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Post-disaster temporary housing has been a significant challenge for the emergency management 

group and industries for many years. According to reports by the Department of Homeland 

Security (DHS), housing in states and territories is ranked as the second to last proficient in 32 

core capabilities for preparedness. The number of temporary housing required in a geographic area 

is influenced by a variety of factors, including social issues, financial concerns, labor workforce 

availability, and climate conditions. Acknowledging and creating a balance between these 

interconnected needs is considered as one of the main challenges that need to be addressed. Post-

disaster temporary housing is a multi-objective process, thus reaching the optimized model relies 

on how different elements and objectives interact, sometimes even conflicting, with each other. 

This makes decision making in post-disaster construction more restricted and challenging, which 

has caused ineffective management in post-disaster housing reconstruction. 

 

Few researches have studied the use of Artificial Intelligence modeling to reduce the time and cost 

of post-disaster sheltering. However, there is a lack of research and knowledge gap regarding the 

selection and the magnitude of effect of different factors of the most optimized type of Temporary 

Housing Units (THU) in a post-disaster event. 

 

The proposed framework in this research uses supervised machine learing to maximize certain 

design aspects of and minimize some of the difficulties to better support creating temporary houses 

in post-disaster situations. The outcome in this study is the classification type of the THU, more 

particularly, classifying THUs based on whether they are built on-site or off-site. In order to collect 

primary data for creating the model and evaluating the magnitude of effect for each factor in the 

process, a set of surveys were distributed between the key players and policymakers who play a 

role in providing temporary housing to people affected by natural disasters in the United States. 

The outcome of this framework benefits from tacit knowledge of the experts in the field to show 

the challenges and issues in the subject. The result of this study is a data-based multi-objective 

decision-making tool for selecting the THU type. Using this tool, policymakers who are in charge 

of selecting and allocating post-disaster accommodations can select the THU type most responsive 

to the local needs and characteristics of the affected people in each natural disaster.  
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 INTRODUCTION 

Chapter 1 provides an overview of this research study. This chapter provides the scope, purpose, 

research questions, assumptions, limitations, and delimitations of the project. 

1.1 Scope 

According to the International Displacement Monitoring Centre (IDMC), 14 million people 

annually lose their homes due to natural disasters (Danan, Gerland, Pelletier, & Cohen, 2015) 

worldwide. Providing affected families with temporary shelters is considered a top priority 

(Leefeldt, 2017). Creating post-disaster temporary shelters appropriate to the specific community 

is considered an arduous task as it contains lots of uncertainty and complexities (Gotham & Cheek, 

2017; Hidayat & Egbu, 2010; Leefeldt, 2017). According to reports by the Department of 

Homeland Security (DHS), housing in states and territories is ranked as the second to last proficient 

in 32 core capabilities for preparedness (Department of Homeland Security, 2018). Furthermore, 

this situation has been exacerbated in recent years and continues to worsen due to the density 

growth in cities and environmental degradation. For example, soil disintegration and an increase 

in the frequency of natural disasters (Banholzer, Kossin, & Donner, 2014; Hayles, 2010; Susman, 

O’Keefe, & Wisner, 2019). It affects the region, and the scope widens to adjacent cities and states 

as people would seek temporary housing in those places.  

 

In addition, the scarcity of data and factors are other problems that policymakers face while 

providing temporary housing (Jachimowicz, 2014). Lack of data and no guidance on the influence 

of temporary housing factors will result in housing dissatisfaction. 

 

This research aims to develop a framework that can assist in creating quality temporary houses in 

the post-disaster situation and help them with the decision-making process by optimizing different 

aspects of the process. This tool's users will be the stakeholders and contractors who provide 

temporary housing in the managerial position for the affected people. The framework would help 

the policymakers select the most suitable and appropriate THU type based on the importance of 

factors. 
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1.2 Significance 

Temporary houses are the link between emergency sheltering, which should not be more than a 

week, to permanent housing, which can take years to be built (Quarantelli, 1991). Therefore, 

temporary houses need to meet a broad range of standards while settling in a short time. However, 

it should not be as sophisticated as a permanent house to let the people move to their permanent 

houses when the time comes. A majority of the disaster victims who will seek temporary housing 

will have no control in the form of housing provided to them and must accept any assistance is 

offered to them. (McCarthy, 2008). Thus, any consideration must be made on the stakeholder side 

to ensure that the housing fits the user. These criteria make temporary housing unique and essential 

in the whole recovery process.  

 

Besides, in the last century, two major factors have contributed to the importance of temporary 

sheltering: 1) the increase of natural disasters both in destruction and occurrence (Banholzer et al., 

2014; Hayles, 2010; Susman et al., 2019), and the frequency of natural disasters are increasing in 

a way that they are becoming more of a norm than a rare occurrence. 2) As the population increase, 

more people are now living in urban communities. With the population growth in the modern time, 

people now tend to live in cities more than ever, especially the coastal lines where cities are 

experiencing a high density and population increase (Sweet et al., 2017). 

1.3 Research Question 

The specific research fundamental questions the researcher intends to explore are:  

1. What are the factors that contribute to the temporary housing construction process that 

affect all stakeholders?  

2. What is the weight and magnitude effect of each factor in the process?  

3. What is the effect of multi-objective design in temporary housing design?  

1.4 Statement of Purpose 

The purpose of this study is to create a decision-making framework in order to facilitate the 

selection process of the most proper, applicable, and effective type of post-disaster temporary 

houses for each occurrence. This process is able to be achieved by optimizing the factors that affect 
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building the temporary houses. Preliminary research indicates that a systemized, constructed 

evaluation strategy can enhance the total process. Therefore, the hypothesis is that using a 

combination of artificial intelligence and a multi-criteria decision-making model via deterministic 

data can support the decision-making system for creating temporary structures in post-disaster 

situations.   

1.5 Assumptions 

Assumptions of this research are identified as the following: 

1. The survey and interview instruments are appropriately designed to obtain straight, 

succint, and unambiguous responses. 

2.  Respondents will answer the online survey and interview questions truthfully and 

unbiasedly. 

3. The sample for the online survey is a significant representation of the United States' post-

disaster temporary housing projects; and 

4. A reasonable rate of response will be achieved. 

1.6 Limitations 

Limitations of this research are: 

1. The validation and the weights of the factors that affect the decision making for post-

disaster temporary housing depend on the experts' perceptions from FEMA and post-

disaster contractors;  

2. The study will be limited by the FEMA and post-disaster contractors’ willingness to 

cooperate; 

3. The population of the post-disaster contractors is limited; and 

4. The study's generalizability to other geographical places will depend on the factors 

validated by the experts to be adopted in the study.  
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1.7 Delimitations 

The following delimitations are identified as follows: 

1. This research only covers temporary housing and does not cover emergency response or 

permanent housing; 

2. The research will be conducted with agencies and contractors from firms and companies 

within the United States; and  

3. The study only focuses on natural post-disaster housing and does not cover war attacks, 

terrorism, etc. 

1.8 Definitions 

Below is a list of definitions that are deemed supportive of this research: 

1. Disaster: A significant disruption of a community's or society's functioning that results in 

widespread human, material, economic, or environmental losses that exceed the affected 

community's or society's capacity to cope using its resources (FEMA, 1990).  

2. Temporary House: “A habitable covered living space and a secure, healthy living 

environment, with privacy and dignity, to those within it, during the period between a 

conflict or natural disaster and the achievement of a durable shelter solution” (Corsellis & 

Vitale, 2005, p. 11).  

3. Environmental Impact: Any change to the environment, whether adverse or beneficial, 

wholly or partially resulting from an organization’s activities, products, or services (Bai & 

Bai, 2014). 

4. Multi-Criteria Model: A model which “deals with decisions involving the choice of a best 

alternative from several potential candidates in a decision, subject to several criteria or 

attribute that may be concrete or vague” (Pavan & Todeschini, 2009, p. 591). 
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1.9 Summary 

The background, significance, purpose, research questions, scope, and definitions of the study 

were all covered in this chapter. The following section contains a summary of applicable literature 

from the following areas: post-disaster housing building strategy, post-disaster construction, 

temporary housing construction criteria, decision making, and multi-objective optimization tools. 

The condition assessment factors are outlined in Chapter 2. The developed condition assessment 

model is specified based on these factors. 
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 LITERATURE REVIEW 

A portion of this chapter is pending publication in the Journal of Emergency Management. 

In this section, the author first explains the review's methodology by identifying and reviewing 

key research literature relevant to the problem. Next, the researcher discusses the topics pertinent 

to the research and the lack of available literature. This literature review's related topics are post-

disaster housing building strategy, post-disaster construction, temporary housing construction 

criteria, and multi-criteria decision-making tools. 

2.1 Methodology of the review 

The author uses qualitative research approaches in the literature review to synthesize qualitative-

based works. For this research, the researcher used the “Academic Search Premier,” “Engineering 

Village”, and “ProQuest Technology Collection” as a database to conduct this study, with the 

range of the last twenty years (1999 – 2019). The search included high-ranked peer-reviewed 

journals, conference proceedings, theses, and dissertations. In addition, official reports from Red 

Cross, FEMA, and HUD were used as part of the data sources. Figure 2.1 shows the relationship 

of the key concepts in the literature research. 

 

Figure 2.1 Relationship of Key Concepts 
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The first step is to find out the general factors that can lead to successful temporary housing. It is 

worth noting that the researchers did not consider war, terrorist attacks, and human-made 

catastrophes such as nuclear meltdown as a scope of this project. It is only for post-natural disaster 

housing. It also does not cover sheltering and temporary housing for homeless people or refugees.  

2.2 Post Disaster Housing Building Strategy 

When a disaster occurs, the first thing is to estimate the number of affected people based on the 

research's magnitude (Fiedrich, Gehbauer, & Rickers, 2000). Multiple agencies collect shelter 

resident data. However, there is no robust data collection method or data sharing between agencies 

(FEMA, 2018). When the magnitude of the disaster is high and the number of people affected in 

the area is extraordinary, simple relocation to hotels/ motels is not enough (Kulkarni et al., 2008). 

In these situations, the process of finding alternative housing is considered daunting and arduous. 

Therefore, after assessing the situation, different organizations on the local, state, and federal scale 

create the “joint field office” to coordinate national resources between the affected people. If 

deemed necessary, the office will allocate temporary housing via direct assistance to the people 

affected (McCarthy, 2012). Housing and sheltering after a disaster is thought to be a cyclic 

mechanism involving a variety of activities. Most, if not all, of these topics are interconnected and 

can have an effect on one another's activities and development. This connection and relationship 

between different tasks becomes more complicated as the population grows and cities develop and 

become denser. (Afkhamiaghda, Elwakil, & Afsari, 2020). Previous research (Afkhamiaghda, 

Afsari, Elwakil, & Rapp, 2019) has shown how mapping the post-disaster process will help users 

make better decisions by allowing them to see all the connections and causes between work tasks. 

2.3 Post-Disaster Construction 

More than for conventional construction projects, post-disaster construction deals with issues such 

as time constraints (Karaoğlan & Alaçam, 2019; Rapp, 2011), price fluctuation and inflations 

(Chang, Wilkinson, Seville, & Potangaroa, 2010), debris and waste management (Yip, 2000) , lack 

of coordination among agencies, infrastructure breakdown (Bilau, Witt, & Lill, 2017), and 

resource availability (Chang, Wilkinson, Potangaroa, & Seville, 2011; FEMA, 2009). This makes 

the temporary housing in post-disaster more restricted and challenging. These houses are 
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“temporary” and are only meant for a specific short period that needs to be considered. Creating 

transitional houses requires a significant amount of diligence and dexterity as they need to meet 

the complicated and broad range of affected people’s needs (Dai et al., 2009) in a challenging type 

of environment (Chang et al., 2010). Building based on people needs and meeting their desires is 

considered as the top priority and core idea in this kind of construction. This is a highly subjective 

factor that varies depending on a variety of subjects such as the disaster's severity and type (FEMA, 

2009; Platt, 2018) site position, logistics, and the community characteristics such as culture, urban 

density, population, and the province’s climate situation (Ford, Ahn, & Choi, 2014).  

2.4 Temporary Housing Construction Criteria 

Different Researchers (Bashawri, Garrity, & Moodley, 2014; Nath, Shannon, Kabali, & Oremus, 

2017) have created a review of factors that affect the temporary housing process. However, there 

are still some factors missing in these studies. In previous research (Afkhamiaghda et al., 2020), 

the researchers have systematically categorized all the factors that affect post-disaster temporary 

housing, which is shown in Figure 2.2. In the following section, this study investigates each of the 

selection criteria for the temporary housing type in more detail. 

 

Figure 2.2 Factors Affecting the Temporary Housing Process 
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2.4.1 Shipping 

Post-disaster temporary housing construction can be categorized into two major groups. The first 

is offsite construction, where most of all, the construction process is done in an indoor factory 

environment, away from the actual site, and then shipped to the site for assembling (Ford et al., 

2014). The second group is onsite construction or the traditional “stick” method, where the raw 

materials are shipped to the site, and temporary houses are built by labor on site.  According to 

many researchers (Hui Ling, Tan, & Saggaff, 2019; Lopez & Froese, 2016), this criterion can be 

recapped as the type of the transportation system and the number of shipments needed for creating 

the temporary houses. Another issue with the shipping process is the late delivery, which can delay 

the whole temporary housing process.  

 

While some researchers such as (Abulnour, 2014) believe that the best strategy in order to have 

fast sheltering is to use onsite materials in the event of a natural disaster, many local material 

suppliers might be damaged or unable to function in such circumstances (Bilau, Witt, & Lill, 2015; 

Holguín-Veras, Jaller, Van Wassenhove, Pérez, & Wachtendorf, 2014). Therefore, it is required 

in many scenarios to import the commodities needed for creating shelters for the region. In using 

off-site temporary housings, this factor will depend on factors such as the distance of the 

manufactory, vehicle, driver availability, and fuel price (Escamilla & Habert, 2015). Offsite 

accommodations are more dependent on transportation. Therefore, transportation systems such as 

roads, airfields, and rails and how much they have been damaged play a vital role (Chang et al., 

2010). As the scope of a natural disaster increases, the need for reconstruction grows exponentially, 

leading to high demand for construction materials and labor in the market (Olsen & Porter, 2013).  

