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ABSTRACT 

The number of smart mobile devices has grown at a significant rate in recent years. This 

growth has resulted in an exponential number of publicly available mobile Apps. To help the 

selection of suitable Apps, from various offered choices, the App distribution platforms generally 

rank/recommend Apps based on average star ratings, the number of installs, and associated reviews 

― all the external factors of an App. However, these ranking schemes typically tend to ignore 

critical internal factors (e.g., bugs, security vulnerabilities, and data leaks) of the Apps. The 

AppStores need to incorporate a holistic methodology that includes internal and external factors 

to assign a level of trust to Apps. The inclusion of the internal factors will describe associated 

potential security risks. This issue is even more crucial with newly available Apps, for which either 

user reviews are sparse, or the number of installs is still insignificant. In such a scenario, users may 

fail to estimate the potential risks associated with installing Apps that exist in an AppStore. 

This dissertation proposes a security-related and evidence-based ranking framework, called 

SERS (Security-related and Evidence-based Ranking Scheme) to compare similar Apps. The trust 

associated with an App is calculated using both internal and external factors (i.e., security flaws 

and user reviews) following an evidence-based approach and applying subjective logic principles. 

The SERS is formalized and further enhanced in the second part of this dissertation, resulting in 

its enhanced version, called as E-SERS (Enhanced SERS). These enhancements include an ability 

to integrate any number of sources that can generate evidence for an App and consider the temporal 

aspect and reputation of evidence sources. Both SERS and E-SERS are evaluated using publicly 

accessible Apps from the Google PlayStore and the rankings generated by them are compared with 

prevalent ranking techniques such as the average star ratings and the Google PlayStore Rankings. 

The experimental results indicate that E-SERS provides a comprehensive and holistic view of an 

App when compared with prevalent alternatives. E-SERS is also successful in identifying 

malicious Apps where other ranking schemes failed to address such vulnerabilities.  

In the third part of this dissertation, the E-SERS framework is used to propose a trust-aware 

composition model at two different granularities. This model uses the trust score computed by E-

SERS, along with the probability of an App belonging to the malicious category, as the desired 

attributes for selecting a composition as the two granularities. Finally, the trust-aware composition 

model is evaluated with the average star rating parameter and the trust score. 
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A holistic approach, as proposed by E-SERS, to computer a trust score will benefit all kinds 

of Apps including newly published Apps that follow proper security measures but initially struggle 

in the AppStore rankings due to a lack of a large number of reviews and ratings. Hence, E-SERS 

will be helpful both to the developers and users. In addition, the composition model that uses such 

a holistic trust score will enable system integrators to create trust-aware distributed systems for 

their specific needs. 
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 INTRODUCTION 

Current mobile applications (“Apps”) markets (“AppStores”), such as the Google PlayStore, 

Apple AppStore, Amazon AppStore, and Windows Phone App Store, have over 5 million Apps 

(as of the 3rd quarter of 2020) in total [1] supporting almost every kind of service that we need in 

our daily life, presented in Figure 1.1. In these AppStores, for any category (e.g., photo editor), 

there are many similar Apps offered by different developers.  

 

Figure 1.1. Number of apps available in leading AppStores as of 3rd quarter 2020 [1] 

Too many options for the desired functionality make the App selection process challenging. 

One of the traditional ways to address this challenge is to look at the average star rating score (out 

of 5) provided by the host AppStore. Other prevalent approaches include manual/automatic 

reading/analyzing of reviews, monitoring top lists, and experimenting with other metrics such as 

the numbers of installs, updates, and downloads. These AppStores allow the user to assess an App 

by providing reviews and a star rating on a scale from 1 to 5. These AppStores use the weighted 

average star ratings score to promote specific Apps [2]. A high average rating indicates a better 

App while comparing similar Apps. Many studies have indicated that App ratings and associated 

reviews correlate positively with downloads and sales of Apps ([3] [4] [5] [6] [7]) - a high number 

of ratings lead to high number of downloads of an App. We carried out a simple informal survey 

to assess this observation – our survey audience contained Computing students and professionals. 
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We sent our survey to a balanced sample of the general population in the Computing domain. The 

survey was conducted anonymously as we did not request the users to provide their demographic 

data. We asked the following questions: “In general, what is the most important factor that users 

considered to assess an App before downloading?” – we received 130 responses. The response 

summary is given below [8]: 

 

Figure 1.2. Survey response on App evaluating factors. 

The survey response reveals that to pick the right App to download users mostly prefer to 

look at the Average Rating (39%) or User Reviews (39%). In [9], Lim et al. has conducted a 

comprehensive survey of App's users across the world which also shared the similar findings. If a 

user is more cautious about their selection, then they may look at the reviews given by other users. 

The number of reviews is large for many Apps and it makes the task of selecting a particular App 

very tedious. As the two factors (reviews and rating score) are important for a user to select an 

App, developers try to manipulate these factors in different ways. These approaches have 

drawbacks, which are listed below. 

Limitation of the Average Star Rating Score. According to [10], in May 2019, 55.5% of 

Apps had 4.2 stars on average and 44.5% of the Apps had less than 3 stars ratings in the Google 

PlayStore. A typical user always prefers the highest rated App. The five-star rating system is biased, 

as the average rating is often prejudiced by users’ two extreme choices of either five stars or one-

star [11]. In the dataset that we have collected for this research, we noticed the same trend, where 

77% of total reviews are rated with either five stars or one star. Also, the user ratings are often 

biased, and many times do not reflect the actual effectiveness of an App. Therefore, to select an 

App from available choices, the average star rating is not enough - a comprehensive analysis of all 

available evidences is needed. 
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Subjectivity of Reviews. Reviews are also not suitable, as a single metric for ranking and 

selection, due to reasons such as the poorly written structure, self-promotion of Apps by the 

companies and developers, and in some cases, developers requesting friends/family to give poor 

reviews to competing Apps [12]. This problem is even more complex with newly published Apps, 

for which either the user reviews or ratings are missing, or the number of downloads is still 

insignificant. In such situations, the users may not fully comprehend the risks associated with using 

a particular App. 

The abovementioned metrics, due to these reasons discussed, do not address issues related 

to security risks (such as data leakage, insecure data storage, poor authorization, and sensitive 

information disclosure) associated with Apps. Many mobile Apps provide personalized services 

(e.g., sms services) to the users. These kinds of services usually ask users for explicit permissions 

to obtain personal information (e.g., contact details). For a less careful user, a wrong setting of 

permissions may result in potential risks associated with the unintended disclosure of their 

sensitive data. Recently, experts from the security domain highlighted the fact that many Apps in 

popular AppStores are not safe to use as they have shared user sensitive data with third parties. 

These findings indicate that millions of mobile phone users could be at risk. Some of the prominent 

sources that describe different malicious Apps are reported in [13] [14] [15] [16] [17] [18]. Once 

a user's data is compromised, it results in significant hardship to that user while trying to contain 

the impact of such an exposure. These issues indicate a need for a comprehensive scheme that will 

encompass various factors, including the `trust' about the behavior of the Apps. Using such a 

scheme, before downloading an App, users will be able to know the associated risk factors and 

their severity. This will help the user to pick a ‘trustworthy’ App from many choices. In literature, 

researchers have defined Trust in different ways. Some of the definitions of ‘trust’ are: 

• ‘An entity can be trusted if it always behaves in the expected manner for the intended 

purpose [19].’ 

• ‘Trust is the belief that certain events occur in the trustee under certain conditions [20].’ 

• ‘Trustworthiness is a quality that is measured by the reputation of the service, (in the 

context of service selection problem). It reflects how the service managed to deliver the 

advertised QoS in past interactions [21].’ 
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• ‘Trust is the truster’s opinion about a trustee based on the evidence, which is collected from 

the experiences of the trustee (e.g., truster’s experience about the trustee’s quality attributes 

and evaluated based on the trust policy and with the awareness of the context) [22].’ 

To incorporate the trust factor in the App selection and ranking process, in this dissertation, 

we have proposed an approach that computes a rating score based on the trustworthiness of an App 

named SERS (Security-related and Evidence-based Ranking Scheme). The trust of an App in the 

SERS is defined as “the ability of an App not to disclose any critical data” [23]; it is a modification 

of the prior definition that has been used in [24] [25]. We compute the trust of an App from internal 

and external evidence generated using that App's internal artifacts (e.g., code) and external artifacts 

(e.g., user reviews). Internal evidence indicates the developers’ view of the App, while the external 

evidence indicates the users’ view of the App. 

In the SERS, to generate the trust score for an App, we apply the principles of the theory of 

evidence [26], Subjective Logic [27], static code analysis, static taint analysis, and Natural 

Language Processing (NLP). To examine the acceptance of such an approach we conducted 

another survey with the same audiences mentioned earlier. We asked the following questions: 

“Which one of the following ranking schemes could be the right fit to evaluate an App?” – we 

received 130 responses. The survey outcomes (shown in Figure 1.3) indicate that a combined 

ranking scheme (43.8%) is more acceptable than other existing ranking schemes, such as based on 

average user ratings, users’ review sentiments, and other internal and external factors. The SERS 

considers the comprehensive nature of an App than the other existing choices and thus, provides a 

better ranking of similar Apps. 

 

Figure 1.3. Survey on Ranking Schemes. 
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The SERS scheme is then formalized so that it can support any number of external and 

internal sources to generate different types of evidence. This enhancement of the SERS scheme is 

referred to as the E-SERS (Enhanced SERS). In addition, the E-SERS considers the temporal 

aspect of external evidence and the reputation of evidence sources. 

Further, we have created a Web-based prototype that implements the E-SERS and has again 

empirically validated our approach in the context of the Google PlayStore. Our experiments 

indicate that the E-SERS is a more reliable alternative; in terms of security, privacy, and code 

quality; than any prevalent rating techniques that focus only on either the internal or the external 

perspective of an App. Besides, E-SERS is successful in identifying the malicious Apps where 

other ranking schemes failed to detect such vulnerabilities. Having a holistic approach also benefits 

newly published good Apps which follow proper security measures but struggle in AppStore 

ranking due to lack of large number of reviews and ratings. 

In the last part of this dissertation, we have proposed a trust-aware service composition 

framework for mobile ecosystems at two levels of granularity. This framework uses the trust scores 

generated by E-SERS as the objective parameter. We have empirically evaluated this framework 

and existing models using two case studies. 

Our experiments indicate that the proposed trust-aware service composition model performs 

better in execution time and can generate the better trustworthy service binding scheme than others. 

1.1 Goal and Research Hypotheses 

The overall goal of this dissertation is to quantify an App’s trust using various available 

evidence (e.g., bugs, security vulnerabilities, user reviews, etc.) and develop a trust-aware 

composition framework to compose such trustworthy Apps to generate a trust-aware distributed 

system. Hence, two specific hypotheses of this research are: 

• Quantifying the trustworthiness of an App, using the security and privacy-related 

vulnerabilities and considering its holistic view, will provide a better ranking scheme 

while comparing similar Apps. 

• Such quantification of trust will enable the creation of a better and trust-aware 

composition model to generate a distributed system from selected Apps.   
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This research goal is achieved by identifying and analyzing the security vulnerabilities of an 

App and quantify its trustworthiness using principles of subjective logic, static code analysis, static 

taint analysis, and NLP. The hypotheses are empirically evaluated using prototypes created based 

on SERS and E-SERS. 

1.2 Contributions 

The contribution of this dissertation are as follows: 

1) This dissertation proposes a security-related and evidence-based scheme, SERS, and its 

enhancement, SERS, to quantify the trust of an App. SERS and E-SERS use formalism and 

provide a holistic view of the trust of an App. 

2) Both SERS and E-SERS are empirically validated using publicly accessible Apps from the 

Google PlayStore and their outcomes are compared with prevalent ranking techniques such 

as those based on the average star ratings and the Google PlayStore Rankings. 

3) This dissertation also proposes and empirically evaluates a trust-aware composition model 

for creating an ensemble of Apps selected using the E-SERS.  

1.3 Organization 

The rest of the dissertation structure is given below:  

In Chapter 2, we present related literature. Chapter 3 provides an overview of the necessary 

background theories. Chapter 4 describes the proposed SERS and E-SERS in detail. Chapter 5 

discusses the experimental results and analysis of E-SERS, along with a short overview of our E-

SERS Web-based prototype. Chapter 6 outlines the approach for classifying an App as malicious 

or benign using its data flow features. Chapter 7 presents the proposed trust-aware composition 

framework, which uses the approach presented in Chapter 6. Finally, Chapter 8 concludes the 

dissertation by summarizing the contributions, possible limitations, and future directions of this 

research.  
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 RELATED LITERATURE 

There exist few related approaches which model trust-related attributes. Relevant works 

based on the principles we applied to our framework are presented here. In this dissertation, the 

related works are described in the following sections. Sections 2.1 to 2.4 are customized contents 

that have been taken from our previously published papers [23] [24] [25]. 

 

2.1 Sentiment Analysis 

It is a popular approach to assess reviews and propose recommendations in many areas - e.g., 

products, and movies [28][29][30]. Sentiment analysis has been also applied to AppStore reviews 

to manage and advance Apps in a few research efforts [31][32]. Sangani et al. [33], have applied 

the review-to-topic mapping approach where a list of topics helps the developer to identify the 

most demanded feature by the users to be on the top of the rank list. A similar effort has been made 

by Pagano and Maalej [34] and Palomba et al. [35], where they examined the types of user 

feedback and unveiled how developers monitor user reviews to update in terms of users' rating. 

Only a few research efforts have attempted to quantify the trust tuples based on the reviews 

of Apps [36][37]. The main difference between our and these research works is they have not used 

a combined view of the Apps. We have adopted a similar theory, based on the Subjective Logic, 

for merging internal and external evidence. Besides, based on the trust score, we form the rank 

ordering of the Apps. 

2.2 Static Code Analysis 

Static code analysis tools are capable of detecting potential logical inconsistency, run-time 

errors (e.g., dereferencing a null pointer), and security violations (e.g., SQL injection) in an 

application. This analysis can be performed at different levels such as the binary code, bytecode, 

and source code. FindBugs [38] and Jlint [39] both are open-source and static byte-code analyzers 

for Java. FindBugs can identify more bug types than Jlint (e.g., unreachable code). Khalid et al. 

[40] applied FindBugs to discover which categories of bugs occur more often in low rated Apps 
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rather than in high rated Apps by investigating the associations among each category of bugs in an 

App and the corresponding App rating. In our research, we have employed FindBugs to recognize 

different categories of bugs in terms of bug confidence levels (high, medium and low) and bug 

ranks (1 to 20). The bug rank describes the severity of the bug and the confidence level symbolizes 

the trust of the tool about the bug existences. 

Functional testing is one of the popular approaches for predicting bugs in a mobile App. For 

example, Espresso [41], implemented by Google, is able to determine the synchronization issues 

which can lead to unsafe thread interactions. But it works on an emulator and results in identifying 

limited performance issues (such as display screen size, memory limitation, etc.). Another helpful 

tool is Monkey [42], which appears with the Android software development toolkit. It can only 

generate user interface events where the users have to define the desired number of events. Bug 

Rocket, is an automated testing tool, provided by Ma et al. [43], that associates distributed testing 

settings with testing automation based on reverse engineering procedures. Other existing tools to 

test mobile Apps include SwiftHand [44], EvoDroid [45], and Dynodroid [46]. 

2.3 Data Flow analysis 

The Android security model is a permission-based access control system. Here, an App may 

request to access the security and privacy-sensitive data in their manifest file. Several research 

attempts have confirmed that permissions play an important role (i.e., [47]) to identify the 

malicious activities of Apps. Research efforts on permission-based risk include DroidRanger [48], 

and DroidRisk [49]. DroidRisk deals with the occurrences and the number of permissions an App 

demands. Sarma et al. [47] and Gates et al. [50] assigned high-risk values to permissions that are 

severe and not often asked by the Apps in the same category.  

Examining the permissions alone to assess the risk is not sufficient enough because -- all the 

requested permissions may not be utilized during execution and without counting the possibility 

to send the sensitive information [51]. To overcome this constraint, we consider the faulty data 

flows only and their corresponding permissions. A similar approach is suggested by Mirzaei et al. 

[52], where it fuses a probabilistic model to predict the existence of data flows with the influence 

of flow is in benign and malicious Apps. 
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Static taint analysis tools are usually based on sensitive API calls tracking. Current static 

taint analysis tools for Android Apps are: FlowDroid [53], TaintDroid [54], AndroidLeaks [55], 

DroidSafe [56], and others. Compared with others, FlowDroid can identify a high number of data 

leaks while keeping the false positives rate low. Therefore, we have used FlowDroid in this 

research. 

The static taint analysis tools are useful for detecting data leaks, but they do not cover all the 

security vulnerabilities. There are several tools to detect common security vulnerabilities. There is 

also a significant number of research for detecting different categories of bugs, such as Androbugs 

[57], QARK [58], JAADAS [59] are some other tools that are available to detect security 

vulnerabilities.  

Our research is complementary to most of these efforts. Our aim is to quantify the trust of 

an App in terms of data confidentiality, not to detect any kind of malware. 

2.4 Traditional Methods for App Ratings 

Five most popular App-stores (Apple’s AppStore, GooglePlay Store, Amazon AppStore, 

Windows Phone Store, and Blackberry AppWorld) use rating mechanisms known as the store 

rating. The store rating of an app is represented as a number of stars from 1 to 5 and is aggregated 

from individual user ratings. For example, in the Google PlayStore, the store rating of an app is 

the cumulative average of all individual user ratings over all the versions. 

2.5 Ranking of Apps 

There has not been any work on the ranking system which focus on both indirect and direct 

trust artifacts of Apps. All the existing research effort [60][61] on the ranking scheme are either 

based on an internal view or external view. In [60] Zhu et al. presented a hybrid ranking principle 

which is a combination of risk scores and overall rating. The risk factor is established based on the 

permission requested by the App and risk value is determined by examining each of the dangerous 

permissions App request. As we described earlier, using permissions alone to estimate risk has 

serious limitations and is inaccurate. As, Apps are usually over-privileged, and many permissions 

requested in the manifest might not be utilized throughout the execution. Therefore, we developed 

the risk assessment matrix based on only those permissions which contribute towards the malicious 
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activities or security flaws. Similarly, another ranking model is provided by Cen et al. [61] where 

a crowdsourcing ranking approach is performed to solve the app risk assessment problem from 

users’ comments. However, user's comments are subjective and may vary from user to user. Thus, 

in our approach, we focus on both functional and non-functional perspectives of an App instead of 

focusing only one. 

2.6 Malware App Detection through Static Analysis 

A substantial amount of research efforts has been carried out in identifying Android 

malicious Apps using different machine learning techniques [62] [63] [64]. In [65], the author has 

utilized supervised machine learning algorithms (Support Vector Machine (SVM) and K-Nearest 

Neighbors (KNN)) to perform the classification of Apps into benign or malicious. The feature set 

was generated based on the App’s manifest.xml file. The experimental findings have revealed 

79.08% average accuracy to identify malicious Apps. Similarly, DERBIN [66] and Droidmat [67] 

detect malware through analyzing App’s manifest.xml file. The DroidAnalyzer [68] also adopted 

static analysis approaches to detect malware Apps. It uses permissions, dangerous APIs, and 

keywords related to malicious behaviors to identify malicious Apps. 

The work in [64] is also dedicated to anomaly detection of malicious Apps.  The feature 

vectors were generated from system data (such as network data). Later, classified them with 

different machine learning algorithms (SVM, KNN, Random Forest (RF), Naïve Bayes (NB)). 

Here, the RF classification algorithm performs better than others. 

In our work also we have adopted a static analysis approach. Here, the malware App is 

identified based on the data flow features. We have employed multiple classifiers, namely, SVM, 

KNN, RF, NB, Logistic Regression (LR), and Decision Tree (DT). LR and RF perform better than 

others, with 88% accuracy of classifying benign and malware Apps. 

2.7 Service Composition 

In service-oriented computing environments, manually discovering the composition results 

is always challenging due to the vast available services. Therefore, automated service composition 

is most desirable. In this dissertation, we first define a trust model then, based on trust, we have 

proposed an automated service composition framework. Trust plays a very significant role in 
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service composition. During the selection process, a service filter is utilized to ensure the trust of 

services selected for composition and finally return the most trustworthy binding scheme. 

Recently, automatic service composition brought a lot of attention, but all of them are based 

on QoS properties [69] [70] [71] [72] which aim to determine optimal binding schemes in an 

automated way based on the user’s request. However, there are few efforts have been made where 

trust-oriented service composition effort has been introduced [73] [74] by considering external 

factors (such as QoS, rating) for the composition. In our approach, the trust score is based on 

internal and external factors, giving a comprehensive service view.  
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 BACKGROUND PRINCIPLES 

This chapter presents a summary of the background principles. The background section 

comprises an outline of related principles applied to this. Here, we present background about Static 

analysis tool, Static taint analysis tool, principles of Subjective Logic, Key Concepts related to 

Android, and rank correlation techniques – that are related to this dissertation work. 

3.1 Static Analysis Tool  

3.1.1 FindBugs 

Among the other open-source static analysis tools, FindBugs is selected as it is able to 

analyze bytecode, can reduce the false-positive warnings [75], and is trained to identify over 400 

potential bugs patterns. These bug patterns are classified into the following nine groups [76]: 

• Bad Practice: code that violates recommended and necessary coding practice. 

• Malicious Code Vulnerability: code that can be maliciously modified by other code. 

• Multithreaded Correctness: code that could provoke problems in a multithreaded context. 

• Dodgy Code: code that direct to errors. 

• Correctness: code that might give different outcomes that were seemingly not what the 

developer expected. 

• Performance:  code that could be created in a different way to improve performance, 

indicate slow code. 

• Internationalization: code that can utilize the use of encoding characters. 

• Experimental: code that could pass on cleanup of database objects, steams, or other objects 

that require a cleaning operation. 

• Security: code that can cause potential security problems. 

Some sample bug patterns in nine different categories are given in Table 3.1. 
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Table 3.1. Samples of FindBugs warnings – Category wise (reproduced verbatim from [77]) 

Category 
# of bug 

patterns 
Samples 

Bad Practice 84 

Finalizer does not call superclass finalizer 

Class defines clone() but doesn't implement Cloneable 

Unchecked type in generic call 

Malicious Code 

Vulnerability 
15 

May expose internal representation by returning reference to 

mutable object 

Field is a mutable array. 

Field should be both final and package protected 

Multithreaded 

Correctness 
45 

Synchronization on Boolean 

Monitor wait() called on Condition 

Inconsistent synchronization 

Dodgy Code 71 

instanceof will always return true 

Useless assignment in return statement 

Non serializable object written to ObjectOutput 

Correctness 142 

Method attempts to access a result set field with index 0 

Overwritten increment 

Comparing values with incompatible type qualifiers 

Performance 27 

Boxing a primitive to compare 

Maps and sets of URLs can be performance hogs 

Private method is never called 

Internationalization 2 
Consider using Locale parameterized version of invoked method 

Reliance on default encoding 

Experimental 3 

Potential lost logger changes due to weak reference in OpenJDK 

Method may fail to clean up stream or resource 

Method may fail to clean up stream or resource on checked 

exception 

Security 11 

HTTP Response splitting vulnerability 

Absolute path traversal in servlet 

JSP reflected cross site scripting vulnerability 
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For each reported bug, FindBugs assigns priorities that scale from 1 to 20. Here, 1 stand for 

the top priority, and 20 indicates the lowest priority bug. The warnings priority level relies on the 

confidence level, which is again classified into the high, medium, and low category of the tool 

regarding the existence of the bug.  

