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ABSTRACT 

There is growing interest in the use of nanosecond surface dielectric barrier discharge (ns-SDBD) 

actuators for high-speed (supersonic/hypersonic) flow control. A plasma discharge is created in 

these actuators using a nanosecond-duration pulse of several kilovolts to deposit energy rapidly in 

the electrode gap which causes the electrical breakdown. This creates a rapid heat release, which 

leads to the formation of a shock wave and the development of a complex three-dimensional flow 

field that is not fully understood.  

Actuators based on ns-SDBDs have been applied to high-speed flow control problems such 

as shock-boundary layer interactions (SBLI), but the results have been mixed and the control 

authority of the actuator is not well established. This is because, although a general idea of the 

flow features induced by a ns-SDBD exists, the effect of the actuator geometry (such as the 

filament spacing) and the operating parameters (such as the pulse frequency) on the induced flow 

are not well understood and play a critical role in flow control applications.  

Even the flow field induced by a single pulse of a ns-SDBD is not entirely understood at a 

more fundamental level, in contrast to the well-characterized AC-driven SDBD. The flow field 

induced by ns-DBDs is on much shorter time scales (by almost an order of magnitude) and involves 

large spatiotemporal gradients in the velocity and temperature fields, posing a significant 

experimental challenge. Majority of the past work has been limited to qualitative visualizations 

such as schlieren imaging, and detailed measurements of the induced flow are required to develop 

a mechanistic model of the actuator performance, such as the heating and vorticity production, and 

to develop design rules to guide the development and deployment of these actuators.  

 Background-Oriented Schlieren (BOS) is a recently developed optical flow diagnostic that 

is a quantitative variant of schlieren imaging and can be used to measure the density and 

temperature fields of the actuator induced flow. BOS measures density gradients in a flow field by 

tracking the apparent distortion of a target dot pattern. Since density and refractive index are 

proportional for fluids, density gradients in a flow are associated with refractive index gradients, 

and an object viewed through a variable density medium will appear distorted due to the refraction 

of light rays traversing the medium. The distortion of the dot pattern is typically estimated by 

cross-correlating an image of the dot pattern without the density gradients (called the reference 

image) with a distorted image viewed through the density gradients (called the gradient image). 
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The density gradients can be integrated spatially to obtain the density field, generally by solving 

the Poisson equation using different computational procedures. Owing to the simple setup and ease 

of use, BOS has been applied widely in laboratory scale experiments as well as in large scale 

experiments and rugged industrial facilities, and is becoming the preferred method of density 

measurement in fluid flows. 

However, BOS features several unaddressed limitations with potential for improvement, 

especially for application to complex flow fields such as those induced by plasma actuators. Some 

of the limitations are: 1) low spatial resolution due to the large window-sized used in cross-

correlation algorithms, 2) lack of an uncertainty quantification methodology, and 3) the density 

integration procedure using the Poisson solver is very sensitive to noise. Further, since BOS 

comprises several factors like the dot pattern, illumination, density gradients, optical system and 

the processing algorithms, each of these factors contribute to the final measurement 

error/uncertainty in a complex manner.  

This thesis presents a series of developments aimed at improving the various aspects of the 

BOS measurement chain to provide an overall improvement in the accuracy, precision, spatial 

resolution and dynamic range. A brief summary of the contributions are:  

1) a synthetic image generation tool to perform error and uncertainty analysis for PIV/BOS 

experiments,  

2) an uncertainty quantification methodology to report local, instantaneous, a-posteriori 

uncertainty bounds on the density field, by propagating displacement uncertainties through 

the measurement chain, 

3)  an improved displacement uncertainty estimation method using a meta-uncertainty 

framework whereby uncertainties estimated by different methods are combined based on 

the sensitivities to image perturbations,  

4) the development of a Weighted Least Squares-based density integration methodology to 

reduce the sensitivity of the density estimation procedure to measurement noise. 

5) a tracking-based processing algorithm to improve the accuracy, precision and spatial 

resolution of the measurements,  

6) a theoretical model of the measurement process to demonstrate the effect of density 

gradients on the position uncertainty, and an uncertainty quantification methodology for 

tracking-based BOS, 
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Then the improvements to BOS are applied to perform a detailed characterization of the 

flow induced by a filamentary surface plasma discharge to develop a reduced-order model for the 

length and time scales of the induced flow. Filamentary discharges are chosen because they can 

provide localized heating with minimal power density requirements and provide better control 

authority as their position on the surface and morphology is known and controllable. While 

reducing the problem to a single filament and a single pulse is a considerable simplification from 

practical applications, it allows us to remove the interaction between the flow induced by adjacent 

filaments and subsequent pulses. A candidate actuator is identified that can be used to create a 

well-controlled single plasma filament with a single pulse and then perform PIV and BOS 

measurements to characterize the induced flow for a range of discharge energies. The 

measurements show that the induced flow consists of a hot gas kernel filled with vorticity in a 

vortex ring that expands and cools over time. A reduced-order model is developed to describe the 

induced flow and show that the expansion of the kernel is governed by the vortex ring motion, and 

the entrainment of cold gas governs the cooling. Applying the model to the experimental data 

reveals that the vortex ring's properties govern the time scale associated with the kernel dynamics. 

The model predictions for the actuator-induced flow length and time scales can guide the choice 

of filament spacing and pulse frequencies for practical multi-pulse ns-SDBD configurations. 

 Overall this dissertation advances the accuracy, precision, spatial resolution, and dynamic 

range of image-based density diagnostics using BOS along with the first uncertainty quantification 

method, and applies these advancements to characterized flow induced by a novel plasma actuator, 

to develop a reduced-order vortex model for mixing and transport.  
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 PIV/BOS SYNTHETIC IMAGE GENERATION IN VARIABLE 

DENSITY ENVIRONMENTS FOR ERROR ANALYSIS AND 

EXPERIMENT DESIGN 

Lalit K. Rajendran1, Sally P. M. Bane1 and Pavlos P.  Vlachos2 
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Abstract 

We present an image generation methodology based on ray tracing that can be used to render 

realistic images of Particle Image Velocimetry (PIV) and Background Oriented Schlieren (BOS) 

experiments in the presence of density/refractive index gradients. This methodology enables the 

simulation of aero-thermodynamics experiments for experiment design, error, and uncertainty 

analysis. Images are generated by emanating light rays from the particles or dot pattern, and 

propagating them through the density gradient field and the optical elements, up to the camera 

sensor. The rendered images are realistic, and can replicate the features of a given experimental 

setup, like optical aberrations and perspective effects, which can be deliberately introduced for 

error analysis. We demonstrate this methodology by simulating a BOS experiment with a known 

density field obtained from direct numerical simulations (DNS) of homogeneous buoyancy driven 

turbulence, and comparing the light ray displacements from ray tracing to results from BOS theory. 

The light ray displacements show good agreement with the reference data. This methodology 

provides a framework for further development of simulation tools for use in experiment design 

and development of image analysis tools for PIV and BOS applications. An implementation of the 

proposed methodology in a Python-CUDA program is made available as an open source software 

for researchers. 

1.1 Introduction 

Particle Image Velocimetry (PIV)[1] and Background Oriented Schlieren (BOS)[2] are widely 

used techniques to investigate complex flows. In PIV, the flow of interest is seeded with particles 

and the flow velocity is measured by estimating the particle displacements between two successive 

https://doi.org/10.1088/1361-6501/ab1ca8
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frames. In BOS (also sometimes referred to as “Synthetic Schlieren”) [3], the density gradients in 

a flow are measured by the apparent shift of a dot pattern viewed through a variable density 

medium, where the displacement is evaluated using methods similar to PIV. To assess and improve 

the accuracy of the displacement estimation algorithms, synthetic particle and/or BOS images are 

required. For the images to be suitable for testing the algorithms, they must be realistic, i.e., they 

should display real world artifacts like optical aberrations due to the camera setup, out-of-focus 

effects, etc. To simulate these effects, current synthetic image generation techniques use empirical 

models which are too generic to be applied to specific optical systems [1]. In addition, these models 

cannot be used to simulate effects like ray deflection due to the presence of density gradients, 

which is an important concern in compressible flow experiments, and several past studies have 

shown that PIV measurements in environments with refractive index fluctuations can cause 

measurement errors. [4]–[7]. 

Ray tracing is a physically realistic alternative, where light rays generated from the 

particles/dot patterns are traced through the flow under investigation and the optical setup, all the 

way to the camera sensor. This approach does not require any ad-hoc models and can also naturally 

handle effects like ray deflection due to density gradients. Although ray tracing tools are ubiquitous 

across many applications [8]–[10], the methodology presented herein is novel as it is the first to 

combine density gradients effects with high order numerical schemes, specific user-defined optics 

without paraxial/thin lens approximations, and camera/sensor parameters with a physical 

diffraction model along with fluid flow in one package tailored for simulating general aero-

thermodynamics experiments. 

A significant challenge is that ray tracing is computationally expensive due to the large 

number of rays required to faithfully reproduce an image. For example, a typical tomographic 

(Tomo) PIV experiment would have about 100,000 particles inside a laser sheet volume of 300 

cm3. To simulate a particle with sufficient dynamic range, about 10,000 rays are required, which 

corresponds to a total of 1 billion rays to render a single image, thus posing a significant 

computational challenge. However, since the path of each light ray is independent of all other rays, 

this process can be very efficiently parallelized and implemented on Graphics Processing Units 

(GPUs) which can launch several thousand threads at a time in addition to about a trillion floating 

point operations (FLOPs) per second. This capability of GPUs is exploited in the current work to 

significantly accelerate the image generation process. 
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In the subsequent sections, we first describe in detail the synthetic image generation 

methodology used to render realistic particle/BOS images in a varying density/refractive-index 

medium, and then present an application for Background Oriented Schlieren (BOS) experiments. 

This approach renders images unique to a given optical setup and can be a valuable tool for guiding 

the choice of optical elements and their placements in the experimental setup to mitigate adverse 

effects like optical aberrations and steep viewing angles. On the other hand, these effects can be 

deliberately included for error analysis so that the robustness of an algorithm can be tested for a 

wide variety of conditions. Some sample particle images generated using the proposed 

methodology are shown in Figure 1.1. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 1.1. Sample particle images generated using the proposed methodology displaying 

some common experimental artifacts. (a) Normal Image, (b) Out of focus effects, (c) Lens 

aberration near edges, (d) Perspective effect, (e) Blurring due to density gradients (normal 

shock wave in the center of the image). 

1.2 Image Generation Methodology 

The image generation process, shown schematically in Figure 1.2, is comprised of four steps: 

(1) generating the light rays, (2) tracing the light rays through density gradients, (3) propagating 

the light rays through optical elements, and (4) intersecting the rays with the camera sensor to 

update the pixel intensities. Each of these steps is described in more detail in the following sections. 
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Figure 1.2. Synthetic image generation methodology. 

1.2.1 Generating the Light Field 

The light rays generated from the particles/dot pattern are considered as vectors connecting source 

points in the flow field to points of intersection on the camera lens. The source point can be a 

particle for a PIV experiment or a dot pattern for a BOS experiment. The origin of the light ray 

vector corresponds to the position of the source point, and its direction corresponds to a unit vector 

connecting the origin to the point of intersection on the camera lens. Ideally, an infinite number of 

such light rays can be generated from each source point towards points located on the camera lens. 

Increasing the number of light rays increases the dynamic range of the generated images but also 

increases the computational cost.  

 

The radiance of the light ray may have an angular dependence based on the type of 

scattering associated with the source point. In the case of a PIV particle field where the particle 

diameters are typically of the same order of the wavelength of the laser, the radiance of the light 

ray can be estimated using Mie scattering [11]. The scattering cross-section and efficiency depends 

on the size of the particle, the wavelength of the laser beam, the relative refractive index of the 

particle with respect to the medium, and the angle between the light ray vector and the direction 
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of propagation of the laser beam. The Mie scattering computations are performed using the method 

outlined in Bohren & Huffman [12]. 

1.2.2 Tracing Rays through Density Gradients 

A light ray will experience changes in its direction as it passes through a medium containing 

density gradients due to the dependence of the refractive index on the local density as expressed 

by the Gladstone-Dale relation:  

 𝑛 = 𝐾𝜌 + 1 (1) 

where 𝑛  is the refractive index of the medium, 𝜌 is the density, and 𝐾  is the Gladstone-Dale 

constant, which has a value of 0.226 cm3/g for air. Therefore, regions of density gradients also 

contain refractive index gradients. For a medium containing a continuous change of refractive 

index, Fermat’s principle from geometric optics enables a fast and accurate computation of the 

trajectory of a light ray through the medium, and the equation for the ray curve is given by [13],  

 𝑑

𝑑𝜉
(𝑛

𝑑𝑥⃗

𝑑𝜉
) =  ∇𝑛 (2) 

Here 𝑥⃗(𝜉) represents the ray curve and (𝜉, 𝜂) are the ray-fitted co-ordinates as shown in 

Figure 1.2. Equation (2) is transformed and discretized using a 4th order Runge-Kutta algorithm 

following the method of Sharma et. al. [14]  and the position and direction of the light ray passing 

through the variable density medium can be updated based on the local refractive index gradient 

as follows, 

 
𝑅𝑖+1 = 𝑅𝑖 + [𝑇𝑖 +

1

6
(𝐴 + 2𝐵)] 𝛥𝜉 

𝑇𝑖+1 = 𝑇𝑖 +
1

6
(𝐴 + 4𝐵 + 𝐶) 

(3) 

where 𝑅, 𝑇 are 1D arrays representing the position and direction, respectively, and are given by, 

 

                                        𝑅 = (
𝑥
𝑦
𝑧
) ;   𝑇 = 𝑛 (

𝑑𝑥/𝑑𝜉
𝑑𝑦/𝑑𝜉 
𝑑𝑧/𝑑𝜉

)                                   . (4) 

The variable 𝑛  is the refractive index and the subscript 𝑖  represents the grid point 

corresponding to the given location of the ray. The constants 𝐴, 𝐵 and 𝐶 are functions of the 

refractive index gradients and are given by, 

 𝐴 = 𝐷(𝑅𝑖)𝛥𝜉 

𝐵 = 𝐷 (𝑅𝑖 + (
1

2
𝑇𝑛 +

1

8
𝐴) 𝛥𝜉) 𝛥𝜉 

(5) 
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𝐶 = 𝐷 (𝑅𝑖 + (𝑇𝑛 +
1

2
𝐵)𝛥𝜉) 𝛥𝜉 

and the function 𝐷 is given by 

 

                        𝐷 = 𝑛 (

𝜕𝑛/𝜕𝑥
𝜕𝑛/𝜕𝑦
𝜕𝑛/𝜕𝑧

) =
1

2
(

𝜕𝑛2/𝜕𝑥

𝜕𝑛2/𝜕𝑦

𝜕𝑛2/𝜕𝑧

)                        . (6) 

An open-source implementation of solving Fermat’s equation on a GPU with a piecewise 

linear approximation (1st order) was provided by SchlierenRay, an artificial schlieren image 

rendering software developed by Brownlee et. al. [15] Their methodology has been extended to 

include higher order discretizations and integrated with a full light field-based ray tracing approach 

for the present application. 

1.2.3 Propagating Light Rays through Optical Elements 

When light rays pass through optical elements, they can undergo one or more of the following 

processes: (1) reflection (mirrors), (2) refraction (lenses, windows), and (3) selective transmission 

(apertures). All of these processes are modeled in the ray tracing methodology, as shown in Figure 

1.2. In all cases, the intersection of a ray with the optical element is first computed based on the 

element’s geometry. For example, in the case of a spherical mirror/lens the intersection point is 

calculated based on the element center, diameter, and radius of curvature. After computing the 

intersection, the effect of the element is modeled as follows:  

1. Reflection due to mirrors is modeled using the law of reflection based on the direction of 

the light ray with respect to the local surface normal. 

2. Refraction due to lenses/windows is modeled using Snell’s Law [16], given by 

 𝑛𝑖 sin(𝜃𝑖) = 𝑛𝑓 sin(𝜃𝑓), (7) 

where 𝜃𝑖  is the angle of incidence, 𝜃𝑓  is the angle of refraction, and 𝑛𝑖  and 𝑛𝑓   are the 

refractive indices of the two media on either side of the refractive surface. For elements 

with multiple refractive surfaces like a lens, the refraction is performed sequentially on 

each surface, considering the possibility of total internal reflection if the ray passes from a 

medium of higher refractive index to a medium of lower refractive index. It should be noted 

that this approach is quite general and does not require assumptions regarding the paraxial 

nature of the light rays (as used in matrix methods) or the thickness of the lens, and it is 

straightforward to include transmittance and dispersive effects of the lens as required. 
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Further, an array of lenses as in a Plenoptic camera, for example, can also be modeled using 

this approach. 

3. Selective transmission due to apertures is enforced by only allowing light rays that intersect 

the plane of the aperture and lie within its opening area (or pitch) and blocking the rest.  

1.2.4 Intersecting a Ray with the Camera Sensor and Incrementing Pixel Intensities 

The final step in the ray tracing process is the intersection of a light ray with the camera sensor, 

which is solved as a line-plane intersection problem. The diffraction spot is described by an Airy 

function and is approximated by a Gaussian in this application [17], and the integrated intensity 

across a pixel is calculated using an error function, as in the case of synthetic PIV image generation 

[18]. The point of peak intensity is the point of intersection of the light ray with the camera sensor, 

and the diffraction diameter is a function of the optical system as given by, 

                     𝑑𝜏 = 2.44𝜋𝑓#(𝑀 + 1)𝜆                 . (8) 

 

Here 𝑑𝜏  is the diffraction diameter, 𝑓#  is the f-number of the camera, 𝑀  is the 

magnification, and 𝜆 is the wavelength of light [17]. For white light illumination in the case of 

BOS/calibration targets, an effective wavelength corresponding to the green color is used. 

This procedure is repeated for all light rays that intersect the camera sensor to obtain an 

image of the particle field/dot pattern. The dynamic range of the final intensity distribution 

increases with the number of light rays used to render a particle or dot, but this also increases the 

computational cost and run time. It was observed from trials that about 10,000 rays are sufficient 

to provide a 16-bit dynamic range. 

1.2.5 Parallelization using CUDA 

The ray tracing methodology just described is computationally intensive due to the large number 

of light rays (~ 1 billion) required to render an image with sufficient dynamic range. Since the 

trajectories of the light rays are independent of each other, the ray tracing calculations can be 

parallelized using Graphics Processing Units (GPUs). This methodology was implemented using 

a CUDA framework with a Python front-end. The images in the present work were generated using 

an NVIDIA Tesla C2050 GPU, which has 14 streaming multi processors each containing 32 cores 
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for an overall total of 448 cores. Each multi-processor can launch a maximum of 1536 threads 

amounting to a total of about 21,000 threads at a time.  

The details of the parallelization in terms of grids, blocks and threads are as follows. Each 

thread on the GPU corresponds to a single light ray, and all the computations starting from the ray 

generation to the intersection with the camera sensor are done independently. All light rays 

originating from the same particle/dots are organized in blocks, to take advantage of the shared 

memory in CUDA which has very fast read and write speeds [19]. Thus the information common 

to all light rays originating from the same particle are stored in shared memory, which frees up the 

local memory and enables launching a larger number of threads. The number of threads that can 

be stored in a block and the number of blocks that can be launched are subject to hardware 

limitations. 

In summary, the approach presented in this paper is an integrated implementation of state of 

the art methods for the various components of the image generation methodology in one package 

for simulating general aero-thermodynamics experiments. The improvements presented in this 

approach and their possible applications are: 

1. A light field approach for ray generation which lends itself well to simulating Plenoptic 

experiments, as well as integrated Mie scattering calculations to account for the particle 

diameter, refractive index, laser wavelength etc. along with a consideration of the laser 

sheet intensity profile to accurately simulate, for example,  forward/backward scatter 

viewing configurations, among other parameters. 

2. Accurate ray tracing through density gradients with higher order Runge-Kutta schemes, 

which becomes important in simulating flows involving sharp changes in density, such as 

experiments with shock waves. 

3. Non-linear ray tracing through the optical elements without any paraxial or thin lens 

approximations. This allows us to introduce optical aberrations in a controlled manner, as 

evident in Figure 1 (c). This is important in simulating experiments where optical 

aberrations can have a large contribution to the error, such as facilities with curved 

windows, simulating thick lenses with short radius of curvatures etc. 

A physically correct diffraction model for the image formation on the camera sensor. This is 

critical in assessing cross-correlation/tracking based PIV/BOS algorithms because the subpixel 
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fitting operation is very sensitive to the intensity profile of the particle/dot, and hence dependent 

on the diffraction diameter of the optical layout. 

1.3 Error Analysis 

The accuracy of the image generation methodology was simulated using three cases: a) Luneburg 

lens to test the ray tracing through the density gradients, b) a full Background Oriented Schlieren 

(BOS) experiment with a known density field and user defined camera optics and comparing the 

final light ray deflections recorded on the camera sensor to predicted displacements from BOS 

theory.  

1.3.1 Luneburg Lens 

The Luneburg lens [20] is a gradient index lens with the refractive index distribution within the 

lens given by, 

 

                       𝑛(𝑟) = √2 − (
𝑟

𝑅
)

2

                         (9) 

where 𝑛 is the refractive index, 𝑟 is the radial co-ordinate, and 𝑅 is the radius of the lens. The lens 

has the property that an incoming parallel beam of light rays is focused on to the optical axis at the 

back surface of the lens, and is a standard benchmark test in the gradient-index optics 

literature.[14], [21], [22]  

This lens is used as the refractive index medium and the light rays are traced through it 

using the method outlined above. Some sample light ray trajectories are shown in Figure 1.3 (a) 

and it is seen that rays entering at various heights are focused very close to the exit plane. The 

positions of the light rays on the exit plane of the lens are recorded and any deviation from zero is 

considered to be an error. This test enables us to isolate the part of the method used to trace rays 

through density gradients from the overall image generation methodology and validate it 

separately. 

Monte-Carlo simulations were performed for 1000 light rays entering the lens at random 

X,Y locations, and the average exit height error was calculated upon leaving the lens. The number 

of grid points used to represent the refractive index field of the Luneburg lens were varied from 

25 to 250, and the average exit height errors are plotted as a function of grid points for a 1st order 
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Euler method and the 4th order Runge-Kutta (RK4) method in Figure 1.3 (b). It is seen that the 

error levels are low for both methods and that the RK4 method gives a lower error than the Euler 

method for any grid point. Further, it is seen that the RK4 method also has a higher rate of decrease 

of error with increasing grid points due to the higher order of the method. This test serves as a 

validation for the image generation methodology for tracing rays through the density gradients.  

 

1.3.2 Background Oriented Schlieren (BOS) simulation 

For the BOS test, two density fields were considered: 1) a constant density gradient field designed 

to create a uniform displacement of the dot pattern and 2) a more realistic density field taken from 

a direct numerical simulation (DNS) of homogeneous buoyancy-driven turbulence. The layout of 

the BOS experimental setup modeled in the image generation software for simulations involving 

both density fields is shown in Figure 1.4, and the parameters describing the placement of the 

elements are summarized in  

 

 

Table 1.1. The refractive index experienced by a light ray is a function of its wavelength, 

and decreases with increasing wavelength in the visible range. Therefore the angular deflection 

experienced by a light ray also changes with wavelength, and this issue has been analyzed for 

synthetic schlieren measurements by Kolaas et. al. [23] A monochromatic light source with a 

 
 

 

(a) (b) 

Figure 1.3. Results of applying the methodology to trace light rays through the Luneburg 

lens. (a) Sample Trajectories using the Euler scheme and (b) Errors in the exit height for the 

Euler and RK4 schemes. 
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wavelength of 532 nm was considered in this study and the ambient refractive index is set to be 

1.00028.  

 

 

Figure 1.4. Layout of the experimental setup used to simulate a BOS experiment with a known 

density field. 

 

 

Table 1.1. Summary of image generation parameters used to simulate the BOS experiment 

𝑍𝐴 0.75 m 

𝑍𝐷 0.25 m 

𝐿𝑥 x 𝐿𝑦 x 𝐿𝑧 32 x 32 x 10 mm 

Focal Length 105 mm 

Aperture (𝑓#) 11 

Magnification 0.12 

Pixel Pitch 10 um 

Dot density 20 dots / 32x32 pix. 

 

1.3.3 Uniform Density Gradient 

For this case, a density field with a constant gradient was simulated, where the density gradient 

was designed to create a uniform displacement of the light rays emerging from a dot pattern. The 

magnitude of the density gradient field was calculated from the desired pixel displacement and the 

optical layout of the system using BOS theory. The theoretical displacement of a light ray for a 

BOS experiment is given by  



 

 

29 

 

𝛥𝑋⃗ =
𝑀𝑍𝐷

𝑛0
∫ 𝛻𝑛 𝑑𝑧 

𝑧𝑓

𝑧𝑖

  

≈  
𝑀𝑍𝐷𝐾

𝑛0

 (𝛻𝜌)𝑎𝑣𝑔𝐿𝑧                 

(10) 

where 𝛥𝑋⃗ is the theoretical deflection of a light ray, (𝛻𝜌)𝑎𝑣𝑔 is the path-averaged value of the 

density gradient, 𝐾 is the Gladstone-Dale constant, 𝑛0 is the ambient refractive index, and 𝐿𝑧 is 

the depth/thickness of the density gradient field [2]. Using the above equation, a value of (∇𝜌)𝑎𝑣𝑔 

is calculated using the values of the experimental parameters from  

 

 

Table 1.1. This test enables us to test the entire simulation chain without the spatial resolution 

limitations involved with BOS measurements. 

Tests were conducted with the theoretical displacement field being varied from 0 to 3 pix. 

to provide a range representative of typical BOS experiments, and the average displacements of 

all light rays from the field of view is shown in Figure 1.5. It can be seen that there is good 

agreement between the theoretical displacements and calculated displacements from the ray 

tracing simulations.  

 

Figure 1.5. Comparison of theoretical and simulated light ray deflections. 

 

1.3.4 Buoyancy Driven Turbulence 

The DNS data used for this test are from simulations performed by performed by Livescu et. al. 

[24]–[26] and downloaded from the Johns Hopkins University Turbulence Database (JHU-TDB) 

[24], [27], [28]. Two dimensional (x, y) slices of the flow field from two time instants were chosen, 
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and for each time instant, a three-dimensional density volume was constructed by stacking the 

same two-dimensional slice along the z-direction, thereby ensuring that the gradient of density in 

the z direction was zero. This was done to account for the depth integration limitation of BOS 

measurements and to enable a better comparison of the simulated light ray deflections to theory. 

The refractive index was calculated using Equation (1) using the Gladstone-Dale constant for air, 

and for the case with the DNS data, the non-dimensional density field was scaled by a factor of 

1.225 kg/m3 to simulate air properties. The values of the experimental parameters were taken from 

 

 

Table 1.1. 

The contours of the input density and density gradients, the theoretical displacements 

calculated from Equation (9), and the light ray displacements from ray tracing simulations are 

shown in Figure 1.6. The depth averaged density gradient (𝛻𝜌)𝑎𝑣𝑔 used to calculate the theoretical 

displacements is taken to be the two-dimensional density gradient field shown in Figure 1.6, as 

identical 2D slices were stacked to create a 3D density field during the simulations. 

 

Density Density Gradient Theoretical 

Displacements 

Light Ray 

Displacements 

    

    

Figure 1.6. Contours of density, density gradients, theoretical displacements, and simulated 

light ray displacements from the ray tracing simulations using DNS data. 

 

The light ray displacements from the ray tracing simulations will be randomly scattered on 

the camera sensor due to the random positions of the dots on the target from which the light rays 
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originate. The ray displacements corresponding to a single dot are averaged and interpolated onto 

a regular grid using a bilinear interpolation and displayed in Figure 1.6. The figure shows that the 

contours of light ray displacements from the simulations closely correspond to the theoretical 

displacements except that they are smoothed out. The mismatch between the theoretical and 

simulated light ray deflections is due to two reasons: (1) the theoretical equation is based on small 

angle approximations, and (2) the spatial resolution limitation of the BOS experimental setup 

whereby the light ray deflection of a dot is the average light ray displacement of all rays comprising 

a ray cone. Both these effects are consistent with well-known characteristics of BOS experiments 

[2], [29], [30]. Further, it is to be noted that when these two effects are negligible, as in Section 

1.3.3 with the uniform density field, the methodology is able to accurately match the theoretical 

displacements. 

Overall, these results show that the proposed methodology is capable of generating accurate 

synthetic images for user-defined density fields and optical layouts. 

1.4 Application: Trade-off between Measurement Sensitivity and Spatial Resolution for 

BOS experiments 

To further illustrate the capability of the proposed image generation methodology to aid in 

experiment design, we show the application of the methodology for assessing the tradeoff between 

Measurement Sensitivity and Spatial Resolution for BOS experiments. 

In BOS experiments, the relative placement of the density gradient field with respect to the 

dot pattern and the camera lens is a crucial parameter that determines the measurement quality. In 

particular, the parameter ZD which denotes the distance between the dot target and the mid plane 

of the density gradient field (shown in Figure 1.4), controls both the measurement sensitivity, 

defined as the apparent displacement of a light ray produced per unit angular deflection, and the 

spatial resolution of the measurement. This issue has been theoretically analyzed in the past by 

Gojani et. al. [31] using simplified models for the optics and the density gradient field. Here, we 

apply the ray tracing methodology to directly evaluate this effect without simplifying assumptions. 

The parameter ZD has a contradictory effect on the sensitivity and spatial resolution 

because, the measurement sensitivity (= 𝑀𝑍𝐷) increases with ZD, but for increasing values of ZD, 

a ray cone emerging from the dot pattern covers a larger area of the density gradient field. Since 
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the apparent displacement of a dot recorded on the sensor is the average displacement of all light 

rays within the ray cone, a larger ray cone leads to more averaging and a loss of spatial resolution.  

To illustrate this effect, we simulate a BOS experiment with the density field given by a 

sharp jump designed to represent a normal shock. The density and corresponding density gradient 

distribution along x are shown in Figure 1.7, and both fields are uniform along y and z 

(
𝜕𝜌

𝜕𝑦
=

𝜕𝜌

𝜕𝑧
= 0). For a fixed distance ZB between the camera lens and the dot pattern, three positions 

of the density gradient field are simulated (ZD/ZB = 0.25, 0.5, 0.75). For each case, an image of a 

dot pattern with and without the density gradient field is rendered, and the apparent displacements 

of the light rays are calculated. 

 

 

 

(a) 

 
 

(b) 

Figure 1.7. (a) Density and (b) Density Gradient distribution for the sensitivity study 

 

Figure 1.8 (a) shows the density gradient field experienced by all rays emerging from a 

single dot in the center of the image, and it is seen that as ZD/ZB increases, the region of the density 

gradients covered by the ray cone increases. Since the apparent displacement of a dot on the sensor 

corresponds to the average of this density gradient distribution, light rays from adjacent dots travel 

through overlapping regions of the density gradient field, leading to a loss in spatial resolution. 

This effect is shown in Figure 1.8 (b) showing the average displacements of light rays emerging 

from a row of dots along x, where it is seen that the displacement field recorded on the sensor has 

a higher peak displacement for higher values of ZD/ZB (corresponding to a higher measurement 

sensitivity), but more smoothed, corresponding to a lower spatial resolution. Overall, these trends 

are in agreement with the analysis by Gojani et. al. [31]  It is to be noted however, that as ZD/ZB 

increases, the magnification of the density gradient field (different from the magnification of the 
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dot pattern) increases, and hence for the cases with ZD/ZB = 0.5 and 0.75, the displacement field 

appears asymmetric because of clipping due to the finite size of the camera sensor. 

 

 

(a) 

 

 

(b) 

Figure 1.8. Results of the BOS sensitivity study for three positions of the density gradient field 

(a) Density gradient field experienced by all light rays corresponding to a single dot and (b) 

Measured displacement field from the whole image. 

 

These results, in addition to the sample particle images shown in Figure 1.1, illustrate the 

capability of the proposed image generation methodology to accurately generate realistic PIV/BOS 

images. The methodology enables the introduction of experimental artifacts such as optical 

aberrations and distortions due to density gradient fields into the image generation process in a 

deliberate and controlled manner. 

1.5 Conclusion 

An image generation methodology was proposed and implemented to render realistic PIV and 

BOS images in variable density environments with a user-defined optical setup. The methodology 

involves generation of light rays from a particle or dot pattern, propagation of the light rays through 

density gradients using Fermat’s equation and a 4th order Runge-Kutta scheme, 

reflection/refraction/transmission of the light rays by optical elements, and intersection of the rays 
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with the camera sensor to update pixel intensities using a diffraction model. The computationally 

intensive ray tracing process was parallelized and implemented on GPUs using CUDA, resulting 

in a significant acceleration of the computations. The accuracy of the methodology was evaluated 

using three cases: (1) Luneburg lens, (2) a BOS experiment a uniform density gradient field and 

(3) a BOS experiment with a density field obtained from DNS of buoyancy-driven turbulence. The 

light ray deflections from the ray tracing show good agreement with the theoretical estimates. This 

methodology provides a framework for further development of simulation tools for use in 

experiment design by incorporating additional features specific to a given experiment. The 

methodology can also be a valuable tool for error analysis to study the effect of various elements 

of an optical setup on the final error, and provide directions to improve image analysis tools for 

PIV and BOS applications. 
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Abstract 

We present an uncertainty quantification methodology for density estimation from Background 

Oriented Schlieren (BOS) measurements, in order to provide local, instantaneous, a-posteriori 

uncertainty bounds on each density measurement in the field of view. Displacement uncertainty 

quantification algorithms from cross-correlation based Particle Image Velocimetry (PIV) are used 

to estimate the uncertainty in the dot pattern displacements obtained from cross-correlation for 

BOS and assess their feasibility. In order to propagate the displacement uncertainty through the 

density integration procedure, we also develop a novel methodology via the Poisson solver using 

sparse linear operators. Testing the method using synthetic images of a Gaussian density field 

showed agreement between the propagated density uncertainties and the true uncertainty.  

