
MUTUAL REINFORCEMENT LEARNING
by

Cameron Reid

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer and Information Science

Indianapolis, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Snehasis Mukhopadhyay, Chair

School of Computer and Information Science

Dr. George Mohler

School of Computer and Information Science

Dr. Mihran Tuceryan

School of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

2

This thesis is dedicated to my mother, who threatened violence against me if I didn’t go to

college (but in a fun way!) and instilled in me the stubbornness which made this possible,

and to Alexa, who helped me believe that I could and should put in the work, with special

thanks to Professor Mukhopadhyay, who has been inexplicably generous with his time and

support before and after we began to work together.

3

ACKNOWLEDGMENTS

The research reported here was supported by the National Science Foundation under

grant number 1930606.

4

TABLE OF CONTENTS

LIST OF FIGURES

.

. 7

ABSTRACT

.

. 8

1 BACKGROUND

.

. 9

1.1 Model-free Learning

.

. 9

1.2 Model-based Learning

.

. 11

1.3 Deep Reinforcement Learning

.

. 12

1.4 Transfer Reinforcement Learning

.

. 14

1.4.1 Student/Teacher Advising

.

. 14

1.4.2 Model Distillation

.

. 16

1.5 Mutual Learning

.

. 16

1.6 Canonical Problems in Reinforcement Learning

.

. 18

1.7 Tools for Reinforcement Learning

.

. 19

2 MUTUAL Q-LEARNING

.

. 20

2.1 Methods

.

. 20

2.1.1 Notes on Convergence

.

. 21

2.2 Simulation Results

.

. 22

2.2.1 Impact of Mutual Learning

.

. 22

2.2.2 Varying the Weight of the Mutual Learning Term

.

. 22

2.2.3 Increasing the Number of Mutually Learning Q Estimators

.

. 26

2.2.4 Decaying the Mutual Learning Term Weight

.

. 27

2.3 Discussion

.

. 29

3 HETEROGENEOUS MUTUAL LEARNING

.

. 31

3.1 Methods

.

. 31

3.2 Methods

.

. 33

3.2.1 Q-Learning Agent

.

. 33

3.2.2 ADP Agent

.

. 34

5

3.2.3 Mutual Learning Algorithm

.

. 34

3.3 Simulation Results

.

. 35

4 CONCLUSIONS AND FUTURE WORK

.

. 38

4.1 Mutual Reinforcement Learning in High Dimensional Problems

.

. 38

4.2 Mutual Policy Gradient Algorithms

.

. 38

4.3 Mutual Learning in Different Task Formulations

.

. 39

4.4 Limits of Mutual Learning

.

. 40

REFERENCES

.

. 41

6

LIST OF FIGURES

1.1 Sample state of the cart-pole problem

.

. 18

2.1 Comparison of standard Q learning and mutual Q learning with 2 estimators

.

. . 23

2.2 Difference in evaluation scores of mutual vs. standard implementation.

.

. 24

2.3 Impact of varying the weight of the mutual learning term

.

. 25

2.4 Impact of varying the number of mutually learning estimators

.

. 26

2.5 Impact of reducing the weight of the mutual learning term according to the mir-
rored sigmoid schedule with µ = 2500 and σ = 250

.

. 28

2.6 Impact of reducing the weight of the mutual learning term according to a mirrored
sigmoid schedule with µ = 4000 and σ = 250

.

. 29

3.1 Mean total reward achieved by each learning algorithm during evaluation over
the course of training

.

. 35

3.2 Comparison of the learning curves of the standard deep Q-learning implementa-
tion and the implementation informed by our mutual learning analysis. Initially,
the model informing the ADP is poor and hinders learning for the DQL agent;
however, once the ADP agent has built a reasonable model, it gives good advice
to the DQL agent and improves performance.

.

. 36

3.3 Comparison of the disagreement term when applied to the loss function. This
plot shows disagreement on an example initial state.

.

. 37

7

ABSTRACT

Mutual learning is an emerging field in intelligent systems which takes inspiration from

naturally intelligent agents and attempts to explore how agents can communicate and coop-

erate to share information and learn more quickly. While agents in many biological systems

have little trouble learning from one another, it is not immediately obvious how artificial

agents would achieve similar learning. In this thesis, I explore how agents learn to interact

with complex systems. I further explore how these complex learning agents may be able

to transfer knowledge to one another to improve their learning performance when they are

learning together and have the power of communication. While significant research has been

done to explore the problem of knowledge transfer, the existing literature is concerned ei-

ther with supervised learning tasks or relatively simple discrete reinforcement learning. The

work presented here is, to my knowledge, the first which admits continuous state spaces and

deep reinforcement learning techniques. The first contribution of this thesis, presented in

Chapter 2

.

, is a modified version of deep Q-learning which demonstrates improved learning

performance due to the addition of a mutual learning term which penalizes disagreement

between mutually learning agents. The second contribution, in Chapter 3

.

, is a presentation

work which describes effective communication of agents which use fundamentally different

knowledge representations and systems of learning (model-free deep Q learning and model-

based adaptive dynamic programming), and I discuss how the agents can mathematically

negotiate their trust in one another to achieve superior learning performance. I conclude

with a discussion of the promise shown by this area of research and a discussion of problems

which I believe are exciting directions for future research.

8

1. BACKGROUND

Reinforcement learning is an area of machine learning which involves an agent learning a pol-

icy π to operate within an environment in order to maximize a long-term discounted reward.

There are many algorithms which attempt to solve this problem [1

.

] which allow various as-

sumptions about the learning agent and the environment. For example, the learning agent

may require a continuous or discrete action space, and the environment may provide continu-

ous or discrete observation values (or some of each). Furthermore, the agent may be assumed

to have an omniscient view of the environment, or the agent may only receive a subset of

the information in the environment; i.e., the environment may be fully observed or partially

observed. All of these factors influence the choice of reinforcement learning algorithm, and

some of these factors rule out some options completely.

While there exists a large variety of learning models and algorithms [1

.

], [2

.