• Confidence level High indicates that the discovered bug is definitely a real bug. 

• Low indicates bugs are preferably false positives. 

• Medium indicates bugs remain in the middle of these High and Low boundaries. 

As FindBugs has a comparatively small number of false positives, mainly discovered bugs 

are considered valid bugs [76]. The execution sequence of how FindBugs works is presented in 

Figure 3.1, where APK presents the Android application package and JAR indicates Java Archive. 

 

Figure 3.1. The execution sequence of FindBugs 

3.2 Static Taint Analysis Tool  

3.2.1 FlowDroid 

FlowDroid [78], is an open-source static taint analysis framework applied to Android Apps 

with 86% precision and 93% recall. It traces the sensitive information associated with an App by 

starting at a predefined source and following the data flow until it gets a given sink. Figure 3.2 

shows the overview of FlowDroid. 

Android Apps are available in APK (Android Packages) format. The APK file is a 

compressed archive. When unzip the APK the framework explores the App for the following 

elements: 
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• lifecycle, and  

• callback methods, which calls to sources and sinks. 

This analyzation is achieved by evaluating various Android files, contains the  

• manifest file,  

• dex files; contains the executable code, and  

• layout XML files 

Then, FlowDroid generates the main model from the lifecycle and list of callback methods. 

This main model is then used to generate Inter-Procedural Control Flow graph (ICFG) and a call 

graph. From the identified sources, by traversing the ICFG the taint analysis tracks taints. The 

framework is designed with sources and sinks assembled by SuSi [79]. SuSi, is supervised 

machine-learning classifier that is able to label Android sources and sinks to permission-based 

Android API method signatures. The FlowDroid website [78] have the detailed list of available 

sources and sinks.  

 

Figure 3.2. Architecture of FlowDroid (redrawn from [80]) 

FlowDroid records all identified information flows from sources to sinks. It provides 

extensive details (such as the API method's signature which attempts to read/write sensitive data 

from the App to third parties) regarding unauthorized leaks of confidential data. Android sources 

and sinks are the two main elements characterized by data flow to identify the flow path. 

• An Android Source is an external resource from which data is read - for example, the 

getDeviceId() API method is a source that returns an IMEI (International Mobile 

Equipment Identity) into the application code. 
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• An Android Sink is an external resource to which data is written - for example, the 

sendTextMessage() PI method is a sink as both the message and the phone number it 

receives are non-constant. 

FlowDroid used SuSi [4], which can categorize sources and sinks in the form of Android 

API method signatures. For instance, there is a category CONTACT_INFORMATION grouping 

all sources related to the user's whereabouts (e.g., getContactList()). In SuSi, the Android source 

APIs are categorized into 14 different categories, and similarly, SuSi categorizes the Android sink 

APIs into 16 different categories (given in Table 3.2).  

Table 3.2. SuSi API Categories of Android Sources and Sinks 

Source Categories Sink Categories 

ACCOUNT 

LOCATION 

BLUETOOTH 

CALENDAR 

BROWSER 

CONTACT 

FILE 

DATABASE 

NFC 

SETTINGS 

NETWORK 

SYNC 

UNIQUE_IDENTIFIER 

NO_CATEGORY 

ACCOUNT 

CALENDAR 

AUDIO 

CONTACT 

BROWSER 

LOG 

FILE 

NETWORK 

SMS_MMS 

NFC 

PHONE_CONNECTION 

PHONE_STATE 

SYNC 

VOIP 

SYSTEM 

NO_CATEGORY 

 

Here, the NO_CATEGORY points to sources and sinks grouped as non-sensitive in SuSi. We 

provide all the extracted source and sink APIs (gathered from FlowDroid) to SuSi to categorize 

and classify them into one of these above-mentioned categories. 
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3.3 Natural Language Processing 

Sentiment analysis is a natural language processing scaling technique of determining the 

emotional depth in a piece of text. It is also known as “opinion mining”. Sentiment score makes it 

easier to understand how users feel. For example, from -1 to +1 indicates the most negative 

sentiment to the most positive sentiment. It is used to classify the emotion as positive, negative, 

and neutral. Sentiment analysis is broadly utilized in user reviews on various social media 

platforms (such as marketing, advertising, etc.). Our proposed E-SERS framework utilizes 

sentiment analysis techniques to compute external evidence (such as reviews) available in 

distributed platforms. In this research, we have used two libraries have been used, i.e., TextBlob, 

and IBM Watson NLU.  

3.3.1 TextBlob 

It is an open-source Python library based on NLTK (Natural Language Tool Kit) [81]. The 

library is used for evaluating text and determine the polarity score. Here, polarity is a value 

between [-1, +1] where -1 symbolizes negative, +1 means positive, and 0 indicates neutral 

sentiment. TextBlob analyses each word in a text and assigns a semantic score, then the score is 

weighted. The score is based on the polarity of each word in the sentence. Also, it returns another 

significant factor is Subjectivity. It is in the range of [0, 1] where 0 represents that the given 

sentence is objective, which implies that it is based on actual data, whereas 1 indicates that the 

sentence is subjective, which means that it is based on sentiments, perceptions, judgments, wishes, 

and affirmations of a person. 

3.3.2 IBM Watson NLU 

The IBM Watson Natural Language Understanding (NLU) API [82] is utilized to predict the 

preprocess reviews' sentiment through natural language processing. It can analyze and understand 

the text, including sentiment, emotion, keywords, language, entities, metadata, relations, and 

semantic roles. The API returns the sentiment score in the range of [-1, +1] and indicates whether 

a given review reflects the user's positive or negative sentiment. 
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3.4 Theory of Evidence 

Theory of evidence [83] is also referred to as the Theory of belief functions or Dempster–

Shafer theory Dempster – Shafer theory (DST). The DST framework is used for reasoning 

evidences with uncertainty. Here, the evidences are quantified into a tuple that consists of Belief 

(B), Disbelief (D), and Uncertainty (U). One of the major scopes of the Theory of evidence is to 

support a steady approach to fuse a diverse set of evidence from various sources. 

For a given proposition, the Theory of belief functions depends on the number of evidences 

that are correlated to that proposition. It offers a set of procedures to fuse evidences about two 

similar propositions in a particular system. Other researchers have also proposed different 

techniques to combine a set of evidence. The work presented by this research, the E-SERS 

framework, uses the Dempster–Shafer theory of evidence models to aggregate and quantify an 

App's trust in the distributed platform. 

 

Figure 3.3. Opinion triangle (reproduced verbatim from [85]) 

3.5 Subjective Logic Principle 

In this thesis, App’s trust is quantified based on the gathered evidences. To present the trust 

of an App, we have applied the Subjective Logic (SL) principle. It is a probabilistic model which 

is introduced by Jøsang [84]. During calculations, SL considers belief and uncertainty. The 

Consideration of the evidences’ uncertainty is the main strength of SL. It defines opinion in terms 

of belief (B ⋲ [0, 1]), disbelief (D ⋲ [0, 1]) and uncertainty (U ⋲ [0, 1]). By utilizing the belief 

functions SL provides a set of logical operations to fuse diverse opinions. 
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The proposition is considered to be either true or false in the traditional probabilistic model. 

Due to skepticism's human nature, there is no perfect assurance whether a proposition is true or 

false in the real world. SL considers the factor of uncertainty which is a similar scenario to the real 

world. Here, the opinion is displayed on a triangle, as shown in Figure 3.3. Any point within the 

opinion triangle symbolizes as ω = <B, D, U> tuple. Like the traditional probabilistic model, in 

Subjective logic, the sum of belief, disbelief, and uncertainty is always 1. In the opinion triangle, 

there are three exceptional cases are:   

• Absolute belief (1, 0, 0) 

• Absolute disbelief (0, 1, 0) 

• Absolute uncertainty (0, 0, 1) 

3.5.1 Evidence to Opinion Mapping 

An opinion about a proposition p, using source s, is represented as ωp
s = <b, d, u, a>. Here, b, d, 

and u respectively denote the belief, disbelief, and uncertainty that proposition x can be trusted - 

is true, and a is the probability (base rate) that the proposition is correct, in absence of evidences. 

As proposed in [86], the formulas for calculating belief, disbelief, uncertainty, and base rate using 

positive and negative evidences are given below: 

b =  
𝑝𝑜𝑠𝑡𝑖𝑣𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒+𝑛
                        (1) 

 d =  
𝑝𝑜𝑠𝑡𝑖𝑣𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒+𝑛
                        (2) 

 u =  
𝑛

𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒+𝑛
             (3) 

a =  
1

𝑛
                         (4) 

The value `n' indicates possible outcomes about an evidence. In E-SERS, n is equal to 2 

because an evidence can either be present or absent in the App. 

3.5.2 Opinion Fusion 

Apart from this opinion representation, the main strength of SL is that it supports different 

operators [10] for combining opinions from different sources. contains about 10 different 

operations, where the most important are as follows: 
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• Conjunction 

• Disjunction 

• Negation 

• Ordering 

• Discounting 

• Consensus 

3.5.2.1 Conjunction 

Combine two opinions about propositions using conjunction (“AND”) consists of 

determining a new opinion reflecting the conjunctive truth of both propositions. It must be 

expected that the opinion arguments in conjunction are independent. The “” is used to designate 

the conjunction operation. 

Let ωp = (bp, dp, up) and ωq = (bq, dq, uq) are opinions about two distinct trusted proposition p 

and q. Now, the opinion that these propositions can be trusted is symbolized by ωp  q = (bp  q, dp  

q, up  q) such that 

𝑏𝑝  𝑞 = 𝑏𝑝𝑏𝑞             (5) 

      𝑑𝑝  𝑞 = 𝑑𝑝+𝑑𝑞 − 𝑑𝑝𝑑𝑞            (6) 

𝑢𝑝  𝑞 = 𝑏𝑝𝑢𝑞+𝑢𝑝𝑏𝑞 + 𝑢𝑝𝑢𝑞            (7) 

3.5.2.2 Disjunction 

Combine two opinions about propositions using conjunction (“OR”) consists of determining 

a new opinion reflecting the disjunctive truth of both propositions. It must be expected that the 

opinion arguments in disjunction are independent. The “˅” is used to designate the disjunction 

operation. 

Let ωp = (bp, dp, up) and ωq = (bq, dq, uq) are opinions about two distinct trusted proposition p 

and q. Now, the opinion that these propositions can be trusted is symbolized by ωp  q = (bp  q, dp  

q, up  q) such that 

𝑏𝑝  𝑞 = 𝑏𝑝+ 𝑏𝑞 −  𝑏𝑝𝑏𝑞            (8) 

      𝑑𝑝  𝑞 = 𝑑𝑝𝑑𝑞                     (9) 
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𝑢𝑝 𝑞 = 𝑑𝑝𝑢𝑞+𝑢𝑝𝑑𝑞 + 𝑢𝑝𝑢𝑞          (10) 

3.5.2.3 Negation 

It is equivalent to logical “NOT” operation. Negation of an opinion consists of inverting the 

belief and disbelief. The “” is used to designate the negation operation. 

Let ωp = (bp, dp, up) is an opinion about a trusted proposition p. Now, the opinion that this 

proposition cannot be reliable is symbolized by ωp = (bp, dp, up) such that 

𝑏p = 𝑑𝑝                   (11)       

𝑑𝑝 = 𝑏𝑝                    (12) 

𝑢𝑝 = 𝑢𝑝                      (13) 

3.5.2.4 Ordering 

Ordering operation is used when an agent have opinion about different propositions. 

Opinions can be ordered by selecting the opinion that contains the strongest belief. The “↑” is used 

to designate the negation operation. 

Let ωp = (bp, dp, up) and ωq = (bq, dq, uq) are opinions about two distinct trusted proposition 

p and q. Now, the opinion that these propositions can be ordered is symbolized by ωp ↑ q = (bp ↑ q, 

dp ↑ q, up ↑ q) such that 

IF ωp and ωq have different 
𝑏+𝑢

𝑏+𝑑+2∗𝑢
 ratios then, 

RETURN opinion with greatest 
𝑏+𝑢

𝑏+𝑑+2∗𝑢
 ratio 

ELSE 

  RETURN opinion with the least uncertainty (u) 

3.5.2.5 Discounting 

Discounting operation is used to compute trust transitivity. It is based on a probabilistic 

analysis of opinions. This helps to handle trust relations and reputation. The “” is used to 

designate the negation operation. 

Let the reputation of a source s, the r, as the opinion ωs
r = (bs

r, ds
r, us

r, as
r) represent an 

opinion about the trusted source s and ωp
s = (bp

s, dp
s, up

s, ap
s) is an opinion that proposition p is 
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trusted based on source s opinion. Now, the opinion that this proposition p can be trusted is 

symbolized by ωp= ωs
r  ωp

s = (bp, dp, up, ap) such that 

𝑏𝑝 = 𝑏𝑠
𝑟𝑏𝑝

𝑠                  (14)       

𝑑𝑝 = 𝑑𝑠
𝑟𝑑𝑝

𝑠                     (15) 

𝑢𝑝 = 𝑑𝑠
𝑟 + 𝑢𝑠

𝑟 + 𝑏𝑠
𝑟𝑢𝑝

𝑠           (16) 

𝑎𝑝 = 𝑎𝑝
𝑠                  (17) 

3.5.2.6 Consensus 

This operator is used to combine two or more independent opinion about the same 

proposition into a single opinion. The “” is used to designate the negation operation. 

Let there is two opinion ωp
A = (bp

A, dp
A, up

A, ap
A) and ωp

B = (bp
B, dp

B, up
B, ap

B) about the same 

proposition p. Then the opinion is represented as ωp
A,B = ωp

A  ωp
B = (bp

A,B, dp
A,B, up

A,B, ap
A,B) 

such that 

𝑏𝑝
𝐴,𝐵 =

(𝑏𝑝
𝐴 𝑢𝑝

𝐵 + 𝑏𝑝
𝐵𝑢𝑝

𝐴)
⁄                        (18)       

𝑑𝑝
𝐴,𝐵 =

(𝑑𝑝
𝐴 𝑢𝑝

𝐵 + 𝑑𝑝
𝐵𝑢𝑝

𝐴)
⁄                         (19) 

𝑢𝑝
𝐴,𝐵 =

(𝑢𝑝
𝐴 𝑢𝑝

𝐵)
⁄                  (20) 

𝑎𝑝
𝐴,𝐵 = 𝑎𝑝

𝐴                             (21) 

where, 

 =  𝑢𝑝
𝐴 + 𝑢𝑝

𝐵 −  𝑢𝑝
𝐴 𝑢𝑝

𝐵          (22) 

3.5.2.7 Weighted Consensus 

The default consensus operator, suggested by Jøsang, is not appropriate for the case of 

weighted opinions, as it treats opinions equally. This makes it challenging to deal with weighted 

opinions. Zhou et al. [87] have proposed a cumulative weighted fusion operator that is capable of 

dealing with fusing opinions according to their weights in a reasonable way. 

Let there is two opinion ωp
A = (bp

A, dp
A, up

A, ap
A) and ωp

B = (bp
B, dp

B, up
B, ap

B) about the same 

proposition p with weights  and  respectively. Then the weighted opinion is represented as ωp
A,B 

= 𝜂ωp
 (A, B) = (bp

A,B, dp
A,B, up

A,B, ap
A,B) such that 
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𝑏𝑝
𝐴,𝐵 =

(−𝑢𝑝
𝐴 𝑢𝑝

𝐵)( 𝑏𝑝
𝐴𝑢𝑝

𝐵+ 𝑏𝑝
𝐵𝑢𝑝

𝐴)

(𝑢𝑝
𝐵+𝑢𝑝

𝐴− (+)𝑢𝑝
𝐴𝑢𝑝

𝐵)
           (23)       

𝑑𝑝
𝐴,𝐵 =

(−𝑢𝑝
𝐴 𝑢𝑝

𝐵)( 𝑑𝑝
𝐴𝑢𝑝

𝐵+ 𝑑𝑝
𝐵𝑢𝑝

𝐴)

(𝑢𝑝
𝐵+𝑢𝑝

𝐴− (+)𝑢𝑝
𝐴𝑢𝑝

𝐵)
                 (24) 

𝑢𝑝
𝐴,𝐵 =

(𝑢𝑝
𝐴𝑢𝑝

𝐵)
⁄                  (25) 

𝑎𝑝
𝐴,𝐵 =

( 𝑎𝑝
𝐴𝑢𝑝

𝐵 +  𝑎𝑝
𝐵𝑢𝑝

𝐴  − ( 𝑎𝑝
𝐴 +  𝑎𝑝

𝐵)𝑢𝑝
𝐴𝑢𝑝

𝐵)
𝑢𝑝

𝐵 +  𝑢𝑝
𝐴 − (𝛼 +  𝛽)𝑢𝑝

𝐴𝑢𝑝
𝐵⁄     (26) 

where, 

 =  𝑢𝑝
𝐴 + 𝑢𝑝

𝐵 −  𝑢𝑝
𝐴 𝑢𝑝

𝐵          (27) 

η =  
( 𝑢𝑝

𝐵− 𝑢𝑝
𝐴 𝑢𝑝

𝐵)+ ( 𝑢𝑝
𝐴− 𝑢𝑝

𝐴 𝑢𝑝
𝐵)

(𝑢𝑝
𝐴 + 𝑢𝑝

𝐵− 2𝑢𝑝
𝐴 𝑢𝑝

𝐵)
         (28) 

 

The values of uncertainty have to lies between 0 to 1, can’t be exactly 0 or 1, because 

denominator then will be 0. 

3.5.3 Trust Value Calculation 

A trust score obtained from an opinion, is measured as the expected value (E) that indicates 

the probability that our proposition is true. The value of E can be calculated as follows: 

𝐸 = 𝑏 + 𝑎 ∗ 𝑢            (29) 

3.6 Rank Correlation 

To determine the rank correlation, we have employed Kendal tau rank distance [88]. This 

distance function counts the number of disagreements between two ranking lists. The distance 

value range is from 0 to 1; a larger distance value represents more dissimilar the two rank lists. 

The distance value zero indicates that the two rank lists are identical. The formula that uses to 

determine the Kendal tau distance is given below: 

K (R1, R2) = 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 

𝑛 (𝑛−1)/2
                   (30) 

Here, ‘K’ is the distance function determined by the distance between ‘R1’ and ‘R2’ rank 

lists, and ‘n’ is the list's size. For example, R1 and R2 contains the rank order for four items and for 

each pair we need to compare them, the pair comparison is given below: 
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Table 3.3. Example Scenario of pair comparison 

 A1 A2 A3 A4 

R1 1 4 3 2 

R2 2 3 4 1 
 

Pair R1 R2 Pair Count 

(A1, A2) 1<4 2<3  

(A1, A3) 1<3 2<4  

(A1, A4) 1<2 2>1 Mismatch 

(A2, A3) 4>3 3<4 Mismatch 

(A2, A4) 4>2 3>1  

(A3, A4) 3>2 4>1  

 

For the above pair comparison, we have encountered two mismatches. Therefore, the Kendal 

tau distance will be, 
2 

4 (4−1)/2
 = 0.33; this indicates 33% dissimilarity among these two rank lists, 

R1 and R2. 

 

 

  



 

41 

 SYSTEM DESIGN AND EVALUATION 

This chapter discusses both SERS and its enhanced version of the SERS scheme, E-SERS. 

The section 4.1 is largely based on our published paper [23]. 

4.1 SERS - Security-related and Evidence-based Ranking Scheme 

SERS, as indicated earlier, focuses on the privacy and security-related internal aspect of an 

App and its combination with the external aspect computed from the user reviews by identifying 

security and privacy-related comments. Such a focus on security- and privacy-related attributes 

are necessary, as for a less perceptive user an incorrect setting of permissions may lead to potential 

risks associated with the unintended exposure of their critical data.  In 2014, a survey conducted 

by IDG News [89] indicated that 54% of U.S. mobile App users decided not to install an App when 

they knew how much personal data it can collect. In addition, 30% of users uninstalled an App 

after knowing that the App was collecting their personal data. These statistics indicate that many 

users are still not aware of the risks associated with either accidental or malicious leakage of their 

data. Therefore, developing a comprehensive ranking scheme that considers the security and 

privacy concerns of the users is critical and informative to any App user. We evaluate the SERS 

approach on publicly available Apps from the Google PlayStore and compare our ranking with 

prevalent ranking techniques such as the average star ratings. The experimental results indicate the 

effectiveness of our proposed approach. 

The section illustrates the SERS proposed approach along with the experimental results. 

Also, address the limitations of the SERS approach.  

4.1.1 Approach and Implementation 

To assess the trust level of an App in SERS, we compute two metrics, IDM (Internal Data-

leak Metric) and ERM (External Review Metric), which are the rating scores based on internal and 

external evidences. 

1) IDM is computed by performing the static taint analysis of the required permissions,  

2) ERM is computed by performing the sentiment analysis of collected reviews. 
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Figure 4.1. SERS Approach [23]. 

Each metric taken in isolation is also helpful in the selection process and so is their 

combination ― the higher the metric the higher is the trustworthiness of an App. Figure 4.1 shows 

various steps involved in the SERS approach. We have developed a Web interface for the user to 

provide an App’s URL located in Google PlayStore. Then, in an automated way, using the package 

name, the APK file is downloaded from the third-party APK downloaders. The APK file is passed 

to FlowDroid to identify any unauthorized leaks of confidential data, which is considered internal 

evidences. Similarly, for external evidence, using automated Web crawler extracts the most recent 

reviews and other details of Apps from the Google PlayStore. Then pass the reviews to a text 

analyzer to identify the reviews' sentiment, which is considered external evidences. The Trust 

Reporter combines internal and external evidence and returns a single trust score for an App using 

subjective logic principles. We picked the Google PlayStore as the target AppStore and identified 

the Top ― 3 categories in the Google PlayStore ― which are Communication ― messenger, 

Entertainment ―TV, and Photography ― photo editor.  From these categories, we selected 35 

Apps and stored their details such as the APK file, recent reviews, and the corresponding user 

ratings in the database. 



 

43 

4.1.1.1 Computation of IDM based on Internal Evidences 

As indicated above, once we have downloaded the APK file of an App, we conduct 

a four-step analysis on it to compute the corresponding IDM: 

1) Identify threat sources and sinks pair - extract the data leakage information and the 

corresponding APIs using a taint analysis tool, FlowDroid.  

2) Identify potential risk of permissions - map the Source and Sink APIs to permission 

identifiers to determine the severity of the data leak. 

3) Determine risk - estimate the risk level based on the potential impact and likelihood.  

4) Compute IDM - apply the Subjective Logic principles to compute the trust tuple for 

the App and convert it to IDM. 

These steps are described below. 

