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7



ABSTRACT

In this dissertation, we consider almost minimizers for the thin obstacle problems in

different settings: Laplacian, fractional Laplacian and equation with variable coefficients.

In Chapter  1 , we consider Anzellotti-type almost minimizers for the thin obstacle (or

Signorini) problem with zero thin obstacle and establish their C1,β regularity on the either

side of the thin manifold, the optimal growth away from the free boundary, the C1,γ regularity

of the regular part of the free boundary, as well as a structural theorem for the singular set.

The analysis of the free boundary is based on a successful adaptation of energy methods such

as a one-parameter family of Weiss-type monotonicity formulas, Almgren-type frequency

formula, and the epiperimetric and logarithmic epiperimetric inequalities for the solutions

of the thin obstacle problem. This chapter is based on a joint work with Arshak Petrosyan

[ 1 ].

In Chapter  2 , we study almost minimizers for the thin obstacle problem with variable

Hölder continuous coefficients and zero thin obstacle and establish their C1,β regularity on

the either side of the thin space. Under an additional assumption of quasisymmetry, we

establish the optimal growth of almost minimizers as well as the regularity of the regular

set and a structural theorem on the singular set. The proofs are based on the generalization

of Weiss- and Almgren-type monotonicity formulas for almost minimizers established earlier

in the case of constant coefficients (Chapter  1 ). This chapter is based on recent joint work

with Arshak Petrosyan and Mariana Smit Vega Garcia [ 2 ].

In Chapter  3 , we introduce a notion of almost minimizers for certain variational problems

governed by the fractional Laplacian, with the help of the Caffarelli-Silvestre extension.

In particular, we study almost fractional harmonic functions and almost minimizers for

the fractional obstacle problem with zero obstacle. We show that for a certain range of

parameters, almost minimizers are almost Lipschitz or C1,β-regular. This is based on a work

in collaboration with Arshak Petrosyan [ 3 ].
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1. ALMOST MINIMIZERS FOR THE THIN OBSTACLE

PROBLEM

1.1 Introduction and main results

1.1.1 The thin obstacle (or Signorini) problem

Let D ⊂ Rn be an open set and M ⊂ Rn a smooth (n − 1)-dimensional manifold (the

thin space) and consider the problem of minimizing the Dirichlet energy

JD(u) :=
∫
D

|∇u(x)|2dx (1.1.1)

among all functions u ∈ W 1,2(D) satisfying

u = g on ∂D, u ≥ ψ on M ∩D,

where ψ : M → R is the so-called thin obstacle and g : ∂D → R is the prescribed boundary

data with g ≥ ψ on M ∩ ∂D. This problem is known as the thin obstacle problem. In other

words, it is a constrained minimization problem for the energy functional JD on a closed

convex set

Kψ,g(D,M) := {u ∈ W 1,2(D) : u = g on ∂D, u ≥ ψ on M ∩D}.

This problem can be viewed as a scalar version of the Signorini problem with unilateral

constraint from elastostatics [ 4 ] and is often referred to as the Signorini problem. It goes

back to the origins of variational inequalities and is considered as one of the prototypical

examples of such problems, see [ 5 ]. An equivalent formulation is given in the form

∆u = 0 on D \ M,

u = g on ∂D,

u ≥ ψ, ∂ν+u+ ∂ν−u ≥ 0, (∂ν+u+ ∂ν−u)(u− ψ) = 0 on M ∩D,
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where the conditions on M ∩D are known as the Signorini complementarity (or ambiguous)

conditions. Here, ∂ν± are the exterior normal derivatives from the either side of M. In

particular, at points on M ∩D we must have one of the two boundary conditions satisfied:

either u = ψ or ∂ν+u+ ∂ν−u = 0. The set

Γ(u) := ∂M{x ∈ M ∩D : u(x) = ψ(x)}, (1.1.2)

which separates the regions where different boundary conditions are satisfied, is known as

the free boundary and plays a central role in the analysis of the problem.

Because of the presence of the thin obstacle, it is not hard to realize that the solutions u

of the Signorini problem are at most Lipschitz across M, even if both M and ψ are smooth,

as we may have ∂ν+u+∂ν−u > 0 at some points on M 

1
 . However, it has been known since the

works [ 6 ]–[ 8 ] that the solutions of the thin obstacle problem are C1,β on M and consequently

on the either side of M, up to M. In recent years, there has been a renewed interest in

this problem, following the breakthrough result of Athanasopoulos and Caffarelli [  9 ] on the

optimal C1,1/2 regularity of the minimizers (on the either side of M) as well as its relation

to the obstacle-type problems for the fractional Laplacian through the Caffarelli-Silvestre

extension [  10 ]. There has also been a significant effort in understanding the structure and

the regularity of the free boundary. The results have been obtained in many settings, such as

for the equations with variable coefficients, time-dependent versions, problems for fractional

Laplacian and other nonlocal equations, both regarding the regularity of minimizers, as well

as the properties of the free boundary; see e.g., [ 11 ]–[ 30 ] and many others.

1.1.2 Almost minimizers

In [  31 ], Anzellotti introduced the notion of almost minimizers for energy functionals.

Given r0 > 0, we say that ω : (0, r0) → [0,∞) is a modulus of continuity or a gauge function,

if ω(r) is monotone nondecreasing in r and ω(0+) = 0.

1
 ↑ This can be seen on the explicit example u(x) = Re(x1 + i|xn|)3/2, which is a solution of the obstacle

problem with ψ = 0 on M = {xn = 0}.
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Definition 1.1.1 (Almost minimizers). Given r0 > 0 and a gauge function ω(r) on (0, r0),

we say that u ∈ W 1,2
loc (D) is an almost minimizer (or ω-minimizer) for the functional JD, if,

for any ball Br(x0) b D with 0 < r < r0, we have

JBr(x0)(u) ≤ (1 + ω(r))JBr(x0)(v) for any v ∈ u+W 1,2
0 (Br(x0)). (1.1.3)

The idea is that the Dirichlet energy of u on the ball Br(x0) is not necessarily minimal

among all competitors v ∈ u+W 1,2
0 (Br(x0)) but almost minimal in the sense that it cannot

decrease more than by a factor of 1 + ω(r). In the specific case of the energy functional

JD in (  1.1.1 ), i.e., the Dirichlet energy, we refer to the almost minimizers of JD as almost

harmonic functions in D.

Results on almost minimizers for more general energy functionals can be found in [ 32 ]–

[ 35 ]. Similar notions were considered earlier in the context of the geometric measure theory

[ 36 ], [ 37 ], see also [ 38 ]. Almost minimizers are also related to quasiminimizers, introduced in

[ 39 ], [  40 ], see also [  41 ]. For energy functionals exhibiting free boundaries, almost minimizers

have been considered only recently in [ 42 ]–[ 46 ].

Almost minimizers can be viewed as perturbations of minimizers of various nature, but

their study is motivated also by the observation that the minimizers with certain constrains,

such as the ones with fixed volume or solutions of the obstacle problem, are realized as

almost minimizers of unconstrained problems, see e.g. [  31 ]. Yet another motivation is that

the study of almost minimizers reveals a unique perspective on the problem and leads to

the development of methods relying on less technical assumptions, thus allowing further

generalization.

In this chapter we extend the notion of almost minimizers to the thin obstacle problem.

Essentially, in (  1.1.3 ), we restrict the function u and its competitors v to stay above the thin

obstacle ψ on M.

Definition 1.1.2 (Almost minimizer for the thin obstacle (or Signorini) problem). Given

r0 > 0 and a gauge function ω(r) on (0, r0), we say that u ∈ W 1,2
loc (D) is an almost minimizer

11



for the thin obstacle (or Signorini) problem, if u ≥ ψ on M∩D and, for any ball Br(x0) b D

with 0 < r < r0, we have

JBr(x0)(u) ≤ (1 + ω(r))JBr(x0)(v), for any v ∈ Kψ,u(Br(x0),M). (1.1.4)

Note that in the case when M ∩Br(x0) = ∅, the condition ( 1.1.4 ) is the same as (  1.1.3 )

and thus almost minimizers of the Signorini problem are almost harmonic in D\M. As in the

case of the solutions of the Signorini problem, we are interested in the regularity properties of

almost minimizers as well as the structure and the regularity of the free boundary Γ(u) ⊂ M

as defined in ( 1.1.2 ).

Some examples of almost minimizers are given in Appendix  1.A . We would also like to

mention here that a related notion of almost minimizers for the fractional obstacle problem

has been considered by the authors in [ 3 ].

1.1.3 Main results

Because of the technical nature of the problem, in this chapter we restrict ourselves only

to the case when ω(r) = rα for some α > 0, M is flat, specifically M = Rn−1 × {0}, and the

thin obstacle ψ = 0. As we are mainly interested in local properties of almost minimizers

and their free boundaries, we assume that D is the unit ball B1, u ∈ W 1,2(B1), and the

constant r0 = 1 in Definition  1.1.2 . We also assume that u is even in xn-variable:

u(x′, xn) = u(x′,−xn), for any x = (x′, xn) ∈ B1.

Our first main result is then as follows.

Theorem A (C1,β-regularity of almost minimizers). Let u be an almost minimizer for the

Signorini problem in B1, under the assumptions above. Then, u ∈ C1,β
loc (B±

1 ∪ B′
1) for

β = β(α, n) and

‖u‖C1,β(K) ≤ C‖u‖W 1,2(B1),

for any K b B±
1 ∪B′

1 and C = C(n, α,K).
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The proof is obtained by using Morrey and Campanato space estimates, following the

original idea of Anzellotti [  31 ]. However, in our case the proof is much more elaborate and, in

a sense, based on the idea that the solutions of the Signorini problem are 2-valued harmonic

functions, as we have to work with both even and odd extensions of u and ∇u from B+
1 to

B1.

While the optimal regularity for the minimizer (or solutions) of the Signorini problem

is C1,1/2, we do not expect such regularity for almost minimizers. However, we are able to

establish the optimal growth for almost minimizers, which then allows to study the local

properties of the free boundary

Γ(u) = ∂{u(·, 0) = 0} ∩B′
1.

Theorem B (Optimal growth near free boundary). Let u be as in Theorem  A . Then,

∫
∂Br(x0)

u2 ≤ C(n, α)‖u‖2
W 1,2(B1)r

n+2,

for x0 ∈ B′
1/2 ∩ Γ(u), 0 < r < r0(n, α).

One of the ingredients in the proof is an Almgren-type monotonicity formula, which we

describe below. For an almost minimizer u, Almgren’s frequency [ 47 ] is defined by

N(r, u, x0) :=
r
∫
Br(x0) |∇u|2∫
∂Br(x0) u

2 , x0 ∈ Γ(u).

It is one of the most important monotone quantities in the analysis of the free boundary for

the Signorini problem, see e.g. Chapter 9 in [ 48 ]. We show that for almost minimizers a

small modification of N is monotone.

Theorem C (Monotonicity of the truncated frequency). Let u be as in Theorem  A . Then

for any κ0 ≥ 2, there is b = b(n, α, κ0) such that

r 7→ N̂κ0(r, u, x0) := min
{ 1

1 − brα
N(r, u, x0), κ0

}

13



is monotone for x0 ∈ B′
1/2 ∩ Γ(u), and 0 < r < r0(n, α, κ0). Moreover, we have that either

N̂κ0(0+, u, x0) = 3/2 or N̂κ0(0+, u, x0) ≥ 2.

We give an indirect proof of this fact, based on an one-parametric family of Weiss-type

energy functionals {Wκ}0<κ<κ0 , see Theorem  1.5.1 , that go back to the work [  14 ] for the

solutions of the Signorini problem and Weiss [  49 ] for the classical obstacle problem. The

fact that N̂ ≥ 3/2 at free boundary points is crucial for the proof of the optimal growth

(Theorem  B ), however, the proof of Theorem  B requires also an application of so-called

epiperimetric inequality for Weiss’s energy functional W3/2 (see [  20 ]), to remove a remaining

logarithmic term.

Our next result concerns the subset of the free boundary

R(u) := {x0 ∈ Γ(u) : N̂(0+, u, x0) = 3/2},

where Almgren’s frequency is minimal, known as the regular set of u.

Theorem D (Regularity of the regular set). Let u be as in Theorem  A . Then R(u) is a

relatively open subset of the free boundary Γ(u) and is a (n − 2)-dimensional manifold of

class C1,γ.

Our proof of this theorem is based on the use of the epiperimetric inequality and is similar

to the one for the solutions of the Signorini problem in [ 20 ].

Finally, we state our main result for the so-called singular set. A free boundary point

x0 ∈ Γ(u) is called singular if the coincidence set Λ(u) := {u(·, 0) = 0} has Hn−1-density

zero at x0, i.e.,

lim
r→0+

Hn−1(Λ(u) ∩B′
r(x0))

Hn−1(B′
r)

= 0.

If N̂κ0(0+, u, x0) = κ < κ0, then x0 is singular if and only if κ = 2m, m ∈ N (see Proposi-

tion  1.10.1 ). For such κ, we then define

Σκ(u) := {x0 ∈ Γ(u) : N̂κ0(0+, u, x0) = κ}.
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Theorem E (Structure of the singular set). Let u be as in Theorem  A . Then, for any

κ = 2m < κ0, m ∈ N, Σκ(u) is contained in a countable union of (n − 2)-dimensional

manifolds of class C1,log.

A more refined version of this theorem is given in Theorem  1.10.10 . The proof is based on

the logarithmic epiperimetric inequality of Colombo-Spolaor-Velichkov [ 27 ] for Weiss’s energy

functional Wκ, with κ = 2m, m ∈ N. We also point out that this inequality is instrumental

in the proof of the optimal growth at singular points, which is rather immediate for the

solutions of the Signorini problem, but far more complicated for the almost minimizers (see

Lemmas  1.10.3 – 1.10.6 ).

Proofs of Theorems  A – E 

While we don’t give formal proofs of Theorems  A – E , in the main body of the chapter,

they follow from the combination of results there. More specifically,

◦ Theorem  A follows by combining Theorems  1.3.1 and  1.4.1 .

◦ The statement of Theorem  B is contained in that of Lemma  1.7.4 .

◦ Theorem  C follows by combining Theorem  1.5.4 and Corollary  1.9.2 .

◦ The statement of Theorem  D is contained in that of Theorem  1.9.5 .

◦ The statement of Theorem  E is contained in that of Theorem  1.10.10 .

1.1.4 Notation

Throughout the thesis we use the following notation. Rn stands for the n-dimensional

Euclidean space. We denote the points of Rn by x = (x′, xn), where x′ = (x1, . . . , xn−1) ∈

Rn−1. We routinely identify x′ ∈ Rn−1 with (x′, 0) ∈ Rn−1 × {0}. Rn
± stand for open

halfspaces {x ∈ Rn : ±xn > 0}.

For x ∈ Rn, r > 0, we use the following notations for balls of radius r, centered at x.

Br(x) = {y ∈ Rn : |x− y| < r}, ball in Rn,

B±
r (x′) = Br(x′, 0) ∩ {±xn > 0}, half-ball in Rn,

B′
r(x′) = Br(x′, 0) ∩ {xn = 0}, ball in Rn−1, or thin ball.

15



We typically drop the center from the notation if it is the origin. Thus, Br = Br(0),

B′
r = B′

r(0), etc.

Next, for a direction e ∈ Rn, we denote

∂eu = ∇u · e,

the directional derivative of u in the direction e. For the standard coordinate directions ei ,

i = 1, . . . , n, we simply write

uxi = ∂xiu = ∂eiu.

Moreover, by ∂±
xn
u(x′, 0) we mean the limit of ∂xnu from within B±

r , specifically,

∂+
xn
u(x′, 0) = lim

y→(x′,0)
y∈B+

r

∂xnu(y) = −∂ν+u(x′, 0),

∂−
xn
u(x′, 0) = lim

y→(x′,0)
y∈B−

r

∂xnu(y) = ∂ν−u(x′, 0),

where ν± = ∓en are unit outward normal vectors for B±
r on B′

r.

In integrals, we often drop the variable and the measure of integration if it is with respect

to the Lebesgue measure or the surface measure. Thus,

∫
Br

u =
∫
Br

u(x)dx,
∫
∂Br

u =
∫
∂Br

u(x)dSx,

where Sx stands for the surface measure.

If E is a set of positive and finite Lebesgue measure, we indicate by 〈u〉E the integral

mean value of a function u over E. That is,

〈u〉E := −
∫
E
u = 1

|E|

∫
E
u.

In particular, we indicate by 〈u〉x,r the integral mean value of a function u over Br(x). That

is,

〈u〉x,r := −
∫
Br(x)

u = 1
ωnrn

∫
Br(x)

u,
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where ωn = |B1| is the volume of unit ball in Rn. Similarly to the other notations, we drop

the origin if it is 0 and write 〈u〉r for 〈u〉0,r.

1.2 Almost harmonic functions

In this section we recall some results of Anzellotti [ 31 ] on almost harmonic functions, i.e.,

almost minimizers of the Dirichlet integral JD(v) =
∫
D |∇v|2. We also state here some of the

relevant auxiliary results that we will need also in the treatment of almost minimizers for

the Signorini problem.

Theorem 1.2.1. Let u be an almost harmonic function in an open set D with a gauge

function ω. Then

(i) u is locally almost Lipschitz, i.e., u ∈ C0,σ
loc (D) for all σ ∈ (0, 1).

(ii) If ω(r) ≤ Crα for some α ∈ (0, 2), then u ∈ C
1,α/2
loc (D).

While we refer to [ 31 ] for the full proof of this theorem, we would like to outline the key

steps in Anzellotti’s argument. The idea to prove C0,σ and C1,α/2 regularity of u is through

the Morrey and Campanato space estimates, namely, by establishing that

∫
Bρ(x0)

|∇u|2 ≤ Cρn−2+2σ (1.2.1)∫
Bρ(x0)

|∇u− 〈∇u〉x0,ρ|2 ≤ Cρn+α (1.2.2)

for x0 ∈ K b D, and 0 < ρ < ρ0, with C and ρ0 depending on n, r0, d = dist(K, ∂D), the

gauge function ω, and ‖u‖W 1,2(D).

To obtain the estimates above, one starts by choosing a special competitor v in (  1.1.3 ).

Namely, we take v = h which solves the Dirichlet problem

∆h = 0 in Br(x0), h = u on ∂Br(x0).

Equivalently, h is the minimizer of the Dirichlet energy
∫
Br(x0) |∇v|2 among all functions in

u + W 1,2
0 (Br(x0)). We call this h the harmonic replacement of u in Br(x0). We then have

the following concentric ball estimates for h.
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Proposition 1.2.1. Let h be harmonic in Br(x0) and 0 < ρ < r. Then

∫
Bρ(x0)

|∇h|2 ≤
(
ρ

r

)n ∫
Br(x0)

|∇h|2 (1.2.3)∫
Bρ(x0)

|∇h− 〈∇h〉x0,ρ|2 ≤
(
ρ

r

)n+2 ∫
Br(x0)

|∇h− 〈∇h〉x0,r|2. (1.2.4)

Proof. The estimates above follow from the monotonicity in ρ of the quantities

1
ρn

∫
Bρ(x0)

|∇h|2, 1
ρn+2

∫
Bρ(x0)

|∇h− 〈∇h〉x0,ρ|2.

Noticing that 〈∇h〉x0,ρ = ∇h(x0), an easy proof is obtained by decomposing h into the sum

of the series of homogeneous harmonic polynomials.

We next use the almost minimizing property of u to deduce perturbed versions of the

estimates above.

Proposition 1.2.2. Let u be an almost harmonic function in D. Then for any ball Br(x0) b

D with r < r0 and 0 < ρ < r we have

∫
Bρ(x0)

|∇u|2 ≤ 2
[(
ρ

r

)n
+ ω(r)

] ∫
Br(x0)

|∇u|2 (1.2.5)∫
Bρ(x0)

|∇u− 〈∇u〉x0,ρ|2 ≤ 9
(
ρ

r

)n+2 ∫
Br(x0)

|∇u− 〈∇u〉x0,r|2

+ 24ω(r)
∫
Br(x0)

|∇u|2.

(1.2.6)

Proof. If h is a harmonic replacement of u in Br(x0), we first note that

∫
Br(x0)

|∇(u− h)|2 =
∫
Br(x0)

|∇u|2 − |∇h|2 − 2
∫
Br(x0)

∇h∇(u− h)

=
∫
Br(x0)

|∇u|2 − |∇h|2 ≤ ω(r)
∫
Br(x0)

|∇h|2 ≤ ω(r)
∫
Br(x0)

|∇u|2.

Then, combined with ( 1.2.3 ), we estimate

∫
Bρ(x0)

|∇u|2 ≤ 2
∫
Bρ(x0)

|∇h|2 + 2
∫
Bρ(x0)

|∇(u− h)|2
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≤ 2
[(
ρ

r

)n
+ ω(r)

] ∫
Br(x0)

|∇u|2,

which gives ( 1.2.5 ). To obtain (  1.2.6 ), we argue very similarly by using additionally that by

Jensen’s inequality

∫
Bρ(x0)

|〈∇u〉x0,ρ − 〈∇h〉x0,ρ|2 ≤
∫
Bρ(x0)

|∇u− ∇h|2.

For more details we refer to the proof of Theorem  1.4.1 , Case 1.1.

From here, one deduces the estimates ( 1.2.1 )–( 1.2.2 ) with the help of the following useful

lemma. The proof can be found e.g. in [  50 ].

Lemma 1.2.2. Let r0 > 0 be a positive number and let ϕ : (0, r0) → (0,∞) be a nondecreasing

function. Let a, β, and γ be such that a > 0, γ > β > 0. There exist two positive numbers

ε = ε(a, γ, β), c = c(a, γ, β) such that, if

ϕ(ρ) ≤ a
[(
ρ

r

)γ
+ ε

]
ϕ(r) + b rβ

for all ρ, r with 0 < ρ ≤ r < r0, where b ≥ 0, then one also has, still for 0 < ρ < r < r0,

ϕ(ρ) ≤ c
[(
ρ

r

)β
ϕ(r) + bρβ

]
.

We can now give a formal proof of Theorem  1.2.1 .

Proof of Theorem  1.2.1 . (i) Taking r0 small enough so that ω(r0) < ε, a direct application of

Lemma  1.2.2 to (  1.2.5 ) produces the estimate (  1.2.1 ), which in turn implies that u ∈ C0,σ
loc (D),

by the Morrey space embedding theorem.

(ii) Using that ω(r) ≤ Crα, combined with the estimate ( 1.2.1 ), we first obtain

∫
Bρ(x0)

|∇u− 〈∇u〉x0,ρ|2 ≤ 9
(
ρ

r

)n+2 ∫
Br(x0)

|∇u− 〈∇u〉x0,r|2 + Crn−2+2σ+α.
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If σ is so that α′ = −2 + 2σ + α > 0, Lemma  1.2.2 implies that

∫
Bρ(x0)

|∇u− 〈∇u〉x0,ρ|2 ≤ Cρn+α′
.

By the Campanato space embedding, we therefore obtain that ∇u ∈ C
0,α′/2
loc (D). However,

it is easy to bootstrap the regularity up to C0,α/2
loc by noticing that we now know that ∇u is

locally bounded in D and thus
∫
Br(x0) |∇u|2 ≤ Crn. Plugging that in the last term of (  1.2.6 ),

we obtain that

∫
Bρ(x0)

|∇u− 〈∇u〉x0,ρ|2 ≤ 9
(
ρ

r

)n+2 ∫
Br(x0)

|∇u− 〈∇u〉x0,r|2 + Crn+α

and repeating the arguments above conclude that u ∈ C
1,α/2
loc .

1.3 Almost Lipschitz regularity of almost minimizers

In this section we prove the first regularity results for the almost minimizers for the

Signorini problem, see Definition  1.1.2 . Recall that we assume D = B1, M = Rn−1 × {0},

ψ = 0, r0 = 1, and ω(r) = rα for some α > 0. Furthermore we assume that u is even

symmetric in xn-variable.

Theorem 1.3.1. Let u be an almost minimizer for the Signorini problem in B1. Then

u ∈ C0,σ(B1) for all 0 < σ < 1. Moreover, for any K b B1,

‖u‖C0,σ(K) ≤ C‖u‖W 1,2(B1) (1.3.1)

with C = C(n, α, σ,K).

The idea of the proof is to follow that of Anzellotti [  31 ] that we outlined in Section  1.2 

and to prove an estimate similar to (  1.2.5 ). The proof of the latter estimate followed by

a perturbation argument from a similar estimate for the harmonic replacement of u. How-

ever, in the case of the Signorini problem, the harmonic replacements are not necessarily

admissible competitors. Instead, for Br(x0) b B1, we consider the Signorini replacements h

of u in Br(x0), which solve the Signorini problem in Br(x0) with the thin obstacle 0 on M
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and boundary values h = u on ∂Br(x0). Equivalently, Signorini replacements are the mini-

mizers of JBr(x0) on the constraint set K0,u(Br(x0),M) and they also satisfy the variational

inequality 

2
 ∫

Br(x0)
∇h · ∇(v − h) ≥ 0 for any v ∈ K0,u(Br(x0),M). (1.3.2)

We then have the following concentric ball estimates for Signorini replacements similar to the

one for harmonic replacements, at least when the center of the balls is on M = Rn−1 × {0}.

Proposition 1.3.1. Let x0 ∈ M and let h be a solution of the Signorini problem in Br(x0)

with zero obstacle on M, even in xn-variable. Then,

∫
Bρ(x0)

|∇h|2 ≤
(
ρ

r

)n ∫
Br(x0)

|∇h|2, 0 < ρ < r. (1.3.3)

Proof. We claim that |∇h|2 is subharmonic in Br(x0). This follows from the fact that h±
xi

,

i = 1, . . . , n− 1, are subharmonic in Br(x0), see [ 48 ], and similarly that the even extensions

h̃±
xn

of h±
xn

in xn-variable from B+
R(x0) to all of BR(x0) are also subharmonic. These are

all consequences of the fact that a continuous nonnegative function, subharmonic in its

positivity set is subharmonic, see Ex. 2.6 in [ 48 ].

The subharmonicity of |∇h|2 in Br(x0) then implies, by the sub-mean value property,

that the function

ρ 7→ 1
ρn

∫
Bρ(x0)

|∇h|2

is monotone nondecreasing. This readily implies (  1.3.3 ).

We next have the perturbed version of Proposition  1.3.1 .

Proposition 1.3.2. Let u be an almost minimizer for the Signorini problem in B1, and

Br(x0) ⊂ B1. Then, there is C1 = C1(n) > 1 such that

∫
Bρ(x0)

|∇u|2 ≤ C1

[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇u|2, 0 < ρ < r. (1.3.4)
2

 ↑ which follows from the inequality
∫

Br(x0) |∇h|2 ≤
∫

Br(x0) |∇((1 − ε)h+ εv)|2, ε ∈ (0, 1) by a first variation
argument.
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Proof. By using the continuity argument, we may assume that Br(x0) b B1. We first prove

the estimate when x0 is in the thin space, i.e., x0 ∈ B′
1 and then extend it to arbitrary

x0 ∈ B1.

Case 1. Suppose x0 ∈ B′
1 and let h be the Signorini replacement of u in Br(x0). Recall that

h satisfies ( 1.3.2 ). Then, plugging v = u, we obtain

∫
Br(x0)

∇h · ∇u− |∇h|2 ≥ 0. (1.3.5)

Using this, we can estimate

∫
Br(x0)

|∇(u− h)|2 =
∫
Br(x0)

(
|∇u|2 + |∇h|2 − 2∇u · ∇h

)
≤
∫
Br(x0)

|∇u|2 −
∫
Br(x0)

|∇h|2

≤
(
1 + rα

) ∫
Br(x0)

|∇h|2 −
∫
Br(x0)

|∇h|2

= rα
∫
Br(x0)

|∇h|2 ≤ rα
∫
Br(x0)

|∇u|2,

(1.3.6)

where in the very last step we have used that h minimizes the Dirichlet integral among all

functions in K0,u(Br(x0),M).

Next, we use the same perturbation argument as in the proof of (  1.2.5 ). By using (  1.3.3 )

and ( 1.3.6 ), we estimate

∫
Bρ(x0)

|∇u|2 ≤ 2
∫
Bρ(x0)

|∇h|2 + 2
∫
Bρ(x0)

|∇(u− h)|2

≤ 2
(
ρ

r

)n ∫
Br(x0)

|∇h|2 + 2rα
∫
Br(x0)

|∇u|2

≤ 2
[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇u|2.

Thus, ( 1.3.4 ) follows in this case.

Case 2. Consider now the case x0 ∈ B+
1 . If ρ ≥ r/4, then we simply have

∫
Bρ(x0)

|∇u|2 ≤ 4n
(
ρ

r

)n ∫
Br(x0)

|∇u|2.
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Thus, we may assume ρ < r/4. Then, let d := dist(x0, B
′
1) > 0 and choose x1 ∈ ∂Bd(x0)∩B′

1.

Case 2.1. If ρ ≥ d, then we use Bρ(x0) ⊂ B2ρ(x1) ⊂ Br/2(x1) ⊂ Br(x0) and the result of

Case 1 to write

∫
Bρ(x0)

|∇u|2 ≤
∫
B2ρ(x1)

|∇u|2 ≤ C

[(
2ρ
r/2

)n
+ (r/2)α

] ∫
Br/2(x1)

|∇u|2

≤ C
[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇u|2.

Case 2.2. Suppose now d > ρ. If d > r, then Br(x0) b B+
1 . Since u is almost harmonic in

B+
1 , we can apply Proposition  1.2.2 to obtain

∫
Bρ(x0)

|∇u|2 ≤ 2
[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇u|2.

Thus, we may assume d ≤ r. Then we note that Bd(x0) ⊂ B+
1 and by a limiting argument

from the previous estimate, we obtain

∫
Bρ(x0)

|∇u|2 ≤ 2
[(
ρ

d

)n
+ rα

] ∫
Bd(x0)

|∇u|2.

Case 2.2.1. If r/4 ≤ d, then

∫
Bd(x0)

|∇u|2 ≤ 4n
(
d

r

)n ∫
Br(x0)

|∇u|2,

which immediately implies ( 1.3.4 ).

Case 2.2.2. It remains to consider the case ρ < d < r/4. Using Case 1 again, we have

∫
Bd(x0)

|∇u|2 ≤
∫
B2d(x1)

|∇u|2 ≤ C

[(
2d
r/2

)n
+ (r/2)α

] ∫
Br/2(x1)

|∇u|2

≤ C

[(
d

r

)n
+ rα

] ∫
Br(x0)

|∇u|2,

which also implies ( 1.3.4 ). This concludes the proof of the proposition.

We can now give the proof of the almost Lipschitz regularity of almost minimizers.
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Proof of Theorem  1.3.1 . Let K b B1 and x0 ∈ K. Take δ = δ(n, α, σ,K) > 0 such that

δ < dist(K, ∂B1) and δα ≤ ε(C1, n, n + 2σ − 2), where ε = ε(C1, n, n + 2σ − 2) is as in

Lemma  1.2.2 . Then for all 0 < ρ < r < δ, by ( 1.3.4 ),

∫
Bρ(x0)

|∇u|2 ≤ C1

[(
ρ

r

)n
+ ε

] ∫
Br(x0)

|∇u|2.

By applying Lemma  1.2.2 , we obtain

∫
Bρ(x0)

|∇u|2 ≤ C(n, σ)
(
ρ

r

)n+2σ−2 ∫
Br(x0)

|∇u|2.

Taking r ↗ δ, we can therefore conclude

∫
Bρ(x0)

|∇u|2 ≤ C(n, α, σ,K)‖∇u‖2
L2(B1)ρ

n+2σ−2. (1.3.7)

From here, we use the Morrey space embedding to obtain u ∈ C0,σ(K) with the norm

estimate

‖u‖C0,σ(K) ≤ C(n, α, σ,K)‖u‖W 1,2(B1),

as required.

1.4 C1,β regularity of almost minimizers

In this section we establish the C1,β regularity of almost minimizers for some β > 0. The

idea is again to use Signorini replacements and an appropriate version of the concentric ball

estimate ( 1.2.4 ) for solutions of the Signorini problem.

As we saw in the proof of the almost Lipschitz regularity of almost minimizers, it is enough

to obtain such estimates when balls are centered at x0 on the thin space M = Rn−1 ×{0}. It

turns out that to prove a proper version of ( 1.2.4 ), we have to work with both even and odd

extensions in xn-variable of Signorini replacements h from B+
r (x0) to Br(x0). The reason

is that even extensions are harmonic across the positivity set {h(·, 0) > 0}, while the odd

extensions are harmonic across the interior of the coincidence set {h(·, 0) = 0}.
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Proposition 1.4.1. Let h be a solution of the Signorini problem in Br(x0) with x0 ∈ M,

even in xn-variable. Define

∇̂h :=


∇h(x′, xn), xn ≥ 0

∇h(x′,−xn), xn < 0,

the even extension of ∇h from B+
r (x0) to Br(x0). Then for 0 < α < 1, there is C = C(n)

such that for all 0 < ρ ≤ (3/4)r,

∫
Bρ(x0)

|∇̂h− 〈∇̂h〉x0,ρ|2 ≤ C
ρn+1

rn+3

∫
Br(x0)

h2.

Proof. This is an immediate corollary of the estimate

‖∇h‖
C0,1/2

(
B±

(3/4)r
(x0)∪B(3/4)r(x0)

) ≤ C(n)r− n+3
2 ‖h‖L2(B+

r (x0)), (1.4.1)

see e.g. Theorem 9.13 in [ 48 ]. Indeed, for 0 < ρ ≤ (3/4)r, we have

∫
Bρ(x0)

|∇̂h− 〈∇̂h〉x0,ρ|2 = 2
∫
B+

ρ (x0)
|∇h− 〈∇h〉B+

r (x0)|
2

≤ C(n)ρn+1‖∇h‖2
C0,1/2(B+

(3/4)r
(x0))

≤ C(n)ρ
n+1

rn+3

∫
Br(x0)

h2.

We now prove the C1,β regularity of almost minimizers.

Theorem 1.4.1. Let u be an almost minimizer of the Signorini problem in B1. Define

∇̂u(x′, xn) :=


∇u(x′, xn), xn ≥ 0

∇u(x′,−xn), xn < 0.

Then

∇̂u ∈ C0,β(B1) with β = α

4(2n+ α) .
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Moreover, for any K b B1 there holds

‖∇̂u‖C0,β(K) ≤ C(n, α,K)‖u‖W 1,2(B1). (1.4.2)

Proof. Without loss of generality, we may assume that K is a ball centered at 0. Fix a

small r0 = r0(n, α,K) > 0 to be chosen later. Particularly, we will ask R0 := r
2n

2n+α

0 ≤

(1/2) dist(K, ∂B1), which will imply that

K̃ := {x ∈ B1 : dist(x,K) ≤ R0} b B1.

Our goal now is to show that for x0 ∈ K, 0 < ρ < r < r0,

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤ C(n, α)
(
ρ

r

)n+α ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2

+ C(n, α,K)‖u‖2
W 1,2(B1)r

n+2β, (1.4.3)

which readily gives the estimate ( 1.4.2 ) by applying Lemma  1.2.2 and using the Campanato

space embedding.

We first prove (  1.4.3 ) for x0 ∈ K ∩B′
1, by taking the advantage of the symmetry of ∇̂u,

and then we argue as in the proof of Proposition  1.3.2 to extend it to all x0 ∈ K.

Case 1. Suppose x0 ∈ K ∩ B′
1. For notational simplicity, we assume x0 = 0 (by shifting the

center of the domain D = B1 to −x0) and let 0 < r < r0 be given. Let us also denote

α′ := 1 − α

8n ∈ (0, 1), R := r
2n

2n+α .

We then split our proof into two cases:

sup
∂BR

|u| ≤ C3R
α′ and sup

∂BR

|u| > C3R
α′
,

with C3 = 2[u]0,α′,K̃
= 2 sup

x,y∈K̃
x 6=y

|u(x)−u(y)|
|x−y|α′ .
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Case 1.1. Assume first that sup∂BR
|u| ≤ C3R

α′ . Let h be the Signorini replacement of u on

BR. Then, for any 0 < ρ < r, we have

∫
Bρ

|∇̂u− 〈∇̂u〉ρ|2 ≤ 3
∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 + 3
∫
Bρ

|∇̂u− ∇̂h|2 + 3
∫
Bρ

|〈∇̂u〉ρ − 〈∇̂h〉ρ|2.

Besides, by Jensen’s inequality, we have

∫
Bρ

|〈∇̂u〉ρ − 〈∇̂h〉ρ|2 ≤
∫
Bρ

|∇̂u− ∇̂h|2.

Hence, combining the estimates above, we obtain

∫
Bρ

|∇̂u− 〈∇̂u〉ρ|2 ≤ 3
∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 + 6
∫
Bρ

|∇̂u− ∇̂h|2. (1.4.4)

Similarly ∫
Br

|∇̂h− 〈∇̂h〉r|2 ≤ 3
∫
Br

|∇̂u− 〈∇̂u〉r|2 + 6
∫
Br

|∇̂u− ∇̂h|2. (1.4.5)

Next, note that if r0 ≤ (3/4) 2n+α
α , then r ≤ (3/4)R, and thus by Proposition  1.4.1 ,

∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 ≤ C(n, α) ρ
n+1

Rn+3

∫
BR

h2. (1.4.6)

Then, using ( 1.4.4 ), ( 1.4.5 ), and ( 1.4.6 ), we obtain

∫
Bρ

|∇̂u− 〈∇̂u〉ρ|2 ≤ 3
∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 + 6
∫
Bρ

|∇̂u− ∇̂h|2

≤ C(n, α) ρ
n+1

Rn+3

∫
BR

h2 + 6
∫
Bρ

|∇̂u− ∇̂h|2.
(1.4.7)

Now take δ = δ(n, α,K) > 0 such that δ < dist(K, ∂B1) and δα ≤ ε = ε(C1, n, n+ 2α′ − 2),

where C1 is as in Theorem  1.3.1 and ε is as in Lemma  1.2.2 . If r0 ≤ δ
2n+α

2n , then R < δ, and

therefore by ( 1.3.7 ),

∫
BR

|∇̂u|2 ≤ C(n, α,K)‖∇u‖2
L2(B1)R

n+2α′−2.
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Thus, using the above inequality, combined with ( 1.3.5 ), we obtain

∫
BR

|∇̂u− ∇̂h|2 ≤
∫
BR

|∇̂u|2 −
∫
BR

|∇̂h|2

≤ Rα
∫
BR

|∇̂h|2 ≤ Rα
∫
BR

|∇̂u|2

≤ C(n, α,K)‖∇u‖2
L2(B1)R

n+α+2α′−2

= C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2n+α

(n− 1
2 ).

(1.4.8)

We next use that h2 is subharmonic in BR. (This can be seen for instance by a direct

computation ∆(h2) = 2 (|∇h|2 + h∆h) = 2|∇h|2 ≥ 0, or by using the fact that h± are

subharmonic.) Then,

〈h2〉R ≤ sup
BR

h2 = sup
∂BR

h2 = sup
∂BR

u2 ≤ C2
3R

2α′
. (1.4.9)

Also note that by ( 1.3.1 ), C3 ≤ C(n, α,K)‖u‖W 1,2(B1). Hence,

rn+1

Rn+3

∫
BR

h2 = C(n) r
n+1

R3 〈h2〉R ≤ C(n, α,K)‖u‖2
W 1,2(B1)r

n+ α
2(2n+α) . (1.4.10)

Now ( 1.4.7 ), ( 1.4.8 ), ( 1.4.10 ) give

∫
Bρ

|∇̂u− 〈∇̂u〉ρ|2 ≤ C(n, α,K)‖u‖2
W 1,2(B1)

(
rn+ α

2(2n+α) + rn+ α
2n+α

(n− 1
2 )
)

≤ C(n, α,K)‖u‖2
W 1,2(B1)r

n+ α
2(2n+α) .

(1.4.11)

Case 1.2. Now suppose sup∂BR
|u| > C3R

α′ . By the choice of C3 = 2[u]0,α,K̃ , we have either

u ≥ (C3/2)Rα′ in all of BR or u ≤ −(C3/2)Rα′ in all of BR. However, from the inequality

u(0) ≥ 0, the only possibility is

u ≥ C3

2 Rα′ in BR.
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Let h again be the Signorini replacement of u in BR. Then from positivity of h = u > 0 on

∂BR and superharmonicity of h in BR, it follows that h > 0 in BR and is therefore harmonic

there. Thus,

∫
Bρ

|∇h− 〈∇h〉ρ|2 ≤
(
ρ

r

)n+2 ∫
Br

|∇h− 〈∇h〉r|2, 0 < ρ < r.

We now want to obtain a version of this estimate for ∇̂h. We start by observing that ∇h

and ∇̂h differ only in the n-th component. The n-th component of ∇h, hxn , is odd in xn.

On the other hand, the n-th component of ∇̂h, is even in xn and is given by

ĥxn(x) =


hxn(x′, xn), xn ≥ 0

hxn(x′,−xn), xn < 0
.

Then we have

∫
Bρ

|ĥxn − 〈ĥxn〉ρ|2 =
∫
Bρ

ĥxn

2
− 1

|Bρ|

(∫
Bρ

ĥxn

)2

=
∫
Bρ

|hxn − 〈hxn〉ρ|2 − 1
|Bρ|

(∫
Bρ

ĥxn

)2

,

where we have used that 〈hxn〉ρ = 0. Hence, we arrive at

∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 =
∫
Bρ

|∇h− 〈∇h〉ρ|2 − 1
|Bρ|

(∫
Bρ

ĥxn

)2

. (1.4.12)

Similarly, we have

∫
Br

|∇̂h− 〈∇̂h〉r|2 =
∫
Br

|∇h− 〈∇h〉r|2 − 1
|Br|

(∫
Br

ĥxn

)2

. (1.4.13)

Now, using ( 1.4.12 ) and ( 1.4.13 ), we have for all 0 < ρ < r

∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 ≤
∫
Bρ

|∇h− 〈∇h〉ρ|2 ≤
(
ρ

r

)n+2 ∫
Br

|∇h− 〈∇h〉r|2

≤
(
ρ

r

)n+2 ∫
Br

|∇̂h− 〈∇̂h〉r|2 + 1
|Br|

(∫
Br

ĥxn

)2

.

(1.4.14)
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Next, note that if r0 ≤ (1/2) 2n+α
α , then r ≤ R/2. Then, for γ := 1 − 3α

8n ,

sup
BR/2

|D2h| ≤ C(n)
R

sup
B(3/4)R

|∇h| ≤ C(n)
R1+ n

2

(∫
BR

|∇h|2
)1/2

≤ C(n)
R1+ n

2

(∫
BR

|∇u|2
)1/2

≤ C(n, α,K)‖∇u‖L2(B1)R
γ−2,

where the last inequality follows from ( 1.3.7 ). Thus, for x = (x′, xn) ∈ Br, we have

|hxn| ≤ |xn| sup
BR/2

|D2h| ≤ C(n, α,K)‖∇u‖L2(B1)rR
γ−2

≤ C(n, α,K)‖∇u‖L2(B1)r
1+ 2n

2n+α
(γ−2),

and hence

1
|Br|

(∫
Br

ĥxn

)2

≤ C(n, α,K)‖∇u‖2
L2(B1)r

n+2+ 4n
2n+α

(γ−2)

= C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2(2n+α) .

