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ABSTRACT

This thesis examines the multilinear equations of the calibrated pinhole camera. The

multilinear equations describe the linear relations between camera parameters and image

observations in matrix or tensor formats. This thesis includes derivations and analysis of the

trilinear equations through the point feature relation. For the four-frame and more than four

frame cases, this paper gives derivations and analysis using a combination of the bilinear

and trilinear equations to represent general multi-frame point geometry. As a result, a three-

frame model (TFM) for general multi-frame point geometry is given. This model provides a

concise set of minimal and sufficient equations and minimal unknowns.

Based on the TFM, there are two bundle adjustment (BA) approaches developed. The

TFM does not involve the object parameters/coordinates necessary and indispensable for the

collinearity equation employed by BA. The two methods use TFM as the condition equation

fully and partially, replacing the collinearity equation. One operation using both TFM and

the collinearity equation is designed to engage the object structures’ prior knowledge. The

synthetical and real data experiments demonstrate the rationality and validity of the TFM

and the two TFM based methods. When the unstable estimate of the object structures

appears, the TFM-based BA methods have a higher acceptance ratio of the adjustment

results.
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1. INTRODUCTION

Photogrammetry is an image-based 3D reconstruction technique. It is widely used in in-

dustrial structure inspection, aerial topographic mapping, satellite mapping, and resource

management. The types of cameras vary with the application, the scale, and the platform.

The complete photogrammetry system involves the camera, auxiliary sensors, and carrier

platform. These techniques accommodate multi-model, multi-sensor, and multi-source data.

Today’s algorithm developments allow the reconstruction of large scenes in short periods of

time. This extreme adaptability, high efficiency, and high precision give such techniques a

prominent place in the Geomatics toolbox.

1.1 Research Background and Motivation

Photogrammetric techniques have been studied by researchers from many domains, such

as survey, computer vision, and robot navigation. All the researchers make significant contri-

butions to photogrammetric computer vision. Some image-based applications are still being

studied and developed, and progress continues. For instance, structure from motion(SFM)

and simultaneous location and mapping(SLAM) are recently developed techniques which are

quite successful.

With the popularity of smartphones and personal computers, photogrammetric applica-

tions have become much more prevalent. Photography and video have become people’s daily

habits. Smartphones unify cameras, auxiliary sensors, and computation processors as a mini

photogrammetry system. It brings massive data and takes the techniques anywhere.

Although having mature theory, well-developed hardware, and wide application possi-

bilities, some practical challenges remain. The platform maybe unstable. The scene may

not be static. The object structures may not be well distributed in the scene. The control

points may not be visible or practical to create. For photogrammetric tasks, it is customary

to have a particular camera model and operating model for a specific application. Scenes in

close-range and aerial mapping tasks often have a short depth range for object features. The

monocular SLAM is expected to work under many different conditions in one task, indoor
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and outdoor, close range and far range. So the demands of the task require much flexibility

and adaptability from the processing system.

The prime motivation is to make the image-based techniques more adaptable. One

example of the badly distributed object features is the distant object point. It can make the

estimation and optimization numerically unstable. It is one of the problems studied in this

research. The creation of control points may be a problem. Direct observation of camera

exterior orientation may not be practical. However, the images sometimes provide useful

object geometry, such as planar surfaces and some regular shapes. This information could

be utilized in the algorithm to enhance the estimation and to resolve a datum defect. This

is another consideration of this research.

An overview of the background and motivation for the research have been given here. The

research involves the development and application of the multilinear equations and their use

in the context of BA. Some relevant prior work is described in the literature review chapter.

1.2 Research Outline and Objectives

The most commonly used framework for analytical photogrammetry is the pinhole camera

model. If the interior orientation is known, the camera is called a calibrated camera and

uncalibrated otherwise. The interior orientation includes knowledge of the lens distortion

and is assumed for the calibrated camera in photogrammetry. This research considers only

the calibrated pinhole camera model.

In photogrammetric computer vision, the projection equations and multilinear relations

are essential. They play significant roles in the algorithms, both non-iterative estimation

and iterative optimization.

This study has three progressive levels. The first one is the derivation and analysis of

the three-frame geometry. The second one is the derivation and analysis of the four-frame

and more than four frame cases. And the third level is the BA method study. For each of

these three levels, objectives will be given.

