
COMPRESSED MOBILENET V3: AN EFFICIENT CNN FOR
RESOURCE CONSTRAINED PLATFORMS

by

Kavyashree Prasad S P

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Indianapolis, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Mohamed El-Sharkawy, Chair

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

2

This Thesis is dedicated to my parents Shalini and Pradeep Prasad, and my late

grandparents Shakuntala and Narendra Prasad. I would also like to thank my sister Divya

Prasad, my friends, and IOT collaboratory for their constant support throughout my

graduate studies.

3

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor, Dr. Mohammed El Sharkawy, for

his guidance in this research. I would like to thank Dr. Brian King and Dr. Maher Rizkalla

for being a part of my thesis committee and for extending their valuable feedback. I am also

grateful to Sherrie Tucker for her assistance during my studies at IUPUI.

I am fortunate to have been a part of the IoT collaboratory, which provided me a mul-

titude of resources to expand my knowledge. I am thankful to have met a lot of people here

with similar interests and passions. Finally, I would like to thank my family for their support

and motivation through tough times.

I would also like to thank Lilly Endowment Inc. for their support to Indiana University

Pervasive Technology Institute.

4

TABLE OF CONTENTS

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABBREVIATIONS . 9

ABSTRACT . 10

1 INTRODUCTION . 11

1.1 Context . 11

1.2 Motivation . 12

1.3 Challenges . 13

1.4 Methodology . 13

1.5 Contributions . 14

2 OVERVIEW OF CONCEPTS . 15

2.1 Convolutional Neural Networks . 15

2.2 Input Layer . 16

2.3 Convolution Layer . 16

2.4 Pooling Layer . 18

2.5 Activation Function . 19

2.6 Fully Connected Layer . 19

2.7 Baseline Architecture - MobileNet V3 . 20

2.8 Building blocks of MobileNet V3 . 21

2.8.1 Depthwise Convolutions . 21

2.8.2 Pointwise Convolutions . 21

2.8.3 Squeeze and Excite blocks . 22

3 HARDWARE AND SOFTWARE USED . 26

3.1 Requirements . 26

3.2 i.MX RT 1060 . 26

3.2.1 Features . 26

3.3 Tensorflow . 27

3.4 Keras . 29

5

3.5 Neural Network Intelligence . 29

3.6 MCUXpresso . 29

4 DATASET . 30

5 PROPOSED ARCHITECTURE . 31

5.1 Improved Convolution Blocks . 32

5.2 Mish Activation Function . 33

5.3 Expansion filters . 34

5.4 Hyper-parameter Tuning . 36

5.4.1 Optimizers . 37

5.4.2 Weight Regularizers . 38

5.4.3 Learning Rate Schedulers . 38

5.4.4 Dropout . 38

6 HARDWARE DEPLOYMENT . 40

6.1 Converting CMV3 to Tflite format . 40

6.2 Running CMV3 on i.MX RT 1060 . 40

7 RESULTS . 42

8 CONCLUSION . 45

9 FUTURE SCOPE . 47

REFERENCES . 48

6

LIST OF TABLES

2.1 MobileNet V3 - small Architecture . 25

5.1 Compressed MobileNet V3 Architecture . 31

5.2 Summary of hyper-parameters chosen for CMV3 39

7.1 Comparative Analysis of MobileNet V3 and CMV3 42

7.2 Various Scaling factors for CMV3 . 42

7

LIST OF FIGURES

2.1 Convolutional Neural Network . 15

2.2 Input Image . 16

2.3 Convolution . 17

2.4 Pooling . 18

2.5 Commonly used activation functions . 19

2.6 Fully connected layer . 20

2.7 Depthwise convolutions . 21

2.8 Pointwise convolutions . 22

2.9 Squeeze and excitation blocks . 22

2.10 Building blocks of MobileNet V3 . 23

2.11 Hard counterparts of Swish and Sigmoid activations 24

2.12 Comparison of last stages from MobileNet V3 and MobileNet V2 24

3.1 System block diagram of i.MX RT 1060 . 27

5.1 Depthwise Pointwise Depthwise (DPD) blocks 33

5.2 Mish Activation Function . 35

5.3 Common activation functions . 35

5.4 Hyper-parameter search space used for CMV3 37

6.1 Image classification using CMV3 on i.MX RT 1060 41

6.2 Hardware deployment block diagram . 41

7.1 Plot Accuracy vs number of epochs for CMV3 43

7.2 Plot of Model loss vs number of epochs for CMV3 43

7.3 Plot of Model loss vs number of epochs for baseline 44

7.4 Plot of Model loss vs number of epochs for baseline 44

8

ABBREVIATIONS

CNN Convolutional Neural Network

DPD Depthwise Pointwise Depthwise

NXP Next Experience

MV Machine Vision

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robost Features

HOG Histogram of Oriented Gradients

FC Fully Connected

RGB Red Blue Green

CMYK Cyan, Magenta, Yellow, and Key

HSV Hue Saturation Value

GPU Graphics Processing Unit

SDK Software Development Kit

LCD Liquid Crystal Display

TPU Tensor Processing Unit

CPU Central Processing Unit

DL Deep Learning

NADAM Nesterov-Accelerated Adaptive Moment Estimation

PWC Pointwise Convolution

DWC Depthwise Convolution

9

ABSTRACT

Computer Vision is a mathematical tool formulated to extend human vision to machines.

This tool can perform various tasks such as object classification, object tracking, motion

estimation, and image segmentation. These tasks find their use in many applications, namely

robotics, self-driving cars, augmented reality, and mobile applications. However, opposed

to the traditional technique of incorporating handcrafted features to understand images,

convolution neural networks are being used to perform the same function.

Computer vision applications widely use CNNs due to their stellar performance in in-

terpreting images. Over the years, there have been numerous advancements in machine

learning, particularly to CNNs.However, the need to improve their accuracy, model size and

complexity increased, making their deployment in restricted environments a challenge.

Many researchers proposed techniques to reduce the size of CNN while still retaining

its accuracy. Few of these include network quantization, pruning, low rank, and sparse

decomposition and knowledge distillation. Some methods developed efficient models from

scratch. This thesis achieves a similar goal using design space exploration techniques on the

latest variant of MobileNets, MobileNet V3. Using DPD blocks, escalation in the number

of expansion filters in some layers and mish activation function MobileNet V3 is reduced to

84.96% in size and made 0.2% more accurate. Furthermore, it is deployed in NXP i.MX

RT1060 for image classification on CIFAR-10 dataset.

