γ)2 + 2ωrv cos γ cosψ cosφ+ (ωr cosφ)2

tanψI = v cos γ sinψ
(v cos γ cosψ + ωr cosφ)

(2.120)

Conversely, from Reference [66 ], the transformation from inertial to planet-relative co-

ordinates are shown in Eq. (2.121 ). The equations can be used for converting atmospheric

entry state from an inbound hyperbolic trajectory to the initial conditions for numerical

integration of the planet-relative state vector.

r = rI

θ = θI − ωt

ψ = ψI

v =
√
v2
I − 2ωrIvI cos γI cosψI cosφI + (ωrI cosφI)2

tan γ = vI sin γI√
(vI cos γI)2 − 2ωrIvI cos γI cosψI cosφI + (ωrI cosφI)2

tanψ = vI cos γI sinψI
(vI cos γI cosψI − ωrI cosφI)

(2.121)

In addition to minimizing the in-plane ∆V at atmospheric exit, it might be desired to

enforce the orbital inclination. This can be enforced in the problem formulation as a terminal

constraint of the form shown in Eq. (2.122 ) where it is the targeted inclination.

i(~xexit) − it = 0 (2.122)
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The exit inclination, i(~xexit), can be computed using inertial state vector components as

shown in Eq. (2.123 ).

cos i = cosφI cosψI (2.123)

For circular target orbits the inclination correction maneuver, ∆V3, can be simply com-

puted using Eq. (2.124 ).

|∆V3| = 2
√
µ

rta
sin

(
|i− it|

2

)
(2.124)

For elliptical target orbits, the corresponding inclination correction burn is slightly more

complicated. Assuming burn at the line of nodes, ∆V3 can be computed using Eq. (2.125 )

where vN and γN are the orbital velocity and orbital flight path angle at line of nodes crossing

[95 ].

|∆V3| = 2vN cos(γN) sin
(

|i− it|
2

)
(2.125)

With the cost functional, state vector dynamics, and orbit insertion boundary constraints

defined, the next step is the application of optimal control theory. The theory is derived

from the application of calculus of variations to the optimal control problem. Its solutions,

which minimize the cost functional, are known as the Euler-Lagrange equations. The optimal

aerocapture control problem can be formulated as a two-point boundary value problem where

the initial states, ~x0, are prescribed, the terminal constraints, ~Ψ (~x (tf ) , tf ), are enforced, and

the evolution of the state with the control inputs are defined by the state dynamics, ~̇x. The

flight control(s) are explicitly bounded by upper and lower constraints. The mathematical

setup of a general inequality-constrained optimal control problem is shown below where the

cost functional, including terminal, ϕ (~x (tf ) , tf ), and path cost,
∫ tf
t0 L̃ (~x, ~u, t) dt, is defined

in Eq. (2.126 ), the state dynamics and initial state are defined in Eq. (2.128 ), the terminal

boundary constraints are defined in Eq. (2.129 ), and control vector component inequality

constraints are defined in Eq. (2.130 ). The initial time is fixed but the final time is free to
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vary. The objective is to obtain the optimal control time history, ~u∗ (t), that minimizes the

cost functional such that the imposed constraints are satisfied.

Minimize

P = ϕ (~x (tf ) , tf ) +
∫ tf

t0
L̃ (~x, ~u, t) dt (2.126)

Subject to:

t0 = 0, tf free (2.127)

~̇x = f (~x, ~u, t), ~x (t0) = ~x0 (2.128)

~Ψ (~x (tf ) , tf ) = 0 (2.129)

umini ≤ ui (t) ≤ umaxi , i = 1, . . . p (2.130)

Applying the mathematical definition of the optimal control problem to aerocapture

yields:
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Minimize

P = |∆V 1| (~x (tf ) , tf ) (2.131)

Subject to:

t0 = 0, tf free (2.132)

~̇x =
[
ṙ θ̇ φ̇ v̇ γ̇ ψ̇

]
, ~x (t0) =

[
r0 θ0 φ0 v0 γ0 ψ0

]
(2.133)

Ψ1 (~x (tf ) , tf ) = r(tf ) − rexit = 0 (2.134)

Ψ2 (~x (tf ) , tf ) = ra(~xf ) − rta = 0 (2.135)

Ψ3 (~x (tf ) , tf ) = i(~xf ) − it = 0 (2.136)

|σ|min≤ |σ|(t) ≤ |σ|max (2.137)

BCmin ≤ BC(t) ≤ BCmax (2.138)

αmin ≤ α(t) ≤ αmax, βmin ≤ β(t) ≤ βmax (2.139)

The first step in solving the problem is the definition of the Hamiltonian, H, which is

mathematically constructed using Eq. (2.140 ). In this equation the Lagrangian, L̃ (~x, ~u, t),

that appears in the path cost is summed with the state vector dynamics through the intro-

duction of Lagrange multipliers, ~λ.

H
(
~x, ~u,~λ, t

)
= L̃ (~x, ~u, t) + ~λTf (~x, ~u, t) (2.140)

The resulting Hamiltonian definition for the optimal aerocapture problem is shown in

Eq. (2.141 ).

H = λrṙ + λθθ̇ + λφφ̇+ λV V̇ (α, β,BC) + λγ γ̇ (σ, α, β,BC) + λψψ̇ (σ, α, β,BC) (2.141)
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The next step is to apply the Euler-Lagrange solutions to the optimal control problem

[96 ]. The first solution, as shown in Eq. (2.142 ), provides the algebraic differential equations

for the unknown Lagrange multipliers.

~̇λT = −∂H

∂~x
(2.142)

The differential equations for the Lagrange multipliers require initial conditions. They

can be obtained from applying the transversality condition. The condition is an algebraic

constraint based off the Hamiltonian and augmented terminal cost. The latter, defined in

Eq. (2.143 ), combines the terminal cost with the terminal constraints via additional constant

unknown multipliers, ~η [97 ].

~Φ (tf , ~xf ) = ϕ (~x (tf ) , tf ) + ~ηT ~Ψ (~x (tf ) , tf ) (2.143)

For a fixed initial time and free final time problem, the transversality condition takes

the form shown in Eq. (2.144 ). In order for the final time to vary, dtf cannot equal zero.

Consequently, the first enclosed term in Eq. (2.144 ) must equal zero. This provides the

necessary conditions for determining the final time. The advantage of this adjoined method

is that the incorporation of ~η allows for the terminal state vector to vary. This means that

d~xf cannot equal zero for all its components. This allows then for the second bracketed

term in Eq. (2.144 ) to be used directly in determining all of the initial conditions for the

Lagrange multiplier differential equations.

(
Hf + ∂ϕ

∂tf
+ ~ηT

∂Ψ
∂tf

)
dtf −

(
∂ϕ

∂~xf
+ ~ηT

∂Ψ
∂~xf

− ~λTf

)
d~xf = 0 (2.144)

If Eq. (2.130 ) were not enforced, then the second Euler-Lagrange solution, as shown in

Eq. (2.145 ), can be applied. This solution provides the optimal control laws for each control

variable.

∂H

∂~u
= 0 (2.145)
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With the explicit enforcement of bounded control, the optimal can be potentially as-

certained through the application of Pontryagin’s Minimum Principle [98 ]. The principle

assumes that the control vector ~u lies within the set U of m-dimensional Euclidean space

during time interval [t0, tf ] and is piecewise continuous. In other words, the control vector

lies within the imposed bounds during the time interval. If the bounded optimal control,

~u∗(t), causes the cost functional to be minimized and the problem is normal such that the

co-state vector, ~λ(t), does not equal the zero vector over a finite time interval in [t0, tf ], then

Pontryagin’s Minimum Principle mathematically states that

H[t, ~x∗(t), ~u∗(t), ~λ(t)] ≤ H[t, ~x∗(t), ~u(t), ~λ(t)] (2.146)

Eq. (2.146 ) illustrates the concept that the Hamiltonian, as computed on the optimal

trajectory ~x∗, must be minimized by the control input. In applying the principle, assume

that the Hamiltonian can be written into the compact form as shown in Eq. (2.147 ). Without

loss of generality, assume a single control input. In this form, the Hamiltonian is linear with

respect to the control input and H1 is known as the switch function.

H = H0 +H1u1 (2.147)

Since H0 is not directly influenced by control, the control input must be determined based

off the sign of the switching function. Applying Pontryagin’s Minimum Principle leads to

Eq. (2.148 ). The case in which the switching function is zero for a finite time period is

known as a singular arc. If shown to not exist, then the optimal control law resembles a

“bang-bang” structure in which the control switches from one control bound to the other as

controlled by its respective switching function. This result can be extended to more control

inputs if they can be put into the form of Eq. (2.147 )

u∗
1 =



u1,min, if H1 > 0

u1,max, if H1 < 0

∈ [u1,min, u1,max] , if H1 ≡ 0 in [t1, t2] ⊂ [t0, tf ]

(2.148)
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2.2.2 Regularized Optimal Control

Although the “bang-bang” optimal control law may appear to be simplistic, it is in gen-

eral difficult to obtain numerical solutions due to the lack of knowledge on the number of

control switches and numerical values for the switching function(s). In order to alleviate the

challenges in obtaining a potentially feasible optimal control law for bounded control, a regu-

larized optimal aerocapture guidance problem is formulated. The methodology reformulates

the problem through introduction of saturation functions and control regularization.

Saturation Functions

The motivation for investigating the application of saturation functions for handing con-

trol bounds comes from [99 ]. The objective of the control saturation function is to replace

the two-sided control inequality constraint with a single equality constraint that implicitly

bounds the control. The resulting control saturation function is shown in Eq. (2.149 ) where

wi is the saturation control. The saturation control implicitly bounds the actual control as

Ξi→umaxi for wi→∞ and Ξi→umini for wi→ − ∞.

Ξi (wi) = umaxi − umaxi − umini

1 + exp
(

4wi
umaxi −umini

) (2.149)

This smooth and monotonically increasing function allows for the two-sided inequality

constraint to be converted into a single equality constraint as shown in Eq. (2.150 ).

gi (ui, wi) = ui − Ξi (wi) = 0 (2.150)

Enforcing the equality constraint is done by adjoining it to the Hamiltonian via additional

unknown Lagrange multipliers πi. This allows for an unconstrained optimal control solu-

tion to be formulated; consequently, the optimal control solution from the Euler-Lagrange

equations can utilized. Applying the equation yields Eq. (2.151 ) in addition to Eq. (2.145 ).
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These two equations along with Eq. (2.150 ) provide the algebraic expressions for obtaining

ui, wi, and πi.

∂H

∂wi
= 0 (2.151)

Control Regularization

The original cost functional in Eq. (2.126 ) does not depend on the saturation control

vector, ~w. As a result, a two-norm control regulator cost is added to the cost functional

as shown in Eq. (2.152 ). Furthermore, to minimize the original control effort, the original

control, ~u, is added to the regulator cost. Note that the addition of ~u is a modification to the

existing theory derived in [99 ]. This is done to obtain a quadratic growth property for the

optimal aerocapture cost function, which does not explicitly depend on ~u. In the numerical

simulation results, ∆Vu denotes the regularized control cost ε
∫ tf
t0 ||~u||22+||~w||22dt.

P̄ (~u, ~w, ε) = P (~u) + ε
∫ tf

t0
||~u||22+||~w||22dt (2.152)

The regularization constant, ε, serves as a penalty multiplier to account for the unbounded

~w. Furthermore, the addition of ~u provides a level of convexity to the optimal control problem

where ε can also be though of as analogous to the Lipschitz constant. Because ε is user-

defined, its affect on the numerical simulations is investigated later in this section.

With the regularized cost functional defined, the Hamiltonian definition can be revised,

as shown in Eq. (2.153 ).

H
(
~x, ~u, ~w,~λ, ~π, t

)
= L (~x, ~u, t) + ε

(
||~u||22+||~w||22

)
+ ~λTf (~x, ~u, t) + ~πTg (~u,~v) (2.153)

The co-state dynamics are computed using Eq. (2.142 ). The transversality condition,

Eq. (2.144 ), is used for both obtaining the terminal conditions for the co-state variables

as well as the condition for free final time, with the corresponding expressions denoted by
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Eq. (2.154 ) and Eq. (2.155 ) respectively. Both equations are computed at the unknown final

time, tf .

~λT (tf ) = ∂ϕ

∂x

∣∣∣∣∣
tf

+ ~ηT
∂~Ψ
∂x

∣∣∣∣∣∣
tf

(2.154)

H
(
x, ~u, ~w,~λ, ~π, t

)∣∣∣
tf

= − ∂ϕ

∂t

∣∣∣∣∣
tf

− ~ηT
∂~Ψ
∂t

∣∣∣∣∣∣
tf

(2.155)

The remaining expressions needed for a well-defined two-point boundary value problem

come from the control.

Control Dynamics

Although Eq. (2.145 ), Eq. (2.150 ), and Eq. (2.151 ) provide the expressions for the re-

maining unknown parameters, the expressions are highly non-linear and coupled. As a

result, closed-form expressions for the optimal control are difficult to obtain. Furthermore,

numerical root-solving techniques may not be able to solve the expression with a high-level

of fidelity. If a differential equation can be obtained for the control variables, then a high-

fidelity solution can be obtained through numerical integration given an initial condition.

This section highlights a procedure for obtaining the control dynamics based of a similar

procedure introduced in [100 ].

From Eq. (2.151 ), expressions for πi as a function of wi can be obtained. The expressions

are substituted into the Hamiltonian. Subsequently, using Eq. (2.145 ) allows for expressions

for ui as a function of wi to be obtained. From these latter expressions, the total time

derivative of ui is obtained through the application of the chain rule as shown in Eq. (2.156 ).

u̇i = ∂ui
∂t

+ ∂ui
∂~x

ẋ+ ∂ui

∂~λ
~̇λ+ ∂ui

∂wi
ẇi (2.156)
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Because the imposed equality constraints in Eq. (2.150 ) equals zero, its corresponding

total time derivatives must also equal zero. Application of the chain rule and rearrangement

of variables yields Eq. (2.157 ).

∂gi
∂ui

u̇i + ∂gi
∂wi

ẇi = −∂gi
∂t

− ∂gi
∂~x

~̇x− ∂gi

∂~λ
~̇λ (2.157)

Using Eq. (2.156 ) and Eq. (2.157 ) allows for unique control differential equations for ẇi
and u̇i to be determined. The initial conditions are defined such that Eq. (2.150 ) is held.

The control differential equations are numerically integrated with the state and co-state

dynamics. With expressions for πi known, a well-defined two-point boundary value problem

is posed.

Numerical Solution Setup

The two-point boundary value problem is numerically solved using MATLAB bvp5c

function. The function utilizes a fifth order finite difference collocation algorithm for solving

the boundary value problem [101 ]. The function requires an initial guess for the collocation

algorithm, a separate function defining the problem’s differential equations, and another

separate function defining the problem’s initial and terminal boundary conditions. Variable

time-step numerical integration is conducted with a relative and absolute tolerance of 1e-3.

The numerical accuracy of the solution highly depends on the initial guess. The guess is

generated by propagating the state vector dynamics to atmospheric exit with a constant

control solution for each flight control analyzed. With a time history guess for the state

and the control, the co-state time history guess is generated by backwards propagating the

co-state dynamics to atmospheric entry given the known co-state terminal conditions. The

regularization control time history guess is determined by using the constant control solution

and solving for the regularization control via Eq. (2.150 ). This initial guess approach was

noted to be sufficient for producing a numerical solution for large values of epsilon. Note

that no mesh refinement is conducted on the initial guess or any further simulation runs. A

continuation approach is utilized where the previous bvp5c solution is utilized as an initial

guess until the solution achieved a maximum residual error of 1e-3. Each control methodology
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analyzed are numerically solved using a decreasing sequence of regularization constant values.

The previous constant value solution is utilized as an initial guess to the current constant

value and a continuation approach is conducted. This decreasing sequence is conducted to

numerically demonstrate the regularized optimal control solution convergence to the known

“bang-bang” control structure.

The function defining the problem’s differential equations include the state, co-state,

control, and regularization control dynamics. The function defining the boundary conditions

include the known entry state, enforced terminal boundary conditions, derived free final time

condition, derived co-state terminal values, and saturation function equality constraints.

The unknown parameters that are optimized are the final time and the terminal constraint

Lagrange multipliers. The algebra for these differential equations and boundary conditions

is solved using Mathematica.

2.2.3 Bank angle flight control laws

For BAM, the primary control is assumed to be σ. The vehicle is trimmed at zero β such

that no side-force is produced and is trimmed at a non-zero α such that the vehicle produces

lift. From Eq. (2.58 ) and Eq. (2.59 ), σ is a trigonometric function appearing in both γ̇ and

ψ̇. The coupled control makes it difficult to mathematically obtain the optimal trajectories.

As a result, simplifications to the flight profile and assumptions on the control scheme are

needed.

The derivation of the optimal bank angle control laws was first introduced by Lu et al.

[69 ]. In his work, many fundamental assumptions are made regarding the optimal aerocap-

ture problem formulation. Firstly, the cost functional and terminal constraints are assumed

to explicitly depend on the terminal values of the longitudinal variables rf , vf , and γf . Con-

sequence of this assumption is the inclination terminal constraint is not explicitly enforced.

Secondly, the state-vector dynamics are simplified through neglecting small magnitudes as-

sociated with planetary rotation and non-spherical gravity. The accuracy of this assumption

may vary depending on the planetary destination but the consequence of it is that the the
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state-vector dynamics decouple into longitudinal and lateral terms as denoted by Eq. (2.158 )

and Eq. (2.159 ), respectively.

ṙ = v sin(γ)

v̇ = −D

m
− µ sin(γ)

r2

vγ̇ = L

m
cos(σ) +

(
v2 − µ

r

) cos(γ)
r

(2.158)

θ̇ = v cos γ cosψ
r cosφ

φ̇ = v cos γ sinψ
r

vψ̇ = L sin(σ)
m cos(γ) − v2

r
cos(γ) cos(ψ) tan(φ)

(2.159)

The longitudinal dynamics in Eq. (2.158 ) are not explicit functions of lateral variables

θ, φ, or ψ and are controlled by the cos(σ). The bank angle itself can be mathemati-

cally represented by σ = sgn(σ)|σ| with the relations that cos(σ) = cos(|σ|) and sin(σ) =

sgn(σ) sin(|σ|). This decomposition lends itself to the control strategy of having the optimal

aerocapture problem provide the solution to |σ| while separate lateral logic determines the

sgn(σ) necessary for managing the inclination error.

For BAM problem formulation, the control variable is defined as u = cos(|σ|). Its bounds

are dictated by the imposed bounds on |σ| as shown by Eq. (2.160 ).

0 ≤ σmin ≤ |σ|(t) ≤ σmax ≤ π

−1 ≤ umin ≤ u (t) ≤ umax ≤ 1
(2.160)
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Optimal Control Law

To ascertain the BAM optimal control laws, the Hamiltonian is first formulated using

Eq. (2.141 ) and omitting state-vector dynamics and co-state variable terms associated with

lateral variables. The control variable appears only in γ̇ as a linear function. This relationship

allow for the Hamiltonian to be written in the general form of Eq. (2.147 ) where H1 is

represented by Eq. (2.161 ).

H1 = λγ
ρV∞

2BC
L

D
(2.161)

Inspecting the switching function shows that it is a function of the flight path angle co-

state variable as well as other terms related to the flow-field and vehicle. The latter terms are

always positive and non-zero thus indicating that the optimal angle of attack flight control is

primarily influenced by the sign of the former term. Formally, the bank angle optimal control

law has a “bang-bang” structure denoted by Eq. (2.162 ). The potential non-existence of the

singular arc solution for BAM can be found in [69 ] and is not re-produced in the Appendix

section of this dissertation.

u∗ =


umin, if H1 > 0

umax, if H1 < 0
(2.162)

Regularized Optimal Control Solution

The optimal BAM flight control is numerically solved using regularized optimal control.

The methodology is applied to aerocapture mission sets at Venus, Earth, Mars, Titan, and

Neptune. The simulation parameters utilized can be found in Table 2.4 . In particular,

the vehicle L/D and BC are selected to be representative of prospective vehicle designs at

each planetary destination. Furthermore, the longitudinal entry states and target orbits are

also selected to be similar to existing mission sets. Due to the assumed decoupled lateral

dynamics, the corresponding initial lateral states are selected such that the entry trajectory

is equatorial at each planetary destination.
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Table 2.4. Bank Angle Modulation Optimal Aerocapture Simulation Parameters
Category Variable Venus Earth Mars Titan Neptune

Entry State

r0, km 6201.800 6503.136 3546.190 3575.000 25764.000
θ0, deg 0.000 350.854 342.226 7.239 0.000
φ0, deg 0.000 0.000 0.000 0.000 0.000
v0, km/s 11.250 11.095 5.253 6500.000 31.474
γ0, deg -5.815 -5.186 -10.500 -36.118 -12.5
ψ0, deg 0.000 0.000 0.000 0.000 0.000

Exit State hf , km 150 125 150 1000 1000
Target Orbit ht

p, km 300 500 400 1700 3986
ht

a, km 300 500 400 1700 430000

Vehicle
L/D 0.25 0.25 0.25 0.25 0.5
BC, kg/m2 60 85 60 90 120
[σmin, σmax], deg [0, 180] [0, 180] [0, 180] [0, 180] [0, 180]

Figure 2.22 provides a comparison of the optimal bank angle modulation control laws for

decreasing values of ε at each planetary destination. The control laws are inherently unique

for each planet but do exhibit similar trends with respect to ε. For decreasing sequence

of ε, the optimal control approaches a “bang-bang” structure. For Venus, Earth, Mars,

and Neptune, the bank angle switches from maximum values to minimum value and may

switch back to the max value. This second switch is more evident in the Earth and Neptune

datasets. Conversely, Titan exhibits bank angle switch from minimum to maximum value.

This observation demonstrates that bounds in which the bank angle switches to and from can

depend on the planetary destination. This may lead to difficulty in obtaining a numerical

solution using the known “bang-bang” control law from Eq. (2.162 ) as the initial guess may

assume the wrong switch. On the other hand, the regularized optimal control results makes

no such assumption allowing for numerical solutions to be obtained while allowing for the

expected control structure to be generally converged upon.
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Figure 2.22. Regularized bank angle optimal control solutions for planetary
aerocapture. Black dashed lines are imposed control constraints

Figure 2.23 provides a sample trajectory solution for BAM optimal aerocapture. Al-

though not all BAM solutions are presented, the general trends can be deciphered from the

single numerical solution. The trajectory shows the time evolution of the state and co-state

vectors corresponding to ε = 10−3 result for Titan. The blue plots denote the longitudinal

state variables while the black plots denote the subsequent lateral state variables solved for

using the longitudinal state vector solution. These lateral variable solutions represent their

natural evolution if no bank angle reversal logic is implemented to control the inclination

error. Despite having no physical significance, the co-state vector influences the bank angle

inputs that control the state vector. The control solution for this corresponding trajectory is

shown in Figure 2.24 . The saturation control allows for the bank angle to remain bounded

through the enforcement of the control equality constraint g1. The subsequent time history

of the constraint is shown to be close to zero with some small numerical error within the

specified error tolerance. Furthermore, the Hamilton time history is shown to be nearly zero,

which validates the finding from calculus of variation of a constant zero Hamiltonian.
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Figure 2.23. Sample Titan bank angle modulation optimal aerocapture tra-
jectory solution

Figure 2.24. Sample Titan bank angle modulation optimal aerocapture con-
trol solution. Red dashed lines are control constraint limits

Table 2.5 tabulates the orbit insertion performance and computation cost of each of

the BAM solutions. Each run is shown to produce minimal apoapsis error thus indicating

that the corresponding terminal constraint is met. The corresponding apoapsis correction

maneuver is thereby minimized. The small maximum error indicates sufficient quality of

the numerical solutions. For decreasing sequence of ε, the regularized cost decreases with
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some affect to the periapsis raise maneuver cost. This trend indicates two things. Firstly,

the cost functional utilized by the regularization methodology converges to the original cost

functional posed in the optimal aerocapture formulation thus indicating that optimal control

law that minimizes the original cost function can be converged upon. Secondly, each ε

solution produces a unique and admissible control time history that achieves the desired

terminal constraints. At Neptune, the resulting periapsis raise costs doesn’t significantly

change with decreasing ε. Venus and Titan exhibit modest decreases in periapsis raise cost

while Earth and Mars exhibits a minute decrease. The relative magnitude of the decrease

can be significant with the largest ∆V reduction around 30 m/s.

The computational cost of achieving optimal BAM control is representative by the num-

ber of odefun calls. Each function call is analogous to the number of numerical integrations

utilized by the collocation solver. Table 2.5 shows that a large number of integrations are

needed to achieve even a single solution. Despite achieving the optimal BAM control law, the

regularized optimal control approach is too computationally expensive to be implemented

on-board an aerocapture vehicle.

Table 2.5. Regularized Bank Angle Optimal Aerocapture Solution Data
Planet ε

raerror

(km)
∆V2
(m/s)

∆V1
(m/s)

∆Vu

(m/s)
P̄

(m/s)
Max
Error

# odefun
calls

Venus
1E+00 6.077E-04 1.711E-04 122.779 77.552 200.331 8.948E-05 86945
1E-01 1.439E-03 4.052E-04 129.664 10.569 140.233 2.847E-02 102748
1E-02 3.787E-06 1.066E-06 107.258 1.212 108.470 3.174E-02 90769
1E-03 8.613E-03 2.424E-03 110.153 0.989 111.141 6.691E-02 94269

Earth
1E+00 1.529E-03 4.232E-04 140.945 14.014 154.958 5.821E-04 73758
1E-01 4.674E-02 1.293E-02 137.989 1.887 139.876 3.888E-03 90652
1E-02 9.475E-04 2.622E-04 141.300 2.050 143.350 1.039E-02 83335
1E-03 1.413E-02 3.911E-03 136.547 0.608 137.156 1.630E-01 101387

Mars
1E+00 8.511E-06 1.883E-06 118.819 1500.483 1619.302 7.012E-04 83787
1E-01 9.093E-04 2.011E-04 118.232 135.689 253.921 1.103E-03 91707
1E-02 2.237E-06 4.948E-07 117.546 9.891 127.437 5.115E-04 90769
1E-03 3.550E-03 7.853E-04 113.175 0.600 113.775 1.396E-02 98683

Titan
1E+00 5.597E-08 4.744E-09 189.314 916.821 1106.135 1.354E-05 211666
1E-01 5.117E-02 4.337E-03 195.469 149.172 344.641 6.605E-04 246125
1E-02 5.890E-01 4.992E-02 173.174 7.613 180.786 6.838E-03 207099
1E-03 7.796E-04 6.607E-05 156.299 7.201 163.500 2.849E-03 207600

Neptune
1E+00 1.096E-05 1.516E-08 88.154 459.319 547.473 1.765E-04 80505
1E-01 1.203E-04 1.663E-07 88.039 42.591 130.631 2.428E-04 109101
1E-02 8.628E-04 1.193E-06 87.910 2.840 90.750 4.076E-04 106492
1E-03 3.486E-02 4.820E-05 89.054 0.756 89.810 3.869E-02 120576
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2.2.4 Drag modulation flight control laws

For drag modulation, the primary control is assumed to be BC. The vehicle is assumed

to be trimmed at zero angle of attack, side-slip angle, and bank angle such that no lift or

side-force is generated. Due to lack of out-of-plane control authority, the inclination terminal

boundary condition is omitted. Substituting the definition of ballistic coefficient, Eq. (1.1 ),

into definition of drag, Eq. 2.118 and dividing by m yields Eq. (2.163 ).

D

m
= ρV 2

∞
2BC (2.163)

In Eq. (2.163 ), BC is inversely proportional to the drag acceleration. Assuming constant

mass, BC can be changed through combination of CD and Aref . These two components

are in fact linear with respect to the drag acceleration. Consequently, the optimal control

formulation assumes the an auxiliary control variable uBC such that uBC = 1
BC

. For DM,

BC is bounded by an upper and lower limit. Converted to uBC, the control bounds imposed

are given by Eq. (2.164 ).

uBCmin ≤ uBC (t) ≤ uBCmax (2.164)

Optimal Control Law

To ascertain the DM optimal control laws, the Hamiltonian is first formulated using

Eq. (2.141 ). Given zero lift and side-force vehicle configuration, uBC appears only in V̇ .

Due to uBC linear relationship to the term D
m

found in Eq. 2.57 , the Hamiltonian can be

written to be the form of Eq. (2.147 ) where H1 can be written by Eq. (2.165 ).

H1 = −λv
ρV 2

∞
2 (2.165)

Inspecting the switching function shows that it is a function of both the freestream

dynamic pressure as well as the velocity co-state variable. The former term is always positive

thus indicating that the optimal DM flight control is primarily influenced by the sign of the

latter term. Formally, the optimal control law has a “bang-bang” structure denoted by
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Eq. (2.166 ). The potential non-existence of the singular arc solution for DM is proved in

Appendix A.0.1 .

uBC∗ =


uBCmin, if H1 > 0

uBCmax, if H1 < 0
(2.166)

Regularized Optimal Control Solution

The optimal DM flight control is numerically solved using regularized optimal control

methodology highlighted in the previous section. The methodology is applied to aerocap-

ture mission sets at Venus, Earth, Mars, Titan, and Neptune. The simulation parameters

utilized can be found in Table 2.6 . In particular, the ballistic coefficient range is selected

to representative of prospective vehicle designs at each planetary destination. Furthermore,

the entry states and target orbits are also selected to be similar to existing mission sets.

