
APPLICATION OFFLOADING SCHEMAS FOR CLOUD
ROBOTICS

by

Manoj R Penmetcha

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer and Information Technology

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Byung-Cheol Min, Chair

Department of Computer and Information Technology

Dr. J. Eric Dietz

Department of Computer and Information Technology

Dr. Baijian Yang

Department of Computer and Information Technology

Dr. Jin Wei-Kocsis

Department of Computer and Information Technology

Approved by:

Dr. Kathryne Newton

2

This dissertation is dedicated to my wife, Nikhita Alluri, my parents, and my in-laws, for

their endless support and love.

3

ACKNOWLEDGMENTS

In our life, we meet few people who can deeply influence the course of our life; one such

fortunate event led me to meet Dr. Byung-Cheol Min in 2012. As my chair, Dr. Min was

always supportive and encouraged me to pursue research based on my strengths; he has

given me complete freedom to explore research ideas, without any objections. I will forever

be indebted to Dr. Min for his constant support, guidance, and working late nights with me

to improve and elevate my research. He has been my consistent source of inspiration, and

association with him is something I will cherish throughout my life.

I would also like to thank my committee members, Dr. J. Eric Dietz, Dr. Baijian Yang,

and Dr. Jin Wei-Kocsis, for providing valuable feedback, support, and insights. One of

my early research topics involved algae detection with machine learning, and was based on

ideas suggested and foundations conceived by my committee members. This research topic

was the most important motivating factor for me to pursue the research presented in this

dissertation, and I am very grateful for everything.

I also want to thank current and former members of the SMART Lab. I made friends

whom I will cherish throughout my life. Pursuing my Ph.D. was one of the happiest phases

of my life, and they are one of the main reasons for that. And a special mention to my

friends, Jun Han Bae, Shaocheng Luo, Shyam Sundar Kannan, Wonse Jo, and Sangjun Lee,

for whom I will always be grateful.

The person at Purdue with whom I have the longest association is my assistantship

supervisor Matthew Riehle. I am pretty confident that Matt is one of the coolest, kindest,

and most supportive bosses I could ever find in my life. With funding support from Purdue

libraries, I was able to pursue research ideas without any limitations and with complete free

rein. Thank you, Matt, you are one of the biggest reasons for my worry-free and fun-filled

graduate life.

I would like to thank my mom and dad for their continued support, love, encouragement,

and for instilling in me the importance of higher education. Without their encouragement, I

wouldn’t have dared to pursue my Ph.D. I would also like to thank my in-laws for standing

by me during the last three years. Finally, to the love of my life Nikhita Alluri for all her

4

sacrifices, unconditional love, and unwavering support. I am very fortunate to have you on

my side. This is just the beginning, and I look forward to many bright and colorful years

together with you and Dhruv.

5

TABLE OF CONTENTS

 LIST OF TABLES . 9

 LIST OF FIGURES . 10

 LIST OF SYMBOLS . 14

 ABBREVIATIONS . 16

 ABSTRACT . 18

 1 INTRODUCTION . 20

 1.1 Contributions . 23

 1.2 Structure of the Dissertation . 24

 2 BACKGROUND . 25

 2.1 Software Components . 26

 2.1.1 Robot Operating System . 27

 2.1.2 Cloud Computing . 28

 2.2 Cloud Robotics Evaluation Metrics . 28

 2.2.1 Latency . 29

 2.2.2 Scalability . 29

 2.2.3 Reliability and Availability . 30

 2.2.4 Interoperability . 31

 2.2.5 Security . 31

 2.3 Limitations of the Current Studies . 32

 3 ARCHITECTURE AND FULL OFFLOADING 34

 3.1 Introduction . 34

 3.2 Related Work . 35

 3.3 Architecture . 37

 3.3.1 Robot Layer . 37

6

 ROS Based Robots . 38

 Non-ROS Based Robots . 39

 3.3.2 Cloud Layer . 40

 JavaScript Server . 41

 JavaScript Libraries . 41

 3.4 Application and Evaluation . 42

 3.4.1 Offloading ROS Applications to the Cloud 42

 CPU Utilization . 43

 Latency . 45

 3.4.2 Object Detection Using TensorFlow JS Library With Odroid (Non-ROS) 46

 3.4.3 Application Scenario Using a Heterogeneous Multi-Robot 47

 3.5 Conclusion . 49

 4 A DRL-BASED DYNAMIC APPLICATION OFFLOADING METHOD 50

 4.1 Introduction . 50

 4.2 Background . 52

 4.2.1 Related Work . 52

 4.2.2 Deep Q Network . 54

 4.3 Problem Formulation . 56

 4.3.1 State Space . 56

 4.3.2 Action Space . 58

 4.3.3 Reward . 58

 4.3.4 DQN Algorithm for Dynamic Offloading 59

 4.4 Experimental Setup With Robot Navigation Application 61

 4.4.1 Navigation Application Framework 63

 4.4.2 Path Planning . 64

 4.4.3 AWS and Latency . 67

 4.4.4 DQN Network . 68

 4.5 Results and Analysis . 69

 4.5.1 Real Dataset . 70

7

 4.5.2 Synthetic Dataset . 73

 Local Computation . 74

 Cloud Computation . 75

 Learning a CPU Value to Offload . 78

 4.5.3 Comparative Evaluation With Long Short-Term Memory Algorithm . 79

 4.5.4 Discussion . 81

 4.6 Conclusion . 83

 5 PREDICTIVE OFFLOADING . 84

 5.1 Introduction . 84

 5.2 Related Work . 86

 5.3 Generalized Predictive Algorithm . 87

 5.4 Linear Regression and Mobile Robot Path Planning Application 90

 5.4.1 Linear Regression Model . 90

 5.4.2 Robot Path Planning Platform . 92

 5.4.3 Cloud Platform . 92

 5.5 Results and Analysis . 94

 5.5.1 Correlation . 95

 5.5.2 Residuals . 97

 5.5.3 Decision Making Accuracy . 100

 5.5.4 Discussion . 102

 5.6 Conclusion . 103

 6 CONCLUSION AND FUTURE WORK . 105

 6.1 Conclusion . 105

 6.2 Future Research Direction . 107

 REFERENCES . 108

 A APPENDIX . 121

 VITA . 122

8

LIST OF TABLES

 3.1 Hardware configuration of the robots . 42

 4.1 DQN network parameters used for training. 69

 4.2 Hardware configuration of the robot and AWS. 70

 5.1 Hardware configuration of the robot and AWS instance used to generate perfor-
mance evaluation data. 94

 5.2 Average correlation values for actual time of execution tl and tc 95

 5.3 Running windows means for cloud execution (tc and pc) and local execution (tl
and pl) . 98

 5.4 Prediction accuracy for various N . 101

9

LIST OF FIGURES

 1.1 Generic cloud robotic architecture . 21

 2.1 Schematic representation for traditional ROS workflow 27

 2.2 Cloud service models . 29

 3.1 Schematic overview of Smart Cloud architecture. 35

 3.2 Smart cloud architecture; (Middle) Cloud server (Cloud layer): The JS server
interacts with JS libraries and ROS, (Left) ROS-based robots (Robot layer with
ROS robots): Robots interact with the server using the ROSbridge protocol, and
(Right) Non-ROS-based robots (Robot layer with non-ROS robots): Robots send
information through wireless data transfer and receive responses as web services. 37

 3.3 Smart cloud: SAAS-based ROS interface. The robot provides a list of topics and
the architecture displays corresponding packages that can be used. 39

 3.4 General flow of information between robot and cloud through the RESTful web
service. . 40

 3.5 Flow chart illustrating the data flow between the robot and Cloud. 41

 3.6 CPU utilization with gmapping deployed on the robot (Jackal). On balance,
gmapping fully consumes one processor core. 43

 3.7 CPU utilization with gmapping deployed on the cloud. Demand on the robot
CPU is significantly decreased. . 44

 3.8 Round trip delay for information exchange between the robot and the cloud
server. . 45

 3.9 Object (i.e. cabinet, swivel chair, and trash can) detected using TensorFlowJS. 47

 3.10 Heterogeneous multi-robot setup. . 48

 3.11 Heterogeneous multi-robot application with jackal and roomba. Jackal generates
a map of the environment and roomba detects objects in the environment. . . . 48

 4.1 Deep Q-Network architecture. . 54

 4.2 Dynamic computational offloading framework based on DQN. The robot envi-
ronment provides input in the form of state space, action performed, and reward
acquired. The DQN learns from these inputs and sends back a response in the
form of a Q-value for the state and action pair. The neural network used for the
navigation application has one input layer, three hidden ReLU layers with 256
neurons each, and one dense linear output layer. 57

 4.3 The graphical simulation environment that was used to validate the proposed
algorithm. 61

10

 4.4 Visualization of gazebo global cost map. The panel shows a global map of the
environment with obstacles indicated (Red arrows). In this instance, the husky’s
starting position is (0.001, -0.001) and the goal position is (22.95, 39.05). Between
the starting position and goal, the shortest path is represented by a green line
and the euclidean distance is x = 45.29. The number of nodes to traverse is n =
410,320, and the input data size is dp

t = 5,303,251. 62

 4.5 Two-layered navigation framework for algorithm validation. ROS layer (Top):
A robot interacts with a gazebo world and AWS to generate state-space values
along with the local and cloud execution times for path-planning. DQN Layer
(Bottom): Derives an optimal offloading policy using inputs from the ROS layer. 63

 4.6 Schematic representation for calculating the number of nodes that the robot needs
to explore before reaching its destination. 65

 4.7 A screenshot while the simulation environment is running. The left panel shows
the linux terminal with state-space value (d,u,b) and actual execution times
(llocal, lcloud). The right panel shows a global map of the environment with the
shortest path from the origin (0.0, 0.0) to the goal (21.05, -52.45) coordinates
with a red line. 67

 4.8 Robot-AWS communication framework. The robot forwards LiDAR data (Ob-
stacles) and the current and goal positions to AWS. AWS calculates and forwards
the shortest path between those positions to the robot. 68

 4.9 Plot showing loss convergence over time for the real dataset. Loss value plotted
against time step (t= 1000); Plot shows average loss decreasing and convergence. 71

 4.10 Plot showing rewards acquired over time for the real dataset. Rewards plotted
against time step (t = 1000); Plot shows rewards increasing over time, implying
that the network learned a policy for acquiring maximum rewards. 72

 4.11 Choice analysis plot for the size of path planning data input (dp
t). For normalized

values dp
t > 1.1, cloud computing was the preferred choice of the policy. 73

 4.12 Loss convergence over time for a local only synthetic dataset. Loss value plotted
against time step (t= 1020); Plot shows average loss decreasing and convergence. 74

 4.13 Rewards acquired over time for a local only synthetic dataset. Rewards plotted
against time step (t = 1000); Plot shows rewards increasing over time, implying
that the network learned a policy for acquiring maximum rewards. 75

 4.14 Loss convergence over time for a cloud only synthetic dataset. Loss value plotted
against time step (t= 530); Plot shows average loss decreasing and convergence. 76

 4.15 Rewards acquired over time for a cloud only synthetic dataset. Rewards plotted
against the time step (t= 530); Plot shows agent learned a policy that choosing
cloud computing over local computing gives it a positive reward. 76

11

 4.16 Loss convergence over time for a CPU based synthetic dataset values. Loss value
plotted against time step (t = 1050); plot shows average loss decreasing and
convergence. 77

 4.17 Rewards acquired over time for a CPU based synthetic dataset. Rewards plotted
against the time step (t = 1050); Plot shows agent learning a policy to acquire
positive rewards. 77

 4.18 Choice analysis plot illustrating the CPU threshold value learned by the offloading
decision policy, which was 0.61. 78

 4.19 Confusion matrix used to determine the accuracy of the network; Over 94 percent
accuracy was achieved. 79

 4.20 Bar chart comparing application offloading prediction accuracy for LSTM and
proposed DRL algorithms. Prediction accuracy was calculated by training the
models with the first 500 time steps t and with the entire dataset of 1000 time
steps. Our proposed DRL algorithm achieved better accuracy in both cases. . . 80

 5.1 Illustration of the proposed predictive algorithm for offloading decision-making.
(Top) Input data size from robot hardware (e.g. LiDAR, camera) along with
actual execution times from cloud and robot executions are used to train the
predictive model. The training set consists of the previous N values to facilitate
learning on the fly and faster training. (Bottom) An instance of ROS running on
the cloud subscribes to ROS topics from the robot and responds with application
output. 85

 5.2 Flowchart of the generalized predictive algorithm. The specific predictive algo-
rithms Ψc and Ψl are trained on values from the arrays Bl and Bc to predict the
execution times pc

i and pl
i. Arrays Bl and Bc contain the previous N observa-

tions of actual execution times tci and tli along with arguments args passed to the
application. . 89

 5.3 Navigation framework for algorithm validation. A mobile robot performs path
planning inside an gazebo world by interacting with AWS. The data from the
simulation are fitted to a regression model to predict execution times for a given
input data size. 93

 5.4 Pearson r correlation plot for actual cloud execution time (tl) and input data size
(d). . 96

 5.5 Pearson r correlation plot for actual cloud execution time (tc) and input data
size (d). . 97

 5.6 Running window mean for cloud actual execution time (tl) and predicted time
(pl). Maximum prediction accuracy is achieved at around N = 100. 99

 5.7 Running window mean for cloud actual execution time (tc) and predicted time
(pc). Maximum prediction accuracy is achieved at around N = 40. 100

12

 5.8 Prediction accuracy for various N . The red dotted line indicates the accuracy of
linear regression on the full dataset. The green dotted line indicates the accuracy
of an LSTM model on the full dataset. For full dataset 80:20 training:validation
split was used. . 102

13

LIST OF SYMBOLS

Chapter 4

α Learning rate

β Tuning parameters

γ Discount rate

π Policy

θ Trainable weights

θ− Target trainable weights

A Current position of the robot

a Action

B Goal position

b Network latency

calgorithm Algorithm-determined action

ccloud Computational cost for cloud computation

d Input data size of application

L Loss

llcompletion Timestamp of application completion

llocal Local time of execution

lstart Time stamp when the task was first assigned to the robot

n Number of nodes

N Replay memory capacity

Q Q-function

Q̂ Target Q-function

R Replay memory

r Reward

s State

t Time steps

u CPU availability

x Euclidean distance

14

Chapter 5

Ψ Predictive algorithm

a Application task

A Application

Bc Queue data structures to store cloud values

Bl Queue data structures to store local values

cc Intercept for Ψ from N previous cloud values

cl Intercept for Ψ from N previous local values

d Size of the data

d Mean of the input data size

g Occupancy grid

mc Slope for Ψ from N previous cloud values

ml Slope for Ψ from N previous local values

N Queue with previous N observations

pc Predicted cloud execution time

pl Predicted local execution time

r Pearson correlation coefficient

tc Actual cloud execution time

tc Mean of actual execution time from N previous cloud values

tl Actual local execution time

tl Mean of actual execution time from N previous local values

15

ABBREVIATIONS

ARIMA Autoregressive integrated moving average

AWS Amazon web services

CNN Convolution neural network

CPU Central processing unit

DQN Deep Q-network

DRL Deep reinforcement learning

FIFO First-in first-out

GB Gigabyte

GHz Gigahertz

GPS Global positioning system

GPU Graphics processing unit

HTTP Hypertext transfer protocol

IaaS Infrastructure as a service

JS JavaScript

JSON JavaScript object notation

LAN Local area network

LiDAR Light, detection, and ranging

LQM Link quality matrix

LSTM Long short term memory

Mbps Megabits per second

MDP Markovian decision process

NPM Node package manager

OS Operating system

PaaS Platform as a service

QOS Quality of service

RaaS Robot as a service

RAM Random access memory

ReLU Rectified linear unit

16

RL Reinforcement learning

ROS Robot operating system

SaaS Software as a Service

SARIMA Seasonal autoregressive integrated moving average

SLAM Simultaneous localization and mapping

UGV Unmanned ground vehicle

XML Extensible markup language

ZMQ ZeroMQ

17

ABSTRACT

Robots have inherently limited onboard processing, storage, and power capabilities.

Cloud computing resources have the potential to provide significant advantages for robots

in many applications. However, to make use of these resources, frameworks must be devel-

oped that facilitate robot interactions with cloud services. We first propose a cloud-based

architecture called Smart Cloud that intends to overcome the physical limitations of single-

or multi-robot systems through massively parallel computation that is provided on demand

by cloud services. Smart Cloud is implemented on Amazon Web Services (AWS) and avail-

able for robots running on the Robot Operating System (ROS) and on non-ROS systems.

Smart Cloud also features a first-of-its-kind architecture that incorporates JavaScript-based

libraries to run various robotic applications related to machine learning and other meth-

ods. We later develop and validate three types of application offloading algorithms for cloud

robotics.

For the first algorithm, we evaluate the architecture performance with respect to a full

offloading schema that offloads the whole computation onto the cloud service provider. For

the full offloading schema, we deploy the application completely on the cloud without con-

sidering the local capabilities of the robot. We validated this schema with machine learning

and navigation applications. We evaluated the performance of the architecture both with

complete offloading and with no offloading in terms of CPU usage, latency, and security.

The key to effectively offloading tasks is an application solution that does not underutilize

the robot’s own computational capabilities and makes decisions based on crucial cost param-

eters such as latency and CPU availability. Hence for the second algorithm, we formulate

the application offloading problem as a Markovian decision process and propose a deep rein-

forcement learning-based deep Q-network (DQN) approach. The state-space is formulated

with the assumption that input data size directly impacts application execution time. The

proposed algorithm is designed as a continuous task problem with discrete action space; i.e.,

we apply a choice of action at each time step and use the corresponding outcome to train

the DQN to acquire the maximum rewards possible. To validate the proposed algorithm, we

designed and implemented a robot navigation testbed. The results demonstrated that for

18

the given state-space values, the proposed algorithm learned to take appropriate actions to

reduce application latency and also learned a policy that takes actions based on input data

size. Finally, we compared the proposed DQN algorithm with a long short-term memory

(LSTM) algorithm in terms of accuracy. When trained and validated on the same dataset,

the proposed DQN algorithm obtained at least 9 percentage points greater accuracy than

the LSTM algorithm.

Another key factor to enabling robot use of cloud computing is designing an efficient

offloading algorithm that forms a quick consensus on when to offload without any prior

knowledge or information about the application. The third algorithm is designed to be

trained quickly after the application has been initiated. We propose a predictive algorithm

to anticipate the time needed to execute an application for a given application data input

size with the help of a small number of previous observations. To validate the algorithm,

we train it on the previous N observations, which include independent (input data size) and

dependent (execution time) variables. To understand how algorithm performance varies in

terms of prediction accuracy and error, we tested various N values using linear regression

and a mobile robot path planning application. From our experiments and analysis, we

determined the algorithm to have acceptable error and prediction accuracy when N > 40.

19

1. INTRODUCTION

The scope of the robotics industry is immense, and the industry is poised to see huge gains in

coming years [1], [2]. The International Data Corporation estimates the 2019 economic value

of robotics and related services will hover around $135.4 billion, and during the period of 2018

to 2023, the industry is estimated to register a compound annual growth of 24.52 percent [3].

This growth is aided by the ubiquitous availability of big data and by recent advancements

in machine learning, which can be used to develop smarter and more responsive robots.

However, most such applications involve processing large quantities of data, which requires

high-performing computational resources [4]. Existing robots come with limited onboard

computing capabilities, and once a robot is built, it is not easy to change the hardware

configuration. By enabling cloud computing for robotic applications, robots will be able to

access increased computational power and storage space as needed to carry out their assigned

tasks. With the resources provided by cloud computing services, computationally-intense

robotic tasks like object detection, navigation, and others can be solved more efficiently.

Cloud computing is a service-driven paradigm for hosting applications on remote infras-

tructure, i.e. resources are provided on demand. Since its inception, cloud computing has

helped researchers and business users to host applications by providing access to distributed

and shared computing resources over the Internet [5]. In practice, the services provided by

the cloud can be categorized into three major types: Software as a Service (SaaS), Platform

as a Service (PaaS), and Infrastructure as a Service (IaaS) [6].

Cloud robotics, first introduced as a term by James J. Kuffner in 2010 [7], can be de-

fined as the wireless connection of robots to external computing resources to support robot

operation. Cloud-enabled robots are able to offload computing tasks to remote servers, thus

relying less on their onboard computers and instead exploiting the inexpensive computing

power and data storage options provided by cloud service providers. The cloud robotics mar-

ket is estimated to achieve 23.2 percent compound annual growth; it was valued at around

$2.3 billion in 2017, and is expected to reach $7.9 billion by the year 2023 [8]. To realize

the full potential and scope of cloud robotics, however, it is very important to innovate and

address the shortcomings currently faced by the field.

20

Figure 1.1. Generic cloud robotic architecture showing robots connected to
cloud computing through wireless network. [4][© 2015 IEEE].

The fundamental research objective of this dissertation is to overcome the limitations

of robotic hardware by leveraging elastic resources in a centralized cloud infrastructure.

This study seeks to overcome the limitations of existing cloud robotics solutions through

introducing novel architecture and various dynamic offloading schemas, while at the same

time incorporating a major emphasis on generalizability, scalability and usability. This

research primarily consists of four parts:

Cloud Robotic Architecture, presented in Chapter 3

A cloud robotic architecture is a framework that facilitates robots to connect with cloud

infrastructure. The architecture is designed to:

• Support heterogeneous robots.

• Support robots using both ROS and non-ROS systems.

• Be used by robots in both Platform as a Service (PaaS) and Software as a Service

(SaaS) implementations.

21

• Facilitate the usage of JavaScript packages for robotic applications.

Full Application Offloading, presented in Chapter 3

A full offloading schema is where the application is completely deployed on the cloud plat-

form. The full offloading schema will be evaluated based on the following parameters:

• Percentage of CPU utilized.

• Delay in response (latency).

Dynamic Application Offloading with Deep Reinforcement Learning, presented

in Chapter 4

A dynamic offloading schema based on deep reinforcement learning is where an algorithm

dynamically decides when to offload the application, taking into consideration:

• The robot’s local computing capabilities observed from state space variables.