In addition, transporting these units needs careful planning and specific cargo and trucks. Blocked 

or damaged routes of travel more restrict the larger assembled modules, and the vehicles and 

trailers that can move these larger factory-built assemblies are fewer in number (Hui & Ming, 

2009). The vehicles and trailers that can move the larger factory-built assemblies are fewer in 

number. Therefore, transportation can be considered as one of the elements determining the cost 

of the units. Based on the magnitude of the disaster and the amount of destruction, the access to 

the site might be compromised and, therefore, not be easily reached (Holguín-Veras et al., 2012; 

Cho et al., 2001; Seville and Metcalfe, 2005; Litman, 2006; Orabi et al., 2009). In addition, long 
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lines of traffic are expected as many responses as possible and aid vehicles will drive to the affected 

region (Haghani & Afshar, 2009).   

2.4.2 Environmental Impact 

Debris and waste management are critical issues in post-disaster situations as a considerable 

amount of building waste is generated in a short period. Like any other construction task, creating 

temporary houses can generate a considerable amount of material waste, mostly if it is built on-

site and not in a factory and shipped to the site.  In addition to material waste, as mentioned 

previously, resource availability is another issue that the contractors deal with in making post-

disaster housing. Suppose the stakeholders choose to use non-local materials. In that case, it is 

imperative to consider the weight and size of the material and the number of trips needed for 

bringing the materials (Davis et al., 2019).  

 

Unlike typical construction projects, temporary houses are only meant for a specific short period. 

Therefore, the life cycle of units after their intended use is of vital importance. While these 

accommodations are initially created to accommodate between 5 and 24 months, people might end 

up living in them even up to five years (Atmaca, A., & Atmaca, N. 2016). This gap in the intended 

timeframe and actual timeframe of the usage can lead to numerous maintenance issues; thus, some 

researchers such as Song et al. (2016) use lifetime performance as a criterion for evaluating 

temporary houses.  

 

Constructing a temporary house also has many indirect consequences of environmental impacts, 

such as greenhouse emissions and the process's energy consumption.  Dong et al. (2018) discuss 

that prefabricated and modular buildings create a considerable amount of pollution in this regard 

compared to traditional houses. Many researchers (Escamilla & Habert, 2015; Sener & Altun, 2009; 

Torus & Şener, 2015) discussed how the environmental impact could be measured based on the 

criteria such as the amount of material waste, noise, and dust pollution generated during the shelter 

construction. 

 

The afterlife phase of the project is another part of the environmental impact. Prefabricate kits 

have more degrees of freedom in terms of usage after the disaster. Félix et al. (2013) discuss that 
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they can either be dismantled, reused, sold, demolished, or purchased by occupants for long-term 

use. However, in terms of traditional onsite houses, this is not the case, many researchers such as 

Arslan (2007) discuss that it is ideal to reuse salvaged materials from affected houses for 

constructing new temporary lodgings, which not only help with the debris and waste management 

of the region, but it can reduce the overall cost of the units noticeably. However, reusing the 

salvaged materials requires a strict and thorough evaluation and inspection of potentially 

hazardous substances in the old debris (The United States Environmental Protection Agency, 

2004). Materials excavated from flooded areas should go through additional screening to be 

contaminated from the stagnant water (American Industrial Hygiene Association, 2017). This 

inspection process needs experts in the field with adequate equipment, making the process costly 

and adding to its first-proposed time frame. Increasing the lifecycle of the temporary houses not 

only protracts the overall time of the project, but it also increases the cost significantly (IFRC, 

2013). 

2.4.3 Community Characteristics 

Ginige and Amaratunga (2011) define community as "individuals and groups sharing a natural and 

built environment that is vulnerable to hazards. In other words, the community is the general public; 

the users and occupants of the built environment and the beneficiaries of post-disaster 

reconstruction “(Ginige & Amaratunga, 2011, p. 25). The temporary house users are the affected 

community's people; therefore, designing these spaces germane to their characteristics is essential. 

Creating accommodations that ignore the cultural characteristics and the lifestyle of the specific 

region can bring dissatisfaction to the local users (Dikmen & Elias-Ozkan, 2016). As Bashawri et 

al. (2014) have discussed, each region and community should have its design style and form for a 

building based on the region's specific culture and is responsive to that area's climate. When local 

authorities perform the design and building process compared to the federal government, it better 

reflects the community's needs and cultures (Windle, Quraishi, & Goentzel, 2019). Kamali and 

Hewage (2017) have demonstrated sustainable performance indicators in their research. They 

define elements such as user acceptance and satisfaction of the temporary houses and the building's 

aesthetic and beauty as social criteria. These criteria are not static but are susceptible to change 

based on location, time, and generations (Peacock, Dash, & Zhang, 2007).  
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Climate conditions, population density, and urban patterns are essential for each community when 

creating temporary houses. As the population grows, the number of people living in cities increases, 

and therefore, high rise and multi-story buildings become more prevalent (Ford et al., 2014; 

Murray, 2015). As time progresses, the social formation of families and households changes; as 

National Research Council (2011) states in their report, changes in the family configuration and 

immigration, age distribution, and people's expectations have drastically changed the traditional 

household formation and social patterns. These rapid and spikes in social patterns lead to a broad 

spectrum of needs, hence the urge to build numerous modules and options which fit all these needs 

and local issues (Félix, Branco, & Feio, 2013). 

 

Unlike other factors discusses earlier, community characteristics are considered a subjective factor 

that cannot be measured using conventional systems. The community can apply the cultural needs, 

user acceptance, and satisfaction to the region by participating in the temporary housing process. 

Many researchers (Francis, Wilkinson, Mannakkara, & Chang-Richards, 2018; Opdyke, 

Javernick-Will, & Koschmann, 2018) have accentuated the importance of community participation 

towards sustainable development of the region. As the National Disaster Housing Strategy (2016) 

have issued in their report, in order to reach a sustainable recovery, community and individuals 

need to be supported. Despite its importance, an issue has not been addressed adequately in current 

post-disaster temporary housing practices (Ingram, Franco, Rio, & Khazai, 2006). The 

“Community Characteristic” measure needs to consider climate, culture, and the vulnerable group 

of the inhabitants as well as the regions’ density and population (Bashawri et al., 2014; Kamali & 

Hewage, 2017; Rufat, Tate, Burton, & Maroof, 2015; Torus & Şener, 2015).  

2.4.4 Labor Force Dependency  

Labor forces on site are considered an integral part of the temporary housing construction process. 

Recruiting skilled labor in an affected area in a short amount of time can be challenging as a large- 

scale of construction needs to be done in a short period with a limited amount of skilled labor 

(Gunawardena, Tuan, Mendis, Aye, & Crawford, 2014; Le Masurier, Rotimi, & Wilkinson, 2006). 

Contractors can field a team of expert trainers to impart essential construction technical skills and 

knowledge to create temporary houses for local people. This can reduce overall housing 

reconstruction times by generating higher productivity with better work quality (Bilau et al., 2015). 
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The utilization of local knowledge and labor can create microeconomies to aid the recovery process 

(Zhang et al., 2014). 

 

While manufactured homes are the most prevalent type of temporary housing in developed 

countries such as the United States, the most underdeveloped countries still use traditional on-site 

temporary housing in the event of a disaster. Using the labor workforce in post-disaster 

reconstruction is considered a challenging factor. On one side, researchers such as Murray (2015) 

have addressed how the workforce and people from the community participating in the 

construction process are useful. However, this brings a group of experts and novice to a specific 

kind of job site, which makes the process vulnerable to three kinds of issue: 

a- Human Errors: 

Human errors are an inevitable part of workforce dependency in the post-disaster situation due to 

extreme conditions (Abulnour, 2014; Rapp, 2011).  Different variables such as lack of skill, 

working conditions, weather conditions, lack of coordination between different groups, and time 

limitation involved affecting the labor productivity in construction (Bilau, Witt, & Lill, 2018; Dai, 

Goodrum, & Maloney, 2007; Drury, Yanco, Howell, Minten, & Casper, 2006). Depending on the 

scale of the disaster and the affected region's population, the number of temporary houses assigned 

to be built at any location will vary. Because of this, contractors typically have numerous 

construction teams working simultaneously in order to save time. 

b- Safety: 

In the condition of on-site temporary housing, structures are assembled outdoors, making 

the labors install and construct them vulnerable to weather conditions. Excessive cold, extreme 

heat, wind velocity, air quality, noise, and humidity are some of the factors that degrade labor 

performance (Leung et al., 2010). Both cold and hot temperatures can be dangerous for the workers 

if they need to work outside for an extended time (Ibbs & Sun, 2017). Staying in an outdoor 

environment for an extended period in wind chill temperatures can lead to fatigue, hypothermia, 

frostbites, and even death. Similar precautions apply for hot temperature conditions, where 

employers need to train workers and provide shades and supplies such as water bottles and monitor 

the workers’ wellbeing. 
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Centers for Disease Control and Prevention (CDC) has issued a safety checklist to perform cleanup 

and reconstruction in the disaster zone. This checklist contains numerous safety topics: general 

safety, electrical safety, preventing and treating illness and diseases, as well as cleaning up after 

an emergency (Centers for Disease Control and Prevention, 2018). Bilau et al. (2015) mentioned 

labor training as a work process that needs to be performed to use the labor workforce. This training 

is not limited to teaching the workforce to build but also covers a broad range of safety topics such 

as chemical and biohazard, physical hazards, and equipment hazard training (Grosskopf, 2010). 

Therefore, the managers need to invest in time and cost to ensure that the construction team has 

proper safety training before starting the process. 

 

A post-disaster area can be considered a dangerous place for the clean-up and reconstruction crew. 

Often, many structures have fallen, and the structural integrity of those remaining is most likely 

compromised. Therefore, the risk of people falling from heights or part of a structure collapsing 

on them can be high (Rapp, 2011). Hot electrical power lines are considered a major hazard and 

deadly around water as any contact can lead to a fatal electric shock (Centers for Disease Control 

and Prevention, 2017).  Broken water and gas pipes are another typical result after such disasters. 

Therefore, anyone working in this situation must take extreme caution (American Industrial 

Hygiene Association, 2017). Stagnant water can be a source of many infectious diseases, as well 

as many respiratory health issues. Even if the source is potable, all water that has flowed over open 

ground should be treated as blackwater as it might be combined with raw sewage. In these 

situations, people on the site must wear proper equipment such as protective gloves and goggles, 

masks, water-resistant uniforms. (Grosskopf, 2010). 

c- Speed: 

 In a construction project, the project manager schedules the timeline based on the project's 

scale and the deadlines. While the number of crews and workers in the site might vary, the schedule 

does typically not exceed 8 hours per day, five days a week. However, in post-disaster situations, 

conditions are very different. Speed is crucial in these scenarios as the victims need to be secured 

in temporary houses as soon as possible. Although time is critical, the quality of these temporary 

units also matters. The keen demand for “more, better, faster” production intensifies. Part of the 
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solution is working more hours per day—perhaps extending the effort to twelve hours a day, seven 

days a week (Rapp, 2011). From before, unlike a regular construction project, the team working 

in a post-disaster situation maybe a medley of labor, hired by contractors or comprised of 

volunteers, the latter of whom commonly lack required expertise. The stress and pressure of 

finishing the work in a limited time in extreme conditions and shortage of skilled labor are 

considered factors that can cause fatigue and ineffectiveness in the long term in the working 

personnel and laborers (Berkowitz, 2012). This issue can subsequently lead to an inferior final 

product characterized by a lasting drag on the victims and the community.  

2.4.5 Vulnerable population  

The vulnerability can be defined as struggling with anticipating, coping, resisting, and recovering 

from the disaster's impact (Chen et al., 2009). Therefore, vulnerable people’s needs require extra 

attention to be adequately addressed. The vulnerable population can be divided based on different 

factors such as age, socioeconomic status, gender, race, and ethnicity, living in densely populated 

areas, medical issues and disability, (Centers for Disease Control and Prevention, 2015; Hoffman, 

2008; Flanagan et al., 2011). For displaced populations, disruptive effects may continue for years 

as they struggle to return to affected areas (Nakayama, Nicholas Bryner, & Mimura, 2017). 

Therefore, temporary housing needs to meet these groups' particular needs (U.S. Department of 

Homeland Security, 2016). In a country with an existing shortage of affordable homes for low- 

income people (National Low Income Housing Coalition, 2019), the quality of recovery has a 

decisive role in the condition of these families as overlooking this factor might result in "selective 

return migration," as Fussel et al. (2010) have pointed out in their research. Today's society consists 

of a mixture of people from different races and even different languages. This diverse, multi-

lingual nature is a source of vibrant multi-culturalism—can also be a source of vulnerability in 

post-disaster situations (Bolin & Kurtz, 2018). 

 

As Chen et al. (2009) state the needs of vulnerable people, one can discuss how temporary housing 

can impact vulnerable people's condition. The standards and living conditions of temporary 

housing have a direct impact on mental health for the vulnerable population, as Sasaki et al., (2018) 

have discussed in their research. As the assembling process of these types of accommodations is 

considered time-consuming, in some occasions, people are likely to migrate to adjacent cities to 
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dwell and reside, a choice that sometimes becomes permnent (Myers, Slack, & Singelmann, 2008). 

In this scenario, people who lived in more vulnerable areas are more likely to leave the affected 

area. This can result in socioeconomic upset not for the affected region but also the neighboring 

regions as well. Therefore, how the reconstruction process is planned and executed has a vital role 

in the long-term sustainability and livelihood of the vulnerable people within the needy community 

(Schilderman, 2004; Twigg, 2002). Currently, no adequate supervision and attention on the needs 

of vulnerable and disabled people are in place. As Jachimowicz (2014) has shown in his research, 

the poverty level has no statistical significance as a factor for planning post-disaster housing by 

agencies such as FEMA.  

2.4.6 Site Planning  

After a disaster, all activities regarding creating temporary housing must assess and address land 

issues, which will vary by disaster and context (Dikmen, 2006; Zhao et al., 2017). Land issues 

influence the recovery speed from a disaster and can significantly influence the need for and type 

of transitional housing strategy. This issue can be looked at from different perspective such as land 

availability, land ownership, the number of evacuees, infrastructure availability, ease of 

transportation, accessibility, and safe access (Kar & Hodgson, 2008; Kılcı, Kara, & Bozkaya, 2015; 

Ma, Xu, Qin, & Zhao, 2019; McCarthy, 2012; Nappi, Nappi, & Souza, 2019). 