Subsequently the methodology is experimentally demonstrated for supersonic flow over a wedge, 

showing that regions with sharp changes in density lead to an increase in density uncertainty 

throughout the field of view, even in regions without these sharp changes. The uncertainty 

propagation is influenced by the density integration scheme, and for the Poisson solver the density 

uncertainty on average increases on moving away from the regions where the Dirichlet boundary 

conditions are specified. 
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Nomenclature 

𝑢 Measurement 𝐾 Gladstone-Dale constant 

𝛿𝑢 Measurement Error ∇ Gradient 

𝜎𝑢 Measurement Uncertainty 𝑆 Source Term 

𝑢0 True Value ∇̅̅ Mapping matrix 

𝜎 Standard Deviation 𝐿̅̅ Label matrix 

𝑡𝐶𝐼 Coverage Factor Δ̅̅ Laplacian operator matrix 

𝜌 Density Σ̅̅ Covariance matrix 

𝜌𝑝 Projected Density 𝑋0, 𝑌0 Centroid 

𝛥𝑥⃗ In-plane Displacement 𝐸 Expectation operator 

𝑀 Magnification 𝑛 Refractive index 

𝑍𝐷 Distance between dot pattern and density gradient 

field 

  

2.1 Introduction 

Background Oriented Schlieren (BOS) is a flow measurement technique, where the apparent 

distortion of a dot pattern viewed through a medium with refractive index gradients is measured 

using cross-correlation, tracking or optical flow based algorithms to estimate the density gradients 

in the medium [1]–[6] or the surface gradients in a free-surface flow [7], [8]. The density gradients 

can be integrated spatially to obtain the density field, generally by solving the Poisson equation 

using different computational procedures [9]. Owing to the simple setup and ease of use, BOS has 

been applied widely in laboratory scale as well as in large scale and rugged industrial facilities, 

and is becoming the preferred method of density measurement in fluid flows [10]–[17].  

BOS measurements are increasingly used for Computational Fluid Dynamics (CFD) model 

validation and design [14], [16], [18]–[20]. However, currently there is no framework for 

quantifying the uncertainties in the density estimation, and inform proper validation of 
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computational models. The BOS measurement chain is complex and subject to several sources of 

uncertainties ranging from the dot pattern parameters (dot size, dot density), non-uniform 

illumination, vibrations, blurring/out-of-focus effects, non-linearities (higher order derivatives) 

and small scale fluctuations in the density field, uncertainties in measurement of the optical layout, 

as well as the processing and post processing methodologies used to calculate the density from the 

image displacements. As a result, the uncertainty on the final density measurement is a high-

dimensional, coupled, non-linear and non-trivial function of several parameters, and can vary 

widely across the field of view and across a time series of measurements. Therefore, a 

comprehensive method for estimating and reporting uncertainties on BOS density measurements 

is needed. This paper aims to develop and test the first uncertainty quantification methodology to 

provide a-posteriori, local, instantaneous uncertainty bounds for each density measurement in the 

field of view for a BOS experiment.  

For a measurement 𝑢, the uncertainty 𝜎𝑢 is defined as the interval around the measurement 

in which the true value 𝑢0 , and by extension the true error 𝛿𝑢0
, is believed to exist with a 

predetermined degree of confidence [21]. Following ISO-GUM [22], the standard uncertainty is 

defined as the range of measurement values that are one standard deviation 𝜎 about the true value, 

for an arbitrary parent population. The expanded uncertainty is defined for an assumed parent 

distribution for the error, and is specified using a confidence interval at a defined percentage and 

a coverage factor 𝑡𝐶𝐼. This is to indicate that the true value/error lies in an interval 𝜎𝑢 = 𝑡𝐶𝐼𝜎 

around the measurement for the pre-defined percentage of samples drawn from the parent 

distribution. For example, if the errors are drawn from a Gaussian distribution, the expanded 

uncertainty at 68% confidence interval is equal to the standard uncertainty (𝜎𝑢 = 𝜎), and the 

expanded uncertainty at 95% confidence interval is equal to approximately twice the standard 

uncertainty (𝜎𝑢 = 1.96𝜎). The standard uncertainty is reported throughout this paper. 

In the related field of Particle Image Velocimetry (PIV) [23]–[26], there have been widespread 

efforts in the past decade to develop a-posteriori uncertainty quantification methodologies [27], 

[28], as well as to perform comparative assessment of the existing methods [28]–[30]. As the 

displacement estimation in BOS is similar to PIV, PIV-based  displacement uncertainty methods 

can be applicable to BOS measurements. 

Displacement uncertainty estimation methods for 2D planar PIV can be broadly divided into 

indirect and direct methods. Indirect methods predict the displacement uncertainty by calibrating 
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the variation of uncertainty to various image parameters and signal to noise ratio metrics, where 

the calibration is obtained using Monte-Carlo simulations with synthetic images. Timmins et. al. 

proposed the first PIV uncertainty quantification method termed ‘Uncertainty Surface’ (US) [31], 

where the uncertainty is calibrated based on four metrics: particle diameter, seeding density, 

displacement and shear. Charonko and Vlachos [32] proposed the Peak to Peak Ratio (PPR) 

method, where the uncertainty is calibrated against and calculated using the ratio of the primary to 

secondary cross-correlation peak heights. This method was later generalized by Xue et. al. [33] to 

other correlation plane derived metrics such as the Peak to Root Mean Square Ratio (PRMSR), 

Peak to Correlation energy (PCE), and cross-correlation. The Mutual Information (MI) based 

uncertainty quantification by Xue et. al. [34], defined as the effective number of correlated particle 

pairs between two image frames, was also used to estimate PIV uncertainty. The performance of 

all indirect methods relies on the calibration process, which must be accurate and reflect all 

possible experimental scenarios in a typical measurement. 

On the other hand, direct methods estimate uncertainty directly from the properties of the 

image or correlation plane and do not require any calibration. Examples of direct uncertainty 

estimation methods include the Image Matching (IM) method proposed by Sciacchitano et. al. [35], 

Correlation Statistics (CS) method proposed by Wieneke [36] and the Moment of Correlation (MC) 

proposed by Bhattacharya et. al. [37]. Each of the direct methods has a different working principle, 

and in the following, we briefly describe the assumptions, working principles and limitations of 

the direct methods.  

Image Matching (IM) or Particle Disparity (PD) proposed by Sciacchitano et. al. [35], 

estimates the uncertainty in the displacement using a statistical analysis of the disparity between 

the measured positions of particles or dots in the two frames after a converged iterative 

deformation interrogation procedure [38], [39]. This method requires at least six particles to be in 

the interrogation window for statistical calculations but fails at high seeding densities due to errors 

in particle identification. This method is also affected by image noise and loss of particles between 

frames, especially due to out of plane motion [29]. Correlation Statistics (CS) proposed by 

Wieneke [36], estimates the uncertainty again using the image disparity but at a pixel level. The 

asymmetry of the correlation peak at the end of a converged window deformation procedure is 

used as measure of the correlation error and the standard deviation of the error is propagated 

through the subpixel estimator to estimate the displacement uncertainty. As the method relies on 
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statistics of the correlation plane, it works better with higher seeding densities and larger 

interrogation windows [29], [36]. Moment of Correlation (MC) proposed by Bhattacharya et. al. 

[37] predicts the uncertainty by estimating the second order moment of the cross-correlation plane. 

The estimation process involves the calculation of the Generalized Cross Correlation (GCC) from 

the inverse Fourier transform of the phase of the complex cross-correlation plane [40]–[42]. The 

primary peak region of the GCC plane represents the probability density function (PDF) of all 

possible displacements for the given interrogation window [37]. This PDF is convolved with a 

Gaussian function, corrected for peak broadening by displacement gradients, and normalized by 

the effective number of correlating pixels (calculated using MI [34]) to estimate the uncertainty. 

Similar to Correlation Statistics, this method also works better with high seeding densities and 

large interrogation windows, as small interrogation windows can lead to an over-prediction of the 

uncertainty [37].  

In two independent comparative assessment of the methods, Sciacchitano et. al. [29] and 

Boomsma et. al. [30] found the direct methods to be more sensitive to variations in the random 

error, though Boomsma et. al. [30] found the direct methods to underpredict the standard 

uncertainty in some cases. Since the indirect methods rely on calibration, only the direct methods 

will be considered in this work. 

There have also been efforts to propagate the displacement uncertainties in PIV derived 

quantities. Wilson and Smith [43] extended the displacement uncertainties calculated from the 

Uncertainty Surface method to estimate uncertainties in mean and fluctuating velocity statistics. 

Sciacchitano and Wieneke [44] provided a framework for calculation of uncertainties for 

displacement gradient based quantities such as the vorticity, and also identified the importance of 

spatial correlation of the displacement errors. Bhattacharya et. al. [45] proposed a methodology 

for stereo-PIV uncertainty quantification by accounting for the uncertainties introduced in the 

calibration and self-calibration process, along with the planar correlation uncertainty for individual 

camera image correlation. Azilji et. al. [46] proposed a methodology based on a Bayesian 

framework to calculate the uncertainties for PIV-based pressure measurement in a three-

dimensional flow field, though they calculated the displacement uncertainty from the divergence 

error of the velocity field and did not use any of the above mentioned displacement uncertainty 

quantification methods.  
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In this paper we propose and implement the first comprehensive framework to model and 

propagate uncertainties from displacement measurements in a BOS experiment onto the final 

density measurement. To do this, we use methodologies for PIV uncertainty quantification [30]–

[32], [47]–[52] and propagate these uncertainties through the BOS measurement chain including 

the density gradient integration and density reconstruction. We test both the PIV displacement 

uncertainty schemes as well as the uncertainty propagation framework with synthetic and 

experimental BOS images. 

2.2 Methodology 

The proposed uncertainty quantification methodology closely follows the BOS measurement chain 

and is illustrated in Figure 2.1. First, the raw image pairs and processed displacement fields are 

used along with PIV-based uncertainty estimation methods to calculate the local, instantaneous 

uncertainty on each displacement vector as indicated in Figure 2.1 (a). Following this, the optical 

system parameters such as the magnification and the distance between the dot pattern and the 

density gradients are used to estimate the uncertainty in the projected density gradient field.  

In BOS experiments, the projected density gradient field is related to the apparent displacement of 

the dot pattern by [2], [3],  

 
∇𝜌𝑝 =  ∫∇𝜌 𝑑𝑧 =

𝛥𝑥⃗

𝑍𝐷𝑀

𝑛0

𝐾
 (11),  

where Δ𝑥⃗ is the displacement, 𝑀 is the magnification of the dot pattern, 𝑍𝐷 is the distance between 

the dot pattern and the mid-point of the density gradient field, 𝑛0 is the ambient refractive index, 

𝐾 is the Gladstone-Dale constant (= 0.225 × 10−3 m3/kg for air) and 𝜌𝑝 = ∫𝜌 𝑑𝑧 is the projected 

density field.  

Similarly, the uncertainty in the projected density gradient field can be expressed by 

 𝜎∇𝜌𝑝
=

𝜎𝛥𝑥⃗

𝑍𝐷𝑀

𝑛0

𝐾
 (12), 

where 𝜎Δ𝑥⃗  is the displacement uncertainty and 𝜎∇𝜌𝑝
 is the uncertainty in the projected density 

gradient field (Figure 2.1 (b)). It should be noted that some of the experimental parameters 

occurring in the above equations can also have their own uncertainties such as the magnification 

𝑀  and the distance 𝑍𝐷 . However, herein, for simplicity we will assume these as known and 

constant, as our focus is on propagating the displacement-based uncertainties. Any uncertainties 
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in these quantities can be handled in a straightforward manner using the Taylor series propagation 

model [21]. 

 

 

Figure 2.1. Proposed uncertainty quantification methodology for BOS measurements. 

 

The next step in BOS experiments is to calculate the projected density field by solving the 

Poisson equation: 

 𝜕2𝜌𝑝

𝜕𝑥2
+

𝜕2𝜌𝑝

𝜕𝑦2
= 𝑆 (13) 

where the source term 𝑆 denotes the Laplacian of the density field calculated from the projected 

density gradient field. This equation is then discretized into a system of linear equations using 

finite difference schemes and solved using appropriate boundary conditions (Dirichlet/Neumann) 

depending on prior knowledge about regions of the flow field. 

The discretization and solution procedure are as follows. The source term 𝑆 is calculated as 

 
𝑆̅̅ = ∇̅̅𝑥

𝜕𝜌𝑝

𝜕𝑥

̅̅ ̅̅ ̅
+ ∇̅̅𝑦

𝜕𝜌𝑝

𝜕𝑦

̅̅ ̅̅ ̅
 (14), 

where ∇̅̅𝑥, ∇̅̅𝑦 are the discretized gradient operators (matrices represented by a double overbar) that 

depend on the finite difference scheme, and 
𝜕𝜌𝑝

𝜕𝑥

̅̅ ̅̅
,
𝜕𝜌𝑝

𝜕𝑦

̅̅ ̅̅
 are the density gradients (1D column vector 

represented by a single overbar). A second order central difference discretization scheme is used 

for the results reported in this paper. 
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The source term is combined with points on the boundary to create an augmented matrix 

𝑅̅̅, given by 

 
𝑅̅̅ = ∇̅̅𝑥

𝜕𝜌𝑝

𝜕𝑥

̅̅ ̅̅ ̅
+ ∇̅̅𝑦

𝜕𝜌𝑝

𝜕𝑦

̅̅ ̅̅ ̅
+

1

ℎ2
𝐿̅̅𝜌̅𝑝,𝐿 

= 𝑆̅̅ + 𝑆̅̅
𝐿 

(15), 

where 𝐿̅̅ is a label matrix specifying points on the boundary, and ℎ is the grid spacing, and 𝜌̅𝑝,𝐿 is 

the array of densities of the points corresponding to the label matrix (the Dirichlet boundary 

condition). 

The projected density is calculated by multiplying the augmented matrix 𝑅̅̅ with the inverse 

of the augmented Laplacian operator 

 

𝜌𝑝 = [
Δ̅̅ 0

0
𝐿̅̅

ℎ2

]

−1

[
𝑆̅̅

𝑆̅̅
𝐿

] (16), 

where Δ̅̅ (sometimes also represented by ∇2) is the discretized Laplacian operator for the interior 

points corresponding to the finite difference schemes used to calculate the Laplacian ( Δ̅̅ =

∇̅̅𝑥∇̅̅𝑥

𝑇
+ ∇̅̅𝑦∇̅̅𝑦

𝑇
). Thus, equation (6) essentially solves the Poisson equation (3) to give the 

projected density field 𝜌𝑝. 

The uncertainty calculations are performed in a manner similar to the density integration, 

by propagating the covariances through the finite difference operators and accounting for the 

boundary conditions used to calculate the corresponding density field. The covariance in the 

augmented source term defined in equation (5) is given by 

 
Σ̅̅𝑅 = ∇̅̅𝑥 Σ̅̅𝜕𝜌𝑝

𝜕𝑥

∇̅̅𝑥
𝑇 + ∇̅̅𝑦Σ̅̅𝜕𝜌𝑝

𝜕𝑦

∇̅̅𝑦
𝑇 +

1

ℎ2
𝐿̅̅Σ̅̅𝜌𝑝𝐿

1

ℎ2
𝐿̅̅𝑇   

= Σ̅̅𝑆 + Σ̅̅𝑆𝐿
 

(17), 

and as shown in Figure 2.1 (c), the covariance in the projected density ( Σ̅̅𝜌𝑝
) is calculated using  

 

                  Σ̅̅𝜌𝑝
= [

Δ̅̅ 0

0
𝐿̅̅

ℎ2

]

−1

[
Σ̅̅𝑆

Σ̅̅𝑆𝐿

] ([
Δ̅̅ 0

0
𝐿̅̅

ℎ2

]

−1

)

𝑇

                (18). 

Finally, the uncertainty in the density is calculated from the square root of the diagonal 

terms of the density covariance matrix as indicated in Figure 2.1 (d) and is expressed as, 
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               𝜎𝜌𝑝

 = √diag(Σ𝜌𝑝
)              (19). 

All linear operators in the solution procedure are modeled as sparse matrices to increase 

computational speed.  

The next step is to calculate the 2D density field from the projected density field, either by 

depth averaging (dividing the projected density field by the thickness of the density gradient field) 

if the extent of the density field is known, or through an Abel inversion or Filtered Back Projection 

(FBP) procedure if the flow field is axisymmetric (Figure 2.1 (e)) [12]. While each reconstruction 

procedure can create a different amplification of the uncertainty, only the depth averaged 

reconstruction approach will be considered in this paper. For situations which involve the use of 

Abel inversion, the uncertainty can again be propagated through a matrix representation of the 

Abel inversion procedure, because all the Abel inversion schemes can be represented by linear 

operators both for interferometric and deflectometric cases [53], [54]. The final result at the end 

of all such reconstruction procedures is an estimate of the instantaneous density uncertainty for 

each grid point.   

In the following sections the uncertainty quantification methodology is tested with synthetic 

BOS images of a Gaussian density field to assess the performance of the various PIV displacement 

uncertainty schemes and the propagation framework. Subsequently, the potential of the method is 

demonstrated with experimental BOS images for supersonic flow over a wedge. 

2.3 Analysis with synthetic images 

The error analysis is performed using synthetic BOS images rendered using a ray-tracing based 

image generation methodology, where light rays emerging from the dot pattern are traced through 

the density gradient field and the optical components of the experimental setup, up to the camera 

sensor to render the final image. This methodology has been validated using analytical solutions 

for known density field and the rendered images display realistic features of typical BOS 

experimental setups such as optical aberrations and blurring due to non-linearities in the density 

field [55]. 

The density field chosen for the error analysis is a Gaussian density field, described by 

Equation (20),  
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𝜌(𝑋, 𝑌) = 𝜌0 + Δ𝜌0 exp {−

(𝑋 − 𝑋0)
2 + (𝑌 − 𝑌0)

2

2𝜎0
2 } 

(20) 

where 𝜌0 is the ambient density, Δ𝜌0 is the peak density difference and 𝜎0 is the standard deviation 

of the Gaussian field. This field was chosen because it contains significant displacement gradients 

to test the displacement uncertainty schemes and the density integration procedure. For the 

simulations reported in this paper, 𝜌0 was set to be 1.225 kg/m3, Δ𝜌0 was set to be 0.3 kg/m3, and 

𝜎0 was set to be 1/4th of the field of view (= 2.41 mm). The dimensions of the density gradient 

field were 10 x 10 x 10 mm, and it was located at a distance of 0.25 m from the dot pattern. The 

optical layout used to image the dot pattern and the density field consisted of a 105 mm lens at a 

distance of 0.5 m from the dot pattern to provide a magnification of about 40 𝜇m/pix. A 2D slice 

of the three-dimensional density field is shown in Figure 2.2 (a), and the corresponding light ray 

displacements are shown in Figure 2.2 (b). A three-dimensional volume was created using the 

same slice stacked along the Z direction (out of plane) to account for the depth averaging limitation 

of BOS experiments. 

  

(a) (b) 

Figure 2.2. (a) 2D slice of the density field used to render the synthetic BOS images, and (b) 

the corresponding displacement field. 

 

The images were rendered with a dot size of 3 pix. under diffraction limited imaging, with 

about 20 dots per 32x32 window. The rendered images were corrupted with noise drawn randomly 

from a zero-mean Gaussian distribution with a standard deviation of 5% of the peak image 
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intensity. A thousand image pairs were rendered in total to create sufficient statistics for the 

analysis. 

The images were processed using a standard cross-correlation procedure for two passes in 

an iterative window deformation framework [38], [39] with continuous window offset [56]–[58]. 

The window resolution was 32x32 pix for both passes, which corresponds to a 64x64 pix window 

size and apodized using a 50% Gaussian window, to minimize edge discontinuities, spectral 

leakage and wraparound aliasing [59]. The window overlap was set to 0% (grid resolution = 32x32 

pix.) for the analysis to avoid introducing covariance on adjacent displacement vectors from the 

cross-correlation process, as accounting for this covariance in an automatic calibration-free 

manner is still a subject of ongoing research [44]. The results of the first pass were validated using 

the Universal Outlier Detection (UOD) method [60] and smoothed, while the results of the second 

pass were not validated. The displacement uncertainties were calculated using the Image Matching 

(IM), Correlation Statistics (CS) and Moment of Correlation (MC) methods. For the IM and MC 

methods, the processing and uncertainty calculation was performed using an open source code 

PRANA (https://github.com/aether-lab/prana/). For CS, the processing and uncertainty calculation 

was performed with DaVis 10.0.5 by LaVision. A sample instantaneous displacement field along 

with the corresponding uncertainty field is shown in Figure 2.3. Sample instantaneous magnitudes 

of the displacement and uncertainty fields for (a) Prana, IM, MC and (b) DaVis, CS.(a) for results 

from PRANA processing and uncertainties from IM and MC, and in Figure 2.3. Sample 

instantaneous magnitudes of the displacement and uncertainty fields for (a) Prana, IM, MC and (b) 

DaVis, CS.(b) for results from DaVis processing and uncertainties from CS. 
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(a) (b) 

Figure 2.3. Sample instantaneous magnitudes of the displacement and uncertainty fields for (a) 

Prana, IM, MC and (b) DaVis, CS. 

 

For the error analysis, the displacements obtained from the cross-correlation analysis were 

compared with the light ray displacements from the ray tracing based image generation procedure 

to calculate an error for each vector. The final locations of the light rays will be randomly scattered 

on the image sensor because the dots from which the light rays originate are distributed randomly 

on the pattern, and the direction of the rays is also varied randomly within the viewing angle of 

the camera lens. Since the displacements obtained from the cross-correlation analysis is arranged 

on a regular grid, the true displacements due to the light ray deflections have to be interpolated 

onto the measurement grid. To achieve this, an interpolation procedure was performed using a 

natural neighbor interpolation based on Voronoi tessellations [61] to calculate the corresponding 

true displacement for each vector. Finally, the errors corresponding to all vectors from all image 

pairs were combined to build a probability density function (PDF) for the error distribution and 

the corresponding error statistics such as the bias error, the random error and the total error were 

calculated. As each image pair yielded 256 vectors with the above processing procedure, with a 

total of 1000 images, we have 256000 vectors to calculate the statistics. The error statistics were 

split into three main components, the bias/systematic error, the random error, and the total error, 

defined as: 
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 𝛿𝑏𝑖𝑎𝑠 = 𝐸(𝑢 − 𝑢𝑡𝑟𝑢𝑒), 

𝛿𝑟𝑎𝑛𝑑𝑜𝑚 = √𝐸((𝑢 − 𝑢𝑚𝑒𝑎𝑛)2), 

𝛿𝑡𝑜𝑡𝑎𝑙 = √𝐸((𝑢 − 𝑢𝑡𝑟𝑢𝑒)
2) = √𝛿𝑏𝑖𝑎𝑠

2 + 𝛿𝑟𝑎𝑛𝑑𝑜𝑚
2 , 

(21) 

 

where 𝛿 represents the error statistic, 𝑢 is the measurement, 𝑢𝑡𝑟𝑢𝑒 is the ground truth, and 𝑢𝑚𝑒𝑎𝑛 

is the average of the measurements. 

The displacement uncertainty estimates from the three direct schemes were compared to 

the random error from the analysis to assess the performance of these PIV-based schemes for 

synthetic BOS images. The spatial distribution of the error statistics as well as the displacement 

uncertainties are shown in Figure 2.4 (a) for PRANA-IM-MC processing and Figure 2.4 (b) for 

DaVis-CS processing. It can be seen that the error statistics are fairly uniform throughout the field 

of view, with negligible bias error from both processing software programs, and that DaVis results 

in a slightly higher error near the center of the FOV. For the spatial variation of the displacement 

uncertainty, all three uncertainty schemes result in nearly uniform uncertainty estimates 

throughout the field of view, and on the same order of their respective random errors. It is 

important to note that the MC uncertainties reported in this paper are without the bias term in 

contrast to the original formulation proposed by Bhattacharya et. al. [37]. This is because the bias 

term in the method is based on an estimate of the local displacement at the end of a converged 

deformation process, and since the displacement estimation is itself random, the bias estimation 

itself becomes a random process. 
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(a) (b) 

Figure 2.4. Spatial variation of the magnitudes of the displacement error statistics and 

ensemble averaged uncertainty fields for (a) PRANA, IM and MC, and  (b) DaVis and CS 

methods. 

 

The PDFs of the errors and uncertainties from both software programs are shown in Figure 

2.5, along with dashed lines indicating the RMS values of the random error and the RMS values 

of the corresponding uncertainty schemes. The PDFs were calculated by combining the x and y 

components of the displacements into a single array. A 0.1 pixel threshold was used to threshold 

the errors, to reduce the effect of outliers on the reported statistics. This can be confirmed from the 

error/uncertainty PDF in Figure 2.5, as the PDF has plateaued to nearly zero around 0.05 pix. 

Therefore any errors on the order of 0.1 pixels are likely outliers, and can be ignored as it is not 

meaningful to report uncertainties on invalid measurements. 

The results for PRANA-IM-MC are shown in Figure 2.5 (a), and the results for DaVis-CS 

are shown in Figure 2.5 (b). It is expected that for a correct uncertainty prediction, the RMS of the 

random error should coincide with the RMS of the uncertainty distribution [29]. From the figures 

it can be first seen that all three displacement uncertainty schemes overpredict the corresponding 

random error, but the RMS of the uncertainty from CS is closest to the RMS of the random error 

in Figure 2.5 (b), followed by IM and then MC. Further, CS has a very narrow distribution of the 

uncertainties compared to IM and MC. The error and uncertainty statistics are summarized in Table 

1. 

 

 



 

 

51 

  

(a) (b) 

Figure 2.5. Probability density functions (PDF) of the displacement error and 

uncertainty distributions along with the corresponding RMS values. (a) PRANA, IM 

and MC, (b) DaVis, CS 

 

Table 2.1. Displacement error and uncertainty statistics from the two software programs and 

three uncertainty schemes for the Gaussian density field. All values in units of 𝑝𝑖𝑥. 

PRANA DaVis 

Bias Error  4.45e-03 Bias Error  1.45e-02 

Random Error  1.58e-02 Random Error  1.31e-02 

Total Error  1.64e-02 Total Error  1.95e-02 

Image Matching  2.56e-02 Correlation Statistics 1.70e-02 

Moment of Correlation 2.77e-02  

 

The displacement fields were also used to calculate the projected density gradient fields 

using Equation (11), and spatially integrated using the Poisson solver to obtain the projected 

density field. The thickness of the density gradients from the simulation was then used to calculate 

the depth averaged density field. Dirichlet boundary conditions were imposed for the density 

integration procedure, and the density at all four boundaries was set to be values from the true 

density field used to render the images. Sample results of the depth-averaged density gradient and 

density fields are shown in Figure 2.6(a).  
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(a) 

 

(b) 

Figure 2.6. Sample instantaneous depth-averaged (a) density gradients and density fields and 

(b) associated uncertainties obtained from the Poisson solver for PRANA processing. 

 

In addition, the displacement uncertainties from the cross-correlation analysis from each 

scheme were propagated through the Poisson solver to calculate the density uncertainties. Dirichlet 

boundary conditions were also used for the uncertainty propagation procedure, with the boundary 

uncertainties on the four sides set to be 0. In general, the uncertainty in the boundary conditions 

will have a strong effect on the uncertainty of the resulting field, especially for the Poisson 

integration method. As the density uncertainty at a point near the boundary is a weighted average 

of the boundary uncertainty and the gradient uncertainty of the surrounding points, it is expected 

that if the density uncertainty at the boundary is less than about one order of magnitude (1e-4 



 

 

53 

kg/m3) of that in the interior, then its effect should be negligible. Sample instantaneous 

uncertainties in the depth-averaged density gradient and density fields are shown in Figure 2.6(b).  

The calculated density field was then compared with the original density field used to 

render the synthetic images and the density error was calculated. The resulting density errors from 

all 1000 images were used to calculate error statistics. The density error statistics and the 

corresponding ensemble averaged density uncertainties are shown for results from Prana-IM-MC 

in Error! Reference source not found.(a), and for results from DaVis-CS in Error! Reference so

urce not found.(b). 

 

  

(a) (b) 

Figure 2.7. Spatial variation of density error and uncertainty statistics from (a) PRANA, IM 

and MC, and (b) DaVis and CS. 

 

From the figures it can be seen that unlike the displacement error statistics, the density 

error statistics show a higher bias error component (~ 2e-3 kg/m3) as compared to the random error. 

The skew in the spatial distribution of the bias error in Figure 2.7 (b) could be because of a 

combination of the processing method from the Davis software and the density integration 

procedure, and given that the small value of the error (0.3% of the density), makes the explanation 

difficult. It is possibly because the linear system of equations is solved in an iterative procedure 

beginning at the top right corner and ending with the point on the bottom left corner. Therefore, 

the bias error in the displacement also propagates from this point to the rest of the field, and this 

effect is more pronounced in Figure 7 (b), as the displacement errors are higher for Davis 

processing. 
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However, since the uncertainty estimated using the proposed methodology is the random 

uncertainty, the comparison will be performed between the random error and the uncertainty 

prediction. The density uncertainty predictions however are spatially uniform for all three methods 

similar to the displacement uncertainty results shown in Figure 2.4, and on the same order as the 

random error (~ 5e-4 kg/m3). But overall, the density uncertainties are seen to be very small likely 

due to the smoothing nature of the Poisson solver and the uncertainty being zero at the boundaries.  

The PDFs of the density error and uncertainty distributions are shown in Figure 2.8 (a) for 

PRANA-IM-MC and in Figure 2.8 (b) for DaVis-CS, along with the corresponding RMS values. 

Due to the strong bias error in the density results, the RMS of the random error will be compared 

to the RMS of the density uncertainty distributions, and a closer match signifies a better 

performance. As in the displacement uncertainty results, it is again seen that CS gives the best 

match between the RMS of the random error and the uncertainty, followed by IM and MC. It is 

also interesting to note that unlike the displacement error PDFs, the density error PDFs are non-

Gaussian, and skewed towards the negative values, signifying that the density error is primarily 

due to under-prediction. The skewness of the error distribution is also consistent with the strong 

bias error seen in the spatial error maps in Error! Reference source not found.. The density errors a

nd uncertainties are summarized in Table 2.2. 

 

  

(a) (b) 

Figure 2.8. PDFs of the density error and uncertainty distributions for (a) PRANA error, IM, 

and MC uncertainty, and (b) DaVis error and CS uncertainty.  
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Table 2.2. Density error and uncertainty statistics from the two software programs and three 

uncertainty schemes for the Gaussian density field. All values in units of 𝑘𝑔/𝑚3. 

PRANA DaVis 

Bias Error  8.65e-04  Bias Error  9.83e-04 

Random Error  3.41e-04 Random Error  3.06e-04 

Total Error  9.12e-04 Total Error  1.02e-03 

Image Matching  5.34e-04 Correlation Statistics 3.25e-04 

Moment of 

Correlation 
5.79e-04  

 

Further, the effect of density uncertainty at the boundaries was investigated by repeating 

the density integration procedure with a range of density noise levels on the boundaries as a 

fraction of the peak density offset, and the resulting error and uncertainty statistics are shown in 

Figure 2.9. It can be seen that as the density noise level increases, all the displacement uncertainty 

schemes result in a nearly identical density uncertainty, because the noise from the boundaries 

dominates the density uncertainty. This implies that the performance of the uncertainty 

quantification methodology is consistent with expectations. 

 

 

 (a) 

 

(b) 

Figure 2.9. Effect of density uncertainty on the boundary on the RMS errors and uncertainties. 

The violin plots show the error and uncertainty distribution obtained using kernel density 

estimation, and the solid lines denote the RMS error. The errors/uncertainties on the Y axis are 

expressed as a fraction of the boundary uncertainty, and the boundary uncertainty is expressed 

as a percentage of the peak density offset.  
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Overall, it is seen from the analysis that (1) PIV-based direct displacement uncertainty 

schemes are also applicable for BOS images, and (2) Correlation Statistics (CS) performs the best 

in both the displacement and density uncertainty prediction, though the density results showed a 

strong anisotropic bias error. The sources of uncertainty considered in the synthetic image analysis 

are due to random positions of the dots, the cross-correlation operator, image noise and density 

uncertainty at the boundaries. 

2.4 Demonstration with Experimental Images 

The feasibility of the proposed uncertainty quantification methodology is demonstrated with 

experimental BOS images taken in a supersonic wind tunnel for Mach 2.5 flow over a 11.5∘ wedge 

with a base of 1 cm and a height of 2.5 cm. The dot pattern consisted of 0.15 mm diameter dots 

(corresponding to an image diameter of about 4 pix.) randomly distributed on a transparency with 

about 25 dots per 32x32 pix. window, and was back-illuminated using an LED with a diffuser 

plate to obtain uniform illumination. The dot pattern was imaged through the flow with a Photron 

SAZ camera and a Nikon 105 mm lens at a magnification of 50 um/pix. and an f-number of 32. A 

total of 5000 images were acquired at 3 kHz for a total/stagnation pressure of 70 psia, 

corresponding to a free-stream density of 0.49 𝑘𝑔/𝑚3. The free-stream density is calculated based 

on isentropic flow theory using the stagnation density and the free-stream Mach number. The 

stagnation density is calculated using the stagnation pressure in the reservoir assuming an adiabatic 

compression of air from the atmosphere into the reservoir.  A layout of the experimental setup is 

shown in Figure 2.10 (a), and the wedge geometry is shown in Figure 2.10 (b). 

To account for the startup transients in the tunnel, the images are only recorded during the 

steady state operation of the tunnel. Further, to avoid masking based errors from affecting the 

analysis, only a small portion from the flow beneath the wedge is considered in this analysis, and 

a sample image of the dot pattern with the region of interest (ROI) is shown in Figure 2.10 (c). 
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(a) 

 

 

 

(b) 

 

(c) 

Figure 2.10. (a) Experimental layout, side 

view (b) schematic of the wedge, front 

view, (c) sample image with region of 

interest (flow is from right to left). 