1) Identify threat sources & sinks pair. FlowDroid [80] is a static taint analysis tool for 

Android Apps. It tracks sensitive information associated with an App by starting at a predefined 

source and following the data flow until it reaches a given sink. It then returns precise information 

about which data may be leaked and where. Android sources and sinks are the two main points 

characterized in data flow to define the direction of flow. 

An Android Source is an external resource from which data is read - for example, the 

getDeviceId() API method is a source which returns a IMEI (International Mobile Equipment 

Identity) into the application code.  

An Android Sink is an external resource to which data is written for example, the 

sendTextMessage() API method is a sink as both the message and the phone number it receives 

are non-constant.  

SuSi [78], is a supervised machine-learning tool that is able to categorize sources and sinks 

in the form of Android API method signatures. For instance, there is a category 

“CONTACT_INFORMATION'” grouping all sources related to the user’s whereabouts (e.g., 

getContactList()). In SuSi, the Android source APIs are categorized into 14 different categories: 

ACCOUNT, BLUETOOTH, LOCATION, BROWSER, CALENDAR, CONTACT, DATABASE, 

FILE, NFC, NETWORK, SETTINGS, UNIQUE_IDENTIFIER, SYNC, and NO_CATEGORY. 

Similarly, SuSi categorizes the Android sink APIs into 16 different categories: ACCOUNT, 

AUDIO, BROWSER, CALENDAR, CONTACT, FILE, LOG, NETWORK, NFC, 

PHONE_CONNECTION, VOIP, PHONE_STATE, SMS_MMS, SYNC, SYSTEM, and 
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NO_CATEGORY. Here, the NO_CATEGORY refers to sources and sinks classified as non-

sensitive in SuSi. We feed all the source and sink APIs (obtained from FlowDroid) to SuSi so as 

to identify and categorize them into one of these categories. 

For an App, the SERS approach uses FlowDroid to extract all the data flows from sensitive 

sources to sensitive sinks, which may lead to data leakages. The result of this data flow analysis is 

a set of API method pairs that indicate the usage of sensitive data within the App. The result is in 

the following form: Source (S) → Sink (SN); it indicates the sensitive data flow. For each data leak, 

FlowDroid returns the API method's name that tries to read/write sensitive data from the 

application to third parties. From the analysis report, provided by FlowDroid, we extract all faulty 

sources and sinks APIs and pass them to the next phase to calculate the severity (impact) of the 

flaws in the application. 

2) Identify potential risk of permissions. In Android, all sensitive data can be accessed 

through the specific APIs by receiving permissions from the user. The purpose of permission is to 

protect the privacy of sensitive data (such as contact information). Based on the data confidentiality, 

the system might grant the permissions automatically or prompt the user to approve. Android has 

divided these permissions into several protection levels that affect whether runtime permission 

requests are required or not. Potential risks using of the permissions are characterized into:  

• Normal permissions: these are lower risks that do not request the user’s explicit approval. 

This is the default value.  

• Signature permissions: these are granted without user’s approval only if the application 

is signed with the device manufacturer’s certificate. 

• Dangerous permissions: these give applications an access to private user data or control 

over the device that alert the user to potentially insecure or especially expensive operations. 

Hence, user’s confirmation is required before proceeding. 

From the Android site [90], we have collected 91 permission identifiers (Dangerous: 26, 

Signature: 29, Normal: 36) and stored them into a MySQL database.  

In SERS, we have used PScout [91], to conduct the mapping from API calls to permissions. 

PScout applies static code analysis on the Android source code and extracts the function to 

permission mappings. After this step, we have all the required information, a single method may 

request for multiple permission accesses. 
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3) Determine risk. In this phase, to assess the quantitative risk of Android permissions, we 

follow the NIST guideline [92], [93]. According to these guidelines, risk assessment is defined as: 

 𝑅(𝑃) = 𝐿(𝑃)  ×  𝐼(𝑃)         (31) 

where P is the requested permission; R(P) is the risk of P; L(P) and I(P) are the likelihood 

and the impact of P, respectively. For estimating impact levels of permissions, we consider three 

classes of permissions, Dangerous, Signature and Normal. Although it is problematic to estimate 

the exact level of harm caused by permissions, if it is requested by a malware, it is certain that 

Dangerous permissions are more detrimental than two other permissions. Thus, we assign the 

following values based on the NIST guidelines: 

• The probability assigned to the likelihood of each threat is ― 1.0 for Dangerous, 0.5 for 

Signature, and 0.1 for Normal. 

• The value assigned to their impact is ― 100 for Dangerous, 50 for Signature, and 10 for 

Normal. 

By applying the Formula (31), the level of risk assessment scale is divided into following 

three different categories (Table 4.1):  

• High (>50 to 100): it means that the vulnerability is exposed and exploitable, and its 

exploitation is expected to have severe impact.  

• Moderate (>10 to 50): it means that based on the exposure of the vulnerability and the ease 

of exploitation, the severity of impact could result from its exploitation. 

• Low (1 to 10): it means that the vulnerability is of minor concern and expected to have 

non-significant or negligible impact. 

Table 4.1. Quantitative 3 × 3 Risk Assessment Matrix 

Likelihood 

(Source/Sink) 

Level of Impact (Source/Sink potential risk of permission) 

Normal (10) Signature (50) Dangerous (100) 

Dangerous (1.0) Low (10) Moderate (50) High (100) 

Signature (0.5) Low (5) Moderate (25) Moderate (50) 

Normal (0.2) Low (1) Low (5) Low (10) 
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Again, if a single method requests for multiple permissions then risk level can be defined as:  

∑ R(Pi)i  = L(Pi) × I(Pi)                    (32)  

where i = 1, 2, ..., n and n is the total number of requested permissions. 

4) Compute IDM. In SERS, any evidences that confirms the data confidentiality is 

considered as a positive evidences and one that suggests a violation is a negative evidence. 

Two different cases are possible in terms of the presence of data leaks reported by FlowDroid. 

Case I: No data leaks found. Along with the analysis report generated by FlowDroid, we 

also keep track of the runtime log file. From that log file, we extract the number of total Sources 

(ST) that exists in an App’s code. If there are no leaks, then ST is considered as a positive evidence. 

Case II: Data leaks found. The positive evidences are calculated by subtracting the number 

of faulty Sources (SF) from ST; where SF indicate those sources, which are involved in 

information leakage. The negative evidences are computed using the formulae (31) and (32). 

Furthermore, if both Source and Sink are categorized into NO_CATEGORY, then we classify the 

flow as a neutral evidences since this category is considered as non-sensitive by SuSi. 

As indicated earlier, here, we use the definition of trust of an App, as “the ability of an App 

to not disclose any confidential data”'. Trust of an App is quantified as a tuple of b, d, u) using the 

principles of Subjective Logic introduced by Jøsang [84] (details given ins Sec. 3.5); where b 

indicates belief, d indicates disbelief and u represents the uncertainty about an App’s behavior 

related to the sensitive data. The b, d, u values are computed using formula (1) to (3). 

Once we have such (b, d, u) tuples for similar Apps, these Apps can be rank ordered using 

the formula of the Ordering operator (see Sec. 3.5.2.4). This formula (33) uses the notion of 

probability expectancy, which depicts the value of IDM of each App. We normalize our ratings to 

the scale of 5 to conform to the ratings used by the Google PlayStore ― such a normalization 

allows the comparison of our rankings with the PlayStore’s rankings. 

IDM = 
𝑏+𝑢

𝑏+𝑑+(2 ×𝑢)
 × 5         (33)  

4.1.1.2 Computation of ERM based on External Evidences 

1) Data Collection and Pre-processing. As indicated, we have collected a dataset of 35 

Apps from three different categories. We picked Apps in every category that offer similar 

functionality and have a decent number of user reviews. The user reviews were scraped from the 
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Google PlayStore using a self-developed tool. Each review contains the creation time, the reviewer 

id, a text description of the review content, and the corresponding rating. The dataset we prepared 

for our evaluation is presented in Table 4.2. 

Table 4.2. Statistics of collected users review dataset. 

Total number of mobile Apps 35 

Total number of crawled reviews 112, 500 

Average number of reviews per App 2500 

Average words per review 11.88 

Collection time April 27 to July 19, 2019 

 

After collecting the dataset, we preprocess the reviews, as most reviews are in the form of 

unstructured text. These preprocessed reviews are then acted upon by the sentiment analysis tool 

(called TextBlob [81]) to predict the sentiment of the user while creating that review. 

2) Calculation of the Sentiment value of Reviews. We provide each preprocessed review 

as input to the sentiment function of TextBlob. The function returns two properties: polarity and 

subjectivity. Polarity is in the range of [-1, +1] and indicates the sentiment (positive/negative) of 

text. Subjectivity lies in the range of [0, 1] and indicates whether a given text is Subjective or 

Objective. 

 

Figure 4.2. Mapping Sentiment score to evidence. 
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3) Mapping Sentiment values to evidences and Compute ERM. To map the sentiment 

values to evidence, we have applied a similar algorithm described by Gallege [37]. However, that 

technique does not consider the boundary case [0, 0], which amounts to approximately 10% of 

total reviews. In our mapping approach (shown in Figure 4.2), we enhance Gallege’s algorithm by 

considering the boundary case as a neutral evidences. After the mapping is completed for each 

App, we generate the total number of positive, negative, and neutral evidence. By providing these 

values to Formulae (1), (2), and (3), we can compute the trust tuple for each App. From the trust 

tuple, using the formula (33), similarly we compute the value for ERM for each App. 

4.1.1.3 Quantify SERS Ranking Scheme 

Once we have the trust tuples for the external and internal aspects of an App, we combine 

them using the consensus cumulative weighted fusion operator [87] into a single tuple. As we are 

concerned about privacy and security-related evidences, more than the users’ reviews, we put a 

higher weight on the internal evidences than the external evidences; the assigned weights are 70% 

and 30% respectively (these are parameters which could be adjusted as needed). This resultant 

tuple considers all available evidences and thus, provides a better quantification of trust associated 

with each App than the basic average star ratings provided by the Google PlayStore. The combined 

tuples allow us to rank-order similar Apps using the ordering operator mentioned in Formula (33).  

Finally, the SERS ranking generated by our algorithm is compared, using the Kendall Tau Distance 

method [88] that considers the number of pair-wise variances between two ranking lists (such as 

Average rating, ERM, and IDM) ― similar to the approach presented in [24]. Distances of 0% and 

100% represent the same and opposite rankings respectively. 

4.1.2 Framework Evaluation 

To conduct the experiments, we set the FlowDroid parameters to FLOWSENSITIVE, 

CONTEXTSENSITIVE alias, and the maximum access path length of 10. These settings sacrifice 

the amount of memory and speed for precision. As a result, the list of data leaks identified by 

FlowDroid may have less false positives as well as less false negatives. The machine that is used 

to perform the sensitive data flow analysis has 64 GB dedicated RAM for this task. Additionally, 

we set the time-out for analyzing one single Android App to 8 hours. 
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During the data flow extraction phase, we obtained 7782 sensitive data flows in total. Some 

source and sink API methods from sensitive categories appear, in these flows where a source tries 

to access sensitive unique identifiers, including DeviceID and SubscriberID. In [49], authors 

identify that sources that are categorized into NETWORK_INFORMATION and 

UNIQUE_IDENTIFIER are more inclined to occur in malware Apps than in benign Apps. 

Similarly, that study indicates that malware Apps are more prone of to use short message service 

(SMS) as sinks to leak data to third parties ― a similar scenario is found in our experiments. Also, 

we observed that, in our dataset, the number of Source APIs is approximately twice than the 

number of Sink APIs (for each App). 

4.1.2.1 Comparing different Ranking Schemes 

Four different kinds of ranking schemes can be achieved using the outcome of our 

experiments. These are: 

1) Ranking based on IDM computed by the static taint analysis (internal aspect). 

2) Ranking based on ERM computed by the sentiment analysis (external aspect). 

3) Ranking based on (IDM, ERM) computed by combing the internal and external aspects 

(SERS). In SERS, the weight of external and internal evidences can be adjusted based on 

user preferences. 

4) Ranking based on the Average Star Ratings - default in the Google PlayStore. 

Below, we describe different scenarios for comparing the above-mentioned ranking schemes 

- similar to our approach advocated in [24]. Table 4.3 represents the rating scores of Apps in the 

communication (messenger) category based on these four schemes. These Apps are selected based 

on the different range of popularity (such as most popular, popular, and less popular) in terms of 

the number of installs (given in column 1). Three insights we can establish from the data given in 

Table 4.3: 

• Firstly, if we consider only the traditional star ratings of all these apps, as a general app 

user would do, we find that there is hardly any difference (of 0.6 where 4.6 is the highest 

rating and 4 being the lowest rating) between these fifteen Apps. Whereas, the number of 

installs for each App varies a lot. This highlights the fact that traditional star rating does 

not accurately reflect the trust of an app.  
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• Secondly, a less popular app such as App10 which has only 1Million+ downloads witnesses 

as a more secure app than the other popular Apps. So, the proposed ranking scheme will 

help the user to go with the more secure app instead of just follow the traditional rating. 

• Lastly, it shows that rank-orders vary from one scheme to another. Therefore, we did an 

empirical investigation to find the reasons behind this behavior. Table IV shows the 

computed Kendall Tau distances for four such comparisons of Apps from three different 

categories. Therefore, in Table 4.3 the Tau distance is expressed as a range. 

Table 4.3. Apps Rating based on Different Ranking Schemes [23]. 

 

1) Average Ratings vs ERM. Conceptually, the reviews should be consistent with the star 

ratings, as emphasized by the Kendall Tau variance (Table 4.4) which is between 16% to 22% 

when we compare rankings obtained by ERM and average star ratings - demonstrating that these 
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two rankings are fairly similar to each other. After investigating the review sentiments and the 

corresponding ratings, we found some mismatches. For example: 

Table 4.4. Distance Between Different Ranking Schemes. 

App categories 

Average rating & 

ERM 

(Distance %) 

Average rating & 

IDM 

(Distance %) 

IDM & ERM 

(Distance %) 

SERS & Average 

rating (Distance 

%) 

Communication 

(messenger) 
16 42 49 19~39 

Entertainment 

(online TV) 
9 49 58 15~41 

Photography 

(photo editor) 
22 27 40 22~36 

 

“I enjoyed it very well its my first time to used it” - the user provided a text with positive 

sentiment; however, for this review, the user provided a rating of 1, reflecting a mismatch. 

“Chat heads suck on marshmallow, when i permit the draw over other Apps for the chat 

heads it works one time and then the next time i open a chat head it asks me to permit that option, 

AGAIN! can u please fix your app?” - the user provided a rating of 5; where TextBlob returned a 

negative sentiment for this review, again reflecting a mismatch. 

Such mismatches indicate that the star ratings in many cases are not a true reflection of the 

associated reviews’ text. 

2) Average Ratings vs IDM. Table 4.4 indicates that the Kendall Tau distance between IDM-

based and average rankings is between 27% to 49%. We found two Apps (App2 and App6) that 

have opposite orderings - e.g., App2 has a rank of 2 out of 15 based on the user ratings; while its 

rank is 12 based on the IDM score.  The opposite is true for the App6 - a rank of 14 based on user 

ratings but a rank of 5 based on the IDM score. These cases are grouped into two categories - Good 

to Bad and Bad to Good.  

Good to Bad. The users rated the App2 as having a good rank, but the IDM-based score ranked 

it very low. A few supportive (first two) and a few critical (last two) user comments are given 

below. In selecting the reviews, we picked only those reviews which contained security-related 

terms such as privacy, security, spy, spam, malicious, and leaks. The primary focus of the paper is 
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to rank apps based on privacy and security-related features and hence, all other reviews, for each 

app, which do not focus on such features/terms are ignored in our analyses. 

“Simply the best one, the easiest one to use, the best for security!” 

“Best messaging app. Privacy.” 

“no privacy Auto background allows your camera to take pictures as well as your 

conversations without any regards to your personal privacy this application is no more than the 

FBI snooper” 

“EXCESSIVE PERMISSIONS!!  DOES NOT REQUIRE DEVICE ID!!  DEV DOES NOT 

RESPECT YOUR PRIVACY!!!STOP VIOLATING MY PRIVACY!” 

The above supportive reviews are not that informative whereas the critical reviews give more 

details about users' concerns. From the reviews of App2, we have collected a total of 22 reviews 

that match with one of the keywords mentioned above. In these 22 reviews, we found 7 reviews to 

be critical and 15 reviews to be supportive. Such a disproportion reflects why the App is having a 

high user rating. If the user solely focuses on functional aspects of Apps instead of aesthetical 

aspects (e.g., setting or customize background) then IDM-based ranking is more acceptable than the 

user ratings-based ranking. During the security flaws inspection, we notified that the data leak 

associated with App2 deals with the Dangerous permission access (such as 

READ_PHONE_STATE). 

Bad to Good. The users rated the App6 as bad, but the IDM-based score ranked it good. Two 

supportive comments and two critical comments that contain the privacy and security-related 

words are given below: 

“This is a fantastic messenger texting app when you haven't been tempo banned without 

prior notice/warning or opportunity to respond! While I love the fact you only share user names 

& not personal phone numbers & it's great for personal privacy & good for sharing pics! It's not 

very fair in how it'll cut off your communication with no justification. Only use this product if you 

don't have to rely upon it.” 

“love it, complete privacy.” 

“Need encryption security” 

“its not opening bad app msg not sending while opening the app error occur and chance of 

your privacy risk and mobile” 
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Similarly, for App6, we have collected total of 19 reviews that match with one of the privacy 

and security-related keywords. In these 19 reviews, we found 11 reviews were critical and 8 

reviews are supportive – leading to a lower ranking. During the computation of IDM, we noticed 

that the data leaks associated with App6 deal with only the Normal permission access. Thus, App6 

should have less impact associated with such flaws than flaws found in App2. 

3) IDM vs ERM. Table 4.4 indicates that the distance between IDM and ERM - based rankings 

is between 40% to 58%, which is quite similar to the previous scenario. The issues that were 

discussed in the previous two sections also hold for this section. 

4) SERS vs Average Ratings. Previous three scenarios have illustrated the fact that 

rankings based on partial evidences result in significantly different orderings. Thus, there is a need 

to combine internal and external evidences to provide a holistic view. To achieve this, we combine 

the internal view tuple and the external view tuple using a weighted consensus operator by giving 

a higher weight to the internal evidences (mentioned in Sec. 4.1.1.3). However, in our experiments, 

we present the different variations of weights that reflect the distance variation with the average 

rating. The experimented weight combinations are: 30% weight to ERM and 70% weight to IDM; 

equal weight to both ERM and IDM; 70% weight to ERM and 30% weight to IDM.  

As seen from Table 4.4, the distance between the average star rankings and the SERS 

rankings varies from 15% to 41% for different categories - and it is lesser than other distances. 

Higher weight towards ERM reduce the distance with the average rating, similar is true for the 

opposite case. Also, the SERS ranking lies between the two extremes (i.e., average and ERM versus 

average and IDM) represented by columns 2 and 3 in Table 4.4. 

User ratings, as described earlier, are not always a true reflection of reviews. Reviews such 

as “it’s really good” or “very good experience” with a rating of one star highlight the mismatch 

and do not reflect the correct sentiment. Similarly, reviews such as “wp....does not supported 

properly” with a user rating of five stars, again, do not present the right emotions of the user. Such 

mismatches lead to improper average ratings. As a result, the average ratings cannot be considered 

as a proper ranking scheme. 

Also, reviews are mostly unstructured text. In those cases, where a review such as “nyc app” 

with rating 5 indicates a positive sentiment, while TextBlob considers it as neutral evidence. 

TextBlob also fails sometimes due to the lack of AppStore specific domain knowledge. Thus, it is 

neither fair nor sufficient to only use the star ratings or its combination with the external narratives. 
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Conversely, when we deal with internal evidences there is no possibility of such ambiguity as it 

entirely focuses on the functional aspects of an App. Although there is a possibility to return many 

false positives in such analysis. Therefore, when we combine both the internal and external 

evidences and generate a rank list, it not only encompasses all perspectives but also helps in 

overcoming such idiosyncrasies associated with reviews. 

Table 4.5. Categorize the Reviews that focus on Security Issues. 

App ID 
# of Reviews  

(address security issue) 

# of Positive 

Reviews 

# of Negative 

Reviews 

# of Neutral 

Reviews 

App5 3 2 1 0 

App7 11 7 2 2 

App3 14 6 5 3 

 

We selected and investigated two Apps that have an identical ranking based on SERS and 

average ratings – App5 and App7 have a rank of 2 and 5 respectively (out of 15 Apps) based on 

both the average ratings and the SERS score. We extracted only those comments that address the 

security-related issues. We read those reviews and categorized them as positive, negative, and 

neutral. We also picked one App that has a distinguishable ranking based on SERS and average 

ratings - App3 has a rank of 4 based on user rating; while its rank is 9 based on SERS. We have 

applied a similar approach (as mentioned above) - to extract security related reviews and labeled 

them in positive, negative and neutral categories (see Table 4.5). However, a small number of 

privacy and security-related reviews is an indication that typical users are not aware of these 

internal factors. Such a discrepancy highlights the fact that users’ views of security and privacy 

are significantly different from the traditional definitions of security and privacy found in research 

literature. This difference in perception, of the users, makes the holistic view of trust more 

important than just considering a subset of evidence while comparing similar Apps. A few reviews 

which do mention some privacy and security-related features are indicated below - however, these 

reviews are identified as indicating neutral sentiments. 

“Please update profile photo access to the only people we want our dp to be shown ..like as 

status privacy...” 

“plzz try to add some new security like to hide the chats archieved chats doesn't help much 

soo plzzz” 
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“actually it will be more nice if you follow security policies provided by WhatsApp 

messenger. excluding contacts, posting statuses. etc" 

SERS achieves a holistic rank ordering of similar Apps and generates insights, using both 

structured and unstructured contexts, associated with Apps. The empirical investigations show that 

the SERS reflect the complete nature of an application than the other existing alternatives. 

4.1.3 Limitations 

Although, SERS considers a holistic view of an App, it does have some limitations. The limitations 

are: 

• The framework only supports a single source for the internal evidences and the same for 

the external evidences.  

• The primary limitation of any static analysis tool is it may return false-positive warnings.    

• In the SERS, to determine risks associated with user-given permissions, we have used a 

3×3 risk assessment matrix, where the likelihood and impact factors of the risks were 

assigned based on judgment.  

Therefore, to address these limitations, we have proposed an enhanced version of the SERS 

scheme, named E-SERS. The E-SERS have the following additional features compared to the 

SERS scheme. 

• The E-SERS provides a formalism to the SERS so that it can support any number of sources 

for generating the necessary evidence for a given App. 

• To overcome the false-positive warnings related concern, in E-SERS, we have considered 

the tools’ reputation score. This reputation is based on the performance of the tool 

addressed. This helps to reduce the impact of false-positive issues or any others. 

• After creating the SERS, we experimented on 2555 malicious Apps to formalize risks and 

their impacts. We have used a 4×4 risk assessment matrix in the E-SERS based on that 

additional experimentation's quantitative outcomes. 

