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ABSTRACT

An increasing interest in lunar exploration calls for low-cost techniques of reaching the

Moon. Ballistic lunar transfers are long duration trajectories that leverage solar perturba-

tions to reduce the multi-body energy of a spacecraft upon arrival into cislunar space. An

investigation is conducted to explore methods of constructing ballistic lunar transfers. The

techniques employ dynamical systems theory to leverage the underlying dynamical flow of

the multi-body regime. Ballistic lunar transfers are governed by the gravitational influence of

the Earth-Moon-Sun system; thus, multi-body gravity models are employed, i.e., the circu-

lar restricted three-body problem (CR3BP) and the bicircular restricted four-body problem

(BCR4BP). The Sun-Earth CR3BP provides insight into the Sun’s effect on transfers near

the Earth. The BCR4BP offers a coherent model for constructing end-to-end ballistic lu-

nar transfers. Multiple techniques are employed to uncover ballistic transfers to conic and

multi-body orbits in cislunar space. Initial conditions to deliver the spacecraft into various

orbits emerge from Periapse Poincaré maps. From a chosen geometry, families of transfers

from the Earth to conic orbits about the Moon are developed. Instantaneous equilibrium

solutions in the BCR4BP provide an approximate for the theoretical minimum lunar orbit

insertion costs, and are leveraged to create low-cost solutions. Trajectories to the L2 2:1

synodic resonant Lyapunov orbit, L2 2:1 synodic resonant Halo orbit, and the 3:1 synodic

resonant Distant Retrograde Orbit (DRO) are investigated.
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1. INTRODUCTION

The Moon offers scientific insight into the formation of the Solar System and a proving ground

for the future of humanity in space. NASA’s Artemis and Gateway programs provide an in-

frastructure for a sustainable human presence in lunar orbit [  1 ]. Alongside the public sector,

private entities offer a framework for lunar exploration through robotic missions and human

landing systems. These missions range from impulsive, crewed space capsules to low-thrust

CubeSats [ 2 ]. One factor that is necessary for each architecture is a viable path from the

Earth to the Moon. The mission design process balances different components of the trajec-

tory to meet set criteria. A trade-off between the flight duration and propellant cost is most

frequently considered. Historically, direct transfers are employed to produce short transfer

solutions that reach the Moon in a matter of days. More recently, low-energy transfers have

offered novel techniques of accessing cislunar space. These low-energy transfers, known as

ballistic lunar transfers, are able to reduce mission propellant costs by leveraging solar per-

turbations. For the Sun to have a definitive impact on the mission architecture, transfers

must spend multiple months traversing beyond the orbit of the Moon. Therefore, ballistic

lunar transfers present an alternative approach to reaching cislunar space that lowers the

insertion maneuver cost in exchange for a longer time of flight.

1.1 Problem Statement

With an increasing demand to fly ballistic lunar transfers, an understanding of these

trajectories is essential. Techniques within dynamical systems theory and numerical meth-

ods are exploited to gain insight into the dynamical structures that permit these low-energy

transfers. This investigation aims to: (1) analyze the evolution in energy within the bicircu-

lar restricted four-body problem, (2) construct families of ballistic lunar transfers, and (3)

leverage techniques within dynamical systems theory to assess efficient solutions.
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1.2 Previous Contributions

Ballistic lunar transfers have been flown previously for missions with limited propellant

capabilities. In 1991, the trajectory for the Hiten spacecraft leveraged a low-energy transfer

as a part of its extended mission. Hiten became the first spacecraft to fly a ballistic arc that

temporarily captured the spacecraft around the Moon. Later in the mission, a maneuver

was performed to enter lunar orbit [  3 ]. In 2011, NASA launched the Gravity Recovery

and Interior Laboratory (GRAIL) mission. The mission included two spacecraft, Ebb and

Flow, that incorporated ballistic lunar transfers into the mission architecture. The path to

the Moon took three months for the two GRAIL spacecraft and ultimately resided in a low-

altitude, near-circular lunar orbit [ 4 ]. The lunar orbit insertion cost for the GRAIL spacecraft

were approximately 670 m/sec. A direct transfer to an equivalent conic orbit costs roughly

940 m/sec. Thus, low-energy transfers reduced the lunar orbit insertion maneuver cost by

approximately 270 m/sec [ 5 ]. Previous missions have displayed some of the advantages of

ballistic lunar transfer mission scenarios.

Upcoming lunar missions are incorporating ballistic lunar transfers into the trajectory

design. NASA’s Cislunar Autonomous Positioning System Technology Operations and Nav-

igation Experiment (CAPSTONE) mission is a CubeSat scheduled to launch in 2021. CAP-

STONE aims to use a ballistic lunar transfer to enter into a near rectilinear halo orbit,

lowering the insertion maneuver cost to below 16 m/sec [  6 ]. Additionally, JAXA’s Equilib-

rium Lunar-Earth point 6U Spacecraft (EQUULEUS) [ 7 ] and NASA’s Lunar IceCube [ 8 ] are

both CubeSats that are secondary payloads on the Artemis 1 launch. To some extent, both

missions will leverage solar perturbations in their recovery efforts to enter orbit about the

Moon. Ballistic lunar transfers enable small spacecraft to reach the lunar vicinity.

Dynamical systems theory and numerical methods have aided in the exploration of viable

transfer scenarios. Parker et al. employ numerical techniques in an ephemeris model to

characterize ballistic lunar transfers to conic orbits about the Moon [  5 ], [  9 ]. Additionally,

ballistic lunar transfers are constructed using dynamical systems theory in a coupled circular

restricted three-body problem (CR3BP) as exhibited by Parker et al.[ 10 ]. Transfers to near

rectilinear halo orbits (NRHO) are investigated by Parrish et al. [ 11 ]. Tselousova et al.
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apply dynamical systems theory techniques in the bicircular restricted four-body problem

(BCR4BP) and the CR3BP produce ballistic lunar transfers [  12 ]. A transcription method

alongside a grid search in the BCR4BP produces a technique to construct ballistic lunar

transfers as demonstrated by Oshima et al.[ 13 ]. Using the CR3BP, Sweetser determines an

approach to compute the theoretical minimum maneuver cost for a ballistic lunar transfer

departing from a circular low Earth orbit, to a circular low lunar orbit [  14 ]. Analysis into

departing flow near the cislunar vicinity within the BCR4BP is offered by Boudad [ 15 ],[ 16 ].

Clearly, previous investigations offer insight into the behavior of ballistic lunar transfers, and

their presiding dynamical models.

1.3 Document Overview

The main goal of this research is to investigate techniques in constructing ballistic lunar

transfers and understanding the dynamical structures that govern these paths. An overview

of the document is written out below:

• Chapter 2: In this chapter, the dynamical models employed in this document are in-

troduced. The N -body problem offers a foundation to derive simplified gravity models.

The N -body problem is versatile in its implementation and suitable to model complex

dynamical systems. This investigation employs two gravity models: the circular re-

stricted three-body problem (CR3BP), and the bicircular restricted four-body problem

(BCR4BP). The equations of motion for both the CR3BP and the BCR4BP are de-

rived through the adoption of the N -body problem. The equations of motion for the

CR3BP describe the path of a small body, i.e., a spacecraft, due to the net gravitational

forces by two primary bodies. The equations of motion for the BCR4BP determine the

trajectory of a small body due to the gravitational influence of three primary bodies,

such that the orbits of the primary bodies are bicircular, i.e, a planet-moon-star sys-

tem. One example of the CR3BP is the Earth-Moon system, and one example of the

BCR4BP is the Earth-Moon-Sun system. The CR3BP is a time-independent system

and includes an integral of the motion. The BCR4BP is a periodic, time-dependent

system, which does not contain a constant of integration. Therefore, disadvantages to
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the four-body problem are the added complexity of the system and the accessible tools

within the model. Additional properties of each model such as equilibrium solutions,

zero velocity surfaces, and symmetry are explored.

• Chapter 3: Techniques within dynamical systems theory and numerical methods

are presented in this chapter. The lack of an analytical solution to the CR3BP or the

BCR4BP requires an infrastructure in numerical methods. The linear variational equa-

tions and state transition matrices are derived. Single-shooting and multiple-shooting

targeting strategies are prefaced through the application of multi-dimensional Newton-

Raphson schemes. Targeting methods offer a numeric approach to accomplish a set of

constraints. Natural parameter and pseudo-arclength continuation are implemented

to extend a single solution into a family. Families of solutions provide insight into

the accessible solution-space. Dynamical systems techniques such as periodic orbits,

Poincaré maps, and invariant manifolds are introduced as applicable concepts to this

investigation. Poincaré maps aid in visualizing the solution-space, and invariant mani-

folds present near-ballistic transfers into unstable multi-body orbits. An analysis of the

evolution in energy for the BCR4BP is conducted to assess the impact perturbations

have on the spacecraft.

• Chapter 4: Given the foundation devised by the previous chapters, methods of con-

structing ballistic lunar transfers are explored. Ballistic lunar transfers leverage solar

perturbations to reduce the energy upon arriving into cislunar space. First, the Sun-

Earth CR3BP is exploited to characterize the Sun’s impact on trajectories near the

Earth. Families of transfers are produced in the CR3BP to assess the dynamical behav-

ior of the transfers in a simplified model and offer initial conditions to transition into

the BCR4BP. Multiple techniques of constructing families of ballistic lunar transfers to

conic orbits in the BCR4BP are investigated. The categories of families include fixed

period, fixed arrival epoch, and fixed maneuver. Each type of family contributes differ-

ent insights into the feasible transfer geometries. By employing energy properties of the

BCR4BP, an approximation for the theoretical minimum insertion maneuver is con-

trived, and arcs along the instantaneous equilibrium solutions offer transfers near the
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theoretical minimum. Invariant manifold theory is applied to identify nearly-ballistic

transfers into unstable multi-body orbits. Fixed arrival location and tangential velocity

constraints are incorporated to create transfers to stable periodic orbits.

• Chapter 5: The concluding remarks offer an overview of the results from this in-

vestigation. Considering the problem statement, the knowledge gained from each key

point is expressed: the evolution in energy, constructing ballistic lunar transfers, and

incorporating dynamical systems theory to uncover efficient solutions. The chapter

considers the future development of the investigation. Transitioning solutions to the

ephemeris model verifies the transfer geometries examined. Exploring features of the

BCR4BP model presents an approach to mission design in the four-body regime. A

stochastic stability analysis aids in the classification of low-energy paths. Additional

research is necessary to describe the complex nature of ballistic lunar transfers.
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2. SYSTEM MODELS

To design and analyze spacecraft trajectories, dynamical models are selected to represent

the system. A dynamical model is a mathematical representation of an environment. In

the case of spacecraft trajectory design, a model represents the governing dynamics acting

on a vehicle and the differential equations that govern its path as it evolves through space.

There are many contributing factors to the evolution of a spacecraft trajectory, but the most

dominant influence is gravity. Dynamical models incorporating gravity have been examined

by mathematicians and scientists for centuries. Various assumptions are included with each

model, to either assist in the accuracy of the prediction, or to generalize the results. This

section introduces the system models used this analysis and addresses the advantages and

disadvantages of each model.

2.1 N-Body Problem

The N -body problem describes the motion of an object due to the gravitational forces

exerted by the remaining N−1 bodies. An expression for the scalar force exerted by grav-

ity appeared in Philosophiæ Naturalis Principia Mathematica[ 17 ] by Isaac Newton. This

expression, i.e., Newton’s Law of Universal Gravitation, is written as,

M1R
′′
1 = G

M1M2

R2
12

(2.1)

where the scalar distance between body i and a fixed inertial point O is Ri . The second time

derivative of position, or the scalar acceleration experienced by the body, is represented as

R′′
i . Each body is assumed to be a point mass, possessing a mass of M i . The gravitational

constant is denoted as G, approximately equal to 6.67 · 10−11 m3

kg·sec2 . The scalar distance

between two bodies i and j, is Rij , and is written in vector form as,

~Rij = ~Rj − ~Ri (2.2)
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Quantities with an arrow overbar represent vector notation. The term ~Rij is the position

vector from body i to j; the base point of each vector ~Rk is the inertial point O. Equation

( 2.1 ) in vector form yields an expression for the acceleration of a single body due to the

gravitational forces of the remaining N−1 bodies. This equation is written as,

M i ~R
′′
i = −G

N∑
j=1,j 6=i

M iM j

R3
ji

~Rji where i = 1 ,2, . . . , N (2.3)

Equation (  2.3 ) serves as the general form for representing the N -body problem, where the

acceleration on body i at any instant in time is determined by the position of the remaining

N−1 bodies. As the bodies move through three-dimensional space, the problem relies on 3N

second-order, nonlinear scalar differential equations to describe the motion of the system. For

each second-order scalar differential equation, two constants of integration are necessary to

construct an analytical expression for the motion. Therefore, 6N integrals of the motion are

required to determine a closed-form solution to the N -body problem. Ten scalar integrals of

the motion are known to exist for the N -body problem: one corresponding to the conservation

of energy, three that relate to the conservation of angular momentum, and six associated

with the conservation of linear momentum. In the simplest case, the two-body problem

requires twelve (6N where N= 2) integrals of the motion, when only ten exist. However,

the problem reformulated in terms of the relative to the motion of the two bodies requires only

six constants. Since ten constants are available, the relative two-body problem is solvable

analytically. This relative two-body model yields conic orbits represented by Keplerian

elements. Beyond two bodies, no closed-form solutions exist for N ≥ 3; thus, the N -body

problem does not possess an analytical solution. To explore the N -body problem when N ≥

3, numerous techniques leveraging dynamical systems theory and numerical methods are

employed.

The N -body problem is the foundational model for spacecraft trajectory design. The

highest-fidelity gravity model incorporates ephemeris information, that is, leveraging the

ephemerides of the surrounding bodies to predict the motion of a spacecraft. The advantage

of an ephemeris model is its accuracy within the context of the actual physical environment.

However, a disadvantage is the complexity added to the dynamical model. To simplify the
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problem, additional assumptions are introduced into the N -body problem. This investigation

focuses on two of these simplified models, the Circular Restricted Three-Body Problem

(CR3BP), and the Bicircular Restricted Four-Body Problem (BCR4BP).

2.2 Circular Restricted Three-Body Problem

The three-body problem considers the motion of three bodies due to their mutual gravi-

tational interactions. The three-body problem is an example of the N -body problem, where

N= 3. As previously observed, a closed-form analytical solution does not exist for the three-

body problem; however, a set of assumptions simplifies the model. The Circular Restricted

Three-Body Problem (CR3BP) is one example of a simplified three-body model, one that

leverage conditions that offer a reasonable environment for spacecraft trajectory design.

2.2.1 Model Assumptions

A set of assumptions in the N -body problem reduces the model to the CR3BP. The three

bodies are assumed to be centrobaric, and are denoted as P1, P2, and P3 (with masses of M1,

M2, and M3, respectively). The motion of each body is dependent solely on their mutual

gravitational influence. Thus, other forces such as solar radiation pressure, atmospheric

drag, and oblate Earth effects are not included in this model. Arbitrarily, the bodies are

selected such that M1 ≥ M2 > M3. In addition, one significant assumption to reduce

the model, is denoting the mass of P3 as much less than the mass of either P1 or P2, i.e.,

M3 � M2 , M3 � M1. Thus, P1 and P2 are denoted as the primaries. This assumption is

reasonable within the context of many applications in the solar system. For example, a focus

on the motion of a spacecraft in the vicinity of cislunar space, the mass of the spacecraft

is negligible compared to the mass of either the Earth or the Moon. One of the significant

outcomes of this assumption, is that P3 does not influence the motion of the primary bodies

(either P1 or P2). Thus, the motion of P1 and P2 is completely described as a conic in the

two-body problem. For the CR3BP, to further reduce complexity it is also assumed that

the primary bodies move in circular orbits about their common barycenter (B1). An inertial

reference frame centered at B1 is produced, where X̂ and Ŷ are two unit vectors that span
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the primary orbital plane, and Ẑ is the unit vector along the angular momentum vector for

the primary bodies circular orbit. Figure  2.1 represents the X̂ − Ŷ projection of the inertial

reference frame.

X̂

Ŷ

P1

P2

P3

B1
~R1

~R2~R3
~R13

~R23

α

Figure 2.1. CR3BP in an inertial reference frame with B1 at the origin

2.2.2 Derivation of the Equations of Motion

The equations of motion provide the underlying dynamical structure for the CR3BP. The

CR3BP is derived from the N -body problem through Equation (  2.3 ) where N= 3. As the

two primary bodies (P1 and P2) are assumed to be in circular orbits, the N -body formulation

governs the behavior of P3, expressed as,

M3
I ~R

′′
3 = −G

M3M1

R3
13

~R13 − G
M3M2

R3
23

~R23

I ~R
′′
3 = −G

M1

R3
13

~R13 − G
M2

R3
23

~R23 (2.4)

where the value I ~R
′′
3 refers to the inertial acceleration vector experienced by P3 ( Id2 ~R3

dτ2 ).

Equation (  2.4 ) represents the inertial vector equation of motion for the P3 in the CR3BP.
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Figure  2.1 illustrates the X̂ − Ŷ projection in this model, and offers the definition of each

position vector. Even though P1 and P2 are not impacted by the motion of P3, they move

relative to the inertial frame. Thus, the position of the primary bodies at a given instant in

time (τ) is written as,
~R1 = −R1(cos (α̇τ)X̂ + sin (α̇τ)Ŷ )

~R2 = R2(cos (α̇τ)X̂ + sin (α̇τ)Ŷ )
(2.5)

where α̇ is the constant mean motion in the circular orbits of the primary bodies. Addition-

ally, the motion of the primary bodies is governed by their distance from B1. A benefit to

using an inertial reference frame is that it provides a clear visualization of the motion of each

body, i.e., the view from a fixed observer. However, one challenge to a formulation in the

inertial frame is insight into the relative dynamical structure between each body. When all

three bodies are moving, the patterns in the motion of P3 lack clarity. In addition, Equation

( 2.5 ) is an explicit function of time; thus, the equations of motion in the inertial frame are

time-variant and dependent on the relative orientation of the primary bodies.

A standard formulation of the CR3BP incorporates a rotating reference frame, advan-

tageous for analyzing the motion of P3. When introducing a rotating reference frame, the

angular rate of the frame is selected to match the mean motion of the primary bodies. Un-

der these conditions, both P1 and P2 are in fixed positions as viewed in the rotating frame.

For simplicity, a set of unit vectors is defined such that the x̂-axis is directed from P1 to

P2. The ẑ-axis is along the angular momentum vector of the circular orbits for the primary

bodies (parallel to Ẑ), and the ŷ-axis completes the orthonormal triad. The origin of this

reference frame the system barycenter, B1. Figure  2.2 highlights the difference between the

two reference frames, where the rotating frame is denoted in blue, and the inertial frame is

rendered in black.

An analytical solution to the 3-body problem does not exist. Even with the simplify-

ing assumptions in the CR3BP, numerical integration is still required. To generalize the
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X̂

Ŷ

P1

P2

P3

x̂

ŷ

α

α̇

Figure 2.2. Relationship between the Inertial Reference Frame (black) and
the Rotating Reference Frame (blue) for the CR3BP

CR3BP, and aid numerical integration, the differential equations are nondimensionalized.

To nondimensionalize the problem, characteristic quantities for the model are defined as,

l? := R1 + R2 (2.6)

m? := M1 + M2 (2.7)

τ ? :=
√

l?3

Gm?
(2.8)

The characteristic length is denoted l?, defined as the distance between P1 and P2. Since the

primary bodies are moving in circular orbits about their common barycenter, l? remains con-

stant. The characteristic mass is m?, that is, the total mass of P1 and P2. The characteristic

time, τ ?, is the inverse of the mean motion (α̇) for the reference frame. A consequence of

the definition of characteristic time is a nondimensional gravitational constant that is equal
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to one (G? = 1), removing the quantity from the equations of motion. Given these charac-

teristic quantities, the nondimensional mean motion n for the primary system is evaluated

as,

n = α̇τ ? =
√

Gm?

l?3

√
l?3

Gm?
= 1 (2.9)

Utilizing the characteristic quantities, the nondimensional forms for the position vectors,

mass, and time are defined as,

~r =
~R3

l?
(2.10)

~r13 =
~R13

l?
(2.11)

~r23 =
~R23

l?
(2.12)

µ = M2

m?
= 1 − M1

m?
(2.13)

t = τ

τ ?
(2.14)

Equations (  2.10 ), (  2.11 ), and (  2.12 ) are the nondimensional relative position vectors. The

nondimensional location of P3 relative to the barycenter is expressed as ~r without a subscript

for convenience. Equation (  2.13 ) describes the mass parameter of the system, equivalent to

the mass ratio of the primary P2 over the total mass of the primary bodies. The value of

µ is always less than or equal to one-half, as the mass of P2 is arbitrarily defined to be

less than or equal to the mass of P1. Equation (  2.14 ) denotes nondimensional time. The

nondimensional time derivative of position, as viewed by an inertial observer, is written as
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I~̇ri (d~ri

dt
). The nondimensional parameters are introduced into the equations of motion for

the CR3BP as follows,

τ ?2

l?
I ~R

′′
3 =

[
−G

M1

R3
13

~R13 − G
M2

R3
23

~R23

]
τ ?2

l?

I~̈r = −G

[
M1

R3
13

~R13 + M2

R3
23

~R23

]
l?3

Gm?l?

I~̈r = − M1

m?r3
13

~r13 − M2

m?r3
23

~r23

I~̈r = −1 − µ

r3
13

~r13 − µ

r3
23

~r23 (2.15)

Equation (  2.15 ) represents the nondimensional equations of motion as viewed in the inertial

reference frame for the CR3BP. The value I~̈r is the acceleration vector for P3 in the inertial

frame. Comparing Equation (  2.4 ) to ( 2.15 ), nondimensionalizing the problem simplifies the

equations such that the acceleration vector is a function of position of P3 relative to the

primary bodies, and the mass parameter of the system.

A nondimensional rotating frame formulation for the CR3BP further simplifies the prob-

lem and offers some useful insights. As the rotating frame view fixes the locations of P1 and

P2, the position vectors from the primary bodies to P3 (~r13 and ~r23) are dependent on the

position of P3 (~r) and the mass parameter (µ). The position vector describing the location

of P3 is defined in terms of rotating coordinates,

~r = xx̂ + yŷ + zẑ (2.16)

Since the motion of the primary bodies are described by a closed Keplerian orbit, the distance

of P1 and P2 from the barycenter is, thus, determined. For circular orbits, the distance of each

body from the barycenter, at any given instant, is dependent on the mass ratio and distance

between the two bodies. As the problem is nondimensionalized, it becomes a function of the

mass parameter µ written as,
r1 = M2

m?
= µ

r2 = M1

m?
= 1 − µ

(2.17)
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Equation (  2.17 ) denotes the distances P1 and P2 from the barycenter in the nondimension-

alized system. From the definition of the rotating reference frame, the primary bodies are

fixed along the x̂-axis. With this information, the relative position vectors of P3 with respect

to P1 and P2 are straightforward as,

~r13 = ~r3 − ~r1 = (x + µ)x̂ + yŷ + zẑ

~r23 = ~r3 − ~r2 = (x − 1 + µ)x̂ + yŷ + zẑ
(2.18)

The differential equations that govern motion in the CR3BP are nondimensionalized to

aid in alleviating numerical errors and generalize the results, and formulated in a rotating

frame to fix the position of the primary bodies. To employ a rotating coordinate frame, the

equations of motion are expressed relative to the frame. Although Equation (  2.15 ) represents

a nondimensional equation of motion, the observer is fixed in the inertial frame. The basic

kinematic equation transitions from the inertial coordinate frame to a rotating coordinate

frame,
I~̇r = R~̇r + I~ωR × ~r

I~̈r = R~̈r + 2I~ωR × R~̇r + I~ωR × I~ωR × ~r
(2.19)

where the term R~̈r corresponds to the acceleration of P3 as observed in the rotating reference

frame. In Equation (  2.19 ) I~ωR is the angular velocity of the rotating coordinate frame with

respect to the inertial frame. The angular velocity vector is normal to the orbital plane (ẑ

or Ẑ); the magnitude of the vector is equal to the nondimensional mean motion, n, thus,
I~ωR = nẑ. Using Equations (  2.16 ), (  2.17 ), and (  2.19 ), the acceleration of P3 as viewed in

the rotating frame and expressed in terms of rotating coordinates as derived in terms of its

scalar components,

ẍ = 2nẏ + n2x − (1 − µ)(x + µ)
r3

13
− µ(x − 1 + µ)

r3
23

ÿ = −2nẋ + n2y − (1 − µ)y
r3

13
− µy

r3
23

z̈ = −(1 − µ)z
r3

13
− µz

r3
23

(2.20)
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Equation ( 2.20 ) represents the nondimensional equations of motion for the CR3BP in a ro-

tating coordinate frame. From Equation (  2.9 ), the mean motion is equal to one (n = 1),

which further simplifies the equations. By formulating the CR3BP in a rotating coordinate

frame, the equations of motion are a function of the mass parameter (µ) and the instanta-

neous position and velocity of P3. A pseudo-potential function simplifies the equations of

motion to the following,

Ω = 1
2(x2 + y2) + 1 − µ

r13
+ µ

r23
(2.21)

ẍ = 2ẏ + Ωx

ÿ = −2ẋ + Ωy

z̈ = Ωz

(2.22)

where Ω is the pseudo-potential function corresponding to the differential equations. The

scalar equations of motion are rewritten in Equation (  2.22 ) in terms of the pseudo-potential

function. Note that the subscripts on Ω represent the partial derivative with respect to the

components of position (Ωx = ∂Ω
∂x

). As the equations of motion are expressed in terms of a

pseudo-potential function, that is not an explicit function time, the CR3BP is a conservative,

time-invariant system.

2.2.3 Integral of the Motion

Integrals of the motion deliver solutions to the differential equations. Even without a

complete solution, however, integrals of the motion are advantageous in characterizing and

comparing dynamical structures. As the CR3BP is a conservative system, an integral of

the motion is sought for the formulation in the rotating coordinate frame. Previous authors

demonstrate that a single integral of the motion is associated with the differential equations
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in the CR3BP[  18 ]. The value is determined by integrating the dot product between the

velocity and acceleration vectors of P3 as follows,

~̇r · ~̈r = ẋẍ + ẏÿ + żz̈

~̇r · ~̈r = ẋΩx + ẏΩy + żΩz (2.23)

Because the pseudo-potential expression is not a function of time, the right side of Equation

( 2.23 ) represents its total nondimensional time derivative, dΩ
dt

. As the pseudo-potential func-

tion is time-invariant, Equation (  2.23 ) is equal to zero. Thus, by integrating as a function

of t, the following is determined,

∫
(ẋẍ + ẏÿ + żz̈)dt =

∫
(ẋΩx + ẏΩy + żΩz)dt

ẋ2

2 + ẏ2

2 + ż2

2 = dx
∂Ω
∂x

+ dy
∂Ω
∂y

+ dz
∂Ω
∂z

+ constant

1
2(ẋ2 + ẏ2 + ż2) = Ω + constant

JC = −(ẋ2 + ẏ2 + ż2) + 2Ω (2.24)

where JC is the scalar integral of the motion in the CR3BP. This value is representative

of the Jacobi integral in Lagrangian mechanics, and is denoted the Jacobi constant for this

analysis. Note that for a given value of the pseudo-potential function, i.e, a fixed position, an

increase in velocity magnitude results in a lower value of the Jacobi constant. Therefore, the

Jacobi constant serves as an ”energy-like” value, where a higher energy associated with the

motion of P3 corresponds to a lower value of JC. Even a single integral of the motion offers

many benefits to any dynamical systems analysis, including reducing the dimensionality of

the problem, comparing transfer energies, and bounding the accessible regions for a given

energy level.
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2.2.4 Equilibrium Solutions

Equilibrium solutions provide insight into the dynamical structures governing a system

behavior. Given a dynamical system represented by a set of differential equations, equilib-

rium solutions exist for the time derivatives of the state vector equal to zero. In the CR3BP,

a fully defined state is a six-dimensional vector consisting of the position and velocity states

for P3. Therefore, the velocity and acceleration of P3 are zero for an equilibrium solution to

exist, i.e., ẋ = ẏ = ż = ẍ = ÿ = z̈ = 0. By replacing these values into Equation (  2.20 ), the

equations of motion for the CR3BP are simplified as,

0 = x − (1 − µ)(x + µ)
r3

13
− µ(x − 1 + µ)

r3
23

(2.25)

0 = y − (1 − µ)y
r3

13
− µy

r3
23

(2.26)

0 = −(1 − µ)z
r3

13
− µz

r3
23

(2.27)

As the mass parameter µ is always positive and less than one half, Equation (  2.27 ) demon-

strates that z = 0 for any equilibrium points. Therefore, all equilibrium solutions in the

CR3BP exist in the x̂ŷ-plane. In 1767, Leonhard Euler identified the first set of equilibrium

points in the CR3BP, i.e., the collinear points[ 19 ]. Equilibrium locations of the collinear equi-

librium solutions along the x̂-axis are apparent as y = z = 0 satisfies Equations ( 2.26 )-( 2.27 ).