 

The images were processed using the multi-pass window deformation approach described 

in the previous section for three passes with identical window sizes and overlap percentages 

(32x32 pix window size and 0% window overlap), with the intermediate pass results smoothed, 

but without any outlier detection. This was done to preserve the sharp change in displacement in 

the shock regions, and to prevent them from being identified as be an outlier. The images were 

processed using PRANA with displacement uncertainty calculation from IM and MC, and using 

DaVis with displacement uncertainty calculation from CS.  

To reduce the effect of tunnel/camera/dot-pattern vibrations on subsequent calculations, 

the displacements in the FOV were subtracted by the average displacements measured in the free-

stream region. This was done because the free-stream region ahead of the shock does not contain 

any density gradients and hence any displacements in this region would be a result of vibrations. 

While the boundary layer on the wind tunnel wall can affect the measured displacement, this is 

expected to be negligible with respect to the other flow features of interest such as the shock and 

the expansion fan for the present optical layout. This is because the angular displacement of the 

light ray due to the boundary layer on the tunnel wall will only be a function of the streamwise 

(𝜕/𝜕𝑥)  and spanwise (𝜕/𝜕𝑦)  gradients of density because the wall-normal gradients (𝜕/𝜕𝑧) 
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coincides with the viewing directions and therefore will not contribute to any angular deflection. 

Since the streamwise/spanwise density gradients in the boundary layer are much lower than the 

gradients in the shock/expansion fan, and the displacements in the shock regions are measured to 

be less than a pixel, the displacements due to the boundary layer is expected to be much lower and 

hence negligible, especially in comparison with the vibrations which were measured to be on the 

order of a pixel.  

The displacements were then used to calculate the density gradients and density fields using 

the Poisson solver previously described. For the density integration, Dirichlet boundary conditions 

were used on the right boundary, where the density was set to be its free-stream value of 0.49 

kg/m3 and Neumann boundary conditions were imposed on the other three boundaries. Sample 

images of the path averaged density gradients and density fields are shown in Figure 2.11 (a) for 

PRANA processing, and it can be seen the gradients are highest in the regions corresponding to 

the shock and expansion fan. The density is seen to increase across the shock followed by a 

decrease across the expansion fan. 

 

 

(a) 

 

(b) 

Figure 2.11. (a) Sample density gradient and density fields from PRANA processing and (b) 

associated uncertainty fields from Image Matching.  
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A similar approach was also followed for the uncertainty propagation, where a Dirichlet 

boundary condition was used on the right boundary with an uncertainty of 0.0 kg/m3 as any 

fluctuations in the free-stream were much lower than the uncertainties measured from BOS, and 

Neumann boundary conditions were imposed on the other three sides with the measured density 

gradients. Sample instantaneous uncertainties in the density gradient and density fields are shown 

in Figure 2.11 (b) where it seen that the region aft (to the left) of the shock has a higher density 

uncertainty than the region before (to the right of) the shock, even though these points had similar 

density gradient uncertainties. This exemplifies the uncertainty propagation characteristics of the 

Poisson solver used for density integration. As the boundary conditions are only specified on the 

right boundary, the number of points that affect the density estimation at a given point increases 

as one moves to the left, and hence the density uncertainty at the given point is also a combination 

of the uncertainties from an increasing number of points. Since the density gradient uncertainty is 

always positive, the result is that the density uncertainty field increases, and in general, the density 

uncertainty for a BOS experiment will increase as one moves away from the Dirichlet boundaries. 

This is an artifact of the density integration procedure using the Poisson equation, and represents 

one of the method’s limitations. 

The uncertainty fields across five thousand images were averaged to calculate the statistics, 

and the ensemble averaged field is shown in Figure 2.12 for all three uncertainty schemes. 

Qualitatively, it is seen that the ensemble averaged uncertainty distributions are very similar to the 

instantaneous fields shown in Figure 2.11 (b), with an increase of uncertainty from right to left. It 

is also seen that while IM predicts the highest density uncertainty followed by CS and MC. 

 

 

Figure 2.12. Spatial variation of ensemble averaged density uncertainty predictions from Image 

Matching, Moment of Correlation and Correlation Statistics schemes.  
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Finally, the uncertainties from all vectors in the time series are combined to calculate the 

PDFs for the uncertainty distributions. The resulting PDFs are shown in Figure 2.13 along with 

the RMS values which are 1.51e-2 kg/m3 for IM, 4.45e-3 kg/m3 for MC and 8.73e-3 kg/m3 for CS., 

It is seen that MC results in the lowest uncertainty and IM results in the highest uncertainty with 

CS predicting a value slightly lower than IM. Further, all PDFs show a bimodal behavior where 

each peak corresponds approximately to the density uncertainty ahead of and behind the shock. 

This is particularly evident for CS having the largest separation between the peaks, and MC with 

the lowest peak separation. The sources of uncertainty considered in experimental analysis are 

image noise, the cross-correlation operator and unsteadiness in the flow field. Density noise at the 

boundaries has not been considered. 

 

 

Figure 2.13. PDFs of the density uncertainty distributions for IM, MC, and CS.  

2.5 Conclusion 

We have implemented and presented the first comprehensive uncertainty quantification framework 

for density estimation from BOS measurements and tested the method with synthetic and 

experimental BOS images. The methodology builds upon recent progress in a-posteriori 

uncertainty quantification in PIV, and direct displacement uncertainty methods are used to also 

estimate the displacement uncertainty from BOS images. These displacement uncertainties are 

then propagated to the density gradients using the optical layout and then through the Poisson 
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solver typically used for density integration in BOS to calculate density uncertainties, accounting 

for the covariances introduced due to the finite differences involved in the calculation of the 

Laplacian. This method yields instantaneous, local uncertainty bounds for each density 

measurement throughout the field of view.   

The methodology was tested with synthetic BOS images rendered with a Gaussian density 

field using a ray-tracing based image generation methodology. The images were processed using 

correlation algorithms with multi-pass window deformation, and the errors were calculated by 

comparing the measured displacements to the light ray displacements, which are considered to be 

the ground truth. Processing was done using two different software programs, PRANA and DaVis, 

and three displacement uncertainty estimation schemes– Image Matching (IM), Moment of 

Correlation (MC) and Correlation Statistics (CS). Results show that for the displacements, all 

methods overpredict the true random error, with CS closest to the random error, followed by IM 

and MC.  

When propagated through the Poisson solver for density integration, results from both 

processing software programs resulted in a stronger bias error in the density field, likely due to 

truncation errors from the finite differences used in the density integration process. On comparing 

the random errors with the predicted density uncertainties, CS predicted a density uncertainty 

closest to the corresponding random error. IM and MC both overpredicted their respective random 

errors, but IM was closer to the true random error compared to MC.  

The method was also demonstrated on experimental BOS images of supersonic flow over a 

wedge and the processed displacements and the density fields show the presence of a shock wave 

and expansion fan in the region of interest corresponding to the wedge tip and wedge shoulder 

respectively. The density gradient uncertainties were highest in close proximity to the shocks and 

expansion fans, and were sensitive to the boundary condition and the integration procedure. In 

general, the density uncertainty increased monotonically on moving away from the Dirichlet 

boundary, with the result that a point downstream of the shock had a higher density uncertainty as 

compared to a point upstream of the shock, even though they had nearly identical density gradient 

uncertainties. PDFs of the uncertainty fields from five thousand vector fields showed that IM and 

CS resulted in very similar uncertainties, and MC under-predicted the uncertainty as compared to 

the two methods.  
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A limitation of the proposed methodology is that bias uncertainties are not estimated, and as 

seen from the analysis with the synthetic images, there is a strong bias error in the density 

estimation. This is in addition to the bias uncertainties that also exist in the cross-correlation 

processing which are due to peak-locking and other processing based errors. Developing a similar 

formulation for the estimation and propagation of the bias uncertainties is still required. Another 

limitation is that the methodology does not account for covariances introduced between adjacent 

vectors due to the cross-correlation procedure. This is especially important in situations where 

window overlap is used in the processing, and is another avenue for future work on this topic. 

Finally, further work is required to compare these density uncertainty predictions to the 

measurement error for benchmark BOS experiments, especially for stronger density gradients that 

can lead to larger image distortions and a corresponding increase in the measurement error and 

uncertainty. 

For complex flows where depth-averaging is not suitable, a volumetric measurement is 

required to estimate the three-dimensional density field [62]–[64], and in such a measurement the 

volumetric reconstruction will also have an effect on the uncertainty. First, calibration induced 

errors can introduce uncertainties in the reconstruction as shown by Bhattacharya et. al. for stereo-

PIV measurements [45], and further, the existing uncertainties may be amplified by propagation 

through the chosen reconstruction algorithms. Therefore, the proposed methodology needs to be 

extended to account for these effects in volumetric measurements. 

Overall, displacement uncertainty methods typically used for PIV experiments are also 

applicable to BOS data, and the displacement uncertainties can be propagated through the Poisson 

solver using a sparse linear operator to obtain the density uncertainties. Thus, the method proposed 

in this manuscript allows for instantaneous spatially resolved uncertainty quantification in density 

estimates from BOS measurements, and for use in CFD model validation and engineering design. 
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Abstract 

Uncertainty quantification for Particle Image Velocimetry (PIV) is critical for comparing 

experimentally measured flow fields with Computational Fluid Dynamics (CFD) results, and 

model design and validation. However, PIV features a complex measurement chain with coupled, 

non-linear error sources, and quantifying the uncertainty is challenging. Multiple assessments 

show that none of the current methods can reliably measure the actual uncertainty across a wide 

range of experiments, and estimates can vary. Because the current methods differ in assumptions 

regarding the measurement process and calculation procedures,  it is not clear which method is 

best to use for an experiment where the error distribution is unknown.  

To address this issue, we propose a method to estimate an uncertainty method's sensitivity 

and reliability, termed the Meta-Uncertainty. The novel approach is automated, local, and 

instantaneous, and based on perturbation of the recorded particle images. We developed an image 

perturbation scheme based on adding random unmatched particles to the interrogation window 

pair considering the signal-to-noise (SNR) of the correlation plane. Each uncertainty scheme's 

response to several trials of random particle addition is used to estimate a reliability metric, defined 

as the rate of change of the inter-quartile range (IQR) of the uncertainties with increasing levels of 

particle addition. We also propose applying the meta-uncertainty as a weighting metric to combine 

uncertainty estimates from individual schemes, based on ideas from the consensus forecasting 

literature. We use planar and stereo PIV measurements across a range of canonical flows to assess 

the performance of the uncertainty schemes. Further, a novel method is introduced to assess an 

uncertainty scheme's performance based on a quantile comparison of the error and uncertainty 

distributions, generalizing the current method of comparing the RMS of the two distributions. The 

results show that the combined uncertainty method outperforms the individual methods, and this 
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work establishes the meta-uncertainty as a useful reliability assessment tool for PIV uncertainty 

quantification. 

Nomenclature 

𝜖 Error 𝑛 
Individual method 

index 

Δ𝑥 
Displacement along the x-

direction 
𝑁 

Number of individual 

methods 

𝜎 Standard deviation 𝒩 
Gaussian/normal 

distribution 

𝜎Δ𝑥 Uncertainty in x displacement 𝑈 Uncertainty 

𝜎𝑟𝑎𝑡 
Ratio of uncertainties of perturbed 

and original images 
𝑥 

Horizontal co-

ordinate 

𝑓 Probability density function (PDF) 𝑦 Vertical co-ordinate 

𝑚 
Rate of change of uncertainty ratio 

with particle addition 
𝑤 Weight 

 

3.1 Introduction 

Over the past decade, there has been increasing effort in Particle Image Velocimetry (PIV) to 

develop a-posteriori uncertainty quantification methodologies for local and instantaneous 

displacement measurements [1]. These efforts aim to provide uncertainties to PIV measurements 

that can be used for comparison to CFD results and for model design and validation. Parallel efforts 

included methods for propagating these uncertainties to derived quantities such as turbulence 

statistics [2], velocity derivatives [3], and pressure [4, 5], as well as to stereo PIV [6] and 

volumetric PTV [7] measurements. There has also been recent progress in uncertainty 

quantification in Background Oriented Schlieren (BOS), an image-based density measurement 

technique. Developments include estimation of displacement uncertainty from dot tracking based 

processing [8, 9], propagation of both tracking/cross-correlation based displacement uncertainties 
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through the density integration chain [10], and utilizing the uncertainties to improve the density 

integration process by weighted least squares minimization [11]. 

The measurement uncertainty of a quantity (e.g., velocity in PIV) represents the interval 

expected to contain the true value. This uncertainty depends on all the factors in the overall 

measurement chain. Since PIV involves a complex measurement chain from image recording 

through processing and post-processing, the final measurement can suffer from a multitude of error 

sources such as particle size, seeding density, shear, noise, out-of-plane motion, and processing 

algorithms, to name a few [12]. These error sources can combine in a coupled and non-linear 

manner to affect the final measurement uncertainty, and also depend on the final quantity of 

interest, whether the displacement, shear, pressure, or density. Even just for displacement 

uncertainty, while there have been many methods proposed in the literature, none perform well 

under all situations. 

PIV displacement uncertainty methods are commonly classified into direct and indirect methods. 

Indirect methods predict the displacement uncertainty by calibrating the variation of uncertainty 

to various image parameters (such as particle size, density, shear, noise) and signal-to-noise ratio 

metrics of the cross-correlation plane (such as the Peak to Peak Ratio (PPR), Mutual Information 

(MI) and others [13–15]). Monte-Carlo simulations with synthetic images are used to obtain the 

calibration [13–16]. The performance of all indirect methods relies on the calibration process, 

which must be accurate and reflect all possible experimental scenarios in a typical measurement.  

Direct methods estimate the uncertainty directly based on image or correlation plane properties 

without calibration. Presently, three direct methods are available to estimate the displacement 

uncertainty—Image Matching (IM) [17], Correlation Statistics (CS) [18], and Moment of 

Correlation (MC) [19]. In brief, IM or particle disparity (PD) proposed by Sciacchitano et al. [17] 

estimates the uncertainty in the displacement using a statistical analysis of the disparity between 

the measured positions of particles in the two frames after a converged iterative deformation 

interrogation procedure. The performance of this method is sensitive to the accuracy of the particle 

position estimation and deteriorates with increasing seeding density, noise, and out-of-plane 

motion. CS, proposed by Wieneke [18], estimates the uncertainty again using the image disparity 

but at a pixel level. The correlation peak's asymmetry at the end of a converged window 

deformation procedure is used to measure the correlation error, and propagating the standard 

deviation of this error through the sub-pixel estimator provides the uncertainty. The CS method 
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relies on the correlation plane statistics and performs better at higher seeding densities and larger 

interrogation windows. MC, proposed by Bhattacharya et al. [19], predicts the uncertainty by 

estimating the second-order moment of the PDF of displacements contributing to the cross-

correlation plane. The PDF is estimated as the generalized cross-correlation (GCC) from the 

inverse Fourier transform of the phase of the complex cross-correlation plane [20–22], followed 

by Gaussian filtering, gradient correction, and scaling by the effective number of particles 

contributing to the cross-correlation. This method also works better with high seeding densities 

and large interrogation windows, and small interrogation windows can lead to an over-prediction 

of the uncertainty.   

However, multiple previous works show that none of the PIV uncertainty quantification 

methods perform well under all situations [23, 24]. While the direct methods are sensitive to 

elemental error sources [23], they can under-predict the random error [24]. In addition, direct 

methods can predict different uncertainties for the same flow field [10, 19], and as a result, no PIV 

uncertainty method is universally consistent and robust. Further, it is often impossible to choose 

the correct estimate in an experiment because the actual random error is unknown, and these 

potentially incorrect estimates in displacement uncertainty can propagate to derived quantities with 

detrimental implications for further analysis. Therefore, it is not clear which method to use for an 

experiment where the error is unknown.   

A similar problem also exists in the consensus forecasting literature when assessing the 

risk/reliability associated with competing models that predict a future quantity based on 

incomplete information in the present [25–27]. In these applications, the variance of the 

fluctuations of each model prediction provides the “risk”/”volatility”. In this work, we adapt this 

idea to the problem of PIV uncertainty quantification and develop a method to estimate the 

robustness/sensitivity of each uncertainty method in a local, instantaneous, and automated manner. 

We base the method on perturbing the particle images in an interrogation window pair and 

assessing the variation of the uncertainty estimates to this perturbation. The perturbation should 

be large enough to provide a variation of the displacement uncertainty without significantly 

affecting the cross-correlation plane and displacement estimate on which we are trying to calculate 

the uncertainty bounds. We assess this using signal-to-noise ratio metrics of the cross-correlation, 

such as the peak ratio and mutual information. By repeating the random particle addition over 

several trials and over different addition amounts, we quantify the response of each uncertainty 
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scheme to the image perturbation. Finally, we use descriptive statistics of the distribution, such as 

the inter-quartile range (IQR) and the rate of change of the IQR with increasing particle addition, 

to estimate a reliability metric (the meta-uncertainty) for each uncertainty scheme. A broader 

distribution of uncertainty estimates and a higher meta-uncertainty will characterize schemes that 

are more sensitive to the perturbations. 

Finally, we apply the meta-uncertainty to develop a new uncertainty quantification scheme 

for PIV that combines the estimates from the individual schemes weighted by the inverse of their 

meta uncertainty. Similar to consensus forecasting, where the aim is to combine estimates from 

different models based on a meta-analysis of the individual models [26–28], this approach aims to 

fuse the prediction from multiple uncertainty models into a new, more robust, and reliable estimate. 

The hypothesis is that different models utilize different aspects of the information associated with 

the measurement, and therefore their combination provides a better estimate than each individual 

model. In the present context, the forecast quantity is the displacement uncertainty, the individual 

models are the uncertainty quantification methods, and the meta-uncertainty provides the weights 

for each model. While the proposed framework is general and can apply to many individual 

uncertainty schemes, here, we will consider only the three direct displacement uncertainty 

schemes—Image Matching (IM) [17], Correlation Statistics (CS) [18], and Moment of Correlation 

(MC) [19]. We assess the performance of the meta-uncertainty estimation method and the 

combined uncertainty scheme with synthetic and experimental planar and stereo PIV images. 

3.2 Methodology 

Figure 3.1 shows the overall meta-uncertainty based combination method whiFigure 3.1ch consists 

of three major steps: 1) the estimation of the meta-uncertainty for each uncertainty method, 2) 

calculation of weights based on the response function, and 3) calculating the combined uncertainty. 

The following sections detail the procedure for each step.  
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Figure 3.1. Illustration of the meta-uncertainty based combination methodology. 

 

The meta-uncertainty is based on the uncertainty scheme's PDF and describes its response to a 

perturbation in the input intensity distribution. Since the PIV uncertainty methods rarely have a 

closed-form expression, we estimate the PDF using a Monte-Carlo simulation procedure. Further, 

to estimate the true/parent PDF requires the knowledge of all inputs—a set of all possible PIV 

images—which is not possible. Therefore, we perturb the intensity distributions of the 

interrogation window pair for several trials to generate a local population of particle image pairs 

and estimate the corresponding uncertainty.  

For the image perturbation procedure to be valid, it must be able to provide a variation of the 

uncertainty estimates without an appreciable change in the underlying signal-to-noise ratio (SNR) 

metrics of the cross-correlation estimator (such as the Peak to Peak Ratio (PPR), Mutual 

Information (MI) and others [13–15]) whose uncertainty we are trying to estimate. There are 

several potential methods to perturb the particle images. We adopt a method of adding random and 

unpaired particles to the interrogation window pair. Analysis with synthetic and experimental 
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images showed that this method best accomplished perturbing the images with a negligible change 

in the signal-to-noise ratio metrics.  

a) Particle Perturbation 

To perform the perturbation, we first identify all the particles on the image using identification and 

centroid-estimation methods commonly used in Particle Tracking Velocimetry [29, 30]. Following 

this, we add a set of unpaired particles to the interrogation window pair as shown in Figure 3.1 (a), 

with the number of unpaired particles specified as a fraction of the seeding density, and the peak 

intensity and diameter set to be the average of the already identified particles. Figure 3.2 shows a 

sample particle image pair with the perturbation.  

 

 

Figure 3.2 Example of a perturbed image pair, with the red circles indicating the location of the 

added particles. 
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b) Meta uncertainty calculation 

The perturbed window pair is then cross-correlated, and the uncertainty is estimated using all three 

individual methods as shown in Figure 3.1 (b). We repeat this procedure for several trials to build 

a PDF of the ratio of the perturbed to original uncertainties for each estimator ( 𝜎𝑟𝑎𝑡,Δ𝑥,𝑛 =

𝜎Δ𝑥,𝑛,𝑝𝑒𝑟𝑡./𝜎Δ𝑥,𝑛,𝑜𝑟𝑖𝑔.). Figure 3.3 shows sample distributions of the uncertainty schemes and 

statistics such as the median and quartilesFigure 3.3. Each level of particle addition results in a 

distribution of uncertainties due to the perturbation. These distributions become wider with 

increasing level of particle addition at a different rate of increase for each method. The width of 

the distribution represents the sensitivity of each scheme to particle perturbation, and therefore a 

scheme with a wider PDF is less reliable compared to a scheme with a narrower PDF. However, 

the response and relative sensitivity of each scheme will vary with the local image and flow 

conditions. 

 

 

Figure 3.3. Effect of particle addition on the PDF of the ratio of resampled to original 

uncertainties. 

c) Weight calculation 

We calculate the IQR for each particle perturbation level from the distributions, and the rate of 

change of this IQR with particle perturbation (from a linear regression as shown in Figure 3.1 (c)) 

provides the weight for each scheme. The IQR is used in place of the RMS because it is less 

sensitive to outliers. Equation (1) provides the weight of the x component(22), with a similar 
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equation for the y component. The slope (and the weight) calculation depends on the number of 

points used for the regression and the individual scheme's response. Figure 3.4 shows a sample 

result for the IQR variation with five particle addition levels and the corresponding weightsFigure 

3.4. These results are consistent with Figure 3.3 with MC showing the highest rate of increase and 

therefore assigned the lowest weight, with CS showing the lowest rate of increase and therefore 

assigned the highest weight. This weight is essentially a local and instantaneous reliability 

assessment metric for each uncertainty scheme, and the proposed method allows for an automated 

way to estimate this metric for arbitrary particle images. The relative weights for each scheme can 

vary across grid points within the same flow field, and across flow-fields. 

 

 
𝑤𝑥 = |(

Δ 𝐼𝑄𝑅𝑥

Δ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 %
)|

−1

 
(22) 

 

 

 

Figure 3.4. Variation of the IQR of uncertainty ratios with particle addition percentage for a grid 

point, with the corresponding weights obtained from the straight line fit. 

d) Combined uncertainty calculation 

Finally, we calculate the combined uncertainty as the weighted average of the individual 

uncertainty schemes as shown in Figure 3.1 (d),  
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𝜎𝑥,𝑐𝑜𝑚𝑏 = ∑ 𝑤𝑥,𝑛𝜎𝑥,𝑛

𝑁

𝑛=1

 

(23) 

 

for the x-component where 𝜎𝑥  represents the individual uncertainty, 𝑤𝑥  represents the 

corresponding weights, 𝑛  represents the subscript for each method, and 𝑁  represents the total 

number of methods (here, 𝑁 = 3). In the next section, we will assess the method's performance 

with synthetic and experimental images from planar and stereo PIV experiments. 

3.3 Results 

3.3.1 Planar PIV 

Planar PIV measurements from several canonical flows are used to test the uncertainty 

quantification methods over a wide variation of image and flow conditions. The datasets used are: 

a turbulent boundary layer (PIV Challenge 2003B) [31], a laminar separation bubble (PIV 

Challenge 2005B) [32], laminar stagnation flow [33], a vortex ring (fourth PIV Challenge) [34], 

and the unsteady inviscid core of a jet [23]. For each dataset, we processed the images with two 

processing routines (WS1 and WS2 as listed in Table 3.1) to provide a further variation in the 

testing, using the open-source PIV code PRANA [35, 36]. Figure 3.5 shows the displacement 

contours from all flow fields, and foFigure 3.5 each case, the error analysis used a true solution, 

based on details from the respective publications. 

 

Table 3.1. Summary of processing parameters for all datasets. 

 

Turbulent 

Boundary 

Layer 

(TBL) 

Laminar 

separation 

bubble (LSB) 

Stagnation 

flow (SF) 

Vortex 

ring (VR) 
Jet flow (JF) 

WS 1 (% 

overlap, No. 

of passes) 

64  ×  64 

(75%, 2) 

(87.5%, 2) 

64  ×  64 

(75%, 4) 

64  ×  64 

(75%, 4) 

64  ×  64 

(75%, 1) 

(87.5%, 3) 

32  ×  32 

(87.5%, 4) 

WS 2 (% 

overlap, No. 

of passes) 

64  ×  64 

(87.5%, 1) 

32  ×  32 

(75%, 3) 

64  ×  64 

(75%, 1) 

32  ×  32 

(50%, 3) 

64  ×  64 

(75%, 1) 

32  ×  32 

(50%, 3) 

64  ×  64 

(87.5%, 1) 

32  ×  32 

(75%, 3) 

32  ×  32 

(75%, 1) 

16  ×  16 

(75%, 3) 
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(a) (b) 

 
  

(c) (d) (e) 

Figure 3.5. Datasets used for assessment on planar PIV images. (a) Turbulent boundary layer 

[31], (b) laminar separation bubble [32], (c) laminar stagnation flow [33], (d) vortex ring [34], 

and (e) jet flow [23]. 

 

We test the combination framework shown on the datasets using a Monte-Carlo simulation 

by randomly choosing a dataset and a processing setting, a snapshot within the dataset, and a grid 

point within the snapshot. For the chosen grid point, particle addition is used to calculate the meta-

uncertainty, and the individual uncertainties are combined using a weighted average using the 

procedure shown in Figure 3.1. Particle addition was performed for five levels of the seeding 

density from 5 to 25% and over 100 trials for each perturbation level (as shown in Figure 3.3 and 

Figure 3.4). This procedure is repeated for 1000 grid points for each dataset and processing setting, 

and the errors and uncertainties across all datasets (10,000 grid points in total) are merged to 

calculate the corresponding statistics. This section discusses the merged statistics, and the 

Appendix contains the individual dataset results. 

Figure 3.6 shows the PDFs of the error and uncertainty distributionsFigure 3.6 in the form 

of violin plots, with the individual schemes in blue, the error in black, and the combined 

uncertainty scheme in orange. Also shown are the statistics such as the median (circles), quartiles 

(triangles), and the root mean square (RMS)(straight line) of each distribution. Sciacchitano et al. 
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[23] showed that when the error distribution for each grid point is modeled as a zero-mean 

Gaussian random variable with the standard deviation representing the local uncertainty, the RMS 

of a mixture of these error distributions should match the RMS of the corresponding uncertainty 

distributions. For these results, the RMS of the error distribution is 0.08 pix., with the combined 

uncertainty scheme predicting an RMS of 0.07 pix., while the RMS of the individual uncertainty 

schemes being 0.05 pix. for IM, 0.06 pix. for MC, and 0.1 pix. for CS. Therefore, the combined 

scheme provides the best estimate of the RMS error and can compensate for the under-prediction 

by IM and MC and the over-prediction by CS. However, there is still a 0.01 pix. discrepancy 

between the RMS estimates of the error and the combined scheme, indicating that there is room 

for further improvement of the method. 

 

 

Figure 3.6. PDFs of the error and the individual and combined uncertainty estimates for 

consolidated results from all datasets. 

 

The PDF of weights assigned to each individual scheme are shown in Figure 3.7 with the 

individual schemes in blue, and the black dashed line represents the case when all schemes are 

equally weighted. CS is assigned the highest weights for most cases, followed by IM, and then by 

MC, consistent with the sample result shown in Figure 3.4. However, even though CS is assigned 

a higher weight and over-predicts the RMS of the error, the combined effect of IM and MC, which 

under-predict the error, brings down the RMS of the combined scheme to be close to the RMS of 

the error. This highlights the advantage of the meta-model as even if one uncertainty scheme (CS) 

is more robust to perturbations in the correlation plane SNR and hence has a higher weight, the 

method can compensate with the weighting of other schemes. Finally, the weight distributions are 

broad, denoting that there are several grid points for which CS could be assigned a lower weight 
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than either IM and MC. Therefore, the meta-uncertainty calculation is also able to capture the 

variation in the image and flow conditions across the datasets. 

 

 

Figure 3.7. Distribution of weights assigned to the individual uncertainty schemes across all the 

datasets. The grey dashed line represents a case with equal weighting. 

 

We also introduce a new method to compare the error and uncertainty distributions, based 

on a quantile-quantile comparison of the error and uncertainty distributions. This is a 

generalization of the method proposed by Sciacchitano et al. [23] for comparing the RMS to 

address the sensitivity of the RMS calculations to outliers. Consider a set of error measurements 

𝜖𝑖 , where 𝑖  represents the grid point under consideration with each error drawn from a 

corresponding distribution 𝑓𝜖𝑖
. Also, let the distribution of all the error measurements be 𝑓𝜖 . For 

each error measurement, we have an estimate of the uncertainty 𝑈𝑛,𝑖  where 𝑛  represents an 

uncertainty method. This uncertainty measurement represents the standard deviation of the error 

distribution 𝑓𝜖̂𝑛,𝑖
, with 𝜖𝑛̂,𝑖 representing the estimated error. Finally, we can also define a combined 

distribution of each uncertainty scheme's estimated errors as 𝑓𝜖̂𝑛
. Our aim then is to compare the 

distributions of the true error distribution, 𝑓𝜖 , with that of the estimated error distribution, 𝑓𝜖̂𝑛,
 for 

each uncertainty scheme. To enable this comparison, we need a model for the individual, estimated, 

error distributions 𝑓𝜖̂𝑛,𝑖
. Following the analysis of Sciacchitano et al. [23], if we assume this 

distribution to be a zero-mean Gaussian random variable, (𝑓𝜖̂𝑛,𝑖
= 𝒩(0,𝑈𝑛,𝑖) then the overall 

distribution of the estimated error becomes the sum of these individual distributions, 

                               𝑓𝜖̂𝑛
= ∑𝑓𝜖̂𝑛,𝑖

𝑖

= ∑𝒩(0, 𝑈𝑛,𝑖)

𝑖

  .                      (24) 
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If the uncertainty estimate 𝑈𝑛,𝑖 is correct, then the RMS of the above distribution must 

equal that of the error distribution, consistent with the previous result of Sciacchitano et al. [23]. 

Therefore, in this work, we compare the distributions instead of the RMS values for a more 

rigorous comparison and to reduce the effect of outliers.  

The following procedure is used to estimate𝑓𝜖̂𝑛
. For each grid point and uncertainty method 

𝑈𝑛,𝑖 , we draw several (here 1000) random values of 𝜖𝑛̂,𝑖  from the corresponding normal 

distribution. These estimated error values from all grid points provide a pdf of the estimated error 

distribution 𝑓𝜖̂𝑛
. Then the true and estimated error distribution are compared using a quantile-

quantile plot. 

The results are shown in Figure 3.8, where the x-axis represents the quantiles of 𝑓𝜖  and the y-axis 

represents the quantiles of 𝑓𝜖̂𝑛
, with each curve corresponding to an uncertainty scheme, and the 

black line representing the 1:1 variation. The orange curve corresponding to the combined scheme 

is overall closest to the black line, showing that the combined uncertainty scheme best 

approximates the true error distributionFigure 3.6. 

 

 

Figure 3.8. Quantile-quantile comparison of the true and estimated error distributions. 

 

To complement the statistical analysis, we investigate the variation of the RMS error and 

uncertainty as functions of the element error sources such as fractional displacement and shear [16, 

37]. To perform the comparison, we bin the errors and uncertainties based on their corresponding 

values of the displacement and shear, as estimated from the true solution. Then we calculate the 

bin-wise RMS of the error and uncertainties to caFigure 3.9 the variation of these statistics with 
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the elemental error sources. Figure 3.9 shows these results, along with the number of 

measurements corresponding to each bin. The results show that 1) the errors/uncertainties increase 

with fractional displacement and (to a lesser extent) with shear, which is consistent with PIV theory 

[38–40], and 2) the combined scheme provides an RMS uncertainty that is, on average, the closest 

to the RMS error. However, MC performs better for low values of the velocity gradients, since the 

large uncertainties predicted by CS for these measurements shift the combined estimates upward.  

 

 

Figure 3.9. Variation of the RMS error and uncertainty as a function of elemental error sources 

such as displacement and shear, along with the corresponding bin count. 

 

In summary, the analysis on planar PIV datasets showed that the combined uncertainty 

scheme based on the meta-uncertainty better represented the error distribution in terms of the RMS, 

quantiles, and the effect of error sources such as fractional displacement and shear. In the next 

section, we demonstrate the performance of the method for Stereo PIV images of a vortex ring.  

3.3.2 Stereo PIV 

The performance of the meta-uncertainty-based framework is also tested with Stereo PIV images 

by utilizing the uncertainty quantification methodology introduced by Bhattacharya et al. [6].  The 

method propagates the planar PIV uncertainties for each camera through the stereo-reconstruction 
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process, accounting for uncertainties in the mapping function coefficients from the self-calibration 

procedure [41]. The analysis here uses the vortex ring dataset from Case E of the 4 th PIV Challenge 

[34] (center and left cameras), similar to Bhattacharya et al. [6]. Figure 3.10 shows displacement 

contours for the three displacement components, with 50 snapshots used for the analysis.   

 

 

Figure 3.10. Spatial variation of displacement components for the stereo PIV dataset. 

 

We assess the uncertainty schemes using the Monte-Carlo procedure detailed before, with 

the additional step of propagating the perturbed planar uncertainties through the stereo-

reconstruction procedure to calculate the corresponding stereo uncertainties, the IQR and the 

weights. Therefore, the full measurement chain was used to calculate the meta and combined 

uncertainties.  

Figure 3.11 shows the distribution of weights, errors, and uncertainties, and Figure 11Figure 

3.11Figure 3.11(a) is consistent with the planar results, with CS being assigned the highest weight, 

followed by IM and MC. Further, the relative distribution of the weights is nearly identical for the 

three displacement components. From the error and uncertainty distributions shown in Figure 

3.11(b), we see that the RMS of the combined uncertainty method is again the closest to the RMS 

error for the in-plane component U and V, similar to the planar data, and slightly over-predicts the 

RMS for the out-of-plane component W. This over-prediction (~ 0.1 pix.) is because of the over-

prediction in the CS estimates of the uncertainty.  