 

Accessibility is another issue that needs to be considered for selecting a location for creating post-

disaster houses (Caunhye, Nie, & Pokharel, 2012).  Affected people need to be able to have safe 

access to any public spaces while they are living in temporary houses. The population's distance 

should be reachable, especially for the vulnerable population, which was discussed earlier in 

section 2.2.5. Accessibility not only applies for the people but is also a vital issue for moving 

equipment and resources, moving often heavy, big equipment over a long distance with 

compromised routes is considered a challenge. 

 

As researchers such as Zhao et al. (2017) state, site planning is considered as a time-varying 

demand, which means it is a function of time. This issue is connected with the population density 

and urban pattern discussed earlier in the paper. There is a need for policies that need to address 

the identification of temporary housing sites - including supporting water, sewer, electrical, and 
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transportation infrastructure (Smith, 2016). Land scarcity and the need for building multi-story, 

high-rise temporary housing is yet another issue that needs to be addressed, especially for 

developed cities. According to FEMA, temporary houses should not be placed in floodplains in 

order to avert any similar disasters (McCarthy, 2008). Therefore, it encourages the use of mobile 

homes so that they can be moved to another place in case of emergency. However, as the urban 

population and density increases, this assumption becomes more unrealistic.  Many researchers 

have focused on developing optimization models and decision-making tools to address the location 

issue for temporary housing. The models created for managing the site placement for temporal 

housing can be either single objective models (Ma et al., 2019) or multi-objective (Najafi, Eshghi, 

& Dullaert, 2013). GIS modeling is another technique in the decision-making process for selecting 

the location, as different researchers (Kar & Hodgson, 2008; Zerger & Smith, 2003) have 

addressed in their work. Researchers have proposed a bi-level location-allocation model for the 

flood evacuation planning with shelter capacity constraints using a genetic algorithm 

(Kongsomsaksakul, Yang, & Chen, 2005). In this model, the researchers have considered the 

location problem and the evacuee’s preference as two variables of their model.   However, other 

researchers such as Nappi & Souza, (2015) suggests that the location of temporary housing stems 

from numerous factors such as cultural characters, privacy, and accessibility. 

2.4.7 Cost Balance; Transitional Houses vs. Permanent Housing 

Transitional housing is currently considered expensive compared to its life span (Lingle, Kousky, 

& Shabman, 2018). According to a 2017 report from the United States Government Accountability 

Office, FEMA has spent more than 250 million dollars for sheltering people affected just by 

Hurricanes Harvey, Irma, and Maria (GAO, 2017). The main goal for the community is to restore 

the region to its original state and create permanent structures (Hadafi & Fallahi, 2010; Johnson, 

Lizarralde, & Davidson, 2006). Therefore, creating transitional houses that meet all standards can 

sometimes lead to financial problems for the affected state and country. The greater portion of the 

recovery fund to creating transitional houses comes at the expense of the limited budget available 

for starting permanent housing projects. This can negatively affect the permanent housing structure 

process, resulting in broader and everlasting impacts on the region and society. On the other hand, 

overlooking creating transitional houses can also lead to numerous problems as these units are 

initially designed to be occupied by people for a considerable amount of time. Therefore, there is 
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a need to create a balance between transitional houses and permanent housing in order to create a 

sustainable, resilient community. On the other hand, allocating more time and budget in permanent 

housing can create better, more sustainable housing than the previous formation. If planned 

correctly, the new housings can reduce future devastation through better construction techniques, 

land-use regulations, and disaster-response plans (Habitat for Humanity, 2012). 

2.4.8 Living Condition 

Thermal insulation, Health Risks, and air quality are considered as main topics regarding living 

conditions. When a disaster strikes, keeping the occupants protected from extreme weather 

conditions & health risks is one issue that needs to be addressed (Thapa, Bahadur Rijal, Shukuya, 

& Imagawa, 2019). Also, creating an environment that promotes the occupants' well-being is the 

next step that needs to be addressed. Some of the issues that need to be addressed are air circulation 

(Yanagi et al., 2013), volatile organic compounds & mold presence (McCarthy, 2012), and 

acoustic comfort (Nappi et al., 2019). 

 
After a natural disaster occurs, the area is prone to numerous infectious and diseases (American 

Industrial Hygiene Association, 2017). With the rise of population and density of the region, the 

increase of infectious diseases will also increase (Murthy & Christian, 2010). Therefore, in order 

to keep the people safe from the excessive temperatures or issues caused by the natural disaster 

such distilled water from broken pipes or floods, the type of transitional houses which are used in 

these areas are of vital importance in order to keep the health and safety of the people.  On-site 

temporary housing can adversely affect the health condition of the people on site. Building these 

accommodations in place creates dust, pollution, and noise, which can cause harm to people’s 

health (Narvaez, Renteria, Diaz, Sarria-Paja, & Ochoa, 2019). 

2.5 Temporary Housing Construction Relations 

The author has visualized the categorization of factors and subfactors and how they affect each 

other in Figure 2.3. As seen in this figure, the two factors are not completely separated from each 

other, affecting each other. For example, based on the literature, “logistic” which is a physical 

factor, is affected by the “population density,” which is a subset of the “Community Characteristic” 
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factor, which is considered as a social factor. Therefore, the type of units and the materials used 

for the temporary houses, which leads to the type of shipping, is also affected by “population 

density,” where this factor decides the type of temporary houses. 

 

Figure 2.3 Flow and relations of the factors to one another 

2.6 Performance Indicator 

Factors which impact post-disaster temporary accommodation are subject to bias and personal 

perception because they lack a robust system for calculation. As a result, a standardized 

measurement format is needed. A performance indicator is a method that quantifies the 

performance of two or more elements in separate parts to better compare them. (Pati, Park, & 

Augenbroe, 2009; Zavadskas, Vilutienė, Turskis, & Šaparauskas, 2014).  Several factors affect the 

built and construction process of temporary houses in post-disaster situations. Performance 

Indicator has two dimensions—knowledge specificity and time specificity. This keeps the process 
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to date, showing how some factors can be time-varying (Skibniewski & Ghosh, 2009). To measure 

and quantify these factors, researchers (Afkhamiaghda, M., Elwakil, E., & Afsari, K., 2020) have 

created a Performance Indicator (PI) index shown in  

Table 2.1. This will enable stakeholders to compare the THUs using observable and objective 

factors, giving them a deeper understanding of the descriptive variables and their consequences 

when determining the type of THU. 
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Table 2.1 Performance Indicator 

Performance Indicator Interpretation Predictor Variables Reference 

Shipping Type and number of 
transportation systems 
that need to be used for 
assembling the shelter 

The Longest dimension of 
Material, Mass, Ability of 
the shelter to be broken 
into smaller parts, Type of 
Machinery, Type of 
needed equipment 

(Hui Ling et al., 2019; 
Lopez & Froese, 2016) 

Environmental Impact Amount of material 
waste, noise, and dust 
pollution building the 
shelter and its end life 
cycle handling. 

Reusability, noise and 
dust pollution, Life span, 
Flexibility of relocation, 
Prefabricated foundation 

(Escamilla & Habert, 
2015; Sener & Altun, 
2009; Torus & Şener, 
2015) 

Community 
Characteristics 

Responding to climate, 
culture, flexibility with 
the population density and 
land area, Sense of 
identity 

Unit flexibility, 
Aesthetically appealing, 
User Satisfaction, 
Responsive to population 
density 

(Bashawri et al., 2014; 
Kamali & Hewage, 2017; 
Rufat et al., 2015)  

Labor Workforce 
Dependency 

To what degree is the 
sheltering process 
dependent on using the 
human workforce 

Number of workers, 
Construction time, Shelter 
area 

(Escamilla & Habert, 
2015; Lopez & Froese, 
2016) 

Vulnerable Population To what degree is the 
shelter responsive to 
vulnerable groups 
[children & elderly] and 
family structures 

Ability to be modified for 
vulnerable people’s need 

Flanagan et al., 2011 

Site Planning How the temporary 
housing adapts to the land 
scarcity in high dense 
areas and route 
compromises 

Ability to build multi-
story shelters compared to 
the equipment needed, 
Access to infrastructure 

(Smith, 2016; Zhao et al., 
2017) 

Affordability The affordability of 
temporary housing 
progress without 
compromising the budget 
for permanent housing 

Summation of material 
cost, labor cost, shipping 
cost, finish cost, 
maintenance cost, and 
afterlife cost divided by 
its life span 

 

Living Condition To what degree does the 
shelter promote the well-
being of the occupants 
and protect them 

Mold presence, volatile 
organic compounds 
presence, air circulation, 
thermal comfort 

(McCarthy, 2012; Thapa, 
2019; Yanagi et al., 2013) 
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2.7 Multi-Objective Decision-Making Tools 

Multi-objective decision making (MODM) is considered as choosing an optimal outcome while 

minimizing the consequences when dealing with multi-parameter issues (Gunantara, 2018; Hwang 

& Yoon, 1981). However, it is impossible to reach a scenario where all factors are on their optimal 

performance as these criteria are usually conflicting with each other. (Hayles, 2010; Haymaker et 

al., 2018; Pati et al., 2009). Thus, it is important to prioritize and weigh the factor based on their 

importance in the work process to maximize certain design aspects and minimize some of the 

difficulties. 

 

Prudence, accuracy, and punctuality in making decisions are considered as vital elements as 

decisions can have consequences (Bellos, 2012). Any wrong decision made can lead to redoing a 

task and delay in construction (Odeh & Battaineh, 2002), which leads to overruns in terms of time, 

cost, and quality. 

 

MODM is based on prioritizing different criteria and weighting them to each other. Therefore, 

having a robust, concrete data collection from similar projects is an integral part of having expert 

knowledge. This data can be either hard data or expert judgment, or both. However, when using 

expert judgments, it is essential to create an adaptable model so that it would have the ability to 

adjust considerably based on region and time of use. As the population grows exponentially, 

factors will change, issues will become more complex, and imprecise information will lose its 

functionality. Therefore, systematic data collection is needed in the construction industry sector. 

This is even more important in the post-disaster construction process due to the restrictions and 

the environment's situation; data recording can be more challenging. 

 

Researchers approach decision-making in this industry with subjective criteria, where each 

parameter is defined in a fuzzy environment. 

 

Equation 1 shows the decision-making matrix which is used for the MODM process. There are n 

available alternatives for a decision, where N = {1,2, 3,…,n},  and m number of factors that affect 

the performance of each of the alternatives that can be created for each process, M = {1,2, 3,…m},   
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defines the number of rows (Rolland, 2006). In this case, a matrix of n x m will be formed to show 

the process. Factors can be divided into criteria that directly affect the process and the limitations. 

 

𝑥!!" 𝑥!#" … 𝑥!$"

𝑥!#" 𝑥!#" … 𝑥#$"
… … … …
𝑥%!" 𝑥%#" … 𝑥%$"

                                                                                               (1) 

 

In this scenario, k is the number of decision-makers or experts where k = {1,2, 3,…, K }. As 

mentioned earlier, factors and criteria are weighted differently from each other, and their level of 

importance is different from one another. Each index of the matrices has different measurements, 

and while some of these can be measured numerically, others may only be evaluated qualitatively. 

Because of this, a relative weight, noted by W, is given to each of the parameters. It is important 

to note that as each parameter's size and measurement are different, the weights need to be 

normalized where the sum of the normalized weights add to one. In an environment where there 

are k decision-makers,  𝑊!
" +𝑊#

" +⋯+	𝑊$" = 1. 

 

As the researcher will be dealing with unlabeled, fuzzy data in this research, there would be an 

introductory explanation of the proposed methods that will be used in the next section. 

2.7.1 Artificial Intelligence 

 John McCarthy first used the term “Artificial Intelligent” (AI) in 1956 with the idea of machines 

that can think, and Newell, Shaw, and Simon created the first AI system (McCorduck & Cfe, 2004).  

It has been reported that 90% of the data has been created just in the last two years (Marr, 2018). 

Therefore, AI has become a fast-growing technique exponentially taking over all industries in 

almost every discipline (Press, 2019). AI refers to the idea that machines can learn smartly by 

duplicating the behavior and learn from the experience. They use a large amount of data to 

recognize the pattern and the relation between the data.  
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2.7.1.1 Machine learning  

Machine learnings (ML)  is a subset of AI that uses statistical methods to enable machines to learn 

tasks to perform and improve with experience without being explicitly programmed for each task 

(Mohri, Rostamizadeh, & Talwalkar, 2018). The model In ML systems is created based on past 

data available. Therefore, an expert need to label and sort all these data so that the system can learn 

based on them. However, it does not rely on any high-performance machines to operate. 

 

Based on the type of data that is used to train the system, ML methods can be divided into two 

major classes: 

• Supervised: 

In this method, the user trains the model using labeled data, meaning, and input, the output 

is provided to the system. Using known input and outputs can create a model to forecast an 

unforeseen scenario (Ghahramani & I.Jordan, 2012). Its main application is for regression 

and classification as it forecasts outcomes. It is the best use for scenarios where there is 

available data from previous experience. 

 

• Unsupervised: 

Unlike supervised learning, unsupervised models work on their own to discover 

information. It mainly deals with unlabeled data. 