] for reinforce-

ment learning depending on the assumptions about the learner or the environment, there

are two broad approaches to solving this problem. Model-based reinforcement learning at-

tempts to learn models of the dynamics of the system F and use that information to derive

an optimal policy, while model-free (also known as direct) methods attempt to learn about

the reward function or the policy without the use of a model.

1.1 Model-free Learning

Model-free methods often rely on estimation of the state value function V ∗
π

: S → R of a

policy π, where V ∗
π

maps a state to the discounted reward attainable starting in that state

and following the policy π. In order to achieve this, we leverage the Bellman optimality

equation (Eq. 1.1

.

) where As is the set of actions that can be taken in state s, R(s, a) is a

function that maps a state/action pair to a reward inR, T (s, a) is a transition function which

maps state/action pairs to the next state, and γ is a value close to 1 called the “discount

rate” which ensures that the value function is bounded.

V ∗
π

(s) = R(s, π(s)) + γV ∗
π

(T (s, π(s))) (1.1)

9

We can use this function to optimize an approximation to V ∗
π

, say v̂, by minimizing the

temporal difference error:

v̂(s)− (r + γv̂(s′)) (1.2)

Note that these equations are specific to the policy being followed. This kind of learning

is referred to as on-policy learning, because the learning process is dependent upon the policy

being followed, and only transitions from that policy are relevant to the learning process. In

other words, learning must involve iteratively collecting a number of transitions using the

current policy, optimizing the estimate of the value function based on those transitions, and

then discarding them. As discussed below in Section 1.3

.

, this has important consequences

for algorithms which might try to use deep learning to approximate the value function.

Another class of algorithms, called off-policy algorithms, are able to learn about the

problem using transitions generated from any policy. Q-learning [3

.

] is a prototypical example

of such an algorithm. As the name implies, Q-learning attempts to learn a Q-function

Q(s, a) which maps a given state/action combination to its long-term discounted reward.

The algorithm works by minimizing the loss in 1.3

.

, where at is the action taken at time t, rt
is the reward obtained transitioning from state s to s′ at time t, a ∈ A are the set of actions,

and γ is the same discount factor mentioned above, which controls how “forward-looking”

the algorithm will be, and is generally necessary to ensure that the Q function is bounded.

L = Q(st, at)− (rt + γmaxA(Q(s′, at+1))) (1.3)

Now note that these value-based learning methods do not actually tell us what the

policy for an agent should be. An obvious solution would be to simply choose the action

that maximizes the value of the resulting state, say maxa∈AQ(s, a). This policy would

be called the greedy policy with respect to Q. However, it is often important to balance

exploration (taking actions which may be sub-optimal in order to collect transitions from

previously-unseen areas of the problem) and exploitation (using the knowledge gained to

achieve optimal control). This balance is typically found by using what’s referred to as an

10

ε-greedy policy: given some value ε, take the greedy action with probability 1−ε, or choose a

random action with probability ε. Then, ε is typically decreased to 0 as training progresses.

1.2 Model-based Learning

In contrast to model-free methods, model-based methods attempt to learn the dynamics

of the environment (i.e., the state transition and reward functions) and develop an optimal

policy from there.

One such method is known as Adaptive Dynamic Programming, or ADP [4

.

]. This al-

gorithm assumes a discrete state and action space and attempts to develop a model of the

transition and reward functions, and then use dynamic programming to generate an estimate

of the Q value of each action in each possible discrete state. In other words, we may count

each encountered 〈s, a, r, s′〉 tuple in a set X . Transition probabilities from state s to state

s′ given action a are then computed as the fraction of times s′ was seen after taking action

a in state s More formally the probability of seeing state s′ after taking action a in state s

is given in Eq. 1.4

.

P (s′|s, a) = |Xs=s,a=a,s′=s′ |
|Xs=s,a=a|

(1.4)

where | ∗ | denotes cardinality and subscripts denote which elements of the set are under

consideration.

Then, given transition probabilities P as computed above, we use dynamic programming

[5

.

] to find the optimal long-term value of each state by recursively applying Eq. 1.5

.

, where

the hat operator indicates an estimate of the true function. Because the agent develops a

model of the problem dynamics, optimal control can be achieved by selecting the action

which is expected to lead to the state with the highest long-term value.

V (s) = max
a∈A

(
R̂(s, a) + γV (T̂ (s, a))

)
(1.5)

This algorithm is able to derive a reasonable estimate of the Q function in significantly

fewer steps than model-free methods; however, the assumption of a discrete state space makes

11

the algorithm intractable for problems with higher-dimensional state spaces, and the dynamic

programming algorithm involves significantly more computation than e.g. Q-learning. This

is a common finding in the literature – model based methods learn a problem effectively in

a small number of steps, but require significantly more computation.

1.3 Deep Reinforcement Learning

Deep reinforcement learning refers to a branch of reinforcement learning which uses deep

learning techniques to estimate the value function, the Q function, or the environment dy-

namics. While deep learning had always shown powerful potential to represent complex

domains, the nature of reinforcement learning introduced some major difficulties. The com-

bination of function approximation, bootstrapping, and off-policy learning were described

in [1

.

] as “the deadly triad” because they can lead to an algorithm which diverges quickly.

Furthermore, deep learning via gradient descent methods generally assumes that training

samples will be independent and identically distributed, and reinforcement learning algo-

rithms (which learn on experience tuples generated by the environment in order) violate this

assumption.

The seminal paper in deep reinforcement learning is presented in [6

.

]. In this work, the

authors present a Q-learning algorithm which uses a convolutional neural network to achieve

superhuman performance in several games in the Atari domain. Q-learning with a function

approximator (such as a neural network) can easily become unstable due to the combination

of off-policy learning, function approximation, and bootstrapping (that is, using the value of

a state to estimate the value of a previous state). These three factors comprise the so-called

“deadly triad” in reinforcement learning, and the three are all present in Q-learning with a

function approximator.

To deal with these issues, the authors of [6

.

] discuss several techniques.

1. Experience replay [7

.

], in which a buffer of previous experience tuples is stored and

then drawn from at random for minibatch updates. This is important; one reason that the

deadly triad is so harmful is that sequential states are significantly correlated. In a function

approximation setting, updating the value for a particular state also updates the value for all

12

states, especially those similar to the state being updated. This can lead to rapid divergence

in state value estimates and unstable training. However, drawing experience tuples from a

replay buffer decorrelates updates and can help stabilize training.