• In addition, the E-SERS scheme also incorporates temporal and reputational aspects 

associated with user reviews. The E-SERS assigns a temporal weight to each review of an 

App. These weights are chosen such that recent reviews are given a higher weight than the 
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distant reviews. We also include, in the E-SERS, a reputation factor for each review based 

on its helpfulness as indicated by other users. 

From here onwards, we will discuss the E-SERS. The following section introduces the E-

SERS scheme in detail.  

4.2 E-SERS – Enhanced Security-related and Evidence-based Ranking Scheme 

In this section, Sec. 4.2.1 contains the E-SERS architecture and its essential elements. Then, 

we present the algorithms in the form of pseudo-code. Besides, we discussed the computation of 

direct trust and indirect trust artifacts. 

4.2.1 Architecture 

The conceptual architecture of the E-SERS is illustrated in Figure 4.3 (discussed in this 

section) and the details of the E-SERS system flow is presented in Figure 4.4 (See Sec. 4.2.3). The 

four basic components of E-SERS, and the notations that we use throughout the dissertation, are 

as follows: 

1) App’s artifacts (AA). The AA are categorized into “Internal or Direct Trust Artifacts 

(DTA)” and “External or Indirect Trust Artifacts (ITA)”. DTA indicate the internal evidences that 

are observed first-hand. These evidences can be gathered from the APK files, source code, and jar 

files of an App. On the other hand, opinions, such as ratings and reviews, that are based on users' 

experiences contribute towards the indirect trust of the App. The ratings and reviews, along with 

review dates, are the ITA. 

2) Evidence Sources. The evidence source set S = S1, S2, ..., SN is divided into two mutually 

exclusive subsets, SDT and SIT, which denote the list of sources that are related to the DTA and the 

ITA respectively. For an App X, each evidence source (Si) generates a set of evidences, indicated 

as EVX 

𝑆𝑖  = {ev1, ev2, ..., evn}. Each evidence, evi, can be positive, negative, or neutral. Different 

tools are used for extracting various types of evidences. Static analysis tools can process DTA to 

extract evidences such as bugs details, data leakage information, security vulnerabilities, and good 

practices used. NLP tools can generate external evidences such as review sentiments, review 

reputation, etc., from ITA. All the evidences generated by these tools are passed on to the Evidence 

Processors for extracting opinions from these evidences. 
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Figure 4.3. E-SERS Architecture 

3) Evidence Processor. Each Si has an associated Evidence Processor Pi. Pi maps the set of 

evidences, EVX 

𝑆𝑖 , to an opinion ωX 

Si . Here, ωX 

𝑆𝑖  represents the opinion about the App X based on 

the evidence source Si. However, each source may produce a different number of evidence. 

Therefore, before fusing the different source opinions, we need to normalize them in such a way 

that evidences from a trusted source get more influence than others. To do so, we have introduced 

the source reputation into E-SERS. The reputation of each source, ω𝑆𝑖  

𝑟𝑖 , is combined with the 

opinion of ωX 

𝑆𝑖  to compute the weighted opinion ωX 

𝑟𝑖:𝑆𝑖  = ω𝑆𝑖  

𝑟𝑖    ωX 

𝑆𝑖 . Similar to the technique 

suggested in [84], we use the discounting (or weighted) operator () to represent the degree of 

trust about an evidence source. We have assigned a reputation score to each of the evidence sources 

based on their performance on appropriate benchmarks. 
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4) Opinion Fusion. Opinions from different sources, ωX 

𝑟1:𝑆1, ωX 

𝑟2:𝑆2, … ωX 

𝑟𝑁:𝑆𝑁, are combined 

into a single opinion (ωX 
), using different subjective logic operators, to create a combined opinion. 

We use the consensus operator (⊕) for combining independent opinions about the same App, X, 

into a single opinion ωX. The operator returns the cumulative fusion of opinions [85] assuming 

that opinions are independent. However, the default consensus operator suggested by Jøsang, is 

not appropriate for the case of weighted opinions, as it treats opinions equally. This makes it 

challenging to deal with weighted opinions. Zhou et al. [87] have proposed a cumulative weighted 

fusion operator that is capable of dealing with fusing opinions according to their weights in a 

reasonable way. We use the cumulative weighted fusion operator to combine based on weights 

provided by the user. This combined opinion is used to generate a trust score for the App. 

4.2.2 Trust Algorithm 

For an App, the trust score is evaluated based on the evidences collected from direct trust 

and indirect trust sources. For both views, different kinds of mechanisms are applied to identify a 

certain type of defect or vulnerability. On top of these evidences, other factors are applied to assess 

the quality of that evidence. Such factors include a weight based on the temporal aspects of reviews, 

bug confidence, and bug or flaw severity. Additionally, we assess the reputation of tools to evaluate 

the trust of an App. The proposed evidence-based trust algorithm in E-SERS is shown below 

(Algorithm 1). The algorithms to calculate the direct and indirect trust scores are presented below 

as well (Algorithm 2 and Algorithm 3). 

 

Algorithm 1 Evidence-based Trust Score for an App X      

procedure calculateTrustScore (DTAX, ITAX, SDT, SIT, α, β) 

ωX 

⊕𝑆𝐷𝑇⟵ create_internal_opinion(DTAX, SDT) 

ωX 

⊕𝑆𝐼𝑇⟵ create_external_opinion(ITAX, SIT) 

  
#apply Weighted fusion operator to combine the opinions - formula (23) to (28) 

ωX 

⊕(𝑆𝐷𝑇,𝑆𝐼𝑇)
⟵ weighted_fusion(ωX 

⊕𝑆𝐷𝑇 , ωX 

⊕𝑆𝐼𝑇 , α, β) 

 
#apply formula (29) 

EX ⟵ E(ωX 

⊕(𝑆𝐷𝑇,𝑆𝐼𝑇)
) 

return normalized ||EX||2 to scale 5 in accordance with the user rating 
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In Algorithm 1, we pass the input artifacts and sources along with the user desired weights 

for both views of an App, X. Then, it calls create_internal_opinion method to generate the DTA 

based opinion, ωX 

⊕𝑆𝐷𝑇. Similarly, we invoke create_external_opinion method to generate the ITA 

based opinion, ωX 

⊕𝑆𝐼𝑇. Once, we have both ωX 

⊕𝑆𝐷𝑇  and ωX 

⊕𝑆𝐼𝑇 then by applying formula (23) to 

(28) opinions are merged into a single opinion, ωX 

⊕(𝑆𝐷𝑇 ,𝑆𝐼𝑇)
. Finally, the trust value of X, EX, is 

calculated by applying the formula (29) and is normalized to scale of 5. 

 

Algorithm 2 Computation of opinion from Direct Trust Artifacts     

procedure create_internal_opinion (DTAX, SDT) 
for Si ⋲ SDT do 

positive_evidence ⟵ null 
 negative_evidence ⟵ null 
 
 Si:ev(X) ⟵ generate internal evidences(X) 
 for e ⋲ Si:ev(X) != null do 
  if e is a positive_evidence 
   inc positive_evidence 
  end 
  else 
   inc negative_evidence 
  end 
 end 

 apply formula (1) to (4) to determine (b, d, u, a), ωX 

𝑆𝑖  

# reputation matrix of SDT is presented in Table 4.8 
 evaluate reputation (ri) of Si based on F1-score, ω𝑆𝑖  

𝑟𝑖  

 
apply formula (14) to (17) to calculate weighted opinion of Si; 

ωX 

𝑟𝑖:𝑆𝑖=ω𝑆𝑖  

𝑟𝑖 ⊗ωX 

𝑆𝑖  

end 
apply formula (18) to (22) for fusion of different opinion from the different source, 

ωX 

⊕𝑆𝐷𝑇  

              

Algorithm 2 outlines the steps that are required to process the input DTAX to direct trust-

based trust tuple, ωX 

⊕𝑆𝐷𝑇 ; details are given in Sec. 4.3.1. Evidences generated from SDT, are 

classified into either positive or negative evidences based on their behavior towards the App. 

Afterwards, formulas (1) to (4) are applied to compute the trust tuple. Formula (14) to (17) are 

used to combine the source's reputation with ωX 

𝑆𝑖  to compute ωX 

𝑟𝑖:𝑆𝑖. Once we have the opinion 
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from each source then using formula (18) to (22) merge them into a single opinion, ωX 

⊕𝑆𝐷𝑇; where 

each opinion weights are considered as equal. 

Similarly, Algorithm 3 presents the steps that are needed to map the input ITAX to the 

indirect trust-based trust tuple, ωX 

⊕𝑆𝐼𝑇; details are provided in Sec. 4.3.2. The key difference with 

Algorithm 2 is, in Algorithm 3 for each evidence, the review reputation and the temporal weight 

is used to determine the influence of the evidence on an App. For both Algorithm 2 and 3, the time 

complexity is O(MN), where M is the total number of sources, and N is the number of evidences 

generated from each source. 

Algorithm 3 Computation of opinion from Indirect Trust Artifacts     

procedure create_external_opinion (ITAX, SIT) 
for Si ⋲ SIT do 

positive_evidence ⟵ null 
 negative_evidence ⟵ null 
 
 Si:ev(X) ⟵ generate internal evidences(X) 
 for e ⋲ Si:ev(X) != null do 
  weight[e] ⟵ temporal_weighte * review_reputation_weighte 

if e is a positive_evidence 
   inc positive_evidence by weight[e] 
  end 
  else 
   inc negative_evidence by weight[e] 
  end 
 end 

 apply formula (1) to (4) to determine (b, d, u, a), ωX 

𝑆𝑖  

# reputation matrix of SIT is presented in Table 4.10 
 evaluate reputation (ri) of Si; ω𝑆𝑖  

𝑟𝑖   

apply formula (14) to (17) to calculate weighted opinion of Si; 

ωX 

𝑟𝑖:𝑆𝑖=ω𝑆𝑖  

𝑟𝑖 ⊗ωX 

𝑆𝑖  

end 
apply formula (18) to (22) for fusion of different opinion from the different source, 

ωX 

⊕𝑆𝐼𝑇  

              

4.2.3 Framework Evaluation 

We have created a prototype based on the E-SERS and have empirically evaluated it in the 

context of the Google PlayStore. It’s an experimental approach where we have adopted both 
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quantitative and qualitative methods of evaluations. To compute DTA and ITA, quantitative 

evidences are generated using scientific and well-accepted tools. Again, for the investigation of 

the discrepancy between existing ranking schemes with ours, we follow the qualitative evaluation 

method. To do that we have observed the reviews and user sentiments, which are subjective 

evidences.  

 

Figure 4.4. E-SERS System Flow Diagram. 

For the user involvement, we have developed a Web interface for the prototype where the 

user is required to provide an App's URL in the Google PlayStore. Then, in an automated way, we 

obtain the package name and applying the package name, its APK (Android Package Kit) file is 

downloaded using the third party APK downloaders (e.g., APKPure [94]). The APK file is used 

as input to compute the DTA of that App. Similarly, to compute ITA, we have implemented an 

automated Web crawler that fetches the newest and relevant reviews and other details of an App 

(such as average rating score, reviewer id, creation date, num of likes, and the corresponding rating) 

from the Google PlayStore. The system flow diagram is presented in Figure 4.4. We identified 5 

categories in the Google PlayStore - which are Shopping, Travel, Insurance, Finance, and News.  

From these categories, we selected 25 Apps and stored their corresponding details in the database. 

This section is mostly about the computation of direct trust and indirect trust artifacts in 

details. Sources (tools) that are incorporated to generate the evidences are discussed here. For DTA 

we have considered three sources that are capable to generate a different set of internal evidences 

of an App. Again, for ITA single source is utilized to generate the external evidences. Then the 
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mapping mechanism for each source evidence to opinion is manifested here. In addition to that, 

the way to combine both internal and external opinion is illustrated here with appropriate notation. 

4.2.3.1 Computation of Direct Trust 

To generate the DTA of an App available in the Google PlayStore, we have utilized a static 

analysis tool called FindBugs, and a static taint analyzer tool called FlowDroid. These tools are 

selected based on their availability, as all of these tools are open-source code. Additionally, other 

researchers have frequently used these tools in their reported studies [52][95]. These two tools 

provide different perspectives about the internal aspect of an App, 

• FindBugs detects general Java coding bug patterns; the FindBugs’ opinion is represented 

as ωX 

𝑆1. 

• Flowdroid identifies sensitive data leaks; the FlowDroid’ opinion is expressed as ωX 

𝑆2. 

4.2.3.1.1 Mapping Evidences of S1 to ωX 

𝑆1 

Similar to our past work [24] [25], in this study, the high confidence bugs reported by 

FindBugs are counted as negative evidences and the low confidence bugs are counted as positive 

evidences. The medium confidence bugs are considered as uncertain evidences, which are equally 

distributed between the positive and negative evidences. As the high confidence means that the 

identified bug is certainly a real bug. Low confidence bugs are ideally false positives and medium 

confidence bugs lie in between these two extremes. To quantify the evidences as a (b, d, u, a) tuple, 

we have applied the formulas (1), (2), (3), and (4). For example, for a particular bug rank, if we 

received 100 high confidence bugs, 10 medium confidence bugs, and 256 low confidence bugs 

then using the above formulae, the trust tuple will be (0.70, 0.28, 0.02, 0.5). The approach, shown 

in Figure 4.5, encompasses different phases. 



 

63 

 

Figure 4.5. Evidence Mapping generated by FindBugs 

As mentioned, FindBugs produces twenty possible categories of evidences for an App based 

on different bug priorities. After we compute twenty (b, d, u, a) tuples which indicate different 

opinions about the trust of the same App, these can be merged using the consensus operator to 

create a single opinion. In our approach, we have applied the weighted consensus operator, formula 

(23) to (28), to combine individual tuples into a single opinion. Here, the weights are set using the 

FindBugs assigned priorities, where the top priority bugs are assigned a higher weight than the low 

priority bugs. 

4.2.3.1.2 Mapping Evidences of S2 to ωX 

𝑆2 

Like the SERS scheme [23], we have also introduced a four-step analysis for mapping 

sensitive data leaks to trust tuples, where steps 1, 2, and 4 remain the same ― only the approach 

to assess the risk has changed. That process is:  

1) Initially, with the help of FlowDroid, we identify all the sensitive sources and sink pairs 

that are responsible for leaking the critical information. Here, an Android Source is an 

external resource from which data is read - such as, getDeviceId(); which returns an IMEI 

(International Mobile Equipment Identity). An Android Sink is an external resource to 

which data is written - such as, sendTextMessage(); both the message and the phone 

number it receives are non-constant.  
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2) The list of sources and sinks is given as an input and, in our current implementation of E-

SERS, is taken from the SuSi [78]. With the help of the SuSi classifier, we classify sources 

and sinks into different categories. In SuSi, source APIs are classified into 14 different 

categories (e.g., ACCOUNT, UNIQUE_IDENTIFIER, LOCATION, CONTACT, 

NETWORK, etc.). Similarly, sink APIs are categorized into 16 distinct categories (e.g., 

FILE, LOG, NETWORK, NFC, SMS_MMS, etc.). The use of SuSi categories is easy to 

understand than the specific source-sink pairs.     

3) We assess the risk factors associated with permissions that are given to sensitive APIs. As 

Android allows the APIs to access sensitive data after receiving the permissions from the 

user, permissions play a substantial role in determining the risk of the data leaks. Android 

has divided these permissions into different protection levels that affect whether runtime 

permission requests are required or not. Potential risks using the permissions are 

characterized by Normal, Signature, and Dangerous. The permission identifiers mapped to 

the corresponding APIs using PScout [91], which is a technique to conduct the mapping 

from API calls to permissions identifier. The NIST guideline for Risk management of 

information technology system [92] [93] is followed to assess the quantitative risk 

associated with the Android permissions.  

The determination of these risk levels is subjective. This argument can be justified in terms 

of the probability assigned for each threat likelihood level and a value assigned for each impact 

level. The risk assessment matrix is given in Table 4.6. By applying the Formula (31), the risk 

assessment scale is divided into three different categories: High, Moderate, and Low, similar to 

the SERS scheme.  

The 4 × 4 risk assessment matrix, shown in Table 4.6, contains four levels of likelihood and 

impact. Based on the permission that is requested, the level of impact is classified into four 

different categories:  

• Catastrophic (identifiers that fall into the Dangerous permission identifiers category),  

• Critical (identifiers that fall into the Significant permission identifiers category),  

• Marginal (identifiers that fall into normal permission identifiers category), and  

• Negligible (identifiers that do not belong to any of the permission identifiers categories). 
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Table 4.6. Quantitative 4 × 4 Risk Assessment Matrix 

Likelihood 

(Source/Sink) 

Level of Impact (Source/Sink potential risk of permission) 

Catastrophic 

(100) 

Catastrophic  

(50) 

Marginal  

(20) 

Negligible 

(10) 

Frequent (1.0) High (100) Moderate (50) 
Moderate 

(20) 
Low (10) 

Probable (0.5) 
Moderate 

(50) 
Moderate (25) Low (10) Low (5) 

Remote (0.2) 
Moderate 

(20) 
Low (10) Low (4) Low (2) 

Improbable (0.1) Low (10) Low (5) Low (2) Low (1) 

 

The source and sink categories are placed into different likelihood categories based on their 

appearance. We have selected three malware datasets for this observation; one from VirusShare 

[96] and two others from Drebin [97] which contain in total reported 2555 malicious Apps. Both 

VirsuShare and Drebin are repositories that contain malware samples. For these Apps, we have 

applied Flowdroid and stored the source and sink categories that have been reported. If any of the 

source/sink categories appear in these three-malware datasets then those are classified as belonging 

to Frequent; if it appears in 2 of the observed datasets, then it belongs to Probable class; if it appears 

in only one dataset will be classified into the Remote class; and the rest of the categories are 

considered as Improbable. The source and sink distribution to different likelihood categories is 

given below: 

  



 

66 

Table 4.7. Likelihood categorization based on appearance. 

Likelihood Source Category Sink Category 

Frequent 

(1.0) 

ACCOUNT_INFORMATION 

LOCATION_INFORMATION 

NETWORK_INFORMATION 

NO_CATEGORIES 

UNIQUE_INFORMATION 

LOG 

NETWORK 

NO_CATEGORIES 

SMS_MMS 

Probable 

(0.1) 

DATABASE_INFORMATION 

FILE_INFORMATION 

ACCOUNT_SETTINGS 

FILE 

CONTACT_INFORMATION 

Remote 

(0.2) 

CONTACT_INFORMATION 

NFC 

UNIQUE_INFORMATION 

CALENDAR_INFORMATION 

SYSTEM_SETTINGS 

Improbable 

(0.1) 
Rest of the Source Categories Rest of the Sink Categories 

 

4) Any evidence that confirms the data confidentiality is considered as positive evidence and 

one that involves in information leakage is a negative evidence. Along with the analysis 

report generated by FlowDroid, we also keep track of the runtime log file. From that log 

file, we extract the number of total Sources (ST) that exists in an App’s code. If there is no 

leak, then ST is considered as a total number of positive evidence. Again, if data leaks are 

found then the positive evidences are calculated by subtracting the number of faulty 

Sources (SF) from ST; where SF indicate those sources, which are involved in information 

leakage. Once the evidences are generated then the formulae (1), (2), (3) and (4) are applied 

to compute the (b, d, u, a) tuple that reflects the opinion ωX 

𝑆2.  
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4.2.3.1.3 Evidence Processor and Fusion of Opinions based on Direct Trust 

Before combining the opinions ωX 

𝑆1, and ωX 

𝑆2,  the reputation of the sources is considered as 

a trust tuple ω𝑆1  

𝑟1 , and ω𝑆2  

𝑟2 , as discussed in Sec. 3.5.2.5. We have used two approaches to evaluate 

the reputation of the tools: reputation based on the existing literature and reputation based on 

experimentation on benchmarks. For tool S1 and S2, we have adopted the first approach and 

gathered the precision, recall, and F-measure from the existing literature. In [98], to evaluate the 

FindBugs, a test suite is used formed by merging reliable resources such as IBM Haifa Research 

Lab and CERT. Again, to assess the FlowDroid DroidBench [99]; a micro bench-mark suite; is 

utilized in [80]. The reputation-related results for all three tools are presented in Table 4.8. Here, 

Precision (p) indicates the rate of false positives and Recall (r) estimates the false negatives against 

true positives. The reputation tuple is based on the F1-score as it is the weighted mean of Precision 

and Recall and gives a better measure of the wrongly classified instances than the Accuracy metric 

[100]. F1-score is considered as the value of belief and the rest is assigned to disbelief. Here, the 

uncertainty remains zero based on the assumption that the benchmarks are formulated by the 

domain experts, so there is no scope to have the ambiguity. Based on existing literature, the 

reputation scores of S1 and S1 are (0.51, 0.49, 0, 0.5) and (0.89, 0.11, 0, 0.5) respectively. 

Table 4.8. Reputation of SDT 

Source 

(SDT ⊂ S) 

Precision 

(p) 

Recall 

(r) 

F1-Score 

(2*p*r/(p+r)) 

Reputation 

<b, d, u, a> 

FindBugs (S1) 1 0.34 0.51 <0.51, 0.49, 0, 0.5> 

FlowDroid (S2) 0.86 0.93 0.89 <0.89, 0.11, 0, 0.5> 

 

Then, each source reputation (ω𝑆1  

𝑟1 , ω𝑆2 

𝑟2 ) is combined with the corresponding opinions (ωX 

𝑆1, 

ωX 

𝑆2) for each tool using the discounting operator (addressed in formula (14) to (17)) to generate 

discounted opinions( ωX 

𝑟1:𝑆1 , ωX 

𝑟2:𝑆2 ) for each evidence source (tool). As an example of the 

calculation, let us assume that for an App X, the evidence-based opinion tuples of S1, and S2 are 

ωX 

𝑆1 = (0.7, 0.2, 0.1, 0.5), and ωX 

𝑆2 = (0.6, 0.25, 0.15, 0.5) correspondingly. After weighting these 

opinions with their consequent reputations ω𝑆1  

𝑟1 , and ω𝑆2  

𝑟2  the values of ωX 

𝑟1:𝑆1, and ωX 

𝑟2:𝑆2 become 
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(0.36, 0.1, 0.52, 0.5), and (0.54, 0.22, 0.24, 0.5) respectively. Finally, the formula (18) to (22) are 

applied to fuse the weighted opinions that returns the opinion based on direct trust, ωX 

⊕𝑆𝐷𝑇 = (0.59, 

0.24, 0.17, 0.5). 

4.2.3.2 Computation of Indirect Trust 

4.2.3.2.1 Data Collection and Pre-processing 

This section describes an overview of our dataset crawler and required data preprocessing 

phases. We selected 25 Apps from the Google PlayStore in 5 different categories. We picked Apps 

in each category to generate ITA, that offer similar functionality and have a reasonable number of 

user reviews, the average number of scraped reviews are 3,070 (per App), details are given in 

Table 5.3. For each App, we scraped three different data items: 1. App’s basic details (such as user 

rating, category, total number of reviews, total number of installs, etc.), 2. Newest reviews, and 3. 