• Latency difference between local computation and cloud service.

• Application input data size.

Dynamic Application Offloading with Predictive Algorithm, presented in Chap-

ter 5

A dynamic offloading schema based on predictive algorithm is where an algorithm dynami-

cally decides when to offload the application, taking into consideration:

• Past execution times of the application.

• Application input data size.

These research objectives will be achieved by theoretical and experimental approaches

carried out in the rest of the dissertation.

22

1.1 Contributions

The chapter wise contributions of this research can be summarized as follows:

Chapter 3 :

• Designed a two-tiered cloud robotic architecture, which is the first of its kind to

provide access to open-source JavaScript libraries. The architecture is also novel in

its approach as it can be used for both SaaS and PaaS depending on the needs of the

application. The architecture is designed to work with heterogeneous multi-robot

platforms by catering to both ROS-based and non-ROS-based robotic systems. For

non-ROS robots, the framework implements a RESTful-based web service to com-

municate with the robot.

• To illustrate the architecture’s performance, we implemented complete application

offloading to the cloud. For this purpose, we used a ROS-based TensorFlow object

detection package called gmapping and evaluated the performance in terms of CPU

utilization, latency, and security.

Chapter 4 :

• We formulate the computational offloading problem as a Markovian decision process

(MDP) and propose a deep reinforcement learning-based deep Q-network (DQN)

approach for its solution.

• We formulate the state space based on the assumption that input data size directly

impacts application execution time and define a variable reward function that helps

training converge more quickly and learning of a robust policy.

• We analyze the proposed algorithm using a robot navigation application, evaluating

it on real data and also generating synthetic data to analyze whether the network

is learning the appropriate policy with respect to all possible outcomes.

23

Chapter 5 :

• We introduce a predictive algorithm to predict the execution time of an application

under both cloud and onboard computation, based on the application input data

size. We further validate the predictive algorithm with a linear regression model.

• The algorithm is designed to be trained after the application has been initiated.

To make the algorithm faster to train, we train it on a fixed dataset of N previous

observations. We experiment with various N to observe the prediction accuracy

and error.

• We employ Gazebo simulation to analyze the proposed algorithm using a robot path

planning application.

1.2 Structure of the Dissertation

This dissertation consists of five chapters, including this introductory chapter. Each

chapter is absolute and can be read independently. The rest of the proposal is organized as

follows. In Chapter 2 , we discuss well-known existing solutions and challenges in the area

of cloud robotics. We also talk about recently introduced computational offloading models.

In Chapter 3 , we propose the cloud robotics architecture. We also validate the architecture

with computational offloading. In Chapter 4 , we propose a deep reinforcement learning-

based deep Q-network (DQN) approach for application offloading. In Chapter 5 , we propose

a predictive algorithm to anticipate the time needed to execute an application for a given

application data input size with the help of a small number of previous observations. Finally,

Chapter 6 summarizes the current work and outlines future direction for this research.

24

2. BACKGROUND

This chapter presents background related to cloud computing and cloud robotics. However,

each application chapter includes the literature review pertaining to the proposed solution.

The field of robotics is growing at a great pace [1], [2], and one factor driving its growth

is the widening range of robotic applications [4]. Robots have made inroads into a variety

of complicated application spaces, which developments have mainly been driven by the in-

troduction of highly-sophisticated robots in areas such as industrial robots, personal robots,

navigation, and robotic surgery [9], [10]. Among the major impetuses for the sophistication

of such high-level robots are recent advancements in information technology [11]. The rapid

evolution of technology is led by AI, cloud computing, IoT, blockchain, and other develop-

ments, and these technologies have opened up many robotic application spaces that were

previously unimaginable [11]. Recent advancements in machine learning [12] are being used

to develop smarter robots, and so most of these robotic applications require high-performing

computational capabilities to attain a satisfactory level of performance. However, it is often

the case that extant robots are equipped with limited computational capabilities, and once

a robot is assembled, changing its hardware configuration is not easy.

One thing that is common to all these new technologies is that they require high com-

putational resources for application execution. Meanwhile, robots themselves often come

with fixed computing capabilities and so cannot fulfill the computational demands of these

systems and other new technological advancements. Providing robots with access to external

computational resources such as cloud computing is an effective means of solving this prob-

lem [13]. Cloud computing can provide access to on-demand computational resources and

significantly enhance application performance for robots that otherwise have only limited

computational resources. Providing robot access to the on-demand computing resources

offered by cloud service providers can be an effective means of solving this problem [13].

Namely, by taking advantage of the computing power and data storage options provided by

cloud services, cloud-enabled robots can rely less on their local computation resources.

The invention of the World Wide Web in the late 1980s opened up the possibility of

connecting a robot to an external machine over the Internet. In 1994, K. Goldberg was

25

amongst the first to successfully connect a robot to the web, teleoperating the robot through

an Internet browser [14]. Having access to the Internet opened up many verticals in robotics,

of which one is cloud robotics. Cloud robotics can be defined as the wireless connection of

robots to external computing resources to support robot operations. Cloud-enabled robots

facilitate the offloading of computing tasks to remote servers, thus relying less on the on-

board computers and allowing the robots access to the increased computational power and

storage space required for a number of applications [15]. Cloud computing also facilitates

robot access to powerful machine learning tools that can be used for robotic applications.

The area of study enabling robots to utilize cloud computing is termed cloud robotics,

which was first coined by James J. Kuffner in 2010 [7]. Cloud robotics algorithms are

designed on the basic premise that when robots have insufficient computational resources

for local execution of an application, using cloud resources should improve the performance

of the application in terms of execution time and energy efficiency. If a robot has the bare

minimum of computational capability, full application offloading will be an obvious choice;

however, many robots presently being produced are computationally capable, and so dynamic

computational offloading algorithms are a wiser choice as they take into account both the

robot’s computational capability and the application’s computational requirements.

In this literature review, we will first discuss the main software components involved

in cloud robotics, followed by the latest frameworks in the area of cloud robotics and key

evaluation metrics for cloud robotics. Finally, we conclude with the limitations on cloud

robotics that we plan to address through this study.

2.1 Software Components

To understand the latest research in the area of cloud robotics, it is important to first be

familiar with key software components used in the research. We discuss these components

below.

26

Figure 2.1. Schematic representation for traditional ROS workflow along
with desktop prototyping using Matlab. [16][© 2017 Matlab].

2.1.1 Robot Operating System

The boom in robotics in the last decade led to the development of a new generation

of robotics software. One of the most important contributions in this area is the 2007 de-

velopment of the Robot Operating System (ROS) by Willow Garage [17]. As seen in Fig.

 2.1 , ROS is a framework for writing robotics software that can be used across almost every

robotic platform available [18], and that helps researchers and developers to create software

that is modular, concurrent, open-source, and supports code reuse. ROS has been widely

accepted; the number of individuals, research teams, companies, and projects using ROS has

grown exponentially [19]. These communities have worked together to collaboratively de-

velop general-use libraries for navigation, point clouds, and more that have proved invaluable

and timesaving in robotics research.

In 2012, Crick et al. introduced the ROS package Rosbridge, which helps ROS-based

robots to interact with non-ROS systems [20]. Specifically, Rosbridge provides a mechanism

within which messages generated by ROS systems are exposed to non-ROS based agents in

JSON format using the WebSockets [21] API.

27

2.1.2 Cloud Computing

Cloud computing is a paradigm for hosting applications on remote infrastructure [13].

More precisely, a cloud computing platform is a parallel and distributed system that consists

of inter-connected virtual computers which are dynamically represented as one (or more)

unified computer resource based on a service-level agreement with an end user [22]. Cloud

computing is service-driven, i.e. resources are provided as a service-on-demand. In practice,

the services provided by the cloud can be categorized into three major types (Fig. 2.2):

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service

(IaaS).

• Software as a service (SaaS): SaaS is used to provide access to a completely

developed application over the Internet. Examples include Dropbox [23] and Sales-

force [24].

• Infrastructure as a service (IaaS): IaaS refers to the on-demand provisioning of

bare infrastructural resources. The consumer is usually provided with fundamental

computing resources on which they can deploy arbitrary software.

• Platform as a service (PaaS): PaaS falls between IaaS and SaaS, where cloud

service providers provide consumers with tools like a programming language and

libraries that help the consumer to develop applications easily.

• Robotics and Automation as a Service (RAaaS): This is the robotic equiva-

lent of SaaS, in which software is stored on the cloud server and access is provided

over the Internet to users and robots [25].

2.2 Cloud Robotics Evaluation Metrics

In this section, we will introduce key evaluation metrics that are used to evaluate the

performance of these architectures. The performance of cloud robotics architecture is usually

evaluated in terms of the following key metrics:

28

Figure 2.2. Cloud service models [26][© 2018 Chou].

2.2.1 Latency

Latency is used to describe any kind of delay that occurs during data communication over

a network, and is an important consideration that researchers cannot ignore [27]. Latency in

message exchange can be expensive in applications where robots need real-time feedback [28].

As cloud robotics implementations usually use a network to establish connections between

cloud services and robots, network delays can affect robot communication with cloud service

providers. Over the last decade, a massive leap has been made in wireless technologies, but

factors such as signal loss, network failure, and malware cause network delays that cannot

be controlled. Other reasons for latency include data size, network bandwidth, data pre-

processing, application processing time in the cloud, and round-trip time.

2.2.2 Scalability

Scalability is an important feature in robotics, and cloud computing can aid robots in

becoming more scalable. Through enabling robots to scale their computational resources

29

up or down depending on application requirements, cloud computing makes robots be more

dynamic. Cloud robotics also facilities robot crowd-sourcing [29], in which information

acquired by one robot can be shared with another to accomplish shared or separate goals.

The data can also be stored on the cloud infrastructure to create a meaningful dataset for

later use. RoboEarth [30] is a cloud robotics platform that provides crowd-sourcing facilities

by allowing robots to upload information to and download from the cloud servers.

As with single robots, multi-robots are restricted by resources, information, and commu-

nication constraints, which shortcomings can be overcome through the use of cloud robotics

[31]. Use of cloud robotics allows multi-robots to transfer data to the cloud, thereby releas-

ing the computing and storage overhead on individual robots. Cloud technology makes it

possible to design multi-robot systems that have real-time performance, are energy efficient,

and have low cost [32]. Cloud robotics architecture can especially provide multi-robots with

a centralized communication framework that creates a generic level of abstraction for robot

hardware, addressing interoperability issues and thus making robot communication easier.

Cloud robotics also facilitates the robot network to be more dynamic, where a robot can

join the network or become unavailable in an ad-hoc based on the immediate circumstances.

Hence, using cloud robotics for multi-robots makes the robotic network more scalable.

2.2.3 Reliability and Availability

In recent years, cloud computing has received significant attention in the context of

robotics and other applications. However, the reliability and availability of cloud service

providers plays important roles in cloud robotics architecture. It has been reported that

outages and failures of cloud services cause a loss of around 285 million dollars on a yearly

basis [33]. The reliability and availability of cloud services affect the Quality of Service

provided by a cloud robotics architecture [34], which denotes the level of performance, reli-

ability, and availability of the applications hosted using cloud services. New algorithms and

methods should be investigated to improve Quality of Service in robotics applications. No

comprehensive studies on Quality of Service for cloud robotics had been made until recently

30

[35]; the importance of Quality of Service in cloud robotics architecture is only beginning to

be emphasized.

2.2.4 Interoperability

Robots and sensors are developed and produced by different manufacturers, leading to

differences in output data formats. These diversified data formats need to be preprocessed to

match the requirements of the cloud computing platform. Similarly, data from cloud services

needs to be converted to a format the robots can comprehend. Managing these diversified

data formats incurs considerable overhead in cloud robotics architectures.

Multi-robot coordination similarly requires sharing individual data, and suffers from the

lack of a standardized format. Cloud robotics can act as middleware and convert data to a

given robot-specific format. Developing standard data formats, middleware [36], and SaaS-

based [37], [38] cloud robotics architecture can address data interoperability to an extent.

2.2.5 Security

Adopting cloud computing in robotics invites new issues in the form of privacy and

security. The information used in cloud robotics, such as maps, video, and images, is not

meant to be accessed without permission; however, cloud services provide opportunities for

hackers to gain inappropriate and unauthorized access to the data. Cloud services are also

prone to breaches in data, data loss, data leakage, malware, and other security issues [39].

Furthermore, the data acquired from robots is not homogeneous. The data from various

sensors are represented in the form of distributed databases; implementing security and

privacy protocols for these datasets is even more challenging [40]. To address these issues

and ensure the security and privacy of robot data, data encryption techniques need to be

explored. It is also important to design security measures such that they don’t adversely

impact the performance of the architecture. Various access control techniques can also be

explored to increase the security of the cloud robotics architecture.

31

2.3 Limitations of the Current Studies

The area of cloud robotics is a relatively new field of study in which research to date is

limited. Since its inception, a variety of cloud robotics architectures and applications have

been proposed; the proposed architectures share several common challenges. One of the

critical aspects of cloud robotics is the decision about what, when, and how to distribute ap-

plications between on-board resources and cloud services. Robot hardware comes in different

configurations and robotics applications have different requirements, producing a dynamic

environment that cannot be managed with a static framework. More specifically, the dy-

namic nature of robotics means that uploading all computational tasks to the cloud is not

an ideal solution. Over the last decade, a massive leap has been made in wireless technolo-

gies, but factors such as signal loss, network communication issues, and more cause network

delays that cannot be controlled. If an architecture depends completely on cloud services,

loss of network or increased latency will greatly impact robot performance. Thus, offload-

ing schemas and algorithms are needed to maximize the utilization of a robot’s on-board

resources when the situation demands. New methods and algorithms should be designed for

handling network latency.

Another limitation arises from the development and production of robots and sensors

by different manufacturers. The data formats output from these devices are different from

one another, necessitating that uploaded data be preprocessed to match the requirements of

the cloud computing platform. Similarly, data from cloud services should be converted to a

format the robots comprehend. The use of these diversified data formats and need for data

conversion incur considerable overhead in cloud robotics architectures. Developing standard

data formats and SaaS-based cloud robotics architectures can address data interoperability

to an extent. However, adopting cloud computing for robotics introduces new issues in the

form of privacy and security due to the data being hosted on the remote platform; cloud

services provide opportunities for hackers to gain inappropriate and unauthorized access to

the data. To address these issues, the use of data encryption techniques to ensure security

and privacy needs to be explored. It is also important to design security measures such that

they do not adversely impact the performance of the architecture.

32

In summary, to address these limitations, we proposed an architecture that differs from

other architectures by being built for use in both SaaS-based and PaaS-based applications.

A simple web interface will be provided for SaaS usage, and the code will be made publically

available for users to develop applications on top of it in PaaS usage. To address offloading

limitations, we introduce two novel dynamic application offloading algorithms in Chapter

 4 and Chapter 5 . To our knowledge, these are the first of their kinds in the area of cloud

robotics. First, we address the offloading problem from Markovian Decision Making and

perspectives and solve it using reinforcement learning-based neural networks. Then, we

introduce a predictive algorithm that predicts the time and energy required for execution of

an application based on a simple regression model

33

3. ARCHITECTURE AND FULL OFFLOADING

This chapter contains the material from the previously published paper. The material has
been added with the consent of the all the authors on the paper.

• “Smart Cloud: Scalable Cloud Robotic Architecture for Web-powered Multi-Robot
Applications,” M. Penmetcha, S. Sundar Kannan and B.-C. Min, 2020 IEEE In-
ternational Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON,
Canada, October 11-14, 2020.

3.1 Introduction

In this chapter, we present a new cloud robotic architecture called Smart Cloud, outlined

in Fig. 3.1 . The architecture includes several novel functionalities that make it the first

of its kind. Smart Cloud can be used as both SaaS and PaaS depending on the needs of

the application. In a SaaS-based approach, it provides a simple web-based interface by

which a robot can make use of several ready-to-use applications, both Robot Operating

System (ROS)-based and non-ROS-based. The architecture backend is built on a JavaScript

(JS) server. Using JS inherently allows access to open-source libraries, including machine

learning libraries like TensorFlow, data compression mechanisms to reduce network load, and

more [41]. Additionally, we intend to provide the developed framework as an open-source

application for other researchers to modify, as researchers frequently need the flexibility

to develop or customize applications to suit their specific requirements. By making the

framework open-source, the proposed architecture can also be used in a PaaS implementation.

In this chapter, the functionality of the architecture is demonstrated for several applica-

tion scenarios. Furthermore, the architecture is evaluated in terms of CPU utilization, and

latency. The remainder of the chapter is organized as follows: Section 3.2 presents a litera-

ture review, while Section 3.3 describes the architecture in detail. Section 3.4 discusses its

applications and the evaluation of its performance. Finally, Section 3.5 presents conclusions

and future directions.

34

Javascript Server
and LibrariesROS Based

Robots

ROS Instance

ROS Bridge
Server

Machine Learning
Models

W
ire
le
ss

Non-ROS
Based Robots

ROS Topics/
Services

Figure 3.1. Schematic overview of Smart Cloud architecture.

3.2 Related Work

In 1997, Masayuki Inaba at the University of Tokyo worked on a so-called “remote brain”;

in the associated publication, the authors described advantages of using remote computing

for robots [42]. In 2009, the ‘RoboEarth’ project was announced with the intent to develop

a World Wide Web equivalent for robots [30]. RoboEarth was developed by a team of

researchers from Eindhoven University; the idea was to build a large database that allowed

robots to share learned information with one another. The RoboEarth project team created

a platform for cloud computing, named Rapyuta [43]. Rapyuta is a PaaS-based robotics

framework that allows robots to offload all computation-intense tasks to the cloud service.

This framework has access to the RoboEarth data repository, which enables robot access to

all extant libraries on RoboEarth.

Interest in cloud robotics has led to the development of new vertical research involving

architectures that facilitate robot communication with cloud service providers. One of the

first architectures in this area was ‘DaVinci’, which used cloud computing infrastructure to

35

generate 3-D models for robot localization and mapping much faster than possible using

on-board hardware [44].

Doriya et al. proposed a robot cloud framework that helps low-cost robots offload com-

putationally intense tasks to the cloud [45]. The central unit of the framework is equipped

with a ROS master node that facilitates all communication. In 2016, Wang et al. proposed

a hybrid frame work called RoboCloud [46]. RoboCloud differs from other cloud robotics

architectures by introducing a task-specified mission cloud with controllable resources and

predictable resources. For tasks beyond the capability of the mission cloud, the framework

opts to utilize public clouds, the same as any other cloud robotics architecture.

In addition to the above-mentioned PaaS architectures, re searchers have also worked

on SaaS-based frameworks, also called Robot as a Service (RaaS). Notably, SaaS-based

architectures can more easily overcome interoperability issues that arise due to differing robot

hardware. Frameworks such as C2tam [47] and XBotCloud [48] focus on specific applications

or algorithms, for example object recognition or object grasping. Tian et al. [49] proposed a

RaaS-based robotics model called Brass, which allows robots to access a remote server that

hosts a grasp planning technique. The framework leverages Docker to allow for implementing

algorithms by writing simple wrappers around existing code.

In summary, most currently-available architectures are geared towards PaaS models; few

of them take a SaaS approach. These architectures are designed to offload robotic applica-

tions to the cloud infrastructure. The proposed framework differs from extant frameworks by

being built for use in both SaaS-based and PaaS-based applications. A simple web interface

will be provided for SaaS usage, and the code will be made publically available for users

to develop applications on top of it in PaaS usage. Furthermore, the proposed framework

is the first of its kind to provide access to open-source JS libraries; users are not limited

to available robotic libraries and do not need to develop applications from scratch, but can

make use of available JS libraries for robotic applications.

36

ROS Bridge
ROS Topics

JSON
Messages

ROS‐based Robots Non‐ROS‐based RobotsCloud Service

ROS Format

to
JS Format

Collection of
JavaScript
Libraries

ROS Topic

JSON

Messages ROS
Instance

XML Data

JavaScript Server

Data Conversion

ROS Bridge

Web Services

Figure 3.2. Smart cloud architecture; (Middle) Cloud server (Cloud layer):
The JS server interacts with JS libraries and ROS, (Left) ROS-based robots
(Robot layer with ROS robots): Robots interact with the server using the
ROSbridge protocol, and (Right) Non-ROS-based robots (Robot layer with
non-ROS robots): Robots send information through wireless data transfer
and receive responses as web services.

3.3 Architecture

As shown in Fig. 3.2 , the Smart Cloud architecture consists of two main components:

the Robot layer (ROS-based robots and non-ROS-based robots) and the Cloud Service layer.

We chose JS for the development of this framework because of its ubiquitous nature, support

for ROS, and the vast availability of libraries. In terms of available open-source libraries, JS

outnumbers every other programming language [41]. Additionally, the JS library Roslibjs

allows interaction with the ROS interface through Rosbridge, which is developed for non-ROS

users and used to send and receive data in the form of JavaScript Object Notation (JSON)

packets. Roslibjs supports essential ROS functionalities such as publishing and subscribing

to topics, services, actionlib, and more.

3.3.1 Robot Layer

The robot layer consists of a single robot or a multi-robot system that runs on either

ROS or any generic robot software. In the next subsection, we discuss how the architecture

handles data based on the robot’s software and the type of application service requested.

37

ROS Based Robots

ROS is a framework for writing robotic software. The Rosbridge package allows a ROS-

based robot to interact with any non-ROS system [50] through web sockets. In this archi-

tecture, we use Rosbridge to establish a communication protocol between robots and cloud

services. On the cloud side of the architecture, a master instance of ROS helps the robots

to offload computationally intense tasks to the cloud.