Table 2.6. Drag Modulation Optimal Aerocapture Simulation Parameters
Category Variable Venus Earth Mars Titan Neptune

Entry State

r0, km 6201.800 6503.136 3546.190 3575.000 25764.000
θ0, deg 0.000 350.854 342.226 7.239 344.818
φ0, deg -9.132 -5.243 0.000 -35.544 -6.862
v0, km/s 11.250 11.095 5.253 6500.000 31.482
γ0, deg -5.349 -5.855 -11.156 -33.759 -9.772
ψ0, deg -90.000 -30.785 0.000 -102.323 -156.603

Exit State hf , km 150 125 150 1000 1000
Target Orbit ht

p, km 300 500 400 1700 3986
ht

a, km 300 500 400 1700 430000
Vehicle L/D 0 0 0 0 0

[BCmin, BCmax], kg/m2 [10, 50] [75, 375] [60, 300] [10, 50] [10, 50]

Figure 2.25 provides a comparison of the optimal drag modulation control laws for de-

creasing values of ε at each planetary destination. The control laws are inherently unique for

each planet but do exhibit similar trends with respect to ε. For decreasing sequence of ε, the

optimal control converges to a “bang-bang” structure where the ballistic coefficient switches

from its maximum value to its minimum value briefly and then switches back to the max-

imum value. This trend suggests that ballistic coefficient undergoes two control switches,

which otherwise would not be known a-priori if the problem was solved using the known
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“bang-bang” control law from Eq. (2.166 ). Nonetheless, the regularized optimal control

results is shown to produce the expected structure.

Figure 2.25. Regularized drag modulation optimal control solutions for plan-
etary aerocapture. Black dashed lines are imposed control constraints

Figure 2.26 provides a sample trajectory solution for DM optimal aerocapture. Although

not all DM solutions are presented, the general trends can be deciphered from the single

numerical solution. The trajectory shows the time evolution of the state and co-state vectors

corresponding to ε = 10−2 result for Neptune. Despite having no physical significance, the

co-state vector influences the ballistic coefficient inputs that control the state vector. The

control solution for this corresponding trajectory is shown in Figure 2.27 . The saturation

control allows for the ballistic coefficient to remain bounded through the enforcement of

the control equality constraint g1. The subsequent time history of the constraint is shown

to be close to zero with some small numerical error within the specified error tolerance.

Furthermore, the Hamilton time history is shown to be nearly zero, which validates the

finding from calculus of variation of a constant zero Hamiltonian.
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Figure 2.26. Sample Neptune drag modulation optimal aerocapture trajectory solution

Figure 2.27. Sample Neptune drag modulation optimal aerocapture control
solution. Red dashed lines are control constraint limits

Table 2.7 tabulates the orbit insertion performance and computation cost of each of the

DM solutions. Each run is shown to produce minimal apoapsis error thus indicating that the

corresponding terminal constraint is met. The corresponding apoapsis correction maneuver

is thereby minimized. The small maximum error indicates sufficient quality of the numerical

solutions. For decreasing sequence of ε, the regularized cost decreases with some affect to the

periapsis raise maneuver cost. This trend indicates two things. Firstly, the cost functional
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utilized by the regularization methodology converges to the original cost functional posed in

the optimal aerocapture formulation thus indicating that optimal control law that minimizes

the original cost function can be converged upon. Secondly, each ε solution produces a

unique and admissible control time history that achieves the desired terminal constraints.

At Neptune, the resulting periapsis raise costs doesn’t significant change but does decrease

with decreasing ε. Venus, Titan, and Mars exhibit modest decreases in periapsis raise cost

while Earth exhibits a minute decrease. The relative magnitude of the decrease is still not a

significant game-changer in terms of propellant mass savings.

The computational cost of achieving optimal DM control is representative by the num-

ber of odefun calls. Each function call is analogous to the number of numerical interactions

utilized by the collocation solver. Table 2.7 shows that a immensely large number of in-

teractions are needed to achieve even a single solution. Despite achieving the optimal DM

control law, the regularized optimal control approach is too computationally expensive to be

implemented on-board an aerocapture vehicle.

Table 2.7. Regularized Drag Modulation Optimal Aerocapture Solution Data
Planet ε

raerror

(km)
∆V2
(m/s)

∆V1
(m/s)

∆Vu

(m/s)
P̄

(m/s)
Max
Error

# odefun
calls

Venus
1E+03 1.750E-02 4.927E-03 80.153 1931.050 2011.202 5.930E-02 51733
1E+02 1.779E-06 5.006E-07 74.834 98.449 173.283 2.123E-04 43724
1E+01 6.338E-04 1.784E-04 69.715 17.080 86.795 2.815E-04 49973
1E+00 5.173E-02 1.456E-02 67.631 3.827 71.458 3.250E-01 54861

Earth
1E+03 3.244E-04 8.975E-05 136.801 19.294 156.095 2.779E-04 82509
1E+02 1.227E-03 3.394E-04 134.442 5.523 139.965 2.201E-03 83826
1E+01 9.497E-05 2.628E-05 134.034 1.155 135.189 3.498E-02 69090

Mars
1E+03 2.580E-06 5.708E-07 93.319 73.467 166.786 4.844E-04 103765
1E+02 1.733E-07 3.834E-08 89.156 10.724 99.880 1.093E-04 84524
1E+01 1.509E-02 3.338E-03 87.564 2.756 90.320 3.863E-02 98966

Titan
1E+02 1.779E-07 1.508E-08 164.650 511.029 675.679 5.288E-06 256792
1E+01 8.458E-07 7.169E-08 162.397 54.040 216.437 8.840E-05 227375
1E+00 1.099E-05 9.313E-07 158.929 13.445 172.374 1.614E-05 234808
1E-01 5.290E-04 4.484E-05 157.956 3.099 161.054 1.005E-02 308119

Neptune

1E+02 6.953E-07 9.604E-10 82.758 220.741 303.499 2.127E-06 36095
1E+01 3.493E-07 4.839E-10 82.755 21.571 104.326 3.719E-06 25948
1E+00 7.161E-03 9.901E-06 82.728 1.738 84.466 2.610E-06 57556
1E-01 1.504E-02 2.080E-05 82.634 0.217 82.852 3.686E-04 63830
1E-02 2.167E-02 2.997E-05 82.616 0.049 82.665 4.085E-02 76570
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2.2.5 Direct Force Control flight control laws

For DFC, two independent control variables of α and β are used for assessing the optimal

angle of attack and side-slip angle control laws, respectively. The vehicle is assumed to be

trimmed at zero bank angle such that only α and β control the vehicle’s trajectory during

flight. Each control variable is bounded by an upper and lower limit as shown by Eq. (2.167 )

and Eq. (2.168 ).

αmin ≤ α (t) ≤ αmax (2.167)

βmin ≤ β (t) ≤ βmax (2.168)

In the mathematical formulation of the DFC optimal aerocapture problem, a key as-

sumption is made regarding the vehicle aerodynamics. In 2.1.3 , analytical aerodynamic

expressions relating the aerodynamic coefficients to α and β are presented. These expres-

sions allow for the DFC control variables to be explicitly incorporated into the optimal

control formulation. A linear aerodynamics model is assumed in this analysis. The model

arises from a first-order Taylor Series approximation of the resulting non-linear analytical

aerodynamics model. The accuracy of the linear model is good for a reasonable range of α

and β values around zero degree total angle of attack. This may make the model favorable

for application on blunt body aeroshells. A generalized form of the linear model is shown

in Eq. (2.169 ). The terms CLα , CD0 , and CQβ are functions of the vehicle geometry and

flow-field properties. This form is assumed in the optimal control formulation.

CL = CLαα

CD = CD0

CQ = CQββ

(2.169)
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Optimal Control Law

To ascertain the DFC optimal control laws, the Hamiltonian is first formulated using

Eq. (2.141 ). From Eq. (2.169 ), α primarily controls the lift coefficient while β primarily

controls the side-force coefficient. Given zero bank angle vehicle configuration, α appears

only in γ̇ while β appears only in ψ̇. These relationships allow for the Hamiltonian to be

written in the general form of Eq. (2.147 ) expanded to two control variables where u1 refers

to α and u2 refers to β. H1 and H2 can then be represented by Eq. (2.170 ) and Eq. (2.171 )

respectively.

H1 = λγ
ρV∞

2m ArefCLα (2.170)

H2 = −λψ
ρV∞

2m cos(γ)ArefCQβ (2.171)

Inspecting the angle of attack switching function, H1, shows that it is a function of the

flight path angle co-state variable as well as other terms related to the flow-field and vehicle.

The latter terms are always positive an non-zero thus indicating that the optimal angle of

attack flight control is primarily influenced by the sign of the former term. Formally, the

angle of attack optimal control law has a “bang-bang” structure denoted by Eq. (2.172 ).

The potential non-existence of the singular arc solution for both angle of attack and side-slip

angle is provided in Appendix A.0.2 .

α∗ =


αmin, if H1 > 0

αmax, if H1 < 0
(2.172)
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A similar inspection of the side-slip angle switch function, H2 can be done with the

observation that optimal side-slip angle control is primarily influenced by the azimuth angle

co-state variable as well as the control has a “bang-bang” structure denoted by Eq. (2.173 ).

β∗ =


βmin, if H2 > 0

βmax, if H2 < 0
(2.173)

Regularized Optimal Control Solution

The optimal DFC flight control is numerically solved using regularized optimal control.

The methodology is applied to aerocapture mission sets at Venus, Earth, Mars, Titan, and

Neptune. The simulation parameters utilized can be found in Table 2.8 . In particular,

the vehicle’s aeroshell mass, geometry, and imposed control constraints are selected to be

representative of prospective blunt body vehicle designs at each planetary destination. Fur-

thermore, the entry states and target orbits are also selected to be similar to existing mission

sets.

Table 2.8. Direct Force Control Optimal Aerocapture Simulation Parameters
Category Variable Venus Earth Mars Titan Neptune

Entry State

r0, km 6201.800 6503.136 3546.190 3575.000 25764.000
θ0, deg 0.000 350.854 168.454 7.938 345.879
φ0, deg -9.928 -5.186 -8.493 -38.062 -7.362
v0, km/s 11.250 11.095 5.303 6500.000 31.474
γ0, deg -5.815 -5.791 -10.800 -36.118 -10.485
ψ0, deg -90.000 -30.795 -30.222 -102.742 -156.603

Exit State hf , km 150 125 150 1000 1000

Target Orbit
ht

p, km 300 500 400 1700 3986
ht

a, km 300 500 400 1700 430000
it, km 90 30 30 100 153

Vehicle m, kg 1500 180 1500 1500 2200
δc, deg 70 70 70 70 70
rn, m 1.125 0.3 1.125 0.9375 1.125
rc, m 4.5 1.35 4.5 3.75 4.5
[αmin, αmax], deg [−20, 20] [−20, 20] [−20, 20] [−20, 20] [−30, 30]
[βmin, βmax], deg [−5, 5] [−5, 5] [−5, 5] [−5, 5] [−5, 5]

Figure 2.28 and Figure 2.29 provides a comparison of the optimal direct force control

laws for decreasing values of ε at each planetary destination. The control laws are inherently

unique for each planet but do exhibit similar trends with respect to ε. For decreasing
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sequence of ε, the optimal control for both angle of attack and side-slip angle converge to a

“bang-bang” structure. The bounds in which the angle of attack and side-slip angle switch

between varies with each planet. This observation would lead to difficulty in producing

an initial guess for solving for the optimal control numerically utilizing Eq. (2.172 ) and

Eq. (2.173 ). Nonetheless, the regularized optimal control results is shown to produce the

expected structure.

Figure 2.28. Regularized angle of attack optimal control solutions for plan-
etary aerocapture. Black dashed lines are imposed control constraints
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Figure 2.29. Regularized side-slip angle optimal control solutions for plane-
tary aerocapture. Black dashed lines are imposed control constraints

Figure 2.30 provides a sample trajectory solution for DFC optimal aerocapture. Although

not all DFC solutions are presented, the general trends can be deciphered from the single

numerical solution. The trajectory shows the time evolution of the state and co-state vectors

corresponding to ε = 10−5 result for Mars. Despite having no physical significance, the co-

state vector influences the angle of attack and side-slip angle inputs that control the state

vector. The control solution for this corresponding trajectory is shown in Figure 2.31 . The

saturation controls w1 and w2 allows for angle of attack and side-slip angle to respectively

remain bounded. This is enforced through the control equality constraints g1 and g2. The

subsequent time history of the constraint is shown to be close to zero with some small

numerical error within the specified error tolerance. Furthermore, the Hamilton time history

is shown to be nearly zero, which validates the finding from calculus of variation of a constant

zero Hamiltonian.
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Figure 2.30. Sample Mars direct force control optimal aerocapture trajectory solution

Figure 2.31. Sample Mars direct force control optimal aerocapture control
solution. Red dashed lines are control constraint limits

Table 2.9 tabulates the orbit insertion performance and computation cost of each of the

DFC solutions. Each run is shown to produce minimal apoapsis and inclination error thus

indicating that the corresponding terminal constraints are met. The corresponding apoapsis

and inclinations correction maneuvers are thereby minimized. The small maximum error

indicates sufficient quality of the numerical solutions.

126



For decreasing sequence of ε, the regularized cost generally decreases with little affect to

the periapsis raise maneuver cost. The Venus dataset does show a decreasing trend with the

first two values of epsilon but the last value increase. This increase can be attributed to the

sensitivity of the numerical solution to the initial guess. Otherwise, the decreasing trend can

be seen with the rest of the planetary destinations thereby allowing for convergence to the

original cost functional optimal solution. For Mars and Neptune, minute reductions in the

periapsis raise cost are achieved with reductions in ε. Although this formally demonstrates

the convergence to the minimal cost functional, the relative magnitude of the decrease is still

not a significant game-changer in terms of propellant mass savings. In fact, it demonstrates

that DFC control inputs close to the theoretical optimal can potentially achieve both the

desired orbit and at similar propellant cost.

The computational cost of achieving optimal DM control is representative by the num-

ber of odefun calls. Each function call is analogous to the number of numerical integrations

utilized by the collocation solver. Table 2.9 shows that a immensely large number of inte-

grations are needed to achieve even a single solution. Despite achieving the optimal DFC

control law, the regularized optimal control approach is too computationally expensive to be

implemented on-board an aerocapture vehicle.

Table 2.9. Regularized Direct Force Control Optimal Aerocapture Solution Data
Planet ε

raerror

(km)
ierror

(km)
∆V2
(m/s)

∆V3
(m/s)

∆V1
(m/s)

∆Vu

(m/s)
P̄

(m/s)
Max
Error

# odefun
calls

Venus
1E+01 6.270E-01 2.931E-05 1.765E-01 3.659E-03 76.846 87.123 163.969 5.495E-02 86331
1E+00 1.659E-01 7.669E-06 4.670E-02 9.573E-04 66.822 57.244 124.066 5.746E-03 99848
1E-01 2.722E-03 1.437E-07 7.661E-04 1.794E-05 71.367 65.961 137.328 7.932E-04 90074

Earth
1E+00 5.305E-03 4.852E-02 1.468E-03 6.446E+00 121.863 56.954 178.817 2.872E-01 45118
1E-01 1.033E-01 1.093E-02 2.858E-02 1.452E+00 119.006 16.314 135.320 4.503E-02 42979
1E-02 7.639E-02 7.337E-03 2.114E-02 9.748E-01 118.989 2.176 121.164 1.080E+00 47021

Mars

1E+00 1.798E-06 4.108E-08 3.977E-07 2.408E-06 79.270 523.701 602.972 1.923E-04 107091
1E-01 2.640E-02 4.266E-03 5.841E-03 2.501E-01 79.303 58.711 138.014 7.012E-03 91680
1E-02 5.009E-04 6.740E-05 1.108E-04 3.951E-03 79.071 7.077 86.148 6.631E-04 98900
1E-03 2.102E-06 2.517E-09 4.651E-07 1.476E-07 78.886 1.152 80.037 3.555E-05 95566
1E-04 7.431E-02 9.852E-03 1.644E-02 5.775E-01 78.849 0.202 79.051 1.825E-02 111260
1E-05 3.540E-03 4.698E-04 7.831E-04 2.754E-02 78.810 0.033 78.843 5.652E-01 109804

Titan
1E+00 1.648E-05 6.696E-07 1.397E-06 1.694E-05 191.303 67.638 258.941 2.590E-05 246146
1E-01 5.385E-02 7.863E-03 4.564E-03 1.989E-01 189.026 2.189 191.215 7.647E-03 316689
1E-02 1.328E+00 4.780E-01 1.125E-01 1.209E+01 191.166 2.423 193.589 2.039E-01 321004

Neptune
1E+00 7.737E-04 5.470E-08 1.070E-06 3.702E-06 84.854 21.536 106.390 6.314E-05 60099
1E-01 1.078E+01 6.415E-04 1.491E-02 4.341E-02 83.803 5.343 89.146 7.317E-04 82764
1E-02 1.122E-01 6.724E-06 1.552E-04 4.550E-04 83.854 1.056 84.910 2.561E-05 72325
1E-03 1.561E+01 9.479E-04 2.158E-02 6.415E-02 83.724 0.305 84.030 1.395E-02 76130
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2.2.6 Discussion

In the previous section, it was numerically demonstrated that regularized optimal control

allows for the optimal aerocapture problem to be solved. For each flight control analyzed,

the numerical solutions provide excellent orbit insertion performance and meet all the im-

posed initial and terminal boundary conditions. However, the fundamental assumption of

introducing the original control, ~u, with the saturation control, ~w, in the control regulator

was made. This was done to provide a quadratic cost function that exhibits a quadratic

growth property, which is a property of strongly convex functions. The periapsis raise ma-

neuver cost is not an explicit function of ~u. By introducing u along with the regularization

constant, a quadratic cost functional, P̃ (~u, ε), is achieved as shown in Eq. (2.174 ).

P̃ (~u, ε) = |∆V1| + ε
∫ tf

t0
||~u||22dt (2.174)

The quadratic growth property can be mathematically formulated using Eq. (2.175 )

C2||~u− ~u∗||22≤ P̃ (~u, ε) − P̃ (~u∗, ε) , ui ∈
[
umini umaxi

]
(2.175)

Graichen et al[99 ], proves in Theorem 2 that this property holds if it is assumed that

1. P̃ (~u, ε) has an optimal solution, ~u∗, that minimizes P̃ (~u, ε)

2. P̄
(
~uk, ~wk, εk

)
has a bounded state and control solutions, ~xk and ~uk, for each regular-

ization constant, εk used in a decreasing sequence

3. P̃ (u, ε), is continuous in ui ∈ [umini umaxi ] and state dynamics, ~̇x, are Lipschitz with

respect to the ~x and ~u

For the optimal aerocapture problem, all three assumptions are valid. Assumptions 1

and 2 are numerically demonstrated with the various solutions computed. Assumption 3 is

valid for the imposed control bounds and state vector dynamics that are Lipschitz continuous

in ~x and ~u. The consequence of exhibiting a quadratic growth property is convergence to

the optimal solution. For the decreasing sequence of εk such that lim
k→∞

εk = 0, the control,

~uk, and state histories, ~xk converge to the optimal control and state histories. Graichen et
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al[99 ] additionally proved in Theorem 1 that for the same decreasing sequence of εk, the

regularized optimal control converges to the original optimal cost functional, P ∗ as shown

by Eq. (2.176 ).

lim
k→∞

P̄
(
~uk, ~wk, εk

)
= P ∗

lim
k→∞

P̃
(
~uk, εk

)
= P ∗

lim
k→∞

εk
∫ tf

t0
||~u||22+||~w||22dt

(2.176)

The numerical results presented for each flight control methodology at different plane-

tary destinations validates these two theorems. The regularized cost functional exhibits a

quadratic growth property for increasing εk as seen in Table 2.5 , Table 2.7 , and Table 2.9 .

As εk is reduced, the regularized cost functional converges to the periapsis raise cost. Fur-

thermore, the control law solutions converge to the “bang-bang” optimal solutions. Overall,

regularized optimal control problem formulation allows for the bounded optimal flight con-

trol laws pertaining to BAM, DM, and DFC to be numerically solved for at various planetary

destinations.

2.2.7 Application of Results to Onboard Guidance

The solution method presented in this section could be integrated into a closed-loop

architecture in the form of a Model Predictive Controller (MPC). During each guidance

cycle, the collocation solver determines the optimal control input from the current state

to atmospheric exit. The control input along with the state dynamics are subsequently

integrated forward in time until the next guidance cycle. Due to unforeseeable trajectory

dispersions, a feedback controller provides the necessary model updates for the next guidance

iteration and the collocation solver repeats the optimization process. Although a valid

guidance methodology, the sheer computational cost of achieving even a single collocation

solution may dissuade the utilization of a MPC for achieving optimal aerocapture guidance.

The application optimal control theory to BAM, DM, and DFC does provide invaluable

insight into the structure of the optimal control. This common “bang-bang” structure can

be leveraged in formulating a unified guidance strategy that attempts to achieve aerocapture
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trajectories that are as close to the optimal as possible. From the numerical simulations of

the regularized optimal control, it was shown that trajectories that are not exactly the pure

“bang-bang” optimal solution achieve the necessary orbit insertion performance at similar

periapsis raise cost. If the control switch time between two assumed control bounds, e.g.

upper and lower, is used as the control input in a “bang-bang” fashion, then the trajectory

optimization can be potentially solved using univariate parameter optimization. This indirect

approach may allow for a closed-loop guidance methodology to be formulated that is orders-

of-magnitude computationally cheaper to implement.
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3. DESIGN OF A NPC AEROCAPTURE ARCHITECTURE

This chapter highlights the formulation of the modular NPC aerocapture guidance architec-

ture.

3.1 NPC Algorithm

In Chapter 2 , fuel minimizing aerocapture ∆V control laws for DFC, BAM, and DM

are derived. Under certain underlying assumptions, the control laws for each flight control

law are found to have the same “bang-bang” structure. Consequently, a unified trajectory

optimization algorithm can be developed in the form of a numerical predictor-corrector.

The NPC works by numerically integrating the equations of motion from the vehicle’s cur-

rent state using a univariate parameter relating to the control structure or control itself.

This is done to predict the cost functional at the terminal state. The corrector optimizes

the parameter to minimize the post-aerocapture in-plane ∆V using parameter optimization

techniques. Separate lateral logic for BAM and DFC is utilized to minimize the orbit plane

error. The aerocapture guidance runs the algorithm at a prescribed frequency set by the

flight computer. Figure 3.1 provides a high-level overview of the designed NPC algorithm.
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Figure 3.1. NPC algorithm overview
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3.1.1 Phased structure

The designed NPC algorithm utilizes a two-phased active guidance structure, Phases 1

and 2, to determine the necessary control commands. Both of these phases occur while

the vehicle is in the sensed atmosphere, which is defined by a sensed deceleration from the

vehicle’s IMU of 0.01 g’s. Phases 0 and 3 are defined from atmospheric entry to the g-load

trigger and g-load trigger to atmospheric exit, respectively. During these two phases, no

active guidance is conducted and a constant control input is commanded.

During Phase 1, the control switch time is optimized to minimize the cost functional.

The minimum and maximum control limits utilized in Phase 1 are selected to be a subset

of the theoretical control limit capability of the vehicle. This is done to allow for control

margin after Phase 1 keeping robustness into consideration. For BAM, the control is assumed

to switch from lift up configuration (σmin) to lift down configuration (σmax). Similarly for

DFC, the control is assumed to switch from lift up (αmin) to lift down (αmax) configurations.

For DM, the control is assumed to switch from maximum drag configuration (BCmin) to

minimum drag configuration (BCmax). Assuming continuously-variable systems employing

morphable sphere-cone aeroshells, the minimum and maximum drag configurations can be

correlated to max cone angle, (δc,max), and min cone angle, (δc,min) respectively. Note that

Phase 1 only with the theoretical control limits allows for the jettison time for staged-jettison

systems to be computed.

After the switch time is reached, Phase 2 begins where the flight control variable itself (|σ|

for BAM, α for DFC, BC via δc for DMCV) is optimized within the theoretical control limits

to minimize the cost functional. This phase is added to allow for the guidance to account for

unforeseeable trajectory dispersions experienced after the control switch is reached. Despite

the trajectory potentially diverging from the optimal trajectory, the second phase allows for

guidance robustness when operating in a potentially stochastic planetary atmosphere.

132



3.1.2 Parameter optimization

The optimal aerocapture problem can be converted into a univariate parameter optimiza-

tion problem using the a-priori control law structure. The explicit enforcement of terminal

boundary conditions can be eliminated with a few assumption. Firstly, the cost functional in

Eq. (2.113 ) is modified to include the apoapsis correction cost such that P = |∆V1|+|∆V2|.

This allows for the relaxation of the apoapsis radius boundary condition. Secondly, the incli-

nation boundary condition is assumed to be handled by separate lateral logic explained later

in the next section. Finally, a numerical integration cutoff at the atmospheric exit altitude

is assumed. This allows for the relaxation of the terminal boundary condition on r. The

cumulative affect of these assumptions are the formulation of a control bounded univariate

parameter optimization with no explicit terminal boundary conditions.

Such a posed problem can be solved using a variety of optimization techniques. Since the

in-plane ∆V cost functional is not an explicit function of the control parameters, calculus-

based techniques would rely on numerical derivatives. Their computation adds to the com-

putational complexity of the NPC algorithm since additional integrations of the equations

of motion are needed as well as are potentially sensitive to the step size used in their cal-

culation. Hyperbolic trajectories have infinite apoapsis radius and as a result the apoapsis

correction cost is infinite. This may lead to infinite gradient calculations and convergence

instability. As a result, non calculus-based approaches are preferred. Bracketing methods

seek to determine the minimum of the cost functional on a control bounded interval with-

out utilization of gradients. Golden section search utilizes the golden ratio in determining

the next point to iterate on in the bracketing minimum search [102 ]. The convergence to

a minimum is linear with respect to each successive function evaluation. The convergence

speed can be potentially increased if the objective function exhibits a parabolic structure.

With this assumption, an inverse parabolic interpolation can be utilized to determine the

minimum point between the bracketed points of interest. Brent’s method combines both

Golden section search along with inverse parabolic interpolation to efficiently converge to a

neighborhood of a local minimum [103 ]. Although this approach may not achieve a globally
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optimal solution, the robustness and convergence benefits of this approach are significant for

on-board application.

The designed NPC leverages Brent’s method with an algorithm code found in [104 ].

During Phase 1 although the control switch time is not explicitly bounded, the lower and

upper bounds are selected to correspond to captured elliptical trajectories. For Phase 2,

the lower and upper bounds are selected to correspond to the respective control bounds of

each flight control. The step tolerance utilized by the method is assumed to be 1e-3. To

provide accurate calculations of the cost functional, a variable time-step integrator rather

than a fixed-time step integrator is utilized. A variable order Adams-Bashforth-Moulton

PECE integrator is utilized [105 ]. The relative and absolute tolerances are assumed to be

1e-6.

3.1.3 Lateral logic

The algorithm lateral logic is utilized for determining the sign of the bank angle (for

BAM) or side-slip angle (for DFC). The objective of the logic is to determine the necessary

commands such that orbit plane error is minimized after the in-plane optimization of |σ| or

α is completed. Consequently, the logic assumes the longitudinal and lateral flight dynamics

can be controlled independently.

For BAM, sgn(σ) is determined to null the orbit plane error. Producing bank reversals

can be potentially expensive and demanding the the vehicle RCS system and as a result are

limited to a prescribed number. The formulation of the BAM lateral logic is derived from the

methodology introduced by Smith [106 ]. The method compares the ratio of the predicted

inclination errors to a threshold value. The inclination errors are computed by numerically

integrating the state vector dynamics from the current state in the trajectory to atmospheric

exit using positive and negative signs of the current bank angle. The threshold is computed

by raising the ratio of the current inclination error and prescribed final inclination error to

the inverse of the number of available bank reversals left. The threshold allows for wiggle

room with respect to the final inclination error and does not quickly saturate the number

of bank reversals conducted. A final inclination error of 0.1° is assumed. The maximum
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number of bank reversals is assumed to be five. Figure 3.2 provides a sample performance

of the BAM lateral logic.