2. The authors also used a target network, which is a clone of the Q network which is

used to generate targets for the Q-learning update and whose parameters are periodically

overwritten by the current parameters of the Q network. Similar to the above, this helps

stabilize training by limiting the impact of bootstrapping, as updates to the Q network are

not included in the update target until the parameters of the target network are updated.

3. Finally, the authors also indicate that clamping the error value to the range (-1, 1)

also stabilizes training.

All of the above have become standard practice in the literature for deep reinforcement

learning. In [8

.

], the authors explore why these techniques are important specifically in the

context of deep Q learning, and note that overestimation bias – that is, the unavoidable

tendency of Q learning to overestimate the value of the discounted future state, induced by

the max operator in 1.3

.

– is a significant factor which is ameliorated by computing updates

from a different network (such as a target network).

In addition to Q learning, a number of deep policy gradient algorithms have been proposed

which attempt to learn a policy directly. A typical algorithm in this area, known as deep

deterministic policy gradient or DDPG, was presented in [9

.

]. This is what is known as an

actor-critic algorithm, because it involves two functions – an actor π : S → A which maps

a state to an action, and a critic Q : S × A→ R, which (as usual) maps a state-action pair

to its associated long-term value. Learning a policy directly is very important in problems

which involve continuous components in the action space because choosing the optimal action

within a continuous state is intractable for Q-learning.. Because of this limitation, much of

the state-of-the-art in reinforcement learning for practical, real-world systems and obotics

involves variants of these deep reinforcement learning algorithms [10

.

]–[12

.

].

13

1.4 Transfer Reinforcement Learning

Transfer learning [13

.

] describes to the problem of using some knowledge that was learned

by one agent on one problem to achieve faster learning on a new problem, faster learning

for a new agent on the same problem, or faster learning for a new agent on a new problem.

These techniques are motivated by the ability of natural agents to apply previously learned

knowledge to a new problem, or to observe the behavior of other agents to solve new problems,

and many techniques are inspired by that.

1.4.1 Student/Teacher Advising

Student/Teacher advising in a reinforcement learning context, refers to an interaction

of learning agents wherein one agent (the teacher) has learned about the environment and

communicates with the other agent (the student) to guide the student towards taking the

best action and learning about the environment more quickly. The general framework is

established in [14

.

]. In student/teacher advising, we make no assumptions about the internal

knowledge representation of the learning agents. In general, however, we must assume that

the teacher has some level of expertise with regards to the problem being solved. Because

communication between agents may be expensive or difficult, a student/teacher advising

approach usually considers a fixed budget of communication. That is, the teacher may only

guide the student at a fixed number of steps, and choosing which steps to intervene in

becomes an important problem. Reference [14

.

] proposes a few strategies, given a budget of

N advice steps: early advising, wherein the teacher provides guidance in the first N learning

steps; importance advising, wherein some importance function (for example, the one shown

in Eq. 1.6

.

below) is included, and advice is only provided if the importance exceeds some

threshold.

I(s) = max
a

Q(s, a)−min
a
Q(s, a) (1.6)

The authors also explore more advanced advising techniques, such as mistake correcting

(the teacher overrides actions that it deems “bad”), or predictive advising (the teacher also

14

attempts to learn a model of the student’s policy and preemptively correct bad actions by

the student.

This general approach was expanded upon in [15

.

] to relax the constraint that the teacher

must have strong knowledge of the problem. The authors propose a number of methods

which allow the agents to evaluate how confident they are about their knowledge of a given

state, and ask for or provide advice accordingly. Key to this is the idea of confidence – how

accurate the agent “believes” its knowledge of a state to be. The authors propose formalizing

this idea of confidence in two ways: “should I ask for advice about this state?” and “should

I provide advice for this state”, denoted Pask and Pgive in Eqs. 1.7

.

and 1.8

.

below, where Υ

and Ψ are functions from the state space to the unit interval and indicate the “asking” and

“giving” confidence of the agent in that state, and va and vg are tunable scaling parameters.

Pask(s,Υ) = (1 + va)−Υ(s) (1.7)

Pask(s,Ψ) = 1− (1 + vg)−Ψ(s) (1.8)

In their analysis, the authors propose possible functions for Ψ and Υ which cause the

confidence of the agent to grow with the number of visits it has made to the state. These are

shown in Eqs. 1.9

.

and 1.10

.

below, where n(s) is the number of times the agent has visited

state s

Υ(s) =
√
n(s) (1.9)

Ψ(s) = log2 ((n(s)) (1.10)

With these, the authors were able to achieve improved performance on a fairly complex

task. However, this method relies on a discrete state space, which is often an assumption

that cannot be met in real-world problems.

15

1.4.2 Model Distillation

Related to the problem of transfer learning is the problem of model distillation, where

we wish to take a large, powerful network (or an ensemble of networks) and compress it into

a smaller network with the same level of performance to allow it to run on a cheaper or

otherwise less-powerful hardware. A survey of the current state-of-the-art can be found [16

.

].

This is a broad area that admits many approaches.

One common approach, initially proposed several years ago by [17

.

], is to train a small

neural network to mimic the output of large, complex model (potentially an ensemble of

hundreds or thousands of models). The authors present results which show little to no

degradation of performance between the complex model and the distilled model, despite

distilled models which are several orders of magnitude smaller. The key intuition to this

approach is that the limiting factor for many neural networks lies in the optimization process

rather than the representational power of the network itself, and training based on the

knowledge of a “teacher” network helps to avoid those issues. Reference [18

.

] expand and

formalize on this process and explore new ways in which the distilled network can be trained

against the teacher network.

1.5 Mutual Learning

Mutual learning attempts to answer the question: “How do agents which are learning the

same, or similar, problems communicate to improve learning?” Initial quantitative definition

of this problem was presented in [19

.