Finally, the quantile-quantile plots of the true and estimated error distributions in Figure 

3.11(c) show that the combined uncertainty best approximates the true error distribution for the in-

plane displacement components, while IM and MC perform better for the out-of-plane components. 
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The deviation of the combined uncertainty closely follows that of the CS curve because of the high 

weights assigned to CS. Therefore, in situations without an obvious choice for the best individual 

scheme, the combined scheme offers minor performance improvement. However, the performance 

of the individual schemes varies for the vast majority of the experiments, and when the error 

distribution is not available, it is impossible to guess the best method. Therefore, the combined 

method offers the most robust estimate of the uncertainty for a general experiment without a true 

solution. Overall, these results establish that the meta-uncertainty based combination framework 

also performs well for Stereo PIV measurements. 
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(a) (b) 

 

(c) 

Figure 3.11. Results of applying the meta-uncertainty model to stereo PIV images. (a) PDF of 

weights, (b) rror and uncertainty distributions, and (c) Quantile-quantile comparison of the true 

and estimated error. 

3.4 Summary and Conclusions 

This work introduced a reliability metric of PIV uncertainty quantification methods termed the 

meta-uncertainty and an automated, local, and instantaneous method for its estimation. The meta-

uncertainty describes the sensitivity of an uncertainty quantification method to perturbation in the 

input images, with a more sensitive scheme possessing a higher meta-uncertainty and lower 

reliability. Random/unpaired particles are added to perturb the images and estimates the 

uncertainty using each method over several trials and different particle addition levels. The PDF 
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of the uncertainty provides a statistical measure of the response function, and the rate of change of 

the inter-quartile range (IQR) of the individual uncertainty schemes with particle addition provides 

the reliability metric.  

In addition, this work also introduced a framework for combining individual uncertainty 

estimates based on the meta-uncertainty, similar to consensus forecasting. Since the uncertainty 

estimation methods differ in their use of information regarding the displacement estimation 

process, we hypothesized that combining the individual estimates should provide a better estimate 

of the uncertainty. The individual estimates were combined using a weighted average, with the 

weights based on the inverse of the rate of change of IQR, with a more sensitive/less reliable 

scheme assigned a lower weight. 

Both the meta-uncertainty estimation and the combination framework were tested with the 

direct uncertainty methods - Image Matching (IM), Moment of Correlation (MC), and Correlation 

Statistics (CS) - with planar and stereo PIV images of several canonical flows, which offer a range 

of error and uncertainty sources. The planar PIV dataset included a turbulent boundary layer, 

laminar separation bubble, laminar stagnation flow, vortex ring, and jet flow, two processing 

settings for each flow field, and the stereo PIV dataset used was a vortex ring. We calculated the 

individual and combined uncertainties for grid points randomly sampled from these datasets, and 

results showed that the combined uncertainty best represented the true error distribution in terms 

of the overall RMS and the variation of RMS with error sources such as displacement and shear.  

Further, a new method was introduced to compare the error and uncertainty estimates by 

generalizing the RMS comparison method of Sciacchitano et al. [23] to quantiles of the error and 

uncertainty distribution for a more rigorous comparison that is less sensitive to outliers. These 

results also showed that the error distribution based on the combined method predicts the true error 

distribution better than the individual uncertainty methods. For the stereo PIV dataset, the meta-

uncertainty based combined method showed the best performance for the in-plane components, 

with a slight over-prediction in the RMS error for the out-of-plane component. However, since an 

individual uncertainty schemes performance varies significantly for different experiments, the 

combined method likely provides the best potential estimate of the uncertainty for a general 

experiment. 

The major limitation of the method is the computational cost involved in estimating the 

meta-uncertainty with approximately 1000 perturbation trials performed for each grid point and 
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uncertainty scheme. Therefore, future work could reduce this computational cost by developing 

approximate theoretical models of the individual schemes' response functions to accelerate the 

computations. Machine learning based neural-network models can also improve the combination 

framework. Finally, the meta-uncertainty can also improve the individual schemes themselves by 

analyzing their response to particle perturbations. In conclusion, this paper establishes the meta-

uncertainty as a useful reliability assessment tool for PIV uncertainty quantification and the 

combination framework as a successful estimator of the uncertainty for cross-correlation PIV 

processing, with potential applications to uncertainty propagation, de-noising, and other post-

processing routines.   
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Appendix A: Methods for perturbing the particle images 

 

   

(a) (b) (c) 

Figure 3.12. Illustration of methods used to perturb the particle images. (a) Removing paired 

particles, (b) Removing unpaired particles, (c) Adding unpaired particles. 

 

 

 

Figure 3.13. Effect of particle perturbation on correlation plane SNR metrics for the three 

methods. 
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Appendix B: Planar Uncertainty Distributions for individual datasets 

 

Figure 3.14. Error and uncertainty distributions for each of the planar PIV datasets. For each 

violin plot, the left (darker) and right (lighter) halves correspond to the results for WS1 and WS2 

processing, respectively.  

 

 

 

Figure 3.15. Quantile-Quantile comparisons of the true and estimated error distributions based on 

the individual and combined uncertainty estimates for each planar PIV dataset. 
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Abstract 

We propose an improved density integration methodology for Background Oriented Schlieren 

(BOS) measurements that overcomes the noise sensitivity of the commonly used Poisson solver. 

The method employs a weighted least-squares (WLS) optimization of the 2D integration of the 

density gradient field by solving an over-determined system of equations. Weights are assigned to 

the grid points based on density gradient uncertainties to ensure that a less reliable measurement 

point has less effect on the integration procedure. Synthetic image analysis with a Gaussian density 

field shows that WLS constrains the propagation of random error and reduces it by 80% in 

comparison to Poisson for the highest noise level. Using WLS with experimental BOS 

measurements of flow induced by a spark plasma discharge show a 30% reduction in density 

uncertainty in comparison to Poisson, thereby increasing the overall precision of the BOS density 

measurements. 

4.1 Introduction and Methodology 

Background Oriented Schlieren (BOS) is an optical technique used to measure density gradients 

by tracking the apparent distortion of a target dot pattern [1]. The apparent displacement is obtained 

by comparing the distorted image and a reference image without the density gradients, and the 

estimation can be performed by cross-correlation, tracking, or optical flow algorithms [1]–[3]. This 

displacement is related to the density gradient field and the optical layout parameters as given by   

 Δ𝑋⃗  =
𝑀𝑍𝐷𝐾

𝑛0
∫ ∇𝜌𝑑𝑧  (25) 

where Δ𝑋⃗  is the apparent displacement, 𝑀  is the magnification of the dot pattern, 𝑍𝐷  is the 

distance between the dot pattern and the mid plane of the density gradient field, 𝐾 is the Gladstone-

https://doi.org/10.1007/s00348-020-03071-w
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Dale constant (= 0.225 ×  10−3  kg/m3 for air), 𝑛0  is the ambient refractive index, ∇𝜌  is the 

density gradient field and 𝑧 is the co-ordinate along the viewing axis. The integral is over the 

depth/thickness of the density gradient field. 

Given the apparent displacement from the image processing algorithms, Equation (25) can 

be used to calculate the projected density gradient field, and then the density field can be obtained 

by spatial integration [4]. The BOS method provides a robust and simple experimental setup, yields 

quantitative density information, and can be extended to large scale flows.  

The density gradient integration is traditionally performed by solving Equation (26) using 

a Poisson solver,  

 
            𝜌  =   (𝛻2)−1(𝛻 .  𝛻𝜌)   

=   (𝐺𝑇𝐺)−1(𝐺𝑇𝛻𝜌)          .    
(26) 

where 𝜌 is the density field, ∇𝜌 is the density gradient field, and 𝐺 is the gradient operator used 

for discretizing the derivative [4]. However this procedure is sensitive to measurement noise, and 

the noise can spread from one part of the measurement domain to contaminate other regions  [5]. 

There can be several sources of noise in BOS measurements. For example, non-uniform 

illumination in the field of view that can increase the effect of image noise, unreliable 

measurements due to a failure in the displacement estimation algorithm, as well as noise in the 

boundary condition such as to a pressure/temperature measurement from a probe. Therefore, a 

robust integration method is required that can withstand and constrain the effect and propagation 

of measurement noise. 

Least Squares (LS) Optimization is an alternate approach that is robust and customizable. 

It involves formulating the integration as an optimization problem, with the aim of minimizing a 

pre-defined cost function. For example, the cost function can be defined as the difference between 

the measured density gradient field and a finite difference approximation of the unknown density 

field, and the density field can be calculated by minimizing this cost function subject to constraints 

imposed by the boundary conditions. While solving the least squares problem with the particular 

cost function defined above is mathematically equivalent to solving the Poisson equation in (26) 

given the same stencil, the LS-optimization based approach allows the introduction of additional 

information/constraints about the flow field and flow measurement to improve the density 

integration procedure. 
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For example, non-uniform weights can be assigned to grid points to form the Weighted 

Least Squares (WLS) problem, which can be solved by Equation (27), where 𝑊 is the “weight 

matrix”.  

                   𝜌 = (𝐺𝑇𝑊𝐺)−1(𝐺𝑇𝑊𝛻𝜌)            . (27) 

A common approach is to assign weights based on the inverse variance of the measurement error 

for each point, to ensure that more precise measurements have a greater effect on the result [6][7]. 

Recently Zhang et. al. [7], [8] showed that WLS can significantly improve the performance of 

velocity-based pressure integration in incompressible flow, when the weights are assigned based 

on the accuracy of pressure gradient estimated from velocity error or velocity uncertainty. 

However, this approach is not applicable to planar BOS in general, due to the compressibility of 

the flow. Instead, the weights can be assigned based on the uncertainty of the BOS measurement 

which is directly related to the density gradient.  

Recently, Rajendran et. al. [10], [11] made advancements in uncertainty quantification 

methods for BOS measurements by developing a method to  report local, instantaneous, a-

posteriori density uncertainty across all points in the field of view. To achieve this, PIV-based 

displacement uncertainty quantification methods are used to estimate displacement uncertainties 

from cross-correlation BOS and propagated through the density integration procedure. One of the 

findings is that displacement uncertainty schemes from PIV are also applicable for cross-

correlation BOS, and that result will be used here. Further, the methodology to estimate the density 

uncertainty will also be utilized in this work. 

Therefore, we propose a WLS-based density integration methodology for BOS wherein the 

displacement/density gradient uncertainty will be used to assign weights for the integration 

procedure. For a grid point 𝑘, the weight is given by, 

 

                𝑊𝑘 = (𝜎∇𝜌,𝑘)
−2

 

= (
1

𝑀𝐾𝑍𝐷Δ𝑧
𝜎Δ𝑋,𝑘)

−2

              , 
(28) 

where 𝜎∇𝜌,𝑘  is the density gradient uncertainty at this point and 𝜎Δ𝑋,𝑘  is the displacement 

uncertainty. The pre-multiplying term involves the optical layout parameters described earlier in 

Equation (1), with the additional parameter Δ𝑧 denoting the depth/thickness of the density gradient 

field. This weight matrix is used along with Equation (27) to perform the WLS density integration 

for BOS. In this manner, the unreliable density gradient data points (with greater uncertainty) are 
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assigned lower weights as defined in Equation (4), and thus have a lower effect on the density 

integration procedure. Since the state of the art displacement uncertainty estimation methods are 

sensitive to a wide variety of error and uncertainty sources [12], it is possible identify unreliable 

measurements in a robust manner, if a reliable uncertainty quantification method is utilized. If the 

errors in the density gradient are unbiased and uncorrelated, the weight matrix is the inverse of the 

covariance matrix of the density gradient error, and WLS provides the best unbiased linear 

estimator for the density integration problem [13].  

The following sections detail the assessment of this methodology with synthetic and 

experimental BOS images, and show that WLS can reduce the density random error/uncertainty 

and improve the overall precision of the measurement. 

4.2 Analysis with synthetic BOS images 

We performed error analysis using synthetic BOS images with a known density field, and assessed 

the performance of three density integration algorithms: (1) Poisson solver, (2) WLS with weights 

based on the random displacement error, and (3) WLS with weights based on the displacement 

uncertainty. Further, a patch of high noise was added to one part of the BOS image to assess how 

the error due this patch propagates to the surrounding field during the density integration procedure.  

The synthetic BOS images were generated using a ray tracing-based image generation 

methodology [14]. In this method, light rays are launched from source points on the BOS target, 

propagated through density gradients by numerically solving Fermat’s equation with  a 4th order 

Runge-Kutta method [15], and then through the camera lens until the final intersection with the 

camera sensor, to generate the dot pattern images.  

The density field chosen for the error analysis is a Gaussian density field, described by 

Equation (20),  

 
𝜌(𝑋, 𝑌) = 𝜌0 + Δ𝜌0 exp {−

(𝑋 − 𝑋0)
2 + (𝑌 − 𝑌0)

2

2𝜎0
2 } 

(29) 

where 𝜌0 is the ambient density, Δ𝜌0 is the peak density difference and 𝜎0 is the standard deviation 

of the Gaussian field. For the simulations reported in this paper, 𝜌0 was set to be 1.225 kg/m3, Δ𝜌0 

was set to be 0.3 kg/m3, and 𝜎0 was set to be 1/4th of the field of view (= 2.41 mm). The dimensions 

of the density gradient field were 10 x 10 x 10 mm, and it was located at a distance of 0.25 m from 

the dot pattern. The optical layout used to image the dot pattern and the density field consisted of 
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a 105 mm lens at a distance of 0.5 m from the dot pattern to provide a magnification of about 40 

𝜇m/pix. These values were chosen to provide a displacement field that was characteristic of a 

typical BOS experiment (with an expected displacement of ~1-2 pixels), and to also provide 

displacement gradients for testing the density integration methods. The density field used to render 

the images is shown in Figure 4.1(a).  

The synthetic images featured a random dot pattern with a dot size of 3 pixels and a dot 

density of 15 dots/32x32 pixel window, and the entire image is corrupted with a noise level that 

was 1% of the peak image intensity. In addition, a portion of the image was corrupted with image 

noise higher than the surrounding regions by a specified amplification ratio. Three amplification 

ratios are considered in this analysis: 1, 10, 20. In all cases, the image noise at a given pixel was 

drawn randomly from a Gaussian distribution with the standard deviation equal to the imposed 

noise level. A sample image highlighting the high-noise region is shown in Figure 4.1 (b). A total 

of 1000 such image pairs were generated with different dot patterns and with each image pair 

consisting of one image rendered with the density gradient field and a reference image without the 

field, with the same noise level.  

Each image pair is cross-correlated using a multi-pass window deformation procedure with 

32x32 pixel windows and 50% overlap to obtain the corresponding displacement field shown in 

Figure 4.1 (c). Then the displacement error is calculated from the deviation of the measured 

displacements from cross-correlation with respect to the light ray deflections from ray tracing. 

Finally, the displacement errors from all image pairs are used to compute the error statistics, and 

the spatial distribution of the random component of the displacement error (defined as the standard 

deviation of the error distribution at each grid point) is shown in Figure 4.1 (e), showing, as 

expected, higher values in the noisy patch. 

In addition, the displacement uncertainty is also estimated during the correlation processing 

using the Moment of Correlation (MC) algorithm developed by Bhattacharya et. al. [16]. In this 

algorithm, the uncertainty is estimated directly from the PDF of displacements that contribute to 

the cross-correlation plane. The PDF of displacements is obtained by an inverse fast Fourier 

transform of the phase plane [17], [18] (also referred to as the Generalized Cross Correlation 

(GCC)), filtered by a Gaussian to improve subsequent calculations of the peak diameter [19], 

scaled by the number of correlating particles using the Mutual Information (MI) [20], and corrected 

for displacement gradients in the interrogation window [21], [22]. The instantaneous displacement 
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uncertainty field is shown in Figure 4.1 (d), and also shows a large increase in the noisy patch, 

which is consistent with the increase in the random error. Thus, the weights chosen based on the 

random error/uncertainties are lower in the noisy patch, and thus measurements in the patch would 

have less effect on the density integration.  

However, it is also seen that MC uncertainty is lower than the random error in the noisy 

patch, and higher in the rest of the field. This is because the displacement uncertainty predicted by 

MC is an instantaneous estimate of the random error from just a single snapshot, while the true 

random error is a statistically averaged estimate from several (here 1000) error fields. Despite 

many recent advances in the development of displacement uncertainty quantification methods, 

there is no universally accepted method with superior performance across all flow fields [23], [24], 

and the development of PIV/BOS uncertainty quantification is a young and active research area. 

While the results reported in this paper utilize MC to estimate the uncertainty, the WLS method is 

general and can be integrated with any uncertainty quantification method.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4.1. Synthetic dataset used for 

comparing the density integration methods 

corresponding to an amplification ratio of 20. 

(a) Gaussian density field, (b) BOS image in 

false color showing the region of the image 

corrupted with noise, (c) corresponding 

displacement field, (d) instantaneous 

displacement uncertainty from MC, and (e) 

random error of the displacement from 1000 

realizations. 

 

 

Next, the displacements were used to calculate the density gradients, which were then 

spatially integrated to calculate the density field using the three integration methods: (a) Poisson, 

(b) WLS with weights based on the random error, and (c) WLS with weights based on MC 

uncertainty. A 2nd order central difference scheme is used for spatial discretization, with Neumann 

boundary conditions on all four boundaries and the Dirichlet boundary condition at the midpoint 
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of the top boundary. The density error was then calculated by comparing the integrated density 

field with the reference field used to render the images, and a snapshot of the instantaneous density 

field as well as a profile along a vertical line passing through 𝑋 = 2.5 𝑚𝑚 is shown in Figure 4.2. 

All three methods show an under-prediction in the density field, potentially due to spatial 

discretization and truncation errors in the numerical integration. This deviation appears to increase 

with the noise amplification ratio.  

 

Figure 4.2. Spatial variation of the density field obtained by the Poisson integration method and 

profiles of the density random error along a vertical line for the three integration methods. 

 

The error statistics from 1000 such fields are calculated, and the resulting random error in 

the density field obtained from the three integration methods are shown in Figure 4.3. The WLS 

method (middle and right columns) is able to constrain the spread of the random error from the 

patch, while the error has a wider spread with  Poisson integration (left column), and this difference 
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increases with the patch amplification ratio. Finally, the results show that WLS with weights based 

on the displacement uncertainty (middle column) performs just as well as the case with weights 

based on the random error (right column), thereby justifying the use of the displacement/density 

gradient uncertainty to estimate the weights. This demonstrates the practical value of WLS since 

the error is not known and only the uncertainty can be estimated in the vast majority of experiments. 

The variation of the random error along a vertical line located at 𝑋 = 2.5 𝑚𝑚 is shown in the right 

most column. With increasing amplification ratio, the WLS method is able to constrain the spread 

of error and limit the peak error in the patch. The profile of the density random error is seen to be 

asymmetric with respect to 𝑌 = 0 𝑚𝑚 because the Dirichlet boundary condition is imposed at the 

top mid-point of the field of view, with the rest of the boundaries featuring Neumann boundary 

conditions.  

 

 

Figure 4.3. Spatial distribution of the density random error associated with the three 

integration methods: Poisson, WLS + MC, and WLS + Random Error. Each row corresponds 

to the same patch noise amplification ratio, denoted on the left, and each column corresponds 

to an integration scheme. The right most column represents a profile of the density random 

error along a vertical slice. 



 

 

102 

In addition, the probability density function (PDF) and cumulative density function (CDF) 

of the density random error distribution was calculated from 250,000 grid points and are shown in 

Figure 4.4, along with the RMS error for the PDF plot and the 90th percentile error for the CDF 

plot. As suggested by the PDFs of the random errors in the left column, the modes of the error 

distributions by WLS methods are less than 1/3rd of the error mode by the Poisson (blue) for an 

amplification ratio of 20. The RMS of the error distributions are shown by dashed lines as a metric 

to compare the distributions. The RMS values of the WLS methods are about 50% lower than the 

corresponding RMS for the Poisson. 

The right column shows the CDF of the random error distributions for the three integration 

methods. The dashed lines represent the 90th percentile of the error distribution which is an 

indication of the noise spreading characteristics. For WLS methods, 90% of the points have errors 

are less than 3e-4 kg/m3, whereas the errors by Poisson have a much wider spread and yield a 500% 

increase in terms of the 90th percentile compared to WLS methods.  

It is also seen that the 90th percentile errors from WLS methods are less affected by the noise level. 

Moreover, the WLS based on MC uncertainty results in a similar error distribution with the WLS 

based on the random error. 

In summary, the error analysis shows that the WLS integration can significantly improve 

the precision of the density integration procedure in comparison to the traditional Poisson solver. 

4.3 Experimental Demonstration  

The methodology was also tested using experimental BOS data of the flow induced by a 

nanosecond spark plasma discharge. A spark discharge of nanosecond duration leads to the rapid 

deposition of heat in the electrode gap leading to the development of a complex flow field with 

large thermal gradients. The experimental details corresponding to the dataset used in this 

assessment are reported in the work by Singh et. al. [25]. The BOS measurements were performed 

by imaging a random dot pattern (fabricated from sand-blasted aluminum) in the presence of flow 

induced by a spark across a 5 mm electrode gap. The dot pattern and flow were imaged at a 

magnification of 0.8 and a frame rate of 20 kHz with a 3.18 cm separation between the target and 

the electrodes. More details of the experimental setup can be found in Singh et. al. [25]. 
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Figure 4.4. PDF (left) and CDF (right) of the density random error associated with the three 

integration schemes. The dashed lines indicate the RMS error for the left column, and the 90 th 

error percentile for the right column. Each row corresponds to the same patch noise 

amplification ratio, denoted on the left. 

 

The dot pattern images were processed using the standard cross-correlation (SCC) method with 

multi-grid window deformation [26]. The window sizes were varied from 64 to 48 to 32 pixels 

over 4 passes with an overlap of 50% resulting in a final grid resolution of 16 pixels. The 

displacement uncertainties were calculated using the MC method described earlier, and the vector 

field is validated using Universal Outlier Detection (UOD) [27]. A median-based UOD filter was 

used with a 3x3 grid point neighborhood, and performed in two passes with a normalized residual 
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threshold set to be 3 and 2 respectively. The minimum normalization level (𝜖) was of 0.1 pixels. 

The detected outliers were replaced by a weighted average of the inverse distance between the 

invalid vector and the neighboring grid points.    

In the case of the experimental data, the extent of the path integration in Equation (25) is 

not known, as the flow is three-dimensional and only one view is presently available. Therefore, 

the displacements were used to calculate the projected density gradients, ∇𝜌𝑝 = ∫ 𝛻𝜌 𝑑𝑧, thereby 

constituting a 2D simplification of the 3D field. The gradients were then spatially integrated using 

the Poisson and WLS methods, with the weights assigned based on the projected density gradient 

uncertainty 𝜎∇𝜌𝑝
 for the latter, to yield the projected density field 𝜌𝑝 = ∫ 𝜌𝑑𝑧. Dirichlet boundary 

conditions were imposed at the mid-points of the left and right boundaries and Neumann 

conditions were imposed elsewhere. Further, the Dirichlet density values were set to zero to 

calculate the ‘relative’ projected density field with respect to the ambient. During the experiment, 

the field of view was large enough (= 1 electrode gap on either side of the spark) to ensure that the 

left and right boundaries were far from the induced flow and truly in the ambient. While the 

analysis of Singh et. al. employed an Abel inversion procedure to further extract the radial density 

field, that was not performed here, and instead a direct comparison was performed on the projected 

density field to avoid introducing additional downstream steps/variables in the comparison.  

The dot pattern displacements are shown in Figure 4.5(a) and (b) for two time instants, and 

the largest displacements occur at the boundary of the hot gas kernel as this corresponds to the 

largest temperature/density gradients. The kernel is initially cylindrical and deforms into a more 

complex shape at later times. The corresponding density field calculated using Poisson are shown 

in (c) and (d), and the density from WLS are shown in (e) and (f) for the same time instants. It is 

seen that the density is lower inside the gas kernel, corresponding to a higher gas temperature, as 

expected, and further that the two schemes result in similar density fields. However, it will be seen 

that there is a significant difference in the density uncertainty field. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.5. Flow induced by a spark discharge at two time instants. (a), (b): Instantaneous 

displacement fields and (c), (d): density fields obtained using Poisson, and (e), (f): density fields 

obtained using WLS. Plots (a), (c) and (e) correspond to the same time instant, as do (b), (d) and 

(f). 

 

The corresponding uncertainties in the displacement fields are shown in Figure 4.6(a) and 

(b), and the displacement uncertainty is highest within the region occupied by the hot gas kernel, 

with the noise amplification ratio varying from 5–10 in this region. This is expected because in 

addition to higher displacements, the displacement gradients are also expected to be higher in this 

region, leading to a rise in the uncertainty. This uncertainty in the displacement is then propagated 

through the density integration process using the methodology described in [10], and the density 

uncertainty fields shown in Figure 4.6 (c) – (f). The uncertainty propagation method is as follows: 

the displacement uncertainties are used along with the parameters of the optical layout to estimate 

the density gradient uncertainties. Then the density gradient uncertainties are propagated to the 
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density field through a matrix representation of the density integration process. The computations 

are performed using sparse linear operators for speed and efficiency. For more details on the 

method along with the assessment, please refer [10]. Since the true density is not known for this 

experiment, the density uncertainty will be used in place of the density random error as the metric 

to compare the integration methods. The uncertainty provides the range for the error at a specified 

confidence level, and is therefore a measure of the ‘sensitivity’ of the density integration procedure 

to upstream noise. While estimating the error requires an independent measurement (a ground 

truth), it is not required for uncertainty quantification. Similar to the analysis with synthetic images, 

it is again seen that the density uncertainty from WLS is again lower and confined to the region 

within the hot gas kernel as opposed to that from Poisson where the uncertainty spreads to all 

regions in the domain. Therefore, WLS integration yields a more robust estimate of the density 

which is less sensitive noise in the density gradient measurement. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.6. Instantaneous spatial distribution of the displacement uncertainty (a), (b) and the 

density uncertainty fields obtained from Poisson (c), (d) and WLS (e),(f) methods. Plots (a), 

(c) and (e) correspond to the same time instant, as do (b), (d), and (f). 
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In addition, the density uncertainty fields from 20 such snapshots of the flow were used to 

calculate the PDF and CDF distributions for the Poisson and WLS methods. The PDF with RMS 

of the uncertainty is shown in Figure 4.7(a) and the CDF with the 90th percentile is shown in in 

Figure 4.7 (b). It is seen that WLS reduces the RMS of the density uncertainty by 30% and the 90th 

percentile of the density by about 25%, thereby improving the overall precision in the density 

estimation. 

 

 

Figure 4.7. (a) PDF and (b) CDF of the density uncertainty associated with the two integration 

schemes for flow induced by the spark discharge. 

4.4 Conclusion 

In conclusion, we presented a weighted least squares (WLS) based density integration procedure 

in which weights are assigned to density gradient measurements based on the corresponding 

measurement uncertainty to improve the overall precision of the density integration procedure. 

Results from the synthetic image analysis showed that WLS was able to constrain the spread of 

the density random error compared to the Poisson solver and reduced the RMS error by 80% for 

the highest noise level. It was also seen that weights based on the Moment of Correlation 

uncertainty quantification scheme performed just as well as when weights were based on the 

displacement random error, thereby demonstrating that the displacement/density gradient 

uncertainty is a valid reference for assigning the weights. From the experimental images of flow 
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induced by a spark plasma discharge, it was seen that WLS reduced the RMS uncertainty by 30% 

in comparison to Poisson, thus producing more precise density estimation. However a limitation 

of this work is that it does not show that the WLS reduced the actual density measurement error in 

the experiment. An independent measure of density with a benchmark experiment is required in 

order to perform this assessment. Such an experiment is beyond the scope of this work and will be 

considered in a future publication. 

Further improvement of the method can be achieved by accounting for the covariance in 

the displacement estimation procedure, to be used for assigning weights in a Generalized Least 

Squares (GLS) integration framework. Recent work in pressure integration has shown that GLS 

can further reduce the errors and uncertainties when the covariance information is available [9]. 

For BOS, the covariance in the density gradient between neighboring grid points arises from the 

window overlap used in the cross-correlation based displacement estimation. There is currently no 

method to estimate this covariance in an automated and reliable manner, and this is an avenue for 

future work. Finally the WLS method can also be combined with tracking based displacement 

estimation methods for BOS using recent developments on estimating the displacement 

uncertainty using the ratio of dot diameters in the reference and gradient images [11]. 
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Abstract 

We propose a dot-tracking methodology for processing Background Oriented Schlieren (BOS) 

images. The method improves the accuracy, precision and spatial resolution compared to 

conventional cross-correlation algorithms. Our methodology utilizes the prior information about 

the dot pattern such as the location, size and number of dots to provide near 100% yield even for 

high dot densities (20 dots/32x32 pix.) and is robust to image noise. We also propose an 

improvement to the displacement estimation step in the tracking process, especially for noisy 

images, using a “correlation correction”, whereby we combine the spatial resolution benefit of the 

tracking method and the smoothing property of the correlation method to increase the dynamic 

range of the overall measurement process. We evaluate the performance of the method with 

synthetic BOS images of buoyancy driven turbulence rendered using ray tracing simulations, and 

experimental images of flow in the exit plane of a converging-diverging nozzle. The results show 

that the improved spatial resolution results in a better accuracy of the tracking method compared 

to correlation based methods in regions with sharp displacement gradients, and the correlation 

correction step reduces the noise floor of the measurement, resulting in a four-fold improvement 

in the dynamic range. 

5.1 Introduction 

Background Oriented Schlieren (BOS) is an optical flow diagnostic technique used to measure 

density gradients in a flow field by tracking the apparent distortion of a target dot pattern. Since 

density and refractive index are proportional for fluids, density gradients in a flow are associated 

with refractive index gradients, and an object viewed through a variable density medium will 

appear distorted due to the refraction of light rays traversing the medium. The distortion of the dot 

https://doi.org/10.1007/s00348-019-2793-3
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pattern is typically estimated by cross-correlating an image of the dot pattern without the density 

gradients (called the reference image) with a distorted image viewed through the density gradients 

(called the gradient image) using techniques borrowed from Particle Image Velocimetry (PIV) 

[1]–[5]. Alternatively, the distortion can also be estimated using optical flow algorithms [6]. 

 Low spatial resolution has been traditionally one of the limitations of BOS compared to 

the traditional schlieren technique, [7], [8] and is due to the large interrogation window sizes 

required for the PIV-type cross-correlation algorithms to ensure sufficient signal to noise ratio for 

the measurements [9], [10]. While multi-pass interrogation schemes and window overlap can 

increase the spatial resolution [11]–[13], adjacent vectors still have some spatial dependence and 

do not constitute purely independent measurements. Further, correlation methods have been shown 

in PIV to suffer from bias and random errors in regions with sharp displacement gradients due to 

peak broadening and peak splitting. [14], [15] 

An alternative processing approach that can increase the spatial resolution is tracking 

individual dots from one image to the next, as done in Particle Tracking Velocimetry (PTV) 

applications [16]–[25]. Despite the popularity of PTV methods, such analysis has not received 

attention for BOS images. The primary factor controlling the performance of PTV methods is the 

ratio of particle displacement across images to inter-particle distance in the same image, because 

it affects the reliability of matching the same particle between the two frames. Since typical 

displacements in PTV applications are about 10 pixels, they are traditionally limited to low seeding 

densities. However, the displacements are typically very low in BOS applications (< 2-3 pixels in 

most cases), so large dot densities can be used before the accuracy of the dot matching procedure 

is affected. For example, even with 20 dots in a 32x32 pixel window, the inter-dot distance is still 

about 3-4 pixels if a dot is about 3 pixels in diameter, so the ratio of dot displacement to inter dot 

distance is low enough to ensure reliable measurements. Perhaps more importantly, the dot patterns 

used for BOS experiments are manufactured, and hence all the information about the dots such as 

their location, size and number are known. In addition, since there is no out of plane motion, the 

tracking method can be applied in an iterative manner till all the dots in the frame have been tracked, 

to achieve near 100% vector yield. Due to these reasons, several of the constraints that are typical 

of standard PTV measurements are not present in BOS, and tracking can be performed with high 

accuracy and yield even at large dot densities. Finally, the displacement field in BOS is irrotational 

as opposed to traditional PTV applied to free moving tracer particles in a flow, and hence, it can 
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be described by a single scalar potential. This provides an opportunity to improve BOS 

measurements, especially in outlier detection, similar to divergence based filtering applied in PIV. 

The advantage of tracking methods for BOS has also been noted by Charruault et. al. [26] who 

proposed a tracking algorithm for BOS based on Voronoi cells, and showed that their tracking 

approach can measure larger image deformations compared to correlation when applied to an air-

cavity interface.  

One contribution of this paper is to recognize that tracking methods are well suited for BOS 

measurements due to low displacements typically encountered in these experiments, and also 

because the dot locations are already known. In addition, the tracking method proposed in this 

paper is robust to image noise, as it does not require an intensity threshold to detect the peaks, but 

instead utilizes the prior information about the location of dots on the target. For 15-20 dots in a 

32x32 window, dot tracking will result in nearly an order of magnitude more vectors compared to 

correlation processing, and improve accuracy in displacement estimation in regions involving 

sharp changes in density. 

In the following sections, we will introduce a dot tracking methodology for BOS, and 

compare its performance with the traditional cross-correlation method using synthetic BOS images 

of buoyancy-driven turbulence and experimental images of the flow field in the exit plane of a 

converging-diverging nozzle. 

5.2 Dot Tracking Methodology 

A schematic of the dot tracking methodology is shown in Figure 5.1. We first describe the standard 

tracking method, which consists of three steps, (i) particle identification, (ii) sizing and centroid 

estimation and (iii) tracking. 