10

1. INTRODUCTION

1.1 Context

Machine learning is becoming familiar with the hidden relationship in information and,

accordingly, settling on choices without requiring guidance. Much of the literature on this

domain has been accounted for to comprehend and copy human tactile reactions like speech,

sight, and vision. In 1989, another class of Neural networks, called Convolutional neural

networks, was introduced that showed tremendous potential in Machine Vision related un-

dertakings [1].

Image classification is the undertaking of assigning an image into one of the several

predetermined classes. It helps computers to understand and interpret images. It also

forms the base of other computer vision functions such as object tracking, object detection,

semantic segmentation, and pose estimation. Initially, these tasks were performed using

handcrafted features, which act as descriptors of images, and then they were fed into a

classification criterion. One of the significant disadvantages of this technique was the high

dependency of accuracy on feature extraction techniques [2].

Over the years, deep learning models with many layers of non-linear transformations have

overcome these challenges. CNN’s are outstanding amongst other learning algorithms for

understanding images and have shown commendable execution in image manipulation and

recognition. They gained their popularity when AlexNet [3] won the ImageNet challenge in

2012. Since then a lot of architectures like SqueezeNet [4], ResNext [5], M-NAS Net [6],In-

ception [7] etc. were proposed which surpassed usage of other computer vision algorithms

namely HOG features [8], SIFT [9],SURF [10] etc. The achievement of CNNs has caught

consideration beyond the scholarly world. In industries like Google, AT&T,Microsoft, Face-

book, and NEC, dynamic exploration teams were created for investigating new designs of

CNN. The majority of the leaders of machine vision tasks are utilizing CNN-based models

for major applications.

The alluring component of CNN is its capacity to abuse temporal and spatial correlation

in raw images [11]. The architecture of CNNs has numerous stages aggregating convolu-

tional layers, non-linear layers, and subsampling units. The convolution layer helps extract

11

correlated features from locally distributed feature space. The non-linearity creates various

examples of initiations for various reactions, subsequently encouraging semantic contrasts in

pictures. The subsampling layer is incorporated to make CNN invariant to geometric distor-

tions. Hence, in this manner, CNN learns images without comprehensive human intervention

for feature extraction.

The architectural design of CNNs is highly inspired by the human visual cortex. During

the learning stages, CNN modifies weights using a backpropagation algorithm. This opti-

mization to approach targets is similar to the brain’s ability to learn based on responses.

The multifaceted design of CNN allows for gathering high, low, and mid-level features from

data. These high-level features are obtained from the consolidation of mid and low-level

features. CNN’s progressive feature extraction capacity imitates the profound and layered

learning interaction of the Neocortex in the human cerebrum, which powerfully learns high-

lights from the crude information [11]. It is this ability that is responsible for the ubiquity

of CNNs.

1.2 Motivation

CNNs are being improvised at a swift pace. They have exceeded the threshold for ac-

ceptance in many applications. They are now ubiquitous. In healthcare, they are used to

diagnose diseases like breast cancer, pneumonia, diabetes, etc. In autonomous driving, CNNs

are used in their perception stack to enable vehicles to navigate through lanes and obstacles,

improving driver experience. In surveillance systems, CNNs are used to monitor locations

to prevent trespassing, violence, and theft. Human knowledge in astronomy is proliferating;

this calls for more data-driven tools for analysis and identification. In astronomy, CNNs are

widely used for discovering new heavenly bodies. In agriculture, processes are automated

using robots with computer vision algorithms. These robots help in harvesting, planting,

irrigating, and weeding plants. In industrial applications, CNNs are used on assembly lines

for the inspection and counting of products. Machine vision tools help in microscopic level

inspection of defects that would not be possible with human vision. Computer vision is used

12

in satellites to detect natural calamities. They also help in analyzing air pollution in various

areas of interest.

However over the years, to improve the precision of CNN’s, their intricacy and number

of layers have been expanded [12] [13] [14] [15]. This makes it challenging to deploy them in

resource-constrained devices. Hence, there is a considerable demand for smaller-size CNNs.

Smaller CNNs have numerous advantages. They are more feasible for embedded applications.

They allow low latency and improved privacy, i.e., when computations are carried out in place

rather than on the cloud, sensitive data can be protected. They also reduce computational

load on devices. Smaller size CNNs also allow updating the newer version of the model by

autonomous companies on customer vehicles from their servers more practical [16]. Hence,

recognizing these gains, researchers have come up with novel algorithms and techniques to

develop lightweight models. This thesis targets the same intention by significantly reducing

size with no compromise to model accuracy.

1.3 Challenges

• Training baseline model from scratch

• Altering baseline architecture

• Training modified architecture from scratch

• Hyper-parameter tuning

• Achieving good trade-off between model size and accuracy

• Deployment of new architecture on i.MX RT 1060

1.4 Methodology

• Understanding baseline model

• Evaluating baseline architecture on CIFAR-10 dataset

• Reviewing various model compression techniques

• Modifying baseline model

13

• Deciding acceptable model size

• Tuning hyper parameters and improving accuracy

• Exploring hardware suitable for deployment

• Implementing image classification using new model on hardware

1.5 Contributions

• Proposed Compressed MobileNet V3

• Performed image classification on i.MX RT1060

• Published research paper titled ”Compressed MobileNet V3:A Light Weight

Variant for Resource-Constrained Platforms” in IEEE 11th Annual Computing

and Communication Workshop and Conference (CCWC)

• Research paper titled ”Deployment of Compressed MobileNet V3 on iMX RT

1060” accepted at IEEE International IOT, Electronics and Mechatronics

Conference (IEMTRONICS).

14

2. OVERVIEW OF CONCEPTS

This chapter explores convolution neural networks and their role in image classification. It

then explains various stages in CNNs. It concludes with the description of MobileNet V3

and highlights some of the authors’ improvements in this variant.

2.1 Convolutional Neural Networks

Figure 2.1. Convolutional Neural Network

Every neuron is connected to every other neuron of the following layer for fully connected

neural networks. They have countless such associations that the intricacy of the architecture

increments by a massive amount. It increases parameter count when applied to image data

as it contains a large number of pixels. Hence, CNNs are a type of neural network primarily

employed in most applications involving image data. One of their significant highlights is

utilizing temporal and spatial correlations in images.