Through this framework, robots can access ROS packages and JS libraries; however, to

use ROS packages on the cloud, the robots themselves need to run on ROS. Data from the

robot is published as ROS topics and received on the cloud side using Rosbridge with the

following code:

function rosTopics()

{

var topicsClient = new ROSLIB.Service({

ros : ros,

name : '/rosapi/topics',

serviceType : 'rosapi/Topics'

});

}

Almost every ROS package takes topics from the robot as input. Once the cloud frame-

work receives this list of topics, it parses through the list of available ROS packages to find

those that can be used with the given input. The list of matching ROS packages is displayed

on the web interface for the user to choose between. After the user picks a package, the

result is computed and sent back to the robot over the Rosbridge. For example, the ROS

gmapping package requires tf and scan topics. If the framework finds tf and scan topics

available, the user will be provided with the option to use gmapping. Fig. 3.3 shows the

web interface displayed to a user.

38

Amazon Web Service(AWS) IP

ROS topics published and
subscribed by the Robot

IP of Robot publishing ROS topic

RosROS packages available
for usage over the web

Figure 3.3. Smart cloud: SAAS-based ROS interface. The robot provides a
list of topics and the architecture displays corresponding packages that can be
used.

Non-ROS Based Robots

The data from robots not using ROS will be transferred directly to the cloud using wireless

protocols. Once the data is received, the architecture provides a set of JS-based libraries to

choose from based on the message type. For example, if the message is in the form of an

image, the framework provides libraries related to object detection, object tracking, and the

like. If the message is in the format of GPS coordinates, the framework provides various

GPS-based applications.

On the server side, the framework implements a RESTful-based web service that is

used to communicate the results back to the robot. Web service is a consistent medium

for communication between the client and the server over the internet. The communication

between the client and the server is carried out through Extensible Markup Language (XML).

39

In our architecture, we treat the robots as a client and the architecture as a server. The

robot sends a HTTP request to the architecture and the architecture sends the response in

the form of an XML.

RESTful Web Service
on Cloud Server HTTP

Request

HTTP
Response
in XML

Non-ROS Robots

Figure 3.4. General flow of information between robot and cloud through
the RESTful web service.

3.3.2 Cloud Layer

Robots are connected to the JS server on the remote cloud infrastructure through web

sockets. Depending on application requirements, the cloud layer runs a single or multiple

instances of Linux-based operating systems. On these instances, JS Server and ROS are

deployed. In this section, we will look into how data is received and processed by the JS

server and how various libraries are used for robotic applications.

40

JavaScript Server

In this architecture, we use a JS server based on Node.js [51]. Node.js is an open-source

and cross-platform JS server that runs JS scripts outside a browser. The framework has

different mechanisms for handling data from ROS and non-ROS systems.

Start
ROS Message
Type

Type of
Service requested?
ROS/Non-ROS
applicaƟon

Robot Layer -
Send & Receive

Data

Convert the
data to standard
JS format

Treat the data
with JS libraries

Publish the results
using Web Service

JS -Server
receives data
from Robots

ROS Based
SaaS instance

Use
JS Libraries

Figure 3.5. Flow chart illustrating the data flow between the robot and Cloud.

For ROS-based data, the user can choose applications from ROS packages or JS libraries.

If the user chooses a JS-based library, the framework decodes the data provided by the robot

using appropriate JS libraries. We use inherent JS programming tools like DataType.type()

to classify the type of data and then decode it into an appropriate form. For ROS image

formats, we use the Canvas library to the convert it to Base64 image format. Figure. 3.5

illustrates the data flow on the cloud.

JavaScript Libraries

For the past five years, JS has consistently ranked among the top ten programming

languages. It is used everywhere: in web browsers, mobile applications, games, the Internet

of Things, robotics, and more. Due to the high usage of JS, the ecosystem around it is

growing at a fast pace. Node Package Manager (NPM) is a popular package manager for

JS, with more than 35,000 open-source packages. We intend to use some of this vast set

of publically-available libraries in our proposed framework, including the popular machine

41

learning library TensorFlow, which has recently been introduced to the JS ecosystem. To

demonstrate the working of the architecture, we used TensorFlow.js for object recognition.

3.4 Application and Evaluation

We conducted an experiment to demonstrate the working of the architecture and also to

evaluate various metrics. This experiment used two robots, a Clearpath Jackal Unmanned

ground vehicle (UGV) and an iRobot Roomba powered by ODROID-XU4. The hardware

configurations of the devices are summarized in Table 3.1 .

Table 3.1. Hardware configuration of the robots

Jackal UGV ODROID-XU4

CPU
Intel(R) Celeron(R)

CPU G1840 @ 2.80 GHz

Samsung Exynos5422

A7 Octa-core CPUs

RAM 2 GB 2 GB

3.4.1 Offloading ROS Applications to the Cloud

To validate the proposed architecture, a computationally intense application is an ideal

choice. One such application is gmapping, it continuously takes various sensor inputs such

as transforms and laser-scans, and it provides output in the form of a map and entropy. The

gmapping package is an ROS wrapper for Openslam’s gmapping [52] that is used to create a

map, while the robot navigates through the environment. The gmapping package provides

Simultaneous Localization and Mapping (SLAM) using the laser input provided by the robot.

The Jackal robot used for the experiment was equipped with Velodyne laser scanner, and

the input from this laser scanner was used to generate the map of the environment.

For this experiment, we implemented the ROS package gmapping over the cloud and

also on the robot. The architecture subscribed to the topics from the robot and executed

42

the gmapping application on the cloud. We evaluated the performance impact using two

metrics: CPU utilization and latency.

Figure 3.6. CPU utilization with gmapping deployed on the robot (Jackal).
On balance, gmapping fully consumes one processor core.

CPU Utilization

Execution of the ROS gmapping package onboard the Jackal was compared against the

cloud architecture to observe differences in CPU utilization. The Jackal robot has two

cores CPU and each core has a capacity of 100 percent; hence, the total CPU capacity is

represented as 200 percent. CPU utilization was measured using the open-source tool netdata

[53], which is a real-time performance monitoring tool for Linux-based systems. When

offloading applications, the architecture subscribed to the topics published by the robot

and executed all back-end computation related to ROS packages on the cloud. By using the

architecture, no load associated with ROS packages was incurred to the onboard CPU, hence

43

Figure 3.7. CPU utilization with gmapping deployed on the cloud. Demand
on the robot CPU is significantly decreased.

we observed a dramatic decrease in CPU utilization. We were able to demonstrate a decrease

in CPU utilization by offloading gmapping computation on to the proposed architecture,

CPU utilization of the robot decreased by an average of ten-fold compared to running the

package on the robot. Fig. 3.6 and Fig. 3.7 show the difference in the CPU utilization

on the robot. The applications that were mainly responsible for the reduction of CPU

usage are ROS-Master and gmapping. The ROS-Master consumed an additional 20 to 25

percent of CPU with gmapping running on the robot, whereas with the proposed architecture,

the ROS-Master consumed less than 10 percent of CPU. The gmapping application was a

computationally intense application for robot navigation. When gmapping was deployed

on the robot, we observed an average CPU consumption of 85 percent by the gmapping

application, whereas with the architecture there was zero associated computational load on

the robot CPU.

44

Latency

Latency is the term used to describe any kind of delay that occurs during data communi-

cation over a network. As the Smart Cloud architecture requires an exchange of information

between a robot and a cloud service provider, some latency exists between robot requests

and cloud service responses. For this experiment, we used an Amazon Web Services (AWS)

server located in North Virginia.

To measure the time delay between robot requests and cloud service responses, we imple-

mented a ROS service to exchange information and recorded the message timestamps. On

average, we observed a time delay of around 35 milliseconds, of which an average of 32 mil-

liseconds was associated with AWS data round trip time. Thus, the time delay contributed

by the framework was approximately three milliseconds for processing the application on the

cloud.

Figure 3.8. Round trip delay for information exchange between the robot
and the cloud server.

45

3.4.2 Object Detection Using TensorFlow JS Library With Odroid (Non-ROS)

In this experiment, we streamed a video from a Roomba equipped with an ODROID-XU4

computer to the architecture. We used Aruco markers along with OpenCV for Roomba to

follow Jackal robot. The architecture then identified objects in the video stream using the

TensorFlow.js library with an ImageNet dataset and generated XML-based web services to

report the results (Fig. 3.9). The following XML file is the web service output generated for

Fig. 3.9 :

<?xml version="1.0"?>

<Response>

<Message>

<MessageID>1</MessageID>

<ReferenceID></ReferenceID>

<Result>

<Class>Trash Can</Class>

<Probability>0.66</Probability>

</Result>

<Result>

<Class>Swivel Chair</Class>

<Probability>0.72</Probability>

</Result>

<Result>

<Class>File Cabinet</Class>

<Probability>0.44</Probability>

</Result>

</Message>

</Response>

Between the robot publishing a frame and the resultant web service feedback, we observed

an average time delay of 34 milliseconds. The same functionality can be implemented for

ROS Image messages by converting the image to base64 format. The following lines of code

46

can be used to convert a ROS Image to JPEG format:

var imgResponse = new Image();

var byteCharacters = atob(message.data);

var abc = "data:image/jpeg;base64,"+byteCharacters;

imgResponse.src = abc;

Figure 3.9. Object (i.e. cabinet, swivel chair, and trash can) detected using
TensorFlowJS.

3.4.3 Application Scenario Using a Heterogeneous Multi-Robot

In this section, we demonstrated a scenario applying a heterogeneous multi-robot system

to a collaborative search and rescue operation that was implemented using the proposed

architecture. Figure. 3.10 illustrates this heterogeneous system setup.

The multi-robot system consisted of a non-ROS-based iRobot Roomba equipped with a

Microsoft Kinect Camera and a ROS-based Clearpath Jackal equipped with Velodyne 3D

47

Web Service

Object Detection

gmapping
Map

SMART Cloud
Video Stream

Results from
Object Detection

LiDAR Data Map

ROS‐based Robot Non‐ROS‐based Robot

Figure 3.10. Heterogeneous multi-robot setup.

Figure 3.11. Heterogeneous multi-robot application with jackal and roomba.
Jackal generates a map of the environment and roomba detects objects in the
environment.

LiDAR. The goal of the search and rescue operation was to generate a map and find an object

of interest within the map. Figure. 3.11 shows the heterogeneous multi-robot collaboration

between the Roomba and the Jackal. The Jackal robot used the LiDAR data and generated

a map of the environment. The Roomba was responsible for object detection in the generated

map. The data from the Microsoft Kinect camera on the Roomba was continuously streamed

to the cloud service using wireless protocol, and TensorFlow.js was used to detect objects in

48

the video stream. The object detection results were continuously streamed back using the

web service. Meanwhile, the ROS-based Jackal subscribed to the web service results and

generated the map until the Roomba found the object of interest.

Therefore, we successfully demonstrated the bi-directional subscription through web ser-

vices and the other novel architecture features through this experiment.

3.5 Conclusion

In the chapter, we present the Smart Cloud architecture, which is the first of its kind

to incorporate JavaScript-based libraries for running diverse robotic applications related to

machine learning and more. Smart Cloud also leverages the resources provided by cloud

service providers for use with robotic applications. The architecture can be used with het-

erogeneous and homogeneous multi-robot systems as well as single-robot systems. We ad-

ditionally demonstrated the working of ROS and non-ROS based robot systems with the

architecture and the incorporation of JS libraries for robotic applications. We measured the

performance of the architecture in terms of onboard CPU usage, and latency. We were able

to show significant reduction in onboard CPU usage and achieved an average latency of 35

milliseconds.

49

4. A DRL-BASED DYNAMIC APPLICATION OFFLOADING

METHOD

This chapter contains the material from the previously published paper. The material has
been added with the consent of the all the authors on the paper.

• “A Deep Reinforcement Learning-based Dynamic Computational Offloading Method
for Cloud Robotics,” M. Penmetcha and B.-C. Min, IEEE Access.

Robots come with a variety of computing capabilities, and running computationally-intense

applications on robots is sometimes challenging on account of limited onboard computing,

storage, and power capabilities. Meanwhile, cloud computing provides on-demand comput-

ing capabilities, and thus combining robots with cloud computing can overcome the resource

constraints robots face. The key to effectively offloading tasks is an application solution

that does not underutilize the robot’s own computational capabilities and makes decisions

based on crucial cost parameters such as latency and CPU availability. In this chapter, we

formulate the application offloading problem as a Markovian decision process and propose

a deep reinforcement learning-based deep Q-network (DQN) approach. The state-space is

formulated with the assumption that input data size directly impacts application execution

time. The proposed algorithm is designed as a continuous task problem with discrete action

space; i.e., we apply a choice of action at each time step and use the corresponding outcome

to train the DQN to acquire the maximum rewards possible. To validate the proposed algo-

rithm, we designed and implemented a robot navigation testbed. The results demonstrated

that for the given state-space values, the proposed algorithm learned to take appropriate

actions to reduce application latency and also learned a policy that takes actions based on

input data size.

4.1 Introduction

Cloud robotics algorithms are designed on the basic premise that when robots have in-

sufficient computational resources for local execution of an application, using cloud resources

should improve the performance of the application in terms of execution time and energy

efficiency. If a robot has the bare minimum of computational capability, full application

50

offloading will be an obvious choice; however, many robots presently being produced are

computationally capable, and so dynamic computational offloading algorithms are a wiser

choice as they take into account both the robot’s computational capability and the applica-

tion’s computational requirements.

Robots are equipped with a wide range of sensors. Usually, a robotic application gets in-

put from these sensors and processes that input to provide an output action for the robot [54].

The amount of sensory data that the application needs to process at a given time significantly

affects its computational consumption [55]; if the application requires more computational

resources than the robot can accommodate, its onboard execution might be extended to a

degree that degrades the robot’s performance. Hence, we designed the offloading problem

to consider application input data size and used a deep reinforcement learning (DRL)-based

deep Q-network (DQN) for dynamic application offloading. Deep reinforcement learning [56]

is a subfield in machine learning that combines neural networks with reinforcement learning

(RL), and has opened up avenues for solving problems that were difficult to solve otherwise

[57]. DRL has been applied in a wide range of robotic applications related to navigation,

social robotics, motion control, manipulation, and more [57]–[59]. DRL-based algorithms

have been studied for application offloading in mobile devices [60]–[62], but only a few stud-

ies have used DRL for application offloading from a robotics perspective [34]. Most extant

offloading algorithms for mobile devices use mobile edge computing (MEC), and by design

cater to mobile-specific applications. To our knowledge, we are the first to provide a DRL-

based dynamic application offloading solution for cloud robotics that considers input data

size and is designed as a continuous task problem with discrete action space, i.e., we apply

a choice of action at each time step t and use the corresponding outcome to train the DQN

and learn a policy to acquire maximum rewards at a given time step t′. We validated the

algorithm on a robotic path planning application running on the Robot Operating System

(ROS).

The area of dynamic application offloading for cloud robotics is still in the early stages. In

this chapter, we propose a novel dynamic application offloading algorithm for cloud robotics;

moreover, the proposed architecture includes several novel functionalities that make it the

first of its kind.

51

The remainder of the chapter is organized as follows: In Section 4.2 , we describe related

work on dynamic application offloading and DQN fundamentals. In Section 4.3 , we define the

problem formulation based on DQN. In Section 4.4 , we introduce the algorithm’s application

with a robot navigation framework. In Section 4.5 , we provide experiment results and their

analysis. Finally, we conclude our work and present our future directions in Section 4.6 .

4.2 Background

This section presents related work concerning application offloading in cloud robotics and

also introduces the basic DQN fundamentals that our algorithm uses as a design foundation.

4.2.1 Related Work

From 2009 on, several architectures have been proposed that facilitate application of-

floading for cloud robotics [30], [42]–[47], [49], [63], [64]. The aforementioned works focus on

catering to application-specific solutions like navigation, object detection, etc. Most of the

architectures propose full offloading without any consideration for the robot’s local comput-

ing capabilities and the costs associated with offloading. Namely, communication between

robots and cloud services, including for complete offloading, has to consider costs such as

latency, energy, CPU utilization, and security.

To our knowledge, there are only a few studies in cloudrobotics that have focused on

dynamic application offloading that account for the cost parameters involved when making an

offloading decision [65]. One prior study based its offloading decision on network connectivity

and robot mobility; it used a genetic algorithm and concluded that motion- and connectivity-

aware offloading leads to more efficient performance in terms of Quality of Service (QoS)

and minimum resource consumption [66]. In 2017, Wang et al. [67] proposed a resource

allocation strategy based on a hierarchical auction mechanism, namely a link quality matrix

(LQM) auction; the algorithm was designed and demonstrated for firm real-time applications

and outperformed other state-of-the-art algorithms. Later, Hong et al. [68] proposed a QoS-

aware cooperative computational offloading solution for robot swarms to minimize latency

52

and maximize energy efficiency; they formulated the optimization problem as a multi-hop

cooperative computation-offloading game.

Some other proposed offloading solutions were based on edge computing [69]–[73]. Shuja

et al.[74], [75] have comprehensively surveyed machine learning-based approaches for in-

network caching in edge networks for mobile devices. These solutions allow robots to of-

fload computationally-intense applications to the computing infrastructure in their vicinity.

However, none of these papers considered deep reinforcement learning-based techniques for

decision–making regarding offloading.

Application offloading for mobile devices is a well-studied area, and several such studies

have proposed dynamic application offloading solutions using DRL. As a case in point, Qiu

et al.[76] proposed a collective and distributed DRL algorithm that considered experience

from distributed systems to obtain an optimum offloading policy using MEC. Later, Qiu

et al.[77] also proposed a DRL-based offloading solution for computationally-intense mining

applications that employed multi-hop multi-user blockchain-empowered MEC. Meanwhile,

Tang et al.[78] proposed a distributed DRL solution to minimize the long-term cost for non-

divisible and delay-sensitive tasks using MEC. Wang et al.[79] proposed a meta reinforcement

learning-based algorithm that leveraged recurrent neural networks for faster loss convergence,

and and represented mobile applications as directed acyclic graphs for validation of the

algorithm. Finally, Dai et al.[80] proposed a DRL-based computation offloading and resource

allocation algorithm to reduce overall energy consumption; it used a multi-user end-edge-

cloud orchestrated network. Notably, the aforementioned algorithms were all designed for

mobile devices and mobile-specific applications using MEC, whereas our proposed algorithm

is designed from the robotics perspective and validated with a robotic application using cloud

computing.

Some researchers have applied DRL in application offloading solutions in cloud robotics;

for example, Chicachali et al. [81] formulated the offloading problem as a sequential decision-

making problem and used deep reinforcement learning for object detection applications, and

their findings suggest that RL is likely an effective choice for optimizing offloading decision

policies. Another prior study proposed a resource allocation scheme based on RL that al-

lowed the cloud to decide whether a request should be accepted and the amount of resources

53

to be allocated to the application; this work also demonstrated better performance of RL

algorithms relative to other greedy resource allocation scheme [82]. Finally, Peng et al. [83]

proposed an online resource scheduling framework based on DQN that implemented a trade-

off between energy consumption and task makespan by prioritizing the rewards. However,

most of these DRL-based works were only published in the last couple of years, and there

remains a lot of room for improvement.

The area of dynamic application offloading is still in its early stages, and most of the

work we present here is the first of its kind in cloud robotics. Our proposed algorithm

broadly diverges from existing solutions in two important ways. First, we introduce a novel

offloading strategy based on DQN; the state space is built with the assumption that the size

of the input data for an application directly impacts its execution time. Second, we use a

variable reward rather than a fixed reward, which led the algorithm to converge faster and

to learn an optimal policy efficiently and quickly.

Neural Network

STATE

Q(s,a1)

Q(s,a2)

Q(s,a3)

Q(s,an)

:

Figure 4.1. Deep Q-Network architecture.

4.2.2 Deep Q Network

Conventional RL algorithms do not scale well with increasing numbers of applications

and robots, as this leads to an explosion in state space [84] and becomes an NP-hard problem

[85]. DQN is an off-policy, model-free RL algorithm [86] that overcomes several drawbacks

faced by traditional RL algorithms [87]–[90]. Using DQN, agents are able to continuously

learn and optimize their decision-making through trial and error. DQN models work on

54

the principle of selecting those actions that maximize overall reward in the long term. The

agent receives a reward r for change in state s when action a is performed. Observing these

rewards, the agent forms a consensus about a policy π that helps it in achieving the maximum

reward. Hence, we have modeled the proposed algorithm as a MDP and used DQN to derive

an optimal policy π for offloading decision-making.

DQN uses the Q-function [91], [92] as its foundation for calculating expected reward

values. Q(s,a) is the reward of the current state-action pair, represented as the summation

of the reward for the current state and the maximum reward value expected in the future.

Mathematically, Q(s,a) is represented as,

Q(s,a) = r(s,a)+γmax
a′

Q(s′,a′) (4.1)

which can be further generalized using Bellman’s equation [93], resulting in the following,

Q(s,a)←Q(s,a)+α
[
r(s,a)+γmax

a′
Q(s′,a′)−Q(s,a)

]
(4.2)

where γ represents the discounting rate, α is the learning rate, and the variables s,a,r

respectively denote the state space, action taken, and associated reward for a state-action

pair. If s and a denote the current state and action, then s′ and a′ denote the next state

and action.

Traditional Q-learning requires a lot of memory to generate a Q-table, and if the ap-

plication space and number of robots are large, Q-learning also becomes computationally

intense. As DQN provides a way to learn a Q-function using a deep neural network, it is

a better choice than traditional Q-learning for the application-offloading scenario. As with

other machine learning models, DQN has a well-defined cost function that the network tries

to minimize. This cost function is given as,

L(θ) =
[
Q(s,a|θ)− (r(s,a)+γmax

a′
Q(s′,a′|θ−))

]2
(4.3)

where θ represents the trainable weights of the network.

55

We will use the foundations of the DRL and DQN (Fig. 4.1) explained in this subsection

for problem formulation. The loss function in Eq. (4.3) is what the neural network tries to

minimize using the state space, action space, and reward defined in the next section.

4.3 Problem Formulation

As stated earlier, we modeled the dynamic application offloading algorithm using DQN.

DQN is based on MDP, which is usually defined in terms of (s,a,r), where s is the state

space, a is the action space, and r is the reward. In this section, we talk about how we

defined each of these key parameters for the proposed offloading algorithm.

4.3.1 State Space

The time of execution for an application is proportional to the size of the input data [94].