(1.4.15)

Combining ( 1.4.14 ) and ( 1.4.15 ), we obtain

∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 ≤
(
ρ

r

)n+2 ∫
Br

|∇̂h− 〈∇̂h〉r|2 + C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2(2n+α) .

(1.4.16)

Finally, ( 1.4.4 ), ( 1.4.5 ), ( 1.4.8 ), and ( 1.4.16 ) give

∫
Bρ

|∇̂u− 〈∇̂u〉ρ|2 ≤ 3
∫
Bρ

|∇̂h− 〈∇̂h〉ρ|2 + 6
∫
Bρ

|∇̂u− ∇̂h|2

≤ 3
(
ρ

r

)n+2 ∫
Br

|∇̂h− 〈∇̂h〉r|2

+ C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2(2n+α) + 6

∫
Bρ

|∇̂u− ∇̂h|2

≤ 9
(
ρ

r

)n+2 ∫
Br

|∇̂u− 〈∇̂u〉r|2

+ C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2(2n+α) + 24

∫
Br

|∇̂u− ∇̂h|2
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≤ 9
(
ρ

r

)n+2 ∫
Br

|∇̂u− 〈∇̂u〉r|2 + C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2(2n+α)

+ C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2n+α

(n− 1
2 )

≤ 9
(
ρ

r

)n+2 ∫
Br

|∇̂u− 〈∇̂u〉r|2 + C(n, α,K)‖∇u‖2
L2(B1)r

n+ α
2(2n+α) .

From this and ( 1.4.11 ) we obtain ( 1.4.3 ) for x0 ∈ K ∩B1.

Case 2. To extend (  1.4.3 ) to any x0 ∈ K, we now assume x0 ∈ K∩B+
1 . We use an argument

similar to the one in Case 2 in the proof of Proposition  1.3.2 .

Now, if ρ ≥ r/4, then

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤
∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,r|2 ≤ 4n+α
(
ρ

r

)n+α ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2,

and thus we may assume ρ < r/4. Let d := dist(x0, B
′
1) > 0 and choose x1 ∈ ∂Bd(x0) ∩ B′

1.

Note that from the assumption that K is a ball centered at 0, we have x1 ∈ K ∩B′
1.

Case 2.1. If ρ ≥ d, then from Bρ(x0) ⊂ B2ρ(x1) ⊂ Br/2(x1) ⊂ Br(x0), we have

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤
∫
B2ρ(x1)

|∇̂u− 〈∇̂u〉x1,2ρ|2

≤ C(n, α)
(
ρ

r

)n+α ∫
Br/2(x1)

|∇̂u− 〈∇̂u〉x1,r/2|2

+ C(n, α,K)‖u‖2
W 1,2(B1)r

n+2β

≤ C(n, α)
(
ρ

r

)n+α ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2

+ C(n, α,K)‖u‖2
W 1,2(B1)r

n+2β,

which gives ( 1.4.3 ) in this case.

Case 2.2. Now we suppose d > ρ. If also d > r, then Br(x0) ⊂ B+
1 and since u is almost

harmonic in B+
1 , we can apply Proposition  1.2.2 , together with the growth estimate (  1.3.7 )

in the proof of Theorem  1.3.1 , to conclude

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤ C(n, α)
(
ρ

r

)n+α ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2

31



+ C(n, α,K)‖u‖2
W 1,2(B1)r

n+2β.

Thus, we may assume d ≤ r. Then, Bd(x0) ⊂ B+
1 , and hence, again by the combination of

Proposition  1.2.2 and the growth estimate ( 1.3.7 ), we have

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤ C(n, α)
(
ρ

d

)n+α ∫
Bd(x0)

|∇̂u− 〈∇̂u〉x0,d|2

+ C(n, α,K)‖u‖2
W 1,2(B1)d

n+2β.

We need to consider further subcases.

Case 2.2.1. If r/4 ≤ d, then (since also d ≤ r)

∫
Bd(x0)

|∇̂u− 〈∇̂u〉x0,d|2 ≤ 4n+α
(
d

r

)n+α ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2

and combined with the previous inequality, we obtain ( 1.4.3 ) in this subcase.

Case 2.2.2. If d < r/4, then we also have

∫
Bd(x0)

|∇̂u− 〈∇̂u〉x0,d|2 ≤
∫
B2d(x1)

|∇̂u− 〈∇̂u〉x1,2d|2

≤ C(n, α)
(
d

r

)n+α ∫
Br/2(x1)

|∇̂u− 〈∇̂u〉x1,r/2|2

+ C(n, α,K)‖u‖2
W 1,2(B1)r

n+2β

≤ C(n, α)
(
d

r

)n+α ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2

+ C(n, α,K)‖u‖2
W 1,2(B1)r

n+2β.

Hence, the estimate ( 1.4.3 ) has been established in all possible cases.

To complete the proof of the theorem, we now apply Lemma  1.2.2 to the estimate (  1.4.3 )

to obtain

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤ C(n, α)
[(
ρ

r

)n+2β ∫
Br(x0)

|∇̂u− 〈∇̂u〉x0,r|2
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+ C(n, α,K)‖u‖2
W 1,2(B1)ρ

n+2β
]
.

Taking r ↗ r0 = r0(n, α,K), we have

∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0,ρ|2 ≤ C(n, α,K)‖u‖2
W 1,2(B1)ρ

n+2β.

Then by the Campanato space embedding we conclude that

∇̂u ∈ C0,β(K)

with

‖∇̂u‖C0,β(K) ≤ C(n, α,K)‖u‖W 1,2(B1).

Having the C1,β regularity of almost minimizers, we can now talk about pointwise values

of

∂+
xn
u(x′, 0) = lim

y→(x′,0)
y∈B+

r

∂xnu(y)

for x′ ∈ B′
1. The following complementarity condition is of crucial importance in the study

of the free boundary.

Lemma 1.4.2 (Complementarity condition). Let u be an almost minimizer for the Signorini

problem in B1. Then u satisfies the following complementarity condition

u ∂+
xn
u = 0 on B′

1.

Moreover, if x0 ∈ Γ(u) then

u(x0) = 0 and |∇̂u(x0)| = 0.

Proof. Since u ≥ 0 on B′
1, the complementarity condition will follow once we show that ∂+

xn
u

vanishes where u > 0 on B′
1. To this end, let u(x′, 0) > 0 for some x′ ∈ B′

1. By the continuity

of u in B1, (see Theorem  1.3.1 ), we have u > 0 in some open neighborhood U ⊂ B1 of (x′, 0).
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If Br(y) b U (not necessarily centered on B′
1) and v is a harmonic replacement of u in Br(y),

then by the minimum principle v > 0 in Br(y), and particularly v > 0 on set Br(y) ∩ B′
1.

Then v ∈ K0,u(Br(y),M) and therefore we must have

∫
Br(y)

|∇u|2 ≤ (1 + rα)
∫
Br(y)

|∇v|2.

This means that u is an almost harmonic function in U . Hence u ∈ C1,α/2(U) by Theo-

rem  1.2.1 . From the even symmetry of u in xn, it is then immediate that ∂+
xn
u(x′, 0) =

∂xnu(x′, 0) = 0.

The second part of the lemma now follows by the C1,β regularity and the complementarity

condition.

1.5 Weiss- and Almgren-type monotonicity formulas

In the rest of this chapter we study the free boundary of almost minimizers. In this section

we introduce important technical tools, so-called Weiss- and Almgren-type monotonicity

formulas, which play a significant role in our analysis.

We start with Weiss-type monotonicity formulas. They go back to the works of Weiss

[ 49 ], [  51 ] in the case of the classical obstacle problem and Alt-Caffarelli minimum problem,

respectively, and to [ 14 ] for the solutions of the thin obstacle problems. In the context of

almost minimizers, this type of monotonicity formulas has been used in a recent paper [ 43 ].

Theorem 1.5.1 (Weiss-type monitonicity formula). Let u be an almost minimizer for the

Signorini problem in B1. For x0 ∈ B′
1/2 and 0 < κ < κ0 with a fixed κ0 ≥ 2 set

Wκ(t, u, x0) := eatα

tn+2κ−2

[∫
Bt(x0)

|∇u|2 − κ
1 − btα

t

∫
∂Bt(x0)

u2
]
,

with

a = aκ = n+ 2κ− 2
α

, b = n+ 2κ0

α
.
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Then, for 0 < t < t0 = t0(n, α, κ0),

d

dt
Wκ(t, u, x0) ≥ eatα

tn+2κ−2

∫
∂Bt(x0)

(
uν − κ(1 − btα)

t
u

)2

.

In particular, Wκ(t, u, x0) is nondecreasing in t for 0 < t < t0.

Remark 1.5.2. It is important to observe that while a = aκ depends on κ, the constant b

depends only on α, n and κ0. We also note that in our version of Weiss’s monotonicity

formula, perturbations (from the case of the thin obstacle problem) appear in the form of

multiplicative factors, rather than additive errors as in [  43 ]. Because of the multiplicative

nature of the perturbations, we can then use the one-parametric family of monotonicity

formulas {Wκ}0<κ<κ0 to derive an Almgren-type monotonicity formula, see Theorem  1.5.4 .

Remark 1.5.3. To avoid bulky notations, we will write Wκ(t, u) for Wκ(t, u, x0) when x0 = 0

or even simply Wκ(t), when both u and x0 are clear from the context.

Proof. The proof uses an argument similar to the one in Theorem 1.2 in [  51 ]. Essentially, it

follows from a comparison (  1.1.4 ) with special competitors, described below. Without loss

of generality, assume x0 = 0. Then for t ∈ (0, 1/2), define w by

w(x) :=
(

|x|
t

)κ
u

(
t
x

|x|

)
, for x ∈ Bt.

Note that w is κ-homogeneous in Bt, i.e., w(λx) = λκw(λx) for λ > 0, x, λx ∈ Bt, and

coincides with u on ∂Bt. Also note that w ≥ 0 on B′
t and is therefore a valid competitor for

u in ( 1.1.4 ). We refer to this w as the κ-homogeneous replacement of u in Bt.

Now, in Bt, we have

∇w(x) =
(

|x|
t

)κ−1 [
κ

t
u

(
t
x

|x|

)
x

|x|
+ ∇u

(
t
x

|x|

)
− ∇u

(
t
x

|x|

)
· x

|x|
x

|x|

]
,

which gives

∫
Bt

|∇w|2dx =
∫ t

0

∫
∂Br

|∇w(x)|2dSxdr
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=
∫ t

0

∫
∂Br

(
r

t

)2κ−2
∣∣∣∣∣κt u

(
t
x

r

)
ν −

(
∇u

(
t
x

r

)
· ν
)
ν + ∇u

(
t
x

r

)∣∣∣∣∣
2

dSxdr

=
∫ t

0

∫
∂Bt

(
r

t

)n+2κ−3∣∣∣∣κt uν −
(
∇u · ν

)
ν + ∇u

∣∣∣∣2dSxdr
= t

n+ 2κ− 2

∫
∂Bt

∣∣∣∣∇u−
(
∇u · ν

)
ν + κ

t
uν
∣∣∣∣2dSx

= t

n+ 2κ− 2

∫
∂Bt

(
|∇u|2 −

(
∇u · ν

)2
+
(
κ

t

)2
u2
)
dSx.

The latter equality can be rewritten as

∫
∂Bt

u2dSx =
(
t

κ

)2
[
n+ 2κ− 2

t

∫
Bt

|∇w|2dx+
∫
∂Bt

(
u2
ν − |∇u|2

)
dSx

]
. (1.5.1)

Since w is a competitor for u, we have

∫
Bt

|∇w|2dx ≥ 1
1 + tα

∫
Bt

|∇u|2dx ≥ (1 − tα)
∫
Bt

|∇u|2dx (1.5.2)

and combining ( 1.5.1 ) and ( 1.5.2 ) yields

∫
∂Bt

u2dSx ≥
(
t

κ

)2
[
(n+ 2κ− 2)1 − tα

t

∫
Bt

|∇u|2dx+
∫
∂Bt

(
u2
ν − |∇u|2

)
dSx

]
. (1.5.3)

Multiplying this by κ2eatαt−n−2κ and rearranging terms, we obtain

d

dt

(
eatαt−n−2κ+2

) ∫
Bt

|∇u|2dx

= −(n+ 2κ− 2)eatαt−n−2κ
(
t− tα+1

) ∫
Bt

|∇u|2dx

≥ eatαt−n−2κ+2
∫
∂Bt

(
u2
ν − |∇u|2

)
dSx − κ2eatαt−n−2κ

∫
∂Bt

u2dSx.

(1.5.4)

Define now an auxiliary function

ψ(t) = κeatα(1 − btα)
tn+2κ−1 .
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Then we write

Wκ(t, u, 0) = eatαt−n−2κ+2
∫
Bt

|∇u|2dx− ψ(t)
∫
∂Bt

u2dSx

and, using ( 1.5.4 ), obtain

d

dt
Wκ(t, u, 0) = d

dt

(
eatαt−n−2κ+2

) ∫
Bt

|∇u|2dx+ eatαt−n−2κ+2
∫
∂Bt

|∇u|2dSx

− ψ′(t)
∫
∂Bt

u2dSx − 2ψ(t)
∫
∂Bt

uuνdSx − (n− 1)ψ(t)
t

∫
∂Bt

u2dSx

≥ eatαt−n−2κ+2
∫
∂Bt

(
u2
ν − |∇u|2

)
dSx − κ2eatαt−n−2κ

∫
∂Bt

u2dSx

+ eatαt−n−2κ+2
∫
∂Bt

|∇u|2dSx − ψ′(t)
∫
∂Bt

u2dSx

− 2ψ(t)
∫
∂Bt

uuνdSx − (n− 1)ψ(t)
t

∫
∂Bt

u2dSx

= eatαt−n−2κ+2
∫
∂Bt

u2
νdSx − 2ψ(t)

∫
∂Bt

uuνdSx

−
(
κ2eatαt−n−2κ + ψ′(t) + (n− 1)ψ(t)

t

)∫
∂Bt

u2dSx.

Now observe that ψ(t) satisfies the inequality

− eatα

tn+2κ−2

(
κ2eatαt−n−2κ + ψ′(t) + (n− 1)ψ(t)

t

)
− ψ2(t) ≥ 0

for 0 < t < t0(n, α, κ0) and 0 < κ < κ0. Indeed, a direct computation shows that the above

inequality is equivalent to

2α2(1 + κ0 − κ) − (n+ 2κ0)[(n+ 2κ0)κ− α(n+ 2κ− 2)]tα ≥ 0,

which holds for 0 < κ < κ0 and small t > 0 such that

2α2 − 4(n+ 2κ0)2κ0t
α ≥ 0.
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Hence, recalling also the formula for ψ(t), we can conclude that

d

dt
Wκ(t, u, 0) ≥ eatα

tn+2κ−2

[∫
∂Bt

u2
νdSx − 2κ(1 − btα)

t

∫
∂Bt

uuνdSx +
(
κ(1 − btα)

t

)2 ∫
∂Bt

u2dSx

]

= eatα

tn+2κ−2

∫
∂Bt

(
uν − κ(1 − btα)

t
u

)2

,

for 0 < t < t0(n, α, κ0).

Next, for an almost minimizer u in B1 and x0 ∈ B′
1/2, consider the quantity

N(t, u, x0) :=
t
∫
Bt(x0) |∇u|2∫
∂Bt(x0) u

2 , 0 < t < 1/2

which is known as Almgren’s frequency and goes back to Almgren’s Big Regularity Paper

[ 47 ]. This kind of quantities have also been used in unique continuation for a class of elliptic

operators [ 52 ], [  53 ] and have been instrumental in thin obstacle-type problems, starting with

the works [ 12 ]–[ 14 ].

Before proceeding, we observe that Almgren’s frequency is well defined when x0 is a free

boundary point, since
∫
∂Bt(x0) u

2 > 0. Indeed, otherwise u = 0 on ∂Bt(x0) and we can use

h ≡ 0 in Bt(x0) as a competitor, to obtain that
∫
Bt(x0) |∇u|2 ≤ (1 + tα)0 = 0, implying u ≡ 0

in Bt(x0), contradicting the assumption that x0 is a free boundary point. Next, we also

consider a modification of N :

Ñ(t, u, x0) := 1
1 − btα

N(t, u, x0),

where b is as in Theorem  1.5.1 , as well as

N̂κ0(t, u, x0) := min{Ñ(t), κ0}, 0 < t < t0,

which we call the truncated frequency.

For the frequencies N , Ñ , and N̂κ0 , we will follow the same notational conventions as

outlined in Remark  1.5.3 for Weiss’s functionals Wκ.
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With the Weiss type monotonicity formula at hand, we easily obtain the following mono-

tonicity of N̂κ0 .

Theorem 1.5.4 (Almgren-type monotonicity formula). Let u, κ0, and t0 be as in Theo-

rem  1.5.1 , and x0 a free boundary point. Then N̂κ0(t, u, x0) is nondecreasing in 0 < t < t0.

Proof. We assume x0 = 0. It is quite important to observe that t0 depends only on n, α,

and κ0. Then, if Ñ(t) < κ for some t ∈ (0, t0) and κ ∈ (0, κ0), then

Wκ(t) = eatα

tn+2κ−1

(∫
∂Bt

u2
)

(N(t) − κ(1 − btα))

= eatα

tn+2κ−1

(∫
∂Bt

u2
)

(1 − btα)
(
Ñ(t) − κ

)
< 0.

By Theorem  1.5.1 we also have Wκ(s) ≤ Wκ(t) < 0 for all s ∈ (0, t), and thus Ñ(s) < κ.

This completes the proof.

Remark 1.5.5. The proof above is rather indirect and establishes the monotonicity of N̂κ0

from that of Weiss-type formulas in one-parametric family {Wκ}0<κ<κ0 . This kind of relation

has been first observed in [ 14 ].

1.6 Almgren rescalings and blowups

In this section we prove a lower bound on Almgren’s frequency for almost minimizers at

free boundary points. The idea is to consider appropriate rescalings and blowups of almost

minimizers to obtain solutions of the Signorini problem, for which a bound N(0+) ≥ 3/2 is

known.

Now, let u be an almost minimizer for the Signorini problem in B1, and x0 ∈ B′
1/2 a free

boundary point. For 0 < r < 1/2 consider the Almgren rescaling  

3
 of u at x0

uAx0,r(x) := u(rx+ x0)(
1

rn−1

∫
∂Br(x0) u

2
) 1

2
, x ∈ B1/(2r).

3
 ↑ We use the superscript A to distinguish this rescaling from the other rescalings, namely, homogeneous and

almost homogeneous rescalings that we consider later.
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When x0 = 0, we also write uAr instead of uA0,r. The Almgren rescalings have the following

normalization and scaling properties

‖uAx0,r‖L2(∂B1) = 1

N(ρ, uAx0,r) = N(ρr, u, x0), ρ < 1/(2r).

We will call the limits of uAx0,r over any sequence r = rj → 0+ Almgren blowups of u at x0

and denote by uAx0,0.

Proposition 1.6.1 (Existence of Almgren blowups). Let x0 ∈ B′
1/2 ∩ Γ(u) be such that

N̂κ0(0+, u, x0) = κ < κ0. Then every sequence of Almgren rescalings uAx0,rj
, with rj → 0+

contains a subsequence, still denoted rj, such that for a function uAx0,0 ∈ W 1,2(B1)∩C1
loc(B±

1 ∪

B′
1)

uAx0,rj
→ uAx0,0 in W 1,2(B1),

uAx0,rj
→ uAx0,0 in L2(∂B1),

uAx0,rj
→ uAx0,0 in C1

loc(B±
1 ∪B′

1).

Moreover, uAx0,0 is a nonzero solution of the Signorini problem in B1, even in xn, and

homogeneous of degree κ in B1, i.e.,

uAx0,0(λx) = λκuAx0,0(x),

for λ > 0, provided x, λx ∈ B1.

Proof. Without loss of generality, we assume x0 = 0. From the fact that N̂(0+, u) = κ < κ0,

it follows also that N(0+, u) = N̂(0+, u) = κ. In particular, N(rj, u) < κ0 for large j. Then,

for such j ∫
B1

|∇uArj
|2 = N(1, uArj

) = N(rj, u) ≤ κ0
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and combined with the normalization
∫
∂B1

(uArj
)2 = 1, we see that the sequence uArj

is bounded

in W 1,2(B1). Hence, there is a function uA0 ∈ W 1,2(B1) such that, over a subsequence,

uArj
→ uA0 weakly in W 1,2(B1),

uArj
→ uA0 strongly in L2(∂B1).

In particular,
∫
∂B1

(uA0 )2 = 1, implying that uA0 6≡ 0 in B1.

Next, we observe that since u is an almost minimizer in B1 with gauge function ω(t) = tα,

uAr is also an almost minimizer in B1/(2r) with gauge function ωr(t) = (rt)α. This is rather

easy to see, since uAr (x) up to a positive constant factor is u(rx) and the multiplication (or the

division) by a positive number preserves the almost minimizing property. Since ωr(t) ≤ ω(t),

Theorem  1.4.1 is applicable to rescalings uArj
, from where we can deduce that over yet another

subsequence,

uArj
→ uA0 in C1

loc(B±
1 ∪B′

1). (1.6.1)

Now, we claim that since the gauge functions ωr(t) = (rt)α → 0 as r → 0, the blowup uA0

is a solution of the Signorini problem in B1. Indeed, for a fixed rj, let hrj be the Signorini

replacement of uArj
in B1. Then, by repeating the argument as in the proof of Proposition  1.3.2 

∫
B1

|∇(uArj
− hrj)|2 ≤ rαj

∫
B1

|∇uArj
|2.

This implies that hrj → uA0 weakly in W 1,2(B1). On the other hand, by the boundedness of

the sequence hrj in W 1,2(B1), we have also boundedness in C1,1/2
loc (B±

1 ∪B′
1) and hence, over

a subsequence, hrj → uA0 in C1
loc(B±

1 ∪ B′
1). By this convergence we then conclude that uA0

satisfies

∆uA0 = 0 in B1 \B′
1

uA0 ≥ 0, −∂+
xn
uA0 ≥ 0, uA0 ∂

+
xn
uA0 = 0 on B′

1,

and hence uA0 itself solves the Signorini problem in B1.
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Using the C1
loc convergence again, we have that for any 0 < ρ < 1

N(ρ, uA0 ) = lim
rj→0

N(ρ, uArj
) = lim

rj→0
N(ρrj, u) = N(0+, u) = κ.

Thus, the Almgren frequency of uA0 is constant κ, which is possible only if uA0 is a κ-

homogeneous solution of the Signorini problem in B1, see Theorem 9.4 in [ 48 ].

In what follows, it will be sufficient for us to fix κ0 ≥ 2 (say κ0 = 2), in the definition of

N̂κ0 and we will simply write

N̂ = N̂κ0 .

Lemma 1.6.1 (Minimal frequency). Let u be an almost minimizer for the Signorini problem

in B1. If x0 ∈ B′
1/2 ∩ Γ(u), then

N̂(0+, u, x0) = lim
r→0+

N̂(r, u, x0) ≥ 3
2 .

Consequently, we also have

N̂(t, u, x0) ≥ 3/2 for 0 < t < t0.

Proof. As before, let x0 = 0. Assume to the contrary that N̂(0+, u) = κ < 3/2. Since

κ < κ0 we can apply Proposition  1.6.1 to obtain that over a sequence rj → 0+, uArj
→ uA0 in

C1
loc(B±

1 ∪ B′
1), where uA0 is a nonzero κ-homogeneous solution of the Signorini problem in

B1, even in xn. Moreover, since 0 ∈ Γ(u), by Lemma  1.4.2 we have that u(0) = |∇̂u(0)| = 0,

implying that uArj
(0) = |∇̂uArj

(0)| = 0 and, by passing to the limit, uA0 (0) = |∇̂uA0 (0)| = 0.

Now, to arrive at a contradiction, we argue as in the proof of Proposition 9.9 in [  48 ] to reduce

the problem to dimension n = 2, where we can classify all possible homogeneous solutions of

the Signorini problem, even in xn. The only nonzero homogeneous solutions with κ < 3/2 in

dimension n = 2 are possible for κ = 1 and have the form uA0 (x) = −cxn for some c > 0, but

they fails to satisfy the condition |∇̂uA0 (0)| = 0. Thus, we arrived at contradiction, implying

that N̂(0+, u) ≥ 3/2. Finally, applying Theorem  1.5.4 , we obtain N̂(t, u) ≥ N̂(0+, u) ≥ 3/2,

for 0 < t < t0.
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Corollary 1.6.2. Let u be an almost minimizer for the Signorini problem in B1 and x0 a

free boundary points. Then

W3/2(t, u, x0) ≥ 0 for 0 < t < t0.

Proof. We simply observe that Ñ(t) ≥ N̂(t) ≥ 3/2 for 0 < t < t0 and hence

W3/2(t, u, x0) = eatα

tn+2κ−1

(∫
∂Bt

u2
)

(1 − btα)
(
Ñ(t) − 3

2

)
≥ 0.

1.7 Growth estimates

An important step in the study of the free boundary in the Signorini problem (and in

many other free boundary problems) is the proof of the optimal regularity of solutions, which

in this case is C1,1/2 on each side of the thin space. This allows to make proper blowup

arguments to establish the regularity of the so-called regular part of the free boundary.

However, in the case of almost minimizers, we only know C1,β regularity for some small

β > 0 and do not expect to have anything better. Yet, in this section, we establish the

optimal growth of the almost minimizers at free boundary points with the help of the Weiss-

type monotonicity formula and the epiperimetric inequality.

Finally, we want to point out that the results in this section are rather immediate in the

case of minimizers, as they follow easily from the differentiation formulas for the quantities

involved in the Almgren’s frequency formula. This is completely unavailable for almost

minimizers.

We start by defining a new type of rescalings. Fix κ ≥ 3/2. For a free boundary point

x0 in B′
1/2 and r > 0, we define the κ-homogeneous rescaling by

ux0,r(x) := u(κ)
x0,r(x) = u(rx+ x0)

rκ
, x ∈ B1/(2r).
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To take advantage of the Weiss-type monotonicity formula, we need a slight modification of

this rescaling. With the help of an auxiliary function

φ(r) = φκ(r) := e−(κb/α)rα

rκ, r > 0,

which is a solution of the differential equation

φ′(r) = κφ(r)1 − brα

r
, r > 0

we define the κ-almost homogeneous rescalings by

uφx0,r(x) := u(rx+ x0)
φ(r) , x ∈ B1/(2r).

Lemma 1.7.1 (Weak growth estimate). Let u be an almost minimizer of the Signorini

problem in B1 and x0 ∈ B′
1/2 ∩ Γ(u) be such that N̂(0+, u, x0) ≥ κ for κ ≤ κ0. Then

∫
∂Bt(x0)

u2 ≤ C(n, α, κ0)‖u‖2
W 1,2(B1)

(
log 1

t

)
tn+2κ−1,∫

Bt(x0)
|∇u|2 ≤ C(n, α, κ0)‖u‖2

W 1,2(B1)

(
log 1

t

)
tn+2κ−2,

for 0 < t < t0 = t0(n, α, κ0).

Proof. Without loss of generality, assume x0 = 0. We first note that the condition N̂(0+, u) ≥

κ implies that N̂(t, u) ≥ κ for 0 < t < t0 = t0(n, α, κ0). Then also Ñ(t, u) ≥ κ for such t

and consequently,

Wκ(t, u) = eatα

tn+2κ−1

(∫
∂Bt

u2
)

(1 − btα)
(
Ñ(t, u) − κ

)
≥ 0.

Next, for φ = φκ, we have that

d

dr
uφr (x) = ∇u(rx) · x

φ(r) − u(rx)[φ′(r)/φ(r)]
φ(r)

= 1
φ(r)

(
∇u(rx) · x− κ(1 − brα)

r
u(rx)

)
.
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Now let

m(r) =
(∫

∂B1
(uφr (ξ))2dSξ

)1/2
, r > 0.

Then,

m′(r) =
(∫

∂B1
uφr (ξ)

d

dr
uφr (ξ)dSξ

)(∫
∂B1

(uφr (ξ))2dSξ

)−1/2

and consequently, by Cauchy-Schwarz,

|m′(r)| ≤

∫
∂B1

[
d

dr
uφr (ξ)

]2

dSξ

1/2

.

Hence,

|m′(r)| ≤ 1
φ(r)

∫
∂B1

(
∇u(rξ) · ξ − κ(1 − brα)

r
u(rξ)

)2

dSξ

1/2

= 1
φ(r)

 1
rn−1

∫
∂Br

(
∂νu(x) − κ(1 − brα)

r
u(x)

)2

dSx

1/2

≤ 1
φ(r)

(
1

rn−1
rn+1

earα

d

dr
Wκ(r)

)1/2

= ecrα

r1/2

(
d

dr
Wκ(r)

)1/2

, c = κ
b

α
− a

2 ,

for 0 < r < t0 = t0(n, α, κ0). Thus, we have shown

|m′(r)| ≤ ecrα

r1/2

(
d

dr
Wκ(r)

)1/2

, 0 < r < t0.

Integrating in r over the interval (s, t) ⊂ (0, t0), we obtain

|m(t) −m(s)| ≤
∫ t

s

ecrα

r1/2

(
d

dr
Wκ(r)

)1/2

dr ≤
(∫ t

s

e2crα

r
dr

)1/2 (∫ t

s

d

dr
Wκ(r)

)1/2

≤ C0

(
log t

s

)1/2
[Wκ(t) −Wκ(s)]1/2 .

In particular (recalling that Wκ(s) ≥ 0), we obtain

m(t) ≤ m(t0) + C0

(
log t0

t

)1/2
[Wκ(t0)]1/2 .
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Varying t0 by an absolute factor, we can guarantee that

m(t0) ≤ C(n, α, κ0)‖u‖L2(B1), Wκ(t0) ≤ C(n, α, κ0)‖u‖2
W 1,2(B1).

Hence, we can conclude

∫
∂Bt

u2 ≤ C(n, α, κ0)‖u‖2
W 1,2(B1)

(
log 1

t

)
tn+2κ−1,

for 0 < t < t0 = t0(n, α, κ0). This implies the first bound. The second bound follows

immediately from the first one by using that Wκ(t, u) ≤ Wκ(t0, u):

1
tn+2κ−2

∫
Bt

|∇u|2 ≤ κ(1 − btα)
tn+2κ−1

∫
∂Bt

u2 + e−atαWκ(t0, u)

≤ C(n, α, κ0)‖u‖2
W 1,2(B1)

(
log 1

t

)
+ eatα0
tn+2κ−2
0

∫
Bt0

|∇u|2

≤ C(n, α, κ0)‖u‖2
W 1,2(B1)

(
log 1

t

)
.

The logarithmic term in Lemma  1.7.1 does not allow to conclude that the sequence of

κ-homogeneous or almost homogeneous rescaling is uniformly bounded say in W 1,2(B1). In

the rest of this section we show that in the case of the minimal frequency κ = 3/2 we can

do that with the help of the so-called epiperimetric inequality for the Signorini problem for

the Weiss energy

W 0
3/2(w) :=

∫
B1

|∇w|2 − 3
2

∫
∂B1

w2.

To state this result, we let

A := {w ∈ W 1,2(B1) : w ≥ 0 on B′
1, w(x′, xn) = w(x′,−xn)} (1.7.1)
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Theorem 1.7.2 (Epiperimetric inequality). There exists η ∈ (0, 1) such that if w ∈ A is

homogeneous of degree 3/2 in B1, then there exists v ∈ A with v = w on ∂B1 such that

W 0
3/2(v) ≤ (1 − η)W 0

3/2(w).

This kind of inequalities go back to the work of Weiss [ 49 ], in the case of the classical

obstacle problem. For the Signorini problem, a version of this theorem was proved in [ 20 ]

and [  54 ]. In fact, the theorem above is the version in [  55 ]. The inequality in [  20 ] and [  54 ]

requires w to be close to the blowup profile, but this can be easily removed by a scaling

argument (see [  55 ]). We also refer to [  27 ], for a more direct proof of this inequality with an

explicit constant η = 1/(2n+ 3).

Now, with the help of the epiperimetric inequality, we can prove a decay estimate for the

Weiss-type energy functional W3/2. For the rest of the section, we will assume

κ0 = 2,

which will make some of the constants independent of κ0, but the results hold also for any

other value of κ0 ≥ 2, with possible added dependence of constants on κ0.

Lemma 1.7.3. Let x0 ∈ B′
1/2 be a free boundary point. Then, there exist δ = δ(n, α) > 0

such that

0 ≤ W3/2(t, u, x0) ≤ Ctδ, 0 < t < t0 = t0(n, α),

with C = C(n, α)‖u‖2
W 1,2(B1).

Proof. As before, without loss of generality we assume that x0 = 0.

The proof will follow from a differential inequality that we derive by using our earlier

computations and the epiperimetric inequality. Recalling the proof of the Weiss-type mono-

tonicity formula (Theorem  1.5.1 ), for small t > 0, we have

d

dt
W3/2(t, u) = eatα

tn+1

∫
∂Bt

|∇u|2 − (n+ 1)(1 − tα)eatα

tn+2

∫
Bt

|∇u|2

− ψ′(t)
∫
∂Bt

u2 − (n− 1)ψ(t)
t

∫
∂Bt

u2 − 2ψ(t)
∫
∂Bt

u∂νu

47



= −(n+ 1)(1 − tα)
t

W3/2(t, u) + eatα

tn+1

∫
∂Bt

|∇u|2

−
(

[(n+ 1)(1 − tα) + (n− 1)]ψ(t)
t

+ ψ′(t)
)∫

∂Bt

u2 − 2ψ(t)
∫
∂Bt

u∂νu

≥ −(n+ 1)(1 − tα)
t

W3/2(t, u)

+ eatα(1 − btα)
tn+1

∫
∂Bt

(
|∇u|2 − 3

t
u∂νu

− 3
2t

[
(n+ 1)(1 − tα) + (n− 1)

t
+ ψ′(t)
ψ(t)

]
u2
)
.

To proceed, note that

(n+ 1)(1 − tα) + (n− 1)
t

+ ψ′(t)
ψ(t) = (n− 2) +O(tα)

t
.

Now, for the homogeneous rescalings

ut(x) = u(tx)
t3/2 ,

we can write

∫
∂Bt

|∇u|2 − 3
t
u∂νu− 3

2
(n− 2) +O(tα)

t2
u2

= tn
∫
∂B1

|∇ut|2 − 3ut∂νut − 3
2 [(n− 2) +O(tα)]u2

t

= tn
∫
∂B1

(
∂νut − 3

2ut
)2

+ (∂τut)2 − 3
2

[(
n− 1

2

)
+O(tα)

]
u2
t ,

where ∂τut is the tangential component of ∇ut on the unit sphere. We can summarize for

now that

d

dt
W3/2(t, u) ≥ −(n+ 1)(1 − tα)

t
W3/2(t, u)

+ eatα(1 − btα)
t

∫
∂B1

[(
∂νut − 3

2ut
)2

+ (∂τut)2 − 3
2

(
n− 1

2

)
u2
t

]

+O(tα−1)
∫
∂B1

u2
t .
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On the other hand, if wt is a 3/2-homogeneous replacement of ut in B1, i.e.,

wt(x) = |x|3/2ut(x/|x|)

then

∫
∂B1

(∂τut)2 − 3
2

(
n− 1

2

)
u2
t =

∫
∂B1

(∂τwt)2 − 3
2

(
n− 1

2

)
w2
t = (n+ 1)W 0

3/2(wt),

where

W 0
3/2(wt) =

∫
B1

|∇wt|2 − 3
2

∫
∂B1

w2
t .

The last equality follows by repeating the arguments in the beginning of the proof of The-

orem  1.5.1 with κ = 3/2. Let vt be the solution of the Signorini problem in B1 with

vt = ut = wt on ∂B1. Then by the epiperimetric inequality

W 0
3/2(vt) ≤ (1 − η)W 0

3/2(wt).

On the other hand, since u is an almost minimizer, we have

∫
B1

|∇ut|2 ≤ (1 + tα)
∫
B1

|∇vt|2

and since also ut = vt on ∂B1, we have

W3/2(t, u) = eatα

tn+1

[∫
Bt

|∇u|2 − (3/2)(1 − btα)
t

∫
∂Bt

u2
]

≤ (1 +O(tα))W 0
3/2(vt) +O(tα)

∫
∂B1

u2
t

≤
(

1 − η

2

)
W 0

3/2(wt) +O(tα)
∫
∂B1

u2
t , for 0 < t < t0 = t0(n, α).

We can therefore write

d

dt
W3/2(t, u) ≥ −(n+ 1)(1 − tα)

t
W3/2(t, u)

+ (n+ 1)eatα(1 − btα)
t

W 0
3/2(wt) +O(tα−1)

∫
∂B1

u2
t
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≥ n+ 1
t

(
−1 + 1

1 − η/2 +O(tα)
)
W3/2(t, u) + O(tα)

tn+3

∫
∂Bt

u2

≥ η

4t W3/2(t, u) − Ctα/2−1,

for small t, where we have also used the growth estimate in Lemma  1.7.1 . Taking now δ such

that

0 < δ < min
{
η

4 ,
α

2

}
,

we have

d

dt

[
W3/2(t, u)t−δ + C

α/2 − δ
tα/2−δ

]
= t−δ

(
d

dt
W3/2(t, u) − δ

t
W3/2(t, u)

)
+ Ctα/2−δ−1

≥ t−δ−1
[
η

4 − δ
]
W3/2(t, u) − Ctα/2−δ−1 + Ctα/2−δ−1

≥ 0,

for small t, where we have used again that W3/2(t, u) ≥ 0. Thus, we can conclude that

0 ≤ W3/2(t, u) ≤ Ctδ, 0 < t < t0 = t0(n, α),

with C = C(n, α)‖u‖2
W 1,2(B1).

Using the estimate on W3/2(t, u) in Lemma  1.7.3 , we can improve on Lemma  1.7.1 in the

case κ = 3/2.

Lemma 1.7.4 (Optimal growth estimate). Let x0 ∈ B′
1/2 be a free boundary point. Then,

for 0 < t < t0 = t0(n, α),

∫
∂Bt(x0)

u2 ≤ C(n, α)‖u‖2
W 1,2(B1)t

n+2,∫
Bt(x0)

|∇u|2 ≤ C(n, α)‖u‖2
W 1,2(B1)t

n+1.

Proof. We proceed as in the proof of Lemma  1.7.1 up to the estimate

|m(t) −m(s)| ≤ C0

(
log t

s

)1/2
[W3/2(t, u) −W3/2(s, u)]1/2.
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From there, using Lemma  1.7.3 , we now have an improved bound

|m(t) −m(s)| ≤ C
(

log t
s

)1/2
tδ/2, s < t < t0,

with C = C(n, α)‖u‖W 1,2(B1). Then, by a dyadic argument, we can conclude that

|m(t) −m(s)| ≤ Ctδ/2.

Indeed, let k = 0, 1, 2, . . . be such that t/2k+1 ≤ s < t/2k. Then,

|m(t) −m(s)| ≤
k∑

j=1
|m(t/2j−1) −m(t/2j)| + |m(t/2k) −m(s)|

≤ C(log 2)1/2
k+1∑
j=1

(t/2j−1)δ/2 ≤ C(log 2)1/2 tδ/2

1 − 2−δ/2 = Ctδ/2.

In particular, we have

m(t) ≤ m(t0) + Ct
δ/2
0 ≤ C(n, α)‖u‖W 1,2(B1), t < t0.

This implies the first bound. The second bound follows immediately from the first one by

using that W3/2(t, u) ≤ W3/2(t0, u):

1
tn+1

∫
Bt

|∇u(x)|2dx ≤ (3/2)(1 − btα)
tn+2

∫
∂Bt

u(x)2dSx + e−atαW3/2(t0, u)

≤ C(n, α)‖u‖2
W 1,2(B1) + eatα0

tn+1
0

∫
Bt0

|∇u(x)|2dx

≤ C(n, α)‖u‖2
W 1,2(B1).
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1.8 3/2-Homogeneous blowups

For a free boundary point x0 ∈ B′
1/2, we consider again the 3/2-almost homogeneous

rescalings

uφx0,t(x) = u(tx+ x0)
φ(t) , x ∈ B1/(2t),

with φ = φ3/2. We now observe that the optimal growth estimates in Lemma  1.7.4 implies the

boundedness of this family of rescalings in W 1,2(BR) for any R > 1. Indeed, the rescalings

above will be defined in BR if t < 1/(2R), and by Lemma  1.7.4 , we will have

∫
BR

|∇uφx0,t|
2 = e 3b

α
tα

tn+1

∫
BRt(x0)

|∇u|2 ≤ C(n, α)‖u‖2
W 1,2(B1)R

n+1,

∫
∂BR

(uφx0,t)
2 = e 3b

α
tα

tn+2

∫
∂BRt(x0)

u2 ≤ C(n, α)‖u‖2
W 1,2(B1)R

n+2,

for 0 < t < t0/R. Arguing as in the proof of Proposition  1.6.1 , we have for a sequence

t = tj → 0+

uφx0,tj → uφx0,0 in C1
loc(B±

R ∪B′
R).

By letting R → ∞ and using Cantor’s diagonal argument, we therefore have that over a

subsequence t = tj → 0+

uφx0,tj → uφx0,0 in C1
loc(Rn

± ∪ Rn−1).

We call such uφx0,0 a 3/2-homogeneous blowup of u at x0. The name is explained by the fact

that

lim
t→0

φ(t)
t3/2 = 1,

which implies that if we consider the 3/2-homogeneous rescalings

u
(3/2)
x0,t (x) = u(tx+ x0)

t3/2 ,

then we will have

uφx0,0 = lim
tj→0

uφx0,tj = lim
tj→0

u
(3/2)
x0,tj =: u(3/2)

x0,0
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and thus uφx0,0 = u
(3/2)
x0,0 .

Remark 1.8.1. Because of the logarithmic term in the weak growth estimates in Lemma  1.7.1 ,

at the moment we are unable to consider κ-homogeneous blowups as above for frequencies

other than κ = 3/2. However, once the logarithmic term is removed, the same construction as

for κ = 3/2 applies. In particular, we note that in Lemma  1.10.6 we prove the optimal growth

estimates for frequencies κ = 2m < κ0, m ∈ N, enabling us to consider the κ-homogeneous

blowups for these values of κ.

We show next that the 3/2-homogeneous blowups are unique at free boundary points.

This is achieved by the control on the “rotation” of the rescalings uφx0,r(x).

Lemma 1.8.2 (Rotation estimate). Let u be an almost minimizer for the Signorini problem

in B1, x0 ∈ B′
1/2 a free boundary point, and δ as in Lemma  1.7.3 . Then for κ = 3/2 and

φ = φ3/2 ∫
∂B1

|uφx0,t − uφx0,s| ≤ Ctδ/2, s < t < t0 = t0(n, α),

for C = C(n, α)‖u‖W 1,2(B1).