The first stage of study is the derivation and analysis of the three-frame geometry. New

derivations of the trilinear equations are given. And a concise model for the three-frame

14



case is given. The bilinear and trilinear equations are good filters to detect outliers in image

matches.

The second phase includes new derivations and analysis of the four-frame geometry and

more than four frame cases. The derivations and analysis are given for both of them. The

three-frame work is expanded to the four-frame case. The work alludes to a possible way

to represent the three-frame and the four-frame cases together. It underscores the utility

of the bilinear and trilinear equations in general cases. As a result, the three-frame model

is expanded and given for the general situation. It is assumed that the bilinear equation

(coplanarity) is well known to everyone.

The final level is the BA algorithm study. Two TFM-based BA methods are developed

to (1) fully and (2) partially replace the collinearity equations. One procedure uses both

TFM and the collinearity equations to exploit prior knowledge of the object geometry. Some

researchers have advocated similar BA approaches.

In the experiment chapter, the synthetic and real data experiments are presented. The

purposes of the BA experiments are to check the validity of the methods first; secondly, to

improve upon prior results; thus, displaying the advantages of this kind of BA approach.

1.3 Dissertation Structure

Chapter one is the introduction of the dissertation. Chapter two is the literature review

giving much more details about prior, related studies.

Chapter three includes the original works, derivations, and contributions of this disser-

tation. The three levels are introduced as described in the previous section: (1) three frame

geometry, (2) four-frame geometry, and (3) integration of these techniques into BA.

Chapter four presents experimental results of using these techniques in solving practical

block adjustment problems. One auxiliary experiment is added for the weak geometry. The

developed BA methods are evaluated and discussed in the two subsections. And real data

experiments are given for practical validity checking.

Chapter five includes the conclusions and recommendations for future work.
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The appendix includes all of the derivations of the trilinear equations and necessary

derivatives.

1.4 Notation

Using conventional variable names, the first camera matrix is P1 = I[I|0]. The i − th

camera matrix is Pi = Mi[I| − C̃i]. The object point X = [X̃, 1] is the homogeneous

coordinate of the 3-dimensional point X̃ = [x, y, z]. The image point x = [x̃, 1] is the

homogeneous coordinate of the 2-dimensional point x̃ = [x, y]. In the expression x ∼ PX,

the symbol ∼ means proportional relation. sx and ix are the image points in the sensor and

image coordinate systems. Mi and C̃i denote the 3 by 3 homography matrix and optical

center of the i − th camera. C̄i is a normalized vector. No two cameras occupy the same

location. The studied object point is not at infinity.

I is the identity matrix. [u]× is the three by three skew symmetric cross product matrix

of u. The cross product of vectors u and v is u × v = [u]× v.

In this paper, bold letters, and lower case letters denote, respectively, vectors and el-

ements of the matrices. Upper case letters without bold font represent matrices. Points

represented by upper case are object space, lower case indicates image space.

A condition equation here refers to the equation which relates the measured value and

the unknowns. A constraint equation here is an equation between the unknowns.

This paper uses knowledge of photogrammetry and computer vision. There is some over-

lap between the two of them. Some concise computer vision expressions are recommended to

give brief and short expressions of geometry. For instance, there are nine trilinear equations,

and each one has twenty-seven components. Because all equations have the same format,

using the commonly used expression makes the equations very short and brief.

1.5 Summary of Original Contributions of this Research

1. New derivations of the trilinear equations.

This paper gives two new derivations of the trilinear equations for the three-frame and

four-frame geometry.
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2. A new analysis of multi-frame geometry.

The spatial geometry analysis approach gives a new three-frame model(TFM) for multi-

frame geometry. The column vector approach shows that the quadrilinear equations are

linear combinations of the trilinear equations.

3. This thesis gives two algorithms for conventional applications.

In the image coordinate prediction algorithm, the new method resolves the ambiguity in

the wide-field camera. The relative distance estimation algorithm works well for close and

distant object points.

4. There are two BA algorithms using bilinear and trilinear equations different from

other researchers.