Hence, we designed the state space to reflect the data sizes of the applications running at

any given time, along with other system parameters, namely CPU availability and round-

trip time for communicating with the cloud. The state space of the model includes the full

observation of the system and is defined for every time step as,

st = {dt,ut, bt} (4.4)

where the meaning of each variable at state initialization is as follows:

• t= 1,2,3...,T denotes the time steps for the given episode.

• dt denotes the input data size of application.

• ut denotes the CPU availability at state initialization.

• bt denotes the network latency for data making a round trip between the robot and

the cloud.

56

A
W

S

G
az

e
b

o
 S

im
u

la
ti

o
n

R
o

b
o

t
En

vi
ro

n
m

e
n

t

(𝒔
,𝒂
,𝒓
,𝒔

′)

(𝒔
,𝒂
,𝒓
,𝒔

′)

. . 𝑁

R
e

p
la

y
M

e
m

o
ry

 (
R

)

St
at

e
: 𝒔

=
(𝒅
,𝒖
,𝒃
)

A
ct

io
n

: 𝒂
∈
(𝟎
,𝟏
)

R
ew

ar
d

: 𝒓
=

−
(𝒄
𝒕𝒂
𝒍𝒈
𝒐
𝒓
𝒊𝒕
𝒉
𝒎
−
𝒄
𝒕𝒍𝒐
𝒄
𝒂
𝒍)

(𝒄
𝒕𝒍𝒐
𝒄𝒂
𝒍 +
𝒄
𝒕𝒄𝒍
𝒐
𝒖
𝒅
)

M
in

i-
B

at
ch

Q
-

N
e

tw
o

rk
 (
𝜽

)

N
e

u
ra

l N
et

w
o

rk
 L

ay
e

rs
•

1
 in

p
u

t
•

3
 h

id
d

en
 2

5
6

 R
eL

U
•

1
 d

en
se

 li
n

e
ar

 o
u

tp
u

t

Ta
rg

e
t

Q
-

N
e

tw
o

rk
 (
𝜽
−

)
N

e
u

ra
l N

et
w

o
rk

 L
ay

e
rs

•
1

 in
p

u
t

•
3

 h
id

d
en

 2
5

6
 R

eL
U

•
1

 d
en

se
 li

n
ea

r
o

u
tp

u
t

U
p

d
at

e
 W

e
ig

h
t
𝜽

C
al

cu
la

te
 lo

ss
 𝑳
(𝜽
):

𝒔
′

(𝒔
,𝒂
)

𝒓

𝑸
𝒔,
𝒂

𝜽
)

𝑳
(𝜽
)

𝒎
𝒂
𝒙
𝒂
′
𝑸
𝒔′
,𝒂

′
𝜽
−
)

𝒔

𝒎
𝒂
𝒙
𝒂
′
𝑸
𝒔
′ ,
𝒂
′
𝜽
)

𝒔
,𝒂

: C
u

rr
e

n
t

st
at

e
 a

n
d

 a
ct

io
n

𝒔
′ ,
𝒂
′ :

N
ex

t
st

at
e

 a
n

d
 a

ct
io

n

𝑸
𝒔
,𝒂

𝜽
−
(𝒓

𝒔,
𝒂

+
𝜸
𝒎
𝒂
𝒙
𝒂
′
𝑸
𝒔
′ ,
𝒂
′
𝜽
−
))
]𝟐

F
ig

ur
e

4.
2.

D
yn

am
ic

co
m
pu

ta
tio

na
l
offl

oa
di
ng

fra
m
ew

or
k
ba

se
d
on

D
Q
N
.
T
he

ro
bo

t
en
vi
ro
nm

en
t
pr
ov

id
es

in
pu

t
in

th
e
fo
rm

of
st
at
e
sp
ac
e,

ac
tio

n
pe

rfo
rm

ed
,a

nd
re
wa

rd
ac
qu

ire
d.

T
he

D
Q
N

le
ar
ns

fro
m

th
es
e
in
pu

ts
an

d
se
nd

s
ba

ck
a
re
sp
on

se
in

th
e
fo
rm

of
a
Q
-v
al
ue

fo
r
th
e
st
at
e
an

d
ac
tio

n
pa

ir.
T
he

ne
ur
al

ne
tw

or
k
us
ed

fo
r

th
e
na

vi
ga

tio
n
ap

pl
ic
at
io
n
ha

s
on

e
in
pu

t
la
ye
r,
th
re
e
hi
dd

en
R
eL

U
la
ye
rs

w
ith

25
6
ne
ur
on

s
ea
ch
,a

nd
on

e
de
ns
e

lin
ea
r
ou

tp
ut

la
ye
r.

57

4.3.2 Action Space

The action space defines what actions an agent can perform in the environment. Our

model is designed for binary decision-making; hence our discrete action space is defined as

at = (a0,a1, ...,aT)|at ∈ {0,1}. This definition implies that an application can be executed

either locally (a= 0) or on the cloud service (a= 1).

4.3.3 Reward

In the following section, we define variable reward (rt) and its associated variables for a

given state-action pair (st,at).

When the robot performs on-board computation of a navigation application task, the

associated local time of execution (llocal
t) is derived from

llocal
t = llcompletion

t − lstart
t . (4.5)

Similarly, when a robot delegates the computation of an application to the cloud, the

associated time of execution (lcloud
t) is derived from

lcloud
t = lccompletion

t − lstart
t (4.6)

where llcompletion
t represents the timestamp of application completion and lstart

t represents

the time stamp when the task was first assigned to the robot.

By incorporating tuning parameters α and β, the robotic operator has the opportunity

to prioritize between offloading and local computation. These parameters are set according

to the relative importance of executing the application on the cloud or on the robot, where

α+β = 1 and α,β ∈ [0,1]. When there is no predefined priority between offloading and local

computation, α= β; when offloading is prioritized over local computation, α > β; and when

local computation is prioritized over offloading, α < β. In our experiment, we do not define

a predefined priority, thus always set α = β.

58

Combining the tuning parameter α with local execution time (llocal
t) gives us total com-

putational cost on the local machine,

clocal
t = αllocal

t . (4.7)

Similarly, combining the tuning parameter β with cloud execution time (lcloud
t) gives us

total computational cost on the cloud,

ccloud
t = βlcloud

t . (4.8)

During its learning phase, the proposed algorithm randomly chooses between local or

cloud execution. This algorithm-determined action calgorithm
t can be either clocal

t or ccloud
t ,

and we can represent the algorithm-determined action as,

calgorithm
t = clocal

t ∨ ccloud
t . (4.9)

Then, we define the variable reward rt for (st,at) as,

rt =−(calgorithm
t − clocal

t)/(clocal
t + ccloud

t) (4.10)

where rt will always be in the range between −1 and 1. When calgorithm
t = clocal

t , the reward

assigned will be zero, and when calgorithm
t = ccloud

t , the reward values will be either positive or

negative. The agent is given a positive reward for choosing to offload when cloud execution

time (ccloud
t) is less than local execution time (clocal

t), and a negative reward for choosing to

offload when cloud execution time (ccloud
t) is greater than local execution time (clocal

t).

4.3.4 DQN Algorithm for Dynamic Offloading

Now that we have clear definitions of the state space s, action space a, and reward r,

we can define our DQN-based offloading algorithm as given in Algorithm 1 . The DQN

architecture used for validating the proposed algorithm in robot navigation is illustrated in

Fig. 4.2 . Our problem formulation is based on acquiring maximum rewards and not on the

59

end goal success criterion. As such, the algorithm is designed as a continuous task problem

with discrete action space, i.e., we apply a choice of action at each time step t and use the

corresponding outcome to train the DQN and learn a policy to acquire maximum rewards

at a given time step t′ .

Algorithm 1 Proposed DQN-based offloading algorithm
1: Initialize replay memory R with capacity N ;
2: Initialize action-value Q function with random weights θ;
3: Initialize target action-value function Q̂ with weights θ− = θ ;
4: Input: State space st = {dt,ut, bt}
5: Output: Q value for state-action pair
6: for episode = 1 and t= 1 do
7: Receive initial state observation;
8: repeat
9: Load the state values st;

10: Choose a random action at from action space A;
11: Calculate reward rt(st,at) by Eq. (4.10);
12: Load the next state values st+1;
13: Store the experience (st,at, rt, st+1) in replay memory R;
14: Select a random minibatch (sj,aj, rj, sj+1) from R;
15: Set yj = rj +γmaxaj+1 Q̂(sj+1,aj+1|θ−) from Eq. (4.1);
16: Perform a gradient descent to minimize loss using equation (yj−Q(sj,aj|θ))2

17: with network parameter θ from Eq. (4.3);
18: Every few steps, copy weights from Q to Q̂;
19: Set t= t+1;
20: until A predefined stopping condition is reached, i.e., loss function reached

convergence;
21: end for

60

Figure 4.3. The graphical simulation environment that was used to validate
the proposed algorithm.

4.4 Experimental Setup With Robot Navigation Application

To validate the proposed algorithm, we used it with a robot navigation application. The

graphical representation of the simulation environment is shown in Fig. 4.3 . In Fig. 4.4 ,

the global cost map of the navigation environment along with obstacles, the Husky robot,

and the camera view from the robot is shown. The simulation environment was constructed

using Robot Operating System (ROS) with a gazebo simulator, which we will briefly talk

about in the next paragraphs.

The navigation application utilized here is built on top of the ROS framework for writing

robotics software, which can be used across most robotic platforms [18] and helps researchers

and developers to create software that is modular, concurrent, open-source, and supportive of

code reuse. ROS messages are structures that contain data of various types, and these mes-

sages are transmitted using ROS nodes. A brief overview of the ROS application framework

is shown in the ROS Layer of Fig. 4.5 .

61

Graphical Representation of Environment Rviz Visualization of the Global Map

Figure 4.4. Visualization of gazebo global cost map. The panel shows a
global map of the environment with obstacles indicated (Red arrows). In this
instance, the husky’s starting position is (0.001, -0.001) and the goal position
is (22.95, 39.05). Between the starting position and goal, the shortest path
is represented by a green line and the euclidean distance is x = 45.29. The
number of nodes to traverse is n = 410,320, and the input data size is dp

t =
5,303,251.

Gazebo is a 3D dynamic simulator that can accurately and efficiently simulate the real-

world behaviors of robots, environments, and their interactions [95]. It can be easily inte-

grated with ROS, thereby allowing robots to avail themselves of the hundreds of open-source

ROS tools and packages while within the gazebo environment. Finally, we used the open-

source Husky robot [96] as the navigation vehicle in the environment.

62

World Robot

Gazebo Simulation Environment

CPU Usage
Publisher

Planning
Node

Cloud Talker
Node

State Space
Publisher

Amazon
Cloud

Rosbag
File

Local and
Cloud

Execution
Time

DQN
offloading

training
node

Weights
DQN

evaluation
node

Results and
Q- Values

ROS Layer

DQN Layer

𝒅𝒕
𝒑

𝒖𝒕
𝒍𝒕
𝒍𝒐𝒄𝒂𝒍

𝒍𝒕
𝒄𝒍𝒐𝒖𝒅

𝒃𝒕

𝒔𝒕 = (𝒅𝒕
𝒑
, 𝒖𝒕 , 𝒃𝒕)𝒍𝒕

𝒄𝒍𝒐𝒖𝒅, 𝒍𝒕
𝒍𝒐𝒄𝒂𝒍

ZMQ

(𝜽)

(𝒍𝒕
𝒄𝒍𝒐𝒖𝒅, 𝒍𝒕

𝒍𝒐𝒄𝒂𝒍, 𝒔𝒕)

Figure 4.5. Two-layered navigation framework for algorithm validation. ROS
layer (Top): A robot interacts with a gazebo world and AWS to generate state-
space values along with the local and cloud execution times for path-planning.
DQN Layer (Bottom): Derives an optimal offloading policy using inputs from
the ROS layer.

4.4.1 Navigation Application Framework

The gazebo simulation environment provides access to a Husky robot, designed by

Clearpath Robotics [96], which was equipped with sensors such as a camera, LiDAR, and

63

wheel encoders, and programmed to perform path planning. The main goal of this experi-

ment was to determine if the robot could learn a policy from state space values regarding

when to offload the path planning application to the cloud.

The navigation application framework used for validating the proposed algorithm is de-

picted in Fig. 4.5 . The framework can be broadly categorized into two layers: ROS and

DQN. In the ROS layer, the robot uses the simulation environment to generate state space

data, local path-planning execution time (llocal
t), and cloud path-planning execution time

(lcloud
t). In every time step, random goal coordinates are assigned to the robot for path plan-

ning. For simplicity’s sake, the robot does not actually navigate to the destination, but just

calculates the shortest path from the origin to the assigned destination using the Dijkstra

algorithm [97].

The values from the ROS layer are recorded in a Rosbag file, and that file is then used

to train the DQN network and generate Q estimates for the state-action pair.

As mentioned earlier, the state space is built on the assumption that the size of input

data (dt) provided to an application directly impacts its execution time. In this experiment,

we consider path planning for robot navigation and demonstrate how we derive the input

data sizes for this application (dp
t).

4.4.2 Path Planning

Path planning is a well-studied research area in robotics. The main objective of path-

planning algorithms is to provide the shortest obstacle-free path between origin and destina-

tion. Among the well-known and well-studied algorithms for path planning are the Dijkstra

[97], A* [98], breadth-first search [99], and depth-first search algorithms [99]. To ensure

faster training and data collection, we limited the task in the present study to only plot-

ting a path between the current position and the goal position, without actually moving

the robot. Random goal coordinates were assigned inside the global map, and the Dijkstra

algorithm was used to compute the shortest path.

A proper representation of computational size (dp
t) is vital for the DQN algorithm to

learn optimal policy. The objective in our experiment was not only to determine the shortest

64

Figure 4.6. Schematic representation for calculating the number of nodes
that the robot needs to explore before reaching its destination.

obstacle-free path but to do so in the least possible execution time. The inputs for the path

planner are the current position of the robot (A), the goal position (B), and the global

map in the form of an image. Its output is an obstacle-free global path from the current

position to the goal position, as depicted in Fig. 4.6 . Dijkstra’s algorithm uses a node-based

approach to calculate the shortest path, and input size can be represented by nlogn [100],

where n represents the nodes. As is evident in Fig. 4.6 , the number of nodes in the dotted

rectangular space gives us a good estimate of the number of nodes (n) that the algorithm

needs to explore before reaching the goal position. The algorithm will traverse these nodes

several times to find the shortest path and hence the input size is represented as nlogn. The

Euclidean distance from A to B is the diagonal for the rectangle. We can obtain the number

65

of nodes in the rectangle by dividing the area of the rectangle by the area of each node inside

it. Hence, for path planning we define the number of nodes n as,

n= (1
2x

2)/r2 (4.11)

where the numerator represents the area of the rectangle with diagonal ĀB and the denom-

inator represents the area of each node. The variable x is the Euclidean distance from A to

B, and r is the length of each side in a node.

When ROS launches a navigation module, the granularity of the occupancy grid (r) is

usually set to 0.05 meters [101], but can be manually changed as required by the application.

A granularity of 0.05 means that each side of the square grid is 0.05 meters and the area of

each square is (0.05)2. Hence, the resolution of each node in the occupancy grid map can be

represented as r and area of each node as r2.

We can use the number of nodes n derived from Eq. (4.11) to determine the computa-

tional cost of path planning as,

dp
t = nlogn. (4.12)

We demonstrate in Fig. 4.4 an example of how we calculated n and dp
t . The starting

position of the Husky was (0.001, -0.001) and the assigned goal position was (22.951, 39.054).

The Euclidian distance (x) between those two positions can be calculated as approximately

45.09. The area of the occupancy grid r2 as stated above was 0.0025. By substituting the

values of x and r2 in Eq. (4.11), we get the number of nodes (n) as being approximately

410,320. Substituting n in Eq. (4.12), we get dp
t as approximately 5,303,251; the Husky

will need to explore the nodes several times in order to obtain a shortest path. This implies

that for the Husky to reach its goal position, it will need to traverse around 5,303,251 nodes

(nlogn) and the number of nodes in the in the rectangular area that husky will traverse

several times to find the shortest path, can be represented as 410,320. In the experiment,

we normalized the value of dp
t by dividing by the global map size, which yielded values in

the range of 0 to 5.

66

Figure 4.7. A screenshot while the simulation environment is running. The
left panel shows the linux terminal with state-space value (d,u,b) and actual
execution times (llocal, lcloud). The right panel shows a global map of the
environment with the shortest path from the origin (0.0, 0.0) to the goal (21.05,
-52.45) coordinates with a red line.

4.4.3 AWS and Latency

In this experiment, we utilized Amazon web services (AWS) as the cloud service provider.

There are several means by which a robot can communicate with AWS; for this application,

we chose ZeroMQ (ZMQ) [102]. ZMQ is a high-performance asynchronous messaging li-

brary that can be used in both distributed and concurrent applications, and furthermore is

known for its excellent performance scalability and low latency. ZMQ provides a ROS-like

publisher-subscriber messaging that supports several communication protocols, including

WebSockets; in addition, the broker-less framework provided by ZMQ is faster than the

inherent ROS communication framework. Given all these exciting features, ZMQ makes an

excellent framework for establishing a communication protocol between robots and AWS.

For the experiment, we used the Amazon Ohio instance with a static IP to ensure easier

communication with the cloud service. As depicted in Fig. 4.8 , the local machine sends

67

obstacle information, the current robot position, and the goal position to the cloud. The

cloud sends back a response in the form of a planned path.

The state space includes round trip latency (bt) for each time step, which was calculated

in real-time by pinging the cloud. The simulation was carried out on a computer that had

a stable internet connection, and latency was constant at around 30 milliseconds with less

than 5 percent variation for 99 percent of cases. This can be considered a drawback in the

current experiment, as the latency values had minimal variation. In any case, the latency

parameter did not play a meaningful role in deriving policy.

Local Machine/
Robot

Cloud Machine/
AWS

Lidar Data

Current Position

Goal Position

Planned Path

Figure 4.8. Robot-AWS communication framework. The robot forwards
LiDAR data (Obstacles) and the current and goal positions to AWS. AWS
calculates and forwards the shortest path between those positions to the robot.

4.4.4 DQN Network

We used a neural network consisting of one input layer, three hidden ReLU layers (each

having 256 neurons), and one dense linear output layer. The configuration of hidden layers

and the number of neurons can be altered based on convergence, training time, or any other

performance criteria [103]. The choice of neural network can also be adapted to fit any

specific learning problem, such as using a convolution neural network (CNN), long short

term memory (LSTM), etc. [104]. Using the network parameters given in Table 4.1 , we

obtained a satisfactory convergence for the results.

68

Table 4.1. DQN network parameters used for training.

Parameters Values

Number of hidden layers 3

Number of nodes 256; 256; 256

Mini-batch size 128

Learning rate 0.01

Exploration rate 0.1

Discount factor 0.9

4.5 Results and Analysis

In supervised learning, algorithm model evaluation is reasonably straightforward: the

data is labeled and an evaluation set is used to assess the accuracy of the results [105].

However, model evaluation is tricky for algorithms based on DRL as they do not have a

labeled dataset to be used as ground truth to validate the performance of the algorithm.

As our problem formulation is based on acquiring maximum rewards and not the end-goal

success criterion, our algorithm is designed as a continuous task problem with discrete action

space, i.e., we apply a choice of action at each time step and use the corresponding outcome

to train the DQN. When replay memory reaches a threshold of 1,000 experiences, experiences

are replaced according to the first-in first-out (FIFO) approach.

In the first part of the results, we analyze the network performance with reference to

actual data collected from the cloud and robot. Unlike in episodic problems, it is difficult

to judge an agent’s performance in a continuous problem as there is no terminal state that

defines if the action was a success or a failure. Hence, we need to somehow generate a dataset

that can be used to verify the agent’s expected behavior. In addition, a synthetic dataset

can be used to analyze whether the network is learning appropriate policy with respect to

all possible outcomes. Accordingly, we generated three synthetic datasets where for each

dataset we had a policy in mind that the agent should learn. Finally, we evaluated these

datasets using the loss function and rewards acquired to determine if the agent performed as

69

expected. The hardware configuration of the AWS (p2.xlarge) instance and robot are given

in Table 4.2 .

Table 4.2. Hardware configuration of the robot and AWS.

Robot - Local AWS (p2.xlarge) - Cloud

CPU
Intel Core i7-6700 CPU

@ 3.40GHz

2.7 GHz (turbo) Intel Xeon

E5-2686 v4

GPU
1 GeForce GTX 1050 -

768 processing cores and

4 gb of GPU memory

1 NVIDIA K80 -

2496 parallel processing cores

and 12 gb of GPU memory

RAM 16 gb 61 gb

Cores 8 4

OS Ubuntu-18.04 Ubuntu-18.04

As our model is designed for binary decision-making, to efficiently validate the proposed

algorithm we need to have data distributed between both action space choices; i.e., both

cases lcloud
t < llocal

t and lcloud
t > llocal

t need be reasonably represented. Using the hardware

configuration seen in Table 4.2 , we obtained a dataset with a split of about 60:40; i.e., 60

percent of decisions were for cloud computation (lcloud
t < llocal

t) and 40 percent for local com-

putation (lcloud
t > llocal

t). Comparatively, if we choose a less capable hardware configuration,

the dataset will be skewed towards cloud computation (lcloud
t < llocal

t); similarly, if we choose a

more powerful hardware configuration, the dataset will be skewed towards local computation

(lcloud
t > llocal

t) due to the additional round-trip time required for cloud communication.

4.5.1 Real Dataset

In this part of the experiment, we collected a real dataset where the robot and cloud

were connected through ZMQ. We also implemented a cloud timeout functionality (5 s) to

handle any network failures. This feature was added to punish the agent for choosing cloud

computation if the cloud did not respond in a given timeframe. For every time step (t),

70

the path-planning execution time was collected for both cloud execution (lcloud
t) and local

execution (llocal
t), along with state-space values (st) and the action (at) performed. These

values were used to train the DQN network and evaluate the performance of our proposed

algorithm.