Proof. The proof uses computations similar to the proof of Lemma  1.7.1 combined with the

growth estimated for W3/2(t, u) in Lemma  1.7.3 . We assume x0 = 0, and have

∫
∂B1

|uφt − uφs | ≤
∫
∂B1

∫ t

s

∣∣∣∣∣ ddruφr
∣∣∣∣∣ dr =

∫ t

s

∫
∂B1

∣∣∣∣∣ ddruφr
∣∣∣∣∣ dr

≤ Cn

∫ t

s

∫
∂B1

∣∣∣∣∣ ddruφr
∣∣∣∣∣
2
1/2

≤ Cn

(∫ t

s

1
r
dr
)1/2

∫ t

s
r
∫
∂B1

∣∣∣∣∣ ddruφr
∣∣∣∣∣
2
1/2

≤ Cnectα
(

log t
s

)1/2 (∫ t

s

d

dr
W3/2(r, u)dr

)1/2

, c = 3b
2α − a

2 ,

where we have re-used the computation made in the proof of Lemma  1.7.1 . Thus, we obtain

∫
∂B1

|uφt − uφs | ≤ C(n, α)
(

log t
s

)1/2
(W3/2(t, u) −W3/2(s, u))1/2 ≤ C

(
log t

s

)1/2
tδ/2.
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Then, using a dyadic argument as Lemma  1.7.4 , we can conclude that

∫
∂B1

|uφt − uφs | ≤ Ctδ/2, s < t < t0,

as required. Indeed, let k = 0, 1, 2, . . . be such that t/2k+1 ≤ s < t/2k. Then

∫
∂B1

|uφt − uφs | ≤
k∑

j=1

∫
∂B1

∣∣∣uφt/2j−1 − uφt/2j

∣∣∣+ ∫
∂B1

∣∣∣uφt/2k − uφs
∣∣∣

≤ C(log 2)1/2
k+1∑
j=1

(t/2j−1)δ/2 ≤ C(log 2)1/2 tδ/2

1 − 2−δ/2 .

This completes the proof.

The uniqueness of 3/2-homogeneous blowup now follows.

Lemma 1.8.3. Let uφx0,0 be a blowup at a free boundary point x0 ∈ B′
1/2. Then for κ = 3/2

∫
∂B1

|uφx0,t − uφx0,0| ≤ Ctδ/2, 0 < t < t0,

where C = C
(
n, α, ‖u‖W 1,2(B1)

)
and δ = δ(n, α) > 0 are as in Lemma  1.8.2 . In particular,

the blowup uφx0,0 is unique.

Proof. If ux0,0 is the limit of uφx0,tj for tj → 0, then first part of the lemma follows immediately

from Lemma  1.8.2 , by taking s = tj → 0 and passing to the limit.

To see the uniqueness of blowup, we observe that uφx0,0 is a solution of the Signorini

problem in B1, by arguing as in the proof of Lemma  1.6.1 for Almgren blowups. Now, if

ũφx0,0 is another blowup, then from the first part of the lemma we will have

∫
∂B1

|ũφx0,0 − uφx0,0|
2 = 0,

implying that both ũφx0,0 and uφx0,0 are solutions of the Signorini problem in B1 with the same

boundary values on ∂B1. By the uniqueness of such solutions, we have ũφx0,0 = uφx0,0 in B1.

The equality propagates to all of Rn by the unique continuation of harmonic functions in

Rn
±.
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We next show that not only the blowups are unique, but also depend continuously on a

free boundary point.

Lemma 1.8.4 (Continuous dependence of blowups). There exists ρ = ρ(n, α) > 0 such that

if x0, y0 ∈ Bρ are free boundary points, then

∫
∂B1

|uφx0,0 − uφy0,0| ≤ C|x0 − y0|γ,

with C = C
(
n, α, ‖u‖W 1,2(B1)

)
and γ = γ(n, α) > 0.

Proof. Let d = |x0 −y0| and dµ ≤ r ≤ 2dµ with µ ∈ (0, 1] to be determined. By Lemma  1.8.3 

we have

∫
∂B1

|uφx0,0 − uφy0,0| ≤ 2Crδ/2 +
∫
∂B1

|uφx0,r − uφy0,r|

≤ Cdµδ/2 + C

dµ(n+1/2)

∫
∂Br

|u(x0 + z) − u(y0 + z)|dSz

and taking the average over dµ ≤ r ≤ 2dµ, we have

∫
∂B1

|uφx0,0 − uφy0,0| ≤ Cdµδ/2 + C

dµ(n+3/2)

∫
B2dµ \Bdµ

|u(x0 + z) − u(y0 + z)|dz.

On the other hand, by using Lemma  1.7.4 ,

∫
B2dµ \Bdµ

|u(x0 + z) − u(y0 + z)|dz ≤
∫
B2dµ \Bdµ

∣∣∣∣∣
∫ 1

0

d

ds
u(z + x0(1 − s) + y0s)ds

∣∣∣∣∣ dz
≤ |x0 − y0|

∫ 1

0

∫
B2dµ

|∇u(z + x0(1 − s) + y0s)|dzds

≤ d
∫ 1

0

(∫
B2dµ (x0(1−s)+y0s)

|∇u|
)
ds

≤ d
∫
B2dµ+d(x0)

|∇u| ≤ d
∫
B3dµ (x0)

|∇u|

≤ Cd1+µn/2
(∫

B3dµ (x0)
|∇u|2

)1/2

≤ Cd1+µn/2dµ(n+1)/2

≤ Cd1+µ(n+1/2),

provided 3dµ < t0, which will hold if d < ρ(n, α).
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Combining the estimates, we infer that

∫
∂B1

|uφx0,0 − uφy0,0| ≤ Cdµδ/2 + Cd1−µ.

Now choosing µ so that µδ/2 = 1 − µ, that is µ = 1/(1 + δ/2), we obtain

∫
∂B1

|uφx0,0 − uφy0,0| ≤ C|x0 − y0|γ, x0, y0 ∈ B′
ρ

with

γ = δ

δ + 2 .

1.9 Regularity of the regular set

In this section we establish one of the main result of this chapter, the C1,γ regularity of

the regular set. In fact, the most technical part of the proof has already been done in the

previous section, where we proved the uniqueness of the 3/2-homogeneous blowups, as well

as their Hölder continuous dependence on the free boundary points.

We start by defining the regular set.

Definition 1.9.1 (Regular points). For an almost minimizer u for the Signorini problem in

B1, we say that a free boundary point x0 is regular if

N̂(0+, u, x0) = 3/2.

Note that since 3/2 < 2 ≤ κ0, we will have that N̂(r) < κ0 for small r > 0, implying that

Ñ(r) = N̂(r) for such r and consequently that

N(0+) = Ñ(0+) = N̂(0+) = 3/2.

In particular, the condition above does not depend on the choice of κ0 ≥ 2.

We denote the set of all regular points of u by R(u) and call it the regular set.
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An important ingredient in the analysis of the regular set is the following nondegeneracy

lemma.

Lemma 1.9.1 (Nondegeneracy at regular points). Let x0 ∈ B′
1/2 ∩ R(u) for an almost

minimizer u for the Signorini problem in B1. Then, for κ = 3/2,

lim inf
t→0

∫
∂B1

(uφx0,t)
2 = lim inf

t→0

1
tn+2

∫
∂Bt(x0)

u2 > 0.

Proof. As before, assume x0 = 0. In terms of the quantities defined in the proofs of Lem-

mas  1.7.1 and  1.7.4 , we want to prove that

lim inf
t→0

m(t) > 0.

Assume, towards a contradiction, that m(tj) → 0 for some sequence tj → 0. Recall that by

the proof of Lemma  1.7.4 , we have

|m(t) −m(s)| ≤ Ctδ/2, 0 < s < t < t0.

Now, setting s = tj → 0, we conclude that

|m(t)| ≤ Ctδ/2, 0 < t < t0.

Equivalently, we can rewrite this as

∫
∂Bt

u2 ≤ Ctn+2+δ.

Next, take κ̃ = 3/2 + δ/4 and consider Weiss’s monotonicity formula

Wκ̃(t, u) = eaκ̃tα

tn+2κ̃−2

[∫
Bt

|∇u|2 − κ̃
1 − btα

t

∫
∂Bt

u2
]
.

Now observe that
1

tn+2κ̃−1

∫
∂Bt

u2 ≤ Ctδ/2 → 0,
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which readily implies that

Wκ̃(0+, u) ≥ 0.

In particular, by monotonicity, Wκ̃(t, u) ≥ 0, for small t > 0, which also implies that

Ñ(t, u) ≥ κ̃. But then N(0+, u) = Ñ(0+, u) ≥ κ̃ = 3/2 + δ/4 contrary to the assumption in

the lemma. This completes the proof.

The next result provides two important facts: a gap in possible values of Almgren’s

frequency N(0+) as well as the classification of 3/2-homogeneous blowups.

Proposition 1.9.1. If N̂(0+, u, x0) = κ < 2, then κ = 3/2 and

uφx0,0(x) = ax0 Re(x′ · νx0 + i|xn|)3/2

for some ax0 > 0, νx0 ∈ ∂B′
1.

Proof. Without loss of generality, we may assume x0 = 0. Let rj → 0+ be a sequence

such that uφrj
→ uφ0 in C1

loc(Rn
± ∪ Rn−1). Comparing 3/2-almost homogeneous and Almgren

rescalings, we have

uφr (x) = uAr (x)µ(r), µ(r) :=

(
1

rn−1

∫
∂Br

u2
)1/2

φ(r) .

By the optimal growth estimate (Lemma  1.7.4 ) and the nondegeneracy at regular points

(Lemma  1.9.1 ) we have

0 < lim inf
r→0+

µ(r) ≤ lim sup
r→0+

µ(r) < ∞.

Thus, we may assume that, over a subsequence of rj, µ(rj) → µ0 ∈ (0,∞), and therefore

uφrj
→ µ0u

A
0 in C1

loc(B±
1 ∪B′

1),

where uA0 is an Almgren blowup of u at x0 = 0. Now, since κ < κ0, we can apply Proposi-

tion  1.6.1 to obtain that uA0 is a nonzero κ-homogeneous solution of the Signorini problem
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in B1, even in xn-variable. Next, applying Lemma  1.6.1 , we have 3/2 ≤ κ < 2 and thus by

Proposition 9.9 in [ 48 ], we must have κ = 3/2 and

uA0 (x) = Cn Re(x′ · ν0 + i|xn|)3/2

for some Cn > 0, ν0 ∈ ∂B1. (The constant Cn comes from the normalization
∫
∂B1

(uA0 )2 = 1.)

Thus,

uφ0(x) = a0 Re(x′ · ν0 + i|xn|)3/2 in B1

with a0 = Cnµ0. By the unique continuation of harmonic functions in Rn
±, we obtain that

the above formula for uφ0 propagates to all of Rn.

Proposition  1.9.1 has an immediate corollary.

Corollary 1.9.2 (Almgren frequency gap). Let u be an almost minimizer for the Signorini

problem in B1 and x0 a free boundary point. Then either

N̂(0+, u) = 3/2 or N̂(0+, u) ≥ 2.

Yet another important fact is as follows.

Corollary 1.9.3. The regular set R(u) is a relatively open subset of the free boundary.

Proof. For a fixed 0 < t < t0, the mapping x 7→ N̂(t, u, x) is continuous on Γ(u). Then,

by the monotonicity of N̂ , the mapping x 7→ N̂(0+, u, x0) is upper semicontinuous on Γ(u).

Moreover, by Proposition  1.9.1 ,

R(u) = {x ∈ Γ(u) : N̂(0+, u, x) < 2},

which implies that R(u) is relatively open in Γ(u).

The combination of Proposition  1.9.1 and Lemma  1.8.4 implies the following lemma.

Lemma 1.9.4. Let u be an almost minimizer for the Signorini problem in B1, and x0 ∈

R(u). Then there exists ρ > 0, depending on x0 such that B′
ρ(x0) ∩ Γ(u) ⊂ R(u) and if

59



uφx̄,0(x) = ax̄ Re(x′ ·νx̄+ i|xn|)3/2 is the unique 3/2-homogeneous blowup at x̄ ∈ B′
ρ(x0)∩Γ(u),

then

|ax̄ − aȳ| ≤ C0|x̄− ȳ|γ,

|νx̄ − νȳ| ≤ C0|x̄− ȳ|γ,

for any x̄, ȳ ∈ B′
ρ(x0) ∩ Γ(u) with a constant C0 depending on x0.

Proof. The proof follows by repeating the argument in Lemma 7.5 in [ 20 ].

Now we are ready to prove the main result on the regularity of the regular set.

Theorem 1.9.5 (C1,γ regularity of the regular set). Let u be an almost minimizer for the

Signorini problem in B1. Then, if x0 ∈ B′
1/2 ∩R(u), there exists ρ > 0, depending on x0 such

that, after a possible rotation of coordinate axes in Rn−1, one has B′
ρ(x0)∩Γ(u) ⊂ R(u), and

B′
ρ(x0) ∩ Γ(u) = B′

ρ(x0) ∩ {xn−1 = g(x1, . . . , xn−2)},

for g ∈ C1,γ(Rn−2) with an exponent γ = γ(n, α) ∈ (0, 1).

Proof. The proof of the theorem is similar to that of Theorem 1.2 in [  20 ]. However, we

provide full details since there are technical differences.

Step 1. By relative openness of R(u) in Γ(u), for small ρ > 0 we have B′
2ρ(x0)∩Γ(u) ⊂ R(u).

We then claim that for any ε > 0, there is rε > 0 such that for x̄ ∈ B′
ρ(x0) ∩ Γ(u), r < rε,

we have that for φ = φ3/2

‖uφx̄,r − uφx̄,0‖C1(B±
1 ) < ε.

Assuming the contrary, there is a sequence of points x̄j ∈ B′
ρ(x0) ∩ Γ(u) and radii rj → 0

such that

‖uφx̄j,rj − uφx̄j,0‖C1(B±
1 ) ≥ ε0
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for some ε0 > 0. Taking a subsequence, if necessary, we may assume x̄j → x̄0 ∈ B′
ρ(x0)∩Γ(u).

Using estimates ( 1.3.1 ), (  1.4.2 ) and Lemma  1.7.4 , we can see that uφx̄j,rj are uniformly bounded

in C1,β(B±
2 ∪B′

2). Thus, we may assume that for some w

uφx̄j,rj → w in C1(B±
1 ).

By arguing as in the proof of Proposition  1.6.1 , we see that the limit w is a solution of the

Signorini problem in B1. Further, by Lemma  1.8.3 , we have

‖uφx̄j,rj − uφx̄j,0‖L1(∂B1) → 0.

On the other hand, by Lemma  1.9.4 , we have

uφx̄j,0 → uφx̄0,0 in C1(B±
1 ),

and thus

w = uφx̄0,0 on ∂B1.

Since both w and uφx̄0,0 are solutions of the Signorini problem, they must coincide also in B1.

Therefore

uφx̄j,rj → uφx̄0,0 in C1(B±
1 ),

implying also that

‖uφx̄j,rj − uφx̄j,0‖C1(B±
1 ) → 0,

which contradicts our assumption.

Step 2. As [ 20 ], for a given ε > 0 and a unit vector ν ∈ Rn−1 define the cone

Cε(ν) = {x′ ∈ Rn−1 : x′ · ν > ε|x′|}.
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By Lemma  1.9.4 , we may assume ax̄ ≥ ax0
2 for x̄ ∈ B′

ρ(x0) ∩ Γ(u) by taking ρ small. For such

ρ we then claim that for any ε > 0 there is rε > 0 such that for any x̄ ∈ B′
ρ(x0) ∩ Γ(u) we

have

x̄+
(
Cε(νx̄) ∩B′

rε

)
⊂ {u(·, 0) > 0}.

Indeed, denoting Kε(ν) = Cε ∩ ∂B′
1/2, we have for some universal Cε > 0

Kε(νx̄) b {uφx̄,0(·, 0) > 0} ∩B′
1 and uφx̄,0(·, 0) ≥ ax̄Cε ≥ ax0

2 Cε on Kε(νx̄).

Since ax0
2 Cε is independent of x̄, by Step 1 we can find rε > 0 such that for r < 2rε,

uφx̄,r(·, 0) > 0 on Kε(νx̄).

This implies that for r < 2rε,

u(·, 0) > 0 on x̄+ rKε(νx̄) = x̄+
(
Cε(νx̄) ∩ ∂B′

r/2

)
.

Taking the union over all r < 2rε, we obtain

u(·, 0) > 0 on x̄+
(
Cε(νx̄) ∩B′

rε

)
.

Step 3. We claim that for given ε > 0, there exists rε > 0 such that for any x̄ ∈ B′
ρ(x0)∩Γ(u)

we have x̄−
(
Cε(νx̄) ∩B′

rε

)
⊂ {u(·, 0) = 0}.

Indeed, we first note that

−∂+
xn
uφx̄,0 ≥ ax̄Cε >

(
ax0

2

)
Cε on − Kε(νx̄)

for a universal constant Cε > 0. From Step 1, there exists rε > 0 such that for r < 2rε,

−∂+
xn
uφx̄,r(·, 0) > 0 on − Kε(νx̄).
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By arguing as in Step 2, we obtain

−∂+
xn
u(·, 0) > 0 on x̄−

(
C(νx̄) ∩B′

rε

)
.

By the complementarity condition in Lemma  1.4.2 , we therefore conclude that

x̄−
(
C(νx̄) ∩B′

rε

)
⊂ {−∂+

xn
u(·, 0) > 0} ⊂ {u(·, 0) = 0}.

Step 4. By rotation in Rn−1 we may assume νx0 = en−1. For any ε > 0, by Lemma  1.9.4 

again, we can take ρε = ρ(x0, ε), possibly smaller than ρ in the previous steps, such that

C2ε(en−1) ∩B′
rε

⊂ Cε(νx̄) ∩B′
rε

for x̄ ∈ B′
ρε

(x0) ∩ Γ(u).

By Step 2 and Step 3, for x̄ ∈ B′
ρε

(x0) ∩ Γ(u),

x̄+
(
C2ε(en−1) ∩B′

rε

)
⊂ {u(·, 0) > 0},

x̄−
(
C2ε(en−1) ∩B′

rε

)
⊂ {u(·, 0) = 0}.

Now, fixing ε = ε0, by the standard arguments, we conclude that there exists a Lipschitz

function g : Rn−2 → R with |∇g| ≤ Cn/ε0 such that

B′
ρe0

(x0) ∩ {u(·, 0) = 0} = B′
ρe0

(x0) ∩ {xn−1 ≤ g(x′′)},

B′
ρe0

(x0) ∩ {u(·, 0) > 0} = B′
ρe0

(x0) ∩ {xn−1 > g(x′′)}.

Step 5. Taking ε → 0 in Step 4, Γ(u) is differentiable at x0 with normal νx0 . Recentering

at any x̄ ∈ B′
ρε0

(x0) ∩ Γ(u), we see that Γ(u) has a normal νx̄ at x̄. By Lemma  1.9.4 , we

conclude that g in Step 4 is C1,γ. This completes the proof of the theorem.

63



1.10 Singular points

In this section we study the set of so-called singular free boundary points. An important

technical tool to accomplish this is the logarithmic epiperimetric inequality of [ 27 ]. We use

it for two purposes: to establish the optimal growth at singular points as well as the rate

of convergence of rescalings to blowups, ultimately implying a structural theorem for the

singular set.

Definition 1.10.1 (Singular points). Let u be an almost minimizer for the Signorini problem

in B1. We say that a free boundary point x0 is singular if the coincidence set Λ(u) = {u(·, 0) =

0} ⊂ B′
1 has zero Hn−1-density at x0, i.e.,

lim
r→0+

Hn−1 (Λ(u) ∩B′
r(x0))

Hn−1(B′
r(x0))

= 0.

By using Almgren’s rescalings uAx0,r, we can rewrite this condition as

lim
r→0+

Hn−1(Λ(uAx0,r) ∩B′
1) = 0.

We denote the set of all singular points by Σ(u) and call it the singular set.

Throughout the section we will assume that

κ0 > 2.

We can take κ0 as large as we like, however, we have to remember that the constants in

N̂ = N̂κ0 and Wκ do depend on κ0.

We then have the following characterization of singular points, similar to Proposition 9.22

in [ 48 ] for the solutions of the Signorini problem.

Proposition 1.10.1 (Characterization of singular points). Let u be an almost minimizer

for the Signorini problem in B1, and x0 ∈ B′
1/2 ∩ Γ(u) be such that N̂(0+, u, x0) = κ < κ0.

Then the following statements are equivalent.

(i) x0 ∈ Σ(u).
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(ii) any Almgren blowup of u at x0 is a nonzero polynomial from the class

Qκ = {q : q is homogeneous polynomial of degree κ such that

∆q = 0, q(x′, 0) ≥ 0, q(x′, xn) = q(x′,−xn)}.

(iii) κ = 2m for some m ∈ N.

Note that for κ < κ0, the condition N̂(0+) = κ is equivalent to N(0+) = κ.

Proof. Without loss of generality we may assume x0 = 0. By Proposition  1.6.1 , any Almgren

blowup uA0 of u at 0 is a nonzero global solution of the Signorini problem, homogeneous of

degree κ. Moreover uA0 is a C1
loc limit of Almgren rescalings uArj

in B±
1 ∪B′

1. Because of that,

most parts of the proof of this proposition are just the repetitions of Proposition 9.22 in

[ 48 ]. Thus, by following Proposition 9.22 in [  48 ], we can easily see the implications (ii) ⇒

(iii), (iii) ⇒ (ii), (ii) ⇒ (i). Moreover, in the proof of the remaining implication (i) ⇒ (ii),

the only nontrivial part is that any blowup uA0 is harmonic in B1. But this comes from the

complementarity condition in Lemma  1.4.2 . Indeed, assuming (i), we claim that

∂+
xn
uA0 = 0 in B′

1.

Otherwise,

Hn−1
(
{−∂+

xn
uA0 (·, 0) > 0} ∩B′

1

)
≥ δ

for some δ > 0. Then using the continuity from the below we also have that for some ρ > 0,

Hn−1
(
{−∂+

xn
uA0 (·, 0) > ρ} ∩B′

1−ρ

)
≥ δ/2.

Using C1
loc convergence uArj

→ uA0 in B±
1 ∪B′

1 and applying the complementarity condition in

Lemma  1.4.2 to rescalings uArj
, we obtain that for small rj,

Hn−1
(
Λ(uArj

) ∩B′
1

)
≥ Hn−1

(
{−∂+

xn
uArj

(·, 0) > 0} ∩B′
1

)
≥ δ/4,

65



which contradicts (i). Now recalling that uA0 is a solution of the Signorini problem, even in

xn-variable, it satisfies

∆uA0 = 2(∂+
xn
uA0 )Hn−1|Λ(uA

0 ) = 0 in B1.

By homogeneity, we obtain that uA0 is harmonic in all of Rn, and we complete the proof as

in [ 48 ].

In order to study the singular set, in view of Proposition  1.10.1 , we need to refine the

growth estimate in Lemma  1.7.1 by removing the logarithmic term in the case when κ =

2m < κ0, m ∈ N. In the case κ = 3/2 we were able to do so by proving a decay estimate

for W3/2 with the help of the epiperimetric inequality. In the case κ = 2m we will use the

so-called logarithmic epiperimetric inequality for the Weiss energy

W 0
κ (w) =

∫
B1

|∇w|2 − κ
∫
∂B1

w2, κ = 2m, m ∈ N

that first appeared in [ 27 ]. To state this result, we recall the notation

A = {w ∈ W 1,2(B1) : w ≥ 0 on B′
1, w(x′, xn) = w(x′,−xn)}.

Theorem 1.10.1 (Logarithmic epiperimetric inequality). Let κ = 2m, m ∈ N and w ∈ A

be homogeneous of degree κ in B1 such that w ∈ W 1,2(∂B1) and

∫
∂B1

w2 ≤ 1, |W 0
κ (w)| ≤ 1.

There is constant ε = ε(n, κ) > 0 and a function v ∈ A with v = w on ∂B1 such that

W 0
κ (v) ≤ W 0

κ (w)(1 − ε|W 0
κ (w)|γ), where γ = n− 2

n
.

To simplify the notations, in the results below all constants will depend on n, α, κ, κ0,

as well as ‖u‖W 1,2(B1), unless stated otherwise, in addition to other quantities. Thus, when

we write C = C(σ), we mean C = C(n, α, κ, κ0, ‖u‖W 1,2(B1), σ).
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The next lemma allows to apply the logarithmic epiperimetric inequality, without the

constraints.

Lemma 1.10.2. Let u be an almost minimizer for the Signorini problem in B1 such that

0 ∈ Γ(u) and N̂(0+, u) = κ < κ0, κ = 2m, m ∈ N. For 0 < r < 1, let

ur(x) = u(κ)
r (x) = u(rx)

rκ
, wr(x) = |x|κur

(
x

|x|

)
.

Suppose that for a given 0 ≤ σ ≤ 1, there is C = C(σ) such that

∫
∂Br

u2 ≤ C
(

log 1
r

)σ
rn+2κ−1.

Then there is a constant ε = ε(σ) > 0 and h ∈ A with h = wr on ∂B1 such that

(i) If |W 0
κ (wr)| ≥

∫
∂B1

w2
r , then

W 0
κ (h) ≤ (1 − ε)W 0

κ (wr)

(ii) If |W 0
κ (wr)| ≤ 2

∫
∂B1

w2
r , then

W 0
κ (h) ≤ W 0

κ (wr)
(

1 − ε
(

log 1
r

)−σγ
|W 0

κ (wr)|γ
)
, where γ = n− 2

n
.

Proof. Let A =
∫
∂B1

w2
r + |W 0

κ (wr)|. Then by Theorem  1.10.1 applied to wr/A1/2, there is

h ∈ A such that h = wr on ∂B1 and

W 0
κ (h) ≤ Wκ(wr)0

(
1 − εA−γ|W 0

κ (wr)|γ
)
.

If |W 0
κ (wr)| ≥

∫
∂B1

w2
r , then A ≤ 2|W 0

κ (wr)|, implying

W 0
κ (h) ≤ W 0

κ (wr)
(
1 − ε2−γ

)
.
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If |W 0
κ (wr)| ≤ 2

∫
∂B1

w2
r , then

A ≤ 3
∫
∂B1

w2
r = 3

rn+2κ−1

∫
∂Br

u2 ≤ C(σ)
(

log 1
r

)σ
.

This completes the proof.

Now we show that the logarithmic epiperimetric inequality, combined with a growth

estimate for u, implies a growth estimate on Wκ(t, u). This is the first part of a bootstrapping

argument that gradually decreases the power of log(1/t) in the bound for u.

Lemma 1.10.3. Let u be an almost minimizer for the Signorini problem in B1 such that

0 ∈ Γ(u) and N̂(0+, u) = κ < κ0, κ = 2m, m ∈ N. Suppose that for some 0 ≤ σ ≤ 1

∫
∂Br

u2 ≤ C(σ)
(

log 1
r

)σ
rn+2κ−1, 0 < r < r0(σ).

Then,

0 ≤ Wκ(t, u) ≤ C(σ)
(

log 1
t

)− 1−σγ
γ

, 0 < t < t0(σ).

Proof. We first observe that Wκ(t, u) ≥ 0 for 0 < t < t0, which follows easily from the

condition N̂(0+, u) = κ < κ0, see the beginning of the proof of Lemma  1.7.1 .

Next, recall that in the proof of Lemma  1.7.3 , we have used epiperimetric inequality to

show that 0 ≤ W3/2(t, u) ≤ Ctδ. This followed by obtaining a differential inequality for W3/2.

Thus, if for 0 < t < t0, if alternative (i) holds in Lemma  1.10.2 , i.e., W 0
κ (h) ≤ (1−ε)W 0

κ (wt),

by arguing in the same way, we can show that

d

dt
Wκ(t, u) ≥ ε/4

t
Wκ(t, u) − Ctα/2−1, (1.10.1)

for C = C(σ).

Suppose now the alternative (ii) holds in Lemma  1.10.2 for some 0 < t < t0. Then,

following the computations in Lemma  1.7.3 , we have

d

dt
Wκ(t, u) ≥ − (n+ 2κ− 2)(1 − tα)

t
Wκ(t, u)
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+ eatα(1 − btα)
t

∫
∂B1

(∂νut − κut)2 + (∂τut)2 − κ(n+ κ− 2)u2
t

+ (2κ0 + n)tα−1
∫
∂B1

u2
t .

For wt as in the statement of Lemma  1.10.2 , by following the computations in the proof of

Theorem  1.5.1 , we have the identity

∫
∂B1

(∂τut)2 − κ(n+ κ− 2)u2
t = (n+ 2κ− 2)W 0

κ (wt).

This gives

d

dt
Wκ(t, u) ≥ −(n+ 2κ− 2)(1 − tα)

t
Wκ(t, u)

+ eatα(1 − btα)
t

(n+ 2κ− 2)W 0
κ (wt) + (2κ0 + n)tα−1

∫
∂B1

u2
t . (1.10.2)

Let now vt be the solution of the Signorini problem in B1 with vt = ut = wt on ∂B1. Then

(1 + tα)W 0
κ (wt) ≥ (1 + tα)W 0

κ (vt) ≥
∫
B1

|∇ut|2 − κ(1 + tα)
∫
∂B1

u2
t

= W 0
κ (ut) − κtα

∫
∂B1

u2
t = e−atαWκ(t, u) − κ(b+ 1)tα

∫
∂B1

u2
t .

(1.10.3)

Now, if

e−atαWκ(t, u) − κ(b+ 1)tα
∫
∂B1

u2
t ≤ 0,

then by Lemma  1.7.1 we have

Wκ(t, u) ≤ eatακ(b+ 1)tα
∫
∂B1

u2
t ≤ Ctα

(
log 1

t

)
≤ Ctα/2. (1.10.4)

We then proceed under the assumption

e−atαWκ(t, u) − κ(b+ 1)tα
∫
∂B1

u2
t > 0,

which also implies

W 0
κ (wt) > 0.
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Now, applying Lemma  1.10.2 , we have

W 0
κ (wt) ≥ W 0

κ (vt) + ε
(

log 1
t

)−σγ
W 0
κ (wt)γ+1

≥ 1
1 + tα

[
e−atαWκ(t, u) − κ(b+ 1)tα

∫
∂B1

u2
t

]
+ ε

(
log 1

t

)−σγ ( 1
1 + tα

)γ+1
×

×
[
e−atαWκ(t, u) − κ(b+ 1)tα

∫
∂B1

u2
t

]γ+1

≥ (1 − tα)
[
e−atαWκ(t, u) − κ(b+ 1)tα

∫
∂B1

u2
t

]
+ ε

(
log 1

t

)−σγ
(1 − tα)γ+1×

×


(
e−atαWκ(t, u)

)γ+1

2γ −
(
κ(b+ 1)tα

∫
∂B1

u2
t

)γ+1


= (1 − tα)e−atαWκ(t, u)

+ ε

2γ
(

log 1
t

)−σγ
(1 − tα)γ+1e−a(γ+1)tαWκ(t, u)γ+1

− (1 − tα)κ(b+ 1)tα
∫
∂B1

u2
t

− ε
(

log 1
t

)−σγ
(1 − tα)γ+1κγ+1(b+ 1)γ+1tα(γ+1)

(∫
∂B1

u2
t

)γ+1
,

(1.10.5)

where we used (  1.10.3 ) in the second inequality and the convexity of x 7→ xγ+1 on R+ in the

third inequality. Now (  1.10.2 ) and ( 1.10.5 ), together with Lemma  1.7.1 , yield

d

dt
Wκ(t, u) ≥ −C1t

α−1Wκ(t, u) + C2t
−1
(

log 1
t

)−σγ
Wκ(t, u)γ+1 − C3t

α/2−1, (1.10.6)

where Ci = Ci(σ). Summarizing, we have that at every 0 < t < t0(σ), either (  1.10.1 ),

( 1.10.6 ), or the bound ( 1.10.4 ) holds. Further note that by the growth estimate in Lemma  1.7.1 ,

the bound (  1.10.1 ) implies (  1.10.6 ) for sufficiently small t and thus we may assume that

( 1.10.6 ) holds for all 0 < t < t0 for which Wκ(t, u) > Ctα/2.
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To proceed, let 0 < t < t0 be such that Wκ(t, u) ≥ tα/8. Then the bound (  1.10.6 ) holds

and we can derive that for C = γC2
2(1−σγ) , we have

d

dt

(
−Wκ(t, u)−γe−tα/4 + C

(
log 1

t

)1−σγ)

= Wκ(t, u)−γ−1e−tα/4
(
γ
d

dt
Wκ(t, u) + α

4Wκ(t, u)tα/4−1
)

− C(1 − σγ)t−1
(

log 1
t

)−σγ

≥ Wκ(t, u)−γe−tα/4
tα/4−1

(
α

4 − γC1t
3α/4 − γC3t

α/4

Wκ(t, u)

)

+
(

log 1
t

)−σγ
t−1

(
e−tα/4

γC2 − C(1 − σγ)
)

≥ 0,

0 < t < t0 = t0(σ). Since also the function −t−γ(α/8)e−tα/4 + C
(
log 1

t

)1−σγ
is nondecreasing

for small t, denoting

Ŵκ(t, u) = max{Wκ(t, u), tα/8},

we obtain that the function

−Ŵκ(t, u)−γe−tα/4 + C
(

log 1
t

)1−σγ

is nondecreasing on (0, t0). Hence,

−Ŵκ(t, u)−γe−tα/4 + C
(

log 1
t

)1−σγ
≤ −Ŵκ(t0, u)−γe−tα/4

0 + C
(

log 1
t0

)1−σγ

≤ C
(

log 1
t0

)1−σγ
.

If 0 < t < t20, then
(
log 1

t0

)1−σγ
<
(

1
2

)1−σγ (
log 1

t

)1−σγ
, implying that

−Ŵκ(t, u)−γe−tα/4 ≤ C
(
(1/2)1−σγ − 1

)(
log 1

t

)1−σγ

and hence

Wκ(t, u) ≤ Ŵκ(t, u) ≤ C
(
1 − (1/2)1−σγ

)− 1
γ

(
log 1

t

)− 1−σγ
γ

.
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Lemma 1.10.4. If u is as in Lemma  1.10.3 with 2
n−2 < σ ≤ 1, then there exist positive

C = C(σ), t0 = t0(σ) such that

∫
∂Bt

u2 ≤ C
(

log 1
t

)σ− 2
n−2

tn+2κ−1, 0 < t < t0.

Proof. Going back to the proof and notations of Lemma  1.7.1 , we have that for 0 < s < t < t0

|m(t) −m(s)| ≤ C
(

log t
s

)1/2
(Wκ(t) −Wκ(s))1/2 .

Let now 0 ≤ j ≤ i be such that 2−2i+1
< t ≤ 2−2i , 2−2j+1

< t0 ≤ 2−2j . Then

|m(t0) −m(t)| ≤ |m(t0) −m(2−2j+1)| + |m(2−2i ) −m(t)| +
i−1∑
k=j+1

|m(2−2k) −m(2−2k+1)|

≤
i∑

k=0
C
[
log

(
2−2k

)
− log

(
2−2k+1)]1/2 [

Wκ

(
2−2k

)
−Wκ

(
2−2k+1)]1/2

≤ C
i∑

k=0
2k/2Wκ

(
2−2k

)1/2
≤ C

i∑
k=0

2(1− 1−σγ
γ

)k/2

≤ C2(σ− 2
n−2 )i/2 ≤ C

(
log 1

t

) 1
2 (σ− 2

n−2 )
.

Note that in the fifth inequality we have used that 1 − 1−σγ
γ

= σ − 2
n−2 > 0. Thus

m(t) ≤ m(t0) + C
(

log 1
t

) 1
2 (σ− 2

n−2 )
≤ C

(
log 1

t

) 1
2 (σ− 2

n−2 )
.

This implies the desired result.

Lemma  1.10.3 and Lemma  1.10.4 imply the following.

Corollary 1.10.5 (Bootstraping). Let u be an almost minimizer for the Signorini problem

in B1 such that 0 ∈ Γ(u) and N̂(0+, u) = κ < κ0, κ = 2m, m ∈ N. Suppose that for
2

n−2 < ≤1 ∫
∂Bt

u2 ≤ C(σ)
(

log 1
t

)σ
tn+2κ−1, 0 < t < t0(σ).
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Then ∫
∂Bt

u2 ≤ C ′(σ)
(

log 1
t

)σ− 2
n−2

tn+2κ−1, 0 < t < t′0(σ).

Lemma 1.10.6 (Optimal growth estimate at sigular points). Let u be an almost minimizer

for the Signorini problem in B1 such that 0 ∈ Γ(u) and N̂(0+, u) = κ < κ0, κ = 2m, m ∈ N.

Then, for 0 < t < t0,

∫
∂Bt

u2 ≤ Ctn+2κ−1,∫
Bt

|∇u|2 ≤ Ctn+2κ−2.

Proof. Starting with σ = 1 in Lemma  1.7.1 and repeatedly applying Corollary  1.10.5 , we

find 0 < ≤ min{ 2
n−2 , 1} such that

∫
∂Bt

u2 ≤ C
(

log 1
t

)σ
tn+2κ−1, 0 < t < t0.

In fact, we can make σ to be strictly less than 2
n−2 by noticing that in Lemma  1.10.4 we can

replace 2
n−2 by any smaller positive number. Then by Lemma  1.10.3 

0 ≤ Wκ(t, u) ≤ C
(

log 1
t

)− 1−σγ
γ

.

Recall also that for 0 < s < t < t0

|m(t) −m(s)| ≤ C
(

log t
s

)1/2
(Wκ(t) −Wκ(s))1/2 .

We then again consider the exponentially dyadic decomposition as in the proof of Lemma  1.10.4 .

Let 0 ≤ j ≤ i be such that 2−2i+1 ≤ s/t0 < 2−2i and 2−2j+1 ≤ t/t0 < 2−2j . Then,

|m(t) −m(s)| ≤ C
i∑
k=j

2k/2Wκ(2−2k

t0)1/2 ≤ C
∞∑
k=j

2
(

1− 1−σγ
γ

)
k/2

≤ C2
(
σ− 2

n−2

)
j/2 ≤ C

(
log 1

t

)(σ− 2
n−2

)
/2
.

(1.10.7)
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Particularly,

m(t) ≤ m(t0) + C
(

log 1
t0

)(σ− 2
n−2

)
/2
.

This gives the first bound. The second bound is obtained from the first one by arguing as

at the end of Lemma  1.7.1 .

Remark 1.10.7. The growth estimates in Lemma  1.10.6 enable us to consider κ-homogeneous

blowups

uφtj → uφ0 in C1
loc(Rn

± ∪ Rn−1).

for t = tj → 0+, similar to 3/2-homogeneous blowups, defined at the beginning of Section  1.7 ,

see Remark  1.8.1 .

Proposition 1.10.2. Let u be an almost minimizer for the Signorini problem in B1 such

that 0 ∈ Γ(u) and N̂(0+, u) = κ < κ0, κ = 2m, m ∈ N. Then there exist C > 0 and t0 > 0

such that ∫
∂B1

|uφt − uφs | ≤ C
(

log 1
t

)− 1−γ
2γ

, 0 < t < t0.

In particular the blowup uφ0 is unique.

Proof. Using Lemma  1.10.6 , we apply Lemma  1.10.3 with =0 to obtain

0 ≤ Wκ(t, u) ≤ C
(

log 1
t

)− 1
γ

.

Recall now the estimate

∫
∂B1

|uφt − uφs | ≤ C
(

log t
s

)1/2
(Wκ(t) −Wκ(s))1/2 ,

for 0 < s < t < t0, that we proved in Lemma  1.8.2 in the case κ = 3/2 – the proof actually

works for any 0 < κ < κ0. Then, applying the exponentially dyadic argument as in the proof

of Lemma  1.10.6 , we obtain

∫
∂B1

|uφt − uφs | ≤ C
(

log 1
t

)− 1−γ
2γ

.
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Lemma 1.10.8 (Nondegeneracy). Let 0 be a free boundary point of u such that N̂(0+, u) = κ,

κ = 2m, m ∈ N. Then

lim inf
t→0

∫
∂B1

(uφt )2 = lim inf
t→0

1
tn+2κ−1

∫
∂Bt

u2 > 0.

Proof. We use the approach of Lemma 7.2 in [  27 ]. Assume to the contrary that for some

rj ↘ 0+

lim
j→∞

1
rn+2κ−1

j

∫
∂Brj

u2 = 0.

Consider then the corresponding Almgren rescalings uArj
(x). By Proposition  1.6.1 , over a

subsequence, uArj
→ q for some blowup q. By a characterization of singular points in Propo-

sition  1.10.1 , q is κ-homogeneous and is normalized by ‖q‖L2(∂B1) = 1. Next, for each

Almgren rescaling uArj
consider its κ-almost homogeneous rescalings

[uArj
]φt :=

uArj
(tx)
φ(t) .

Since uArj
is an almost minimizer in B1/rj with gauge function ω(t) = (rjt)α, we have

N(0+, uArj
) = lim

s→0+
N(s, uArj

) = lim
s→0+

N(rjs, u) = N(0+, u) = κ.

Thus, by Proposition  1.10.2 , over subsequences, [uArj
]φt converges to a unique blowup qrj and

∫
∂B1

∣∣∣[uArj
]φt − qrj

∣∣∣ ≤ C
(

log 1
t

)− 1−γ
2γ

, 0 < t < t0.

Notice that since ‖uArj
‖W 1,2(B1) is uniformly bounded, the constant C is independent of rj, t.

Now we fix rj, and consider a sequence {ρi}∞
i=1 = {ri/rj}∞

i=1. Note that up to subsequence,

[uArj
]φρi → qrj as ρi → 0, by the uniqueness. Then

∫
∂B1

q2
rj

= lim
ρi→0

1
ρn+2κ−1

i

∫
∂Bρi

(uArj
)2 r

n+2κ−1
j∫
∂Brj

u2 lim
i→∞

1
(rjρi)n+2κ−1

∫
∂Brjρi

u2

=
rn+2κ−1

j∫
∂Brj

u2 lim
i→∞

1
rn+2κ−1

i

∫
∂Bri

u2 = 0
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by the contradiction assumption. Thus, qrj = 0 on ∂B1, and hence

∫
∂B1

∣∣∣[uArj
]φt
∣∣∣ ≤ C

(
log 1

t

)− 1−γ
2γ

.

Now for any ρ > 0 and rj,

1 = 1
ρn+2κ−1

∫
∂Bρ

q2

≤
‖q‖L∞(∂Bρ)

ρκ
1

ρn+κ−1

∫
∂Bρ

|q|

≤ ‖q‖L∞(∂B1)

[
1

ρn+κ−1

∫
∂Bρ

|q − uArj
| + 1

ρn+κ−1

∫
∂Bρ

|uArj
|
]

≤ ‖q‖L∞(∂B1)

 1
ρn+κ−1Cnρ

n−1
2

(∫
∂Bρ

|q − uArj
|2
)1/2

+ e−
(

κb
α

)
ρα
∫
∂B1

∣∣∣[uArj
]φρ
∣∣∣


≤ C‖q‖L∞(∂B1)

( 1
ρn+2κ−1

∫
∂Bρ

|q − uArj
|2
)1/2

+
(

log 1
ρ

)− 1−γ
2γ

 .
Note that uArj

→ q in C1
loc(B±

1 ∪ B′
1). We choose first ρ > 0 small and then rj = rj(ρ) > 0

small to reach a contradiction.

The nondegeneracy implies the following important fact, which enables the use of the

Whitney Extension Theorem in the proof of the structural theorem on the singular set

(Theorem  1.10.10 below).

For κ = 2m < κ0, m ∈ N, we denote

Σκ(u) := {x0 ∈ Σ(u) : N(0+, u, x0) = κ}.

Lemma 1.10.9. The set Σκ(u) is of topological type Fσ; i.e., it is a countable union of closed

sets.