Thus, by removing the dependency on y and z, Equation ( 2.25 ) becomes,

x = (1 − µ)(x + µ)
|x + µ|3

+ µ(x − 1 + µ)
|x − 1 + µ|3 (2.28)

The terms in the denominator represent the distance from the primaries to P3, reduced to

the x̂-axis. To reduce the equation further, the following property for absolute values, i.e.,

x + µ

|x + µ|3
= 1

(x + µ)2 or − 1
(x + µ)2 (2.29)
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where the negative and positive values refer to an x position to the left or right of P1 along

the x-axis, respectively. By applying the property from Equation ( 2.29 ) to Equation ( 2.28 ),

the absolute value terms are replaced by the following possible equations,

x = − (1 − µ)
(x + µ)2 − µ

(x − 1 + µ)2

x = (1 − µ)
(x + µ)2 − µ

(x − 1 + µ)2

x = (1 − µ)
(x + µ)2 + µ

(x − 1 + µ)2

(2.30)

The solutions to Equation (  2.30 ) are the three collinear equilibrium points and exist along

the x̂-axis to the left, between, and to the right of the primary bodies. The process of

solving Equation ( 2.30 ) is non-trivial, therefore, a Newton-Raphson algorithm is employed

to compute the locations of the collinear equilibrium points. Note that the equilibrium

locations are dependent on the value of µ.

In 1772, Joseph-Louis Lagrange exposed two additional equilibrium solutions in the

CR3BP, denoted as the equilateral points [  20 ]. These equilibrium points are off the x̂-axis,

where the y component is non-zero. The locations of the equilateral points are determined

through the simplification of Equation ( 2.26 ), written as,

0 = y − (1 − µ)y
r3

13
− µy

r3
23

0 = y

(
1 − 1 − µ

r3
13

− µ

r3
23

)
(2.31)

where y is not equal to zero. Therefore, the value within the parenthesis in Equation ( 2.31 )

must equal zero, which occurs when r13 = r23 = 1. The distance from P3 to both primaries is

equal at only two locations in the CR3BP, such that P1, P2, and the equilibrium point form

an equilateral triangle. Knowing the characteristics of an equilateral triangle, a geometric

expression for the placement of the equilibrium solutions is written as,

x = cos π

3 − µ = 1
2 − µ

y = sin π

3 = ±
√

3
2

(2.32)
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where the y component has two possible solutions. Together, the collinear and equilateral

equilibrium solutions provide five equilibrium points in the CR3BP. The equilibrium solutions

are denoted the Lagrange points, Li where i = 1,2,...,5. The Lagrange points are labelled

in order of increasing energy (decreasing in terms of the Jacobi constant). The equilateral

equilibrium points L4 and L5 occur at the same energy level; thus, L4 is defined to be the

equilateral solution with a positive y component. Figure  2.3 illustrates the planar locations

of all five Lagrange points in the CR3BP as yellow diamonds. The dashed lines highlight

the sides of the equilateral triangles dictating the positions of L4 and L5. For the collinear

points, L1 lies between the two primary bodies, and L2 and L3 are located to the right and

left of both primary bodies, respectively.

x̂

ŷ

P1 P2L1 L2L3

L4

L5

Figure 2.3. Location of the Lagrange Points in the CR3BP for an arbitrary
system, displayed in the P1-P2 rotating coordinate frame

The position of the Lagrange points varies depending on the mass ratio of the primary

bodies. For example, the locations of the Lagrange points in the Sun-Earth and Earth-Moon
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systems are summarized in Table  2.1 . As the Sun-Earth mass parameter is much smaller

than the Earth-Moon mass parameter, the locations of L1 and L2 are much closer to Earth

(P2) in the Sun-Earth system. Additionally, the x-coordinate of L4 and L5 shifts relative

to the rotating reference frame. The Jacobi constant for the Lagrange points are listed in

Table  2.2 to the level of accuracy indicated. The Earth-Moon and Sun-Earth systems are the

focus of this investigation, however, the Lagrange points are easily constructed for a system

defined by any mass ratio. The Lagrange points are employed throughout this investigation,

and offer insight into the dynamical structures associated with the CR3BP.

Table 2.1. Lagrange points in the Sun-Earth and Earth-Moon systems, dis-
played in nondimensional units in the respective rotating coordinate frames

Lagrange Points Sun-Earth [ndim] Earth-Moon [ndim]
µ 3.00348 × 10−6 1.21506 × 10−2

L1 [0.99003 0 0] [0.83692, 0, 0]
L2 [1.01003 0 0] [1.15568, 0, 0]
L3 [-1.00000 0 0] [-1.00506, 0, 0]
L4 [.50000 0.86603 0] [0.48785, 0.86603, 0]
L5 [.50000 -0.86603 0] [0.48785, -0.86603, 0]

Table 2.2. Jacobi constant of each Lagrange point in the Sun-Earth (JCSE)
and Earth-Moon (JCEM) systems

Lagrange Points JCSE JCEM

L1 3.000891 3.188341
L2 3.000886 3.172160
L3 3.000003 3.012147
L4 and L5 2.999997 2.988109

2.2.5 Zero Velocity Surfaces

The existence of the Jacobi constant reflects a valuable dynamical property that governs

the motion of P3. Recall Equation (  2.24 ) where the energy level associated with the state
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for P3 relies on the velocity of the body and the pseudo-potential function (Ω). If the Jacobi

constant value is known, Equation ( 2.24 ) is rearranged to the following,

V 2 = −JC + 2Ω (2.33)

where V is the relative velocity magnitude for P3. As velocity is a physical property, the

right side of the equation must always be greater than or equal to zero, or JC ≤ 2Ω. As

the pseudo-potential function is dependent on the position of P3 in the rotating coordinate

frame, some regions of space become inaccessible. Therefore, the set of surfaces defined by

JC = 2Ω bounds the motion of P3, also written as,

JC = (x2 + y2) + 2(1 − µ)
r13

+ 2µ

r23
(2.34)

In the planar case, where z = ż = 0, the surfaces are reduced to curves in the x̂ŷ-plane,

labelled the zero velocity curves (ZVC). The ZVC bound the regions of space denoted as

the forbidden regions. Within a forbidden region, the velocity of the P3 is imaginary. As

an imaginary velocity is physically inaccessible, the region is unattainable for that energy

level. In Figure  2.4 , the ZVC are plotted for the Earth-Moon system when a Jacobi constant

possesses a value of 3.19. The blue shaded region is the forbidden region at this energy

level, and the yellow dots are the locations of the Lagrange points. The Jacobi constant

value in Figure  2.4 is a higher value than that corresponding to all Lagrange points in the

Earth-Moon system (see Table  2.2 ). Figure  2.5 is the same ZVC plot as in Figure  2.4 , but

zoomed into the lunar vicinity. At this energy level, the ZVC separate the space into three

distinct regions, near the Earth, near the Moon, and exterior to the Earth-Moon system. As

the Jacobi constant remains fixed along a trajectory, the motion of P3 at this energy level is

restricted to one of these three regions. For example, if P3 originated near the Earth with

a Jacobi constant value of 3.19, it cannot reach the region of space near the Moon, nor can

it depart the Earth-Moon system. Similarly, a spacecraft beyond the Earth-Moon system at

JC = 3.19 cannot approach the Earth nor the Moon in the CR3BP.
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Transfers that traverse the region between P1 and P2 become accessible as the energy of

P3 increases. By definition, the Lagrange points are fixed in the P1-P2 rotating coordinate

frame, therefore, each equilibrium point must lie on the ZVC at their respective energy level.

In Figure  2.6 , the ZVC is constructed using the precise Jacobi constant value for L1 (JCL1)

and the curve intersects the equilibrium point. The Lagrange point is stationary and serves

as a barrier to motion across the two regions, therefore, P3 cannot traverse through L1 at

this value of the Jacobi constant. By decreasing the Jacobi constant value to 3.175, which

lies between JCL1 and JCL2 , Figure  2.7 is constructed. In Figure  2.7 , the ZVC recedes from

the Lagrange point L1, which allows P3 to freely traverse between the regions surrounding

P1 and P2. The gap in the forbidden region in the vicinity of a Lagrange point is denoted

a portal. For values of the Jacobi constant that are less than JCL1 , the L1 portal is open,

such that P3 freely traverses between P1 and P2. The relationship between the ZVCs and

the value of the Jacobi constant offers insight into the regions accessible to a spacecraft. As

the Jacobi constant decreases past the energy values associated with each Lagrange point,

additional portals open.

Figure 2.4. ZVC in the Earth-Moon system for a Jacobi constant of 3.19
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Figure 2.5. ZVC in the Earth-Moon system for a Jacobi constant value of
3.19, centered about the Moon

Figure 2.6. ZVC in the Earth-Moon system for a Jacobi constant value of
3.188341 (JCL1), centered about the Moon
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Figure 2.7. ZVC in the Earth-Moon system for a Jacobi constant value of
3.175 (JCL2 < JC < JCL1), centered about the Moon

Similar to L1, the portals associated with L2 and L3 also open as the Jacobi constant

value changes as appartent and in Figures  2.8 and  2.9 . In Figure  2.8 , the Jacobi constant

value is below that of JCL2 and above JCL3 , thus, the dynamic behavior allows P3 to traverse

between the interior and exterior regions of the Earth-Moon system through the L2 portal.

Figure  2.9 reflects a Jacobi constant value between JCL3 and JCL4,5 , where the portal to

the left of the Earth, near the Lagrange point L3, opens. For Figure  2.10 , the value of the

Jacobi constant is below that of JCL4,5 , where the ZVC no longer exists in the x̂ŷ-plane.

The correlation between the Jacobi constant value and the transfer designs available for P3

supplies insight into the potential behavior in the CR3BP. For planar motion, a portal that

is open or closed frequently dictates the feasibility of various mission designs.

Spatial transfers are bounded by the zero velocity surfaces. When the motion of P3 is not

restricted to the x̂ŷ-plane, Equation (  2.34 ) dictates that the accessible regions in the spatial

problem that govern the path of P3. The surfaces are denoted zero velocity surfaces (ZVS)

with the same properties as the ZVC, such that the ZVC in configuration space is a slice of

the ZVS through the x̂ŷ-plane. Figure  2.11 is a sample ZVS in the Earth-Moon system when
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Figure 2.8. ZVC in the Earth-Moon system for a Jacobi constant value of
3.150 (JCL3 < JC < JCL2), centered about the Moon

the Jacobi constant value is equal to 3.150. Figure  2.11 a is plotted as the planar projection

and Figure  2.11 b is an isometric view of the same ZVS. The blue surfaces represent the ZVS,

where P3 is free to traverse throughout the inner lobe near the Earth, in the vicinity near

the Moon, and exterior to the outer surface. For Jacobi constant values lower than JCL4,5 ,

although no ZVC lie in the x̂ŷ-plane, ZVS do exist off the plane.
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Figure 2.9. ZVC in the Earth-Moon system for a Jacobi constant value of
3.011 (JCL4,5 < JC < JCL3)

Figure 2.10. ZVC in the Earth-Moon system for a Jacobi constant value of
2.980 (JC < JCL4,5)
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a b
Figure 2.11. Zero velocity surface in the Earth-Moon CR3BP with a Jacobi
constant value of 3.150; planar view a, isometric view b

2.2.6 Symmetry

Leveraging symmetric properties within the CR3BP aids in the construction of dynam-

ical structures. In 1955, Roy et al. summarized the conditions necessary for a continuous

trajectory to possess symmetry within the N -body problem [ 21 ]. The general Mirror Theo-

rem requires the velocity of each body to be perpendicular to every radial vector from any

given body to the center of mass of the system. Thus, the Mirror Theorem offers guidance

for defining a state vector such that, once propagated forward in time delivers the mirror

image of the same state in reverse time. In the CR3BP, P1 and P2 are assumed to traverse

circular orbits where the radial vector is always perpendicular to the velocity direction; thus,

the circular motion of the primary bodies is symmetric. For the motion of P3 to meet the

criteria for the Mirror Theorem, the velocity of P3 must be perpendicular to ~r, ~r1, and ~r2,

that occurs when the velocity vector lies in the ŷẑ-plane. As the velocity vector must also

be perpendicular to ~r, the position of P3 must be in the x̂ẑ-plane. If P3 is off the x̂-axis,

then the velocity vector is restricted to the ŷ direction. An example is represented in Figure

 2.12 , where the red point represents the initial state on the x̂-axis with a velocity in the ŷ

direction. The blue arc represents the state propagated forward in time, and the yellow arc

is the state backwards in time. The arrows represent the motion of P3 as propagated forward
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in time. From Figure  2.12 , there is a mirror image of the transfer between the forward and

backward propagated state.

Figure 2.12. Mirror Theorem condition for P3 in the CR3BP

The Mirror Theorem also applies to two independent solutions, where symmetry exists

across the x̂ẑ-plane when one state is propagated in reverse time. In this case, the state as

defined [x, y, z, ẋ, ẏ, ż]T is propagated forward in time and alternatively, [x, −y, z, −ẋ, ẏ, −ż]T

is propagated in reverse time to construct mirror image solutions, even though they are not

one continuous solution. Symmetry in the CR3BP, as viewed in a rotating coordinate system,

is a consequence of the formulation of the differential equations that govern the motion of

P3. The mirror imaged state is computed from the following transformation matrix,

J(−t) =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


(2.35)
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where J is the transformation matrix from a given state to the mirror image state from a

propagation backwards in time. The transformation property produces a symmetric transfer

design across the x̂ẑ-plane.

Understanding symmetric solutions in the CR3BP reduces the required number of nu-

merical computations. The transfers constructed from the states [x, y, z, ẋ, ẏ, ż]T and

[x, y, −z, ẋ, ẏ, −ż]T are the same when projected onto the x̂ŷ-plane, even though the out-

of-plane component is mirrored. Symmetric properties in the CR3BP reduce the numerical

computations necessary to explore a solution space. Within the spatial problem, understand-

ing the symmetry across the x̂ẑ-plane reduces the numerical integration by half. Additional

advantages of symmetry arise throughout this investigation and offer insight into the transfer

designs available.
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2.3 Bicircular Restricted Four-Body Problem

The four-body problem models the motion of four bodies due to their mutual gravita-

tional interactions. The bicircular restricted four-body problem (BCR4BP) is a simplified

four-body model, expanding the formulation of the CR3BP with an additional body. The

BCR4BP depicts the motion of a spacecraft governed by the gravitational forces in a planet-

moon-star system. The BCR4BP of interest in this investigation describes the motion of a

massless particle, P3, influenced by the gravitational fields of three massive bodies, i.e., the

Earth (P1), Moon (P2) and Sun (P4).

2.3.1 Model Assumptions

Assumptions in the BCR4BP rely on the N -body problem and the properties of the

multi-body system being investigated. The formulation of the BCR4BP is similar to that

of the CR3BP, where P1 and P2 are assumed to follow circular orbits about their common

barycenter B1. The assumed circular orbits of P1 and P2 is a simplification to the motion of

the Earth and Moon. Additionally, B1 and P4 are modeled in circular orbits about the full

system barycenter B2. The motion of B1 and P4 in the BCR4BP is an adaption of the true

dynamics of the Sun and Earth-Moon system. In this formulation of the BCR4BP model,

perturbations induced by P4 do not influence the motion of P1 and P2 [ 22 ].

Periodic multi-body models enable repeating dynamical structures. For the BCR4BP

model to be periodic, the relative orientation of P1, P2, and P4 must be repeatable. Con-

ditions where the model is periodic exist when the mean motion of the two systems are in

resonance, or the inclination between the two orbital planes is equal to zero. In most natural

systems, for example, the Earth-Moon-Sun system, neither case is actually true. To leverage

the advantages of a periodic model, either of these two conditions enables trajectory design.

To represent a system where the orbital planes are nearly coplanar, a simplification yields

a periodic model. The coplanar BCR4BP incorporates the assumption that the inclination

between the two orbital planes is assumed to be zero. In this investigation, the Earth, Moon,

and Sun are restricted to one plane. The motion of the Earth-Moon-Sun system follows a

path that resembles Figure  2.13 . In Figure  2.13 , the primary bodies move in the X̂ − Ŷ
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plane. The dotted arcs in Figure  2.13 depict the circular motion of the primary bodies and

B1. As the P1-P2 system and the P4-B1 systems traverse circular orbits, the magnitude of

the vectors ~R12 and ~R4B1 remain constant throughout time. It is advantageous to describe

the motion of P3 in two different rotating coordinate frames, the P1-P2 rotating frame and

the P4-B1 rotating frame. The derivation of the differential equations that govern the mo-

tion of P3 relies on the selected rotating coordinate system. Therefore, two formulations of

the BCR4BP are employed in this analysis. The angles α̃ and α orient the primary bodies

relative to the inertial frame. Note that the resultant equations of motion, irregardless of

the coordinate frame, describe the same dynamics.

X̂

Ŷ

P1

P2

P3

P4

~R12

B1

α

α̃

B2

~R4B1

Figure 2.13. BCR4BP in an inertial reference frame with B2 at the origin

2.3.2 Earth-Moon Rotating Coordinate Frame

The Earth-Moon rotating coordinate frame characterizes accessible dynamical structures

in close proximity to the Earth-Moon system. Construction of this rotating coordinate frame

relies on the definition of the P1-P2 system, where the Earth is P1 and the Moon is P2. To

differentiate between the rotating frames, quantities with a tilde are related to the Earth-

Moon system. Figure  2.14 depicts the P1-P2 rotating reference frame centered at the Earth

Moon Barycenter (B1), where the position vector of P3 is written as [x̃, ỹ, z̃]. The location
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of the Earth and Moon remain fixed in this frame, while the Sun (P4) traverses the dotted

circle clockwise direction. The angle θS orients the position of the Sun in the rotating frame,

and the scalar distance aS is constant. For a Sun angle of zero degrees, the Moon is in

conjunction with the Sun, where each primary body is aligned along the ˆ̃x-axis, which refers

to a new Moon. For the Earth-Moon-Sun system, θ̇S is negative. Similarly for a Sun angle

of π, the Moon is in opposition to the Sun, i.e., a full Moon.

ˆ̃x

ˆ̃y

P1 P2

P3

P4

θS

B1

aS

Figure 2.14. The P1-P2 rotating coordinate frame

Derivation of the Equations of Motion

A set of differential equations governs the motion of P3 in the BCR4BP. The dynamical

model delivers the equations of motion. Similar to the derivation of the differential equations

in the CR3BP, the BCR4BP is based on the N -body problem through Equation (  2.3 ) where
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N= 4. As the motion of P1, P2, and P4 is simplified, the N -body formulation is necessary

to predict the motion of P3, written as,

M3
I ~R

′′
B23 = −G

M3M1

R3
13

~R13 − G
M3M2

R3
23

~R23 − G
M3M4

R3
43

~R43

I ~R
′′
B23 = −G

M1

R3
13

~R13 − G
M2

R3
23

~R23 − G
M4

R3
43

~R43 (2.36)

Recall that the value I ~R
′′
B23 refers to the inertial acceleration experienced by P3 ( Id2 ~R3

dτ2 ).

The position vector I ~R3 originates from the inertially fixed point B2; the vectors ~Rij are

formulated in Equation (  2.2 ) as the vector from body i to j. Equation (  2.36 ) is the inertial

equation of motion for P3 in vector form in the BCR4BP. In the inertial frame, all four bodies

move throughout time. The position of the Earth, Moon, Sun, and Earth-Moon barycenter

(B1) relative to the total system barycenter (B2) is,

~RB21 = ~RB2B1 − RB11(cos (α̃′τ)X̂ + sin (α̃′τ)Ŷ )

~RB22 = ~RB2B1 + RB12(cos (α̃′τ)X̂ + sin (α̃′τ)Ŷ )

~RB2B1 = −RB2B1(cos (α′τ)X̂ + sin (α′τ)Ŷ )

~RB24 = RB24(cos (α′τ)X̂ + sin (α′τ)Ŷ )

(2.37)

where α̃ is the angle measured counterclockwise from X̂ to ~RB12, α is the angle measured

counterclockwise from X̂ to ~RB24, and τ is dimensional time. A visual representation of

the inertial angles (α̃ and α) are illustrated in Figure  2.13 . For simplicity, assume that the

initial orientation of the system is aligned such that α̃0 = α0 = 0. The mean motion of

the P1-P2 and P4-B1 systems in the inertial frame are α̃′ and α′, respectively. The location

of the primary bodies is a function of the initial orientation and the mean motion of each

system. From Equation (  2.37 ), the location of P1 and P2 rely on the position of B1. Due

to the bicircular motion of the primary bodies, the scalar distances RB11, RB12, RB1 and R4

remain constant through time.
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The BCR4BP is nondimensionalized to alleviate numerical errors. The characteristic

quantities for the Earth-Moon system are,

l̃? := |~R12| ≈ 384748 km (2.38)

m̃? := M1 + M2 ≈ 6.0460e24 kg (2.39)

τ̃ ? :=

√√√√ l̃?
3

Gm̃?
≈ 375700 s (2.40)

where l̃? is the distance from the Earth to the Moon, m̃? is the mass of the Earth-Moon

system, and τ̃ ? is the characteristic time of the Earth-Moon system. Consistent with the

characteristic quantities for the CR3BP as defined in Equations ( 2.6 ), (  2.7 ), and ( 2.8 ), the

quantities l̃?, m̃? and τ̃ ? are re-evaluated in the BCR4BP. Utilizing the characteristic quan-

tities, the nondimensional forms of the position vectors, mass, and time are constructed as

follows

~̃r =
~R3

l̃?

~̃r13 =
~R13

l̃?

~̃r23 =
~R23

l̃?

~̃r43 =
~R43

l̃?

µ̃ = M2

m̃?
= 1 − M1

m̃?

t̃ = τ

τ̃ ?

The nondimensional position vectors ~̃r, ~̃r13, ~̃r23, and ~̃r43 describe the position of P3 from

B1, the Earth, the Moon, and the Sun, respectively. The constant quantity µ̃ is the mass

parameter of the Earth-Moon system, and t̃ is the nondimensional time. Given the mass
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parameter (µ̃) and the characteristic length (l̃?) for the Earth-Moon system, characteristics

of the Sun are described as,

m̃S = MS

µ̃
(2.41)

aS =
~R4B1

l̃?
(2.42)

where m̃S is the nondimensional mass of the Sun, and aS represents the nondimensionalized,

fixed scalar distance from the Sun to the Earth-Moon barycenter B1. The quantity aS is

displayed in Figure  2.14 . The nondimensional parameters are introduced into the inertial

equations of motion from Equation ( 2.36 ),

τ̃ ?2

l̃?

I ~R
′′
B23 =

[
−G

M1

R3
13

~R13 − G
M2

R3
23

~R23 − G
M4

R3
43

~R43

]
τ̃ ?2

l̃?

I ¨̃
~rB23 = −G

[
M1

R3
13

~R13 + M2

R3
23

~R23 + M4

R3
43

~R43

]
l̃?

3

Gm̃?l̃?

I ¨̃
~rB23 = − M1

m̃?r̃3
13

~̃r13 − M2

m̃?r̃3
23

~̃r23 − M4

m̃?r̃3
43

~̃r43

I ¨̃
~rB23 = −1 − µ̃

r̃3
13

~̃r13 − µ̃

r̃3
23

~̃r23 − m̃S

r̃3
43

~̃r43 (2.43)

where ~̃rij is the position vector from body i to j nondimensionalized to the P1-P2 system,

and I ¨̃
~rB23 is the nondimensional acceleration for P3 with respect to the system barycenter

B2. For simplicity, vectors from B1 to i will be denoted as ~̃ri . Distances from the Earth and

Moon to B1 are constant as displayed in Equation (  2.17 ). The nondimensional distances

from B1 to B2, and from B2 and P4 are,

r̃B2 = aS
m̃S

m̃S + 1 (2.44)

r̃B24 = aS

m̃S + 1 (2.45)
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The mean motion of the Earth-Moon system (ñEM) equals one as the system is nondi-

mensionalized relative to the Earth and Moon. The mean motion of the Sun-B1 system

nondimensionalized relative to the Earth-Moon system is,

ñSB1 =

√√√√G(M4 + m̃?)
R3

4B1

√√√√ l̃?
3

Gm̃?
=
√

m̃S + 1
a3

S

(2.46)

where the quantity (ñSB1) is the nondimensional mean motion of the Sun-B1 system.

There are advantages and disadvantages to viewing the motion of P3 in the inertial

coordinate frame. An advantage to the inertial reference frame for the BCR4BP, similar to

the CR3BP, is that the frame illustrates the movement of the entire system as viewed in

Figure  2.13 . A disadvantage to the inertial frame is the challenge in classifying dynamical

structures relative to three moving bodies. To aid in the characterization of the motion of

P3 in the vicinity of the Earth and Moon, the equations of motion are derived relative to the

Earth-Moon rotating coordinate frame.