Figure 4.9. Plot showing loss convergence over time for the real dataset. Loss
value plotted against time step (t= 1000); Plot shows average loss decreasing
and convergence.

In Fig. 4.9 , we plot the average loss (L(θ)) against time step (t) using the loss function

defined in Eq. (4.3). The plot demonstrates convergence and shows average loss as decreasing

over time. This can be interpreted as the weight (θ) parameters of the network being

optimized by gradient descent over time [106] and also as the network learning a more

efficient policy. In Fig. 4.10 , cumulative reward (rt) is plotted against time step (t). As

our algorithm is based on the foundation of acquiring maximum rewards rather than on the

end-goal success criterion, DQN learning occurs over one single episode with t time steps,

where t= 1,2,3, ..,T . The episode reward plot shows rewards increasing over time, implying

that the network learned the policy for acquiring maximum rewards, i.e., the action (at) to

take for the given state space (st) in order to acquire maximum rewards (max(rt)). Rewards

decreased at some time steps, mainly due to the network performing exploration [105], which

helps it to form a better policy. The exploration rate is the probability that our agent will

explore the environment rather than exploiting the original policy consensus; we set the

exploration rate (epsilon-greedy) [105] value to 0.1.

We also assessed the accuracy of the entire dataset by evaluating the correctness of the

action taken in context of the respective execution times. That is, the correct action should

71

Figure 4.10. Plot showing rewards acquired over time for the real dataset.
Rewards plotted against time step (t = 1000); Plot shows rewards increasing
over time, implying that the network learned a policy for acquiring maximum
rewards.

result in less execution time. We achieved a final accuracy of 84 percent on the dataset,

suggesting that the algorithm learned to take correct actions with respect to the input state

space over time. The overall mean execution time of actions selected by the algorithm was

71.28 milliseconds, while the respective means for local and cloud execution were 88.38 and

73.46 milliseconds. Thus, the proposed algorithm achieved execution time savings of almost

23 percent and 3 percent when compared with wholly local or wholly cloud execution. The

cumulative execution times were 140.88, 146.09, and 175.81 seconds for algorithm-selected,

cloud, and local execution, respectively. Hence, dynamic offloading using this algorithm

reduced the latency of the application.

Even though the DQN network performed well with respect to average loss and rewards

acquired, it is hard to intuitively ascertain what the agent learned. We plotted action (at)

with respect to the size of path input data (dp
t) and time step sequence (t) (Fig. 4.11)

and observed that when input data size surpassed 1.1, the agent chose in the majority of

72

Figure 4.11. Choice analysis plot for the size of path planning data input
(dp

t). For normalized values dp
t > 1.1, cloud computing was the preferred choice

of the policy.

cases to offload the application to the cloud. Hence, data size impacted offloading choice,

and when the planning problem data had a size greater than 1.1, executing the application

on the cloud was the better choice; the application took less time to execute even with

network latency. This observation also strengthens our hypothesis that the size of a problem

is directly proportional to execution time. Thus, we conclude that the policy learned by the

network is to choose cloud computation for path planning over larger areas.

4.5.2 Synthetic Dataset

In the previous section, we saw how the algorithm performed on a real data set. To

further evaluate the algorithm’s performance and behavior, we generated three different

synthetic datasets with three different goals. We wanted to see if first, the network could

learn to do onboard computation for a given state (i.e., local computation); second, if the

network could learn to offload an application for a given state (i.e., cloud computation); and

73

finally, if the network could learn a constant CPU availability value and use that as the basis

for offloading decisions (i.e., learning a CPU availability at which to offload). Additionally,

this section also provides insights into how reward (rt) assignment varies for local and cloud

computation.

Figure 4.12. Loss convergence over time for a local only synthetic dataset.
Loss value plotted against time step (t = 1020); Plot shows average loss de-
creasing and convergence.

Local Computation

To generate the synthetic dataset for local computation, we first obtained the local ex-

ecution time (llocal
t) for path planning at each time step, then multiplied it with a random

number from 0.9 to 1.9 to obtain the cloud execution time (lcloud
t),

lcloud
t = (0.90+ rand()%10/10.00)∗ llocal

t . (4.13)

Fig. 4.12 shows that average loss decreases and converges over time, implying that the

algorithm has learned the policy to acquire maximum rewards. Fig. 4.13 plots cumulative

rewards against time step. One important observation is that in this scenario, the possible

reward rt ranges from −1 to 0 inclusive, i.e., rt ∈ [−1,0]. While learning, the algorithm can

choose to either execute the application onboard or to offload it; that is, in Eq. (4.10), the

value for calgorithm
t can be either clocal

t or ccloud
t . In this particular dataset, when calgorithm

t

is ccloud
t , the reward is always negative as lcloud

t > llocal
t . In contrast, when calgorithm

t is clocal
t ,

the reward is zero.

74

Figure 4.13. Rewards acquired over time for a local only synthetic dataset.
Rewards plotted against time step (t = 1000); Plot shows rewards increasing
over time, implying that the network learned a policy for acquiring maximum
rewards.

The reward for the network (Fig. 4.13) started to stabilize at around time step 300,

with no further negative rewards being gained; the algorithm had by that point learned the

best possible action is not to gain any further negative rewards and to always choose local

computation instead of cloud computation.

Cloud Computation

To generate the cloud computation synthetic dataset, we first obtained the local execution

time (llocal
t) for path-planning at each time step, then multiplied that with a random number

from 0.1 to 1.1 to obtain the cloud execution time (lcloud
t),

lcloud
t = (0.1+ rand()%10/10.00)∗ llocal

t . (4.14)

75

Figure 4.14. Loss convergence over time for a cloud only synthetic dataset.
Loss value plotted against time step (t= 530); Plot shows average loss decreas-
ing and convergence.

Figure 4.15. Rewards acquired over time for a cloud only synthetic dataset.
Rewards plotted against the time step (t = 530); Plot shows agent learned a
policy that choosing cloud computing over local computing gives it a positive
reward.

Fig. 4.14 shows the average loss with this dataset as converging over time, implying that

the algorithm learned the policy to acquire maximum rewards. Fig. 4.15 plots cumulative

rewards against time steps. In this scenario, the synthetic data is skewed to favor cloud

computation and the possible reward rt for the agent ranges from 0 to 1 inclusive, i.e.,

76

rt ∈ [0,1]. Thus, when calgorithm
t is ccloud

t , the reward is always positive as lcloud
t < llocal

t ,

and when calgorithm
t is clocal

t , the reward is zero. That the reward accumulated was always

increasing indicates the agent learned that choosing cloud computing over local computing

gives it a positive reward, and thus always chose cloud computing instead of local computing.

Figure 4.16. Loss convergence over time for a CPU based synthetic dataset
values. Loss value plotted against time step (t = 1050); plot shows average
loss decreasing and convergence.

Figure 4.17. Rewards acquired over time for a CPU based synthetic dataset.
Rewards plotted against the time step (t= 1050); Plot shows agent learning a
policy to acquire positive rewards.

77

Wrong Actions

Figure 4.18. Choice analysis plot illustrating the CPU threshold value
learned by the offloading decision policy, which was 0.61.

Learning a CPU Value to Offload

In the previous sections, we observed how data input size (dp
t) affects the decision to

offload. In this section, we wanted to see if the network can learn about a CPU value ut = x

and use this value to decide whether to offload or do local computation. We generated a

synthetic dataset where execution times lcloud
t and llocal

t were set as follows,

lcloud
t < llocal

t when ut < x

lcloud
t > llocal

t when ut > x.
(4.15)

When collecting the synthetic data, we observed CPU availability on the local machine

to hover between 50 and 70 percent, and hence set the threshold value x as 60 percent. This

allowed us to collect data that was distributed on both sides of x.

Fig. 4.17 plots cumulative reward against time step. It is difficult to interpret from this

plot what the agent has learned; accordingly, we also rendered a scatter plot as illustrated

in Fig. 4.18 and a confusion matrix as given in Fig. 4.19 in order to decode what the agent

learned from the dataset. The goal of the policy was to extract the CPU availability value

(y) from the synthetic data and use it as the basis for deciding between offloading and local

computation. The learned threshold value (y) was around 0.61 (Fig. 4.18), while the pre-set

x value for generating lcloud
t and llocal

t was 0.6; we can therefore conclude that the network

was within a reasonable margin of error. This is further supported by the training accuracy

(Fig. 4.19), with the network having achieved 94 percent accuracy; most wrong actions took

78

Figure 4.19. Confusion matrix used to determine the accuracy of the net-
work; Over 94 percent accuracy was achieved.

place when ct was around 0.6. Finally, the average loss decreased and converged over time

(Fig. 4.16), implying that the algorithm learned the policy of offloading the application

whenever CPU availability was less than 61 percent and of doing local computation when it

was greater than 61 percent.

4.5.3 Comparative Evaluation With Long Short-Term Memory Algorithm

We further evaluate the proposed DRL algorithm by comparing it with another state-

of-the-art machine learning model. One approach for such evaluation is to compare the

algorithm with other DRL models such as DoubleDQN [107] or DuelingDoubleDQN [108].

These models are quite similar to each other as they all learn value functions and act greedily

79

Figure 4.20. Bar chart comparing application offloading prediction accuracy
for LSTM and proposed DRL algorithms. Prediction accuracy was calculated
by training the models with the first 500 time steps t and with the entire
dataset of 1000 time steps. Our proposed DRL algorithm achieved better
accuracy in both cases.

based on those values; the major difference between them lies in performance [89], and hence,

comparing these models will imply comparing performance parameters such as how loss

convergence varies for various batch sizes, learning rates, discounted factors, etc. However,

the major emphasis of this paper is to understand the policy learned by the agent and the

final accuracy of the algorithm. As such, rather than comparing performance among various

DRL models, a more appropriate evaluation is to compare the accuracy of the proposed

algorithm with other state-of-the-art machine learning models.

The literature has predominantly suggested using long short-term memory (LSTM) mod-

els for predicting execution time [109]. Hence, we implemented a LSTM model based on [110]

80

(hidden layers = 4, batch size = 50, steps/batch = 8) to predict application execution time

from input data size. Fig. 4.9 and Fig. 4.10 demonstrate that for the DRL model, loss

starts to converge and cumulative rewards to steadily increase from around t = 400; this

implies that by that step, the agent has figured out a policy to acquire positive rewards.

Thus, we used actual data from the first 500 time steps to train the LSTM model, with an

80:20 training:validation split. We then used the trained LSTM to predict execution times

for both cloud and local execution of the application and compared resulting predicted ac-

tions with actual actions obtained from the proposed DRL algorithm. As shown in Fig.

 4.20 , while the LSTM model achieved a final accuracy of 72.08 percent, the proposed DRL

algorithm achieved a greater accuracy of 81.62 percent. Similarly, when using the entire

1000-time step dataset with an 80:20 split to train the LSTM model, it had a final accuracy

of 74.12 percent, whereas the proposed DRL algorithm achieved 83.32 percent. Hence, we

can conclude that our proposed DRL algorithm is comparable to or better than LSTM in

predicting appropriate actions to take concerning application offloading with reference to the

application data input size.

4.5.4 Discussion

The results demonstrated that the agent was able to learn a policy that maximized

reward and reduced overall application execution latency. We also observed that the size of

application input data from the state space played an important role in the policy forming a

consensus. In this section, we will present some of the limitations and key observations of the

present study. Notably, the overall accuracy after training was greater than 80 percent for

all experimental cases we tested. Considering we only carried out the simulation for around

1000 time steps, this accuracy gives us confidence in the policy learned by the agent. We

are also certain that the accuracy can be increased by increasing the time steps (t) taken to

train the network.

One important observation from the results is the algorithm convergence. From the loss

plots, we can discern that the algorithm started to converge before 500 time steps in all

cases. Such rapid convergence is vital in reducing the amount of time that needs to be spent

81

on training and enables the algorithm to start taking correct actions (at) more consistently

in less time.

One limitation of this study is that there is no one true guideline that defines how to

correctly represent the size of input data for an application, and sometimes it falls to the

personal intuition of the human operator to correctly represent this metric. Representations

of input data size can vary based on factors such as the algorithm implemented, the com-

putational model used, and also on the application; for example, we represented the size

of path-planning input data as nlogn. Similarly, if we want to search n randomly ordered

elements, the input data size is n; binary search is logn; and sorting is nlogn [111]. For

image detection-based algorithms, we can assume that frames per second multiplied by the

data size of each frame would be a good representation of the input data [112]. Ultimately,

the accuracy of the proposed algorithm depends on the correctness of the input data size

determination, and so it’s not a foolproof system.

One of the other limitations of this study is that the Gazebo-based experimental setup

might not offer a perfect representation of the network latency in a robotic environment.

The experiment was carried out on a computer that was connected to the internet through

a LAN cable with capacity greater than 400 Mbps. The latency between the computer and

AWS on this setup was constant at around 30 milliseconds. In a real-world scenario, this

case might not hold as robots are mostly connected through a wireless connection, and so

might experience fluctuating internet speeds along with network dropouts depending on the

environment. Even though we introduced a latency parameter (bt) in the state space, the

network never truly learned anything meaningful about connection latency as the parameter

had minimal variation.

Finally, even though we verified the algorithm for a robot navigation application, it can

be generalized to a majority of robotic applications. This research also verifies that there is a

relationship between input data size and the time needed for execution. Hence, if we model

our state space to capture information concerning data size, the algorithm will converge and

learn a policy for offloading decision-making.

82

4.6 Conclusion

A dynamic computational offloading solution based on DQN has been proposed in this

chapter. The proposed algorithm was able to learn an optimal policy on when to offload an

application based on state-space values. The state space was built on the assumption that

the size of input data submitted to an application directly impacts its execution time, and we

successfully validated this assumption using the size of path input data (dp
t) in a navigation

application. The algorithm was designed as a continuous task problem with discrete action

space for every time step (t), and at each step the execution time for path planning in robot

navigation was collected for both cloud execution and local execution, as were state-space

values and the action performed. These values were used to train the DQN network and

evaluate the performance of our proposed algorithm.

The effectiveness of the algorithm was evaluated by observing the loss and rewards over

time steps. The results showed convergence and the agent learning a policy to maximize

rewards over time. To further evaluate the algorithm, we also generated three synthetic

datasets, each designed around a particular policy that the agent should learn. The network

successfully extracted the key features from these datasets, and the agent learned the policy

that we intended. All told, the results have validated the effectiveness of our proposed

algorithm.

83

5. PREDICTIVE OFFLOADING

Many robotic applications that are critical for robot performance require immediate feedback,

hence execution time is a critical concern. Furthermore, it is common that robots come

with a fixed quantity of hardware resources; if an application requires more computational

resources than the robot can accommodate, its onboard execution might be extended to

a degree that degrades the robot’s performance. Cloud computing, on the other hand,

features on-demand computational resources; by enabling robots to leverage those resources,

application execution time can be reduced. The key to enabling robot use of cloud computing

is designing an efficient offloading algorithm that makes optimum use of the robot’s onboard

capabilities and also forms a quick consensus on when to offload without any prior knowledge

or information about the application. In this chapter, we propose a predictive algorithm to

anticipate the time needed to execute an application for a given application data input size

with the help of a small number of previous observations. To validate the algorithm, we

train it on the previous N observations, which include independent (input data size) and

dependent (execution time) variables. To understand how algorithm performance varies in

terms of prediction accuracy and error, we tested various N values using linear regression

and a mobile robot path planning application. From our experiments and analysis, we

determined the algorithm to have acceptable error and prediction accuracy when N > 40.

5.1 Introduction

Although robot onboard resources are often fixed, modern robots do typically come with

a fair amount of computational resources, and it is important to consider these resources in

offloading decision-making. Ideally, the offloading algorithm should make a decision based

on cost parameters such as execution time, energy usage, and CPU availability. Researchers

have recently proposed several dynamic offloading solutions that use machine learning al-

gorithms and consider cost parameters [113]. However, these machine learning algorithms

require training on large datasets to make accurate predictions. Also, no two robots and

applications are the same, thus a machine learning model trained to work for a certain type

of application and robot is not guaranteed to work well for other combinations, and such

84

models are not easy to generalize. On top of all that, obtaining large datasets is itself a

challenging task. Hence, it is important to also consider an algorithm that can be trained

quickly and learn on the fly using smaller datasets. We introduce here a predictive algorithm,

outlined in Fig. 5.1 , that is designed to help robots make offloading decisions without any

prior knowledge about the application.

ROS Package

1 N

𝑵

……..

Predictive Model Trained
on Sliding Window Size 𝑵

Input

Data Size
Predicted

Action

ROS Package Running
on ROS Instance

ZMQ - Network
Communication

Actual
Execution Time

from Cloud

Actual
Execution Time

from Robot

Robot Execution

Cloud Execution

Robot and
Hardware Onboard

Computation

Cloud
Computation

Figure 5.1. Illustration of the proposed predictive algorithm for offloading
decision-making. (Top) Input data size from robot hardware (e.g. LiDAR,
camera) along with actual execution times from cloud and robot executions
are used to train the predictive model. The training set consists of the previous
N values to facilitate learning on the fly and faster training. (Bottom) An
instance of ROS running on the cloud subscribes to ROS topics from the
robot and responds with application output.

The remainder of the chapter is organized as follows: In Section 5.2 , we describe re-

lated work on application offloading algorithms. In Section 5.3 , we introduce a predictive

algorithm. In Section 5.4 , we present linear regression and a mobile robot path planning

application to validate the generalized algorithm. In Section 5.5 , we provide extensive exper-

85

imental results and analysis. Finally, we conclude our work and present our future directions

in Section 5.6 .

5.2 Related Work

For robots with bare minimum computational capabilities, full application offloading

will be an obvious choice. However, many robots currently produced are computationally

capable, hence are capable of onboard execution of many applications; this leads to dynamic

application offloading being more appropriate, with offloading decisions taking into account

both the robot’s computational capability and the application’s computational requirements.

Hence, application offloading approaches can be broadly categorized into full offloading and

dynamic offloading.

Since the inception of cloud robotics in 2009, several architectures have been proposed

that mainly focused on full offloading; these cater to specific applications such as navigation,

image classification, and localization [4], [43], [63], [114].

To our knowledge, the area of dynamic application offloading for cloud robotics is un-

derstudied, with only a few studies published to date that focus on dynamic application of-

floading. In one example, Rahman et al. proposed an offloading solution for cloud-networked

multi-robot systems that was based on a genetic algorithm and focused on energy efficiency

as the criterion informing decision-making [115]. Alli et al. proposed an offloading solu-

tion based on the Neuro-Fuzzy model, a machine learning method, which aims to minimize

latency and energy for smart city applications [116]. Some other solutions based on edge

computing and machine learning have also been proposed [60], [69], [70], [117]–[119].

In the last couple of years, additional approaches have tried applying deep reinforcement

learning (DRL) [56] -based algorithms for making application offloading decisions. Chicachali

et al. [81] used such a strategy to offload an object detection application to the cloud, while

Peng et al. [83] used a DRL-based Deep-Q-Network algorithm for offloading based on energy

consumption and task makespan.

In reviewing the literature, we observed various extant solutions based on genetic al-

gorithms, machine learning, and DRL. All of these algorithms require large datasets and

86

substantial time in training to achieve convergence and make accurate predictions. Also,

there is no guarantee that the trained algorithm will work for other types of applications

and robots. Hence, it is important to design a lightweight offloading algorithm that can

learn after the application is initiated. Our proposed algorithm is mainly designed to being

adaptable to diverse applications and not requiring any pretraining. As the proposed algo-

rithm is not pre-trained, it is important for it to quickly learn optimal decision-making. To

make the algorithm faster to train, we train it on a fixed dataset of N previous observations.

We experiment with various N to observe the correlation, prediction accuracy and error.

5.3 Generalized Predictive Algorithm

In this section, we introduce a generalized version of the predictive algorithm (Ψ) for

application offloading. The simple nature of the proposed predictive algorithm empowers

the user to proceed without any of the pre-computing that is usually required for machine

learning algorithms or other optimizing techniques. This chapter is interested in a useful,

generalized dynamic offloading algorithm that can be applied to robotic applications and

has an independent variable that can used to predict a dependent variable.

An application execution usually consists of subtasks, where each task can be independent

or dependent on another. These tasks process the received input and give a resulting output.

Here, we categorize an application A into application tasks ai, where A ∈ ai and i is the

application task sequence number, and for simplicity we assume that application tasks are

executed in sequence. The time needed for execution of an application depends on its input

arguments, such as the size of the data (di). Our basic premise is that we can predict

both cloud execution (pc
i) and local execution (pl

i) times using the input arguments provided

to the application, thus all applications can be generalized as the sum of all components

dependent on application arguments. These predicted values pc
i and pl

i can be used in

offloading decision-making, and generally we can represent the offloading choice as:

Cloud computation when pc
i < pl

i

Onboard computation when pc
i ≥ pl

i. (5.1)

87

To compare pc
i and pl

i, a predictive function is needed; however, estimating execution time

can be simple or complex. Many algorithms and functions can be created to predict execution

time by means of an algorithm built from the values of the application’s input variables. For

small systems with straightforward relationships, n-dimensional regressions are the obvious

choice; meanwhile, for systems with many variables and complex relationships, machine

learning is commonly used. Some of the most widely-used predictive algorithms are linear

regression [120], random forest [121], time-series algorithms [122], and k-means clustering

[123]. The time complexity of an application with one major variable can be written as

O(u), where u = 1, n, nlogn, n2, 2n, etc. For an application carrying out the same task

repeatedly on a dataset of constant size, the complexity is O(1). For an application using

only one variable, regardless of complexity, estimating pc
i and pl

i with regression from sample

data coordinates is straightforward.