Proof. For j ∈ N, j ≥ 2, let

Ej :=
{
x0 ∈ Σκ(u) ∩B1−1/j : 1

j
≤ 1
ρn+2κ−1

∫
∂Bρ(x0)

u2 ≤ j for 0 < ρ <
1
2j

}
.
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Then by Lemma  1.10.6 and Lemma  1.10.8 , Σκ(u) = ⋃∞
j=2 Ej. We now claim that Ej is closed

for any j ≥ 2. Indeed, take a sequence xi ∈ Ej such that xi → x0 as i → ∞. Then x0 ∈ B1−1/j

and for every 0 < ρ < 1/(2j), by the local uniform continuity of u,

1
ρn+2κ−1

∫
∂Bρ(x0)

u2 = lim
i→∞

1
ρn+2κ−1

∫
∂Bρ(xi)

u2 ∈
[

1
j
, j
]
. (1.10.8)

Next, since Γ(u) is relatively closed in B′
1, we also know that x0 ∈ Γ(u). Moreover, since

N(0+, u, xi) = κ and the function x 7→ N̂(0+, u, x) is upper semicontinuous, we have

κ = lim sup
i→∞

N̂(0+, u, xi) ≤ N̂(0+, u, x0).

If N̂(0+, u, x0) = κ′ > κ, then by Lemma  1.7.1 ,

1
ρn+2κ−1

∫
∂Bρ(x0)

u2 ≤ Cρ2(κ′−κ)
(

log 1
ρ

)
→ 0 as ρ → 0,

which contradicts (  1.10.8 ). Therefore, N̂(0+, u, x0) = κ and consequently x0 ∈ Ej. Hence,

Ej is closed, j = 2, 3, . . ., implying that Σκ(u) is Fσ.

To state the main result of this chapter concerning the singular points, we need to

introduce the following notations. For κ = 2m < κ0, m ∈ N and x0 ∈ Σκ(u), we define

d(κ)
x0 := dim{ξ ∈ Rn−1 : ξ · ∇xu

φ
x0(x, 0) ≡ 0 on Rn−1},

which has the meaning of the dimension of Σκ(u) at x0, and where uφx0 is the unique κ-

homogeneous blowup at x0. In fact, d(κ)
x0 is the dimension of the linear subspace Σκ(uφx0) ⊂

Rn−1. Since uφx0 is a nonzero solution of the Signorini problem, it cannot vanish identically

on Rn−1 (see [ 14 ]) and therefore d(κ)
x0 < n− 1.

For d = 0, 1, . . . , n− 2, we denote

Σd
κ(u) := {x0 ∈ Σκ(u) : d(κ)

x0 = d}.
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Theorem 1.10.10 (Structure of the singular set). Let u be an almost minimizer for the

Signorini problem in B1. Then for every κ = 2m < κ0, m ∈ N, and d = 0, 1, . . . , n − 2,

the set Σd
κ(u) is contained in the union of countably many submanifolds of dimension d and

class C1,log.

Proof. Let κ = 2m, m ∈ N. For x ∈ Σκ(u) ∩ B′
1/2, let qx ∈ Qκ denote the unique κ-

homogeneous blowup of u. By the optimal growth (Lemma  1.10.6 ) and the nondegeneracy

(Lemma  1.10.8 ), we can write

qx = λxq
A
x , λx > 0, ‖qAx ‖L2(∂B1) = 1,

where qAx ∈ Qκ is the corresponding Almgren blowup. We want to show that the qx, qAx , λx
depend continuously on x ∈ Σκ, with a logarithmic modulus of continuity.

Let x1, x2 ∈ Σκ(u) ∩B′
1/2. Then for t > 0, to be chosen below, we can write

‖qx1 − qx2‖L1(∂B1) ≤ ‖qx1 −uφx1,t‖L1(∂B1) + ‖uφx1,t−uφx2,t‖L1(∂B1) + ‖uφx2,t− qx2‖L1(∂B1). (1.10.9)

By Proposition  1.10.2 , we have

‖qx − uφx,t‖L1(∂B1) ≤ C
(

log 1
t

)− 1
n−2

(1.10.10)

for x ∈ Σκ(u)∩B′
1/2. This controls the first and third term on the right hand side of (  1.10.9 )

To estimate the middle term, we observe that

‖uφx1,t − uφx2,t‖L1(∂B1) ≤ e
(

κb
α

)
tα

tκ

∫
∂B1

∫ 1

0
|∇u(x1 + tz + r(x2 − x1))| |x1 − x2| dr dSz

for any 0 < t < 1/2. Recalling that ∇u(x1) = 0 and u ∈ C1,β(B±
1 ∪B1), we have

|∇u(x1 + tz + r(x2 − x1)| ≤ C|tz + r(x2 − x1)|β ≤ C(t+ |x1 − x2|)β ≤ C|x1 − x2|
β

2(κ−β)
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if we choose t = |x1 − x2|
1

2(κ−β) and have |x1 − x2| < (1/2)2(κ−β). This gives

‖uφx1,t − uφx2,t‖L1(∂B1) ≤ C

tκ
|x1 − x2|

β
2(κ−β) |x1 − x2| ≤ C|x1 − x2|1/2. (1.10.11)

Combining ( 1.10.9 ), ( 1.10.11 ), and ( 1.10.10 ), we obtain

‖qx1 − qx2‖L1(∂B1) ≤ C

(
log 1

|x1 − x2|

)− 1
n−2

. (1.10.12)

Next, by Lemma  1.10.6 , for any x ∈ Σκ(u) ∩B′
1/2 and small t

∫
∂B1

(uφx,t)2 ≤ C

with C independent of x, and passing to the limit as t → ∞ obtain the bound

λ2
x =

∫
∂B1

q2
x ≤ C

Moreover, since qx is a κ-homogeneous harmonic polynomial, we also have

‖qx‖L∞(B1) ≤ C(n, κ)‖qx‖L2(∂B1) ≤ C. (1.10.13)

Then, by combining ( 1.10.12 ) and ( 1.10.13 ), we have

|λx1 − λx2| ≤ |λ2
x1 − λ2

x2|1/2 ≤
(∫

∂B1
|q2
x1 − q2

x2|
)1/2

≤ ‖qx1 + qx2‖1/2
L∞(B1)‖qx1 − qx1‖1/2

L1(∂B1)

≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

.

(1.10.14)

Finally, we want to estimate qAx1 − qAx2 . By writing

‖qx1 − qx2‖L1(∂B1) =
∫
∂B1

|λx1q
A
x1 − λx2q

A
x2|

=
∫
∂B1

|λx1(qAx1 − qAx2) + (λx1 − λx2)qAx2|
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≥ λx1

∫
∂B1

|qAx1 − qAx2 | − |λx1 − λx2|
∫
∂B1

|qAx2|,

we estimate

λx1

∫
∂B1

|qAx1 − qAx2| ≤ ‖qx1 − qx2‖L1(∂B1) + |λx1 − λx2|
∫
∂B1

|qAx2|

≤ ‖qx1 − qx2‖L1(∂B1) + C(n)|λx1 − λx2|

≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

,

(1.10.15)

where we used ‖qAx2‖L2(∂B1) = 1 in the second inequality and ( 1.10.12 ) and the bound ( 1.10.14 )

in the third inequality. Next, using that qAx are κ-homogeneous harmonic polynomials, we

have

‖qAx1 − qAx2‖L∞(B1) ≤ C‖qAx1 − qAx2‖L1(∂B1),

which combined with ( 1.10.15 ) gives

λx1‖qAx1 − qAx2‖L∞(B1) ≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

. (1.10.16)

Now we fix x0 ∈ Σκ(u) ∩B′
1/4. Then by (  1.10.14 ), there exists δ = δ(x0) ∈

(
0, (1/2)2(κ−β)+1

)
such that λx ≥ 1/2λx0 if x ∈ Σκ(u) ∩B′

δ(x0). Then by (  1.10.16 ), we conclude that

‖qAx1 − qAx2‖L∞(B1) ≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

, x1, x2 ∈ Σκ(u) ∩B′
δ(x0). (1.10.17)

Notice that the constant C does not depend on x1, x2, but both C and δ do depend on x0.

Once we have the estimates ( 1.10.14 ) and (  1.10.17 ), as well as Lemma  1.10.9 , we can

apply the Whitney Extension Theorem of Fefferman’s [ 56 ], to complete the proof, see e.g.,

the proof of Theorem 5 in [ 27 ].
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1.A Some examples of almost minimizers

Example 1.A.1. If u is a minimizer of the functional

∫
D
a(x)|∇u|2

over the set Kψ,g(D,M) with strictly positive a ∈ C0,α(D), 0 < α ≤ 1, then u is an almost

minimizer for the Signorini problem with a gauge function ω(r) = Crα.

Proof. This is rather immediate.

Example 1.A.2. Let u be a solution of the Signorini problem for the Laplacian with drift

with the velocity field b ∈ Lp(B1), p > n:

−∆u+ b(x)∇u = 0 in B±
1

−∂xnu ≥ 0, u ≥ 0, u∂xnu = 0 on B′
1,

even in xn-variable. We understand this in the weak sense that u satisfies the variational

inequality ∫
B1

∇u∇(w − u) + (b(x)∇u)(w − u) ≥ 0,

for any competitor w ∈ K0,u(B1, B
′
1), i.e. w ∈ u + W 1,2

0 (B1) such that w ≥ 0 on B′
1 in the

sense of traces. Then u is an almost minimizer for the Signorini problem with ψ = 0 on

M = Rn−1 × {0} and a gauge function ω(r) = Cr1−n/p.

Proof. This example corresponds to Example  2.A.1 when A = I. Thus, for this proof, we

refer to the proof of Example  2.A.1 

81



2. ALMOST MINIMIZERS FOR THE THIN OBSTACLE

PROBLEM WITH VARIABLE COEFFICIENTS

2.1 Introduction and Main Results

2.1.1 The thin obstacle (or Signorini) problem with variable coefficients

Let D be a domain in Rn, n ≥ 2, and Π a smooth hypersurface (the thin space), that

splits D into two subdomains D±: D \ Π = D+ ∪D−. Let ψ : Π → R be a certain (smooth)

function (the thin obstacle) and g : ∂D → R (the boundary values). Let also A(x) = (aij(x))

be an n×n symmetric uniformly elliptic matrix, α-Hölder continuous as a function of x ∈ D,

for some 0 < α < 1, with ellipticity constants 0 < λ ≤ 1 ≤ Λ < ∞:

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2, x ∈ D, ξ ∈ Rn.

Then consider the minimizer U of the energy functional

JA,D(V ) =
∫
D

〈A(x)∇V,∇V 〉dx,

over a closed convex set Kψ,g(D,Π) ⊂ W 1,2(D) defined by

Kψ,g(D,Π) := {V ∈ W 1,2(D) : V = g on ∂D, V ≥ ψ on Π ∩D}.

Because of the unilateral constraint on the thin space Π, the problem is known as the thin

obstacle problem. Away from Π, the minimizer solves a uniformly elliptic divergence form

equation with variable coefficients

div(A(x)∇U) = 0 in D+ ∪D−.

On the thin space, the minimizers satisfy

U ≥ ψ, 〈A∇U, ν+〉 + 〈A∇U, ν−〉 ≥ 0,

(U − ψ)(〈A∇U, ν+〉 + 〈A∇U, ν−〉) = 0 on D ∩ Π,
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in a certain weak sense, where ν± are the exterior normals to D± on Π and 〈A∇U, ν±〉 are

understood as the limits from inside D±. These are known as the Signorini complementarity

conditions and therefore the problem is often referred to as the Signorini problem with

variable coefficients (or A-Signorini problem, for short). One of the main objects of the

study is the free boundary

Γ(U) = ∂Π{x ∈ Π : U(x) = ψ(x)} ∩D,

which separates the coincidence set {U = ψ} from the noncoincidence set {U > ψ} in D∩Π.

The set Γ(U) is also called a thin free boundary as it lives in Π and is expected to be of

codimension two with respect to the domain D.

These types of problems go back to the original Signorini problem in elastostatics [ 4 ], but

also appear in many applications ranging from math biology (semipermeable membranes) to

boundary heat control [  5 ] or more recently in math finance, with connection to the obstacle

problem for the fractional Laplacian, through the Caffarelli-Silvestre extension [  10 ]. The

presence of the free boundary makes the problem particularly challenging and while the C1,β

regularity of the minimizers (on the either side of the thin space) was known already in [ 6 ]–

[ 8 ], the study of the free boundary became possible only after the breakthrough work of [ 9 ] on

the optimal C1,1/2 regularity of the minimizers. Since then there has been a significant effort

in the literature to understand the structure and regularity properties of the free boundary

in many different settings including equations with variable coefficients, problems for the

fractional Laplacian, as well as the time-dependent problems, see e.g. [  11 ]–[ 30 ], [  55 ], [  57 ],

[ 58 ], and many others.

2.1.2 Almost minimizers

The approach we take in this chapter is by considering almost minimizers of the functional

JA,D in the sense of Anzellotti [ 31 ]. For this we need a gauge function ω : (0, r0) → [0,∞),

r0 > 0, which is a nondecreasing function with ω(0+) = 0, as well as a family {Er(x0)}0<r<r0

of open sets for any x0 ∈ D, comparable to balls centered at x0 (in what comes next, we will

take it to be a family of ellipsoids).
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Definition 2.1.1 (Almost minimizers). We say U is an almost minimizer for the A-Signorini

problem in D if U ∈ W 1,2
loc (D), U ≥ ψ on D ∩ Π, and for any Er(x0) b D with 0 < r < r0,

we have ∫
Er(x0)

〈A∇U,∇U〉 ≤ (1 + ω(r))
∫
Er(x0)

〈A∇V,∇V 〉, (2.1.1)

for any competitor function V ∈ Kψ,U(Er(x0),Π), i.e., V satisfying

V = U on ∂Er(x0), V ≥ ψ on Er(x0) ∩ Π.

In fact, observing that for x, x0 ∈ D, and ξ ∈ Rn, ξ 6= 0

(1 − C|x− x0|α) ≤ 〈A(x0)ξ, ξ〉
〈A(x)ξ, ξ〉 ≤ (1 + C|x− x0|α),

with C depending on the ellipticity of A and ‖A‖C0,α(D), we can rewrite ( 2.1.1 ) in the form

with frozen coefficients

∫
Er(x0)

〈A(x0)∇U,∇U〉 ≤ (1 + ω(r))
∫
Er(x0)

〈A(x0)∇V,∇V 〉, (2.1.2)

by replacing the gauge ω(r) with C(ω(r) + rα) if necessary.

An example of an almost minimizer is given in Example  2.A.1 . Generally, we view

almost minimizers as perturbations of minimizers in a certain sense, but in the case of

variable coefficients there are even some advantages of treating minimizers themselves as

almost minimizers, particularly in the sense of frozen coefficients ( 2.1.2 ).

Almost minimizers for the Signorini problem have already been studied in Chapter  1 in

the case A(x) ≡ I, where their C1,β-regularity (on the either side of the thin space) has

been established and a number of technical tools such as Weiss- and Almgren-type mono-

tonicity formulas were proved. In combination with the epiperimetric and log-epiperimetric

inequalities these tools allowed to establish the optimal growth and prove the C1,γ-regularity

of the regular set and a structural theorem on the singular set. The aim of this chapter is to

extend these results to the variable coefficient case. It is noteworthy that the results that we

obtain (see Theorems  F – I below) for almost minimizers improve even on some of the results
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available for the minimizers. For example, we only need the coefficients A(x) to be C0,α with

arbitrary 0 < α < 1 in order to study the free boundary, compared to W 1,p, p > n, in [  26 ]

or C0,α, 1/2 < α < 1, in [  55 ] for the regular part of the free boundary and C0,1 in [ 58 ] for

the singular set.

2.1.3 Main results

Since we are interested in local regularity results, we will assume that D = B1, the unit

ball in Rn, and that

Π = Rn−1 × {0}

after a local diffeomorphism. In this chapter, we will consider only the case when the thin

obstacle is identically zero: ψ ≡ 0.

Further, we will assume r0 = 1 in Definition  2.1.1 and take {Er(x0)} to be the family of

ellipsoids associated with the positive symmetric matrix A(x0):

Er(x0) := A1/2(x0)(Br) + x0.

By the ellipticity of A(x0), we have

Bλ1/2r(x0) ⊂ Er(x0) ⊂ BΛ1/2r(x0).

To simplify the tracking of the constants, we will assume that there is M > 0 such that

‖A‖C0,α(B1) ≤ M, λ−1,Λ ≤ M, ω(r) ≤ Mrα, 0 < α < 1. (2.1.3)

Then we can go between almost minimizing properties ( 2.1.1 ) and (  2.1.2 ) by changing M if

necessary.

Then our first result is as follows.
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Theorem F (C1,β-regularity of almost minimizers). Let U ∈ W 1,2(B1) be an almost min-

imizer for the A-Signorini problem in B1, under the assumptions above. Then, U ∈

C1,β
loc (B±

1 ∪B1) for β = β(α, n) ∈ (0, 1) and

‖U‖C1,β(K) ≤ C‖U‖W 1,2(B1),

for any K b B±
1 ∪B′

1 and C = C(n, α,M,K).

The proof is obtained by using Morrey and Campanato space estimates, following the

original idea of Anzellotti [  31 ] that was successfully used in the constant coefficient case of

our problem in Chapter  1 . We explicitly mention, however, that in the above theorem we

do not require the even symmetry of the almost minimizer in the xn-variable, so Theorem  F 

extends the corresponding result in Chapter  1 also in that respect.

To state our results related to the free boundary, we need to assume the following qua-

sisymmetry condition. For x0 ∈ B′
1 = B1 ∩ Π, let

Px0 = I − 2A(x0)en ⊗ en
ann(x0)

be a matrix corresponding to the reflection with respect to Π in the conormal direction

A(x0)en at x0. Note that Px0x = x for any x ∈ Π and Px0Er(x0) = Er(x0). Then, for a

function U in B1 define

U∗
x0(x) := U(x) + U(Px0x)

2 .

Note that U∗
x0 may not be defined in all of B1, but is defined in any ellipsoid Er(x0) as long

as it is contained in B1. Note also that U = U∗
x0 on Π.

Definition 2.1.2 (Quasisymmetry). We say that U ∈ W 1,2(B1) is A-quasisymmetric with

respect to Π, if there is a constant Q such that

∫
Er(x0)

〈A(x0)∇U,∇U〉 ≤ Q
∫
Er(x0)

〈A(x0)∇U∗
x0 ,∇U

∗
x0〉,

for any ellipsoid Er(x0) b B1 centered at any x0 ∈ B′
1.

We will assume Q ≤ M throughout the chapter, in addition to ( 2.1.3 ).
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Note that when A(x) ≡ I and U is even in xn, then it is automatically quasisymmetric

in the sense of the above definition. The quasisymmetry condition will also hold for even

minimizers if en is an eigenvector of A(x0) for any x0 ∈ B′
1, i.e., when

ain(x0) = 0, for i = 1, . . . , n− 1, x0 ∈ B′
1.

This condition is typically imposed in the existing literature and can be satisfied with an

application of a local C1,α-diffeomorphism that preserves Π, see [  15 ], [  55 ], [  59 ]. The reason

for a quasisymmetry condition is that the growth rate of the symmetrization U∗
x0 over the

ellipsoids Er(x0) captures that of U = U∗
x0 on the thin space Π at x0 ∈ Γ(U), while in the

nonsymmetric case there could be a mismatch in those rates caused by the odd component

of U , vanishing on Π.

More specifically, the growth rate of U on Π at x0 ∈ Γ(U) is determined by the following

quantity

NA(r, U∗
x0 , x0) :=

r
∫
Er(x0)〈A(x0)∇U∗

x0 ,∇U
∗
x0〉∫

∂Er(x0)(U∗
x0)2µx0(x− x0)

,

which is a version of Almgren’s frequency functional [ 47 ] written in the geometric terms

determined by A(x0), where µx0(z) = |A−1/2(x0)z|
|A−1(x0)z| is the conformal factor. As in the con-

stant coefficient case, this quantity is of paramount importance for the classification of free

boundary points.

Theorem G (Monotonicity of the truncated frequency). Let U be as in Theorem  F and

assume additionally that U is A-quasisymmetric with respect to Π. Then for any κ0 ≥ 2,

there is b = b(n, α,M, κ0) such that the truncated frequency

r 7→ N̂A
κ0(r, U∗

x0 , x0) := min
{ 1

1 − brα
NA(r, U∗

x0 , x0), κ0

}

is monotone increasing for x0 ∈ B′
1/2 ∩ Γ(u), and 0 < r < r0(n, α,M, κ0). Moreover, if we

define

κ(x0) := N̂A
κ0(0+, U∗

x0 , x0),
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the frequency of U at x0, then we have that either

κ(x0) = 3/2 or κ(x0) ≥ 2.

The monotonicity of the truncated frequency follows from that of an one-parametric

family of so-called Weiss-type energy functionals {WA
κ }0<κ<κ0 , see Section  2.7 , which also

play a fundamental role in the analysis of the free boundary.

The theorem above gives the following decomposition of the free boundary

Γ(U) = Γ3/2(U) ∪
⋃
κ≥2

Γκ(U),

where

Γκ(U) := {x0 ∈ Γ(U) : κ(x0) = κ}.

The set Γ3/2(U), where the frequency is minimal is known as the regular set and is also

denoted R(U).

Theorem H (Regularity of the regular set). Let U be as in Theorem  G . Then R(U) is a

relatively open subset of the free boundary Γ(U) and is an (n − 2)-dimensional manifold of

class C1,γ.

Finally, we state our main result for the so-called singular set. A free boundary point

x0 ∈ Γ(U) is called singular if the coincidence set Λ(U) := {x ∈ B′
1 : U(x) = 0} has

Hn−1-density zero at x0, i.e.,

lim
r→0+

Hn−1(Λ(U) ∩B′
r(x0))

Hn−1(B′
r)

= 0.

We denote the set of all singular points by Σ(U) and call it the singular set. It can be shown

that if κ(x0) < κ0, then x0 ∈ Σ(U) if and only if κ(x0) = 2m, m ∈ N (see Proposition  2.12.1 ).

For such values of κ, we then define

Σκ(U) := Γκ(U).
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Theorem I (Structure of the singular set). Let U be as in Theorem  G . Then, for any

κ = 2m < κ0, m ∈ N, Σκ(U) is contained in a countable union of (n − 2)-dimensional

manifolds of class C1,log.

A more refined version of this result is given in Theorem  2.12.4 .

Theorems  H and  I follow by establishing the uniqueness and continuous dependence of

almost homogeneous blowups with Hölder modulus of continuity in the case of regular free

boundary points and a logarithmic one in the case of the singular points. These follow

from optimal growth and rotation estimates which are based on the use of Weiss-type mono-

tonicity formulas in conjunction with so-called epiperimetric [ 20 ] and log-epiperimetric [ 27 ]

inequalities for the solutions of the Signorini problem.

Proofs of Theorems  F – I 

While we don’t give formal proofs of the theorems above in the main body of the chapter,

they are contained in the following results proved there:

◦ Theorem  F is essentially the same as Theorem  2.5.1 .

◦ Theorem  G follows by combining Theorem  2.7.2 and Corollary  2.11.2 .

◦ The statement of Theorem  H is contained in that of Theorem  2.11.5 .

◦ The statement of Theorem  I is contained in that of Theorem  2.12.4 .

2.2 Coordinate transformations

In order to use the results available for almost minimizers in the case of A ≡ I, proved in

Chapter  1 , in this section we describe a “deskewing procedure” or coordinate transformations

to straighten A(x0), x0 ∈ B1.

For the notational convenience, we will denote

ax0 = A1/2(x0), x0 ∈ B1

so that

〈A(x0)ξ, ξ〉 = |ax0ξ|2, ξ ∈ Rn.
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Then ax0 is a symmetric positive definite matrix, with eigenvalues between λ1/2 and Λ1/2

and the mapping x0 7→ ax0 is α-Hölder continuous for x0 ∈ B1. For every x0 ∈ B1, we define

an affine transformation Tx0 by

Tx0(x) = a−1
x0 (x− x0).

Note that T−1
x0 (y) = ax0y + x0. Then for the ellipsoids Er(x0), we have

Er(x0) = T−1
x0 (Br) = ax0Br + x0, Tx0(Er(x0)) = Br.

Further, we let

Πx0 := Tx0(Π).

Then Πx0 is a hyperplane parallel to a linear subspace a−1
x0 Π spanned by the vectors a−1

x0 e1,

a−1
x0 e2, …, a−1

x0 en−1 and with a normal ax0en. Generally, this hyperplane will be tilted with

respect to Π, unless ax0en is a multiple of en, or equivalently that en is an eigenvector of

the matrix A(x0), or that ain(x0) = 0 for i = 1, . . . , n − 1 for its entries. To rectify that,

we construct a family of orthogonal transformations Ox0 , x0 ∈ B1, by applying the Gram-

Schmidt process to the ordered basis {a−1
x0 e1, a

−1
x0 e2, . . . , a

−1
x0 en−1} of a−1

x0 Π. Namely, let

ex0
1 :=

a−1
x0 e1

|a−1
x0 e1|

,

ex0
2 :=

a−1
x0 e2 − 〈a−1

x0 e2, ex0
1 〉ex0

1

|a−1
x0 e2 − 〈a−1

x0 e2, ex0
1 〉ex0

1 |
,

ex0
3 :=

a−1
x0 e3 − 〈a−1

x0 e3, ex0
1 〉ex0

1 − 〈a−1
x0 e3, ex0

2 〉ex0
2

|a−1
x0 e3 − 〈a−1

x0 e3, ex0
1 〉ex0

1 − 〈a−1
x0 e3, ex0

2 〉ex0
2 |

...

Moreover, letting

ex0
n := ax0en

|ax0en|
,
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we obtain an ordered orthonormal basis {ex0
1 , . . . , ex0

n−1, ex0
n } of Rn. Then consider the rotation

Ox0 of Rn that takes the standard basis {e1, e2, . . . , en} to the one above, i.e.,

Ox0 : Rn → Rn, Ox0(ei) = ex0
i , i = 1, 2, . . . , n.

Note that the Gram-Schmidt process above guarantees that x0 7→ Ox0 is α-Hölder continuous.

We also have that by construction

O−1
x0 a

−1
x0 Π = Π.

In particular, when x0 ∈ Π, we have Πx0 = a−1
x0 Π and therefore

O−1
x0 (Πx0) = Π.

Because of this property, we also define the modifications of the matrices ax0 and the trans-

formations Tx0 as follows:

āx0 = ax0Ox0 , T̄x0 = O−1
x0 ◦ Tx0 ,

so that T̄x0(x) = ā−1
x0 (x− x0). Since Ox0 is a rotation, we still have

Er(x0) = T̄−1
x0 (Br), T̄x0(Er(x0)) = Br,

see Fig.  2.1 .

Next, for a function U : B1 → R and a point x0 ∈ B1, we define its “deskewed” version

at x0 by

ux0 = U ◦ T̄−1
x0 .
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Tx0
))

O−1
x0

))

T̄x0

11

Er(x0) Br

Π Πx0 Π

Figure 2.1. Deskewing: coordinate transformations Tx0 , O−1
x0 , T̄x0 .

As we will see, if U is an almost minimizer, the transformed function ux0 will satisfy an

almost minimizing property with the identity matrix I at the origin. Before we state and

prove that fact, we need the following basic change of variable formulas:

∫
Er(x0)

U2 = det ax0

∫
Br

u2
x0 (2.2.1)∫

Er(x0)
〈A(x0)∇U,∇U〉 = det ax0

∫
Br

|∇ux0|2 (2.2.2)∫
∂Er(x0)

U2µx0(x− x0) = det ax0

∫
∂Br

u2
x0 , (2.2.3)

with the conformal factor

µx0(z) :=
|a−1
x0 z|

|A−1(x0)z|
. (2.2.4)

We also have the following modified version of ( 2.2.2 ).

∫
Er(x0)

|ax0∇U − 〈ax0∇U〉Er(x0)|2 = det ax0

∫
Br

|∇ux0 − 〈∇ux0〉Br |2. (2.2.5)

While ( 2.2.1 )–( 2.2.2 ) and ( 2.2.5 ) are clear, let us give more details on (  2.2.3 ). If we let

f(x) := |a−1
x0 (x− x0)|, then {f = t} = ∂Et(x0), t > 0, and by the coarea formula

∫
Er(x0)

U2dx =
∫ r

0

∫
∂Et(x0)

U2

|∇f(x)|dSxdt.

Using now that 1/|∇f(x)| = |a−1
x0 (x−x0)|

|A−1(x0)(x−x0)| = µx0(x− x0) and then differentiating (  2.2.1 ), we

obtain ( 2.2.3 ).
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We will also need the following estimate for the conformal factor µx0 :

λ1/2 ≤ µx0(z) ≤ Λ1/2. (2.2.6)

Indeed, if y = A−1(x0)z, then

µx0(z) = |ax0y|
|y|

∈ [λ1/2,Λ1/2].

Definition 2.2.1 (Almost Signorini property at a point). We say that a function u ∈

W 1,2(BR) satisfies the almost Signorini property at 0 in BR if

∫
Br

|∇u|2 ≤ (1 + ω(r))
∫
Br

|∇v|2,

for all 0 < r < R and v ∈ K0,u(Br,Π).

Lemma 2.2.1. Suppose U is an almost minimizer of the A-Signorini problem in B1. Let

x0 ∈ B′
1 be such that ER(x0) ⊂ B1. Then ux0 = U ◦ T̄−1

x0 satisfies the almost Signorini

property at 0 in BR.

Proof. Let V be the energy minimizer of
∫
Er(x0)〈A(x0)∇V,∇V 〉 on K0,U(Er(x0),Π), 0 < r <

R. Then vx0 = V ◦ T̄−1
x0 is the energy minimizer of

∫
Br

|∇vx0|2 on K0,ux0
(Br,Π). Moreover,

by ( 2.2.2 ),

∫
Br

|∇ux0|2 = det a−1
x0

∫
Er(x0)

〈A(x0)∇U,∇U〉

≤ (1 + ω(r)) det a−1
x0

∫
Er(x0)

〈A(x0)∇V,∇V 〉

= (1 + ω(r))
∫
Br

|∇vx0|2.

This completes the proof.
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2.3 Almost A-harmonic functions

We start our analysis of almost minimizers in the absence of the thin obstacle. We

call such functions almost A-harmonic functions. In this section, we establish their C1,α/2

regularity (Theorem  2.3.2 ). A similar result has already been proved by Anzellotti [ 31 ], but

for almost minimizers over balls {Br(x0)} rather than ellipsoids {Er(x0)}; nevertheless, the

proofs are similar. The proofs in this section also illustrate how we are going to use the

results available for “deskewed” functions ux0 = U ◦ T̄−1
x0 to infer the corresponding results

for almost minimizers U .

Definition 2.3.1 (Almost A-harmonic functions). We say that U is an almost A-harmonic

function in B1 if U ∈ W 1,2(B1) and

∫
Er(x0)

〈A∇U,∇U〉 ≤ (1 + ω(r))
∫
Er(x0)

〈A∇V,∇V 〉,

whenever Er(x0) b B1 and V ∈ KU(Er(x0)) := U +W 1,2
0 (Er(x0)).

Note that similarly to the case of A-Signorini problem, we can write the almost minimiz-

ing property above in the form with frozen coefficients

∫
Er(x0)

〈A(x0)∇U,∇U〉 ≤ (1 + ω(r))
∫
Er(x0)

〈A(x0)∇V,∇V 〉.

Definition 2.3.2 (Almost harmonic property at a point). We say that a function u ∈

W 1,2(BR) satisfies almost harmonic property at 0 in BR if

∫
Br

|∇u|2 ≤ (1 + ω(r))
∫
Br

|∇v|2,

for all 0 < r < R and v ∈ Ku(Br).

Lemma 2.3.1. If U is an almost A-harmonic function in B1 and x0 ∈ B1 with ER(x0) ⊂ B1,

then ux0 satisfies the almost harmonic property at 0 in BR.

Proof. The proof is similar to that of Lemma  2.2.1 .
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Proposition 2.3.1 (cf.Proposition  1.2.2 ). Let U be an almost A-harmonic function in B1.

Then for any Br(x0) b B1 and 0 < ρ < r, we have

∫
Bρ(x0)

|∇U |2 ≤ C
[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇U |2, (2.3.1)∫
Bρ(x0)

∣∣∣∇U − 〈∇U〉Bρ(x0)

∣∣∣2 ≤ C
(
ρ

r

)n+2 ∫
Br(x0)

∣∣∣∇U − 〈∇U〉Br(x0)

∣∣∣2
+ Crα

∫
Br(x0)

|∇U |2,

(2.3.2)

with C = C(n, α,M).

Proof. Since ux0 satisfies the almost harmonic property at 0, if h is the harmonic replacement

of ux0 in Br (i.e., h is harmonic in Br with h = ux0 on ∂Br), then

∫
Br

|∇ux0|2 ≤ (1 +Mrα)
∫
Br

|∇h|2.

This is enough to repeat the arguments in Proposition  1.2.2 , to obtain

∫
Bρ

|∇ux0|2 ≤ 2
[(
ρ

r

)n
+Mrα

] ∫
Br

|∇ux0|2,∫
Bρ

|∇ux0 − 〈∇ux0〉Bρ|2 ≤ 9
(
ρ

r

)n+2 ∫
Br

|∇ux0 − 〈∇ux0〉Br |2 + 24Mrα
∫
Br

|∇ux0|2.

Then, by the change of variables formulas ( 2.2.2 ) and ( 2.2.5 ), we have

∫
Eρ(x0)

〈A(x0)∇U,∇U〉 ≤ 2
[(
ρ

r

)n
+Mrα

] ∫
Er(x0)

〈A(x0)∇U,∇U〉, (2.3.3)∫
Eρ(x0)

∣∣∣ax0∇U − 〈ax0∇U〉Eρ(x0)

∣∣∣2 ≤ 9
(
ρ

r

)n+2 ∫
Er(x0)

∣∣∣ax0∇U − 〈ax0∇U〉Er(x0)

∣∣∣2
+ 24Mrα

∫
Er(x0)

〈A(x0)∇U,∇U〉.

(2.3.4)

To show now that ( 2.3.3 )–( 2.3.4 ) imply ( 2.3.1 )–( 2.3.2 ), we first consider the case

0 < ρ < (λ/Λ)1/2r.
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Then, using the inclusions

Bρ(x0) ⊂ Eλ−1/2ρ(x0) ⊂ EΛ−1/2r(x0) ⊂ Br(x0),

applying ( 2.3.3 )–( 2.3.4 ) with λ−1/2ρ and Λ−1/2r in place of ρ and r, and using the ellipticity

of A(x0), we obtain ( 2.3.1 )–( 2.3.2 ) in this case.

In the remaining case

(λ/Λ)1/2r ≤ ρ ≤ r,

the inequalities ( 2.3.1 )–( 2.3.2 ) hold readily, as

∫
Bρ(x0)

|∇U |2 ≤
(

Λ
λ

)n/2 (
ρ

r

)n ∫
Br(x0)

|∇U |2,∫
Bρ(x0)

|∇U − 〈∇U〉Bρ(x0)|2 ≤
∫
Bρ(x0)

|∇U − 〈∇U〉Br(x0)|2

≤
(

Λ
λ

)n+2
2 (

ρ

r

)n+2 ∫
Br(x0)

|∇U − 〈∇U〉Br(x0)|2.

Theorem 2.3.2. Let U be an almost A-harmonic function in B1. Then U ∈ C1,α/2(B1) with

‖U‖C1,α/2(K) ≤ C‖U‖W 1,2(B1),

for any K b B1, with C = C(n, α,M,K).

Proof. Let K b B1 and x0 ∈ K̃ := {y ∈ B1 : dist(y, ∂B1) ≥ r0}, where r0 = 1
2 dist(K, ∂B1).

For in(0, 1), a direct application of Lemma  1.2.2 to ( 2.3.1 ) gives

∫
Br(x0)

|∇U |2 ≤ C‖∇U‖2
L2(B1)r

n−2+2σ,

for any 0 < r < r0, with C depending on n, α, σ, M , K. Combining this with (  2.3.2 ) also

gives,

∫
Bρ(x0)

∣∣∣∇U − 〈∇U〉Bρ(x0)

∣∣∣2 ≤ C
(
ρ

r

)n+2 ∫
Br(x0)

∣∣∣∇U − 〈∇U〉Br(x0)

∣∣∣2
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+ C‖∇U‖2
L2(B1)r

n−2+2σ+α, (2.3.5)

for any 0 < ρ < r < r0. If we take σ ∈ (0, 1) such that α′ := −2+2σ+α
2 > 0, then Lemma  1.2.2 

produces ∫
Bρ(x0)

∣∣∣∇U − 〈∇U〉Bρ(x0)

∣∣∣2 ≤ C‖∇U‖2
L2(B1)ρ

n+2α′

and this readily implies ∇U ∈ C0,α′(K̃). Now we know that ∇U is bounded in K̃, and thus∫
Br(x0) |∇U |2 ≤ C‖∇U‖2

L2(B1)r
n. Plugging this in the last term of ( 2.3.2 ) and repeating the

arguments above, we conclude that U ∈ C1,α/2.

2.4 Almost Lipschitz regularity of almost minimizers

In this section, we make the first step towards the regularity of almost minimizers for the

A-Signorini problem and show that they are almost Lipschitz, i.e., C0,σ for every 0 < σ < 1

(Theorem  2.4.1 ). The proof is based on the Morrey space embedding, similar to the case of

almost A-harmonic functions, as well as the case of almost minimizers with A = I, treated

in Chapter  1 . We want to emphasize, however, that the results on almost Lipschitz and C1,β

regularity of almost minimizers (in the next section) do not require any symmetry condition

that was imposed in Chapter  1 .

We start with an auxiliary result on the solutions of the Signorini problem.

Proposition 2.4.1. Let h be a solution of the Signorini problem in B1. Then

∫
Bρ

|∇h|2 ≤
(
ρ

R

)n ∫
BR

|∇h|2, 0 < ρ < R < 1. (2.4.1)

Proof. The difference of this proposition from Proposition  1.3.1 is that h(y) is not assumed

to be even symmetric in yn-variable. To circumvent that, we decompose h into the sum of

even and odd functions in yn, i.e.,

h(y′, yn) = h(y′, yn) + h(y′,−yn)
2 + h(y′, yn) − h(y′,−yn)

2 (2.4.2)

=: h∗(y′, yn) + h](y′, yn).
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It is easy to see that h∗ is a solution of the Signorini problem, even in yn-variable, and h] is

a harmonic function, odd in yn-variable.

Then both |∇h∗|2 and |∇h]|2 are subharmonic functions in B1 (see Proposition  1.3.1 for

h∗), which implies that for 0 < ρ < R < 1

∫
Bρ

|∇h∗|2 ≤
(
ρ

R

)n ∫
BR

|∇h∗|2,∫
Bρ

|∇h]|2 ≤
(
ρ

R

)n ∫
BR

|∇h]|2.

Now observing that
∫
Bt

|∇h|2 =
∫
Bt

(
|∇h∗|2 + |∇h]|2

)
, for 0 < t ≤ R, we obtain ( 2.4.1 ).

Proposition 2.4.2 (cf. Proposition  1.3.2 ). Let U be an almost minimizer for the A-Signorini

problem in B1, and BR(x0) b B1. Then, there is C1 = C1(n,M) > 1 such that

∫
Bρ(x0)

|∇U |2 ≤ C1

[(
ρ

R

)n
+Rα

] ∫
BR(x0)

|∇U |2, 0 < ρ < R. (2.4.3)

Proof. Case 1. Suppose x0 ∈ B′
1. Note that ux0 satisfies the Signorini property at 0 in

Br with r = Λ−1/2R. If h is the Signorini replacement of ux0 in Br (that is, h solves the

Signorini problem in Br with thin obstacle 0 on Π and boundary values h = ux0 on ∂Br),

then h satisfies ∫
Br

〈∇h,∇(v − h)〉 ≥ 0,

for any v ∈ K0,ux0
(Br,Π), which easily follows from the standard first variation argument.

Plugging in v = ux0 , we obtain

∫
Br

〈∇h,∇ux0〉 ≥
∫
Br

|∇h|2.

Then it follows that

∫
Br

|∇(ux0 − h)|2 =
∫
Br

(
|∇ux0|2 + |∇h|2 − 2〈∇ux0 ,∇h〉

)
≤
∫
Br

|∇ux0|2 −
∫
Br

|∇h|2

≤ (1 +Mrα)
∫
Br

|∇h|2 −
∫
Br

|∇h|2 ≤ Mrα
∫
Br

|∇ux0|2,
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where in the last inequality we have used that h is the energy minimizer of the Dirichlet

integral in K0,ux0
(Br,Π). Then, for ρ ≤ r, we have

∫
Bρ

|∇ux0|2 ≤ 2
∫
Bρ

|∇h|2 + 2
∫
Bρ

|∇(ux0 − h)|2 ≤ 2
(
ρ

r

)n ∫
Br

|∇h|2 + 2Mrα
∫
Br

|∇ux0|2

≤ C
[(
ρ

r

)n
+ rα

] ∫
Br

|∇ux0|2.

Now, we transform back from ux0 to U as we did in Proposition  2.3.1 to obtain ( 2.4.3 ) in

this case.

Case 2. Now consider the case x0 ∈ B+
1 . If ρ ≥ r/4, then we simply have

∫
Bρ(x0)

|∇U |2 ≤ 4n
(
ρ

r

)n ∫
Br(x0)

|∇U |2.

Thus, we may assume ρ < r/4. Then, let d := dist(x0, B
′
1) > 0 and choose x1 ∈ ∂Bd(x0)∩B′

1.

Case 2.1. If ρ ≥ d, then we use Bρ(x0) ⊂ B2ρ(x1) ⊂ Br/2(x1) ⊂ Br(x0) and the result of

Case 1 to write

∫
Bρ(x0)

|∇U |2 ≤
∫
B2ρ(x1)

|∇U |2 ≤ C

[(
2ρ
r/2

)n
+ (r/2)α

] ∫
Br/2(x1)

|∇U |2

≤ C
[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇U |2.

Case 2.2. Suppose now d > ρ. If d > r, then Br(x0) b B+
1 . Since U is almost harmonic in

B+
1 , we can apply Proposition  2.3.1 to obtain

∫
Bρ(x0)

|∇U |2 ≤ C
[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇U |2.

Thus, we may assume d ≤ r. Then we note that Bd(x0) ⊂ B+
1 and by a limiting argument

from the previous estimate, we obtain

∫
Bρ(x0)

|∇U |2 ≤ C
[(
ρ

d

)n
+ rα

] ∫
Bd(x0)

|∇U |2.
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To estimate
∫
Bd(x0) |∇U |2 in the right-hand side of the above inequality, we further consider

the two subcases.

Case 2.2.1. If r/4 ≤ d, then

∫
Bd(x0)

|∇U |2 ≤ 4n
(
d

r

)n ∫
Br(x0)

|∇U |2,

which immediately implies ( 2.4.3 ).

Case 2.2.2. It remains to consider the case ρ < d < r/4. Using Case 1 again, we have

∫
Bd(x0)

|∇U |2 ≤
∫
B2d(x1)

|∇U |2 ≤ C

[(
2d
r/2

)n
+ (r/2)α

] ∫
Br/2(x1)

|∇U |2

≤ C

[(
d

r

)n
+ rα

] ∫
Br(x0)

|∇U |2,

which also implies ( 2.4.3 ). This concludes the proof of the proposition.

As we have seen in Chapter  1 , Proposition  2.4.2 implies the almost Lipschitz regularity

of almost minimizers.