In standard tracking applications, the particles/dots in the image are isolated from the 

background using intensity thresholding and segmentation procedures. This can be done using a 

static intensity threshold or a dynamic threshold using a dilatation-erosion procedure, where the 

threshold is systematically varied to identify overlapping dots [17] [27]. The main limitation 

common to all these methods is the choice of the intensity threshold which can either lead to missed 

particles/dots if the threshold is high or falsely identified particles/dots if the threshold is low. This 

becomes especially problematic in cases with varying background illumination where the same 

threshold could be “high” in one part of the image with low illumination, and “low” in other parts 
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of the image with higher background illumination. It also makes the method more error prone in 

the presence of image noise, due to noisy pixels being falsely identified as particles/dots.  

Next in the sizing step, the geometrical properties (centroid and diameter) of the identified 

particles/dots are estimated to sub-pixel resolution.  This can be accomplished using a variety of 

schemes ranging from a geometrical/intensity-weighted centroid to Gaussian sub-pixel fitting 

schemes such as the Three/Four Point Gaussian fits and the Least Square Gaussian fit. [28]  

Finally in the tracking step, for each dot in the first frame, its corresponding match in the 

second frame is estimated using a nearest neighbor algorithm. While the nearest neighbor is 

typically defined as the dot in the second frame that lies closest to the estimated location of the dot 

in the first frame, it can be generalized using a multi-parametric approach where other properties 

of the dot such as the peak intensity and diameter can be included to define a weighted residual. 

The dot in the second frame having the lowest weighted residual and within a pre-defined search 

radius is defined as the match of the given dot in the first frame, and the dot displacement between 

the two frames is calculated. [17] 

The primary novel contribution of this work is to recognize and utilize in an optimal fashion, 

the prior information about the dot pattern that is available from the target fabrication, and use this 

information to improve the overall accuracy and robustness of the method. In the identification 

step, instead of choosing an intensity threshold to separate from the dots from the background, we 

use the known location of the dots on the target, and the mapping function of the camera (obtained 

from calibration) to project the dot locations on the image plane and create a window around this 

location. The mapping function of the camera can be determined using a calibration process, and 

a polynomial mapping function as proposed by Soloff et. al. is used in this work. [29] The size of 

the window is chosen to be slightly larger than the diameter of the dot, where the dot diameter can 

either be specified beforehand based on the manufacturing details or can be calculated from the 

diameter of the cross-correlation peak (𝑑𝑝 = 𝑑𝐶𝐶/√2). [30] 
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Figure 5.1. Schematic of the proposed Dot Tracking Methodology for BOS. 

 

This window will contain pixels corresponding to the true dot as well as noisy pixels. To 

separate the dot from the noisy pixels, we use the dynamic segmentation procedure based on 

erosion-dilatation proposed by Cardwell et. al. [17] to segment the window of pixels to create pixel 

blobs. In cases where more than pixel blob is detected, we sort the pixel blobs based on their pixel 

area, peak intensity and distance of the peak from the predicted dot location. We calculate a 

weighted average of the three properties defined as, 

 

𝐶𝑝 =

(𝑊𝐴 ∗ (
𝐴𝑝

𝑚𝑎𝑥(𝐴𝑝)
) + 𝑊𝐼 ∗ (

𝐼𝑝
𝑚𝑎𝑥(𝐼𝑝)

) + 𝑊𝛥𝑥 ∗ (1 −
𝛥𝑥𝑝

𝑚𝑎𝑥(𝛥𝑥𝑝)
))

𝑊𝐴 + 𝑊𝐼 + 𝑊𝛥𝑥

         
(30) 

 

where 𝐴𝑝, 𝐼𝑝, 𝛥𝑥𝑝 are the pixel area, peak intensity and distance respectively for the 𝑝𝑡ℎ blob, and 

𝑊𝐴 ,𝑊𝐼 ,𝑊𝛥𝑥  are the associated weights. The pixel blob with the highest weighed average is 

considered to the true dot and the pixels corresponding to the other blobs are set to zero. For the 

analysis reported in this paper, the weights were set to 1/3 (equally weighted), but these can be 

changed for other situations. Once the pixel map for the dot has been extracted, a centroid 

estimation procedure is performed based on subpixel fitting. An example of this procedure is 

shown in Figure 5.2. 
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Figure 5.2. Illustration of the dot identification step using prior information about the dot 

location. 

 

While it is straightforward to see that this approach will work for the reference image 

(without density gradients), it will also work for the gradient image (with density gradients), 

because the dot displacements are generally very small (< 2 pix.). Hence the actual location of the 

dot in the second frame will still be quite close to the predicted location, and since the window is 

taken to be larger than the dot diameter, it will be large enough to enclose the dot in the second 

frame as well. In situations where the displacements are greater, a hybrid tracking approach can 

be used where the displacements obtained from a coarse correlation pass can be used to estimate 

the location of the dot in the second frame. For the synthetic and experimental images considered 

this paper, this was not required. 

Further, the identification and sizing steps can be performed in an iterative manner to 

ensure that all the dots on the target have been located. This is done by creating a residual image 

at the end of each iteration by removing the intensity contribution from the identified dots, as 

shown in Figure 5.1. The intensity of the residual image is given by,  

 𝐼𝑘+1 = 𝐼𝑘 − ∑ 𝐼0,𝑝 exp [− {
(𝑋 − 𝑋𝑝)

2
+ (𝑌 − 𝑌𝑝)

2

2𝜂𝑝
2

}]

𝑁𝑝
𝑘

𝑝=1

         (31) 
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where 𝐼𝑘  is the image intensity after 𝑘 iterations, 𝑝 is the dot index, 𝑁𝑝
𝑘  is the number of dots 

identified in the 𝑘𝑡ℎ iteration, and 𝑋𝑝, 𝑌𝑝, 𝜂𝑝  and 𝐼0,𝑝  are the positions, diameter and the peak 

intensity of the 𝑝𝑡ℎ identified dot. In this way, we are able to improve the accuracy of the method 

by avoiding incorrect matches and displacement errors due to failed identifications. 

We also propose an improvement to the displacement estimation step after the dot matching 

procedure. Traditionally the displacement is estimated by subtracting the centroids of the two 

matched particles/dots, but this is error prone because the subpixel fitting procedure is highly 

sensitive to noise leading to a large position error. This will in turn lead to increased errors in the 

calculation of the displacements, density gradients and as well as the density field from 2D 

integration of the density gradients. Further, since the displacements in BOS experiments are 

typically low, this also severely limits the dynamic range of the measurement. To alleviate this 

problem, we perform a correlation of the intensity maps of the dots in the two frames to estimate 

the displacement, as the noise in the pixels is expected to be uncorrelated between the two frames. 

The intensity maps used are the ones obtained at the end of the identification process where the 

pixels corresponding to noise/other peaks have been zeroed out, to further improve the correlation 

signal to noise ratio. In addition, a minimum subtraction operation is also performed where the 

minimum intensity is taken from the dot window prior to zeroing out the noisy pixels. We refer to 

this step as a “correlation correction” and in this way we are able to combine the spatial resolution 

benefit of the tracking method with the noise robustness of the correlation method. As the 

correlation windows are small (~ 5x5 pix.), we perform this using a direct correlation computation 

without the use of FFT acceleration, to avoid windowing based artifacts on the processing. This 

step is illustrated in Figure 5.3. 

 

Figure 5.3. Displacement estimation by correlating the intensity maps of the two matched dots. 
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In the following sections, we will apply this tracking methodology to both synthetic and 

experimental BOS images and show a substantial improvement in the accuracy, precision and 

spatial resolution of the results. 

5.3 Error Analysis with Synthetic Images 

To provide a baseline for comparing the performance of the correlation and tracking methods, an 

error analysis was first performed using synthetic images rendered with density fields obtained 

from Direct Numerical Simulation (DNS) data of homogeneous buoyancy driven turbulence 

performed by Livescu et. al., [31], [32] and available at the Johns Hopkins turbulence database. 

[33], [34]. The flow involves sharp changes in density over small spatial regions, and hence 

provides a suitable test case for assessing the spatial resolution of the processing schemes. 

5.3.1 Image Generation Methodology 

The synthetic BOS images are rendered using a ray tracing-based image generation methodology 

described in more detail in Rajendran et. al. (2018). [35] The BOS experiment is simulated by 

generating light rays from the dot pattern and traced through the density gradient field and optical 

elements to the camera sensor. The trajectory of the light rays through the density gradient field is 

calculated by solving Fermat’s equation: 

 𝑑

𝑑𝜉
(𝑛

𝑑𝑥⃗

𝑑𝜉
) =  ∇𝑛 (32) 

using a 4th order Runge-Kutta algorithm following established methods in gradient-index optics 

literature.[36], [37] The refraction through the lens is modelled by Snell’s law and the diffraction 

pattern on the image sensor is modeled using a Gaussian distribution as in synthetic PIV image 

generation. [38], [39] The computationally intensive ray tracing process is parallelized using 

Graphics Processing Units (GPUs) and images rendered using this methodology display real world 

features such as blurring and optical aberrations which can be adjusted in a controlled manner. 

This methodology has been tested and validated using known density fields. [35] At the end of the 

ray tracing simulations, the final light ray deflections on the camera sensor for all rays originating 

from a dot are averaged and used as ground truth for displacement of that dot. This process is 

repeated for all dots on the pattern to estimate the true displacements throughout the field of view. 
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Two dimensional (x, y) slices of the flow field from five time instants were chosen, and for 

each time instant, a three-dimensional density volume was constructed by stacking the same two-

dimensional slice along the z-direction, thereby ensuring that the gradient of density in the z 

direction was zero. This was done to account for the depth integration limitation of BOS 

measurements and decouple it from the error analysis. Further, the density data was multiplied by 

1.225 kg/m3 to simulate air and enclosed in a three-dimensional volume of size 32 mm x 32 mm 

x 10 mm. 

Images of the density field at these snapshots are shown in Figure 5.4, along with the 

density gradient, the theoretical light ray displacements and the light ray displacements from the 

ray tracing simulations. The theoretical displacements were calculated by 

 

𝛥𝑋⃗ =
𝑀𝑍𝐷

𝑛0
∫ 𝛻𝑛 𝑑𝑧 

𝑧𝑓

𝑧𝑖

  

≈  
𝑀𝑍𝐷𝐾

𝑛0

 (𝛻𝜌)𝑎𝑣𝑔𝛥𝑧                 
(33) 

where 𝛥𝑋⃗ is the theoretical deflection of a light ray, (𝛻𝜌)𝑎𝑣𝑔 is the path-averaged value of the 

density gradient, 𝐾 is the Gladstone-Dale constant, 𝑛0 is the ambient refractive index, and 𝛥𝑧 is 

the thickness of the density gradient field. [1] For the present simulations, the values of the 

parameters were 𝑀 = 0.12, 𝑍𝐷 = 0.25 m, and 𝛥𝑧 = 10 mm. 

To ensure that the synthetic image analysis is consistent with the experimental data to be 

shown in the following sections, we generated BOS images with a regular grid of dots on the target. 

Due to optical distortions, the final light ray locations will be scattered on a warped grid on the 

image plane corresponding to the image of the dots. The deflections at these locations are 

interpolated to a regular grid for displaying the figures shown in Figure 5.4, where the contours of 

simulated light ray deflections are seen to correspond reasonably well to the theoretical 

displacements, and in both cases the regions of large displacements correspond to regions of large 

density gradients. The simulated light ray deflections will not match the theoretical displacements 

exactly, partly due to 1) small angle approximations used in the theory and 2) the spatial resolution 

limitation of the experimental setup due to the finite angle of a ray cone emerging from the target. 

Both of these are well known characteristics of BOS experiments. [7] However, these features are 

common to the images processed by both the correlation and tracking algorithms, and these 

simulated light ray deflections are considered as the ground truth for conducting the error analysis.  
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For the present simulations, the dot diameter was 3 pixels and the dot density was 20 dots 

per 32x32 pixel window. As dot patterns can be manufactured in a controlled manner for BOS 

experiments, we use dot patterns without overlapping dots. For each snapshot of the DNS, ten 

image pairs were rendered, and the images were corrupted with zero-mean Gaussian noise with a 

standard deviation of 1, 3 and 5% of the peak image intensity.  

 

Density Density Gradient Theoretical 

Displacements 

Light Ray 

Displacements 

    

    

    

    

    

Figure 5.4. Contours of density, density gradients, theoretical displacements and simulated light 

ray displacements for the five snapshots of DNS data used in the error analysis. 
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5.3.2 Results 

The images were processed using both traditional cross-correlation and the dot tracking method 

described in Section 3. For the correlation, a multi-grid window deformation method was used 

with a window size of 32x32 followed by 16x16 pix. without window overlap. For the tracking 

method a three-point Gaussian subpixel fit was used both for centroid estimation as well as for the 

displacement estimation using the correlation correction. Then the errors in the final displacements 

were calculated using the light ray deflection from the ray tracing as the ground truth. Further, the 

errors were divided into two groups depending on whether the true displacement in that region was 

above or below a certain threshold. This was done to differentiate the errors due to background 

image noise, from errors due to lack of spatial resolution. The threshold was chosen to be half the 

standard deviation of the histogram of theoretical displacements. For each noise level, about 

500,000 vectors were used in calculating the error distribution, to ensure statistical convergence 

of the results.  

The CDF of the error distribution is shown in Figure 5.5 for all the noise levels. For the 

case with zero noise, both tracking methods far outperform the correlation method, where nearly 

all the vectors have an error below 0.01 pixels as opposed to the correlation algorithm, where the 

error level corresponding to 90% of the vectors is over 0.1 pixels, which is an order of magnitude 

more than the tracking. Further, the error levels for the correlation are seen to be higher for vectors 

above the displacement threshold, as these lie in regions with sharp displacement gradients that 

cannot be captured by the correlation algorithm. 

As the noise level increases, the errors for the tracking methods are seen to increase while 

they remain nearly the same for the correlation method. The main contribution to error in the 

tracking method is the position error from the centroid estimation, which is sensitive to image 

noise. However, the correlation method is robust to image noise in general, because the pixel noise 

across the two frames will be uncorrelated and hence have a lesser effect on the signal to noise 

ratio of the correlation plane.  

The performance of the processing algorithms can be further understood from looking at 

the error distributions for the vectors above and below the threshold separately. For the higher 

noise levels, it is seen that the error from tracking approaches the error from correlation for vectors 

below the threshold, as the error in this region is dominated by position error due to image noise. 

However, the tracking methods still outperform the correlation method for vectors above the 
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threshold as the error in this region is dominated by spatial resolution requirements due to sharp 

displacement gradients in the flow field. The tracking methods are seen to be robust to this effect, 

with nearly the same noise levels for vectors both above and below the threshold. 

Finally, it is seen that the tracking method with the correlation correction performs best 

even for the highest image noise as it combines the spatial resolution benefit of tracking and the 

smoothing effect of the correlation. This is particularly evident from Figure 5.5 (g) where it is seen 

that for vectors below the threshold, the noise level is so high that the pure tracking method 

performs poorer than the correlation, however tracking with correlation correction still maintains 

the same error level as full correlation. For vectors above the threshold the tracking method with 

correlation correction is still able to maintain the high spatial resolution and performs best overall.  

Also shown are the errors in the estimates of the gradient of displacements, corresponding to the 

second derivative of density. This quantity is needed to perform 2D integration of the density 

gradient field by solving the Poisson equation, which requires the calculation of the Laplacian of 

the density field. [40] Again, the dot tracking methods far outperform traditional cross-correlation 

for all noise levels both above and below the threshold, possibly because the displacement gradient 

is even more sensitive to the spatial resolution of the schemes. 

The results of this analysis using synthetic images of physically realistic flow fields 

demonstrate that the proposed tracking approach, with non-overlapping dots, apriori identification 

and correlation correction provides a significant reduction in error compared to the conventional 

cross-correlation method as well as a large improvement in the spatial resolution for flow fields 

with sharp density gradients. 
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Noise Level Errors – Displacement Errors – Displacement Gradient 

Noise = 0 % 

 
(a) 

 
(b) 

Noise = 1 % 

 
(c) 

 
(d) 

Noise = 3 % 

 
(e) 

 
(f) 

Noise = 5 % 

 
(g) 

 
(h) 

 

Figure 5.5. Error levels for the displacement and displacement gradient estimates obtained by 

the correlation and tracking methods.  

5.4 Application to experimental images of flow exiting a converging-diverging nozzle 

The tracking methodology was also applied to visualize the exit plane of a converging-diverging 

nozzle for various pressure ratios. This flow field was chosen because of the presence of shocks, 

expansion fans and other interesting small scale features that appear at high pressure ratios, and 

serve as a good assessment of the spatial resolution offered by the algorithms. The nozzle geometry 

along with the experimental layout and a sample image of the target, is shown in Figure 5.6. A 
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regular grid of dots was printed on a transparency and back-illuminated with an LED to serve as 

the dot pattern. The dots were 0.15 mm in diameter and had a spacing of 0.15 mm, designed to 

provide a dot diameter of 3-4 pixels to improve the subpixel position estimation, and a dot spacing 

of about 6-8 pixels to have about 15-20 dots in a 32x32 window for high spatial resolution. The 

chamber pressure was varied from 0 to 60 psi in steps of 5 psi, while the exit pressure was 

maintained at atmospheric conditions (14.7 psi). For each pressure condition, the flow was allowed 

to reach steady state before capturing the images. The images were recorded using a PCO Pixelfly 

camera and a zoom lens set at a focal length of 32 mm. A sample zoomed-in image of the dot 

pattern for one of the cases show the sharp displacement gradients involved in this flow field. The 

changes in displacements happen over a very short length scale, leading to blurring of the dot 

images. Therefore this case serves as a good test to gauge the spatial resolution increase obtained 

by the tracking method. 

 

 

Nozzle Geometry 

 

(b) Experimental Layout (Top View) 

 

(c) Sample image of the BOS dot pattern  

 

(d) Zoomed-in view of region in the FOV 

with sharp displacement gradients 

Figure 5.6. Details of the experimental setup used to visualize the flow in the exit plane of a 

converging-diverging nozzle. 

 



 

 

125 

The images of the dot pattern with and without the flow were analyzed using the tracking  

and correlation methods described before. For correlation, the images were processed using a two-

pass window deformation approach [12] with 32x32 pix. interrogation windows with 50% overlap, 

and with smoothing and universal outlier detection (UOD) [41] based validation for the first pass. 

The final pass results are validated by a threshold validation of 3 pix displacement. The 

interrogation window size was chosen to 32x32 pix. to ensure that sufficient number of dots were 

contained in an interrogation window for measurement reliability [9]. For tracking, to initialize the 

dot identification procedure, the dot locations on the target were calculated using a third order 

mapping function of the imaging system proposed by Soloff et. al. [29] to account for higher order 

lens distortions. As the dot pattern used in the experiment resembles a typical calibration target 

albeit with a higher number of dots, the mapping function of the imaging system was first 

calculated using the position of every fourth dot in the image, obtained using an intensity-

weighted-centroid based subpixel estimation scheme to reduce computational effort. Further, as 

there is no out of plane motion in BOS measurements, the mapping function was only calculated 

based on one z-plane. Based on the mapping function, the locations of all the intermediate dots 

were calculated and used to initialize the multi-parametric dot identification procedure with the 

dynamic segmentation and the centroids are estimated using a Least Square Gaussian subpixel fit. 

At the end of the tracking procedure, the correlation correction was performed on the tracks and 

the subpixel estimation on the correlation plane was again performed using a Least Square 

Gaussian fit. The displacement contours for two chamber pressures are shown in Figure 5.7.  
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(a) 

 

 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.7. Flow in the exit plane of a converging-diverging nozzle obtained from the different 

processing methods. Left column is for a chamber pressure of 30 psig, and right column is for 55 

psig. (a)-(b) Correlation, (c)-(d) Tracking without Correlation Correction, (e)-(f) Tracking with 

Correlation Correction, (g) Line plot of displacements along X for Y = 600 pix., (h) Line plot of 

displacements along Y for X = 500 pix. 
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Figure 5.7 continued 

 

(g) 

 

(h) 

 

 

From the displacement fields it can be seen that the results from the tracking analysis shown 

in Figure 5.7 (c)-(f) better capture small-scale features of the flow as compared to the correlation 

results shown in (a)-(b), which appear highly smoothed. Further it is seen that the tracking with 

correlation correction, shown in Figure 5.7 (e)-(f) provides a smoothing of the noisy displacement 

field compared to (c)-(d) while maintaining the high spatial resolution. The increase in spatial 

resolution is also evident from the line plots shown in (g)-(h) where tracking is able to better 

capture the sharp jumps in the displacement field.  

To quantify the improvement offered by the tracking-based methods, statistical analysis 

was performed to estimate the dynamic range of the displacement gradients measured by the three 

processing methods. The displacement gradients are calculated in the post-processing of BOS data 

to perform density integration, and are sensitive to the spatial resolution of the measurements. For 

the tracking results, the displacements were first interpolated onto a regular grid using a natural 

neighbor interpolation based on Delaunay triangulation [42], with the grid spacing chosen to be 8 

pixels corresponding to the dot spacing in the images. The displacement gradients for all three 

methods were estimated using a noise optimized 4 th-order compact Richardson finite difference 

scheme proposed by Etebari and Vlachos [43]. 

Figure 5.8 shows the PDF and CDF of displacement gradients evaluated over the entire 

field of view for both pressure conditions using the three processing methods. The flow fields 

considered here exhibit sharp displacement gradients confined to small portions of the field of 
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view. Therefore, a successful processing methodology must capture both the large displacement 

gradients in the regions with the shocks and expansion fans, as well as the extended zero 

displacement regions, due to high spatial confinement of these features. Observing both figures, it 

can be seen that the range of displacement gradients measured by the correlation-based method is 

lower than the tracking methods due to a lack of spatial resolution. It can be also seen that the pure 

tracking method results in a very broad histogram with a short peak at 0. This is a direct result of 

the effect of image noise on the subpixel centroid estimation as well as due to dot blurring, and 

hence differences in displacements between successive dots due to intensity fluctuations are also 

being picked up as displacement gradients. On the other hand, the tracking method with correlation 

correction is able to maintain both a strong peak at 0, and provide a large displacement gradient 

range at the same time.  

Further, the dynamic range of the measurements is also calculated as the ratio of the 

maximum displacement gradient to the minimum resolvable displacement gradient of the method. 

The maximum displacement gradient is calculated from the experimental data and the minimum 

displacement gradient which represents the noise floor of the measurements, is estimated from the 

error analysis presented in Section 5.3.2 for each processing method. The error analysis results are 

used to estimate the noise floor because a ground truth of the given flow field is not available for 

estimating an error. The noise floor is defined as the root mean square (RMS) of the displacement 

gradient error corresponding to the vectors below the threshold, and the errors corresponding to 

the highest image noise level (= 5%) are used for this calculation, as this noise level was 

representative of the experimental images and provides a conservative estimate. The results in 

Table 5.1 show that the tracking methods offer a large improvement in the dynamic range as 

compared to the standard cross-correlation method. While the pure tracking method results in an 

improved spatial resolution as seen in Figure 5.7,  it also suffers from a higher noise floor,  but the 

correlation correction is able to minimize this effect and achieve a four-fold improvement in the 

dynamic range as compared to the standard correlation. 
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(a) PDF of the displacement gradient 

distribution 

(b) CDF of the displacement gradient 

distribution 

Figure 5.8. Distribution of displacement gradients in the field of view for both flow fields 

obtained by the three processing methods.  

 

 

Table 5.1. Dynamic range of the displacement gradients obtained using the three processing 

methods. 

 Min Displacement 

Gradient  

(pix./pix.) 

Max Displacement 

Gradient  

(pix./pix.) 

Dynamic 

Range 

(= Max/Min) 

Correlation 0.01 0.086 8.55 

Tracking 0.004 0.123 30.76 

Tracking with 

Correlation Correction 

0.003 0.107 35.59 

 

Overall, the dot tracking methodology with identification based on prior dot location and 

correlation correction appears to be more reliable when applied to BOS experimental data using 

dot patterns of high dot densities, while also increasing the spatial resolution of the measurements. 

The method is able to resolve displacements in regions with sharp gradients, while simultaneously 

maintaining a low noise floor, resulting in a four-fold improvement in the dynamic range. While 

it is possible that the results from the standard correlation analysis can be improved by using 

smaller windows and increased window overlap, adjacent vectors will still have overlapping 

information and do not constitute independent information. Further, the interrogation windows 
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need to be centered on the dot centroids to avoid clipping the dot image and introducing Fourier-

transform based errors due to aliasing and spectral leakage [44].  

5.5 Conclusions 

In this paper we proposed a dot tracking methodology for processing BOS images with high dot 

density based on two features of BOS experiments: (1) low displacements (2-3 pixels) and (2) 

availability of prior information about dot locations and size from manufacturing. We use the prior 

information about the dot locations to perform dot identification and sizing without the need for 

an intensity threshold, making the method more robust to image noise. We also proposed an 

improvement to the final displacement estimation, where we correlate the intensity maps of the 

matched dots instead of subtracting their centroid locations, to improve the performance in high 

noise situations. In this way we are able to combine the high spatial resolution benefit of tracking 

with the noise robustness property of correlation methods. 

We analyzed the performance of this method and compared it to the conventional cross-

correlation algorithm using synthetic and experimental BOS images. For synthetic BOS images of 

buoyancy-driven turbulence, the tracking methods far outperformed the correlation method 

especially with low image noise and in regions with a requirement for high spatial resolution. For 

higher noise levels the errors in the tracking algorithms increased due to the position error from 

the subpixel fit being sensitive to image noise; however the tracking method with the correlation 

correction at the end was robust to this effect as the final displacement estimation does not depend 

on the centroid estimation process, and performed best overall. For experimental BOS images of 

the flow field in the exit of a converging-diverging nozzle, the tracking methods were able to 

resolve sharp changes in the density field in the presence of shocks and expansion fans, and 

improved the dynamic range in the displacement gradient measurement. 

The proposed method is applicable to BOS experiments which involve small dot 

displacements (2-3 pix. or < dot spacing), and where the targets are fabricated in a controlled 

manner such that the dot locations are known. This opens up a new processing paradigm for BOS 

measurements using dot tracking methods, and helps in improving the spatial resolution limitation 

of BOS in comparison to qualitative schlieren measurements. This will enable improved 

investigation of flows with small scale features such as shocks, expansion fans and small scale 

compressible turbulence.  
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A limitation of the spatial resolution improvement offered by the tracking method is in 

situations where there is strong displacement gradients on a scale equal to or less than the dot 

diameter itself, which will lead to blurring of the dot image as seen in Figure 5.6 (d). In this case 

the dot tracking method can only provide an average displacement in this region. Therefore further 

improvements in the methodology can include a method to extract additional information about 

the displacement/density gradient field from the blurred shape of the dot. It is likely that the 

blurring is related to second-order gradients of the density field.  

Another limitation of the method is it requires non-overlapping dots to reduce position 

errors in the identification and sizing process. In situations where the dot pattern cannot be 

manufactured in a controlled manner, the traditional correlation based approach may be preferable. 

The correlation based algorithms may also perform better when used with very dense or speckle 

type dot patterns thus providing the ability to use smaller interrogation windows. However the dot 

patterns still need to be on the diameter of about 3 pixels for accurate subpixel fitting, and hence 

this places a limit on the maximum achievable dot density. It is not clear if the correlation 

algorithms with speckle patterns and small windows can achieve the same spatial resolution as the 

tracking based method with dense non-overlapping dots. 

Finally, a code package implementing the dot tracking method proposed in this paper is 

available at: https://github.rcac.purdue.edu/lrajendr/dot-tracking-package so that all readers can 

assess the contribution and benefit from it. 
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Abstract 

We theoretically analyze the effect of density/refractive-index gradients on the measurement 

precision of Background Oriented Schlieren (BOS) experiments by deriving the Cramer-Rao lower 

bound (CRLB) for the 2D centroid estimation process. A model is derived for the diffraction 

limited image of a dot viewed through a medium containing density gradients that includes the 

effect of the experimental parameters such as the magnification and f-number. It is shown using 

the model that non-linearities in the density gradient field lead to blurring of the dot image. This 

blurring amplifies the effect of image noise on the centroid estimation process, leading to an 

increase in the CRLB and a decrease in the measurement precision. The ratio of position 

uncertainties of a dot in the reference and gradient images is shown to be a function of the ratio of 

the dot diameters and dot intensities. We termed this parameter the Amplification Ratio (𝐴𝐹), and 

a methodology for reporting position uncertainties in tracking-based BOS measurements is 

proposed. The theoretical predictions of the dot position estimation variance from the CRLB are 

compared to ray tracing simulations, and agreement is obtained. The uncertainty amplification is 

also demonstrated on experimental BOS images of flow induced by a spark discharge, where it is 

seen that regions of high amplification ratio correspond to regions of density gradients. This 

analysis elucidates the dependence of the position uncertainty on density and refractive-index 

gradient induced distortion parameters, provides a methodology for accounting its effect on 

uncertainty quantification and provides a framework for optimizing experiment design. 

https://doi.org/10.1007/s00348-020-02978-8
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Nomenclature 

𝛼 Image exposure  𝐼0,𝑟 Peak image intensity for a 

single light ray 

𝛽 Blurring Coefficient  𝐽𝑖𝑗 Fisher Information matrix 

𝛾 Gray value per unit exposure  𝐾 Gladstone-Dale constant 

𝛿 Dirac delta function  𝑘, 𝑙 Pixel indices 

Δ𝜃0 Angle of the ray cone  𝑚 Model 

𝜖 Angular Deflection  𝑀 Magnification 

𝜁 Tangential co-ordinate of the light 

ray trajectory 
 𝑛̂ Thermal Noise 

𝜂 Standard deviation of the Gaussian 

intensity profile on the image plane 
 𝑛0 Ambient refractive index 

𝜃 Light Ray angle  𝑵 Normal distribution 

𝜆 Wavelength of light  𝑁𝑅 Number of light rays 

𝜌 Density  𝑝 Probability Density Function 

(PDF) 

𝜎 Standard Deviation  𝑟 Light ray index 

𝜏 Point spread function  𝑡 Spatial co-ordinate on the 

density field 

𝒂 Model Parameter vector  𝑥, 𝑦, 𝑧 Coordinates  in the object 

space 

𝐴𝑅 Amplification Ratio  𝑋, 𝑌 Spatial co-ordinates on the 

camera sensor/image space 

𝑑𝑟 Pixel Pitch  𝑧𝐷 Distance from dot pattern to 

camera lens 

𝑬 Expectation operator  𝑧𝐷 Distance from dot pattern to 

density gradient field 

𝑓 Focal length of the camera lens  Δ𝑧 Thickness of the density 

gradient field 
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𝑓# F-number    

𝑔 Image Gray Level or Signal    

𝐼 Image intensity    

6.1 Introduction 

Background Oriented Schlieren (BOS) is an image based flow diagnostic technique used to 

measure density gradients in a fluid by measuring the apparent displacement of a target dot pattern 

[1]–[4]. However additional distortions can be introduced to do the dot image due to higher order 

derivatives in the density/refractive index and due to curved windows in experimental facilities. In 

situations with very strong spatial variations in the density/refractive index (such as shock waves), 

the refraction experienced by two light rays emerging from the same dot can be very different, 

leading to a blurring of the dot image. This blurring is asymmetric and is in the direction of 

decreasing density. Elsinga et. al. analyzed this problem for 2D planar PIV [5]–[8] and found that 

this blur leads to a broadening of the cross-correlation peak, along with a small bias error leading 

to a decrease in measurement accuracy [6]. However, their analysis concerned the effects of aero-

optical distortion on the errors/accuracy of the measurement, while the effect on measurement 

uncertainty/precision is unclear. 

Recent work in BOS has shown that tracking-based displacement estimation methods can 

significantly increase accuracy and spatial resolution in comparison to correlation-based methods 

[9]. As the dot locations on the target are known from the time of manufacture, this information 

enables the method to be applied even in images with high dot densities. In tracking-based methods, 

the centroid estimation process from the dot image controls the measurement accuracy and 

precision. Therefore, the effect of image noise on centroid estimation is a concern as it  can increase 

the position estimation uncertainty (noise floor) and reduce the dynamic range of the displacement 

measurement, especially since the maximum displacements in BOS experiments are usually low 

(< 1 pix.), though some exceptions exist [10]–[12]. The effect of image noise is further amplified 

for BOS due to the use of small apertures (large f-numbers) in order to keep both the dot pattern 

and the density field in focus, leading to a decrease in the illumination and a relative increase in 

the effect of image noise.  
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We investigate these issues using a theoretical analysis on the effect of density/refractive-

index gradients on the measurement precision of the centroid estimation of a dot for a BOS 

experiment and show that blurring of a dot due to strong refractive index gradients can amplify the 

effect of image noise on centroid estimation, leading to an increase in the position uncertainty. The 

analysis is performed using an established theoretical framework called the Cramer-Rao Lower 

Bound (CRLB), a concept borrowed from the field of parameter estimation [13].  

Cramer-Rao Lower Bound (CRLB) 

In any experiment, the recorded measurement is a combination of the signal, which is the 

deterministic aspect of the measurement based on a physical model, and stochastic noise. Given 

the measurement, one would like to use a model for the measurement process to calculate a 

parameter of interest, where the particular method/algorithm used to calculate the parameter is 

called an estimator and the result obtained is the estimate. Based on the choice of the measurement 

and estimator, the estimates can have a bias (a systematic deviation from the true result) and a 

variance (due to the presence of noise), where a higher variance implies a lower measurement 

precision. The CRLB represents the lowest possible variance (or the highest possible precision) 

that can be achieved in the unbiased estimation of a parameter from a noise- and resolution-limited 

measurement. In the case of a biased estimation, the CRLB provides the lower bound on the 

random component of the error. It is a useful tool to study the scaling of error with respect to 

parameters in an experimental setup [13], [14]. 