Figure 3.2. Example NPC lateral logic performance for BAM

For DFC, the orbit plane error is minimized using optimization of the side-slip angle

itself. The parameter optimization formulated in the previous section is applied with P =√
(i− it)2. This methodology adds additional computational cost to the NPC algorithm for

DFC, but may allow for precise control over the orbit plane error as shown in Figure 3.3 .
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Figure 3.3. Example NPC lateral logic performance for DFC

3.1.4 Comparison to optimal trajectories

The aerocapture problems analyzed in Section 2.2 are numerically solved using the NPC

algorithm. For the BAM comparison, no lateral logic is utilized by the NPC solutions. The

guidance is called at a rate of 0.1 Hz for each flight control. During each guidance call,

the same atmospheric density table as the one utilized by the optimal control solutions is

utilized. Two NPC solution methods are conducted. The first method, denoted by Min ∆V ,

uses the two phase active guidance approach with the cost functional defined by in-plane

∆V . The second method, denoted by Min raerror , uses Phase 2 only during active guidance

with a cost functional denoted by P =
√

(ra − rta)
2. This method is selected to emulate the

cost functional utilized by current state-of-the-art NPC guidance algorithms.

In the subsequent sections for each flight control, the resulting periapsis raise cost (∆V1)

for the Min ∆V NPC method may be slightly lower than the optimal trajectory solution at

certain planets. This result is not be interpreted as the optimal trajectory not being truly

optimal but rather an artifact of the collocation solution. Due to difficulty in achieving

numerical solutions, a large integration tolerance of 1e-3 is utilized by the collocation solver.

This is in contrast with the NPC, which utilized a much smaller integration tolerance of 1e-6.
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Furthermore, no mesh refinement is used in the collocation solution process. Given the same

utilized atmospheric density table for each planet, the differences in the numerical integration

setup step size may lead to large enough differences in the atmospheric exit conditions that

caused the observed results in periapsis raise cost. It is expected that both mesh refinement

and reduction in integration tolerance used in the collocation solution process will reconcile

these results.

Bank Angle Modulation

Figure 3.4 provides a comparison between the optimized bank angle control inputs at

each planetary destination and Figure 3.5 provides a corresponding representation of each

trajectory. The Min ∆V method generally produces a constant control command after the

bank angle switch. The Min raerror method also generally produces a constant control com-

mand. These trends are expected due to nonexistence of trajectory dispersions that otherwise

would necessitate compensatory control command modifications. For Earth and Neptune,

the more pronounced changes in control commands during Phase 2 can be attributed to the

numerical sensitivity of the NPC cost functional to the control parameter. Since the opti-

mization algorithm lacks derivative information, it can be possible for sub-optimal solutions

to be produced. Nevertheless, these errors are mitigated as seen in the resulting orbital

insertion performance found in Table 3.1 .

The resulting NPC bank angle trajectory solutions do not significantly differ from the

optimal trajectories with regards to altitude vs velocity and flight path angle vs velocity,

with levels varying depending on the planet. At Venus, The optimal control solution and

the min raerror agree well in altitude and flight path angle while the Min ∆V produces a

differing trajectory with an smaller exit flight path angle for a similar exit velocity. The

latter is an observable trend produced with the Min ∆V solution as compared to the others.

The terminal flight path angle can be identified to have a significant influence on achieving

∆V -minimizing trajectories. Both the optimal control solution and Min ∆V method exhibit

lower terminal flight path angles than the Min raerror method. This yields a lower periapsis

raise ∆V for near zero apoapsis correction ∆V as shown in Table 3.1 . As was shown in
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Figure 2.17 for Venus, achieving an exit flight path angle near zero is beneficial for achieving

higher post-aerocapture periapsis altitudes that are propulsively cheaper to raise.

Figure 3.4. Comparison of bank angle control inputs between optimal control
and NPC solutions. Black dashed lines are imposed control constraints

Figure 3.5. Comparison of bank angle trajectories between optimal control
and NPC solutions

For BAM, all three numerical guidance solutions are sufficient with regards to orbit

insertion. Both the optimal control and Min ∆V methods achieve lower periapsis raise

maneuvers than the Min raerror method. At all the destinations simulated, the Min ∆V NPC
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solution produces a lower periapsis raise cost than the optimal solution. This difference can

be attributed to the lack of mesh refinement used in the collocation solution process for

the optimal control solutions. It is expected with further mesh refinement that the optimal

control solutions will produce lower periapsis raise costs. With respect to Min ∆V method,

the percent reduction in periapsis raise ∆V as compared to the Min raerror method at Venus,

Earth, Mars, Titan, and Neptune is 52%, 32%, 27%, 20%, and 5%, respectively. This result

demonstrates the performance enhancement achieved by incorporating the periapsis raise

maneuver into the cost functional. Furthermore, the NPC methods allow for a significant

reduction in the number of numerical integration as compared to the optimal control solution.

The percent fraction of the number of Min ∆V method numerical integrations to the optimal

control solution at Venus, Earth, Mars, Titan, and Neptune is 0.8%, 0.5%, 0.7%, 0.8%, and

0.6%, respectively.

Table 3.1. Bank Angle Modulation Aerocapture Solution Data
Planet Solution Method raerror

(km)
∆V2
(m/s)

∆V1
(m/s)

# odefun
calls

Venus
Optimal Control 8.613E-03 2.424E-03 110.155 94269
NPC: Min ∆V 1.538E-02 4.329E-03 54.545 753
NPC: Min raerror

9.177E-04 2.583E-04 112.815 194

Earth
Optimal Control 1.413E-02 3.911E-03 136.552 101387
NPC: Min ∆V 2.250E-01 6.225E-02 128.615 466
NPC: Min raerror

4.173E-02 1.155E-02 188.469 221

Mars
Optimal Control 3.550E-03 7.853E-04 113.176 98683
NPC: Min ∆V 1.534E-02 3.393E-03 85.043 716
NPC: Min raerror

5.969E-03 1.320E-03 116.838 375

Titan
Optimal Control 7.796E-04 6.607E-05 156.299 207600
NPC: Min ∆V 3.399E-01 2.881E-02 149.559 1723
NPC: Min raerror 3.301E-02 2.798E-03 186.805 932

Neptune
Optimal Control 3.486E-02 4.820E-05 89.055 120576
NPC: Min ∆V 2.373E+00 3.281E-03 83.534 751
NPC: Min raerror

8.299E+00 1.147E-02 88.040 440
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Drag Modulation

Figure 3.6 provides a comparison between the optimized drag modulation control inputs

at each planetary destination and Figure 3.7 provides a corresponding representation of

each trajectory. The Min ∆V method generally produces a constant control command after

the ballistic coefficient switch. The Min raerror method also generally produces a constant

control command, though pronounced control modifications are noted for Venus and Earth.

The resulting NPC drag modulation trajectory solutions do not significantly differ from the

optimal trajectories with regards to altitude vs velocity but differ with regards to flight path

angle vs velocity. Like what was observed for BAM, the terminal flight path angle can be

identified to have a significant influence on achieving ∆V -minimizing DM trajectories. Both

the optimal control solution and Min ∆V method exhibit minutely lower terminal flight

path angles than the Min raerror method. This yields a lower periapsis raise ∆V for near

zero apoapsis correction ∆V as shown in Table 3.2 .

Figure 3.6. Comparison of drag modulation control inputs between optimal
control and NPC solutions. Black dashed lines are imposed control constraints
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Figure 3.7. Comparison of drag modulation trajectories between optimal
control and NPC solutions

For DM aerocapture data in Table 3.2 , all three numerical guidance solutions are sufficient

with regards to orbit insertion. Both the optimal control and Min ∆V methods achieve lower

periapsis raise maneuvers than the Min raerror method. At all the destinations simulated,

the Min ∆V NPC solution produces a slightly higher periapsis raise cost than the optimal

solution. This indicates that the utilized mesh in the optimal control solution is sufficient.

With respect to Min ∆V method, the percent reduction in periapsis raise ∆V as compared

to the Min raerror method at Venus, Earth, Mars, Titan, and Neptune is 7%, 1%, 3%, 4%, and

0.05%, respectively. The percent reduction is smaller as compared to BAM but nonetheless

demonstrates the performance enhancement achieved by incorporating the periapsis raise

maneuver into the cost functional. Furthermore, the NPC methods allow for a significant

reduction in the number of numerical integration as compared to the optimal control solution.

The percent fraction of the number of Min ∆V method numerical integrations to the optimal

control solution at Venus, Earth, Mars, Titan, and Neptune is 0.6%, 0.5%, 0.6%, 0.4%, and

0.8%, respectively. As compared to BAM, the number of numerical integrations is nearly

half yet the percent fraction is nearly identical.
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Table 3.2. Drag Modulation Aerocapture Solution Data
Planet Solution Method raerror

(km)
∆V2
(m/s)

∆V1
(m/s)

# odefun
calls

Venus
Optimal Control 5.173E-02 1.456E-02 67.646 54861
NPC: Min ∆V 5.790E-04 1.630E-04 70.075 328
NPC: Min raerror

1.897E-01 5.341E-02 75.127 210

Earth
Optimal Control 9.497E-05 2.628E-05 134.034 69090
NPC: Min ∆V 1.577E-03 4.365E-04 137.477 330
NPC: Min raerror 9.873E-01 2.732E-01 138.987 292

Mars
Optimal Control 1.509E-02 3.338E-03 87.567 98966
NPC: Min ∆V 2.839E-02 6.279E-03 89.911 561
NPC: Min raerror

3.171E-01 7.014E-02 92.927 438

Titan
Optimal Control 5.290E-04 4.484E-05 157.956 308119
NPC: Min ∆V 1.632E-01 1.383E-02 158.656 1205
NPC: Min raerror 3.315E+00 2.808E-01 164.621 786

Neptune
Optimal Control 2.167E-02 2.997E-05 82.616 76570
NPC: Min ∆V 5.036E+00 6.963E-03 82.705 621
NPC: Min raerror

7.920E+00 1.095E-02 82.749 433

Direct Force Control

Figure 3.8 and Figure 3.9 provide a comparison between the optimized angle of attack

and side-slip angle control inputs at each planetary destination and Figure 3.10 provides a

corresponding representation of each trajectory. The Min ∆V method generally produces a

constant control command after the angle of attack switch, though noticeable divergences can

be seen for Mars and Neptune. The Min raerror method also generally produces a constant

control command, but with observable divergences for Venus and Neptune. The side-slip

angle commands between the two NPC solutions are nearly identical as the same lateral

logic is utilized. The resulting NPC direct force control trajectory solutions produce similar

trends as BAM with regards to the altitude vs velocity and flight path angle vs velocity

profiles. For Venus and Earth, the differences in the altitude vs velocity profiles are the

most pronounced. But for the remaining planets, the profiles are similar. The altitude vs

flight path angle profiles do exhibit visual variations at each planet. Like BAM and DM,

the terminal flight path angle can be identified to have a significant influence on achieving

∆V -minimizing trajectories. Both the optimal control solution and Min ∆V method exhibit

lower terminal flight path angles than the Min raerror method. This yields a lower periapsis

raise ∆V for near zero apoapsis correction ∆V as shown in Table 3.3 .

For DFC aerocapture data in Table 3.3 , all three numerical guidance solutions are suffi-

cient with regards to orbit insertion. Both the optimal control and Min ∆V methods achieve
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Figure 3.8. Comparison of angle of attack control inputs between optimal
control and NPC solutions. Black dashed lines are imposed control constraints

Figure 3.9. Comparison of side-slip angle control inputs between optimal
control and NPC solutions. Black dashed lines are imposed control constraints

lower periapsis raise maneuvers than the Min raerror method. At Venus, Titan, and Neptune,

the Min ∆V NPC solution produces a lower periapsis raise cost than the optimal solution.

This difference can be attributed to the lack of mesh refinement used in the collocation so-

lution process for the optimal control solutions. It is expected with further mesh refinement
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Figure 3.10. Comparison of direct force control trajectories between optimal
control and NPC solutions

that the optimal control solutions will produce lower periapsis raise costs. With respect to

Min ∆V method, the percent reduction in periapsis raise ∆V as compared to the Min raerror
method at Venus, Earth, Mars, Titan, and Neptune is 54%, 23%, 15%, 22%, and 3%, respec-

tively. The percent reduction is smaller as compared to BAM but nonetheless demonstrates

the performance enhancement achieved by incorporating the periapsis raise maneuver into

the cost functional. Furthermore, the NPC methods allow for a significant reduction in the

number of numerical integration as compared to the optimal control solution. The percent

fraction of the number of Min ∆V method numerical integrations to the optimal control

solution at Venus, Earth, Mars, Titan, and Neptune is 1.1%, 2.2%, 1.3%, 0.8%, and 1.5%,

respectively. As compared to BAM, the number of numerical integrations and percent frac-

tion is nearly double. This can be attributed to the additional NPC optimization cost due

to an additional control parameter.
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Table 3.3. Direct Force Control Aerocapture Solution Data
Planet Solution Method raerror

(km)
ierror

(km)
∆V2
(m/s)

∆V3
(m/s)

∆V1
(m/s)

# odefun
calls

Venus
Optimal Control 2.722E-03 1.437E-07 7.661E-04 1.794E-05 71.367 90074
NPC: Min ∆V 2.819E-02 1.581E-07 7.935E-03 1.973E-05 54.245 1028
NPC: Min raerror

1.352E-01 5.786E-08 3.807E-02 7.221E-06 117.671 298

Earth
Optimal Control 7.639E-02 7.337E-03 2.114E-02 9.748E-01 118.966 47021
NPC: Min ∆V 1.772E-02 7.569E-07 4.904E-03 1.006E-04 119.045 1009
NPC: Min raerror

7.713E-02 1.026E-06 2.134E-02 1.364E-04 154.827 422

Mars
Optimal Control 3.540E-03 4.698E-04 7.831E-04 2.754E-02 78.809 109804
NPC: Min ∆V 2.711E-02 1.345E-06 5.996E-03 7.887E-05 79.997 1454
NPC: Min raerror 6.975E-03 1.777E-07 1.543E-03 1.042E-05 94.302 741

Titan
Optimal Control 1.328E+00 4.780E-01 1.125E-01 1.209E+01 191.347 321004
NPC: Min ∆V 1.706E+00 1.901E-04 1.447E-01 4.808E-03 148.766 2412
NPC: Min raerror

4.143E-02 1.516E-04 3.512E-03 3.835E-03 189.673 1412

Neptune
Optimal Control 1.561E+01 9.479E-04 2.158E-02 6.415E-02 84.092 76130
NPC: Min ∆V 2.832E+00 1.569E-07 3.916E-03 1.062E-05 82.942 1179
NPC: Min raerror 5.144E+00 6.653E-07 7.113E-03 4.502E-05 85.279 769

Discussion on computational cost

The results presented in the preceding sections demonstrate the computational cost dif-

ference in obtaining ∆V-minimizing trajectories for each flight control analyzed. The NPC

doesn’t explicitly solve the optimal aerocapture problem but produces trajectories close to

the theoretical optimal solution using the a-priori knowledge of the optimal control structure.

Computing these trajectories using univariate parameter optimization, rather than colloca-

tion methods, allows for a significant reduction in the number of numerical integrations.

The small reduction in ∆V cost associated with computing the optimal control solution does

not warrant the order-of-magnitude increase in on-board computational cost. Due to the

potentially fast guidance call rates, it is imperative that the on-board guidance algorithm

obtain solutions efficiently and quickly. The computational cost associated with the NPC

solutions are well within the current capability of on-board flight computers.
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3.2 Closed-loop architecture

The NPC algorithm utilizes a simplified 3DOF trajectory model when computing the

necessary control inputs. These may include a nominal GRAM atmospheric model, lin-

ear aerodynamics model, and decoupled longitudinal/lateral flight dynamics. The accuracy

of these simplifications is rigorously tested using a truth model, which serves as the true

trajectory model. The truth model may include the coupled longitudinal/lateral flight dy-

namics, full non-linear aerodynamic model, and dispersed GRAM atmospheric model. The

latter term is an example of trajectory dispersions that can be present during flight. Other

dispersions that are applied to the truth model include atmospheric winds, aerodynamic

uncertainty, and vehicle attitude uncertainty. A flight actuator is implemented to simulate

the time response of controls commanded by the NPC based off a maximum rate and ac-

celeration limit. A feedback filter is utilized to provide closed-loop feedback to the NPC

model. Figure 3.11 provides a high-level representation of the closed-loop NPC aerocapture

guidance architecture. Overall, the architecture allows for a variety of different aeroshell

configurations, vehicle flight controls, and planetary destinations to be readily simulated in

a single environment.
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Figure 3.11. Closed-loop NPC aerocapture guidance architecture
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3.2.1 Control command limiter

Flight control actuators, such as RCS thrusters and aerosurfaces, are utilized to achieve

the desired NPC control commands. For BAM and DFC, the control variables are identical

to the Eulerian angle respresenting the wind-frame attitude of the vehicle; thus, the actuators

must act on the rotational dynamics of the vehicle. For a 3DOF simulation, the rotational

response of the vehicle can be emulated using a control command limiter. It limits the time

response of the control commands based off a maximum rate, u̇max, and acceleration, ümax.

Using a second-order Taylor Series approximation of the control time response, the time

history of the flight actuator can be modeled using Eq. (3.1 ) [107 ].

u(t) ≈ u0 + u̇max∆t+ 1
2 ümax∆t

2 (3.1)

This pseudo-actuator methodology has been widely utilized in aerocapture and EDL

applications [32 ], [33 ], [108 ]–[110 ]. Figure 3.12 depicts the finite time response of control

commands as passed from the NPC solution to the truth model for a single 10 second

guidance cycle. Sample values for the rates and accelerations come from literature. For

each flight control, the commands are able to be achieved within the simulated 10 second

interval. If the guidance call rate were to be increased beyond 0.5 Hz (5 second interval),

then the pseudo-actuator would not be able to reach the targeted command before the next

guidance cycle. This could be reconciled by improving the actuator response via increase

in its maximum rate and acceleration. Nevertheless, the example presented in Figure 3.12 

illustrates the dependence of guidance rate to actuator selection.

147



Figure 3.12. Example 3DOF flight actuator response to bank angle, angle of
attack, side-slip angle, and cone angle NPC commands

3.2.2 Uncertainty estimator

The NPC guidance architecture is designed closed-loop in the sense that the NPC tra-

jectory models are corrected in real-time based off sensed trajectory data from the in-flight

navigation system. The navigation system may include integrated IMU and FADS instru-

mentation. Due to the reliance on instrumentation model specifications, perfect navigation

knowledge is assumed by the in-flight navigation system. The knowledge is used to provide

an estimate for the sensed aerodynamics accelerations during flight, which are subsequently

compared against similar calculations using the current NPC trajectory model. A first-order

fading memory filter is utilized to compute the update gain that is applied to the NPC

trajectory model. Unlike the current state-of-the-art aerocapture guidance routines, a sin-

gle user-defined gain is required that does not require gain tuning to achieve the desired

closed-loop performance. The memory filter has been shown in literature to provide suf-

ficient closed-loop performance for EDL and aerocapture guidance applications [69 ], [111 ],

[112 ].

The principles of fading-memory filters can be traced to Kalman filters, which itself has

been widely utilized in aerospace applications. The fading-memory filter has a recursive
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structure that incorporates old estimates with current estimates of a parameter of interest.

A first-order filter can be mathematically modeled using Eq. (3.2 ) where k is the current

index in the sequence, G is a constant gain, x̂ is the estimated parameter of interest, and

xerr is the ratio of the current measurement to the old estimate [113 ].

x̂k = x̂k−1 + (1 −G)(xerr − x̂k−1) (3.2)

The mathematical structure of the fist-order memory filter is similar to a linear poly-

nomial Kalman filter with the only difference being in the computation of G. The Kalman

filter solves the Ricatti equations to obtain G and as a result the gain can be time-varying

and can increase the computational cost of the filter. The selection of the constant value

for G between 0 and 1 is generally arbitrary but is related to the bandwidth of the filter.

Increasing the gain towards 1 reduces the bandwidth thereby increasing the importance of

previous measurements. Although higher-order memory filters share similar constant gain

properties as the first-order filter, they are generally less effective at attenuating measure-

ment noise than a first-order filter. Due to the potential stochastic trajectory dispersions, a

first-order filter is assumed. Figure 3.13 provides a high-level overview of the feedback filter

structure.
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Figure 3.13. Feedback filter gain computation overview
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The filter is utilized to compute the correction gains associated with the NPC model of

lift-force, drag-force, and side-force. This is done by computing the errors of the respec-

tive force-accelerations between the current NPC model and current trajectory estimates.

The calculation of the update gains are conducted every kth guidance cycle. An update

gain for atmospheric density can be computed using a similar approach but only with drag

acceleration. Ultimately, acceleration-based gains rather than density-based gains are uti-

lized since aerodynamic acceleration measurements can capture uncertainty associated with

aerodynamic coefficients, mass, and vehicle attitude, in addition to density dispersions.

A numerical example of the feedback filter as applied to DFC is shown in Figure 3.14 .

The example shows the NPC update gain calculations for two sets of perturbed Neptune

aerocapture trajectories, denoted High and Low. The limited knowledge of Neptune atmo-

spheric profile provides a good example to test the effectiveness of the feedback filter. The

High trajectory corresponds to a higher-than-average 6σ perturbed atmospheric profile while

the Low trajectory corresponds to a lower-than-average 6σ perturbed atmospheric profile.

Figure 2.15 provides a visualization of sample atmospheric profiles with 6σ density disper-

sions applied where High trajectory correlates to Yelle maximum profile and Low trajectory

correlates to Yelle min profile. For both trajectories, the NPC utilizes a nominal Neptune

atmospheric profile, denoted by Average profile in Figure 2.15 , with trajectory updates oc-

curring at 0.1 Hz. Gain of 0.9 are used for each aerodynamic force as well as atmospheric

density. Note that the latter gain is only used for illustrative purposes.

The top left subplot in Figure 3.14 shows the effectiveness of the memory filter in properly

scaling the NPC atmospheric profile in the presence of high frequency density perturbations

to nearly match the High and Low atmospheric profiles. The remaining three subplots show

the evolution of the NPC gain updates each guidance cycle. For the High profile, each gain

is generally greater than unity indicating an amplification of the NPC model’s aerodynamic

forces due to computing density values that are lower than the flight environment. Converse

trend can be seen with the Low profile. The net effect of the update gains allows for each

respective simulated trajectory to achieve Neptune aerocapture with apoapsis errors less

than 10 km and inclination errors less than 0.1°.
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Figure 3.14. Example feedback filter gain calculations applied to two sets of
perturbed density profiles at Neptune

3.2.3 Monte Carlo Integration

Monte Carlo simulations are employed to assess the robustness of each vehicle design

at different planetary destinations. This is accomplish by integrating Monte Carlo methods

into NPC aerocapture guidance architecture. Probabilistic parameters are inputted into the

architecture during each simulation of a guided aerocapture trajectory. Thousands of trajec-

tories are simulated to provide a sufficient statistical representation of the output parameters

of interest. For 3DOF aerocapture, the probabilistic inputs include parameters associated

with delivery state error at atmospheric entry, vehicle aerodynamic coefficient uncertainty,

atmospheric profile uncertainty and density dispersions, as well as vehicle attitude disper-

sions. Each input has an associated probabilistic distribution function that is sampled during

the simulations. The output parameters are associated with the orbit insertion performance

of each aerocapture trajectory. Further details on the Monte Carlo setup utilized in the

computational studies can be found in Chapter 4 .
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4. SYSTEM ANALYSIS OF AEROCAPTURE MISSION SETS

In this chapter, the NPC aerocapture guidance architecture is applied to numerically simulate

aerocapture trajectories for two sets of vehicles at different planetary destinations. Monte

Carlo simulations are conducted to assess the robustness and orbit insertion performance of

each flight control option.

4.1 Lifting and Ballistic Aerocapture Trajectories

4.1.1 Theoretical Entry Flight Path Angle Corridor Width

An important metric for assessing aerocapture capability is the theoretical entry flight

path angle corridor width. The width should be larger than the anticipated delivery state

errors in inertial flight path angle (±3σ). It is a direct function of the control capability

of the vehicle. The control can be parametrized by the vehicle L/D for lifting trajectories

and by the vehicle BCR for ballistic trajectories. Given a base BC, lifting vehicles see no

change in BC while ballistic vehicles increase the BC up to a maximum value equal to BCR

times the base BC (min BC assumed to be equal to base BC). Solving for the entry flight

path angle that achieves the targeted orbit apoapsis using lift vector up/max BC, known as

steep side, and lift vector down/min BC, known as shallow side, configurations allows for the

corridor width to be computed. To normalize the comparison between lifting and ballistic

trajectories, the same base BC is assumed. The corridor width trends are presented for each

planetary destination using a wide range of entry velocities, base BC, vehicle L/D and BCR

values. The peak stagnation point convective heat flux for a 1m nose radius amongst the

steep and shallow trajectories is presented.
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Venus

The corridor width assessment for Venus targets a 300 km circular orbit. Figure 4.1 

depicts a comparison between the theoretical corridor width as function inertial entry velocity

for different lifting and ballistic vehicles. The range of velocities analyzed as typical for

Venus aerocapture mission sets. Note that Venus escape velocity is 10.36 km/s. Figure 4.1a 

illustrates that the corridor width for ballistic vehicles strongly increases with increasing

BCR and slowly increases with increasing entry velocities. This indicates that the corridor

can be most influenced by changes in ballistic control capability rather than changes in the

arrival conditions. Figure 4.1b shows that the width strongly increases with both increasing

L/D and entry velocity. The width produced by lifting vehicles are generally an order-of-

magnitude bigger than the widths produced by ballistic vehicles. As an example, a ballistic

vehicle with BCR=20 and entry velocity = 14 km/s is needed to match the width produced

by a lifting vehicle with L/D=0.1 and entry velocity = 11.5 km/s. This indicates that for

the targeted orbit, lifting vehicles are more favorable control-wise than ballistic vehicles.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.1. Venus corridor width as function of entry velocity and vehicle
control for base BC=50 kg/m2 and target apoapsis altitude of 300 km

The effect of base BC on the corridor trends for each set of trajectories is shown in

Figure 4.2 . An entry velocity of 11.5 km/s is assumed. For both Figure 4.2a and Figure 4.2b ,

modifying the base BC has little effect on the resulting width. Rather, the figures show

the widths to be strong functions of the vehicle control parameters, being BCR and L/D
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respectively. This suggests that the width is generally invariant to the vehicle mass since the

base BC scales lineally with it. So, the expected corridor width between a SmallSat-class and

Satellite-class payload at Venus, given same entry velocity, L/D or BCR, should generally

be the same.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.2. Venus corridor width as function of vehicle control and base BC
for 11.5 km/s entry velocity and target apoapsis altitude of 300 km

Modifying the base BC has the effect of shifting the middle entry flight path angle of

the corridor and peak convective heat rate as shown in Figure 4.3 . Increasing BC leads to

steeper flight path angles as shown in Figure 4.3a and Figure 4.3b . For ballistic vehicles,

increasing the BCR shifts the middle EFPA to be more steeper. Similar trend can be seen

for lifting vehicles with L/D. Steeper EFPA yield higher convective heat rates. Figure 4.3c 

shows that increasing the vehicle BC, via increasing BCR or base BC, increases the heat rate.

The rate of increase is amplified with higher base BC. Figure 4.3d shows that increasing L/D

increases the peak heat rate. For Venus, the relatively large heat rate values may suggest

that higher performance TPS material is needed. For low base BC and low BCR ballistic

vehicles, the heat rates might be within the current TPS capabilities. But due to small

corridor width produced by small BCR vehicles, larger BCR values might be sought for

leading to an increase in the heat rate. For lifting vehicles, lowering the heat rate can be

achieved with a high area aeroshell and low-L/D vehicle.

154



(a) Ballistic Vehicles (b) Lifting Vehicles

(c) Ballistic Vehicles (d) Lifting Vehicles

Figure 4.3. Venus middle entry flight path angle and peak convective heat
rate as function of vehicle control and base BC for 11.5 km/s entry velocity
and target apoapsis altitude of 300 km

Earth

The corridor width assessment for Earth targets a 500 km circular orbit. Figure 4.4 

depicts a comparison between the theoretical corridor width as function inertial entry velocity

for different lifting and ballistic vehicles. The range of velocities analyzed as typical for Earth-

return aerocapture mission sets. Note that Earth escape velocity is 11.12 km/s. Figure 4.4a 

illustrates that the corridor width for ballistic vehicles strongly increases with increasing

BCR and slowly increases with increasing entry velocities, similar to Venus. Unlike Venus,

the ballistic corridor widths at Earth for the same entry velocity and BCR value are generally

twice as big. Figure 4.4b shows that the width strongly increases with both increasing L/D

and entry velocity. This width is significantly larger than its ballistic vehicle counterpart. For
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low-L/D vehicles, the widths produced at Earth and Venus are nearly the same. For higher

L/D vehicles, the widths at Venus are much higher than at Earth. Given similar gravitational

accelerations, the higher densities experienced at Venus can be potentially attributed to this

difference in widths.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.4. Earth corridor width as function of entry velocity and vehicle
control for base BC=50 kg/m2 and target apoapsis altitude of 500 km

The effect of base BC on the corridor trends for each set of trajectories is shown in

Figure 4.5 . An entry velocity of 11.5 km/s is assumed. For both Figure 4.5a and Figure 4.5b ,

modifying the base BC has little effect on the resulting width, similar to Venus.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.5. Earth corridor width as function of vehicle control and base BC
for 11.5 km/s entry velocity and target apoapsis altitude of 500 km
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The effect modifying base BC has on the middle entry flight path angle of the corridor

and peak convective heat rate is shown in Figure 4.6 . Increasing BC leads to steeper flight

path angles as shown in Figure 4.6a and Figure 4.6b . Figure 4.6c shows that increasing the

vehicle BC, via increasing BCR or base BC, increases the heat rate. Figure 4.6d shows that

increasing L/D increases the peak heat rate. For Earth and the same entry velocity, the heat

rates are comparable but slightly lower than those found for Venus.