Helps with finding the pattern in data by classifying and clustering and allows more 

complex processing tasks compared to supervised systems (Hastie, Tibshirani, & Friedman, 

2009) 

2.7.2 K Nearest Neighbor 

K Nearest Neighbor (KNN) is a non-parametric classification technique where the system collects 

all the data and try to group them based on a specific pattern or structure. When a new entry is 

added to the model, the system will select K– observation from the training set near the new input 

and classify it based on a similarity measure (Brownlee, 2016; Keller & Gray, 1985). In an n-

dimensional space, KNN's learning algorithm stores all instances that correspond to training data 

points. When it receives an unknown discrete data, it analyzes the closest k number of saved 
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instances (nearest neighbors) and returns the most common class as the prediction. It returns the 

mean of  k nearest neighbors for real-valued results. Compared to the other classification 

techniques, such as Naïve Bayes, KNN is ideal when the sample size for data training is small or 

missing information regarding the problem domain. As a new data point is defined into the system, 

the system starts searching the whole training set for the closest similar instances to the new data 

or its neighbors (Harrison, 2018). Figure 2.4 shows the algorithm model for KNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 K Nearest Neighbor Algorithm Model 
 

K here defines the number of most similar instances (the neighbors). The classification of the new 

data input will be defined based on its neighbors. Therefore, a low number of K will result in an 

inaccurate model. The accuracy of the model will increase with increasing the K until it reaches 

its tipping point, where after that, the system would take a long time to generate the model, and it 

would reach resource issues. While there is no specific way to select the K value, programmers 

usually specify K's value by taking a square root of the number of data points. If the square root 

result is even, they reduce one from it to have an odd number of classes to avoid confusion for the 

system. Each dataset has its requirements. In the case of a small number of neighbors, the noise 

will have a higher influence on the result, and a large number of neighbors make it computationally 

expensive. Based on the K value, the system will then start to see how its closet neighbor points' 
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behavior should classify the new point. The Euclidean Distance (ED), shown in Equation 2, is used 

to find the distances between the new input and existing data points. ED is the most widely used 

distance function, which is an extension of the Pythagorean Theorem. Using this formula, the 

system calculates the distances between the new data point (𝜒) and the existing attributes (𝑥&) 

(Prasath et al., 2017). 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒((,(!) =	 6∑(𝑥& − 𝑥&*)#
#                              (2) 

2.7.3 AHP 

AHP, developed by Saaty, is a common method for solving complex decision problems with 

multiple criteria (Saaty, 1996). The problem is broken down into a hierarchy of parameters and 

alternatives in this model to choose the best alternatives (Salem & Elwakil, 2020). In this model, 

both qualitative and quantitative data can be compared. Each choice will be weighted and graded 

in AHP based on an expert judgment (Hamali, Suci, Utami, Hanisman, & Arga, 2017). The relative 

significance of one criterion over another can be expressed using pair wise comparison. 

 

This will assist the decision-maker to track the process's accuracy. AHP believes that the parameters 

in a set are not dependent on each other (Wu & Tsai, 2012). The framework of the AHP process is 

shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Analytical Hierarchy Process Framework 
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2.8 Research Gap 

As this literature review reveals, minimal research has been done regarding reviewing the 

relationship of nodes affecting the post-disaster temporary housing process and how all these 

factors and elements are linked together and can affect the process. This is one of the most 

important research gaps, as selecting the proper type of temporary house for the region can lead 

to user satisfaction and time and cost saves. Table 2.2 shows an overview of the gaps and issues 

that post-disaster construction faces.  
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Table 2.2 Gaps in Post-Disaster Temporary Housing 

Factor GAP    Reference   

Shipping   Access to the site might be 
compromised, Long traffics, Long 
distance, Big Unit Sizes 

(Hui Ling et al., 2019; Lopez & Froese, 2016) 

Community 
Characteristics   

 Neglecting working with 
communities in the pre disaster 
portion to take their input into 
account.   
Lack of consideration given to 
cultural and social concerns serve to 
reinforce and sometimes-even 
increase the vulnerability of local 
communities.   

(Bashawri et al., 2014; Boen & Jigyasu, 2005; 
Kamali & Hewage, 2017; Rufat et al., 2015; 
Torus & Şener, 2015) 

Labor Workforce 
Dependency 

A lack of personnel with ES and 
disaster expertise   
The humanitarian sector’s slow rate 
of adaptation to new practices   

(Abrahams, 2014; Escamilla & Habert, 2015; 
Lopez & Froese, 2016)   

Risk Reduction  Lack of robust framework in deciding 
whether the community needs to be 
rebuilt or relocated  
Differing mission statements amongst 
agencies and what designated donated 
funds can be utilized form   
Lack of financial resources to afford 
housing    

  (FEMA, 2009, 2018) 

Population By Population Increasing and More 
People Living in Cities, Traditional 
Frameworks will Not be Responsive 

(Félix et al., 2013) 

Site Planning Lands supporting water, sewer, 
electrical, and transportation 
infrastructure 

(Johnson, 2007; Smith, 2016)   

Construction Cost   Currently considered expensive 
compared to its life span   
Timeliness in the availability of 
recovery resources   

(FEMA, 2018; Johnson, 2007) 

Data   Shelter resident data is collected by 
multiple agencies 
No Robust data Collection & data 
sharing 
No interoperability of data exchanges 
No standard data type   

(FEMA, 2018; Yu et al., 2018) 

Decision Making No standard format or base of 
measurement has been defined 
Subjective decisions change by 
person, region, time, experience, etc. 
Large variety of data with different 
type and format 
different data sources 

(Dikmen, 2006; Hayles, 2010; Rashidi et al., 
2011) 
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2.9 Summary 

This chapter has provided a review of research related to post-disaster housing building strategy, 

post-disaster construction, temporary housing construction criteria, and multi-criteria decision-

making tools. The literature shows that minimal research has been done regarding measuring and 

studying the factors that affect post-disaster temporary housing concerning one another. Previous 

researches have been limited in considering a limited number of factors. Furthermore, there is an 

absence of an assessment tool that would reflect the relative importance of each factor in relation 

to the others.  
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 METHODOLOGY 

3.1 Overview of the Methodology 

This research is considered developmental research as it develops a tool to assist contractors in 

creating temporary shelters in the post-disaster situation and decision-making. The research 

methodology is shown in Figure 3.1. The process contains the subsequent stages: literature 

review, data collection, verification, conclusion, and recommendations.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 3.1 Overview of the Research Methodology 
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3.2 Scope, Population, and Sample 

This research study follows a multi-phase sequential mixed-methods approach. In the first stage 

of the research, the researcher will do a comprehensive literature review to find the main factors 

affecting temporary shelters' construction process and their weights from all stakeholders’ 

perspectives. Next, surveys will be distributed between key players to find the weights of the 

factors from all stakeholders’ perspectives. The population of the research can be categorized into 

two different sections. The first group is all the state, federal, and local coordinating officers, which 

create the joint field offices in the United States. This group is the participants who provide 

temporary housing to people affected by natural disasters in the country. The second group is all 

the private and non-governmental groups who create post-disaster temporary housing and vendors 

and manufacturing companies who generate these lodging units.  The keywords for targeting 

participants for the second group were “disaster risk specialists,” “disaster recovery consultants,” 

and “disaster risk managers.” To achieve a more comprehensive result, the responders were not 

limited to a specific position and organization. The population samples will vary in the position 

and affiliated department. The pilot surveys will be modified and updated several times to address 

and reflect the remarks and suggestions from various connoisseurs and to ensure the answers are 

dependable. 

 

Lastly, the researcher moves to the next task, which is creating a multi-objective optimization 

simulation using the criteria obtained from the previous step, creating each measure as a layer to 

create the framework. 

3.2.1 Variables 

This section lists the dependent and independent variables from the data set that were used for the 

analysis.  As mentioned previously in the study, building temporary housing depends on eight 

main criteria. However, it is integral to the research to point out that each of these variables is 

affected by numerous sub-factors. The list of each of these independent variables with their 

corresponding criteria is shown in Table 3.1. For convenience, the researchers have coded the sub-

factors responding to each main variable. 
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Table 3.1 List of Main Variables and their Subfactors 

Performance Indicator  Criteria  Code  
Shipping Transportation  

Resource Availability  
Time  

Vehicle Availability  
Road Condition  

Traffic  

SH-1  
SH-2  
SH-3  
SH-4  
SH-5  
SH-6  

Environmental Impact Durability  
Life Cycle  

Recyclability  
Site Pollution  
Transportation  

EI-1  
EI-2  
EI-3  
EI-4  
EI-5  

Community Characteristics Climate  
Customization  

Privacy  
Safety  

Population Density  
Cultural Appropriateness  

Aesthetics  

CC-1  
CC-2  
CC-3  
CC-4  
CC-5  
CC-6  
CC-7  

Labor Workforce Dependency Installation  
Speed  
Safety  

Workforce Training  
Psychology  

Working Hours  
Weather Condition  

LW-1  
LW-2  
LW-3  
LW-4  
LW-5  
LW-6  
LW-7  

Vulnerable Population Seniority  
Ethnicity  
Minority  

Mental Illness  
Poverty  
Illness  

VP-1  
VP-2  
VP-3  
VP-4  
VP-5  
VP-6  

Site Planning Land Availability  
Number of Evacuees  

City Density  
Accessibility  

LO-1  
LO-2  
LO-3  
LO-4  

Construction Cost Shipping Cost  
Labor Cost  

Material Cost  

CO-1  
CO-2  
CO-3  

Living Condition Health Risk  
Thermal Insulation  

Air Quality  
Material  

Structural  

LC-1  
LC-2  
LC-3  
LC-4  
LC-5  
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The aforementioned dependent variables will be used for creating the AHP model, which was 

explained earlier in section 2. These variables will be evaluated through a Likert scale by the 

stakeholders. Therefore, the data collected in this research will be ordinal and holds no precise 

quantity.  

 

To create a decision-making model for each of the factors listed in Table 3.1, the researcher uses 

KNN modeling, a supervised classification machine learning. The data for the KNN modeling, 

just like the data for the AHP, are considered ordinal, which needs to be evaluated and weighted 

by tacit knowledge. 

3.3 Overview of Data Collection 

The first step is to determine the general factors that can lead to creating a resilient temporary 

house. For this mean, the researcher used the “Academic Search Premier" and "Engineering 

Village" as databases. The search included high-ranked peer-reviewed journals, conference 

proceedings, and most cited documents. In this step, the researcher will first gather information on 

"resiliency" and "temporary housing," making these two the primary keywords they searched in 

the database separately. To broaden the range of search and the information retrieved in the first 

step, the researchers used the keywords and their synonyms. The other strategy used was using the 

“OR” logical operator in the database search engine.  

 

Throughout this search, the researcher will apply the selected filters to narrow the scope and get 

the desired result.  

 

The findings will be a list of numerous factors that can affect temporary housing from the 

construction point of view. In the next step, the researcher will survey a panel of experts to ensure 

that the findings are relevant and reliable. Lastly, a questionnaire will be sent to stakeholders and 

contractors of post-disaster temporary housing to find out the weight and importance of the factors 

from the experts’ point of view. 
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3.4 Overview of Data Analysis 

As mentioned previously, creating post-disaster temporary housing has many uncertainties by its 

nature—lack of consideration of subjective variables on the process. Besides, stakeholders in the 

AEC industry are used to expressing linguistical evaluations and tacit knowledge rather than using 

hard data. Therefore, the researcher will be employing a supervised machine learning classification 

and pair wise comparison modeling technique for this matter. 

The data analysis for this study can be broken down into two steps: 

1 - Create an optimization model based on the predictor variables for each of the 
Performance Indicators: 

Using the temporary housing construction criteria shown in Figure 2.2,  the researcher creates a 

model to understand how and to what degree each of the variables from Table 1 depends on their 

subfactors. As this model's data is based on tacit knowledge and not hard data, the researcher would 

use the experts' opinions to create the model. This would help the researcher to implement a factor 

for each of the performance indicators. The researcher would use python and the “Scikit-learn” 

library to develop the model. 

2- Developing an ML classification model for the entire decision-making process based on 
performance indicator optimization: 

The researcher has set the classification of THU as the outcome. More particularly, classifying 

THU based on whether they are built on-site or off-site. The outcome is considered a categorical 

variable where the different values have no real numerical relationship. These types of variables 

frequently arise in scenarios where the information is based on tacit knowledge. To use these types 

of data in a machine learning model, which only use numeric data, the data needs to be encoded.  

For this sake, the researchers have used dummy variables. A dummy variable is an artificial 

variable created to represent an attribute with two or more distinct categories/levels. applying 

mathematical operations to them is not valid as they represent an object and not a real numerical 

value (Zhang et al., 2014). In this scenario, the researcher will use KNN modeling technique in the 

Python environment. The KNN supervised classification system can train a model that can help 

the stakeholders with the optimal solution. This process employs the criteria affecting post-disaster 

temporary housing. Figure 3.2 shows the criteria hierarchy and framework of this model. 
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Figure 3.2 Machine Learning Classification Modeling Framework 

3.5 Reliability 

The researcher plans to perform a pilot study and distribute preliminary surveys between a panel 

of experts to check the consistency and reality of data and make certain that each question was 

clear and effective. The panel of experts for this pilot study will be consist of 8-10 people from the 

industry and academia who have experience in the field. The survey results of the respondents will 

be tested for reliability using logical consistency measurements. The Consistency Index (CI) and 

Consistency Ratio (CR) will be used to ensure that the overall priority weights are logically 
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consistent. First, the significance rating's verbal variables will be transformed to a numerical value. 

Following the conversion of the variable judgments to numerical values, a pair-wise comparison 

will be formed for each respondent based on their significance ranking. The value of Cronbach's 

coefficient alpha of the responses will be used to verify the data's reliability. 

3.6 Validity 

Prior to actually distributing the technique, a team of specialists in the area will examine its face 

validity to ensure that each question elicits a response that is relevant to asset criticality. 

Spearman’s correlation is “a test measures the strength and direction of the association between 

two variables that are measured on an ordinal or continuous scale” (Minitab, 2016).  To check the 

validity of the model, the collected data will be divided into two sets, model building (80%) and 

validation (20%). The validation data that is 20 % will be selected randomly and kept away while 

modeling the analysis. After finishing the model, the validation data will be used to test the model. 
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 DATA COLLECTION AND ANALYSIS 

4.1 Introduction 

This chapter provides the framework of the data collection procedure, the targeted population 

selected for the study, and the validity of the process. This research study follows a multi-phase 

sequential mixed-methods approach. In the first stage of the research, the researcher conducted a 

comprehensive literature review to identify the main factors affecting temporary housing's 

construction process. Figure 2.3 summarizes these major criteria, also known as performance 

indicators and their sub-factors.  

4.2 Expert Based Survey 

To collect primary data for creating the model, a set of surveys were distributed between the key 

players and policymakers of the post-disaster temporary housing to find the weights of the factors 

from all stakeholders’ perspectives. The questions asked from the experts can be grouped into 

three major sections. First, the researcher asked some demographic questions from each participant. 

Next, the participants were asked to rank each PI factor. As there are eight main factors in the 

study, the ranking of the PI elements will be from 1 to 8, with 1 being the most important and 8 

being the least important. Lastly, participants used the five-point Likert scale to rate the importance 

of the different types of temporary houses currently being used, which were extracted from a 

systematic literature review. 

 

An expedited review by the Purdue University Institutional Review Board (IRB) was received 0n 

3/22/2020 with the number of IRB-2020-306, which is shown in Appendix A. 