To construct the equations of motion in a rotating reference frame, the origin is shifted to

the Earth-Moon barycenter B1. The total system barycenter, B2, is the only inertially fixed

location. Thus, the motion about B1 includes rotational components due to the formulation

of the reference frame. The position vector ~̃rB23 is also written as,

~̃rB23 = ~̃r3 − ~̃rB2 (2.47)

The nondimensional vector ~̃rB2 is constructed from the dimensional vector ~RB2B1 from Equa-

tion ( 2.37 ), and the scalar distance r̃B2 from Equation ( 2.44 ),

~̃rB2 = r̃B2(cos (ñSB1 t̃)X̂ + sin (ñSB1 t̃)Ŷ )

~̃rB2 = aSm̃S

m̃S + 1(cos (ñSB1 t̃)X̂ + sin (ñSB1 t̃)Ŷ ) (2.48)
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To determine the accelaration of P3 with respect to B1 (I ¨̃
~r3), the second derivative of Equa-

tion ( 2.47 ) is determined to be,

I ¨̃
~rB23 = I ¨̃

~r3 − I ¨̃
~rB2 (2.49)

The dimensional quantity for I ¨̃
~rB23 is given from Equation (  2.36 ), i.e, I ~R

′′
B23. The term I ¨̃

~rB2

is the second time derivative of the vector from B1 to B2. An expression for I ¨̃
~rB2 is evaluated

as,

I ¨̃
~rB2 = −ñ2

SB1~̃rB2

I ¨̃
~rB2 = −

ñ2
SB1m̃S

m̃S + 1 (cos (ñSB1 t̃)X̂ + sin (ñSB1aS t̃)Ŷ )

I ¨̃
~rB2 = −(m̃S + 1)aSm̃S

(m̃S + 1)a3
S

(cos (ñSB1 t̃)X̂ + sin (ñSB1 t̃)Ŷ )

I ¨̃
~rB2 = −m̃S

a2
S

(cos (ñSB1 t̃)X̂ + sin (ñSB1 t̃)Ŷ ) (2.50)

The trigonometric components of Equation ( 2.50 ) are equivalent to the unit vector directed

from B1 to the Sun (P4), i.e., ~̃r4
aS

. Through the combination of Equations ( 2.36 ), (  2.49 ), and

( 2.50 ), the inertial acceleration of P3 with respect to the Earth-Moon B1 is constructed as,

I ¨̃
~r3 = I ¨̃

~rB23 + I ¨̃
~rB2

I ¨̃
~r3 = −1 − µ̃

r̃3
13

~̃r13 − µ̃

r̃3
23

~̃r23 − m̃S

r̃3
43

~̃r43 − m̃S

a2
S

(
~̃r4

aS

)
I ¨̃
~r3 = −1 − µ̃

r̃3
13

~̃r13 − µ̃

r̃3
23

~̃r23 − m̃S

r̃3
43

~̃r43 − m̃S

a3
S

~̃r4 (2.51)

A rotating coordinate system about the Earth-Moon barycenter (B1) simplifies the governing

equations of motion. The Earth-Moon rotating coordinate frame is centered at the Earth-

Moon barycenter B1. The ˜̂x-axis is directed toward the Moon. The ˜̂z-axis is along the angular

momentum vector of the Earth-Moon system, and the ˜̂y-axis completes the orthonormal

triad. The positions of Earth and Moon rely on the mass parameter of the system as

~̃r1 = −µ̃ ˆ̃x and ~̃r2 = (1 − µ̃) ˆ̃x, respectively. Figure  2.14 illustrates the Earth-Moon rotating
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coordinate frame. The differential equations of motion for P3 in the rotating frame are

derived from Equation (  2.19 ) and Equation (  2.51 ). The angular momentum vector employed

in Equation (  2.51 ) is equivalent to the mean motion of the Earth-Moon system, i.e., (I~ωR =

nEM
ˆ̃z), that is equal to one. The scalar quantities of acceleration for P3 as viewed in the

Earth-Moon rotating coordinate frame and expressed in terms of rotating coordinates are,

¨̃x = 2 ˙̃y + x̃ − (1 − µ̃)(x̃ + µ̃)
r̃3

13
− µ̃(x̃ − 1 + µ̃)

r̃3
23

− m̃S(x̃ − aS cos (θS))
r̃3

43
− m̃S

a2
S

cos (θS)

¨̃y = −2 ˙̃x + ỹ − (1 − µ̃)ỹ
r̃3

13
− µ̃ỹ

r̃3
23

− m̃S(ỹ − aS sin (θS))
r̃3

43
− m̃S

a2
S

sin (θS)

¨̃z = −(1 − µ̃)z̃
r̃3

13
− µ̃z̃

r̃3
23

− m̃S z̃

r̃3
43

(2.52)

where θS is the angle measured counterclockwise from the ˜̂x-axis to ~̃r4, denoted the Sun angle.

The Sun angle describes the relative orientation of the Sun in the Earth-Moon rotating

coordinate frame, displayed in Figure  2.14 . The angular velocity of the Sun (θ̇S) in the

Earth-Moon rotating frame is constant, and equals the difference in the mean motion of the

Sun-B1 and Earth-Moon systems,

θ̇S = ñSB1 − ñEM = ñSB1 − 1 (2.53)

where the nondimensional mean motion of the Sun-B1 system is expressed in Equation

( 2.46 ). The angular velocity of the Sun in the Earth-Moon rotating frame is negative; thus,

the Sun traverses clockwise about B1. The equations of motion for P3 are rewritten with a

pseudo-potential function (Υ̃),

Υ̃ = 1
2(x̃2 + ỹ2) + 1 − µ̃

r̃13
+ µ̃

r̃23
+ m̃S

r̃43
− m̃S

a2
S

(x̃ cos (θS) + ỹ sin (θS)) (2.54)

¨̃x = 2 ˙̃y + Υ̃x̃

¨̃y = −2 ˙̃x + Υ̃ỹ

¨̃z = Υ̃z̃

(2.55)
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The pseudo-potential function in Equation ( 2.54 ) relies on the relative orientation of the Sun

in the Earth-Moon rotating frame, i.e., the Sun angle, θS. As the Sun angle is a function

of time, the BCR4BP is a time-dependent model. However, as the Sun remains in the

Earth-Moon orbital plane, the model is periodic in the Earth-Moon rotating frame.

Hamiltonian

The Hamiltonian values serve as ’energy-like’ quantities in the BCR4BP. As in the

CR3BP, the Jacobi Constant provides advantages for analyzing and characterizing structures

that evolve within a dynamical model. Similar to the CR3BP, an ‘energy-like’ quantity exists

in the BCR4BP [  23 ], defined as the Hamiltonian, with two useful formulations in either ro-

tating frame, although it does not remain constant. The two quantities in the BCR4BP are

denoted the Earth-Moon Hamiltonian (HEM) and the Sun-B1 Hamiltonian (HSB1). Unlike

the CR3BP, the Hamiltonian quantities are not integrals of the motion in the BCR4BP, and

vary as P3 traverses through the system. As the time-varying Hamiltonian adds complexity

to analysis of dynamical structures, it supplies insight into the perturbative forces applied

in the two formulations of the BCR4BP. The Earth-Moon Hamiltonian describes the energy

of P3 as it traverses through the Earth-Moon rotating coordinate frame. The Earth-Moon

Hamiltonian is expressed as,

HEM = −( ˙̃x2 + ˙̃y2 + ˙̃z2) + 2Υ̃ (2.56)

where ( ˙̃x , ˙̃y , ˙̃z) are the velocity components of P3 in the Earth-Moon rotating frame, and Υ̃

is the pseudo-potential function expressed in Equation (  2.55 ). The expression for the Earth-

Moon Hamiltonian is similar to that for the Jacobi Constant. Comparing Equation ( 2.56 )

to Equation ( 2.24 ), the sole difference is the pseudo-potential function. The Earth-Moon
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CR3BP pseudo-potential function, and the BCR4BP derived in the Earth-Moon rotating

coordinate frame are comparable as follows,

Ω = 1
2(x2 + y2) + 1 − µ

r13
+ µ

r23

Υ̃ = 1
2(x̃2 + ỹ2) + 1 − µ̃

r̃13
+ µ̃

r̃23
+ m̃S

r̃43
− m̃S

a2
S

(x̃ cos (θS) + ỹ sin (θS))

By removing the components of Υ̃ that rely on the gravitational influence of the Sun (m̃S

= 0), the two equations are equivalent. Thus, by removing the Sun in the Earth, Moon,

Sun BCR4BP, the dynamical model is reduced to the Earth-Moon CR3BP. The pseudo-

potential function Υ̃ varies with the Sun angle, thus, the Earth-Moon Hamiltonian is time-

dependent along a transfer. In close proximity to the Earth and Moon, the Hamiltonian

remains fairly constant, with minor variations due to solar perturbations. As the spacecraft

evolves further from the Earth-Moon system, the Hamiltonian experiences large variations

as the Sun’s perturbative force increases. A sample transfer in the Earth-Moon BCR4BP is

displayed in Figure  2.15 . The transfer originates with a Sun angle equal to zero (θS = 0),

and is propagated for twenty days following the direction of the arrows. The Earth-Moon

Hamiltonian is plotted over time in Figure  2.15 for the sample trajectory in Figure  2.15 .

The maximum deviation in the Earth-Moon Hamiltonian value from the initial starting

point occurs at 9.24 days into flight, and the difference is ∆HEM = 0.01868 nondimensional

units. The figure illustrates some oscillatory-like behavior, that is generally non-intuitive.
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Figure 2.15. Sample trajectory in the BCR4BP, Earth-Moon Rotating Coordinate Frame

Figure 2.16. The Earth-Moon Hamiltonian along the sample transfer plotted
in Figure  2.15 

58



Instantaneous Equilibrium Solutions

Instantaneous equilibrium solutions offer insight into dynamical structures in the BCR4BP.

Equilibrium solutions are solutions to a set of differential equations such that the derivations

are zero, i.e. an instantaneous location in equilibrium. As the BCR4BP is a time-dependent

model in both the Earth-Moon or Sun-B1 formulation, the models rely on an additional

variable to define a state, either the Sun angle or Earth-Moon angle. The corresponding

angular rates θ̇S and θ̇EM are included in the set of governing equations for the BCR4BP.

Recall, for an equilibrium point to exist, the entire set of differential equations must equal

zero. By definition, θ̇S and θ̇EM are constant and never zero. Therefore, there are no equi-

librium solutions in the BCR4BP. However, sets of instantaneous equilibrium solutions are

relevant. An instantaneous equilibrium solution occurs when the velocity and acceleration

of P3 as viewed by an observer in the appropriate frame equals zero for a fixed orientation

of the Earth, Moon, and Sun. By varying the orientation of the primary bodies, sets of

instantaneous equilibrium solutions are constructed. If P3 is placed at an instantaneous

equilibrium solution and the model is propagated forward in time, at the initial instant P3

remains stationary and begins to move as the primary bodies shift into new orientations.

Instantaneous equilibrium solutions are constructed in both the Earth-Moon and Sun-B1

coordinate frames.

Construction of the instantaneous equilibrium solutions relies on an initial condition from

the CR3BP. Recall that the location of the Lagrange points in the CR3BP are determined

for the Earth-Moon system, as represented in Table  2.1 . As in the Earth-Moon formulation

of the BCR4BP, the dynamics is similar in nature to the Earth-Moon CR3BP, the Lagrange

points act as candidate locations for the sets of instantaneous equilibrium solutions. To

determine the positions of the instantaneous equilibrium solutions, the Earth-Moon BCR4BP

equations of motion, as in Equation (  2.52 ), are combined with the definition of an equilibrium

solution, i.e. ˙̃x = ˙̃y = ˙̃z = ¨̃x = ¨̃y = ¨̃z = 0. As the equations of motion include the Sun

angle dependent terms, an analytical expansion is nontrivial; thus, the construction of the

instantaneous equilibrium points relies on numerical methods. A differential corrections

strategy is employed to determine the locations of the sets of instantaneous equilibrium
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points. A set of instantaneous equilibrium solutions serve as analogs to the Lagrange points

Li and are denoted as Ẽi. An instantaneous equilibrium solution at a specific Sun angle θS

is labelled Ẽi(θS). Fives sets of instantaneous equilibrium solutions are plotted in Figure

 2.17 , i.e, Ẽ1-Ẽ5, relative to their corresponding Lagrange point, for all possible Sun angles

(0 ≤ θS < 2π). Note that Ẽ1 and Ẽ2 are indistinguishable from L1 and L2 at this scale, Ẽ3

is the magenta curve, Ẽ4 is red, and Ẽ5 is plotted in blue. The coplanar assumption is active

for this formulation of the BCR4BP, all instantaneous equilibrium solutions remain in the

x̃ỹ-plane.

Figure 2.17. Five sets of instantaneous equilibrium solutions in the Earth-
Moon rotating coordinate frame

The sets Ẽ1 and Ẽ2 are visualize in Figures  2.18 and  2.19 and differentiate the BCR4BP

solutions from the Lagrange points. Note that the curves displayed in Figures  2.17 to  2.19 
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do not represents paths that P3 could traverse, rather the curves represent sets of discrete

instantaneous equilibrium solutions.

Figure 2.18. Ẽ1 in the Earth-Moon rotating coordinate frame
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Figure 2.19. Ẽ2 in the Earth-Moon rotating coordinate frame

The instantaneous equilibrium solutions associated with the third Lagrange point (L3)

does not offer a one to one correspondence with the Sun Angle. As viewed in position

space, Figure  2.17 , the position of Ẽ3 is impacted by solar perturbations as compared to L3,

shifting away from the x̃-axis. Observe the x̃ component of the set Ẽ3 as a function of the

respective Sun angle in Figure  2.20 . Noted in Figure  2.20 , for a subset of Sun angles, multiple

instantaneous equilibrium solutions within the Ẽ3 set exist. For example, at a Sun angle of

100 degrees, three instantaneous equilibrium solutions are available. Thus, depending on the

orientation of the Sun in the Earth-Moon rotating coordinate frame, when combined with

the other instantaneous sets (Ẽ1-Ẽ5), five to seven instantaneous equilibrium solutions exist

at an instant in time.

The Earth-Moon Hamiltonian describes the energy characteristics of the instantaneous

equilibrium solutions. As the Jacobi constant reflects the energy values of the Lagrange

points in the CR3BP, the Earth-Moon Hamiltonian indicates the energy level for each in-

stantaneous equilibrium solution. The solutions, by definition, possess zero velocity; thus,

the Earth-Moon Hamiltonian value is a function of the position of each point. The Earth-
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Figure 2.20. Position of Ẽ3 in x̃ across all Sun angles (θS)

Moon Hamiltonian for all five sets of instantaneous equilibrium solutions where 0 ≤ θS < 360

degrees is plotted in Figure  2.21 . Similar to the Jacobi constant, the sets of instantaneous

equilibrium solutions increase in energy value from Ẽ1 to Ẽ5. As the sets of solutions vary

in position space, the instantaneous value of the corresponding Earth-Moon Hamiltonian

varies as a function of Sun angle. For some values of the Earth-Moon Hamiltonian, for ex-

ample HEM = 1694.972, both Ẽ1 and Ẽ2 include solutions. Thus, both the energy level for

P3 and the relative orientation of the primary bodies are relevant for to consider when as-

sessing available transfer designs. Instantaneous equilibrium solutions and their variation in

terms of the Earth-Moon Hamiltonian values across each set offers insight into the available

dynamical structures within the BCR4BP.
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Figure 2.21. Earth-Moon nondimensional Hamiltonian values across each set
of instantaneous equilibrium solutions as a function of Sun angle(θS)

Instantaneous Zero Velocity Surfaces

Zero velocity surfaces in the BCR4BP rely on the Hamiltonian properties across the path

for P3 and the relative orientation of the primary bodies. For the Earth-Moon formulation

of the BCR4BP, the Earth-Moon Hamiltonian expressed in Equation ( 2.56 ), relies on the

velocity of the body and the pseudo-potential function (Υ̃). Given an instantanoues value

of HEM , Equation ( 2.24 ) is rearranged to the following,

Ṽ 2 = −HEM + 2Υ̃ (2.57)

where Ṽ is the velocity magnitude for P3 in the Earth-Moon BCR4BP. Similar to the formu-

lation for the zero velocity surfaces in the CR3BP, the velocity of P3 must be a real number.
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Therefore, for a given Earth-Moon Hamiltonian value and Sun angle, some sets of positions

are inaccessible to the spacecraft. In the CR3BP, the zero velocity surfaces offer insight into

the accessible regions for a given energy value. A challenge associated with the BCR4BP

is that Hamiltonian values vary along a trajectory and the pseudo-potential functions are

explicit functions of time. Thus, the zero velocity surfaces evolve as P3 traverses a ballistic

path. For example, Figures  2.22 through  2.24 reflect the same value of Earth-Moon Hamilto-

nian, but for differing Sun angles. Access to the lunar vicinity relies on both the orientation

of the Sun and the energy of P3 relative to the Earth-Moon frame. The zero velocity curves

allow P3 to transit though the region near the Moon in Figure  2.22 , where both the portals

near Ẽ1 and Ẽ2 are open. Whereas in Figure  2.24 , both portals are closed for the same energy

value. The accessible regions in the BCR4BP are bounded by the instantaneous equilibrium

solutions but remain functions of time via Sun angle. The energy and orientation of the pri-

maries associated with the instantaneous equilibrium solutions enable low energy transfers

with access to regions of space throughout the Earth-Moon system.

Figure 2.22. Zero velocity curves in the BCR4BP with an Earth-Moon
Hamiltonian of HEM = 1694.9726 and a Sun angle of θS = 0 degrees
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Figure 2.23. Zero velocity curves in the BCR4BP with an Earth-Moon
Hamiltonian of HEM = 1694.9726 and a Sun angle of θS = 45 degrees

Figure 2.24. Zero velocity curves in the BCR4BP with an Earth-Moon
Hamiltonian of HEM = 1694.9726 and a Sun angle of θS = 90 degrees
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2.3.3 Sun-B1 Rotating Coordinate Frame

Characterizes the motion of P3 relative to a fixed orientation of the Sun is enabled by

the use of the Sun-B1 rotating coordinate frame. Construction of the rotating coordinate

frame relies on the definition of the P4-B1 system, where the Sun is P4 and the Earth-Moon

barycenter is B1 for this application. To specify the rotating coordinate frame, underlined

quantities are related to the Sun-B1 rotating frame. The motion of the primary bodies in

the Sun-B1 rotating frame is illustrated in Figure  2.25 . The Earth and Moon, i.e., P1 and

P2, traverse the concentric circles about B1 counterclockwise. The angle θEM orients the

Earth-Moon system in the Sun-B1 frame.

x̂

ŷ

P1

P2

P3

P4
θEM

B1B2

Figure 2.25. The P4-B1 rotating coordinate frame
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Derivation of the Equations of Motion

The equations of motion in the Sun-B1 system represent a model for the motion of P3

relative to the orientation of the Sun. The Sun-B1 rotating coordinate frame relies on the

P4-B1 system, where the Sun is P4 and the Earth-Moon barycenter is B1. The equations

of motion are nondimensionalized in the BCR4BP to generalize the results and to mitigate

numerical errors. The characteristic quantities in the Sun-B1 system are defined as

l? := |~R4B1| ≈ 1.4960e8 km (2.58)

m? := M1 + M2 + M4 ≈ 1.9886e30 kg (2.59)

τ ? :=

√√√√ l?3

Gm?
≈ 5.0226e6 s (2.60)

where l? is the distance from the Sun to the Earth-Moon barycenter B1, m? is the total mass

of the Earth-Moon-Sun system, and τ ? is the characteristic time for the Sun-B1 system.

Consistent with the characteristic quantities in the Earth-Moon rotating coordinate frame as

defined in Equations ( 2.38 ), ( 2.39 ), and ( 2.40 ), the quantities l?, m? and τ ? are re-evaluated

for the Sun-B1 system. The characteristic quantities are employed to nondimensionalize

position vectors, mass, and time as follows,

~r =
~R3

l?

~r13 =
~R13

l?

~r23 =
~R23

l?

µ = M1 + M2

m?
= 1 − M4

m?

t = τ

τ ?
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The nondimensional position vectors ~r, ~r13, ~r23, and ~r43 describe the position of P3 from B2,

the Earth, the Moon, and the Sun, respectively. The value µ is the mass parameter of the

Sun-B1 system, and t is the nondimensional time. The vector differential equation governing

the motion of P3 as viewed by an inertial observer is expressed in Equation ( 2.36 ). To

nondimensionalize the equation of motion, the mass parameters of the two primary systems

(µ, µ̃), and the characteristic quantities for the P4-B1 system are introduced. The resultant

nondimensional vector differential equation is expressed as,

τ ?2

l?
I ~R

′′
B23 =

[
−G

M1

R3
13

~R13 − G
M2

R3
23

~R23 − G
M4

R3
43

~R43

]
τ ?2

l?

I~̈rB23 =
[
−G

M1

R3
13

~R13 − G
M2

R3
23

~R23 − G
M4

R3
43

~R43

]
l?3

Gm? l?

I~̈rB23 =
[
− M1

m? ~r3
13

~r13 − M2

m? ~r3
23

~r23 − M4

m? ~r3
43

~r43

]
I ¨̃
~rB23 = −

(1 − µ̃)µ
r3

13
~r13 −

µ̃µ

r3
23

~r23 −
1 − µ

r3
43

~r43 (2.61)

The acceleration of P3 relative to the system barycenter B2 is I ¨̃
~rB23. Note that the direction

of the acceleration vectors produced in Equation ( 2.61 ) and Equation (  2.43 ) are equivalent,

with the magnitude varying due to the different characteristic quantities. The mean motion

of the P4-B1 system (nSB1) is defined to be one as the system is nondimensionalized relative

to the P4 and B1.

The Sun-B1 rotating reference frame locates B2 as the origin, where the system rotates

with the motion of Sun and B1. The frame is orthonormal, and defined with the +x̂-axis

directed towards B1, and the +ẑ-axis is defined along the orbital angular momentum vector

for the Sun-B1 system. The position of P3 in the Sun-B1 rotating coordinate frame is written

as [x, y, z], and for convenience, vectors from the origin to body i are denoted as ~ri . The

x̂ŷ-projection of the Sun-B1 rotating coordinate frame is illustrated in Figure  2.25 . As B2

is an inertially fixed point in the system, the equations of motion are derived following the

procedure in the CR3BP. The position of the Sun and B1 in rotating coordinate frame are
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~r4 = −µx̂ and ~rB1 = (1 − µ)x̂, respectively. The instantaneous positions of the Earth and

Moon, i.e., P1 and P2, in the Sun-B1 rotating coordinate frame are

~r1 = (1 − µ − 1
aS

µ̃ cos (θEM))x̂ − 1
aS

µ̃ sin (θEM)ŷ = xEx̂ + y
E

ŷ

~r2 = (1 − µ + 1
aS

(1 − µ̃) cos (θEM))x̂ + 1
aS

(1 − µ̃) sin (θEM)ŷ = xM x̂ + y
M

ŷ
(2.62)

where θEM is the Earth-Moon angle, measured counterclockwise from the +x̂-axis to ~rB12.

The Earth-Moon angle describes the orientation of the Earth and Moon in the Sun-B1,

system as depicted in Figure  2.25 . Recall the constant aS is the scalar distance from the Sun

to B1 and is nondimensionalized relative to the Earth-Moon system (aS ≈ 388.8204 ndim).

The quantities xE, y
E

, xM , and y
M

are defined as the scalar components of position for

the Earth and Moon in the rotating frame. With the basic kinematic equation (Equation

( 2.19 )), and the angular velocity of the system equal to the nondimensional rate of the

Sun-B1 system (I~ωR = nSB1 ẑ = 1ẑ). Given the inertial acceleration of P3 (Equation ( 2.61 )),

and the motion of the Earth and Moon in the Sun-B1 rotating coordinate frame (Equation

( 2.62 )), the scalar differential equations of motion for P3 are derived as,

ẍ = 2ẏ + x −
(1 − µ)(x + µ)

r3
43

−
µ(1 − µ̃)(x − xE)

r3
13

−
µµ̃(x − xM)

r3
23

ÿ = −2ẋ + y −
(1 − µ)y

r3
43

−
µ(1 − µ̃)(y − y

E
)

r3
13

−
µµ̃(y − y

M
)

r3
23

z̈ = −
(1 − µ)z

r3
43

−
µ(1 − µ̃)z

r3
13

−
µµ̃z

r3
23

(2.63)

where µ is the mass parameter of the Sun-B1 system, and µ̃ is the mass parameter of the

Earth-Moon system. Equation ( 2.63 ) defines the scalar components of acceleration for P3 as

viewed in the Sun-B1 rotating coordinate frame. A pseudo-potential function (Υ) simplifies

the acceleration expressions to,

Υ = 1
2(x2 + y2) +

1 − µ

r43
+

µ(1 − µ̃)
r13

+
µµ̃

r23
(2.64)
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ẍ = 2ẏ + Υx

ÿ = −2ẋ + Υy

z̈ = Υz

(2.65)

where Υx is the partial derivative of the pseudo-potential function with respect to x. As the

pseudo-potential function relies on the orientation of the Earth and Moon, the model is time

dependent. However,since the Earth and Moon traverse in circular orbits within the Sun-B1

orbital plane, the equations of motion are periodic in the rotating coordinate frame. The

use of the Sun-B1 rotating frame is advantageous in understanding and analyzing dynamical

structures with respect to a fixed location of the Sun.

Hamiltonian

The Sun-B1 Hamiltonian expresses an ’energy-like’ quantity relative to the Sun-B1 system

in the BCR4BP. Similar to the Earth-Moon Hamiltonian, the Sun-B1 Hamiltonian is written

as,

HSB1 = −(ẋ2 + ẏ2 + ż2) + 2Υ (2.66)

where (ẋ , ẏ , ż) are the velocity components of P3 in the Sun-B1 rotating frame, and Υ is the

pseudo-potential function expressed in Equation (  2.64 ). As the pseudo-potential function Υ

relies on the orientation of the Earth and Moon, which are time-dependent in the Sun-B1

rotating coordinate frame, the HSB1 varies along a transfer. The variation in energy is due

to the additional forces in the equations as compared to the CR3BP, where B1 is not treated

as a fixed mass, but rather two orbiting masses, i.e., the Earth and Moon. In contrast

to the Earth-Moon Hamiltonian, as P3 approaches either the Earth or Moon, the Sun-B1

Hamiltonian experiences larger variations in energy. Recall the sample transfer in Figure

 2.15 and Figure  3.17 . The Sun-B1 Hamiltonian for this transfer is displayed in Figure  2.26 .

The behavior of the Sun-B1 Hamiltonian is explored further throughout this investigation.
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Figure 2.26. The Sun-B1 Hamiltonian along the example transfer plotted in Figure  3.17 

Instantaneous Equilibrium Solutions

Similar to the view of the BCR4BP in the Earth-Moon rotating coordinate frame, in-

stantaneous equilibrium solutions exist in the Sun-B1 BCR4BP. The solutions rely on the

orientation of the Earth and Moon, i.e., the Earth-Moon angle. An instantaneous equilib-

rium solution in the Sun-B1 rotating frame at a specific Earth-Moon angle θEM is labelled

as Ei(θEM). The Lagrange point locations from the Sun-B1 CR3BP are applied to seed the

process to determine the sets of solutions. For E3, E4 and E5, the sets vary by less than five

kilometers from the positions of the corresponding Lagrange points in the CR3BP. Figure

 2.27 and Figure  2.28 include the instantaneous equilibrium solutions E1 and E2, respectively.