(a) Ballistic Vehicles (b) Lifting Vehicles

(c) Ballistic Vehicles (d) Lifting Vehicles

Figure 4.6. Earth middle entry flight path angle and peak convective heat
rate as function of vehicle control and base BC for 11.5 km/s entry velocity
and target apoapsis altitude of 300 km
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Mars

The corridor width assessment for Mars targets a 400 km circular orbit. Figure 4.7 depicts

a comparison between the theoretical corridor width as function inertial entry velocity for

different lifting and ballistic vehicles. The range of velocities analyzed as typical for Mars

aerocapture mission sets. Note that Mars escape velocity is 5.03 km/s. Figure 4.7a illustrates

that the corridor width for ballistic vehicles strongly increases with increasing BCR and

slowly increases with increasing entry velocities. Figure 4.7b shows that the width strongly

increases with both increasing L/D and entry velocity. This width is generally larger than

its ballistic vehicle counterpart. At lower entry velocities, a low-L/D vehicle has a similar

width as a mid to high BCR vehicle (e.g. L/D=0.25 similar to BCR = 15 at 5.5 km/s).

But for higher entry velocities, the lifting vehicles produce much larger widths. Despite the

different entry velocities analyzed, the raw corridor width values and trends between Earth

and Mars lifting and ballistic vehicles are quite similar.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.7. Mars corridor width as function of entry velocity and vehicle
control for base BC=50 kg/m2 and target apoapsis altitude of 400 km

The effect of base BC on the corridor trends for each set of trajectories is shown in

Figure 4.8 . An entry velocity of 5.5 km/s is assumed. In Figure 4.8a , increasing the base BC

slightly increases the width for ballistic vehicles. However, Figure 4.8b shows that modifying

the base BC on lifting vehicles has little effect on the resulting width.
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(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.8. Mars corridor width as function of vehicle control and base BC
for 5.5 km/s entry velocity and target apoapsis altitude of 400 km

The effect modifying base BC has on the middle entry flight path angle of the corridor

and peak convective heat rate is shown in Figure 4.9 . Increasing BC leads to steeper flight

path angles as shown in Figure 4.9a and Figure 4.9b . Figure 4.9c shows that increasing the

vehicle BC, via increasing BCR or base BC, increases the heat rate. Figure 4.9d shows that

increasing L/D increases the peak heat rate. For Mars, the heat rates are well within the

current TPS technology capabilities.
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(a) Ballistic Vehicles (b) Lifting Vehicles

(c) Ballistic Vehicles (d) Lifting Vehicles

Figure 4.9. Mars middle entry flight path angle and peak convective heat
rate as function of vehicle control and base BC for 5.5 km/s entry velocity and
target apoapsis altitude of 400 km

Titan

The corridor width assessment for Titan targets a 1700 km circular orbit. Figure 4.10 

depicts a comparison between the theoretical corridor width as function inertial entry velocity

for different lifting and ballistic vehicles. The range of velocities analyzed as typical for

Titan aerocapture mission sets. Note that Titan escape velocity is 2.65 km/s. Figure 4.10a 

illustrates that the corridor width for ballistic vehicles strongly increases with increasing

BCR and generally doesn’t change with increasing entry velocities. Figure 4.10b shows that

the width strongly increases with both increasing L/D and entry velocity. This width is

generally larger than its ballistic vehicle counterpart. At lower entry velocities, a low-L/D

vehicle has a similar width as a mid to high BCR vehicle (e.g. L/D=0.25 similar to BCR
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= 5 at 3 km/s). But for higher entry velocities, the lifting vehicles produce much larger

widths. As compared to other planets, the ballistic vehicles at Titan produce much larger

raw values for the width. For a similar entry velocity of 6 km/s, the width produced at

Titan is nearly three times as big as on produced at Mars. Likewise for the same entry

velocity, the lifting width produced at Titan is nearly double that produced at Mars. In

fact, the raw width values produced by lifting vehicles on Titan is nearly comparable to

Venus. Combining these two observations suggests that Titan relatively small gravity well

and dense atmosphere makes both ballistic and lifting aerocapture vehicles favorable with

large levels of control-capability.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.10. Titan corridor width as function of entry velocity and vehicle
control for base BC=50 kg/m2 and target apoapsis altitude of 1700 km

The effect of base BC on the corridor trends for each set of trajectories is shown in

Figure 4.11 . An entry velocity of 6 km/s is assumed. In Figure 4.11a and Figure 4.11b ,

decreasing the base BC generously increases the width for ballistic and lifting vehicles re-

spectively.

The effect modifying base BC has on the middle entry flight path angle of the corridor

and peak convective heat rate is shown in Figure 4.12 . Increasing BC leads to steeper flight

path angles as shown in Figure 4.12a and Figure 4.12b . Figure 4.12c shows that increasing

the vehicle BC, via increasing BCR or base BC, increases the heat rate. Figure 4.12d shows

that increasing L/D increases the peak heat rate. For Titan, the heat rates are well within

the current TPS technology capabilities.

161



(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.11. Titan corridor width as function of vehicle control and base BC
for 6 km/s entry velocity and target apoapsis altitude of 1700 km

(a) Ballistic Vehicles (b) Lifting Vehicles

(c) Ballistic Vehicles (d) Lifting Vehicles

Figure 4.12. Titan middle entry flight path angle and peak convective heat
rate as function of vehicle control and base BC for 6 km/s entry velocity and
target apoapsis altitude of 1700 km
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Neptune

The corridor width assessment for Neptune targets a 430000 km apoapsis elliptical orbit.

Figure 4.13 depicts a comparison between the theoretical corridor width as function of iner-

tial entry velocity for different lifting and ballistic vehicles. Figure 4.13a illustrates that the

corridor width for ballistic vehicles strongly increases with increasing BCR but does not gen-

erally increase with increasing entry velocities. Figure 4.13b shows that the width strongly

increases with both increasing L/D and entry velocity. Comparing the width suggests that

lifting trajectories are much wider, even for smaller L/D vehicles. A ballistic vehicle with a

large BCR is needed to match a similar width as a lifting vehicle with a low L/D. The trends

suggest that for the same BCR, ballistic vehicles may provide for flexibility in the arrival

conditions given the unchanging corridor width. On the contrary, the performance of lifting

vehicles can be influenced by the arrival conditions. For the same vehicle L/D, higher entry

velocities may provide for larger corridor width and shorter interplanetary transit times to

Neptune but at the potential expense of higher aeroheating environments since more orbital

∆V needs to be dissipated. Comparing the widths to other planets suggests Neptune’s large

gravity well can affect lifting vehicle control-capability. The width values at Neptune, even

for larger values of L/D and entry velocities, are generally smaller than any other planet.

This is in contrast to the comparison for ballistic vehicles as the width produced at Neptune

are similar in value to those at Earth and Venus.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.13. Neptune corridor width as function of entry velocity and vehicle
control for base BC=50 kg/m2 and target apoapsis altitude of 430,000 km
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The effect of base BC on the corridor trends for each set of trajectories is shown in

Figure 4.14 . Figure 4.14a and Figure 4.14b illustrates that the width generally increases

with lower base BC for both ballistic and lifting vehicles, similar to Titan.

(a) Ballistic Vehicles (b) Lifting Vehicles

Figure 4.14. Neptune corridor width as function of vehicle control and base
BC for 29 km/s entry velocity and target apoapsis altitude of 430,000 km

The effect modifying base BC has on the middle entry flight path angle of the corridor

and peak convective heat rate is shown in Figure 4.15 . Increasing BC leads to steeper flight

path angles as shown in Figure 4.15a and Figure 4.15b . Figure 4.15c shows that increasing

the vehicle BC, via increasing BCR or base BC, increases the heat rate. Figure 4.15d shows

that increasing L/D increases the peak heat rate. Due to the potential large heat rates

experienced at Neptune and current TPS technological limitations, it is desirable to utilize

ballistic and lifting flight control on low base BC vehicles.
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(a) Ballistic Vehicles (b) Lifting Vehicles

(c) Ballistic Vehicles (d) Lifting Vehicles

Figure 4.15. Neptune middle entry flight path angle and peak convective
heat rate as function of vehicle control and base BC for 29 km/s entry velocity
and target apoapsis altitude of 430,000 km

4.1.2 Aerocapture Flight Envelope

In the previous section, calculations and trends of the theoretical entry flight path angle

corridor width are introduced. This width serves as a metric to map vehicle control capability

to the entry state. During aerocapture, there can be potential trajectory dispersions that

can influence the effectiveness of the control capability. Uncertainties, such as delivery state,

atmosphere, and aerodynamics, may serve to reduce the capability potentially leading to

lifting and ballistic trajectories that do not successfully capture. Although assessing the

aggregate effect of these uncertainties is commonly done in a Monte Carlo fashion, it is

difficult to qualitatively assess the implications of each. Rather, their effect can be visualized

through a mapping to the entry state. Using a similar setup as in the previous section, the
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±3σ atmospheric and aerodynamic uncertainties are individually applied and the subsequent

steep and shallow side trajectories are computed. From the set of three steep and shallow

trajectories, the maximum steep side entry flight path angle and minimum shallow side

entry flight path angle form the combined corridor width. The delivery state flight path

angle dispersion is applied to narrow this width. The remaining available width is known as

the aerocapture flight envelope. Having a positive flight envelope may qualitatively indicate

that the vehicle has enough control authority to overcome the applied dispersions. The region

enclosed by the envelope can be thought of as the admissible region of guidable aerocapture

trajectories. A full quantitative assessment is conducted using Monte Carlo simulations.

Sample flight envelope calculation at each planetary destinations are presented in this

section. A few assumptions are made regarding the applied dispersions. For the aerody-

namics, the ±3σ dispersions in L/D are applied. A 70° sphere-cone aeroshell similar to

MSL aeroshell is assumed. For the MSL lifting aeroshell, these dispersons were estimated

to be ±20% in L/D [114 ]. Using a similar approach, the resulting L/D uncertainty for a

similar sphere-cone flying ballistically is estimated to be ±0.05. Secondly, the GRAM mod-

els are utilized to simulate the atmospheric uncertainty. For Venus, Earth, and Mars, the

uncertainty is simulated using the maximum density perturbation scale factor. For Titan

and Neptune only, in addition to using the max scale factor, the minimum and maximum

atmospheric profiles are set. See Figure 2.15 for a visualization of these settings. Lastly, the

values for the delivery state entry flight path angle dispersions are assumed to be 0.4°, 0.5°,

0.22°, 0.4°, and 0.31° for Venus, Earth, Mars, Titan, and Neptune respectively.

Figure 4.16 depicts the individual effects of the uncertainties along with the flight en-

velope for two sample lifting and ballistic vehicles at Venus. For the ballistic vehicle, the

aerodynamic uncertainties significantly reduce the corridor width. Even with the addition of

delivery state errors, the flight envelope is quite narrow with a width of 0.153°. A BCR of 20

has just enough controllability to overcome the applied dispersions. Any values lower than

this at Venus may yield non-positive flight envelopes potentially leading to uncaptured trajec-

tories. Consequently, ballistic vehicles may not be favorable risk-wise at Venus. Contrasting

results can be seen for the lifting vehicle analyzed. Although aerodynamic uncertainties and

delivery state errors reduce the corridor width, the remaining flight envelope is quite wide
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with a width of 0.824°. A low L/D, potentially heritage, blunt body aeroshell can provide

significant controllability, almost 8 times larger than the ballistic vehicle analyzed, within

the Venusian atmosphere. Consequently, lifting vehicles might be preferred for aerocapture

mission sets at Venus.

Figure 4.16. Venus flight envelope comparison between lifting (L/D=0.25)
and ballistic (BCR=20) trajectories for base BC=50 kg/m2 and 11.5 km/s
entry velocity

Figure 4.17 depicts the individual effects of the uncertainties along with the flight envelope

for two sample lifting and ballistic vehicles at Earth. For both the ballistic and lifting vehicle

analyzed, the aerodynamic dispersions and delivery errors decrease the corridor width. The

resulting flight envelope widths are 0.171° and 1.066° respectively. Unlike Venus, a lower BCR

vehicle is capable of providing sufficient controllability potentially indicating that ballistic

vehicle are viable for aerocapture applications at Earth. For lifting vehicles, a low L/D

aeroshell, such as the Apollo capsule, would be sufficient for Earth aerocapture.
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Figure 4.17. Earth flight envelope comparison between lifting (L/D=0.25)
and ballistic (BCR=5) trajectories for base BC=50 kg/m2 and 11.5 km/s entry
velocity

Figure 4.18 depicts the individual effects of the uncertainties along with the flight envelope

for two sample lifting and ballistic vehicles at Mars. Similar observations as the ones found

for Earth can be seen for Mars. The resulting flight envelope width for the ballistic and

lifting vehicle analyzed are 0.244° and 0.884° respectively. A low BCR vehicle is capable of

providing sufficient controllability potentially indicating that ballistic vehicle are viable for

aerocapture applications at Mars. For lifting vehicles, a low L/D aeroshell, such as the MSL

aeroshell, would be sufficient for Mars aerocapture.
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Figure 4.18. Mars flight envelope comparison between lifting (L/D=0.25)
and ballistic (BCR=5) trajectories for base BC=50 kg/m2 and 5.5 km/s entry
velocity

Figure 4.19 depicts the individual effects of the uncertainties along with the flight enve-

lope for two sample lifting and ballistic vehicles at Titan. Unlike Venus, Earth, and Mars,

the atmospheric dispersions significantly reduce the corridor width along with the delivery

state error. The resulting flight envelope width for the ballistic and lifting vehicle analyzed

are 0.74° and 0.79° respectively. Similar to Venus, a high BCR vehicle is needed to provide

sufficient controllability to overcome the uncertainty in atmospheric profile. If this uncer-

tainty in profile can be improved upon through the integration of Cassini-Huygens flight

data, then potentially lower BCR ballistic vehicles may be enabled. For lifting vehicles,

a low-L/D vehicle, such as the MSL aeroshell, provides sufficient performance despite the

guidable trajectory space being visually thin. This may make the capture success rate of the

lifting vehicle susceptible to increased delivery and atmospheric dispersions.
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Figure 4.19. Titan flight envelope comparison between lifting (L/D=0.25)
and ballistic (BCR=20) trajectories for base BC=50 kg/m2 and 6 km/s entry
velocity

Figure 4.20 depicts the individual effects of the uncertainties along with the flight envelope

for two sample lifting and ballistic vehicles at Neptune. Similar to Titan, the atmospheric

dispersions significantly reduce the corridor width. The resulting flight envelope width for

the ballistic and lifting vehicle analyzed are 0.051° and 1.149° respectively. This width for

the large BCR ballistic vehicle is razor thin indicating that ballistic vehicle may not provide

enough controllability to overcome uncertainty in atmospheric profile. Unlike Titan, no

additional flight data for Neptune is currently available potentially reducing the risk posture

of ballistic Neptune aerocapture. For the lifting vehicle, a mid-L/D vehicle is assessed. The

relatively large envelope width may indicate that lower-L/D vehicle, say 0.4-0.5, can provide

sufficient controllability to overcome the lack in atmospheric knowledge.
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Figure 4.20. Neptune flight envelope comparison between lifting (L/D=0.8)
and ballistic (BCR=20) trajectories for base BC=50 kg/m2 and 29 km/s entry
velocity

4.2 Monte Carlo Simulations

A series of Monte Carlo simulations are conducted to assess the performance and robust-

ness of each flight control at different planetary destinations. Two sets of vehicle designs are

considered: Discovery-Class vehicles and SmallSat-Class vehicles. The primary difference

between the two is the aeroshell sizing to accommodate the science payload delivered to

orbit. But, the aeroshells analyzed in this section all belong to the sphere-cone family. The

NPC guidance architecture introduced in Section 3 is utilized to conduct the Monte Carlo

simulations. A high-fidelity 3DOF truth model is employed. The truth model utilizes the full

non-linear aerodynamics model and perturbed atmospheric model produced by each planet’s

GRAM model. The NPC knowledge of each planetary atmosphere is limited to the nominal

atmospheric profile produced by each planet’s GRAM model. For DFC flight control only,

the NPC is assumed to utilize a linear aerodynamics model as described in Section 2 . The

flight computer runs the NPC guidance algorithm at the same rate for each flight control

but this rate varies for each planet. For Venus, Earth, Mars, Titan, and Neptune, the rates

are 0.2 Hz, 0.2 Hz, 0.1 Hz, 0.1 Hz, and 0.5 Hz, respectively. A guidance rate of 0.1 Hz is

selected as a baseline. Due to the smaller density scale heights of Venus and Earth, the guid-
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ance call rate about the baseline is doubled. Due to the potential large density uncertainties

experienced at Neptune, the guidance call rate about the baseline is increased by five times.

Each vehicle targets the same sets of orbits that have been analyzed in this dissertation (see

Target Orbit category in Table 2.8 ).

Table 4.1 lists the common atmospheric, aerodynamic, and vehicle attitude dispersions

applied to each vehicle. The delivery state dispersions are shown separately in each sub-

sequent planetary destination. The atmospheric dispersions correspond to settings in the

GRAM models. The random perturbation seed is used in the random generation on den-

sity perturbations. The density and wind scale factor, rpscale and rwscale, are utilized to

control the scale of the corresponding perturbations about the nominal profile. A value of

1 and 2 corresponds to ±3σ and ±6σ, respectively. For Titan and Neptune only, the vari-

able fminmax controls the selection of the atmospheric profile between the Yelle minimum

and Yelle maximum profiles. The value can be statically selected for each Monte Carlo run

(known as global variation), or can have a sinusoidal latitudinal variation in each Monte

Carlo run. The latter case is controlled using the term fbias, which keeps fminmax within

the imposed bounds. This latitudinal variation, as shown in Eq. (4.1 ), was utilized in both

Titan [10 ] and Neptune [11 ] NASA aerocapture studies and is replicated in this analysis.

fminmax = 0.44 cos (4 ∗ latitude) + fbias (4.1)

The aerodynamic uncertainties pertain to differences in the on-board atmospheric model

and the truth atmospheric model. Viscous and other high-order flow effects that are not

captured in the on-board model might be present during flight. The ±3σ values applied in

the Monte Carlo simulations are typical for a 70° sphere-cone [114 ]. Likewise, similar ±3σ

uncertainties for the vehicle attitude can also be ascertained. These pertain to errors in the

vehicle attitude produced from flight actuator inputs, despite the vehicle attitude dynamics

not being explicitly simulated in the 3DOF simulations. A nominal value of zero indicates

that the vehicle attitude equals the commanded vehicle attitude from the guidance.
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Table 4.1. Planetary aerocapture Monte Carlo experimental setup
Category Variable Nominal ±3σ or min/max Distribution

Atmosphere

Random perturbation seed 1 1 to 29999 Uniform
rpscale 0 0 to 1 Normal
rwscale 0 0 to 1 Normal
fbias 0 -0.56 to 0.56 Uniform
fminmax 0 -1 to 1 Uniform

Aerodynamics
Axial force coefficient 1 3% Normal
Normal force coefficient 1 5% Normal
Side-force coefficient 1 5% Normal

Vehicle Attitude
Angle of Attack 0° 2° Normal
Side-Slip Angle 0° 2° Normal
Bank Angle 0° 10° Normal

4.2.1 Discovery-Class Vehicles

Venus

For Venus, the targeted orbit is a 300 km circular orbit at 90° inclination. A series of

different vehicle configurations are assessed. Table 4.2 provides a summary of each configu-

ration consisting of two lifting vehicles and a single ballistic vehicle. Each vehicle is designed

to house a 1080 kg satellite payload with a 3.7m diameter antenna (similar to the Magellan

spacecraft). A MSL-derived aeroshell is assumed for the lifting vehicles (see Figure 2.12 for

vehicle aerodynamics). A morphable sphere-cone aeroshell with a base cone angle of 70°,

conical frustrum length of 3.5 m, and payload fairing diameter of 4 m is assumed for the

ballistic vehicle (see Figure 2.6 for vehicle aerodynamics). Due to the small scale height of

Venus atmosphere, increased control rates as compared to the other planetary destinations

are assumed. The atmospheric entry mass of each vehicle is assumed to be 1500 kg. The TPS

mass is not formally sized for any of the vehicle designs but a 72% payload over entry mass

fraction is assumed from the NASA Venus aerocapture study [8 ]. Higher fidelity aerothermal

heating analysis, not included in the current analysis, is needed to further refine the TPS

mass. Note that the NASA Venus aerocapture study formulated a vehicle design with an

aeroshell diameter of 2.65 m, L/D of 0.25, and entry mass of 900 kg (BC of 114 kg/m2) for

orbit insertion of a smaller sized science payload into the same target orbit.

Given each vehicle’s base BC, L/D and/or BCR, the nominal inertial entry flight path

angle is computed using the corridor width assessment introduced in the previous section.
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Table 4.2. Venus aerocapture flight control vehicle designs
Vehicle 1 Vehicle 2 Vehicle 3

Flight Control BAM DFC DMCV
Nose Radius, m 1.125 1.125 5.848
Diameter, m 4.5 4.5 5.3 (at CA = 70)
Control Limits, deg 0 to 180 ±16 (±5)1 20 to 70
Rate Limit, deg/s 30 7.5 (2)1 7.5
Accel Limit, deg/s2 5 2 (0.3)1 2
Base BC, kg/m2 60 60 10
Max L/D 0.25 0.25 0
Max BCR – – 5.5
1 Angle of Attack (Side-Slip Angle)

These flight path angles are set to -5.825° for Vehicle 1 and Vehicle 2, and -5.359° for Vehicle

3. The nominal delivery state parameters are shown in Table 4.3 . Due to the lack of delivery

state covariance matrices for each entry condition, a new approach is taken to produce the

entry state dispersions. The dispersions are generated through propagation of uncertainties

in vehicle position and velocity as applied to the nominal entry hyperbola from the data

cut-off point to entry interface using the atmospheric flight equation of motion (with zero

density). The a data cutoff-point of 30 hours prior to entry is assumed for Venus. The

position and velocity uncertainties are scaled such that the propagated ±3σ entry flight

path angle uncertainty at entry interface is obtained.

Table 4.3. Monte Carlo simulated dispersions for Venus aerocapture
Category Variable Nominal ±3σ or min/max Distribution

Delivery State

Inertial entry flight path angle -5.825° or -5.359° From propagation Correlated
Inertial entry velocity 11.25 km/s From propagation Correlated
Inertial entry altitude 150 km From propagation Correlated
Inertial entry latitude 86° From propagation Correlated
Inertial entry longitude 0° From propagation Correlated
Inertial entry heading angle 90° From propagation Correlated

Table 4.4 outlines the various sets of cases run on each flight control. The reference case

corresponds to ±3σ random density variations simulated with the baseline delivery error used

in the NASA Venus study [115 ]. Case 1 serves as the control of the experiment. The second

case corresponds to a reduction in the density variation through halving of the perturbation

scale multiplier. This case is intended to assess the effects of near nominal atmospheric profile

conditions on the orbit insertion performance. The third case corresponds to an increase the

random density variations to ±6σ through doubling of the perturbation scale. This case is
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intended to be the worst-case scenario of Venus atmosphere given the simulation capability

of VenusGRAM. The fourth case corresponds to an increase in the delivery state uncertainty.

This case is intended to simulate the effect of higher entry flight path angle uncertainty on

the orbit insertion performance. For this case, the flight path angle uncertainty is increased

to the value of 0.4°, which corresponds to a later data cutoff-point of 48 hours prior to entry.

Cases 2, 3 and 4 are cases not investigated in the NASA Venus study.

Table 4.4. Summary of Monte Carlo Test Cases for Venus.
Case Perturbation Scale ±3σ Entry Flight Path Angle

1. Reference 1.0 0.28°
2. Reduced Density Perturbations 0.5 0.28°
3. Increased Density Perturbations 2.0 0.28°

4. Increased Delivery State Uncertainty 1.0 0.4°

Reference Case

For the Reference Case, Case 1, a visualization of the Monte Carlo simulation runs for each

vehicle is shown in Figure 4.21 and the corresponding orbit insertion statistics is shown in

Table 4.5 .

Both Vehicle 1 (BAM) and Vehicle 2 (DFC) are sufficiently robust to the applied set

of trajectory dispersions, with each producing 100% capture success. Between these two

vehicles, the orbit insertion performance slightly differs. Vehicle 1 exhibits half the variance

in the apoapsis error statistic leading to slightly lower in-plane ∆V cost on average. On

the other hand, Vehicle 2 produces much lower inclination errors leading to significantly

lower out-of-plane ∆V statistics. Despite being within 1° of the target inclination, the low

circular target orbit along with large gravity well of Venus leads to a costly correction cost for

Vehicle 1. Increasing the number of bank reversals may allow for an improvement in the out-

of-plane targeting performance. The aggregate total ∆V cost shows Vehicle 2 being cheaper

on average with a 99th percentile value that is 50 m/s cheaper. The more precise in-plane

performance for the BAM vehicle can be potentially attributed to the control actuator itself.

For a small scale height, dense Venusian atmosphere, and short time of flight, the actuator

transient response can potentially lead to residual targeting errors each guidance cycle. Using

RCS thrusters rather than aerosurfaces, BAM can achieve faster control actuation over the

vehicle lift vector than DFC thereby increasing the precision of each control input.
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Vehicle 3, DMCV, is generally robust to the applied set of trajectory dispersions produc-

ing a 99.6% capture success. Figure 4.21 shows that Vehicle 3 produces lower aeroheating

and load factors with peak convective heat rates and decelerations that are five times and

1.4 times lower on average, respectively. The orbit insertion performance exhibits varying

levels of accuracy and precision. Vehicle 3 produces minute inclination error statistics that

require less than 5 m/s to correct for. Up until the 50th percentile, the apoapsis targeting

accuracy is on par with Vehicle 1 and 2. Due to the higher post-aerocapture periapsis alti-

tudes achieved, Vehicle 3 produces lower in-plane ∆V at the 50th percentile. Nevertheless,

the small control capability of Vehicle 3 limits the precision of in-plane orbit insertion as seen

by the high variance in the apoapsis error and corresponding in-plane ∆V. As was shown

in the corridor width assessment for ballistic DMCV vehicles at Venus, increasing the BCR

capability to a value near 20 may allow for a mitigation strategy to both improve in capture

success rate and orbit insertion performance.

Figure 4.21. Venus Reference Case: Aerocapture orbit insertion performance
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Table 4.5. Venus Reference Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max
10.749 63.130 -40.443 10.683 63.826 -84.416 350.201
12.510 36.586 -15.633 12.610 39.201 -85.247 52.961Apoapsis Error, km
542.104 10239.587 21.791 23.579 14076.269 -145.147 62050.227

121 55 93 119 180 90 231
108 37 87 107 140 82 285In-plane ∆V, m/s
150 816 91 93 1714 75 2536

2.848E-05 6.164E-02 -7.131E-02 4.375E-05 6.454E-02 -1.551E-01 2.581E-01
2.017E-01 1.132E+00 -4.028E-01 1.837E-01 9.204E-01 -6.120E-01 5.190E+00Inclination Error, deg
-5.377E-03 1.860E-02 -1.936E-02 -5.473E-03 8.604E-03 -2.349E-02 1.408E-02

2 8 0 1 15 0 35
61 100 18 54 133 12 670Out-of-Plane ∆V, m/s
2 3 1 1 4 0 5

123 56 95 120 182 90 232
156 103 116 147 234 111 913Total ∆V, m/s
152 816 92 94 1716 76 2536

Capture Success 100% 100% 99.6%
Key DFC BAM DMCV

Reduced Density Perturbations

In Case 2, the density perturbations as simulated by VenusGRAM are halved to assess

their effect on the orbit insertion performance. Figure 4.22 provides a visualization of the

in-plane orbit insertion performance with the perturbation scale factor rpscale mapped to

each run for each vehicle. Figure 4.22a shows the performance for Case 1 and Figure 4.22b 

shows for Case 2. Visual inspection shows that the reduction in density perturbations has no

noticeable affect on the in-plane orbit insertion targeting for Vehicles 1 and 2. For Vehicle 3

in Cases 1 and 2, the few uncaptured cases can be classified as failures. Modifying the density

perturbation amount has no effect on the outcome of the trajectory. A similar observation can

be seen with the trajectories that significantly overshoot the apoapsis target as no significant

correlation between density perturbations and apoapsis error can be ascertained visually.