4.2.1 Population and Sample 

The study group covered a wide range of participants who provide temporary housing to people 

affected by natural disasters in the country. The participants’ scope of work contained federal, 

state, and municipal works. To have consistent and reliable results, participants were selected from 

both the private and public sectors and all firms around the country. The keywords for targeting 

participants for the second group were “disaster risk specialists,” “disaster recovery consultants”, 
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and “disaster risk managers.” To achieve a more comprehensive result, the responders were chosen 

from a wide range of positions, from field workers all the way to top management. The type of 

organization, the geographical location of the work, and different work level experiences were 

other factors that the researcher used to have more comprehensive and unbiased responses. 

 

Experts were approached via email and LinkedIn. A total number of 250 questionnaires were sent 

out to different people, and 94 responses were received. Four of the answers from the dataset were 

incomplete or had missing values. 
 

Figure 4.1 A-D shows the distribution of responders based on participants' role, years of experience, 

work scope, and work's demographic region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Role in Organization 

Figure 4.1 Participant Demographic Characteristics 
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Figure 4.1 Continued 
 

 

 

 

 

 

 

 

 

 

 

B) Work Experience 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C) Scope of Work 
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Figure 4.1 Continued 
 

 

D) Demographic Region 

 
As shown in Figure  C, many of the organizations’ work scope is not limited to just one 

jurisdiction, and their work and services are performed on different scales. This helps the 

researcher as the results from these participants would be better representing the whole process. 

4.2.2 Survey Questions Reliability and Validity 

To measure the internal consistency and reliability of the questionnaire, the researcher has used 

Cronbach’s alpha. The Cronbach’s alpha range is between 0.0 and 1.0, with 0 showing no 

consistency and 1.0 showing perfect consistency in the measurement. The value of Cronbach’s 

alpha can be measured using Equation 3. 

 

𝛼 = 	
𝑘

𝑘 − 1=1 −
∑ 𝜎+!

#"
&,!

𝜎-#
?																																																	(3) 
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In this model, K is the number of components in the questionnaire, X is the sum of individual 

questions in the questionnaire, 𝜎-# is the variance of the observed total test score, and 𝜎+# is the 

variance of each component. The researcher has calculated the Cronbach’s alpha for each section 

of the questionnaire and survey questions individually using Microsoft Excel 2019. The result is 

shown in Table 4.1. These sections' questions were based on a five-point Likert scale, with 5 being 

the most important and 1 being the least important.  

 

Table 4.1 Cronbach’s Coefficient for Survey Questions 
Question Category Cronbach’s alpha 

Subfactors 0.927 

THU 0.705 

 

Face validity was investigated by a panel of subject matter experts in an open debate. Five 

people with academic and field experience were approached by the researcher. Simulation, 

disaster reconstruction, emergency response optimization, and data-driven decision-making are 

all areas of knowledge and focus for this community. 

4.2.3 Expert-Based Questions 

The questionnaire starts with an explanation of the research's intention, defining the variables, and 

asking the participants their expert opinion on each variable’s relative importance. The full version 

of the survey can be seen in Appendix B. 

 

The questionnaire can be divided into four major sections. First, demographic questions help the 

researcher collect and analyze the responders' characteristics with a combination of ordinal and 

nominal values. Table 4.2 shows each question in this section. These questions help the researcher 

create a model with a diverse population and, thus, a more accurate, less biased model.   
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Table 4.2 Data Type and Categories in the Demographic Section 

Question Response Choices 

Highest Level of Education University Graduate 

Some College 

High School 

Less than High School 

Organization’s Scope of Work Municipal 

State 

Federal 

Type of Organization Private Sector 

Governmental 

Role in Organization Top Management 

Middle Management 

First-Level Supervisor 

Staff 

Operational Worker 

Years of Experience Less than 1 

1-2 

3-5 

6-10 

Over 10 

Geographic Region of the 
Organization  

Northeast 

Southeast 

North Central 

South Central 

Northwest 

 

As mentioned in section 2.4, eight main factors affect post-disaster temporary housing, while each 

factor is a function of numerous subfactors. Based on this information, the researcher grouped the 

subfactors for each main criterion individually and asked the participants to evaluate each sub-

criterion for the specific PI in the next section of the questionnaire. These criteria are based on the 

rating scale, and the responders are asked to rate the importance of these values. As a result, in 

order to quantify these subfactors, this research develops a Likert scale based on the PI table's 
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understanding to make qualitative meanings quantitative and measurable. The case studies are 

rated and measured on a scale of one to five, with one being the lowest and five being the highest. 

 

Before deciding on the five-unit Likert scale, the author held an open discussion with a group of 

subject matter experts to discuss various types of Likert scales and the most suitable scoring for 

this study. Five people with academic and field experience were approached by the researcher. 

Simulation, disaster reconstruction, emergency response optimization, and data-driven decision-

making are all areas of knowledge and focus for this community. The researchers ask the panel 

about the importance and clarity of each of the Likert scale options. The researcher explored the 

three, five, seven, and nine-unit point Likert scales, which are the most commonly used scaling 

choices. The researcher chose the five-unit scaling method based on the panel's recommendation 

after consulting with them. The researcher also relied on the literature review, which found that 

having a large number of options would lead to a low response rate. The responders were asked to 

evaluate each sub-criteria of the performance indicators on a Likert scale, ranging from 1 to 5. The 

values in the ranking represent “not important at all,” “slightly important,” “important,” “fairly 

important,” “most important,” respectively.  Figure 4.2 shows the example of this question for one 

of the PI factors. 
 

 

Figure 4.2 Rating the Subfactors for Each Performance Indicator 
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Figure 4.3 shows the boxplot for each subfactor according to the PI. This plot shows the spread 

and distribution of the answers and where most of the data is. Boxplots typically graph six data 

points: 

• The lowest value, excluding outliers 

• The first quartile (this is the 25th percentile or median of all the numbers below the median) 

• The median value (equivalent to the 50th percentile) 

• The third quartile (this is the 75th percentile or median of all the numbers above the median) 

• The highest value, excluding outliers 

• Outliers 

 

 

Figure 4.3 Boxplot of Subfactors Response Distribution  
 

For example, the data analysis from the boxplot shows that 50 percent of the answers for the fourth 

subfactor in the “Shipping” PI (Vehicle Availability) lies between 2 and 3. This indicates that this 

subfactor is not considered as highly important for most policymakers. On the other hand, 

subfactors such as “Transportation” and “Resource Availability,” shown as SH-1 and SH-2 

respectively, have answered 75% between 4 and 5 with the lowest value of 3. This shows that these 

subfactors are considered as most important variables for all policymakers. Appendix C shows the 

descriptive analysis for all the subfactors, including the median, mode, and standard deviation for 

the relative importance ratings based on their PI.  
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The next section of the survey consisted of participants rate the importance of different types of 

current temporary houses used from 1, being the least important, to 5, being the most important, 

as shown in Figure 4.4.  For convenience to the participants and clearance, the question provides 

an image reference with each type of THU label. 

 

 

Figure 4.4 Rating Different Types of Temporary Housing Units 
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Table 4.3 shows the descriptive analysis of the aforementioned question which contains the 

median, mode, and standard deviation value for the relative importance ratings of the different 

THU. The difference in the units in terms of usage can be clearly seen here as the most selected 

answer for THUs like “Manufactured Homes,” and “FEMA Trailers” are 5 while the most common 

answer for the importance of “Bamboo,” “Superadobbe,” and “3D Printed” THU was 1. which 

insinuates that the variables are all equally important. All analogies had a low standard deviation, 

indicating a low importance rating variability. 

Table 4.3 Descriptive Analysis for Temporary Housing Units 

 

Steel -fram
ed 

Tim
ber-fram

ed 

Superadobe  

Bam
boo 

Panelized H
om

es  

FEM
A

 Trailers  

3D
 Printed  

Containers 

M
anufactured 

H
om

es 

Prefabricated 

M
odular 

Count 90 90 90 90 90 90 90 90 90 90 

Mean 3.04 3.15 1.54 1.49 2.92 3.85 1.84 3.04 3.52 2.83 

Std 0.96 1.18 0.75 0.79 0.96 1.29 0.86 1.27 1.31 1.10 

Min 1 1 1 1 1 1 1 1 1 1 

25% 2 2 1 1 2.5 3 1 2 3 2 

50% 3 3 1 1 3 4 2 3 4 3 

75% 4 4 2 2 4 5 2 4 5 4 

Max 4 5 4 4 5 5 5 5 5 5 

Mode 4 4 1 1 4 5 1 4 5 3 

 

Figure 4.5 shows the radar chart for each of the THU. This shows the relative importance of each 

THU in the eyes of policymakers. The values are the average of all the responder’s data. It can be 

seen based on policymakers’ response, “FEMA Trailer”, “Manufactured Homes,” and “Container” 

are considered as the top three important types of THU in the event of post-disaster. 
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Figure 4.5 Temporary Housing Importance Radar Chart 
 

As mentioned earlier in section 3.4, this study's outcome is the THU classification type, more 

particularly, classifying THU based on whether they are built on-site or off-site. The researchers 

have divided these temporary housing based on where they have been built, either on-site or off-

site, which is shown in Figure 4.6. 
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Figure 4.6 Different Temporary Housing Units Based on Classifications 

 
The last section of the questionnaire seeks the participants to rank each of the PI values compared 

to each other based on their importance, as shown in Figure 4.7. The data type will be an ordinal 

variable. This would be used as the features or independent variables for creating the ML 

classification model for the entire decision-making process based on performance indicator 

optimization. 
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Figure 4.7. Rating Performance Indicator Variables based on Importance 
 

The ranking of the variables is considered as absolute values. Thus, the researchers treated the 

ranking of features as continuous variables in the study and inversed the rankings to use them in 

the model. Table 4.4 depicts the descriptive analysis for the relative importance ratings for each of 

the features. It can be seen that the vulnerable population has the lowest mode and Logistic have 

the highest, meaning that these two factors are the least and most important factors in 

the policymakers’ eye, respectively. The table also shows numerical data distribution and 

skewness by displaying the data quartiles (or percentiles) and averages.   
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Table 4.4  Descriptive Analysis for Performance Indicators 
  

 

Shipping  

Environm
ental 

Im
pact  

Com
m

unity 

Characteristics 

Labor W
orkforce 

D
ependency 

V
ulnerable 

Population  

Logistic  

Construction Cost 

Living C
ondition 

Count 90 90 90 90 90 90 90 90 

Mean 0.55 0.21 0.19 0.24 0.28 0.63 0.36 0.25 

Std 0.34 0.09 0.12 0.12 0.27 0.31 0.24 0.19 

Min 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

25% 0.225 0.14 0.14 0.17 0.13 0.5 0.225 0.14 

50% 0.5 0.17 0.14 0.25 0.17 0.5 0.33 0.2 

75% 1 0.2 0.17 0.25 0.225 1 0.33 0.25 

Max 1 0.5 1 1 1 1 1 1 

Mode 1 0.2 0.14 0.25 0.13 0.5 0.33 0.25 
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In order to compare the standard deviations, the researchers have used the coefficient of 

variance or CV, which is a measure of relative variability. Equation 4 shows the calculation 

method for CV: 

𝐶𝑉 = 	
𝑠𝑡𝑑
𝑚𝑒𝑎𝑛

																																																															(4) 

            

While the CV of all comparisons was relatively low, the CV for “Community Characteristics” and 

“Vulnerable Population “is higher than 1, which indicates a high importance rating 

variability. Larger CV values indicate that the values in the dataset are farther away from the 

mean.  

4.3 Summary 

The data collection procedure for this study is described in this chapter. The data was collected 

through an expert-based survey from policymakers in post-disaster temporary housing in the 

United States. The collected data was used to develop the optimization model based on the 

predictor variables and which will be described in the subsequent chapters.  
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 RANKING PERFORMANCE INDICATOR’S SUB-
FACTORS 

5.1 Introduction 

This chapter describes how the researchers used the collected data from the expert-based 

questionnaire survey and the Analytical Hierarchy Process (AHP) to determine the relative weight 

for each subfactor of the PI factors. Using pairwise comparison, one criterion's relative importance 

over another was evaluated separately for each PI. This evaluation was performed by expert 

policymakers using a Likert scale evaluation. 

5.2 AHP Framework 

Step 1: AHP Framework 

The AHP model to rank and shortlist the sub-factors affecting the post-disaster temporary housing. 

The outcome of the systematic literature review shows that building temporary 

housing depends on eight main factors. However, it is integral to the research to point out that each 

of these variables is affected by numerous sub-factors. Figure 2.2 outlines the significant variables 

and the criteria for each of these main variables. For the study's ease, these criteria would be 

referred to as subfactors, and the main variables would be referred to as Performance Indicators 

(PI) for the rest of the research. Eight separate AHP model, based on the subfactor variables from 

each PI was created.  

 

The problem was broken down into a hierarchy of criteria and three main levels, as shown in Figure 

2.2. The first level is the main objective of the factors that is assessing the post-disaster temporary 

housing performance. Level two represents our eight main factors or PI (i.e., shipping, 

environmental impact, community characteristics, labor workforce dependency, vulnerable 

population, site planning, construction cost, living condition). The last level, which are the sub-

factors with 43 elements, are used to create the AHP model.   
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Step 2: Pair-wise Comparison 

To determine each element's relative ranking, a j x j square matrix, where j is the number of 

subfactors of each group, was created for each of the factors to represent each predictor 

variable. The author first averaged the responses of all the participants in each 

feature. Next, the matrix was filled where each cell represents the proportion of the 

corresponding column and the row factors. For example, the value in cell 13, which is the first row 

and third column, is the first variable's proportion divided by the third variable. Table 5.1 shows 

the pair-wise comparison for the “Shipping” Subfactor. 