The origin in each figure is the total system barycenter B2.
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Figure 2.27. Set of instantaneous equilibrium solutions in the BCR4BP, in
the vicinity of the Sun-B1 Lagrange points L1

2.3.4 Symmetry

Symmetry in the four-body problem is more complex than in the three-body problem, yet

offers numerical advantages. The time-dependency in the BCR4BP influences the conditions

for symmetric motion. At least one primary body is moving in either the Earth-Moon, or

Sun-B1 rotating frames, thus, symmetry is epoch dependant. For a mirrored image transfer,

the time dependent primary body(or bodies) path must also be mirror imaged. As the

orientation of the primary bodies is strictly a function of θS or θEM , the reflection occurs
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Figure 2.28. Set of instantaneous equilibrium solutions in the BCR4BP, in
the vicinity of the Sun-B1 Lagrange points L2

at the negative angle, i.e., −θS or −θEM . The appended transformation matrix for both

reference frames in the BCR4BP is

K(−t) =



1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1



(2.67)

For the Earth-Moon rotating frame, the transformation matrix produces a symmetric transfer

across the ˆ̃xˆ̃z-plane when propagated backwards in time. For the Sun-B1 rotating frame, the
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symmetry is across the x̂ẑ-plane. Similar to the CR3BP, the existence of symmetry reduces

length of any simulation, an advantage in any numerical corrections process. Symmetry also

suggests dynamical structures that might emerge in a design process. The epoch dependency

of the BCR4BP increases the complexity of the patterns. The Mirror Theorem is applied in

this investigation to seek dynamical structures that are symmetric across the ˆ̃xˆ̃z-plane, as

one example.
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3. DYNAMICAL SYSTEMS THEORY

Dynamical systems theory offers techniques in analyzing nonlinear systems. As the CR3BP

and BCR4BP rely on coupled, second-order, nonlinear differential equations, effective solu-

tion designs are nontrivial to construct. In the simplest form, linear variational equations

approximate motion in the vicinity of fixed states. Extending to continuous transfers, the

state transition matrix considers the downstream implication of an initial perturbation to

a transfer arc. Differential corrections employ state transition matrices to construct desired

transfer designs, periodic solutions, and analyze their respective stability characteristics.

The application of Poincaré sections acts as both a visualization tool and aids in the classi-

fication of dynamical behavior. Assessment of the Hamiltonian properties in the BCR4BP

highlight an explicit relationship between the natural progression in energy and perturbing

effects. Incorporating methods from dynamical systems theory is a critical component to

this investigation.

3.1 Linear Variational Equations

Linear variational equations offer insight into the stability characteristics of the equi-

librium solutions [  24 ]. To incorporate variational equations, a matrix representation of the

dynamical system must be introduced. The state vectors of the dynamical models are

x̄ =



x

y

z

ẋ

ẏ

ż


¯̃x =



x̃

ỹ

z̃

˙̃x
˙̃y
˙̃z

θS



x̄ =



x

y

z

ẋ

ẏ

ż

θEM



(3.1)
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where the vectors associated with the BCR4BP (¯̃x and x̄) have an additional seventh state

associated with the orientation of the primary bodies, i.e., θS and θEM . The vector compo-

nents of the first-order differential equations are,

f̄(x̄) =



ẋ

ẏ

ż

2ẏ + Ωx

−2ẋ + Ωy

Ωz


(3.2)

where acceleration quantities are formulated in Equation ( 2.22 ). Define x̄Li
to be the state

vector for the Lagrange point Li. Thus, the state vector for P3 in close proximity to Li is

x̄ = x̄Li
+ δx̄ (3.3)

where δx̄ is the displacement vector from Li to P3. Combining Equation (  3.2 ) and Equation

( 3.3 ), the motion of P3 relative to the Lagrange point Li is

f̄(x̄) = f̄(x̄Li
+ δx̄) = ˙̄xLi

+ δ ˙̄x (3.4)

The term δ ˙̄x represents the variational equations of P3 about a fixed point. As δx̄ is a per-

turbation vector and not an explicit state in the dynamical model, a Taylor Series expansion

is necessary to describe δ ˙̄x. The first-order Taylor Series expansion of Equation (  3.4 ) is,

˙̄xLi
+ δ ˙̄x ≈ f̄(x̄Li

) + ∂f̄

∂x̄

∣∣∣∣∣
x̄Li

δx̄ + H.O.T. (3.5)
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where H.O.T. stands for higher order terms. By definition the equations of motion for the

Lagrange points are equal to zero, i.e. f̄(x̄Li
) = ˙̄xLi

= 0. Thus, Equation ( 3.5 ) is reduced by

removing the higher order terms,

δ ˙̄x ≈ ∂f̄

∂x̄

∣∣∣∣∣
x̄Li

δx̄ (3.6)

The matrix ∂f̄
∂x̄

is equal to the derivative of the equations of motion with respect to the com-

ponents of the state vector, i.e. the Jacobian matrix. Written out, the matrix is constructed

as

∂f̄

∂x̄
= A(t) =



∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẋ
∂ẋ

∂ẋ
∂ẏ

∂ẋ
∂ż

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂z

∂ẏ
∂ẋ

∂ẏ
∂ẏ

∂ẏ
∂ż

∂ż
∂x

∂ż
∂y

∂ż
∂z

∂ż
∂ẋ

∂ż
∂ẏ

∂ż
∂ż

∂ẍ
∂x

∂ẍ
∂y

∂ẍ
∂z

∂ẍ
∂ẋ

∂ẍ
∂ẏ

∂ẍ
∂ż

∂ÿ
∂x

∂ÿ
∂y

∂ÿ
∂z

∂ÿ
∂ẋ

∂ÿ
∂ẏ

∂ÿ
∂ż

∂z̈
∂x

∂z̈
∂y

∂z̈
∂z

∂z̈
∂ẋ

∂z̈
∂ẏ

∂z̈
∂ż


(3.7)

where many of the quantities are reduced to zero, as there is no dependence between some

combination of states. The matrix is rewritten in terms of the pseudo-potential function

formulated in Equation (  2.22 ). Therefore, an updated expression for the linear variational

equations is

δ ˙̄x = A(t)δx̄ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ωxx Ωxy Ωxz 0 2 0

Ωyx Ωyy Ωyz −2 0 0

Ωzx Ωzy Ωzz 0 0 0





δx

δy

δz

δẋ

δẏ

δż


(3.8)

Recall the subscripts Ωij refers to the partial derivative of the pseudo-potential function wit

respect to i and j, e.g., Ωxx = ∂2Ω
∂x2 . The same procedure is followed for the BCR4P. One
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difference between the BCR4BP and the CR3BP is the dependency on the relative orientation

of the primary bodies. Therefore, the linear variational equations for the BCR4BP is

δ ˙̃̄x = Ã(t)δ ¯̃x =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

Υ̃x̃x̃ Υ̃x̃ỹ Υ̃x̃z̃ 0 2 0 Υ̃x̃θS

Υ̃ỹx̃ Υ̃ỹỹ Υ̃ỹz̃ −2 0 0 Υ̃ỹθS

Υ̃z̃x̃ Υ̃z̃ỹ Υ̃z̃z̃ 0 0 0 Υ̃z̃θS

0 0 0 0 0 0 0





δx̃

δỹ

δz̃

δ ˙̃x

δ ˙̃y

δ ˙̃z

δθS



(3.9)

The seventh row in Equation (  3.9 ) equals zero as the Sun angle is independent of the position

and velocity of P3. However, the acceleration of the spacecraft relies on the Sun angle.

The dependency on epoch contributes to the values in the seventh column of Ã(t). An

equivalent formulation exists for the Sun-B1 BCR4BP, where the Sun angle is replaced by

the Earth-Moon angle and the pseudo-potential function corresponds to the equations of

motion written relative to the Sun-B1 rotating coordinate frame. The linear variational

equations approximate motion in the vicinity of fixed points and offer a foundation for other

methods used in dynamical systems theory.

3.2 State Transition Matrix

The state-transition matrix (STM) predicts a final perturbed state due to some initial

deviation from the transfer. The STM is a linear map from the initial perturbation vector

to the final resultant vector,

δx̄(t) = Φ(t, t0) δx̄(t0) (3.10)
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where Φ(t, t0) is the STM from some initial time t0 to the final time t. In the CR3BP, the

elements of the STM are,

Φ(t, t0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


(3.11)

Each column of the STM describes the influence one component of the initial state vector

has on the final state after propagating for time t. For example, the first column predicts

the final perturbation due to some initial change in x, i.e., ∂x0. Additionally, each row of

the STM reflects the deviation on a final state component due to the initial perturbation

vector. For example, the second row describes the variation in the final y component due

to a perturbation at the initial state. The STM for the BCR4BP is a 7x7 square matrix,

where the additional row and column originate from the orienting angles for the respective

rotating coordinate frame, i.e., the Sun angle or the Earth-Moon angle. The elements of the

STM for an given arc offers insight into the sensitivity and local dynamical structures.

Properties of the STM aid in the construction of the matrices. The first property of the

STM describes the matrix at some initial time t0. Consider Equation ( 3.10 ) when t0 = t, the

initial and final perturbations are equal as the state is not propagated, i.e., δx̄(t0) = δx̄(t).

Thus, Equation ( 3.10 ) is simplified to,

δx̄(t0) = Φ(t0, t0) δx̄(t0)

Φ(t0, t0) = I (3.12)

where I is the identity matrix with dimension equal to the STM. The second property reflects

the combination of the STM. Analyze two segments of a trajectory, where the first STM

describes an arc propagated from time t0 to t1 (Φ(t1, t0)), and the second matrix reflects the
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same arc continued from time t1 to t2 (Φ(t2, t1)). To map an initial perturbation at time t0

to the final perturbation at t2, Equation ( 3.10 ) is written as,

δx̄(t2) = Φ(t2, t0) δx̄(t0) (3.13)

Although, the quantity Φ(t2, t0) is not explicitly available, employing the STMs associated

with the two segment arcs yield an equivalent solution,

δx̄(t1) = Φ(t1, t0) δx̄(t0)

δx̄(t2) = Φ(t2, t1) δx̄(t1)

δx̄(t2) = Φ(t2, t1) Φ(t1, t0) δx̄(t0) (3.14)

Comparing the matrices in Equation (  3.13 ) to Equation ( 3.14 ) offers the second property of

the STM,

Φ(t2, t0) = Φ(t2, t1) Φ(t1, t0) (3.15)

Equation ( 3.15 ) reveals the method of combining sensitivity matrices along a transfer. The

combination of STMs is repeated for longer trajectories with a multitude of segments. The

third property relates the STM to the inverse STM. Rearranging Equation ( 3.10 ) produces,

δx̄(t) = Φ(t, t0) δx̄(t0)

Φ−1(t, t0) δx̄(t) = Φ−1(t, t0) Φ(t, t0) δx̄(t0)

δx̄(t0) = Φ−1(t, t0) δx̄(t) (3.16)

Equation ( 3.16 ) is equivalent to the linear mapping of the STM in reverse time from t to t0,

the third property is revealed as,

Φ−1(t, t0) = Φ(t0, t) (3.17)
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Equation (  3.17 ) equates the inverse of the STM for a given trajectory to the STM constructed

by following the same arc propagating the model in reverse time.

Properties of the STM in combination with numerical processes aid in the construction of

the matrix. The derivative of Equation ( 3.10 ) with respect to the final time (t), the following

equation is produced

δ ˙̄x(t) = Φ̇(t, t0) δx̄(t0)

where the initial perturbation δ ˙̄x(t0) is independent of the propagation time. Substituting

δ ˙̄x(t) with the linear variational equations denoted in Equation ( 3.8 ) results in,

A(t)δx̄(t) = Φ̇(t, t0) δx̄(t0)

Replace δx̄(t) with the general form of the STM, i.e., Equation ( 3.10 ),

A(t)Φ(t, t0)δx̄(t0) = Φ̇(t, t0) δx̄(t0)

Φ̇(t, t0) = A(t)Φ(t, t0) (3.18)

Equation (  3.18 ) is a linear differential equation that produces the time rate of change in the

components of the STM. The STM is constructed by employing Equation ( 3.18 ) through

numerical integration. Although the STM is built numerically, the formulation relies on

the first-order, linear variational equations. Thus, the STM is a first-order approximation

to the nonlinear dynamics. Construction of the STM in the BCR4BP follows the same

formulation. For dynamical models where no closed-form solutions exist, i.e., the CR3BP

and the BCR4BP, the STM acts as an effective tool for evaluating the governing motion.

3.3 Differential Corrections

Developing sufficient transfer designs in the multi-body regime is convoluted. To over-

come this challenge, differential correction techniques are applied to aid in the design of

a desired trajectory. The numerical approach employed in this investigation is a multi-
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dimensional Newton-Raphson scheme. A Newton-Raphson method is a common algorithm

used in assessing local solutions in models controlled by a set of nonlinear differential equa-

tions [ 25 ]. Let X̄ be a vector comprised of n free variables called the design vector, i.e.,

X̄ =



X1

X2
...

Xn


(3.19)

and F̄ be a vector of m constraints denoted the constraint vector,

F̄ (X̄) =



F1(X̄)

F2(X̄)
...

Fm(X̄)


(3.20)

The objective of the Newton-Raphson method is to produce a design vector (X̄∗) such that

the constraint vector becomes a zero vector, i.e, F̄ (X̄∗) = 0̄ . Numerically solving for a

solution that perfectly meets each constraint is nontrivial. Thus, to alleviate the numerical

challenges, a solution is obtained to meet the following criteria,

||F̄ (X̄∗)|| < k (3.21)

where the term k refers to some set tolerance. The purpose of Equation (  3.21 ) is to guarantee

that the Euclidean norm of the constraint vector is below the desired tolerance. Denote the

initial design vector as X̄0. To determine a feasible solution to Equation (  3.21 ), the first-order

Taylor series expansion of F̄ (X̄∗) relative to X̄0 is assessed as,

F̄ (X̄∗) ≈ F̄ (X̄0) + DF̄ (X̄0)(X̄∗ − X̄0) (3.22)
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where DF̄ (X̄0) is an m x n matrix comprised of the partial derivatives of the constraint

vector with respect to each free variable. The DF̄ (X̄) matrix, labelled the Jacobian matrix,

evaluated at X̄0 is written as

DF̄ (X̄0) = ∂F̄

∂X̄
=



∂F1
∂X1

∂F1
∂X2

· · · ∂F1
∂Xn

∂F2
∂X1

∂F2
∂X2

· · · ∂F2
∂Xn

... ... . . . ...
∂Fm

∂X1
∂Fm

∂X2
· · · ∂Fm

∂Xn


(3.23)

Rewriting Equation (  3.22 ) such that the desired constraint vector is a zero vector with length

m, produces

0̄ = F̄ (X̄0) + DF̄ (X̄0)(X̄∗ − X̄0) (3.24)

The goal of the Newton-Raphson method is to determine X̄∗. However, the construction

of Equation (  3.24 ) is limited due to the linear approximation of the nonlinear dynamics.

Depending on the sufficiency of the initial guess, multiple iterations are necessary to achieve

a solution that fulfills the constraints. Therefore, Equation (  3.24 ) is revised such that X̄j is

the current design vector and X̄j+1 is the desired update,

0̄ = F̄ (X̄j) + DF̄ (X̄j)(X̄j+1 − X̄j) (3.25)

Recasting Equation (  3.25 ) to solve for X̄j+1 relies on the size of the matrix DF̄ (X̄j). Three

possibilities exist, n = m, n > m, and n < m. If the Jacobian is square (n = m) and non-

singular, there are an equal number of free variables and constraints. The update equation

for X̄j+1 becomes,

X̄j+1 = X̄j − (DF̄ (X̄j))−1F̄ (X̄j) (3.26)

If there are more free variables than constraints (n > m), then the system of equations

is underdetermined. Given that a solution exists, an underdetermined system produces an
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infinite number of solutions [ 26 ]. There are many techniques to solving an underdetermined

system. Each method will impact the resultant solution of the targeter. Therefore, the

method chosen for solving an underdetermined system relies on the intended results. In

this investigation, a minimum-norm approach is considered. The minimum-norm solution

provides the closest feasible solution to the initial guess. The update equation to determine

the minimum-norm solution is

X̄j+1 = X̄j − DF̄ (X̄j)T
[
DF̄ (X̄j)DF̄ (X̄j)T

]−1
F̄ (X̄j) (3.27)

If there are more constraints than free variables (n < m), then DF̄ (X̄j) is overdetermined.

If each constraint is linearly independent, then there is no solution to the overdetermined

system. Due to the nature of this investigation, overdetermined systems are not employed.

3.3.1 Single Shooting Method

The single shooting method is the simplest implementation of the Newton-Raphson

scheme. The design vector of the method is composed of a subset of one initial state vec-

tor; hence the name Single Shooting. The constraint vector relies on the desired outcome

of the transfer, including arrival position or velocity states, an apse condition, and energy

properties. An example in transfer design is to achieve a desired position by implementing

an impulsive maneuver at some fixed location. Consider a spacecraft in the BCR4BP that

has the following initial state

¯̃x0 =
[
x̃0 ỹ0 z̃0 ˙̃x0 ˙̃y0

˙̃z0 θS0

]

The state ¯̃x0 is propagated forward for time T resulting in the following state

¯̃xf =
[
x̃f ỹf z̃f

˙̃xf
˙̃yf

˙̃zf θSf

]
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By allowing an impulsive maneuver at the initial state, the components of velocity act as

the design variable vector,i.e., X̄ =
[

˙̃x0 ˙̃y0
˙̃z0

]
. Let the desired position of the spacecraft

at the final state be
[
x̃d ỹd z̃d

]
. Therefore, the constraint vector is

F̄ (X̄) =
[
x̃f − x̃d ỹf − ỹd z̃f − z̃d

]
(3.28)

where a solution is found once ||F̄ (X̄)|| is near zero, below a set tolerance k. For this

example, the trajectory is set to be epoch dependent, keeping the propagation time (T) and

initial Sun angle (θS0) fixed. Given the free variables and constraints, the Jacobian matrix

necessary for the Newton-Raphson method emerges as,

DF̄ (X̄) =


∂(x̃f −x̃d)

∂ ˙̃x0

∂(x̃f −x̃d)
∂ ˙̃y0

∂(x̃f −x̃d)
∂ ˙̃z0

∂(ỹf −ỹd)
∂ ˙̃x0

∂(ỹf −ỹd)
∂ ˙̃y0

∂(ỹf −ỹd)
∂ ˙̃z0

∂(z̃f −z̃d)
∂ ˙̃x0

∂(z̃f −z̃d)
∂ ˙̃y0

∂(z̃f −z̃d)
∂ ˙̃z0

 (3.29)

Since the desired target position of the spacecraft is independent of the design vectors,

Equation ( 3.29 ) is reduced to

DF̄ (X̄) =


Φ̃14 Φ̃15 Φ̃16

Φ̃24 Φ̃25 Φ̃26

Φ̃34 Φ̃35 Φ̃36

 (3.30)

where Φ̃(t + T, t) is the state transition matrix constructed along the propagated arc in

the Earth-Moon rotating frame from time t to t + T and Φ̃ij is the element in row i and

column j of the STM. For this scenario, the number of free variables matches the number

of constraints, i.e., the Jacobian is non-singular. Therefore, Equation (  3.26 ) is employed

iteratively to determine a solution that meets the constraints. A sample single shooting

scenario is illustrated in Figure  3.1 . The magenta point is the initial state of the transfer,
¯̃x0 = [.5 .1 0 0 .55 0 0] nondimensional units. The initial state propagated for five days

results in the red point. The target position is denoted by the black dot, [-0.1492 -0.3233 0]

nondimensional units.
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Figure 3.1. Planar transfer propagated for five days, with an initial Sun angle
of zero degrees

The constraint vector from Equation ( 3.28 ), the free variable vector composed of the

initial velocity, and the Jacobian matrix from Equation (  3.30 ) are implemented into Equation

( 3.26 ) to construct a unique solution. Recall that the time of flight and the initial Sun angle

are fixed in this scenario. An iterative Newton-Raphson method is applied to determine the

initial state that produces the desired transfer. A solution to the single shooting method is

illustrated in Figure  3.2 . The resultant transfer is the blue arc, and the initial guess is the

yellow dashed line. The black, red, and magenta dots are equivalent to the points in Figure

 3.1 . As the initial components of position were not free variables, the magenta point does

not change in position space. The solution is ¯̃x = [.5 .1 0 .1 .6 0 0] in nondimensional units.
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For a spacecraft at ¯̃x0, an impulsive maneuver of ∆V = 114.5 meters per second is necessary

to change its path from the yellow dotted line to the blue curve.

Figure 3.2. Resultant transfer from the single shooting algorithm (blue) with
the initial guess to the targeter (yellow)

There are an abundance of techniques to implementing single shooting algorithms. The

example portrayed in Figure  3.2 is one type of single shooting algorithm. The process of

selecting the free variables and constraints offer numerous targeting problem. For instance,

if the previous scenario is extended to allow the time of flight to vary, then the Jacobian is

no longer square, and an infinite number of solutions exist. Likewise, instead of including

the time of flight, allowing the initial Sun angle to change provides insight into the impact of

solar perturbations on this transfer. The application of Newton-Raphson methods through

single shooting is an effective tools in trajectory design.
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3.3.2 Multiple Shooting Method

Multiple shooting algorithms are an approach to addressing the nonlinear challenges in

dynamically sensitive regions. The Newton-Raphson approach relies on a linear approxima-

tion of the nonlinear dynamics. As the propagation time for a single arc increases, or the

arc passes near a primary body, the linear approximation becomes less effective. Multiple

shooting algorithms discretize a transfer arc into multiple segments, each with a set of free

variables and constraints. Discretizing the baseline path aids in complications due to sensi-

tive dynamical regions and long transfer times. A disadvantage to multiple shooting is the

complexity in building the algorithm and increased computational resources. A schematic

for the multiple shooting approach for three segments is illustrated in Figure  3.3 . Each

segment is defined by the initial state x̄i,0 and propagation time ti, where i is the segment

number. Each arc in Figure  3.3 has a final state denoted as x̄i,f . The desired final state of

the entire transfer is illustrated as x̄d.

Figure 3.3. Schematic of a discretized transfer prior to differential correc-
tions, an example initial guess for multiple shooting

A majority of multiple shooting algorithms include continuity constraints. Indicated in

Figure  3.3 by the red arrow between x̄1,f and x̄2,0, a continuity constraint suggests that the

final state of one segment equals the initial state of the proceeding segment. If a continuity

constraint is met, then a spacecraft follows a ballistic path from one arc to the next. From
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the schematic in Figure  3.3 , two continuity constraints exist. Convergence in the multiple

shooting algorithm produces the schematic illustrated in Figure  3.4 , where the continuity

and targeting constraints are met, i.e., x̄1,f = x̄2,0, x̄2,f = x̄3,0, and x̄3,f = x̄d.

Figure 3.4. Schematic of a discretized transfer after differential corrections,
a result of multiple shooting

To construct a multiple shooting algorithm, consider an arc discretized into Q segments.

Assume segments one through Q−1 has a continuity constraint. Segment Q targets a desired

state x̄d. A schematic for of segments for the case where Q = 3 is portrayed in Figure  3.3 .

The design variable vector is composed of the initial states of each segment,

X̄ =
[
x̄1,0 x̄2,0 x̄3,0 · · · x̄Q−1,0 x̄Q,0

]
(3.31)

and the constraint vector is

F̄ =
[
x̄1,f − x̄2,0 x̄2,f − x̄3,0 · · · x̄Q−1,f − x̄Q,0 x̄Q,f − x̄d

]
(3.32)
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As six components are necessary to define a state in the CR3BP, there are 6Q free variables

and constraints in this multiple shooting formulation. Thus, the Jacobian is a 6Qx6Q matrix

written as,

DF̄ (X̄) =



Φ1 −I 0 · · · 0 0

0 Φ2 −I · · · 0 0
... ... . . . . . . ... ...

0 0 0 · · · ΦQ−1 −I

0 0 0 · · · 0 ΦQ


(3.33)

where Φi is the state transition matrix of segment i, I is a six-dimensional identity matrix,

and 0 is a 6x6 zero matrix. Since the matrix DF̄ (X̄) is non-singular the update equation

as formulated in Equation (  3.26 ) is applied. The size of the Jacobian matrix grows by six

rows and columns for each segment added. Therefore, the computational load for a multiple

shooting algorithm increases for each discretized segment. Although many of the entries

are zero, computing the inverse of a large matrix is computationally expensive. Therefore,

arbitrarily choosing a large number of segments comes with numerical consequences.

Multiple shooting is applied extensively throughout this investigation. Similar to the

single shooting method, the scenario devised is one application of multiple shooting. Se-

lecting the appropriate constraints and free variables directly impacts the desired result

of the targeter. Additional constraints include periapse, periodicity, radius, time of flight,

epoch, energy, and velocity direction constraints. Incorporating desired constraints aids in

development of trajectory design.

3.4 Continuation Methods

It is insightful to analyze a larger design space when assessing the efficiency of a solution.

A range of solutions offers comparison metrics, that are employed to determine relative per-

formance. A set of solutions that vary across some parameter is denoted as a family. In this

investigation, there are families of transfers, periodic orbits, and instantaneous equilibrium

points. Families are constructed by applying a continuation scheme to a solution. Two con-
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tinuation methods considered are applied in this analysis. Natural Parameter continuation

varies a physical quantity of the solution (that is not a design variable), and recomputes a

new solution. The second approach is Pseudo-Arclength continuation, that steps along a

non-physical property of the design vector.

3.4.1 Natural Parameter Continuation

Constructing a family by stepping along a physical parameter of the solution is labelled

Natural Parameter continuation. Physical parameters represent perceptible components of

a transfer, including position or velocity components, primary angles (Sun angle or Earth-

Moon angle), energy quantities, time of flight, and maneuver magnitude. Natural Parameter

continuation begins with a converged solution to a Newton-Raphson targeting algorithm. A

natural parameter of the solution is augmented, and the differential corrections process is

recomputed until convergence. The iterative process resumes until the targeting algorithm

no longer converges, or a terminal condition is met. Note the continuation parameter must

not be a design variable of the corrections algorithm, otherwise the targeter could reconverge

on the initial solution.

Recall the sample scenario constructed for the single shooting method in Figure  3.2 . The

time of flight remained fixed at five days, resulting in solution that require an impulsive

maneuver of ∆V = 114.5 m/sec to fulfill the constraints. Consider that the time of flight is

allowed to vary, such that a minimum maneuver magnitude is desired. Natural parameter

continuation is applied to the solution illustrated in Figure  3.2 , where the time of flight is

varied. As the final position constraints are no longer fulfilled, the single shooting method is

reapplied to determine an updated solution. A family of transfers that arrive at the desired

position is illustrated in Figure  3.5 . Each transfer remains in the x̃ỹ-plane, and the colors

correspond to the maneuver cost necessary to impart from the initial state.
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Figure 3.5. Family of planar transfers with the same initial and final position

The variation in time of flight along the family and the influence on the maneuver cost are

depicted in Figure  3.5 . Recall the single shooter scenario, the transfer had a flight duration

of five days, and requires an impulsive maneuver of ∆V = 114.5 meters per second. The

curve illustrated on Figure  3.6 demonstrates that lower maneuver cost solutions exist, if the

time of flight is free to change.

93



Figure 3.6. Evolution of time of flight and maneuver cost for the family of
transfers depicted in Figure  3.5 

Natural parameter continuation is limited by the natural progression of the family. An

assumption that is made when pursing natural parameter continuation is that a solution

exists with the specified initial guess provided. In general, there is no a priori knowledge of

the solution-space. Therefore, is it not guaranteed that a given natural parameter will result

in a member of the family. The disadvantage to continuing along a natural parameter is the

uncertainty of solutions, since it is not guaranteed that a solution will exist for a arbitrary

parameter. However, the main advantage to continuing through a natural parameter is the

intuition provided by the physical quantity. As a family progresses as a function of a physical

quantity, there is a clear understanding how the members of the family relate to each other.
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3.4.2 Pseudo-arclength Continuation

Families of solutions are constructed along a non-physical parameter through pseudo-

arclength continuation [ 27 ]. Natural parameter continuation is aided by knowledge of the

family. However, in the case where the solution space is unfamiliar, it is not ensured that

another solution exists with the anticipated initial condition. Pseudo-arclength continuation

requires no prior insight into the solution space. Consider a differential corrections problem

where the free variable vector has length n and the constraint vector has length m, as

described in Equation (  3.19 ) and Equation (  3.20 ), respectively. To continue along a family,

the differential correction scheme is composed such that there is one more free variable than

constraint, i.e., n − m = 1. Recall that such a corrector would be underdetermined, and

thus, an infinite number of solutions fulfill the constraint vector. The Jacobian by definition

has a nullity of one, where the nullspace vector has dimension of n × 1, and is tangent to the

solution space of the family.