Consider a signal/measurement 𝐠, which is composed of a known model signal 𝒎 defined 

by a parameter 𝑎, and a noise component 𝒏 such that g𝑘  =  𝑚𝑘  +  𝑛𝑘 , ∀ 𝑘, where 𝑘 represents 

the index of the temporal/spatial location at which the measurement is acquired. Further, let the 

signal be defined by a joint Probability Density Function (PDF) 𝑝(𝐠, 𝑎). Then the CRLB for the 

estimate of 𝑎 is defined as: [14] 

 
                      𝜎𝑎

2  =  −
1

𝑬 [
𝜕2 ln 𝑝(𝐠, 𝑎)

𝜕 𝑎2 ]
                . 

(34) 

 

If the model is defined by a vector of parameters 𝒂, then the CRLB is defined as the inverse 

of the diagonal element of the Fisher Information Matrix 𝐽𝑖𝑗 which is defined as 
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 𝐽𝑖𝑗  =  −𝑬 [
𝜕2 ln 𝑝(𝐠, 𝐚)

𝜕𝑎𝑖𝜕𝑎𝑗
] (35) 

 

with the CRLB for a parameter 𝑎𝑖  being given by 𝜎𝑎𝑖

2 = (𝐽𝑖𝑖)
−1  [14]. 

In the present context, the intensity of the dot recorded on the camera is the measurement, 

contaminated by the thermal noise in the camera, and the sub-pixel fitting procedure is the 

estimator, to obtain the dot centroid which is the estimate. We further assume that the only random 

process in the measurement chain is the thermal noise added to the sensor. In experiments, the true 

sub-pixel location of the dot can also be a random variable due to the spatial distribution of dots 

on the target (if a random dot pattern is used for BOS experiments), but this factor will be ignored 

in the current analysis and the true centroid of the dot is assumed to be a constant value. 

The CRLB has been derived for 2D PIV/PTV measurements in the past by Wernet and 

Pline [15], and Westerweel [16]. In both previous analyses, the CRLB was derived for locating the 

centroid of a Gaussian particle image discretely sampled on a CCD sensor in the presence of noise, 

but the two approaches differed in their assumptions about the probability density function (PDF) 

of the noise and thus provide different but complementary results. Wernet and Pline [15] 

considered the case of low illumination intensity where the noise is dominated by the photon count 

per pixel, which follows a Poisson distribution. Under this assumption, the CRLB was found to be 

linearly proportional to the particle diameter and inversely proportional to the photon count. 

Westerweel [16] considered the case of more recent PIV experiments with high-energy pulsed 

lasers, where the noise is primarily governed by the thermal noise in the CCD sensor, as well as 

the resolution and digitization noise, all of which are normally distributed. This assumption 

resulted in the lower bound being proportional to the square of the particle diameter and inversely 

proportional to the pixel pitch and illumination intensity. 

Our work extends the analysis of Elsinga et. al. [5]–[7] using the theoretical framework of 

Westerweel [16] to characterize the effect of density/refractive-index gradients on the position 

uncertainty of a BOS measurement. It will be seen that the effect of density/refractive-index 

gradients is to increase the lower bound (or decrease the precision) of the centroid estimation 

process, thus decreasing the precision of the overall measurement. The increase in the CRLB is 

due to non-linearities in the density gradient field which result in blurring of the dot image.  
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Therefore, the goal of this work is to recognize and demonstrate uncertainty amplification 

in the presence of density gradients, develop a theory to describe this effect, and to provide scaling 

relations to aid experiment design. The aim is not to provide quantitative values, but rather general 

equations that researches can use to design their unique experiments.  

In the following sections, we first construct a comprehensive model for the dot pattern image 

by considering the propagation of light rays through a medium with density/refractive-index 

gradients. The image model is formulated in terms of the experimental parameters such as the 

magnification, aperture f-number and the distance between the dot pattern and the density gradient 

field. The Fisher information matrix is then constructed for the case of normally distributed noise 

due to the camera sensor to derive the CRLB. Finally, the model predictions are compared to ray-

tracing simulations and the uncertainty amplification is demonstrated using experimental BOS 

images.  

6.2 Theory 

6.2.1 Image Model 

The overall imaging process can be represented using a transfer function approach as shown in 

Figure 6.1.. Each dot acts as a point source of several light rays which travel through the density 

gradient field and the optical train and form an image on the camera sensor. The image due to a 

single light ray can be represented by the convolution of a Dirac delta function centered at the 

location of the geometric image 𝑋⃗𝑟 and the point spread function of the optical system 𝜏(𝑋⃗). The 

collective image of the dot formed by all light rays is given by, 

                𝐼(𝑋⃗) = 𝜏(𝑋⃗) ∗ ∑ 𝐼0,𝑟𝛿(𝑋⃗ −  𝑋⃗𝑟)

𝑁𝑅

𝑟=1

          . (36) 
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Figure 6.1. Illustration of the imaging process using a transfer function model. 

 

The final location of the light ray 𝑋⃗𝑟 depends on the density gradients and the optical layout. 

For BOS, we will consider a head-on viewing configuration in the presence of density gradients, 

and then model the effect of the aperture. 

For the optical setup shown in Figure 6.2., the final location of a light ray 𝑋⃗ 𝑟 originating 

from a dot with initial conditions of 𝑥⃗𝑟 , 𝜃⃗𝑟, can be expressed as  

 𝑋⃗𝑟  =  𝑀𝑥⃗𝑟 + 𝛥𝑋⃗𝑟 (37) 

where the first term is due to magnification of the imaging system, and the second term is the 

apparent displacement caused by the density gradients. We further use lower case symbols for co-

ordinates in the object space and upper case symbols for co-ordinates in the image space on the 

camera. 

  

Figure 6.2. Schematic showing the experimental layout for BOS 
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The magnification 𝑀 is a function of the object distance and the focal length of the camera 

lens 𝑓, as given by, 

 𝑀 = (1 −
𝑧𝐵

𝑓
)
−1

 (38) 

and the apparent displacement of the light ray as it traverses a density gradient field is given by 

[4], 

 

               𝛥𝑋⃗𝑟 = 𝑀𝑧𝐷𝐾 ∫
1

𝑛
∇𝜌 𝑑𝜁 

≈  
𝑀𝐾

𝑛0

𝑧𝐷Δ𝑧𝑟(𝛻𝜌)𝑎𝑣𝑔,𝑟              . 
(39) 

Here 𝐾  is the Gladstone-Dale constant and 𝑛  is the refractive index. The major 

assumptions generally employed for BOS applications are that (1) the light ray deflections are 

small and hence the tangential ray co-ordinate 𝜁 is approximated by the axial co-ordinate 𝑧, (2) the 

change in the refractive index in the denominator is negligible and is equal to the ambient (𝑛0), 

and (3) the integral is replaced by a path averaged value of the density gradient (𝛻𝜌)𝑎𝑣𝑔,𝑟 

experienced by each light ray. In the subsequent analysis, the subscript 𝑎𝑣𝑔 will be dropped, with 

the understanding that the gradient field is always the path averaged value. 

Finally, the point spread function of the optical system 𝜏(𝑋⃗) is the intensity field created 

by Fraunhofer diffraction due to a circular aperture and is given by the Airy function. Typically, 

this is approximated by a Gaussian profile, 

 𝜏(𝑋⃗) = 𝐼0 exp (−
|𝑋⃗|

2

2𝜂2
)  (40) 

where 𝐼0 is the peak intensity and 𝜂 is related to the diffraction diameter and is given by 𝜂 =

 
√2

𝜋
𝑓#(1 + 𝑀)𝜆 , where 𝜆 is the wavelength of light [17]. Therefore, the model for the image of a 

single dot formed by all the light rays originating from the dot is given by, 

    𝐼(𝑋⃗) = ∑ 𝐼0,𝑟 exp

[
 
 
 
−

|𝑋⃗ – (𝑀 𝑥⃗𝑟 +
𝑀𝐾
𝑛0

𝑧𝐷Δ𝑧𝑟𝛻𝜌|𝑟)|
2

2𝜂2
 

]
 
 
 𝑁𝑅

𝑟 = 1

.      (41) 

Here 𝐼0,𝑟 is the peak image intensity, and is defined as, 𝐼0,𝑟 =
𝛼𝑟

2𝜋𝜂2
, where 𝛼𝑟 is the total 

image exposure due to a single light ray. 

To simplify further analysis, we rewrite Equation (41) to represent the intensity field due 

to an “effective Gaussian”, represented by a rotated ellipse, under the assumption that the intensity 
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field formed by several Gaussian distributions will also be a Gaussian distribution. The rotated 

elliptical Gaussian curve is described by five parameters: (1) X location (𝑋0), (2) Y location (𝑌0), 

(3) peak intensity (𝐼0), (4) diameter/standard deviation along x, (𝜂0,𝑋) and (5) standard deviation 

along y (𝜂0,𝑌) and (6) correlation coefficient (𝑅0) that controls the tilt of the major and minor axis 

of the ellipse with the co-ordinate axis of the camera sensor (the word correlation is used in relation 

to the intensity profiles of the dot along x and y, and is not to be confused with PIV cross-

correlation analysis). The dot diameter is defined as four times of the standard deviation, based on 

the convention in PIV literature [18], [19]. The subscript “0” will be used to distinguish the 

parameters associated with the dot from those with the light rays, in both the object and image 

space. 

  𝐼𝑒𝑓𝑓 = 𝐼0 𝑒𝑥𝑝

[
 
 
 
 

−
1

2
 (

𝑋 − 𝑋0

𝑌 − 𝑌0
)
𝑇 1

1 − 𝑅2

(

 
 

1

𝜂0,𝑋
2 −

𝑅0

𝜂0,𝑋𝜂0,𝑌

−
𝑅0

𝜂0,𝑋𝜂0,𝑌

1

𝜂0,𝑌
2

)

 
 

(
𝑋 − 𝑋0

𝑌 − 𝑌0
)

]
 
 
 
 

   . (42) 

The effective centroid and diameters can be estimated by equating the moments of the 

Gaussian distributions expressed in Equations (41) and (42). The main assumption that enables 

this simplification is that the viewing angle Δ𝜃0 subtended by the dot on the lens is small, and 

therefore the density gradient field experienced by any arbitrary light ray can be expressed using 

a Taylor series expansion about the angular bisector of the ray cone, as illustrated in Figure 6.3. 

The viewing angle is a function of the object distance and the f-number, and for BOS applications, 

the f-number is generally high to provide a large depth of field, to keep both the dot target and the 

density gradient field in focus. These requirements result in a very small viewing angle, on the 

order of 1-2 degrees, which makes the small angle assumption reasonable. 
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Figure 6.3. Illustration of the Taylor series approximation for the density gradient field showing 

the ray cone (bounded by the blue rays), the angular bisector (red) and an arbitrary light ray 

(black). The dashed lines are the light ray trajectories in the absence of a density gradient field. 

 

The effective centroid is described as the first moment of the intensity distribution of the 

image and is given by, 

 𝑋⃗0  =
∫ ∫ 𝑋⃗ 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

∫ ∫ 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌
+∞

−∞

+∞

−∞

       .  (43) 

 

The above equation will be simplified for the x component in the following analysis, and 

the procedure for the y component is identical. We have, for 𝑋⃗0 = 𝑋0𝑖̂ + 𝑌0𝑗̂, 

 

         𝑋0 =

∫ ∫ 𝑋 ∑  𝐼0,𝑟 exp [−
|𝑋⃗ – 𝑋⃗𝑟|

2

2𝜂2  ]
𝑁𝑅
𝑟 = 1 𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

∫ ∫ ∑  𝐼0,𝑟 exp [−
|𝑋⃗ – 𝑋⃗𝑟|

2

2𝜂2  ]
𝑁𝑅
𝑟 = 1 𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

 

=
∑ 𝐼0,𝑟(√2π𝑋𝑟𝜂)(√2π𝜂)

𝑁𝑅
𝑟 = 1

∑ 𝐼0,𝑟(√2π𝜂)(√2π𝜂) 
𝑁𝑅
𝑟 = 1

 

=
1

𝑁𝑅

∑ 𝑋𝑟

𝑁𝑅

𝑟 = 1

  .          
(44)  
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where we have used the result for Gaussian integrals, that ∫ exp [−
(𝑥 –𝑎)2

2𝑏2
 ] 𝑑𝑥

+∞

−∞
= √2𝜋𝑏 and 

∫ 𝑥 exp [−
(𝑥 –𝑎)2

2𝑏2
 ] 𝑑𝑥

+∞

−∞
= √2𝜋𝑎𝑏. Further, under the assumption of a small angle of the ray cone, 

we expect that 𝐼0,𝑟 ≈ 𝐼0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for all light rays emerging from a dot.  

Further, for a small cone angle, it is also expected that all light rays travel approximately 

the same distance from the dot to the edge of the density gradient field (Δ𝑧𝑟 ≈ Δ𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

Based on these assumptions, we obtain that 

 

𝑋0 =
1

𝑁𝑅
 ∑ (𝑀 𝑥0 +

𝑀𝐾

𝑛0
𝑧𝐷Δ𝑧𝑟

𝜕𝜌

𝜕𝑥
|
𝑟
)

𝑁𝑅

𝑟 = 1

 

= 𝑀𝑥0 +
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0𝑁𝑅

 ∑
𝜕𝜌

𝜕𝑥
|
𝑟

𝑁𝑅

𝑟 = 1

   . 

(45) 

 

 

The second term in the above equation represents the average deflection of all light rays 

originating from the dot, where the gradients along z are neglected, because the analysis is 

performed on the depth averaged density gradient field. and it can be simplified further by using a 

Taylor series expansion of the density gradient field about the angular bisector of the ray cone.  

Consider a straight line connecting the dot, the center of the lens and a point on the camera sensor, 

which represents the case of pinhole imaging. Let the intersection point of this line with the mid-

plane of the density gradient field be 𝑡0 = 𝑥⃗0 + 𝑍𝐷𝜃⃗0 and the density gradient at this intersection 

point be defined as ∇𝜌|𝑡0
. Then the density gradient along the x-direction at an arbitrary 

intersection point 𝑡𝑟 can be expressed to first order as 

 
𝜕𝜌

𝜕𝑥
|
𝑡𝑟

= 
𝜕𝜌

𝜕𝑥
|
𝑡0

+
𝜕2𝜌

𝜕𝑥2
|
𝑡0

(𝑡𝑟,𝑥 − 𝑡0,𝑥) +
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
𝑡0

(𝑡𝑟,𝑦 − 𝑡0,𝑦) + 𝑂(|𝑡𝑟 − 𝑡0|
2)  . (46) 

 

The parameter (𝑡𝑟 − 𝑡0) = Δ𝑡𝑟 can be expressed in terms of the optical setup as  

 
𝑡𝑟 − 𝑡0  = (𝑥⃗0 +𝑧𝐷𝜃⃗𝑟) − (𝑥⃗0 +𝑧𝐷𝜃⃗0) 

=𝑧𝐷(𝜃⃗𝑟 − 𝜃⃗0) 
(47) 

with 𝜃⃗𝑟 being the angle of propagation of a light ray, and 𝜃⃗0 =
1

𝑁𝑅

∑ 𝜃⃗𝑟
𝑁𝑅
𝑟=1  being the angle between 

the bisector of the cone and the horizontal. 

Using Equations (46) and (47) in Equation Error! Reference source not found. and 

simplifying, we obtain for the effective centroid along x, 
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𝑋0  = 𝑀𝑥0 +
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0𝑁𝑅
 ∑ (

𝜕𝜌

𝜕𝑥
|
0
+

𝜕2𝜌

𝜕𝑥2
|
0

𝑍𝐷(𝜃𝑟,𝑥 − 𝜃0,𝑥) +
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
0

𝑍𝐷(𝜃𝑟,𝑦 − 𝜃0,𝑦))

𝑁𝑅

𝑟 = 1

 

= 𝑀𝑥0 +
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0

𝜕𝜌

𝜕𝑥
|
0
        . 

(48) 

where the summations of the ray angles evaluate to zero due to the definition of 𝜃0,𝑥 and 𝜃0,𝑦 as 

the angles of the bisectors. It is to be noted that in general the dot image will also be skewed as 

pointed out by Elsinga et. al. [5] and hence 𝜃0 may no longer be the angular bisector after refraction, 

leading to small bias errors. However, since the present analysis is concerned with the uncertainty 

which is expected to scale with the diameter, a second order-accurate approximation of the density 

gradient field is used. The y component of the centroid can be evaluated in a similar manner, and 

the 2D centroid of the dot image is given by, 

 𝑋⃗0  = 𝑀𝑥⃗0 +
|𝑀|𝐾𝑧𝐷Δ𝑧 

𝑁𝑅𝑛0
 ∇𝜌|0 (49) 

where the first term on the right hand side is the image location for a dot without the density 

gradients and the second term is the average displacement of light rays due to the density gradient 

field, with ∇𝜌|0  representing the depth-averaged density gradient experienced by the angular 

bisector of the ray cone. 

The effective dot diameter can be computed by equating the second moment of the 

Gaussian distributions. Again, just considering the x-component, the standard deviation (a measure 

of the diameter) is given by: 

 

𝜂0,𝑥
2 =

∫ ∫ (𝑋 − 𝑋0)
2 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

∫ ∫ 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌
+∞

−∞

+∞

−∞

 

=

∑ 𝐼0,𝑟 ∫ (𝑋 − 𝑋0)
2 exp[−

(𝑋 –𝑋𝑟)
2

2𝜂2  ]𝑑𝑋
+∞

−∞ ∫ exp [−
(𝑌 –𝑌𝑟)

2

2𝜂2  ] 𝑑𝑌
+∞

−∞
 

𝑁𝑅
𝑟 = 1

∑ 𝐼0,𝑟 ∫ exp [−
(𝑋 – 𝑋𝑟)2

2𝜂2  ] 𝑑𝑋
+∞

−∞ ∫ exp [−
(𝑌 –𝑌𝑟)2

2𝜂2  ]𝑑𝑌
+∞

−∞
 

𝑁𝑅

𝑟 = 1

 

=
∑ 𝐼0,𝑟(√2π𝜂(𝜂2 + (𝑋𝑟 − 𝑋0)

2) )(√2π𝜂)
𝑁𝑅
𝑟 = 1

∑ 𝐼0,𝑟(√2π𝜂)(√2π𝜂) 
𝑁𝑅
𝑟 = 1

 

= 𝜂2 +
1

𝑁𝑅
∑(𝑋𝑟 − 𝑋0)

2

𝑁𝑅

𝑟 = 1

.  

(50) 

again using the previously mentioned results for the Gaussian integrals in addition to a new result, 

that ∫ (𝑥 − 𝑐)2 exp [−
(𝑥 –𝑎)2

2𝑏2
 ] 𝑑𝑥

+∞

−∞
= √2𝜋𝑏{(𝑎 − 𝑐)2 + 𝑏2}. 
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The second term in the summation can again be simplified using the Taylor series 

expansion as follows, 

 

𝑋𝑟 − 𝑋0 = 𝑀𝑥0 +
𝑀𝐾𝑍𝐷Δ𝑧

𝑛0

𝜕𝜌

𝜕𝑥
|
𝑟
− (𝑀𝑥0 +

𝑀𝐾𝑍𝐷Δ𝑧

𝑛0

𝜕𝜌

𝜕𝑥
|
0
) 

= 
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0

(
𝜕2𝜌

𝜕𝑥2
|
0

𝑍𝐷(𝜃𝑟,𝑥 − 𝜃0,𝑥) +
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
0

𝑍𝐷(𝜃𝑟,𝑦 − 𝜃0,𝑦))    . 

(51) 

The summation then becomes, 

 
1

𝑁𝑅
∑ (𝑋𝑟 − 𝑋0)

2

𝑁𝑅

𝑟 = 1

=(
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0
)

2

𝑍𝐷
2

((
𝜕

2
𝜌

𝜕𝑥2
|

0

)

2
1
𝑁𝑅

∑ (𝜃𝑟,𝑥 −𝜃0,𝑥)
2

𝑁𝑅

𝑟 = 1

+ (
𝜕

2
𝜌

𝜕𝑥𝜕𝑦
|

0

)

2
1
𝑁𝑅

∑ (𝜃𝑟,𝑦 −𝜃0,𝑦)
2

𝑁𝑅

𝑟 = 1

+ 
𝜕

2
𝜌

𝜕𝑥2
|

0

𝜕
2
𝜌

𝜕𝑥𝜕𝑦
|

0

2
𝑁𝑅

∑ (𝜃𝑟,𝑥 −𝜃0,𝑥) (𝜃𝑟,𝑦 −𝜃0,𝑦)

𝑁𝑅

𝑟 = 1

) 

(52) 

The summations of the angles can be simplified further by modeling the angular 

distribution of light rays as a uniform random variable, where the angle of propagation of any 

given light ray is randomly distributed within the total angle of the ray cone Δ𝜃0,𝑥.  That is, 

 𝑃Θ𝑥
(𝜃𝑟,𝑥) = {

1

Δ𝜃0,𝑥
𝜃0,𝑥 −

Δ𝜃0,𝑥

2
≤ 𝜃𝑟,𝑥 ≤ 𝜃0,𝑥 +

Δ𝜃0,𝑥

2

0 otherwise

 (53) 

with a similar expression for the random variable Θ𝑦 corresponding the distribution of the angle 

of propagation along y, 𝜃𝑟,𝑦, which would depend on the component of the cone angle along y, 

Δ𝜃0,𝑦. Except for highly astigmatic viewing configurations, the components of the cone angle 

along the two directions will be equal (Δ𝜃0,𝑥 =  Δ𝜃0,𝑦 = Δ𝜃0). By further assuming that the 

random variables along the two components Θ𝑥 and Θ𝑦 are independent, it can be shown that  

a) 
1

𝑁𝑅

∑ (𝜃𝑟,𝑥 − 𝜃0,𝑥)
2𝑁𝑅

𝑟 = 1 = 𝜎Θ𝑥
=

Δ𝜃0
2

12
 

b) 
1

𝑁𝑅

∑ (𝜃𝑟,𝑦 − 𝜃0,𝑦)
2𝑁𝑅

𝑟 = 1 = 𝜎Θ𝑦
=

Δ𝜃0
2

12
 

c) 
1

𝑁𝑅

∑ (𝜃𝑟,𝑥 − 𝜃0,𝑥)(𝜃𝑟,𝑦 − 𝜃0,𝑦)
𝑁𝑅
𝑟 = 1 = 0 

and the summation simplifies to, 

 
1

𝑁𝑅

∑(𝑋𝑟 − 𝑋0)
2

𝑁𝑅

𝑟 = 1

=
1

12
(
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0

)
2

𝑍𝐷
2Δ𝜃0

2((
𝜕2𝜌

𝜕𝑥2
|
0

)

2

+ (
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
0

)

2

). (54) 
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The angle of the ray cone 𝛥𝜃0 can be expressed in terms of the parameters of the optical 

setup as 

   Δ𝜃0 =
1

𝑓#
(1 +

1

𝑀
)
−1

−
𝐾Δ𝑧

2𝑛0
(
𝜕𝜌

𝜕𝑥
|
0
+

𝜕𝜌

𝜕𝑦
|
0

)  (55) 

where the second term accounts for the mean deflection of the ray cone due to density gradients. 

The standard deviation ( = ¼ diameter) along the x direction is then given by, 

 
𝜂0,𝑋

2 = 𝜂2 +
1

12
(
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0
)
2

𝑧𝐷
2Δ𝜃0

2((
𝜕2𝜌

𝜕𝑥2
|
0

)

2

+ (
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
0

)

2

) 

= 𝜂2 + 𝜂𝑏,𝑋
2  

(56) 

where 𝜂𝑏,𝑋 represents the blurred diameter. A similar analysis yields the standard deviation along 

the y direction, 

 

𝜂0,𝑌
2 =

∫ ∫ (𝑌 − 𝑌0)
2 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

∫ ∫ 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌
+∞

−∞

+∞

−∞

 

= 𝜂2 +
1

12
(
𝑀𝐾𝑧𝐷Δ𝑧

𝑛0
)
2

𝑧𝐷
2Δ𝜃0

2((
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
0

)

2

+ (
𝜕2𝜌

𝜕𝑦2
|
0

)

2

) 

= 𝜂2 + 𝜂𝑏,𝑌
2    

(57) 

Equations (25) and (26) show that non-linearities in the density gradient field increase the 

effective diameter of the dot leading to blurring, consistent with earlier observations by Elsinga et. 

al. [5] for 2D PIV from experimental data. In the process, we have also modeled the effect of the 

f-number.  

The correlation coefficient 𝑅0 is obtained by equating the covariance of the intensity due 

to all light rays and the effective intensity distribution. 

 

𝑅0 =
1

𝜂0,𝑋𝜂0,𝑌

 
∫ ∫ (𝑋 − 𝑋0)(𝑌 − 𝑌0) 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

∫ ∫ 𝐼(𝑋⃗)𝑑𝑋 𝑑𝑌
+∞

−∞

+∞

−∞

 

        =
1

12
(
𝑀𝐾𝑧𝐷𝛥𝑧

𝑛0
)
2

𝑧𝐷
2𝛥𝜃0

2
𝜕2𝜌

𝜕𝑥𝜕𝑦
|
0

(
𝜕2𝜌

𝜕𝑥2
|
0

+
𝜕2𝜌

𝜕𝑦2
|
0

) ,  

(58) 

and it is seen that the mixed derivative of the density field leads to a covariance or tilt in the 

effective intensity distribution of the dot. 

Finally, the peak image intensity of the effective model can be expressed in terms of the 

image exposure 𝛼0 defined as, 
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𝛼0 = ∫ ∫ 𝐼(𝑋, 𝑌)𝑑𝑋 𝑑𝑌

+∞

−∞

+∞

−∞

 

= 2𝜋𝐼0𝜂0,𝑋𝜂0,𝑌        .  

 

(59) 

Further, since the exposure for the effective model should be equal to that formed by all 

the individual light rays, 

 

𝛼0 = ∑∫ ∫ 𝐼𝑟(𝑋, 𝑌) 𝑑𝑋 𝑑𝑌
+∞

−∞

+∞

−∞

𝑁𝑅

𝑟=1

 

= ∑𝛼𝑟

𝑁𝑅

𝑟=1

  . 

 

(60) 

Thus, the peak intensity for the effective image model is given by, 

                          𝐼0 =
𝛼0

2𝜋𝜂0,𝑥𝜂0,𝑦

   ,     (61) 

thereby completing the formulation of the effective image model. 

The final image of the dot sampled on a discrete set of pixels and with a finite number of 

gray levels is given by, 

                                     𝑔𝑘𝑙 = 𝛾𝑑𝑟
2𝐼(𝑋𝑘, 𝑌𝑙)    .              (62) 

Here 𝑘, 𝑙 are the pixel indices along the 𝑋, 𝑌 directions respectively, 𝛾 is the pixel to gray 

level conversion factor, and 𝑑𝑟is the pixel pitch. In addition, all CCD/CMOS sensors have some 

amount of noise added to the signal due to thermal noise and finite number of gray levels. This 

will be modeled in the next section when constructing the Fisher Information Matrix. 

6.2.2 Noise Model and Fisher Information  

The final image of the dot recorded on the sensor is the sum of the sampled intensity profile 𝑔𝑘𝑙 

as given by Equation (62) with some additive noise 𝑛̂𝑘𝑙: 

                                𝑔𝑘𝑙 = 𝛾𝑑𝑟
2𝐼(𝑋𝑘, 𝑌𝑙) + 𝑛̂𝑘𝑙                 . (63) 

 

Following Westerweel [16], the fluctuations due to thermal noise and finite number of gray 

levels are assumed to be normally distributed, signal-independent and uncorrelated, with a 

standard deviation of 𝜎𝑛. The joint pdf of the measurement then becomes 
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              𝑝(𝑔, 𝒂) = (
1

2𝜋𝜎𝑛
2
)

𝑀𝑁
2

exp [−
1

2𝜎𝑛
2
∑ ∑(𝑔𝑘𝑙 − 𝑔𝑘𝑙)

2

𝑁

𝑙=0

𝑀

𝑘=0

]  (64) 

where 𝒂 is the parameter vector and 𝑀, 𝑁 are the number of pixels along 𝑋 and 𝑌, respectively.   

 

The Fisher information matrix defined earlier represents the total amount of information 

available about the dot from its intensity profile that can be used to estimate its centroid. For the 

present scenario, the Fisher Information available to estimate the 𝑋 component of the centroid 

becomes [14], [16]:  

 

𝐽𝑋0𝑋0
=

1

𝜎𝑛
2
∑ ∑(

𝜕𝑔𝑘𝑙

𝜕𝑋0

)
2𝑁

𝑙=0

𝑀

𝑘=0

 

= (
𝛾𝐼0𝑑𝑟

𝜎𝑛
)
2 𝜋

2

𝜂0,𝑦

𝜂0,𝑥

1

√1 − 𝑅0
2
 . 

 

 

 

(65) 

where the summations are converted into integrals under the assumption that the extent of the dot 

is small compared to the size of the whole camera sensor. It is to be noted that 𝑅0 lies in the open 

interval (−1, 1), and is always less than one because the minimum diameter of a dot is 1 pixel. 

Therefore the term involving the square root is always positive and non-zero. 

6.2.3 Cramer-Rao Lower Bound 

The Cramer-Rao lower bound for the variance is defined as the inverse of the diagonal elements 

of the Fisher Information matrix, and therefore the standard deviation for the estimation of the 

centroid is given by 

 

         𝜎𝑋0
= √

1

𝐽𝑋0𝑋0

 

=
𝜎𝑛

𝛾𝐼0𝑑𝑟
 √

2

𝜋

𝜂0,𝑥

𝜂0,𝑦
√1 − 𝑅0

2       . 

 

 

(66) 

Further, the peak intensity 𝐼0 can be related to the dot diameter using Equation (61) to 

obtain 

              
𝜎𝑋0

𝑑𝑟

=
2√2𝜋𝜎𝑛

𝛾𝛼0

(
𝜂0,𝑋

𝑑𝑟

)

3
2
(
𝜂0,𝑌

𝑑𝑟

)

1
2
 (1 − 𝑅0

2)
1
4   . (67) 
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In the absence of blurring, 𝜂0,𝑥 = 𝜂0,𝑦 = 𝜂 and 𝑅0 = 0, and the result then simplifies to 

          
𝜎𝑋0

𝑑𝑟

=
2√2𝜋𝜎𝑛

𝛾𝛼0

(
𝜂

𝑑𝑟

)
2

        (68) 

thereby recovering a result similar to Westerweel [16], that the lower bound increases with the 

square of the dot diameter. Further, since it was shown previously that the diameter increases due 

to nonlinearities in the density gradient field, the effect of the density gradients is to increase the 

variance in the measurement of the centroid. It is also seen that the dot tilt introduces a covariance 

between the dot centroids along the x and y direction, thereby leading to a reduction in the position 

uncertainty. It should be noted that 𝑅0
2 < 1 for a dot with a finite (1 pixel) extent. For a linear 

density gradient field, there is a uniform translation of the dot and the CRLB is then identical to 

the result obtained by Westerweel for PIV. 

In summary, the Cramer-Rao lower bound associated with the estimation of a 2D dot 

centroid from a BOS image in the presence of density gradients and thermal noise, is given by 

Equation (67), and is a function of: 

a) Exposure (𝛼0)  

b) Noise level (𝜎𝑛)  

c) Diffraction Diameter (4𝜂) 

d) Magnification (𝑀) 

e) Distance between the dot target and the density gradient field  (𝑧𝐷) 

f) Extent of the density gradient field (Δ𝑧) 

g) Non-linearities in the density field (∇2𝜌) 

h) Camera Aperture (𝑓#) 

The parameter 𝑀𝑧𝐷 is defined as the sensitivity of a BOS setup, with a larger value being 

considered better for resolving small scale features in the flow field [20]. However, since it also 

increases the variance and lowers the precision of the measurement in the presence of blur, an 

optimal trade-off between sensitivity and precision should be considered when designing an 

experiment. Further, increasing 𝑓# tends to reduce the blur and increase the measurement precision, 

and a large 𝑓# also helps to keep both the dot pattern and the density gradient field in focus.  

Therefore, small aperture settings must be favored when designing BOS experiments, which 

requires the use of high power illumination. 
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6.2.4 Sensitivity Analysis 

It was seen that the position uncertainty given by (67) and the dot diameters given by (56)-(57) are 

functions of several parameters. To assess the relative importance of these parameters on the final 

measurement, a sensitivity analysis is performed by a combination of the Taylor series method of 

uncertainty propagation and Monte-Carlo simulations. The analysis will be presented for 𝜎𝑋0
 and 

𝜂0,𝑋 but a similar effect is anticipated for the other parameters such as 𝜎𝑌0
, 𝜂0,𝑌, and 𝑅0. 

a) Position Uncertainty  

The position uncertainty 𝜎𝑋0
 depends on five parameters, (1) 𝜎𝑛, (2) 𝛼0, (3) 𝜂0,𝑋, (4) 𝜂0,𝑌, and (5) 

𝑅0 . The corresponding sensitivity coefficients are listed in Table 6.1. To assess the relative 

contributions of these terms, a Monte-Carlo simulation was performed with the parameter values 

chosen randomly in a pre-defined interval. The intervals were: (1) 𝜎𝑛 = 5 ± 3,  (2) 𝛼0 = 1000 ±

 500 , (3) 𝜂0,𝑋 = 0.75 ± 0.5 𝑝𝑖𝑥. , (4) 𝜂0,𝑌 = 0.75 ± 0.5 𝑝𝑖𝑥  and (5) 𝑅 = 0 ± 1 . A uniform 

distribution of the parameters was assumed, and the sensitivities and contributions (|
𝜕𝜎

𝜕𝑎
 Δ𝑎| where 

𝑎 is the parameter)were calculated over one million trials to build the PDF shown in Figure 6.4.  

From the PDFs and median values it is seen that the noise level, exposure and dot diameter 

along the X direction have the largest effect on the position uncertainty along X. As the dot 

diameter in turn depends on the derivatives of the density field along x, the orientation of the 

density field can have a strong effect on the corresponding position uncertainty. 