This thesis implements the new TFM model in the BA algorithm. Another new BA

method, which combinates the TFM and collinearity equations with spatial constraints, is

given in the thesis. The research discovers that the TFM-based BA algorithm has a higher

acceptance ratio than the conventional method.
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2. LITERATURE REVIEW

This research is an exploration of photogrammetry as viewed from the vantage point of

computer vision. Significant differences in nomenclature may make familiar concepts seem

unfamiliar and inaccessible. The author will try to anticipate and clarify ambiguous terms

and phrases. The multilinear equations (bilinear, trilinear, quadrilinear) are the linear equa-

tions of the coefficients and the image correspondences in matrix or tensor formats. The

linear coefficients are defined in terms of the nonlinear camera parameters. The image corre-

spondences are the collections of image observations of the same object structure that occur

in different images. The commonly used object structures are points and lines. These co-

efficients describe linear relations among image observations. The coefficients are nonlinear

functions of the physical(EO) camera parameters. For instance, the coplanarity relation is

represented by the bilinear equation. As is typical, the number of linear coefficients is always

larger than the number of camera parameters.

Given some matched correspondences, there are some natural, valuable, and well-known

questions. 1. What kind of geometry relations exist, and what equations describe them?

2. What kind of inner relations exist within each group of coefficients? 3. How to esti-

mate the coefficients from the given correspondences? 4. How to retrieve physical camera

information from the coefficients? Answering these questions reveals the properties of the

multi-frame geometry. The following sections review the prior research concentrating on the

above questions.

The bilinear equation has been extensively exploited in two-fame epipolar research.

Thereafter, the linear expression became the prevailing pursuit of multi-frame geometry.

While the bilinear, trilinear, and quadrilinear geometry was well studied, the duality exist-

ing within the multi-frame geometry was discovered subsequently. A summary of the duality

follows the review of these linear equations.

For the question about how to represent the more complex relationships among more

than four frames using the three kinds of linear equations, researchers have explored the

minimal and sufficient expressions for the general multi-frame geometry.
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For the multi-frame issue, the most popular and significant application is the BA. BA is a

least squares optimization technique in photogrammetry. Traditionally, in photogrammetry,

the collinearity equations were the foundation of BA. Some researchers have recast the BA

using the multilinear equations instead. This research continues along the path and makes

some new contributions.

The following sections review 1) the bilinear equation; 2) the trilinear equation; 3) the

quadrilinear equation; 4) the duality; 5) the BA.

Hartley and Zisserman’s(2004)[1 ]computer vision book is a good general reference for

multi-frame geometry. Mikhail’s(1976)[2 ] survey and adjustment book is recommended for

knowledge of the adjustment model. Mikhail and Bethel’s(2011)[3 ] photogrammetry book is

a good source for photogrammetry knowledge. Trigg’s (1998)[4 ] (2000)[5 ] BA review papers

are a good study of the BA. Cooper and Cross(1998)[6 ] give a summary paper as a tutorial

for survey and adjustment.

2.1 Two-Frame Geometry and the Bilinear Equation

The bilinear equation is the so-called coplanarity equation in photogrammetry. For a

pair of cameras, it describes the coplanarity condition among one object point and two

perspective centers of two cameras. This condition builds the equation for two image points

from the image pair. It is widely used in the relative orientation of two-frame geometry.

The individual works describing the bilinear equation are Longuet-Higgins(1981)[7 ] and

Tsai(1984)[8 ]. This equation describes the coplanarity equation of the two-frame geometry

known as epipolar geometry. The resulting 3 by 3 matrix has rank 2 and is called the

essential matrix, E, having 5 degrees of freedom (DOF) for the calibrated camera, and the

fundamental matrix, F , having 7 DOF otherwise.

Werman and Shashua(1995)[9 ] showed it is the only relationship between the two frames.

Rank 2 is the only inner constraint of the nine coefficients. The left and right null vectors

of the matrix are the epipoles.

Luong and Faugeras(1996)[10 ] studied particular distributions of the object points, such

as the critical surface and object plane. When the object points lie on the critical surface,
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the coefficients could not be defined uniquely. They[10 ] designed a six-point algorithm for

the planar distribution.

Other non-iterative estimations include the linear eight-point algorithm given by Longuet-

Higgins(1981)[7 ], Tsai[8 ], and Hartley (1997)[11 ]. The nonlinear seven-point algorithm was

given by Sparr(1994)[12 ] and Hartley(1994)[13 ]. Hartly(1994)[13 ] showed that the six points

from three views could provide the estimates of three F -matrices.

Luong et al.(1993) [14 ] studied the different parametrizations and objective functions for

the robust iterative estimation of the F -matrix. When outliers appear in the matched data,

Deriche et al.(1994)[15 ] used the least median square technique instead of least squares esti-

mation. Torr and Murray(1997)[16 ] reviewed some of the robust algorithms and strategies.