Most relevant reviews; using an in-house tool. Google PlayStore characterizes the App's reviews 

into three different categories are: Newest, Most relevant, and Rating. For our evaluation, we are 

only interested in the Newest and Most relevant datasets. Figure 4.6 depicts the architecture of our 

crawler. The components of our crawler are presented below:  

 

Figure 4.6. Architecture of Data Collection Phase 

• App Overview Crawler fetches App's basic details and stores into the database. 

Additionally, it places the App id to the App id queue.  

• App ID queue receives the App id extracted by an App Overview Crawler. Each time the 

App Overview Crawler fetches a single App id from the AppStore it stores that id into the 

queue. 
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• Review Crawler is designed for crawling the Most Relevant and Newest review pages, as 

we are interested in collecting the helpful (liked) and recent reviews by the users. The 

helpfulness score of the Most Relevant reviews is used to calculate the reputation, 

described later (Sec. 4.2.3.2.4). Each parsed review contains the reviewer id, creation time, 

review text, number of likes, and the corresponding rating. After collecting the dataset, we 

preprocess the reviews, as most reviews are in the form of unstructured text. Reviews are 

converted to Unicode and then stored into the database. Before passing the reviews for 

sentiment analysis, they are decoded from Unicode using the built-in API supported by the 

Unicodedata library [101]. This API helps to remove umlauts, accents, and other similar 

features.  

4.2.3.2.2 Mapping Sentiment Value to Opinion Model 

The IBM Watson Natural Language Understanding NLU) [82] tool is used to predict the 

sentiment of the preprocess reviews through natural language processing. It is capable of analyzing 

and understanding the text, including sentiment, emotion, keywords, language, entities, metadata, 

relations and semantic roles. The API returns the sentiment score in the range of [-1, +1] and 

indicates whether a given review reflects the positive or negative sentiment of the user. The NLU 

opinion is represented as ωX 

𝑆3. 

4.2.3.2.3 Conversion of Sentiment Score to Subjective Logic-based Tuples 

We have followed a similar conversion scheme with boundary cases as described by Gallege 

[37] while mapping the NLU opinion to ωX 

𝑆3. However, that technique utilized Linear Regression 

model to predict the trust tuple whereas we have adopted Random Forest Regression model. As 

we have noticed, mean absolute error [102] is higher for Linear Regression than Random Forest 

regression model. The following table (Table 4.9) contains the boundary cases for converting 

textual sentiments (i.e., 1 dimension, [polarity [-1, +1]) to Subjective Logic-based tuples (i.e., 3 

dimensions (belief [0, 1], disbelief [0, 1], and uncertainty [0, 1]). Here, (0, 1, 0) represents the 

extreme disbelief and similarly, (1, 0, 0) represents the extreme belief about a review. Afterwards, 

these boundary cases are fed into a Random Forest Regression model to predict b and d; since b, 

d, u is linearly dependent such that u = 1 - (b + d). 
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Table 4.9. Sentiment score map to <b, d, u>. 

Sentiment Score <b, d, u> 
 

Sentiment Score <b, d, u> 

-1 (0, 1, 0) +1 (1, 0, 0) 

-0.75 (0, 0.75, 0.25) +0.75 (0.75, 0, 0.25) 

-0.5 (0, 0.5, 0.5) +0.5 (0.5, 0, 0.5) 

-0.25 (0, 0.25, 0.75) +0.25 (0.25, 0, 0.75) 

4.2.3.2.4 Determining the Reputation of Reviews 

To determine the reputation of reviews, research have mostly applied reviewer-centric 

approach [103] [104], which is composed of features related to the reviewers' behavior. However, 

typically an AppStore does not provide the reviewer’s details. Therefore, the reviewer-centric 

approach is not applicable for the AppStores such as the Google PlayStore. Hence, we propose a 

review-centric approach to determine the review reputation. The “Most relevant” category 

contains the set of reviews that were agreed (liked) by the other users. In our approach, this dataset 

is used to establish the reputation of any new review. The features of the most relevant reviews 

that used are: `num of likes' that the review received and the ‘sentiment score’. Next, the mapping 

mechanism mentioned above is applied to convert the sentiment score of the review’s dataset into 

(b, d, u) tuples. The (b, d, u) tuples of Most Relevant reviews are clustered (using k-means [105]) 

into different clusters (C1, C2, ..., CN); N is the total number of clusters. Finally, the average number 

of ‘total likes’ (L) for all reviews (∀r) that belong to a cluster Ci is used as a weight for that cluster 

computed as: 

 𝑊𝐶𝑖
=  

∑∀r⋲𝐶𝑖
𝐿𝑟

∑∀r⋲𝐶𝑖
𝑟

           (34) 

Once the weight is determined for each cluster, we predict the cluster membership for reviews in 

the Newest dataset. Based on the cluster determination, the corresponding weight is assigned to 

the review. A high value of the weight represents a highly reputed review, and a low value denotes 

lower importance to that review (probably fake reviews). Thus, this relational discovery between 

“Most relevant” and “Newest” reduces the influence of fake reviews. 
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4.2.3.2.5 Determining the Temporal Weight 

In our approach, recent reviews are assigned higher weights than older reviews. After a 

certain period interval, each App developer releases a new version that makes the older reviews 

less useful. However, in a new release, developers typically try to fix a limited number of bugs 

and update a few features. Hence, it is necessary not to fully ignore the previous reviews of the 

App. Considering that we have introduced a temporal weight for each review that helps to reduce 

the impact of older reviews. The weight is determined by Hawkes Processes; a Self-exciting 

Spatio-temporal point processes model [106] [107]. In this model, we feed the timestamps of 

reviews from the newest reviews’ dataset. Then the Hawkes Processes model learns to 

exponentially weight reviews going back in time and returns the corresponding weight for each 

timestamp. Figure 4-5 shows how the temporal weights are assigned to recent reviews. For our 

convenience, we have normalized the temporal weights to a scale of 10. 

 

Figure 4.7. The line represents the exponential temporal weighted values, and the dots indicate the 

occurrence of the reviews over the time (the timestamp difference is in month 

4.2.3.2.6 Computing Opinion of Indirect Trust 

Three elements are required to determine ωX 

𝑆3: The review sentiment score, the temporal 

weight, and the weight of the review reputation. Once, we have both the weights then by 

multiplying [108] them, we can compute the total weight for a review. Here, any review that has 

the sentiment score >0 and <=1 is considered as a positive evidence and one that indicates 

sentiment score between 0 and -1 is negative evidence. Once the evidences are generated then 
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formulae (1), (2), (3) and (4) are applied to compute the (b, d, u, a) tuple that indicates the opinion 

ωX 

𝑆3. 

Once we have the opinion of the tool S3 then we need to evaluate the reputation of the NLU 

tool (watson). To do so, we have used an experimental approach. Existing literature provides 

watson’s F1-score for a different dataset (i.e., movie reviews [109], and Twitter comment data set 

[110]). Therefore, to assess Watson, we have created a benchmark based on our collected reviews. 

The benchmark contains 2000 manually labeled reviews, where each positive and negative review 

category comprises of 1000 reviews. To achieve this, we asked a team of 4 domain experts to 

manually label the sentiment (either positive or negative) of each of 750 reviews, which is a total 

of 3000 reviews. Then from the labeled dataset, we randomly picked 1000 positive reviews and 

1000 negative reviews each. To ensure the quality of labels we exchange the reviews with one 

another and cross-verify repeatedly. If any confusion is occurred, then based on the majority 

judgment the review is labeled. The confusion matrix for this dataset is given in Table 4.10. 

We calculate the Precision (p) = TP/(TP+FP) and Recall (r) = TP/(TP+FN) values which 

are 0.89 and 0.85 accordingly. So, the F1-score = 2* pr/(p+r) of the NLU tool is 0.87.  Thus, the 

reputation of S3 is: ω𝑆3  

𝑟3  = (0.87, 0.13, 0, 0.5). Next, the formula (14) to (17) are applied to compute 

the ωX 

𝑟3:𝑆3. To compute the opinion of indirect trust, we have used a single source (watson) to 

generate evidences, hence, the fusion of opinions is not required here (ωX 

𝑟3:𝑆3 ⇔ ωX 

⊕𝑆𝐼𝑇). 

Table 4.10. Tool NLU - Confusion Matrix. 

 
Positive 

(Actual) 

Negative 

(Actual) 

Positive 

(Predicted) 

853 

(TP) 

99 

(FP) 

Negative 

(Predicted) 

147 

(FN) 

901 

(TN) 
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4.2.3.3 Evidence Processor and Opinion Fusion 

Once we have the opinions for the direct trust (ωX 

⊕𝑆𝐷𝑇) and indirect trust (ωX 

⊕𝑆𝐼𝑇) of an App, 

we combine them into a single opinion; using the cumulative weighted fusion operator mentioned 

in the formula (23) to (28). The direct trust-based evidence likely to have less ambiguity as it solely 

focuses on the functional perspectives of an App. So, we assign a lower weight to the ωX 

⊕𝑆𝐼𝑇 than 

to the ωX 

⊕𝑆𝐷𝑇; the assigned weights are 30% and 70% respectively. These weights can be adjusted 

as user desires. This resultant opinion, ωX 

⊕(𝑆𝐷𝑇 ,𝑆𝐼𝑇)
, counts all available evidence and thus, provides 

a more reliable quantification of trust associated with each App than the basic average star ratings 

provided by the Google PlayStore. The ωX 

⊕(𝑆𝐷𝑇 ,𝑆𝐼𝑇)
 allows us to calculate the trust score (EX) using 

the formula (29), which is normalized to a scale of 5. The value of EX helps to rank-order similar 

Apps. The ranking generated by E-SERS is compared using the Kendall Tau Distance method [88] 

that considers the number of pair-wise variances between two ranking lists – the approach 

presented in [8].  Distances of 100% and 0% represent the opposite and identical rankings 

respectively. 
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 E-SERS VALIDATION 

In this chapter, first, we describe the dataset used in our experiments. Then, we discuss the 

outcomes obtained by employing the DTA (Sec. 5.1) and ITA sources (Sec. 5.2). In Sec. 5.3, we 

present the impact of weights and how that influences the E-SERS and in Sec. 5.4, we have shown 

the comparison of different ranking schemes based on empirical investigation. Finally, Sec. 5.5, 

discuss our web prototype. 

In our study, Google PlayStore Apps from the shopping, travel, insurance, finance, and news 

categories. The rationale for selecting Apps from these categories is that these categories have 

been identified by NowSecure in their research effort [13] [111]. NowSecure [112] is the mobile 

App security software company trusted by most industry leaders, such as Verizon, Lenovo, and 

others. There are other solutions that exist solely to detect the harmful viruses that may be present 

in (such as Google Play Protect [113], AVG [114], Norton Mobile Security [115], and others) 

Apps and these alternatives return risk warnings. However, the warnings generated by these 

alternatives are not quantifiable.   NowSecure, on the other hand, generates a quantifiable result, 

called a risk score, for an App. In our study, we have investigated the association between 

NowSecure and our DTA-based insights. However, NowSecure, being an enterprise assistance 

solution, is a paid service. As we do not have a subscription to NowSecure’s paid service, we could 

not gather any evidences about the Apps in our data set. Hence, instead of investigating the 

quantitative relation between the two approaches, we outline a qualitative relation below. 

From each category, five different Apps were identified for our experiments. In each 

category, we selected one App that was used by NowSecure in their study. After that, we identified 

four other Apps that are “similar in functionality” (as indicated by the Google PlayStore) to that 

App and have a reasonable number (average number of reviews per App is 2,100) of user reviews. 

The details of our approach are indicated in Table 5.4. These selected Apps belong to different 

ranges of popularity (such as the most popular, popular, and less popular) in terms of the number 

of installs. During SERS evaluation, we have addressed the correlation between the traditional star 

rating, popularity (number of installs), and trust of an App (see Sec. 4.1.2.1).  

The dataset that we prepared for our evaluation is collected from July 23 to October 29, 2019. 

However, in the following discussions, we do not disclose the App's details (such as App's package 

name or any specific id) and keep App’s id anonymous (e.g., App1). 
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5.1 Findings Generated by DTA Sources 

The number of data leaks identified by Flowdroid for each category of Apps along with the 

reported sources and sinks categories are presented in Table 5.1. Source and sink APIs that belong 

to NO_CATEGORY is not reported here, as they refer to non-sensitive data flows in SuSi [78]. In 

[49], authors identify that sources that are categorized into NETWORK_INFORMATION and 

UNIQUE_IDENTIFIER are more likely to occur in malware Apps than in benign Apps. In addition, 

that study indicates that malware Apps are more prone of to use short message service (SMS) as 

sinks to leak data to third parties - such scenarios are found in our test dataset too. For News 

category Apps, we noticed the source API belong to the UNIQUE_IDENTIFIER category and the 

quantity of sink APIs that refers to SMS_MMS is comparatively much higher than the other 

categories. 

  



 

76 

Table 5.1. Data leaks details generated by FlowDroid. 

App 

Category 

# of 

Data 

Leaks 

Source Categories Sink Categories 

Shopping 664 

LOG (239) 

SMS_MMS (186) 

NETWORK_INFORMATION (17) 

FILE (6) 

LOCATION_INFORMATION (2) 

SMS_MMS (93) 

NETWORK (24) 

FILE (5) 

CALENDAR_INFORMATION (4) 

CONTACT_INFORMATION (3) 

Travel 881 

SMS_MMS (68) 

LOG (63) 

FILE (8) 

NETWORK_INFORMATION (3) 

CALENDAR_INFORMATION (2) 

ACCOUNT_SETTINGS (1) 

SMS_MMS (46) 

FILE (10) 

CALENDAR_INFORMATION (2) 

ACCOUNT_SETTINGS (1) 

NETWORK (1) 

Insurance 635 

SMS_MMS (186) 

LOG (155) 

FILE (9) 

ACCOUNT_SETTINGS (5) 

NETWORK_INFORMATION (4) 

CALENDAR INFORMATION (2) 

SMS_MMS (73) 

NETWORK (16) 

ACCOUNT_SETTINGS (3) 

CALENDAR_INFORMATION (3) 

FILE (2) 

Finance 1237 

LOG (161) 

SMS_MMS (63) 

NETWORK_INFORMATION (13) 

FILE (2) 

SMS_MMS (86) 

NETWORK (9) 

CALENDAR_INFORMATION (5) 

LOG (2) 

News 1399 

LOG (114) 

SMS_MMS (80) 

UNIQUE_IDENTIFIER (14) 

FILE (9) 

NETWORK_INFORMATION (8) 

ACCOUNT_SETTINGS (3) 

SMS_MMS (157) 

NETWORK (18) 

LOG (13) 

FILE (6) 

ACCOUNT_SETTINGS (4) 

CALENDAR_INFORMATION (3) 

CONTACT_INFORMATION (1) 
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FindBugs identified more than 300 programming mistakes and suspicious coding paradigms (such 

as de-referencing of null pointers) using its simple analysis techniques than the deep analysis 

techniques. In Table 5.2, we have presented the high confidence warnings (for each bug pattern) 

for different App categories. The Apps in News category have outnumbered other categories of 

Apps for high priority warnings that reported from the Malicious Code Vulnerability category. 

Table 5.2. High priority warnings for each bug category generated by FindBugs 
 

Shopping Travel Insurance Finance News 

Bad Practice 176 172 278 332 223 

Style 248 534 1123 1685 1126 

Malicious code vulnerability 131 463 448 260 1102 

Correctness 391 932 1058 1473 1755 

Performance 38 51 88 96 102 

Multithreaded correctness 15 10 28 35 46 

Internationalization 204 421 398 483 502 

 

An interesting insight from the direct trust-based result is that all three tools (FlowDroid, 

FindBugs) show that the Apps in the News category are more vulnerable than other categories. A 

similar observation has been reported by NowSecure where they indicated that almost all local 

news Apps (in their dataset) leaked user data. Whereas 40% of them had severe security 

vulnerabilities that could lead in sensitive information being compromised. 

5.2 Findings Generated by ITA Sources 

As indicated, we have collected a dataset of 25 Apps from five different categories. The 

dataset of the associated user reviews is described in Table 5.3. The matrix of average words (per 

review) denotes that, the Most Relevant reviews are always more detailed than the reviews are in 

the Newest category. 
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Table 5.3. Statistics of Collected User Review Dataset. 

Newest Review Dataset  Most Helpful Review Dataset 

Total number of crawled reviews 52,519 

 

Total number of crawled reviews 24,299 

Average Number of reviews per App 2100 Average Number of Reviews per App 970 

Average Words per Review 14.8 Average Words per Review 22.3 

 

Figure 5.1 presents the sentiment scores for each review in our dataset where every point 

denotes the score for an individual review. The box plot shows the median, first, and third quartiles 

and minimum and maximum sentiment scores for individual rating scale 1 to 5. However, a 

significant amount of outlier is evident for the ratings of 1, 2 and 5.  

 

Figure 5.1. User given Rating Score vs Review’s Sentiment Score. 

After examining the review sentiments and the corresponding ratings, we found some 

mismatches. For example: 

“Don't care for this app. Too confusing, even when it works.” - the user provided a rating of 

5; where Natural language understanding tool returned a negative sentiment for this review, 

reflecting a mismatch. 

“The website is a lot better” - the user provided a text with positive sentiment; however, the 

user provided a rating of 1, again reflecting a mismatch. 

We also performed a review-based evidence analysis (presented in Figure 5.2) between the 

Newest and Most Relevant reviews datasets.  
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Figure 5.2. Review based evidence analysis. 
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This investigation highlighted the disagreement between these review datasets. For every 

category, there is a clear mismatch of evaluation based on these two datasets. For example, Newest 

reviews of App2 in the shopping category mostly present positive sentiment whereas Most relevant 

feedback indicates a mix of positive and negative sentiment. However, we have noticed a 

significant difference in the News category. Here, the sentiment score for each App’s Newest 

reviews dataset deviates from a high to low sentiment score for the Most relevant reviews dataset. 

For example, the sentiment score of App3 in the News category deviates from [0.75, -0.25] to [0, 

-0.25]. This indicates that in the News category, users are experiencing similar difficulty (such as 

ads, malware, bugs, etc.) that previously highlighted by others. Some reviews with a high number 

of likes in News Category are presented below: 

• “This was my favorite news app but now my phone has a mind of it's own, I have adds pop 

up randomly while I'm trying to make a phone call or text or anything else, I can no longer 

post comments on news stories, it's becoming harder and harder to just read a article. This 

News break app is becoming very broke. I will uninstall if they do not fix things soon.”; - 

the number of likes for this comment is 2324 and sentiment score is -0.599476. 

• “Used to be 5 stars until ads started popping up. There are ads running continuously on 

the top of the screen. Now there are pop up ads. When the ad finishes you are not brought 

back to the page the ad took you away from. I have to delete this app because its ruined 

now. How do I explain this to all the people that I told how good this messed up app is? 

Sucks.”; - the number of likes for this comment is 1765 and sentiment score is -0.909597. 

From the above explanation, it can be assumed that to look only at the Newest review dataset 

is not an ideal option. As it fails to unfold the detail behaviors about an App from the user point of 

view. Therefore, the user should observe the Most relevant reviews as well. However, in the most 

of those cases, a review’s sentiment score leads to a more negative score for the Most Relevant 

review dataset. We can infer that the reviews in the Most Relevant category tend to have more 

negative sentiment than the Newest category, which reflects that the users are more inclined to like 

criticism rather than appreciation of an App. Overall, users give ‘like’ or write reviews to present 

their dissatisfaction or problems that they are facing. 
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Table 5.4. Number of reviews relate to bug and security scope. 

 

 

We also examined the number of reviews specific to bug or security concerns (presented in 

Table 5.4). To determine that, we created a list of keywords: bug, fix, problem, issue, defect, crash, 

solve, permission, privacy, security, spy, spam, malicious, and leaks. Most of the keywords are 

describe by Maalej et al. [116] under the bug reports review type. Besides that, we also added new 

keywords, which symbolize the security and data privacy concerns (such as privacy, security, spy, 

spam, malicious and leaks). We have followed the simple technique of String Matching, to 

automatically check if the reviews contain a certain keyword. For this, we have used SQL queries, 

while ignoring letter cases and binding around the keywords (e.g., using “LIKE” in SQL). 

From the keyword distribution shown in Table 5.4, it is clear that users have addressed more 

bug-related feedback than privacy and security-related concerns – a fact that was also highlighted 

in Chapter 4. However, the total number of bugs, privacy and security-related reviews indicate that 

typical users are not aware of these internal issues. In the privacy and security-related analysis, 

Apps from the Insurance, Finance and News categories have higher negative feedback than others. 

Some examples are given below: 

• “I tried the app again, there is no way to see comments or log into my Fox account. The 

ads point to malicious advertising sites that are full of malware, adware, spyware. Fox 

needs to vet their advertisers more carefully!” 
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• “Norton Security says this app is a PRIVACY RISK, that it collects information from my 

phone and sends it to an unknown location. I have now deleted it, until I learn more about 

what this means and what the app is actually doing. I Strongly suggest everyone else do 

the same.” 

• “Only reason im giving 1 star is theres not a 0 rating here! I agree with one of the comments 

about the app not be being malicious but the advertising is relentless! I uninstalled this 

app and I'm STILL getting CRAP ADS from marketing advertising sites!!! 

RIDICULOUS!!!!” 

• “Grrr, website sucks...faulty security cert. And click pay bill on this thing, and 

yup...nothing....sigh. love American Family though, they need to invest in IT techs though! 

Jeez.” 

For Apps that provide insurance or finance services, users are expected to trust these Apps 

to be responsible with a considerable amount of their sensitive data. We found that one of the most 

popular Apps (App2) in the Finance category, has been installed more than 10 million times, 

actively leak sensitive user information. 

5.3 Rank Variation based on Weights of Internal and External Opinions 

Figure 5.3 shows the influence of weights assigned to the ωX 

⊕(𝑆𝐷𝑇,𝑆𝐼𝑇)
 while combining both 

internal(ωX 

⊕𝑆𝐷𝑇) and external (ωX 

⊕𝑆𝐼𝑇) evidence in all of the selected categories. In Figure 5.3 (a), 

70% and 30% weights are assigned to ωX 

⊕𝑆𝐷𝑇 and ωX 

⊕𝑆𝐼𝑇 respectively for the News category Apps. 

Due to this scheme, the combined ranking behavior resembles more closely to the direct trust 

evidence-based ranking. For both evidence, equal weights are assigned in Figure 5.3 (b). This 

eliminates the inclination to any of the evidence-based rankings. Similarly, in Figure 5.3 (c) we 

have assigned a higher weight (70%) to the indirect trust-based evidences. Due to this, the 

combined ranking behavior is biased towards the external evidence-based ranking. Other App 

categories are presented in Figure 5.3 (d) (e) (f) and (g).  We adhere to the view that the direct trust 

evidence provides a better reflection of the App quality and, thus, we assign 70% weight to direct 

trust and 30% weight to indirect trust.  
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5.4 Comparison of different Ranking Schemes 

Five different kinds of ranking schemes are devised using the outcome of our experiments. 

These are: 

1) Ranking based on Direct Trust Artifacts; ωX 

⊕𝑆𝐷𝑇 (internal view).    