Regarding the contribution of blurring to the position uncertainty, it should be noted that 

for a fixed amount of blurring, the effect of blur uncertainty will dominate under low 

illumination/exposure (𝛼) conditions, because the peak intensity of the dot has a first order effect 

on the position uncertainty as seen in Equation (67). Further, it is also expected to dominate in 

situations where the blurring itself is large, such as large-scale experiments and flows with large 

density gradients. In the present simulations, the sum of median uncertainties from all contributing 

sources is 0.14 pix., and blurring has a 30% contribution. 
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Table 6.1. Summary of parameters and corresponding sensitivity coefficients for the position 

uncertainty 

Parameter Range Sensitivity Coefficient 

Median 

Contribution 

𝚫𝝈𝑿𝟎
 (pix.) 

𝜎𝑛 5 ± 3 
𝜕𝜎𝑋0

𝜕𝜎𝑛
=

2√2𝜋

𝛼0
𝜂0,𝑋

3
2 𝜂0,𝑌

1
2 (1 − 𝑅2)

1
4 0.041 

𝛼0 1000 ±  500 
𝜕𝜎𝑋0

𝜕𝛼0
= −

2√2𝜋𝜎𝑛

𝛼0
2 𝜂0,𝑋

3
2 𝜂0,𝑌

1
2 (1 − 𝑅2)

1
4 0.032 

𝜂0,𝑋 0.75 ± 0.5 𝑝𝑖𝑥. 
𝜕𝜎𝑋0

𝜕𝜂0,𝑋
=

3√2𝜋𝜎𝑛

𝛼0
𝜂0,𝑋

1
2 𝜂0,𝑌

1
2 (1 − 𝑅2)

1
4 0.040 

𝜂0,𝑌 0.75 ± 0.5 𝑝𝑖𝑥 
𝜕𝜎𝑋0

𝜕𝜂0,𝑌

=
√2𝜋𝜎𝑛

𝛼0

𝜂0,𝑋

3
2 𝜂0,𝑌

−
1
2(1 − 𝑅2)

1
4 0.013 

𝑅 0 ± 1 
𝜕𝜎𝑋0

𝜕𝑅
= −

√2𝜋𝜎𝑛

𝛼0

𝜂0,𝑋

3
2 𝜂0,𝑌

1
2

𝑅

(1 − 𝑅2)
3
4

 0.011 

 

 

 

 

 

 

Figure 6.4. PDF of sensitivity of the position uncertainty to changes in the parameters. The 

median of the distribution is indicated by the white notch. 
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b) Effective Dot standard deviation  

A similar analysis was performed for the effective dot standard deviation η0,X as a function of its 

parameters. The parameters, associated sensitivity coefficients and the range of values used for the 

Monte-Carlo simulations are summarized in  

Table 6.2, and the resulting PDFs and medians are shown in Figure 6.5. The diffraction diameter 

𝜂 is seen to have the largest effect on the effective dot diameter, followed by the distance 𝑧𝐷 

between the dot pattern and the density field, and the magnification 𝑀, with the contributions of 

the other parameters being similar. While the analysis shows that the contribution from the density 

gradient terms is the lowest, it should be noted that the blurred diameter 𝜂𝑏  is a product of the 

second derivatives of density with other experimental parameters as shown in Equations (23) and 

(24). Since all the other parameters are always non-zero and usually uniform throughout the field 

of view, the density gradient term has a critical effect in ‘turning on’ the uncertainty amplification. 

Further, this effect is bound to be more important in flows with sharp discontinuities in the density 

field, and thereby larger density gradients. 

 

Table 6.2. Summary of parameters and corresponding sensitivity coefficients for the effective dot 

standard deviation  

Parameter Range Sensitivity Coefficient 

Median 

Contribution 

𝚫𝜼𝟎,𝑿 (pix.) 

𝜂 0.75 ± 1 𝑝𝑖𝑥. 
𝜕𝜂0,𝑋

𝜕𝜂
=

𝜂

𝜂0,𝑋
 0.85 

𝑀 1 ± 0.5 𝜕𝜂0,𝑋

𝜕𝑀
=

(−
1

1 + 𝑀
+

2
𝑀

) 𝜂𝑏,𝑋
2

𝜂0,𝑋

 0.35 

𝑧𝐷 0.1 ± 0.05 m 
𝜕𝜂0,𝑋

𝜕𝑧𝐷
=

2𝜂𝑏,𝑋
2

𝑍𝐷𝜂0,𝑋
 0.46 

𝑓# 16 ± 8 
𝜕𝜂0,𝑋

𝜕𝑓#
= −

𝜂𝑏,𝑋
2

𝑓#𝜂0,𝑋

 0.23 

𝛥𝑧 0.1 ± 0.05 m 
𝜕𝜂0,𝑋

𝜕𝛥𝑧
=

𝜂𝑏,𝑋
2

Δ𝑧 𝜂0,𝑋
 0.23 

𝜕2𝜌/𝜕𝑥2 2500 ± 1000 𝑘𝑔/𝑚3 
𝜕𝜂0,𝑋

𝜕𝜌𝑥𝑥
=

𝜂𝑏,𝑋
2

𝜌𝑥𝑥,0𝜂0,𝑋
 0.18 
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Figure 6.5. PDF of sensitivity of the effective dot diameter to changes in the parameters. The 

median of the distribution is indicated by the white notch. 

 

Therefore the sensitivity analyses show that though the position uncertainty and the 

effective diameter are controlled by a large number of experimental parameters, some parameters 

can have a more dominant effect in comparison to the others. 

Finally, a note on the choice of experimental parameters (in particular 𝜂0) for the sensitivity 

analysis. The effective diameter of the dot 𝜂0 is a combination of the diffraction diameter (𝜂) and 

blurring due to the density field (𝜂𝑏). For the former, the range of values were chosen based on the 

observation from PIV literature that the subpixel estimation both on the cross-correlation plane 

and the particle intensity profile is optimal for a dot diameter of 3 pix. Since the dot diameter is 

typically expressed in PIV as four times the standard deviation of the Gaussian intensity profile, 

the range of diameters considered in the sensitivity analysis is: 4 × (0.75 ± 0.5) pix., which is 

3 ± 2 pix.  

The lower end of 1 pix. is chosen to correspond to situations where the dot diameters are 

really small, though it should be noted that in most BOS experiments, the dot diameter on the 

reference image can be chosen very precisely because of the ability to manufacture/customize the 

dot pattern. 

The higher end of 5 pix. diameter is chosen to correspond to blurred imaging, with a 

blurring of 2 pix (Δ𝜂 = 0.5 pix.), which is typically observed in experiments, including the 

example shown in Section 6.4. For a similar experimental setup, this would correspond to a 
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magnification 𝑀 ≈ 1, the distance 𝑧𝐷 ≈ 0.1 𝑚, and an 𝑓# ≈ 16. In fact, these are also the expected 

values used in the sensitivity analysis reported in Section b), and are chosen to ensure that the 

analyses for the position uncertainty in Section a) and the blurred diameter in Section b) are 

consistent with each other. 

In summary, the effect of experimental parameters such as η,  M,  f#,  density  gradients 

etc. are assessed in the sensitivity analyses, and the results show how the model predictions would 

behave for different experiments. It is seen from 2.4.1 that the position uncertainty is most affected 

by the illumination/exposure (𝛼), the dot diameter (𝜂), and the noise level (𝜎𝑛). For the blurred dot 

diameter in Section 2.4.2, it is seen that the distance between the dot pattern and the density field 

(zD) has the largest effect, followed by the magnification (M) and the f-number (f#). 

6.2.5 Uncertainty Amplification Ratio 

The direct application of Equation (67) to calculate the CRLB for a given experiment is limited by 

the accuracy in the estimation of the image noise level which can vary across the field of view. In 

order to isolate the uncertainty amplification due to density gradients on the CRLB, an 

amplification ratio metric is proposed for BOS experiments that removes the effect of properties 

that are common to both the reference and gradient images. The amplification ratio, 𝐴𝑅, is defined 

as the ratio of the CRLBs for the same dot in the reference and the gradient images, and it can be 

shown that this ratio is purely a function of the ratios of the peak intensities and ratios of the dot 

diameters, 
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    .         (69) 

 

In addition, the proposed amplification ratio metric can also be used to report position 

uncertainties in tracking-based processing for BOS, as these processing methods are shown to 

significantly improve the accuracy, precision and spatial resolution [9]. First, the position 

uncertainty for the reference image can be calculated by recording several (e.g. 1000) images of 

the dot pattern without any flow and estimating the standard deviation of the dot centroids from 
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the subpixel fits. Then, the position uncertainty for a given dot in the gradient image can be 

calculated by multiplying the position uncertainty for the corresponding dot in the reference image 

and the amplification ratio. The two position uncertainties can then be combined to calculate a 

displacement uncertainty for each track, and the uncertainty in the density field can be obtained by 

propagating the displacement uncertainties through the BOS measurement chain [21].  

6.3 Comparison of the model with synthetic BOS images 

The theoretical result for the CRLB was tested with synthetic BOS images generated using a ray 

based synthetic image generation methodology for PIV/BOS experiments in variable density 

environments, for the purpose of simulating general optical setups as well as for error and 

uncertainty analysis [22]. Using this methodology, synthetic BOS images were generated for an 

inviscid supersonic flow over a 11.5o wedge at Mach 2.5 and a free-stream density of 0.46 𝑘𝑔/𝑚3, 

corresponding to an experiment described in [21]. The inviscid density field was calculated using 

shock-expansion theory [23], and discretized on a grid of 234x84x51 points with a spacing of 0.3 

mm x 0.3 mm x 0.5 mm along x, y, and z respectively, and is shown in Figure 6.6 (a).  

Synthetic BOS images were rendered for a regular dot pattern with a dot diameter of 3 pix. 

and a dot spacing of 6 pix. The distance between the dot pattern and the mid-plane of the density 

gradient field was 2.54 mm and the depth of the density gradient field along z was 2.54 mm. The 

focal length of the camera lens was 105 mm at an aperture setting of f22 to obtain an effective 

magnification of 0.53 for the dot pattern and 0.57 for the density gradient field. In addition, an 

image was rendered without the density gradient field to serve as the reference image.  

The dots on both the reference and gradient images were identified, sized and tracked using 

a dot tracking methodology for BOS, that has been shown to significantly improve the accuracy, 

precision and spatial resolution of the displacement estimation process [9]. The method utilizes 

prior knowledge of the positions and sizes of the dots on the target to improve the identification 

and centroid estimation process. 

Once all dots have been tracked, each pair of dots from the reference and gradient images 

are corrupted with zero-mean Gaussian noise. The standard deviation of the normal distribution 

was set to be 10% of the peak intensity of the reference dot image, to ensure that the same level of 

absolute noise was added to both images, as the peak intensity of the gradient dot image will be 

lower in case of blurring.  
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The dot locations in the noisy image were located using a Least Squares Gaussian (LSG) 

subpixel fitting scheme, which involves fitting a Gaussian curve to the intensity map of a dot, 

under the assumption that the diffraction limited image can be approximated by a Gaussian 

distribution [17], [19]. In this method, the parameters are obtained by minimizing the residual 

between the predicted intensity from the fit and the actual intensity of the pixels using a non-linear 

least squares method. The least squares method is initialized by the three-point Gaussian (TPG) 

fit, which calculates the peak location (referred to as the “centroid” in the following) , peak 

intensity and standard deviation of a Gaussian curve by fitting it to the intensity values recorded 

at three points/pixels on the dot intensity map [24]. The three points are taken to be the pixel with 

maximum intensity and one pixel on either side of the maximum. The centroid estimates are then 

compared with the ground truth obtained from the final positions of the light rays traced in the 

simulation to compute the position error. For each dot, the noise addition and centroid estimation 

procedure was performed 1000 times to calculate the position uncertainty, defined as the standard 

deviation of the position error. The amplification ratio was then calculated as the ratio of the 

position uncertainties of the dots in the gradient to the reference image. As noted before, any 

asymmetrical blur is neglected because, a symmetrical blur is sufficient to elucidate the effect of 

image blur on the measurement precision. However, the skew due to asymmetrical blurring would 

need to be considered to account for bias errors. 

The LSG fit is the Maximum Likelihood Estimate (MLE) for the centroid estimation in the 

case of normally distributed image noise. Since the MLE approaches the CRLB in the limit of 

large number of observations, it is expected that the variance of the centroid estimates from the 

LSG method would approach the result for the CRLB derived in the previous section [14]. 

It can be shown that the LSG is the MLE for the centroid estimation problem as follows. 

For a probability density function defined as 𝑝𝜃(𝑥) where 𝑥 is the signal, and 𝜃 is the parameter 

governing the pdf, the likelihood function is defined as 

                          𝐿(𝜃|𝑥) = 𝑝𝜃(𝑥)     . (70) 

Typically, the likelihood function is replaced by the log likelihood given by 

                          𝑙(𝜃|𝑥) = ln 𝐿(𝜃|𝑥)      . (71) 

 

The maximum likelihood estimate for the parameter 𝜃  given a set of measurements 𝑥 

obeying a known pdf 𝑝𝜃(𝑥) is defined as the value that maximizes the likelihood function for the 
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given set of measurements. Since the log function is monotonic, maximizing the log likelihood 

function is equivalent to maximizing the likelihood function. 

                 𝜃  ∈  argmax
𝜃∈𝛩

𝑙(𝜃|𝑥)         . (72) 

 

The example we consider here is the Gaussian image of a dot on a camera sensor corrupted 

with zero-mean noise that is normally distributed with standard deviation 𝜎𝑛. It was shown earlier 

that the joint PDF of the image intensity over a M x N pixel region is given by 

                     𝑝(𝑔, 𝒂) = (
1

2𝜋𝜎𝑛
2
)

𝑀𝑁
2
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1
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2

𝑁
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𝑀

𝑘=0

] . (73) 

 

Therefore, the log likelihood function for the parameter 𝒂 given an intensity measurement 

𝑔 becomes 

                          𝑙(𝒂|𝑔) = −
𝑀𝑁

2
ln 2𝜋𝜎𝑛
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1
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 (74) 

and the MLE becomes 

 

                𝒂̂  ∈  argmax
𝜃∈𝛩

𝑙(𝒂|𝑔) 

                     ∈  argmin
𝜃∈𝛩
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𝑀
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(75) 

which is a Least Squares solution. Since 𝑔𝑘𝑙 is modelled to be a Gaussian, the MLE is a Least 

Squares Gaussian fit. 

The position uncertainty is also estimated from equations (56), (57), and (67) using the 

specified noise level for the reference and gradient dot images and used to calculate the theoretical 

amplification ratio. Finally, another estimate of the position uncertainty of a dot in the gradient 

image is obtained by multiplying the amplification ratio from theory with the position uncertainty 

of the corresponding dot in the reference image. This will be referred to as the hybrid uncertainty 

estimate and is to be a test of the uncertainty quantification methodology introduced in the work.  

The spatial variation of the amplification ratio from the theory and simulation are shown 

in Figure 6.3 (b) and (c) respectively, where it can be seen both results show a rise in the shock 

region due to blurring of the dot image, with a slight under-prediction in the ratios from the theory. 

The under-prediction in the theory is expected because it is the lower bound on the measurement 
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uncertainty in the limit of infinite number of observations, infinite sampling and a perfect 

estimation of the dot diameter in the reference image. However, real measurements deviate from 

these assumptions, leading to a higher estimated position uncertainty for both the reference and 

gradient images. 

In order to test the amplification ratio calculation separately from the position uncertainty 

prediction, the hybrid uncertainty is also calculated, and the PDFs of position uncertainties are 

shown in Figure 6.6 (d) for the theory, simulation, and hybrid estimates, along with the root-mean-

square (RMS) estimates. It is seen that while the theoretical position uncertainties underpredict the 

simulations by about 0.01 pix., the hybrid estimate using the measured position uncertainty from 

the reference image is used with the theoretical amplification ratio, then the predicted position 

uncertainty for the gradient image matches the results from simulation. This implies that accurate 

estimates of the position uncertainty for the gradient image can be obtained using the position 

uncertainty for the reference image and the amplification ratio. While the position uncertainty for 

the reference dots are obtained using Monte-Carlo simulations in the synthetic analysis, for 

experiments they can obtained by recording several reference images and estimating the standard 

deviation of the positions of the same dot across the time series. 
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(a) 

 

(b) 

 

(c) 

 
(d) 

Figure 6.6. Results of the synthetic image analysis for supersonic flow over a wedge. (a) 

Illustration of the wedge geometry and the region of interest, (b) Spatial variation of 

amplification ratio from theory and (c) from simulations, (d) PDF and RMS of position 

uncertainties. 

6.4 Demonstration with Experimental Images 

The proposed CRLB estimation methodology and the uncertainty amplification is demonstrated 

on experimental BOS images of flow induced by a nanosecond spark discharge reported by Singh 

et. al. [25]–[27]. The spark discharge leads to rapid heating of the gas in the electrode gap resulting 

in a complex three-dimensional flow field. The BOS measurements were performed by recording 

images of a target dot pattern containing a regular grid of dots in the presence of the spark induced 

flow field. The images with the flow can be compared to a reference image recorded prior to the 

discharge to estimate the displacement field and to measure the blurring of the dots in the presence 

of density gradients. The dot size was about 3 pix., the magnification was 0.8, and the distance 
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between the dot pattern and the spark electrodes was 3.18 cm.  More details of the experimental 

setup can be found in Singh et. al. [25]–[27].  

For the experimental images, the Uncertainty Amplification Ratio AR defined in Section 

6.2.5 was calculated for all the identified dots in both the reference and gradient images using an 

elliptical Least Square Gaussian fit, and the magnitude of the amplification ratio (= √𝐴𝑅𝑥
2 + 𝐴𝑅𝑦

2) 

is shown in Figure 6.7.. Also shown are the displacement field which corresponds to the projected 

density gradients as given by Equation (39) and a histogram of the position uncertainty magnitude 

for the gradient image calculated using the uncertainty quantification methodology outlined in 

Section 6.2.5. As the flow-field involves a large number of points in the ambient, only vectors with 

displacements larger than the 20th percentile (~ 0.05 pix.) are plotted in the histogram. The dot 

identification and displacement estimation is performed using the same tracking methodology used 

for the synthetic image analysis.  

The figures show that regions corresponding to the displacement gradients are coincident 

to regions with large values of the ratio metric. However, in the present flow field, the regions of 

high displacements and displacement gradients coincide because of the sharp density gradient 

interface, and hence the amplification ratio appears to increase with displacement. A value of the 

ratio metric greater than 1 implies that the CRLB for the gradient image will be higher than the 

reference image in this region. While the regions greater than 1 mostly occur in regions with large 

second gradients of the density (first derivative of displacement), there are still some stray values 

in regions without density gradients, that are most likely due to intensity fluctuations between the 

reference and gradient images from the Xenon arc lamp light source used for the experiments. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 6.7. Snapshots of the displacements (a), (d), amplification ratios (b), (e), and histogram 

of position uncertainties for the gradient image (c), (f) for two time instants of the spark 

induced flow field.  

6.5 Conclusions 

The effect of density/refractive-index gradients on the precision of BOS experiments was 

theoretically analyzed using the Cramer-Rao lower bound of the 2D centroid estimation process. 

To perform the analysis, a model for the diffraction limited image of a dot viewed through a non-

linear density gradient field was derived under the assumption of a small ray cone angle which is 

expected to be reasonable given the requirement of a large depth of field to focus on both the target 

and the flow field. Under the further assumption that the effective model of a dot imaged through 

density gradients can be described by a Gaussian profile, it was shown that the effective centroid 

can be expressed as the original centroid of the image in addition to a shift corresponding to the 

average deflection of light rays, and that the effective diameter is a root mean squared sum of the 

diffraction diameter and a blurring due to the second derivatives of the density field. As a result of 

the increase in the diameter due to blurring, the effect of density gradients is to increase the 

Cramer-Rao lower bound and to lower the measurement precision in the centroid estimation 
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process. It was also seen that the ratio of the CRLBs of the dots in the reference and gradient 

images, termed the Uncertainty Amplification Ratio (𝐴𝑅), is a function of the ratio of their 

diameters and the peak intensities. Based on this ratio, a methodology was proposed to report 

position uncertainties for tracking-based BOS measurements.  

The theoretical amplification ratio predicted by the imaging model was compared with ray 

tracing simulations for synthetic BOS images of supersonic flow over a wedge. The dot images 

were corrupted with Gaussian noise and the centroid was estimated using a Least Square Gaussian 

fit, and the corresponding position error was calculated for 1000 trials to estimate the position 

uncertainty. This procedure was repeated for all pairs of dots in the reference and gradient images, 

and the ratio of the position uncertainty was used to calculate the AR. In addition, these quantities 

were also calculated from the theory, and the AR from the theory was combined with the position 

uncertainty in the reference image from the simulations to calculate the uncertainty for the gradient 

image. The results show a rise in the amplification ratio in the shock region due to blurring of the 

dot image and the AR predictions from theory slightly under-predict the simulations. In addition, 

it was seen that position uncertainties for the gradient image that were estimated using the 

theoretical amplification ratio and the position uncertainty from the reference image obtained from 

simulations, accurately predict the true uncertainty from the simulations. This signifies that the AR 

is a valid metric to report uncertainties for tracking based BOS measurements. The implications 

of the model of the CRLB were also demonstrated with experimental BOS images of flow induced 

by a nanosecond spark discharge. Analysis of the images showed that the CRLB for the gradient 

image is amplified with respect to the reference image particularly in regions of strong density 

gradients. While the experimental demonstrations are qualitatively consistent with the model, 

benchmark experiments over a wider parameter space are required to further test the model 

proposed in this work. 

One of the limitations of this work is that small-scale setups were used in both the 

simulations and experiments corresponding to typical laboratory settings. However, the theoretical 

analysis shows that the blurring scales as 𝑍𝐷
4, therefore the blurring effect will be more significant 

for large-scale industrial facilities. In contrast, the magnification M and the angle of the ray cone 

Δ𝜃 would also be lower for a large-scale facility, so the effect would be somewhat mitigated. 

Therefore, uncertainty amplification for large-scale BOS setups is an interesting avenue deserving 

further analysis. 
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Beyond BOS, the image model presented in this work can also be extended to the analysis 

of position estimation uncertainties in a multi-camera volumetric PTV setup and propagated 

through the measurement chain accounting for uncertainties introduced in the calibration and 

reconstruction procedures to elucidate the effect of distortions due to density/refractive-index 

gradients on the 3D centroid estimation process [28]. Another area of future work is to apply this 

methodology to assess the effect of curved windows on the position uncertainty. Further, the 

possible utility of the uncertainty amplification factor for uncertainty quantification for correlation-

based PIV/BOS similar to the peak-to-peak ratio and signal to noise ratio metrics [29]–[31] is an 

avenue for further work.  
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Abstract 

Nanosecond Surface Dielectric Barrier Discharge (ns-SDBDs) are a class of plasma actuators that 

utilize a high-voltage pulse of nanosecond duration between two surface-mounted electrodes to 

create an electrical breakdown of air, along with rapid heating. These actuators usually produce 

multiple filaments when operated at high pulse frequencies, and the rapid heating leads to the 

formation of shock waves and complex flow fields. In this work we replicate a single filament of 

the ns-SDBDs and characterize the induced flow using velocity measurements from particle image 

velocimetry and density measurements from background-oriented schlieren. The discharge is 

produced by a high voltage electrical pulse between two copper electrodes on an acrylic base. A 

hot gas kernel characterizes the flow field formed close to the electrodes that expands and cools 

over time and a vortex ring that propagates away from the surface while entraining cold ambient 

fluid. The gas density deficit inside the kernel displays a power-law decay over time. Based on the 

observations, we develop a simplified theoretical model based on vortex-driven cooling and 

perform a scaling analysis to obtain the induced flow length and time scales. The results show that 

the cooling process's time scales correspond to a circulation-based time scale of the vortex ring, 

and the length scale of the kernel corresponds to the vortex ring radius. These findings can guide 

the choice of optimal filament spacing and pulse frequencies in the design, deployment, and 

operation of nanosecond surface dielectric barrier discharges (ns-SDBDs) for flow control.  
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7.1 Introduction 

There is growing interest in the use of nanosecond surface dielectric barrier discharge (ns-SDBD) 

actuators for high-speed (supersonic/hypersonic) flow control. A plasma discharge is created in 

these actuators using a nanosecond-duration pulse of several kilovolts to deposit energy rapidly in 

the electrode gap [1–3]. The electrical breakdown leads to a two-step ultra-fast heating mechanism 

characterized by (1) the electronic excitation of gaseous nitrogen molecules by electron impact 

and (2) subsequent dissociative quenching of the excited N2 by oxygen molecules producing 

oxygen atoms and excess thermal energy [4–6]. The rapid heat release leads to the formation of a 

shock wave and the development of a complex three-dimensional flow field near the actuator 

surface characterized by coherent vorticity and a hot gas kernel [7–13]. 

Past work studying the flow induced by ns-SDBDs has shown that the initial strength of 

the induced shock increases with the peak voltage and that the shock rapidly decays to an acoustic 

wave on moving away from the actuator surface [7, 8, 14, 15]. High-speed schlieren visualization 

of the post-shock stage of the induced flow has shown the presence of a hot gas kernel near the 

electrodes, which expands and cools to ambient [11, 13, 15, 16]. Actuators based on ns-SDBDs 

have also been applied to control the shock-boundary layer interaction (SBLI) on a wedge, and it 

was found that the actuator can perturb the low-frequency unsteadiness in the separation bubble 

[17]. Interactions between the shock generated by the actuator and the incident oblique shock have 

also been observed in the study by Kinefuchi et al. [18, 19], who found an optimal pulse frequency 

for the actuator, corresponding to a time scale based on the boundary layer thickness and the flow 

velocity.  Although a general idea of the flow features induced by a ns-SDBD exists, the effect of 

the actuator geometry (such as the filament spacing) and the operating parameters (such as the 

pulse frequency) on the induced flow are not well understood and play a critical role in flow control 

applications. Further, a knowledge of the intrinsic frequency of the flow induced by the actuator 

and its relation to the time scales associated with an oncoming flow is also critical for flow control 

applications. 

Even the flow field induced by a single pulse of a ns-SDBD is not entirely understood at a 

more fundamental level, in contrast to the well-characterized AC-driven SDBD. The flow field 

induced by ns-DBDs is on much shorter time scales (by almost an order of magnitude) and involves 

large spatiotemporal gradients in the velocity and temperature fields, posing a significant 

experimental challenge. However, detailed measurements of the induced flow are required to 
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develop a mechanistic model of the actuator performance, such as the vorticity production, heating, 

penetration depth, etc., and to develop scaling rules that relate the actuator design and operating 

conditions to its performance. 

In this work, we perform the first detailed characterization of the flow induced by a single 

filamentary surface discharge produced by a single nanosecond-duration pulse in a quiescent 

medium using Particle Image Velocimetry (PIV) and Background Oriented Schlieren (BOS) 

measurements and develop a reduced-order model for the flow field. Filamentary discharges are 

preferred because they can provide localized heating with minimal power density requirements 

and provide better control authority as their position on the surface and morphology is known and 

controllable [10, 11, 13]. Further, Leonov et al. [13] have observed that when ns-SDBD actuators 

are operated in high Reynolds number flows, they almost always transform to a filamentary 

discharge due to ionization instabilities. While reducing the problem to a single filament and a 

single pulse is a considerable simplification from practical applications, it allows us to remove the 

interaction between the flow induced by adjacent filaments and subsequent pulses.  

 We first identify a candidate actuator that can be used to create a well-controlled single 

plasma filament with a single pulse and then perform PIV and BOS measurements to characterize 

the induced flow for a range of discharge energies. The measurements show that the induced flow 

consists of a hot gas kernel filled with vorticity in a vortex ring that expands and cools over time. 

We also develop a reduced-order model to describe the induced flow and show that the expansion 

of the kernel is governed by the vortex ring motion, and the entrainment of cold gas governs the 

cooling. Applying the model to the experimental data reveals that the vortex ring's properties 

govern the time scale associated with the kernel dynamics. The model predictions for the actuator-

induced flow length and time scales can guide the choice of filament spacing and pulse frequencies 

for practical multi-pulse ns-SDBD configurations. 

7.2 Experimental Methods 

7.2.1 Actuator Geometry, Plasma Generation and Electrical Measurements 

A saw-tooth actuator consisting of copper electrodes on an acrylic base was used for the 

measurements and is shown in Figure 7.1 (a). The electrodes tips were 2 mm apart, and the 

thickness of the copper tape was approximately 0.1 mm. This particular actuator was chosen 
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because it could produce a single discharge filament for a single pulse, thereby providing a 

controlled line deposition of energy, as shown in Figure 7.1 (b). These choices were based on 

direct imaging of the discharge produced by several actuator designs with varying tip geometries, 

and with some candidates also featuring Kapton tape to provide higher dielectric strength. Since 

the candidates with Kapton tape could not produce a single filament with a single pulse, which is 

the main objective of this study, this particular actuator was chosen even though it is not a 

traditional DBD. The actuator designs were based on previous work by Devarajan et al. [11], and 

the details on the design study are summarized in [20].  

The plasma discharge was generated by an Eagle Harbor Technology NSP-300 high voltage 

nanosecond pulser connected to the electrodes by high voltage cables soldered to the electrodes. 

The electrical properties of the discharge were measured using two Tektronix P6015A high voltage 

probes (in a differential measurement configuration) and a Magnelab CT-D1.0 current transformer. 

The probes were connected to an Agilent DSO9104A oscilloscope, and the voltage and current 

traces were used to calculate the discharge power and energy deposited. The displacement current 

was measured for a case without a breakdown to calculate the lag between the voltage and the 

current [6]. The energy was varied by changing the DC voltage and the pulse duration to obtain a 

range of 1 – 5 mJ. Sample measurements of voltage, current, and electrical energy are shown in 

Figure 7.1 (c). 

7.2.2 Background-Oriented Schlieren (BOS) 

Background-Oriented Schlieren (BOS) was used to measure the density of the hot gas kernel and 

to characterize the cooling process [21–27]. A schematic of the experimental setup is shown in 

Figure 7.1 (d). The induced flow was imaged perpendicular to the electrode axis (in the Y-Z plane 

in Figure 7.1). The dot pattern used was a photomask with a regular grid of dots manufactured by 

FrontRange Photomask with dot diameters of 42 m and center-to-center dot spacing of 42 m. 

The photomask was back-illuminated by an arc lamp, and a diffuser plate was placed between the 

lamp and the dot pattern to provide uniform illumination over the field of view. The images were 

acquired using a Photron SA-Z camera recording at 20 kHz at 1024 x1024 pixels. The camera was 

equipped with a 200 mm focal length Nikon lens and a 2X teleconverter and operated at an aperture 

stop of f16 to achieve a magnification of 10 𝜇m/pixels and a field of view of 10 mm x 10 mm. The 

distance between the dot pattern and the density gradients (ZD) was 25.4 mm, and the distance 
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between the camera and the dot pattern (ZB = ZD + ZA) was 267 mm. A sample magnified image 

of the dot pattern at the first time instant with the plasma filament is shown in Figure 7.1 (b). It 

should be noted that this particular image is not used for the displacement estimation, and the 

image analysis begins from the 2nd frame. 

The dot pattern images with and without the plasma-induced flow were processed using a 

dot tracking methodology that has been shown to provide an order of magnitude improvements in 

the accuracy, precision, and spatial resolution of the displacement estimation for BOS [28]. The 

method utilizes prior information about the dot pattern design, such as the location, size, and the 

number of dots, to provide near 100% yield. A correlation correction is performed after the 

tracking to improve the dynamic range for subpixel displacement estimation. The displacement 

estimates were validated with a Universal Outlier Detection (UOD) method for unstructured 

measurements using Delaunay triangulation [29]. The displacement uncertainties were calculated 

using a recently developed methodology for uncertainty amplification in BOS, based on the ratio 

of the cross-correlation plane diameters of the dot intensity maps in the reference and gradient 

images [30].  

The displacement fields were used to calculate the density gradients using Equation (11),  

 𝜕𝜌𝑝

𝜕𝑥
=  ∫

𝜕𝜌

𝜕𝑥
𝑑𝑧 =

𝛥𝑥

𝑍𝐷𝑀

𝑛0

𝐾
 

(76) 

where 𝜕𝜌 𝜕𝑥⁄  is the density gradient along the 𝑥 direction, 𝛥𝑥 is the pixel displacement on the 

camera sensor, 𝑀 is the magnification, 𝑍𝐷 is the distance between the density gradient and the dot 

pattern, 𝑛0  is the refractive index of the undisturbed medium, and 𝐾  is the Gladstone-Dale 

constant. The displacements were interpolated onto a regular grid (with the grid spacing based on 

the target dot spacing) along with the uncertainties, and a 2D integration was performed using a 

Weighted Least Squares density integration procedure [31] to obtain the projected density field 𝜌𝑝 

relative to the ambient [27]. Dirichlet boundary conditions were used on the left and right 

boundaries with zero relative projected density, as these points correspond to the ambient. The 

final spatial resolution of the measurements was 0.08 mm. The displacement uncertainties were 

propagated through the density integration procedure to estimate the density uncertainty [32], and 

the maximum uncertainties in the projected density were about 3% of the peak density deficit with 

respect to the ambient. 
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Following the density integration, a projected density deficit ( 𝜌𝑑 = 𝜌𝑝,∞ − 𝜌𝑝 ) was 

calculated where 𝜌𝑝,∞ = 0 , and the hot gas kernel was identified as the set of points with a 

projected density deficit greater than 5% of the peak density deficit. Then the mean density deficit 

of all points in the kernel was calculated for each time instant, and this procedure was performed 

at each time step for all tests. 

  

      

(a) (b) (c) 

 

 

(d) (e) 

Figure 7.1. (a) Saw-tooth actuator used for the experiments, (b) false-color image of the 

discharge filament, (c) sample waveform for a discharge (d) schematic of the BOS 

experimental setup (top view), and (e) schematic of PIV experimental setup (top view).   