The random sample concensus(RANSAC) technique is a commonly used method to deal with

the outliers, Fischer and Bolles(1981)[17 ]. Torr and Murray(1997)[16 ], Zhang(1998)[18 ] gave

the review and evaluation of the estimation algorithms. Hartley’s(1997)[11 ] non-iterative

normalized eight-point algorithm has a comparable performance with the iterative methods.

Longuet-Higgins(1981)[7 ], Tsai(1984)[8 ] retrieved the rotation and translation parameters

from the E-matrix. Luong et al.(1993) [14 ] recovered the epipoles from the F -matrix.

Faugeras and Robert(1994)[19 ] studied the image transfer and predication of point, line,

and curvature among three views using the F -matrix. They found that the three F -matrices

are not independent. This issue is revisited in the three-frame geometry.

2.2 Three-Frame Geometry and the Trilinear Equation

The trilinear equation can describe the intersection relations involving either a point

feature or a line feature from three cameras. This equation expresses geometric information

that cannot be expressed with bilinear equations. The well-known trifocal tensor is derived

from the three-frame geometry. The physical camera parameters can be retrieved from the

trifocal tensor.

In the 1960s, photogrammetrists studied the image triplet in analytical aero-triangulation.

The image triplet was used as a unit in the adjustment and strip assembling, McNair(1962)[20 ],

Keller(1967)[21 ], Fitzgibbon and Zisserman(1998)[22 ]. In the 1980s, computer vision re-
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searchers started the study of the structure from motion, SFM, problem from straight lines

from three calibrated cameras, such as Liu and Huang(1988)[23 ]. This three-frame line study

triggered the more general three-frame geometry research.

Researchers discovered the advantages of the image triplet over the stereo pair. For

instance, Mikhail(1962)[24 ], McNair(1962)[20 ] and Anderson(1966)[25 ] demonstrated that

the triplet gives greater strength in error detection. Hartley(1993)[26 ] pointed out that the

uncalibrated image triplet is the minimal requirement for Euclidean reconstruction. For

calibrated cameras, an image pair is sufficient for reconstruction. A line feature on an image

pair gives no information or constraint about the camera orientation. These merits of the

image triplet attract the attention of researchers.

Spetisakis and Aloimonos(1987)[27 ] (1990)[28 ], Liu and Huang(1988)[29 ], Weng et al.(1992)[30 ]

derived three line-equations for calibrated cameras. The equations have three, three by

three rank two matrices. These constitute the so-called trifocal tensor. Shashua(1994)[31 ]

(1995)[32 ] discovered the nine point-equations among three frames. Hartley(1993)[33 ] ex-

tended Weng’s derivation to the uncalibrated camera and he(1997)[34 ] identified the trifocal

tensor equation in Shashua’s nine trilinear equations. Spetsakis(1992)[35 ] also unified the

point-equation with his previous line-equations. Faugeras and Papadopoulo(1998)[36 ] gave

the derivations of both point and line features using Grassman Algebra. Heyden(1998)[37 ]

(2000)[38 ] derived the reduced trifocal tensor with 15 non-zero coefficients for the point fea-

ture of the reduced camera. Shashua(1997)[39 ], Mendonça and Cipolla(1998)[40 ] studied

the trifocal tensor of affine cameras. Hartley and Vidal(2004)[41 ] studied the multi-trifocal

tensor for multi-body movement in scene.

In the three line-equations, there are two linearly independent equations. There are four

linearly independent equations in the nine point-equations, which are the point-line equations

involving one point and two lines in Shashua(1997)[39 ]. The 13 lines and 7 points give the

linear estimate of the trifocal tensor coefficients. Shashua(1997)[39 ] and Avidan(1997)[42 ]

(1998)[43 ]showed that the bilinear equation has the same format and geometry meaning

as the point-line equation. He called the bilinear equation the bifocal tensor. Avidan and

Shashua(1996)[44 ] indicated the existence of only 27 coefficients, which are computed by

the feature coordinates. The frame order only impacts the arrangement of coefficients.
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Shashua and Werman(1995)[45 ] (1995)[46 ] (1997)[39 ], and Avidan(1998)[43 ] also revealed

three functional inner structures of the 27 coefficients. One is the trifocal tensor, and the

other two are homography slices. Much research about the internal constraints and retrieval

of camera parameters relies on Shashua’s discoveries. Faugeras and Papadopoulo showed

that once the epipolar geometry is known, there is only one algebraically trilinear relation.