Theorem 2.4.1. Let U be an almost minimizer for the A-Signorini problem in B1. Then

U ∈ C0,σ(B1) for all 0 < σ < 1. Moreover, for any K b B1,

‖U‖C0,σ(K) ≤ C‖U‖W 1,2(B1),

with C = C(n, α,M, σ,K).

Proof. The proof is essentially identical to that of Theorem  1.3.1 . Let K b B1 and x0 ∈

K. Take r0 = r0(n, α,M, σ,K) > 0 such that r0 < dist(K, ∂B1) and rα0 ≤ ε(C1, n, n +

2σ − 2), where ε = ε(C1, n, n + 2σ − 2) is as in Lemma  1.2.2 and C1 = C1(n,M) is as in

Proposition  2.4.2 . Then for all 0 < ρ < r < r0, by Proposition  2.4.2 ,

∫
Bρ(x0)

|∇U |2 ≤ C1

[(
ρ

r

)n
+ rα

] ∫
Br(x0)

|∇U |2.
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By Lemma  1.2.2 , we get

∫
Bρ(x0)

|∇U |2 ≤ C(n,M, σ)
(
ρ

r

)n+2σ−2 ∫
Br(x0)

|∇U |2.

Taking r ↗ r0, we conclude that

∫
Bρ(x0)

|∇U |2 ≤ C(n, α,M, σ,K)‖∇U‖2
L2(B1)ρ

n+2σ−2. (2.4.4)

By the Morrey space embedding (Corollary 3.2 in [ 50 ]), we obtain U ∈ C0,σ(K) with

‖U‖C0,σ(K) ≤ C(n, α,M, σ,K)‖U‖W 1,2(B1). (2.4.5)

2.5 C1,β regularity of almost minimizers

In this section we prove C1,β regularity of the almost minimizers for the A-Signorini

problem (Theorem  2.5.1 ). While we take advantage of the results available for the even

symmetric almost minimizers with A = I in Chapter  1 , removing the symmetry condition

requires new additional steps, combined with “deskewing” arguments to generalize to the

variable coefficient case.

We start again with an auxiliary result for the solutions of the Signorini problem.

Proposition 2.5.1. Let h be a solution of the Signorini problem in Br, 0 < r < 1. Define

∇̂h :=


∇h(y′, yn), yn ≥ 0

∇h(y′,−yn), yn < 0,

the even extension of ∇h from B+
r to Br. Then for 0 < α < 1, there are C1 = C1(n, α),

C2 = C2(n, α) such that for all 0 < ρ ≤ s ≤ (3/4)r,

∫
Bρ

|∇̂h− 〈∇̂h〉Bρ|2 ≤ C1

(
ρ

s

)n+α ∫
Bs

|∇̂h− 〈∇̂h〉Bs |2 + C2
sn+1

rn+3

∫
Br

h2. (2.5.1)
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Proof. This proposition differs from Proposition  1.4.1 only by not requiring h(y) to be even

in the yn-variable. As in the proof of Proposition  2.4.1 we split h into its even and odd parts

h(y) = h∗(y) + h](y), y ∈ Br.

Recall that h∗ is still a solution of the Signorini problem in Br, but now even in yn and h]

is a harmonic function in Br, odd in yn. Then, by Proposition  2.4.1 we have

∫
Bρ

|∇̂h∗ − 〈∇̂h∗〉Bρ|2 ≤ C1

(
ρ

s

)n+α ∫
Bs

|∇̂h∗ − 〈∇̂h∗〉Bs|2 + C2
sn+1

rn+3

∫
Br

(h∗)2. (2.5.2)

Now we need a similar estimate for h]. Since h] is harmonic, by the standard interior

estimates, we have

sup
B(3/4)r

|D2h]| ≤ C(n)
r2

( 1
rn

∫
Br

(h])2
)1/2

.

Thus, taking the averages on B+
ρ , we will therefore have

∫
B+

ρ

|∇h] − 〈∇h]〉B+
ρ

|2 ≤ C(n)ρn+2
(

sup
Bρ

|D2h]|
)2

≤ C(n) ρ
n+2

rn+4

∫
Br

(h])2

≤ C(n) s
n+1

rn+3

∫
Br

(h])2, 0 < ρ < s ≤ (3/4)r,

which can be rewritten as

∫
Bρ

|∇̂h] − 〈∇̂h]〉Bρ|2 ≤ C(n) s
n+1

rn+3

∫
Br

(h])2. (2.5.3)

Now using that ∇̂h− 〈∇̂h〉Bρ = [∇̂h∗ − 〈∇̂h∗〉Bρ ] + [∇̂h] − 〈∇̂h]〉Bρ ] in Bρ, we deduce from

( 2.5.3 ) that

∫
Bρ

|∇̂h− 〈∇̂h〉Bρ|2 ≤ 2
∫
Bρ

|∇̂h∗ − 〈∇̂h∗〉Bρ|2 + 2
∫
Bρ

|∇̂h] − 〈∇̂h]〉Bρ|2 (2.5.4)

≤ 2
∫
Bρ

|∇̂h∗ − 〈∇̂h∗〉Bρ|2 + C(n) s
n+1

rn+3

∫
Br

(h])2.
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Similarly, representing ∇̂h∗ − 〈∇̂h∗〉Bs = [∇̂h− 〈∇̂h〉Bs ] − [∇̂h] − 〈∇̂h]〉Bs ] in Bs, we deduce

from ( 2.5.3 ) (by taking ρ = s) that

∫
Bs

|∇̂h∗ − 〈∇̂h∗〉Bs|2 ≤ 2
∫
Bs

|∇̂h− 〈∇̂h〉Bs|2 + C(n) s
n+1

rn+3

∫
Br

(h])2. (2.5.5)

Hence, combining ( 2.5.2 )–( 2.5.5 ), and using that both
∫
Br

(h∗)2 and
∫
Br

(h])2 cannot exceed∫
Br
h2, we obtain the claimed estimate ( 2.5.1 ).

Theorem 2.5.1. Let U be an almost minimizer of the A-Signorini problem in B1. Then

U ∈ C1,β(B±
1 ∪B′

1) with β = α

4(2n+ α) .

Moreover, for any K b B±
1 ∪B′

1, we have

‖U‖C1,β(K) ≤ C(n, α,M,K)‖U‖W 1,2(B1). (2.5.6)

Proof. Let K be a ball centered at 0. Fix a small r0 = r0(n, α,M,K) > 0 to be determined

later. In particular, we will ask r1 := r
2n

2n+α

0 Λ1/2 ≤ (1/2) dist(K, ∂B1), which implies that

K̃ := {y ∈ B1 : dist(y,K) ≤ r1} b B1.

Define

∇̂U(y′, yn) :=


∇U(y′, yn), yn ≥ 0

∇U(y′,−yn), yn < 0.

Our goal is to show that for x0 ∈ K, 0 < ρ < r < r0,

∫
Bρ(x0)

|∇̂U − 〈∇̂U〉Bρ(x0)|2 ≤ C(n, α,M)
(
ρ

r

)n+α ∫
Br(x0)

|∇̂U − 〈∇̂U〉Br(x0)|2

+ C(n, α,M,K)‖U‖2
W 1,2(B1)r

n+2β. (2.5.7)
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Case 1. Suppose x0 ∈ K ∩ B′
1. For given 0 < r < r0, we denote α′ := 1 − α

8n ∈ (0, 1),

R := r
2n

2n+α . We then consider two cases:

sup
∂ER(x0)

|U | ≤ C3(Λ1/2R)α′ and sup
∂ER(x0)

|U | > C3(Λ1/2R)α′
,

where C3 = 2[U ]0,α′,K̃
= 2 sup

y,z∈K̃
y 6=z

|U(y)−U(z)|
|y−z|α′ .

Case 1.1. Assume that sup∂ER(x0) |U | ≤ C3(Λ1/2R)α′ . Then ux0 satisfies almost Signorini

property at 0 in BR with

sup
∂BR

|ux0| ≤ C3(Λ1/2R)α′
.

Let h be the Signorini replacement of ux0 in BR. If we define

∇̂ux0(y′, yn) :=


∇ux0(y′, yn), yn ≥ 0

∇ux0(y′,−yn), yn < 0

and

∇̂h(y′, yn) :=


∇h(y′, yn), yn ≥ 0

∇h(y′,−yn), yn < 0,

then we have

∫
Bρ

|∇̂ux0 − 〈∇̂ux0〉Bρ|2 ≤ 3
∫
Bρ

|∇̂h− 〈∇̂h〉Bρ|2 + 6
∫
Bρ

|∇̂ux0 − ∇̂h|2, (2.5.8)∫
Br

|∇̂h− 〈∇̂h〉Br |2 ≤ 3
∫
Br

|∇̂ux0 − 〈∇̂ux0〉Br |2 + 6
∫
Br

|∇̂ux0 − ∇̂h|2. (2.5.9)

Note that if r0 ≤ (3/4) 2n+α
α , then r < (3/4)R, thus by Proposition  2.5.1 , the Signorini

replacement h satisfies, for 0 < ρ < r,

∫
Bρ

|∇̂h− 〈∇̂h〉Bρ|2 ≤ C(n, α)
(
ρ

r

)n+α ∫
Br

|∇̂h− 〈∇̂h〉Br |2 + C(n, α)r
n+1

R3 sup
∂BR

h2.
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Combining the above three inequalities, we obtain

∫
Bρ

|∇̂ux0 − 〈∇̂ux0〉Bρ|2 ≤ C(n, α)
(
ρ

r

)n+α ∫
Br

|∇̂ux0 − 〈∇̂ux0〉Br |2

+ C(n, α) r
n+1

R3 sup
∂BR

h2 + C(n, α)
∫
Br

|∇̂ux0 − ∇̂h|2. (2.5.10)

Let us estimate the last term in the right-hand side of (  2.5.10 ). Take δ = δ(n, α,M,K) > 0

such that δ < dist(K, ∂B1) and δα ≤ ε = ε(C1, n, n+ 2α′ − 2), where C1 = C1(n,M) is as in

Proposition  2.4.2 and ε is as in Lemma  1.2.2 . If r0 ≤
(
Λ−1/2δ

) 2n+α
2n , then Λ1/2R < δ, thus,

by following the proof of Theorem  2.4.1 up to ( 2.4.4 ), we have

∫
BΛ1/2R

(x0)
|∇U |2 ≤ C(n, α,M,K)‖∇U‖2

L2(B1)

(
Λ1/2R

)n+2α′−2
.

It follows that

∫
ER(x0)

〈A(x0)∇U,∇U〉 ≤ Λ
∫
BΛ1/2R

(x0)
|∇U |2 ≤ C‖∇U‖2

L2(B1)R
n+2α′−2.

Then by the change of variables ( 2.2.2 ), we have

∫
BR

|∇ux0 |2 ≤ C‖∇U‖2
L2(B1)R

n+2α′−2. (2.5.11)

Now we can estimate the third term in the right-hand side of ( 2.5.10 ):

∫
Br

|∇̂ux0 − ∇̂h|2 = 2
∫
B+

r

|∇ux0 − ∇h|2

≤ 2
∫
BR

|∇ux0 − ∇h|2 ≤ 2
(∫

BR

|∇ux0|2 −
∫
BR

|∇h|2
)

≤ 2MRα
∫
BR

|∇h|2 ≤ 2MRα
∫
BR

|∇ux0|2

≤ C‖∇U‖2
L2(B1)R

n+α+2α′−2 = C‖∇U‖2
L2(B1)r

n+ α
2n+α

(n− 1
2 ).

(2.5.12)

To estimate the second term in the right-hand side of ( 2.5.10 ), we observe that

sup
∂BR

h2 = sup
∂BR

u2
x0 = sup

∂ER(x0)
U2 ≤ C2

3(Λ1/2R)2α′
.

105



Note that by ( 2.4.5 ), C3 ≤ C(n, α,M,K)‖U‖W 1,2(B1). Thus,

rn+1

R3 sup
∂BR

h2 ≤ C‖U‖2
W 1,2(B1)r

n+ α
2(2n+α) .

Now ( 2.5.10 ) becomes

∫
Bρ

|∇̂ux0 − 〈∇̂ux0〉Bρ|2 ≤ C(n, α)
(
ρ

r

)n+α ∫
Br

|∇̂ux0 − 〈∇̂ux0〉Br |2

+ C‖U‖2
W 1,2(B1)r

n+ α
2(2n+α) . (2.5.13)

We now want to deduce (  2.5.7 ) from (  2.5.13 ). The complication here is that the mapping

T̄−1
x0 does not preserve the even symmetry with respect to the thin plane, since the conormal

direction A(x0)en might be different from the normal direction en to Π at x0. To address

this issue, by using the even symmetry of ∇̂ux0 , we rewrite (  2.5.13 ) in terms of halfballs

B+
r = Br ∩ Rn

+

∫
B+

ρ

|∇ux0 − 〈∇ux0〉B+
ρ

|2 ≤ C(n, α)
(
ρ

r

)n+α ∫
B+

r

|∇ux0 − 〈∇ux0〉B+
r

|2

+ C‖U‖2
W 1,2(B1)r

n+ α
2(2n+α) . (2.5.14)

Similarly, if we denote E+
r (x0) = Er(x0) ∩ Rn

+, then using that T̄x0(E+
t (x0)) = B+

t , t > 0,

( 2.5.14 ) becomes

∫
E+

ρ (x0)
|ax0∇U − 〈ax0∇U〉E+

ρ (x0)|
2 ≤ C(n, α)

(
ρ

r

)n+α ∫
E+

r (x0)
|ax0∇U − 〈ax0∇U〉E+

r (x0)|
2

+ C det ax0‖U‖2
W 1,2(B1)r

n+ α
2(2n+α) .

Repeating the argument that (  2.3.4 ) implies (  2.3.2 ) in the proof of Proposition  2.3.1 , we

have

∫
B+

ρ (x0)
|∇U − 〈∇U〉B+

ρ (x0)|
2 ≤ C

(
ρ

r

)n+α ∫
B+

r (x0)
|∇U − 〈∇U〉B+

r (x0)|
2

+ C‖U‖2
W 1,2(B1)r

n+ α
2(2n+α) . (2.5.15)
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Then by the even symmetry of ∇̂U , ( 2.5.15 ) implies ( 2.5.7 ).

Case 1.2. Now we assume that sup∂ER(x0) |U | > C3(Λ1/2R)α′ . By the choice of C3 =

2[U ]0,α′,K̃
, we have either

U ≥ (C3/2) (Λ1/2R)α′ in ER(x0), or

U ≤ − (C3/2) (Λ1/2R)α′ in ER(x0).

However, from U ≥ 0 on B′
1, the only possibility is

U ≥ (C3/2) (Λ1/2R)α′ in ER(x0).

Consequently,

ux0 ≥ (C3/2) (Λ1/2R)α′ in BR.

If we let h again be the Signorini replacement of ux0 in BR, then the positivity of h = ux0 > 0

on ∂BR and superharmonicity of h in BR give that h > 0 in BR, and hence h is harmonic in

BR. Thus,

∫
Bρ

|∇h− 〈∇h〉Bρ|2 ≤
(
ρ

r

)n+2 ∫
Br

|∇h− 〈∇h〉Br |2, 0 < ρ < r.

We next decompose h = h∗ + h] in BR as in (  2.4.2 ). Note that since both h and h] are

harmonic, h∗ must be harmonic as well. Then we have

∫
Bρ

|∇̂h− 〈∇̂h〉Bρ|2 ≤ 3
∫
Bρ

|∇h− 〈∇h〉Bρ|2 + 6
∫
Bρ

|∇̂h− ∇h|2

= 3
∫
Bρ

|∇h− 〈∇h〉Bρ|2 + 6
∫
B−

ρ

(
|2∇y′h]|2 + |2∂ynh

∗|2
)

= 3
∫
Bρ

|∇h− 〈∇h〉Bρ|2 + 12
∫
Bρ

(
|∇y′h]|2 + |∂ynh

∗|2
)
,

and similarly,

∫
Br

|∇h− 〈∇h〉Br |2 ≤ 3
∫
Br

|∇̂h− 〈∇̂h〉Br |2 + 12
∫
Br

(
|∇y′h]|2 + |∂ynh

∗|2
)
.
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Combining the above three inequalities, we have that for all 0 < ρ < r

∫
Bρ

|∇̂h − 〈∇̂h〉Bρ|2 ≤ 3
(
ρ

r

)n+2 ∫
Br

|∇̂h − 〈∇̂h〉Br |2 + 48
∫
Br

(
|∇y′h]|2 + |∂ynh

∗|2
)
.

(2.5.16)

Now, note that if r0 ≤ (1/2)
2n+α

α , then r ≤ R/2. By the harmonicity of both h∗ and h] in

BR, we have

sup
BR/2

|D2h∗| + sup
BR/2

|D2h]| ≤ C(n)
R

 sup
B(3/4)R

|∇h∗| + sup
B(3/4)R

|∇h]|


≤ C(n)
R1+ n

2

(∫
BR

|∇h∗|2 +
∫
BR

|∇h]|2
)1/2

= C(n)
R1+ n

2

(∫
BR

|∇h|2
)1/2

≤ C(n)
R1+ n

2

(∫
BR

|∇ux0|2
)1/2

≤ C(n, α,M,K)‖∇U‖L2(B1)R
α′−2,

where the last inequality follows from (  2.5.11 ). Also, note that ∇y′h] = ∂ynh
∗ = 0 on B′

R/2.

Thus, for y = (y′, yn) ∈ Br, we have

|∇y′h]| + |∂ynh
∗| ≤ |yn|

sup
BR/2

|D2h∗| + sup
BR/2

|D2h]|


≤ C‖∇U‖L2(B1)rR

α′−2

= C‖∇U‖L2(B1)r
1+ 2n

2n+α
(α′−2),

with C = (n, α,M,K). Hence, it follows that

∫
Br

|∇y′h]|2 + |∂ynh
∗|2 ≤ C‖∇U‖2

L2(B1)r
n+2+ 4n

2n+α
(α′−2) ≤ C‖∇U‖2

L2(B1)r
n+ α

2(2n+α) . (2.5.17)

Combining ( 2.5.16 ) and ( 2.5.17 ), we obtain

∫
Bρ

|∇̂h − 〈∇̂h〉Bρ|2 ≤ 3
(
ρ

r

)n+2 ∫
Br

|∇̂h − 〈∇̂h〉Br |2 + C‖∇U‖2
L2(B1)r

n+ α
2(2n+α) . (2.5.18)
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Note that (  2.5.12 ) was induced in Case 1.1 without the use of the assumption sup∂Er(x0) |U | ≤

C3
(
Λ1/2R

)α′

, so it is also valid in this case. Finally, (  2.5.8 ), (  2.5.9 ), (  2.5.12 ) and (  2.5.18 )

give

∫
Bρ

|∇̂ux0 − 〈∇̂ux0〉Bρ|2 ≤ 3
∫
Bρ

|∇̂h− 〈∇̂h〉Bρ|2 + 6
∫
Bρ

|∇̂ux0 − ∇̂h|2

≤ 9
(
ρ

r

)n+2 ∫
Br

|∇̂h− 〈∇̂h〉Br |2 + C‖∇U‖2
L2(B1)r

n+ α
2(2n+α)

+ 6
∫
Bρ

|∇̂ux0 − ∇̂h|2

≤ 27
(
ρ

r

)n+2 ∫
Br

|∇̂ux0 − 〈∇̂ux0〉Br |2 + C‖∇U‖2
L2(B1)r

n+ α
2(2n+α)

+ 60
∫
Br

|∇̂ux0 − ∇̂h|2

≤ 27
(
ρ

r

)n+2 ∫
Br

|∇̂ux0 − 〈∇̂ux0〉Br |2 + C‖∇U‖2
L2(B1)r

n+ α
2(2n+α)

+ C‖∇U‖2
L2(B1)r

n+ α
2n+α

(n−1/2)

≤ 27
(
ρ

r

)n+2 ∫
Br

|∇̂ux0 − 〈∇̂ux0〉Br |2 + C‖∇U‖2
L2(B1)r

n+ α
2(2n+α) .

As we have seen in Case 1.1, this implies (  2.5.7 ). This completes the proof of ( 2.5.7 ) when

x0 ∈ K ∩B′
1.

Case 2. The extension of (  2.5.7 ) to general x0 ∈ K follows from the combination of Case 1

and ( 2.3.5 ). The argument is the same as Case 2 in the proof of Theorem  1.4.1 .

Thus, the estimate ( 2.5.7 ) holds in all possible cases.

To complete the proof of the theorem, we now apply Lemma  1.2.2 to the estimate (  2.5.7 )

to obtain for 0 < ρ < r < r0

∫
Bρ(x0)

|∇̂U−〈∇̂U〉Bρ(x0)|2 ≤ C

[(
ρ

r

)n+2β ∫
Br(x0)

|∇̂U−〈∇̂U〉Br(x0)|2 +‖U‖2
W 1,2(B1)ρ

n+2β
]
.

Taking r ↗ r0 = r0(n, α,M,K), we have

∫
Bρ(x0)

|∇̂U − 〈∇̂U〉Bρ(x0)|2 ≤ C‖U‖2
W 1,2(B1)ρ

n+2β,
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with C = C(n, α,M,K). Then by the Campanato space embedding this readily implies that

∇̂U ∈ C0,β(K) with

‖∇̂U‖C0,β(K) ≤ C‖U‖W 1,2(B1).

Since ∇̂U = ∇U in B+
1 ∪B′

1, we therefore conclude that

U ∈ C1,β(K ∩ (B+
1 ∪B′

1)),

and combining with the bound in Theorem  2.4.1 , we also deduce that

‖U‖C1,β(K∩(B+
1 ∪B′

1)) ≤ C(n, α,M,K)‖U‖W 1,2(B1).

To see the C1,β regularity of U in B−
1 ∪B′

1, we simply observe that the function U(y′,−yn) is

also an almost minimizer of the Signorini problem with the appropriately modified coefficient

matrix A.

2.6 Quasisymmetric almost minimizers

In the study of the free boundary in the Signorini problem, the even symmetry of the

minimizer with respect to the thin space plays a crucial role. The even symmetry guarantees

that the growth rate of the minimizer u over “thick” balls Br(x0) ⊂ Rn matches the growth

rate over thin balls B′
r(x0) ⊂ Π. This allows to use tools such as Almgren’s monotonicity

formula (see the next section) to classify the free boundary points. Without even symmetry,

minimizers may have an odd component, vanishing on the thin space Π that may create a

mismatch of growth rates on the thick and thin spaces.

In the case of minimizers of the Signorini problem (with A = I) or harmonic functions,

it is easy to see that the even symmetrization

u∗(x) = u(x′, xn) + u(x′,−xn)
2
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is still a minimizer. Unfortunately, the even symmetrization may destroy the almost mini-

mizing property, as well as the minimizing property with variable coefficients, as can be seen

from the following simple example.

Example 2.6.1. Let u : (−1, 1) → R be defined by u(x) = x + x2/4. Then u is an almost

harmonic function in (−1, 1) with a gauge function ω(r) = C(α)rα for 0 < α < 1. In fact, u

is a minimizer of the energy functional

∫
(1 + x/2)−1(v′)2

with a Lipschitz function A(x) = (1 + x/2)−1 in (−1, 1). On the other hand, the even

symmetrization

u∗(x) = u(x) + u(−x)
2 = x2

4

is not almost harmonic for any gauge function ω(r). Indeed, for any small δ > 0, if we

take a competitor v = δ2/4 in (−δ, δ), then it satisfies
∫ δ

−δ |v′|2 = 0 and if u∗ were almost

harmonic, we would have that
∫ δ

−δ |(u∗)′|2 = 0 as well, implying that u∗ is constant in (−δ, δ),

a contradiction.

To overcome this difficulty, we need to impose the A-quasisymmetry condition on almost

minimizers U , that we have already stated in Definition  2.1.2 . In this section, we give more

details on quasisymmetric almost minimizers.

Recall that for each x0 ∈ B′
1, we defined a reflection matrix Px0 by

Px0 = I − 2A(x0)en ⊗ en
ann(x0)

.

From the ellipticity of A, we have ann(x0) ≥ λ, thus Px0 is well-defined. Note that P 2
x0 = I.

Besides, Px0

∣∣∣
Π

= I
∣∣∣
Π

and Px0Er(x0) = Er(x0). We then define the “skewed” even/odd

symmetrizations of the almost minimizer U in B1 by

U∗
x0(x) := U(x) + U(Px0x)

2 ,

U ]
x0(x) := U(x) − U(Px0x)

2 .
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T̄x0
))

Er(x0) Br

Π Π

x0

x

x̄ 0
yȳ

Figure 2.2. Reflection Px0 : here x̄ = Px0x, y = T̄x0(x), and ȳ = (y′,−yn) = T̄x0(x̄)

Note that U∗
x0 and U ]

x0 may not be defined in all of B1, but are defined in any ellipsoid Er(x0)

as long as it is contained in B1. Note also that U = U∗
x0 and U ]

x0 = 0 on Π. Further, we note

that transformed with T̄x0 , Px0 becomes an even reflection with respect to Π, i.e.,

T̄x0 ◦ Px0 ◦ T̄−1
x0 (y) = (y′,−yn),

see Fig  2.2 . Therefore, denoting

u∗
x0(y) := ux0(y′, yn) + ux0(y′,−yn)

2 ,

u]x0(y) := ux0(y′, yn) − ux0(y′,−yn)
2 ,

the even/odd symmetrizations of ux0 about Π, we will have

U∗
x0 ◦ T̄−1

x0 = u∗
x0 , U ]

x0 ◦ T̄−1
x0 = u]x0 .

We also observe that the symmetries of u∗
x0 and u]x0 imply the following decompositions

∫
Br

u2
x0 =

∫
Br

(u∗
x0)2 +

∫
Br

(u]x0)2, (2.6.1)∫
Br

|∇ux0 |2 =
∫
Br

|∇u∗
x0|2 +

∫
Br

|∇u]x0|2, (2.6.2)
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which after a change of variables, can also be written as

∫
Er(x0)

U2 =
∫
Er(x0)

(U∗
x0)2 +

∫
Er(x0)

(U ]
x0)2, (2.6.3)∫

Er(x0)
〈A(x0)∇U,∇U〉 =

∫
Er(x0)

〈A(x0)∇U∗
x0 ,∇U

∗
x0〉 +

∫
Er(x0)

〈A(x0)∇U ]
x0 ,∇U

]
x0〉. (2.6.4)

We now recall that by Definition  2.1.2 , U ∈ W 1,2(B1) is called A-quasisymmetric if there is

a constant Q > 0 such that

∫
Er(x0)

〈A(x0)∇U,∇U〉 ≤ Q
∫
Er(x0)

〈A(x0)∇U∗
x0 ,∇U

∗
x0〉, (2.6.5)

whenever Er(x0) b B1 and x0 ∈ B1. By the uniform ellipticity of A, ( 2.6.5 ) is equivalent to

∫
Er(x0)

|∇U |2 ≤ Q
∫
Er(x0)

|∇U∗
x0|2,

by changing Q to Q(Λ/λ), if necessary. Besides, using (  2.6.4 ), ( 2.6.5 ) is also equivalent to

∫
Er(x0)

〈A(x0)∇U ]
x0 ,∇U

]
x0〉 ≤ C

∫
Er(x0)

〈A(x0)∇U∗
x0 ,∇U

∗
x0〉, (2.6.6)

with some C = C(Q).

Lemma 2.6.2. Let U be an A-quasisymmetric almost minimizer for the A-Signorini problem

in B1, with constant Q > 0. Then there are r1 = r1(n, α,M,Q) > 0 and M1 = M1(n,M,Q) >

0 such that

∫
Er(x0)

〈A(x0)∇U∗
x0 ,∇U

∗
x0〉 ≤ (1 +M1r

α)
∫
Er(x0)

〈A(x0)∇W,∇W 〉, (2.6.7)

whenever Er(x0) b B1, x0 ∈ B1, 0 < r < r1, and W ∈ K0,U∗
x0

(Er(x0),Π) .

Remark 2.6.3. Since we are interested in local results, in what follows, we will assume without

loss of generality that r1 = 1 and M1 = M .
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Proof. Let V be the energy minimizer of

∫
Er(x0)

〈A(x0)∇V,∇V 〉 on K0,U(Er(x0),Π).

Then vx0 = V ◦ T̄−1
x0 is the energy minimizer of

∫
Br

|∇vx0 |2 on K0,ux0
(Br,Π).

Note that v∗
x0 is a solution of the Signorini problem, even in yn, with v∗

x0 = u∗
x0 on ∂Br.

Similarly, v]x0 is a harmonic function, odd in yn, with v]x0 = u]x0 on ∂Br. Thus, v∗
x0 is the

energy minimizer of ∫
Br

|∇v∗
x0 |2 on K0,u∗

x0
(Br,Π),

and so V ∗
x0 is the energy minimizer of

∫
Er(x0)

〈A(x0)∇V ∗
x0 ,∇V

∗
x0〉 on K0,U∗

x0
(Er(x0),Π).

Thus, to show ( 2.6.7 ), it is enough to show

∫
Br

|∇u∗
x0|2 ≤ (1 +M1r

α)
∫
Br

|∇v∗
x0|2.

To this end, we first observe that the quasisymmetry of U implies the quasisymmetry of ux0 :

∫
Br

|∇u]x0|2 ≤ C
∫
Br

|∇u∗
x0|2.

Using this, together with the symmetry of u∗
x0 , u]x0 , v∗

x0 and v]x0 , we have

∫
Br

|∇u∗
x0|2 =

∫
Br

|∇ux0 |2 −
∫
Br

|∇u]x0|2

≤ (1 +Mrα)
∫
Br

|∇vx0|2 −
∫
Br

|∇u]x0 |2

= (1 +Mrα)
∫
Br

|∇v∗
x0|2 + (1 +Mrα)

∫
Br

|∇v]x0 |2 −
∫
Br

|∇u]x0|2

≤ (1 +Mrα)
∫
Br

|∇v∗
x0|2 +Mrα

∫
Br

|∇u]x0 |2

114



≤ (1 +Mrα)
∫
Br

|∇v∗
x0|2 + CMrα

∫
Br

|∇u∗
x0|2.

Therefore,

∫
Br

|∇u∗
x0|2 ≤ 1 +Mrα

1 − CMrα

∫
Br

|∇v∗
x0|2 ≤ (1 +M1r

α)
∫
Br

|∇v∗
x0|2,

for 0 < r < r1 = (2CM)−1/α, as desired.

Remark 2.6.4. If U satisfies the following weak quasisymmetry with order −γ:

∫
Er(x0)

|∇U |2 ≤ Qr−γ
∫
Er(x0)

|∇U∗
x0|2,

whenever Er(x0) b B1, x0 ∈ B′
1 for some 0 < γ < α, then it is easy to see from the proof of

Lemma  2.6.2 that U∗
x0 satisfies ( 2.6.7 ), but with α− γ > 0 instead of α.

Theorem 2.6.5. Let U be an A-quasisymmetric almost minimizer for the A-Signorini prob-

lem in B1. Then for x0 ∈ B′
1/2 and 0 < r ≤ (1/2)Λ−1/2, we have U∗

x0 ∈ C1,β(E±
r (x0)∪E ′

r(x0))

with β = α
4(2n+α) . Moreover,

‖U∗
x0‖C1,β(K) ≤ C(n, α,M,K, r)‖U∗

x0‖W 1,2(Er(x0)),

for any K b E±
r (x0) ∪ E ′

r(x0). Similarly, u∗
x0 ∈ C1,β(B±

r ∪B′
r) with

‖u∗
x0‖C1,β(K) ≤ C(n, α,M,K, r)‖u∗

x0‖W 1,2(Br),

for any K b B±
r ∪B′

r.

Proof. From Theorem  2.5.1 , we have U ∈ C1,β(B±
1 ∪ B′

1), which immediately gives U∗
x0 ∈

C1,β(E±
r (x0) ∪ E ′

r(x0)), by using the inclusion Er(x0) ⊂ BΛ1/2r(x0) ⊂ B1. Thus, for

∇̂U∗
x0(x′, xn) :=


∇U∗

x0(x′, xn), xn ≥ 0

∇U∗
x0(x′,−xn), xn < 0,
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we have ∇̂U∗
x0 ∈ C0,β(Er(x0)) with

‖∇̂U∗
x0‖C0,β(K) ≤ C(n, α,M,K, r)‖U‖W 1,2(Er(x0)),

for any K b Er(x0). Hence, it is enough to show that

‖U‖W 1,2(Er(x0)) ≤ C‖U∗
x0‖W 1,2(Er(x0)).

Now, note that by ( 2.6.3 )–( 2.6.4 ), we readily have

‖U‖W 1,2(Er(x0)) ≤ C
(
‖U∗

x0‖W 1,2(Er(x0)) + ‖U ]
x0‖W 1,2(Er(x0))

)
,

and thus, it will suffice to show that

‖U ]
x0‖W 1,2(Er(x0)) ≤ C‖U∗

x0‖W 1,2(Er(x0)).

By the symmetry again,

〈U ]
x0〉Er(x0) = 〈u]x0〉Br = 0,

thus by Poincare’s inequality,

‖U ]
x0‖L2(Er(x0)) ≤ C(n,M)r‖∇U ]

x0‖L2(Er(x0)). (2.6.8)

Finally, by the quasisymmetry of U , we have

‖∇U ]
x0‖L2(Er(x0)) ≤ C‖∇U∗

x0‖L2(Er(x0)),

see ( 2.6.6 ). This completes the proof of the theorem for U∗
x0 .

Applying now the affine transformation T̄x0 , we obtain the part of the theorem for u∗
x0 .

We complete this section with a version of Signorini’s complementarity condition that

will play an important role in the analysis of the free boundary.
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Lemma 2.6.6 (Complementarity condition). Let U be an A-quasisymmetric almost mini-

mizer for the A-Signorini problem in B1, and x0 ∈ B′
1/2. Then u∗

x0 satisfies the following

complementarity condition

u∗
x0(∂+

yn
u∗
x0) = 0 on B′

R0 , R0 = (1/2)Λ−1/2,

where ∂+
yn
u∗
x0 on B′

R0 is computed as the limit from inside B+
R0. Moreover, if x0 ∈ Γ(U), then

u∗
x0(0) = 0 and |∇̂u∗

x0(0)| = 0.

Proof. Let y0 ∈ B′
R0 be such that u∗

x0(y0) > 0. Then we need to show that ∂+
yn
u∗
x0(y0) = 0.

Since ux0 = u∗
x0 on Π, we have ux0(y0) > 0 and by continuity ux0 > 0 in a small ball Bδ(y0).

Then U > 0 in Ω = T̄−1
x0 (Bδ(y0)). We claim now that U is almost A-harmonic in Ω. Indeed,

if Er(y) b Ω (not necessarily with y ∈ B′
1) and V is A(y)-harmonic replacement of U on

Er(y) (i.e. div(A(y)∇V ) = 0 in Er(y) with V = U on ∂Er(y)), then since V = U > 0 on

∂Er(y), by the minimum principle V > 0 on Er(y). This means that V ∈ K0,U(Er(y),Π)

and therefore we must have

∫
Er(y)

〈A(y)∇U,∇U〉 ≤ (1 + ω(r))
∫
Er(y)

〈A(y)∇V,∇V 〉,

which also implies that U is an almost A-harmonic function in Ω. Hence, U ∈ C1,α/2(Ω)

by Theorem  2.3.2 , implying also that ux0 ∈ C1,α/2(Bδ(y0)). Consequently, also u∗
x0 ∈

C1,α/2(Bδ(y0)) and by even symmetry in the yn-variable, we therefore conclude that ∂+
yn
u∗
x0(y0) =

0.

The second part of the lemma now follows by the C1,β regularity and the complementarity

condition.

2.7 Weiss- and Almgren-type monotonicity formulas

In this section we introduce two technical tools: Weiss- and Almgren-type monotonicity

formulas, that will play a fundamental role in the analysis of the free boundary. In fact, the
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proofs of these formulas follow immediately from the case A ≡ I, following the deskewing

procedure.

To proceed, we fix a constant κ0 > 0. We can take it as large as we want, however,

some constants in what follows, will depend on κ0. Then for 0 < κ < κ0, we consider the

Weiss-type energy functional introduced in Chapter  1 :

Wκ(t, v, x0) := eatα

tn+2κ−2

[∫
Bt(x0)

|∇v|2 − κ
1 − btα

t

∫
∂Bt(x0)

v2
]
,

with

a = aκ = M(n+ 2κ− 2)
α

, b = M(n+ 2κ0)
α

.

(The formula in Chapter  1 corresponds to the case M = 1.) Based on that, we define an

appropriate version of Weiss’s functional for our problem. For a function V in Er(x0), let

WA
κ (t, V, x0) := eatα

tn+2κ−2

[∫
Et(x0)

〈A(x0)∇V,∇V 〉 − κ
1 − btα

t

∫
∂Et(x0)

V 2µx0(x− x0)
]
,

(2.7.1)

for 0 < t < r, with a, b same as above, where the weight µx0 is as in (  2.2.4 ). Note that by

the change of variables formulas ( 2.2.1 )–( 2.2.3 ), we have

WA
κ (t, V, x0) := det ax0Wκ(t, vx0 , 0), vx0 = V ◦ T̄−1

x0 . (2.7.2)

Let now U be an A-quasisymmetric almost minimizer for the A-Signorini problem in

B1 and x0 ∈ B1/2. By Lemma  2.6.2 , U∗
x0 satisfies the almost A-Signorini property at x0 in

E(1/2)Λ−1/2(x0). Thus u∗
x0 also satisfies the almost Signorini property at 0 in B(1/2)Λ−1/2 . By

using this observation, we then have the following Weiss-type monotonicity formulas for U∗
x0

and u∗
x0 .
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Theorem 2.7.1 (Weiss-type monotonicity formula). Let U be an A-quasisymmetric almost

minimizer for the A-Signorini problem in B1. Suppose x0 ∈ B′
1/2. Let 0 < κ < κ0 with a

fixed κ0 > 0. Then, for 0 < t < t0 = t0(n, α, κ0,M),

d

dt
Wκ(t, u∗

x0 , 0) ≥ eatα

tn+2κ−2

∫
∂Bt

(
∂νu

∗
x0 − κ(1 − btα)

t
u∗
x0

)2

,

d

dt
WA
κ (t, U∗

x0 , x0) ≥ eatα

tn+2κ−2

∫
∂Et(x0)

(
〈ax0∇U∗

x0 , ν〉 − κ(1 − btα)
t

U∗
x0

)2

µx0(x− x0).

In particular, Wκ(t, u∗
x0 , 0) and WA

κ (t, U∗
x0 , x0) are nondecreasing in t for 0 < t < t0.

Proof. We note that the proof of Theorem  1.5.1 for the monotonicity of Wκ(t, v, x0) requires

the function v to be an almost minimizer for the Signorini problem for the monotonicity of

its energy. However, it is not hard to see that the almost minimizing property of v is used

only when it is compared with the κ-homogeneous replacement w of v on balls centered at

the given point x0 to obtain

∫
Bt(x0)

|∇w|2 ≥ 1
1 + tα

∫
Bt(x0)

|∇v|2,

see (  1.5.2 ). This means that the argument in the proof of Theorem  1.5.1 also works in our

case and implies the part of the theorem for u∗
x0 . We note that the constants aκ and b in our

case will have an additional factor of M , as we work with ω(r) = Mrα rather than ω(r) = rα

in our case, but this change of the constants can be easily traced.

The part of the theorem for U∗
x0 follows by a change of variables.

The families of monotonicity formulas {Wκ}0<κ<κ0 and {WA
κ }0<κ<κ0 have an important

feature that their intervals of monotonicity and the constant b can be taken the same for all

0 < κ < κ0. Because of that, their monotonicity indirectly implies that of another important

quantity that we describe below. Namely, recall that for a function v in Br(x0), Almgren’s

frequency of v at x0 is defined as

N(t, v, x0) :=
t
∫
Bt(x0) |∇v|2∫
∂Bt(x0) v

2 , 0 < t < r.
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Note that this quantity is well-defined when v has an almost Signorini property at x0 and

x0 ∈ Γ(v), since vanishing of
∫
∂Bt(x0) v

2 for any t > 0, would imply vanishing of v in Bt(x0)

by taking 0 as a competitor and consequently that x0 /∈ Γ(v).

Next consider a modification of N , which we call the truncated frequency:

N̂κ0(t, v, x0) := min
{ 1

1 − btα
N(t, v, x0), κ0

}
,

where b is as in Weiss-type monotonicity formulas for κ < κ0. We next define the appropriate

version of N , N̂κ0 in our setting. For a function V in Er(x0), we define

NA(t, V, x0) := N(t, vx0 , 0),

N̂A
κ0(t, V, x0) := N̂κ0(t, vx0 , 0),

for 0 < t < r, where vx0 = V ◦ T̄−1
x0 . More explicitly, we have

NA(t, V, x0) :=
t
∫
Et(x0)〈A(x0)∇V,∇V 〉∫
∂Et(x0) V

2µx0(x− x0)
,

N̂A
κ0(t, V, x0) := min

{ 1
1 − btα

NA(t, V, x0), κ0

}
.

As observed in Theorem  1.5.4 , the Weiss-type monotonicity formula implies the following

monotonicity of N̂A
κ0 .

Theorem 2.7.2 (Almgren-type monotonicity formula). Let U , κ0, and t0 be as in Theo-

rem  2.7.1 , and x0 ∈ B′
1/2 a free boundary point. Then

t 7→ N̂A
κ0(t, U∗

x0 , x0) = N̂κ0(t, u∗
x0 , 0)

is nondecreasing for 0 < t < t0.

Definition 2.7.1 (Almgren’s frequency at free boundary point). For an A-quasisymmetric

almost minimizer U of the A-Signorini problem in B1 and x0 ∈ Γ(U) let

κ(x0) := N̂A
κ0(0+, U∗

x0 , x0) = N̂κ0(0+, u∗
x0 , 0).
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We call κ(x0) Almgren’s frequency at x0.

Remark 2.7.3. Note that even though the monotonicity of the truncated frequency is stated

in Theorem  2.7.2 only for x0 ∈ B′
1/2 ∩ Γ(U), by a simple recentering and a scaling argument,

it will be monotone also at all x0 ∈ Γ(U), but for a possibly shorter interval of values

0 < t < t0(x0) depending on x0. Thus, κ(x0) exists at all x0 ∈ Γ(U).

Further note that when κ(x0) < κ0, then N̂A
κ0(t, U∗

x0 , x0) = 1
1−btαN

A(t, U∗
x0 , x0) for small t

and therefore

κ(x0) = NA(0+, U∗
x0 , x0),

which means that it will not change if we replace κ0 with a larger value.

2.8 Almgren rescalings and blowups

Our analysis of the free boundary is based on the analysis of blowups, which are the limits

of rescalings of the solutions at free boundary points. In Signorini problem, there are a few

types of rescalings that use different normalizations. In this section, we look at so-called

Almgren rescalings and blowups that play well with the Almgren frequency formula.

Let V ∈ W 1,2(B1) and x0 ∈ B′
1/2 be a free boundary point. For small r > 0 define the

Almgren rescaling of V at x0 by

V A
x0,r(x) := V (rx+ x0)(

1
rn−1

∫
∂Er(x0) V

2µx0(x− x0)
)1/2 .