], which notes that mutual learning can happen between

humans and machines, humans and humans, or machines and machines, and notes several

scenarios in which mutual learning could be applied. Of particular interest to this thesis are

the situations in which agents mutually learn to choose the optimal actions. The authors

explore this problem in detail with simple bandit problems, where agents learn the optimal

action according to a simple algorithm, and provide several interesting experiments to drive

discussion about how these agents could share knowledge. The authors continue their ex-

ploration specifically in the area of reinforcement learning in [20

.

] and establish a number of

factors that must be considered when considering mutual learning in a system:

16

• Communication – how often, and in what way, will the mutually learning agents

communicate?

• Learning algorithm and knowledge representation – do the agents use the same,

or different, learning algorithms? Do they share the same knowledge representation?

If they are different, how should they translate one another’s knowledge?

• Trust – how much credence does each agent lend to the information provided by the

other agents? Note that this is not only a question of malicious or benevolent mutual

agents, but also simply that some agents may have weak knowledge in certain areas of

the problem.

• Goal congruence – are both agents attempting to achieve the same goal?

An interesting development in mutual learning for deep learning situations was presented

in [21

.

]. Here, the authors present a mutual learning algorithm for image classification inspired

by model distillation. The presented algorithm trains a number of neural networks simulta-

neously, and modifies the loss function of the classification task to add the Kullback-Leibler

divergence among these networks. In the case of two mutually learning networks, then, the

loss function becomes that shown in equation 1.11

.

, where p1 and p2 are the distributions

produced by each of the networks.

L = LCk +DKL(p2||p1) (1.11)

Interestingly, authors show that mutual learning in this way produces better results

than training the networks by themselves, and that small networks trained mutually with

one another can produce better results than distilling a small network from a large, static

“teacher” network.

17

Figure 1.1. Sample state of the cart-pole problem

1.6 Canonical Problems in Reinforcement Learning

In the field of reinforcement learning, there are many classic benchmark problems which

attempt to simplify the control problem. Many of these problems are helpfully implemented

in the OpenAI Gym [22

.

], which has been a boon to reinforcement learning research.

Among these is the cart-pole problem, described in [23

.

]. In this problem, the agent is in

control of a mobile cart, with a freely spinning pole attached to the top. The goal in this

environment is to keep the pole balanced above the cart for as long as possible. The episode

ends if cart or the pole move too far from center, and the agent gets 1 point for every step

that the episode continues. For reference, Figure 1.1

.

shows a sample state of the cart-pole

problem as implemented in [22

.

].

Additionally, the so-called Atari domain describes a number of Atari games on which

a seminal paper in deep reinforcement learning is based ([6

.

]). Typically, the problem is

18

formulated as taking the visual screen from the game as a matrix of pixel values and learning

to estimate the Q value with a convolutional neural network. While model-based learning in

this domain is challenging due to the difficult nature of predicting future screens based on

previous screens and actions, attempts have been made on this front with promising results

[24

.

], [25

.

].

1.7 Tools for Reinforcement Learning

As deep learning and reinforcement learning become popular and profitable within the

industry, the open source toolset is expanding rapidly.

PyTorch [26

.

] is a popular library for deep learning which provides automatic differenti-

ation, supports most typical deep learning architectures, and implements most of the im-

portant optimization functionality needed to train deep neural networks. The deep learning

work behind the experiments in this paper is implemented in PyTorch 1.3.1.

NumPy [27

.

] is another very popular library for efficient scientific computing in Python

based on vectorization and array programming. Significant portions of the work presented

in this paper were implemented using NumPy for efficient computation.

19

2. MUTUAL Q-LEARNING

Given the promise shown in deep mutual learning and the direction of research in stu-

dent/teacher and transfer learning, I wanted to explore the application of a similar tech-

nique to reinforcement learning. In contrast to the work in student/teacher learning, I do

not implement transfer learning in the form of action advice; rather, I take inspiration from

the mutual learning literature to augment the loss function to force the mutually learning

agents into agreement. The work presented in this chapter was published in [28

.

].

2.1 Methods

For this work, I compare two learning agents which are operating in the cart-pole envi-

ronment. Both use an ε-greedy policy and the same simple network architecture: four inputs

receive the state from the problem and apply a linear transformation with a leaky rectifier,

followed by a densely-connected hidden layer with 8 leaky rectifier units, followed by a final

output layer with 2 linear outputs, each of which returns the corresponding action value for

the given state.

Training is done using experience replay at each step of the simulation, with 100 expe-

rience tuples 〈s, a, r, s′〉 sampled from an effectively infinite memory buffer. The tuples are

divided into batches of 32 and I use Adam [29

.

] to optimize the parameters. No learning

takes place until 100 experience tuples have been collected. Our ε-greedy policy starts with

ε = 1.0 and decays by a factor of 0.999 after each step where learning takes place, with a

minimum value of 0.01. Because this task is episodic and relatively short, I use a discount

factor γ = 1.0; that is, no discounting. Implementation of all deep learning functionality,

including gradient computation, Adam optimization, and layer functionality is provided by

PyTorch 1.3.1 with default initialization and hyperparameters.

The agents learn for 5000 simulation steps. To measure learning progress, learning is

paused every 100 steps and 5 evaluations are performed using a policy which is purely

greedy according to the learned Q function and the total reward obtained is recorded. This

generates a learning curve which shows how the agent performs as learning progresses.

20

I perform this experiment using two agents using different loss functions. In the standard

setup, we use the canonical mean squared error loss as shown in Eq. 2.1

.

.

L = 1
N

N∑
i=0

((v̂(s′i) + ri)− Q̂(si, ai))2 (2.1)

In the novel mutual learning setup, I optimize m Q functions with an additional mutual

learning term added to the loss function, so that the error includes not only the temporal

difference error but also the error between pairs of the m functions, as shown for Q̂i in Eq.

2.2

.

.

LM = 1
N

N∑
j=0

((v̂(s′j) + rj)− Q̂i(sj, aj))2

+ C

m− 1

m∑
k=0
D(Q̂i, Q̂k)

(2.2)

Here, C is a configurable parameter which controls the importance of the mutual learning

error term and D(Q̂i, Q̂j is the mean squared error between a pair of Q functions as shown

in Eq. 2.3

.

. I normalize the mutual learning error by the number of mutually learning agents

so that it doesn’t overwhelm the temporal difference error.