A non-physical stepping parameter is applied to the nullspace vector to target unique

solutions amongst the family. The process first requires an initial solution to the constraint

vector, X̄i. Let ∆X̄i = Null(DF̄i) where DF̄i is the Jacobian of the initial solution. The

initial condition for the next step in the continuation scheme is X̄i+1 = X̄i + s∆X̄i, where s

is an arbitrary scalar step along the nullspace vector. As the Jacobian is underdetermined,

it is not guaranteed that a new solution is produced, as the targeter may reconverge on the

first solution. Therefore, an additional constraint is introduced to ensure the new solution

is unique, i.e., further along the solution space.

Fn = (X̄i+1 − X̄i)∆X̄i − s (3.34)

The constraint guarantees that the previous solution X̄i and new solution X̄i+1 are of length

s apart along the null vector of the Jacobian. The partial derivative of Equation ( 3.34 ) with

respect to the free variable vector is the nullspace vector. The psuedo-arclength constraint
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is appended to the constraint vector of the differential corrector. The result is a vector with

length m + 1, which equals n.

F̄ =



F1(X̄i+1)

F2(X̄i+1)
...

Fm(X̄i+1)

(X̄i+1 − X̄i)∆X̄i − s


(3.35)

The Jacobian is constructed as the partial of the constraint vector relative to the free variable

vector X̄i+1, resulting in a square matrix. An iterative update formulated in Equation (  3.26 )

is applied to fulfill the constraint vector. Once the constraints are met, the initial free

variable vector (X̄i) is updated to the new solution, and the corrections process is repeated.

Pseudo-arclength continuation aids in the construction of dynamical structures. There

is not always a physical parameter that will grow monotonically with a family. Therefore,

an advantage to pseudo-arclength is that the initial guess steps along a vector to tangent

to the solution-space, rather than a single parameter. A disadvantage to pseudo-arclength

continuation is the lack of significance of a step size or direction, as the solution space

is generally a higher dimensional vector. It is simpler to comprehend natural parameter

continuation, as each member of the family evolves strictly a function of one component.

The continuation scheme employed is reliant on the intended results, and the complexity of

the problem.

3.5 Periodic Solutions

Periodic orbits offer insight into repeatable structures and flow throughout a dynamical

model. A periodic orbit is a trajectory that repeats back to the initial state at a later

time. There are multiple approaches to constructing periodic orbits. These techniques

include linear stability analysis around an equilibrium solution, leveraging symmetry of a

dynamical model, and enforcing continuity constraints between the initial and final states.

Each technique is frequently aided by the others, where the selected approach is governed by

96



the characteristics of the intended result. The numerical process of constructing a periodic

orbit relies on differential correction schemes. By definition, periodic orbits in the BCR4BP

are similar to those in the CR3BP, yet due to slight differences in the model, result in more

complex behavior.

The Mirror Theorem provides a framework to compute symmetric periodic orbits. The

transformation matrix from Equation (  2.35 ) maps a state in the CR3BP to its symmet-

ric counterpart across the x̂ẑ-plane, where the transfer in reverse time matches the state

propagated forward in time. For a state to be equivalent to its symmetric counterpart,

x̄J(−t) = x̄, i.e., y = ẋ = ż = 0. The physical interpretation is denoted as a perpendicular

crossing, where P3 lies on the x̂ẑ-plane, and the velocity vector is along the ŷ direction. If

along a transfer, two states occur that fulfill the perpendicular crossing condition, then that

trajectory is part of a periodic orbit [ 21 ]. The time between the two perpendicular crossings

is half the period of the entire periodic orbit. To construct a perpendicular crossing targeter,

a single shooting algorithm is adapted to where the free variable and constraint vectors are

X̄ =



x0

z0

ẏ0

t


F̄ =


yf

ẋf

żf

 (3.36)

and y0 = ẋ0 = ż0 = 0 must also be fulfilled. The Jacobian is underdetermined, thus, an

infinite number of solutions are available. One example of a symmetric periodic orbit is a

L1 Lyapunov. An L1 Lyapunov orbit is illustrated in Figure  3.7 . The Jacobi constant value

of this orbit is 3.0656, and the orbit has a period of 14.8 days. The spacecraft traverses the

orbit clockwise, as denoted by the arrows. The dashed line along the x̂-axis represents the

line of symmetry. The two instances where the periodic orbit crosses the x̂-axis fulfill the

perpendicular crossing constraints from Equation ( 3.36 ). The orbit in Figure  3.7 is called

a L1 Lyapunov orbit, because the initial conditions of this orbit family originate from a

Lyapunov stability analysis of the L1 equilibrium point. Hence, the orbit is centered around

L1, rather than the Earth or Moon.

97



Figure 3.7. L1 Lyapunov Orbit in the Earth-Moon CR3BP, with period of 14.8 days

As the perpendicular crossing targeter is underdetermined, a family of periodic orbits is

constructed. A subset of the L1 Lyapunov orbit family in the Earth-Moon CR3BP is illus-

trated in Figure  3.8 . The color scale represents the Jacobi constant for each member of the

family; yellow corresponds to a higher Jacobi constant, or a lower energy. The L1 Lyapunov

orbit family is just one example of a family that exists in the CR3BP. There is extensive

analysis in the field of multi-body dynamics into types of periodic orbits, their accessibility

throughout space, and mission applications. Periodic orbit families offer expanded sets of

solutions with similar dynamical properties.
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Figure 3.8. Family of L1 Lyapunov orbits in the Earth-Moon CR3BP, where
the color scale corresponds to the Jacobi constant of each member

Periodic orbits in the BCR4BP rely on a resonance with the synodic period. As a periodic

orbit requires all states to return back to the initial condition, the orientation angles θS and

θEM evolve linearly with time. Therefore, the period of a periodic orbit in the BCR4BP must

be an integer multiple of the synodic period. Unlike the CR3BP where there are periodic orbit

families with evolving periods, the BCR4BP has unique point solutions. There are multiple

approaches to constructing periodic orbits in the BCR4BP: natural parameter continuation,

periodicity from a CR3BP orbit, perpendicular crossing targeter. Each technique is more

complex than the approaches in the CR3BP, as the additional restriction on period limits the

available solutions. Natural parameter continuation leverages an initial condition from the

CR3BP, and gradually steps in Sun mass or distance between the Earth and Moon, until the
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full BCR4BP is met [ 15 ], [  28 ]. The perpendicular crossing targeter for the BCR4BP requires

the perpendicular crossings to occur when the Sun angle or Earth-Moon angle are equal to an

integer multiple of π, as θS = −θS must be fulfilled. To obtain an initial condition from the

CR3BP, consider the L1 Lyapunov orbit family in the CR3BP displayed in Figure  3.8 . To

assess which orbit members have resonance with the synodic period Tsyn, properties of each

orbit are plotted as a continuous curve in Figure  3.9 . The blue curve depicts the evolution

in period and Jacobi constant along the L1 Lyapunov family. The synodic resonance ratio

is the period of an orbit divided by the synodic period, i.e., T
Tsyn

. The black dots are A : B

resonance ratios between the period of the orbit and the synodic period, where A is the

number of revolutions of the orbit for B synodic periods. For example, the CR3BP orbit

with a 4:3 resonance would complete four revolutions of the Lyapunov orbit in the amount of

time it takes the Sun to traverse around the Earth-Moon rotating frame three times (3Tsyn).

Likewise, the CR3BP orbit with a 1:1 resonance has the same orbital period as the synodic

resonance.

Figure 3.9. Evolution of the Jacobi constant and period for the L1 Lyapunov
orbit family in the Earth-Moon CR3BP; black dots represent where the period
is an integer ratio of the synodic period
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A periodic orbit in the BCR4BP is constructed using the perpendicular crossing tech-

nique. To display the method, the 2:1 synodic resonant L1 Lyapunov in the CR3BP is

selected as the initial condition. The first step obtains one of the two perpendicular crossing

states from the corresponding orbit in the CR3BP. For this scenario, the initial condition in

the CR3BP is x̄ =
[
0.9104 0 0 0 −0.4677 0

]
(nondimensional units) and the period of

the orbit is 14.797 days (1
2Tsyn). A Sun angle of either zero or π is appended to construct a

complete state in the BCR4BP. A single shooting, differential corrector is formulated as

¯̃
X =


x̃0

z̃0

˙̃y0

 ¯̃F =


ỹf

˙̃xf

˙̃zf

 (3.37)

A key difference between Equation (  3.36 ) and Equation ( 3.37 ) is the control of the propa-

gation time. As the BCR4BP requires both perpendicular crossings to occur at a specific

Sun angle, the period of the orbit is restrained. Where before in the CR3BP the problem

was underdetermined and a family of solutions existed, the BCR4BP has a unique solution

to the targeter. However, multiple solutions in the BCR4BP are obtained through proper

selection of the initial conditions. In this case, after the targeting scheme is applied, the

states ¯̃xL =
[
0.7961 0 0 0 0.3778 0 0

]
and ¯̃xR =

[
0.9072 0 0 0 −0.4479 0 0

]
in

nondimensional units are revealed. The states represent two separate 2:1 synodic resonant

L1 Lyapunov orbits in the BCR4BP. Where the subscripts L and R correspond to having

either a left or right perpendicular crossing when the Sun angle is zero. The two 2:1 synodic

resonant L1 Lyapunov orbits in the Earth-Moon rotating frame are illustrated in Figure  3.10 .

The blue curve portrays ¯̃xL, and the yellow curve represents ¯̃xR. Both orbits follow similar

motion to the initial guess from the CR3BP, with slight deviations due to the influence of

the Sun. The orbits visually appear periodic after one revolution (14.797 days), however,

they are not. As these are 2:1 synodic resonant orbits, the orbits are only periodic after two

revolutions, i.e., one synodic period.
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Figure 3.10. Two 2:1 synodic resonant L1 Lyapunov orbits in the Earth-
Moon rotating frame of the BCR4BP

Periodic orbits in the BCR4BP are periodic in both the Earth-Moon and Sun-B1 rotating

frames. As the two rotating frames are time-dependent on the synodic period, the system

repeats at the same interval (orientation of the primary bodies). Thus, a closed curve in

one rotating frame is also closed in the other. This is not true if an orbit is transitioned to

the the initial reference frame, as the initial frame also relies on the sidereal period of the

system. Therefore, plotting motion in two references frames provides insight into differences

between dynamical structures. For example, the two 2:1 L1 Lyapunov orbits in Figure  3.10 

illustrates the motion that emulates the solution from the CR3BP, but is unclear how the

orientation of the Sun influences the patterns. By displaying the same periodic orbits in

the Sun-B1 rotating coordinate frame, where the location of the Sun is fixed, the impact of

the Sun is clearly visualized. The two 2:1 synodic resonant L1 Lyapunov orbits plotted in

the Sun-B1 rotating reference frame is illustrated in Figure  3.11 . The dashed black circle
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is the Moon’s orbit, and the black circle is the Earth’s orbit, both about the Earth-Moon

barycenter B1. The Sun is to the left in this frame. In the Sun-B1 rotating frame, the solar

influence becomes more apparent as the periodic solutions appear to be offset by one another

by a fourth of the synodic period (7.38 days).

Figure 3.11. Two Earth-Moon 2:1 synodic resonant L1 Lyapunov orbits in
the Sun-B1 rotating frame, centered at B1 with the Sun to the left

The Hamiltonian evolves as a spacecraft traverses along a periodic orbit. Much like

an arbitrary trajectory, the Hamiltonian values vary as P3 moves through the BCR4BP.

However, as the trajectory must return back to the initial state, the Hamiltonian is periodic.

Unlike the CR3BP, the energy of the spacecraft varies at different locations on the periodic

solution. The Hamiltonian values for the same two L1 Lyapunov orbits as a function of

Sun angle is portrayed in Figure  3.12 . The Earth-Moon Hamiltonian HEM is represented in

Figure  3.12 a, and Figure  3.12 b demonstrates the Sun-B1 Hamiltonian HSB1 . The blue and
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yellow curves represent ¯̃xL and ¯̃xR, respectively. Each Sun angle represents a unique state

along the orbits. The curves in Figure  3.12 a demonstrate that the blue orbit has a lower

Earth-Moon Hamiltonian throughout all time. Whereas Figure  3.12 b reveals the Sun-B1

Hamiltonian between the two orbits is nearly equivalent, but offset by 90 degrees.

Figure 3.12. Evolution in the Earth-Moon (a) and Sun-B1 (b) Hamiltonian
for the L1 Lyapunov orbits illustrated in Figure  3.10 

Periodic orbits provide favorable, repeatable motion which is advantageous in dynamical

systems theory. Periodic solutions in the multi-body regime offer solutions that would other-

wise be impossible in the two-body problem. Periodic orbits offer starting locations, desired

destinations, and intermediate arcs in the CR3BP and the BCR4BP. Families of periodic

orbits present insight into the dynamical structures that govern motion in the CR3BP. Point
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solution orbits near the Earth and Moon in the BCR4BP extend the repeatable motion into a

more complex environment, under the perturbing influence of the Sun. Through Lyapunov

stability analysis, further insight is gained from dynamical structures in the multi-body

regime.

3.6 Poincaré Maps

Poincaré maps are effective tools that lower the dimensionality of dynamical structures.

A Poincaré map is defined as a hyperplane, or smooth surface denoted as Σ. The hyperplane

is chosen to fulfill a desired criteria, including but not limited to a x̂ẑ-plane crossing when

y = 0, an apse condition about a primary, or a specified orientation of the primaries [  29 ]. For

the instant where a transfer passes through the hyperplane, that state is projected onto the

Poincaré map. In the CR3BP, it is advantageous to fix the Jacobi constant for a Poincaré

map, as the integral of motion also lowers the dimensionality of the state. For example, a

planar trajectory in the CR3BP can be fully described by a Poincaré map for a fixed Jacobi

constant, as the four dimensional state is reduced to two dimensions, which is trivial to

visualize. Trajectories passing through a Poincaré map is illustrated in Figure  3.13 . The

arc in green starts on the map at x(t0), and propagates forward until intersecting the map

again at x(T + t0). One trajectory can be represented on the hyperplane multiple times, as

displayed by the two green points. The transfer in black intersects the hyperplane at x∗. As

the state at x∗ evolves with time, it returns back to the same state, making it a periodic

orbit. Periodic solutions are fixed points on Poincaré maps, which aids in the analysis of

stability characteristics for these orbits.

Periapse Poincaré maps are employed in this investigation to aid in visualization for

motion throughout the BCR4BP. The time-dependency and lack of an integral of the motion

increases the complexity of the BCR4BP. Therefore, by incorporating Poincaré maps into

the analysis, specified conditions are compared across a range of trajectories. For Poincaré

maps that rely on a physical property of a rotating frame, such as an ˆ̃xˆ̃z-plane crossing),

the condition is less intuitive in the Sun-B1 rotating frame. Therefore, an apse condition is

advantageous for the BCR4BP as the condition is perceptive in both rotating frames. For
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Figure 3.13. Illustration of a Poincaré map, adapted from Perko [ 29 ]

the construction of ballistic lunar transfer, periapse conditions about the Earth and Moon

produce effective departure and arrival locations.

3.7 Invariant Manifolds

Invariant manifold theory leverages stability properties to reveal underlying dynamical

structures within a model. Insight into flow throughout the model is obtained by performing

stability analyses about fixed points. In this investigation, equilibrium and periodic solu-

tions are fixed points in the continuous and discrete time systems, respectively. To assess

stability in the vicinity of these solutions, a Lyapunov stability analysis is performed. Lya-

punov stability leverages linear characteristics of the solution to predict local motion. These

characteristics rely on the eigenstructure of the Jacobian matrix [ 30 ].

3.7.1 Equilibrium Solution Manifolds

Manifolds off equilibrium points demonstrate local flow. Consider the Lagrange points

for the Earth-Moon system, written in Table  2.1 . Understanding motion toward and away

from the Lagrange points is nontrivial. As the model progresses through time, the equilib-
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rium solution remains fixed. A stability analysis is performed to uncover properties of the

solutions. As each of the five points have a unique position, they each have a unique set

of linear variational equations A(t), written out in Equation  3.8 . For the Lagrange points,

A(t) is a constant Jacobian matrix describing motion in the CR3BP. Assume some small

perturbation δx̄ from the fixed point, the time response produces

δx̄(t) = eA(t−t0)δx̄(t0) (3.38)

The eigenstructure of the Jacobian is necessary, A(t−t0)S = ΛS, where S is a the eigenvector

matrix, and Λ is a diagonal matrix composed of eigenvalues. An eigenvalue (λ) in the first

row of Λ relates to the eigenvector (ν̄) in the first column of S. The spectral decomposition

of the matrix exponential produces

eA(t−t0) =
j∑

i=1
eλi ν̄iw̄

T
i (3.39)

where w̄i is the left eigenvector associated with ith eigenvalue, and j is the size of the

Jacobian, which is six for the CR3BP and seven for the BCR4BP. Combing Equation ( 3.38 )

and Equation ( 3.39 ) results in

δx̄(t) =
j∑

i=1
eλi(t−t0)ν̄iw̄

T
i δx̄(t0) (3.40)

Although Equation (  3.40 ) appears complex, the term w̄T
i δx̄(t0) is a scalar. Selection in the

initial perturbation produces an isolated stability response. Consider x̄(t0) as an eigenvector

of A(t), ν̄k. As the linear variational equations are linearly independent, for all left eigenvec-

tors w̄i for i 6= k, the product with the right eigenvector is zero, i.e., w̄T
i δν̄k = 0. However,

for the case when i = k, the product of the left and right eigenvalues produces one, i.e.,

w̄T
i δν̄k = 1. Therefore, for the case when δx̄(t0) is an eigenvector of the matrix eA(t−t0), the

isolated response is

δx̄(t) = eλk(t−t0)ν̄k (3.41)
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Equation ( 3.41 ) demonstrates the significance of the eigenstructure on dynamic responses,

and the case for Lyapunov stability in a continuous time system. Recall the initial perturba-

tion is originating from a fixed point. The direction of flow is governed by the eigenvector,

and the deviation magnitude depends on the eigenvalue. If the real component of an eigen-

value is less than zero, i.e., Re[λk] < 0, then eλk(t) approaches zero as time progresses.

Describing motion that approaches the Lagrange point, this motion is called asymptotically

stable. Conversely, if the real component of an eigenvalue is positive, i.e., Re[λk] > 0, then

eλk(t) grows exponentially through time. The continuous expansion departs from the La-

grange point, and is referred to as unstable. If the eigenvalue is complex, Im[λk] 6= 0, the

perturbation produces oscillatory motion, denoted as a center subspace. The eigenstructure

is separated into three subsets, the stable, unstable, and center subspace, also written as

ES, EU , and EC . Table  3.1 contains the six eigenvalues for each Lagrange point in the

Earth-Moon CR3BP. The three collinear points have a one-dimensional stable subspace, a

one-dimensional unstable subspace, and a four-dimensional center subspace. Whereas the

equilateral Lagrange points have a six-dimensional center subspace. For a fixed point to

be Lyapunov stable, a small perturbation to the solution must remain near the equilibrium

point for all time [ 24 ]. Therefore, equilateral points in the Earth-Moon system are Lyapunov

stable, as they do not possess an unstable subspace. The collinear points in the Earth-Moon

system are unstable, as they have an unstable subspace.

Table 3.1. Eigenvalues of the Earth-Moon Lagrange Points
L1 ± 2.9321 ± 2.3344i ± 2.2688i
L2 ± 2.1587 ± 1.8626i ± 1.7861i
L3 ± 0.1779 ± 1.0053i ± 1.0104i
L4 and L5 ± 0.9545i ± 0.2982i ± 1.0000i

Invariant manifolds describe the natural flow of motion in the vicinity of fixed points. As

the eigenvalues segregate the stability characteristics into distinct subsets, the eigenvectors

provide physical directions to illustrate the dynamics. One limitation of the eigenstructure

is the dependency on a linear approximation. However, eigenvectors aid in the construction

of invariant manifolds. Stable manifolds are structures that dictate the flow that leads

108



towards a fixed point. Conversely, unstable manifolds convey motion that departs from a

fixed point. Center manifolds describe oscillatory motion that remains bounded about the

initial condition. Center manifolds off of equilibrium points result in periodic motion [ 31 ].

The dimensionality of the manifold is equivalent to the dimension of the subspace. For

example, the L1 Lagrange point has a one-dimensional stable manifold, a one-dimensional

unstable manifold, and a four-dimensional center manifold. A stable manifold is denoted

as W S+ . The letter of the superscript symbolizes the corresponding subspace, and the sign

dignifies the initial x̂ step from the fixed point. The stable and unstable manifolds about

the L1 Lagrange point in the Earth-Moon CR3BP are illustrated in Figure  3.14 . The blue

curves are arcs approximating the stable manifold, leading toward the equilibrium solution,

while the red arcs resemble the unstable manifold, departing from the fixed point. The

dotted black lines are the stable and unstable subspaces. As the manifolds and subspaces

are higher dimensional structures, Figure  3.14 is a projection onto the x̂ŷ-plane. The initial

conditions for the manifolds are constructed by taking a scaled step off of the fixed point

along the associated eigenvector. The step size for Figure  3.14 is normalized to be 40 km off

of the equilibrium point. Trajectories along the unstable manifold are propagated forward

in time, whereas arcs along a stable manifold are propagated in reverse time.
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Figure 3.14. Stable and unstable manifolds about the L1 Lagrange point in
the Earth-Moon CR3BP

Trajectories of off instantaneous equilibrium solutions possess some characteristics of in-

variant manifold. Recall in Section  2.3.2 , true equilibrium solutions do not exist in the

BCR4BP. However, for a fixed orientation of the primary bodies, instantaneous equilibrium

solutions occur. Invariant manifolds only exist off of these solutions for a fixed orientation

of the Earth, Moon, and Sun. To leverage flow toward and away the instantaneous equilib-

rium points, the state themselves are propagated forward and backward in time, producing

a transfer in the BCR4BP. These trajectories are not manifolds. Transfers through instan-

taneous equilibrium points offer low-energy transfer which naturally traverse through small

portals in the zero velocity curves.

3.7.2 Periodic Orbit Manifolds

Stability of a periodic solution offers insight into the local dynamical structures. A

periodic orbit is a fixed point on a Poincaré map, as illustrated by Figure  3.13 . Stability
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about the fixed point is performed in a similar approach to the equilibrium points. However,

the main difference is the hyperplane maps the motion to a discrete time system [  32 ]. Rather

than using the linear variational equations, the stability analysis originates from the STM

for one full period of the orbit Φ(T + t0, t0), also called the monodromy matrix. By applying

a perturbation δx̄(t0) to a state along the periodic orbit, the resultant deviation after one

period is

δx̄(T + t0) = Φ(T + t0, t0)δx̄(t0) (3.42)

The difference between Equation (  3.38 ) and Equation (  3.42 ) is the monodromy matrix is

applied directly to the perturbation. Thus, the eigenstructure of the monodromy matrix

describes the stability of the periodic orbit in a discrete time system. The monodromy

matrix in an time-independent system is symplectic [  32 ]. The eigenvalues of a symplectic

matrix come in reciprocal pairs. For the CR3BP, two of these eigenvalues are equal to one

and designate the periodicity of the orbit and the existence of periodic orbit families [  33 ]. To

emphasize the value of the two unitary eigenvalues, in a discrete time system, an eigenvalue

equal to one would represent deviation from the initial state, such that after one period

the state returns back to the initial deviation. The two possibilities for unit eigenvalues

include an eigenvector that points along the current periodic solution, and an eigenvector

that points toward a new periodic orbit, i.e., along the family of periodic solutions. In the

BCR4BP, only one eigenvalue of the STM equals one. The unitary eigenvalue is associated

with the progression of the primary bodies, i.e., evolution of time throughout the system.

Therefore, the unit eigenvalue in the BCR4BP corresponds to an eigenvector that points

along the periodic orbit. The existence of continuous periodic orbit families in the BCR4BP

is currently unknown, as the discrete time eigenstructure does not signify their existence.

Stability properties of the monodromy matrix describe behavior near a periodic orbit. In

a discrete time system, stability is assessed relative to the unit circle in a complex plane. An

eigenvalue that lies within the unit circle, |λ| < 1 is a part of the stable subspace. Similar

to the stability for a Lagrange point, a stable subspace describes motion that flows into the

periodic orbit. Conversely, an eigenvalue that exists outside of the unit circle, |λ| > 1 is part
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of the unstable subspace. The unstable subspace represents motion that departs from the

orbit. Lastly, eigenvalues that lie on the unit circle, |λ| = 1 are a part of the center subspace.

A center subspace produces oscillatory motion which stay in the vicinity of the periodic

orbit. As the monodromy matrix has eigenvalues of reciprocal pairs, a stable subspace has

to be accompanied by an unstable subspace. Therefore, there are no asymptotically stable

periodic orbits in the CR3BP or the BCR4BP. For families of periodic orbits, the stability

characteristics evolve across members of the family [  34 ]. A change in stability is called a

bifurcation, and can lead to additional families of periodic orbits [ 35 ].

Manifolds structures off of periodic solutions enable transfers that naturally enter or

depart the orbit. A trajectory that lies on a manifold is constructed by taking a scaled

step off of the periodic orbit, in the direction of eigenvector. Similar to the manifolds off

the Lagrange points, an unstable eigenvector will produce a trajectory that is nearly on

the unstable manifold. For multiple segments along the manifold, the periodic orbit is

discretized. The eigenvalues are independent of the starting location on the periodic orbit,

however the eigenvectors are not. Therefore, the associated eigenvector is updated for each

discretized point along the periodic orbit. The stable and unstable manifold structures off of

an L1 Lyapunov orbit are illustrated in Figure  3.15 . The black curve is the baseline periodic

orbit. The eigenvalues for this orbit associated with the stable and unstable motion are

λS,U = [ 1
2467 , 2467]. The blue arcs are along the stable manifold, and demonstrate flow into

the Lyapunov orbit. The red trajectories lie on the unstable manifold, and indicate departing

motion from the orbit. The initial conditions are constructed by taking a 100 km step off of

the orbit along the corresponding eigenvector.
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Figure 3.15. Arcs along the stable and unstable manifolds of a L1 Lyapunov
Orbit in the Earth-Moon system, JC = 3.1792

3.8 Evolution of the Hamiltonian

An integral characteristic of the BCR4BP is the natural variation in energy along a

transfer. Identifying the source of that energy change and quantifying the deviation in energy

offers insight into the gravity models. As an integral of the motion, the Jacobi Constants aids

in the classification of dynamical structures. In the BCR4BP, the Hamiltonian values vary

along a ballistic arc. The lack of an integral of the motion in the BCR4BP is a disadvantage to

the model. However, analyzing the change in energy possesses vast insight into the available

structures for transfer design. The natural energy change that occurs within the BCR4BP

is advantageous. Leveraging the rate of change in either Hamiltonian value allows for low-

energy transfer solutions that would otherwise be infeasible in the CR3BP[ 36 ]. Revealing

patterns in the Hamiltonian aids in the classification of transfers and their efficacy.
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3.8.1 Earth-Moon Hamiltonian

To understand the variation in the Earth-Moon Hamiltonian, the nondimensional time

derivative of Equation ( 2.56 ) is taken, first by following the chain rule,

ḢEM = dHEM

dθS

dθS

dt
(3.43)

where dHEM

dθS
is the derivative of the Earth-Moon Hamiltonian with respect to the Sun an-

gle. As the Earth-Moon Hamiltonian relies on the velocity of P3 and the pseudo-potential

function, the dHEM

dθS
is reduced to,

dHEM

dθS

= 2 dΥ̃
dθS

where dΥ̃
dθS

is the derivative of the Earth-Moon pseudo-potential relative to the Sun angle.