2) Ranking based on Indirect Trust Artifacts; ωX 

⊕𝑆𝐼𝑇 (external view).     

3) Ranking based on E-SERS; ωX 

⊕(𝑆𝐷𝑇,𝑆𝐼𝑇)
; computed by combing the internal and external 

view. The weight of external and internal evidences can be adjusted based on user 

preferences.     

4) Ranking based on the Average Star Ratings.     

5) Google PlayStore Rank; from AppBrain [117] Google PlayStore rank for each App is 

collected.      

We illustrate different scenarios for comparing the above-mentioned ranking schemes - 

similar to our approach described in [23]. The rank-orders differ from one scheme to another.  

Therefore, we did an empirical analysis to identify the reasons behind this behavior. Table 5.5 

shows the computed Kendall Tau distances for four such comparisons of Apps from five different 

categories.  

Table 5.5. Distance between different ranking schemes. 

 

1) Average Ratings and ωX 

⊕𝑺𝑰𝑻 .  In an ideal case, the reviews should be consistent with the 

star ratings. As indicated by the Kendall Tau variance (Table 5.5) which is between 0% to 40% 

when we compare rankings obtained by ωX 

⊕𝑆𝐼𝑇 and average star ratings - indicating that these two 

rankings are reasonably similar to each other. However, for the difference, there could be two 

potential reasons: 
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• For the collected review dataset, we have assigned two additional weight factors. One, 

review-centric reputation score to suppress the impact of false reviews and the other is the 

temporal weight to minimize the impact of old reviews. Whereas, in average rating score, 

all reviews are treated equally.  This reason may lead to a disparity between these two 

ranking schemes. 

• As explained earlier, a good number of mismatches is observed between the review 

sentiments and the rating scores. Such mismatches indicate that the star ratings, in many 

cases, are not a true representation of the text of the associated review.  

2) Average Ratings and ωX 

⊕𝑺𝑫𝑻.  Table 5.5 indicates that the Kendall Tau distances between 

ωX 

⊕𝑆𝐷𝑇 based and average rankings is between 30% to 60%. We have selected an App, App4, from 

the News category that has opposite orderings - App4 has a rank of 2 out of 5 based on the user 

ratings; while its rank is 5 based on the ωX 

⊕𝑆𝐷𝑇 score. 

App4 in News category. The users rated the App4 as having a good rank, but the ωX 

⊕𝑆𝐷𝑇 

based score ranked it very low. A few supportive (first two) and a few critical (last two) user 

comments are given below. In selecting the reviews, we picked only those reviews which 

contained bugs or privacy and security-related terms as addressed in Table 5.5. All other reviews, 

for each App, which do not focus on such features/terms are ignored in this investigation. 

“The ability to stream CBS news content live and coverage 24/7 is a great thing. Thanks 

CBS for being the first major network with this feature. App works well through phone pc and 

Roku with sharp layout and graphics. Don't understand some of the other bad reviews with 

technical issues, no problem here!” 

“I've always been able to view the app w/o any problems, always clear picture n crisp clear 

sound.” 

“Norton Security says this app is a PRIVACY RISK, that it collects information from my 

phone and sends it to an unknown location. I have now deleted it, until I learn more about what 

this means and what the app is actually doing. I Strongly suggest everyone else do the same.” 

“App started sending notifications without my permission. Deleted.” 

From the reviews of App4, we collected a total of 84 reviews that match with one of the 

keywords mentioned above, which is the only 3.2% reviews of the total reviews of App4. This 

expresses that, most of the users are not conscious of internal issues. Also, among these 84 reviews, 
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most of the reviews reported a crash. During the internal evidence analysis, we found critical 

security vulnerabilities for this App. Through the security flaws inspection, we noticed that the 

data leaks associated with App4 deal with the Dangerous permission access (such as 

READ_PHONE_STATE, ACCESS_WIFI_STATE). 

3) Average Ratings and Google PlayStore Rank. The Kendall Tau variance (Table 5.5) is 

between 30% to 40%, when we compare rankings obtained from the use of average star ratings 

and Google Rank. For the Google PlayStore, some known factors that influence the search result 

ranking are: App Name, App Description, Rating and Reviews, Backlinks, In-App Purchase, 

Updates Downloads and Engagement, and other hidden factors [118]. However, the leading 

AppStores do not disclose, how the ranking factors are weighted.  

To understand the correlation between average rating score and Google PlayStore rank we 

have conducted a simple experiment. We have fetched a dataset of 500 Apps from AppBrain [116] 

and Google PlayStore, which contains Google Play Ranking, rating score, number of installs, and 

number of reviews. The dataset is then fed, as the training set, to a machine learning model 

(regression with XGBRegressor [119]) to predict the App’s rank. Here, the independent features 

are rating (f0), number of installs (f1), and the number of reviews (f2). The correlation among them 

is presented in the Figure 5.4 - it shows that the rating, reviews, and the number of installs has 

impacts on App ranking. 

 

Figure 5.4. The association between App Rank and external factors (rating, number of reviews, 

and installs). 

Figure 5.5 represents the feature importance score (F) that is named according to their index 

from f0 to f2. Here, the number of reviews and rating have a higher importance score than the 

number of installs. While the rating score is an influential factor for the Google PlayStore ranking 
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so the disparity between these two ranking schemes is not that high. We have picked an App, App1, 

from the Shopping category that has opposite positions - App1 has a rank of 4 out of 5 based on 

the user ratings; while its rank is 2 based on the Google PlayStore rank. 45% of the total reviews 

for the App1 contain a below 4 rating. On the other hand, the number of installs (more than 5 

Million) and the number of reviews (91,857) for this App are relatively higher than for the other. 

So, these factors when combined with other Google PlayStore ranking factors give the App a 

higher rank. 

 

Figure 5.5. Feature Importance Bar Chart - rating (f0), installs (f1) and number of reviews (f2). 

4) ωX 

⊕(𝑺𝑫𝑻,𝑺𝑰𝑻)
 and Google PlayStore Rank. Prior scenarios have indicated that rankings 

based on any partial evidence result in significantly distinct orderings. Thus, there is a need to 

combine direct and indirect trust-based evidence to provide a comprehensive ranking scheme. To 

achieve this, we combine the direct trust (ωX 

⊕𝑆𝐷𝑇) tuple and the indirect trust (ωX 

⊕𝑆𝐼𝑇) tuple using 

a weighted consensus operator (introduced in formula (23) to (28)) by giving a higher weight to 

the ωX 

⊕𝑆𝐷𝑇 (addressed in Section 4.3.3). In our experiments, we have used the following weight 

combinations: 30% weight to ωX 

⊕𝑆𝐼𝑇 and 70% weight to ωX 

⊕𝑆𝐷𝑇; equal weight to both ωX 

⊕𝑆𝐼𝑇 and 

ωX 

⊕𝑆𝐷𝑇; 70% weight to ωX 

⊕𝑆𝐼𝑇 and 30% weight to ωX 

⊕𝑆𝐷𝑇.  As seen from Table 5.5, the distance 

between the E-SERS rankings and Google PlayStore rank varies from 30% to 50% for different 

categories based on the weights we have assigned - and it is lesser than other distances. A higher 

weight for ωX 

⊕𝑆𝐼𝑇 reduces the distance with the Google PlayStore rank, whereas a lower weight 

for ωX 

⊕𝑆𝐼𝑇 increases the distance. 
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As described earlier, the star rating or its combination with the external narratives is neither 

reasonable nor sufficient to assess an App. When we deal with the direct trust-based evidence, 

there is no possibility of any ambiguity as it entirely focuses on the internal (functional) aspects of 

an App ― albeit, there is a likelihood of returning false positives in such analysis. Therefore, when 

we combine both direct and indirect trust-based evidence and generate a rank list, it not only 

considers all aspects but also supports in overcoming any idiosyncrasies associated with user 

reviews. Such a scenario is illustrated with the help of App2 in the Shopping category.  App2 is 

one of the top Apps ranked by the Google PlayStore. Users’ reviews and the rating score depict a 

similar scenario, where approximately 78% of reviews are rated 4 stars or above. Based on the 

review sentiment, 70% reviews reflect positive sentiment for App2. E-SERS assigns a lower rank 

to the App2 when it is evaluated based on direct trust-based evidence. During the internal evidence 

analysis, we found severe security vulnerabilities for this App. Through the security flaws 

investigation, we found that the data leak associated with App2 deals with the Dangerous 

permission access (such as ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION) and 

these sensitive data are written to SMS_MMS. Thereby, highlighting the fact that user reviews 

many times fail to a grasp the real view of an App and anyone relying on only reviews or star 

scores may regret their selection. 

5.5 Web Prototype 

This section will discuss our web prototype, which has been created for user involvement 

and will be released to the community at large. The prototype is based on Flask Web Framework 

[120] and is written in Python. Following inputs are expected from users to use this prototype: 

• An App's URL in the Google PlayStore 

• Weights for internal and external views; both views are equally weighted by default – users 

can adjust the weight based on their preferences. 

• Once a user provides both these inputs, then in an automated way, the prototype obtains 

the package name and using the third-party APK downloaders (e.g., APKPure [89]) and 

the package name downloads the Apps’ APK file. using The APK file is used as an input 

to compute the DTA of that App. Similarly, to compute ITA, we have implemented an 

automated Web crawler that fetches the newest and relevant reviews and other details of 

an App (such as average rating score, reviewer id, creation date, number of likes, and the 
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corresponding rating) from the Google PlayStore. The backend of the prototype then 

calculates the E-SERS score based on the direct and indirect trust attributes. Apart from 

the E-SERS score, the prototype also displays following details about an App and a set of 

Apps using a GUI: The rating scores computed based on the internal and external views; 

are visually presented using the trust meter.  

• The computed E-SERS score for an App is classified into three different categories:  

Distrusted, Neutral, and Trusted. A score below 2.5 is considered as “Distrusted”, between 

2.5 to 3.5 is indicted as “Neutral”, and between 3.5 to 5 is labeled as “Trusted”.  

o To determine these ranges, we have used VirusShare [96] and Drebin [97] [121] 

[122] datasets which are the repository of malware samples of Apps.  

o For these datasets, we observed that a major percentage (approximately 74%) of 

Apps has a trust rating score below 2.5. 

• The top 5 most occurring positive and negative words in the reviews are also indicated. 

 

Figure 5.6. E-SERS Web Prototype. 

• A Bug report generated by FindBugs for a particular App is also displayed. 

The prototype is deployed at rankings.cs.iupui.edu – and is made accessible to the computing 

community. In addition, the prototype allows users to provide their feedback for future 

enhancements. This feedback can be provided via the 'Like/Dislike' feature. The screenshot of the 

web prototype is given in Figure 5.6.  
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In the following section, we have discussed the performance of the prototype measured as 

the average execution time required to handle a request. 

Initially, all the necessary methods were implemented following a sequential paradigm. In 

that scenario, the required time to download the APK file and fetch reviews for an App on an 

average was 130.61sec. The average time required to compute the trust score of an App was 

233.1sec. Hence, the end-to-end execution time after initiating a request until receiving a response 

was on average 6.1mins. In order to reduce this end-to-end time, we parallelized parts of our code 

using the multiprocessor [123] module, a Python package that supports concurrency. The 

following tasks were carried out in parallel: 

• We generated both direct and indirect trust artifacts in parallel. In the input collection phase, 

as indicated earlier, we collect three different kinds of data for an App – the APK file, 

newest reviews, and most helpful reviews. We executed these tasks simultaneously.       

• We also performed computations of the DTA- and ITA-based trust scores concurrently. 

The execution times, after these concurrent executions, were reduced to 85.03sec (for artifact 

generation), and 161.2sec (for the trust score computations). Hence, after parallel executions, the 

end-to-end time decreased to 4.1mins – 32.7% improvement over the non-parallelized version. 
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 DETECTION OF MALWARE APPS USING DATA 

FLOW FEATURES 

Once a user has selected a specific set of Apps from available choices, they may want to 

combine these selected Apps to form a composed system using the E-SERS. Before we discuss 

the composition models based on the E-SERS technique, in this chapter, we introduce an internal 

evidence-based malicious Apps detection technique that uses data flow features. This technique is 

later applied, in the next chapter, in the proposed trust-aware service composition model. 

6.1 Overview 

We propose a technique for categorizing Apps into malicious or benign. As described in 

Figure 6.1, after an App is given as an input to the FlowDroid, FlowDroid produces all identified 

data flows from sources to sinks. Based on the data flow details, a feature matrix is generated. 

These features are then passed to train the classifiers and predict whether an App is malicious or 

benign. 

 

Figure 6.1. Overview of Malware App Detection Framework 

6.2 Feature Extraction 

The selection of features is always a critical factor to detect malware Apps. In this work, as 

indicated above, we extract features from Apps with a static taint analysis tool - FlowDroid. As 

we want to focus on security vulnerabilities, with the help of FlowDroid we identify all the 

sensitive sources and sink pairs that are responsible for leaking the critical information. On the 



 

92 

datasets that we have used in the experimentation, FlowDroid extracted 28,170 features (described 

in Sec. 6.4.1). Each feature is the reported Source and Sink APIs. For each App, the data is 

expressed by a binary vector. In the feature matrix, bit 1 represents that FlowDroid reports the 

particular API, and bit 0 indicates as the particular API is not reported. 

6.3 Machine Learning Classification Algorithms for Detection 

The App classification problem is a binary classification task resulting in two class labels – 

malicious and benign. Here based on the features, the Apps are labeled by either 1 or 0. Here, label 

‘0’ represents a benign App, and label ‘1’ represents the App is a Malware App. We have picked 

the six most popular algorithms used for binary classification problems, which are given below. 

Here, the Support vector machine is particularly designed for binary classification problems and 

does not support multi-class classification problems. 

1) Support Vector Machine 

2) K-Nearest Neighbors 

3) Logistic Regression 

4) Naïve Bays - Gaussian Naive Bayes 

5) Decision Tree 

6) Random Forest 

6.3.1 Support Vector Machine 

Support Vector Machine (SVM) [124], is an elegant and powerful machine learning 

algorithm that can be used for classification and regressions fields. However, it is mostly used for 

classification tasks. The objective of the SVM is to find a hyperplane in an N-dimensional space, 

where N is the total number of features that clearly categorizes the data points. 

6.3.2 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) [125], is a supervised machine learning algorithm that can be 

used to solve classification and regressions problems. The baseline assumption of this algorithm 

is that similar things occur close to each other, which captures the idea of similarity. It works by 
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determining the distances between a sample and all instances in the datasets. Then, it chooses K-

nearest samples and uses the majority ensemble technique to predict which group to fit the sample.  

6.3.3 Logistic Regression 

Logistic Regression (LR) [126] a predictive analysis algorithm that models the probability 

of the class between 0 and 1, with a sum of one. It is named based on the core method that is used, 

the logistic function. The logistic function is also called as 'Sigmoid function'. Logistic regression 

supports both binary and multi-class classification.  

6.3.4 Naïve Bays 

Naïve Bayes (NB) [127], is a collection of classification algorithms based on Bayes’ theorem. 

It is used for both binary and multi-class classification. This algorithm can be extended to real-

valued attributes, most commonly by assuming a Gaussian distribution. The extension is called 

Gaussian Naive Bayes (GNB).  For GNB, it is only required to calculate the input variable's mean 

and standard deviation for each class value.  

6.3.5 Decision Tree 

Decision Tree (DT) [128], is a supervised machine learning algorithm where the data is 

divided continuously according to a definite parameter. The tree can be characterized by two 

factors: decision nodes and leaves. It is a flowchart-like structure where decision nodes describe a 

test on a feature and leaves represent the data label. This method is used for both classification and 

regression problems. 

6.3.6 Random Forest 

Random Forest (RF) [129], is a supervised machine learning algorithm. The RF method 

executes in two phases; first, it creates a random forest and then makes a prediction from the first 

phase's RF classifier. The difference between DT and RF algorithms is that in RF, the process of 
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retrieving the root node and dividing the feature nodes runs randomly. This method is used for 

both classification and regression problems.  

6.4 Evaluation 

6.4.1 Datasets 

We utilized the same Apps dataset that we have applied to quantify the risk assessment 

matrix (Chapter 4, Sec. 4.3.1.2). We have also combined a new benign Apps dataset so that the 

dataset contains both benign and malware Apps to validate our classification model. Benign and 

malware Apps were collected from the following source: 

• KuafuDet [130] is a repository of benign samples of Apps. We have used the year 2016 

and 2017 datasets; each contains 600 Apps. 

• VirusShare [96] is a repository of malware samples of Apps. We have used the 2018 dataset, 

which contains 1000 samples. 

• Drebin [97] [121] [122] is a repository that contains malware samples from 179 different 

malware families. Among the six chunks of the dataset, we used only chunks 4 and 5; 

chunk 4 contains 1000 samples, and chunk 5 contains 555 samples of Apps. 

In our dataset, the benign Apps are labeled by 0, and the malicious Apps are labeled by 1. 

From the dataset, we randomly picked 80% of samples as training data, and the remaining 20% of 

the samples are utilized as test data.    

6.4.2 Parameter of Training Model 

In the empirical evaluation, we have used a computer with an Intel(R) Core (TM) i7 CPU 

and RAM of 16G. We utilize scikit-learn [131], a free software machine learning tool written in 

Python programming language.   

For SVM, instead of the default kernel function, which is 'rbf', the kernel function is set to 

'linear'. We have manually specified the different kernel functions to search which parameter 

provides the best result. For this, we have found ‘linear’ kernel function performs better than ‘rbf’.  

Similarly, we have found that the best possible value for the regularization parameter, C, is 0.25; 
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however, C's default value is 1.0. By tuning the hyperparameter C, the accuracy has elevated from 

85% to 88%. 

As for Naïve Bayes, we have picked the GaussianNB model in our experiments. For 

DecisionTreeClassifier, we have carried the experiment with default settings. As many of the 

researchers point out, in most situations, the quality of splitting and choice of splitting criteria will 

not cause a significant difference in the DT performance. 

The number of neighbors is an essential parameter for KNN. We set the n_neighbors to 3; 

by default, the value is 5. To determine the n_neighbors, we have plotted a graph between accuracy 

rate and n_neighbors denoting values in a range from 1 to 10. Then we chose the n_neighbors 

value as the one having a maximum accuracy rate, which is 3. 

For an imbalanced dataset, the class_weight is a crucial parameter. In our dataset, the number 

of benign Apps is much lesser than the number of the malware Apps. Hence, we have tuned the 

class_weight for both LR and RF by applying the following formulas: 

WBN = total samples / (total num of class * total num of benign Apps)       (35) 

WMW = total samples / (total num of class * total num of malware Apps)          (36) 

where total num of class value is 2, either benign or malware class. Here, WBN represents the 

weight for benign Apps, and WMW represents the weight for malware Apps. After the calculation, 

the value of WBN and WMW are 1.33 and 0.8. 

The max_depth and n_estimators are two other critical parameters for RF. Here, max_depth 

represents the depth of each tree, and n_estimators indicate the total number of trees. Usually, a 

deep tree and a high number of trees are better to train the data to capture more information about 

the data. However, these two values can significantly slow down the process of training of the 

model. Therefore, for both of the parameters, we need to identify the optimal values. The default 

value for max_depth is None and for n_estimators is 100. Initially, we use the default value of 

n_estimators and experimented with different variations of max_depth as shown in Table 6.1. We 

present, in Table 6.1, the AUC (Area Under Curve) [132] score for both with class_weight and 

without class_weight cases. The AUC measures the tradeoff between the false positive rate and 

the true positive rate. The AUC score ranges from 0 to 1; 0 indicates 100%, wrong predictions, 

and 1 represents 100% correct predictions. 
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Table 6.1. AUC Score for different max_depth variations 

Variation of max_depth 
AUC Score 

without class_weight 

AUC Score 

with class_weight 

max_depth = 1, n_estimators = 100 0.56 0.73 

max_depth = 2, n_estimators = 100 0.67 0.76 

max_depth = 4, n_estimators = 100 0.71 0.78 

max_depth = 8, n_estimators = 100 0.75 0.81 

max_depth = 16, n_estimators = 100 0.81 0.85 

max_depth = 32, n_estimators = 100 0.83 0.86 

max_depth = 64, n_estimators = 100 0.852 0.913 

max_depth = 100, n_estimators = 100 0.857 0.907 

max_depth = 200, n_estimators = 100 0.86 0.913 

 

From Table 6.1, we can infer that for our data the optimal value for max_depth is 64 with 

class_weight. The visualization of max_depth variation vs. AUC score is presented in Figure 6.2. 

Here, the blue line resents the outcomes for the training data, and the red line presents the outcome 

for the test data. 

 

Figure 6.2. AUC Score vs max_depth with class_weight 

After these explorations, we re-ran the experiment with the max_depth value set to 64 and 

with different variations of n_estimators, as given in Table 6.2. 
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Table 6.2. AUC Score for different n_estimators variations 

Variation of n_estimators 
AUC Score 

without class_weight 

AUC Score 

with class_weight 

max_depth = 64, n_estimators = 1 0.77 0.81 

max_depth = 64, n_estimators = 2 0.82 0.86 

max_depth = 64, n_estimators = 4 0.89 0.86 

max_depth = 64, n_estimators = 8 0.8625 0.89 

max_depth = 64, n_estimators = 16 0.8662 0.9158 

max_depth = 64, n_estimators = 32 0.8664 0.9150 

max_depth = 64, n_estimators = 64 0.8704 0.9104 

max_depth = 64, n_estimators = 100 0.868 0.9126 

max_depth = 64, n_estimators = 00 0.866 0.917 

 

From Table 6.2, we inferred that for our data the optimal value for n_estimators is 16 with 

class_weight. Increasing the n_estimators beyond 16 will decrease the test performance without 

triggering a notable improvement in the accuracy rate. The visualization of n_estimators variation 

vs. AUC score is presented in Figure 6.3. Here, the blue line resents the outcomes for train data, 

and the red line presents the outcome for test data. 

 

Figure 6.3. AUC Score vs n_estimators with class_weight 
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6.5 Experimental Result and Analysis 

The following performance metrics are used to measure the results from these six different 

classifiers.  

• True Positive Rate (TPR): It indicates the rate of Benign Apps that are successfully 

detected. The formula for TPR is: 

TPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (37) 

• False Positive Rate (FPR): It indicates the rate of Benign Apps that are not successfully 

detected. The formula for FPR is: 

FPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (38) 

• True Negative Rate (TNR): It indicates the rate of Malware Apps that are successfully 

detected. The formula for TNR is: 

TNR = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
         (39) 

• False Negative Rate (FNR): It indicates the rate of Malware Apps that are not successfully 

detected. The formula for FNR is: 

FNR = 
𝐹𝑃

𝑇𝑁+𝐹𝑃
              (40) 

• Accuracy: It indicates the ratio of correctly identified Apps (either Benign or Malware) to 

the total number of tested Apps. The formula for Accuracy is: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+𝐹𝑃+𝐹𝑁
      (41) 

• Precision: It indicates the ratio of correctly predicted Benign Apps to the total number of 

predicted Benign Apps. The formula for Precision is: 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (42) 

• Recall: It indicates the ratio of correctly predicted Benign Apps to the total number of 

actual Benign Apps. The formula for Recall is:   

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (43) 
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• F1-Score: It is the weighted average of Precision and Recall. F1 score is a better measure 

for uneven class distribution so we consider F1-score in our performance metrics. The 

formula for F1-Score is: 

F1-Score = 2 * 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (44) 

 

As earlier discussed in Sec. 6.4.1, we have split the dataset 80%-20%, where 80% data are 

used to train the classifier models and the remaining 20% of the data is used for testing. The 

performance of the six classifiers over test dataset is shown in Table 6.3.  