Given (n+2) frames, Shashua(1996)[47 ] and Avidan(1996)[44 ] declared that n trifocal tensors

are sufficient. Avidan and Shashua(1997)[48 ] developed a trifocal operator converting one

tensor to another and illustrated the deep dependency among the n tensors.

Within the 27 coefficients, there are eight inner constraints. Weng et al. (1992)[30 ]

gave the so-called rank and epipolar constraints for calibrated cameras. Faugeras and Pa-

padopoulo(1998)[36 ] (1998)[49 ] (1998)[50 ] gave three sets of constraints. Heyden(1998)[37 ]

(2000)[38 ] plumbed the constraints for the reduced trifocal tensor. All of these sets have 12

constraints, which are sufficient but neither minimal nor independent.

The pursuit of a sufficient, minimal, and independent set was attempted by many re-

searchers. Canterskis [51 ] gave the set. Ressl(2003)[52 ], Alzate and Tortora (2010)[53 ], Hein-

rich and Snyder(2011)[54 ], provided other different sets. Alzate and Tortora(2010)[53 ]gave

the lowest degree constraints.

The estimation of the trifocal tensor was widely studied. Spetisakis and Aloimonos(1987)[27 ]

(1990)[28 ], Liu and Huang(1988)[29 ], Weng et al.(1992) [30 ], Hartley(1994)[55 ] (1995)[56 ],

and Shashua(1995)[32 ] brought about non-iterative linear algorithms using the line-equation,

point-equations, or both. The non-iterative nonlinear solution algorithms include different

algorithms using six-point correspondences, Heyden(1994)[57 ], Quan(1995) [58 ], and Hartley,

Dano(2000)[59 ]. Three camera matrices can be retrieved from correspondences using Quan’s

(1995) [58 ] six-point-invariant. Heyden’s algorithm (1995)[60 ] involves the coplanarity of ob-

ject points. Torr and Zisserman(1997)[61 ] furnished one non-constrained iterative algorithm.

Hartley(1998)[62 ], Kuang te al.(2014)[63 ] gave the constrained iterative algorithms. Kuang

et al. (2014) studied the estimation using line-equations. Hartley and Dano(2000)[59 ], Schaf-

talizky(2000)[64 ] expanded Quan’s six-point algorithm from three views to more views. Hein-

rich and Snyder(2011)[65 ] evaluated the estimation techniques and developed a RANSAC
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based robust strategy. They recommended Hartley’s algorithm[56 ]. When given more than

10 points, it provides nearly the maximum likelihood estimate.

Spetisakis and Aloimonos(1987)[27 ] (1990)[28 ], Liu and Huang(1988)[29 ], and Weng

et al.(1992)[30 ] recovered the rotation matrices and translation for a calibrated camera.

Then the retrieval of physical camera parameters could be realized. Shashua and Wer-

man(1995)[45 ] (1995)[46 ], Hartley(1993)[33 ] (1994)[55 ] retrieved epipoles, F -matrices, and

camera matrices from the trifocal tensor for uncalibrated cameras.

Avidan and Shashua(1997)[48 ], Mayer(2002)[66 ] developed a trifocal tensor based view

synthesis technique that overcomes some deficiencies of Faugeras’s F -matrix-based method.

Shashua and Werman(1995)[45 ] (1995)[46 ] indicated the projective reconstruction could be

realized using the trifocal tensor without retrieving explicit camera matrices. Shashua(1995)[67 ]

(1997)[39 ] gave a tensor brightness equation for surface reconstruction. This equation re-

lates spatial position and radiometric level, which is applicable for smooth surfaces, Stein

and Shashua(2000)[68 ]. Luong and Viéville(1996)[69 ] gave the minimal parameterization of

the single, two, and three views for all projective, affine, perspective cameras (projective =

uncalibrated, perpective = calibrated, affine = viewing only a planar object). This study is

quite helpful for understanding multi-frame geometry.

2.3 Four-Frame Geometry and the Quadrilinear Equation

The quadrilinear equation can describe the intersection relations involving a point or a

line feature from four cameras. The physical camera parameters can be retrieved from the

quadrifocal tensor. The estimation of quadrifocal tensor involves the observations from four

frames, which is numerically more stable than the fundamental matrix and trifocal tensor.