A classic CNN comprises layers of convolution and pooling layers, finally followed by

fully connected layers in the end. Sometimes FC layer is substituted with average pooling

layers. They are optimized with various activation functions, dropout, and kernel regulariz-

ers. The next sections describe the basic building blocks of CNN and their contribution to

its performance.

15

2.2 Input Layer

Figure 2.2. Input Image

Input to a CNN can be either image or a video. They are just an array representing pixel

values across color channels or a 2D array in greyscale images. There are many color spaces

of images to choose from, such as RGB, CMYK, HSV, etc. This input image data fed into

CNN helps it learn representations from low, mid, and high-level features for classification.

2.3 Convolution Layer

Convolution forms the foundation of CNN. This is a linear operation of multiplying

weights with the input matrix. Since the input is two-dimensional, multiplication is done

by a kernel which is also a 2D matrix and smaller than the input image. The multiplication

is a dot product that works by sliding the kernel across the input, multiplying the kernel’s

overlap area with input, and summing it to produce a single value. This kernel is often

known as the filter that is deliberately made smaller in size to multiply with the input many

times to search for a specific feature. This characteristic is also termed translation invariance

since the search is concerned with the feature rather than the feature’s location. The output

16

obtained from the convolution operator is a single value when done many times across a

matrix along all dimensions; it is a multidimensional array also known as the feature map.

Figure 2.3. Convolution

To sum, up the convolution layer:

• Obtains an input with dimension W1×H1×C1

• Accepts hyper parameters namely number of filters K, their kernel size F,

stride S and zero pad size P

• Constructs an output of size W2×H2×C2 where

W2 = W1 − F + 2 × P

S
+ 1.

H2 = H1 − F + 2 × P

S
+ 1.

C2 = K.

Fig 2.3 illustrates the convolution operation explained so far.

17

2.4 Pooling Layer

One hindrance with using only convolution layers for feature extraction is that it detects

features in the image’s specific locations. It means that any minor alterations such as crop-

ping, resizing, and so on can lead to different feature maps at the output. Downsampling is

one such technique to make it more robust to this problem. It creates a lower resolution of

an image with the same features present but not as fine details. It can be achieved by using

strides in convolution. However, a better approach would be to use pooling layers. Pooling

operation involves sliding a two-dimensional kernel across the input and all channels and

summarizing whatever the kernel has seen. This summarization can be done in a variety of

pooling functions such as below:

• Max-Pooling: It calculates the maximum value encompassed by the kernel.

It also reduces any spurious deviations present in the image.

• Average- Pooling: It calculates the average pixel values covered by the kernel.

Figure 2.4. Pooling

To sum up, the pooling layer:

• Obtains an input with dimension W1×H1×C1

• Accepts hyper parameters kernel size K and stride S

18

• Constructs an output of size W2×H2×C2 where

W2 = W1 − K

S
+ 1.

H2 = H1 − K

S
+ 1.

C2 = C1.

2.5 Activation Function

Activation functions are an integral part of CNN. They add nonlinearity to the network

making it more sturdy and efficient to recognize diverse data. There are many activation

functions such as RELU, Swish, Tanh, Leaky RELU, etc.

Figure 2.5. Commonly used activation functions

2.6 Fully Connected Layer

The pooled feature maps are subsequently flattened. This flattening is done by convert-

ing the matrix obtained from previous layers into a single column that is then inputted into

a neural network. This neural network processing consists of an input layer, a fully con-

19

nected layer, and an output layer. FC layer produces a one-dimensional output comprising

probabilities for class labels. These probabilities have to be between 0 and 1. The class with

the highest chance forms the classification decision. This is where the softmax activation

function comes into play. It takes in inputs K real numbers in vector z and produces K

probabilities corresponding to inputs. The following formula defines it:

σ : RK → (0, 1)K (2.1)

σ(z)i = ezi∑K
j=1 ezj

for i = 1, ..., K and z = (z1, ..., zK) ∈ RK (2.2)

Figure 2.6. Fully connected layer

2.7 Baseline Architecture - MobileNet V3

MobileNet V3 [17] is the latest variant of a class of MobileNets designed to improve

accuracy while being mindful of resource constraints. It was formed by a network-aware

20

platform architecture search complemented by a net adapt algorithm. It has surpassed other

MobileNets in terms of accuracy and latency. There are two versions of this architecture-

MobileNet V3 small and MobileNet V3 large-crafted to appease different resource platforms.

MobileNet V3 large exceeds MobileNet V2’s accuracy by 3.2% with 20% lesser latency.

MobileNet V3 small’s accuracy is 6.6% more with tantamount latency. These results were

obtained on the ImageNet dataset. On the COCO dataset, Mobilenet V3 large is faster than

MobileNet V2 [18] by 25% at roughly the same accuracy.

2.8 Building blocks of MobileNet V3

2.8.1 Depthwise Convolutions

Depthwise convolution is a particular type of convolution that applies a single filter for

every input channel at a time in contrast to a standard convolution. Hence, as per the below

figure illustrating depthwise convolutions, considering we have a filter of size Dk×Dk×1, to

obtain a dimension of size M we would need M such filters.

Total number of multiplications needed: M×D2
k×D2

p.

Total number of parameters: M×Dk×Dk.

Figure 2.7. Depthwise convolutions

2.8.2 Pointwise Convolutions

Presented first in a paper by Min Lin et al. in their Network In Network [19], the 1×1

Convolution layer was utilized for ’Cross Channel Down inspecting’ or Cross Channel Pool-

21

ing. As such, 1×1 Conv was utilized to decrease the number of channels while presenting

non-linearity. In 1×1 convolution, a 1×1 filter is operated on M channels. So the dimen-

sionality for the filter will be 1×1×M.Hence, if N such filters are incorporated, we get an

output of size Dp×Dp ×N.

Total number of multiplications needed: M×D2
p×N.

Total number of parameters: 1×1×M×N.

Figure 2.8. Pointwise convolutions

2.8.3 Squeeze and Excite blocks

Figure 2.9. Squeeze and excitation blocks

The convolution operator plays a vital role in generating informative features by coalesc-

ing both spatial and channel information at neighboring receptive fields in each layer. There

has been numerous research to enhance spatial encoding to improve network representational

power. One technique developed was a squeeze and excite block aiming to unequivocally

display the interdependencies between the channels of its convolutional highlights [20]. It

achieved this by enhancing feature maps that contribute to convolution and repressing the

22

ones that do not. The below figure describes its mechanism. Feature maps from the previous

layer are average pooled to produce an output of dimension 1×1×C, with C being previous

layer channels. They are then passed through fully connected layers. The output of these

fully connected layers is then multiplied with the initial input layer.