Table 6.3. Performance measurement of different classification algorithms 

Classifier LR KNN GNB RF DT SVM 

TPR (%) 96% 70% 64% 99% 90% 92% 

FPR (%) 14% 2% 3% 15% 15% 14% 

TNR (%) 86% 98% 97% 85% 85% 86% 

FNR (%) 4% 30% 36% 1% 10% 8% 

Accuracy (%) 90% 88% 85% 90% 87% 88% 

Precision (%) 79% 95% 92% 78% 77% 78% 

Recall (%) 96% 70% 64% 99% 90% 92% 

F1-Score (%) 87% 81% 76% 87% 83% 84% 

 

Table 6.3 shows that the accuracy and F1-score of LR and RF, were higher than the other 

classification methods. In terms of accuracy, the GNB classifier performed worse than others as 

the rate to classify the benign Apps is really low (64%). However, the TNR rate (%) for GNB and 

KNN classifiers was higher than others, indicating a successful rate to detect the malware Apps. 

The visual representation of different classification results in terms of accuracy, precision, recall, 

and F1-score is shown in Figure 6.4. 
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Figure 6.4. Performance comparison of different Classification models. 

We conducted 10-fold cross-validation with three cross-validator repetitions to evaluate 

these six methods, to reduce the problems such as selection bias or overfitting.  The box-and-

whisker plot, indicating the accuracy of each classifier, is presented in Figure 6.5.  

 

Figure 6.5. Box-and-whisker plot of accuracies for Classification models 

From Figure 6.5, it is clear that LR and RF perform better on average than SVM, KNN, DT, 

and GNB. The execution time for each classifier is given in Table 6.4. The RF classifier performs 

much faster than the LR model. Despite that, the detection accuracies remain similar for both LR 

and RF algorithms. 
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Table 6.4. Execution time of different classifiers 

Classifier SVM KNN LR GNB DT RF 

Execution time (sec) 144.64 105.77 24.03 2.15 9.6 6.52 

 

This chapter has applied and compared six machine learning classification algorithms, LR, 

KNN, GNB, RF, DT, and SVM, to categorize the Android Apps into either benign or malware. 

The evaluation results based on 10-fold cross-validation reveal the following findings: 

• The LR and RF classifiers provide a similar and higher accuracy rate than others, which is 

88%.   

• The KNN and GNB classifiers performed inadequately while classifying the benign Apps. 

The TPR for the KNN and GNB classifiers is 70% and 64%, respectively. Additionally, in 

the context of the TNR, both KNN and GNB techniques outperforms other classifiers. The 

TNR value indicates that these two models are much successful in identifying the malware 

Apps. Among these two techniques, the accuracy of KNN (86%) is 3% higher than GNB 

(83%), but for KNN, the execution time is remarkably high. So, it is a clear tradeoff 

between task performance and accuracy. 

• The accuracy for the SVM and DT classifiers is 87% and 85% respectively, but there is a 

significant execution time difference between these two approaches.  In terms of execution 

time, the SVM approach is one of the slowest classification techniques on our data set.  

Again, similar to the previous case, this is the tradeoff between task performance and 

accuracy. 

• Based on the results, we infer that the GNB could be the best model to detect malware 

Apps at with a reduced execution time. Again, if we want to identify both benign and 

malware Apps successfully and need a short execution time, RF is the best classification 

model among these six classifiers.  

Therefore, we have adopted RF to formulate the classifier model by considering the accuracy 

and execution time performance. This classifier model was then imposed on our proposed trust-

aware composition model (described in the next chapter). The RF classifier model requires an 

average of 2.48 sec to return the probability values for an App belonging to either the benign or 

the malicious app category.    
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 TRUST-AWARE SERVICE COMPOSITION 

Automatic service composition is a promising solution to create quality-aware distributed 

software systems. In this chapter, as the logical next step of our research, we tackle the challenge 

of trust-aware service composition in mobile ecosystems.  In this chapter, “service”, refers to any 

mobile App that is publicly available on software marketplaces. Due to the growing number of 

Apps and their possible combinations, we need an automatic composition technique to create a 

distributed system, out of a set of selected Apps, for achieving a particular function. Most of the 

service composition models are based on the QoS parameters, while our goal is to propose a trust-

aware composition model that is based on comprehensive views of the individual Apps. We use 

the combined trust score as the desired attribute for any ensemble of Apps – in previous chapters, 

we have already discussed the quantification of the trust score, using the E-SERS approach, for an 

individual App. 

Two prevalent composition models, that use QoS parameters for composition, are presented 

in the next section. After that, we describe the proposed trust-aware model. These models have 

been have evaluated, later on in this chapter, using the metrics of the average star rating and the 

trust scores. 

7.1 Prevalent Composition Models 

Each model presented below consists of two phases: in the first phase, the model generates 

possible combinations from the existing services that are available and in the second phase, it 

decides the final desired service composition sequence. For these two models, we use the trust 

score as the QoS parameter for selecting the desired composition model. 

1. Mean-Max composition model [133]: In this model, all possible combinations are 

generated with their mean trust score values. Then only the combination that has the highest 

mean value will be the final trusted service composition sequence. In order to illustrate the 

Mean-Max service composition model, below we present an example. Assuming that, we 

need to compose a system by selecting one alternative each from three different categories 

of services – called “Service 1”, “Service 2” and “Service 3”. Let us further assume that 

for the ‘Service 1’ category, there is only one App option (A11 – trust score of 4.5); for the 

‘Service 2’ category, there are three possible App options (A21, A22, A23 – trust scores of 4, 

2, and 4.5 respectively); and finally, for the ‘Service 3’ category, there are two App options 
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(A31, A32 – trust scores of 4 and 5 respectively). Then in the first phase, all possible 

combinations, for the above example, with means trust scores are as follows: 

Table 7.1. Example scenario of Mean-Max Composition model. 

Service 1 

(trust score out of 5) 

Service 2 

(trust score out of 5) 

Service 3 

(trust score out of 5) 

A11 (4.5) 

A21 (4) 

A22 (2) 

A23 (4.5) 

A31 (4) 

A32 (5) 

Binding Schemes Mean of Trust Rating 

Score Service 1 Service 2 Service 3 

A11 A21 A31 4.2 

A11 A21 A32 4.5 

A11 A22 A31 3.5 

A11 A22 A32 3.8 

A11 A23 A31 4.3 

A11 A23 A32 4.6 

 

After phase 1, as indicated in Table 7.1, we have all the possible combinations of the 

services and associated mean rating scores based on individual trust scores. In the second phase 

of this model, the A11 – A23 – A32 sequence will be selected as the final composition based on 

the maximum of the mean trust rating scores.  

The major disadvantage of this model is that the final sequence may include malicious 

service with other high-rated services. 

 

2. Mean-Random composition Model: In this model, during the first phase, all possible 

combinations are formed with their mean trust score values. Then, in the second phase, 

from the all possible combinations one combination is randomly picked. That random 

combination will be the final trusted service composition sequence. The execution will be 

faster than the Mean-Max model, however, the chance of selecting the optimal combination   

is less due to the randomized nature of selection. 
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7.2 Trust-aware Composition Model 

In this section, we present the proposed trust-aware composition model. In this model, 

services are picked based on their trust scores. However, before proceeding with the composition, 

we have added a service filter that removes the individual services according to the different 

filtering conditions (perhaps, user-defined). One specific criterion that we propose for such a filter 

is based on the probability of a service being classified into the benign category. The decision 

about whether a service is benign or malicious is decided by the RF-based classification model 

discussed in the previous chapter. A 70% or higher percentage probability of being in the benign 

category is considered appropriate for a service to participate in the service composition. This 

boundary value (70% here) can be customized based on user preferences. This constraint will 

reduce of the number of potential combinations of services. After that, we can apply any of the 

two models mentioned earlier. Figure 7.1 shows the architecture of trust-aware composition 

framework. 

 

Figure 7.1. Architecture of Trust-aware composition framework (lower granularity) 

  

7.3 Validation 

The Proposed model is empirically validated using the following two case studies from 

different domains – these studies were selected based on the Apps availability and past literature 

[74]: 

1) Online document arrangements system; from Productivity domain 

2) Weather forecast from IP address [74]; from Weather and Tool domain  

For each case study, the number of services and their interaction patterns may vary (such as 

sequence, parallel, etc.). During the service selection process, we have considered two additional 
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factors: an availability of reasonable number (as a minimum 1K) of user reviews to for the services 

and the feasibility of obtaining the bytecode of the services.   

7.3.1 Online Document Arrangements System 

The first case study contains a composite system called “Online Document Arrangement 

System” (ODAS) and is comprised of the following category of services: Virus scanner (S1), 

Grammar check (S2), PDF converter (S3), and FAX (S4). The composite ODAS is presented in 

Figure 7.2. In this ODAS, a document file is supplied as input to S1 and S2 services. If the input 

file passes the checks provided by both these services, then it is supplied to S3. After the successful 

execution of S3 the resultant output file is sent as an input to the S4 service. Then S4 conducts the 

final step in the execution sequence.    

 

Figure 7.2. Abstract composite process - Online document arrangements system (ODAS). 

In this composed ODAS, as seen in Figure 7-2, four types of services interact to achieve the 

desired outcome. The ODAS consists of both sequential and parallel interaction patterns. Again, 

for each service (Si) there would be many available alternatives. For this case study, we have 

picked five different Apps (from Google PlayStore) for each service category – a total of 20 

services. To compose the ODAS, using these 20 choices, the total number of possible combinations 

(C) are: 

C = ∏ XSi
𝑛
𝑖=1                       (45) 

Here, n is the total number of services required to compose the ODAS and XSi represents the 

number of available alternatives for each service Si. For the OADS, n is 4 and XSi for each service 

is 5. Hence, the total number of possible combinations, C, is 625. This indicates the explosion of 

alternatives associated with exhaustive combinations for any composed system. Hence, it is 

necessary to prune the infeasible alternatives and we are using the trust scores assigned to the 

services by E-SERS to prune the infeasible combinations. 

Before identifying all possible combinations for the ODAS using these 20 services, we first 

check if a given service belongs to the benign or malicious category. This classification is based 
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on the service’s data flow features. If a service belongs to the benign category, then only we apply 

the E-SERS approach and compute the trust score for that service. Hence, in the trust-aware 

composition model, there are two proposed levels of granularity: 

1) high level – where only the trust scores for each service, computed by E-SERS, are 

used in applying the abovementioned two composition models, and  

2) low-level – where before computing the trust score of a service, using E-SERS, the 

probability of deciding if a service is malicious or benign is calculated. This results in 

a small set of alternatives. On this small set, the abovementioned two composition 

models are applied.   

For each service in the OADS case study, the trust score computed by the E-SERS is presented 

in Table 7.2. 

Table 7.2. E-SERS score of each service in ODAS. 

Virus scanner (S1) 

(trust score out of 5) 

Grammar check (S2) 

(trust score out of 5) 

PDF converter (S3) 

(trust score out of 5) 

FAX (S4) 

(trust score out of 5) 

S11 (2.6) 

S12 (3) 

S13 (3.9) 

S14 (3.4) 

S15 (3.1) 

S21 (3.6) 

S22 (3.3) 

S23 (3.8) 

S24 (3.3) 

S25 (2.7) 

S31 (3.4) 

S32 (3.7) 

S33 (4.1) 

S34 (2.4) 

S35 (3.1) 

S41 (3.9) 

S42 (3.2) 

S43 (4.2) 

S44 (3.6) 

S45 (3.4) 

 

1) High-level Trust-aware Model. After the computation of the trust scores, as indicated 

above, we apply the mean-max and mean-random composition models for the OADS, and the 

resultant service sequences are indicated below: 

• Total possible combinations = 625 

• Mean-Max composition model. 

o Binding scheme (higher granularity): S13 -> S23 -> S33 -> S43 

o Composite trust score is 3.2. 

o Execution time: 2.9ms 

• Mean-Random composition model. 

o Binding scheme (higher granularity): S11 -> S21 -> S31 -> S44 
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o Composite trust score is 2.64. 

o Execution time: 1.9ms 

Here the execution time contains the time required to compose the system including the time 

needed to compute the possible alternatives. As seen from above, there is a tradeoff between the 

two possible system configurations for the OADS. If the composite trust score is the primary 

objective then the solution provided by the Mean-Max composition model is a better solution; on 

the other hand, if the execution time is the primary objective then the solution provided by the 

Mean-Random composition model is a better solution. 

2) Low-level Trust-aware Model. For the Low-level Trust-aware Model, as indicated 

earlier, we first determine the probability of assigning a given service to the benign (B) or 

malicious (M) class. The probability values of each service, in the OADS, are given in Table 7.3. 

Table 7.3. Service filter attribute value of each service in ODAS. 

Virus scanner (S1) 

(B% | M%) 

Grammar check (S2) 

(B% | M%) 

PDF converter (S3) 

(B% | M%) 

FAX (S4) 

(B% | M%) 

S11 (68 | 32) 

S12 (39 | 61) 

S13 (93 | 7) 

S14 (82 | 18) 

S15 (56 | 44) 

S21 (60 | 40) 

S22 (68 | 32) 

S23 (87 | 13) 

S24 (82 | 18) 

S25 (58 | 42) 

S31 (93 | 7) 

S32 (63 | 37) 

S33 (100 | 0) 

S34 (75 | 25) 

S35 (90 | 10) 

S41 (87 | 13) 

S42 (100 | 0) 

S43 (80 | 20) 

S44 (68 | 32) 

S45 (68 | 32) 

 

As we have mentioned earlier, a service with 70% or higher percentage probability of being 

in the benign category will only be considered for service composition. Based on this standard, we 

filtered out two services (S13, S14) from S1, two services from S2 (S23, S24), 4 services from S3 (S31, 

S33, S34, S35) and 3 services from S4 (S41, S42, S43). After performing these initial pruning operations, 

we obtain the following results for Mean-Max composition model – since, the Mean-random 

composition model selects a sequence randomly, it will not select a sequence that is more optimal 

than the one selected by the Mean-Max model and hence, it is not listed below: 

• Total possible combinations = 48 

• Trust aware composition model with Mean-Max model. 

o Optimal Binding scheme (lower granularity): S13 -> S23 -> S33 -> S43 

o Composite trust score is 3.2. 
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o Execution time: 0.9ms 

7.3.2 Weather forecast from IP Address 

The second case study contains a composite system called “Weather forecast from IP address” 

(WFIP) and is comprised of services IpToCity (S1), CityToZip (S2), and ZipToWeather (S3). The 

composite WFIP is presented in Figure 7.3. In this WFIP, an IP address is provided as input to S1 

service. S1 generates the corresponding City name and then it is supplied to S2. After the successful 

execution of S2 the consequential zipcode is provided to the S3 service. Then S3 performs the final 

step in the execution sequence and return the weather forecast. 

 

Figure 7.3. Abstract composite process - Weather forecast from IP Address (WFIP). 

In this composed WFIP, three services cooperate to achieve the desired outcome by 

following sequential interaction patterns. Similar to the previous case study, we have picked five 

different Apps from Google PlayStore for each service category – a total of 15 services. For each 

service in the WFIP case study, the trust score computed by the E-SERS is indicated in Table 7.4. 

Table 7.4. E-SERS score of each service in WFIP. 

IpToCity (S1) 

(trust score out of 5) 

CityToZip (S2)  

(trust score out of 5) 

ZipToWeather (S3) 

(trust score out of 5) 

S11 (3.66) 

S12 (3.95) 

S13 (3.83) 

S14 (3.86) 

S15 (4.46) 

S21 (3.43) 

S22 (3.95) 

S23 (4.52) 

S24 (2.51) 

S25 (4.29) 

S31 (4.21) 

S32 (3.43) 

S33 (3.3) 

S34 (3.92) 

S35 (2.58) 

 

1) High-level Trust-aware Model. After the computation of the trust scores, as indicated 

above, we apply the Mean-Max and Mean-random composition models for the WFIP, and the 

resultant service sequences are indicated below: 

• Total possible combinations = 125 

• Mean-Max composition model. 

o Binding scheme (higher granularity): S15 -> S23 -> S31 
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o Composite trust score is 4.39. 

o Execution time: 2.6ms 

• Mean-Random composition model. 

o Binding scheme (higher granularity): S11 -> S24 -> S33 

o Composite trust score is 2.15. 

o Execution time: 1.8ms 

We can observe, from the above details, a pattern similar to the first case study. – i.e., the 

Mean-Max composition model selects a better alternative, with a higher composite trust score, for 

the composed system than the Mean-random model. However, similar to the first case study, the 

Mean-random model selects a better alternative, with a lower execution time, than the Mean-max 

model. 

2) Low-level Trust-aware Model. For the Low-level Trust-aware Model, as indicated 

earlier, the probability values of each service to the benign (B) or malicious (M) class are computed, 

and these values are given in Table 7.5. 

Table 7.5. Service filter attribute value of each service in WFIP. 

IpToCity (S1) 

(B% | M%) 

CityToZip (S2)  

(B% | M%) 

ZipToWeather (S3) 

(B% | M%) 

S11 (50 | 50) 

S12 (75 | 25) 

S13 (75 | 25) 

S14 (87 | 13) 

S15 (75 | 25) 

S21 (87 | 13) 

S22 (75 | 25) 

S23 (60 | 40) 

S24 (58 | 42) 

S25 (81 | 19) 

S31 (75 | 25) 

S32 (81 | 19) 

S33 (58 | 42) 

S34 (58 | 42) 

S35 (75 | 25) 

 

Services with the probability of 70% or below belonging to the benign category, again, are 

filtered out. By doing so, the remaining choices are: four services (S12, S13, S14, S15) from S1 

category, three services (S21, S22, S25) from the S2 category, and 3 services (S31, S32, S35) from the 

S3 category. After performing these initial pruning operations, we obtain the following results 

using the Mean-Max composition model– again, since the Mean-random composition model 

selects a sequence randomly, it will not select a sequence that is more optimal than the one selected 

by the Mean-Max model and hence, it is not listed below: 

• Total possible combinations = 36 



 

110 

• Trust aware composition model. 

o Optimal Binding scheme (lower granularity): S15 -> S23 -> S31 

o Composite trust score is 4.39. 

o Execution time: 0.74ms 

7.4 Comparison of the Trust-aware Model 

We compared the proposed trust-aware model (Low-level) with the Mean-Max composition 

model that uses average star rating as the objective parameter.  

7.4.1 Case Study 1 - OADS 

For each service, in OADS, the average rating score (collected from Google PlayStore) is 

given in Table 7.6.  

Table 7.6. Average rating score of each service in OADS. 

Virus scanner (S1) 

(Googple PlayStore 

Rating) 

Grammar check (S2) 

(Googple PlayStore 

Rating) 

PDF converter (S3) 

(Googple PlayStore 

Rating) 

FAX (S4) 

(Googple PlayStore 

Rating) 

S11 (4) 

S12 (4.4) 

S13 (4.5) 

S14 (4.3) 

S15 (4.5) 

S21 (4) 

S22 (4.4) 

S23 (4.7) 

S24 (4.3) 

S25 (4.5) 

S31 (4.4) 

S32 (4.6) 

S33 (3.9) 

S34 (4.4) 

S35 (3.3) 

S41 (3.7) 

S42 (3.8) 

S43 (4.2) 

S44 (4.8) 

S45 (3.8) 

 

The application of the Mean-Max composition model based on average rating score results 

in following outcomes: 

• Total possible combinations = 625 

• Mean-Max composition model based on average rating score. 

o Binding scheme: S13 -> S23 -> S32 -> S44 

o Composite average rating score is 4.65. 

We can see, from above outcomes, that the selected sequence is different from the one 

suggested by the Low-level Trust-aware model. According to the data given in Table 7.3, it is 

evident that both S32 and S44 have a comparatively low probability of being benign services and 
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thus, may not be ideal candidates for an inclusion in a composed system. The average rating score, 

in addition, is subjective and reflects a user’s sentiments, and it is also known that developers can 

manipulate the rating scores. Hence, a composition based on an average rating score may not be a 

choice for an inclusion in a composed system.  

Next, we formulate the Bayesian estimation of the trust value of a service provided by Li et 

al. [73]. The formula for trust value with n-ratings (r1, r2, … rn) is given below, where each rating 

⋲ [0, 1]. 

T (r1, r2, … rn, ẟ) = 
∑ 𝑥𝑖+𝑛ẟ𝑛

𝑖

2𝑛
          (46) 

Here, ẟ ⋲ [0, 1] indicates the user’s prior subjective belief about the trust, initially without 

having prior subjective information the ẟ value is 0.5; represents natural belief. In the OADS case 

study, we set the mean E-SERS score of the services in a binding scheme as the value of ẟ after 

doing normalization for each score. The rating list is based on average rating as given in Table 7.4, 

and the value of n is 4. For the average rating score also, we carried out normalization. The resulted 

service sequence after applying the Mean-Max composition model, based on Bayesian estimation 

of the trust, is given below: 

• Total possible combinations = 625 

• Mean-Max composition model based on average rating score. 

o Binding scheme: S13 -> S23 -> S32 -> S43 

o Composite average rating score is 4.19. 

The Bayesian estimation with average rating-based list performs better than the composed 

alternative solely, which is completely based on the average rating score. The final binding scheme 

eliminates one of the services, S44, which has a low probability of being in the benign category.  

We, then, apply the formula (44) for computing the trust values with a rating list is based on 

E-SERS score, where each rating ⋲ [0, 1] and set the ẟ value to default 0.5. The resulted service 

sequence after applying the Mean-Max composition model, based on Bayesian estimation of the 

trust, is given below: 

• Total possible combinations = 625 

• Mean-Max composition model based on E-SERS score. 

o Binding scheme: S13 -> S23 -> S33 -> S43 

o Composite trust score is 3.2. 
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The Bayesian estimation using the E-SERS rating-based list performs identical as trust-

aware composition model where the trust score for the final binding scheme is 3.2.  

7.4.2 Case Study 2 - WFIP 

For each service, in WFIP, the average rating score (collected from Google PlayStore) is 

given in Table 7.7. 

Table 7.7. Average rating score of each service in WFIP. 

IpToCity (S1) 

(Googple PlayStore Rating) 

CityToZip (S2)  

(Googple PlayStore Rating) 

ZipToWeather (S3) 

(Googple PlayStore Rating) 

S11 (4.1) 

S12 (4.6) 

S13 (4.5) 

S14 (4.5) 

S15 (4.5) 

S21 (4.3) 

S22 (4.1) 

S23 (4.4) 

S24 (4) 

S25 (4.1) 

S31 (4.6) 

S32 (4.6) 

S33 (4.2) 

S34 (4.2) 

S35 (4.1) 

 

The application of the Mean-Max composition model based on average rating score results 

in following outcomes: 

• Total possible combinations = 125 

• Mean-Max composition model based on average rating score. 

o Binding scheme: S12 -> S23 -> S31   

o Composite average rating score is 4.53. 