For Case 2, the aerocapture performance statistics for the captured cases are shown in

Table 4.6 . As compared to Case 1, no significant changes arise in the max deceleration, peak

convective heat rate, and integrated heat load with Case 2. However, the reduced density

perturbations leads to a small reduction in the total ∆V for both Vehicles 1 and 2 with

99th percentile values of 230 m/s and 177 m/s, respectively. For Vehicle 3, the reduction

allows for primarily an improvement in the in-plane orbit insertion targeting as seen by the

reduction in the apoapsis error variance and 99th percentile in-plane ∆V value. Additionally,

the reduction slightly improves the capture success rate from 99.6% to 99.77%. On average,
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(a) Reference Case (b) Reduced Density Perturbations

Figure 4.22. Visualization of the effect that reduced Venus density pertur-
bations has on in-plane orbit insertion performance

the total ∆V cost for Vehicle 3 remains similar to Vehicle 1 but is slightly more expensive

than Vehicle 2.

Table 4.6. Venus Reduced Density Perturbations Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
11.903 61.563 -36.456 10.971 58.439 -80.121 428.856
12.939 34.005 -12.611 13.138 38.188 -75.510 48.960Apoapsis Error, km
530.238 9854.715 22.118 23.669 13079.896 -51.898 62050.227

119 53 92 116 175 89 227
107 35 86 106 139 81 162In-plane ∆V, m/s
151 807 91 93 1662 75 2536

-2.987E-05 5.987E-02 -7.005E-02 8.045E-05 6.452E-02 -1.521E-01 2.179E-01
1.922E-01 1.048E+00 -4.022E-01 1.648E-01 9.047E-01 -6.195E-01 1.333E+00Inclination Error, deg
-5.383E-03 1.859E-02 -1.936E-02 -5.510E-03 8.679E-03 -2.349E-02 1.408E-02

2 8 0 1 14 0 30
60 89 18 53 131 12 182Out-of-Plane ∆V, m/s
2 3 1 1 4 0 5

121 53 94 118 177 89 227
154 86 116 145 230 111 312Total ∆V, m/s
152 807 92 94 1663 76 2536

Capture Success 100% 100% 99.77%
Key DFC BAM DMCV
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Increased Density Perturbations

In Case 3, the density perturbations as simulated by VenusGRAM are increased to assess

their effect on the orbit insertion performance. Figure 4.23 provides a visualization of the

in-plane orbit insertion performance with the perturbation scale factor rpscale mapped to

each run for each vehicle. Figure 4.23a shows the performance for Case 1 and Figure 4.23b 

shows for Case 3. Visual inspection shows that the increase in density perturbations has

no noticeable effect on the in-plane orbit insertion targeting for Vehicles 1 and 2. Some

correlation between rpscale values near 2 and lower periapsis altitudes appears. Like in Case

2 for Vehicle 3, no visible correlation appears between the density perturbation scale factor

and apoapsis targeting.

(a) Reference Case (b) Reduced Density Perturbations

Figure 4.23. Visualization of the effect that increased Venus density pertur-
bations has on in-plane orbit insertion performance

For Case 3, the aerocapture performance statistics for the captured cases are shown in

Table 4.7 . As compared to Case 1, no significant changes arise in the max deceleration, peak

convective heat rate, and integrated heat load with Case 2. However, the increased density

perturbations leads to a small increase in the total ∆V for each vehicle. For Vehicle 3, the

increase slightly worsens the capture success rate from 99.6% to 99.1%. On average, the
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total ∆V cost for Vehicle 3 remains similar to Vehicle 1 but is slightly more expensive than

Vehicle 2.

Table 4.7. Venus Increased Density Perturbations Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
7.562 72.836 -57.778 9.108 63.967 -85.431 321.960
11.795 40.299 -20.925 12.166 41.379 -68.002 63.710Apoapsis Error, km
576.507 10961.574 21.603 24.183 15209.633 -149.072 63753.532

125 65 94 121 195 89 250
110 40 89 108 145 83 253In-plane ∆V, m/s
151 840 91 93 1769 72 2545

3.643E-05 6.539E-02 -7.089E-02 7.174E-05 7.296E-02 -1.654E-01 2.876E-01
2.304E-01 1.129E+00 -4.050E-01 2.280E-01 1.014E+00 -5.399E-01 5.063E+00Inclination Error, deg
-5.366E-03 1.847E-02 -1.928E-02 -5.510E-03 8.561E-03 -2.348E-02 1.415E-02

2 9 0 1 15 0 38
64 99 18 57 145 12 650Out-of-Plane ∆V, m/s
1 3 1 1 4 0 5

127 66 96 123 197 90 251
160 104 117 151 250 112 885Total ∆V, m/s
152 840 92 94 1770 72 2545

Capture Success 100% 100% 99.1%
Key DFC BAM DMCV

Increased Delivery State Uncertainty

In Case 4, the inertial entry flight path uncertainty is increased to assess its effect on

the orbit insertion performance. Figure 4.24 provides a visualization of the in-plane orbit

insertion performance with the entry flight path angle mapped to each run for each vehicle.

Figure 4.24a shows the performance for Case 1 and Figure 4.24b shows for Case 4. A visual

correlation between the entry flight path angle and the resulting apoapsis altitude error can

be seen. Shallow angles tend to produce trajectories that overshoot the apoapsis target

while exiting the atmosphere with a higher periapsis altitude. By making the angles more

shallower, via increase in angle uncertainty, more cases overshoot the apoapsis target and

potentially remain hyperbolic as shown by Vehicle 3. Too steep angles generally lead to more

negative periapsis altitudes and potentially lander trajectories as seen by Vehicle 3.

For Case 4, the aerocapture performance statistics for the captured cases are shown in

Table 4.8 . As compared to Case 1, no significant changes arise in the max deceleration, peak

convective heat rate, and integrated heat load with Case 2. However, the increased delivery

state uncertainty primarily affects the in-plane orbit insertion precision of each vehicle. For

Vehicles 1 and 2, the variance in apoapsis error increases by more than three times (primarly
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(a) Reference Case (b) Reduced Density Perturbations

Figure 4.24. Visualization of the effect that increased Venus delivery state
uncertainty has on in-plane orbit insertion performance

due to the large maximum cases). This leads to a small increase in the 99th percentile

in-plane ∆V and total ∆V. For Vehicle 3, both the mean and variance of the apoapsis error

are worsened due to the increase in entry flight path angle error. The leads to a significant

increase in both 99th percentile values for in-plane ∆V and total ∆V. Additionally, the

capture success rate is worsened from 99.6% to 97.17%. This net change in capture success

for Case 4 is much larger than values computed in Cases 2 and 3.

Table 4.8. Venus Increased Delivery State Uncertainty Case: Aerocapture
orbit insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
16.287 202.833 -43.078 11.593 107.185 -77.178 2750.848
17.413 199.798 -17.616 13.352 55.711 -65.001 2427.901Apoapsis Error, km

4138.532 90227.906 1.129 25.388 74887.277 -146.617 1215094.23385339
121 75 89 118 187 67 661
109 64 82 106 157 78 603In-plane ∆V, m/s
330 1772 91 93 2599 67 2937

2.663E-05 6.080E-02 -7.401E-02 8.421E-05 6.594E-02 -1.560E-01 2.678E-01
2.253E-01 1.181E+00 -3.776E-01 2.206E-01 9.375E-01 -5.501E-01 5.463E+00Inclination Error, deg
-5.192E-03 2.908E-02 -2.701E-02 -5.256E-03 1.694E-02 -3.296E-02 2.516E-02

2 8 0 2 15 0 36
61 116 17 55 135 12 705Out-of-Plane ∆V, m/s
2 4 0 2 6 0 8

123 75 91 119 189 69 663
157 140 115 148 239 110 879Total ∆V, m/s
331 1772 92 95 2601 68 2938

Capture Success 100% 100% 97.17%
Key DFC BAM DMCV
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Study Findings

The performance analysis at Venus has shown for the reference set of uncertainties, DFC can

enable a 100% successful science orbit insertion within a 182 m/s total ∆V budget for peri-

apsis raise, apoapsis, and inclination corrections. BAM can enable a 100% successful science

orbit insertion within a 234 m/s total ∆V budget. DMCV can enable a 99.6% successful sci-

ence orbit insertion within a 1716 m/s total ∆V budget but at 5 times lower peak stagnation

point convective heating than BAM and DFC. Despite being more expensive statistically,

DMCV can potentially produce trajectories whose total ∆V is comparable to DFC in cost.

Reducing and increasing the density perturbations has little effect on the robustness and

orbit insertion performance of DFC, BAM, and DMCV. Increasing the delivery state error

via entry flight path angle has most pronounced effect on DMCV where the capture success

rate drops by more than 3% and the total ∆V cost significantly increases. Overall, BAM and

DFC applied to lifting vehicles producing 0.25 L/D and DMCV applied to ballistic vehicles

producing BCR=5.5 are found to be sufficiently robust to the various sets of applied trajec-

tory dispersions. For the given control capability, further decreasing the delivery state error

may allow for DMCV to achieve 100% capture success while improving the orbit insertion

performance. If not achievable, then increasing the control capability might be warranted.

Given near nominal flight conditions, the most accurate orbit insertion, in terms of apoapsis

and inclination targeting, can be achieved with DFC.

Mars

For Mars, the targeted science orbit is a 400 km circular orbit at 0° inclination. A

series of different vehicle configurations are assessed. Table 4.9 provides a summary of each

configuration consisting of two lifting vehicles and a single ballistic vehicle. Each vehicle is

sized to house a 1275 kg satellite payload with a 3m diameter antenna (similar to the Mars

Reconnaissance Orbiter). A MSL-derived aeroshell is assumed for Vehicles 1 and 2. For

Vehicle 1, a maximum of 5 bank reversals is enforced with assumed rate and acceleration

limits of an RCS. For Vehicle 2, the corresponding limits are assumed based off trim-tab

aerosurface deflections [33 ]. A morphable sphere-cone aeroshell with a base cone angle of
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70°, conical frustrum length of 3.5 m and payload fairing diameter of 4 m is assumed for

Vehicle 3. The cone angle rates and acceleration limits are assumed to be identical to the

DFC angle of attack limits. To normalize the comparison, the same atmospheric entry mass

of 1500 kg is assumed for each vehicle. Both Vehicles 1 and 2 have the same base BC and

maximum L/D capability. Vehicle 3, due to the aeroshell geometry, has a smaller base BC but

moderate BCR capability. The TPS mass is not formally sized for any of the vehicle designs

but a 85% payload over entry mass fraction is assumed from the NASA Mars aerocapture

study [9 ]. Higher fidelity aerothermal heating analysis, not included in the current analysis,

is needed to further refine the TPS mass. Note that the NASA Mars aerocapture study

formulated an aeroshell design with a diameter of 4.65 m, L/D of 0.24, and entry mass of

7087 kg (BC of 365 kg/m2) for orbit insertion of an Earth-return vehicle for Mars Sample

Return mission.

Table 4.9. Mars aerocapture flight control vehicle designs
Vehicle 1 Vehicle 2 Vehicle 3

Flight Control BAM DFC DMCV
Nose Radius, m 1.125 1.125 5.848
Diameter, m 4.5 4.5 5.3 (at CA = 70)
Control Limits, deg 0 to 180 ±16 (±5)1 20 to 70
Rate Limit, deg/s 20 5 (2)1 5
Accel Limit, deg/s2 5 2 (0.3)1 2
Base BC, kg/m2 60 60 10
Max L/D 0.25 0.25 0
Max BCR – – 5.5
1 Angle of Attack (Side-Slip Angle)

Given each vehicle’s base BC, L/D and/or BCR, the nominal inertial entry flight path

angle is computed using the corridor width assessment introduced in the previous section.

These flight path angles are set to -10.5° for Vehicle 1 and Vehicle 2, and -9.96° for Vehicle

3. The nominal delivery state parameters are shown in Table 4.10 . The dispersions are

generated through propagation of uncertainties in vehicle position and velocity from the data

cut-off point to entry interface using the atmospheric flight equation of motion (with zero

density). A data cutoff-point of 2.5 days prior to entry is assumed from MSL interplanetary

navigation analysis [20 ]. The position and velocity uncertainties are scaled such that the

propagated ±3σ entry flight path angle uncertainty at entry interface is obtained.
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Table 4.10. Monte Carlo simulated dispersions for Mars aerocapture
Category Variable Nominal ±3σ or min/max Distribution

Delivery State

Inertial entry flight path angle -10.5° or -9.96° From propagation Correlated
Inertial entry velocity 5.5 km/s From propagation Correlated
Inertial entry altitude 150 km From propagation Correlated
Inertial entry latitude 0° From propagation Correlated
Inertial entry longitude 342.478° From propagation Correlated
Inertial entry heading angle 90° From propagation Correlated

Table 4.11 outlines the various sets of cases run on each flight control. The reference case

corresponds to ±3σ random density variations simulated with MSL-derived delivery state

performance. The second case corresponds to an increase the random density variations to

±6σ through doubling of the perturbation scale. This case is intended to be the worst-case

scenario of Mars atmosphere given the simulation capability of MarsGRAM. The third case

corresponds to an increase in the delivery state uncertainty. This case is intended to simulate

the effect of higher entry flight path angle uncertainty on the orbit insertion performance.

For this case, the flight path angle uncertainty is increased to the requirement value used in

the MSL navigational analysis [20 ].

Table 4.11. Summary of Monte Carlo Test Cases for Mars.
Case Perturbation Scale ±3σ Entry Flight Path Angle

1. Reference 1.0 0.11°
2. Increased Density Perturbations 2.0 0.11°

3. Increased Delivery State Uncertainty 1.0 0.2°

Reference Case

In Case 1, the reference set of trajectory uncertainties are applied to each vehicle. Fig-

ure 4.25 shows the comparison of the aerocapture orbit insertion performance of each vehicle

and Table 4.12 highlights the corresponding statistics. Each vehicle achieves 100% capture

success indicating robustness to the applied set of dispersions

Each vehicle produces different-levels of orbit insertion success. The qualitative compar-

ison of the in-plane orbit insertion performance in Figure 4.25 shows that Vehicle 3 is not

only the most accurate but the most precise (can also be seen quantitatively by the low

mean and variance apoapsis error statistics in Table 4.12 ). Furthermore, Vehicle 3 generally

produces higher periapsis altitudes that allows for the corresponding in-plane ∆V statistics
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to be slightly lower than Vehicles 1 and 2. Nevertheless, all three vehicles produces excellent

in-plane orbit insertion performance. Despite maintaining the inclination to within 1° of

the target, Vehicle 1 produces a much larger correction cost as compared to Vehicles 2 and

3. For both these vehicles, the inclination error and corresponding correction cost are both

minute. The total ∆V cost shows that Vehicle 3 produces the lowest value with Vehicle 2

only being a few m/s more expensive.

Comparing the aeroheating and aerodynamic deceleration results, Figure 4.25 shows that

all three vehicles generally produce similar peak deceleration values (despite differences in

the entry flight path angle) but different peak convective heat rate values. Vehicle 3 is shown

to produce nearly 4 times lower peak values as compared to Vehicles 1 and 2. Given BAM

as the current state-of-the-art for Mars EDL technology, the result suggests that DMCV can

provide both an orbit insertion as well as an aeroheating enhancement.

Figure 4.25. Mars Reference Case: Aerocapture orbit insertion performance
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Table 4.12. Mars Reference Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max
-7.430 20.244 -30.167 -6.237 3.711 -42.483 31.428
-13.788 21.485 -38.322 -11.875 -3.744 -57.921 0.023Apoapsis Error, km
2.587 10.075 -0.993 0.357 9.310 -1.767 11.081

97 12 88 97 107 86 113
97 6 93 96 103 91 111In-plane ∆V, m/s
90 1 90 90 91 89 92

2.114E-02 5.572E-02 6.915E-04 1.682E-02 9.308E-02 0.000E+00 1.459E-01
4.209E-01 2.200E-01 3.251E-01 4.006E-01 6.706E-01 3.055E-01 7.803E-01Inclination Error, deg
7.427E-03 1.296E-02 8.384E-04 6.610E-03 1.990E-02 0.000E+00 2.501E-02

1 3 0 1 5 0 9
25 13 19 23 39 18 46Out-of-Plane ∆V, m/s
0 1 0 0 1 0 1
99 13 89 99 108 86 113
121 14 115 120 138 112 145Total ∆V, m/s
91 2 90 91 92 90 93

Capture Success 100% 100% 100%
Key DFC BAM DMCV

Increased Density Perturbations Case

In Case 2, the density perturbations of the Martian atmosphere are increased using the

parameter rpscale. Figure 4.26 provides a visual comparison of its effect on the in-plane

orbit insertion performance. Figure 4.26a and Figure 4.26b shows the in-plane performance

for Case 1 and Case 2, respectively. Increasing the density perturbations does not lead to

any new uncaptured trajectories to arise indicating that the vehicles are sufficiently robust

to the elevated dispersions. Rather, the increasing values have a visual correlation to the

apoapsis targeting precision. For rpscale values approaching 2, the results in Figure 4.26b 

for Vehicles 1 and 2 tend to undershoot the apoapsis target leading to an increase in the

variance of the apoapsis error statistics. For Vehicle 3, visual comparison shows no such

increase demonstrating DMCV in-plane orbit insertion precision advantage.

For Case 2, the aerocapture performance statistics for the captured cases are shown in

Table 4.13 . As compared to Case 1, no significant changes arise in the max deceleration,

peak convective heat rate, and integrated heat load with Case 2. The increased density

perturbations has a minute effect on the in-plane orbit insertion performance as seen by the

increase in the apoapsis variance but small increase in the in-plane ∆V. This leads to a small

increase in the total ∆V for each vehicle with 99th percentile values of 141 m/s, 115 m/s

and 92 m/s, respectively.
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(a) Reference Case (b) Increased Density Perturbations

Figure 4.26. Visualization of the effect that increased Mars density pertur-
bations has on in-plane orbit insertion performance

Table 4.13. Mars Increased Density Perturbations Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
-13.253 39.177 -59.093 -9.876 3.213 -81.104 21.724
-19.779 42.732 -63.943 -14.310 -2.398 -87.882 11.401Apoapsis Error, km
2.892 10.023 -0.898 1.119 9.784 -1.328 11.759

99 15 88 98 113 86 124
98 12 92 97 110 90 120In-plane ∆V, m/s
90 2 89 90 92 89 92

2.150E-02 5.582E-02 7.280E-04 1.730E-02 9.024E-02 0.000E+00 1.505E-01
4.325E-01 2.177E-01 3.289E-01 4.164E-01 6.621E-01 2.977E-01 8.393E-01Inclination Error, deg
7.439E-03 1.298E-02 8.384E-04 6.615E-03 1.990E-02 0.000E+00 2.501E-02

1 3 0 1 5 0 9
25 13 19 24 39 17 49Out-of-Plane ∆V, m/s
0 1 0 0 1 0 1

100 16 89 99 115 87 130
123 18 115 122 141 112 148Total ∆V, m/s
91 2 90 91 92 89 93

Capture Success 100% 100% 100%
Key DFC BAM DMCV

Increased Delivery State Uncertainty Case

In Case 3, the delivery state uncertainty, via inertial entry flight path angle, is increased.

Figure 4.27 provides a visual comparison of its effect on the in-plane orbit insertion per-

formance. Figure 4.27a and Figure 4.27b shows the in-plane performance for Case 1 and
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Case 3, respectively. Increasing the entry flight path angle uncertainty does not lead to any

new uncaptured trajectories to arise indicating that the vehicles are sufficiently robust to

the elevated values. Rather, the increasing values have a visual correlation to the periapsis

altitude. The increased angle range allows for steeper and shallower angle cases that produce

lower and higher periapsis altitudes, respectively. In Figure 4.27b for Vehicle 2, some steeper

angles produce apoapsis altitudes that undershoots the target. Like in Case 2, visual com-

parison of Vehicle 3 shows no such increase demonstrating DMCV in-plane orbit insertion

precision advantage.

(a) Reference Case (b) Increased Density Perturbations

Figure 4.27. Visualization of the effect that increased Mars delivery state
uncertainty has on in-plane orbit insertion performance

For Case 3, the aerocapture performance statistics for the captured cases are shown in

Table 4.14 . As compared to Case 1, no significant changes arise in the max deceleration,

peak convective heat rate, and integrated heat load with Case 3. The increased delivery state

uncertainties has generally a minute affect on the orbit insertion statistics and can only be

seen in the min and max statistics. The resulting 99th percentile total ∆V for each vehicle

are 141 m/s, 112 m/s, and 93 m/s.
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Table 4.14. Mars Increased Navigation Uncertainty Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
-7.346 22.557 -30.715 -5.684 5.852 -66.600 31.288
-14.132 21.804 -40.000 -12.258 -3.496 -60.691 9.066Apoapsis Error, km
2.809 10.486 -0.956 0.531 9.919 -1.333 11.415

97 15 87 97 109 85 125
97 10 91 97 108 87 114In-plane ∆V, m/s
90 1 89 90 92 88 92

2.487E-02 6.146E-02 9.494E-04 2.023E-02 9.697E-02 0.000E+00 1.914E-01
4.341E-01 2.487E-01 3.053E-01 4.165E-01 6.997E-01 2.704E-01 8.310E-01Inclination Error, deg
1.657E-02 3.131E-02 1.639E-03 1.437E-02 4.679E-02 0.000E+00 6.050E-02

1 4 0 1 6 0 11
25 15 18 24 41 16 49Out-of-Plane ∆V, m/s
1 2 0 1 3 0 4
99 15 88 99 112 86 127
122 17 114 121 141 109 147Total ∆V, m/s
91 2 90 91 93 89 94

Capture Success 100% 100% 100%
Key DFC BAM DMCV

Study Findings

The performance analysis at Mars has shown for the reference set of uncertainties, DFC can

enable a 100% successful science orbit insertion within a 108 m/s total ∆V budget for peri-

apsis raise, apoapsis, and inclination corrections. BAM can enable a 100% successful science

orbit insertion within a 138 m/s total ∆V budget. DMCV can enable a 100% successful

science orbit insertion within a 92 m/s total ∆V budget but at 4 times lower peak stag-

nation point convective heating than BAM and DFC. Increasing the density perturbations

and delivery state error has little effect on the robustness and obrit insertion performance

of each vehicle. Overall, BAM and DFC applied to lifting vehicles producing 0.25 L/D and

DMCV applied to ballistic vehicles producing BCR=5.5 are found to be sufficiently robust

to the various sets of applied trajectory dispersions.

Titan

For Titan, the targeted orbit is a 1700 km circular orbit at 100° inclination. A series

of different vehicle configurations are assessed. Table 4.15 provides a summary of each

configuration consisting of two lifting vehicles and a single ballistic vehicle. Each vehicle

is designed to house a 1000 kg satellite payload with a 3.7m diameter antenna. A scaled

MSL aeroshell is assumed for the lifting vehicles (smaller nose radius and diameter but same
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nose radius to diameter ratio). A morphable sphere-cone aeroshell with a base cone angle

of 70°, conical frustrum length of 3.5 m and payload fairing diameter of 4 m is assumed for

the ballistic vehicle. Similar actuator rate and acceleration limits as that used in the Mars

study are assumed. The atmospheric entry mass of each vehicle is assumed to be 1500 kg to

best match the mass allocation used in the NASA Titan study [10 ]. The TPS mass is not

formally sized for any of the vehicle designs but is implicitly assumed from the NASA study.

Higher fidelity aerothermal heating analysis, not included in the current analysis, is needed

to further refine the TPS mass.

Table 4.15. Titan aerocapture flight control vehicle designs
Vehicle 1 Vehicle 2 Vehicle 3

Flight Control BAM DFC DMCV
Nose Radius, m 0.9375 0.9375 5.848
Diameter, m 3.75 3.75 5.3 (at CA = 70)
Control Limits, deg 0 to 180 ±16 (±5)1 20 to 70
Rate Limit, deg/s 20 5 (2)1 5
Accel Limit, deg/s2 5 2 (0.3)1 2
Base BC, kg/m2 90 90 10
Max L/D 0.25 0.25 0
Max BCR – – 5.5
1 Angle of Attack (Side-Slip Angle)

Given each vehicle’s base BC, L/D and/or BCR, the nominal inertial entry flight path

angle is computed using the corridor width assessment introduced in the previous section.

These flight path angles are set to -35.7° for Vehicle 1 and Vehicle 2, and -33.755° for Vehicle

3. The nominal delivery state parameters are shown in Table 4.16 . The dispersions are

generated through propagation of uncertainties in vehicle position and velocity from the

data cut-off point to entry interface using the atmospheric flight equation of motion (with

zero density). From the NASA Titan study, a data cutoff-point of 2 days prior to entry

is assumed along with the utilization of optical navigation [16 ]. The position and velocity

uncertainties are scaled such that the propagated ±3σ entry flight path angle uncertainty at

entry interface is obtained.

Table 4.17 outlines the various sets of cases run on each flight control. The reference case

corresponds to a latitudinal variation of fminmax along with ±3σ random density variations

simulated. The second case corresponds to a single atmospheric profile being utilized in
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Table 4.16. Monte Carlo simulated dispersions for Neptune aerocapture
Category Variable Nominal ±3σ or min/max Distribution

Delivery State

Inertial entry flight path angle -35.7° or -33.755° From propagation Correlated
Inertial entry velocity 6.5 km/s From propagation Correlated
Inertial entry altitude 1000 km From propagation Correlated
Inertial entry latitude -38.065° From propagation Correlated
Inertial entry longitude -7.937° From propagation Correlated
Inertial entry heading angle -102.741° From propagation Correlated

the simulations. This case is intended to assess the effects of incorporating flight data from

the Cassini-Huygens mission on reducing the uncertanity in atmospheric profile. The third

case corresponds to a removal of the latitudinal variation of fminmax, thereby increasing the

uncertainty in the mean profile, as well as increasing the random density variations to ±6σ.

This case is intended to be the worst-case scenario of Titan atmosphere given the simulation

capability of TitanGRAM. The fourth case corresponds to an increase in the delivery state

uncertainty. This case is intended to simulate the effect of not fully achieving the potential

benefits of optical navigation with regards to reduced entry flight path angle uncertainty. For

this case, the flight path angle uncertainty is selected to match the value used in the NASA

Titan study. Case 4 serves as the control of the experiment to best match the reference case

setup found in Reference [116 ]. Cases 1, 2 and 3 are cases not investigated in the NASA

Titan study.

Table 4.17. Summary of Monte Carlo Test Cases.
Case Perturbation Scale Fminmax ±3σ Entry Flight Path Angle

1. Reference 1.0 f(latitude) 0.6°
2. Single Atmospheric Profile 1.0 0 0.6°

3. Increased Density Perturbations 2.0 global 0.6°
4. Increased Delivery State Uncertainty 1.0 f(latitude) 0.93°

Reference Case

A visualization of the orbit insertion performance for Case 1 captured cases is shown in

Figure 4.28 . Each flight control generally provides sufficient in-plane performance. Vehicle 3

produces cases with the highest post-aerocapture periapsis altitude and most concentration

of cases near the apoapsis target. This leads to DMCV producing the lowest apoapsis

error variance and in-plane ∆V statistics as shown in Table 4.18 for the reference set of
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dispersions. Vehicles 1 and 2 produce varying levels of variance with respect to the apoapsis

target. For the same L/D capability and applied dispersions, Vehicle 2 with DFC produces

half the variance and lower mean apoapsis error as compared to Vehicle 1 with BAM. With

regards to out-of-plane performance, Vehicle 2 produces the lowest inclination error and

corresponding ∆V. The residual inclination error and corresponding ∆V for Vehicle 3 is

small indicating no significant penalty for the lack of out-plane controllability. For Vehicle 1,

the applied bank reversals adequately keeps the inclination to within 1° of the target (99%

confidence interval). The higher variance, as compared to the other flight controls, is an

indication of the performance limitation of the coupled BAM flight control. The aggregate

total ∆V statistics shows that for Case 1, Vehicle 3 produces the cheapest orbit insertion

cost in addition to exhibiting the lowest peak convective heat rate and lower deceleration in

Figure 4.28 . However, Vehicle 3 is the least robust with a capture success of only 98.37%

indicating that the BCR capability is not sufficient to overcome the reference set of trajectory

dispersions at Titan. Vehicles 1 and 2 both produce 100 % capture success indicating that a

lifting vehicle with an L/D of 0.25 is sufficiently robust to these reference set of dispersions.

Moreover, Vehicle 1 produces a 99th percentile total ∆V that is nearly 100 m/s cheaper than

Vehicle 2. On average, Vehicle 1 is 30 m/s more expensive than Vehicle 3.