By expanding the pseudo-potential function, dHEM

dθS
becomes,

dHEM

dθS

= 2 d

dθS

[
1
2(x̃2 + ỹ2) + 1 − µ̃

r̃13
+ µ̃

r̃23
+ m̃S

r̃43
− m̃S

a2
S

(x̃ cos (θS) + ỹ sin (θS))
]

dHEM

dθS

= 2 d

dθS

[
m̃S

r̃43
− m̃S

a2
S

(x̃ cos (θS) + ỹ sin (θS))
]

dHEM

dθS

= 2m̃S

[
−x̃aS sin (θS) + ỹaS cos (θS)

r̃3
43

− 1
a2

S

(−x̃ sin (θS) + ỹ cos (θS))
]

dHEM

dθS

= 2m̃SaS (−x̃ sin (θS) + ỹ cos (θS))
(

1
r̃3

43
− 1

a3
S

)
(3.44)

Equation (  3.44 ) describes the evolution in energy for P3 as the Sun moves through time,

i.e., θS varies. As dθS

dt
equals the mean motion of the Sun in the Earth-Moon rotating frame

(θ̇S), written in Equation (  2.53 ). The time rate of change in the Earth-Moon Hamiltonian

is constructed by combining Equation ( 3.43 ) and Equation ( 3.44 ) with θ̇S, written as,

ḢEM = 2θ̇Sm̃SaS (−x̃ sin (θS) + ỹ cos (θS))
(

1
r̃3

43
− 1

a3
S

)
(3.45)
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Equation ( 3.45 ) is dependent on the position of the spacecraft relative to the Sun and the

Earth-Moon barycenter; thus, ḢEM is strictly a function of the spacecraft position in the

Sun-B1 rotating frame. A heat map is plotted in Figure  3.16 , illustrating the evolution of

the Earth-Moon Hamiltonian in the Earth-Moon-Sun BCR4BP as a function of position in

the Sun-B1 rotating frame. The variation in the Earth-Moon Hamiltonian is independent

of both P3 and the relative orientation of the Earth and Moon. The regions are separated

by the x-axis and the curve r̃43 = aS. In close proximity to the Earth-Moon system, the

regions of space are approximated by four distinct quadrants in the Sun-B1 rotating frame,

centered at B1. Davis et al. investigated the tidal impacts on a spacecraft within the vicinity

of P2, observing the impact perturbations from a third body has on orbital elements over

time[ 37 ]. Within the CR3BP, the tidal influence caused by P1 impacts the periapse and

eccentricity of an orbit in close proximity to P2. For this analysis, the evolution of the

Earth-Moon Hamiltonian value is related to those four quadrants. Transfers that traverse

through quadrants I and III experience a decrease in the Earth-Moon Hamiltonian, which

corresponds to a increase in the energy of P3 relative to the Earth-Moon system. Similarly,

transfers that traverse through quadrants II and IV experience an increase in the Earth-

Moon Hamiltonian, or a decrease in energy. The light magenta and cyan colors in Figure

 3.16 denote larger magnitudes of ḢEM , which occur further away from the Earth-Moon

system. The yellow circle indicates the orbit of the Moon.
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Figure 3.16. Contour plot illustrating the value of ḢEM at various locations
throughout the Sun-B1 rotating reference frame centered at B1 with the Sun
to the left (yellow circle represents the Moon’s orbit)

Consider the sample trajectory illustrated in Figure  2.15 . Transforming the trajectory into

the Sun-B1 rotating coordinate frame produces Figure  3.17 . The origin of Figure  3.17 is

centered at the Earth-Moon barycenter B1, the yellow circle represents the orbit of the

Moon which traverses counter-clockwise in this reference frame, and the horizontal and

vertical lines correspond to the energy quadrant boundaries as denoted in Figure  3.16 . The

colored points along the transfer are locations where P3 traverses from one quadrant to the

next, i.e. where ḢEM equals zero. The same Hamiltonian plot as Figure  2.16 is illustrated

in Figure  3.18 with additional colored points, that correspond to the locations along the

trajectory in Figure  3.17 . Each colored point in Figure  3.18 is a local extrema in the Earth-

Moon Hamiltonian. The impact of solar perturbations on P3 is more apparent by visualizing

the transfer in the Sun-B1 rotating frame alongside the Earth-Moon Hamiltonian.
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Figure 3.17. Example trajectory from Figure  2.15 illustrated in the Sun-B1
Rotating Coordinate Frame, where colored points represent crossing between
energy quadrants

Figure 3.18. The Earth-Moon Hamiltonian along an example transfer, where
the colored points correlated to the same locations as illustrated in Figure  3.17 
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The Earth-Moon Hamiltonian provides insight into the evolution of energy along a trans-

fer. Solar perturbative effects impact the energy progression of P3 along an arc. The Earth-

Moon Hamiltonian, much like the Jacobi Constant, has many insightful properties that are

leveraged for spacecraft trajectory design. Understanding the variation in energy provides

additional techniques to construct cost effective transfers. One of the advantages to the

BCR4BP is the ability to incorporate perturbations into spacecraft trajectory design. As

low-energy transfers rely on solar perturbations to achieve reduced maneuver costs, knowl-

edge concerning the variation in energy of P3 is desired.

3.8.2 Sun-B1 Hamiltonian

Variations in the Sun-B1 Hamiltonian are unclear by initial visual inspection. To understand

the fluctuations in energy, the time derivative of Equation ( 2.66 ) (HSB1) is taken as,

ḢSB1 = dHSB1

dθEM

dθEM

dt
(3.46)

where dHSB1
dθEM

is the derivative of the Sun-B1 Hamiltonian with respect to the Earth-Moon

angle. Similar to the Earth-Moon Hamiltonian, the Sun-B1 Hamiltonian relies on the velocity

of P3 and the respective pseudo-potential function (Υ), dHSB1
dθEM

is reduced to,

dHSB1

dθEM

= 2 dΥ
dθEM

where dΥ
dθEM

is the derivative of the Sun-B1 pseudo-potential function with respect to the

Earth-Moon angle. Using the definitions of r13 and r23 written in Equation (  2.62 ), the

following steps simplify the variation in Hamiltonian,

dHSB1

dθEM

= 2 d

dθEM

[
1
2(x2 + y2) +

1 − µ

r43
+

µ(1 − µ̃)
r13

+
µµ̃

r23

]
dHSB1

dθEM

= 2µ
d

dθEM

[1 − µ̃

r13
+ µ̃

r23

]
dHSB1

dθEM

=
2µ(1 − µ̃)µ̃

aS

[
(−1 + µ + x) sin θEM − y cos θEM

r3
13

+
(1 − µ − x) sin θEM + y cos θEM

r3
23

]
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dHSB1

dθEM

=
2µ(1 − µ̃)µ̃

aS

(
(1 − µ − x) sin θEM + y cos θEM

)( 1
r3

23
− 1

r3
13

)
(3.47)

Equation ( 3.47 ) describes the derivative of the Sun-B1 Hamiltonian relative to the Earth-

Moon angle θEM . Combining Equation (  3.46 ) and Equation ( 3.47 ) with the Earth-Moon

mean motion in the Sun-B1 rotating frame (θ̇EM), ḢSB1 is constructed as,

ḢSB1 =
2µ(1 − µ̃)µ̃θ̇EM

aS

(
(1 − µ − x) sin θEM + y cos θEM

)( 1
r3

23
− 1

r3
13

)
(3.48)

Equation ( 3.48 ) is dependent on the position of the spacecraft relative to the Earth and Moon;

thus, ḢSB1 is a function of the spacecraft position in the Earth-Moon rotating frame. Take a

model where the Earth and Moon are simplified to a single point mass at the location of B1,

the problem then becomes equivalent to the Sun-B1 CR3BP, where the Sun-B1 Hamiltonian

becomes an integral of the motion, i.e., the Jacobi Constant. Thus, the motion of the

Earth-Moon system acts as the perturbative force in the formulation relative to the Sun-B1

rotating coordinate frame. A contour plot in Figure  3.19 depicts the variations of ḢSB1 as

P3 passes through the various quadrants in the Earth-Moon rotating frame. As ḢEM and

ḢSB1 are formulated in two different frames, their nondimensional energy rate of change

are not related to one another; thus, a direct comparison between the values portrayed in

Figure  3.16 and Figure  3.19 is not useful. The quadrants reflecting the rates of change of

the Hamiltonian, i.e., ḢSB1 , in Figure  3.19 are not as uniform as they appear in the figure.

Regions with the largest magnitudes of ḢSB1 in Figure  3.19 occur near the Earth and Moon.

The quadrants are separated by the x̃z̃-plane and the plane that lies equidistant from the

Earth and Moon, i.e. x̃ = 0.5 − µ̃. For regions off of the x̃-axis, i.e., |ỹ| > 0, the magnitude

of ḢSB1 increases as the distance to either of the primaries decreases. For locations along

the x̃-axis or equidistant from either the Earth and Moon, the magnitude of ḢSB1 is zero.

These two boundaries are displayed in Figure  3.19 , where the blue and purple regions depict

a decrease or increase in the the Sun-B1 Hamiltonian, respectively. Recall that a decrease

in the Hamiltonian value correlates to an increase in the spacecraft energy.
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Figure 3.19. Contour plot illustrating the value of ḢSB1 at various locations
throughout the Earth-Moon rotating reference frame centered at B1

The variation in magnitude of ḢSB1 is incomprehensible within Figure  3.19 ; thus, the

contour plot Figure  3.20 illustrates the natural logarithm of the absolute value of the Sun-B1

Hamiltonian (log
∣∣∣ḢSB1

∣∣∣). As P3 approaches either the Earth or Moon off the x̃-axis, the

magnitude of ḢSB1 grows cubically. Similarly, as P3 gets further from Earth-Moon system,

the energy variations decrease. The natural logarithm of the energy variations in close

proximity to the Earth and Moon are depicted in Figures  3.21 and  3.22 . In Figure  3.21 , the

Earth is plotted to scale as the green circle. In Figure  3.22 , the Moon is plotted to scale as

the yellow circle, and experiences higher variations in the Sun-B1 Hamiltonian. Note the sign

of ḢSB1 from Figure  3.19 when applied to the magnitude plots. For example, transfers that

pass below the Moon in Figure  3.22 experience a large decrease in the Sun-B1 Hamiltonian.
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Figure 3.20. Contour plot illustrating the natural log of the magnitude of the
Sun-B1 Hamiltonian (log

∣∣∣ḢSB1

∣∣∣) in the Earth-Moon rotating reference frame
centered at B1

Figure 3.21. Contour plot illustrating the natural log of the magnitude of
the Sun-B1 Hamiltonian (log

∣∣∣ḢSB1

∣∣∣) in close proximity to the Earth in the
Earth-Moon rotating reference frame
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Figure 3.22. Contour plot illustrating the natural log of the magnitude of
the Sun-B1 Hamiltonian (log

∣∣∣ḢSB1

∣∣∣) in close proximity to the Moon in the
Earth-Moon rotating reference frame

Recall the sample transfer Figure  2.15 . The Sun-B1 Hamiltonian along the transfer is il-

lustrated in Figure  2.26 . As the evolution of energy relies on the position of P3 in the

Earth-Moon rotating frame, colored markers are added to distinguish where the spacecraft

transitions between regions. The trajectory in the Earth-Moon rotating coordinate frame is

illustrated in Figure  3.23 , where the colored points are locations along the transfer where

ḢSB1 = 0. Traversing between the quadrants dictates locations where P3 transitions from an

increase in energy to a decrease in energy, or vice versa. The Sun-B1 Hamiltonian along the

transfer is depicted in Figure  3.24 with the same colored points, corresponding to the timing

of the events. From Figure  3.24 , HSB1 decreases rapidly at the beginning of the transfer

which lies shortly after the purple dot. Comparing to the trajectory in Figure  3.23 , slightly

after the purple point the spacecraft is in close proximity to the Moon. The close approach

to the Moon produces a large variation in the Sun-B1 Hamiltonian, or a high magnitude of

ḢSB1 .
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Figure 3.23. Example trajectory from Figure  2.15 where colored points rep-
resent crossing between Sun-B1 Hamiltonian regions

Figure 3.24. The Sun-B1 Hamiltonian along the transfer in Figure  3.23 with
colored points marking the transition between Sun-B1 Hamiltonian regions
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The Sun-B1 Hamiltonian describes the variation in energy along a transfer. The Earth

and Moon act as perturbing bodies off of B1, impacting the energy progression of P3 along

an arc. The Sun-B1 Hamiltonian, much like the Earth-Moon Hamiltonian and the Jacobi

Constant, is employed for spacecraft trajectory design. Leveraging the natural structures

that govern the energy of P3 aids in the construction of cost effective transfers.
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4. CONSTRUCTING BALLISTIC LUNAR TRANSFERS

Ballistic lunar transfers leverage the gravitational influence of the Earth, Moon, and Sun to

reduce the propellant cost necessary to reach the Moon. Developing such transfers requires

the use of multiple gravity models. Ballistic lunar transfers consist of distinct phases. The

initial state of the trajectory is the trans-lunar injection maneuver (TLI). The location of

the TLI relies on the parking orbit about the Earth. In this investigation, the parking

orbit is assumed to be circular with an altitude of 150 km above Earth. Post-TLI includes

the cruise phase. In spaceflight application, the cruise phase consists of multiple trajectory

correction maneuvers to maintain the desired path. This investigation assumes there are

no tracking or navigation errors involved. Therefore, the spacecraft follows ballistic motion.

The cruise phase also may include unpowered flyby(s), either about the Moon or Earth. A

flyby, though complex and epoch-dependent, reduces the propellant cost of TLI. The final

phase is the arrival into the desired orbit near the Moon. The final orbit relies on the goal of

the mission and includes conic or multi-body orbit. For most cases, a lunar orbit insertion

maneuver (LOI) is necessary to enter the intended orbit. The largest cost-savings between

direct transfers and ballistic lunar transfers occur at the LOI. As depicted in Section  3.8 , solar

perturbations in the BCR4BP provide a natural energy variation. Therefore, with precise

understanding and control of the governing dynamics, low-cost transfers are constructed.

4.1 Definition of Ballistic Lunar Transfers

Ballistic lunar transfers are defined to provide a feasible pathway to the Moon. The

primary goal of a ballistic lunar transfer is to reduce the energy of the spacecraft upon

arrival at the Moon, such that the insertion propellant costs are reduced. The source of

energy reduction originates from the gradual impact of solar perturbations on the spacecraft.

To exploit the gravitational influence of the Sun, it is essential that the trajectory deviates

from the Earth-Moon barycenter, B1. By traversing beyond the distance of the Moon,

the influence of the Sun presents a larger role in the structure of the transfer. Initially, a

ballistic lunar transfer originates near the Earth, at a state associated with a launch state

or post-TLI. The original states have relatively high energy, as the ZVCs must not inhibit
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the motion to the exterior of the Earth-Moon system. As the transfer departs further from

B1, the Sun’s impact on the energy of the spacecraft becomes more apparent. An explicit

function for the change in energy is written in Equation ( 3.45 ). To produce a transfer that

reduces the energy prior to arrival into cislunar space, motion through quadrants II and IV

of Figure  3.16 in the Sun-B1 rotating frame is desired. A sample trajectory is illustrated

in Figure  4.1 for reference. The blue curve represents the ballistic lunar transfer, and the

Moon follows the yellow circle counterclockwise. The origin of the plot is the Earth-Moon

barycenter B1. The evolution of the Earth-Moon Hamiltonian for this transfer is depicted in

Figure  4.2 . The sample trajectory leverages the perturbations in quadrant II to increase the

Earth-Moon Hamiltonian. The oscillatory behavior of the Earth-Moon Hamiltonian near

the end of the transfer relates to the capture dynamics near the Moon. Variations in the

Earth-Moon Hamiltonian are reduced as the spacecraft gets closer to B1.

Figure 4.1. A ballistic lunar transfer in the BCR4BP, illustrated in the
Sun-B1 rotating coordinate frame, centered about B1

126



Figure 4.2. Variation in Earth-Moon Hamiltonian along the transfer plotted
in Figure  4.1 

Since the energy is decreasing far from the Earth and Moon, the ZVCs will begin to close.

Therefore, there is an upper-bound to the incoming Hamiltonian value upon arrival at the

Moon. This upper-bound depends on the energy necessary to traverse through the Ẽ2 portal.

The desired Earth-Moon Hamiltonian upon arrival at the Moon depends on the desired final

orbit. In general, a ballistic lunar transfer is a trajectory that naturally reduces its energy

through solar perturbations by traveling beyond the orbit of the Moon.

4.2 Ballistic Lunar Transfers in the CR3BP

Analysis of ballistic lunar transfers within the CR3BP provides a discrete approach to

assessing dynamical structures. The Earth-Moon and Sun-Earth CR3BP systems can be

examined independently to characterize phases of the transfer. The Earth-Moon CR3BP

is an appropriate model for preliminary design to represent motion arriving in the lunar

vicinity. Solutions from the Earth-Moon CR3BP offer effective initial conditions for explor-

ing solutions in the BCR4BP [ 16 ]. The Sun-Earth CR3BP models the influence of solar
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perturbations on the spacecraft as it departs the Earth-Moon region. Although the Sun-

Earth CR3BP does not include the gravitational influence of the Moon, broader knowledge

about the dynamics of the system aids in the construction of ballistic lunar transfers in the

BCR4BP. The Sun-Earth CR3BP is employed to construct families of ballistic lunar transfer

geometries and to characterize their energy, time of flight, and arrival location.

Periapse Poincaré maps aid in characterizing structures within a dynamical system. In

this investigation, periapse Poincaré maps are leveraged. Poincaré maps are first introduced

in Section  3.6 . Periapse Poincaré maps represent discrete points in configuration space

where a periapse occurs along a given trajectory. The effectiveness of a Poincaré map relies

on the initial conditions used to generate the map. To explore arcs that mimic the motion

of ballistic lunar transfers, the initial position states are restrained to the parking orbit or

feasible locations of TLI. The parking orbit lies in the ecliptic planar (planar case for Sun-

Earth CR3BP), and is circular, having an altitude of 150 km above the Earth. The velocity

magnitude post-TLI is determined by the Jacobi constant value for the map

Vf =
√

2Ω − JCMAP (4.1)

where Vf is the magnitude of the velocity vector after the TLI maneuver, Ω is the pseudo-

potential for the state along the parking orbit, and JCMAP is the value of the Jacobi constant

for the periapse Poincaré maps. In the CR3BP the dimensionality of the map is reduced

by one when all transfers have the same value of the Jacobi constant. Equation ( 4.1 ) is

a reformatted expression of Equation (  2.24 ). Selecting the direction of the initial velocity

vector is nontrivial, in application, a TLI is generally unconstrained in orientation. Rather

than inspecting each velocity direction, characteristics of the CR3BP are incorporated into

the analysis. An impulsive maneuver is a change in the velocity of the spacecraft. Figure

 4.3 illustrates a vector diagram for an impulsive maneuver. The initial and final velocity

directions are V̄i and V̄f , respectively. The change in velocity ∆V̄ , designates the maneuver

direction and magnitude, i.e., ∆V̄ = V̄f − V̄i. The quantity β denotes the angle between

the two velocity vectors. For a TLI maneuver performed along the parking orbit, the initial

velocity vector is available. As Equation (  4.1 ) defines the final velocity magnitude, the only
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V̄f

V̄i

∆V̄

β

Figure 4.3. Vector diagram for an impulsive maneuver

free variable is the orienting angle β. Given the law of cosines, a relationship between the

velocity magnitudes is written as,

∆V =
√

V 2
i + V 2

f − 2ViVf cos(β) (4.2)

As the initial and final velocity magnitudes are held constant, Equation (  4.2 ) is minimized

when the term 2ViVf cos(β) is maximized. Cosine is maximized when the angle is zero or any

integer multiple of 2π, i.e., β = 0. Thus, to perform a maneuver such that a desired Jacobi

constant value is met, the initial and final velocity vectors must be aligned to minimize

the ∆V . The most efficient maneuver to increase the Jacobi constant is to perform the

maneuver in the anti-velocity direction. Conversely, a maneuver aligned with the velocity

direction is the optimal approach to decreasing the Jacobi constant value. The purpose of

investigating velocity direction is to construct initial conditions for a periapse Poincaré map.

A periapse Poincaré map is employed explicitly as a result of Equation ( 4.2 ). As the Moon

is not modeled in the Sun-Earth CR3BP, arrival at the lunar orbit radius with a velocity

aligned with the Moon’s velocity, i.e., a periapse, indicates comparable dynamical behavior

to a coherent ballistic lunar transfer. The initial states are constrained to the parking orbit

about the Earth, where a maneuver is performed along the rotating, orbital velocity direction

to achieve the desired Jacobi constant value. As the parking orbit is circular, each initial

state is a periapse. The trajectories are propagated forward for 365 days in the Sun-Earth
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CR3BP to illustrate attainable locations [  38 ]. Consider the periapse map in Figure  4.4 

constructed with a Jacobi constant value of JC = 3.000804. The origin of Figure  4.4 lies

at the Earth, with the Sun to the left. The Moon’s orbit is plotted on the map in gold to

designate the desired arrival altitude.

Figure 4.4. Periapse Poincaré map in the Sun-Earth CR3BP, with a Jacobi
constant value of JC = 3.000804

Each blue dot on Figure  4.4 is a periapse on the trajectories constructed. Points that lie

along the gold circle have a periapse at a radius from Earth equal to the lunar orbit radius.

A sample transfer selected off of the periapse Poincaré map is illustrated in Figure  4.5 . The

same map with a purple point denoting the position of a selected transfer is displayed in

Figure  4.5 a. The trajectory constructed from the purple point illustrated in Figure  4.5 b. The

transfer departs from the parking orbit about the Earth and arrives at the lunar orbit radius.

The transfer depicted is one of an abundance of applicable trajectories. Each intersection of

the lunar orbit produces a different geometry in position space.
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a b
Figure 4.5. Periapse Poincaré map (JC = 3.000804) in Sun-Earth CR3BP
(a); trajectory associated with purple periapse point in the Sun-Earth Rotating
Frame (b)

Classes of transfer solutions rely on the energy of periapse Poincaré maps. The insight

obtained by a periapse Poincaré map in the CR3BP correlates to the value of the Jacobi

Constant. Figure  4.4 illustrates trajectories that depart from the Earth and arrive at the

lunar orbit radius for a described energy. Varying the Jacobi constant value associated

with the map outlines the influence energy has on accessible transfer geometries. Using the

same initial parking orbit as before, Figure  4.6 depicts a periapse Poincaré map for a Jacobi

constant value of JC = 3.000854. A lower energy map reveals that none of the periapsides

reach the lunar orbit radius for the year time-span. The periapse Poincaré map showcases

the energy necessary to achieve a ballistic lunar transfer for transfers that are unaided by

an outbound lunar flyby. Lowering the Jacobi constant value to JC = 3.000829 produces a

map where multiple periapsides attain the lunar orbit radius, illustrated in Figure  4.7 . By

comparing Figures  4.4 and  4.7 , both maps contain points that reach the desired altitude;

however, the higher energy map (lower Jacobi constant) has more viable transfer options.
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Figure 4.6. Periapse Poincaré map in the Sun-Earth CR3BP, with a Jacobi
constant value of JC = 3.000853

Figure 4.7. Periapse Poincaré map in the Sun-Earth CR3BP, with a Jacobi
constant value of JC = 3.000829
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Sets of transfers solutions offer a metric of comparison to how the trajectories evolve

across defining features such as energy and time of flight. To grow a family of ballistic lunar

transfers in the Sun-Earth CR3BP, a continuation scheme is employed. In this investigation,

the transfer geometries within the Sun-Earth CR3BP are restricted to the ecliptic plane, i.e,

the x̂ŷ-plane. A single shooting algorithm is constructed as

X̄ =



x0

y0

ẋ0

ẏ0

t


F̄ =



√
(x0 − 1 + µ)2 + y2

0 − η0

(x0 − 1 + µ)ẋ0 + y0ẏ0√
(xf − 1 + µ)2 + y2

f − ηf

(xf − 1 + µ)ẋf + yf ẏf


(4.3)

where the free variable vector is composed of the initial planar states and the propagation

time t. The constraint vector is composed of two radius constraints about Earth, and two

apse constraints. The scalar quantity η0 denotes the initial radius constraint about Earth,

which restricts the initial position to lie on the base parking orbit. For a 150 km altitude,

circular orbit about Earth, η0 equals 6378+150
l?

≈ 4.6043e−5. Likewise, ηf defines the distance

from Earth at the end of the transfer upon reaching the lunar orbit radius. For this analysis,

the quantity ηf equals 3.8475e5

l?
≈ 2.5719e−3. The second and fourth row of the constraint

vector corresponds to initial and final states being an apse about Earth. Note that the

apse constraints do not explicitly differentiate between a periapse or apoapse. A pseudo-

arclength continuation method is exploited as the targeting scheme devised in Equation ( 4.3 )

is underdetermined. The process is seeded with an initial guess selected from the previously

constructed periapse Poincaré maps. The transfer from Figure  4.5 b is continued to create

the family of ballistic lunar transfers depicted in Figure  4.8 , denoted as Family 1. Not

constrained by energy, Family 1 continues to grow into multiple quadrants about the Sun-

Earth CR3BP system. The gray transfers plotted in Figure  4.8 are a subset of the family

with a time of flight shorter than 115 days. The transfers begin traveling in the direction of

the Sun, towards quadrant II in the Sun-Earth rotating coordinate frame. The origin of the
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plot is the Earth, and the black circle represents the lunar orbit. The transfer colored in gold

is the lowest energy solution of this family, having a Jacobi constant of JC = 3.0008265,

and a time of flight of 97.7 days. The green arc has the shortest time of flight, taking 75.9

days, while having a lower Jacobi constant value JC = 3.0007286. Figure  4.9 illustrates the

Figure 4.8. Family 1: Family of ballistic lunar transfers in the Sun-Earth CR3BP

progression of energy and flight duration along the family. The colored points along the back

curve indicate the positions associated with the same colored trajectories in Figure  4.8 . The

family of transfers does not grow monotonically as there are multiple solutions for a given

flight duration or value of the Jacobi constant. For the members of Family 1 represented by

Figure  4.9 , the characteristic energy (C3) at TLI ranges from -0.7437 km2/sec2 to -0.3211

km2/sec2, which coincides with previous findings [ 5 ], [ 39 ].