7.2.3 Particle Image Velocimetry (PIV) 

Time-resolved planar Particle Image Velocimetry (PIV) was used to measure the velocity and 

vorticity fields induced by the surface discharge. A schematic of the PIV system is shown in Figure 

7.1 (e). The setup consists of an enclosed acrylic test section containing the surface discharge 

actuator, a Photron SA-Z camera, and an EdgeWave Nd:YAG laser operating at 20 kHz. The laser 

sheet optics produced an approximately 1 mm thin waist in the region of interest where the plasma 

was generated. A Quantum Composer Model 575 delay generator was used to synchronize and 
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trigger the laser, cameras, and high voltage pulse generator. A fluidized bed seeder was used to 

inject aluminum oxide particles with diameters of about 0.3 µm and estimated Stokes number of 

approximately 0.002 into the chamber. Particle images were recorded at 20,000 fps at a resolution 

of 1024 x 1024 pixels using the Photron camber with a Nikon Nikorr 105 mm lens.  

PRANA (PIV Research and ANAlysis) software was used to process the recorded particle 

images [33]. The correlation method used was the Robust Phase Correlation (RPC) [34, 35] in an 

iterative multigrid framework using window deformation [36, 37], with each pass validated by 

universal outlier detection (UOD) [38]. A total of four passes was used, and a 50% Gaussian 

window was applied to the original window size [39], resulting in window resolutions of 64 x 64 

pixels in the first pass to 32 x 32 pixels in the last pass, with 50% window overlap in all passes. 

Between successive passes, velocity interpolation was performed using bicubic interpolation, and 

the image interpolation was performed using a sinc interpolation with a Blackman filter. The 

subpixel displacement was estimated using a three-point Gaussian fit [40], and the displacement 

uncertainty was calculated using the Moment of Correlation method [41]. The final spatial 

resolution was 0.16 mm, and the average uncertainty was approximately 0.02 m/s, about 20% of 

the mean velocity. 

The velocity measurements were de-noised based on Proper Orthogonal Decomposition 

(POD) before post-processing [42]. The vorticity was calculated from the velocity field using the 

4th order noise-optimized compact-Richardson scheme [43]. As the vorticity calculations cannot 

differentiate between shear and swirl regions, coherent structures (vortex cores) identification was 

performed using a 𝜆𝐶𝐼 criterion, or the swirl strength [44]. Regions in the flow field characterized 

by a swirl greater than the instantaneous 95th percentile were considered coherent/swirling. The 

vorticity in the other regions was set to zero to ensure that spurious and shear-based vorticity 

measurements did not affect the subsequent calculation of the vortex ring properties.  

The vortex ring parameters, such as the circulation and ring radius, were then calculated 

based on integral relations [45]. Instead of explicit tracking of the vortex cores, this method was 

used to minimize errors induced by coherent structure identification due to the complex 

distribution of vorticity. Further, the integral relations derived initially for an axisymmetric vortex 

ring were modified to account for the general experimental case, which may violate these 

assumptions because of tilting, three-dimensionality, etc. Therefore, the net circulation Γ was 

defined as half of the area integral of the magnitude of the vorticity field as given by (77), and the 
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ring centroid was defined as the first moment of the magnitude of the vorticity field as given by 

(78). Finally, the ring radius 𝑅 was defined as the first moment of the magnitude of the vorticity 

distribution about the ring centroid and is given by (79). 

Γ =
1

2
∬|𝜔𝑧(𝑥, 𝑦)| 𝑑𝑥 𝑑𝑦 (77) 

𝑥0 =
∬𝑥 |𝜔𝑧(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

∬|𝜔𝑧(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
 (78) 

 

𝑅 =  
∬  |𝑥 − 𝑥0||𝜔𝑧(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

∬|𝜔𝑧(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
 (79) 

 

These definitions reduce to the standard definition of the vortex ring properties for a 

perfectly axisymmetric flow field [45]. 

7.3 Results 

In this section, we present observations of the density and vorticity fields to show that the discharge 

induces a hot gas kernel and a vortex ring, both of which move away from the surface over time. 

To describe the cooling process and the vortex dynamics, we develop a model relating the time 

variation of the mean kernel density to the vortex ring properties and use the model to develop 

characteristic length and time scales of the induced flow. The results presented in this work 

correspond to measurements on an actuator with an electrode gap of 2 mm, viewed from the side, 

obtained from a set of 15 tests for PIV, and another separate set of 15 tests for BOS.  

7.3.1 Measurements of the plasma-induced flow field 

The density and velocity measurements of the flow field from a single test are presented in Figure 

7.2, though it should be noted that the two measurements are obtained from different realizations 

of the induced flow. The density measurements show a torus-shaped hot gas kernel close to the 

discharge location. Over time, the kernel propagates upwards, expands, and cools. In addition, the 

vorticity/swirl measurements show the formation of a vortex ring that propagates upwards from 

the surface. The ring is seen to entrain ambient fluid from the side and ejects this fluid vertically 

away from the surface. For these discharges the flow is induced by the outward expansion of a 

shockwave at early times (~ 1 𝜇s), followed by the formation and propagation of the vortex rings 

at later times (~ 1 ms). The measurements reported in this work are in the late stages, where the 
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gas velocity is induced by the vortex ring. While the direction of the inward flow induced by the 

rings is opposite to the direction of the kernel expansion, the two motions are distinct. The kernel 

expansion is a result of the mixing induced by the vortex rings and does not represent the flow 

velocity. However, the vorticity distribution at the early times is complex and the measurements 

are noisy, thereby limiting efforts at centroid estimation and tracking of the vortex cores. 

 

 

Figure 7.2. Density and swirl fields induced by the surface discharge from 0.1 to 2 ms. The top 

row shows the projected density deficit, and the bottom row shows the swirl contours and 

velocity vectors (every 4th vector shown). The two sets of measurements correspond to different 

realizations of the induced flow, with a peak to peak voltage of about 19 kV for the BOS 

measurement, and 13.5 kV for the PIV measurement.  

 

The time histories of the bulk properties of the hot gas kernel and the vortex ring are shown 

in Figure 7.3 (a) and (b), respectively. Figure 7.3(a) shows that the mean density deficit of the 

kernel increases at early times, followed by a cooling period, and the simultaneous increase in area 

denotes the kernel expansion. Both the density deficits and the kernel areas increase with energy 

deposited in the plasma. For the vortex ring properties, shown in Figure 7.3(b), there is no such 

apparent effect of energy deposited, and the time series of the measurements is quite noisy.  

The results show that the density deficit of the hot gas kernel decreases with time, and since 

the cooling process is essentially a surrogate for passive scalar mixing, we are interested in the 
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time scale of this process and its relation to other flow parameters. In the case of a filamentary 

discharge produced between two pointed electrodes far away from a surface, the cooling rate of 

the hot gas kernel is controlled by cold gas entrainment due to a pair of vortex rings induced near 

the electrode tips [46, 47]. As the current flow induced by the surface discharge also features a 

vortex ring and a hot gas kernel, we are interested to know if a similar coupling exists between 

them. We examine these issues in the next section by reducing a simplified model for the induced 

flow. 

 

  

(a) (b) 

Figure 7.3. Time histories of kernel and ring properties. (a) Density deficit of the kernel (left 

axis) and kernel area (right axis). (b) Net circulation (left axis) and radius (right axis) of the 

vortex ring. The darker markers represent a case with higher energy deposited. 

7.3.2 A simplified model for the induced flow  

This section develops a reduced-order model for the cooling induced by the vortex ring and 

performs a scaling analysis. A sketch of the flow field is shown in Figure 7.4 with a hot gas kernel 

near the wall and a vortex ring inside the kernel. The kernel is modeled as a cylindrical control 

volume denoted by the gray dashed line in the figure, and it is further assumed that this cylinder 

expands purely along the vertical direction due to the ring motion to simplify the analysis. The 

vortex ring entrains cold fluid along the hot gas kernel's sides and ejects warm, mixed fluid through 

the top boundary. Further, the radius of the control volume is approximated to be the radius of the 

vortex ring under the assumption that majority of the kernel will be confined within the rings, 

based on observations of a related flow in pin-to-pin discharges [47]. Under this framework, and 
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following the analysis of Singh. et al. [46, 47], the relation between the density of the hot gas 

kernel and the entrainment can be expressed by, 

 𝜌∞ − 𝜌𝑘

𝜌∞ − 𝜌𝑘,𝑖
= exp (−∫

𝑉̇𝑖𝑛

𝑉𝑘
𝑑𝑡

𝑡

𝑡𝑖

) (80) 

where 𝜌∞ is the ambient density, 𝜌𝑘 is the mean kernel density, 𝑉𝑘  is the kernel volume, 𝑉̇𝑖𝑛  is the 

entrainment of gas into the kernel, and the subscript 𝑖  represents the initial conditions. 

Equation (80) is derived by combing the inviscid mass and energy conservation equations in the 

low Mach number limit. Details of the derivation are given in [46]. 

 

 

Figure 7.4. Schematic of a simple model for the flow field induced by the surface filament 

discharge.  

 

In this analysis, we evaluate Equation (80) for the present geometry by modeling the vortex 

ring as a thin-core ring with a uniform vorticity distribution [51] and simplify the equation based 

on a scaling analysis. A scaling analysis is used because the goal of the theoretical analysis 

presented in this section is to estimate the length and time scales of the induced flow for 

applications with multi-filament and multi-pulse configurations. The uniform vorticity distribution 

is used because it is the most common model for a vortex ring for which analytical expressions for 

the streamfunction are available. However, the validity of this assumption is limited by the nature 

of the ring formation, which may be different from a traditional piston-driven vortex ring. This 
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flow field has an added feature due to the presence of the wall, which can potentially affect the 

vortex ring dynamics and the cooling process. As shown by Walker et. al. [48], a vortex ring can 

be affected by a nearby wall due to the (1) no-penetration (inviscid), and (2) no-slip (viscous) 

boundary conditions. The inviscid effect is accounted for by modeling an image vortex below the 

wall, affecting properties such as the ring diameter, entrainment, etc. The viscous effects influence 

the velocity profile in the boundary layer near the wall and the shear stress distribution. Walker et 

al. noted from both computations and experiments that both the effect of the image vortex and 

viscous effects are negligible when the distance of the primary vortex from the wall is greater than 

one ring radius. In this situation, the entrainment can then be ascribed purely to the primary vortex 

ring, and the contribution from wall effects is negligible. In the flow field measurements shown in 

Figure 7.2, it is seen that the ring is approximately one radius away at 0.2 ms, and the ring integral 

parameters in Figure 7.3 (b) are also nearly constant after this time. 

Under this condition, the entrainment through the right side of the control volume can be 

expressed as the difference between the value of the streamfunction 𝜓 at the core of the ring (point 

A) and at the wall (point B). Further, since the streamfunction due to a vortex ring decays rapidly 

away from the core, its value at B when h > R will be negligible. The entrainment can then be 

expressed as 

 𝑉̇𝑖𝑛 = 2𝜋(𝜓𝐴 − 𝜓𝐵) 

= 𝛤𝑅 [𝑙𝑜𝑔 (
8𝑅

𝑎
) −

3

2
] ≈ Γ𝑅. 

(81) 

where Γ is the net circulation, 𝑅 is the ring radius, and 𝑎 is the vortex core radius. Therefore, it is 

seen that when the ring is far away from the wall (ℎ > 𝑅), the entrainment is constant because the 

ring properties will not change. This is also observed in Figure 7.3 (b).  

The volume 𝑉𝑘  in Equation (80) can be calculated from the cylindrical control volume 

properties, which expands due to the ring motion. When the distance between the ring and the wall 

is larger than the ring radius, ℎ > 𝑅, the ring can be approximated to have constant properties, and 

the volume of the ring as a function of time can be expressed as,  

 𝑉𝑘(𝑡) = 𝜋𝑅2ℎ(𝑡) 
= 𝜋𝑅2𝑉𝑅,𝑦𝑡 

=
𝜋𝑅2Γ

2𝜋𝑅
𝑡 ≈ Γ𝑅𝑡 

(82) 

where 𝑉𝑅,𝑦 is ring velocity along the vertical direction.  

Under these assumptions, the cooling equation in (80) can be simplified to obtain 
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 𝜌∞ − 𝜌𝑘

𝜌∞ − 𝜌𝑘,𝑖
=

𝜌𝑑,𝑘

𝜌𝑑,𝑘𝑖

 

= exp (−∫
𝛼

𝑡
𝑑𝑡

𝑡

𝑡𝑖

) = (
𝑡

𝑡𝑖
)
−𝛼

 

(83) 

where 𝜌𝑑,𝑘  is the average density deficit for the points within the hot gas kernel, 𝜌𝑑,𝑘𝑖
 is the kernel 

deficit at the start of the cooling process (taken to be the maximum across the time series), and  𝛼 

is a constant of proportionality in the scaling analysis. The coefficient 𝛼 is introduced to account 

for unsteady, three-dimensional effects that are neglected in this model, and which will vary from 

one realization to another. Physically, it represents the deviation of the entrainment from the 

inviscid vortex ring theory, as well as an expansion of the hot gas kernel that is not strictly vertical. 

The value of the 𝛼 is determined from a power law fit to the kernel density deficit shown in Figure 

7.3 (a). The time 𝑡𝑖 is the initial condition for the cooling analysis, and since the analysis is only 

valid once ℎ > 𝑅, 𝑡𝑖 is taken as the time instant corresponding to when the vortex ring is one radius 

away from the wall (ℎ = 𝑅). This time 𝑡𝑖 can be related to the vortex ring properties, and it can be 

shown to that 𝑡𝑖 =
𝑅2

Γ
= 𝜏.  

From this simple model, we obtain the result that (1) the cooling of the hot gas kernel is 

described by a power-law process over time, and (2) the time scale of this process is determined 

by the vortex ring properties such as the circulation and ring radius. In the next section, we compare 

these model results to the experimental measurements. 

7.3.3 Length and time scale analysis 

To test the model result that the cooling follows a power law process, we replot Figure 7.3 (a) with 

a normalized density deficit and time scale. The density deficit is normalized by the peak value 

(
𝜌𝑑,𝑘

𝜌𝑑,𝑘,0
) and the time is normalized based on the time scale obtained from a power-law fit of 

equation (83) to the raw measurements 𝜏𝑘 . The quantity 𝜏𝑘  represents the time scale of the kernel 

cooling process, and is expressed as 𝜏𝑘 = (𝑡𝑖)
𝛼, where the variables 𝑡𝑖 and 𝛼 represent the time of 

peak density deficit and the correction factor respectively, and are both obtained from a power law 

fit to the variation of the kernel density deficit with time.  𝜏𝑘 = (𝑡𝑖)
𝛼. This is shown in Figure 7.5 

(a), and we observe a near-collapse of the normalized density deficit time series from all tests, 

thereby showing that a universal power-law process may describe the cooling of the kernel, with 
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a correction factor 𝛼. Next, we also compare the time scale from the power-law fit 𝜏𝑘  to that from 

the vortex ring properties (𝜏𝑟 = 𝑅2/Γ) in Figure 7.5 (b), and observe a close agreement between 

the two estimates (~ 0.1 – 0.2 ms), thereby showing that there is indeed an effect of the vortex ring 

on the cooling process. The variability in the results may be because the two measurements 

correspond to different realizations of the induced flow. 

 

 

(a) 

 

(b) 

Figure 7.5. (a) Time history of the normalized density deficit shows a near-collapse of all 

cooling curves. (b) Comparison of time scales obtained from the kernel and ring properties.  

 

Next, we also compare the length scale of the hot gas kernel to the vortex ring radius. 

Figure 7.6 (a) shows the time history of the kernel area (previously shown in Figure 7.3 (a)) 

normalized by its mean value across time, and we again see a collapse of the area curves across all 

tests. In Figure 7.6 (b), we compare a representative length of the kernel based on the time average 

area 𝜆𝑘 =
1

2
√𝐴𝑘, (with the factor of two to account for the assumed axisymmetry of the model) to 

the vortex ring radius, and again observe that both estimates take similar values over the energy 

range from about 0.5 – 1 mm. The area used to calculate 𝜆𝑘  corresponds to the projected area of 

the kernel that is directly measured from BOS based on kernel identification, and includes points 

that contain a density deficit within 95% of the peak value. The square root of the area is to create 

a representative length scale, and the factor of 2 is to account for the axisymmetry. For the case of 

a cylinder this would be √𝑅ℎ/2 which is approximately R when the ring is near one diameter 

away from the wall. 
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(a) 

 

(b) 

Figure 7.6. (a) Time history of the normalized kernel area. (b) Comparison of length scales 

from the kernel properties to the ring radius. 

7.4 Conclusions 

The results of this work show that a vortex ring-based cooling model is able to predict the length 

and time scales of the flow induced by a nanosecond surface discharge. This is consistent with 

recent findings that vortex rings drive entrainment and cooling in flow induced by pin-to-pin spark 

discharges [47]. While the present analysis is about the cooling of the hot gas kernel, the fluid 

density is just one example of a passive scalar, and the results can be generalized to the mixing of 

any quantity in the induced flow. For example, in a situation where the actuator is placed in the 

presence of an oncoming flow, the vortex ring may also introduce mixing of momentum. In the 

case of a chemically reacting flow, the actuator may result in the mixing of chemical species in 

addition to temperature. 

The model predictions of the inherent length and time scales of the induced flow also 

provide useful guidelines on the optimal spacing and pulse frequency for a multi-filament, multi-

pulse ns-SDBD actuator, which are more commonly used in flow control applications. For 

example, to ensure optimal mixing, the spacing of the plasma filaments is to be one vortex ring 

diameter, and the optimal frequency/time interval between pulses should be based on the vortex 

ring circulation and diameter. As the decay of the kernel follows a power-law variation, one can 

specify the time interval required for a specified decay/mixing percentage (say 50%), and use this 

percentage to determine the optimal inter-pulse interval. This is because, in a power-law process, 
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the rate of mixing reduces with time, so it may be more beneficial to pulse the actuator repeatedly 

after 50% mixing, with longer wait times yielding diminishing returns.  

The present work only concerns the flow induced by a single filament, and the results show 

that the filament can induce velocity through a shock wave at early times (~ 10 𝜇s) and a vortex 

ring at later times (~ 1 ms).  If multiple filaments are used, then each filament may also affect the 

flow induced by the adjacent ones and this can be manifested in both the formation and propagation 

of the vortex ring, along with entrainment, expansion and cooling of the kernel. The nature and 

extent of this interaction would be controlled by the filament spacing, energy deposited, orientation 

of the filaments and phase difference between adjacent pulses. This is an interesting problem for 

future work. Further, the simplified theoretical analysis can also be extended to higher dimensions 

via numerical analysis. Equation (5) is obtained by an energy balance analysis on the low Mach 

number conservation equations derived in [46] this equation can be solved using more complex 

vorticity distributions and finite element analysis.  

A primary limitation of the present work is that the BOS and PIV experiments are from 

different experiments, thereby limiting a direct instantaneous comparison of the vorticity and 

density fields. Therefore, simultaneous measurements are required to ascertain both the relative 

positions of the vortex ring and the hot gas kernel, as well as for a direct test of Equation 6. Further, 

one of the unanswered questions in this work is the origin of the vorticity and formation of the 

vortex ring, and this was also limited by the noise in the vorticity measurements at early times,  

limiting the centroid estimation and tracking of the vortex cores. It is possible that the vorticity 

may be controlled by the properties of the shock wave (such as curvature and speed) that is 

observed at early times [49]. Suppose a model for predicting this vorticity is available, and the 

formation mechanism of the vortex ring is understood. In that case, one can use the analysis in this 

work to estimate the desired vortex ring properties for a given operating condition (such as filament 

spacing and pulse frequency) and estimate the required energy and electrode gap. On the other 

hand, if there is a specified power budget, one can estimate the vortex ring properties and then 

design the filament configuration. Such a model for the vortex ring formation would also help 

connect the early and late stages of the induced flow. 

Finally, it was observed during the experimental campaign that the flow was highly three-

dimensional. Volumetric measurements of the velocity and density fields using a tomographic PIV 

and BOS measurement system are required to investigate the flow's three-dimensionality further. 
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This might also help characterize the orientation of the vorticity and heat flux transport and their 

effect on flow control, as reported by Kinefuchi et al. for SBLI [18], where they observed that the 

orientation of the actuator (filaments) with respect to the free-stream affected the size of the 

separation bubble, which they hypothesized a due to competing effects of heat and vorticity 

generation by the plasma.  
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 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

This thesis presented a series of advancements to the BOS technique to improve the overall 

accuracy, precision, spatial resolution, and dynamic range through the development of advanced 

algorithms for all aspects of the measurement chain. The advancements to the technique were then 

applied to characterize flow induced by a filamentary surface plasma discharge, and a reduced 

order model was developed to describe the flow length and time scales. 

All the developments to the BOS method were guided by a synthetic image generation 

methodology developed to generating realistic PIV/BOS images using ray-tracing. This allowed 

the controlled variation of BOS experimental parameters such as the dot pattern, density gradients, 

and optical layouts over a large parameter space. This method was used to perform detailed error 

and uncertainty analysis of the BOS measurement chain, to propose and evaluate the advancements.   

In particular, the first uncertainty quantification methodology for BOS was developed to 

provide local, instantaneous, uncertainty bounds on density measurements, by estimating the 

displacement uncertainties using PIV methods, and propagation through the measurement chain. 

The results showed good agreement between the various PIV displacement uncertainty methods 

for the synthetic analysis, but a large variation for the experimental data.  

This motivated the development of a meta-uncertainty based combination framework 

where uncertainty estimates from different models were combined based on their sensitivities to 

image perturbations – referred to as the meta-uncertainty. An automated method was developed to 

estimate the meta-uncertainty using random particle addition, and this method showed an 

improvement in displacement uncertainties when applied to planar and stereo PIV measurements.  

In addition to quantifying the uncertainty, the use of the uncertainty as a signal-to-noise 

ratio metric was explored in the development of an uncertainty-based weighted least squares 

density integration method to address the noise sensitivity of the traditional Poisson solver. The 

density gradient estimates were weighted by their respective uncertainties to ensure that more 

reliable measurements are weighted higher in the integration process. The new method showed a 

large reduction in the density uncertainty, thereby increasing the dynamic range of BOS. 
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A new approach to BOS processing was developed based on dot tracking to provide order 

of magnitude improvement in the spatial resolution of the measurements, as well as the accuracy 

in region with large displacement gradients. This method was based on PTV but adapted to the 

unique features of BOS, where all properties of the dots are known – such as their position, size, 

and density – and the displacements are small, often less than the dot diameter. A method was 

developed to use prior information about the dot pattern to guide the identification, sizing, and 

tracking of the dots, as well as a correlation correction procedure to estimate the subpixel 

estimations, and resulted in an overall improvement in the robustness of the procedure to image 

noise.  

Since the only source of error in the dot tracking procedure stems from image noise, a 

theoretical model was developed to quantify the effect of image noise on the position uncertainty, 

by deriving the Cramer-Rao lower bound (CRLB) for BOS measurements. This was performed by 

extending the CRLB framework for PIV/PTV measurements to account for density gradient effects 

in BOS imaging. The results showed that the position uncertainty is amplified by density gradients 

especially in situations that lead to dot blurring. Based on this model, a displacement uncertainty 

quantification method was developed for BOS-tracking measurements.  

Finally, these methods were applied to characterize flow induced by a nanosecond surface 

plasma discharge. High-speed PIV/BOS measurements revealed the presence of a hot gas kernel 

and a vortex ring close to the actuator surface. The vortex ring was seen to propagate upwards due 

to self-induction while entraining cold ambient gas towards the actuator surface, and accompanied 

by the expansion and cooling of the hot gas kernel. A reduced-order model was developed to 

describe the kernel expansion and cooling, using an energy balance and an inviscid vortex model. 

The results showed that the normalized kernel expansion and cooling follow a universal power 

law behavior across all the tests, and that the length and time scales of the kernel dynamics are 

related to the vortex ring properties. While the analysis was in regards to the cooling procedure, it 

is just one example of a scalar mixing process and it can be extended to the mixing of other 

properties such as momentum, temperature or chemical species. Further, the length and time scales 

can also be used to guide the filament spacing and pulse frequency of multi-filament multi-pulse 

ns-SDBDS. 
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8.2 Recommendations 

There are several avenues for extending the work reported in this thesis, and work in ongoing to 

explore these avenues. A brief summary is provided below. 

8.2.1 Numerical uncertainty for BOS 

Application of the uncertainty quantification method to synthetic images showed that the density 

uncertainty estimates compared well with the random error in the density measurement, but could 

not account for the bias error which was almost an order of magnitude higher. This is because the 

uncertainty quantification method only accounted for the errors/uncertainties in the displacement 

estimation and propagated them through the density integration procedure, whereas the density 

integration can introduce additional errors primarily through the truncation error due to the finite 

difference discretization. 

This truncation error is also commonly encountered in CFD simulations, and methods have 

been proposed to estimate this error a-posteriori. The estimation is based on the Richardson 

extrapolation procedure whereby the discretization error of a numerical estimation can be 

estimated based on the residual between two sets of results with different grid levels as:  

 𝜖ℎ̅ = −
𝑓ℎ−𝑓𝑟ℎ

𝑟𝑝−1
, (1) 

Where 𝜖ℎ̅ is the estimated numerical error of the result obtained on a grid with spacing ℎ, 𝑓ℎ and 

𝑓𝑟ℎ are the results obtained on the grids with spacing ℎ and 𝑟ℎ, respectively, with 𝑟 being the 

downsampling factor (usually 𝑟 = 2), and 𝑝 is the order of accuracy of the discretization scheme. 

In this study, 𝑝 is 2 since the second-order central differencing scheme was used for carrying the 

numerical integration. The estimated error is then employed as the numerical uncertainty (𝑈 =

|𝜖ℎ|).  

Therefore, if the random density uncertainty obtained using the previous method is 

interpreted to be the standard deviation of the density random error distribution, and the numerical 

uncertainty interpreted as the standard deviation of the density bias error distribution, the standard 

total uncertainty can be expressed as 

 𝑈𝑡𝑜𝑡𝑎𝑙
2 = 𝑈𝑏𝑖𝑎𝑠

2 + 𝑈𝑟𝑎𝑛𝑑𝑜𝑚
2 , (2) 

thereby providing a framework for combining the random uncertainty estimates to estimate the 

overall uncertainty in the density integration.  
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A synthetic sinusoidal scalar field is used to test the proposed uncertainty estimation method, as 

described in equation (3), where 𝑓 represents the scalar field, and 𝜆 represents the wavelength.  

 𝑓(𝑋,  𝑌) = 𝑠𝑖𝑛 (
2𝜋

𝜆
𝑋) 𝑠𝑖𝑛
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𝑋 𝑠𝑖𝑛
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𝜆
𝑌, 

 
𝑑𝑓

𝑑𝑌
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𝑠𝑖𝑛

2𝜋

𝜆
𝑋 𝑐𝑜𝑠
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𝜆
𝑌. (3) 

The combination framework for the total uncertainty was tested with the sinusoidal fields 

corrupted with noise, where the noise was drawn from a zero-mean Gaussian distribution of a 

prescribed noise level. One thousand (1000) realizations of the corrupted field were generated, and 

for each realization, the integration was performed with the noisy gradient fields to estimate the 

error. The results are shown in Figure 1 for two noise levels: 1% and 10% of the peak value of the 

scalar field. It is seen in both levels that the spatial variation of the total uncertainty matches that 

of the total error, and the RMS of the total uncertainty coincides with the RMS of the error 

distribution. This validates the total uncertainty estimation framework, and efforts are ongoing to 

test the method with synthetic BOS images and experimental data. 

  
(a) (b) 

  
(c) (d) 

Figure 8.1. Error and uncertainty statistics for two noise levels.  (a) and (b) represent the 

spatial variation and probability density functions respectively for a 1% noise level, with (c) 

and (d) representing the corresponding results for the 10% noise level.  
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8.2.2 High-Speed Tomographic BOS 

Conventional BOS measurements of the plasma-induced-flow showed that the flow field is three-

dimensional, and therefore volumetric measurements of the density are required, both for 

fundamental flow characterization and for actuator design/deployment in a background three-

dimensional flow. Tomographic BOS is the common approach used to perform volumetric BOS 

measurements from multiple views. While several procedures have been proposed to perform 

Tomo BOS, the commonly used method involves the following steps: 1) 2d displacement 

estimation from each view,  2) 3d reconstruction of the gradient field and 3) 3d integration to 

obtain the scalar field. Since the reconstruction and integration steps can be expressed as linear 

operators, the two steps can be combined, and the system of linear equations can be solved as a 

least squares optimization problem with regularization based constraints, and the cost function is 

given by, 

 𝐽 = ∑ ‖𝑑̅𝑚𝑒𝑎𝑠 − 𝑇̅𝐷̅𝜌‖
2

2𝐷 𝐵𝑂𝑆 𝑉𝑒𝑐𝑡𝑜𝑟𝑠

+ α2 ∑ ‖𝑞‖2

3𝐷 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

 (84) 

where 𝐽 is the cost function 𝑑̅𝑚𝑒𝑎𝑠 represents the measured 2D displacements from each view, 𝑇̅ 

is the camera projection matrix containing the angle and distance information, 𝐷̅ is the gradient 

matrix representing the x, y, and z derivatives, and 𝜌 is the three-dimensional density. The least 

squares minimization problem is under-constrained because the number of measurements (= 𝑀𝑁2 

for 𝑁 × 𝑁 grid vectors from M views) is lower than the number of unknowns (= 𝑁3). Therefore, 

a regularization term is added to the cost function to provide additional constraints, and is 

represented by 𝑞 in the equation. The form of the regularization term depends on the problem, with 

common choices being the gradient, the second derivative, or the Laplacian, with all choices 

resulting in a smoothing effect on the resulting field. 

The primary challenge with Tomo BOS is the dense nature of the density field, and as a result 

the experiments reported in literature often utilize 10 views or more for a successful reconstruction. 

This is a major impediment for high-speed experiments, because high frame-rate cameras are very 

expensive (~$100,000), and therefore advancements are required on both the hardware and the 

reconstruction sides to enable high-speed Tomo BOS imaging. The following sections describe 

efforts and recommendations in addressing these challenges using: a) quadscope imaging to 

provide multiple views on the same camera, and b) dynamic vision sensors to reduce cost 

associated with high-speed imaging.   
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a) Quadscope Imaging  

A quadscope is an optical device consisting of a set of flat and triangular mirrors that allows the 

imaging of an object from 4 directions onto a single camera sensor. This is accomplished by 

dividing the camera sensor area into four (imaginary) quadrants, and aligning the system of mirrors 

to project each views onto a corresponding quadrant. Therefore it allows volumetric imaging from 

a single camera. Some limitations include reduced spatial resolution and the need to use smaller 

viewing angles, due to the depth of field required to ensure all the different views are in focus on 

the same camera sensor. Further, the setup and alignment of the quadscope is fairly complex and 

requires a high-level precision on the 3d position and angle adjustments on the mirrors.  

The quadscope apparatus was applied to volumetric BOS imaging of a Helium jet to assess 

its performance, and to establish a workflow for data acquisition and processing. The experimental 

apparatus is shown in Figure 8.2(a), and images of a Helium jet exiting from a 20 psi reservoir 

pressure into ambient air were acquired, with a sample image shown in Figure 8.2 (b).  Volume 

calibration was performed using a grid of 0.25 mm dots of with 0.5 mm spacing traversed through 

the volume at 0.635 mm increments, at 7 planes. The BOS images were processed using cross-

correlation, with a subset size of 32 pixels, and a 50% overlap to provide a final grid resolution of 

16 pixels. The displacements are shown in Figure 8.2 (c) with highest displacements in the jet 

boundary, which is expected as it features the largest density gradients. Efforts are underway to 

perform tomographic reconstruction on the data, and in using multiple quadscopes to perform 

measurements on the plasma induced flow. 

 

 

   
(a) (b) (c) 

Figure 8.2. (a) Quadscope imaging setup, (b) sample image of the BOS target with the yellow 

lines indicating the quadrants, and (c) 2D displacements from preliminary processing. 
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b) Dynamic Vision Sensors 

Dynamic vision sensors are a type of camera sensors that respond to changes in illumination, in 

contrast to traditional frame-based cameras that record the illumination directly.  Each pixel on the 

camera responds asynchronously when the current intensity exceeds a reference intensity level, 

termed an ‘event’. Each event is represented by the pixel location (x, y), the time (t), and the 

polarity of the intensity change (𝑝 = ±1). Therefore the ‘recording’ is a 3D space-time point cloud 

which require novel algorithms for processing. These cameras enable a sparse representation of 

the scene, leading to high temporal resolution (1 𝜇s), reduced power consumption, high dynamic 

range (120 dB) at a low cost (~ $5000). Due to these reasons, these cameras are attractive for high-

speed tomographic imaging, since it is possible to deploy 10s of these cameras in place for a single  

high-speed camera for the same overall cost. However, the temporal resolution has not been well 

characterized, and the 1 𝜇s metric only refers to the resolution of the ‘time-stamping’ circuit which 

is at the end of the sensing chain. Therefore errors and uncertainties introduced in upstream steps 

such as the recording of the illumination and the event detection, along with bandwidth constraints, 

can drastically reduce the overall temporal resolution.  

To characterize the temporal resolution, a pulsed LED light source (HardSoft ILM-501CG) 

was triggered at a frequency of 10 kHz, and the events were recorded using a Prophesee EVK-

Gen4 camera. Since the temporal resolution inversely depends on the number of pixels recording 

events due to bandwidth constraints, only a small (10x10 pixel) neighborhood was illuminated 

with the led to provide the 'best' possible performance.  A sample frame is shown in Figure 8.3(a) 

to illustrate the ROI, and a time series of events are shown in Figure 8.3 (b) for an LED frequency 

of 10 kHz. It is seen that the response is band-limited at 1 kHz, and the camera cannot respond to 

any faster intensity changes. A variety of low-level settings were explored on the camera but this 

was the best performance achievable. Therefore, the camera is presently unsuitable for ultra-high-

speed imaging required for flow fields such as the plasma discharge, but given the rapid 

development in hardware, this may be possible in the near future. Efforts are ongoing to explore 

the use of these cameras for low-speed imaging applications.
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(a) (b) 

Figure 8.3. Response of the event camera for an LED pulse train of width 20 𝜇s and a 

frequency of 10 kHz. (a) Accumulated frame showing the ROI, (b) Time Series. 
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