Figure 4.28. Titan Reference Case: Aerocapture orbit insertion performance
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Table 4.18. Titan Reference Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max
3.179 378.848 -328.867 -3.767 357.231 -649.434 715.345

-115.756 778.981 -646.465 -102.919 452.438 -699.679 881.414Apoapsis Error, km
63.421 211.267 -3.960 42.100 267.351 -682.449 438.402

201 37 185 198 248 178 307
222 105 184 210 317 179 340In-plane ∆V, m/s
167 15 163 166 178 162 257

1.546E-03 1.636E-01 -2.121E-01 3.632E-03 1.531E-01 -7.189E-01 9.220E-01
-5.755E-02 1.280E+00 -1.005E+00 -4.881E-02 9.721E-01 -1.421E+00 2.169E+00Inclination Error, deg
-2.815E-01 3.080E-02 -3.049E-01 -2.815E-01 -2.585E-01 -3.114E-01 -2.526E-01

4 9 0 3 14 0 29
35 30 18 33 65 11 85Out-of-Plane ∆V, m/s
10 6 7 10 16 7 19
202 37 185 198 248 178 310
251 105 209 240 344 198 379Total ∆V, m/s
175 15 171 174 186 170 265

Capture Success 100% 100% 98.37%
Key DFC BAM DMCV

Single Atmospheric Profile

A reduction in the atmospheric profile uncertainty at Titan may allow for a significant

improvement in the robustness and aerocapture performance. Figure 4.29 provides a vi-

sualization of the simulated atmospheric profile uncertainty mapped to the in-plane orbit

insertion performance for each simulated vehicle. Figure 4.29a shows Case 1 with its lati-

tudinal variation of the profile controlled by fbias and Figure 4.29b shows Case 2 with the

utilization of a single atmospheric profile, which is assumed to be the nominal profile. For

Case 1, a distinct correlation between fbias and periapsis/apoapsis altitude can be inferred.

For large fbias values, the resulting trajectories undershoot the apoapsis target and have

more negative periapsis altitudes. Converse trend is seen for small values of fbias. The

trajectories that have apoapsis altitudes below 1000 km (atmospheric interface altitude for

Titan) are classified as landers. For Case 1, only Vehicle 3 produces lander cases. The phys-

ical significance of the fbias correlation is that larger values of it produce larger values of

fminmax that ultimately yield larger than average density profiles. The larger the density,

the more effective the aerodynamic forces become thereby potentially leading to too much

energy dissipation when targeting the desired orbit. Conversely, smaller than average density

profiles may lead to insufficient energy dissipation and targeting performance that overshoots

the intended apoapsis altitude with the worst case condition being uncaptured hyperbolic

trajectories. In Case 2, the variation of the atmospheric profile is eliminated thus allowing
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for both improved orbit insertion performance and elimination of failed cases for Vehicle 3.

A visual inspection of Figure 4.29b indicates that Vehicle 3 provides preciser in-plane orbit

insertion performance than Vehicle 1 and Vehicle 2, though both vehicles exhibit significant

reductions in the apoapsis error variance.

(a) Reference Case (b) Single Atmospheric Profile

Figure 4.29. Visualization of the effect that improved Titan atmospheric
knowledge has on in-plane orbit insertion performance

For Case 2, the aerocapture performance statistics for the captured cases are shown in

Table 4.19 . As compared to Case 1, no significant changes arise in the max deceleration,

peak convective heat rate, and integrated heat load with Case 2. However, the reduced

atmospheric profile uncertainty leads to a generous reduction in the total ∆V for both

Vehicles 1 and 2 with 99th percentile values of 200 m/s and 235 m/s, respectively. For

Vehicle 3, the reduction in total ∆V is minute with a 99th percentile values of 177 m/s but

remains cheaper than Vehicles 1 and 2.
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Table 4.19. Titan Single Atmospheric Profile Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max

-12.939 65.266 -72.262 -9.039 23.690 -131.707 158.120
-49.779 55.857 -107.227 -46.199 -18.340 -142.215 0.119Apoapsis Error, km
6.438 17.419 -2.580 7.054 29.960 -5.265 41.353
183 22 167 183 200 163 212
184 16 170 184 197 165 206In-plane ∆V, m/s
165 3 163 165 167 161 168

3.100E-03 1.399E-01 -1.745E-01 3.438E-03 1.415E-01 -4.145E-01 5.241E-01
9.412E-01 1.133E+00 1.069E-01 9.461E-01 1.718E+00 -3.847E-02 2.197E+00Inclination Error, deg
-2.832E-01 3.041E-02 -3.070E-01 -2.833E-01 -2.599E-01 -3.128E-01 -2.542E-01

4 9 0 4 14 0 20
73 35 46 74 97 36 112Out-of-Plane ∆V, m/s
10 6 7 10 17 7 19
183 23 167 184 200 163 212
208 32 187 207 235 184 246Total ∆V, m/s
173 4 170 173 177 169 180

Capture Success 100% 100% 100%
Key DFC BAM DMCV

Increased Density Perturbations

Case 3 tests the antithesis of Case 2 being an increase rather than decrease in the atmospheric

profile uncertainty. The maximum density perturbations are simulated along with a global

rather than latitudinal variation of the atmospheric profile. Figure 4.30 shows the comparison

of the in-plane orbit insertion performance between Case 1 and Case 3 for each simulated

vehicle configuration. In Figure 4.30b , the global variation using fminmax explicitly increases

the number of uncaptured cases for each vehicle. For each vehicle, the minimum atmospheric

profiles (fminmax near -1) yields hyperbolic trajectories or nearly hyperbolic trajectories with

large apoapsis altitudes. Like Case 1, the maximum atmospheric profiles (fminmax near 1)

yield lander trajectories. Note that due to large vertical axes units, not all hyperbolic and

lander cases are shown in Figure 4.30 .

For Case 3, the aerocapture performance statistics for the captured cases are shown in

Table 4.20 . As compared to Case 1, no significant changes arise in the max deceleration,

peak convective heat rate, and integrated heat load with Case 3. However, the increased

density uncertainty leads to a significant increase in the total ∆V for both Vehicles 1 and 3

with 99th percentile values of 313 m/s and 558 m/s, respectively. For Vehicle 2, the increase

actually reduces the total ∆V statistics with a 99th percentile value of 278 m/s (though the

max stat for Case 3 is larger than Case 1). This can be attributed to the low apoapsis error

variance produced with BAM. Despite having the same L/D capability, BAM is more robust

to the higher dispersions than DFC as seen by the higher capture success rate. Due to the
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(a) Reference Case (b) Increased Density Perturbations

Figure 4.30. Visualization of the effect that increased Titan atmospheric
uncertainty has on in-plane orbit insertion performance

increase number of hyperbolic trajectories, an increase in BCR capability might be needed

for Vehicle 3.

Table 4.20. Titan Increased Density Perturbation Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
220.182 5773.323 -353.996 -8.544 2534.047 -487.571 58344.185
16.223 924.611 -413.549 -38.342 739.032 -539.915 8124.554Apoapsis Error, km

3107.974 108135.080 -332.230 6.350 54947.896 -662.201 1239762.426
202 89 173 196 290 169 557
197 70 167 189 256 159 405In-plane ∆V, m/s
190 213 163 167 553 162 598

1.404E-01 1.284E+00 -3.783E-01 4.529E-03 1.948E+00 -2.193E+00 3.518E+00
2.022E-01 1.390E+00 -9.039E-01 3.073E-01 1.058E+00 -1.899E+00 2.387E+00Inclination Error, deg
-2.782E-01 5.936E-02 -3.069E-01 -2.819E-01 -1.962E-01 -3.171E-01 -1.729E-01

8 33 0 4 54 0 99
38 30 18 37 65 3 97Out-of-Plane ∆V, m/s
10 7 6 10 16 5 19
207 97 173 199 313 169 573
226 61 195 223 278 187 453Total ∆V, m/s
198 212 170 175 558 169 604

Capture Success 98.27% 99.97% 93%
Key DFC BAM DMCV
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Increased Delivery State Uncertainty

In Case 4, the inertial entry flight path angle uncertainty is increased by 55%. Figure 4.31 

shows the comparison between the in-plane orbit insertion performance for Cases 1 and 4.

Given the same nominal entry flight path angle, increasing the angle uncertainty increases

the range of simulated angles. As shown in Figure 4.31b for Vehicles 1 and 2, the steeper

angles coupled with higher than average density profiles yield failed trajectories. Shifting

the nominal entry flight path angle to be shallower may eliminate these failed trajectories

on the steep end but may increase the number of overshooting cases on the shallow end. For

Vehicle 3, an increase in the delivery state uncertainty adversely affects the robustness by

increasing the number of hyperbolic trajectories. For Case 1 trends in Figure 4.31a , similar

flight path angle tuning may allow for a reduction in the number of hyperbolic cases.

(a) Reference Case (b) Increased Delivery State Uncer-
tainty

Figure 4.31. Visualization of the effect that increased Titan delivery state
uncertainty has on in-plane orbit insertion performance

For Case 4, the aerocapture performance statistics for the captured cases are shown in

Table 4.21 . As compared to Case 1, no significant changes arise in the max deceleration,

peak convective heat rate, and integrated heat load with Case 4. However, the increased
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delivery state uncertainty leads to an increase in the apoapsis error variance for each vehicle.

The inclination error is not significantly changed. The subsequent affect on the total ∆V is

small with corresponding 99th percentile values for Vehicles 1, 2, and 3 of 284 m/s, 356 m/s,

and 190 m/s respectively. Despite having the same L/D capability, DFC is more robust to

the higher dispersions than BAM as seen by the higher capture success rate. The increase

in the number of hyperbolic trajectories decreases the capture success rate for Vehicle 3 by

0.8%.

Table 4.21. Titan Increased Delivery State Uncertainty Case: Aerocapture
orbit insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
0.861 517.925 -500.476 -6.482 561.420 -670.866 1369.445

-109.712 864.751 -683.624 -101.113 655.326 -699.854 1457.913Apoapsis Error, km
69.151 236.381 11.444 42.340 350.418 -665.280 847.788

203 55 181 198 282 175 326
223 113 180 210 330 175 353In-plane ∆V, m/s
167 15 162 166 180 161 254

1.619E-03 1.714E-01 -2.191E-01 3.605E-03 1.506E-01 -7.398E-01 1.214E+00
-4.441E-02 1.413E+00 -1.114E+00 -3.209E-02 1.177E+00 -1.559E+00 2.795E+00Inclination Error, deg
-2.814E-01 4.697E-02 -3.184E-01 -2.814E-01 -2.466E-01 -3.309E-01 -2.379E-01

5 11 0 5 17 0 35
36 37 15 34 73 7 104Out-of-Plane ∆V, m/s
11 10 7 11 21 7 25
204 55 181 199 284 175 331
252 113 205 242 356 197 414Total ∆V, m/s
176 16 170 175 190 168 261

Capture Success 99.97% 99.17% 97.57%
Key DFC BAM DMCV

Study Findings

The performance analysis at Titan has shown for the reference set of uncertainties, DFC can

enable a 100% successful science orbit insertion within a 248 m/s total ∆V budget for peri-

apsis raise, apoapsis, and inclination corrections. BAM can enable a 100% successful science

orbit insertion within a 345 m/s total ∆V budget. DMCV can enable a 98.37% successful sci-

ence orbit insertion within a 186 total ∆V budget but at 4 times lower peak stagnation point

convective heating than BAM and DFC. Reduction in the atmospheric profile uncertainty of

Titan can allow for all three flight controls to achieve 100% capture success with significant

reductions in total ∆V. Increasing the atmospheric dispersions reduces the capture success

for each flight control while increasing the variance of the orbit insertion targeting error

leading to significant increase in total ∆V. Increasing the delivery state error via entry flight

path angle reduces the capture success for each flight control and moderately increases the
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total ∆V. Overall, BAM and DFC applied to lifting vehicles producing 0.25 L/D and DMCV

applied to ballistic vehicles producing BCR=5.5 are found to be sufficiently robust to the

various sets of applied trajectory dispersions. Given near nominal flight conditions, the most

accurate orbit insertion, in terms of apoapsis and inclination targeting, can be achieved with

DFC while the cheapest, in terms of total ∆V, can be achieved with DMCV. This difference

is attributed to the periapsis raise cost, which shows the advantage DMCV might have over

DFC.

Neptune

For Neptune, the targeted orbit is an 3986 x 430000 km elliptical orbit at 157° inclination.

A series of different vehicle configurations are assessed. Table 4.22 provides a summary of

each configuration consisting of four lifting vehicles (two sets of L/D) and a single ballistic

vehicle. Each vehicle is designed to house a 1000 kg satellite payload with a 3.7m diameter

antenna. A MSL-derived aeroshell is assumed for the lifting vehicles. A morphable sphere-

cone aeroshell with a base cone angle of 70°, conical frustrum length of 3.5 m and payload

fairing diameter of 4 m is assumed for the ballistic vehicle. The atmospheric entry mass of

each vehicle is assumed to be 2200 kg to best match the mass allocation used in the NASA

Neptune study [11 ]. The TPS mass is not formally sized for any of the vehicle designs but

is implicitly assumed from the NASA study. Engineering models are utilized to estimate

the vehicle aerodynamic heating and sensed deceleration loads. Higher fidelity aerothermal

heating analysis, not included in the current analysis, is needed to further refine the TPS

mass.

Table 4.22. Neptune aerocapture flight control vehicle designs
Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5

Flight Control BAM BAM DFC DFC DMCV
Nose Radius, m 1.125 1.125 1.125 1.125 5.848
Diameter, m 4.5 4.5 4.5 4.5 5.3 (at CA = 70)
Control Limits, deg 0 to 180 0 to 180 ±25 (±5)1 ±30 (±5)1 20 to 70
Rate Limit, deg/s 20 20 5 (2)1 5 (2)1 5
Accel Limit, deg/s2 5 5 2 (0.3)1 2 (0.3)1 2
Base BC, kg/m2 110 120 110 120 15
Max L/D 0.4 0.5 0.4 0.5 0
Max BCR – – – – 5.5
1 Angle of Attack (Side-Slip Angle)
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Given each vehicle’s base BC, L/D and/or BCR, the nominal inertial entry flight path

angle is computed using the corridor width assessment introduced in the previous section.

These flight path angles are set to -11.4° for Vehicle 1 and Vehicle 3, -11.6° for Vehicle 2

and Vehicle 4, and -10.6° for Vehicle 5. The nominal delivery state parameters are shown

in Table 4.23 . The dispersions are generated through propagation of uncertainties in vehicle

position and velocity from the data cut-off point to entry interface using the atmospheric

flight equation of motion (with zero density). A data cutoff-point of 2 days prior to entry is

assumed. The position and velocity uncertainties are scaled such that the propagated ±3σ

entry flight path angle uncertainty at entry interface is obtained.

Table 4.23. Monte Carlo simulated dispersions for Neptune aerocapture
Category Variable Nominal ±3σ or min/max Distribution

Delivery State

Inertial entry flight path angle -11.4° or -11.6° or -10.6° From propagation Correlated
Inertial entry velocity 29 km/s From propagation Correlated
Inertial entry altitude 1000 km From propagation Correlated
Inertial entry latitude -7.474° From propagation Correlated
Inertial entry longitude -13.888° From propagation Correlated
Inertial entry heading angle -154.551° From propagation Correlated

A similar experimental procedure as that of Titan is partaken for Neptune. Table 4.24 

outlines the various sets of cases run on each flight control. The reference case corresponds to

a latitudinal variation of fminmax along with ±3σ random density variations simulated. The

second case corresponds to a 50% reduction in the atmospheric variability through halving

of the perturbation scale and range of fbias term. This case is intended to simulate the effect

of having atmospheric data measurements from precursor atmospheric probes might have

on the aerocapture performance and robustness. The third case corresponds to a removal

of the latitudinal variation of fminmax, thereby increasing the uncertainty in the mean

profile, as well as increasing the random density variations to ±6σ. This case is intended

to be the worst-case scenario given the current knowledge of Neptune’s atmosphere. In

Cases 1-3, the entry flight path angle dispersion values come from recent advancements in

onboard autonomous optical navigation (AutoNav) [117 ]. When applied to Neptune, optical

navigation is shown to achieve reductions in entry flight path delivery uncertainties from

±0.17 (1σ) to ±0.11 (1σ) [118 ]. The fourth case serves to investigate the consequence of

not achieving the intended performance enhancements of optical navigation. For this case,
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the flight path angle uncertainty is selected to match the value used in the NASA Neptune

study [119 ], which corresponds to a 55% increase in value. With the exception of entry

flight path angle, the experimental setup for Cases 1, 2, and 3 exactly match those found

in Reference [32 ]. In particular, Case 3 more rigorously simulates the effects of increased

density uncertainty than that found in Reference [32 ] through doubling the perturbation

scale. Case 4 serves as the control of the experiment to best match the reference case setup

found in Reference [32 ].

Table 4.24. Summary of Monte Carlo Test Cases.
Case Perturbation Scale Fminmax ±3σ Entry Flight Path Angle

1. Reference 1.0 f(latitude) 0.33°
2. Reduced Density Perturbations 0.5 f(latitude) 0.33°
3. Increased Density Perturbations 2.0 global 0.33°

4. Increased Delivery State Uncertainty 1.0 f(latitude) 0.51°

Reference Case

The reference case, Case 1, Monte Carlo simulation is run using the reference set of un-

certainties found in Table 4.24 . The same set of dispersions associated with delivery error,

atmospheric variability, aerodynamic variability, and vehicle attitude are applied to each

flight control configuration. A visualization of the orbit insertion performance of the cap-

tured cases is shown in Figure 4.32 and the corresponding statistics are shown in Table 4.25 .

For Case 1, both BAM configurations, Vehicle 1 and 2, achieve 100% successful capture.

Likewise both DFC vehicles, Vehicle 3 and 4, achieve 100% successful capture. For the

DMCV vehicle, Vehicle 5, only 92.4% of cases successfully capture. More details on the

uncaptured cases are explained in the next section.

Majority of the 3000 simulated cases for both DFC vehicles and the DMCV vehicle

produced an absolute apoapsis error of less than 10,000 km with respect to the 430,000 km

target. For the DFC vehicles, an increase in L/D allows for significant improvements in the

apoapsis targeting as seen in the reduction in the 99th percentile and maximum statistics.

For the same L/D capability, DFC flight control provides a significant improvement in the

apoapsis targeting as compared to BAM. DMCV generally provides excellent orbit insertion

performance. Up until the 50th percentile, DMCV produces apoapsis errors comparable to

DFC. The lack of control to mitigate the higher-levels of uncertainty can be attributed to the
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Figure 4.32. Neptune Reference Case: Aerocapture orbit insertion performance

Table 4.25. Neptune Reference Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max

-32.423 83.511 -97.139 -28.579 16.763 -165.593 95.591
-38.712 87.083 -101.590 -33.677 0.850 -153.656 46.152
-5.336 32.670 -25.454 -5.756 28.835 -78.891 199.636
-4.467 18.322 -18.028 -3.377 5.846 -29.254 53.624

Apoapsis Error x 103, km

101.291 9687.895 -45.816 -0.094 779.787 -348.218 165236.415
144 151 85 133 275 85 481
156 166 87 143 288 86 441
98 35 85 95 131 85 255
94 24 86 92 115 85 144

In-plane ∆V, m/s

104 305 82 83 517 82 2075
3.300E-01 4.909E-01 -9.748E-02 3.410E-01 7.349E-01 -1.656E-01 1.208E+00
3.016E-01 5.186E-01 -1.048E-01 3.113E-01 7.186E-01 -2.068E-01 9.968E-01
-4.691E-03 6.510E-02 -1.210E-01 -3.669E-05 3.577E-03 -2.763E-01 8.306E-02
-9.163E-03 1.202E-01 -2.069E-01 -3.617E-05 1.029E-02 -4.540E-01 1.746E-01

Inclination Error, deg

-6.262E-01 4.503E-02 -6.499E-01 -6.263E-01 -5.834E-01 -8.521E-01 -5.285E-01
30 33 6 31 56 1 86
30 35 7 30 59 2 76
6 8 2 5 16 1 28
6 10 2 5 21 0 36

Out-of-Plane ∆V, m/s

47 3 43 47 48 41 63
167 151 100 156 298 91 486
177 172 96 165 314 91 465
98 35 85 95 131 85 255
95 25 86 93 117 85 144

Total ∆V, m/s

147 306 124 126 556 124 2133
Capture Success 100% 100% 100% 100% 92.4%
Key BAM: L/D=0.4 BAM: L/D = 0.5 DFC: L/D=0.4 DFC: L/D=0.5 DMCV: BCR=5

large increase in apoapsis error for the 99th percentile, max, and min statistics. Regarding

the in-plane ∆V cost, all three flight controls provide acceptable results. DFC produces

the lowest 99th percentile in-plane cost of 115 m/s. DMCV provides a comparable cost up

until the 99th percentile. BAM flight control generally produces more expensive aerocapture

trajectories as compared to DFC for the same L/D. Only up to the 1st percentile are the two

flight control solutions comparable. This is due to the bank reversals needed for handling
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the orbital plane error. Figure 4.32 shows high variance in the inclination error for the BAM

vehicles as compared to the DFC vehicles. DFC vehicles produced inclination errors within

0.1° of the 153.547° target leading to diminutive out-of-plane ∆V costs. The BAM reversals

allow for the inclination errors to be within 1° of the target leading to a moderate correction

cost. Vehicle 5 with no out-of-plane control authority produces a rather large inclination

error that requires a moderate correction cost, with a value that is nearly half that of the

mean in-plane ∆V cost. The aggregate total ∆V statistics shows that DFC produces the

cheapest trajectories over the range of applied dispersions. Increasing L/D for DFC is shown

to reduce the total ∆V. The same cannot be said for BAM where increasing L/D slightly

increases the total ∆V.

In Figure 4.32 , subplots of the max sensed deceleration and estimated vehicle aeroheating

environment are presented. For the lifting trajectories, the sensed deceleration generally

decreases with shallower entry flight path angles. For the same L/D capability, the DFC

vehicles can produce lower peak deceleration values than BAM vehicles. These similar low

values can be achieved by Vehicle 5. But, Vehicle 5 produces much lower convective heat

rate and integrated heat load values. The data suggests that DMCV can provide a 3 times

reduction in the convective heating as compared to the BAM and DFC vehicles, whom both

have similar heating values though DFC values are slightly smaller. This reduction can

be attributed to the larger aeroshell nose radius and smaller BC achieved during flight. A

consequence of larger nose radius is potentially larger radiative heating, which is not modeled

in this paper. As a result, a high fidelity aerothermal heating analysis is needed to further

quantify this reduction.

Overall, a lifting vehicle with a L/D of 0.4-0.5 is sufficiently robust to the given set of

dispersions. Lower ∆V can be achieved with DFC flight control. Despite the lower success

rate, DMCV flight control is a potentially viable flight control if close to nominal flight

conditions are achieved. If achievable, DMCV may provide a performance enhancement in

terms of lower apoapsis error and lower stagnation point convective heating.
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Reduced Density Perturbation Case

For the reduced density perturbation case, Case 2, the density perturbation scale factor is

reduced by half and the bounds on Fbias are reduced by half as well. This reduction might be

possible with improved knowledge of Neptune’s atmosphere from atmospheric entry probes

that enter prior to aerocapture. To simulate the effect that this might have on the aerocapture

performance, the parameter rpscale is reduced from 1 to 0.5 and Fbias is reduced from ±0.56

to ±0.28. Figure 4.33 shows a comparison of the in-plane orbit insertion performance for

Cases 1 and 2. As shown in Figure 4.33b , reducing the density perturbations and atmospheric

profile range improves the apoapsis targeting performance for each flight control as well as

improves the capture success rate for the DMCV vehicle (up to 99.3% from 92.4%). For Case

1, as shown in Figure 4.33a , the uncaptured hyperbolic cases for Vehicle 5 directly correlate

to large negative fbias values. Reducing the increasing the minimum bound on fbias is shown

to eliminate a majority of the hyperbolic cases. Like the trends found for Titan, the large

negative fbias values correspond to lower than average density profiles. An increase in BCR

capability might allow for the remainder of hyperbolic trajectories to be captured into orbit.

(a) Reference Case (b) Reduced Density Perturbation Case

Figure 4.33. Visualization of the effect that improved Neptune atmospheric
knowledge has on in-plane orbit insertion performance. Vertical colorbars map
to each subplot in each subfigure.
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For Case 2, the aerocapture performance statistics for the captured cases are shown in

Table 4.26 . As compared to Case 1, no significant changes arise in the max deceleration,

peak convective heat rate, and integrated heat load with Case 2. However, the reduced

atmospheric profile uncertainty and density perturbations leads to a generous reduction in

the total ∆V for both every vehicle with corresponding 99th percentile values of 221 m/s,

238 m/s, 109 m/s, 107 m/s, and 187 m/s. The in-plane ∆V performance for DMCV is

on-par if not better than either of the DFC vehicles (lower mean value but larger variance).

The out-of-plane cost for each vehicle is generally unaffected by the density perturbation

and profile reduction.

Table 4.26. Neptune Reduced Density Perturbation Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
-30.747 47.746 -64.359 -29.021 -0.552 -85.545 12.247
-36.849 48.438 -69.570 -35.042 -9.832 -91.890 1.058
-5.412 15.452 -14.103 -5.793 7.130 -19.646 104.454
-3.777 11.105 -11.507 -3.620 1.949 -16.148 44.337

Apoapsis Error x 103, km

21.550 2223.449 -12.250 -0.055 38.654 -60.282 39502.066
138 86 90 134 201 85 248
149 90 101 145 214 87 264
94 19 85 94 109 85 188
92 15 85 91 104 85 134

In-plane ∆V, m/s

86 94 82 83 145 82 651
3.182E-01 3.774E-01 -8.380E-02 3.311E-01 6.164E-01 -1.781E-01 1.042E+00
3.130E-01 4.437E-01 -9.504E-02 3.255E-01 6.311E-01 -1.238E-01 1.051E+00
-1.834E-03 3.918E-02 -6.591E-02 1.296E-05 2.818E-03 -1.946E-01 7.254E-02
-5.168E-03 9.224E-02 -1.641E-01 2.516E-06 5.167E-03 -4.334E-01 1.655E-01

Inclination Error, deg

-6.261E-01 2.989E-02 -6.466E-01 -6.262E-01 -6.026E-01 -6.552E-01 -5.533E-01
29 26 7 30 49 1 79
31 30 8 31 54 4 79
5 5 2 5 11 1 20
5 8 2 5 18 1 37

Out-of-Plane ∆V, m/s

47 2 45 47 48 41 49
159 87 108 156 221 98 252
171 94 112 168 238 103 327
95 19 85 94 109 85 188
92 17 85 92 107 85 134

Total ∆V, m/s

129 94 124 125 187 123 689
Capture Success 100% 100% 100% 100% 99.3%
Key BAM: L/D=0.4 BAM: L/D = 0.5 DFC: L/D=0.4 DFC: L/D=0.5 DMCV: BCR=5

Increased Density Perturbation Case

For the increased density perturbation case, Case 3, the density perturbation scale factor is

doubled, which increases the applied density perturbation from ±3σ to ±6σ. Additionally,

the latitudinal variation of fminmax is removed and replaced with a constant value such that

fminmax ranges between ±1. This case is meant to simulate the largest possible density

perturbation capability of NeptuneGRAM. Figure 4.34 depicts the in-plane performance

comparison between Case 1 and Case 3. As seen in Figure 4.34b , the increase in Case 3

causes an increase in the number of uncaptured hyperbolic trajectories and variance of the
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apoapsis targeting for each flight control. These cases generally correlate to fminmax values

near -1 and shallow entry flight path angles. For BAM and DFC vehicles, an L/D greater

than 0.5 is needed to fully capture all the simulated trajectories. Likewise for the DMCV

vehicle, a BCR value greater than 5 is needed.

(a) Reference Case (b) Increased Density Perturbation Case

Figure 4.34. Visualization of the effect that increased Neptune atmospheric
uncertainty has on in-plane orbit insertion performance. Vertical colorbars
map to each subplot in each subfigure.

For the captured cases in Case 3, Table 4.27 shows the aerocapture orbit insertion statis-

tics. As compared to Case 1, no significant changes arise in the max deceleration, peak

convective heat rate, and integrated heat load with Case 3. The low capture success rate

of Vehicle 5 may necessitate the need for larger BCR capability. Despite this, the orbit

insertion performance of Vehicle 5 on average is as good if not better than the DFC vehicles

(lower mean in-plane ∆V value but higher variance). The increase in density perturbations

significantly increases the apoapsis error and in-plane ∆V statistics for each vehicle but does

not significantly increase the inclination error and out-of-plane ∆V statistics.
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Table 4.27. Neptune Increased Density Perturbation Case: Aerocapture orbit
insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
113.621 9461.499 -104.952 -6.478 801.740 -149.423 151205.618
2.092 1029.745 -106.013 -4.812 121.049 -123.230 17756.747
49.421 1195.455 -72.946 -1.827 541.290 -115.309 12373.471
28.358 2105.885 -66.720 0.764 199.927 -175.068 37295.208

Apoapsis Error x 103, km

113.070 5762.175 -137.492 -0.190 1817.068 -364.536 71599.483
159 215 86 144 445 85 657
148 162 86 135 308 85 643
145 195 86 125 391 85 637
133 134 86 121 272 86 651

In-plane ∆V, m/s

118 409 82 83 613 82 2470
5.271E-01 1.115E+00 -1.086E-01 4.559E-01 1.622E+00 -8.760E-01 2.067E+00
5.008E-01 9.955E-01 -1.073E-01 4.641E-01 1.442E+00 -2.837E-01 2.427E+00
-7.660E-03 9.467E-02 -1.535E-01 -1.144E-03 3.450E-02 -4.416E-01 2.234E-01
-1.149E-02 1.517E-01 -2.563E-01 -1.185E-03 7.994E-02 -5.785E-01 4.003E-01

Inclination Error, deg

-6.261E-01 5.676E-02 -6.621E-01 -6.263E-01 -5.682E-01 -8.999E-01 -5.495E-01
43 72 6 38 118 1 149
42 62 7 41 100 3 180
8 9 3 7 18 0 35
8 11 3 8 24 1 45

Out-of-Plane ∆V, m/s

47 4 43 47 49 41 67
195 238 105 178 503 93 706
182 170 100 175 340 90 647
146 196 86 126 391 85 637
134 134 87 123 273 86 652

Total ∆V, m/s

161 410 124 126 652 124 2531
Capture Success 90.9% 99.77% 85.77% 94.67% 53.47%
Key BAM: L/D=0.4 BAM: L/D = 0.5 DFC: L/D=0.4 DFC: L/D=0.5 DMCV: BCR=5

Increased Delivery State Uncertainty Case

For the increased delivery state uncertainty, Case 4, the delivery state uncertainty is in-

creased such that the entry flight path angle uncertainty is increased from ±0.33° to ±0.51°.