 

Table 5.1 Pairwise Comparison Matrix for the “Shipping” Performance Indicator 
 

SH-1 SH-2 SH-3 SH-4 SH-5 SH-6 

SH-1 1 1.075 1.433333 1.330077 1.535714 1.954545 

SH-2 0.930233 1 1.333333 1.237281 1.428571 1.818182 

SH-3 0.697674 0.75 1 0.927961 1.071429 1.363636 

SH-4 0.751836 0.808224 1.077632 1 1.154605 1.469498 

SH-5 0.651163 0.7 0.933333 0.866097 1 1.272727 

SH-6 0.511628 0.55 0.733333 0.680505 0.785714 1 

Step 3: Assigning Priorities 

Using pairwise comparison, one criterion's relative importance over another was evaluated 

separately for each PI using eigenvector value. As discussed earlier, this evaluation was performed 

by expert policymakers using a Likert scale evaluation. First, the pairwise matrix is squared; next, 

the summation of rows is calculated and then normalized. This cycle continues until the difference 

between the sums in two consecutive calculations is smaller than a prescribed value. Table 5.2 and 

Table 5.3 show the pairwise comparison's square matrix and the criteria normalized weight for the 

“Shipping” subfactor, respectively. The process of creating pairwise comparisons and assigning 

weights and priorities for the rest of the subfactors based on their PI is shown in Appendix D.  
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Table 5.2 Square Matrix of the “Shipping” Pairwise Comparison 
 

SH-1 SH-2 SH-3 SH-4 SH-5 SH-6 

SH-1 5.999999498 6.449999453 8.599997416 7.980463132 9.214283293 11.72727029 

SH-2 5.581395564 6.000000224 7.999998573 7.423687541 8.571427365 10.90908998 

SH-3 4.186046518 4.500000001 5.999998707 5.56776545 6.428570286 8.181817179 

SH-4 4.511016843 4.8493431 6.465789405 6.000001102 6.927631767 8.816986371 

SH-5 3.906976941 4.200000207 5.599999068 5.196581341 5.999999227 7.636363074 

SH-6 3.06976756 3.300000123 4.399999215 4.083028148 4.714285051 5.999999487 

 

 

Table 5.3 Normalized Criteria Weight for the “Shipping” subfactors 

Criteria Weight Normalized 

49.97201308 0.220141436 

46.48559924 0.204782756 

34.86419814 0.153587061 

37.57076859 0.165510301 

32.53991986 0.143347931 

25.56707958 0.112630516 

 

The weights for each sub-factor (Wi) are shown in Table 5.4. The higher Wi value indicates that 

the specific parameter is more significant and contributes to the statistical model. 
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Table 5.4 Sub factor weights (Wi) for the main factors 

Performance Indicator Criteria Weight Eigen Vectors 
Shipping Transportation 

Resource Availability 
Time 
Vehicle Availability 
Road Condition 
Traffic 

0.2201 
0.2048 
0.1536 
0.1655 
0.1433 
0.1126 

Environmental Impact Durability 
Life Cycle 
Recyclability 
Site Pollution 
Transportation 

0.2302 
0.2143 
0.1714 
0.1714 
0.2127 

Community Characteristics Climate 
Customization 
Privacy 
Safety 
Population Density 
Cultural Appropriateness 
Aesthetics 

0.1727 
0.1132 
0.1784 
0.2047 
0.1538 
0.1018 
0.0755 

Labor Workforce 
Dependency 

Installation 
Speed 
Safety 
Workforce Training 
Psychology 
Working Hours 
Weather Condition 

0.1502 
0.1864 
0.1777 
0.1480 
0.0855 
0.1125 
0.1396 

Vulnerable Population Seniority 
Ethnicity 
Minority 
Mental Illness 
Poverty 
Illness 

0.2378 
0.1372 
0.1326 
0.1540 
0.1555 
0.1829 

Site Planning Land Availability 
Number of Evacuees 
City Density 
Accessibility 

0.2796 
0.2730 
0.2270 
0.2204 

Construction Cost Shipping Cost 
Labor Cost 
Material Cost 

0.3687 
0.2857 
0.3456 

Living Condition Health Risk 
Thermal Insulation 
Air Quality 
Material 
Structural 

0.2258 
0.1665 
0.1877 
0.2013 
0.2187 
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Step 3: Logical Consistency 

The researchers perform the consistency analysis to check the influence and bias of responders 

and verify the pairwise matrix consistency. Equation 5 and Equation 6 show how to calculate the 

Consistency Index (CI) and Consistency Ratio (CR) for each PI, respectively (Fares & 

Zayed,2010).  

𝐶𝐼 = 	
𝜆!"# −𝑚
𝑚 − 1

																												(5) 

𝐶𝑅 = 	
𝐶𝐼
𝑅𝐼
																																									(6) 

In these equations, CI is the matrix consistency index, m is the matrix's size, and λ max is the 

maximum eigenvalue. RI is the random consistency index, which is a constant value based on the 

matrix's size. Table 5.5 shows the CI and CR value for each PI value. According to these data, all 

the matrices are consistent, as their CR value is less than 0.1. 

 

Table 5.5 Consistent Index and Consistency Ration for Each PI 

m  Variables  Consistency Index  Consistency Ratio  

6  Shipping  -2.9245E-08  -2.35847E-08  
5  Environmental Impact  1.19402E-07  1.06609E-07  
7  Community Characteristics  2.76124E-08  2.09185E-08  
7  Labor Workforce Dependency  8.22091E-09  6.22796E-09  
6  Vulnerable Population  -1.58379E-08  -1.27725E-08  
4  Site Planning  7.46119E-09  8.29021E-09  
3  Construction Cost  1.15677E-07  1.99442E-07  
5  Living Condition  6.57084E-08  5.86682E-08  

 

As all the PI variables contain consistency, the variables were ranked to determine the relative 

importance of the variables and those that affect their PI the most. Using the relative weight, the 

researcher sorted the subfactors based on their importance in descending order. With the idea 

of creating a shortlist of the most significant variables for each group, the difference of each Wi 

with its previous value was calculated. A threshold was set as a filter for selecting the number of 

variables. The final variables are the ones in which the difference between them and the 

preceding value was lower than the threshold. The results are shown in Table 5.6. 
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Table 5.6 Most Critical Sub-factors for Each Performance Indicator According to Weight 

Performance Indicator Criteria Weight Eigen Vectors 
Shipping Transportation 

Resource Availability 
0.2201 
0.2048 

Environmental Impact Durability 
Life Cycle 
Transportation 

0.2302 
0.2143 
0.2127 

Community Characteristics Safety 0.2047 

Labor Workforce Dependency Speed 
Safety 

0.1864 
0.1777 

Vulnerable Population Seniority 0.2378 

Site Planning Land Availability 
Number of Evacuees 

0.2796 
0.2730 

Construction Cost Shipping Cost 
Material Cost 

0.3687 
0.3456 

Living Condition Health Risk 
Material 
Structural 

0.2258 
0.2013 
0.2187 

5.3 Summary  

This chapter established the rankings of PI subfactors using the AHP approach from the expert-

based survey. Using the expert opinion of policymakers in post-disaster temporary housing, 

derived from the questionnaire, the researcher prioritized and shortlisted the sub-factors for each 

main PI. The AHP was structured to identify the factors’ weights. This would help develop a model 

to predict the THU’s performance based on these critical success factors. It outlines how currently 

factors affecting post-disaster temporary housing is biased as the whole process is based on tacit 

knowledge. It also tackles how some factors are overlooked in the current process. The outcome 

of this procedure will then be used to develop the integrated AHP/KNN for the THU model, as 

explained in the next chapter.  
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 K NEAREST NEIGHBOR (KNN) MODELING 

A portion of this chapter is pending publication in the Journal of Emergency Management. 

6.1 Introduction 

This chapter presents the decision-making model that classifies the THU type based on the factors 

and their importance by policymakers. The model is developed using the tacit knowledge-based 

information gathered from the professional-based questionnaire from policymakers in post-

disaster THU in the USA. The results of this questionnaire were used as input data to develop the 

AHP/KNN Integrated supervised classification model. The classification model's purpose was to 

guide policymakers’ estimates and administrations’ judgments related to choosing the correct type 

of THU based on their priorities. The model’s validity was checked and tested to indicate its 

applicability to the industry. 

6.2 Feature Reduction 

Machine learning and deep learning algorithms learn from data, which consists of different types 

of features. A machine learning algorithm's training time and performance depend heavily on the 

features in the dataset. Therefore, the ideal goal in ML modeling is to only keep the features in the 

dataset that actually help the model to learn. Although the raw dataset will cover various features, 

it is important to remember that not all features will be helpful in developing the model for machine 

leering. In reality, using some of the features may even have a negative impact on our model. So, 

in developing a machine learning model, feature selection plays a huge role. The investigator, 

therefore, decreases the number of characteristics based on their results. There are three 

explanations for this operation. First, it decreases data overfitting, which implies less ability to 

make decisions based on redundant data/noise. Then, it increases the model's overall performance, 

and ultimately, fewer data to deal with reduces the model's training time. 



 
 

69 

6.2.1 Correlation 

The researcher first tested the association between each factor to omit the redundant characteristics, 

seen in Figure 6.1. Correlation is a statistical term that calculates the degree to which two variables 

shift concerning each other. Correlation tests association, but it does not indicate whether x causes 

y or vice versa, or if a third, possibly unknown, element causes the association. However, suppose 

two or more of the two characteristics are mutually correlated. In that case, they provide the model 

with redundant information, and, thus, only one of the correlated characteristics should be retained 

to minimize the number of characteristics. For the correlation test, the researchers set a threshold 

of 0.8. This suggests that the researcher would only use one of the model variables if two variables 

correlated 0.8 or higher and ignore the other one. 

 

 

Figure 6.1. Independent Variables Correlation in Regard to Each Other 
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6.2.2 Backward Elimination  

As the model is using continuous data as independent variables and the categorical data type as an 

outcome. The researcher employed the backward elimination technique to remove the features 

with no statistical significance on the output to create the most accurate model. The researchers 

first created the model for all the independent variables in this system and then deleted variables 

with the lowest p-values one by one until there is no noticeable difference in the model accuracy. 

To achieve this, the researcher managed a t-test on the variables to measure the p-value. It is worth 

mentioning that the researchers use 0.05 as the level of significance in this research. Table 6.1 

shows the p-value for each variable. The t-test was performed sequentially, wherein in each step, 

the feature with the highest p-value bigger than 0.05 was omitted. This series continued until there 

was no feature with a p-value higher than 0.05 was left in order to create a more accurate model. 

A p-value is a measure of the probability that an observed difference could have occurred just by 

random chance. The lower the p-value, the greater the statistical significance of the observed 

difference.  

Table 6.1 p_value for the independent variables 

Variable  P-value  

Shipping  4.13585468e-05  

Environmental Impact  1.97203337e-01  

Community Characteristics  7.36054922e-08  

Labor Workforce Dependency  4.60004748e-01  

Vulnerable Population  2.15237625e-06  

Site Planning  3.29743998e-08  

Construction Costs  5.62271364e-01  

Living Condition  8.97346499e-03  

6.3 Developing the Classification Model 

To create the supervised ML classification model, the researcher has used the SKlearn library in 

the Python 3.7.1 environment using the “Google Colab” platform. This library is used for creating 

classification, regression, and clustering algorithms. As mentioned earlier, the output of the models 

in this research is the type of the THU. This output will only contain two discrete values (0 and 1), 

representing the type of THU. Thus, the output of the model is categorical, where although the 
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output is represented by discrete values ("0" Off-site and "1" for On-site THU), there is no 

mathematical value to the variable. 

 

If the model is trained based on the whole dataset, it would be overfitting. This happens when the 

function is too closely fit for a limited set of data points (Kenton, 2019). In this scenario, the model 

would not be able to generalize since it was only trained and tested on the training data. When it 

is exposed to a new dataset, it will show a high spread and variance in the results, leading to high 

prediction error. To validate an ML model's performance, the model will use the Train/Test Split 

approach. In this research, 80 % of the main dataset data will be randomly selected and then 

allocated to the training dataset for creating the KNN model. The remaining 20 % was saved for 

the test dataset to validate the ML model. 

 

When a new data point is given to the model, its type and classification will be determined based 

on the classification of a group of adjacent existing data points. The quantity of the existing 

adjacent data points (neighbors) that the model would decide the classification based on is 

represented by k in the KNN classification. The quantity of k has a direct effect on the model’s 

accuracy.  If the k is too small, the model's result would be affected by noise, leading to an 

inaccurate model. As the k value increase, the model becomes more accurate, and the 

computational time increases. This tradeoff continues to a certain tipping point where the system 

would take a long time to generate the model, and it would be computationally expensive. In order 

to select the most optimal k value, the researcher has used cross-validation to use the best tuning 

parameter for k that best generalizes the data. Figure 6.2 shows how the model accuracy fluctuation 

with the change in k value in the range of k = (1,15). 
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Figure 6.2 Cross-Validated Simulation for K value 

6.4 Developed KNN Model Validation  

6.4.1 Mathematical Validation 

The next step after generating the classification model is to evaluate its functionality. This is 

usually done through computing accuracy scores. It does not, however, define the type of mistakes 

the model is making. Thus, it is also important to know the performance of the system to assess 

the classifier. For this mean, Confusion Matrix, which shows the type of prediction results vs. the 

actual values on a classification problem (Visa et al., 2011), is used to describe the performance 

of a classification model (or "classifier") on a set of test data for which the true values are known. 

It depicts the number of actual and predicted values for each class in a 2x2 matrix. Figure 6.3 

shows the framework for the confusion matrix. 
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Figure 6.3 Confusion Matrix Framework 

 

Based on the real and expected values, the system will make two forms of accurate predictions as 

well as two incorrect predictions. The language of each confusion matrix cell is as follows: 

 

True Positive (TP):  The actual value is positive, and the predicted is also positive. 

 

False Negative (FN): The actual value is positive, but the predicted value is negative. 

 

True Negative (TN): The actual value is negative, and the predicted is also negative. 

 

False Positive (FP): The actual value is negative, but the predicted value is positive. 

 

The first parameter that can be achieved using the confusion matrix is the accuracy, which indicates 

how often a classifier is exact in predicting the correct outcome. Equation 7 shows the formula for 

accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																(7) 

       

However, it can be inaccurate to focus entirely on the accuracy value. Based on the model's 

application and the area of use, it is necessary to determine the type of errors the model produces. 

Thus, by specifying other parameters, it is vital to demonstrate the various types of errors the model 
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may have. Two of the considerations that can help to test the models properly are sensitivity and 

accuracy. Sensitivity is the proportion of correct predictions when the actual value is positive, 

where a high sensitivity value is correctly identified. Equation 8 shows the formula for sensitivity. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																								(8) 

             

The precision answer to the question of how often the prediction is correct when it predicts a 

positive value. Equation 9shows the formula for precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																										(9) 

To evaluate and compare the type of errors each model carries; the researcher has created the 

confusion matrix of testing models for the classification model. The result is shown in Table 6.2. 