The Almgren rescalings have the following normalization and scaling properties

‖V A
x0,r‖L2(ax0∂B1) = 1

NA(x0)(ρ, V A
x0,r, 0) = NA(ρr, V, x0).
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Here NA(x0) denotes Almgren’s frequency for a constant matrix A(x0). Thus, we also have

NA(r, V, x0) = NA(x0)(r, V, x0). Note that when A = I, then

V I
x0,r = V (rx+ x0)(

1
rn−1

∫
∂Br(x0) V

2
)1/2

is same as the Almgren rescaling in Chapter  1 , and satisfies

‖V I
x0,r‖L2(∂B1) = 1

N(ρ, V I
x0,r, 0) = N(ρr, V, x0).

We will call the limits of V A
x0,r over any subsequence r = rj → 0+ Almgren blowups of V at

x0 and denote them by V A
x0,0.

By using a change of variables, we can express Almgren rescalings of V in terms of those

of vx0 = V ◦ T̄−1
x0 and vice versa. Namely, we have

(vx0)Ir(y) = (det ax0)1/2V A
x0,r(āx0y),

wherever they are defined. Applied to the particular case V = U∗
x0 , we have

(u∗
x0)Ir(y) = (det ax0)1/2(U∗

x0)Ax0,r(āx0y).

Proposition 2.8.1 (Existence of Almgren blowups). Let U be an A-quasisymmetric almost

minimizer for the A-Signorini problem in B1, and x0 ∈ B′
1/2 ∩ Γ(U) be such that κ(x0) < κ0.

Then, every sequence of Almgren rescalings (U∗
x0)Ax0,tj

, with tj → 0+, contains a subsequence,

sill denoted tj such that for a function (U∗
x0)Ax0,0 ∈ C1

loc(ax0(B±
1 ∪B′

1))

(U∗
x0)Ax0,tj

→ (U∗
x0)Ax0,0 in C1

loc(ax0(B±
1 ∪B′

1)).

Moreover, (U∗
x0)Ax0,0 extends to a nonzero solution of the A(x0)-Signorini problem in Rn,

(U∗
x0)Ax0,0(x) = (U∗

x0)Ax0,0(Px0x), and it is homogeneous of degree κ(x0) in Rn.
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Similarly, every sequence of Almgren rescalings (u∗
x0)Itj, with tj → 0+ contains a subse-

quence, sill denoted tj such that for a function (u∗
x0)I0 ∈ C1

loc(B±
1 ∪B′

1)

(u∗
x0)Itj → (u∗

x0)I0 in C1
loc(B±

1 ∪B′
1).

Moreover, (u∗
x0)I0 extends to a nonzero solution of the Signorini problem in Rn, even in yn,

and it is homogeneous of degree κ(x0) in Rn.

Proof. Step 1. Since κ(x0) < κ0, we must have N(t, u∗
x0 , 0) < κ0 for small t > 0. Then, for

such t

∫
B1

|∇(u∗
x0)It |2 = N(1, (u∗

x0)It , 0) = N(t, u∗
x0 , 0) ≤ κ0,

and combined with the normalization
∫
∂B1

(
(u∗

x0)It
)2

= 1, we see that the family (u∗
x0)It is

bounded in W 1,2(B1), for small t > 0. Hence, for any sequence tj → 0+, there is a function

(u∗
x0)I0 ∈ W 1,2(B1) such that, over a subsequence,

(u∗
x0)Itj → (u∗

x0)I0 weakly in W 1,2(B1),

(u∗
x0)Itj → (u∗

x0)I0 strongly in L2(∂B1).

In particular,
∫
∂B1

(
(u∗

x0)I0
)2

= 1, implying that (u∗
x0)I0 6≡ 0 in B1.

Step 2. For 0 < t < 1 and x ∈ B1/(2t)(x0), let

Ux0,t(x) = U(x0 + t(x− x0)), Ax0,t(x) = A(x0 + t(x− x0)).

Then by a simple scaling argument, we have that Ux0,t is an almost minimizer of the Ax0,t-

Signorini problem in B1/(2t)(x0) with a gauge function µt(r) = (tr)α ≤ rα. In particular, for

any R > 0, we will have that Ux0,t ∈ C1,β(E±
R (x0) ∪ E ′

R(x0)) for 0 < t < t(R,M) with

‖Ux0,t‖C1,β(K) ≤ C‖Ux0,t‖W 1,2(ER(x0)),
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with C = C(n, α,M,R,K), for any K b E±
R (x0) ∪E ′

R(x0). Then, arguing as in the proof of

Theorem  2.6.5 , by using the quasisymmetry of U , we obtain that

‖(Ux0,t)∗
x0‖C1,β(K) ≤ C‖(Ux0,t)∗

x0‖W 1,2(ER(x0)),

where

(Ux0,t)∗
x0(x) = Ux0,t(x) + Ux0,t(Px0x)

2 .

Next, observing that (u∗
x0)It is a positive constant multiple of (Ux0,t)∗

x0 ◦ T̄−1
x0 , we obtain that

‖(u∗
x0)It‖C1,β(K) ≤ C‖(u∗

x0)It‖W 1,2(BR),

for any K b B±
R ∪B′

R. Taking R = 1, combined with the boundedness of (u∗
x0)It in W 1,2(B1)

for small t > 0, it follows that up to a subsequence,

(u∗
x0)Itj → (u∗

x0)I0 in C1
loc(B±

1 ∪B′
1).

Step 3. Next, we claim that the blowup (u∗
x0)I0 is a solution of the Signorini problem in B1.

Indeed, fix 0 < R < 1, and for each tj let htj be the Signorini replacement of (u∗
x0)Itj in BR.

Then a first variation argument gives (see ( 1.3.2 ))

∫
BR

〈∇htj ,∇((u∗
x0)Itj − htj)〉 ≥ 0.

Since (u∗
x0)Itj has an almost Signorini property at 0 with a gauge function r 7→ C(tjr)α, it

follows that ∫
BR

|∇((u∗
x0)Itj − htj)|2 ≤ C(Rtj)α

∫
BR

|∇(u∗
x0)Itj |

2.

This implies that htj → (u∗
x0)I0 weakly in W 1,2(BR). On the other hand, by the boundedness

of the sequence htj in W 1,2(BR), we have also boundedness in C1,1/2 norm locally in (B±
R∪B′

R)
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and hence, over a subsequence, htj → (u∗
x0)I0 in C1

loc(B±
R ∪B′

R). By this convergence, we then

conclude that (u∗
x0)I0 satisfies

∆(u∗
x0)I0 = 0 in BR \B′

R

(u∗
x0)I0 ≥ 0, −∂+

yn
(u∗

x0)I0 ≥ 0, (u∗
x0)I0∂+

yn
(u∗

x0)I0 = 0 on B′
R,

and hence, by letting R → 1, (u∗
x0)I0 itself solves the Signorini problem in B1.

Step 4. Recall now that the blowup (u∗
x0)I0 is nonzero in B1. In particular,

∫
∂Br

((u∗
x0)I0)2 > 0

for any 0 < r < 1, otherwise we would have that (u∗
x0)I0 is identically zero on ∂Br and

consequently also on Br. Using this fact, combined with C1
loc convergence in B±

1 ∪ B′
1, we

have that for any 0 < r < 1

N(r, (u∗
x0)I0, 0) = lim

tj→0
N(r, (u∗

x0)Itj , 0) = lim
tj→0

N(rtj, u∗
x0 , 0)

= N(0+, u∗
x0 , 0) = κ(x0).

Thus, Almgren’s frequency of (u∗
x0)I0 is constant κ(x0) on 0 < r < 1 which is possible only

if (u∗
x0)I0 is a κ(x0)-homogeneous solution of the Signorini problem in B1, see Theorem 9.4

in [ 48 ]. Finally, by using the homogeneity, we readily extend (u∗
x0)I0 to a solution of the

Signorini problem in all of Rn. This completes the proof for (u∗
x0)I0.

The corresponding result for (U∗
x0)Ax0,tj

follows now by a change of variables.

With Proposition  2.8.1 at hand, we can repeat the argument in the proof of Lemma  1.6.1 

with u∗
x0 to obtain the following, which is possible since u∗

x0 satisfies the complementarity

condition and an Almgren-type monotonicity formula with a blowup as a nonzero solution

of the Signorini problem.

Lemma 2.8.1 (Minimal frequency). Let U be an A-quasisymmetric almost minimizer for

the A-Signorini problem in B1. If x0 ∈ B′
1/2 ∩ Γ(U), then

κ(x0) ≥ 3
2 .
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Consequently, we also have

N̂A
κ0(t, U∗

x0 , x0) = N̂κ0(t, u∗
x0 , 0) ≥ 3/2 for 0 < t < t0.

Lemma  2.8.1 readily gives the following. (see Corollary  2.8.2 )

Corollary 2.8.2. Let U be an A-quasisymmetric almost minimizer for the A-Signorini

problem in B1 and x0 a free boundary point. Then

WA
3/2(t, U∗

x0 , x0) = det ax0W3/2(t, u∗
x0 , 0) ≥ 0, for 0 < t < t0.

2.9 Growth estimates

The first result in this section (Lemma  2.9.1 ) provides growth estimates for the quasisym-

metric almost minimizers near free boundary points x0 with κ(x0) ≥ κ. Such estimates were

obtained in Lemma  1.7.1 in the case A ≡ I as a consequence of Weiss-type monotonicity

formulas. However, they contain an unwanted logarithmic term that creates difficulties in

the blowup analysis of the problem.

The next two results (Lemmas  2.9.2 and  2.9.3 ) remove the logarithmic term from these

estimates for κ = 3/2, by establishing first a growth rate for W3/2. (Recall that κ(x0) ≥ 3/2

at every free boundary point x0, by Lemma  2.8.1 .) These are analogous to Lemmas  1.7.3 ,

 1.7.4 in the case A ≡ I and follow from the so-called epiperimetric inequality for κ = 3/2

(see e.g. Themrem  1.7.2 ). Later, in Section  2.12 , we remove the logarithmic term also in the

case κ = 2m < κ0, m ∈ N, see Lemma  2.12.1 .

The results in this section are stated in terms of both u∗
x0 and U∗

x0 , as we need both

forms in the subsequent arguments. We note that the estimates for u∗
x0 follow directly from

Lemmas  1.7.1 ,  1.7.3 ,  1.7.4 and the ones for U∗
x0 are obtained by using the deskewing procedure

and therefore we skip all proofs in this section.

In the estimates below, as well in the rest of the chapter, we use the notation

R0 := (1/2)Λ−1/2,
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which is the radius of the largest ball BR0 , where u∗
x0 is guaranteed to exists for any x0 ∈ B1/2

for an almost minimizer U in B1.

Lemma 2.9.1 (Weak growth estimate). Let U be an A-quasisymmetric almost minimizer

for the A-Signorini problem in B1 and x0 ∈ B′
1/2 ∩ Γ(U). If

κ(x0) ≥ κ

for some κ ≤ κ0, then

∫
∂Bt

(u∗
x0)2 ≤ C‖u∗

x0‖2
W 1,2(BR0 )

(
log 1

t

)
tn+2κ−1,∫

Bt

|∇u∗
x0|2 ≤ C‖u∗

x0‖2
W 1,2(BR0 )

(
log 1

t

)
tn+2κ−2,∫

∂Et(x0)
(U∗

x0)2 ≤ C‖U‖2
W 1,2(B1)

(
log 1

t

)
tn+2κ−1,∫

Et(x0)
|∇U∗

x0|2 ≤ C‖U‖2
W 1,2(B1)

(
log 1

t

)
tn+2κ−2,

for 0 < t < t0 = t0(n, α,M, κ0) and C = C(n, α,M, κ0).

Lemma 2.9.2. Let U and x0 be as above. Then, there exists δ = δ(n, α) > 0 such that

0 ≤ W3/2(t, u∗
x0 , 0) ≤ C‖u∗

x0‖2
W 1,2(BR0 )t

δ,

0 ≤ WA
3/2(t, U∗

x0 , x0) ≤ C‖U‖2
W 1,2(B1)t

δ,

for 0 < t < t0 = t0(n, α,M) and C = C(n, α,M).

Lemma 2.9.3 (Optimal growth estimate). Let U and x0 be as above. Then,

∫
∂Bt

(u∗
x0)2 ≤ C‖u∗

x0‖2
W 1,2(BR0 )t

n+2,∫
Bt

|∇u∗
x0|2 ≤ C‖u∗

x0‖2
W 1,2(BR0 )t

n+1,∫
∂Et(x0)

(U∗
x0)2 ≤ C‖U‖2

W 1,2(B1)t
n+2,∫

Et(x0)
|∇U∗

x0|2 ≤ C‖U‖2
W 1,2(B1)t

n+1,
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for 0 < t < t0 = t0(n, α,M) and C = C(n, α,M).

2.10 3/2-almost homogeneous rescalings and blowups

In this section we study another kind of rescalings and blowups that will play a fun-

damental role in the analysis of regular free boundary points where κ(x0) = 3/2 (see the

next section), namely 3/2-almost homogeneous blowups. The main result that we prove in

this section is the uniqueness and Hölder continuous dependence of such blowups at a free

boundary point x0 (Lemma  2.10.3 ).

For a function v in B1 and x0 ∈ B′
1/2, we define the 3/2-almost homogeneous rescalings

of v at x0 by

vφx0,t(x) = v(tx+ x0)
φ(t) , φ(t) = e−

(
3b
2α

)
tαt3/2,

with b as in the Weiss-type monotonicity formulas WA
3/2 and W3/2. When x0 = 0, we simply

write vφ0,t = vφt .

The name is explained by the fact that

lim
t→0

φ(t)
t3/2 = 1,

and the reason to look at such rescalings instead of 3/2-homogeneous rescalings (that would

correspond to φ(t) = t3/2) is how they play well with the Weiss-type monotonicity formulas

WA
3/2 and W3/2.

Now, if U is an A-quasisymmetric almost minimizer and x0 ∈ B′
1/2 ∩ Γ(U), then for any

fixed R > 1, if t = tj > 0 is small, then by Lemma  2.9.3 ,

∫
BR

|∇(u∗
x0)φt |2 = e 3b

α
tα

tn+1

∫
BRt

|∇u∗
x0|2 ≤ C‖u∗

x0‖2
W 1,2(BR0 )R

n+1, (2.10.1)
∫
∂BR

((u∗
x0)φt )2 = e 3b

α
tα

tn+2

∫
∂BRt

(u∗
x0)2 ≤ C‖u∗

x0‖2
W 1,2(BR0 )R

n+2, (2.10.2)
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with C = C(n, α,M), R0 = (1/2)Λ−1/2. Hence, (u∗
x0)φtj is a bounded sequence in W 1,2(BR).

Next, arguing as in the proof of Proposition  2.8.1 , we will have that

‖∇̂(u∗
x0)φt ‖C0,β(K) ≤ C‖(u∗

x0)φt ‖W 1,2(BR), (2.10.3)

with C = C(n, α,M,R,K) for K b BR. Thus, by letting R → ∞ and using Cantor’s

diagonal argument, we can conclude that over a subsequence t = tj → 0+,

(u∗
x0)φtj → (u∗

x0)φ0 in C1
loc(Rn

± ∪ Rn−1).

We call such (u∗
x0)φ0 a 3/2-homogeneous blowup of u∗

x0 at 0. (We may skip the “almost”

modifier here as the limit is the same as for 3/2-homogeneous rescalings.) Furthermore,

from the relation

(u∗
x0)φt (y) = (U∗

x0)φx0,t(āx0y),

we also conclude that for any sequence tj → 0+, there is a subsequence, still denoted by tj,

such that

(U∗
x0)φx0,tj → (U∗

x0)φx0,0 in C1
loc(Rn

± ∪ Rn−1).

Apriori, the blowups (u∗
x0)φ0 and (U∗

x0)φx0,0 may depend on the sequence tj → 0+. However,

this does not happen in the case of 3/2-homogeneous blowups. We start with what we call

a rotation estimate for rescalings.

Lemma 2.10.1 (Rotation estimate). Let U be an A-quasisymmetric almost minimizer for

the A-Signorini problem in B1, x0 ∈ B′
1/2 a free boundary point, and δ as in Lemma  2.9.2 .

Then,

∫
∂B1

|(u∗
x0)φt − (u∗

x0)φs | ≤ C‖u∗
x0‖W 1,2(BR0 )t

δ/2,∫
ax0∂B1

|(U∗
x0)φx0,t − (U∗

x0)φx0,s| ≤ C‖U‖W 1,2(B1)t
δ/2,

for s < t < t0 = t0(n, α,M) and C = C(n, α,M).
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Proof. This is an analogue of Lemma  1.8.2 , which follows from the computation done in the

proof of Lemma  1.7.1 , the growth estimate for W3/2 in Lemma  1.7.3 and a dyadic argument.

The analogues of those results in our case are stated in Lemma  2.9.1 and  2.9.2 . This proves

the lemma for u∗
x0 . The estimate for (U∗

x0)φx0,t then follows from the equality

(u∗
x0)φt (y) = (U∗

x0)φx0,t(āx0y), y ∈ BR0/t.

The uniqueness of 3/2-homogeneous blowup now follows.

Lemma 2.10.2. Let (U∗
x0)φx0,0 and (u∗

x0)φ0 be blowups of (U∗
x0)φx0,t and (u∗

x0)φt , respectively, at

a free boundary point x0 ∈ B′
1/2. Then,

∫
∂B1

|(u∗
x0)φt − (u∗

x0)φ0 | ≤ C‖u∗
x0‖W 1,2(BR0 )t

δ/2,∫
ax0∂B1

|(U∗
x0)φx0,t − (U∗

x0)φx0,0| ≤ C‖U‖W 1,2(B1)t
δ/2,

for 0 < t < t0(n, α,M) and C = C(n, α,M), where δ = δ(n, α) > 0 is as in Lemma  2.10.1 .

In particular, the blowups (u∗
x0)φ0 and (U∗

x0)φx0,0 are unique.

Proof. If (u∗
x0)φ0 is the limit of (u∗

x0)φtj for tj → 0, then the first part of the lemma follows

immediately from Lemma  2.10.1 , by taking s = tj → 0 and passing to the limit.

To see the uniqueness of blowups, we observe that (u∗
x0)φ0 is a solution of the Signorini

problem in B1, by arguing as in the proof of Proposition  2.8.1 for Almgren blowups. Now,

if v0 is another blowup, over a possibly different sequence tj → 0, then passing to the limit

in the first part of the lemma we will have

∫
∂B1

|v0 − (u∗
x0)φ0 |2 = 0,

implying that both v0 and (u∗
x0)φ0 are solutions of the Signorini problem in B1 with the same

boundary values on ∂B1. By the uniqueness of such solutions, we have v0 = (u∗
x0)φ0 in B1.
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The equality propagates to all of Rn by the unique continuation of harmonic functions in Rn
±.

This completes the proof for u∗
x0 . An analogous argument holds for U∗

x0 using the equalities

(u∗
x0)φt (y) = (U∗

x0)φx0,t(āx0y), y ∈ BR0/t,

(u∗
x0)φ0(y) = (U∗

x0)φx0,0(āx0y), y ∈ Rn.

The rotation estimate for rescalings implies not only the uniqueness of blowups and

the convergence rate to blowups, but also the continuous dependence of blowups on a free

boundary point.

Lemma 2.10.3 (Continuous dependence of blowups). There exists ρ = ρ(n, α,M) > 0 such

that if x0, y0 ∈ Bρ are free boundary points of U , then

∫
ax0∂B1

|(U∗
x0)φx0,0 − (U∗

y0)φy0,0| ≤ C|x0 − y0|γ, (2.10.4)∫
∂B1

|(u∗
x0)φ0 − (u∗

y0)φ0 | ≤ C|x0 − y0|γ, (2.10.5)∫
∂B1

|(u∗
x0)φ0 − (u∗

y0)φ0 | ≤ C|x0 − y0|γ, (2.10.6)

with C = C(n, α,M, ‖U‖W 1,2(B1)), γ = γ(n, α,M) > 0.

Proof. Step 1. Let d = |x0 − y0| and dτ ≤ r ≤ 2dτ with τ = τ(α) ∈ (0, 1) to be determined

later.

Next note that we can incorporate the weight µx0/det ax0 with µx0 as in ( 2.2.4 ) in the

integral on the left hand side of ( 2.10.4 ) because of the bounds

(
λ

Λ

)1/2

≤ µx0

det ax0

≤
(

Λ
λ

)1/2

.

Then, by using Lemma  2.10.2 , we have
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∫
ax0∂B1

|(U∗
x0)φx0,0 − (U∗

y0)φy0,0|
µx0

det ax0

≤
∫
ax0∂B1

(
|(U∗

x0)φx0,0 − (U∗
x0)φx0,r| + |(U∗

x0)φx0,r − (U∗
x0)φy0,r|

+ |(U∗
x0)φy0,r − (U∗

y0)φy0,r| + |(U∗
y0)φy0,r − (U∗

y0)φy0,0|
)

µx0

det ax0

+
∫
ay0∂B1

|(U∗
y0)φy0,r − (U∗

y0)φy0,0|
µy0

det ay0

−
∫
ay0∂B1

|(U∗
y0)φy0,r − (U∗

y0)φy0,0|
µy0

det ay0

≤ 2Crδ/2 + Ir + IIr + IIIr

≤ Cdτδ/2 + Ir + IIr + IIIr,

(2.10.7)

where

Ir =
∫
ax0∂B1

|(U∗
x0)φx0,r − (U∗

x0)φy0,r|
µx0

det ax0

,

IIr =
∫
ax0∂B1

|(U∗
x0)φy0,r − (U∗

y0)φy0,r|
µx0

det ax0

,

IIIr =
∫
ax0∂B1

|(U∗
y0)φy0,r − (U∗

y0)φy0,0|
µx0

det ax0

−
∫
ay0∂B1

|(U∗
y0)φy0,r − (U∗

y0)φy0,0|
µy0

det ay0

.

Step 2. By the definition of the almost homogeneous rescalings, we have

Ir ≤ C

dτ(n+1/2)

∫
ax0∂Br

|U∗
x0(z + x0) − U∗

x0(z + y0)|dSz.

This gives

1
dτ

∫ 2dτ

dτ
Ir dr ≤ C

dτ(n+3/2)

∫ 2dτ

dτ

∫
ax0∂Br

|U∗
x0(z + x0) − U∗

x0(z + y0)|dSzdr

≤ C

dτ(n+3/2)

∫
ax0 (B2dτ \Bdτ )

|U∗
x0(z + x0) − U∗

x0(z + y0)|dz

= C

dτ(n+3/2)

∫
ax0 (B2dτ \Bdτ )

∣∣∣∣∣
∫ 1

0

d

ds

[
U∗
x0(z + x0(1 − s) + y0s)

]
ds

∣∣∣∣∣ dz
≤ C

dτ(n+3/2) |x0 − y0|
∫ 1

0

∫
ax0 (B2dτ \Bdτ )

|∇U∗
x0(z + x0(1 − s) + y0s)|dzds

≤ C

dτ(n+3/2)−1

∫ 1

0

∫
ax0B2dτ +[x0(1−s)+y0s]

|∇U∗
x0|dzds.
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Notice that the last integral is taken over

ax0B2dτ + [x0(1 − s) + y0s] = ax0 [B2dτ + sa−1
x0 (y0 − x0)] + x0

⊂ ax0B2dτ +λ−1/2d + x0 ⊂ E3dτ (x0),

if ρ = ρ(n, α,M) is small so that (2ρ)1−τ ≤ λ1/2 which readily implies d1−τ ≤ λ1/2. Thus,

1
dτ

∫ 2dτ

dτ
Ir dr ≤ C

dτ(n+3/2)−1

∫ 1

0

∫
E3dτ (x0)

|∇U∗
x0|dzds

≤ C

dτ(n/2+3/2)−1

(∫
E3dτ (x0)

|∇U∗
x0|2

)1/2

≤ C‖U‖W 1,2(B1)d
1−τ ,

where the third inequality follows from Lemma  2.9.3 .

Step 3. By the definition of rescalings and symmetrizations, we have

IIr ≤ C

dτ(n+1/2)

∫
ax0∂Br+y0

|U∗
x0(z) − U∗

y0(z)|dSz

≤ C

dτ(n+1/2)

∫
ax0∂Br+y0

|U(Px0z) − U(Py0z)|dSz.

This gives

1
dτ

∫ 2dτ

dτ
IIr dr ≤ C

dτ(n+3/2)

∫
ax0 (B2dτ \Bdτ )+y0

|U(Px0z) − U(Py0z)|dz

≤ C

dτ(n+3/2)

∫
ax0 (B2dτ \Bdτ )+y0

∫ 1

0

∣∣∣∣∣ dds [U([(1 − s)Px0 + sPy0 ]z)]
∣∣∣∣∣ dsdz

≤ C|Px0 − Py0|
dτ(n+3/2)

∫ 1

0

∫
ax0 (B2dτ \Bdτ )+y0

|∇U([(1 − s)Px0 + sPy0 ]z)|dzds.

Now we do the change of variables

y = [(1 − s)Px0 + sPy0 ]z.
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Since Px0 and Py0 are upper-triangular matrices with diagonal entries 1, 1, . . . , 1,−1, so is

(1 − s)Px0 + sPy0 . Thus

|det [(1 − s)Px0 + sPy0 ]| = 1.

Moreover, y ∈ [(1 − s)Px0 + sPy0 ](ax0B2dτ + y0). Since

ax0B2dτ + y0 ⊂ ay0B2(Λ/λ)1/2dτ + y0 = E2(Λ/λ)1/2dτ (y0),

we have

Py0(ax0B2dτ + y0) ⊂ Py0E2(Λ/λ)1/2dτ (y0) = E2(Λ/λ)1/2dτ (y0).

Similarly, since

ax0B2dτ + y0 = E2dτ (x0) + (y0 − x0) ⊂ B2Λ1/2dτ (x0) + (y0 − x0)

⊂ B4Λ1/2dτ (x0) ⊂ E4(Λ/λ)1/2dτ (x0),

we have

Px0(ax0B2dτ + y0) ⊂ E4(Λ/λ)1/2dτ (x0).

Thus

y ∈ (1 − s)Px0(ax0B2dτ + y0) + sPy0(ax0B2dτ + y0)

⊂ (1 − s)E4(Λ/λ)1/2dτ (x0) + sE2(Λ/λ)1/2dτ (y0)

⊂ B6(Λ/λ1/2)dτ + x0 + s(y0 − x0)

⊂ B7(Λ/λ1/2)dτ + x0 ⊂ E7(Λ/λ)dτ (x0).

Therefore,

1
dτ

∫ 2dτ

dτ
IIr dr ≤ C

dτ(n+3/2)−α

∫ 1

0

∫
E7(Λ/λ)dτ (x0)

|∇U |dzds

≤ C

dτ(n/2+3/2)−α

(∫
E7(Λ/λ)dτ (x0)

|∇U |2
)1/2
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≤ C

dτ(n/2+3/2)−α

(∫
E7(Λ/λ)dτ (x0)

|∇U∗
x0|2

)1/2

≤ C‖U‖W 1,2(B1)d
α−τ ,

for small ρ, where the third inequality follows from the quasisymmetry property and the last

inequality from Lemma  2.9.3 .

Step 4. By the change of variables, we have

IIIr =
∫
∂B1

|(U∗
y0)φy0,r(ax0z) − (U∗

y0)φy0,0(ax0z)| −
∫
∂B1

|(U∗
y0)φy0,r(ay0z) − (U∗

y0)φy0,0(ay0z)|

≤
∫
∂B1

|(U∗
y0)φy0,r(ax0z) − (U∗

y0)φy0,r(ay0z)| +
∫
∂B1

|(U∗
y0)φy0,0(ax0z) − (U∗

y0)φy0,0(ay0z)|

≤ C
(
‖∇(U∗

y0)φy0,r‖L∞(BΛ1/2 ) + ‖∇(U∗
y0)φy0,0‖L∞(BΛ1/2 )

)
|ax0 − ay0 |,

where we have used the fact that both ax0z and ay0z are contained in BΛ1/2 for z ∈ ∂B1.

To estimate the gradients of rescalings we first observe that by the inclusion BrΛ1/2(y0) ⊂

Er(Λ/λ)1/2(y0) ⊂ BrΛ/λ1/2(y0), we have

‖∇(U∗
y0)φy0,r‖L∞(BΛ1/2 ) ≤ C

r1/2 ‖∇U∗
y0‖L∞(B

rΛ1/2 (y0)) ≤ C

r1/2 ‖∇U‖L∞(B
rΛ/λ1/2 (y0)).

Let Uy0,r(x) := U(r(x − y0) + y0). Then, arguing as in the proof of Proposition  2.8.1 , we

have

‖∇Uy0,r‖L∞(BΛ/λ1/2 (y0)) ≤ C(n, α,M)‖Uy0,r‖W 1,2(B2Λ/λ1/2 (y0)).

Thus

‖∇U‖L∞(B
rΛ/λ1/2 (y0)) = 1

r
‖∇Uy0,r‖L∞(BΛ/λ1/2 (y0))

≤ C

r
‖Uy0,r‖W 1,2(B2Λ/λ1/2 (y0))

≤ C

rn/2+1 ‖U‖L2(B2rΛ/λ1/2 (y0)) + C

rn/2 ‖∇U‖L2(B2rΛ/λ1/2 (y0))

≤ C

rn/2+1 ‖U∗
y0‖L2(E2rΛ/λ(y0)) + C

rn/2 ‖∇U∗
y0‖L2(E2rΛ/λ(y0))

≤ Cr1/2‖U‖W 1,2(B1),
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where we have used the inclusion B2rΛ/λ1/2(y0) ⊂ E2rΛ/λ(y0) and the quasisymmetry property

in the third inequality and Lemma  2.9.3 in the forth. Therefore,

‖∇(U∗
y0)φy0,r‖L∞(BΛ1/2 ) ≤ C

r1/2 ‖∇U‖L∞(B
rΛ/λ1/2 (y0)) ≤ C‖U‖W 1,2(B1).

Moreover, by C1
loc convergence of (U∗

y0)φy0,r to (U∗
y0)φy0,0, we also have

‖∇(U∗
y0)φy0,0‖L∞(BΛ1/2 ) = lim

rj→0+
‖∇(U∗

y0)φy0,rj
‖L∞(BΛ1/2 ) ≤ C‖U‖W 1,2(B1). (2.10.8)

Therefore,

IIIr ≤ C|ax0 − ay0|‖U‖W 1,2(B1) ≤ C‖U‖W 1,2(B1)d
α.

Step 5. Now we are ready to prove ( 2.10.4 ). Using the estimates in Steps 2–4 and taking

the average over dτ ≤ r ≤ 2dτ , we have

∫
ax0∂B1

|(U∗
x0)φx0,0 − (U∗

y0)φy0,0| ≤ C‖U‖W 1,2(B1)(dτδ/2 + d1−τ + dα−τ + dα).

If we simply take τ = α/2, then we conclude

∫
ax0∂B1

|(U∗
x0)φx0,0 − (U∗

y0)φy0,0| ≤ C|x0 − y0|γ,

with γ = αδ/4 and C = C(n, α,M, ‖U‖W 1,2(B1)).

Step 6. To prove ( 2.10.5 ), we first observe that from ( 2.10.4 ),

∫
∂B1

|(u∗
x0)φ0(z) − (u∗

y0)φ0(ā−1
y0 āx0z)| =

∫
∂B1

|(U∗
x0)φx0,0(āx0z) − (U∗

y0)φy0,0(āx0z)|

=
∫
ax0∂B1

|(U∗
x0)φx0,0 − (U∗

y0)φy0,0|
µx0

det ax0

≤ C|x0 − y0|γ.
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On the other hand,

∫
∂B1

|(u∗
y0)φ0(z) − (u∗

y0)φ0(ā−1
y0 āx0z)| =

∫
ax0∂B1

|(u∗
y0)φ0(ā−1

x0 z) − (u∗
y0)φ0(ā−1

y0 z)|
µx0

det ax0

≤ C‖∇(u∗
y0)φ0‖L∞(B(Λ/λ)1/2 )|ā−1

x0 − ā−1
y0 |

≤ C‖∇(U∗
y0)φy0,0‖L∞(BΛ/λ1/2 )|x0 − y0|α

≤ C‖U‖W 1,2(B1)|x0 − y0|α,

where the last inequality follows from (  2.10.8 ). (It is easy to see that we can enlarge the

domain in ( 2.10.8 ).) Therefore, combining the preceding two estimates, we conclude that

∫
∂B1

|(u∗
x0)φ0 − (u∗

y0)φ0 | ≤ C|x0 − y0|γ.

Step 7. Finally, (  2.10.5 ) implies ( 2.10.6 ), by arguing precisely as in Proposition 7.4 in [ 20 ].

2.11 Regularity of the regular set

In this section we combine the uniqueness and Hölder continuous dependence of 3/2-

homogeneous blowups of the symmetrized almost minimizers (U∗
x0)φx0,0 (Lemma  2.10.3 ) with

a classification of such blowups at so-called regular points (Proposition  2.11.1 ) to prove one of

the main results of this chapter, the C1,γ regularity of the regular set (Theorem  2.11.5 ). While

some arguments follow directly from those in the case A ≡ I by a coordinate transformation

T̄x0 , the dependence of these transformations on x0 creates an additional difficulty.

We start by defining the regular set.

Definition 2.11.1 (Regular points). For an A-quasisymmetric almost minimizer U for the

A-Signorini problem in B1, we say that a free boundary point x0 of U is regular if

κ(x0) = 3/2.

We denote the set of all regular points of U by R(U) and call it the regular set.
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We explicitly observe here that 3/2 < 2 ≤ κ0, so the fact x0 ∈ R(U) is independent of

the choice of κ0 ≥ 2, see Remark  2.7.3 .

The proofs of the following two results (Lemma  2.11.1 and Proposition  2.11.1 ) are estab-

lished precisely as in Lemma  1.9.1 and Proposition  1.9.1 for the transformed functions u∗
x0 .

The equivalent statements for U∗
x0 are obtained by changing back to the original variables.

Lemma 2.11.1 (Nondegeneracy at regular points). Let x0 ∈ B′
1/2 ∩ R(U) for an A-

quasisymmetric almost minimizer U for the A-Signorini problem in B1. Then, for κ = 3/2,

lim inf
t→0

∫
ax0∂B1

((U∗
x0)φx0,t)

2µx0 = det ax0 lim inf
t→0

∫
∂B1

((u∗
x0)φt )2 > 0.

Proposition 2.11.1. If κ(x0) < 2, then necessarily κ(x0) = 3/2 and

(u∗
x0)φ0(z) = ax0 Re(z′ · νx0 + i|zn|)3/2,

(U∗
x0)φx0,0(x) = ax0 Re((ā−1

x0 x)′ · νx0 + i|(ā−1
x0 x)n|)3/2,

for some ax0 > 0, νx0 ∈ ∂B′
1.

The next two corollaries are obtained by repeating the same arguments as in Corollar-

ies  1.9.2 and  1.9.3 .

Corollary 2.11.2 (Almgren’s frequency gap). Let U and x0 be as in Lemma  2.11.1 . Then

either

κ(x0) = 3/2 or κ(x0) ≥ 2.

Corollary 2.11.3. The regular set R(U) is a relatively open subset of the free boundary.

The combination of Proposition  2.11.1 and Lemma  2.10.3 implies the following lemma.

Lemma 2.11.4. Let U and x0 be as in Lemma  2.11.1 . Then there exists ρ > 0, depending

on x0 such that B′
ρ(x0) ∩ Γ(U) ⊂ R(U) and if

(u∗
x̄)
φ
0(z) = ax̄ Re(z′ · νx̄ + i|zn|)3/2
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is the unique 3/2-homogeneous blowup of u∗
x̄ at x̄ ∈ B′

ρ(x0) ∩ Γ(u), then

|ax̄ − aȳ| ≤ C0|x̄− ȳ|γ,

|νx̄ − νȳ| ≤ C0|x̄− ȳ|γ,

for any x̄, ȳ ∈ B′
ρ(x0) ∩ Γ(u) with a constant C0 depending on x0.

Proof. The proof follows by repeating the argument in Lemma 7.5 in [  20 ] with (u∗
x̄)
φ
0 , (u∗

ȳ)
φ
0 .

Now we are ready to prove the main result on the regularity of the regular set.

Theorem 2.11.5 (C1,γ regularity of the regular set). Let U be an A-quasisymmetric almost

minimizer for the A-Signorini problem in B1. Then, if x0 ∈ B′
1/2 ∩ R(U), there exists ρ > 0,

depending on x0 such that, after a possible rotation of coordinate axes in Rn−1, one has

B′
ρ(x0) ∩ Γ(U) ⊂ R(U), and

B′
ρ(x0) ∩ Γ(U) = B′

ρ(x0) ∩ {xn−1 = g(x1, . . . , xn−2)},

for g ∈ C1,γ(Rn−2) with an exponent γ = γ(n, α,M) ∈ (0, 1).

Proof. The proof of the theorem is similar to those of in Theorem 1.2 in [  20 ] and Theo-

rem  1.9.5 . However, we provide full details since there are technical differences.

Step 1. By relative openness of R(U) in Γ(U), for small ρ > 0 we have B′
2ρ(x0) ∩ Γ(U) ⊂

R(U). We then claim that for any ε > 0, there is rε > 0 such that for x̄ ∈ B′
ρ(x0) ∩ Γ(U),

r < rε, we have that

‖(u∗
x̄)φr − (u∗

x̄)
φ
0‖

C1(B±
1 ) < ε.

Assuming the contrary, there is a sequence of points x̄j ∈ B′
ρ(x0) ∩ Γ(U) and radii rj → 0

such that

‖(u∗
x̄j

)φrj
− (u∗

x̄j
)φ0‖

C1(B±
1 ) ≥ ε0,

for some ε0 > 0. Taking a subsequence if necessary, we may assume x̄j → x̄0 ∈ B′
ρ(x0) ∩

Γ(U). Using estimates ( 2.10.1 )–( 2.10.3 ), we can see that ∇(u∗
x̄j

)φrj
are uniformly bounded
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in C0,β(B±
2 ∪ B′

2). Since (u∗
x̄j

)φrj
(0) = 0, we also have that (u∗

x̄j
)φrj

is uniformly bounded in

C1,β(B±
2 ∪B′

2). Thus, we may assume that for some w

(u∗
x̄j

)φrj
→ w in C1(B±

1 ).

By arguing as in the proof of Proposition  2.8.1 , we see that the limit w is a solution of the

Signorini problem in B1. Further, by Lemma  2.10.2 , we have

‖(u∗
x̄j

)φrj
− (u∗

x̄j
)φ0‖L1(∂B1) → 0.

On the other hand, by Lemma  2.11.4 , we have

(u∗
x̄j

)φ0 → (u∗
x̄0)φ0 in C1(B±

1 ),

and thus

w = (u∗
x̄0)φ0 on ∂B1.

Since both w and (u∗
x̄0)φ0 are solutions of the Signorini problem, they must coincide also in

B1. Therefore

(u∗
x̄j

)φrj
→ (u∗

x̄0)φ0 in C1(B±
1 ),

implying also that

‖(u∗
x̄j

)φrj
− (u∗

x̄j
)φ0‖

C1(B±
1 ) → 0,

which contradicts our assumption.

Step 2. For a given ε > 0 and a unit vector ν ∈ Rn−1 define the cone

Cε(ν) = {x′ ∈ Rn−1 : x′ · ν > ε|x′|}.
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By Lemma  2.11.4 , we may assume ax̄ ≥ ax0
2 for x̄ ∈ B′

ρ(x0) ∩ Γ(U) by taking ρ small. For

such ρ, we then claim that for any ε > 0, there is rε > 0 such that for any x̄ ∈ B′
ρ(x0)∩Γ(U),

we have

Cε(νx̄) ∩B′
rε

⊂ {u∗
x̄(·, 0) > 0}.

Indeed, denoting Kε(ν) = Cε ∩ ∂B′
1/2, we have for some universal Cε > 0

Kε(νx̄) b {(u∗
x̄)
φ
0(·, 0) > 0} ∩B′

1 and (u∗
x̄)
φ
0(·, 0) ≥ ax̄Cε ≥ ax0

2 Cε on Kε(νx̄).

Since ax0
2 Cε is independent of x̄, by Step 1 we can find rε > 0 such that for r < 2rε,

(u∗
x̄)φr (·, 0) > 0 on Kε(νx̄).

This implies that for r < 2rε,

u∗
x̄(·, 0) > 0 on rKε(νx̄) = Cε(νx̄) ∩ ∂B′

r/2.

Taking the union over all r < 2rε, we obtain

u∗
x̄(·, 0) > 0 on Cε(νx̄) ∩B′

rε
.

Step 3. We claim that for given ε > 0, there exists rε > 0 such that for any x̄ ∈ B′
ρ(x0)∩Γ(U),

we have −
(
Cε(νx̄) ∩B′

rε

)
⊂ {u∗

x̄(·, 0) = 0}.

Indeed, we first note that

−∂+
xn

(u∗
x̄)
φ
0 ≥ ax̄Cε >

(
ax0

2

)
Cε on − Kε(νx̄),

for a universal constant Cε > 0. From Step 1, there exists rε > 0 such that for r < 2rε,

−∂+
xn

(u∗
x̄)φr (·, 0) > 0 on − Kε(νx̄).
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By arguing as in Step 2, we obtain

−∂+
xn
u∗
x̄(·, 0) > 0 on −

(
C(νx̄) ∩B′

rε

)
.

By the complementarity condition in Lemma  2.6.6 , we therefore conclude that

−
(
C(νx̄) ∩B′

rε

)
⊂ {−∂+

xn
u∗
x̄(·, 0) > 0} ⊂ {u∗

x̄(·, 0) = 0}.

Step 4. By direct computation, we have

CΛ1/2λ−1/2ε(νAx̄ ) ∩B′
λ1/2rε

⊂ āx̄
(
Cε(νx̄) ∩B′

rε

)
,

where

νAx̄ := (ā−1
x )trνx̄

|(ā−1
x )trνx̄|

.

(Here (·)tr stands for the transpose of the matrix.) Indeed, if y′ ∈ CΛ1/2λ−1/2ε(νAx̄ ) ∩ B′
λ1/2rε

,

then

y′ ∈ B′
λ1/2rε

= āx̄
(
ā−1
x̄ B′

λ1/2rε

)
⊂ āx̄B

′
rε
,

and

〈ā−1
x y′, νx̄〉 = 〈y′, (ā−1

x )trνx̄〉 = 〈y′, νAx̄ 〉|(ā−1
x )trνx̄|

≥ (Λ1/2λ−1/2ε|y′|)(Λ−1/2)

= λ−1/2ε|y′| ≥ ε|ā−1
x̄ y′|.

Combining this with Step 2 and Step 3, for x̄ ∈ B′
ρ(x0) ∩ Γ(U),

x̄+
(
CΛ1/2λ−1/2ε(νAx̄ ) ∩B′

λ1/2rε

)
⊂ x̄+ āx̄

(
Cε(νx̄) ∩B′

rε

)
⊂ {U∗

x̄(·, 0) > 0},

x̄−
(
CΛ1/2λ−1/2ε(νAx̄ ) ∩B′

λ1/2rε

)
⊂ {U∗

x̄(·, 0) = 0}.
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Step 5. By rotation in Rn−1 we may assume νAx0 = en−1. For any ε > 0, by Lemma  2.11.4 

and the Hölder continuity of A, we can take ρε = ρ(x0, ε,M), possibly smaller than ρ in the

previous steps, such that

C2Λ1/2λ−1/2ε(en−1) ∩B′
λ1/2rε

⊂ CΛ1/2λ−1/2ε(νAx̄ ) ∩B′
λ1/2rε

,

for x̄ ∈ B′
ρε

(x0) ∩ Γ(U). By Step 4, we also have

x̄+
(
C2Λ1/2λ−1/2ε(en−1) ∩B′

λ1/2rε

)
⊂ {U(·, 0) > 0},

x̄−
(
C2Λ1/2λ−1/2ε(en−1) ∩B′

λ1/2rε

)
⊂ {U(·, 0) = 0}.