Multiple families of ballistic lunar transfers are constructed in the Sun-Earth CR3BP

by applying initial conditions from a periapse Poincaré map. As demonstrated by Family

1, a continuation schematic is applied to a transfer from a Poincaré map. The result is

a family of transfers that depart from the Earth and arrive at the lunar orbit radius. By

selecting a different point that reaches the lunar orbit, a new family is built. Figure  4.10 
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Figure 4.9. Jacobi constant versus flight duration for Family 1 in Figure  4.8 

illustrates another family of transfers, denoted as Family 2. Comparable to Figure  4.8 , the

gray arcs represent a subset of the family with a time of flight less than 340 days. Family 2

has multiple revolutions about the Earth, initially departs the Earth towards the Sun, or in

the direction of L1. The transfers then pass back by the Earth and fly away from the Sun

towards L2. The black circle is the lunar orbit, and the origin of the plot is the location

of Earth. The yellow transfer is the lowest energy transfer for Family 2, having a Jacobi

constant of JC = 3.0007902 and a time of flight of 270 days. The green transfer is the

shortest flight duration, taking 193 days with a higher energy of JC = 3.0006679.
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Figure 4.10. Family 2: Family of ballistic lunar transfers in the Sun-Earth CR3BP

Figure 4.11. Jacobi constant versus flight duration for Family 2 in Figure  4.10 
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The families of transfers illustrated in both Figure  4.8 and Figure  4.10 depart from Earth

in the direction of the Sun, or towards L1. Section  3.8 details the value of the four quadrants

about the Earth. As most easily inspected from Figure  4.8 , a majority of the transfers lie

within quadrant II. It is predicted that similar geometries exist in quadrant IV, i.e., initial

departing the Earth away from the Sun. By selecting another initial condition from the

map, Figure  4.12 is crafted. From visual inspection, the family appears to be a rotation of

180 degrees of  4.8 about Earth. The arc in yellow is the lowest energy transfer, having a

Jacobi constant value of JC = 3.0008216 and a time of flight of 97.8 days. Comparing to

Family 1, the lowest energy trajectory has a slightly longer time of flight and higher energy.

Likewise, the shortest flight duration arc, as plotted in green, has a time of flight of 76.4

days. Although Family 1 and Family 3 resemble rotations of each other, Family 1 produces a

marginal advantage in both time of flight, and energy. Figure  4.13 depicts the characteristics

of Family 3, with the colored points correlating to the same colored transfers in the Figure

 4.12 . As a comparison, Figure  4.14 exhibits the evolution of energy and flight duration for

both Families 1 and 3. The blue curve represents Family 1, and the gold line is Family 3.

For lower energy solutions (higher values of the Jacobi constant) and shorter times of flight,

the difference between the two families is distinguishable.
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Figure 4.12. Family 3: Family of ballistic lunar transfers in the Sun-Earth
CR3BP, the L2 counterpart to Family 1

Figure 4.13. Jacobi constant versus flight duration for Family 3 in Figure  4.12 
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Figure 4.14. Jacobi constant and flight duration comparisons between Family
1 (L1) and Family 3 (L2)

The Sun-Earth CR3BP offers a variety of low energy transfer designs to the Moon. The

joint influence of the Sun and Earth on the spacecraft produces trajectories that attain a

variety of regions about the Earth. Families 1, 2 and 3, are a few of the many possible

geometries which reach the lunar orbit radius by incorporating the perturbing effects of the

Sun. Figures  4.15 - 4.24 exemplifies a catalog of transfer geometries and the corresponding

properties of the trajectories. The gold arc in each plot illustrates the transfer with the

maximum value of the Jacobi constant. The explored families are under the presumption

that the flight duration is less than 365 days. Therefore, additional sets of transfers are

accessible if longer flight times are attainable. The lowest energy family of transfers is

represented in Figure  4.23 , having a maximum Jacobi constant value of JC = 3.0008419.
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Figure 4.15. Family 4: Family of ballistic lunar transfers in the Sun-Earth CR3BP

Figure 4.16. Evolution of Jacobi constant and flight duration along Family
4 of transfers in the Sun-Earth CR3BP
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Figure 4.17. Family 5: Family of ballistic lunar transfers in the Sun-Earth CR3BP

Figure 4.18. Evolution of Jacobi constant and flight duration along Family
5 of transfers in the Sun-Earth CR3BP
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Figure 4.19. Family 6: Family of ballistic lunar transfers in the Sun-Earth CR3BP

Figure 4.20. Evolution of Jacobi constant and flight duration along Family
6 of transfers in the Sun-Earth CR3BP
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Figure 4.21. Family 7: Family of ballistic lunar transfers in the Sun-Earth CR3BP

Figure 4.22. Evolution of Jacobi constant and flight duration along Family
7 of transfers in the Sun-Earth CR3BP
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Figure 4.23. Family 8: Family of ballistic lunar transfers in the Sun-Earth CR3BP

Figure 4.24. Evolution of Jacobi constant and flight duration along Family
8 of transfers in the Sun-Earth CR3BP
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Families of transfers in the Sun-Earth CR3BP offer insight into the solar influence on

trajectories near the Earth. From the explored families, it is apparent that underlying flow is

governing the motion of the transfers. Family 1 offers the shortest time of flight, with some of

the lowest energy solutions for the time of flight considered. Whereas Family 8 includes the

lowest energy solution, yet requires an additional 200 days to reach the lunar orbit radius.

Other families traverse the near the L1 and L2 Lagrange points, which could offer scientific

advantages depending on the mission. The Sun-Earth CR3BP offers an effective model the

analyze the dominant characteristics of these complex transfers.

4.3 Ballistic Lunar Transfers in the BCR4BP

Ballistic lunar transfers are governed by the gravitational influence of the Earth, Moon,

and Sun. The BCR4BP offers an effective model to construct such transfers, as simplifica-

tions to the complex environment present a time-periodic system. The periodicity of the

models offers solutions that recur each synodic month. Trajectories within the four-body

model flow back and forth between the dominant influence of the Earth-Moon and Sun-B1

systems. Likewise, dynamical structures are naturally perturbed by the two systems. There-

fore, manifold structures off of periodic solutions are incorporated to construct low-energy

solutions. Multiple techniques within dynamical systems theory are applied to produce fam-

ilies of ballistic lunar transfers. The first approach applies solutions from the Sun-Earth

CR3BP as an initial guess to produce transfers to conic orbits about the Moon. The second

approach incorporates the instantaneous equilibrium points as near-optimal energy transfers

through the L2 portal. The third concept explores transfers into multi-body periodic orbits

by employing invariant manifold theory for unstable orbits and varied lunar orbit insertion

maneuvers for stable orbits.

4.3.1 Transfers to Conic Orbits

Conic orbits about the Moon offer a multitude of applications ranging from staging orbits

to lunar surface observations. For this analysis, the assumption is made that the desired

orbit is a 100 km circular orbit, that lies in the orbital plane of the Earth, Moon, and Sun,

145



i.e.,ˆ̂-plane. Likewise, the parking orbit about the Earth is selected as a planar circular orbit

with an altitude of 150 km above the Earth. A targeting schematic is necessary to devise

the transfers. The strategy to produce ballistic lunar transfers to conic orbits mimics the

design used for the Sun-Earth CR3BP. Consider the following targeting algorithm,

X̄ =



x̃0

ỹ0

˙̃x0

˙̃y0

θS

t


F̄ =



√
(x̃0 + µ̃)2 + ỹ2

0 − η0

(x̃0 + µ̃) ˙̃x0 + ỹ0 ˙̃y0√
(x̃f − 1 + µ̃)2 + ỹ2

f − ηf

(x̃f − 1 + µ̃) ˙̃xf + ỹ0 ˙̃yf


(4.4)

where the free variable vector X̄ is composed of the initial position, velocity, Sun angle, and

time of flight for a planar state in the Earth-Moon BCR4BP. The constraint vector F̄ is

comparable to the constraint vector used in Equation (  4.3 ). The first element of F̄ restricts

the initial position to lie on the parking orbit, i.e., a distance of η0 = 6528 km from the center

of Earth. The second element of F̄ confines the initial state to be an apse about Earth. The

third and fourth constraints are similar to the first two, however, the primary body of focus

is the Moon. The third element constrains the final position to be a set distance from the

center of the Moon ηf = 1837 km, and the fourth element requires the final state to be

an apse about the Moon. Note that the free variable vector has two more elements than

the constraint vector. As a family evolves along one free variable, an additional constraint

needs to be included in order to construct a family of unique solutions. In this investigation,

four types of families are considered: fixed period, fixed arrival epoch, fixed TLI maneuver

magnitude and fixed LOI maneuver magnitude. Selecting which family to consider relies on

the intended mission requirements.

Fixed Period Families

Fixed period families assess available transfer geometries for a designated flight duration.

To assemble a family of transfers with a consistent time of flight, either an additional con-
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straint is added to Equation (  4.4 ), or the time t is removed from the free variable vector.

Provided a time of flight is desired, an initial guess is selected from a family of transfers

in the Sun-Earth CR3BP. A family of ballistic lunar transfers with a flight duration of 73

days is illustrated in Figure  4.25 . The plot is in the Sun-B1 rotating frame, centered about

B1, where the yellow circle represents the Moon’s orbit. Each gray arc is a transfer that

departs from a 150 km altitude parking orbit about Earth, and 73 days later arrives into a

100 km altitude low lunar orbit (LLO). The colored transfers exhibit the different feasible

geometries within this family. The blue trajectory traverses primarily through quadrant II,

and has motion similar Family 1 in the Sun-Earth CR3BP, charted in Figure  4.8 . The green

arc also possesses ballistic lunar transfer geometry, moving through quadrant IV. However,

the purple path moves throughout I and has behavior unforeseen for low energy transfers.

Figure 4.25. Family of ballistic lunar transfers in the BCR4BP with a time
of flight of 73 days, depicted in the Sun-B1 rotating frame

Note the resultant family of ballistic lunar transfers are solutions to the continuation scheme,

and do not assess the practicality of the transfers. To further describe the notion of appli-

cability, consider Figure  4.26 . The curve expresses the variation in LOI maneuver cost as a
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function of the initial Sun angle. The family repeats on itself, constructing a closed set of

available transfers with a time of flight of 73 days. The colored points on the curve correlate

to the colored transfers in Figure  4.25 . The blue dot lies on the minimum LOI cost for this

family. The other local minimum of the chart is offset by 180 degrees, associated with a

transfer that directs away from the Sun. Recall that LOI maneuvers for direct transfers to

the Moon cost approximately ∆V = 950 m/s. Therefore, any member of the family that

has a higher ∆V than a direct transfer is not leveraging solar perturbations, but rather, is

hindered by them. The purple point offers a sample of such transfer. As the solar perturba-

tions dictate, traversing through quadrants I or III far from the Earth-Moon system impedes

the desired energy change. Thus, the geometry of the purple transfer in Figure  4.25 is not a

practical low energy solution.

Figure 4.26. Properties of the Family illustrated in Figure  4.25 

Various transfer geometries are achievable given a fixed period family. For longer duration

ballistic lunar transfers, multiple revolutions about the Earth-Moon system offer extended

transfer options. Consider the family of transfers displayed in Figure  4.27 . Each transfer has

a flight duration of 167 days, and initially departs the Earth away from the Sun. The blue

curve designates the solution with the lowest LOI maneuver cost, i.e., ∆V = 648 m/s. A
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full representation of the TLI and LOI maneuver costs is depicted in Figure  4.28 , where the

blue dot correlates to the blue transfer. Additional sample transfers from the family with a

fixed flight duration of 180 days are represented in Figures  4.29 and  4.30 .

Figure 4.27. Family of ballistic lunar transfers in the BCR4BP with a time
of flight of 167 days, depicted in the Sun-B1 rotating frame
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Figure 4.28. Maneuver properties of the fixed transfer duration family illus-
trated in Figure  4.27 

Figure 4.29. Family of ballistic lunar transfers in the BCR4BP with a time
of flight of 180 days, depicted in the Sun-B1 rotating frame
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Figure 4.30. Maneuver characteristics of the fixed transfer duration family
illustrated in Figure  4.29 

Fixed Arrival Epoch Families

It is favorable to compare transfers that reach the Moon at a given epoch. In the

BCR4BP, the desired epoch is represented by either the Earth-Moon angle or the Sun angle.

By holding the arrival epoch constant, an additional entry is appended to the constraint vec-

tor in Equation  4.4 . Analogous to the fixed period family, a pseudo-arclength continuation

scheme is conducted to produce a family of ballistic lunar transfers. The initial guess for

the continuation scheme originates from either the transfer in the Sun-Earth CR3BP or a

member from other families in the BCR4BP. The family of transfers in Figure  4.31 exhibit

the fixed arrival epoch constraint in the Sun-B1 rotating frame. Each transfer arrives at the

desired conic orbit when the Moon is a waxing crescent, i.e., the Sun angle is θS = -π/4.

The yellow circle indicates the Moon’s orbit about B1, and each gray curve is a member of

the family. The geometry of the family mimics the structure depicted in Family 1 of the

Sun-Earth CR3BP, as illustrated in Figure  4.8 .
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Figure 4.31. Family of ballistic lunar transfers in the BCR4BP that arrives
at the Moon with θS = -π/4, depicted in the Sun-B1 rotating frame

As the arrival Sun angle is fixed, the time of flight evolves along the family. Figure  4.32 

highlights the variation in the lunar orbit insertion costs as a function of flight duration for

the family in Figure  4.31 . Each colored point on Figure  4.32 correlates with the colored

transfer on Figure  4.31 . The blue dot is associated with the lowest insertion maneuver cost

along the family.

Continuation along a planar fixed arrival epoch family incorporates outbound lunar fly-

bys. Assume a family of transfers initially departs from the Earth in the direction of E1,

i.e., in the direction of the Sun. The time of flight for a fixed arrival epoch family varies

throughout the continuation process, causing the initial Sun angle (epoch) of the trajectory

to change. Therefore, the departure arc from Earth in the Earth-Moon rotating frame will

revolve about the system. Such motion is depicted by the family of transfers in Figure  4.33 .

The plot illustrates a family of ballistic lunar transfers in the Earth-Moon rotating frame,

that arrive at the Moon at a first-quarter phase, i.e., Sun angle equal to −π. The green and
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Figure 4.32. Insertion maneuver costs versus flight duration for the fixed
epoch family illustrated in Figure  4.31 

yellow points represent the location of the Earth and Moon, respectively. The gray trans-

fers appear to initially radiate from the Earth in all directions in the Earth-Moon rotating

frame. The blue and purple transfers both represent members of the family, however, the

blue transfer departs the Earth away from the Moon, whereas the purple path flies near the

Moon. Therefore, members of the family approach the Moon on the outbound leg of the

transfer.
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Figure 4.33. Family of ballistic lunar transfers in the BCR4BP that arrives
at the Moon with θS = -π, depicted in the Earth-Moon rotating frame

The general motion of ballistic lunar transfers is non-trivial to visualize in the Earth-Moon

rotating frame. Thus, Figure  4.34 expresses the same family in the Sun-B1 rotating frame.

The arrival at a first-quarter Moon orientation is apparent in the Sun-B1 rotating frame.

The blue arc is the transfer with the lowest lunar orbit insertion ∆V cost, with a ∆VLOI =

656 m/sec to circularize into the LLO. The purple trajectory has an outbound lunar flyby,

with an altitude above the Moon of 3,873 km. The flyby is noticeable in Figure  4.34 as

denoted by the corner near the lunar orbit radius upon departure from Earth. Due to the

flyby, the purple arc has the lowest trans-lunar injection cost, ∆VT LI = 3,142 m/sec. Figure

 4.35 expresses the variation maneuver costs along the family of solutions, where the colored

points correlated to the colored transfers in Figure  4.33 and Figure  4.34 .
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Figure 4.34. Family of ballistic lunar transfers in the BCR4BP that arrives
at the Moon with θS = -π, depicted in the Sun-B1 rotating frame

Figure 4.35. Variation in maneuver costs for the family of transfers depicted
in Figure  4.33 and Figure  4.34 
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Figure  4.36 provides a family of ballistic lunar transfers with multiple sets of outbound lunar

flybys. The arrival epoch is at a waning crescent phase of the Moon, i.e., the Sun angle is

π. The transfer in blue has the minimum trans-lunar injection cost across the family. To

Figure 4.36. Family of ballistic lunar transfers in the BCR4BP that arrives
at the Moon with θS = π/4, depicted in the Sun-B1 rotating frame

illustrate the occurrence of lunar flybys, Figure  4.37 displays the variation in TLI cost as a

function of flight duration along the family. The colored points along the plot correlated to

the colored transfers in Figure  4.36 . The abrupt dive in TLI maneuver cost occurs at the

location where the departure leg of the transfer encounters a lunar flyby. This concurrence

repeats roughly every synodic period. As the initial departure from the Earth is defined by

the arrival sun angle (remains constant along the family) and the varying time of flight. By

leveraging an outbound lunar flyby, the TLI maneuver is reduced by 80 m/sec.
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Figure 4.37. Variation in injection maneuver costs as a function of time of
flight for the family of transfers depicted in Figure  4.36 

Fixed Maneuver Families

Trajectory design considers limitations on launch and maneuver performance for a given

spacecraft. Assessing available transfer designs for a given injection or insertion maneuver

assists in the exploration of feasible paths to the Moon. To evaluate maneuver conditions,

families of fixed maneuvers are employed. Consider a family of transfers that all depart from

the parking orbit about the Earth with the same trans-lunar injection maneuver magnitude.

To construct such a family, an additional constraint is appended to the constraint vector in

Equation ( 4.4 )

FTLI =
√

˙̃x2
0 + ˙̃y2

0 + ˙̃z2
0 − ∆VTLI − VLEO (4.5)

Equation (  4.5 ) constrains the initial velocity magnitude to be equal to the sum of the TLI

maneuver (∆VTLI) and the orbital velocity of the initial parking orbit VLEO. An initial
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condition is selected from a transfer in the Sun-Earth CR3BP, or from a previous set of

transfers in the BCR4BP. Figure  4.38 depicts a family of ballistic lunar transfers in the

Sun-B1 rotating frame. Each arc departs from the Earth with a TLI maneuver magnitude

of 3,204 m/sec. The blue curve represents the trajectory with the lowest LOI burn, with

a magnitude of 654 m/sec. The purple path has a time of flight of 69 days, corresponding

to the shortest flight duration along the family. Since each member of the family in Figure

Figure 4.38. Family of ballistic lunar transfers in the BCR4BP that departs
the Earth with a TLI maneuver of ∆VTLI = 3,204 m/sec, depicted in the
Sun-B1 rotating frame

 4.38 has the same TLI cost, Figure  4.39 illustrates a trade-space for viable solutions. The

curve in Figure  4.39 expresses variation in LOI maneuver costs and flight duration across

the family of transfers. Where the colored points correlate to the colored transfers plotted

in position space. Although the purple transfer represents the shortest flight duration, the

high LOI cost deters from selecting such as solution.
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Figure 4.39. Evolution of flight duration and LOI maneuver cost along the
family of transfers depicted in Figure  4.38 

Selecting a suitable trans-lunar injection maneuver produces a family of transfers that

incorporate outbound lunar flybys. Members of the family from Figure  4.36 leverage out-

bound lunar flybys to reduced the TLI maneuver cost. With proper selection of the TLI

maneuver magnitude, the transfer is implicitly constrained to include an outbound lunar

flyby. A sample family is illustrated in Figure  4.40 . The family includes more transfers,

however, for simplicity of visualization, only transfers with an LOI maneuver of less than

850 m/sec are being considered. The lunar flyby altitude varies between 3000 and 7000 km

throughout the family. The blue trajectory has the lowest LOI maneuver of 654 m/sec, and

the purple curve has the shortest time of flight of 97 days. The variation in flight duration

and LOI maneuver cost is illustrated in Figure  4.41 .
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Figure 4.40. Family of ballistic lunar transfers in the BCR4BP that departs
the Earth with a TLI maneuver of ∆VTLI = 3,146 m/sec, depicted in the
Sun-B1 rotating frame

Figure 4.41. Evolution of flight duration and LOI maneuver cost along the
family of transfers depicted in Figure  4.40 
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Families of transfers with a fixed maneuver LOI cost aids in the classification of viable

insertions into the lunar vicinity. Ballistic lunar transfers are often selected to reduce the

maneuver cost associated with inserting into an orbit about the Moon, thus, fixed maneu-

ver families offer insight into the accessible transfer geometries for certain mission criteria.

Consider a set of transfers that depart from the Earth, and arrive into a conic orbit about

the Moon, with a constant LOI maneuver cost. To build the solution space, an additional

constraint is appended to the constraint vector from Equation ( 4.4 ),

FLOI =
√

˙̃x2
f + ˙̃y2

f + ˙̃z2
f − ∆VLOI − VLLO (4.6)

where ∆VLOI is the desired LOI maneuver cost, and ∆VLOI is the velocity of the conic orbit

at the point of insertion. Recall that the constraint vector formulated in Equation ( 4.4 )

assumes that the arrival condition at the Moon is an apse. A family of transfers with an LOI

maneuver magnitude ∆VLOI = 660 m/sec is illustrated in Figure  4.42 . Each gray arc leaves

from a 150 km circular parking orbit about the Earth and inserts onto a 100 km circular

LLO. The blue transfer offers the lowest cost TLI maneuver to depart from the Earth with a

value of ∆VTLI = 3142 m/sec. The purple curve has the shortest flight duration, with a total

time of flight of 76.9 days. A section of the family leverages outbound lunar flybys to reduce

the injection cost, however, maintain the LOI magnitude constraint. The evolution of TLI

maneuver cost and flight duration is plotted in Figure  4.43 . The colored points represent

the same colored transfers in Figure  4.42 .
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Figure 4.42. Family of ballistic lunar transfers in the BCR4BP that departs
the Earth with a TLI maneuver of ∆VLOI = 660 m/sec, depicted in the Sun-B1
rotating frame

Figure 4.43. Evolution of flight duration and TLI maneuver cost along the
family of transfers in Figure  4.40 
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4.3.2 Theoretical Minimum Lunar Orbit Insertion

One challenge associated with ballistic lunar transfers is assessing the effectiveness of

lunar orbit insertion. As described in section  3.8 , energy naturally evolves throughout the

BCR4BP. Thus, in theory, any natural arc is achievable given enough time and the cor-

rect perturbations due to the Sun. However, given a set of assumptions, an approximate

theoretical minimum LOI maneuver is determined for conic orbits about the Moon.

The Jacobi constant of the Lagrange points in the CR3BP dictates the energy necessary

to transit through a portal. Recall, for Jacobi constant values below the L2 Lagrange point,

motion within the Earth-Moon vicinity remains bounded for all time. The instantaneous

equilibrium solutions in the BCR4BP offer similar properties. As a ballistic lunar transfer has

to transit through the Ẽ2 portal prior to insertion at the Moon, the Earth-Moon Hamiltonian

at that point must be below the maximum Hamiltonian of Ẽ2. The variation in Hamiltonian

across the Ẽ2 points is illustrated in Figure  2.21 . An assumption is made that near the

Moon, the Earth-Moon Hamiltonian remains nearly constant. Therefore, a near-optimal

ballistic lunar transfer will arrive at its lunar orbit insertion with an Earth-Moon Hamiltonian

equivalent to the maximum Hamiltonian for the set of Ẽ2 points. The maximum Earth-Moon

Hamiltonian for the set Ẽ2 is 1694.9734 nondimensional units. For a more conservative

estimate, the maximum Hamiltonian for the set of Ẽ1 points is applied, i.e., 1694.9824

nondimensional units.

The theoretical minimum lunar orbit insertion maneuver cost depends on the energy level

of the final orbit. Low lunar orbits about the Moon have a higher Earth-Moon Hamiltonian

than the sets of instantaneous equilibrium points. Consider a planar circular orbit around

the Moon with an altitude of 1000 km. After propagating for an entire synodic period, the

variation in the Earth-Moon Hamiltonian is illustrated in Figure  4.44 . From section  3.8 ,

the Earth-Moon Hamiltonian evolves as a function of the position in the Sun-B1 rotating

coordinate frame. Thus, a transfer closely bounded by the Moon will exhibit slight variations

in the Hamiltonian. Since a ballistic lunar transfer upon arrival at the Moon has much higher

energy than the conic orbit, the desired insertion location along the LLO occurs where

the Hamiltonian is at a minimum. For the 1000 km circular orbit, the minimum Earth-
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Moon Hamiltonian is 1696.4592 nondimensional units. Note that the minimum Earth-Moon

Hamiltonian will change as the conic orbit about the Moon is varied.

Figure 4.44. Evolution of the Earth-Moon Hamiltonian along a 1000 km
circular orbit about the Moon across one synodic period

The difference in energy between an incoming transfer and the desired conic orbit offers

a theoretical minimum insertion maneuver cost. Given the assumption that the incoming

ballistic lunar transfer is assumed to have an energy equivalent to the maximum Ẽ2 Hamil-

tonian, i.e., HBLT = 1694.9734 nondimensional units. Likewise, the transfer is arriving into

the desired 1000 km altitude circular orbit about the Moon, with a minimum Hamiltonian

of HLLO = 1696.4592 nondimensional units. The difference between the two energy values

are written in terms of the expression in Equation  2.56 ,

HLLO − HBLT = 2Υ̃LLO − 2Υ̃BLT − V 2
LLO + V 2

BLT (4.7)

where Υ̃LLO and Υ̃BLT are the pseudo-potential values for the LLO and ballistic lunar transfer,

respectively. The quantities VLLO and VBLT are the scalar velocity of trajectories in the
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rotating coordinate frame. As an maneuver is required to occur at specific position and

epoch, Υ̃LLO = Υ̃BLT, thus, Equation ( 4.7 ) is reduced to

HLLO − HBLT = V 2
BLT − V 2

LLO (4.8)

As the velocity of a conic orbit is known, Equation (  4.8 ) is rewritten to solve of the velocity

of the ballistic lunar transfer upon arrival at the insertion location,

VBLT =
√

V 2
LLO + HLLO − HBLT (4.9)

Recall that the minimum velocity magnitude necessary to perform an energy change is tan-

gential to the current velocity direction, as illustrated in Figure  4.3 and written quantitatively

in (  4.2 ). Therefore, an expression for the theoretical minimum insertion maneuver is derived,

∆VMIN = VBLT − VLLO

∆VMIN =
√

V 2
LLO + HLLO − HBLT − VLLO (4.10)

where ∆VMIN is the scalar theoretical maneuver magnitude necessary to insert into the desired

conic orbit. Note that the terms V 2
LLO +HLLO can be reduced to Υ̃LLO. Given the case where

a near-optimal ballistic lunar transfer is arriving into a 1000 km circular orbit, Equation

( 4.10 ) yields ∆VMIN = 494 m/sec. A curve of theoretical minimum maneuver magnitudes

is produced by varying the altitude of the desired conic orbit, illustrated in Figure  4.45 .

The blue curve corresponds to an incoming ballistic lunar transfer with an Earth-Moon

Hamiltonian equivalent to the maximum Hamiltonian of the set of Ẽ1 points, i.e., HBLT

= 1694.9824 nondimensional units. Whereas the yellow arc has an incoming Hamiltonian

equivalent to the maximum Hamiltonian for the set of Ẽ2 points, i.e., HBLT = 1694.9734

nondimensional units. The general trend for the two curves is similar, as the altitude of the

circular orbit increases, the theoretical minimum LOI cost decreases. The set of Ẽ1 produce

lower ∆VMIN values for a given altitude because the energy estimate is more conservative.
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Since it is frequently of interest to insert into a conic orbit in close vicinity of the Moon, the

set of solutions within 1000 km of the surface is plotted in Figure  4.46 .