D(Q̂a, Q̂b) = 1
N

N∑
i=0

(Q̂a(si, ai)− Q̂b(si, ai))2 (2.3)

The policy of the mutual learning implementation is ε-greedy with respect to the primary

Q approximation, i.e., Q̂1. The other Q estimators do not influence the policy except in that

they contribute to the optimization of Q̂1.

2.1.1 Notes on Convergence

In order to achieve convenient mathematical properties for convergence, note that it may

be useful to decay the importance of the mutual learning term to zero as training progresses,

such that the mutual Q-learning algorithm reduces to standard Q-learning.

21

When this is desired, I propose replacing C in Eq. 2.2

.

by a function ω : Z → R+, with

the requirement that limi→∞ ω(i) = 0. For the simulations, I use a mirrored sigmoid function

as shown in Eq. 2.4

.

, parameterized by µ and σ.

This function is convenient for a number of reasons. It gives sufficient time for mutual

learning to benefit learning before tapering down to 0; it is simply parameterized to adjust

the rate of decay; and it is bound between 0 and 1 to allow simple tuning of the weight of

the mutual learning term.

ω(i;µ, σ) = −1
1 + e−x+µ

σ

+ 1 (2.4)

2.2 Simulation Results

2.2.1 Impact of Mutual Learning

First, I present results for a baseline implementation of the mutual reinforcement learning

algorithm using two mutually learning Q estimators and constant C = 1. Figure 2.1

.

shows

the impact of the additional Q function estimator and using a mutual learning approach.

Performance is significantly improved in the mutual learning case, with the mutual learn-

ing implementation achieving an average evaluation score of approximately 218 by the final

step of the learning simulation, compared to an average of 194 for the standard Q learning

case. Notably, both approaches learn at about the same rate until approximately halfway

through training, at which point the standard Q learning approach slows down much more

quickly than the mutual Q learning approach; after 2500 steps, the mutual learning imple-

mentation always performs better. See Figure 2.2

.

for details.

2.2.2 Varying the Weight of the Mutual Learning Term

I also present results from a number of simulations to demonstrate the impact of the

weight of the mutual learning term. Figure 2.3

.

shows these results.

C = 1 appears to improve performance; however C = 0.5 appears to have a minimal

impact over traditional Q learning. Furthermore, C = 2.0 appears to hinder learning early

22

0 1000 2000 3000 4000 5000
Step

50

100

150

200

M
ea

n
Ev

al
ua

tio
n

Sc
or

e

Standard
Mutual

Figure 2.1. Comparison of standard Q learning and mutual Q learning with 2 estimators

23

0 1000 2000 3000 4000 5000
Step

−5

0

5

10

15

20

25

M
ea

n
Sc

or
e

Im
pr

ov
em

en
t

[H]

Figure 2.2. Difference in evaluation scores of mutual vs. standard implementation.

24

in training. Presumably, this is because the mutual learning loss overwhelms the TD error

and drives the functions toward similar results despite the fact that they are both poor

approximations of the true Q function.

These results indicate that a value of C = 1.0 is optimal; thus, I use this value through

the rest of the simulations.

0 1000 2000 3000 4000 5000
Step

0

50

100

150

200

M
ea

n
Ev

al
ua

tio
n

Sc
or

e

Mutual (C= 2)
Mutual (C= 1)

0 1000 2000 3000 4000 5000
Step

0

50

100

150

200

M
ea

n
Ev

al
ua

tio
n

Sc
or

e

Mutual (C= 0.5)
Mutual (C= 1)

0 1000 2000 3000 4000 5000
Step

25

50

75

100

125

150

175

200

M
ea

n
Ev

al
ua

tio
n

Sc
or

e

Mutual (C= 2)
Standard

0 1000 2000 3000 4000 5000
Step

0

25

50

75

100

125

150

175

200

M
ea

n
Ev

al
ua

tio
n

Sc
or

e

Mutual (C= 0.5)
Standard

Figure 2.3. Impact of varying the weight of the mutual learning term

25

2.2.3 Increasing the Number of Mutually Learning Q Estimators

Figure 2.4

.

shows the impact of increasing the number of mutually learning estimators

beyond 2. With 10 Q-functions trained in conjunction as described in this paper, a significant

improvement can be seen over both mutual learning with 2 estimators and over traditional

Q learning.

0 1000 2000 3000 4000 5000
Step

0

50

100

150

200

250

M
ea

n
Ev

al
ua

tio
n

Sc
or

e

10 Mutual Estimators
2 Mutual Estimators
Standard

Figure 2.4. Impact of varying the number of mutually learning estimators

26

With ten mutually learning estimators, the agent achieves an average peak evaluation

score of approximately 240, which represents a 27% improvement over the Q learning baseline

and a 15% improvement over the mutual learning algorithm with only two estimators.

While more estimators appear to be more effective, it’s important to consider that each

additional agent added to the system increases the amount of communication overhead by

a factor of O(n2).

2.2.4 Decaying the Mutual Learning Term Weight

Figure 2.5

.

shows how the algorithm performs with decaying the mutual learning term

weight according to Eq. 2.4

.

. In this case, the final mean score is an improvement over

standard Q-learning, but not as significant as mutual Q learning without decay.

27

0 1000 2000 3000 4000 5000
0

50

100

150

200

M
ea

n
Sc

or
e

Mutual (Decaying)
Mutual
Standard

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

M
L

Te
rm

 W
ei

gh
t

Figure 2.5. Impact of reducing the weight of the mutual learning term ac-
cording to the mirrored sigmoid schedule with µ = 2500 and σ = 250

However, if the mutual learning weight is kept higher for longer by shifting µ, better

performance can be achieved. Figure 2.6

.

shows the results of this simulation: although the

mutual learning term decays to only 1.8% of its initial value, performance continues to grow

at a rate similar to the non-decaying implementation.