Now, fixing ε = ε0, by the standard arguments, we conclude that there exists a Lipschitz

function g : Rn−2 → R with |∇g| ≤ Cn,M/ε0 such that

B′
ρε0

(x0) ∩ {U(·, 0) = 0} = B′
ρε0

(x0) ∩ {xn−1 ≤ g(x′′)},

B′
ρε0

(x0) ∩ {U(·, 0) > 0} = B′
ρε0

(x0) ∩ {xn−1 > g(x′′)}.

Step 6. Taking ε → 0 in Step 5, Γ(U) is differentiable at x0 with normal νAx0 . Recentering at

any x̄ ∈ B′
ρe0

(x0) ∩ Γ(U), we see that Γ(U) has a normal νAx̄ at x̄. By noticing that x̄ 7→ νAx̄

is C0,γ, we conclude that the function g in Step 5 is C1,γ. This completes the proof.

2.12 Singular points

In this section we study another type of free boundary points for almost minimizers, the

so-called singular set Σ(U). Because of the machinery developed in the earlier sections, we

are able to prove a stratification type result for Σ(U) (Theorem  2.12.4 ), following a similar

approach for the minimizers and almost minimizers with A = I.
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Definition 2.12.1 (Singular points). Let U be an A-quasisymmetric almost minimizer for

the A-Signorini problem in B1. We say that a free boundary point x0 is singular if the

coincidence set Λ(U) = {U(·, 0) = 0} ⊂ B′
1 has zero Hn−1-density at x0, i.e.,

lim
r→0+

Hn−1 (Λ(U) ∩B′
r(x0))

Hn−1(B′
r)

= 0.

We denote the set of all singular points by Σ(U) and call it the singular set.

Denote by ā′
x0 the (n − 1) × (n − 1) submatrix of āx0 formed by the first (n − 1) rows

and columns. We then claim that there are constants C, c > 0 depending only on n, λ, and

Λ such that

c ≤ | det ā′
x0| ≤ C. (2.12.1)

Indeed, this follows from the ellipticity of ax0 and the invariance of both Rn−1 × {0} and

{0} × R under āx0 , since we have

| det ā′
x0(āx0)nn| = | det āx0| = | det ax0|

and

|(āx0)nn| = |〈āx0en, en〉| = |āx0en| ∈ [λ1/2,Λ1/2].

Recall now that for x0 ∈ Γ(u), ux0(y) = U(āx0y + x0) and note that ā′
x0B

′
r + x0 = E ′

r(x0).

Thus,

Hn−1(Λ(U) ∩ E ′
r(x0)) = | det ā′

x0 |Hn−1(Λ(u∗
x0) ∩B′

r). (2.12.2)

Now, by ( 2.12.2 ) and ( 2.12.1 ), together with Bλ1/2r(x0) ⊂ Er(x0) ⊂ BΛ1/2r(x0), we have

lim
r→0+

Hn−1 (Λ(U) ∩B′
r(x0))

Hn−1(B′
r)

= 0 ⇐⇒ lim
r→0+

Hn−1 (Λ(U) ∩ E ′
r(x0))

Hn−1(E ′
r(x0))

= 0

⇐⇒ lim
r→0+

Hn−1
(
Λ(u∗

x0) ∩B′
r

)
Hn−1(B′

r)
= 0.
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In terms of Almgren rescalings (u∗
x0)Ir, we can rewrite the condition above as

lim
r→0+

Hn−1
(
Λ((u∗

x0)Ir) ∩B′
1

)
= 0.

We then have the following characterization of singular points.

Proposition 2.12.1 (Characterization of singular points). Let U be an A-quasisymmetric

almost minimizer for the A-Signorini problem in B1, and x0 ∈ B′
1/2 ∩ Γ(U) be such that

κ(x0) = κ < κ0. Then the following statements are equivalent.

(i) x0 ∈ Σ(U).

(ii) any Almgren blowup (u∗
x0)I0 of u∗

x0 at 0 is a nonzero polynomial from the class

Qκ = {q : q is homogeneous polynomial of degree κ such that

∆q = 0, q(y′, 0) ≥ 0, q(y′, yn) = q(y′,−yn)}.

(iii) any Almgren blowup (U∗
x0)Ax0,0 of U∗

x0 at x0 is a nonzero polynomial from the class

QA,x0
κ = {p : p is homogeneous polynomial of degree κ such that

div(A(x0)∇p) = 0, p(x′, 0) ≥ 0, p(x) = p(Px0x)}.

(iv) κ(x0) = 2m for some m ∈ N.

Proof. This is the analogue of Proposition  1.10.1 in the case A ≡ I.

Clearly, (ii) and (iii) are equivalent. By Proposition  2.8.1 , any Almgren blowup (u∗
x0)I0

of u∗
x0 at 0 is a nonzero global solution of the Signorini problem, homogeneous of degree κ.

Moreover, (u∗
x0)I0 is a C1

loc limit of Almgren rescalings (u∗
x0)Itj in Rn

± ∪ Rn−1. Since u∗
x0 also

satisfies the complementarity condition in Lemma  2.6.6 , the equivalence among (i), (ii) and

(iv) follows by repeating the arguments in Proposition  2.8.1 .

In order to proceed with the blowup analysis at singular points, we need to remove

the logarithmic term from the growth estimates in Lemma  2.9.1 . This was achieved in
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Lemma  1.10.6 in the case A ≡ I by using a bootstrapping argument Lemmas  1.10.2 – 1.10.4 ,

Corollary  1.10.5 , based on the log-epiperimetric inequality of [  27 ]. All the arguments above

work directly for u∗
x0 (and then for U∗

x0 , by deskewing) and we obtain the following optimal

growth estimate.

Lemma 2.12.1 (Optimal growth estimate at singular points). Let U be an A-quasisym-

metric almost minimizer for the A-Signorini problem in B1. If x0 ∈ B′
1/2 ∩ Γ(U) and

κ(x0) = κ < κ0, κ = 2m, m ∈ N, then there are t0 and C, depending on n, α, M , κ, κ0,

‖U‖W 1,2(B1), such that for 0 < t < t0,

∫
∂Bt

(u∗
x0)2 ≤ Ctn+2κ−1,

∫
Bt

|∇u∗
x0 |2 ≤ Ctn+2κ−2,∫

∂Et(x0)
(U∗

x0)2 ≤ Ctn+2κ−1,
∫
Et(x0)

|∇U∗
x0 |2 ≤ Ctn+2κ−2.

With this growth estimate at hand, we now proceed as in the beginning of Section  2.10 

but with κ = 2m < κ0 in place of κ = 3/2. Namely, for such κ, let

φ(r) = φκ(r) := e−
(

κb
α

)
rα

rκ, 0 < r < t0,

where b = M(n+2κ0)
α

is as in Weiss-type monotonicity formula. Then, define the κ-almost

homogeneous rescalings of a function v at x0 by

vφx0,r(x) := v(rx+ x0)
φ(r) .

Again, when x0 = 0, we simply write vφ0,r = vφr .

The growth estimates in Lemma  2.12.1 enable us to consider κ-homogeneous blowups

(u∗
x0)φtj → (u∗

x0)φ0 in C1
loc(Rn

± ∪ Rn−1),

(U∗
x0)φx0,tj → (U∗

x0)φx0,0 in C1
loc(Rn

± ∪ Rn−1),

for t = tj → 0+, similar to 3/2-homogeneous blowups in Section  2.10 .
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Furthermore, the arguments in Proposition  1.10.2 also go through for u∗
x0 (and then for

U∗
x0 , by deskewing), and we obtain the following rotation estimate for almost homogeneous

rescalings.

Proposition 2.12.2 (Rotation estimate). For U and x0 as in Lemma  2.12.1 , there exist

C > 0 and t0 > 0 such that

∫
∂B1

|(u∗
x0)φt − (u∗

x0)φs | ≤ C
(

log 1
t

)− 1
n−2

,

∫
ax0∂B1

|(U∗
x0)φx0,t − (U∗

x0)φx0,s| ≤ C
(

log 1
t

)− 1
n−2

,

for 0 < s < t < t0. In particular, the blowups (u∗
x0)φ0 and (U∗

x0)φx0,0 are unique.

We next show that the rotation estimate as above holds uniformly for u∗
x0 replaced with

its Almgren rescalings (u∗
x0)Ir, 0 < r < 1. (Note that the objects

[
(u∗

x0)Ir
]φ
t

in the proposition

below are κ-almost homogeneous rescalings of Almgren rescalings.)

Proposition 2.12.3. For U and x0 as in Lemma  2.12.1 and 0 < r < 1, there are C > 0

and t0 > 0, independent of r such that

∫
∂B1

∣∣∣∣[(u∗
x0)Ir

]φ
t

−
[
(u∗

x0)Ir
]φ
s

∣∣∣∣ ≤ C
(

log 1
t

)− 1
n−2

,

for 0 < s < t < t0. In particular, the κ-homogeneous blowup
[
(u∗

x0)Ir
]φ

0
is unique.

Proof. We first observe that since u∗
x0 has the almost Signorini property at 0, (u∗

x0)Ir also has

the almost Signorini property at 0. This implies that Wκ(ρ, (u∗
x0)Ir, 0) and N̂κ0(ρ, (u∗

x0)Ir, 0)

are monotone nondecreasing on ρ. Thus

N̂κ0(0+, (u∗
x0)Ir, 0) = lim

ρ→0
N̂κ0(ρ, (u∗

x0)Ir, 0) = lim
ρ→0

N̂κ0(ρr, u∗
x0 , 0) = κ(x0) = κ.

Fix R > 1. If t is small, then we can argue as in the proof of Proposition  2.8.1 to obtain

that for any K b B±
R ∪B′

R,

∥∥∥∥[(u∗
x0)Ir

]φ
t

∥∥∥∥
C1,β(K)

≤ C(n, α,M,R,K)
∥∥∥∥[(u∗

x0)Ir
]φ
t

∥∥∥∥
W 1,2(BR)

.
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Those are all we need to proceed all the arguments with (u∗
x0)Ir as in Lemmas  1.10.2 – 1.10.4 ,

Corollary  1.10.5 , Lemma  1.10.6 , and Proposition  1.10.2 . This completes the proof.

Once we have Proposition  2.12.3 , we can argue as in Lemma  1.10.8 to obtain the nonde-

generacy for u∗
x0 , and also for U∗

x0 .

Lemma 2.12.2 (Nondegeneracy at singular points). Let U and x0 be as in Lemma  2.12.1 .

Then

lim inf
t→0

∫
∂B1

((u∗
x0)φt )2 = lim inf

t→0

1
tn+2κ−1

∫
∂Bt

(u∗
x0)2 > 0,

lim inf
t→0

∫
ax0∂B1

((U∗
x0)φx0,t)

2 = lim inf
t→0

1
tn+2κ−1

∫
∂Et(x0)

(U∗
x0)2 > 0.

To state our main result on the singular set, we need to introduce certain subsets of

Σ(U). For κ = 2m < κ0, m ∈ N, let

Σκ(U) := {x0 ∈ Σ(U) : κ(x0) = κ} = Γκ(U).

Note that the last equality follows from the implication (iv) ⇒ (i) in Proposition  2.12.1 .

Lemma 2.12.3. The set Σκ(U) is of topological type Fσ; i.e., it is a countable union of

closed sets.

Proof. For j ∈ N, j ≥ 2, let

Fj :=
{
x0 ∈ Σκ(U) ∩ B1−1/j : 1

j
≤ 1

ρn+2κ−1

∫
∂Eρ(x0)

(U∗
x0)2 ≤ j for 0 < ρ <

1
2j

}
.

Note that if xj → x0, then by the local uniform continuity of U and A,

∫
∂Eρ(xi)

(U∗
xi

)2 →
∫
∂Eρ(x0)

(U∗
x0)2.

Using this, together with Lemma  2.12.1 , Lemma  2.12.2 and Lemma  2.9.1 , we can argue as

in Lemma  1.10.9 to prove that Σκ(U) = ∪∞
j=2Fj and each Fj is closed.
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Next, for κ = 2m < κ0, m ∈ N and x0 ∈ Σκ(U), we define

d(κ)
x0 := dim{ξ ∈ Rn−1 : ξ · ∇y′(u∗

x0)φ0(y′, 0) ≡ 0 on Rn−1},

which has the meaning of the dimension of Σκ(u∗
x0) at 0, and where (u∗

x0)φ0 is the unique κ-

homogeneous blowup of u∗
x0 at 0. We note here that d(κ)

x0 can only take the values 0, 1, . . . , n−

2. Indeed, otherwise (u∗
x0)φ0 would vanish identically on Π and consequently on Rn, since it

is a solution of the Signorini problem, even symmetric with respect to Π (see [  14 ]). However,

that would contradict the nondegeneracy Lemma  2.12.2 . Then, for d = 0, 1, . . . , n− 2, let

Σd
κ(U) := {x0 ∈ Σκ(U) : d(κ)

x0 = d}.

Theorem 2.12.4 (Structure of the singular set). Let U be an A-quasisymmetric almost

minimizer for the A-Signorini problem in B1. Then for every κ = 2m < κ0, m ∈ N, and

d = 0, 1, . . . , n− 2, the set Σd
κ(U) is contained in the union of countably many submanifolds

of dimension d and class C1,log.

Proof. We follow the idea in Theorem  1.10.10 . For x0 ∈ Σκ(U) ∩ B′
1/2, let qx0 ∈ Qκ denote

the unique κ-homogeneous blowup of u∗
x0 at 0. By the optimal growth (Lemma  2.12.1 ) and

the nondegeneracy (Lemma  2.12.2 ), we can write

qx0 = ηx0q
I
x0 , ηx0 > 0, ‖qIx0‖L2(∂B1) = 1,

where qIx0 ∈ Qκ is the corresponding Almgren blowup. If x1, x2 ∈ Σκ(U) ∩ B′
1/2, for t > 0,

to be chosen below, we can write

‖qx1 − qx2‖L1(∂B1) ≤ ‖qx1 − (u∗
x1)φt ‖L1(∂B1) + ‖(u∗

x1)φt − (u∗
x2)φt ‖L1(∂B1) + ‖qx2 − (u∗

x2)φt ‖L1(∂B1)

≤ C
(

log 1
t

)− 1
n−2

+ ‖(u∗
x1)φt − (u∗

x2)φt ‖L1(∂B1),

(2.12.3)
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where we have used Proposition  2.12.2 in the second inequality. Moreover, we have

‖(u∗
x1)φt − (u∗

x2)φt ‖L1(∂B1) = 1
2φ(t)

∫
∂B1

|U(tāx1y + x1) + U(Px1(tāx1y + x1))

− U(tāx2y + x2) − U(Px2(tāx2y + x2))| dSy

≤ C

tκ

∫
∂B1

(
|U(tāx1y + x1) − U(tāx2y + x2)|

+ |U(Px1(tāx1y + x1)) − U(Px1(tāx2y + x2))|

+ |U(Px1(tāx2y + x2)) − U(Px2(tāx2y + x2))|
)
dSy

≤ C

tκ
‖∇U‖L∞(B1) (|āx1 − āx2| + |x1 − x2| + |Px1 − Px2|)

≤ C
|x1 − x2|α

tκ
= C|x1 − x2|α/2,

(2.12.4)

if we choose t = |x1 − x2|
α
2κ and have |x1 − x2| < (1/4Λ−1λ1/2) 2κ

α . Combining ( 2.12.3 ) and

( 2.12.4 ), we obtain

‖qx1 − qx2‖L1(∂B1) ≤ C

(
log 1

|x1 − x2|

)− 1
n−2

.

After this, we can repeat the argument in the proof of Theorem  1.10.10 to obtain the esti-

mates that for x0 ∈ Σκ(U) ∩B′
1/2, there is δ = δ(x0) > 0 such that

|ηx1 − ηx2| ≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

,

‖qIx1 − qIx2‖L∞(B1) ≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

, x1, x2 ∈ Σκ(U) ∩B′
δ(x0).

Now, we also have the similar result for U∗
x0 . For x0 ∈ Σκ(U) ∩B1/2, where κ = 2m, m ∈ N,

let px0 ∈ QA,x0
κ be the unique κ-homogeneous blowup of U∗

x0 at x0. Then we can write

px0 = ηAx0p
A
x0 , ηAx0 > 0, ‖pAx0‖L2(∂B1) = 1,
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where pAx0 ∈ QA,x0
κ is the corresponding Almgren blowup of U∗

x0 . Using that

qIx0(z) = (det ax0)1/2 pAx0(ax0z), qx0(z) = px0(ax0z),

together with the ellipticity and Hölder continuity of ax0 and the homogeneity of blowups,

we easily conclude that for x0 ∈ Σκ(U) ∩B′
1/2, there is δ = δ(x0) > 0 such that

|ηAx1 − ηAx2| ≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

,

‖pAx1 − pAx2‖L∞(B1) ≤ C

(
log 1

|x1 − x2|

)− 1
2(n−2)

, x1, x2 ∈ Σκ(U) ∩B′
δ(x0).

Once we have these estimates, as well as Lemma  2.12.3 , we can apply the Whitney Extension

Theorem of Fefferman [  56 ], to complete the proof, similar to that of Theorem 1.7 in [  27 ].

2.A Example of almost minimizers

Example 2.A.1. Let U be a solution of the A-Signorini problem in B1 with velocity field

b ∈ Lp(B1), p > n:

− div(A∇U) + 〈b(x),∇U〉 = 0 in B±
1 ,

U ≥ 0, 〈A∇U, ν+〉 + 〈A∇U, ν−〉 ≥ 0,

U(〈A∇U, ν+〉 + 〈A∇U, ν−〉) = 0 on B′
1,

where ν± = ∓en and 〈A∇U, ν±〉 on B′
1 are understood as the limits from inside B±

1 . We

interpret this in the weak sense that U satisfies the variational inequality

∫
B1

〈A∇U,∇(W − U)〉 + 〈b,∇U〉(W − U) ≥ 0,

for any competitor W ∈ K0,U(B1,Π). Then U is an almost minimizer of the A-Signorini

problem in B1 with thin obstacle ψ = 0 on Π = Rn−1 × {0} and a gauge function ω(r) =

Cr1−n/p, C = C(n, p, λ,Λ)‖b‖2
Lp(B1).
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Proof. For any Er(x0) b B1 and W ∈ K0,U(Er(x0),Π), we extend W as equal to U in

B1 \ Er(x0) to obtain

∫
Er(x0)

〈A∇U,∇(W − U)〉 + 〈b,∇U〉(W − U) ≥ 0. (2.A.1)

Let V be the minimizer of the energy functional

∫
Er(x0)

〈A∇V,∇V 〉 on K0,U(Er(x0),Π).

Then it follows from a standard variation argument that V satisfies the variational inequality

∫
Er(x0)

〈A∇V,∇(W − V )〉 ≥ 0 for any W ∈ K0,U(Er(x0),Π). (2.A.2)

Taking W = U ± (U − V )+ in ( 2.A.1 ) and W = V + (U − V )+ in ( 2.A.2 ), we obtain

∫
Er(x0)

〈A∇(U − V )+,∇(U − V )+〉 ≤ −
∫
Er(x0)

〈b,∇U〉(U − V )+.

Similarly, taking W = U + (V − U)+ in ( 2.A.1 ) and W = V ± (V − U)+ in ( 2.A.2 ), we get

∫
Er(x0)

〈A∇(V − U)+,∇(V − U)+〉 ≤
∫
Er(x0)

〈b,∇U〉(V − U)+.

These two inequalities give

∫
Er(x0)

〈A∇(U − V ),∇(U − V )〉 ≤
∫
Er(x0)

|b||∇U ||U − V |.

Applying Hölder’s inequality,

∫
Er(x0)

|∇(U − V )|2 ≤ λ−1
∫
Er(x0)

〈A∇(U − V ),∇(U − V )〉

≤ λ−1‖b‖Lp(Er(x0))‖∇U‖L2(Er(x0))‖U − V ‖Lp∗ (Er(x0)),
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with p∗ = 2p/(p − 2). Since U − V ∈ W 1,2
0 (Er(x0)) and diam(Er(x0)) ≤ 2Λ1/2r, from the

Sobolev’s inequality,

‖U − V ‖Lp∗ (Er(x0)) ≤ C(n, p, λ,Λ)r1−n/p‖∇(U − V )‖L2(Er(x0)).

Now we have ∫
Er(x0)

|∇(U − V )|2 ≤ Cr2(1−n/p)
∫
Er(x0)

|∇U |2, (2.A.3)

with C = C(n, p, λ,Λ)‖b‖2
Lp(B1). Thus,

∫
Er(x0)

〈A∇U,∇U〉 −
∫
Er(x0)

〈A∇V,∇V 〉 =
∫
Er(x0)

〈A∇(U + V ),∇(U − V )〉

≤ C
∫
Er(x0)

|∇(U + V )||∇(U − V )|

≤ Crγ
∫
Er(x0)

(
|∇U |2 + |∇V |2

)
+ Cr−γ

∫
Er(x0)

|∇(U − V )|2

≤ Crγ
∫
Er(x0)

〈A∇U,∇U〉 + Crγ
∫
Er(x0)

〈A∇V,∇V 〉

+ Cr2(1−n/p)−γ
∫
Er(x0)

〈A∇U,∇U〉,

where we applied Young’s inequality and used (  2.A.3 ) at the end. We choose γ = 1 − n/p

to complete the proof.
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3. ALMOST MINIMIZERS FOR CERTAIN FRACTIONAL

VARIATIONAL PROBLEMS

3.1 Introduction and Main Results

3.1.1 Fractional harmonic functions

Given 0 < s < 1, we say that a function u ∈ Ls(Rn) := L1(Rn, (1 + |x|n+2s)−1) is

s-fractional harmonic in an open set Ω ⊂ Rn if

(−∆x)su(x) := Cn,s p.v.
∫
Rn

u(x) − u(x+ z)
|z|n+2s = 0 in Ω, (3.1.1)

where p.v. stands for Cauchy’s principal value and Cn,s is a normalization constant. The

formula above is just one of many equivalent definitions of the fractional Laplacian (−∆x)s,

another one being a pseudo-differential operator with Fourier symbol |ξ|2s. We refer to a

recent review of Garofalo [ 60 ] for basic properties of (−∆x)s, as well as many historical

remarks concerning that operator.

In recent years, there has been a surge of interest in nonlocal problems involving the

fractional Laplacian, when it was discovered that the problems can be localized by the use of

the so-called Caffarelli-Silvestre extension procedure [ 10 ]. Namely, for a = 1 − 2s ∈ (−1, 1),

let

P (x, y) := Cn,a
|y|1−a

(|x|2 + |y|2)
n+1−a

2
, (x, y) ∈ Rn × R+ = Rn+1

+ ,

(to be called the Poisson kernel for the extension operator La) and consider the convolution,

still denoted by u,

u(x, y) := u ∗ P (·, y) =
∫
Rn
u(z)P (x− z, y)dz, (x, y) ∈ Rn+1

+ .

Note that u(x, y) solves the Cauchy problem

Lau := div(|y|a∇u) = 0 in Rn+1
+ ,

u(x, 0) = u(x) on Rn,

154



where ∇ = ∇x,y is the full gradient in x and y variables. La is known as the Caffarelli-Silvestre

extension operator. Then, one can recover (−∆x)su as the fractional normal derivative on

Rn

(−∆x)su(x) = −Cn,a lim
y→0+

ya∂yu(x, y), x ∈ Rn

to be understood in the appropriate sense of traces. Now, going back to the definition ( 3.1.1 ),

if we consider the even reflection of u in y-variable to all of Rn+1, i.e.,

u(x, y) = u(x,−y), x ∈ Rn, y < 0,

then the following fact holds: u(x) is s-fractional harmonic in Ω if and only if u(x, y) satisfies

Lau = 0 in Ω̃ := Rn+1
− ∪ (Ω × {0}) ∪ Rn+1

+ . (3.1.2)

(We will refer to solutions of Lau = 0 as La-harmonic functions.) This is essentially

Lemma 4.1 in [  10 ]. Since Lau = 0 in Rn
± by definition, the condition ( 3.1.2 ) is equivalent to

asking

Lau = 0 in Br(x0),

for any ball Br(x0) centered at x0 ∈ Ω such that Br(x0) b Ω̃, or equivalently Br(x0) b Ω.

Now, observing that the solutions of the above equation are minimizers of the weighted

Dirichlet energy
∫
Br(x0) |∇v|2|y|a, we obtain the following fact.

Proposition 3.1.1. A function u ∈ Ls(Rn) is s-fractional harmonic in Ω if and only if its

reflected Caffarelli-Silvestre extension u(x, y) is in W 1,2
loc (Ω̃, |y|a) and for any ball Br(x0) with

x0 ∈ Ω such that Br(x0) b Ω, we have

∫
Br(x0)

|∇u|2|y|a ≤
∫
Br(x0)

|∇v|2|y|a,

for any v ∈ u+W 1,2
0 (Br(x0), |y|a).

We take this proposition as the starting point for the definition of almost s-fractional

harmonic functions, in the spirit of Anzellotti [ 31 ].
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Definition 3.1.1 (Almost s-fractional harmonic functions). Let r0 > 0 and ω : (0, r0) →

[0,∞) be a modulus of continuity 

1
 . We say that a function u ∈ Ls(Rn) is almost s-fractional

harmonic in an open set Ω ⊂ Rn, with a gauge function ω, if its reflected Caffarelli-Silvestre

extension u(x, y) is in W 1,2
loc (Ω̃, |y|a) and for any ball Br(x0) with x0 ∈ Ω and 0 < r < r0 such

that Br(x0) b Ω, we have

∫
Br(x0)

|∇u|2|y|a ≤ (1 + ω(r))
∫
Br(x0)

|∇v|2|y|a, (3.1.3)

for any v ∈ u+W 1,2
0 (Br(x0), |y|a).

3.1.2 Fractional obstacle problem

A function u ∈ Ls(Rn) is said to solve the s-fractional obstacle problem with obstacle ψ

in an open set Ω ⊂ Rn, if

min{(−∆x)su, u− ψ} = 0 in Ω. (3.1.4)

We refer to [  11 ], [ 13 ], [ 61 ] for general introduction and basic results on this problem. With

the help of the reflected Caffarelli-Silvestre extension, we can rewrite the problem as a

Signorini-type problem for the operator La:

Lau = 0 in Rn+1
±

min{−∂ayu, u− ψ} = 0 in Ω,

where

∂ayu(x, 0) := lim
y→0+

ya∂yu(x, y).

This, in turn, can be written in the following variational form, see [ 13 ].
1

 ↑ i.e., a nondecreasing function with ω(0+) = 0
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Proposition 3.1.2. A function u ∈ Ls(Rn) solves ( 3.1.4 ) if and only if its reflected Caffarelli-

Silvestre extension u(x, y) is in W 1,2
loc (Ω̃) and for any ball Br(x0) with x0 ∈ Ω such that

Br(x0) b Ω, we have ∫
Br(x0)

|∇u|2|y|a ≤
∫
Br(x0)

|∇v|2|y|a,

for any v ∈ Kψ,u(Br(x0), |y|a) := {v ∈ u+W 1,2
0 (Br(x0), |y|a) : v ≥ ψ on Br(x0)}.

Definition 3.1.2 (Almost minimizers for s-fractional obstacle problem). Let r0 > 0 and

ω : (0, r0) → [0,∞) be a modulus of continuity. We say that a function u ∈ Ls(Rn) is an

almost minimizer for the s-fractional obstacle problem in an open set Ω ⊂ Rn, with a gauge

function ω, if its reflected Caffarelli-Silvestre extension u(x, y) is in W 1,2
loc (Ω̃, |y|a) and for

any ball Br(x0) with x0 ∈ Ω and 0 < r < r0 such that Br(x0) b Ω, we have

∫
Br(x0)

|∇u|2|y|a ≤ (1 + ω(r))
∫
Br(x0)

|∇v|2|y|a, (3.1.5)

for any v ∈ Kψ,u(Br(x0), |y|a).

The notion of almost minimizers above is related to the one for the thin obstacle prob-

lem (s = 1/2) studied in Chapter  1 , but there are certain important differences. In Defi-

nition  3.1.2 , we ask the almost minimizing property (  3.1.5 ) to hold only for balls centered

on the “thin space” Rn, while in Chapter  1 , we ask that property for balls centered at any

point in an open set in the “thick space” Rn+1. In a sense, this means that here we think of

the perturbation from minimizers as living on the thin space, while in Chapter  1 they live

in the thick space.

3.1.3 Main results and structure

In this chapter, our main concern is the regularity of almost minimizers in their original

variables.

We start with examples of almost minimizers in Section  3.2 . We then proceed to prove

the following results, echoing those in [ 31 ] and Chapter  1 .

Theorem J. Let u ∈ Ls(Rn) be almost s-fractional harmonic in Ω. Then
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(i) u is almost Lipschitz in Ω, i.e, u ∈ C0,σ(Ω) for any 0 < σ < 1.

(ii) If ω(r) = rα, then u ∈ C1,β(Ω) for some β = βn,a,α > 0.

(iii) If 0 < s < 1/2 or s = 1/2 and ω(r) = rα for some α > 0, then u is actually s-fractional

harmonic in Ω.

In the case of the s-fractional obstacle problem, our results are obtained under the as-

sumption that 1/2 ≤ s < 1. Also, because of the technical nature of the problem, we restrict

ourselves to the case ψ = 0.

Theorem K. Let u ∈ Ls(Rn) be an almost minimizer for the s-fractional obstacle problem

with obstacle ψ = 0 in Ω.

(i) If 1/2 ≤ s < 1, then u ∈ C0,σ(Ω) for any 0 < σ < 1.

(ii) If 1/2 ≤ s < 1 and ω(r) = rα for some α > 0, then u ∈ C1,β(Ω) for some β = βn,a,α >

0.

The proofs follow the general approach in [  31 ] and Chapter  1 by first obtaining growth

estimates for minimizers (see Section  3.3 ) and then deriving their perturbed versions for

almost minimizers (Section  3.4 for s-fractional harmonic functions and Section  3.5 for the

s-fractional obstacle problem). The regularity then follows by an embedding theorem of a

Morrey-Campanato-type space into the Hölder space, which we included in Appendix  3.A .

Finally, Appendix  3.B contains the proof of orthogonal polynomial expansion of La-harmonic

functions, that we rely on in deriving the growth estimates in Section  3.3 . The polynomial

expansion has other interesting corollaries such as the (known) real-analyticity of s-fractional

harmonic functions, which are of independent interest.

3.1.4 Notation

Throughout this chapter we use the following notation. Rn is the n-dimensional Euclidean

space. The points of Rn+1 are denoted by X = (x, y), where x = (x1, . . . , xn) ∈ Rn, y ∈ R.

We routinely identify x ∈ Rn with (x, 0) ∈ Rn × {0}. Rn+1
± stands for open halfspaces

{X = (x, y) ∈ Rn+1 : ±y > 0}.
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We use the following notations for balls of radius r in Rn and Rn+1

Br(X) = {Z ∈ Rn+1 : |X − Z| < r}, (Euclidean) ball in Rn+1,

B±
r (x) = Br(x, 0) ∩ {±y > 0}, half-ball in Rn+1,

Br(x) = Br(x, 0) ∩ {y = 0}, ball in Rn.

We typically drop the center from the notation if it is the origin. Thus, Br = Br(0), Br =

Br(0), etc.

Next, ∇u = ∇Xu = (∂x1u, . . . , ∂xnu, ∂yu) stands for the full gradient, while ∇xu =

(∂x1u, . . . , ∂xnu). We also use the standard notations for partial derivatives, such as ∂xiu,

uxi , uy etc.

In integrals, we often drop the variable and the measure of integration if it is with respect

to the Lebesgue measure or the surface measure. Thus,

∫
Br

u|y|a =
∫
Br

u(X)|y|adX,
∫
∂Br

u|y|a =
∫
∂Br

u(X)|y|adSX ,

where SX stands for the surface measure.

By L2(BR, |y|a) and L2(∂BR, |y|a) we indicate the weighted Lebesgue spaces of functions

with the norms

‖u‖2
L2(BR,|y|a) =

∫
BR

u2|y|a

‖u‖2
L2(∂BR,|y|a) =

∫
∂BR

u2|y|a.

W 1,2(BR, |y|a) is the corresponding weighted Sobolev space of functions with the norm

‖u‖2
W 1,2(BR,|y|a) = ‖u‖2

L2(BR,|y|a) + ‖∇u‖2
L2(BR,|y|a).

We also use other typical notations for Sobolev spaces. Thus, W 1,2
0 (BR, |y|a) stands for the

closure of C∞
0 (BR) in W 1,2(BR, |y|a).
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For x ∈ Rn and r > 0, we indicate by 〈u〉x,r the |y|a-weighted integral mean value of a

function u over Br(x). That is,

〈u〉x,r = −
∫
Br(x)

u|y|a := 1
ωn+1+arn+1+a

∫
Br(x)

u|y|a,

where ωn+1+a =
∫
B1

|y|a is the |y|a-weighted volume of the unit ball B1 in Rn+1. (Note that

here and throughout the thesis, the sign −
∫

denotes the integral mean value with respect to

the weighted measure |y|adX.) Finally, similarly to the other notations, we drop the origin

if it is 0 and write 〈u〉r for 〈u〉0,r.

3.2 Examples of almost minimizers

Before we proceed with the proofs of the main results, we would like to give some examples

of almost minimizers.

Example 3.2.1. Let u ∈ Ls(Rn) be a solution of

(−∆x)su+ b(x) · ∇xu = 0 in Ω,

where b = (b1, b2, . . . , bn) ∈ W 1,∞(Ω) and 1/2 < s < 1 (or −1 < a < 0). Then u is almost

s-fractional harmonic with a gauge function ω(r) = Cr−a (note that −a > 0).

Proof. Consider a ball Br(x0) centered at x0 ∈ Ω such that Br(x0) b Ω. Without loss of

generality assume that x0 = 0. Let v be the minimizer of

∫
Br

|∇v|2|y|a

on u+W 1,2
0 (Br, |y|a). Then ∫

Br

∇v∇(u− v)|y|a = 0,

and as a consequence,

∫
Br

(|∇u|2 − |∇v|2)|y|a =
∫
Br

|∇(u− v)|2|y|a.
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Then, we have

∫
Br

(|∇u|2 − |∇v|2)|y|a = 2
∫
B+

r

|∇(u− v)|2|y|a

= 2
∫
B+

r

|∇(u− v)|2|y|a + div(|y|a∇(u− v)) (u− v)

= 2
∫
B+

r

div
(

|y|a∇
(

(u− v)2

2

))

= 2
∫

(∂Br)+
|y|a(u− v)(uν − vν) − 2

∫
Br

(u− v)(∂ayu− ∂ayv)

= C
∫
Br

(u− v)(−∆x)su

= −C
∫
Br

(u− v)biuxi

with C = Cn,a. Next, extending bi to Rn+1 by bi(x, y) := bi(x), we have

∫
Br

(|∇u|2 − |∇v|2)|y|a = −C
∫
B′

r

(u− v)biuxi

= C
∫
B+

r

∂y
(
(u− v)biuxi

)
= C

∫
B+

r

(uy − vy)biuxi + (u− v)biuxiy

≤ C‖b‖W 1,∞(Ω)

∫
B+

r

|∇u|2 + |∇v|2

+ C
∫
∂(B+

r )
(u− v)biuyνxi − C

∫
B+

r

∂xi((u− v)bi)uy

= C‖b‖W 1,∞(Ω)

∫
B+

r

|∇u|2 + |∇v|2

− C
∫
B+

r

((uxi − vxi )bi + (u− v)bi
xi )uy

≤ C‖b‖W 1,∞(Ω)

∫
B+

r

|∇u|2 + |∇v|2 + |u− v|2.

Using Poincare’s inequality, it follows that

∫
Br

(|∇u|2 − |∇v|2)|y|a ≤ C
∫
Br

|∇u|2 + |∇v|2 ≤ Cr−a
∫
Br

(|∇u|2 + |∇v|2)|y|a

≤ Cr−a
∫
Br

|∇u|2|y|a.
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Hence, ∫
Br(x0)

|∇u|2|y|a ≤ (1 + Cr−a)
∫
Br(x0)

|∇v|2|y|a,

for 0 < r < r0, with C and r0 depending on n, a, and ‖b‖W 1,∞(Ω).

Example 3.2.2. Let u ∈ Ls(Rn) be a solution of the obstacle problem for fractional Laplacian

with drift

min{(−∆x)su+ b(x) · ∇xu, u} = 0 in Ω,

where b = (b1, b2, . . . , bn) ∈ W 1,∞(Ω) and 1/2 < s < 1 (or −1 < a < 0). Then u is an

almost minimizer for s-fractional obstacle problem in Ω with an obstacle ψ = 0 and a gauge

function ω(r) = Cr−a.

The obstacle problem above has been studied earlier in [ 17 ] and [ 57 ].

Proof. We argue similarly to Example  3.2.1 . Let Br(x0) centered at x0 ∈ Ω such that

Br(x0) b Ω. Without loss of generality assume that x0 = 0. Let v be the minimizer of

∫
Br

|∇v|2|y|a

on K0,u(Br, |y|a) = {v ∈ u+W 1,2
0 (Br, |y|a) : v ≥ 0 on Br}. Next, we write

∫
Br

(|∇u|2 − |∇v|2)|y|a = 2
∫
Br

∇u∇(u− v)|y|a −
∫
Br

|∇(u− v)|2|y|a

≤ 2
∫
Br

∇u∇(u− v)|y|a

= 4
∫
B+

r

∇u∇(u− v)|y|a + div(|y|a∇u)(u− v)

= −4
∫
Br

(u− v)∂ayu

= C
∫
Br

(u− v)(−∆x)su

= C

[
−
∫
Br∩{u>0}

(u− v)biuxi +
∫
Br∩{u=0}

(−v) (−∆x)su
]

≤ C

[
−
∫
Br∩{u>0}

(u− v)biuxi −
∫
Br∩{u=0}

(−v)biuxi

]
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= −C
∫
Br

(u− v)biuxi ,

where we used that (−∆)su+ biuxi ≥ 0 and −v ≤ 0 on Br ∩ {u = 0} in the last inequality.

Then we complete the proof as in Example  3.2.1 .

3.3 Growth estimates for minimizers

In this section we prove growth estimates for La-harmonic functions and solutions of the

Signorini problem for La, i.e., minimizers v of the weighted Dirichlet integral

∫
Br

|∇v|2|y|a

on v +W 1,2
0 (Br, |y|a) or on the thin obstacle constraint set K0,v(Br, |y|a).

The idea is that these estimates will extend to almost minimizers and will ultimately

imply their regularity with the help of Morrey-Campanato-type space embedding.

The proofs in this section are akin to those in Chapter  1 for almost minimizers of the

thin obstacle problem. Yet, one has to be careful with different growth rates for tangential

and normal derivatives.

3.3.1 Growth estimates for La-harmonic functions

Lemma 3.3.1. Let v ∈ W 1,2(BR, |y|a) be a solution of Lav = 0 in BR. If v is even in y,

then for 0 < ρ < R

∫
Bρ

|∇xv|2|y|a ≤
(
ρ

R

)n+1+a ∫
BR

|∇xv|2|y|a∫
Bρ

|vy|2|y|a ≤
(
ρ

R

)n+3+a ∫
BR

|vy|2|y|a.

Proof. Note that we can write

v(x, y) =
∞∑
k=0

pk(x, y),
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where pk’s are La-harmonic homogeneous polynomials of degree k (see Appendix  3.B ). Then

{∂xipk}∞
k=1 are La-harmonic homogeneous polynomials of degree k − 1, and thus orthogonal

in L2(∂B1, |y|a). Thus,

∫
Bρ

|∇xv|2|y|a =
∞∑
k=1

∫
Bρ

|∇xpk|2|y|a =
∞∑
k=1

(
ρ

R

)n+1+a+2(k−1) ∫
BR

|∇xpk|2|y|a

≤
(
ρ

R

)n+1+a ∞∑
k=1

∫
BR

|∇xpk|2|y|a =
(
ρ

R

)n+1+a ∫
BR

|∇xv|2|y|a.

Similarly, {|y|a∂ypk}∞
k=1 are L−a-harmonic homogeneous functions of degree k − 1 + a, and

thus orthogonal in L2(∂B1, |y|−a). Notice that since p1(x, y) = p1(x) is independent of y

variable by the even symmetry, we have |y|a∂yp1 = 0. Thus,

∫
Bρ

|vy|2|y|a =
∫
Bρ

||y|avy|2 |y|−a =
∞∑
k=2

∫
Bρ

||y|a∂ypk|2 |y|−a

=
∞∑
k=2

(
ρ

R

)n+1−a+2(k−1+a) ∫
BR

||y|a∂ypk|2|y|−a ≤
(
ρ

R

)n+3+a ∫
BR

|vy|2|y|a.

Lemma 3.3.2. Let v be a solution of Lav = 0 in BR, even in y. Then, for 0 < ρ < R,

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤
(
ρ

R

)n+a+3 ∫
BR

|∇xv − 〈∇xv〉R|2|y|a. (3.3.1)

Proof. First note that since La(∇xv) = 0 in BR, 〈∇xv〉 = ∇xv(0) by the mean value theorem

for La-harmonic functions, see Lemma 2.9 in [  13 ]. If we use the expansion v = ∑∞
k=0 pk(x, y)

in BR as in the proof of Lemma  3.3.1 , then ∇xv − ∇xv(0) = ∑∞
k=2 ∇xpk and consequently

∫
Bρ

|∇xv − ∇xv(0)|2|y|a =
∞∑
k=2

∫
Bρ

|∇xpk|2|y|a =
∞∑
k=2

(
ρ

R

)n+a+2k−1 ∫
BR

|∇xpk|2|y|a

≤
(
ρ

R

)n+a+3 ∞∑
k=2

∫
BR

|∇xpk|2|y|a

=
(
ρ

R

)n+a+3 ∫
BR

|∇xv − ∇xv(0)|2|y|a.
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3.3.2 Growth estimates for the solutions of the Signorini problem for La

Our estimates for the solutions of the Signorini problem will require an assumption that

1/2 ≤ s < 1, or a ≤ 0. Also, unless stated otherwise, the obstacle ψ is assumed to be zero.

The first estimate is the analogue of Lemma  3.3.1 , but with less information of the growth

of vy.

Lemma 3.3.3. Let v be a solution of the Signorini problem for La in BR, even in y, with

a ≤ 0. Then, for 0 < ρ < R

∫
Bρ

|∇v|2|y|a ≤
(
ρ

R

)n+1+a ∫
BR

|∇v|2|y|a. (3.3.2)

Proof. We use the following property: if v is as in the statement of the lemma, then vxi ,

i = 1, . . . , n, and y|y|a−1vy are Hölder continuous in BR, see [ 13 ]. Moreover, we have that

La(v±
xi ) ≥ 0, L−a((y|y|a−1vy)±) ≥ 0 in BR.

This follows from the fact that Lavxi = 0 in {±vxi > 0} and L−a(y|y|a−1vy) = 0 in

{±y|y|a−1vy > 0}, by the complementarity condition vyv = 0 on BR, as well as an argument

in Exercise 2.6 or Exercise 9.5 in [ 48 ]. As a consequence, we have

La(|∇xv|2) ≥ 0, L−a(||y|avy|2) ≥ 0 in BR.