Werman and Shashua(1995)[9 ] first studied the properties of the four-frame linear equa-

tion. They deduced that the quadrilinear equations have 81 coefficients and 16 linearly

independent equations. Their analysis predates any quadrilinear formula. Trigg(1995)[70 ]

(1995)[71 ] derived the first formula of quadrilinear equations for points and lines later. There

are a total of 27 equations. Heyden(1995)[72 ] (1997)[73 ] (1998)[37 ] (2000)[38 ] studied the

reduced quadrifocal tensor with 36 non-zero coefficients and the one described previously.
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Hartley(1995)[74 ], Faugeras and Mourrain(1995)[75 ], and Heyden(2000)[38 ] also provided

the frameworks for all multilinear equations for both point and line features. Faugeras and

Mourrain(1995)[75 ] pointed out that there are only these three types of equations(bilinear,

trilinear, and quadrilinear). The necessary and sufficient conditions to estimate the three

groups of coefficients are studied, by Heyden(1995)[72 ] and Hartley(1995)[74 ]. It requires at

least 6 points for four frames, the same as for three frames.

Heyden(1995)[72 ] (1998)[37 ] provided the necessary and sufficient constraints for the

reduced quadrifocal tensor and necessary constraints for the usual one.

Heyden(1997)[73 ] devised a six-point algorithm for the reduced quadrifocal tensor, par-

tially avoiding the constraints. Hartley(1998)[76 ] evolved the algorithm by fully avoiding the

constraints. He constructed one linear algorithm and two iterative ones.

Heyden(1998)[37 ] (2000)[38 ] retrieved the trifocal tensor from the quadrilinear tensor

and then gave a unique representation and minimal parametrization for recovering camera

matrices. Hartley(1998)[76 ] recovered reduced camera matrices from the reduced tensor.

Some researchers considered the relation among the three types of equations. Triggs(1995)[71 ]

thought that the quadrilinear equations are some combinations of the other two. Hey-

den(1997)[73 ] thought that some linear transformation could convert reduced quadrilinear

equations to other reduced ones. Faugeras and Mourrain(1995)[75 ] demonstrated that if

the bilinear and trilinear equations are satisfied, the quadrilinear equations are guaranteed

simultaneously by analyzing one equation. Although the expressions are rich and varied,

there is no new information in the quadrilinear equations.

For more camera geometry, Heyden(2000)[38 ] elaborated the methods of representation

using each of the three types individually, where the simplest one is the bilinear represen-

tation. Heyden and Åström (1996)[77 ] (1997)[78 ] studied the bilinear representation and

demonstrated that the trilinear equations are necessary and indispensable for the trifocal

plane’s object structures.
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2.4 Duality Theory

The multilinear equations exist not only in the multi-frame geometry but also in the

multi-point geometry. There could be one point on multiple frames or one frame with

multiple points. There is a duality between the two types of geometry. The study of this

duality may allow a reduction of unknowns.

Carlsson(1993)[79 ] (1995)[80 ] discovered the absolute linear invariant from Quan’s six-

point-invariant. Object point and camera position play symmetrical roles in the invariant

equation. There is a duality between these two parameters. In the multilinear coefficient

estimation algorithms, the non-iterative linear methods always estimate the coefficients first.

They retrieve the camera matrices later and compute object points finally. The non-iterative

nonlinear methods always estimate the object points first, recover the camera matrices sec-

ondly, and calculate the coefficients finally. The duality gives the two methodologies. For

the uncalibrated camera, six object points are necessary, as expressed by the name six-point-

invariant. So there are many different approaches for six-point algorithms for three-, four-

and multi-frame cases.

Weinshall et al. (1995)[81 ] (1996)[82 ] determined that the multi-frame geometry’s duality

is the multi-point geometry involving the m object points in one view. The two-, three-, and

four-point equations are dual to the four-, three-, and two-frame equations respectively.

Carlsson and Weinshall(1998)[83 ] summarized the duality theory as one algorithm could

work on the two dual questions. They develop the idea and provided careful comparisons of

these algorithms one by one. Finally, they(1998)[83 ] said:” equations on scene structure and

equations on camera geometry can be used to reduce the number of unknowns to be solved

for and should be exploited in similar ways.”