MobileNet V3 is made up of inverted residual bottlenecks and squeeze and excite blocks.

These are derived from MobileNet V2 and squeeze and excitation networks. Their architec-

ture constitutes a 1×1 pointwise expansion layer, 3×3 or 5×5 depthwise convolution, and a

1×1 projection layer. To emphasize their architecture’s neurons that contribute to network

performance and conceal neurons that do not, SE blocks are introduced.

Figure 2.10. Building blocks of MobileNet V3

Some of the modifications made by authors to MobileNet V3 from MobileNet V2 are

described below: They introduced the Hswish nonlinearity. Swish [21] has achieved good

network performance, but due to the sigmoid present in swish it can be computationally

expensive for embedded platforms. Swish is mathematically described as below:

Swish(x) = x × σ(x) (2.3)

H-swish is a hard counterpart of swish. As far as the graph is concerned, it is not that different

while being computationally less expensive. Mathematically it is described as below:

H − swish(x) = x × min(max(features, 0)
6 , 6) (2.4)

23

Figure 2.11. Hard counterparts of Swish and Sigmoid activations

They also made changes to the last block of MobileNet V2 by moving the 1x1 expansion

layers in inverted residual bottlenecks past the pooling layer. This change allows the 1x1

layers to operate on feature maps of size 1x1 instead of 7x7 reducing latency. It eliminates

the need to do compression from the projection layer, thus removing it from the bottleneck.

These modifications can be observed below.

Figure 2.12. Comparison of last stages from MobileNet V3 and MobileNet V2

24

The following table describes the architecture of MobileNet V3 small.

Table 2.1. MobileNet V3 - small Architecture
MobileNet V3 - small Architecture

Input Operator e c SE NL s
2242 × 3 Conv2D 3 × 3 - 16 - HS 2
1122 × 16 Bneck 3 × 3 16 16

√
RE 2

562 × 16 Bneck 3 × 3 72 24 - RE 2
282 × 24 Bneck 3 × 3 88 24 - RE 1
282 × 24 Bneck 5 × 5 96 40

√
HS 2

142 × 40 Bneck 5 × 5 240 40
√

HS 1
142 × 40 Bneck 5 × 5 240 40

√
HS 1

142 × 40 Bneck 5 × 5 120 48
√

HS 1
142 × 48 Bneck 5 × 5 144 48

√
HS 1

142 × 48 Bneck 5 × 5 288 96
√

HS 2
72 × 96 Bneck 5 × 5 576 96

√
HS 1

72 × 96 Bneck 5 × 5 576 96
√

HS 1
72 × 96 Conv2D 1 × 1 - 576

√
HS 1

72 × 576 Pool 7 × 7 - - - - 1
12 × 576 Conv2D 1 × 1 - 1024 - HS 1
12 × 1024 Conv2D 1 × 1 - k - - 1

25

3. HARDWARE AND SOFTWARE USED

3.1 Requirements

• Intel Xenon Gold 6126 processor with 32GB RAM

• NVIDIA Tesla P100 GPU

• NXP i.MX RT 1060

• Tensorflow

• Keras

• Tensorboard

• Python

• MCUXpresso SDK

• Neural Network Intelligence

3.2 i.MX RT 1060

i.MX RT1060 is one of the latest addition to NXP’s boards utilizing ARM Cortex M7.

It has a speed of 600MHz excelling in performance and reduced latency [22] [23].

3.2.1 Features

• Incorporates Arm Cortex M7

• Core clock at 600Mhz

• On-chip SRAM size 1MB

• Response time as fast as 20ns

• Real-time performance

• Low power support at 24Mhz

• Multimedia support- Camera sensor interface and LCD display interface

26

• Supports MCUXpresso IDE and SDK

Figure 3.1. System block diagram of i.MX RT 1060

3.3 Tensorflow

Tensorflow is an open-source library developed by the Google Brain team to train and

inference several machine learning applications. It is available for Linux, Windows, macOS,

and a few mobile computing OS like Android and iOS. It has effortless compatibility between

CPU, GPU, and TPU platforms. A lighter version of TensorFlow was developed, namely

Tensorflow Lite, for use in microcontrollers. It also supports other platforms like Android,

27

IOS, and Linux [24]. Standard Tensorflow was used to train the model on PC, and the

inference was performed on i. MX RT 1060 using TFLite. Performing inference using TFlite

usually compose the following steps:

1. Loading trained model into memory: It comprises the execution graph of the

model.

2. Converting raw data: Input data may not be compatible with the model as it

might expect data in a different format. In such a case, making an alteration

becomes imperative. For example, resizing the image before feeding it to the

model, etc.

3. Performing inference: This process involves using TFLite APIs to make

predictions on input data. The steps are mentioned below:

• Construct the interpreter for the loaded model

• Introduce input tensor values

• Register kernel operations needed by the model

• Start inference

4. Converting the output to an interpretable form: Results from model inference

have to be interpreted suitably, based on application.

Tensorflow also offers a visualization toolkit known as Tensorboard. It helps in navigating

through machine learning projects. Its features are depicted below:

• Helps in viewing loss and accuracy metrics

• Comprehend operations and layers in model’s graph

• Performing parameter tuning

• Depict parameter change over time

• Shows representations in low dimensional space

• Demonstrates image, audio, and textual data

28

3.4 Keras

Keras is a deep learning API built on top of Tensorflow. It allows fast and easy imple-

mentation of ideas due to its user-friendliness. It also supports various platforms like CPU,

GPU, and TPU. It can be exported to mobile platforms as well.

3.5 Neural Network Intelligence

Neural network intelligence is a TensorFlow compatible toolkit designed to ease machine

learning projects. It supports automation of feature engineering, hyper-parameter tuning,

neural network architecture search, and model compression. It also helps running of hundreds

of trials using parallel processing and leverages efficient usage of computational resources.

Its very flexible and intuitive UI makes it easy to navigate through various model metrics

and configurations.

3.6 MCUXpresso

MCUXpresso is a software development environment designed to support NXP’s ARM-

based MCUs. It comes with the GNU toolchain. It allows unlimited code size for users. It

supports both SWD and JTAG debugging. It supports various board specific SDKs that

comprise various drivers, firmware, and demo examples for implementation.