28

0 1000 2000 3000 4000 5000
0

50

100

150

200

M
ea

n
Sc

or
e

Mutual (Decaying)
Mutual
Standard

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

M
L

Te
rm

 W
ei

gh
t

Figure 2.6. Impact of reducing the weight of the mutual learning term ac-
cording to a mirrored sigmoid schedule with µ = 4000 and σ = 250

2.3 Discussion

In this section, I presented a Q learning algorithm which is improved by the addition of

a mutual learning factor. Notably, adding one agent to the system and using this mutual

learning algorithm appears to have a modest but noticable impact on performance. Perhaps

29

more interesting, increasing the number of mutually learning agents from 2 to 10 appears to

improve performance still further. However, the communication overhead scales as O(n2),

so adding more agents requires significantly more computation to achieve that. This is a

significant limitation that I do not attempt to address here.

This algorithm also makes no attempt to quantify trust among the mutually learning

agents. It is interesting, then, that blind trust at all steps still leads to improved performance.

30

3. HETEROGENEOUS MUTUAL LEARNING

In addition to the work in Chapter 2

.

of this thesis, I also wanted to explore how agents which

learn in very different ways might communicate. In particular, model-based methods such

as approximate dynamic programming (or ADP) can achieve great performance with signif-

icantly fewer interactions with the environment than are necessary for a model-free method.

On the other hand, model-free methods generally require significantly less computation for

each update.

In this chapter, I describe how I approached the problem of allowing a model-free learning

agent using deep Q-learning to receive knowledge from a model-based learning agent using

ADP. The work presented here is submitted for publication as [30

.

].

3.1 Methods

Because ADP generates both a model of the environment dynamics F and an estimate of

the state value function V , one can derive an estimate of the Q-function Q̂ADP by using the

estimate of the V function of the state which, according to the transition function, results

after taking an action, as shown in Eq. 3.1

.

Q̂ADP(s, a) = E
(
V̂ (F (s, a))

)
(3.1)

This estimate is correct when the environment and reward models are correct. However,

this is not often the case, and so the DQL agent must account for sources of error.

First, recall that ADP requires a discretized representation of the state space, while DQL

takes continuous states directly. This means that a range of continuous values will all appear

the same to the ADP agent. If the states are distributed uniformly across the state space,

the estimate produced by 3.1

.

will be good when the continuous state is near the middle of

a bin, but grow worse as it gets away from that value. To correct for this, the DQL agent

may weight the information it gets from the ADP agent by the cosine similarity of the true

state value with the centroid of the binned state. This allows the DQL agent to essentially

disregard information from the ADP agent which is likely inaccurate.

31

Second, the discrete state space that the ADP agent must explore grows exponentially

with the dimension of the true state space. As such, even after many interactions with

the environment, the ADP value function may be fairly sparse, and the estimates of the

transition and reward functions may only be informed by a few samples. To account for this,

I suggest an approach similar to that taken in [31

.

] and add a weighting factor that scales

with the number of visits that the ADP agent has taken to a state. I refer to this weighting

term as the insistence of the ADP agent and denote it I, as shown in Eq. 3.2

.

, where Ns is

the number of times that the ADP agent has visited state s. This term is bound between

0 and 1, and approaches 1 when the ADP agent has seen the state in question many times,

indicating higher confidence in the model.

I(s|ADP) = 1− 1√
Ns

(3.2)

Third, we must also consider that the ADP algorithm, by its nature, will generate Q

values which are near the theoretical convergence value, while DQL with an appropriate

learning rate and target Q-network will produce Q-values which grow very slowly, but whose

relative values are still insightful. For example, consider a trivial task which never ends,

with only a single possible state and action, and which provides the agent with a reward of 1

every step, and assume γ = 0.99. After a single step, the ADP agent will produce a Q-value

very near to 1
1−γ = 100, which is the true long-term value of the only action in the only state.

However, depending on initialization conditions, the Q-network will only update a bit in the

direction of that value; perhaps from 0.1 to 0.11. If you update the target network only

periodically, the Q-learning agent will have no hope of approaching the true value for many

steps, and the relative scale of the Q-values produced by each agent make them useless for

direct comparison. To address this, I further suggest comparing the softmax distribution of

the generated Q-values using the Kullback-Leibler divergence, rather than the squared error

of the Q-values themselves.

32

The considerations above result in the mutual learning loss term shown in Eq. 3.3

.

, where

s̄ indicates the discretized state s, µs̄ denotes the centroid of the values of that discretized

state, and P is the softmax function.

LM(s) = KL
(
P (Q̂DQL(s)), P (Q̂ADP(s̄))

)
×

×IADP(s)×
√

s · µs̄
||s||||µs̄||

(3.3)

3.2 Methods

I implement three learning agents in the cart-pole environment. The first learns via Q-

learning; the second learns via adaptive dynamic programming; and the third learns via a

mutual learning algorithm informed by the discussion above.

To evaluate their learning progress, I run the agents in the cart-pole problem for 5000

steps. Every 100 steps, I pause training and run a number of evaluations which use a

deterministic greedy policy, and I record the mean episode reward from those evaluations.

5000 steps constitute a single trial, and results presented here are averaged over 100 trials.

3.2.1 Q-Learning Agent

For the Q-learning agent, the Q function is approximated by a simple neural network,

similar to the one discussed in Chapter 2

.

: 4 input nodes take the state from the environment

as input. There is a single dense hidden layer with 8 units which applies a leaky rectifier, and

a linear output layer with 2 units, each of which outputs a corresponding estimated action

value for that state.

Training is done using experience replay [7

.

] at each step of the simulation, with 100

tuples sampled from an effectively infinite memory buffer (the agent will have access to all

experiences of the trial). The discount factor was set to 0.99. Optimization was done using

Adam [29

.

]. In contrast to the experiments of Chapter 2

.

, a target network was used to

generate the update targets. The target network was updated every 100 steps.

33

Once again, all deep learning functionality was provided by PyTorch 1.3.1 [26

.

] with

default initialization and hyperparameters unless otherwise noted.

3.2.2 ADP Agent

For the ADP agent, the state space is first discretized into 7 evenly-sized bins. The agent

builds the models of the environment and reward functions by simply keeping track of the

number of the number of times it has visited a state, the actions it took in that state, and the

resulting next state and reward, and then computing the necessary probabilities empirically.

At each step, the agent iterates a dynamic programming pass with discount factor γ = 0.99

until the maximum error value seen across any update is less than 0.01.