2.5 Bundle Adjustment

The bundle adjustment is the assembly of ray bundles from multiple images in pho-

togrammetry. The bundles derive from image observations, and the optimization is usually

done by least squares. It accommodates image observations and all kinds of unknowns, such

as platform parameters, camera parameters, and lens distortion parameters. It also inte-
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grates multi-source, multi-model, and multi-sensor data in the whole optimization. These

outstanding properties make this technique the most widely used refinement method in the

image-based applications.

Fred Doyle(1964)[84 ] gives a thorough history of the development of analytical pho-

togrammetry. It was a long process with many contributors from the 1750’s through the

present. Such contributors include Lambert, Finsterwalder, Pülfrich, von Gruber, Church,

Merritt, Schut, Schmid, and Brown. Helmut Schmid and Duane Brown(1958)[85 ] really

developed the bundle adjustment, BA, into its modern concept in the 1950’s and 1960’s.

From that time, BA techniques have grown in scope and variety of application. The two

primary branches of conventional photogrammetry are aerial mapping and close-range map-

ping, Brown(1976)[86 ] and Granshaw(1980)[87 ]. From the practical experience of both, the

significant core considerations of the photogrammetric task and BA are listed here: 1. Net-

work design; 2. Camera calibration; 3. Gross error detection; 4. Constraints, minimal

constraints, and free network adjustment; 5. Recursive, sequential and, online methods; 6.

Computation efficiency.

This section summarizes some prior research around the above topics. And the alternative

methods are reviewed: 1. Model changing (equation types and adjustment models); 2. Line

feature BA; 3. Distant object points.

Network design is the planning stage of the photogrammetric task. Some elements such as

camera positions, camera internal geometry, photo overlap, and control point distribution are

designed before the fieldwork to get the required accuracy, Fraser(1984)[88 ]. Mason(1995)[89 ]

developed assist software for network design.

Brown(1976)[86 ] and Granshaw(1980)[87 ] demonstrated that self-calibrating approaches

could reduce camera system error substantially and bring better accuracy. These meth-

ods accommodate camera distortion models for system error. Brown(1971)[90 ] studied the

camera distortion models such as radial and decentering distortion. Faig(1975)[91 ] provided

camera calibration methods. Ackermann(1981)[92 ] studied the problem of selection and reli-

ability of camera distortion parameters. Alharthy and Bethel(2002)[93 ] gave the calibration

method and lens distortion model for a multi-band camera.
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In practice, gross-errors such as image feature measurements always exist. The BA

is susceptible to gross errors. Grün(1982)[94 ] and Förstner(1985)[95 ] studied gross-error

detection and location. El-Hakim(1984)[96 ] provided a step-by-step detection strategy.

For close-range photogrammetry, the free network BA is required for eliminating uncer-

tainty dependencies on the control point location. Dermanis(1994)[97 ] gave the derivation of

the inner constraints resolving the rank defect of the normal equations. He introduced four

different approaches for the implementation of minimal gauge internal constraint. McLauch-

lan(1999)[98 ] (1999)[99 ] provided the free network BA for Euclidean and projective recon-

struction. Morris et al.(1999)[100 ] developed the normal covariance technique reflecting the

inner uncertainty and developed an efficient method to estimate the full covariance.

In batch BA, the collection of condition equations is prepared in advance, and unknown

parameters are updated numerically without deletion and adding. In some real-time ap-

plications, online data editing is required. Mikhail and Helmering(1972)[101 ] studied the

Schur-component based methods in data editing, adding, and reduction. The size of the nor-

mal equations may change during the computation. Blas(1983)[102 ] and Holm(1989)[103 ]

studied the Givens transformation in the sequential adjustment. They showed that the

Givens transformation has numerical stability, computation efficiency, and advantages in

parallel processing. McLauchlan and Murray(1995)[104 ] studied recursive algorithms for

projective and Euclidean SFM. McLauchlan(2000)[105 ] researched the condition for remov-

ing unknowns and the trade-off between accuracy and efficiency.

Agerwal et al.(2011)[106 ] furnished a large-scale SFM instance building a city model with

more than 150k images, which calls for higher performance on computation efficiency in BA.