29

4. DATASET

Choosing the correct dataset is essential to benchmarking model performance in training and

validation. The use of the datasets relies upon the design of the issue and the uniqueness of

the case. A few considerations before choosing the suitable dataset are; it should be of good

quality and relevant to the problem at hand, it should be clean as otherwise a considerable

amount of time would be spent on cleaning it, and the dataset should not be too vast adding

computational load on resources. For this research, we have used the CIFAR -10 dataset

[25]. The CIFAR-10 dataset is an assortment of pictures ordinarily used to prepare PC vision

and other machine learning applications. It constitutes 60,000 images of size 32×32 in 10

different categories. These ten categories include cars, birds, cats, airplanes, frogs, dogs,

deer, ships, horses, and trucks. Each of these categories contains 6000 images. These images

were divided into 50,000 training and 10,000 testing images.

30

5. PROPOSED ARCHITECTURE

Many techniques are prevalent to perform model compression such as sparse decomposition

and low rank approximation [26], pruning and network quantization [27] [28] [29] and knowl-

edge distillation [30]. Some research even focusses on developing smaller efficient models

from scratch. In knowledge distillation, small-sized models emulate larger models’ behav-

ior and learning techniques using a student-teacher type of setting. In pruning, weights

inconsequential to network success are zeroed out based on some well-established weight

ranking methods. In network quantization, weights in both filters and fully connected layers

are quantized in their bit representation. They can be further compressed using huffman

coding.

In this thesis, model compression is done employing different bottlenecks for convolution,

hyper-parameter tuning, change of activation function and introducing more expansion fil-

ters. The below table illustrates the proposed architecture.

Table 5.1. Compressed MobileNet V3 Architecture
Compressed MobileNet V3 Architecture

Input Operator e c SE NL s
322 × 3 Conv2D - 16 - HS 1
322 × 16 Bneck 3 × 3 48 32

√
HS 1

322 × 32 DPD 3 × 3 88 40 - MH 1
322 × 40 DPD 3 × 3 240 40 - MH 1
322 × 40 Bneck 5 × 5 160 48

√
HS 2

162 × 48 DPD 5 × 5 288 96 - MH 1
162 × 96 DPD 5 × 5 592 128 - MH 1
162 × 128 Conv2D 1 × 1 - 256

√
HS 1

162 × 256 Pool 16 × 16 - - - - 1
12 × 256 Conv2D 1 × 1 - 576 - HS 1
12 × 576 Conv2D 1 × 1 - k - - - 1

e: channel expansion factor, c: output channel dimension, SE: squeeze and excite blocks,

NL: Activation function, HS: H-Swish , MH: Mish and s: stride.

31

5.1 Improved Convolution Blocks

To achieve good trade-off between model accuracy and size, new convolution blocks were

introduced. These blocks are selected to improve feature extraction as efficiently as the

baseline with no compromise to model accuracy[31]. Standard convolution can be accom-

plished by consolidating depthwise convolutions and pointwise convolutions. We realize that

1×1 convolution has fewer parameters than 3×3 standard convolution while expanding or

diminishing the channels’ quantity. Along these lines, PWC is generally used to increment

or decline the quantity of channels in CNNs.Whenever depthwise convolution is used, the

channel multiplier m is set to 1, ensuring that output produces the same number of channels

as input. If we set m>1, it could also expand dimension along channels. Hence, this feature

is incorporated in CMV3.

CNN with higher depthwise convolutions in comparison to pointwise convolutions has

outpaced the ones with more pointwise convolutions. Hence, advocates for acquiring more

spatial information than coalescing channel information [32]. The proposed model incorpo-

rates DPD blocks to accomplish this. Usage of depthwise convolutions rather than pointwise

convolutions for channel expansion leads to smaller model size. Hence, DPD blocks encom-

pass an initial 3×3 depthwise convolution with a stride s, which reduces input dimension and

expands along channels, a pointwise convolution that reduces the number of channels, and

then a final 3×3 depthwise convolution. These blocks are escorted by batch normalization

and RELU activation. Few of these blocks were modified to include 5×5 kernels to improve

effective receptive field as done in MobileNets. Due to the incorporation of more depthwise

convolutions, a compression as shown below is reached.

Compression = W × H × C × m × C

W × H × k × k × m × C

= C × m × C

k × k × m × C

= C

k2

(5.1)

The numerator is the parameter count in pointwise convolution and denominator is the

parameter count in depthwise convolution. Here, (W×H) is the input size, C is the number

32

of channels, m is the multiplier factor for channel and k is the filter size. Since number

of channels is frequently larger than kernel size this ratio is greater than 1. Below figure

illustrates DPD blocks.

Figure 5.1. Depthwise Pointwise Depthwise (DPD) blocks

5.2 Mish Activation Function

The idea of non-linearity in a Neural Network is presented by an enactment function

that serves an essential job in preparing and executing the network. It helps the model

discern the nonlinear connections between input and output. Throughout the long periods

of theoretical examination, numerous enactment capacities have been proposed, such as

ReLU, TanH, Sigmoid, Leaky ReLU, and Swish. These were widely used in most neural

networks. For this thesis, we have used the Mish activation function. The similitude to

Swish alongside giving a lift in execution and its straight forwardness in execution makes

it simpler for specialists and engineers to utilize Mish in their Neural Network Models. It

is added after DPD blocks instead of RELU. Experimental results of Mish show that Mish

33

will, in general, work better compared to both ReLU and Swish alongside other standard

activation functions in numerous DL networks across comprehensive datasets. Some of the

advantages of using the Mish activation function are:

• It is unbounded above, allowing large values of input to not saturate towards a

maximum value hence contributing to the eradication of near-zero gradients.

• It is also bounded below. Input moving towards negative infinity causes output

to remain constant. It also means that tremendous negative values are inferred

by mish as deactivations. It helps improve regularization in the network.

• It is continuously differentiable up to infinite order. Thus, eliminating problems

of vanishing gradients.

• It is a non-monotonic function. This preserves small negative inputs producing

negative outputs. It yields both positive and negative derivatives, which

increases the expressivity of the network and improves gradient flow.

• It is a relatively smooth function. This feature enables fewer oscillations in

models loss function minimization leading to faster convergence and learning.

Fig 5.1 shows the graph of Mish. Fig 5.2 shows other activation functions along

with Mish.

f(x) = x · tanh(softplus(x)) (5.2)

softplus(x) = ln(1 + ex) (5.3)

Addition of Mish improved model accuracy from 88.14% to 89.13%.