Figure 4.35 shows the in-plane performance comparison between Case 1 and Case 4. Increase

the delivery state uncertainty increases the spread of entry flight path angles as seen by the

colorbar limits between Figure 4.35a and Figure 4.35b . This causes for additional hyperbolic

cases to arise. For Vehicle 3, three hyperbolic cases arise corresponding to the shallowest

entry flight path angle. For the same 0.4 L/D, Vehicle 1 is able to capture these three cases.

For 0.5 L/D, both Vehicles 2 and 4 are generally unaffected by the increase in delivery state

uncertainty. For Vehicle 5, Case 4 introduces more hyperbolic cases decreasing the capture

success rate from 92.4% to 88.2%

For the captured cases in Case 4, Table 4.28 shows the corresponding orbit insertion

performance statistics. The increase in delivery state uncertainty does not generally impact

the statistics except in the 99th percentile and max values. For Vehicle 5, the 99th percentile

in-plane ∆V increases from 517 m/s to 2142 m/s. This significant increase indicates that

achieving small delivery state dispersions is most advantageous for DMCV vehicles with low

BCR capability.
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(a) Reference Case (b) Increased Delivery State Uncertainty
Case

Figure 4.35. Visualization of the effect that increased Neptune delivery state
uncertainty has on in-plane orbit insertion performance. Left and right vertical
colorbars map to 0.4 and 0.5 L/D subplots in each subfigure.

Table 4.28. Neptune Increased Delivery State Uncertainty Case: Aerocapture
orbit insertion statistics

Mean 3σ 1st %-tile Median 99th %-tile Min Max
-31.977 120.555 -110.313 -28.476 26.597 -269.835 1291.814
-38.629 110.444 -114.318 -33.521 6.384 -270.360 996.228
-4.540 81.441 -27.966 -5.831 55.537 -265.085 971.104
-4.517 20.646 -19.600 -3.825 7.452 -105.376 73.785

Apoapsis Error x 103, km

196.426 22366.053 -351.240 -0.128 846.163 -421.761 380122.124
147 191 85 133 313 84 1053
158 204 87 143 324 85 1060
100 95 85 96 164 84 1016
95 28 85 92 120 85 300

In-plane ∆V, m/s

147 1052 82 84 2142 82 5740
3.315E-01 6.078E-01 -1.033E-01 3.438E-01 8.835E-01 -1.802E-01 2.328E+00
2.994E-01 5.841E-01 -1.065E-01 3.202E-01 7.745E-01 -1.506E-01 2.365E+00
-5.420E-03 7.871E-02 -1.443E-01 -3.728E-05 4.369E-03 -3.858E-01 9.129E-02
-9.657E-03 1.292E-01 -2.137E-01 -3.264E-05 1.047E-02 -5.540E-01 1.843E-01

Inclination Error, deg

-6.313E-01 1.397E-01 -8.521E-01 -6.263E-01 -5.800E-01 -1.421E+00 -5.400E-01
30 41 4 31 66 1 166
30 41 3 31 63 0 167
6 9 0 6 17 0 31
6 12 0 5 22 0 44

Out-of-Plane ∆V, m/s

47 10 43 47 64 40 103
170 189 97 157 341 90 1055
179 204 97 165 345 89 1066
101 95 85 96 167 84 1016
96 29 85 93 124 85 300

Total ∆V, m/s

190 1061 124 127 2200 123 5836
Capture Success 100% 100% 99.9% 100% 88.2%
Key BAM: L/D=0.4 BAM: L/D = 0.5 DFC: L/D=0.4 DFC: L/D=0.5 DMCV: BCR=5
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Study Findings

The performance analysis at Neptune has shown for the reference set of uncertainties, DFC

can enable a 100% successful science orbit insertion within a 120 m/s total ∆V budget

for periapsis raise, apoapsis, and inclination corrections. BAM can enable a 100% successful

science orbit insertion with a 300 m/s total ∆V budget. DMCV can enable a 92.4% successful

science orbit insertion with a 570 m/s total ∆V budget but at 3 times lower peak stagnation

point convective heating than BAM and DFC. Increasing the atmospheric dispersions reduces

the capture success for each flight control, with DMCV being impacted the most, while

increasing the variance of the orbit insertion targeting error leading to a significant increase

in total ∆V. Reduction in atmospheric dispersions can allow for improved orbit insertion

performance and capture success for each flight control. Increasing the delivery state error

via entry flight path angle increases the 99th percentile total ∆V with most pronounced affect

on DMCV. Overall, BAM and DFC flight controls applied to vehicle producing L/D between

0.4-0.5 are found to be sufficiently robust to the various sets of atmospheric, aerodynamic,

vehicle attitude, and delivery state dispersions. The best orbit insertion performance and

robustness can be achieved with DFC, even for lower L/D vehicles as compared to existing

BAM flight control. Despite the lack of sufficient control authority, a DMCV vehicle with

a BCR capability of 5.5 is generally robust to the applied dispersions. If lower atmospheric

uncertainty and delivery state error are achievable, then DMCV can produce on-par orbit

insertion performance as DFC but at potentially much lower aerodynamic heating.

4.2.2 SmallSat-Class Vehicles

The recent decade has seen a surge in the SmallSat vehicle platform. SmallSats are

smaller-scaled, lower cost satellite intended to fly as secondary payloads during mission

launches. The proliferation of SmallSat missions in low Earth-orbit has both demonstrated

the operability of low-cost commercial-off-the-shelf components and the science return aug-

mentation from secondary payloads. The Mars Cube One (MarCO) [120 ], the first interplan-

etary SmallSat, demonstrated the capability of utilizing SmallSats on further solar system

exploratory missions. NASA’s Planetary Science Division in 2016 solicited concept studies
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to determine what science missions could be done with SmallSat vehicles [121 ]. The stud-

ies have ranged from orbital studies of Venus upper atmosphere [122 ] to atmospheric probe

delivery to Uranus [123 ] to orbital flybys of the Martian moons [124 ].

A key challenge for such interplanetary missions is orbit insertion. Due to the secondary

payload fairing constraints, SmallSats are mass and volume constrained and are thus limited

on the amount of propellant they can carry. As an example, for a standard Evloved Expend-

able Launch Vehicle Secondary Payload Adapter (ESPA) secondary payload 5m fairing on a

15” diameter payload port, the maximum port payload mass is 180 kg and maximum pay-

load volume is 24” x 28” x 38” [125 ]. Note that variants of ESPA may enable slightly larger

masses and volumes to be realized. These constraints make propulsive orbit insertion ∆V

requirements on the order of a few km/s challenging, if not impossible, at different planetary

destinations. As a result, aerocapture can be a potential enabling technology for SmallSat

missions by providing the means for payload delivery to orbit within a feasible ∆V budget.

Furthermore due to the costs and inherent risks associated with Discovery-class missions,

SmallSats may provide a lower-cost alternative to flight-proving aerocapture. Some authors

have taken this approach and have developed such aerocapture demonstration mission con-

cepts [48 ], [49 ]. Majority of SmallSat aerocapture vehicle designs have employed a form of

staged-jettison drag modulation. In this work, a different vehicle design is investigated that

can potentially allow for BAM, DFC, and DMCV flight controls.

Vehicle Design

The SmallSat aerocapture system investigated utilizes a deployable aeroshell that stows

during launch and is as light weight as possible to maximize the delivered mass to orbit. De-

ployable aeroshells have the potential to enable the delivery of equivalent scientific payloads

with stowed diameters 3 to 4 times smaller than traditional rigid aeroshells [126 ]. These open

backshell designs are either inflated, similar to a ballute, or mechanically deployed, similiar

to an umbrella, prior to atmospheric entry. After exiting the atmosphere, the aeroshell is

jettisoned and post-aerocapture propulsive burns are conducted.
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A deployable vehicle concept that can change its outer mold line offers the opportunity

to study three major control strategies for aerocapture: DFC, BAM, and DMCV. For this

purpose, a morphable entry system (MES) concept is investigated as the candidate SmallSat

aeroshell design [127 ]. Figure 4.36 depicts the stowed and the baseline deployed configura-

tions of the MES. The system stows into a compact form-factor that adheres with the stan-

dard ESPA volume requirements and mechanically deploys into a baseline 70° sphere-cone

geometry (note: sphere-cone is a geometrical approximation to the true aeroshell shape).

The conical frustrum is made up of six panels that act as aerodynamic control surfaces.

They can be actuated through tensioning the six structural ribs. A rigid hemispherical nose

attaches to a cylindrical payload fairing that houses the SmallSat vehicle. At the baseline

configuration, the sphere-cone has a nose radius of 0.3m, maximum diameter of 1.35m, and

has all panels deflected fully at the same angle.

0.620 m

(a) Stowed

1.35 m

1.35 m

(b) Deployed Front (c) Deployed Side

Figure 4.36. Stowed and deployed configurations of the morphable entry system.

The deflection angle of each panel can be varied according to the chosen control strategy.

For DFC, angle of attack and side-slip angle control can be achieved through panel deflec-

tions. Figure 4.37a illustrates a scenario where deflection of panel 1 by δ from the baseline

induces a pitching moment for modulating angle of attack. Figure 4.37b shows the scenario

of deflecting rib 5 by δ from the baseline induces a yawing motion for modulating side-slip

angle. For DMCV symmetrical deflection of the panels by δ, as shown in Figure 4.37d , allows

for the cone angle of the morphable sphere-cone to be modified thus allowing for control of

the vehicle’s ballistic coefficient throughout the trajectory. Lastly as show in Figure 4.37c ,
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the baseline deployed configuration along with RCS thrusters can allow for control of the

bank angle.

(a) DFC: α modulation (b) DFC: β modulation

RCS Thrusters

(c) BAM: σ modulation

𝛿

𝛿

(d) DMCV: δc
modulation

Figure 4.37. Aerocapture flight control using the morphable entry system.

This section primarily focuses on assessing the 3DOF aerocapture orbit insertion per-

formance and robustness of the MES vehicle using each flight control technique at different

planetary bodies. As a result, some assumptions are made on the vehicle design. Firstly,

the thermal protection system is not formally sized due to differences in planetary atmo-
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spheres and entry conditions. Rather, the resulting engineering estimates of the aeroheating

environment are presented. Higher fidelity models are needed to formally size the TPS.

Secondly, the overall aerocapture system mass is assumed to be 180 kg to adhere to ESPA

mass requirements. This value allows for a common-ground for each flight control to be

compared against. Thirdly, the flight control actuator dynamical response is not modeled in

the simulation. Rather, rate and acceleration limits are enforced, similar to the Discovery-

Class vehicles analyzed in the previous section. Fourthly, an analytical aerodynamics model,

as introduced in Section 2 , is assumed. Table I provides a summary of the parameterized

SmallSat vehicle design for each flight control assessed at different planetary destinations.

Table 4.29. SmallSat aerocapture flight control vehicle designs
Vehicle 1 Vehicle 2 Vehicle 3

Flight Control BAM DFC DMCV
Nose Radius, m 0.3 0.3 0.3
Diameter, m 1.35 1.35 1.35 (at CA = 70°)
Control Limits, deg 0 to 180 ±16 (±5)1 35 to 70
Rate Limit, deg/s 20 5 (2)a 5
Accel Limit, deg/s2 5 2 (0.3)a 2
Base BC, kg/m2 85 85 75
Max L/D 0.25b 0.25b 0
Max BCR – – 5.5c
a Angle of Attack (Side-Slip Angle)
b Value increased for Neptune by increasing trim α (BAM) or α

limits (DFC)
c Value increased for Venus, Titan, and Neptune by lowering mini-

mum CA limit
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Venus

For Venus, the target orbit is a 300 km circular orbit at 90° inclination. For Vehicle 3, the

minimum cone angle is decreased from 35° to 20° to increase the BCR capability of the MES

vehicle to 20. This increase allows for the vehicle to have a positive flight envelope width and

potentially improve the aerocapture orbit insertion performance and success as compared to

the Discovery-class DMCV vehicle assessed. The Reference case in Table 4.4 is used in the

Monte Carlo experimental setup for each vehicle. The nominal delivery state parameters

are shown in Table 4.3 . Due to the different base BC and BCR values, the nominal inertial

entry flight path angles are recomputed using the corridor width assessment with values of

-6.1° for Vehicles 1 and 2 and -6.04° for Vehicle 3.

Reference Case

A visual comparison of the Monte Carlo results are shown in Figure 4.38 . For each flight

control, 100% of the cases successfully capture. As compared to the Satellite-Class vehicle

design results, increasing the BCR capability from 5.5 to 20 allows for the necessary control

capability to capture the residual uncaptured cases. Table 4.30 provides a comparison of the

simulation statistics.

Figure 4.38. Venus SmallSat Case: Aerocapture orbit insertion performance

214



Table 4.30. Venus SmallSat Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max
11.511 54.049 -33.659 10.967 55.601 -63.275 349.110
11.595 31.121 -13.898 11.739 36.597 -56.336 48.650Apoapsis Error, km
36.799 468.544 24.885 29.439 43.327 -37.495 4387.006

121 49 94 120 171 88 204
110 41 86 107 146 82 202In-plane ∆V, m/s
100 90 97 99 102 71 915

-8.767E-05 5.976E-02 -6.959E-02 1.044E-06 6.835E-02 -1.677E-01 2.345E-01
9.889E-01 1.058E+00 3.626E-01 9.778E-01 1.649E+00 1.858E-01 5.080E+00Inclination Error, deg
-5.437E-03 1.844E-02 -1.957E-02 -5.561E-03 8.598E-03 -2.349E-02 1.197E-02

2 8 0 1 14 0 32
143 133 61 142 226 36 655Out-of-Plane ∆V, m/s
1 3 1 1 4 0 5

122 50 94 120 172 88 204
233 144 159 228 332 145 834Total ∆V, m/s
101 90 97 99 103 72 916

Capture Success 100% 100% 100%
Key DFC BAM DMCV

The results show that the designed NPC guidance provides sufficient aerocapture per-

formance for each flight control. Vehicle 3 provides excellent in-plane orbit insertion perfor-

mance with a 99th percentile ∆V of 102 m/s as well as a negligible inclination error and

subsequent correction cost. However, the large BCR capability coupled with the large base

BC causes Vehicle 3 to achieve much larger peak convective heat rates and integrated heat

loads with values nearly triple that of Vehicles 1 and 2. Reducing the BCR capability may

allow for lower aeroheating results but at the expense of orbit insertion performance (e.g.

Venus Satellite-Class Vehicle 3 results). Increasing the aeroshell nose radius and lowering

the base BC can also potentially lower the aeroheating; but, the strict secondary payload

stowage requirements may limit achieving this. Unless high-performance flexible TPS mate-

rials that can withstand heat rates greater than 1500 W/cm2 are available, DMCV may not

be a preferable flight control option for SmallSat aerocapture at Venus. BAM and DFC can

provide potential suitable flight control options for Venus aerocapture. The results show that

Vehicles 1 and 2 can provide similar in-plane orbit insertion performance; moreover, Vehicle

2 provides much lower inclination error. This allows for Vehicle 2 to provide 99th percentile

orbit insertion total ∆V of 172 m/s, which is approximately half that of the corresponding

value for Vehicle 1 being 332 m/s. The aeroheating and sensed deceleration statistics are gen-

erally similar between each vehicle. With peak convective heat rate values near 600 W/cm2,

newer flexible TPS material are needed for a Venus SmallSat mission. Such a material might

be a 3-D woven carbon fabric similar to what is developed for ADEPT [128 ].
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Earth

The Earth aerocapture study analyzes an Earth-return mission concept. The target

orbit is a 500 km circular orbit at 30° inclination. Given the corridor width analysis for

each vehicle, the nominal inertial entry flight path angles for each vehicle are -5.581° for

Vehicles 1 and 2 and -5.643° for Vehicle 3. The nominal delivery state parameters are

shown in Table 4.31 . The delivery state dispersions are produced from position and velocity

errors propagated from the data cut-off point of 6 hours prior to entry such that the ±3σ

uncertainty in inertial entry flight path angle is 0.25° [129 ].

Table 4.31. Monte Carlo simulated dispersions for Earth aerocapture
Category Variable Nominal ±3σ or min/max Distribution

Delivery State

Inertial entry flight path angle -5.581° or -5.643° From propagation Correlated
Inertial entry velocity 11.5 km/s From propagation Correlated
Inertial entry altitude 125 km From propagation Correlated
Inertial entry latitude -5.186° From propagation Correlated
Inertial entry longitude 350.955° From propagation Correlated
Inertial entry heading angle -29.589° From propagation Correlated

Reference Case

A visual comparison of the Monte Carlo results are shown in Figure 4.39 . For each flight

control, 100% of the cases successfully capture. Table 4.32 provides a comparison of the

simulation statistics.

Table 4.32. Earth SmallSat Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max

-12.938 27.707 -42.319 -11.489 5.437 -70.132 19.311
-28.113 32.888 -57.651 -26.762 -7.808 -78.682 0.709Apoapsis Error, km
-1.109 2.488 -4.111 -0.979 0.279 -9.416 0.516
154 29 134 154 178 128 191
155 23 137 155 174 133 183In-plane ∆V, m/s
138 2 136 138 140 136 143

-6.207E-03 7.043E-02 -1.162E-01 -4.457E-04 2.320E-02 -2.217E-01 1.341E-01
5.391E-01 5.325E-01 2.022E-01 5.225E-01 8.842E-01 1.042E-02 9.800E-01Inclination Error, deg
-5.447E-01 1.574E-02 -5.569E-01 -5.447E-01 -5.323E-01 -5.629E-01 -5.284E-01

2 10 0 1 18 0 32
97 72 49 95 145 24 159Out-of-Plane ∆V, m/s
75 4 72 75 78 71 79
155 30 134 154 181 129 202
227 70 185 225 275 155 294Total ∆V, m/s
210 3 208 210 213 207 215

Capture Success 100% 100% 100%
Key DFC BAM DMCV
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Figure 4.39. Earth SmallSat Case: Aerocapture orbit insertion performance

The results show that the designed NPC guidance provides sufficient aerocapture perfor-

mance for each flight control. Vehicle 3 provides the most accurate and precise in-plane orbit

insertion performance with a 99th percentile ∆V of 140 m/s. Despite the inclination error

being small, resulting out-of-plane correction burn is significant being nearly half the value

of the in-plane burn ∆V. Similar to Venus, Vehicle 3 produces larger convective heat rates

and integrated heat load values than Vehicles 1 and 2. The peak heat rate values for Vehicle

3 at Earth are similar to peak values for Vehicles 1 and 2 at Venus indicating similar TPS

material might be needed; but, the larger integrated heat loads experienced at Earth may

necessitate increased TPS thickness. For Vehicles 1 and 2 at Earth, similar in-plane orbit

insertion performance is achieved with 99th percentile in-plane ∆V costs within 180 m/s.

Despite keeping inclination to within 1° of the target, the resulting correction cost for Vehicle

1 is significant. This results in Vehicle 2 producing the lowest total ∆V cost out of the three

vehicle designs. Vehicles 1 and 2 have similar peak convective heating and integrated heat

loads. As compared to Venus, the integrated heat loads between the two vehicle designs are

similar but the the convective heat rate values at Earth are approx. 1.5 times smaller than

those at Venus. Despite Earth and Venus having similar gravity wells, the peak deceleration

experienced by each vehicle design is distinct. For the same L/D and base BC, Vehicles 1
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and 2 at Earth exhibit about half the peak deceleration as the same vehicle applied at Venus,

despite having identical nominal entry velocities. This can be attributed to the low density

scale height of Venus as well as the slightly steeper nominal entry flight path angles.

Mars

For Mars, the target orbit is a 400 km circular orbit at 0° inclination. The Reference case

in Table 4.11 is used in the Monte Carlo experimental setup for each vehicle. The nominal

delivery state parameters are shown in Table 4.10 . Due to the different base BC values, the

nominal inertial entry flight path angles are recomputed using the corridor width assessment

with values of -10.85° for Vehicles 1 and 2 and -10.829° for Vehicle 3.

Reference Case

A visual comparison of the Monte Carlo results are shown in Figure 4.40 . For each flight

control, 100% of the cases successfully capture. Table 4.33 provides a comparison of the

simulation statistics.

Figure 4.40. Mars SmallSat Case: Aerocapture orbit insertion performance

The results show that the designed NPC guidance provides sufficient aerocapture per-

formance for each flight control. Vehicle 3 provides the most precise and accurate in-plane

orbit insertion performance with a 99th percentile ∆V of 95 m/s. The minute residual in-
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Table 4.33. Mars SmallSat Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max

-10.862 24.780 -40.212 -8.853 0.680 -58.106 7.152
-19.030 19.411 -40.152 -18.160 -8.342 -68.530 -5.224Apoapsis Error, km
1.560 3.746 -0.976 1.270 4.080 -1.474 4.361
106 16 95 105 120 92 130
106 9 101 106 115 99 124In-plane ∆V, m/s
94 1 94 94 95 94 95

2.137E-02 6.380E-02 7.912E-04 1.610E-02 1.080E-01 0.000E+00 2.454E-01
2.556E-01 2.701E-01 1.446E-01 2.241E-01 5.047E-01 1.241E-01 5.702E-01Inclination Error, deg
7.472E-03 1.304E-02 8.414E-04 6.663E-03 1.999E-02 0.000E+00 2.508E-02

1 4 0 1 6 0 14
15 16 8 13 30 7 33Out-of-Plane ∆V, m/s
0 1 0 0 1 0 1

107 16 96 107 121 92 138
121 17 113 119 135 110 145Total ∆V, m/s
95 1 94 95 96 94 96

Capture Success 100% 100% 100%
Key DFC BAM DMCV

clination error and corresponding out-of-plane ∆V enables Vehicle 3 to produce the lowest

99th percentile total ∆V cost. Despite increasing the BC during flight, Vehicle 3 produces

slightly higher peak convective heat rates and integrated heat loads as well as lower peak

decelerations than Vehicles 1 and 2. Vehicles 1 and 2 produce similar in-plane performance

with 99th percentile in-plane ∆V of less than 120 m/s. Vehicle 2 provides excellent out-of-

plane performance as compared to Vehicle 1. Overall, each flight control provides suitable

orbit insertion capability with aeroheating environments that are well within the current

acceptable limits for flexible TPS material.

Titan

For Titan, the target orbit is a 1700 km circular orbit at 100° inclination. For Vehicle

3, the minimum cone angle is decreased from 35° to 20° to increase the BCR capability of

the MES vehicle to 20. This increase allows for the vehicle to have a positive flight envelope

width and potentially improve the aerocapture orbit insertion performance and success as

compared to the Discovery-class DMCV vehicle assessed. The Reference case in Table 4.17 

is used in the Monte Carlo experimental setup for each vehicle. The nominal delivery state

parameters are shown in Table 4.16 . Due to the different base BC and BCR values, the

nominal inertial entry flight path angles are recomputed using the corridor width assessment

with values of -35.678° for Vehicles 1 and 2 and -36.523° for Vehicle 3.
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Reference Case

A visual comparison of the Monte Carlo results are shown in Figure 4.41 . For each flight

control, 100% of the cases successfully capture. As compared to the Satellite-Class vehicle

design results, increasing the BCR capability from 5.5 to 20 allows for the necessary control

capability to capture the residual uncaptured cases. Table 4.34 provides a comparison of the

simulation statistics.

Figure 4.41. Titan SmallSat Case: Aerocapture orbit insertion performance

Table 4.34. Titan SmallSat Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max
7.851 386.566 -327.055 -2.391 391.693 -639.540 745.591

-38.075 418.743 -382.320 -46.508 339.706 -684.621 791.525Apoapsis Error, km
37.880 62.428 12.835 34.006 122.394 7.491 220.189

200 36 184 197 246 179 305
203 49 181 199 258 172 331In-plane ∆V, m/s
178 3 176 178 181 175 185

1.634E-03 1.611E-01 -2.212E-01 3.557E-03 1.511E-01 -6.459E-01 9.548E-01
2.927E-01 2.037E+00 -8.628E-01 1.718E-01 2.684E+00 -1.444E+00 6.267E+00Inclination Error, deg
-2.619E-01 3.248E-02 -2.867E-01 -2.620E-01 -2.372E-01 -2.935E-01 -2.310E-01

4 9 0 3 14 0 30
33 54 5 31 97 1 185Out-of-Plane ∆V, m/s
10 7 7 9 16 7 19
201 36 185 198 246 179 306
229 65 199 225 318 186 492Total ∆V, m/s
185 3 182 185 188 181 191

Capture Success 100% 100% 100%
Key DFC BAM DMCV
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The results show that the designed NPC guidance provides sufficient aerocapture perfor-

mance for each flight control. Vehicle 3 provides more precise and accurate in-plane orbit

insertion performance with a 99th percentile ∆V of 181 m/s. Due to the small gravity well

of Titan, the small residual inclination error produced by Vehicle 3 requires a minute cor-

rection ∆V. Similar to Venus, the increased BCR capability causes an increase in the peak

convective heat rate and integrated heat load. The corresponding values for Vehicle 3 are

approx. double the values for Vehicles 1 and 2. The resulting aeroheating environment for

each vehicle at Titan is larger but comparable to Mars. Similar peak deceleration values be-

tween Vehicles 1 and 2 are achieved. Both vehicles exhibit similar in-plane performance with

99th percentile in-plane ∆V within 260 m/s. The variance in the apoapsis error for Vehicles

1 and 2 are more than 6 times larger than the value for Vehicle 3. Vehicle 2 exhibits better

out-of-plane performance than Vehicle 1 as seen by the mean and variance statistics. Overall,

each flight control provides suitable orbit insertion capability with aeroheating environments

that are generally within the current acceptable limits for flexible TPS material.

Neptune

For Neptune, the target orbit is a 3986 x 430000 km elliptical orbit at 153° inclination.

For Vehicle 3, the minimum cone angle is decreased from 35° to 20° to increase the BCR

capability of the MES vehicle to 20. This increase allows for the vehicle to have a positive

flight envelope width and potentially improve the aerocapture orbit insertion performance

and success as compared to the Discovery-class DMCV vehicle assessed. The Reference case

in Table 4.24 is used in the Monte Carlo experimental setup for each vehicle. The nominal

delivery state parameters are shown in Table 4.23 . Due to the different base BC and BCR

values, the nominal inertial entry flight path angles are recomputed using the corridor width

assessment with values of -11.474° for Vehicles 1 and 2 and -11.504° for Vehicle 3.

Reference Case

A visual comparison of the Monte Carlo results are shown in Figure 4.41 . For each flight

control, 100% of the cases successfully capture. As compared to the Satellite-Class vehicle

design results, increasing the BCR capability from 5.5 to 20 allows for the necessary control
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capability to capture the residual uncaptured cases. Table 4.34 provides a comparison of the

simulation statistics.

Figure 4.42. Neptune SmallSat Case: Aerocapture orbit insertion performance

Table 4.35. Neptune SmallSat Case: Aerocapture orbit insertion statistics
Mean 3σ 1st %-tile Median 99th %-tile Min Max
-6.086 24.178 -26.099 -5.561 8.949 -96.440 94.531
-39.005 92.988 -112.552 -35.783 3.854 -224.946 41.687Apoapsis Error x 103, km
0.895 21.521 -0.019 0.476 4.086 -0.149 322.606

97 32 86 94 130 85 275
156 184 85 146 315 85 748In-plane ∆V, m/s
86 16 85 86 90 85 317

-7.112E-03 9.820E-02 -1.679E-01 -3.753E-05 5.276E-03 -4.641E-01 1.186E-01
2.773E-01 5.545E-01 -1.126E-01 2.968E-01 7.126E-01 -1.823E-01 1.322E+00Inclination Error, deg
-6.213E-01 2.744E-02 -6.414E-01 -6.212E-01 -6.004E-01 -6.502E-01 -5.872E-01

6 9 1 5 18 0 39
26 36 3 26 55 1 96Out-of-Plane ∆V, m/s
50 2 49 50 52 47 53
98 33 86 95 132 85 275
176 183 97 165 336 89 750Total ∆V, m/s
128 16 126 128 132 126 357

Capture Success 100% 100% 100%
Key DFC BAM DMCV

The results show that the designed NPC guidance provides sufficient aerocapture per-

formance for each flight control. Vehicle 3 provides excellent in-plane orbit insertion perfor-

mance with a 99th percentile ∆V of 90 m/s. As compared to Vehicle 5 in Satellite-Class

Neptune reference study, the increase in BCR capability from 5.5 to 20 enables a significant

enhancement in the in-plane orbit insertion performance that produced a 99th percentile
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∆V of 517 m/s. Despite having a small residual inclination error, the resulting correction

cost for Vehicle 3 is significant being nearly half the value of the in-plane ∆V. For the same

L/D capability, Vehicles 1 and 2 have varying levels of orbit insertion performance. Vehicle

2 is more precise in apoapsis targeting allowing for a 99th percentile in-plane ∆V of 130

m/s, which is 185 m/s lower than the corresponding value for Vehicle 2. Likewise, Vehicle 2

produces superior inclination performance as compared to Vehicle 1. The peak decelerations

are similar between each vehicle. The aeroheating is also generally comparable for each

vehicle but Vehicle 3 produces significantly higher results with more than double the peak

convective heat rate and integrated heat load.