One key aspect of the proposed predictive algorithm is that it includes a fixed number N ,

the window size of the most recent execution data (cloud and local) that is used for training

the algorithm to form a consensus and predict the execution times pc
i and pl

i. Figure. 5.2

and Algorithm 2 describes the predictive model, where we use First-In First-Out (FIFO)

queue data structures Bl and Bc to store the N training values. Having a fixed training

size keeps memory low and keeps prediction runtimes low. By retaining the most recent

observations, the algorithm can also account for exogenous factors that influence execution

time. For example, even though we define that application execution time depends on the

input arguments, there will be instances where the execution time of the application varies

based on external factors not captured in the input arguments, such as network loss and high

CPU usage by other applications. By storing the N most recent executions, we can capture

some of the external factors that affect execution time. After training the algorithm with

the stored queue values, the algorithm will receive current state values and predict execution

times that can be used for offloading decision-making.

88

St
ar

t

R
e

ad
 a

p
p

lic
at

io
n

’s

cu
rr

e
n

t
ar

gu
m

e
n

ts

(𝒂
𝒓
𝒈
𝒔
)

𝒑
𝒊𝒍
=

𝜳
𝒍(
𝒂
𝒓
𝒈
𝒔
)

𝒑
𝒊𝒄
=

𝜳
𝒄
(𝒂
𝒓
𝒈
𝒔)

𝒑
𝒊𝒍
<
𝒑
𝒊𝒄

<<
R

u
n

 a
p

p
lic

at
io

n
 o

n
b

o
ar

d
 a

n
d

co
m

p
u

te
 a

ct
u

al
 e

xe
cu

ti
o

n
 t

im
e

 𝒕
𝒊𝒍 >>

If
 le

n
gt

h
𝑩
𝒍

==
 𝑵

:

D
e

le
te
𝑩
𝒍 [
𝟎
]

A
p

p
e

n
d

 𝒂
𝒓
𝒈
𝒔

an
d

 𝒕
𝒊𝒍

to
 a

rr
ay

𝑩
𝒍

U
p

d
at

e
𝜳

𝒍
w

it
h

 v
al

u
e

s
in

 𝑩
𝒍

D
id

ap

p
lic

at
io

n

te
rm

in
at

e?

In
it

ia
liz

e
 a

rr
ay

s
𝑩
𝒍
&
𝑩
𝒄

o
f

si
ze

 𝑵

<<
R

u
n

 a
p

p
lic

at
io

n
 o

n
 c

lo
u

d
 a

n
d

co

m
p

u
te

 a
ct

u
al

 e
xe

cu
ti

o
n

 t
im

e
 𝒕
𝒊𝒄
>>

If
 le

n
gt

h
𝑩
𝒄

==
 𝑵

:
D

e
le

te
 𝑩

𝒄
[𝟎
]

A
p

p
e

n
d

 𝒂
𝒓
𝒈
𝒔

an
d
𝒕 𝒊𝒄

to
 a

rr
ay

 𝑩
𝒄

U
p

d
at

e
𝜳

𝒄
w

it
h

 v
al

u
e

s
fr

o
m

 𝑩
𝒄

St
o

p

𝜳𝒄and 𝜳𝒍computed in parallel

Tr
u

e

Fa
ls

e

Fa
ls

e

Tr
u

e

(𝒕
𝒊𝒄
,𝒕
𝒊𝒍 ,
𝒂
𝒓
𝒈
𝒔)

F
ig

ur
e

5.
2.

Fl
ow

ch
ar
t
of

th
e
ge
ne
ra
liz
ed

pr
ed
ic
tiv

e
al
go

rit
hm

.
T
he

sp
ec
ifi
c
pr
ed
ic
tiv

e
al
go

rit
hm

s
Ψ

c
an

d
Ψ

l

ar
e
tr
ai
ne
d
on

va
lu
es

fro
m

th
e
ar
ra
ys

B
l
an

d
B

c
to

pr
ed
ic
t
th
e
ex
ec
ut
io
n
tim

es
pc i

an
d
pl i.

A
rr
ay

s
B

l
an

d
B

c

co
nt
ai
n
th
e
pr
ev
io
us

N
ob

se
rv
at
io
ns

of
ac
tu
al

ex
ec
ut
io
n
tim

es
tc i

an
d
tl i

al
on

g
w
ith

ar
gu

m
en
ts
a
rg
s
pa

ss
ed

to
th
e
ap

pl
ic
at
io
n.

89

Algorithm 2 Predictive algorithm for application offloading
Initialize FIFO based Queues Bl and Bc with size N ;
for For application task sequence i = 1 do

repeat
Fit ψl and ψc with Bl and Bc;
Load input data size di for ai;
Predict ψl(di) = pl

i and ψc(di) = pc
i ;

if size(Bl) and size(Bc) ==N then
if pl

i < pc
i then

Execute the application onboard;
Calculate tli;
Append Bl with (tli,di);

else
Execute the application on AWS;
Calculate tci ;
Append Bc with (tci ,di);

end if
else

Execute application onboard and AWS;
Calculate tli and tci ;
Append Bl with (tli,di);
Append Bc with (tci ,di);

end if
Set i = i+1;

until Application is terminated;
end for

5.4 Linear Regression and Mobile Robot Path Planning Application

In this section, we introduce the linear regression and the mobile robot path planning

application that we use to validate the proposed algorithm.

5.4.1 Linear Regression Model

The goal of the algorithm (Algorithm 2) is to predict pc
i and pl

i (dependent variables)

from an independent variable that has some correlation with execution time. Application

execution time is proportional to the input data size, and there exists a linear relation

between them [94]. Hence, we want to predict execution time from the input data size

(di). For predictions involving linear relationships, n-dimensional regressions are the obvious

90

choice, hence we used a lightweight linear regression-based predictive model (ψ) to predict

pc
i and pl

i from di. We term this algorithm lightweight is because we train it on a fixed

dataset of size N . The duration of training will thus be considerably shorter relative to

other models trained with larger datasets. Finally, to validate the proposed algorithm, we

need a dataset with actual application execution times for both cloud computation (tci)

and local computation (tli) and also the corresponding input data sizes (di). We derived

this information for a mobile robot path planning application, the process of which will be

explained in sections 5.4.2 and 5.4.3 .

To predict local execution time (pl
i), we used linear regression with the least squared

method, as follows:

pl
i =ml ∗di + cl (5.2)

where ml is the slope and cl is the intercept, which are derived as follows:

ml =
∑N

i=1(di−d)∗ (tli− tl)∑N
i=1(di−d)2

cl = tl−ml ∗d,

(5.3)

whereN is the size of the window of previous observations used for fitting the linear regression

model, d is the mean of the input data size, and tl is the mean of the actual execution time

from N previous observations.

Similarly, to predict cloud execution time (pc
i), we can represent the linear regression

equation with the least squared method as follows:

pc
i =mc ∗di + cc (5.4)

91

where mc is the slope and cc is the intercept, which are derived as follows:

mc =
∑N

i=1(di−d)∗ (tci − tc)∑N
i=1(di−d)2

cc = tc−mc ∗d,

(5.5)

where tc is the mean of the actual execution time from N previous observations.

5.4.2 Robot Path Planning Platform

Using the framework shown in Fig. 5.3 , we obtain actual execution times tci and tli for the

corresponding di for a robot path planning application. Based on the predicted execution

times pc
i and pl

i, the robot executes the application either on the cloud or locally. Afterwards,

the robot stores actual execution times (tci and tli) along with corresponding data size (di)

values in a queue of size N . Finally, the predictive algorithm Ψ iteratively updates with new

values from that queue for each prediction.

To validate the proposed algorithm in a simple and practical environment, we used the

same Gazebo world environment seen in chapter 4.4.2 . For path planning, the robot needs

to have a map of its environment and also needs to be capable of performing simultaneous

localization and mapping (SLAM) in the given environment to obtain an obstacle-free path

from the origin to the destination [124]. In our experiment, we used Dijkstra’s algorithm

[125] to compute the shortest path as seen in chapter 4.4.2

5.4.3 Cloud Platform

On the cloud side of the framework, we used Amazon Web Services (AWS) with an

Ohio instance. The simulation was carried out on a laptop with a stable wired internet

connection having speed greater than 400 Mbps. The average latency observed for data

making a round trip between cloud and robot was around 30 milliseconds. To establish

communication between the robot and AWS, we used the ZMQ communication protocol

[102], which is a high-performance asynchronous messaging library that provides a ROS-like

92

Gazebo Environment

Planning
Node

Cloud Talker
Node

Amazon
Cloud

Local and
Cloud

Execution
Time

𝒅𝒊𝒕𝒊
𝒍

𝒕𝒊
𝒄

𝒕𝒊
𝒄, 𝒕𝒊

𝒍

ZMQ

First-in First-out
Array of size 𝑵

𝒕𝒊
𝒄, 𝒕𝒊

𝒍, 𝒅𝒊

𝒕𝟎
𝒄 , 𝒕𝟎

𝒍 , 𝒅𝟎

𝒕𝟏
𝒄 , 𝒕𝟏

𝒍 , 𝒅𝟏

.

.

. Fit Linear
regression on 𝑵

Predicted Output:

𝒑𝒊
𝒍, 𝒑𝒊

𝒄

𝒅𝒊

World Robot

Figure 5.3. Navigation framework for algorithm validation. A mobile robot
performs path planning inside an gazebo world by interacting with AWS. The
data from the simulation are fitted to a regression model to predict execution
times for a given input data size.

publisher-subscriber functionality. These along with other functionalities [126] made ZMQ

an ideal choice for our application.

On AWS, we had a ROS instance running that subscribed to ROS topics from the robot.

In this experiment, the robot published LiDAR data and its current and goal positions. The

ROS instance on the cloud subscribed to these topics and published back a planned path. In

parallel, the robot also computed a planned path on its local ROS instance. We calculated

the actual execution times tci and tli by subtracting the time of data publication from the

time at which each instance’s planned path was received.

93

5.5 Results and Analysis

To evaluate the performance of the decision-making algorithm with training queue of

varying size N , we programmed a linear regression model based on the logic illustrated

in Algorithm 2 on top of the navigation framework described in Fig. 5.3 . To main-

tain consistency across the results, we used a singular dataset that consisted of 1,000

rows with actual execution times tli, tci and corresponding di, and evaluated training with

N = 5, 10, 20, 30, 40, 50, 75, 100, and 500 samples. We did not consider queue of size N < 5,

as with so little data there is a good chance of underfitting and insufficient variation for the

model to learn. The hardware configuration of the robot and the AWS instance (p2.xlarge)

used to generate this dataset are given in Table 5.1 .

Table 5.1. Hardware configuration of the robot and AWS instance used to
generate performance evaluation data.

Robot - Local AWS (p2.xlarge) - Cloud

CPU Intel Core i7-6700 CPU
@ 3.40GHz

2.7 GHz (turbo) Intel Xeon
E5-2686 v4

GPU
1 GeForce GTX 1050 -
768 processing cores and
4 gb of GPU memory

1 NVIDIA K80 -
2496 parallel processing cores
and 12 gb of GPU memory

RAM 16 gb 61 gb
Cores 8 4

OS Ubuntu-18.04 Ubuntu-18.04

After initialization of the application, the first N elements are solely used to train the

linear regression algorithms (ψl,ψc) that are in turn used to predict execution times (pl
i

and pc
i) for informing offloading decision making. During execution, the actual time of

execution is computed (tli or tci) and, along with the corresponding di, are appended to the

corresponding queue, from which the first (oldest) value is then deleted. The corresponding

predictive algorithm ψl or ψc will then be refitted based on the updated queue to predict

the execution time for the next application task (ai+1) from a given input data size. The

94

results of the performance evaluation are presented in Tables 5.2 - 5.3 - 5.4 , and in the next

subsections we analyze those results in terms of correlation, residuals, and accuracy.

Table 5.2. Average correlation values for actual time of execution tl and tc

N
Average Correlation

tc and d (Pearson r)

Average Correlation

tl and d (Pearson r)

5 0.31726 0.73545

10 0.31717 0.71970

20 0.30455 0.71198

30 0.30245 0.70822

40 0.30282 0.70922

50 0.30273 0.70641

75 0.29914 0.69775

100 0.28395 0.70290

500 0.28060 0.69707

1000 0.27761 0.69221

5.5.1 Correlation

We used bivariate Pearson correlation [127] to estimate the correlation coefficient r,

which helps us determine the strength of association between independent (d) and dependent

variables (tl and tc). This analysis suggested a low positive correlation of r(1,000) = .27761

between cloud execution time (tc) and application input data size (d) and a strong positive

correlation of r(1,000) = .69221 between local execution time (tl) and application input

data size (d). Both coefficient values were statistically significant with p < 0.005. These

correlations imply that with an increase in input data size (d), there is also an increase in

actual execution time, whether local or cloud (tl and tc). Furthermore, the evident stronger

correlation of local execution time (tl) with input data size (d) reflects the limited availability

of computational resources in onboard execution; when application input data size increases,

the application required more computational resources than the robot could accommodate,

95

Figure 5.4. Pearson r correlation plot for actual cloud execution time (tl)
and input data size (d).

hence extending execution time. In contrast, cloud execution is better supported in terms

of computational resources, and an increase in application input data size (d) resulted in a

smaller increase of the cloud execution time (tc).

We additionally investigated the impact of N on the correlation between dependent and

independent variables. Ideally, as N increases, correlation values should remain the same or

become stronger, reflecting better prediction values. We calculated correlation values for a

moving window size of N across the training dataset, then averaged the results to obtain an

average correlation value for the given N . As seen in Table 5.2 , the average correlation values

were slightly better for smaller N , implying that smaller training datasets captured slightly

better association between independent (d) and dependent variables (tl and tc). However,

the differences were slight, indicating that training data size did not substantially affect the

correlation between independent and dependent variables.

Hence, we can assume that a larger sample size does not imply a stronger correlation;

in fact, in our case, a larger sample actually weakens the correlation by a slight degree as

seen in Fig. 5.4 and Fig. 5.5 . This goes to show that the homogeneity of the sample is more

96

Figure 5.5. Pearson r correlation plot for actual cloud execution time (tc)
and input data size (d).

important than its size. How we collect the sample is also a key factor; if the data were

sampled randomly, the correlation could have been lower. As we sequentially collected data

during the experiment, the sample maintained a correlation comparable to larger datasets.

Hence, we can conclude that smaller sequential datasets can be effective in predicting the

execution times of robotics applications.

5.5.2 Residuals

Residuals (specifically, the difference between mean t and mean p) help us determine the

error between actual and predicted execution times. Residual values for both cloud and local

execution for models trained on different dataset sizes are listed in Table 5.3 . With cloud

computing, the residual was around 0.03681 for N = 5, which implies a 26 percent error

rate (residual / actual tc). Error rates decreased with increasing N , being about 13 percent

for N = 10, 4 percent for N = 20 & 30, and less than 1 percent for all higher N values. A

97

T
ab

le
5.

3.
R
un

ni
ng

w
in
do

w
s
m
ea
ns

fo
r
cl
ou

d
ex
ec
ut
io
n
(t

c
an

d
pc
)
an

d
lo
ca
le

xe
cu
tio

n
(t

l
an

d
pl
)

N
R

un
ni

ng
W

in
do

w
M

ea
n

tc
(S

ec
on

ds
)

R
un

ni
ng

W
in

do
w

M
ea

n

pc
(S

ec
on

ds
)

R
un

ni
ng

W
in

do
w

M
ea

n

tl
(S

ec
on

ds
)

R
un

ni
ng

W
in

do
w

M
ea

n

pl
(S

ec
on

ds
)

5
0.
14

01
6

0.
17

69
7

0.
17

52
7

0.
19

09
9

10
0.
14

02
9

0.
15

99
0

0.
17

53
7

0.
17

88
8

20
0.
14

00
5

0.
14

59
5

0.
17

54
6

0.
17

80
7

30
0.
14

00
5

0.
14

57
8

0.
17

54
6

0.
18

25
9

40
0.
14

01
6

0.
14

05
6

0.
17

55
2

0.
18

07
8

50
0.
14

02
5

0.
14

06
1

0.
17

55
4

0.
18

02
7

75
0.
13

99
1

0.
13

99
7

0.
17

51
9

0.
17

76
9

10
0

0.
14

04
8

0.
13

92
5

0.
17

56
4

0.
17

58
3

50
0

0.
13

48
1

0.
14

01
2

0.
17

11
3

0.
17

64
9

10
00

0.
14

01
1

0.
14

79
6

0.
17

53
0

0.
18

15
1

98

less than 1 percent error rate implies an average difference between actual and predicted

execution times of less than 0.39 milliseconds.

Figure 5.6. Running window mean for cloud actual execution time (tl) and
predicted time (pl). Maximum prediction accuracy is achieved at around N =
100.

Meanwhile, error rate for predictions of local execution time for N = 5 featured a residual

of 0.01572 and a resulting error rate of about 8 percent, while all higher N values had error

rates of around 2 percent. Due to the high correlation between local execution time and

input data size, there was better convergence and prediction accuracy at lower N . The

2 percent error rate implies an average difference of 3.5 milliseconds between actual and

predicted execution times.

As seen in Fig. 5.6 and Fig. 5.7 , one of the takeaways we want to highlight is that error

percentages were high when N = 5, but less than 2 percent when N > 40. This implies that

complex algorithms trained on large datasets are not needed to accurately predict offloading

decision-making. A simple lightweight regression algorithm fitted on the previousN elements

will be able to efficiently decide when to offload the application to the cloud. In this case,

N > 40 was sufficient to yield an acceptable level of error rate of less than 2 percent.

99

Figure 5.7. Running window mean for cloud actual execution time (tc) and
predicted time (pc). Maximum prediction accuracy is achieved at around N =
40.

5.5.3 Decision Making Accuracy

To evaluate the accuracy of the algorithm, we compared the predicted action obtained

from pl and pc (Eq. 5.1) with the correct action obtained from tl and tc. Table. 5.4 , shows

the prediction accuracy for various N values. The accuracy was around 60 percent for N = 5

and around 79 percent for N = 50. Above N = 50, only marginal increases in accuracy

were obtained. We also trained the model on the entire dataset (N = 1,000) with 80:20

(training:testing) split, the result from which implies that the best possible accuracy for the

linear regression will be around 83 percent for the given dataset.

We then further evaluated the proposed model by comparing it with other state-of-the-

art machine learning models. Unlike in robotics, application offloading is well-studied in

the context of mobile devices [128], [129], which literature has predominantly used Long

Short-Term Memory (LSTM) for predicting execution time [109]. Hence, we implemented

a LSTM model based on [110] (hidden layers = 4, batch size = 50) to predict application

100

Table 5.4. Prediction accuracy for various N

N Prediction Accuracy (%)

5 60.02

10 64.95

20 70.60

30 73.38

40 76.32

50 78.80

75 79.74

100 79.62

500 81.90

1000 83.32

execution time from input data size. For training and testing, we used an 80:20 split of the

entire dataset (N = 1,000). We then compared the predicted actions obtained from LSTM

predicted execution times with the actual actions obtained from tl and tc. As seen in Fig.

 5.8 , the LSTM model achieved a final accuracy of 75.68 percent whereas the linear regression

achieved an accuracy of 83.32 percent. Hence, we can conclude that our predictive algorithm

was comparable in accuracy to LSTM for N = 1,000.

Observing the residual values and accuracy gives us reasonable confidence in the ability

of the proposed algorithm to correctly predict execution times when trained on smaller

datasets.

101

Figure 5.8. Prediction accuracy for various N . The red dotted line indicates
the accuracy of linear regression on the full dataset. The green dotted line
indicates the accuracy of an LSTM model on the full dataset. For full dataset
80:20 training:validation split was used.

5.5.4 Discussion

In this chapter, we propose a predictive algorithm for offloading decision-making, and

further validate the algorithm using linear regression with a robot path planning application.

Several exogenous factors can directly or indirectly affect the execution time of an ap-

plication. It might not be practically feasible to capture all such variables and train a

machine learning algorithm to incorporate them into highly-accurate predictions of execu-

tion time. These influencing factors are often periodical, such as when a new application

is launched alongside currently-running applications, requiring all of the applications share

computational resources and thus extending execution time until one or another application

terminates. Another example is network failure, which will extend the cloud execution time

until network connectivity is restored. These exogenous factors are incredibly difficult to

predict, but by considering N previous values we can capture some periodical factors and

so predict execution times that are true to the current state of the system. Moreover, we

102

observed a prediction accuracy of around 80 percent with only 2 percent difference between

the actual and predicted values when we considered a training set of size N = 40. With such

a small N value, the predictive algorithm will be quicker to train, will output its predictions

faster, and will require much data for training compared with traditional machine learning

algorithms.

One potential drawback of the proposed algorithm is that it only works effectively when

both an independent variable and a significantly correlated dependent variable exist. Fur-

thermore, the linear algorithm is usually sensitive to outliers, hence outliers must be appro-

priately addressed before fitting the data. Another drawback with a linear algorithm is that

the data should have a linear relation. If the number of prediction variables is increased,

issues with data linearity might occur. Finally, we also validated the proposed algorithm for

subtasks that execute sequentially, but it remains to be seen how the algorithm performs for

applications that execute in parallel. Perhaps parallel execution will need to be implemented

in a distributed setup. Another drawback we want to highlight is that the accuracy of the

prediction depends on the correlation between input data and predicted values; without

a significant correlation, predicted values will be unreliable and can result in less-correct

actions.

Finally, we do not claim that these models outperform state-of-the-art machine learning

models. Machine learning models trained on large datasets with a variety of features will

outperform these predictive models. However, it is not always possible to have a pre-trained

machine learning model for a variety of applications and robot hardware. Our proposed

predictive model can be used as an alternative in situations where prior knowledge is not

available and offloading decisions need be made on the fly as quickly as possible.

5.6 Conclusion

In this chapter, we introduce a predictive algorithm to predict the execution time of an

application for a given application data input size and then use that prediction for decision-

making regarding application offloading. As the proposed algorithm starts learning after the

application is initiated, minimizing training time is of highest priority; this is achieved by

103

training the algorithm on a small number of previous data observations (N). We expect

that this training approach will enable the capture of exogenous factors that are not directly

incorporated in the model’s design.

To validate the proposed predictive algorithm, we used linear regression and a Gazebo

world. We experimented with varying N values to evaluate performance, and we found that

the algorithm had an acceptable error and prediction accuracy when N > 40.