5.3 Expansion filters

MobileNet V3 uses expansion filters to go to high dimensional feature space and advance

non-linear transformation in each channel [17]. It accomplished this using 1×1 convolutions.

This fact has been used in improving the accuracy of CMV3. Instead of using 1×1 filters

34

Figure 5.2. Mish Activation Function

Figure 5.3. Common activation functions

35

as used in baseline, using DPD blocks in which depthwise convolutions perform the task

of expansion, increasing expansion filters do not escalate parameter count exponentially.

Hence, this change boosted the accuracy from 84.56% to 88.14%.

5.4 Hyper-parameter Tuning

When building AI models, different hyper-parameters need to be picked, for example,

the learning rate or weight regularizer. These choices sway model measurements, like ac-

curacy and over-fitting. Along these lines, a significant advance in the AI work process is

to distinguish the best hyper-parameters for your concern, which frequently includes exper-

imentation. This cycle is known as ”Hyper-parameter Tuning.”

There are two primary ways of determining model hyper-parameters, namely manual

tuning and automated tuning. In manual tuning, hyper-parameters are experimented with

by manually applying to a network by making a sound judgment based on data. It is

a strenuous process as the number of hyper-parameters increase. An automated tuning

accomplishes this goal by utilizing an algorithm to find optimal parameters in a search

space. A few of the popular algorithms are as follows:

• Random search: In this algorithm, we make a matrix of potential

hyper-parameters and their values. Every cycle attempts an arbitrary mix of

hyper-parameters from this lattice, takes note of performance, and ultimately

returns the hyper-parameters mix, which gave the best value for accuracy.

• Grid search: We make a framework of values for hyper-parameters. Every run

attempts a mix of hyper-parameters in a particular order. It fits the model on

using all combinations conceivable. At long last, it returns the best

hyper-parameters based on tuning.

• Bayesian search: This technique views finding the best hyper-parameters as an

optimization problem. Minimization of loss function using a variety of model

hyper-parameters can be speeded up using the Bayesian approach. This function

directs search space sampling based on which direction gives better performance

than the current choice of parameters.

36

Grid search was used for extracting hyper-parameters for the proposed model using Neural

Network Intelligence (NNI), an interactive visualization tool for hyper-parameter tuning.

Various hyper-parameters tuned for CMV3 are described in the below subsections. The

below figure shows the search space along with accuracies for various combinations of hyper-

parameters.

Figure 5.4. Hyper-parameter search space used for CMV3

5.4.1 Optimizers

Optimizers revise weights to lessen the loss in a network. Loss functions instruct optimiz-

ers by making them reach the global minimum. There are various optimizers, each having

its benefits. Adaptive Moment Estimation (ADAM) optimizer calculates learning rates that

are adaptive for each parameter. It considers both the exponentially decaying average of

past square gradients and past gradients. Nesterov accelerated gradient is another optimizer

that calculates the gradient for present parameters but concerning the predicted value of

parameters from the previous step. To train CMV3, we have used the NADAM optimizer;

it is a combination of Adam and Nesterov Accelerated Gradient (NAG). It is very effective

in noisy gradients with higher curvatures. It updates weights based on exponential decay of

averages of past and current gradients.

37

5.4.2 Weight Regularizers

Weight regularizers are often added to reduce overfitting in the model [33]. They manage

this by permitting users to penalize weights in the course of optimization. They can be of

various types: l1, the sum of absolute weights, and l2, which is the sum of squared weights.

We have used an l2 weight decay of 0.00001 for the model.

5.4.3 Learning Rate Schedulers

Learning Rate decay helps control the rate at which a model is changed in feedback to

estimated error. Choosing a learning rate plays a vital role, as a lower learning rate may

take a long time to move towards a global minimum, whereas a larger learning rate may lead

to unstable training. Using a learning rate scheduler, we can change the learning rate while

training the model. Among the schedulers, step decay, time decay, cosine decay annealing

are well established. In this thesis, we used a cosine decay scheduler [34] for optimizing the

model. Given a starting learning rate, this scheduler incorporates a cosine decay function to

optimization.

5.4.4 Dropout

Dropout is another technique of ameliorating over-fitting. The critical thought in dropout

is to drop a few units as well as their connections. It prevents the other units from over

adapting to the network. It is done only during training. At test time, evaluation is done

with all units retained. It gives an approximation of predictions from all units, thus reducing

over-fitting compared to other regularizers. A hyper-parameter that controls the probability

of units dropped from the network has to be tuned in dropout. For example, if the probability

p=0.5, then 50% of the units have to be dropped. In CMV3, a dropout of 0.8 helped in

reducing over-fitting.

38

Table 5.2. Summary of hyper-parameters chosen for CMV3
Summary of hyper-parameters chosen for CMV3

Parameter Value

Optimizer NADAM with 0.9 decay rate for momentum
and 0.999 for weighted infinity norm

Batch size 16
Regularizer L2 with a regularization factor of 0.00001
Dropout 0.8
Learning rate scheduler Cosine decay
Width multiplier 0.5

39

6. HARDWARE DEPLOYMENT

Compressed MobileNet V3 has an accuracy of 89.13% with a size of 2.3 MB. This reduction

made it efficient for deployment on i. MX RT 1060, an MCU crossover platform developed

by NXP for machine learning applications. Sections in this chapter illustrate the various

stages in deployment.

6.1 Converting CMV3 to Tflite format

NXP eIQ is a software forum encompassing elements to ease machine learning deploy-

ment on hardware. It has Neural Network (NN) libraries, compilers, inference engines, and

Hardware Abstraction Layers (HAL) to bolster development using ARM NN, glow, TFLite,

CMSIS, and Open CV. TFlite was preferred for the deployment of this model. It is a

lightweight alternative to TensorFlow. NXP eIQ software for TFLite is available in both

MCUXpresso and Yocto development environments. Hence, to make the model compatible

with the settings mentioned earlier, it was saved in .pb format after training. This format

allows saving custom-defined layers and activation functions in the model. This .pb format

was converted into TFlite using python API for the TFLite converter.

6.2 Running CMV3 on i.MX RT 1060

For deployment, MCUXpresso IDE was utilized. The corresponding SDK required by

the hardware was built using eIQ middlewares. This SDK has numerous examples to demon-

strate various machine learning applications. One such example is the CIFAR 10 label image

example. It uses a DL model to classify images using a camera attached to the board. CMV3

was made compatible with this example by converting its TFLite file to .h file, constituting

opcodes for model operations. All the necessary kernel operations needed for successful ex-

ecution of model were registered dynamically. This was then used to classify various images

from the camera and display it on the console using semihosting. Fig 6.1 shows the results

obtained. Fig 6.2 shows the block diagram of deployment procedure.