Table 6.2 Confusion Matrix for Each Classification Model 

Model Confusion Matrix 

KNN !12 1
1 4% 

 

The researchers evaluate the accuracy, sensitivity, and precision score for each model based on 

the confusion matrix. The results are shown in Table 6.3. 

 

Table 6.3 Predictor Values for Each Model 

Model Accuracy Sensitivity Precision 

KNN 82.5% 75% 75% 

6.4.2 Graphical Validation 

The main objective of using the graphical model validation was to compare the predicted output 

value with the actual output quantity from the test dataset's independent variables as an input in 

the model vs. the previously fragmented outcome variable in the test dataset. Table 6.4 shows the 

result of the questionnaire responses sorted based on the type of the THU. Each cell represents the 

sum of the value of responses for each column. The last row demonstrates the difference of values 

between the responses for each feature based on the label. 
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Table 6.4  Feature Response Based on Label 
 

 

 

 

 

 

 

 

The KNN model has labeled the data points based on their features in the space. In order to show 

how the KNN in the model operates, the researchers have depicted the KNN modeling for the test 

datasets on a 2D scatterplot, where each axis represents one of the features in the model. Based on 

values in Table 6.4, the researcher selected sets of features in pair of two. The features with the 

min and max value in each label was selected. In addition, values that have the highest and lowest 

amount in the “Difference” row were also selected. This would better show how the KNN model 

separates the type of THU and classifies the output based on the features.  For example, the 

“Shipping,” “Logistic,” Environmental Impact,” “Vulnerable Population,” and “Living Condition” 

features have been selected. Different permutations of two from these features were used for 

creating different 2D KNN scatterplots. The result of these plots is shown in Figure 6.4. The color 

represents the different class types, which are the different types of THU. As shown in Figure 6.4, 

the KNN model has divided the two-dimensional space into two distinct boundaries, based on their 

features, to define the class labels. Each data point is colored with its specific class label, and it is 

positioned one of the irregular shaped spaces. The visualization shows that many data points are 

in the matching space in terms of the predicted class. This shows that the model has a high accuracy 

rate in predicting the values in their correct category or true positive values. 

 

 

Shipping  

Environm
ental 

Im
pact 

C
om

m
unity 

C
haracteristics 

Labor W
orkforce 

D
ependency  

V
ulnerable 

Population 

Logistic  

C
onstruction C

ost 

Living C
ondition  

Off-site 25.53 7.79 6.64 9.78 6.54 27.14 14.59 8.07 

On-site 9.44 6.81 13.7 6.35 13.64 7.63 9.49 9.10 

Difference 16.09 0.98 7.06 3.43 7.1 19.51 5.1 1.03 
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Figure 6.4  KNN Model Visualization 
  

Off-site 

On-site 

A) 

B) 



 
 

77 

Figure 6.4  Continued 
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Figure 6.4  Continued 
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Depending on the features, the type of the model classification is different. For example, in Figure 

6.4-D, there is a high density of data points near the labels' separating border. This stems from the 

fact that the corresponding features in this figure, “Living Condition” and “Environmental Impact,” 

have the smallest difference value in Table 6.4. Thus, the threshold that separates the THU type in 

this scenario will have lots of data from both classes. In contrast, data points in Figure 6.4-F are 

well separated in their 2D space, and there is no dense area near the threshold. The reason for that 

is that the corresponding axis values in Figure 6.4-F are “Shipping” and “Vulnerable Population.” 

The factors with the highest values in Table 6.4, one for the “on-site” and the other for the “off-

site “group. 

6.5 Summary  

An assimilated AHP/KNN supervised classification model was developed in order to guide the 

policymakers’ estimates and administrations’ judgments related to choosing the correct type of 

THU based on their priorities. The eight model input factors included “Shipping,” Environmental 

Impact,” Community Characteristics,” Labor Workforce Dependency,” Vulnerable Population,” 

“Site Planning,” “Cost Balance,” and “Living Condition.” The output was the type of the THU 

used in the affected region. These elements were used to forecast the critical condition rating 

process. The developed model's accuracy was verified by using the train/test split method, which 

produced an average validity of 82.5%. The researcher used the confusion matrix to describe a 

classification model's performance with a precision score and validity of 75% in the next step. 

These values indicated that the KNN model is robust in its prediction and performance of selecting 

the THU type in post-disaster circumstances and thus the industry can it from the model. 

 

Results stated that in addition to factors such as “Logistics,” social factors such as “Vulnerable 

population” and “Community Characteristics” has a huge significance in the model. This shows 

how subjective the THU is and outlines the importance of a local approach strategy to the THU 

issue.  
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 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary and Conclusions  

This study aims to create a decision-making system to assist in choosing the most suitable and 

effective type of post-disaster temporary houses for each incident. This process can be achieved 

by optimizing the factors that affect building the temporary houses. The conducted research 

presented a methodology that addresses the challenges in prioritizing and managing the factors 

and subfactors affecting the THU selection. It creates a combination of AI and a multi-criteria 

decision-making model via deterministic data that can support the decision-making system for 

creating temporary structures in post-disaster situations.  The developed model covers a broad 

range of issues, including the physical, environmental, and social factors. This tool can be used to 

improve the decision-making outcome of policymakers in creating the THU for affected people. 

AHP and KNN modeling were the two modeling methods that were employed to help in selecting 

the correct type of THU for affected people. The temporary housing construction criteria consists 

of eight main factors: Shipping, Environmental Impact, Community Characteristics, Labor 

Workforce Dependency, Vulnerable Population, Site Planning, Cost Balance, and Living 

Condition. Each of these factors were then broken down into several subfactors.  

 

The first approach used AHP to weigh the importance of each PI's subfactors. For each PI, the 

subfactors were shortlisted into two to three subfactors with the highest weight value based on the 

threshold filter according to their weight value. The outcome is a validated system that allows 

researchers and developers working in temporary housing after a disaster to recognize and analyze 

the factors that influence the process. 

 

One of the salient characteristics of this result is the disparity in range and variation in variables' 

weight. The outcomes also show the influence of subjectivity in the current decision-making 

process. It also addresses how certain variables in the current method are overlooked. According 

to Table 5.4, there are reasonably similar Wi values for the majority of parameters in PIs. In 

comparison, for the subfactors in the "vulnerable population" and "community characteristics" 
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section, there are low Wi scores.  This illustrates the lack of attention given to the urban design 

and social factors in post-disaster housing policymakers' current strategy.  

 

For instance, the "seniority" subfactor is considered the most impact in the "Vulnerable 

Population" group. However, between the first and the rest of the variables, there is a big drop in 

Wi. In comparison, the Wi is clustered about the same point for all variables in the "Site Planning" 

section, and the range of variation for subfactors in this section is negligible. The second approach 

was developed based on using a supervised classification model to select the post-disaster THU 

types most suited and optimized for each scenario. The KNN classification technique was used to 

develop a model that reflects the relationship 

 

between the factors listed above and the asset risk score predictions of healthcare facilities 

managers. The integrated model validity was checked via mathematical, graphical, and sensitivity 

analysis methods. The model was able to create a well-separated threshold. The study uses 

qualitative, categorical information to create the model as post-disaster construction based mostly 

on tacit knowledge. The developed model's accuracy was verified by using the train/test split 

method, which produced an average validity of 82.5%. The researcher used the confusion matrix 

to describe a classification model's performance with a precision score and validity of 75% in the 

next step. These values showed that in terms of prediction, the KNN model is considered as a 

reliable tool and performance of selecting the THU type in post-disaster conditions and can be 

used in the industry.  

 

This research shows the power of supervised classification modeling for selecting the type of 

temporary housing. Accordingly, the developed model can be considered an efficient tool to 

provide more robust, efficient decisions as an alternate to the current strategy, which relies on tacit 

knowledge. As the population growth tends to continue, the living pattern, especially in coastal 

areas, becomes more complex.   
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7.2 Research Contributions  

This research has added to the cutting-edge decision-making tool for selecting the type of THU in 

post disaster situations in the following means:  

• Demonstrated how machine learning techniques could help in understanding the effect of 

different features in post-disaster THU. 

• Developed an integrated AHP/KNN THU selection model that helps post-disaster 

decision-makers choose the most suitable and effective type of post-disaster temporary 

houses for each incident. 

• Created an AHP model to assess the relative weights of the main factors and subfactors 

involved in the THU selection model.  

• Generate an AHP system to help developers working in the post-disaster temporary 

housing to identify and evaluate the factors affecting the process. 

7.3 Model Limitations  

The developed THU selection model uses AHP and KNN techniques. This model can assist in 

choosing the most optimized type of post-disaster temporary houses. However, the model has some 

limitations, including:  

• The AHP/KNN THU selection model would be improved by more diversity among the 

expert survey respondents. 	

• As the subfactors are derived from the literature review and then ranked by participants, 

some factors are left out of the equation.	

• The model is limited based on the geographic location of where the participants work in 

based on.	

•  The model took into account eight factors that help predict the type of THU. The model 

can benefit from the addition of more variables.	

• The prototype’s output results were limited to the asset's PI ranking. 
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7.4 Recommendations for Future Research  

While certain factors affect influencing the THU types and built, the effect and magnitude of these 

factors are not constant and will change based on region, population growth. This would cause 

problems to become more complex, and therefore imprecise knowledge will lose its functionality 

over time. Thus, there is a severe need for systematic data collection in the construction industry 

sector, especially the post-disaster temporary housing segment. This is much more important in 

the post-disaster construction process because of the limitations and environmental conditions, 

where data recording can be more difficult. There is currently no standard procedure for identifying 

and measuring the factors that affect the THU. Another issue in this area is the lack of a 

standardized approach to calculating the requirements weight. In multicriteria cases, weighing the 

variables contributes to a more stable result that is less vulnerable to errors. This is especially 

important for subjective factors like “Community Characteristics”. Future research can also 

explore different data collection techniques and strategies to create artificial intelligent models. 

 

In addition to numerical data, using other kinds of input data such as images and text can evaluate 

post-disaster scenarios. AI can help label data and recognize patterns in the input data that would 

help in visual search and inspection. Future research can also benefit from other AI libraries for 

creating models such as TensorFlow and Keras, which are mostly used for computer vision 

applications. It can also benefit from AI techniques such as Natural Language Processing (NLP) 

for analyzing text and documents. Another branch of study explores deep learning techniques such 

as Artificial Neural Networks (ANN) or Convolutional Neural Networks (CNN) in the application. 

Using deep learning would create a multi-layer algorithm environment that helps the model learn 

and create decisions on its own when faced with a new scenario. However, it is worth noting that 

using deep learning methods requires a large volume of data, both structured and unstructured, 

showing day-to-day information, also known as big data, as input. Therefore, there needs to be a 

robust platform of data collection first before applying in-depth learning strategies. There is also a 

need to re-evaluate policymakers' existing policies, as there is a lack of commitment to particular 

parameters. Future research should also consider building a rating system for the key PI values to 

measure and evaluate different THU performance more accurately. 
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APPENDIX A. INSTITUTIONAL REVIEW BOARD(IRB) APPROVAL 
LETTER 

 

  

 

Figure A-1. Institutional review board (IRB) Approval letter 
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APPENDIX B. EXPERT SURVEY QUESTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1. Survey Question Description 
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Figure B-2. Survey Demographic Question Part 1 
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Figure B-3. Survey Demographic Question Part 2 
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Figure B-4. Survey Demographic Question Part 3 
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Figure B-5. Survey Question Part 1 



 
 

90 

  

 

Figure B-6. Survey Subfactors Question Part 1 
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Figure B-7. Survey Subfactors Question Part 2 
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Figure B-8. Survey Subfactors Question Part 3 
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Figure B-9. Survey Ranking Question  
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APPENDIX C. DESCRIPTIVE ANALYSIS OF SUBFACTORS 
IN SURVEY QUESTIONS 

Table C-1 Subfactor Descriptive Analysis - Shipping 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Transportation 90 4.4 0.871191 1 4 5 5 5 5 

Resource Availability 90 4.075 0.729858 3 4 4 5 5 4 

Time 90 3.125 1.202295 1 2 3 4 5 2 

Vehicle Availability 90 3.3 0.882886 1 3 3 4 5 3 

Road Condition 90 2.85 0.83359 1 2 3 3 5 3 

Traffic 90 2.25 1.103607 1 1 2 3 5 2 

 

Table C-2 Subfactor Descriptive Analysis – Environmental Impact 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Material's 
Durability 

90 3.7 1.136797 1 3 4 5 5 5 

Material's Life 
Cycle 

90 3.45 1.108244 2 2.75 3 4 5 3 

Material's 
Recyclability 

90 2.775 0.919518 1 2 3 3 5 2 

Site Pollution 
through 

Construction 

90 2.8 0.992278 1 2 2.5 4 5 2 

Material's 
Transportation 

90 3.45 1.011473 1 3 3.5 4 5 4 
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Table C-3 Subfactor Descriptive Analysis – Community Characteristics 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Climate 90 3.875 0.607116 2 4 4 4 5 4 

Units being 
Customizable 

90 2.575 0.957762 1 2 2 3 5 2 

Privacy 90 3.975 1.120611 1 3 4 5 5 5 

Safety 90 4.55 0.749359 2 4 5 5 5 5 

Population 
Density 

90 3.435897 0.852083 2 3 3 4 5 3 

Cultural 
Appropriateness 

90 2.3 1.136797 1 1.75 2 3 5 2 

 

Table C-4 Subfactor Descriptive Analysis – Labor Workforce Dependency 

Subfactor `Count Mean Std Min 25% 50% 75% Max Mode 

Installation 
Methods and 
Equipment 

90 3.5 0.784465 1 3 3 4 5 3 

Speed 90 4.325 0.944281 1 4 5 5 5 5 

Safety 90 4.125 1.042372 1 3.75 4 5 5 5 

Workforce 
Training 

90 3.5 0.9337 2 3 4 4 5 4 

Psychology 90 2.05 1.036513 1 1 2 2.25 5 2 

Working Hours 90 2.65 0.735544 1 2 3 3 4 3 

Weather 
Condition 

90 3.225 0.946993 1 3 3 4 5 3 

 

Table C-5 Subfactor Descriptive Analysis – Vulnerable Population 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Seniority 90 3.975 0.76753 2 3.75 4 4.25 5 4 