We can again see, from above outcomes, that the selected sequence is different from the one 

suggested by the Low-level Trust-aware model. According to the data given in Table 7.4, it is 

evident that S12 has a comparatively lower trust score (3.95) and thus, may not be an ideal candidate 

for an inclusion in a composed system. Next, we apply the Bayesian estimation of the trust value 

formula (46). Similarly, in the WFIP case study, also we set the mean E-SERS score of the services 

in a binding scheme as the value of ẟ after doing normalization for each score. The rating list is 

based on the average rating given in Table 7.7, and the value of n is 3. For the average rating score 

also, we carried out normalization. The resulted service sequence after applying the Mean-Max 

composition model, based on Bayesian estimation of the trust, is given below: 
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• Total possible combinations = 125 

• Mean-Max composition model based on average rating score. 

o Binding scheme: S15 -> S23 -> S31 

o Composite average rating score is 4.4. 

The Bayesian estimation with an average rating-based list performs better than the composed 

alternative created solely based on the average rating score. The final binding scheme eliminates 

one of the services, S12, which has a low trust score. Then we apply the formula (44) for trust value 

with rating list is based on E-SERS score, where each rating ⋲ [0, 1] and set the ẟ value to default 

0.5. The resulted service sequence after applying the Mean-Max composition model, based on 

Bayesian estimation of the trust, is presented here: 

• Total possible combinations = 125 

• Mean-Max composition model based on E-SERS score. 

o Binding scheme: S15 -> S23 -> S31 

o Composite trust score is 3.4. 

The Bayesian estimation using the E-SERS rating-based list performs identical as trust-

aware composition model where the trust score for the final binding scheme is 3.4.  

Sec. 5.4 has highlighted the rankings' disparity based on the average rating score and the E-

SERS score. A similar scenario has been observed here for the composition models as well. Overall, 

we can conclude that our proposed trust-aware composition model in lower granularity level 

performs better in execution and can generate the most optimal service binding scheme than 

generated by other models. 
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 CONCLUSION AND FUTURE WORK 

In this dissertation, we have proposed a security-related and evidence-based ranking 

framework. The preliminary scheme proposed, is called SERS, which is later enhanced to E-SERS. 

E-SERS computes direct trust and indirect trust scores for an App using evidence obtained from 

Static code analysis, Static Taint Analysis, Security Analysis, and Sentiment Analysis and 

aggregates the results using Subjective Logic principles and operations. It obtains a holistic rank 

ordering of comparable Apps and provides insights, using structured and unstructured artifacts 

associated with Apps available in the Google PlayStore. The empirical evaluations show that the 

E-SERS considers the comprehensive nature of an App when compared with the other existing 

choices and provides a better ranking of similar Apps. Additionally, the E-SERS, using the direct 

trust artifacts, overcomes the limitation of small number of reviews associated with newly 

published Apps.  

Utilizing the E-SERS trust score, a trust-aware composition model proposed as the last part 

of this dissertation. The composition model has two levels of granularity. The proposed trust-aware 

composition model is empirically evaluated using two test cases and is compared with the 

techniques based on average star rating parameter and the trust score.  

8.1 Contributions 

The major contributions of the dissertation are summarized below: 

• It proposed a security-related and evidence-based ranking scheme to compute the trust of 

an App. 

• The proposed scheme is formalized to accommodate many sources to generate evidence 

for an App. It also integrates the reputation of sources, temporal aspects of external artifacts, 

and combines internal and external trust values using the principles of subjective logic. 

• A prototype (http://rankings.cs.iupui.edu/) based on the proposed scheme is created and 

rigorously experimented with using real-world data sets collected from the Google 

PlayStore. The results of the experiments are compared with other prevalent approaches. 

This prototype is made available to the research community. 
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• An App classifier model which utilizes data flow features and employs different machine 

learning classification algorithms for the categorizing Apps into benign or malware. This 

model is used in the proposed trust-aware composing model as indicated below. 

• A trust-aware composition model, with two levels of granularities, is proposed and 

empirically evaluated using two case studies. The results of the experiments are compared 

with the results obtained using the average star rating parameter and the trust score. 

  

8.2 Threats to the Validity 

There are a few threats to the validity of research presented in this dissertation. These are 

listed below: 

• We have only utilized the text analysis of ~77,000 reviews for 25 Apps. Hence, the Apps 

used in this experiment might not be representative of the entire AppStore. We have made 

our data available to anyone to address this threat to use and build on our experiments [134].  

• To carry out static data flow analysis, all code must be accessible, and any obfuscated flows 

cannot be identified easily. However, we are incapable to fully address the issue, as we do 

not have access to an App's source code. Consequently, their usage may affect our results. 

However, we used the standard tools that have been used in other research studies for the 

Android Apps. 

• It is well known that static code analysis tools may return false-positive warnings. To 

overcome this limitation, in our approach, we have considered the reputation score of the 

tools. This reputation is based on the performance of the tool on benchmarks.  

• For the trust-aware composition framework, the empirical study involves two simple 

composition case studies. However, any realistic composed system will contain a large 

component service set. To address this case studies were selected based on the Apps 

availability and past literature. 

• The user feedback about the web prototype is not available yet and hence, is not considered 

in this study. This feedback will be a good resource for understanding the usefulness and 

acceptance of this research. However, as an initial effort, we conducted an informal survey 

where we asked the users to select their desired ranking scheme. A majority (43.8%) 

preferred the proposed combined ranking scheme over others.  
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• Finally, any comprehensive ranking scheme which incorporates the source code analysis 

and sentiment analysis of associated reviews can present a number of challenges, such as, 

the need for significant number of resources to identify vulnerabilities in an Apps. 

Applying principles of parallel processing can help to reduce this limitation. 

8.3 Future Work 

Following are a few directions for future research: 

• We plan to apply E-SERS to datasets of newly published Apps which have an insignificant 

number of reviews or installs. 

• We intend to apply E-SERS to Apps from other existing AppStores (such as Amazon 

AppStore). 

• We want to integrate other good techniques (such as deep learning classifier models) to 

increase the classifying accuracy of categorizing an App into benign or malware group. To 

accomplish this, we will need to extend both benign and malware App’s datasets.  

• We will apply the proposed E-SERS framework for more complicated composite services 

and assess the validity of the proposed trust-aware composition model. 
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APPENDIX A. SURVEY I RESPONSES 

We carried out an informal survey – our survey audience contained Computing students 

and professionals. We sent our survey to a sample of the general population in the Computing 

domain. The audiences of this survey are anonymous users as we did not request the user to provide 

any personally identifiable data. We asked the following question:  

“In general, what is the most important factor that users considered to assess an App before 

downloading?” – we received 130 responses. The response is given below. 

 

Timestamp Responses 

2020/01/14 9:07:49 PM EST Average Rating Score 

2020/01/21 1:36:54 PM EST Number of Installs 

2020/01/21 1:38:00 PM EST Number of Installs 

2020/01/21 1:38:14 PM EST Average Rating Score 

2020/01/21 1:40:24 PM EST User Reviews 

2020/01/21 1:43:50 PM EST Average Rating Score 

2020/01/21 1:46:21 PM EST Average Rating Score 

2020/01/21 1:52:22 PM EST User Reviews 

2020/01/21 1:58:21 PM EST User Reviews 

2020/01/21 2:12:34 PM EST User Reviews 

2020/01/21 2:16:16 PM EST User Reviews 

2020/01/21 2:22:15 PM EST User Reviews 

2020/01/21 2:31:29 PM EST User Reviews 

2020/01/21 2:38:22 PM EST Average Rating Score 

2020/01/21 4:12:49 PM EST User Reviews 

2020/01/21 4:19:22 PM EST User Reviews 

2020/01/21 8:22:29 PM EST Developer info 

2020/01/21 9:12:19 PM EST User Reviews 

2020/01/21 11:13:06 PM EST Average Rating Score 

2020/01/21 11:22:26 PM EST Average Rating Score 

2020/01/22 1:21:43 AM EST App Size 

2020/01/22 5:59:47 AM EST Average Rating Score 

2020/01/22 6:58:47 AM EST User Reviews 

2020/01/22 8:13:26 AM EST Average Rating Score 

2020/01/22 8:26:49 AM EST User Reviews 

2020/01/22 12:43:55 PM EST User Reviews 

2020/01/23 9:34:25 PM EST Average Rating Score 

2020/01/24 2:08:27 AM EST Average Rating Score 

2020/01/24 10:05:13 AM EST User Reviews 
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2020/01/24 10:07:20 AM EST Average Rating Score 

2020/01/24 10:08:06 AM EST User Reviews 

2020/01/24 10:08:11 AM EST Average Rating Score 

2020/01/24 10:08:48 AM EST User Reviews 

2020/01/24 10:09:23 AM EST User Reviews 

2020/01/24 10:12:04 AM EST Average Rating Score 

2020/01/24 10:13:07 AM EST Number of Installs 

2020/01/24 10:13:33 AM EST User Reviews 

2020/01/24 10:38:56 AM EST Number of Installs 

2020/01/24 10:53:40 AM EST User Reviews 

2020/01/24 11:05:24 AM EST Number of Installs 

2020/01/24 11:20:19 AM EST User Reviews 

2020/01/24 11:24:23 AM EST Average Rating Score 

2020/01/24 11:25:37 AM EST User Reviews 

2020/01/24 11:34:22 AM EST Average Rating Score 

2020/01/24 12:11:19 PM EST Average Rating Score 

2020/01/24 12:29:08 PM EST Average Rating Score 

2020/01/24 1:51:24 PM EST Number of Installs 

2020/01/25 12:15:59 PM EST User Reviews 

2020/01/26 12:37:44 AM EST Average Rating Score 

2020/02/04 1:01:54 AM EST Average Rating Score 

2020/02/04 8:01:00 AM EST App Size 

2020/02/04 8:44:54 AM EST Average Rating Score 

2020/02/04 8:46:15 AM EST Average Rating Score 

2020/02/04 8:55:19 AM EST Number of Installs 

2020/02/04 11:12:08 AM EST Average Rating Score 

2020/02/04 11:58:06 AM EST Average Rating Score 

2020/02/05 6:16:58 AM EST Average Rating Score 

2020/02/05 8:29:34 AM EST User Reviews 

2020/02/05 9:50:21 AM EST User Reviews 

2020/02/05 10:00:19 AM EST Number of Installs 

2020/02/05 10:33:30 AM EST User Reviews 

2020/02/05 11:24:00 AM EST Average Rating Score 

2020/02/05 12:39:24 PM EST Number of Installs 

2020/02/05 10:09:54 PM EST User Reviews 

2020/02/05 10:10:01 PM EST Developer info 

2020/02/05 10:10:07 PM EST App Size 

2020/02/05 10:53:32 PM EST Average Rating Score 

2020/02/06 12:33:32 AM EST User Reviews 

2020/02/06 12:33:45 AM EST User Reviews 

2020/02/06 9:29:36 AM EST User Reviews 

2020/02/06 9:40:46 AM EST Average Rating Score 

2020/02/06 3:29:36 PM EST Average Rating Score 
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2020/02/06 3:29:44 PM EST Average Rating Score 

2020/02/07 1:07:24 AM EST User Reviews 

2020/02/07 8:08:29 AM EST Average Rating Score 

2020/02/07 9:25:06 AM EST Average Rating Score 

2020/02/07 10:24:03 AM EST Average Rating Score 

2020/02/07 11:00:05 AM EST Average Rating Score 

2020/02/07 11:17:16 AM EST Average Rating Score 

2020/02/07 11:40:13 AM EST Average Rating Score 

2020/02/07 1:47:51 PM EST User Reviews 

2020/02/08 2:53:49 AM EST App Size 

2020/02/08 7:16:55 AM EST Average Rating Score 

2020/02/08 9:26:10 AM EST Average Rating Score 

2020/02/08 2:06:43 PM EST Average Rating Score 

2020/02/09 12:06:58 AM EST Number of Installs 

2020/02/09 7:02:16 AM EST Number of Installs 

2020/02/10 12:23:39 PM EST Average Rating Score 

2020/02/11 12:45:00 AM EST User Reviews 

2020/02/12 3:23:42 AM EST Number of Installs 

2020/02/12 3:47:28 AM EST Average Rating Score 

2020/02/12 11:52:43 AM EST Number of Installs 

2020/02/13 2:18:59 PM EST Number of Installs 

2020/02/13 2:19:33 PM EST Number of Installs 

2020/02/14 9:20:02 AM EST User Reviews 

2020/02/14 10:24:00 AM EST User Reviews 

2020/02/15 8:46:19 AM EST User Reviews 

2020/02/15 12:38:09 PM EST User Reviews 

2020/02/15 1:08:31 PM EST Average Rating Score 

2020/02/16 8:18:25 AM EST User Reviews 

2020/02/16 11:27:06 AM EST App Size 

2020/02/16 10:15:27 PM EST Average Rating Score 

2020/02/17 8:54:53 AM EST User Reviews 

2020/02/17 11:35:30 AM EST User Reviews 

2020/02/17 11:38:03 AM EST Average Rating Score 

2020/02/17 12:09:20 PM EST Number of Installs 

2020/02/17 12:36:01 PM EST User Reviews 

2020/02/17 12:55:43 PM EST Average Rating Score 

2020/02/18 11:16:34 PM EST Average Rating Score 

2020/02/19 11:13:42 AM EST Average Rating Score 

2020/02/19 2:36:16 PM EST User Reviews 

2020/02/19 8:36:02 PM EST Number of Installs 

2020/02/20 11:21:10 AM EST Developer info 

2020/02/20 11:28:18 AM EST User Reviews 

2020/02/21 1:07:03 AM EST Average Rating Score 
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2020/02/21 8:37:52 AM EST App Size 

2020/02/21 3:29:40 PM EST Average Rating Score 

2020/02/26 4:58:09 AM EST User Reviews 

2020/02/28 9:57:28 PM EST User Reviews 

2020/03/09 9:25:16 AM EST User Reviews 

2020/03/10 11:13:01 AM EST User Reviews 

2020/03/11 11:27:16 PM EST Average Rating Score 

2020/03/13 8:32:49 AM EST User Reviews 

2020/03/16 1:47:35 PM EST User Reviews 

2020/03/17 2:00:39 AM EST Average Rating Score 

2020/03/17 10:23:41 AM EST App Size 

2020/03/17 10:45:19 AM EST User Reviews 

2020/03/20 1:38:40 PM EST Number of Installs 

2020/03/24 7:20:07 AM EST User Reviews 

2020/03/27 5:27:45 AM EST User Reviews 
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APPENDIX B. SURVEY II RESPONSES 

We carried out an informal survey – our survey audience contained Computing students 

and professionals. We sent our survey to a sample of the general population in the Computing 

domain. The audiences of this survey are anonymous users as we did not request the user to provide 

any personally identifiable data. We asked the following question:  

“Which one of the following ranking schemes could be the right fit to evaluate an App?” – 

we received 130 responses. The response is given below. 

 

Timestamp Responses 

2020/01/14 9:07:49 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 1:36:54 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/21 1:38:00 PM EST Ranking based on Average User Rating 

2020/01/21 1:38:14 PM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/01/21 1:40:24 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 1:43:50 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 1:46:21 PM EST Ranking based on Average User Rating 

2020/01/21 1:52:22 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 1:58:21 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 2:12:34 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/21 2:16:16 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 2:22:15 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/21 2:31:29 PM EST Ranking based on Average User Rating 

2020/01/21 2:38:22 PM EST Ranking based on User's Review Sentiment 

2020/01/21 4:12:49 PM EST Ranking based on User's Review Sentiment 

2020/01/21 4:19:22 PM EST Ranking based on Average User Rating 

2020/01/21 8:22:29 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/21 9:12:19 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 11:13:06 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/21 11:22:26 PM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/01/22 1:21:43 AM EST Ranking based on User's Review Sentiment 

2020/01/22 5:59:47 AM EST 
Ranking based on External factors (Google PlayStore 

Rank) 
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2020/01/22 6:58:47 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/22 8:13:26 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/22 8:26:49 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/22 12:43:55 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/23 9:34:25 PM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/01/24 2:08:27 AM EST Ranking based on User's Review Sentiment 

2020/01/24 10:05:13 AM EST Ranking based on User's Review Sentiment 

2020/01/24 10:07:20 AM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/01/24 10:08:06 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/24 10:08:11 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/24 10:08:48 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/24 10:09:23 AM EST Ranking based on User's Review Sentiment 

2020/01/24 10:12:04 AM EST Ranking based on Average User Rating 

2020/01/24 10:13:07 AM EST Ranking based on User's Review Sentiment 

2020/01/24 10:13:33 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/24 10:38:56 AM EST Ranking based on Average User Rating 

2020/01/24 10:53:40 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/24 11:05:24 AM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/01/24 11:20:19 AM EST Ranking based on Average User Rating 

2020/01/24 11:24:23 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/01/24 11:25:37 AM EST Ranking based on User's Review Sentiment 

2020/01/24 11:34:22 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/24 12:11:19 PM EST Ranking based on Average User Rating 

2020/01/24 12:29:08 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/24 1:51:24 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/25 12:15:59 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/01/26 12:37:44 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/04 1:01:54 AM EST Ranking based on Average User Rating 

2020/02/04 8:01:00 AM EST Ranking based on Average User Rating 

2020/02/04 8:44:54 AM EST Ranking based on Average User Rating 

2020/02/04 8:46:15 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/04 8:55:19 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/04 11:12:08 AM EST Ranking based on User's Review Sentiment 

2020/02/04 11:58:06 AM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/02/05 6:16:58 AM EST Combined Ranking Scheme (Internal & External factors) 
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2020/02/05 8:29:34 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/05 9:50:21 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/05 10:00:19 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/05 10:33:30 AM EST Ranking based on User's Review Sentiment 

2020/02/05 11:24:00 AM EST Ranking based on User's Review Sentiment 

2020/02/05 12:39:24 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/05 10:09:54 PM EST Ranking based on Average User Rating 

2020/02/05 10:10:01 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/05 10:10:07 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/05 10:53:32 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/06 12:33:32 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/06 12:33:45 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/06 9:29:36 AM EST Ranking based on Average User Rating 

2020/02/06 9:40:46 AM EST Ranking based on User's Review Sentiment 

2020/02/06 3:29:36 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/06 3:29:44 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/07 1:07:24 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/07 8:08:29 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/07 9:25:06 AM EST Ranking based on Average User Rating 

2020/02/07 10:24:03 AM EST Ranking based on Average User Rating 

2020/02/07 11:00:05 AM EST Ranking based on User's Review Sentiment 

2020/02/07 11:17:16 AM EST Ranking based on Average User Rating 

2020/02/07 11:40:13 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/07 1:47:51 PM EST Ranking based on User's Review Sentiment 

2020/02/08 2:53:49 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/08 7:16:55 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/08 9:26:10 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/08 2:06:43 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/09 12:06:58 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/09 7:02:16 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/10 12:23:39 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/11 12:45:00 AM EST Ranking based on Average User Rating 

2020/02/12 3:23:42 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/12 3:47:28 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/12 11:52:43 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/13 2:18:59 PM EST 
Ranking based on External factors (Google PlayStore 

Rank) 

2020/02/13 2:19:33 PM EST 
Ranking based on External factors (Google PlayStore 

Rank) 
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2020/02/14 9:20:02 AM EST Ranking based on User's Review Sentiment 

2020/02/14 10:24:00 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/15 8:46:19 AM EST Ranking based on User's Review Sentiment 

2020/02/15 12:38:09 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/15 1:08:31 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/16 8:18:25 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/16 11:27:06 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/16 10:15:27 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/17 8:54:53 AM EST Ranking based on User's Review Sentiment 

2020/02/17 11:35:30 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/17 11:38:03 AM EST Ranking based on Average User Rating 

2020/02/17 12:09:20 PM EST Ranking based on User's Review Sentiment 

2020/02/17 12:36:01 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/17 12:55:43 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/18 11:16:34 PM EST Ranking based on Average User Rating 

2020/02/19 11:13:42 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/19 2:36:16 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/19 8:36:02 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/20 11:21:10 AM EST Ranking based on Average User Rating 

2020/02/20 11:28:18 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/21 1:07:03 AM EST Ranking based on Average User Rating 

2020/02/21 8:37:52 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/02/21 3:29:40 PM EST Ranking based on Average User Rating 

2020/02/26 4:58:09 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/02/28 9:57:28 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/03/09 9:25:16 AM EST Ranking based on User's Review Sentiment 

2020/03/10 11:13:01 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/03/11 11:27:16 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/03/13 8:32:49 AM EST Ranking based on User's Review Sentiment 

2020/03/16 1:47:35 PM EST Combined Ranking Scheme (Internal & External factors) 

2020/03/17 2:00:39 AM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/03/17 10:23:41 AM EST Ranking based on Average User Rating 

2020/03/17 10:45:19 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/03/20 1:38:40 PM EST 
Ranking based on Internal factors (Data leaks, Security 

Vulnerabilities, Bugs, and others)) 

2020/03/24 7:20:07 AM EST Combined Ranking Scheme (Internal & External factors) 

2020/03/27 5:27:45 AM EST Combined Ranking Scheme (Internal & External factors) 

  



 

134 

VITA 

 



 

135 

  



 

136 

PUBLICATIONS 

1. Nahida Chowdhury, Rajeev R. Raje, “E-SERS: Enhanced Security-related and Evidence-

based Holistic Ranking and Composition Framework for Distributed Services”, CRA-W 

Grad Cohort Workshop, 2021. (Tech Talk Presentation) 

2. Nahida Chowdhury, Rajeev R. Raje, “SERS: A Security-related and Evidence-based 

Ranking Scheme for Mobile Apps”, Proceedings of the First IEEE International 

Conference on Trust, Privacy and Security in Intelligent Systems, and Applications, Los 

Angeles, CA, 2019. (published) 

3. Nahida Chowdhury, Rajeev R. Raje, “A Holistic Ranking Scheme for Apps”, Proceedings 

of the 21st IEEE ICCIT, Dhaka, Bangladesh, 2018. (published) 

4. Nahida Chowdhury, Rajeev R. Raje, “Disparity between the Programmatic Views and the 

User Perceptions of Mobile Apps”, Proceedings of the 20th IEEE ICCIT, Dhaka, 

Bangladesh, 2017. (published) 

5. Nahida Chowdhury, Rajeev R. Raje, “SecureRank - Trust of mobile apps using subjective 

opinion”, The 2nd World Summit on Advances in Science, Engineering and Technology, 

2019. (poster) 

6. Nahida Chowdhury, Rajeev R. Raje, “A comprehensive ranking and selection of 

applications”, CRA-W Grad Cohort Workshop, 2019. (poster)  

7. Nahida Chowdhury, Rajeev R. Raje, “TRR: Trust-Based Mobile Apps Selection and 

Ordering over Traditional Feedback Mechanism”, IUPUI Research Day, 2018. (poster). 

 