We next use the following |y|a-weighted sub-mean value property for La-subharmonic func-

tions: If Law ≥ 0 weakly in BR, −1 < a < 1, then

ρ 7→ 1
ρn+1+a

∫
Bρ

w|y|a

is nondecreasing. This follows by integration from the spherical sub-mean value property,

see Lemma 2.9 in [ 13 ]. Thus, we have that

ρ 7→ 1
ρn+1+a

∫
Bρ

|∇xv|2|y|a
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ρ 7→ 1
ρn+1−a

∫
Bρ

|y|au2
y

are monotone nondecreasing for 0 < ρ < R. This implies

∫
Bρ

|∇xv|2|y|a ≤
(
ρ

R

)n+1+a ∫
BR

|∇xv|2|y|a∫
Bρ

v2
y|y|a ≤

(
ρ

R

)n+1−a ∫
BR

v2
y|y|a.

In the case a ≤ 0, we therefore conclude that the bound ( 3.3.2 ) holds.

Lemma 3.3.4. Let v be a solution of the Signorini problem for La in BR, even in y, with

a ≤ 0. If v(0) = 0, then there exists C = Cn,α such that for 0 < ρ < r < (3/4)R,

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤
(
ρ

r

)n+a+3 ∫
Br

|∇xv − 〈∇xv〉r|2|y|a + C
ρn+2

R2+2s‖v‖2
L∞(BR)

Proof. Define

ϕ(r) := 1
rn+a+3

∫
Br

|∇xv − 〈∇xv〉r|2|y|a.

Then,

ϕ(r) = 1
rn+a+3

[∫
Br

|∇xv|2|y|a − 2〈∇xv〉r
∫
Br

∇xv|y|a + 〈∇xv〉2
r

∫
Br

|y|a
]

= 1
rn+a+3

[∫
Br

|∇xv|2|y|a − 1
ωn+1+arn+1+a

(∫
Br

∇xv|y|a
)2
]
.

Thus, using the Cauchy-Schwarz and Young’s inequality, we obtain

ϕ′(r) = 1
rn+a+3

[
− n+ a+ 3

r

∫
Br

|∇xv|2|y|a +
∫
∂Br

|∇xv|2|y|a

+ n+ a+ 3
ωn+1+arn+2+a

(∫
Br

∇xv|y|a
)2

+ n+ 1 + a

ωn+1+arn+2+a

(∫
Br

∇xv|y|a
)2

− 2
ωn+1+arn+1+a

(∫
Br

∇xv|y|a
)(∫

∂Br

∇xv|y|a
) ]

≥ − C

rn+a+3

[
1
r

∫
Br

|∇xv|2|y|a +
(1
r

∫
Br

|∇xv|2|y|a
)1/2 (∫

∂Br

|∇xv|2|y|a
)1/2

]

≥ − C

rn+a+3

[1
r

∫
Br

|∇xv|2|y|a +
∫
∂Br

|∇xv|2|y|a
]
.
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Next, we note that

[∇xv]C0,s
(
B3/4R

) ≤ Cn,s
R1+s‖v‖L∞(BR).

Indeed, this follows from the known interior regularity for solutions of the Signorini problem

for La in B1 in the case R = 1, see e.g. [  13 ], and a simple scaling argument for all R > 0.

Noting also that ∇xv(0) = 0, since v attains its minimum on Br at 0, we have that for

X ∈ Br with r < (3/4)R

|∇xv(X)| = |∇xv(X) − ∇xv(0)| ≤ C

R1+s r
s‖v‖L∞(BR)

and so
1
r

∫
Br

|∇xv|2|y|a +
∫
∂Br

|∇xv|2|y|a ≤ C
rn+1

R2+2s‖v‖2
L∞(BR).

This gives

ϕ′(r) ≥ − C

ra+2
1

R2+2s‖v‖2
L∞(BR).

Thus, for 0 < ρ < r < (3/4)R,

ϕ(r) − ϕ(ρ) =
∫ r

ρ
ϕ′(t) dt ≥ −C ρ−1−a − r−1−a

R2+2s ‖v‖2
L∞(BR).

Therefore,

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a = ρn+a+3ϕ(ρ)

≤ ρn+a+3
(
ϕ(r) + C

ρ−1−a − r−1−a

R2+2s ‖v‖2
L∞(BR)

)

≤
(
ρ

r

)n+a+3 ∫
Br

|∇xv − 〈∇xv〉r|2|y|a + C
ρn+2

R2+2s‖v‖2
L∞(BR).

Lemma 3.3.5. Let v be a solution of the Signorini problem for La in BR, even in y. Then

there are C1 = Cn,a, C2 = Cn,a such that for all 0 < ρ < S < (3/8)R,

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤ C1

(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a + C2
Sn+2

R2+2s‖v‖2
L∞(BR).
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Proof. If ρ ≥ S/8, then we immediately have

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤ C
(8ρ
S

)n+a+3 ∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a

≤ C
(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a.

Thus we may assume ρ < S/8. Due to Lemma  3.3.4 , we may assume v(0) > 0. Let

d := dist (0, {v(·, 0) = 0}) > 0. Then Lav = 0 in Bd. Thus, if d ≥ S, we may use Lemma  3.3.2 

to obtain

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤
(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a.

Thus we may also assume d < S.

Case 1. S/4 ≤ d (< S).

Case 1.1. Suppose 0 < ρ < d (< S). Then using La(∇xv) = 0 in Bd again,

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤
(
ρ

d

)n+a+3 ∫
Bd

|∇xv − 〈∇xv〉d|2|y|a

≤ C
(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a.

Case 1.2. Suppose ρ ≥ d (≥ S/4). Then

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤
(4ρ
S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a.

Case 2. 0 < d < S/4.

Case 2.1. Suppose ρ < d/2. Take x1 ∈ ∂(Bd) such that v(x1) = 0. Then using inclu-

sions Bρ ⊂ Bd/2 ⊂ B(3/2)d(x1) ⊂ BS/2(x1) ⊂ BR/2(x1), Lav = 0 in Bd and the preceding

Lemma  3.3.4 , we obtain

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a
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≤
(2ρ
d

)n+a+3 ∫
Bd/2

|∇xv − 〈∇xv〉d/2|2|y|a

≤
(2ρ
d

)n+a+3 ∫
B(3/2)d(x1)

|∇xv − 〈∇xv〉x1,(3/2)d|2|y|a

≤
(2ρ
d

)n+a+3 [(3d
S

)n+a+3 ∫
BS/2(x1)

|∇xv − 〈∇xv〉x1,S/2|s|y|a + C
Sn+2

R2+2s‖v‖2
L∞(BR/2(x1))

]

≤ C
(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a + C
Sn+2

R2+2s‖v‖2
L∞(BR).

Case 2.2. Suppose d/2 ≤ ρ. Then we see that Bρ ⊂ B3ρ(x1) ⊂ BS/2(x1) ⊂ BS. As we did in

Case 2.1, we have

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a

≤
∫
B3ρ(x1)

|∇xv − 〈∇xv〉x1,3ρ|2|y|a

≤ C
(
ρ

S

)n+a+3 ∫
BS/2(x1)

|∇xv − 〈∇xv〉x1,S/2|2|y|a + C
Sn+2

R2+2s‖v‖2
L∞(BR/2(x1))

≤ C
(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|a + C
Sn+2

R2+2s‖v‖2
L∞(BR).

Corollary 3.3.6. Let v be a solution of the Signorini problem for La in BR, even in y. Then

there are C1 = Cn,a, C2 = Cn,a such that for all 0 < ρ < S < (3/16)R,

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤ C1

(
ρ

S

)n+a+3 ∫
BS

|∇xv − 〈∇xv〉S|2|y|2 + C2
Sn+2

R2+2s 〈v2〉R.

Proof. Since v± = max(±v, 0) ≥ 0 and La(v±) = 0 in {v± > 0}, we have La(v±) ≥ 0 in BR.

(For this, one may follow the argument in Exercise 2.6 or Exercise 9.5 in [  48 ].) Thus, we

have by Theorem 2.3.1 in [ 62 ]

sup
BR/2

v± ≤ C

(
1

ωn+1+aRn+1+a

∫
BR

(
v±
)2

|y|a
)1/2

.

Hence,

‖v‖2
L∞(BR/2) ≤ C〈v2〉R,
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which completes the proof.

3.4 Almost s-fractional harmonic functions

In this section we prove Theorem  J , by deducing growth estimates for almost s-fractional

harmonic functions from that of s-fractional harmonic functions and then applying the

Morrey-Campanato space embedding to deduce the regularity of almost s-fractional har-

monic functions.

Theorem 3.4.1 (Almost Lipschitz regularity). If u is an almost s-fractional harmonic

function in B1, 0 < s < 1, then u ∈ C0,σ(B1) for any 0 < σ < 1.

Proof. Let K be a compact subset of B1 containing 0. Take δ = δn,ω,σ,K > 0 such that δ <

dist(K, ∂B1) and ω(δ) ≤ ε, where ε = ε2,n+1+a,n−1+a+2σ is as Lemma  1.2.2 . For 0 < R < δ,

let v be a minimizer of ∫
BR

|∇v|2|y|a

on u+W 1,2
0 (BR, |y|a). Then Lav = 0 in BR. In particular,

∫
BR

∇v · ∇(u− v)|y|a = 0,

and hence

∫
BR

|∇(u− v)|2|y|a =
∫
BR

|∇u|2|y|a −
∫
BR

|∇v|2|y|a − 2
∫
BR

∇v · ∇(u− v)|y|a

≤ ω(R)
∫
BR

|∇v|2|y|a.

Moreover, by Lemma  3.3.1 , for 0 < ρ < R we have

∫
Bρ

|∇v|2|y|a ≤
(
ρ

R

)n+1+a ∫
BR

|∇v|2|y|a.

Thus

∫
Bρ

|∇u|2|y|a ≤ 2
∫
Bρ

|∇v|2|y|a + 2
∫
Bρ

|∇(u− v)|2|y|a
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≤ 2
(
ρ

R

)n+1+a ∫
BR

|∇v|2|y|a + 2
∫
Bρ

|∇(u− v)|2|y|a

≤ 2
(
ρ

R

)n+1+a ∫
BR

|∇v|2|y|a + 2ω(R)
∫
BR

|∇v|2|y|a

≤ 2
[(

ρ

R

)n+1+a
+ ε

] ∫
BR

|∇u|2|y|a.

By Lemma  1.2.2 ,

∫
Bρ

|∇u|2|y|a ≤ Cn,a,σ

(
ρ

R

)n−1+a+2σ ∫
BR

|∇u|2|y|a,

for any 0 < σ < 1. Taking R ↗ δ we have

∫
Bρ

|∇u|2|y|a ≤ Cn,a,σ,δ‖∇u‖2
L2(B1,|y|a)ρ

n−1+a+2σ. (3.4.1)

By weighted Poincaré inequality (Theorem 1.5 in [ 62 ])

∫
Bρ

|u− 〈u〉ρ|2|y|a ≤ Cn,a,σ,δ‖∇u‖2
L2(B1,|y|a)ρ

n+1+a+2σ.

Now, a similar estimates holds at all point x0 ∈ K, which implies the Hölder continuity of u

(see Theorem  3.A.1 ) with

‖u‖C0,σ(K) ≤ Cn,a,ω,σ,K‖u‖W 1,2(B1,|y|a).

Theorem 3.4.2 (C1,β regularity). If u is an almost s-fractional harmonic function in B1,

0 < s < 1, with gauge function ω(r) = rα, α > 0, then ∇xu ∈ C0,β(B1) for some β =

β(n, s, α).

Proof. Let K b B1 be a ball and take 0 < δ < dist(K, ∂B1). Let BR(x0) b B1 with

0 < R < δ, for x0 ∈ K. For simplicity write x0 = 0, and let v be the La-harmonic function

in BR with v = u on ∂BR. Then, by Jensen’s inequality we have

∫
Bρ

|〈∇xu〉ρ − 〈∇xv〉ρ|2|y|a ≤
∫
Bρ

|∇xu− ∇xv|2|y|a,
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and hence

∫
Bρ

|∇xu− 〈∇xu〉ρ|2|y|a ≤ 3
∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a + 3
∫
Bρ

|∇xu− ∇xv|2|y|a

+ 3
∫
Bρ

|〈∇xu〉ρ − 〈∇xv〉ρ|2|y|a

≤ 3
∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a + 6
∫
Bρ

|∇xu− ∇xv|2|y|a.

Similarly,

∫
BR

|∇xv − 〈∇xv〉R|2|y|a ≤ 3
∫
BR

|∇xu− 〈∇xu〉R|2|y|a + 6
∫
BR

|∇xu− ∇xv|2|y|a.

Next let β ∈ (0, α/2). Then using the estimate (  3.4.1 ) in the proof of Theorem  3.4.1 with

σ = 1 + β − α
2 , we have

∫
BR

|∇u− ∇v|2|y|a =
∫
BR

|∇u|2|y|a −
∫
BR

|∇v|2|y|a ≤ Rα
∫
BR

|∇u|2|y|a

≤ C‖∇u‖2
L2(B1,|y|a)R

n+1+a+2β.

Then, with the help of Lemma  3.3.2 , we have that for ρ < R

∫
Bρ

|∇xu− 〈∇xu〉ρ|2|y|a

≤ C
∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a + C
∫
Bρ

|∇xu− ∇xv|2|y|a

≤ C
(
ρ

R

)n+a+3 ∫
BR

|∇xv − 〈∇xv〉R|2|y|a + C
∫
Bρ

|∇xu− ∇xv|2|y|a

≤ C
(
ρ

R

)n+a+3 ∫
BR

|∇xu− 〈∇xu〉R|2|y|a + C
∫
BR

|∇xu− ∇xv|2|y|a

≤ C
(
ρ

R

)n+a+3 ∫
BR

|∇xu− 〈∇xu〉R|2|y|a + C‖∇u‖2
L2(B1,|y|a)R

n+1+a+2β.

Hence, by Lemma  1.2.2 , we obtain that for ρ < R

∫
Bρ

|∇xu− 〈∇xu〉ρ|2|y|a
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≤ C

[(
ρ

R

)n+1+a+2β ∫
BR

|∇xu− 〈∇xu〉R|2|y|a + ‖∇u‖2
L2(B1,|y|a)ρ

n+1+a+2β
]
.

Taking R ↗ δ, we have

∫
Bρ

|∇xu− 〈∇xu〉ρ|2|y|a ≤ Cn,a,α,β,K‖∇u‖2
L2(B1,|y|a)ρ

n+1+a+2β.

Now, a similar estimate holds for any x0 ∈ K. Fixing β and applying Theorem  3.A.1 , we

have

‖∇xu‖C0,β(K) ≤ Cn,a,α,K‖u‖W 1,2(B1,|y|a).

Remark 3.4.3. From the assumption for almost minimizers that the Caffarelli-Silvestre exten-

sion u ∈ W 1,2
loc we know only that ∇xu ∈ L2

loc, which is not sufficient to deduce the existence

of the trace of ∇xu on B1. However, in the proof of Theorem  3.4.2 we showed that ∇xu is in

a Morrey-Campanato space, which implies the existence of the trace as the limit of averages

T (∇xu)(x0) = lim
r→0+

〈∇xu〉x0,r.

It is not hard to see that T (∇xu) is the distributional derivative ∇xu on B1. Indeed, if

η ∈ C∞
0 (B1), then extending it to Rn+1 by η(x, y) = η(x), we have

∫
B1
T (∂xiu)η = lim

r→0+

∫
B1

〈∂xiu〉x,rη = lim
r→0+

∫
B1
∂xiu〈η〉x,r

= lim
r→0+

−
∫
B1
u〈∂xiη〉x,r = −

∫
B1
u∂xiη.

Theorem 3.4.4. Let u be an almost s-fractional harmonic function in B1 for 0 < s < 1/2

or s = 1/2 and a gauge function ω(r) = rα for some α > 0. Then u is actually s-fractional

harmonic in B1.

Proof. We argue as in the proof Theorem  3.4.1 . Let K, δ, R, v be as in the proof of that

theorem. Then, by Lemma  3.3.1 , for 0 < ρ < R

∫
Bρ

|vy|2|y|a ≤
(
ρ

R

)n+3+a ∫
BR

|vy|2|y|a.
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Thus, for any 0 < σ < 1, we have

∫
Bρ

||y|auy|2|y|−a ≤ 2
∫
Bρ

|vy|2|y|a + 2
∫
Bρ

|uy − vy|2|y|a

≤ 2
(
ρ

R

)n+3+a ∫
BR

|vy|2|y|a + 2
∫
Bρ

|uy − vy|2|y|a

≤ 4
(
ρ

R

)n+3+a ∫
BR

|uy|2|y|a + 6
∫
BR

|uy − vy|2|y|a

≤ 4
(
ρ

R

)n+3+a ∫
BR

||y|auy|2|y|−a + 6ω(R)
∫
BR

|∇u|2|y|a

≤ 4
(
ρ

R

)n+3+a ∫
BR

||y|auy|2|y|−a + Cn,a,σ,δω(R)‖∇u‖2
L2(B1,|y|a)R

n−1+a+2σ,

where we used ( 3.4.1 ) in the last inequality.

Consider now the two cases in statement of the theorem.

Case 1. 0 < s < 1/2 (or a > 0). In this case by Lemma  1.2.2 ,

∫
Bρ

||y|auy|2|y|−a

≤ C

[(
ρ

R

)n−1+a+2σ ∫
BR

||y|auy|2|y|−a + ω(δ)‖∇u‖2
L2(B1,|y|a)ρ

n−1+a+2σ
]

≤ C‖∇u‖2
L2(B1,|y|a)ρ

n+1−a+(−2+2a+2σ).

Now we take σ = 1−a/2 ∈ (0, 1) to have −2+2a+2σ = a > 0. Varying the center, we have

a similar bound at every x ∈ K. Then, by Theorem  3.A.1 , we obtain that the limit of the

averages T (y|y|a−1uy) = 0 on B1. This implies that (−∆x)su = 0 on B1. Indeed, arguing as

in Remark  3.4.3 , by considering the mollifications uε in x-variable, we note that

∫
Bρ

||y|a(uε)y|2|y|−a ≤ Cρn+1−a+a

which implies that T (y|y|a−1(uε)y) = 0 on K b B1. On the other hand, uε ∈ C2 ∩ Ls(Rn),

which implies that y|y|a−1(uε)y is continuous up to y = 0, since we can explicitly write, for

y > 0, the symmetrized formula

ya(uε)y(x, y) =
∫
Rn

uε(x+ z) + uε(x− z) − 2uε(x)
|z|2

|z|2ya∂yP (z, y)dz
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with locally integrable kernel |z|2|ya∂yP (z, y)| ≤ C/|z|n−1−a.Hence, we obtain that (−∆x)suε =

∂ayuε = 0 on the ball K b B1. Then, passing to the limit as ε → 0, this implies that

(−∆x)su = 0 in B1.

Case 2. s = 1/2 (or a = 0) and ω(r) = rα. In this case, we have a bound

∫
Bρ

|uy|2 ≤ 4
(
ρ

R

)n+3 ∫
BR

|uy|2 + C‖∇u‖2
L2(B1)R

n−1+2σ+α.

Then, by Lemma  1.2.2 , we have

∫
Bρ

|uy|2 ≤ C

[(
ρ

R

)n−1+2σ+α ∫
BR

|uy|2 + ‖∇u‖2
L2(B1)ρ

n−1+2σ+α
]

≤ C‖∇u‖2
L2(B1)ρ

n+1+(α−2+2σ).

Taking 1 − α/4 < σ < 1, we can guarantee that α − 2 + 2σ > α/2 > 0, which implies

that T (y|y|−1uy) = 0 on B1. Then, arguing as at the end of Case 1, we conclude that

(−∆x)1/2u = 0 in B1.

We finish this section with formal proof of Theorem  J .

Proof of Theorem  J . Parts (i), (ii), and (iii) are proved in Theorems  3.4.1 ,  3.4.2 , and  3.4.4 ,

respectively.

3.5 Almost minimizers for s-fractional obstacle problem

In this section we investigate the regularity of almost minimizers for the s-fractional

obstacle problem with zero obstacle and give a proof of Theorem  K . All results in this

section are proved under the assumption 1/2 ≤ s < 1, or −1 < a ≤ 0.

Theorem 3.5.1 (Almost Lipschitz regularity). Let u be an almost minimizer for s-fractional

obstacle problem with zero obstacle in B1, for 1/2 ≤ s < 1. Then u ∈ C0,σ(B1) for any

0 < σ < 1 with

‖u‖C0,σ(K) ≤ Cn,a,ω,σ,K‖u‖W 1,2(B1,|y|a)

for any K b B1.
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Proof. Let K b B1 with 0 ∈ K. Take δ = δn,a,ω,σ,K > 0 such that δ < dist(K, ∂B1) and

ω(δ) ≤ ε, where ε = ε2,n+1+a,n−1+a+2σ as in Lemma  1.2.2 . For 0 < R < δ, let v be the

minimizer of ∫
BR

|∇v|2|y|a

on K0,u(BR, |y|a). Then v satisfies the variational inequality

∫
BR

∇v∇(w − v)|y|a ≥ 0

for any w ∈ K0,u(BR, |y|a). Particularly, taking w = u, we have

∫
BR

∇v∇(u− v)|y|a ≥ 0.

As a consequence,

∫
BR

|∇(u− v)|2|y|a =
∫
BR

|∇u|2|y|a −
∫
BR

|∇v|2|y|a − 2
∫
BR

∇v · ∇(u− v)|y|a

≤ ω(R)
∫
BR

|∇v|2|y|a.

Next, we use ( 3.3.2 ) to derive a similar estimate for u. We have,

∫
Bρ

|∇u|2|y|a ≤ 2
∫
Bρ

|∇v|2|y|a + 2
∫
Bρ

|∇(u− v)|2|y|a

≤ 2
(
ρ

R

)n+1+a ∫
BR

|∇v|2|y|a + 2ω(R)
∫
BR

|∇v|2|y|a

≤ 2
[(

ρ

R

)n+1+a
+ ε

] ∫
BR

|∇u|2|y|a.

Hence, by Lemma  1.2.2 ,

∫
Bρ

|∇u|2|y|a ≤ Cn,a,σ

(
ρ

R

)n−1+a+2σ ∫
BR

|∇u|2|y|a.
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As we have seen in Theorem  3.4.1 , this implies

∫
Bρ

|∇u|2|y|a ≤ Cn,a,σ,δ‖∇u‖2
L2(B1,|y|a)ρ

n−1+a+2σ (3.5.1)

then

∫
Bρ

|u− 〈u〉ρ|2|y|a ≤ Cn,a,σ,δ‖∇u‖2
L2(B1,|y|a)ρ

n+1+a+2σ

and ultimately

‖u‖C0,σ(K) ≤ Cn,a,ω,σ,K‖u‖W 1,2(B1,|y|a).

Theorem 3.5.2 (C1,β regularity). Let u be an almost minimizer for the s-fractional obstacle

problem with zero obstacle in B1, 1/2 ≤ s < 1, and a gauge function ω(r) = rα. Then

∇xu ∈ C0,β(B1) for β < αs
8(n+1+a+α/2) and for any K b B1 there holds

‖∇xu‖C0,β(K) ≤ Cn,a,α,β,K‖u‖W 1,2(B1,|y|a).

Proof. Let K be a thin ball centered at 0 such that K b B1. Let ε := α
4(n+1+a+α/2) and

γ := 1 − sε
2(1−ε) . We fix R0 = R0(n, a, α,K) > 0 small so that R1−ε

0 ≤ d/2, where d :=

dist(K, ∂B1) and R0 <
(

3
16

)1/ε
. Then K̃ := {x ∈ B1 : dist(x,K) ≤ R1−ε

0 } b B1. We claim

that for x0 ∈ K and 0 < ρ < R < R0,

∫
Bρ(x0)

|∇xu− 〈∇xu〉x0,ρ|2|y|a ≤ Cn,a

(
ρ

R

)n+a+3 ∫
BR(x0)

|∇xu− 〈∇xu〉x0,R|2|y|a

+ Cn,a,α,K‖u‖2
W 1,2(B1,|y|a)R

n+1+a+sε.

(3.5.2)

Note that once we have this bound, the proof will follow by the application of Lemma  1.2.2 

and Theorem  3.A.1 .

For simplicity we may assume x0 = 0, and fix 0 < R < R0. Let R := R1−ε. Let v be the

minimizer of ∫
B

R

|∇v|2|y|a
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on K0,u(BR, |y|a). Then by (  3.3.2 ) and ( 3.5.1 ) with σ = γ, for 0 < ρ ≤ R

∫
Bρ

|∇v|2|y|a ≤
(
ρ

R

)n+1+a ∫
B

R

|∇v|2|y|a ≤
(
ρ

R

)n+1+a ∫
B

R

|∇u|2|y|a

≤ Cn,a,α,K

(
ρ

R

)n+1+a
‖u‖2

W 1,2(B1,|y|a)R
n−1+a+2γ

≤ Cn,a,α,K‖u‖2
W 1,2(B1,|y|a)ρ

n−1+a+2γ.

(3.5.3)

This gives

−
∫
Bρ

|v − vρ|2|y|a ≤ C1‖u‖2
W 1,2(B1,|y|a)ρ

2γ, C1 = Cn,a,α,K . (3.5.4)

Since this estimate holds for any 0 < ρ < R, the standard dyadic argument gives

|v(0) − 〈v〉R| ≤ C2‖u‖W 1,2(B1,|y|a)R
γ
, C2 = Cn,a,α,K . (3.5.5)

Moreover, using ( 3.3.2 ) and ( 3.5.1 ) again, we have for any x1 ∈ BR/2, 0 < ρ < R/2,

∫
Bρ(x1)

|∇v|2|y|a ≤
(2ρ
R

)n+1+a ∫
B

R/2(x1)
|∇v|2|y|a ≤

(2ρ
R

)n+1+a ∫
B

R

|∇u|2|y|a

≤ Cn,a,α,K‖u‖2
W 1,2(B1,|y|a)ρ

n−1+a+2γ,

(3.5.6)

which implies

[v]C0,γ(BR/2 ) ≤ C3‖u‖W 1,2(B1,|y|a), C3 = Cn,a,α,K . (3.5.7)

Now we define

C4 := C1 + C2
2 + C2

3 .

Our analysis then distinguishes the following two cases

〈v2〉R ≤ 6C4‖u‖2
W 1,2(B1,|y|a)R

2γ or 〈v2〉R > 6C4‖u‖2
W 1,2(B1,|y|a)R

2γ
.

Case 1. Suppose first that

〈v2〉R ≤ 6C4‖u‖2
W 1,2(B1,|y|a)R

2γ
.
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Note that R0 <
(

3
16

)1/ε
implies R < 3

16R. Then, using Corollary  3.3.6 , we see that for

0 < ρ < R,

∫
Bρ

|∇xu− 〈∇xu〉ρ|2|y|a ≤ 3
∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a + 6
∫
Bρ

|∇xu− ∇xv|2|y|a dx

≤ Cn,a

(
ρ

R

)n+a+3 ∫
BR

|∇xv − 〈∇xv〉R|2|y|a

+ Cn,a
Rn+2

R
2+2s 〈v2〉R + 6

∫
Bρ

|∇xu− ∇xv|2|y|a

≤ C
(
ρ

R

)n+a+3 ∫
BR

|∇xu− 〈∇xu〉R|2|y|a

+ C
Rn+2

R
2+2s 〈v2〉R + C

∫
BR

|∇xu− ∇xv|2|y|a.

Note that for σ := 1 − α/4

∫
BR

|∇xu− ∇xv|2|y|a ≤
∫
B

R

|∇xu− ∇xv|2|y|a ≤ R
α
∫
B

R

|∇v|2|y|a

≤ R
α
∫
B

R

|∇u|2|y|a ≤ Cn,a,α,KR
α‖u‖2

W 1,2(B1,|y|a)R
n−1+a+2σ

= C‖u‖2
W 1,2(B1,|y|a)R

n+1+a+α/4.

Moreover by the assumption

C
Rn+2

R
2+2s 〈v2〉R ≤ Cn,a,α,K‖u‖2

W 1,2(B1,|y|a)R
n+2R

2γ−2−2s = C‖u‖2
W 1,2(B1,|y|a)R

n+1+a+sε.

Hence, we obtain ( 3.5.2 ) in this case.

Case 2. Now we assume

〈v2〉R > 6C4‖u‖2
W 1,2(B1,|y|a)R

2γ
.

Then, by ( 3.5.4 ) and ( 3.5.5 ) we obtain

−
∫
B

R

|v − v(0)|2|y|a ≤ 2−
∫
B

R

|v − vR|2|y|a + 2−
∫
B

R

|vR − v(0)|2|y|a ≤ 2C4‖u‖2
W 1,2(B1,|y|a)R

2γ
.
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Combining the latter bound and the assumption,

v(0)2 = −
∫
B

R

|v(0)|2|y|a ≥ 1
2−
∫
B

R

|v(X)|2|y|a − −
∫
B

R

|v(X) − v(0)|2|y|a

≥ C4‖u‖2
W 1,2(B1,|y|a)R

2γ
.

Since C4 ≥ C2
3 , we have v > 0 on BR/2 by (  3.5.7 ). Thus, Lav = 0 in BR/2, and by Lemma  3.3.2 

we have for 0 < ρ < R

∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a ≤
(
ρ

R

)n+a+3 ∫
BR

|∇xv − 〈∇xv〉R|2|y|a.

Thus,

∫
Bρ

|∇xu− 〈∇xu〉ρ|2|y|a

≤ 3
∫
Bρ

|∇xv − 〈∇xv〉ρ|2|y|a + 6
∫
Bρ

|∇xu− ∇xv|2|y|a

≤ 3
(
ρ

R

)n+a+3 ∫
BR

|∇xv − 〈∇xv〉R|2|y|a + 6
∫
Bρ

|∇xu− ∇xv|2|y|a

≤ C
(
ρ

R

)n+a+3 ∫
BR

|∇xu− 〈∇xu〉R|2|y|a + C
∫
BR

|∇xu− ∇xv|2|y|a

≤ C
(
ρ

R

)n+a+3 ∫
BR

|∇xu− 〈∇xu〉R|2|y|a + C‖u‖2
W 1,2(B1,|y|a)R

n+1+a+α/4.

This implies ( 3.5.2 ) and completes the proof.

Proof of Theorem  K . Parts (i) and (ii) are contained in Theorems  3.5.1 and  3.5.2 , respec-

tively.

3.A Morrey-Campanato-type Space

Theorem 3.A.1. Let u ∈ L2(B1, |y|a) and M be such that ‖u‖L2(B1,|y|a) ≤ M and for some

σ ∈ (0, 1)

∫
Br(x)

|u− 〈u〉x,r|2|y|a ≤ M2rn+1+a+2σ, 〈u〉x,r = 1
ωn+1+arn+1+a

∫
Br(x)

u |y|a
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for any ball Br(x) centered at x = (x, 0) ∈ B1/2 and radius 0 < r < r0 ≤ 1/2. Then for any

x ∈ B1/2 there exists the limit of averages

Tu(x) := lim
r→0

〈u〉x,r,

which will also satisfy

∫
Br(x)

|u− Tu(x)|2|y|a ≤ Cn,a,σM
2rn+1+a+2σ.

Moreover, Tu ∈ C0,σ(B1/2) with

‖Tu‖C0,σ(B1/2) ≤ Cn,a,σ,r0M.

Remark 3.A.2. Note, we can redefine u(x, 0) = Tu(x) for any x ∈ B1/2, making (x, 0) a

Lebesgue point for u.

Proof. Let x, z ∈ B1/2 and 0 < ρ < r < r0 be such that Bρ(x) ⊂ Br(z). Then

|〈u〉x,ρ − 〈u〉z,r| ≤ −
∫
Bρ(x)

|u− 〈u〉z,r||y|a ≤
(
r

ρ

)n+1+a

−
∫
Br(z)

|u− 〈u〉z,r||y|a

≤
(
r

ρ

)n+1+a (
−
∫
Br(z)

|u− 〈u〉z,r|2|y|a
)1/2 (

−
∫
Br(z)

|y|a
)1/2

≤ Cn,a

(
r

ρ

)n+1+a

Mrσ.

Now, taking x = z and using a dyadic argument, we can conclude that

|〈u〉x,ρ − 〈u〉x,r| ≤ Cn,a,σMrσ, for any 0 < s = ρ < r < r0.

Indeed, let k = 0, 1, 2, . . . be such that r/2k+1 ≤ ρ < r/2k. Then

|〈u〉x,ρ − 〈u〉x,r| ≤
k∑

j=1
|〈u〉x,r/2j−1 − 〈u〉x,r/2j | + |〈u〉x,r/2k − 〈u〉x,ρ|
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≤ Cn,aM
k+1∑
j=1

(r/2j−1)σ ≤ Cn,a,σMrσ.

This implies that the limit

Tu(x) = lim
r→0

〈u〉x,r

exists and

|Tu(x) − 〈u〉x,r| ≤ Cn,a,σMrσ.

Hence, we also have the Hölder integral bound

∫
Br(x)

|u− Tu(x)|2|y|a ≤ Cn,a,σM
2rn+1+a+2σ.

Besides, we have

|Tu(x)| ≤ 〈u〉x,r0 + Cn,a,σMrσ0 ≤ Cn,a,σ,r0M.

It remains to estimate the Hölder seminorm of Tu on B1/2. Let x, z ∈ B1/2 and consider two

cases.

Case 1. If |x− z| < r0/4, let r = 2|x− z|. Then note that Br/2(x) ⊂ Br(z) and therefore we

can write

|Tu(x) − Tu(z)| ≤ |Tu(x) − 〈u〉x,r/2| + |Tu(z) − 〈u〉z,r| + |〈u〉x,r/2 − 〈u〉z,r|

≤ Cn,a,σMrσ = Cn,a,σM |x− z|σ.

Case 2. If |x− z| ≥ r0/4, then

|Tu(x) − Tu(z)| ≤ |Tu(x)| + |Tu(z)| ≤ Cn,a,σ,r0M ≤ Cn,a,σ,r0M |x− z|σ.

Thus, we conclude

‖Tu‖C0,σ(B1/2) ≤ Cn,a,σ,r0M.
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3.B Polynomial expansion for Caffarelli-Silvestre extension

Some of the results in Section  3.3 rely on polynomial expansion theorem for La-harmonic

functions given below.

Theorem 3.B.1. Let u ∈ W 1,2(B1, |y|a), −1 < a < 1, be a weak solution of the equation

Lau = 0 in B1, even in y. Then we have the following polynomial expansion:

u(x, y) =
∞∑
k=0

pk(x, y)

locally uniformly in B1, where pk(x, y) are La-harmonic polynomials, homogeneous of degree

k and even in y. Moreover, the polynomials pk above are orthogonal in L2(∂B1, |y|a), i.e.,

∫
∂B1

pkpm|y|a = 0, k 6= m.

In particular, u is real analytic in B1.

This theorem has the following immediate corollaries, which are of independent interest

and are likely known in the literature. We state them here for reader’s convenience and for

possible future reference.

Corollary 3.B.2. Let u ∈ W 1,2(B1, |y|a), −1 < a < 1, be a weak solution of the equation

Lau = 0 in B1. Then, we have a representation

u(x, y) = ϕ(x, y) + y|y|−aψ(x, y), (x, y) ∈ B1,

where ϕ(x, y) and ψ(x, y) are real analytic functions, even in y.

Corollary 3.B.3. Let u ∈ Ls(Rn) satisfies (−∆)su = 0 in the unit ball B1 ⊂ Rn. Then u

is real analytic in B1.

Corollary 3.B.4. Let u ∈ W 1,2(B1, |y|a), −1 < a < 1, be a weak solution of the equation

Lau = 0 in B1, even in y. If u(·, 0) ≡ 0 in B1, then u ≡ 0 in B1.
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The proof of Theorem  3.B.1 and subsequently those of Corollaries  3.B.2 ,  3.B.3 , and  3.B.4 

are based on the following lemmas. We follow the approach of [  63 ] for harmonic functions.

Let P∗
m = {p : p(x, y) polynomial of degree ≤ m, even in y}.

Lemma 3.B.5. Let p ∈ P∗
m. Then there exists p̃ ∈ P∗

m such that

Lap̃ = 0 in B1, p̃ = p on ∂B1.

In other words, the solution of the Dirichlet problem for La in B1 with boundary values in

P∗
m on ∂B1 is itself in P∗

m.

Proof. For m = 0, 1, we simply have p̃ = p. For m ≥ 2, we proceed as follows.

For q ∈ P∗
m−2 define Tq ∈ P∗

m−2 by

(Tq)(x, y) = |y|−aLa((1 − x2 − y2)q(x, y)).

(It is straightforward to verify that Tq is indeed in P∗
m−2). We now claim that the mapping

T : P∗
m−2 → P∗

m−2 is bijective. Since T is clearly linear and P∗
m−2 is finite dimensional it

is equivalent to showing that T is injective. To this end, suppose that Tq = 0 for some

q ∈ P∗
m−2. This means that Q(x, y) = (1 − x2 − y2)q(x, y) is La-harmonic in B1:

LaQ = 0 in B1.

On the other hand Q = 0 on ∂B1 and therefore, by the maximum principle Q = 0 in B1.

But this implies that q = 0 in B1, or that q ≡ 0. Hence, the mapping T is injective, and

consequently bijective. It is now easy to see that

p̃ = p− (1 − x2 − y2)T−1(|y|−aLa(p)) ∈ P∗
m

satisfies the required properties.

Lemma 3.B.6. Polynomials, even in y, are dense in the subspace of functions in L2(∂B1, |y|a),

even in y.
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Proof. Polynomials, even in y are dense in the space of continuous functions in C(∂B1),

even in y, with the uniform norm. The claim now follows from the observation that the

embedding C(∂B1) ↪→ L2(∂B1, |y|a) is continuous:

‖v‖L2(∂B1,|y|a) ≤ ‖v‖L∞(∂B1)

(∫
∂B1

|y|a
)1/2

≤ C‖v‖L∞(∂B1).

Lemma 3.B.7. The subspace of functions in L2(∂B1, |y|a), even in y, has an orthonormal

basis {pk}∞
k=0 consisting of homogeneous La-harmonic polynomials pk, even in y.

Proof. If p is a polynomial, even in y, then restricted to ∂B1 it can be replaced with an

La-harmonic polynomial p̃. On the other hand, if we decompose

p̃ =
m∑

i=0
qi

where qi is a homogeneous polynomial of order i, even in y, then

|y|−aLap̃ =
m∑

i=2
|y|−aLaqi

where |y|−aLaqi is a homogeneous polynomial of order i − 2, i = 2, . . . ,m. Hence, Lap̃ = 0

iff Laqi = 0, for all i = 0, . . . ,m (for i = 0, 1 this holds automatically).

We further note that if qi and qj are two homogeneous La-harmonic polynomials of degrees

i 6= j, then they are orthogonal in L2(∂B1, |y|a). Indeed,

0 =
∫
B1
qi div(|y|a∇qj) − div(|y|a∇qi)qj =

∫
∂B1

(qi∂νqj − qj∂νqi)|y|a = (j − i)
∫
∂B1

qiqj |y|a.

Using this and following the standard orthogonalization process, we can construct a basis

consisting of homogeneous La-harmonic polynomials.

Lemma 3.B.8. Let u ∈ W 1,2(B1, |y|a) ∩ C(B1) is a weak solution of Lau = 0 in B1. Then

‖u‖L∞(K) ≤ Cn,a,K‖u‖L2(∂B1,|y|a).

for any K b B1.
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Proof. First, we note that by [ 64 ]

‖u‖L∞(K) ≤ Cn,a,K‖u‖L2(B1,|y|a).

So we just need to show that

‖u‖L2(B1,|y|a) ≤ Cn,a‖u‖L2(∂B1,|y|a).

This follows from the fact that u2 is a subsolution: La(u2) ≥ 0 in B1 and therefore the

weighted spherical averages

r 7→ 1
ωn,arn+a

∫
∂Br

u2|y|a, 0 < r < 1

are increasing. Integrating, we easily obtain that

‖u‖L2(B1,|y|a) ≤ Cn,a‖u‖L2(∂B1,|y|a).

We are now ready to prove Theorem  3.B.1 .

Proof of Theorem  3.B.1 . Without loss of generality we may assume u ∈ W 1,2(B1, |y|a) ∩

C(B1), otherwise we can consider a slightly smaller ball. Now, using the orthonormal basis

{pk}∞
k=0 from Lemma  3.B.7 we represent

u =
∞∑
k=0

akpk in L2(∂B1, |y|a).

We then claim that

u(x, y) =
∞∑
k=0

akpk(x, y) uniformly on any K b B1.

Indeed, if um(x, y) = ∑m
k=0 akpk(x, y), then ‖u− um‖L2(∂B1,|y|2) → 0 as m → ∞ and therefore

by Lemma  3.B.8 

‖u− um‖L∞(K) ≤ Cn,a,K‖u− um‖L2(∂B1,|y|a) → 0.
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We now give the proofs of the corollaries.

Proof of Corollary  3.B.2 . Write u(x, y) in the form

u(x, y) = ueven(x, y) + uodd(x, y),

where ueven and uodd are even and odd in y, respectively. Clearly, both functions are La-

harmonic. Moreover, by Theorem  3.B.1 , ueven is real analytic and we take ϕ = ueven. On the

other hand, consider

v(x, y) = |y|a∂yuodd(x, y).

Then, v is L−a-harmonic in B1 and again by Theorem  3.B.1 , v is real analytic. We can now

represent

uodd(x, y) = y|y|−aψ(x, y), ψ(x, y) = y−1|y|a
∫ y

0
|s|−av(x, s)ds.

It is not hard to see that ψ(x, y) is real analytic, which completes our proof.

Proof of Corollary  3.B.3 . The proof follows immediately from Theorem  3.B.1 by considering

the Caffarelli-Silvestre extension

u(x, y) = u ∗ P (·, y) =
∫
Rn
P (x− z, y)u(z)dz, (x, y) ∈ Rn × R+

where P (x, y) = Cn,a
y1−a

(|x|2+y2)(n+1−a)/2 is the Poisson kernel for La, and noting that its extension

to Rn+1 by even symmetry in y (still denoted u) satisfies Lau = 0 in B1.

Proof of Corollary  3.B.4 . Represent u(x, y) as a locally uniformly convergent in B1 series

u(x, y) =
∞∑
k=0

qk(x, y),

where qk(x, y) is a homogeneous of degree k La-harmonic polynomial, even in y. We have

u(x, 0) =
∞∑
k=0

qk(x, 0) ≡ 0
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from which we conclude that qk(x, 0) ≡ 0. We now want to show that qk ≡ 0. To this end

represent

qk(x) =
[k/2]∑
j=0

pk−2j(x)y2j ,

where pk−2j(x) is a homogeneous polynomial of order k− 2j in x. Clearly pk(x) ≡ 0. Taking

partial derivatives ∂αx qk(x) of order |α| = k − 2, we see that

∂αx qk(x) = cαy
2, cα = ∂αx pk−2

is La-harmonic, which can happen only when cα = 0. Hence Dk−2
x pk−2(x) ≡ 0 and therefore

pk−2 ≡ 0. Then taking consequently derivatives of orders k− 2j, j = 2, . . ., we conclude that

pk−2j(x) ≡ 0 for all j = 0, . . . , [k/2] and hence qk(x, y) ≡ 0.
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