Figure 4.45. Theoretical minimum LOI costs for ballistic lunar transfers with
varying lunar orbit altitude
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Figure 4.46. Theoretical minimum LOI costs for ballistic lunar transfers with
varying lunar orbit altitude less than 1000 km

Instantaneous equilibrium solutions offer low energy transfers that transit through portals

in the zero velocity curves. An instantaneous equilibrium point in the BCR4BP is a fixed

point for a given orientation of the Earth, Moon, and Sun in a rotating coordinate frame. As

the model is propagated forward through time, the point becomes a trajectory. The set Ẽ2

offers solutions that transit though the L2 portal. To find points that relate to the motion of

a ballistic lunar transfer, an instantaneous equilibrium solution propagated forward in time

approaches the Moon and departs from the Earth-Moon vicinity propagated in reverse time.

To narrow the search even further, the arc must return back to the Earth at the desired

parking orbit altitude, for a feasible ballistic lunar transfer. A viable transfer option to a

7500 km altitude circular orbit about the Moon is illustrated in Figure  4.47 . The blue arc

represents the transfer, and the Moon traverses counterclockwise about the yellow circle.

The LOI maneuver cost for this transfer is 207.7 m/sec. The theoretical minimum LOI cost

for a 7500 km altitude circular orbit is 196.6 m/sec.
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Figure 4.47. A ballistic lunar transfer that includes an instantaneous equilib-
rium solution along the path, plotted in the Sun-B1 rotating coordinate frame
centered at B1

The transfer in Figure  4.47 leverages the dynamical structures of a coherent four-body

model to insert onto a conic orbit about the Moon at a near theoretical minimum LOI cost.

However, the 7500 km altitude circular orbit is only one specific desired orbit. To expand the

solution space of this low energy transfer, the trajectory is seeded into a natural parameter

continuation scheme. The schematic incrementally decreases the desired altitude of the LOI

about the Moon. The resultant family of transfers is illustrated in Figures  4.48 and  4.49 . The

family of transfers has minor variations in the Sun-B1 rotating coordinate frame, dissimilar

to previous families constructed in the CR3BP and the BCR4BP.
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Figure 4.48. Family of ballistic lunar transfers with varying arrival altitude
above the Moon, plotted in the Sun-B1 rotating frame centered about B1

The transit conditions through the L2 portal vary as the LOI altitude decreases, as

plotted in Figure  4.49 . The purple transfer inserts 7500 km above the surface of the Moon,

whereas the blue transfer has a 100 km altitude. The size of the Moon is plotted to scale. By

visual inspection, as the altitude decreases about the Moon, the family of transfers follows

motion similar to the Lyapunov periodic orbits. Although the BCR4BP has limited access

to truly periodic motion, the underlying dynamical structures that exist in the CR3BP are

still prevalent.
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Figure 4.49. Family of ballistic lunar transfers with varying arrival altitude
above the Moon, plotted in the Earth-Moon rotating frame focused around
the Moon

The LOI maneuver magnitude is assessed for each member of the Family in Figure  4.49 ,

and plotted alongside the minimum theoretical LOI cost in Figure  4.50 . The green curve

shows the LOI cost for the family as the altitude varies, and closely follows the behavior

of the theoretical minimum cases. The transfer associated with the 100 km altitude has

an LOI maneuver cost of 632.8 m/sec, with a time of flight of 109.7 days. The theoretical

minimum is computed by Equation  4.10 for a 100 km altitude is 626.3 m/sec. In relation to

the previous families constructed in the BCR4BP, leveraging the instantaneous equilibrium

solutions offers the solution closest the to theoretical minimum. In 1991, Sweetser devised a

similar approach using the Jacobi constant of the Lagrange points and predicted the global

minimum solution for insertion around the Moon is 622 m/sec [ 14 ].
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Figure 4.50. Lunar orbit insertion maneuver cost alongside the theoretical
minimum maneuver cost for the Family illustrated in Figure  4.49 

The theoretical minimum insertion cost offers insight into effective transfer costs. A chal-

lenge associated with the four-body model is understanding the limitations of the Sun’s im-

pact on a trajectory. By incorporating structures that exist within the Earth-Moon CR3BP,

similar behavior is examined within the more complex model. Note that since the BCR4BP

is a non-conservative model, there is no true theoretical minimum insertion cost, as the

Hamiltonian varies across time. Rather the assumptions made are to simplify the structures

to a transfer that is bounded and directly inserts into the desired orbit. Low solutions may

exist if more time is spent in the cislunar vicinity, with gradual perturbations from the Sun.
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4.3.3 Transfers to Unstable Orbits

Unstable periodic orbits in the multi-body regime offer insight into the natural flow

throughout the cislunar region. Periodic solutions in the CR3BP and the BCR4BP offer

intermediate and destination orbits to explore the lunar vicinity due to their high energy.

Arcs along a stable manifold from a periodic orbit approach the orbit as the model evolves

forward in time. The manifold structures in the BCR4BP are governed by the dominating

effects of both the Earth-Moon and Sun-B1 systems.

To isolate behavior similar to ballistic lunar transfers, periapse Poincaré maps is em-

ployed. Consider the L2 2:1 synodic resonant Lyapunov orbit in the Earth-Moon system

for the BCR4BP, as illustrated by Figure  4.51 . The blue arc represents the periodic orbit

that has a period of one synodic period, i.e., 29.5 days. The set of instantaneous equilib-

rium points Ẽ2 are plotted as the black curve within the Lyapunov orbit. The maximum

eigenvalue of the monodromy matrix for this orbit is λ ≈ 776700, having a magnitude much

greater than one. The Earth-Moon Hamiltonian of the 2:1 synodic resonant Lyapunov orbit

is higher than other periodic structures in the BCR4BP. A higher arrival Hamiltonian at the

Moon is advantageous to low-energy solutions.
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Figure 4.51. L2 2:1 synodic resonant Lyapunov orbit in the BCR4BP, in the
Earth-Moon rotating frame

A periapse Poincaré map is constructed from the L2 2:1 synodic resonant Lyapunov orbit.

By discretizing the orbit by 40,000 points, a position normalized eigenvector is employed to

step off the periodic orbit at a distance of 40 km. Since motion arriving into the orbit

is desired, only the eigenvector associated with the stable eigenvalue is leveraged. After

propagating the initial conditions for 365 days and recording each periapse instance, the

map illustrated in Figure  4.52 is created. Each point on the map corresponds to a periapse

about the Earth that lies along the manifold structure of the Lyapunov orbit. The color

represents the time of flight of the arc from the periapse condition to arrival into the orbit.

The green-filled circle is the Earth to scale, and the white circle around the Earth corresponds

to a 150 km altitude parking orbit. The map includes the first and second periapsides

about the Earth. Coloring the points by flight duration is an option by the user, additional

characteristics of the periapse points can be used as a color scale, including the TLI maneuver

cost, Earth-Moon Hamiltonian, Sun angle, and periapse number. Additionally, transforming

the point to the Sun-B1 rotating frame to offer insight into the departure conditions relative

to the direction of the Sun.
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Figure 4.52. Periapse Poincaré map of stable manifold arcs off of the L2 2:1
resonant Lyapunov orbit in the BCR4BP, in the Earth-Moon rotating frame
focused about the Earth

Selecting a periapse that lies near the 150 km parking orbit offers a ballistic lunar transfer

to the Lyapunov orbit. A sample transfer is illustrated in Figures  4.53 and  4.54 . The blue

arcs in both plots represent the trajectory. The entire path is depicted in Figure  4.53 , as the

curve departs the Earth traveling away from the Sun and toward quadrant IV. The yellow

circle represents the lunar orbit. The arrival into the cislunar vicinity is displayed in Figure

 4.54 , where the Moon is plotted to scale. The arc along the manifold offers a ballistic path

onto the Lyapunov orbit due to the unstable nature.
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Figure 4.53. Ballistic lunar transfer to the L2 2:1 synodic resonant Lyapunov
orbit, in the Sun-B1 rotating frame centered at B1

Additional transfer solutions are available by selecting different points from the periapse

Poincaré map. A set of three sample trajectories are illustrated in Figures  4.55 ,  4.56 , and

 4.57 . These paths do not represent all possible geometries to the L2 2:1 synodic resonant

Lyapunov orbit but offer insight into the structure of the model. Including motion that

initially departs the Earth both toward and away from the Sun, i.e., toward quadrants

II and IV. Additionally, solutions exist that leverage outbound lunar flybys, and multiple

revolutions of the Earth-Moon system to lower TLI costs.
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Figure 4.54. Arrival of a ballistic lunar transfer onto a L2 2:1 resonant
Lyapunov orbit, in the Earth-Moon rotating frame focused about the Moon

Figure 4.55. Ballistic lunar transfer to the L2 2:1 synodic resonant Lyapunov
orbit, in the Sun-B1 rotating frame centered at B1
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Figure 4.56. Ballistic lunar transfer to the L2 2:1 synodic resonant Lyapunov
orbit, in the Sun-B1 rotating frame centered at B1

Figure 4.57. Ballistic lunar transfer to the L2 2:1 synodic resonant Lyapunov
orbit, in the Sun-B1 rotating frame centered at B1
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Manifold structures from unstable spatial orbits present viable out-of-plane transfer so-

lutions. Spatial periodic orbits offer scientific, communication, and eclipsing advantages.

Motion leading to unstable spatial orbits offers insight into the governing dynamics out of

the plane. One such periodic orbit is the L2 2:1 synodic resonant northern Halo, as illustrated

in Figure  4.58 . To aid in visualization, Figures  4.59 and  4.60 plot the same orbit in the ˆ̃xˆ̃y

and ˆ̃xˆ̃z projections, respectively. In each illustration of the L2 2:1 synodic resonant northern

Halo, the blue curve is the periodic orbit, and the black curve is the set of Ẽ2 points. The

Moon is plotted to scale. As the motion is symmetric in Figure  4.60 , arrows denoting the

motion along the arc are not included. The maximum eigenvalue of the monodromy matrix

associated with the Halo orbit is λ ≈ 819000, possessing unstable characteristics.

Figure 4.58. Isometric view of the L2 2:1 synodic resonant northern Halo in
the Earth-Moon rotating frame
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Figure 4.59. ˆ̃xˆ̃y projection of the L2 2:1 synodic resonant northern Halo in
the Earth-Moon rotating frame

Figure 4.60. ˆ̃xˆ̃z projection of the L2 2:1 synodic resonant northern Halo in
the Earth-Moon rotating frame
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Following the procedure for the planar case, a periapse Poincaré map is constructed

from the L2 2:1 synodic resonant Halo orbit. The orbit is discretized by 30000 points, and

at each point, a 40 km step along the eigenvector associated with the stable eigenvalue is

performed. By propagating each initial condition for 365 days and recording each periapse.

The periapsides in close proximity to the Earth are plotted in Figure  4.61 . Like the map

for the Lyapunov orbit, points are colored by flight duration, and the green circle represents

the Earth to scale. Unlike the planar case, these periapse points are plotted as a projection

onto the ˆ̃xˆ̃y-plane. Therefore, the z̃ component of the periapse needs to be considered when

selecting a feasible transfer. A sample transfer to the Halo orbit is illustrated in Figures  4.62 

and  4.63 . The transfer initially departs the Earth towards quadrant II, i.e., the direction of

the Sun, as exhibited in Figure  4.62 . Whereas the motion transiting through the L2 portal

into the lunar vicinity is depicted in Figure  4.63 .

Figure 4.61. Planar projection of the periapse Poincaré map of stable man-
ifold arcs off of the L2 2:1 resonant Halo orbit in the BCR4BP, in the Earth-
Moon rotating frame focused about the Earth
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Figure 4.62. Ballistic lunar transfer to the L2 2:1 synodic resonant Halo
orbit, in the Sun-B1 rotating frame centered at B1

Figure 4.63. Ballistic lunar transfer to the L2 2:1 synodic resonant Halo
orbit, in the Earth-Moon rotating frame focused near the Moon
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Unstable periodic solutions in the BCR4BP offer insight into the natural flow between

the two dominating models. Distant from the Earth-Moon system, the manifold structures

change in energy in the same manner that ballistic arcs do. The natural change in energy

enables the lower maneuver costs associated with inserting about the Moon. For the spatial

case, although the planar assumptions involved in formulating the BCR4BP remove out-of-

plane perturbations, feasible transfer geometries are accessible. As instability is frequently

viewed as an impediment for a solution, unstable periodic solutions present techniques that

enable trajectories to embark into the lunar vicinity for minimal deterministic costs.

4.3.4 Transfers to Stable Orbits

Stable periodic orbits in the multi-body regime are advantageous for mission operations

as minimal station keeping maneuvers are necessary for a spacecraft to remain in the orbit.

Constructing transfers to stable periodic orbits is non-trivial since stable and unstable man-

ifold structures do not exist. For stable periodic solutions with an Earth-Moon Hamiltonian

value less than the value required to transit through the L2 portal, the theoretical insertion

maneuver cost is negligible. However, due to the stability of the orbit, a maneuver is per-

formed to insert onto the orbit. Considered the 3:1 synodic resonant distant retrograde orbit

(DRO) in the BCR4BP, as illustrated in Figure  4.64 . The periodic orbit is depicted as the

blue arc and traverses around the Moon in a clockwise direction. The sets of instantaneous

equilibrium solutions near the Moon, i.e., Ẽ1 and Ẽ2, are plotted to visualize the scale of the

orbit. The period of the orbit is equal to one synodic period, and the maximum eigenvalue

of the monodromy associated with the orbit is λ ≈ 1.156. Since the maximum eigenvalue

has a magnitude greater than one, in theory, the orbit is unstable. However, compared to

the eigenvalues for the Lyapunov and Halo orbits, the rate of departure from the orbit is

much slower.
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Figure 4.64. The 3:1 synodic resonant DRO in the Earth-Moon rotating
frame, focused near the Moon

To account for the reduced divergence rate, a periapse Poincaré map is constructed by

performing maneuvers along the orbit. The 3:1 synodic resonant DRO is discretized into

30000 states, and at each instance, a maneuver is performed in the Earth-Moon rotating

velocity direction to increase the energy of the transfer. Each initial condition is then propa-

gated in reverse time for 365 days, and each periapse about the Earth is recorded. Selecting

a maneuver magnitude is non-trivial, and will influence the structure of the map. Note that

the maneuver selected corresponds to LOI costs, and is easily altered for specific mission cri-

teria. The periapse Poincaré map for an LOI maneuver of 50 m/sec is illustrated in Figure

 4.65 . The color of each point represents the flight duration of the transfer. The filled green

circle is the Earth to scale, and the white circle is a planar circular orbit with an altitude of

150 km. The periapse map includes transfers that have up to 5 periapsides prior to reaching

the Earth. By comparing the maps of the Halo orbit and the DRO, i.e., Figure  4.61 and

Figure  4.65 , the structures are less defined for the stable orbit. By increasing the maneuver

magnitude to 75 m/sec and 100 m/sec, the periapse Poincaré maps in Figures  4.66 and  4.67 
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are produced, respectively. The structures within the maps vary as the maneuver magnitude

increases, providing a vast range of initial conditions to select from.

Figure 4.65. Periapse Poincaré map constructed from a 50 m/sec maneuver
off the 3:1 synodic resonant DRO, plotted in the Earth-Moon rotating frame
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Figure 4.66. Periapse Poincaré map constructed from a 75 m/sec maneuver
off the 3:1 synodic resonant DRO, plotted in the Earth-Moon rotating frame

Figure 4.67. Periapse Poincaré map constructed from a 100 m/sec maneuver
off the 3:1 synodic resonant DRO, plotted in the Earth-Moon rotating frame
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A sample transfer from the 75 m/sec map is illustrated in Figure  4.68 . The transfer is

plotted in blue, the lunar orbit is yellow, and the green curve is the 3:1 synodic resonant

DRO rotated into the Sun-B1 coordinate frame. The time of flight for the transfer is 100.6

days.

Figure 4.68. A sample ballistic lunar transfer from a 150 km parking orbit
at the Earth to a 3:1 synodic resonant DRO, plotted in the Sun-B1 rotating
frame

Various forms of continuation schemes offer a range of family types for transfers to stable

periodic orbits. Consider a specific state P along a periodic orbit, denoted as [x̃P , ỹP , z̃P , ˙̃xP , ˙̃yP , ˙̃zP , θS,P ].
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For a transfer to perform a maneuver onto the periodic orbit, the position and epoch must

be equivalent to the desired location. A planar targeting schematic if formulated as

X̄ =



x̃0

ỹ0

˙̃x0

˙̃y0

θS0

t

P



F̄ =



√
(x̃0 + µ̃)2 + ỹ2

0 − η0

(x̃0 + µ̃) ˙̃x0 + ỹ0 ˙̃y0

x̃P − x̃f

ỹP − ỹf

θS,P − θS,f


(4.11)

where the first two constraints are equivalent to the case formulated for the transfers to conic

orbits, described in Equation (  4.4 ). The quantity P in the free variable vector corresponds

to the insertion point along the orbit. Similar to the families of transfers to conic orbits,

there are two more free variables than constraints. Therefore, to construct a family of

transfers, an additional constraint is necessary. The constraint may include any one of

the examples discussed in Section  4.3.1 . However, additional constraints are available for

transfers into periodic orbits. Including a fixed arrival position constraint, and tangential

velocity constraints for both the Earth-Moon and Sun-B1 rotating velocity directions. The

fixed arrival position constraint is trivial, as the term P is removed from the free variable

vector, i.e., the position and Sun angle quantities in the constraint vector become constant.

Applying the sample transfer depicted in Figure  4.68 , a family of solutions arriving at that

fixed location is constructed and illustrated in Figure  4.69 . Each gray arc arrives at the orbit

for a Sun angle of θS = -3.3◦. The blue arc has the lowest LOI maneuver cost of 75 m/sec,

corresponding to the same transfer as the initial guess.

187



Figure 4.69. Family of transfers to a fixed location along the 3:1 synodic
resonant DRO, plotted in the Sun-B1 rotating frame centered at B1

A tangential velocity constraint assumes that the incoming velocity of the transfer is tangent

to the velocity of the orbit at the insertion location, i.e., the maneuver is in the rotating

velocity direction. For a specified change in the Hamiltonian, a maneuver in the velocity

direction is the most cost-effective change in energy. However, the energy changes along

an arc in the BCR4BP, therefore, it is not true that the optimal maneuver solution will be

in the velocity direction. However, a tangential velocity constraint offers insight into the

available geometries in the vicinity of an initial guess. Additionally, a tangential maneuver

in the Earth-Moon rotating frame is not equivalent to a tangential maneuver in the Sun-B1

rotating frame. The tangential velocity constraints originate from the dot product between

the incoming and orbital velocity vectors, written out as

Fvel,EM = ˙̃xf
˙̃xP + ˙̃yf

˙̃yP + ˙̃zf
˙̃zP − Ṽf ṼP (4.12)

Fvel,SB1 = ẋf ẋP + ẏ
f
ẏ

P
+ żf żP − V fV P (4.13)
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where Fvel,EM is the tangential velocity constraint relative to the Earth-Moon rotating ve-

locity, and Fvel,SB1 is the same constraint for the Sun-B1 rotating velocity. The quantities

Ṽ and V are the magnitude of the rotating velocity vectors in the Earth-Moon and Sun-B1

rotating frames, respectively. The subscript f corresponds to the final state on the transfer,

and P is the state on the periodic orbit. Given the same sample trajectory selected from the

periapse Poincaré map, a family of transfers with a tangential arrival Earth-Moon rotating

velocity is illustrated in Figures  4.70 and  4.71 The entire transfer geometry in the Sun-B1

rotating reference frame is depicted in Figure  4.70 , and contains a similar structure to the

fixed arrival family in Figure  4.69 . Each gray arc reaches the 3:1 synodic resonant DRO at

a different location along the orbit. The green arcs represents the periodic orbit, and the

yellow circle is the orbit of the Moon. The variation in insertion location upon the orbit is

more discernible in the Earth-Moon rotating frame, as illustrated in Figure  4.71 . The blue

transfer is the solution with the lowest LOI cost of 71.7 m/sec. The progression of maneuver

cost and time of flight is outlined in Figure  4.72 .

Figure 4.70. Family of transfers that arrive at the 3:1 synodic resonant
DRO with a tangential Earth-Moon rotating velocity direction, plotted in the
Sun-B1 rotating frame centered at B1

189



Figure 4.71. Family of transfers that arrive at the 3:1 synodic resonant
DRO with a tangential Earth-Moon rotating velocity direction, plotted in the
Earth-Moon rotating frame focused about the Moon

Figure 4.72. Evolution of LOI cost and flight duration along the family of
transfers depicted in Figures  4.70 and  4.71 
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Employing the tangential Sun-B1 velocity constraint in Equation ( 4.13 ) to the sample trans-

fer from the map yields the family of transfers illustrated in Figures  4.73 and  4.74 . The

geometry of the transfers in the Sun-B1 rotating frame possesses similar behavior to the

family from Figure  4.70 . The tangential velocity condition is evident in the Earth-Moon

rotating frame, from visual inspection, most transfers are not tangent to the 3:1 synodic

resonant DRO upon arrival. The blue transfer has an LOI cost of 74.2 m/sec, being the

lowest insertion maneuver across the family. The variation in LOI cost and flight duration

for the family is plotted in Figure  4.75 

Figure 4.73. Family of transfers that arrive at the 3:1 synodic resonant DRO
with a tangential Sun-B1 rotating velocity direction, plotted in the Sun-B1
rotating frame centered at B1
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Figure 4.74. Family of transfers that arrive at the 3:1 synodic resonant DRO
with a tangential Sun-B1 rotating velocity direction, plotted in the Earth-
Moon rotating frame focused about the Moon

Figure 4.75. Evolution of LOI cost and flight duration along the family of
transfers depicted in Figures  4.73 and  4.74 
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Sets of fixed LOI maneuver families characterize local behavior into the stable periodic

orbits. Fixed maneuver families to conic orbits illustrate feasible transfer scenarios for a

specified mission constraint, i.e., constant TLI or LOI. The same constraint derived in Equa-

tion (  4.6 ) is applied upon arrival into stable orbits. Arrival conditions into a stable orbit

vary as a function of the maneuver size. A direct comparison between different maneuver

magnitude families offers insight into the flow arriving into the orbit. The blue transfer in

Figure  4.73 is employed as the initial guess to construct five fixed LOI maneuver families,

with insertion costs of 68 m/sec, 70 m/sec, 75 m/sec, 80 m/sec, and 85 m/sec. Observing

the difference between the families is non-trivial in position space, as the families overlap

in both the Sun-B1 and Earth-Moon rotating frames. To assess the behavior, the flight

duration and arrival epoch into the DRO for each family is illustrated in Figure  4.76 . Each

curve represents a closed family of planar transfers into the 3:1 synodic resonant DRO. The

color in the legend designates the respective LOI maneuver cost for the families. Each arrival

Sun angle corresponds to a unique state on the periodic solution. Therefore, each family in

Figure  4.76 has two conditions that arrive at the state associated with a Sun angle of -5◦,

while the 85 m/sec family is the only family with a solution that arrives unto the DRO for a

Sun angle of -25◦. The larger curve corresponds to a wider range of available solutions. For

this sample scenario, as the maneuver magnitude increases, more transfers into the DRO

become accessible.
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Figure 4.76. Evolution of flight duration and arrival epoch, i.e., Sun angle,
for five families of ballistic lunar transfers with varying LOI magnitude

Constructing transfers to stable multi-body orbits is non-trivial. By nature, the motion

that traverses into a stable solution is limited. Therefore, an assessment of varying maneuver

magnitudes and arrival conditions is necessary. The techniques presented in this section aid

in the exploration of viable transfer designs.
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5. CONCLUDING REMARKS

5.1 Summary

The increasing demand to explore cislunar space necessitates an understanding of low-

energy paths to the Moon. Ballistic lunar transfers leverage the gradual influence of the Sun

to reduce the propellant cost of lunar orbit insertion. The objective of this investigation

is to examine properties of ballistic lunar transfers and introduce techniques that construct

families of applicable trajectories. Techniques that explore low-energy transfers in the Earth-

Moon-Sun system are presented.

Understanding the natural variation in energy within the BCR4BP offers vast insight

into the model. A key component to this investigation is exploring the natural patterns that

enable ballistic lunar transfers to reduce LOI costs. Uncovering a quantitative expression

for the variation in each Hamiltonian highlights the Earth, Moon, and Sun’s impact on the

energy of a ballistic arc. The perturbing effects of the Sun, far from the Earth-Moon system,

is separated into four distinct regions, i.e., quadrants, that describe the change in the Earth-

Moon Hamiltonian. Proper placement of a spacecraft amongst the regions enables low-cost

solutions.

Numerical methods are adapted to construct families of ballistic lunar transfers. Families

of transfers in the Sun-Earth CR3BP catalog the types of geometries that arrive at the orbit

of the Moon tangentially. In the CR3BP, the flight duration and energy of each transfer

in the family are considered. Although families in the Sun-Earth system do not include

the gravitational influence of the Moon, they are able to depict the governing impact of

solar perturbations on a trajectory near the Earth, and offer effective initial conditions when

transitioning to a higher fidelity model. The BCR4BP enables end-to-end trajectory design of

ballistic lunar transfers by incorporating the Earth, Moon, and Sun into one, coherent model.

Due to the additional complexities of the BCR4BP, the solution-space is expanded and a

larger range of family types exist. This investigation considered fixed period, fixed arrival

epoch, fixed maneuver, and tangential velocity families. Each family type provides different

knowledge to desired mission criteria. For example, a fixed maneuver family displays the
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range of possible ballistic lunar transfers for a fixed LOI propellant cost. Families of transfers

to planar conic orbits, and stable multi-body orbits are constructed.

An understanding of the gravity models facilitates the existence of low-cost ballistic lunar

transfers. One challenge associated with low-energy solutions is assessing the optimal costs.

Thus, it is advantageous to have a metric to compare the cost of a transfer to. Given the zero

velocity surfaces and the natural evolution of energy in the BCR4BP, a theoretical minimum

maneuver cost is devised. The theoretical minimum maneuver cost is a quantity that depends

on the final orbit about the Moon, and measures the efficiency of a transfer based on its

LOI cost. Instantaneous equilibrium solutions in the BCR4BP provide a natural transfer

through the portals bounded by the zero velocity surfaces, and thus, provide solutions near

the theoretical minimum maneuver. Truly ballistic transfers to cislunar space with no LOI

cost are achievable. By leveraging stable manifolds off of unstable periodic orbits, a transfer

near Earth follows a ballistic path through the BCR4BP into an unstable orbit. Techniques

within dynamical systems theory offer low-cost ballistic lunar transfers.

5.2 Recommendations for Future Work

Ballistic lunar transfers are governed by the complex dynamics of the four-body problem.

A majority of this investigation restricted the motion to the planar problem. In practice, the

Earth-Moon-Sun system is even more dynamic, and complicated. A direct continuation of

this work considers transitioning a transfer from either the CR3BP or BCR4BP to a higher

fidelity ephemeris model. Previous authors have shown the capability of transitioning be-

tween these models [  10 ] [ 12 ]. However, understanding the transformation process is insightful

into the higher fidelity system. To analyze the impact of a more complicated model, one area

of continued research resides in the Sun out-of-plane BCR4BP. Understanding the impact

a spatial primary system has on the motion of a spacecraft is critical to implementing low-

energy transfers. Another field of research considers the hidden structures of the BCR4BP.

The limited quantity of periodic solutions reduces the natural structures through the system,

even though a similar governing flow exists. Assessing the BCR4BP, and the tools within

that model, will greatly enhance mission design capabilities. The last recommendation for
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future work relates to the application of ballistic lunar transfers. In practice, operating er-

rors and spacecraft constraints will pose more complicated mission architecture. Designing

a mission to inhibit the impact of errors and extend the launch window are critical. Further

work into assessing the stability of ballistic lunar transfers is desirable.
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