104

6. CONCLUSION AND FUTURE WORK

This dissertation presented our research on application offloading for cloud robotics. We

proposed a novel cloud robotics architecture with first-of–its-kind features and validated the

feasibility of using the architecture with full computational offloading. In Chapter 4 and

 5 , we proposed dynamic computational offloading algorithms based on application input

data size. After the summary of previous chapters below, the direction of future research is

suggested.

6.1 Conclusion

Cloud robotics is a relatively new area of research in which the biggest limitation is the

decision of what, when, and how to distribute an application between on-board resources

and cloud computing resources. With this in mind, we designed a novel cloud robotics

architecture called Smart Cloud, which is the first of its kind to incorporate JavaScript-

based libraries for running diverse robotic applications related to machine learning and more.

The architecture is designed to cater to both heterogeneous and homogeneous multi-robot

systems as well as single-robot systems. Using full offloading, we demonstrated the efficiency

of the architecture by evaluating its CPU usage, latency, and security.

For robots with bare minimum computational capabilities, full application offloading

will be an obvious choice. However, many robots currently produced are computationally

capable, hence are capable of onboard execution of many applications; this leads to dynamic

application offloading being more appropriate, with offloading decisions taking into account

both the robot’s computational capability and the application’s computational requirements.

Hence for Chapter 4 , we proposed dynamic computational offloading solution based on DQN.

Our problem formulation is based on acquiring maximum rewards and not the end-goal

success criterion, our algorithm is designed as a continuous task problem with discrete action

space, i.e., we apply a choice of action at each time step and use the corresponding outcome

to train the DQN. The proposed algorithm was able to learn an optimal policy on when

to offload an application based on state-space values. The state space was built on the

assumption that the size of input data submitted to an application directly impacts its

105

execution time, and we successfully validated this assumption using the size of path input

data in a navigation application environment. Finally, even though we verified the algorithm

for a robot navigation application, it can be generalized to a majority of robotic applications.

This research also verifies that there is a relationship between input data size and the time

needed for execution. Hence, if we model our state space to capture information concerning

data size, the algorithm will converge and learn a policy for offloading decision-making.

The proposed DQN algorithm and other algorithms that we studied in our literature

review, require large datasets and substantial time in training to achieve convergence and

make accurate predictions. Also, there is no guarantee that the trained algorithm will work

for other types of applications and robots. Hence, it is important to design a lightweight of-

floading algorithm that can learn after the application is initiated. Our proposed algorithm is

mainly designed to being adaptable to diverse applications and not requiring any pretraining.

As the proposed algorithm is not pre-trained, it is important for it to quickly learn optimal

decision-making. In Chapter 5 , we introduced a predictive algorithm to predict the execution

time of an application for a given application data input size and then use that prediction for

decision-making regarding application offloading. As the proposed algorithm starts learn-

ing after the application is initiated, minimizing training time is of highest priority; this is

achieved by training the algorithm on a small number of previous data observations (N).

We expect that this training approach will enable the capture of exogenous factors that are

not directly incorporated in the model’s design. To validate the algorithm, we trained the

algorithm on the previous N observations, which include independent (input data size) and

dependent (execution time) variables. To understand how algorithm performance varies in

terms of correlation, prediction accuracy and error, we tested various N values using linear

regression and a mobile robot path planning application. From our experiments and anal-

ysis, we determined the algorithm to have acceptable error and prediction accuracy when

N > 40.

106

6.2 Future Research Direction

Building on the research foundation provided by this dissertation, future research can be

directed on the following aspects.

For Chapter 3 , the future work can focus on the development of tools and mechanisms to

lower additional cost parameters such as latency and energy. The architecture can be further

evaluated in terms of metrics such as latency, scalability, interoperability, availability, and

security.

For Chapter 4 , the additional work to accommodate a multi-robot scenario can be con-

sidered. In future work, we can also focus on adding additional cost parameters such as

energy usage. We can explore various application prioritization mechanisms that can help

prioritize mission-critical applications, and we can apply mechanism-specific cost parame-

ters to the applications. For example, applications that are critical for robot functioning will

have reducing latency as the first priority, while applications that are not mission-critical

will prioritize reducing their own energy use. To expand the research even further, we can

considers algorithms such as DDPG [56] for a multiple application scenario using a single

state space.

For Chapter 5 , we can consider additional cost parameters such as energy usage. We can

also explore algorithms, such as ARIMA and SARIMA [122], that can help predict execution

times for applications whose variable relationships are non-linear.

107

REFERENCES

[1] W. Wang and K. Siau, “Artificial intelligence, machine learning, automation, robotics,
future of work and future of humanity: A review and research agenda,” Journal of
Database Management, vol. 30, pp. 61–79, Jan. 2019. doi: 10.4018/JDM.2019010104 .

[2] S. Alsamhi, O. Ma, and S. Ansari, “Convergence of machine learning and robotics
communication in collaborative assembly: Mobility, connectivity and future perspec-
tives,” Journal of Intelligent and Robotic Systems, Oct. 2019. doi: 10.1007/s10846-
019-01079-x .

[3] Cloud robotics market-size-analysis forecast (2018 - 2023), https : / / www .
mordorintelligence.com/industry-reports/cloud-robotics-market .

[4] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud
robotics and automation,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 12, no. 2, pp. 398–409, Apr. 2015, issn: 1545-5955. doi: 10.1109/TASE.
2014.2376492 .

[5] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in 2010
24th IEEE International Conference on Advanced Information Networking and Ap-
plications, 2010, pp. 27–33.

[6] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside the cloud?
an architectural map of the cloud landscape,” in 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, May 2009, pp. 23–31. doi: 10.1109/
CLOUD.2009.5071529 .

[7] J. KUFFNER, “Cloud-enabled humanoid robots,” Humanoid Robots (Humanoids),
2010 10th IEEE-RAS International Conference on, Nashville TN, United States, Dec.,
2010. [Online]. Available: https://ci.nii.ac.jp/naid/10031099795/en/ .

[8] H. Zhang and L. Zhang, “Cloud robotics architecture: Trends and challenges,” in 2019
IEEE International Conference on Service-Oriented System Engineering (SOSE),
2019, pp. 362–3625.

[9] K. Siau and W. Wang, “Building trust in artificial intelligence, machine learning, and
robotics,” Cutter Business Technology Journal, vol. 31, no. 2, pp. 47–53, 2018.

[10] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The limits and potentials of deep
learning for robotics,” The International Journal of Robotics Research, vol. 37, no. 4-5,
pp. 405–420, 2018. doi: 10.1177/0278364918770733 . eprint: https://doi.org/10.1177/
0278364918770733 . [Online]. Available: https://doi.org/10.1177/0278364918770733 .

108

https://doi.org/10.4018/JDM.2019010104
https://doi.org/10.1007/s10846-019-01079-x
https://doi.org/10.1007/s10846-019-01079-x
https://www.mordorintelligence.com/industry-reports/cloud-robotics-market
https://www.mordorintelligence.com/industry-reports/cloud-robotics-market
https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.1109/CLOUD.2009.5071529
https://doi.org/10.1109/CLOUD.2009.5071529
https://ci.nii.ac.jp/naid/10031099795/en/
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733

[11] W. Wang and K. Siau, “Artificial intelligence, machine learning, automation, robotics,
future of work and future of humanity: A review and research agenda,” J. Database
Manag., vol. 30, pp. 61–79, 2019.

[12] P. C. Sen, M. Hajra, and M. Ghosh, “Supervised classification algorithms in machine
learning: A survey and review,” in Emerging Technology in Modelling and Graphics,
J. K. Mandal and D. Bhattacharya, Eds., Singapore: Springer Singapore, 2020, pp. 99–
111, isbn: 978-981-13-7403-6.

[13] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun.
ACM, vol. 53, pp. 50–58, Apr. 2010. doi: 10.1145/1721654.1721672 .

[14] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley,
“Desktop teleoperation via the world wide web,” in Proceedings of 1995 IEEE Inter-
national Conference on Robotics and Automation, vol. 1, May 1995, 654–659 vol.1.
doi: 10.1109/ROBOT.1995.525358 .

[15] O. Saha and R. Dasgupta, “A comprehensive survey of recent trends in cloud
robotics architectures and applications,” Robotics, vol. 7, Aug. 2018. doi: 10.3390/
robotics7030047 .

[16] Getting started with matlab, simulink, and ros » racing lounge - matlab & simulink,
 https://blogs.mathworks.com/racing-lounge/2017/11/08/matlab-simulink-ros/ ,
(Accessed on 03/18/2021).

[17] Willow garage, http://www.willowgarage.com/ , (Accessed on 11/28/2018).

[18] M. Quigley, B. P. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R.
Wheeler, and A. Ng, “Ros : An open-source robot operating system,” 2009.

[19] A. Koubaa, Robot Operating System (ROS): The Complete Reference (Volume 1),
1st. Springer Publishing Company, Incorporated, 2016, isbn: 3319260529.

[20] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Rosbridge: Ros for
non-ros users,” in Robotics Research : The 15th International Symposium ISRR, H. I.
Christensen and O. Khatib, Eds. Cham: Springer International Publishing, 2017,
pp. 493–504, isbn: 978-3-319-29363-9. doi: 10.1007/978-3-319-29363-9_28 . [Online].
Available: https://doi.org/10.1007/978-3-319-29363-9-28 .

[21] V. Wang, F. Salim, and P. Moskovits, “The websocket protocol,” in The Definitive
Guide to HTML5 WebSocket. Berkeley, CA: Apress, 2013, pp. 33–60, isbn: 978-1-
4302-4741-8. doi: 10.1007/978-1-4302-4741-8_3 . [Online]. Available: https://doi.
org/10.1007/978-1-4302-4741-8-3 .

109

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/ROBOT.1995.525358
https://doi.org/10.3390/robotics7030047
https://doi.org/10.3390/robotics7030047
https://blogs.mathworks.com/racing-lounge/2017/11/08/matlab-simulink-ros/
http://www.willowgarage.com/
https://doi.org/10.1007/978-3-319-29363-9_28
https://doi.org/10.1007/978-3-319-29363-9-28
https://doi.org/10.1007/978-1-4302-4741-8_3
https://doi.org/10.1007/978-1-4302-4741-8-3
https://doi.org/10.1007/978-1-4302-4741-8-3

[22] R. Buyya, “Market-oriented cloud computing: Vision, hype, and reality of delivering
computing as the 5th utility,” in 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, May 2009, pp. 1–1. doi: 10.1109/CCGRID.2009.97 .

[23] Dropbox, https://www.dropbox.com/?landing=dbv2 , (Accessed on 11/28/2018).

[24] Salesforce.com: The customer success platform to grow your business, https://www.
salesforce.com/ , (Accessed on 11/28/2018).

[25] Robots as a service: A technology trend every business must consider, https://www.
forbes.com/sites/bernardmarr/2019/08/05/robots-as-a-service-a-technology-trend-
every-business-must-consider/#6a59d1fe24ea , (Accessed on 03/27/2020).

[26] Cloud service models (iaas, paas, saas) diagram | david chou, https://dachou.github.
io/2018/09/28/cloud-service-models.html , (Accessed on 03/18/2021).

[27] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency
towards 5g: Ran, core network and caching solutions,” IEEE Communications Surveys
Tutorials, vol. 20, no. 4, pp. 3098–3130, 2018.

[28] M. Maier, M. Chowdhury, B. P. Rimal, and D. P. Van, “The tactile internet: Vision,
recent progress, and open challenges,” IEEE Communications Magazine, vol. 54, no. 5,
pp. 138–145, May 2016, issn: 0163-6804. doi: 10.1109/MCOM.2016.7470948 .

[29] S. Nag, I. Heffan, A. Saenz-Otero, and M. Lydon, “Spheres zero robotics software
development: Lessons on crowdsourcing and collaborative competition,” in 2012 IEEE
Aerospace Conference, Mar. 2012, pp. 1–17. doi: 10.1109/AERO.2012.6187452 .

[30] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Gálvez-López, K. Häusser-
mann, R. Janssen, J. M. M. Montiel, A. Perzylo, B. Schießle, M. Tenorth, O. Zweigle,
and R. V. D. Molengraft, “Roboearth,” IEEE Robotics Automation Magazine, vol. 18,
no. 2, pp. 69–82, Jun. 2011, issn: 1070-9932. doi: 10.1109/MRA.2011.941632 .

[31] S. A. Miratabzadeh, N. Gallardo, N. Gamez, K. Haradi, A. R. Puthussery, P. Rad, and
M. Jamshidi, “Cloud robotics: A software architecture: For heterogeneous large-scale
autonomous robots,” in 2016 World Automation Congress (WAC), 2016, pp. 1–6.

[32] J. Quintas, P. Nunes, and J. M. M. Dias, “Cloud robotics : Towards context aware
robotic networks,” 2011.

[33] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing
systems,” in 2009 Fifth International Joint Conference on INC, IMS and IDC, Aug.
2009, pp. 44–51. doi: 10.1109/NCM.2009.218 .

110

https://doi.org/10.1109/CCGRID.2009.97
https://www.dropbox.com/?landing=dbv2
https://www.salesforce.com/
https://www.salesforce.com/
https://www.forbes.com/sites/bernardmarr/2019/08/05/robots-as-a-service-a-technology-trend-every-business-must-consider/#6a59d1fe24ea
https://www.forbes.com/sites/bernardmarr/2019/08/05/robots-as-a-service-a-technology-trend-every-business-must-consider/#6a59d1fe24ea
https://www.forbes.com/sites/bernardmarr/2019/08/05/robots-as-a-service-a-technology-trend-every-business-must-consider/#6a59d1fe24ea
https://dachou.github.io/2018/09/28/cloud-service-models.html
https://dachou.github.io/2018/09/28/cloud-service-models.html
https://doi.org/10.1109/MCOM.2016.7470948
https://doi.org/10.1109/AERO.2012.6187452
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1109/NCM.2009.218

[34] O. Saha and P. Dasgupta, “A comprehensive survey of recent trends in cloud robotics
architectures and applications,” Robotics, vol. 7, no. 3, 2018, issn: 2218-6581. doi:

 10.3390/robotics7030047 . [Online]. Available: https://www.mdpi.com/2218-6581/7/
3/47 .

[35] C. Lai, H. Wang, H. Chao, and G. Nan, “A network and device aware qos approach
for cloud-based mobile streaming,” IEEE Transactions on Multimedia, vol. 15, no. 4,
pp. 747–757, Jun. 2013, issn: 1520-9210. doi: 10.1109/TMM.2013.2240270 .

[36] M. Sato, K. Kamei, S. Nishio, and N. Hagita, “The ubiquitous network robot plat-
form: Common platform for continuous daily robotic services,” in 2011 IEEE/SICE
International Symposium on System Integration (SII), Dec. 2011, pp. 318–323. doi:

 10.1109/SII.2011.6147467 .

[37] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg, “Cloud-based
robot grasping with the google object recognition engine,” Proceedings - IEEE In-
ternational Conference on Robotics and Automation, pp. 4263–4270, May 2013. doi:

 10.1109/ICRA.2013.6631180 .

[38] J. Quintas, P. Menezes, and J. Dias, “Interoperability in cloud robotics — developing
and matching knowledge information models for heterogenous multi-robot systems,”
in 2017 26th IEEE International Symposium on Robot and Human Interactive Com-
munication (RO-MAN), 2017, pp. 1291–1296.

[39] K. Popovic and Z. Hocenski, “Cloud computing security issues and challenges,” in
The 33rd International Convention MIPRO, May 2010, pp. 344–349.

[40] S. Jain and R. Doriya, “Security issues and solutions in cloud robotics: A survey,”
in Next Generation Computing Technologies on Computational Intelligence, M. Pra-
teek, D. Sharma, R. Tiwari, R. Sharma, K. Kumar, and N. Kumar, Eds., Singapore:
Springer Singapore, 2019, pp. 64–76, isbn: 978-981-15-1718-1.

[41] D. Flanagan and P. Ferguson, JavaScript: The Definitive Guide, 3rd. USA: O’Reilly
& Associates, Inc., 1998, isbn: 1565923928.

[42] M. Inaba, S. Kagami, F. Kanehiro, Y. Hoshino, and H. Inoue, “A platform for
robotics research based on the remote-brained robot approach,” The International
Journal of Robotics Research, vol. 19, no. 10, pp. 933–954, 2000. doi: 10 . 1177 /
02783640022067878 . eprint: https://doi.org/10.1177/02783640022067878 . [Online].
Available: https://doi.org/10.1177/02783640022067878 .

111

https://doi.org/10.3390/robotics7030047
https://www.mdpi.com/2218-6581/7/3/47
https://www.mdpi.com/2218-6581/7/3/47
https://doi.org/10.1109/TMM.2013.2240270
https://doi.org/10.1109/SII.2011.6147467
https://doi.org/10.1109/ICRA.2013.6631180
https://doi.org/10.1177/02783640022067878
https://doi.org/10.1177/02783640022067878
https://doi.org/10.1177/02783640022067878
https://doi.org/10.1177/02783640022067878

[43] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta: A cloud
robotics platform,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp. 481–493, Apr. 2015, issn: 1545-5955. doi: 10.1109/TASE.2014.
2329556 .

[44] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F. Kong, A. S.
Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud computing framework for
service robots,” in 2010 IEEE International Conference on Robotics and Automation,
May 2010, pp. 3084–3089. doi: 10.1109/ROBOT.2010.5509469 .

[45] R. Doriya, P. Chakraborty, and G. C. Nandi, “‘robot-cloud’: A framework to assist
heterogeneous low cost robots,” in 2012 International Conference on Communication,
Information Computing Technology (ICCICT), Oct. 2012, pp. 1–5. doi: 10.1109/
ICCICT.2012.6398208 .

[46] Y. Li, H. Wang, B. Ding, and W. Zhou, “Robocloud: Augmenting robotic visions for
open environment modeling using internet knowledge,” Science China Information
Sciences, vol. 61, no. 5, Apr. 2018, issn: 1869-1919. doi: 10.1007/s11432-017-9380-5 .

[47] L. Riazuelo, J. Civera, and J. Montiel, “C2tam: A cloud framework for cooperative
tracking and mapping,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 401–413,
2014, issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2013.11.007 . [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0921889013002248 .

[48] L. Muratore, B. Lennox, and N. Tsagarakis, “Xbotcloud: A scalable cloud computing
infrastructure for xbot powered robots,” Oct. 2018. doi: 10.1109/IROS.2018.8593587 .

[49] N. Tian, M. Matl, J. Mahler, Y. X. Zhou, S. Staszak, C. Correa, S. Zheng, Q. Li,
R. Zhang, and K. Goldberg, “A cloud robot system using the dexterity network and
berkeley robotics and automation as a service (brass),” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 1615–1622. doi:

 10.1109/ICRA.2017.7989192 .

[50] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski, M. Wills,
and S. Chernova, “Robot web tools: Efficient messaging for cloud robotics,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep.
2015, pp. 4530–4537. doi: 10.1109/IROS.2015.7354021 .

[51] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-performance net-
work programs,” IEEE Internet Computing, vol. 14, no. 6, pp. 80–83, Nov. 2010, issn:
1089-7801. doi: 10.1109/MIC.2010.145 .

112

https://doi.org/10.1109/TASE.2014.2329556
https://doi.org/10.1109/TASE.2014.2329556
https://doi.org/10.1109/ROBOT.2010.5509469
https://doi.org/10.1109/ICCICT.2012.6398208
https://doi.org/10.1109/ICCICT.2012.6398208
https://doi.org/10.1007/s11432-017-9380-5
https://doi.org/https://doi.org/10.1016/j.robot.2013.11.007
http://www.sciencedirect.com/science/article/pii/S0921889013002248
https://doi.org/10.1109/IROS.2018.8593587
https://doi.org/10.1109/ICRA.2017.7989192
https://doi.org/10.1109/IROS.2015.7354021
https://doi.org/10.1109/MIC.2010.145

[52] B. Balaguer, S. Carpin, and S. Balakirsky, “Towards quantitative comparisons of
robot algorithms: Experiences with slam in simulation and real world systems,” in
In: Workshop on Performance Evaluation and Benchmarking for Intelligent Robots
and Systems at IEEE/RSJ IROS (2007).

[53] Netdata - get control of your linux servers. simple. effective. awesome. https://www.
netdata.cloud/ .

[54] H. Everett, Sensors for mobile robots. CRC Press, 1995.

[55] J. Abella, M. Padilla, J. D. Castillo, and F. J. Cazorla, “Measurement-based worst-
case execution time estimation using the coefficient of variation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 22, no. 4, Jun. 2017, issn: 1084-4309. doi: 10 .1145/
3065924 . [Online]. Available: https://doi.org/10.1145/3065924 .

[56] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, Continuous control with deep reinforcement learning, 2019. arXiv: 1509.
02971 [cs.LG] .

[57] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 26–38, 2017. doi: 10.1109/MSP.2017.2743240 .

[58] H. Jiang, H. Wang, W. .-Y. Yau, and K. .-W. Wan, “A brief survey: Deep rein-
forcement learning in mobile robot navigation,” in 2020 15th IEEE Conference on
Industrial Electronics and Applications (ICIEA), 2020, pp. 592–597. doi: 10.1109/
ICIEA48937.2020.9248288 .

[59] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforce-
ment learning for robotics: A survey,” in 2020 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), 2020, pp. 737–744. doi: 10.1109/SSCI47803.2020.9308468 .

[60] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and compu-
tation offloading,” IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp. 1628–
1656, 2017. doi: 10.1109/COMST.2017.2682318 .

[61] H. Wu, “Multi-objective decision-making for mobile cloud offloading: A survey,” IEEE
Access, vol. 6, pp. 3962–3976, 2018. doi: 10.1109/ACCESS.2018.2791504 .

[62] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward computation offloading
in edge computing: A survey,” IEEE Access, vol. 7, pp. 131 543–131 558, 2019. doi:

 10.1109/ACCESS.2019.2938660 .