Ethnicity 90 2.325 0.997111 1 2 2 3 5 2 

Minority 90 2.275 1.012423 1 2 2 3 5 2 

Mental Illness 90 2.625 1.078639 1 2 2.5 3.25 5 2 

Poverty 90 2.65 1.210001 1 2 2 3.25 5 2 
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Illness 90 3.075 1.118321 1 2 3 4 5 4 

Table C-6 Subfactor Descriptive Analysis – Logistic 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Land Availability 90 4.35 0.892993 2 4 5 5 5 5 

Number of 
Evacuees 

90 4.25 0.669864 3 4 4 5 5 4 

City Density 90 3.525 0.816104 2 3 4 4 5 4 

Accessibility 90 3.45 0.875595 2 3 3.5 4 5 4 

 

 
Table C-7 Subfactor Descriptive Analysis – Construction Cost 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Shipping Cost 90 4.1 0.841244 2 4 4 5 5 4 

Labor Cost 90 3.175 0.873763 2 3 3 4 5 3 

Material Cost 90 3.85 0.892993 2 3 4 5 5 4 

 

 

Table C-8 Subfactor Descriptive Analysis – Living Condition 

Subfactor Count Mean Std Min 25% 50% 75% Max Mode 

Health Risk 90 4.1 0.744208 2 4 4 5 5 4 

Thermal 
Insulation 

90 3.05 0.985797 1 2 3 4 5 3 

Air Quality 90 3.4 0.744208 2 3 3 4 5 3 

Material Quality 90 3.625 0.867874 2 3 4 4 5 4 

Structural 
Quality 

90 3.95 0.875595 2 3.75 4 5 5 4 
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APPENDIX D. EXCEL-BASED PRIORITY ASSIGNMENT 
THROUGH AHP 

Table D-1. Pairwise Comparison Matrix for the “Shipping” Performance Indicator 

Factors SH-1 SH-2 SH-3 SH-4 SH-5 SH-6 

SH-1 1 1.075 1.433333 1.330077 1.535714 1.954545 

SH-2 0.930233 1 1.333333 1.237281 1.428571 1.818182 

SH-3 0.697674 0.75 1 0.927961 1.071429 1.363636 

SH-4 0.751836 0.808224 1.077632 1 1.154605 1.469498 

SH-5 0.651163 0.7 0.933333 0.866097 1 1.272727 

SH-6 0.511628 0.55 0.733333 0.680505 0.785714 1 

  

Table D-2. Square Matrix of the “Shipping” Pairwise Comparison 
Factors SH-1 SH-2 SH-3 SH-4 SH-5 SH-6 

SH-1 5.999999498 6.449999453 8.599997416 7.980463132 9.214283293 11.72727029 

SH-2 5.581395564 6.000000224 7.999998573 7.423687541 8.571427365 10.90908998 

SH-3 4.186046518 4.500000001 5.999998707 5.56776545 6.428570286 8.181817179 

SH-4 4.511016843 4.8493431 6.465789405 6.000001102 6.927631767 8.816986371 

SH-5 3.906976941 4.200000207 5.599999068 5.196581341 5.999999227 7.636363074 

SH-6 3.06976756 3.300000123 4.399999215 4.083028148 4.714285051 5.999999487 

 

Table D-3. Normalized Critreia Weight for the “Shipping” subfactors 

Criteria Weight Normalized 

49.97201308 0.220141436 

46.48559924 0.204782756 

34.86419814 0.153587061 

37.57076859 0.165510301 

32.53991986 0.143347931 

25.56707958 0.112630516 

226.9995785  
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Table D-4. Pairwise Comparison Matrix for the “Environmental Impact” Performance Indicator 
Factors EI-1 EI-2 EI-3 EI-4 EI-5 

EI-1 1 1.074074 1.342593 1.342593 1.08209 
EI-2 0.931034 1 1.25 1.25 1.007463 
EI-3 0.744828 0.8 1 1 0.80597 
EI-4 0.744828 0.8 1 1 0.80597 
EI-5 0.924138 0.992593 1.240741 1.240741 1 

  

 

Table D-5. Square Matrix of the “Environmental Impact” Pairwise Comparison 
Factors EI-1 EI-2 EI-3 EI-4 EI-5 

EI-1 5.000001619 5.370371759 6.712964929 6.712964929 5.410449175 
EI-2 4.655172842 5.000000134 6.250000381 6.250000381 5.037313581 
EI-3 3.724138704 4.000000569 5.000000883 5.000000883 4.029851331 
EI-4 3.724138704 4.000000569 5.000000883 5.000000883 4.029851331 
EI-5 4.620691106 4.962964198 6.20370546 6.20370546 5.000001258 

  

 

Table D-6. Normalized Critreia Weight for the “Environmental Impact” subfactors 
Criteria Weight Normalized 

29.20675241 0.230158751 

27.19248732 0.214285684 

21.75399237 0.171428567 

21.75399237 0.171428567 

26.99106748 0.21269843 

126.898292 
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Table D-7. Pairwise Comparison Matrix for the “Community Characteristics” Performance 
Indicator 

 

 

Table D-8. Square Matrix of the “Community Characteristics” Pairwise Comparison 

Factors CC-1 CC-2 CC-3 CC-4 CC-5 CC-6 CC-7 

CC-1 6.99999973 10.67676942 6.77564118 5.905028467 7.861811598 11.87640542 16.0151511 

CC-2 4.589404299 7.000001908 4.442308279 3.871509153 5.154433333 7.786518311 10.5000008 

CC-3 7.231787577 11.03030449 6.999999943 6.100559022 8.122136233 12.26966349 16.5454536 

CC-4 8.298012612 12.65656724 8.032051162 7.000000369 9.319630614 14.07865225 18.9848472 

CC-5 6.232659581 9.506381683 6.032895221 5.257719096 6.999999609 10.57451355 14.2595698 

CC-6 4.125828279 6.292931271 3.993590438 3.480447768 4.633783694 7.000001601 9.43939511 

CC-7 3.059602243 4.66666699 2.961538251 2.581005577 3.43628819 5.191011151 6.99999915 

 

 

Table D-9. Normalized Critreia Weight for the “Community Characteristics” subfactors 

Criteria Weight Normalized 

66.11080691 0.172680487 

43.34417616 0.113214371 

68.29990436 0.178398379 

78.36976152 0.204700702 

58.86373857 0.153751248 

38.96597817 0.101778581 

28.89611156 0.075476232 

382.8504772  

Factors CC-1 CC-2 CC-3 CC-4 CC-5 CC-6 CC-7 

CC-1 1 1.525253 0.967949 0.843575 1.123116 1.696629 2.287879 

CC-2 0.655629 1 0.634615 0.553073 0.736348 1.11236 1.5 

CC-3 1.033113 1.575758 1 0.871508 1.160305 1.752809 2.363636 

CC-4 1.18543 1.808081 1.147436 1 1.331376 2.011236 2.712121 

CC-5 0.89038 1.358054 0.861842 0.751103 1 1.510645 2.037081 

CC-6 0.589404 0.89899 0.570513 0.497207 0.661969 1 1.348485 

CC-7 0.437086 0.666667 0.423077 0.368715 0.490898 0.741573 1 
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Table D-10. Pairwise Comparison Matrix for the “Labor Workforce Dependency” Performance 
Indicator 

Factors LW-1 LW-2 LW-3 LW-4 LW-5 LW-6 LW-7 

LW-1 1 0.805882 0.845679 1.014815 1.75641 1.334872 1.07651 

LW-2 1.240876 1 1.049383 1.259259 2.179487 1.65641 1.335815 

LW-3 1.182482 0.952941 1 1.2 2.076923 1.578462 1.272953 

LW-4 0.985401 0.794118 0.833333 1 1.730769 1.315385 1.060794 

LW-5 0.569343 0.458824 0.481481 0.577778 1 0.76 0.612903 

LW-6 0.749136 0.603715 0.633528 0.760234 1.315789 1 0.806452 

LW-7 0.928928 0.748607 0.785575 0.94269 1.631579 1.24 1 

  

 

Table D-11. Square Matrix of the “Labor Workforce Dependency” Pairwise Comparison 

Factors LW-1 LW-2 LW-3 LW-4 LW-5 LW-6 LW-7 

LW-1 7.00000023 5.64117728 5.9197518 7.10370431 12.2948708 9.3441035 7.53556769 

LW-2 8.68613157 7.00000092 7.3456774 8.81481546 15.2564089 11.594872 9.35070433 

LW-3 8.27737278 6.67058939 6.9999987 8.40000096 14.5384608 11.049232 8.91067155 

LW-4 6.89780996 5.55882393 5.8333317 7.00000010 12.1153828 9.2076926 7.42555888 

LW-5 3.98540144 3.21176504 3.3703695 4.04444463 6.9999992 5.3200003 4.29032305 

LW-6 5.24394935 4.226006712 4.4346968 5.32163777 9.210525418 7.0000006 5.64516200 

LW-7 6.50249714 5.240248281 5.4990240 6.59883078 11.42105143 8.6800007 7.00000083 

  

 

Table D-12. Normalized Critreia Weight for the “Labor Workforce Dependency” subfactors 

Criteria Weight Normalized 

54.83917585 0.150236641 

68.04861154 0.186425027 

64.84632662 0.177652092 

54.03860011 0.148043395 

31.22230332 0.085536187 

41.08197874 0.112547616 

50.94165324 0.139559043 

365.0186494  
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Table D-13. Pairwise Comparison Matrix for the “Vulnerable Population” Performance Indicator 

Factors VP-1 VP-2 VP-3 VP-4 VP-5 VP-6 

VP-1 1 1.733333 1.793103 1.544554 1.529412 1.3 

VP-2 0.576923 1 1.034483 0.891089 0.882353 0.75 

VP-3 0.557692 0.966667 1 0.861386 0.852941 0.725 

VP-4 0.647436 1.122222 1.16092 1 0.990196 0.841667 

VP-5 0.653846 1.133333 1.172414 1.009901 1 0.85 

VP-6 0.769231 1.333333 1.37931 1.188119 1.176471 1 

 

 

Table D-14. Square Matrix of the “Vulnerable Population” Pairwise Comparison 

Factors VP-1 VP-2 VP-3 VP-4 VP-5 VP-6 

VP-1 5.999998955 10.39999797 10.75862019 9.267325199 9.176470131 7.799999757 

VP-2 3.461538221 5.999999455 6.206896914 5.346534328 5.294117937 4.50000033 

VP-3 3.346153268 5.799998874 5.999999731 5.168315984 5.117646811 4.34999987 

VP-4 3.884615521 6.733333427 6.965518378 6.000000263 5.941177419 5.0500009 

VP-5 3.923076397 6.799998943 7.034482715 6.05940518 5.999999941 5.100000045 

VP-6 4.615384497 7.999999625 8.275862916 7.128712751 7.058824227 6.000000704 

 

 

Table D-15. Normalized Critreia Weight for the “Vulnerable Population” subfactors 

Criteria Weight Normalized 

53.4024122 0.237804859 

30.80908719 0.137195125 

29.78211454 0.132621941 

34.57464591 0.153963435 

34.91696322 0.155487799 

41.07878472 0.182926842 

224.5640078  
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Table D-16. Pairwise Comparison Matrix for the “Site Planning” Performance Indicator 

Factors LO-1 LO-2 LO-3 LO-4 

LO-1 1 1.024096 1.231884 1.268657 

LO-2 0.976471 1 1.202899 1.238806 

LO-3 0.811765 0.831325 1 1.029851 

LO-4 0.788235 0.807229 0.971014 1 

 

Table D-17. Square Matrix of the “Site Planning” Pairwise Comparison 

Factors LO-1 LO-2 LO-3 LO-4 

LO-1 4.000000211 4.096384688 4.927535763 5.074627239 

LO-2 3.905883554 4.000000185 4.811594971 4.955225507 

LO-3 3.247059357 3.325300882 4.000000065 4.119403748 

LO-4 3.152940889 3.228914524 3.884057042 3.999999718 

 

Table D-18. Normalized Critreia Weight for the “Site Planning” subfactors 

Criteria Weight Normalized 

18.0985479 0.279605245 

17.67270422 0.273026368 

14.69176405 0.226973695 

14.26591217 0.220394691 

64.72892834  
 

Table D-19. Pairwise Comparison Matrix for the “Construction Cost” Performance Indicator  

Factors CO-1 CO-2 CO-3 

CO-1 1 1.290323 1.066667 

CO-2 0.775 1 0.826667 

CO-3 0.9375 1.209677 1 
 

Table D-20. Square Matrix of the “Construction Cost” Pairwise Comparison 

Factors CO-1 CO-2 CO-3 

CO-1 3.000000638 3.870968537 3.200001443 

CO-2 2.325000313 3.000000382 2.480000925 

CO-3 2.812499675 3.629031813 3.000000369 
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Table D-21. Normalized Critreia Weight for the “Construction Cost” subfactors 

Criteria Weight Normalized 

10.07097062 0.368663644 

7.805001619 0.285714302 

9.441531857 0.345622053 

27.31750409  
 

Table D-22. Pairwise Comparison Matrix for the “Living Condition” Performance Indicator  

Factors LC-1 LC-2 LC-3 LC-4 LC-5 

LC-1 1 1.355932 1.203008 1.121564 1.032433 

LC-2 0.7375 1 0.887218 0.827154 0.76142 

LC-3 0.83125 1.127119 1 0.9323 0.85821 

LC-4 0.891612 1.208965 1.072616 1 0.92053 

LC-5 0.968586 1.313336 1.165216 1.086331 1 

 

Table D-23. Square Matrix of the “Living Condition” Pairwise Comparison 

`Factors LC-1 LC-2 LC-3 LC-4 LC-5 

LC-1 5.000000321 6.779660222 6.015038219 5.607820909 5.162166548 

LC-2 3.687501147 5.000000648 4.436091782 4.135768941 3.807098769 

LC-3 4.156250321 5.635592633 5.000000585 4.661501192 4.291050999 

LC-4 4.458060208 6.044826304 5.363080163 5.000000329 4.60264956 

LC-5 4.842928856 6.566682002 5.826080058 5.431655191 5.000000746 

 

Table D-24. Normalized Critreia Weight for the “Living Condition” subfactors 

Criteria Weight Normalized 

28.56468622 0.225787258 

21.06646129 0.166518144 

23.74439573 0.187685661 

25.46861656 0.201314625 

27.66734685 0.218694312 

126.5115067  
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