3.2.3 Mutual Learning Algorithm

We use Eq. 3.3

.

to develop an algorithm which “drives” a single agent comprising a DQL

algorithm and an ADP algorithm. This allows for a simpler analysis, as both algorithms will

encounter exactly the same set of experience tuples in the same order.

We modify the traditional deep Q-learning algorithm by minimizing 3.3

.

in addition to

the typical temporal difference loss used for Q learning. That mutual loss term is computed

purely on-line with the state under consideration, rather than drawing samples from the

replay buffer. Algorithm 1

.

outlines the general procedure.

Algorithm 1: Heterogeneous Mutual Learning
Initialize deep Q learning agent DQL parameterized by θ
Initialize ADP agent A
Initialize πDQL, for example ε-greedy
Initialize the environment with initial state s
for each step of training process do

a← πDQL(s)
Take action a, observe reward r and new state s′
Handle transition 〈s, a, r, s′〉 in Q learning agent and ADP agent as normal
ωl ← similarity(s, µs̄)× IA(s)
l = ωlKL

(
P (Q̂DQL(s, ?)), P (Q̂ADP(s, ?))

)
θ ← θ −∇θl

end

34

3.3 Simulation Results

First, I provide the learning curves of our unaltered algorithms for comparison. Figure

3.1

.

shows those results.

0 1000 2000 3000 4000 5000
Step

25

50

75

100

125

150

175

M
ea

n
To

ta
l R

ew
ar

d

Learning Curves for Simple Implementations
Q Learning
ADP

[H]

Figure 3.1. Mean total reward achieved by each learning algorithm during
evaluation over the course of training

This shows that, as expected, ADP outperforms Q-learning for small numbers of inter-

actions, and then the DQL agent begins to outperform the ADP agent once it has collected

enough experience to take advantage of its ability to generalize and distinguish finer details.

Second, I show a comparison of these learning curves to an implementation of Algorithm

1

.

in Figure 3.2

.

35

0 1000 2000 3000 4000 5000
Step

0

50

100

150

200

250

M
ea

n
To

ta
l R

ew
ar

d
Effect of Mutual Learning Strategy

Q Learning
ADP
Mutual

[H]

Figure 3.2. Comparison of the learning curves of the standard deep Q-
learning implementation and the implementation informed by our mutual
learning analysis. Initially, the model informing the ADP is poor and hin-
ders learning for the DQL agent; however, once the ADP agent has built a
reasonable model, it gives good advice to the DQL agent and improves perfor-
mance.

This shows the impact of including the mutual learning term in the loss function. Initially,

the DQL agent receives bad information from the ADP agent due to insufficient samples in-

forming its model. As training progresses, the ADP model in the ADP agent gets better, the

advice provided by the ADP agent improves. With the cosine similarity weighting, the DQL

agent is able to discount advice about states the ADP agent is likely to have a poor model

of because of the discretization. The result is that the mutual learning algorithm achieves

moderately improved performance over either of the constituent algorithms on average.

Next, I examine experiments where a DQL agent, an ADP agent, and an agent trained

with Algorithm 1

.

were applied to the same set of 1000 training steps. The training data was

constructed by running an ADP algorithm in the Cart-Pole environment used for the other

experiment. Then, experience tuples were fed to each algorithm in order. I hold a set of

36

states and record the mean value of Eq. 3.3

.

on those states as training progresses for both

the unaltered DQL/ADP pair and the mutual learning algorithm.

Figure 3.3

.

shows how the disagreement term in Eq. 3.3

.

changes with and without in-

cluding it in the loss function.

0 200 400 600 800 1000
Steps

0

200

400

600

800

1000

Di
sa

gr
ee

m
en

t L
os

s

Mutual Learning Loss on Example Initial State
No Mutual Learning
With Mutual Learning

[H]

Figure 3.3. Comparison of the disagreement term when applied to the loss
function. This plot shows disagreement on an example initial state.

As expected, including Eq. 3.3

.

in the loss function causes the agents to reach a measure

of agreement more quickly than they do without the loss function.

37

4. CONCLUSIONS AND FUTURE WORK

Mutual learning is proving to be an exciting area of research for allowing simpler models to

achieve better performance. In this thesis I have presented what I believe is the first work

discussing mutual learning for deep reinforcement learning systems. I have also explored in

depth the problems of mutual learning for systems which use very different learning methods,

and I’ve discussed some methods for solving those problems. In doing so, this work also

begins to address the issue of translating knowledge between agents and establishing trust

among agents in the context of mutual learning, which are fundamental requirements of

effective mutual learning.

While the work presented here is a good first step, I believe there is significant opportunity

for further research.

4.1 Mutual Reinforcement Learning in High Dimensional Problems

While the cart-pole problem is a useful problem to study, the system is described com-

pletely by four variables. However, many important practical applications of reinforce-

ment learning involve very high-dimensional state spaces. Further research could be di-

rected to exploring how the techniques presented here could be applied to much higher-

dimensional problems. For example, a typical formulation of problems in the Atari domain

involves states consisting of 4 stacked RGB frames of dimension 210 × 160. This implies a

210 × 160 × 3 × 4 = 403, 200 dimensional state-space, and that represents one of the most

simple visual reinforcement learning problems. It will be important to explore the perfor-

mance of mutual reinforcement learning in these spaces so that the techniques presented in

this thesis could be applied to more practical, real-world problems.

4.2 Mutual Policy Gradient Algorithms

As discussed in Section 1.3

.

, a significant amount of the field of deep reinforcement learning

for robotics is dominated by policy-gradient, actor-critic algorithms. While it’s possible that

the mutual learning techniques presented will help the critic learn more effectively, that

38

should be explored in future research. Furthermore, there may be interesting applications of

mutual learning which allow the actor function to also learn more quickly. Future research

that explores improvement of actor-critic methods with the application of mutual learning

could have significant impact in real-world domains such as robotics and self-driving.