40

Figure 6.1. Image classification using CMV3 on i.MX RT 1060

Figure 6.2. Hardware deployment block diagram

41

7. RESULTS

Compressed MobileNet V3 was deployed on i.MX for image classification. It successfully

classified images with an average inference time of 720ms. It is a lightweight version in

comparison to MobileNet V3 small with no compromise to accuracy. It has a size of 2.3

MB while being 89.13% accurate. It outperformed the baseline achieving the best trade-

off between model size and accuracy. Table 7.1 shows a comparative analysis of baseline

with CMV3. Fig 7.1 and 7.2 shows the accuracy and loss vs. epochs for the revised model

visualized using tensorboard. Fig 7.3 and 7.4 show the same for the baseline model. In order

to understand the effect of the width multiplier on model accuracy, a thorough analysis has

been done. This analysis is depicted in Table 7.1. A suitable width multiplier can be chosen

based on the application and its implied resource requirements.

Table 7.1. Comparative Analysis of MobileNet V3 and CMV3
Comparative Analysis

Model Model Accuracy Model size Parameters
MobileNet V3 88.93% 15.3 MB 1,846,930
Compressed MobileNet
V3 89.13% 2.3 MB 171,946

Table 7.2. Various Scaling factors for CMV3
Various Scaling factors for CMV3

Width Multiplier Model Accuracy Model size
1.5 91.39% 10.5 MB
1.0 90.64% 5.2 MB
0.75 90.10% 3.6 MB
0.5 89.13% 2.3 MB
0.35 87.36% 1.9 MB

42

Figure 7.1. Plot Accuracy vs number of epochs for CMV3

Figure 7.2. Plot of Model loss vs number of epochs for CMV3

43

Figure 7.3. Plot of Model loss vs number of epochs for baseline

Figure 7.4. Plot of Model loss vs number of epochs for baseline

44

8. CONCLUSION

Lately, deep neural networks have earned considerable attention, been applied to numerous

applications, and accomplished commendable precision enhancements in various tasks. These

works depend on models with millions or sometimes billions of parameters, and the accessi-

bility of GPUs with extremely high calculation ability assumes a critical part in their victory.

Krizhevsky et al. accomplished advancement in image classification in the 2012 ImageNet

Challenge utilizing a model accommodating 60 million parameters [3]. Such models take days

to train to get good performance. As network complexity increased, demand for reducing

storage and computation began to soar, especially for real-time applications. Likewise, ongo-

ing years saw critical advancement in wearable gadgets, augmented reality, and virtual reality

setting out phenomenal open doors for scientists to handle principal challenges in sending

DL frameworks to compact devices with restricted assets (for example, memory, CPU, en-

ergy, data transmission). Hence, the characteristic idea is to perform model compression and

speed increase without fundamentally diminishing the model performance. Accomplishing

these objectives calls for joint arrangements from numerous disciplines, including, however

not restricted to AI, signal processing, optimizations, computer architecture, and hardware

design [35].

In this thesis, moving in a similar direction, we have explored various model compression

techniques and incorporated suitable ones to reduce the size of MobileNet V3 small. Using

a combination of DPD blocks, Mish activation function, increasing expansion filters and

performing hyperparameter tuning, a model with an accuracy of 89.13% and size 2.3MB

was obtained. It was trained and tested on the CIFAR-10 dataset. It surpassed the baseline

model accuracy by 0.2% while being 84.96% smaller in size. Various scaling multipliers were

also proposed, which could be decided upon based on application and accuracy requirements.

This model can now be used on embedded platforms and mobile vision applications.

In this thesis, we also deployed the model on to i. MX RT 1060, an embedded machine

learning platform developed by NXP. It performed image classification with good confidence

levels with an average inference time of 724 ms. Hence this model can be further explored

45

and used in many other applications like object localization, semantic segmentation, object

detection, etc., on embedded devices as explained in the next chapter.

46

9. FUTURE SCOPE

Although showing a good trade-off between size and accuracy, the proposed model can be

further explored to achieve better optimizations. Below are a few of the aspects that could

be delved into:

• Pruning - The compressed model can be examined to determine insignificant

weights. Using a suitable ranking criterion, these weights that do not

contribute to network performance can be removed.

• Quantization - The total of bits used to serve as parameters in the network

could be reduced using various techniques. It would help in efficient

deployment in resource-constrained environments and improve inference time.

• Other CV applications - CMV3 could be employed for alternative tasks such as

object detection, object localization, semantic segmentation, and so on.Their

performance on hardware could be analyzed.

• Other embedded platforms - This model could also be deployed on other

embedded platforms to analyze performance.

47

REFERENCES

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, 1989. doi: 10.1162/neco.1989.1.4.541 .

[2] N. O. Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. A. Velasco-Hernández,
L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning vs. traditional computer vi-
sion,” CoRR, 2019. arXiv: 1910.13796 . [Online]. Available: http://arxiv.org/abs/1910.
13796 .

[3] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Neural Information Processing Systems, vol. 25, Jan. 2012.
doi: 10.1145/3065386 .

[4] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model
size,” CoRR, 2016. arXiv: 1602.07360 . [Online]. Available: http://arxiv.org/abs/1602.
07360 .

[5] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transforma-
tions for deep neural networks,” CoRR, vol. abs/1611.05431, 2016. arXiv: 1611.05431 .
[Online]. Available: http://arxiv.org/abs/1611.05431 .

[6] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet: Platform-aware
neural architecture search for mobile,” CoRR, vol. abs/1807.11626, 2018. arXiv: 1807.
11626 . [Online]. Available: http://arxiv.org/abs/1807.11626 .

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, 2014. arXiv:
1409.4842 . [Online]. Available: http://arxiv.org/abs/1409.4842 .

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” vol. 1,
886–893 vol. 1, 2005. doi: 10.1109/CVPR.2005.177 .

[9] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, pp. 91–, Nov. 2004. doi: 10 . 1023 / B : VISI .
0000029664.99615.94 .

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” Computer
Vision-ECCV 2006, vol. 3951, pp. 404–417, Jul. 2006. doi: 10.1007/11744023_32 .