The aeroheating environment experienced during Neptune aerocapture is the largest out

of the planetary destinations simulated with peak convective heat rates reaching as high

as 3250 W/cm2, which is double the value of the second highest environment being Venus.

As a result, a new high performance flexible TPS material would be needed. A potential

candidate system is the Heatshield for Extreme Entry Environment Technology (HEEET),

which is currently being investigated for application on Ice Giant missions [130 ]. Although

the resulting TPS mass might exceed the maximum weight of the entire SmallSat, the results

presented in this section can provide insights into the flight control design trade space.

Given a similar Monte Carlo simulation environment, the results show DFC and BAM flight

controls are suitable for blunt bodies producing L/D of 0.4 and DMCV flight control is

suitable for blunt bodies producing BCR near 20. If similar BC on a larger-scale vehicle can

be achieved, then the results presented in Table 4.35 may provide a suitable representation

on the anticipated aerocapture performance.
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4.2.3 Comparison to Fully-Propulsive Orbit Insertion and Propellant Sizing

Fully-propulsive orbit insertion ∆V costs are computed for each targeted planetary desti-

nation. The calculations assume the same hyperbolic excess velocity as the aerocapture entry

trajectories. These V∞ values are computed using the inertial entry velocities and altitudes.

The inbound hyperbolic trajectories are assumed to have the same inclination and perigee

as the targeted orbit, but do not enter the atmosphere of each planet. The fully-propulsive

burn calculations assume a single impulsive in-plane burn at perigee to achieve the desired

orbit apogee.

Table 4.36. Orbit Insertion ∆V Comparison. Values in parenthesis are
SmallSat-Class vehicle results.

Planet Aerocapture, m/s Fully-Propulsive, m/s Savings, m/s
Venus 182 (172) 234 (332) 1716 (103) 3988 3806 (3885)
Earth — (181) — (275) — (213) — (3593) — (3412)
Mars 108 (121) 138 (135) 92 (96) 1994 1902 (3412)
Titan 248 (246) 344 (318) 186 (188) 4987 4801 (1898)

Neptune 131a(132) 298a(336) 556 (132) 6884 6753 (6752)
Key DFC BAM DMCV

a L/D = 0.4 Vehicle Design

Table 4.36 provides a comparison between the 99th percentile total ∆V results for the

Discovery-Class and SmallSat-Class vehicles and fully-propulsive calculations at each des-

tination. The table also shows the maximum amount of ∆V savings achievable with aero-

capture. For each destination, at least 1 km/s of orbit insertion ∆V can be saved using

aerocapture. Although fully-propulsive ∆V cost can be potentially reduced through inter-

planetary trajectory optimization, the results are not expected to significantly change.

The computations of propulsive ∆V costs for aerocapture and fully-propulsive orbit in-

sertion can be translated to propellant mass using the ideal rocket equation as shown in

Eq. 4.2 . Using the conservation of momentum, the change in velocity is influenced by the

specific impulse, Isp, of the propulsion system, Earth sea-level gravitational acceleration, g0,

wet mass of entry vehicle, m0, and dry mass of entry vehicle, mf .

∆V = Ispg0 ln m0

mf

(4.2)
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The propellant mass is simply the difference between the wet and dry masses. Eq. 4.2 

can be re-arraigned to obtain an expression for the propellant mass, mp, as shown in Eq. 4.3 .

For both the Discovery-Class and SmallSat-class vehicles, a hydrazine chemical propulsion

system is assumed producing an Isp of 200 sec.

mp = m0(1 − exp −∆V
Ispg0

) (4.3)

Table 4.37. Propellant Comparison. Values in parenthesis are SmallSat-Class
vehicle results.

Planet Wet Mass, kg Aerocapture, kg Fully-Propulsive, kg Savings, kg
Venus 1500 (180) 133 (15) 169 (28) 874 (9) 1304 (156) 1171 (147)
Earth — (180) — (16) — (24) — (19) — (151) — (135)
Mars 1500 (180) 80 (11) 102 (12) 69 (9) 957 (115) 889 (106)
Titan 1500 (180) 178 (21) 241 (27) 136 (16) 1382 (166) 1246 (149)

Neptune 2200 (180) 142a(12) 310a(28) 543 (12) 2134 (175) 1992 (163)
Key DFC BAM DMCV

a L/D = 0.4 Vehicle Design

Table 4.37 provides a comparison between the propellant mass calculations for aerocap-

ture and fully-propulsive orbit insertion. The table also shows the maximum amount of

propellant mass savings achievable with aerocapture for SmallSat-Class and Discovery-Class

vehicle analyzed. At each destination, aerocapture can substantially reduce the propellant

mass requirements need for orbit insertion. For Discovery-Class vehicles, fully-propulsive

missions may require nearly all of the vehicle wet mass to be allocated to propellant. This

leads to a significant reduction in the delivered mass-to-orbit to the extent where the same

satellite payload assumed cannot be delivered to orbit without increasing the wet mass of

the vehicle. On the contrary, Discovery-Class aerocapture vehicles requires much smaller

amount of propellant mass that are sufficient, given TPS mass allocations, to enable the

assumed satellite payload mass to be delivered to orbit at each destination. The propellant

mass allocations with respect to the entry mass for Venus, Mars, Titan, and Neptune can

be as low as 9%, 5%, 9%, and 6%, respectively.

For SmallSat-class vehicles, Table 4.37 demonstrates aerocapture to be an enabling tech-

nology. Without the capability to substantially increase vehicle wet mass, a fully propulsive

mission may require nearly all of the vehicle wet mass to be allocated to propellant thereby
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reducing the science payload mass delivered to orbit. On the contrary, the aerocapture

vehicles analyzed at Venus, Earth, Mars, Titan, and Neptune can have propellant mass al-

locations with respect to the entry mass as low as 5%, 9%, 5%, 9%, and 7%, respectively.

Given TPS mass allocation, it is expected that a generously sized payload mass delivered to

orbit is attainable.
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5. CONCLUSION

5.1 Summary

Aerocapture has the potential to enable future science missions and increase the payload

delivered to orbit across the Solar System and beyond. In preparation for flight implemen-

tation, investments in vehicle guidance, navigation, and control might be needed. This dis-

sertation has advanced the current state-of-the-art in the field of aerocapture GNC through

the formulation of ∆V-minimizing flight control laws, development of a modular numerical

predictor-corrector guidance architecture, and production of numerical simulation results for

aerocapture trajectories at a variety of planetary destinations.

Designing flight controls laws that minimize post-aerocapture propulsive ∆V cost can

allow for a significant performance advantage over existing methods. Lower costs can reduce

propellant mass requirements that could otherwise be used for additional science payload

mass. To ascertain these flight control laws for bank angle, direct force control, and drag

modulation, optimal control theory is applied. Numerical solutions exhibit a common “bang-

bang” structure where the control input switch from one control limit to the other.

Achieving each optimal control solution is computationally expensive. Rather, an unified

NPC algorithm incorporating the “bang-bang” structure can allow for similar ∆V costs at a

fraction of the computational cost. The algorithm is integrated into a closed-loop guidance

architecture to enable numerical simulation studies of aerocapture trajectories for a variety

of vehicle configurations, flight controls, and planetary destinations in a unified approach.

A series of Monte Carlo simulation studies are conducted to assess aerocapture performance

and robustness of Discovery-class and SmallSat-class vehicle designs. The results from these

studies have shown a destination-dependence.

The lifting flight controls, BAM and DFC, are shown to be suitable flight controls for

blunt bodies at each planetary destination analyzed. At Venus, Earth, Mars, and Titan,

having a L/D of 0.25 with either flight control is sufficient for 100% capture success of the

reference set of dispersions while an L/D of at least 0.4 is needed for Neptune. Increasing

the delivery state error and increasing the atmospheric density uncertainty is shown to

have the most pronounced effect on slightly reducing the capture success rate at Titan
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and Neptune. With regards to orbit insertion performance, DFC is shown to provide a

performance enhancement over BAM at each destination, especially in the out-of-plane and

high trajectory perturbation environments. This enhancement is at no expensive to peak

deceleration and aerodynamic heating environments as similar values are achieved with both

flight controls.

The ballistic flight control, DMCV, is shown to also be suitable for morphable blunt

bodies at each planetary destination analyzed. Achieving 100% capture success is found to

be highly dependent on the BCR capability of the vehicle. In order to house large satellite

payloads, a large nose radius is required thereby limiting the BCR to 5.5. This allowed for

DMCV to provide for a reduction in the aerodynamic heating environment as compared

to lifting flight controls at each destination analyzed. Moreover, having a BCR of 5.5 is

shown to achieve 100% capture success at Mars and Earth only. For Venus, Titan, and

Neptune, greater than 90% capture success can be achieved for the corresponding reference

set of dispersions. The limited controllability is shown to adversely affect orbit insertion

performance at Venus and Neptune with large 99th percentile total ∆V costs. Reducing

the atmospheric density and delivery state uncertainties are identified as potential ways to

improve both capture success and orbit insertion performance. Alternatively, increasing the

BCR capability to 20 is shown to achieve this feat for the reference set of dispersions. For

SmallSat payloads, a much smaller nose radius is needed therby allowing for a BCR of 20

to be achievable but at the expense of increasing rather than decreasing aerodynamic heat-

ing environment. Consequently, DMCV flight control employed on morphable sphere-cone

geometries exhibits a trade-off between BCR capability and aerodynamic heating reduction.

A first-order propellant mass sizing is conducted to correlate aerocapture and fully-

propulsive mission ∆V requirements to propellant mass. Aerocapture is demonstrated to

provide a significant reduction in orbit insertion propellant mass, on the order of 1000 kg,

for Discovery-Class vehicles thereby increasing the payload mass delivered to orbit for the

same vehicle wet mass. For mass constrained SmallSat-Class vehicles, fully-propulsive orbit

insertion may require at least 60% of the wet mass allocated to propellant. Aerocapture can

reduce this allocation to less than 10%.
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5.2 Direction of Future Work

This dissertation has identified a few directions for future work. Several limitations of

the current approach along with suggestions for how they can be mitigated are described

below.

Perfect Navigation Assumption

In the current work, a perfect navigation assumption is made in the uncertainty estimator

of the NPC guidance architecture. This assumption is made due to the lack of in-flight nav-

igation sensor specifications, including FADS and IMUs. The implication of this assumption

is that the full time history of the truth model each guidance cycle is known by the uncer-

tainty estimator in the calculations of the update gains. In actual flight implementation,

the in-flight navigation sensors would provide the in-situ measurements of the truth model

accelerations. Sensor noise can potentially introduce measurement error and subsequently

influence the gain calculations. To address this, in-flight navigation sensors can be integrated

into the closed-loop guidance architecture and subsequent Monte Carlo simulation studies

can be conducted to assess their affect on the aerocapture performance.

Aeroshell Geometries Beyond Sphere-Cones

In the current work, rigid and morphable sphere-cone aeroshell geometries are inves-

tigated for lifting and ballistic flight control. Newtonian flow theory is employed on the

geometries for obtaining analytical aerodynamics solutions. Despite sphere-cones having

significant EDL heritage, other aeroshell geometries can also be potentially utilized for ae-

rocapture applications. Biconic and ellipsled geometries can provide higher L/D capability

than sphere-cones therby potentially allowing for larger corridor width margin and improved

orbit insertion performance. Using a similar methodology, analytical aerodynamics models

can be developed for these new geometries and integrated into the NPC guidance architec-

ture. Although sphere-cones are shown in this work to be sufficient for each flight control

at each destination, conducting similar Monte Carlo simulation studies may provide further
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insight into the potential advantages/disadvantages other aeroshell geometries might have

performance-wise.

Additional Planetary Destinations

In the current work, potential aerocapture destinations studies include Venus, Earth,

Mars, Titan, and Neptune. Additional planetary bodies with an atmosphere, such as Jupiter,

Saturn, and Uranus, can also be viable destinations. The modular framework of NPC guid-

ance architecture allows for such destinations to be readily simulated in future work.

6 DOF Simulation Studies

The current work presents results for 3DOF aerocapture trajectories. The rotational

dynamics of the vehicle (equations of motion can be found in Chapter 2 ), flight actuator

dynamics, and subsequent coupling to the kinematic dynamic are omitted. Due to the

dependence of the rotational dynamics to the specific vehicle inertia properties and flight

actuator models, a 3DOF approach is assumed. As a compromise, a simple control command

limiter is developed and integrated into the architecture to emulate the time response of the

flight actuators in achieving the NPC control commands each guidance cycle. The idea of

the approach taken in the current work is to present the trajectory-based aerocapture results

to provide insight into the orbit insertion performance and robustness. Given the data and

results produced in Chapter 4 , future work can expand using detailed vehicle models for

ascertaining the 6DOF aerocapture performance.
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A. SINGULAR ARC OPTIMAL FLIGHT CONTROL

SOLUTIONS

This section highlights the investigation of the singular optimal control solution for direct

force control and drag modulation analyzed in the optimal aerocapture problem. For each

flight control control, a similar methodology is devised to assess the potential non-existence

of singular arc solutions. The work by Lu et al [69 ] has previously investigated the potential

non-existence of the singular arc solution for bank angle modulation.

Following the formulation in 2.2.4 , the Hamiltonian is defined by Eq. (A.1 ) where ṙ is

defined by Eq. (2.39 ), θ̇ is defined by Eq. (2.40 ), φ̇ is defined by Eq. (2.41 ), v̇ is defined by

Eq. (2.57 ), γ̇ is defined by Eq. (2.58 ), and ψ̇ is defined by Eq. (2.59 ).

H = λrṙ + λθθ̇ + λφφ̇+ λV V̇ + λγ γ̇ + λψψ̇ (A.1)

The co-state vector, ~λ is defined by ~λ =
[
λr λθ λφ λV λγ λψ

]T
. Its dynamics are

computed using Euler-Lagrange equations from Eq. (2.142 ). Applying the equation and

decomposing the components yields the following six coupled differential equations.
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λ̇r = −λv

2J2µR
2
p sin(γ) (1.5 − 4.5 sin2(φ))

r5 +
2µ sin(γ)

(
J2R2

p

(
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)
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)
r3
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−
12J2µR

2
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

− λγ
v
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(
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)
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− λψ
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(A.2)

(A.3)λ̇θ = 0
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r4 −
3J2µR

2
p cos(γ) sin(ψ) sin2(φ)
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(A.4)
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λ̇v = λγ
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cos(γ)
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µ
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+ ACLρv
2 cos(σ)

2m + ACQρv
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
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r4 + rω2 sec(γ) cos(ψ) sin(φ) cos(φ)
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(A.5)
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λ̇γ = −λv

−
µ cos(γ)
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J2R2
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1.5 −4.5 sin2(φ)

)
r2 + 1
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3J2µR
2
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r4
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
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v
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−
µ
(
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)
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)
r2


−
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2
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
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v

(
ACLρv

2 tan(γ) sec(γ) sin(σ)
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+
3J2µR

2
p tan(γ) sec(γ) cos(ψ) sin(φ) cos(φ)
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− v2 sin(γ) cos(ψ) tan(φ)
r
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)

+ λθv sin(γ) cos(ψ) sec(φ)
r

− λφv sin(γ) sin(ψ)
r
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(A.6)

λ̇ψ = −λv
(

3J2µR
2
p cos(γ) cos(ψ) sin(φ) cos(φ)

r4 + rω2 cos(γ) cos(ψ) sin(φ) cos(φ)
)

− λψ
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(
−
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2
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r
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v

(
−
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2
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− 2vω sin(ψ) cos(φ)
)

+ λθv cos(γ) sin(ψ) sec(φ)
r

+ λφv cos(γ) cos(ψ)
r

(A.7)

For the optimal aerocapture problem, the final time is free to vary. The transversality

condition allows for the terminal state of the Hamiltonian to be computed. Since both

the terminal cost nor the terminal constraints explicitly depend on time, the Hamiltonian
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computed at tf must equal zero. Furthermore, the Hamiltonian itself does not explicitly

depend on time; as a result, it must be a constant. Putting these two finding together

indicates that H = 0 ∀ t ∈ [t0, tf ]. The condition can be used in determining the existence

of the singular control.

For each flight control assessed in the following sections, a similar investigation is em-

ployed. The singular arc solution is assumed to exist in a finite time interval [t1, t2] ⊂ [t0, tf ].

The potential solutions for the state and co-state variables are explored. Although not

all mathematical solutions are analyzed, insight into the physically realizable solutions is

presented.

A.0.1 Drag Modulation

From the derivation in 2.2.4 , the singular optimal control for DM occurs when the switch-

ing function equals zero. From Eq. (2.165 ), this condition necessitates that λv(t) ≡ 0 in

[t1, t2]. Consequently, λ̇v = 0 in [t1, t2]. Substituting λv = λ̇v = 0 into Eq. (A.5 ) yields

0 = λγ
v2

cos(γ)

v2

r
−
µ
(
J2R2

p

(
1.5 −4.5 sin2(φ)

)
r2 + 1

)
r2

+ ACLρv
2 cos(σ)

2m + ACQρv
2 sin(σ)

2m

−
3J2µR

2
p sin(γ) sin(ψ) sin(φ) cos(φ)

r4 + rω2 cos(φ)(cos(γ) cos(φ)− sin(γ) sin(ψ) sin(φ))

+ 2vω cos(ψ) cos(φ)

+ λψ
v2

(
ACLρv

2 sec(γ) sin(σ)
2m − ACQρv

2 sec(γ) cos(σ)
2m

+
3J2µR

2
p sec(γ) cos(ψ) sin(φ) cos(φ)

r4 + rω2 sec(γ) cos(ψ) sin(φ) cos(φ)

+ v2 cos(γ) cos(ψ) tan(φ)
r

+ 2vω(tan(γ) sin(ψ) cos(φ) + sin(φ))
)

− λγ
v

(
ACLρv cos(σ)

m
+ ACQρv sin(σ)

m
+ 2v cos(γ)

r
+ 2ω cos(ψ) cos(φ)

)

− λψ
v

(
ACLρv sec(γ) sin(σ)

m
−ACQρv sec(γ) cos(σ)

m
+2ω(tan(γ) sin(ψ) cos(φ)+sin(φ))

+ 2v cos(γ) cos(ψ) tan(φ)
r

)
− λr sin(γ) − λθ cos(γ) cos(ψ) sec(φ)

r
+ λφ cos(γ) sin(ψ)

r

(A.8)

249



The zero value of the Hamiltonian can be utilized. Setting Eq. (A.1 ) equal to zero,

expanding, and substituting λv = 0 yields

0 = λγ
v

cos(γ)

v2

r
−
µ
(
J2R2

p

(
1.5 −4.5 sin2(φ)

)
r2 + 1

)
r2

+ ACLρv
2 cos(σ)

2m + ACQρv
2 sin(σ)

2m

−
3J2µR

2
p sin(γ) sin(ψ) sin(φ) cos(φ)

r4 +rω2 cos(φ)(cos(γ) cos(φ)−sin(γ) sin(ψ) sin(φ))

+ 2vω cos(ψ) cos(φ)

+ λψ
v

(
ACLρv

2 sec(γ) sin(σ)
2m − ACQρv

2 sec(γ) cos(σ)
2m

+
3J2µR

2
p sec(γ) cos(ψ) sin(φ) cos(φ)

r4 + rω2 sec(γ) cos(ψ) sin(φ) cos(φ)

+ v2 cos(γ) cos(ψ) tan(φ)
r

+ 2vω(tan(γ) sin(ψ) cos(φ) + sin(φ))
)

+ λθv cos(γ) cos(ψ) sec(φ)
r

− λφv cos(γ) sin(ψ)
r

+ λrv sin(γ)
(A.9)

Eq. (A.8 ) and Eq. (A.9 ) can be algebraically combined. Adding Eq. (A.9 ) to v times

Eq. (A.8 ) yields

0 = cos(φ)
r4v

(
sin(ψ)

(
λγ sin(γ) sin(φ)

(
−6J2µR

2
p − 2r5ω2

)
+ 2λψr4vω tan(γ)

)
+ cos(ψ)

(
λψ sec(γ) sin(φ)

(
6.J2µR

2
p + 2.r5ω2

)
+ 2λγr4vω

))
+ λγ cos(γ)

r4v

(
µ
(
9J2R

2
p sin2(φ) − 3J2R

2
p − 2r2

)
+ 2r5ω2 cos2(φ)

)
+ 2λψω sin(φ)

(A.10)

There are potentially many ways in which Eq. (A.10 ) can mathematically equal zero. For

instance, the term 2λψω sin(φ) may necessitate either λψ or φ to equal zero. The latter case

is physically possible over the finite time interval [t1, t2] where the latitude of the aerocapture

trajectory remains equatorial. To keep Eq. (A.10 ) equal to zero, γ = ±90° and ψ = ±90°

over the same time interval. However, such angles would not be physically achievable with

an aerocapture trajectory.

Although other achievable solutions to Eq. (A.10 ) may exist, they are not obvious to

obtain analytically. A potentially achievable solution on the singular arc is to have λγ and
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λψ both equal zero over time interval [t1, t2]. Substituting λγ and λψ constants expressions

into Eq. (A.8 ) yields

(A.11)0 = −λr sin(γ) − λθ cos(γ) cos(ψ) sec(φ)
r

+ λφ cos(γ) sin(ψ)
r

Like Eq. (A.10 ), Eq. (A.11 ) has numerous mathematical solutions. A potentially achiev-

able solution on the singular arc is to have λθ = λr = λφ = 0 over time interval [t1, t2].

Given this and the previous solution, the co-state vector on the singular arc may become
~λ =

[
λr λθ λφ λV λγ λψ

]T
= ~0. Since the co-state differential equations have linear

relationship with the co-state vector components and the co-state vector is continuous over

time domain [t0, tf ], the resulting co-state vector integrated over this time domain will equal

zero. Having a zero co-state vector over this time domain is a contradiction of the Maximum

Principle which states that the co-state vector is non-zero. The cause for this contradiction

is the assumption of a singular arc in the optimal solution and assumption of this particular

solution to Eq. (A.10 ) and Eq. (A.11 ). As a result, the singular arc optimal control

solution for DM is shown to potentially not exist.

A.0.2 Direct Force Control

From the derivation in 2.172 , the singular optimal control for angle of attack occurs

when the switching function equals zero. From Eq. (2.170 ), this condition necessitates that

λγ(t) ≡ 0 in [t1, t2]. Consequently, λ̇γ = 0 in [t1, t2]. Substituting λγ = λ̇γ = 0 into Eq. (A.6 )

yields
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+ rω2 cos(φ)(cos(γ) cos(φ) − sin(γ) sin(ψ) sin(φ))


− λψ

v

(
αACLαρv

2 tan(γ) sec(γ) sin(σ)
2m −

AβCQβρv
2 tan(γ) sec(γ) cos(σ)

2m

+
3J2µR

2
p tan(γ) sec(γ) cos(ψ) sin(φ) cos(φ)

r4 + rω2 tan(γ) sec(γ) cos(ψ) sin(φ) cos(φ)

− v2 sin(γ) cos(ψ) tan(φ)
r

+ 2vω sec2(γ) sin(ψ) cos(φ)
)

+ λθv sin(γ) cos(ψ) sec(φ)
r

− λφv sin(γ) sin(ψ)
r

− λrv cos(γ)
(A.12)

The zero value of the Hamiltonian can be utilized. Setting Eq .(A.1 ) equal to zero,

expanding, and substituting λγ = 0 yields

0 = λv

−
µ sin(γ)

(
J2R2

p

(
1.5 −4.5 sin2(φ)

)
r2 + 1

)
r2 − ACDρv

2

2m

+
3J2µR

2
p cos(γ) sin(ψ) sin(φ) cos(φ)

r4

+ rω2 cos(φ)(cos(γ) sin(ψ) sin(φ) + sin(γ) cos(φ))


+ λψ

v

(
αACLαρv

2 sec(γ) sin(σ)
2m −

AβCQβρv
2 sec(γ) cos(σ)
2m

+
3J2µR

2
p sec(γ) cos(ψ) sin(φ) cos(φ)

r4 + rω2 sec(γ) cos(ψ) sin(φ) cos(φ)

+ v2 cos(γ) cos(ψ) tan(φ)
r

+ 2vω(tan(γ) sin(ψ) cos(φ) + sin(φ))
)

+ λθv cos(γ) cos(ψ) sec(φ)
r

− λφv cos(γ) sin(ψ)
r

+ λrv sin(γ)
(A.13)

Eq. (A.12 ) and Eq. (A.13 ) can be algebraically combined. Adding cos(γ) times Eq. (A.13 )

to sin(γ) times Eq. (A.12 ) yields
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0 = cos(γ)
2m

(
λψmω sin(φ) − ACDλvρv

2
)

+ cos(φ)
mr4

(
r3v sec(φ)

(1
2αACLαλψρr

(
1 − tan2(γ)

)
sin(σ) − λφm sin2(γ) sin(ψ)

)
+m sin(ψ)

(
λv sin2(γ) sin(φ)

(
3J2µR

2
p + r5ω2

)
+ 2λψr4ω sin(γ)

− 2λψr4ω tan(γ) sec(γ)
))

+
AβCQβλψρv sec2(γ) cos(σ)

2m
+ (cos(ψ) cos(φ))

r4v

(
λψ cos(2γ) sec2(γ) sin(φ)

(
3J2µR

2
p + r5ω2

)
+ λθr

3v2 sin2(γ) sec2(φ)

+ λψr
3v2 tan(φ) sec(φ)

)
+ cos2(γ)

r4

(
sin(ψ)

(
λv sin(φ) cos(φ)

(
3J2µR

2
p + r5ω2

)
− λφr

3v
)

+ λθr
3v cos(ψ) sec(φ)

)
(A.14)

There are potentially many ways in which Eq. (A.14 ) can mathematically equal zero.

One way is to make the individual components in the addition equal zero. For instance, to

make the term
AβCQβλψρv sec2(γ) cos(σ)

2m equal to zero, λψ must equal zero for non-zero β and

zero σ. Having γ = ±90° and φ = ±90° would also make Eq. (A.14 ) equal to zero. The

latter case is physically possible over the finite time interval [t1, t2] where the latitude of the

aerocapture trajectory remains polar but the former case would not be physically achievable

with an aerocapture trajectory.

Another possible solution is having φ = ±90°, ψ = ±90°, λφ = 0, λψ = 0, and λv = 0

over the finite time interval [t1, t2]. This would make their corresponding time derivatives

equal to zero. Using Eq. 2.41 for φ̇ and Eq. 2.59 for ψ̇, the singular arc solution would require

γ = ±90° and β = 0. Using the reasoning as the previous solution, this potential solution

would not be physically achievable.

As one can see, there are potentially infinitely many mathematical solutions to Eq. (A.14 )

with some possibly being physically realizable. However, they are not obvious to obtain

analytically. A potentially achievable solution on the singular arc is to have λv, λθ, λφ, and

λψ all equaling zero over time interval [t1, t2]. The case in which λψ = 0 corresponds to

the singular optimal control for side-slip angle as denoted by Eq. (2.171 ). This indicates

that both angle of attack and side-slip angle are on their respective singular arcs over the

same time domain, given this assumed solution. Substituting these constants into Eq. (A.12 )

yields
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(A.15)0 = −λrv cos(γ)

Due to physical significance for Eq. (A.15 ) to remain zero along the interval [t1, t2], λr = 0.

Aggregating all necessary co-state variable expressions, the co-state vector on the singular

control arc becomes ~λ =
[
λr λθ λφ λV λγ λψ

]T
= ~0. Since the co-state differential

equations have linear relationship with the co-state vector components and the co-state

vector is continuous over time domain [t0, tf ], the resulting co-state vector integrated over

this time domain will equal zero. Note that this same result would be achieved if side-slip

angle singular arc condition, λψ = λ̇ψ = 0 is assessed and expanded using the same approach

and assumed zero-costate solutions. Having a zero co-state vector over this time domain is

a contradiction of the Maximum Principle which states that the co-state vector is non-zero.

The cause for this contradiction is the assumption of a singular arc in the optimal solution

and the assumption of this particular solution to Eq. (A.14 ) and Eq. (A.12 ). As a result,

the singular arc optimal control solution for DFC is shown to potentially not

exist.
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