4.3 Mutual Learning in Different Task Formulations

In this work, we only study the problem of mutual learning when the agents are at-

tempting to learn exactly the same problem – that is, the state space, action space, reward

function, and transition functions are all identical. One interesting area of exploration would

be how agents can communicate when some of these are different. For example, imagine a

scenario where you have one bipedal robot and one quadrupedal robot, and you wish to

achieve mutual learning on a task which involves walking on rough terrain. The gait that

each robot learns will clearly be quite different from robot to robot. However, imagine now

that the learning scenario includes occasional canyons which must be leapt over. At a low

level (i.e., the torques applied to motors), the process of jumping will clearly be different.

However, there will be commonalities: build up speed, apply significant power near the edge,

and so on. In this scenario and in many other real-world scenarios, there are opportunities

for mutual learning which do not exactly line up with the output of the Q function, or the

policy function, or any other obvious place. However, a human can watch a gazelle leaping

through a field and (perhaps poorly) mimic that behavior. Future research should explore

how we can achieve transfer learning in these more abstract, higher-level actions.

Similarly, consider the Atari domain. This problem set consists of many different video

games, but most of these games belong to one of a few very broad classes of games. For

example, Asteroid, Centipede, and River Raid all share a format (enemies move vertically

down the screen, and you can shoot or avoid them). In essentially all of these games,

everything on the screen represents either a boundry, an obstacle, a power-up, or the player,

and many human players can tell at first look which class a given object belongs to. While

research has been done in the field of transfer learning for problems like this, future research

39

could formulate a mutual learning problem of many agents playing many different games

and sharing knowledge among one another to learn more quickly.

4.4 Limits of Mutual Learning

As noted in Chapter 2

.

, increasing the number of mutually learning agents in a system

adds a significant amount of communication overhead to the problem, which scales with

O(n2) (where n is the number of agents), but adding more agents appears to improve perfor-

mance. Future research should explore this trade-off, and attempt to address the question:

how does performance improve as we add more agents? Additionally, researchers may look

to adapt the “communication budget” mentality that exists in the student/teacher advising

literature and explore techniques inspired by that work to reduce the amount of inter-agent

communication without sacrificing increased performance (or, indeed, achieving better per-

formance by avoiding negative transfer).

40

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[3] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[4] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-time dynamic
programming,” Artificial intelligence, vol. 72, no. 1-2, pp. 81–138, 1995.

[5] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning
and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[8] H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil, “Deep
reinforcement learning and the deadly triad,” arXiv preprint arXiv:1812.02648, 2018.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[10] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch,
“Emergent tool use from multi-agent autocurricula,” arXiv preprint arXiv:1909.07528,
2019.

[11] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent complexity
via multi-agent competition,” arXiv preprint arXiv:1710.03748, 2017.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[13] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal
of Big data, vol. 3, no. 1, pp. 1–40, 2016.

41

[14] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents in reinforce-
ment learning,” in Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, 2013, pp. 1053–1060.

[15] F. L. Da Silva, R. Glatt, and A. H. R. Costa, “Simultaneously learning and advis-
ing in multiagent reinforcement learning,” in Proceedings of the 16th conference on
autonomous agents and multiagent systems, 2017, pp. 1100–1108.

[16] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,” arXiv
preprint arXiv:2006.05525, 2020.

[17] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2006, pp. 535–541.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[19] K. S. Narendra and S. Mukhopadhyay, “Mutual learning: Part i-learning automata,”
in 2019 American Control Conference (ACC), IEEE, 2019, pp. 916–921.

[20] K. S. Narendra and S. Mukhopadhyay, “Mutual learning: Part ii–reinforcement learn-
ing,” in 2020 American Control Conference (ACC), IEEE, 2020, pp. 1105–1110.

[21] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 4320–4328.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, Openai gym, 2016. arXiv: 1606.01540 [cs.LG]

.

.

[23] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE transactions on systems, man, and
cybernetics, no. 5, pp. 834–846, 1983.

[24] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D.
Erhan, C. Finn, P. Kozakowski, S. Levine, et al., “Model-based reinforcement learning
for atari,” arXiv preprint arXiv:1903.00374, 2019.

[25] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete world
models,” arXiv preprint arXiv:2010.02193, 2020.

42

http://arxiv.org/abs/1606.01540

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances in Neural Infor-
mation Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035.
[Online]. Available: http://papers .neurips .cc/paper/9015- pytorch- an- imperative-
style-high-performance-deep-learning-library.pdf

.

.

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, Sep. 2020. doi: 10.1038/s41586-020-2649-2

.

. [Online]. Available: https:
//doi.org/10.1038/s41586-020-2649-2

.

.

[28] C. Reid and S. Mukhopadhyay, “Mutual q-learning,” in 2020 3rd International Con-
ference on Control and Robots (ICCR), IEEE, 2020, pp. 128–133.

[29] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014. arXiv:
1412.6980 [cs.LG]

.

.

[30] C. Reid and S. Mukhopadhyay, “Mutual reinforcement learning with heterogeneous
agents,” Forthcoming.

[31] F. L. Da Silva, R. Glatt, and A. H. R. Costa, “Simultaneously learning and advis-
ing in multiagent reinforcement learning,” in Proceedings of the 16th conference on
autonomous agents and multiagent systems, 2017, pp. 1100–1108.

43

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1412.6980

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	ABSTRACT
	BACKGROUND
	Model-free Learning
	Model-based Learning
	Deep Reinforcement Learning
	Transfer Reinforcement Learning
	Student/Teacher Advising
	Model Distillation

	Mutual Learning
	Canonical Problems in Reinforcement Learning
	Tools for Reinforcement Learning

	MUTUAL Q-LEARNING
	Methods
	Notes on Convergence

	Simulation Results
	Impact of Mutual Learning
	Varying the Weight of the Mutual Learning Term
	Increasing the Number of Mutually Learning Q Estimators
	Decaying the Mutual Learning Term Weight

	Discussion

	HETEROGENEOUS MUTUAL LEARNING
	Methods
	Methods
	Q-Learning Agent
	ADP Agent
	Mutual Learning Algorithm

	Simulation Results

	CONCLUSIONS AND FUTURE WORK
	Mutual Reinforcement Learning in High Dimensional Problems
	Mutual Policy Gradient Algorithms
	Mutual Learning in Different Task Formulations
	Limits of Mutual Learning

	REFERENCES
	INDEX