48

https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1910.13796
http://arxiv.org/abs/1910.13796
http://arxiv.org/abs/1910.13796
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/11744023_32

[11] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architec-
tures of deep convolutional neural networks,” CoRR, 2019. arXiv: 1901.06032 . [Online].
Available: http://arxiv.org/abs/1901.06032 .

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” CoRR, 2015. arXiv: 1512.00567 . [Online]. Available:
http://arxiv.org/abs/1512.00567 .

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” 2015. arXiv: 1409.1556 [cs.CV] .

[14] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the im-
pact of residual connections on learning,” CoRR, 2016. arXiv: 1602.07261 . [Online].
Available: http://arxiv.org/abs/1602.07261 .

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, 2015. arXiv: 1512.03385 . [Online]. Available: http://arxiv.org/abs/1512.03385 .

[16] F. N. Iandola and K. Keutzer, “Keynote: Small neural nets are beautiful: Enabling
embedded systems with small deep-neural-network architectures,” CoRR, 2017. arXiv:
1710.02759 . [Online]. Available: http://arxiv.org/abs/1710.02759 .

[17] A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R.
Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for mobilenetv3,” CoRR,
2019. arXiv: 1905.02244 . [Online]. Available: http://arxiv.org/abs/1905.02244 .

[18] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmentation,”
CoRR, 2018. arXiv: 1801.04381 . [Online]. Available: http://arxiv.org/abs/1801.04381 .

[19] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol. abs/1312.4400, 2014.

[20] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” CoRR, 2017. arXiv:
1709.01507 . [Online]. Available: http://arxiv.org/abs/1709.01507 .

[21] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: A self-gated activation function,”
arXiv: Neural and Evolutionary Computing, 2017.

[22] I.mx rt1060 crossover processors for consumer products, IMXRT1060CEC, Rev. 1,
NXP, 2020. [Online]. Available: https://www.nxp.com/docs/en/nxp/data-sheets/
imxrt1060cec.pdf_2021 .

49

https://arxiv.org/abs/1901.06032
http://arxiv.org/abs/1901.06032
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1710.02759
http://arxiv.org/abs/1710.02759
https://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1709.01507
https://www.nxp.com/docs/en/nxp/data-sheets/imxrt1060cec.pdf_2021
https://www.nxp.com/docs/en/nxp/data-sheets/imxrt1060cec.pdf_2021

[23] NXP. (). I.mx rt1060 crossover mcu with arm® cortex®-m7 core, [Online]. Available:
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrolle-
rs/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-
RT1060 . (accessed: 03.28.2021).

[24] Tensorflow. (). Tensorflow lite inference, [Online]. Available: https://www.tensorflow.
org/lite/guide/inference . (accessed: 03.28.2021).

[25] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of
Toronto, May 2012.

[26] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models by low rank and
sparse decomposition,” Jul. 2017, pp. 67–76. doi: 10.1109/CVPR.2017.15 .

[27] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep convolutional net-
works using vector quantization,” CoRR, 2014. arXiv: 1412.6115 . [Online]. Available:
http://arxiv.org/abs/1412.6115 .

[28] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural
networks for mobile devices,” CoRR, 2015. arXiv: 1512.06473 . [Online]. Available: http:
//arxiv.org/abs/1512.06473 .

[29] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” in 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1510.00149 .

[30] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in
NIPS Deep Learning and Representation Learning Workshop, 2015. [Online]. Available:
http://arxiv.org/abs/1503.02531 .

[31] P. S. P. Kavyashree and M. El-Sharkawy, “Compressed mobilenet v3:a light weight
variant for resource-constrained platforms,” in 2021 IEEE 11th Annual Computing
and Communication Workshop and Conference (CCWC), 2021, pp. 0104–0107. doi:
10.1109/CCWC51732.2021.9376113 .

[32] G. Li, M. Zhang, Q. Zhang, Z. Chen, W. Liu, J. Li, X. Shen, J. Li, Z. Zhu, and C.
Yuen, “Psdnet and dpdnet: Efficient channel expansion, depthwise-pointwise-depthwise
inverted bottleneck block,” CoRR, 2019. arXiv: 1909.01026 . [Online]. Available: http:
//arxiv.org/abs/1909.01026 .

[33] J. Kukacka, V. Golkov, and D. Cremers, “Regularization for deep learning: A taxon-
omy,” CoRR, 2017. arXiv: 1710.10686 . [Online]. Available: http://arxiv.org/abs/1710.
10686 .

50

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrolle-rs/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrolle-rs/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrolle-rs/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.tensorflow.org/lite/guide/inference
https://www.tensorflow.org/lite/guide/inference
https://doi.org/10.1109/CVPR.2017.15
https://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
https://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1503.02531
https://doi.org/10.1109/CCWC51732.2021.9376113
https://arxiv.org/abs/1909.01026
http://arxiv.org/abs/1909.01026
http://arxiv.org/abs/1909.01026
https://arxiv.org/abs/1710.10686
http://arxiv.org/abs/1710.10686
http://arxiv.org/abs/1710.10686

[34] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with restarts,” CoRR,
2016. arXiv: 1608.03983 . [Online]. Available: http://arxiv.org/abs/1608.03983 .

[35] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression and accel-
eration for deep neural networks,” CoRR, 2017. arXiv: 1710.09282 . [Online]. Available:
http://arxiv.org/abs/1710.09282 .

51

https://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Context
	Motivation
	Challenges
	Methodology
	Contributions

	OVERVIEW OF CONCEPTS
	Convolutional Neural Networks
	Input Layer
	Convolution Layer
	Pooling Layer
	Activation Function
	Fully Connected Layer
	Baseline Architecture - MobileNet V3
	Building blocks of MobileNet V3
	Depthwise Convolutions
	Pointwise Convolutions
	Squeeze and Excite blocks

	HARDWARE AND SOFTWARE USED
	Requirements
	i.MX RT 1060
	Features

	Tensorflow
	Keras
	Neural Network Intelligence
	MCUXpresso

	DATASET
	PROPOSED ARCHITECTURE
	Improved Convolution Blocks
	Mish Activation Function
	Expansion filters
	Hyper-parameter Tuning
	Optimizers
	Weight Regularizers
	Learning Rate Schedulers
	Dropout

	HARDWARE DEPLOYMENT
	Converting CMV3 to Tflite format
	Running CMV3 on i.MX RT 1060

	RESULTS
	CONCLUSION
	FUTURE SCOPE
	REFERENCES