113

https://www.netdata.cloud/
https://www.netdata.cloud/
https://doi.org/10.1145/3065924
https://doi.org/10.1145/3065924
https://doi.org/10.1145/3065924
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/ICIEA48937.2020.9248288
https://doi.org/10.1109/ICIEA48937.2020.9248288
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/ACCESS.2018.2791504
https://doi.org/10.1109/ACCESS.2019.2938660

[63] M. Penmetcha, S. Sundar Kannan, and B.-C. Min, “Smart cloud: Scalable cloud
robotic architecture for web-powered multi-robot applications,” in 2020 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC), 2020, pp. 2397–2402.
doi: 10.1109/SMC42975.2020.9283148 .

[64] L. Muratore, B. Lennox, and N. Tsagarakis, “Xbotcloud: A scalable cloud computing
infrastructure for xbot powered robots,” Oct. 2018. doi: 10.1109/IROS.2018.8593587 .

[65] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel, “Cloud-based
collaborative 3d mapping in real-time with low-cost robots,” IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 2, pp. 423–431, 2015. doi: 10.1109/
TASE.2015.2408456 .

[66] A. Rahman, J. Jin, A. Cricenti, A. Rahman, and M. Panda, “Motion and connectivity
aware offloading in cloud robotics via genetic algorithm,” in GLOBECOM 2017 - 2017
IEEE Global Communications Conference, 2017, pp. 1–6. doi: 10.1109/GLOCOM.
2017.8255040 .

[67] L. Wang, M. Liu, and M. Q. Meng, “A hierarchical auction-based mechanism for real-
time resource allocation in cloud robotic systems,” IEEE Transactions on Cybernetics,
vol. 47, no. 2, pp. 473–484, 2017. doi: 10.1109/TCYB.2016.2519525 .

[68] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Qos-aware cooperative com-
putation offloading for robot swarms in cloud robotics,” IEEE Transactions on Ve-
hicular Technology, vol. 68, no. 4, pp. 4027–4041, Apr. 2019, issn: 1939-9359. doi:

 10.1109/TVT.2019.2901761 .

[69] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. Dechouniotis, and S. Papavassil-
iou, “A switching offloading mechanism for path planning and localization in robotic
applications,” in 2020 International Conferences on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physi-
cal and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE
Congress on Cybermatics (Cybermatics), 2020, pp. 77–84. doi: 10 .1109/ iThings -
GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00031 .

[70] Q. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W. Hwang, and Z. Ding, “A
survey of multi-access edge computing in 5g and beyond: Fundamentals, technology
integration, and state-of-the-art,” IEEE Access, vol. 8, pp. 116 974–117 017, 2020. doi:

 10.1109/ACCESS.2020.3001277 .

[71] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based compu-
tation offloading for iot devices with energy harvesting,” IEEE Transactions on Vehic-
ular Technology, vol. 68, no. 2, pp. 1930–1941, 2019. doi: 10.1109/TVT.2018.2890685 .

114

https://doi.org/10.1109/SMC42975.2020.9283148
https://doi.org/10.1109/IROS.2018.8593587
https://doi.org/10.1109/TASE.2015.2408456
https://doi.org/10.1109/TASE.2015.2408456
https://doi.org/10.1109/GLOCOM.2017.8255040
https://doi.org/10.1109/GLOCOM.2017.8255040
https://doi.org/10.1109/TCYB.2016.2519525
https://doi.org/10.1109/TVT.2019.2901761
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00031
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00031
https://doi.org/10.1109/ACCESS.2020.3001277
https://doi.org/10.1109/TVT.2018.2890685

[72] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation offloading
for ultradense iot networks,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4977–
4988, 2018. doi: 10.1109/JIOT.2018.2838584 .

[73] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot service delay via
fog offloading,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998–1010, 2018.
doi: 10.1109/JIOT.2017.2788802 .

[74] J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi, “Applying machine learning
techniques for caching in next-generation edge networks: A comprehensive survey,”
Journal of Network and Computer Applications, vol. 181, p. 103 005, 2021, issn:
1084-8045. doi: https://doi.org/10.1016/j.jnca.2021.103005 . [Online]. Available:

 https://www.sciencedirect.com/science/article/pii/S1084804521000321 .

[75] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and M. Shoaib,
“Bringing computation closer toward the user network: Is edge computing the so-
lution?” IEEE Communications Magazine, vol. 55, no. 11, pp. 138–144, 2017. doi:

 10.1109/MCOM.2017.1700120 .

[76] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and collective deep rein-
forcement learning for computation offloading: A practical perspective,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1085–1101, 2021. doi:

 10.1109/TPDS.2020.3042599 .

[77] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep reinforcement learning
for computation offloading in blockchain-empowered mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8050–8062, 2019. doi: 10.
1109/TVT.2019.2924015 .

[78] M. Tang and V. S. Wong, “Deep reinforcement learning for task offloading in mobile
edge computing systems,” IEEE Transactions on Mobile Computing, no. 01, pp. 1–1,
Nov. 5555, issn: 1558-0660. doi: 10.1109/TMC.2020.3036871 .

[79] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive task of-
floading in edge computing based on meta reinforcement learning,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 242–253, 2021. doi:

 10.1109/TPDS.2020.3014896 .

[80] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Edge intelligence for energy-efficient
computation offloading and resource allocation in 5g beyond,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 10, pp. 12 175–12 186, 2020. doi: 10.1109/TVT.
2020.3013990 .

115

https://doi.org/10.1109/JIOT.2018.2838584
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103005
https://www.sciencedirect.com/science/article/pii/S1084804521000321
https://doi.org/10.1109/MCOM.2017.1700120
https://doi.org/10.1109/TPDS.2020.3042599
https://doi.org/10.1109/TVT.2019.2924015
https://doi.org/10.1109/TVT.2019.2924015
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/TVT.2020.3013990
https://doi.org/10.1109/TVT.2020.3013990

[81] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament, E. Cidon,
S. Katti, and M. Pavone, “Network offloading policies for cloud robotics: A learning-
based approach,” CoRR, vol. abs/1902.05703, 2019. arXiv: 1902 . 05703 . [Online].
Available: http://arxiv.org/abs/1902.05703 .

[82] H. Liu, S. Liu, and K. Zheng, “A reinforcement learning-based resource allocation
scheme for cloud robotics,” IEEE Access, vol. 6, pp. 17 215–17 222, 2018. doi: 10.
1109/ACCESS.2018.2814606 .

[83] Z. Peng, J. Lin, D. Cui, Q. Li, and J. He, “A multi-objective trade-off framework for
cloud resource scheduling based on the deep q-network algorithm,” Cluster Comput-
ing, pp. 1–15, 2020.

[84] A. Valmari, “The state explosion problem,” in Lectures on Petri Nets I: Basic Mod-
els: Advances in Petri Nets, W. Reisig and G. Rozenberg, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 429–528, isbn: 978-3-540-49442-3. doi: 10.1007/
3-540-65306-6_21 . [Online]. Available: https://doi.org/10.1007/3-540-65306-6_21 .

[85] D. S. Hochba, “Approximation algorithms for np-hard problems,” SIGACT News,
vol. 28, no. 2, pp. 40–52, Jun. 1997, issn: 0163-5700. doi: 10.1145/261342.571216 .
[Online]. Available: https://doi.org/10.1145/261342.571216 .

[86] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013. arXiv: 1312.5602 . [Online]. Available: http://arxiv.org/
abs/1312.5602 .

[87] K. Cho, Y. Sung, and K. Um, “A production technique for a q-table with an influence
map for speeding up q-learning,” in The 2007 International Conference on Intelligent
Pervasive Computing (IPC 2007), 2007, pp. 72–75.

[88] H. Zhu, I. C. Paschalidis, and M. E. Hasselmo, “Feature extraction in q-learning using
neural networks,” in 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), 2017, pp. 3330–3335.

[89] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 26–38, Nov. 2017, issn: 1053-5888. doi: 10.1109/msp.2017.2743240 . [Online].
Available: http://dx.doi.org/10.1109/MSP.2017.2743240 .

[90] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with
model-based acceleration,” in Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ser. ICML’16, New York,
NY, USA: JMLR.org, 2016, pp. 2829–2838.

116

https://arxiv.org/abs/1902.05703
http://arxiv.org/abs/1902.05703
https://doi.org/10.1109/ACCESS.2018.2814606
https://doi.org/10.1109/ACCESS.2018.2814606
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1145/261342.571216
https://doi.org/10.1145/261342.571216
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/msp.2017.2743240
http://dx.doi.org/10.1109/MSP.2017.2743240

[91] C. J. C. H. Watkins and P. Dayan, “Q-learning,” in Machine Learning, 1992, pp. 279–
292.

[92] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018, isbn: 0262039249.

[93] C. Chicone, “Stability theory of ordinary differential equations,” in Mathematics of
Complexity and Dynamical Systems, R. A. Meyers, Ed. New York, NY: Springer New
York, 2011, pp. 1653–1671, isbn: 978-1-4614-1806-1. doi: 10.1007/978-1-4614-1806-
1_106 . [Online]. Available: https://doi.org/10.1007/978-1-4614-1806-1_106 .

[94] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation
offloading and resource allocation for mec,” in 2018 IEEE Wireless Communications
and Networking Conference (WCNC), 2018, pp. 1–6.

[95] Gazebo, http://gazebosim.org/ , (Accessed on 01/07/2021).

[96] Simulating jackal — jackal tutorials 0.5.4 documentation, https : / / www .
clearpathrobotics . com/assets / guides / kinetic / jackal / simulation . html , (Accessed
on 01/05/2021).

[97] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[98] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968. doi: 10.1109/tssc.1968.300136 . [Online]. Available:

 https://doi.org/10.1109/tssc.1968.300136 .

[99] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots: A review,”
International Journal of the Physical Sciences, vol. 7, Feb. 2012. doi: 10.5897/IJPS11.
1745 .

[100] A. V. Goldberg and R. E. Tarjan, “Expected performance of dijkstra’s shortest path
algorithm,” NEC Research Institute Report, 1996.

[101] Ros notes: Map resolution – new screwdriver, https://newscrewdriver.com/2018/09/
21/ros-notes-map-resolution/ , (Accessed on 01/12/2021).

[102] Zeromq, https://zeromq.org/ , (Accessed on 01/13/2021).

[103] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990. doi:

 10.1109/34.58871 .

117

https://doi.org/10.1007/978-1-4614-1806-1_106
https://doi.org/10.1007/978-1-4614-1806-1_106
https://doi.org/10.1007/978-1-4614-1806-1_106
http://gazebosim.org/
https://www.clearpathrobotics.com/assets/guides/kinetic/jackal/simulation.html
https://www.clearpathrobotics.com/assets/guides/kinetic/jackal/simulation.html
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.5897/IJPS11.1745
https://doi.org/10.5897/IJPS11.1745
https://newscrewdriver.com/2018/09/21/ros-notes-map-resolution/
https://newscrewdriver.com/2018/09/21/ros-notes-map-resolution/
https://zeromq.org/
https://doi.org/10.1109/34.58871

[104] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H.
Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon,
vol. 4, no. 11, e00938, 2018, issn: 2405-8440. doi: https://doi.org/10.1016/j.heliyon.
2018.e00938 . [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2405844018332067 .

[105] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing exploration strategies
for q-learning in random stochastic mazes,” in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1–8. doi: 10.1109/SSCI.2016.7849366 .

[106] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[107] H. van Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with double
q-learning, 2015. arXiv: 1509.06461 [cs.LG] .

[108] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, Du-
eling network architectures for deep reinforcement learning, 2016. arXiv: 1511.06581
[cs.LG] .

[109] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight task of-
floading strategy for mobile edge computing based on deep reinforcement learning,”
Future Generation Computer Systems, vol. 102, pp. 847–861, 2020, issn: 0167-739X.
doi: https : / /doi . org/10 . 1016/ j . future . 2019 . 07 . 019 . [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S0167739X19308209 .

[110] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, and M. S. Hossain, “Intelligent
task prediction and computation offloading based on mobile-edge cloud computing,”
Future Generation Computer Systems, vol. 102, pp. 925–931, 2020, issn: 0167-739X.
doi: https : / /doi . org/10 . 1016/ j . future . 2019 . 09 . 035 . [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S0167739X19320862 .

[111] The fundamentals of the big-o notation | by ruben winastwan | towards data sci-
ence, https ://towardsdatascience .com/the- fundamentals -of - the -big -o -notation-
7fe14210b675 , (Accessed on 02/15/2021).

[112] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

[113] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, K. Nakamura, and J. Ogawa, “A
study of robotic cooperation in cloud robotics: Architecture and challenges,” IEEE
Access, vol. 6, pp. 36 662–36 682, 2018. doi: 10.1109/ACCESS.2018.2852295 .

118

https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
http://www.sciencedirect.com/science/article/pii/S2405844018332067
http://www.sciencedirect.com/science/article/pii/S2405844018332067
https://doi.org/10.1109/SSCI.2016.7849366
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://doi.org/https://doi.org/10.1016/j.future.2019.07.019
https://www.sciencedirect.com/science/article/pii/S0167739X19308209
https://www.sciencedirect.com/science/article/pii/S0167739X19308209
https://doi.org/https://doi.org/10.1016/j.future.2019.09.035
https://www.sciencedirect.com/science/article/pii/S0167739X19320862
https://www.sciencedirect.com/science/article/pii/S0167739X19320862
https://towardsdatascience.com/the-fundamentals-of-the-big-o-notation-7fe14210b675
https://towardsdatascience.com/the-fundamentals-of-the-big-o-notation-7fe14210b675
https://doi.org/10.1109/ACCESS.2018.2852295

[114] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos, “Cloud robotics:
Current status and open issues,” IEEE Access, vol. 4, pp. 2797–2807, 2016. doi:

 10.1109/ACCESS.2016.2574979 .

[115] A. Rahman, J. Jin, A. Rahman, A. Cricenti, M. Afrin, and Y.-n. Dong, “Energy-
efficient optimal task offloading in cloud networked multi-robot systems,” Computer
Networks, vol. 160, pp. 11–32, 2019, issn: 1389-1286. doi: https://doi.org/10.1016/
j.comnet.2019.05.016 . [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1389128619306371 .

[116] A. A. Alli and M. M. Alam, “Secoff-fciot: Machine learning based secure offloading in
fog-cloud of things for smart city applications,” Internet of Things, vol. 7, p. 100 070,
2019, issn: 2542-6605. doi: https://doi.org/10.1016/j. iot.2019.100070 . [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2542660518301938 .

[117] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795–2808, 2016. doi: 10.1109/TNET.2015.2487344 .

[118] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource allocation for
mobile-edge computation offloading,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 3, pp. 1397–1411, 2017. doi: 10.1109/TWC.2016.2633522 .

[119] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-
edge computing with energy harvesting devices,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3590–3605, 2016. doi: 10.1109/JSAC.2016.
2611964 .

[120] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression
analysis. John Wiley & Sons, 2021.

[121] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston,
“Random forest: A classification and regression tool for compound classification and
qsar modeling,” Journal of Chemical Information and Computer Sciences, vol. 43,
no. 6, pp. 1947–1958, 2003, PMID: 14632445. doi: 10.1021/ci034160g . eprint: https:
//doi.org/10.1021/ci034160g . [Online]. Available: https://doi.org/10.1021/ci034160g .

[122] W. W. Wei, “Time series analysis,” in The Oxford Handbook of Quantitative Methods
in Psychology: Vol. 2, 2006.

[123] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,”
Pattern Recognition, vol. 36, no. 2, pp. 451–461, 2003, Biometrics, issn: 0031-3203.
doi: https://doi.org/10.1016/S0031-3203(02)00060-2 . [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0031320302000602 .

119

https://doi.org/10.1109/ACCESS.2016.2574979
https://doi.org/https://doi.org/10.1016/j.comnet.2019.05.016
https://doi.org/https://doi.org/10.1016/j.comnet.2019.05.016
https://www.sciencedirect.com/science/article/pii/S1389128619306371
https://www.sciencedirect.com/science/article/pii/S1389128619306371
https://doi.org/https://doi.org/10.1016/j.iot.2019.100070
https://www.sciencedirect.com/science/article/pii/S2542660518301938
https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/TWC.2016.2633522
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1109/JSAC.2016.2611964
https://doi.org/10.1021/ci034160g
https://doi.org/10.1021/ci034160g
https://doi.org/10.1021/ci034160g
https://doi.org/10.1021/ci034160g
https://doi.org/https://doi.org/10.1016/S0031-3203(02)00060-2
https://www.sciencedirect.com/science/article/pii/S0031320302000602
https://www.sciencedirect.com/science/article/pii/S0031320302000602

[124] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013, issn: 0921-
8890. doi: https://doi.org/10.1016/j.robot.2013.09.004 . [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S092188901300167X .

[125] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math.,
vol. 1, no. 1, pp. 269–271, Dec. 1959, issn: 0029-599X. doi: 10.1007/BF01386390 .
[Online]. Available: https://doi.org/10.1007/BF01386390 .

[126] Introduction | ømq - the guide, https://zguide.zeromq.org/ , (Accessed on 02/26/2021).

[127] D. Freedman, R. Pisani, and R. Purves, “Statistics (international student edition),”
Pisani, R. Purves, 4th edn. WW Norton & Company, New York, 2007.

[128] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation offloading
for mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp. 129–140, Feb. 2013, issn:
1383-469X. doi: 10.1007/s11036-012-0368-0 . [Online]. Available: https://doi.org/10.
1007/s11036-012-0368-0 .

[129] A. Bhattacharya and P. De, “A survey of adaptation techniques in computation of-
floading,” Journal of Network and Computer Applications, vol. 78, pp. 97–115, 2017,
issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.2016.10.023 . [Online]. Available:

 https://www.sciencedirect.com/science/article/pii/S1084804516302570 .

120

https://doi.org/https://doi.org/10.1016/j.robot.2013.09.004
https://www.sciencedirect.com/science/article/pii/S092188901300167X
https://www.sciencedirect.com/science/article/pii/S092188901300167X
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://zguide.zeromq.org/
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/https://doi.org/10.1016/j.jnca.2016.10.023
https://www.sciencedirect.com/science/article/pii/S1084804516302570

A. APPENDIX

No Description Link

1
A video on full offloading solution

proposed in Chapter 3 .
https://youtu.be/zImysVWLlFs

2

A video on DRL algorithm for

dynamic application offloading

proposed in Chapter 4

https://youtu.be/JAwxaOH9BFk

3

A video based on predictive algorithm for

dynamic application offloading

proposed in Chapter 5

https://youtu.be/w3tniTpgjYY

121

VITA

Manoj Penmetcha received a B.S. degree in information technology from Osmania University,

India in 2010, and a M.S. degree in computer and information technology from Purdue

University, West Lafayette, IN, USA, in 2012, where he is currently pursuing a Ph.D. degree

in technology.

His research interests include machine learning, multi-robot systems, cloud robotics, cloud

computing, edge computing, and wireless networks.

Referred Publications

• M. Penmetcha and B.C. Min, “A Deep Reinforcement Learning-based Dynamic

Computational Offloading Method for Cloud Robotics,” in IEEE Access.

• M. Penmetcha, S. S. Kannan, and B.C. Min, “Smart cloud: Scalable cloud robotic

architecture for web-powered multi-robot applications,” in 2020 IEEE International

Conference on Systems, Man and Cybernetics (SMC), Oct 2020, pp. 2397-2402.

• M. Penmetcha, S. Luo, A. Samantaray, J. E. Dietz, B. Yang, and B. Min, “Com-

puter vision-based algae removal planner for multi-robot teams,” in 2019 IEEE

International Conference on Systems, Man and Cybernetics (SMC), Oct 2019, pp.

1575–1581.

• M. Penmetcha, A. Samantaray, and B.C. Min, “Smartresponse: Emergency and

non-emergency response for smartphone based indoor localization applications,” in

HCI International 2017 – Posters’ Extended Abstracts, C. Stephanidis, Ed. Cham:

Springer International Publishing, 2017, pp. 398–404.

• C. Vieira, M. Penmetcha, A. Magana, and E. Matson, “Computational thinking

as a practice of representation: A proposed learning and assessment framework,”

Journal of Computational Science Education, vol. 7, pp. 21–30, 2016.

• M. Penmetcha, “Exploring the effectiveness of robotics as a vehicle for compu-

tational thinking,” Master’s thesis, Purdue University, 2012.

122

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Contributions
	Structure of the Dissertation

	Background
	Software Components
	Robot Operating System
	Cloud Computing

	Cloud Robotics Evaluation Metrics
	Latency
	Scalability
	Reliability and Availability
	Interoperability
	Security

	Limitations of the Current Studies

	Architecture and Full Offloading
	Introduction
	Related Work
	Architecture
	Robot Layer
	ROS Based Robots
	Non-ROS Based Robots

	Cloud Layer
	JavaScript Server
	JavaScript Libraries

	Application and Evaluation
	Offloading ROS Applications to the Cloud
	CPU Utilization
	Latency

	Object Detection Using TensorFlow JS Library With Odroid (Non-ROS)
	Application Scenario Using a Heterogeneous Multi-Robot

	Conclusion

	A DRL-Based Dynamic Application Offloading Method
	Introduction
	Background
	Related Work
	Deep Q Network

	Problem Formulation
	State Space
	Action Space
	Reward
	DQN Algorithm for Dynamic Offloading

	Experimental Setup With Robot Navigation Application
	Navigation Application Framework
	Path Planning
	AWS and Latency
	DQN Network

	Results and Analysis
	Real Dataset
	Synthetic Dataset
	Local Computation
	Cloud Computation
	Learning a CPU Value to Offload

	Comparative Evaluation With Long Short-Term Memory Algorithm
	Discussion

	Conclusion

	Predictive Offloading
	Introduction
	Related Work
	Generalized Predictive Algorithm
	Linear Regression and Mobile Robot Path Planning Application
	Linear Regression Model
	Robot Path Planning Platform
	Cloud Platform

	Results and Analysis
	Correlation
	Residuals
	Decision Making Accuracy
	Discussion

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Research Direction

	REFERENCES
	APPENDIX
	VITA