In photogrammetric reconstruction, most cameras and most object structures have no direct

interaction, making the normal matrix’s special sparse structure, Elassal(1969)[107 ];Lourakis

and Argyros(2009)[108 ]. Many sparseness techniques and software algorithms are devel-

oped. Elassal(1969)[107 ] designed a recursive Schur-complement based method for the in-

verse of the normal matrix. Lourakis and Argyros(2009)[108 ] developed a software pack-

age called SparseBA(SBA), emphasizing flexibility and computation efficiency. This soft-

ware uses Cholesky factorization of the normal matrix to save computation. Although

second-order optimization is recommended for small-scale instances by Trigg et al.(2000)[5 ],
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thousands of photos make the direct inverse of the reduced normal matrix impractical.

Byröd and Åström(2010)[109 ] implemented the conjugate gradients BA(CGBA). Agerwal

et al.(2010)[110 ] developed large-scale BA(LBA). Wu et al.(2011)[111 ] created parallel com-

puting BA(PBA) for the multi-core computer. For large-scale computing, LBA and PBA

implement preconditioned conjugates and inexact-Newton-like updating techniques. Hänsch

et al.(2016)[112 ] compared and evaluated some parallel computing optimization methods.

The combination of conjugate gradient techniques and the Levenberg-Marquarelt algorithm

is recommended for medium-scale instances.

The conventional BA customarily uses the collinearity equation as the condition equation.

It involves and refines the object points and camera parameters. Some alternate approaches

of BA implement the multilinear equations as the condition equations. Utilizing the mul-

tilinear equations causes the changing of the adjustment model and deferring consideration

of object structure parameters. Ressl(2000)[113 ] studied the relative orientation using the

trifocal tensor and model changing, but no experiment was given. Liu et al.(2003)[114 ] and

Rodríguez et al.(2011)[115 ] developed one technique only employing the bilinear equation.

Steffen et al.(2010)[116 ], Indelma(2012)[117 ], Scheider et al.(2017)[118 ] carried out the bilin-

ear and trilinear equations based approach. The object structure parameters are disregarded,

so Indelma calls this approach light BA.

Taylor and Kriegman(1995)[119 ]developed the BA using the line feature. For the line fea-

ture, they designed a particular camera projection matrix and objective function. McLauch-

lan and Murray(1995)[104 ] developed the SFM and BA algorithm incorporating the point

and line features.

Distant object points can make the position estimation and BA numerically unstable,

so some implementations avoid them. The utilizing of remote object points in real-time

mapping and batch BA was studied by Montiel et al.(2006)[120 ], Civera et al.(2008)[121 ].

Montiel et al.(2006)[120 ], and Civera et al.[121 ] developed inverse distance techniques for

distant object points. Schneider et al.(2012)[122 ] made the BA robust to account for very

distant object points. They demonstrated the advantages of employing the distant object

points in camera orientation.
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3. DERIVATIONS AND ANALYSIS OF MULTI-FRAME

GEOMETRY

This chapter gives a new and comprehensive analysis framework for the multilinear point

equations. The analysis includes the spatial geometry interpretations and algebraic inter-

pretations of the multilinear equations. This framework has three approaches.

The first approach is algebraic algebraic approach and is the so-called determinant ap-

proach, which gives the expressions of condition equations. The second approach is based

on spatial geometry and gives interpretations and analysis of these relations. The third ap-

proach, also algebraic is the so-called column vector approach, which provides an analysis

of the individual types of equations and illuminates the relations among the equations. It

provides insight about the dependencies.

The two algebraic approaches exploit the well-known rank defect of the matrix . The

determinant approach has the same starting point as Trigg(1995)[71 ], Hartley(1995)[74 ], and

Heyden(2000)[38 ]. The column vector approach simplifies the analyses of Trigg(1995)[71 ],

Faugeras and Mourrain(1995)[75 ]. The determinant approach is used for the derivation of

the trilinear equations.

3.1 Camera Projection

The pinhole camera model is the most commonly used and considered in today’s pho-

togrammetry and computer vision applications. It is the foundation of this thesis. This

camera model makes projective two-dimensional images of the real three-dimensional world

via the camera position, rotation, and geometry including lens distortions. During the pro-

jection, the spatial object distance is lost. There are some kinds of distortions in real camera

systems, such as radial and decentering lens distortion, making cameras and images not al-

ways ideal. The calibrated camera functions like a distortion free camera, which is assumed

to have perfect projection.
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The collinearity equations are the usual way to express the relationship between ob-

ject and image coordinates in photogrammetry and computer vision. In computer vision,

the projection function is sx ∼ KR[I| − C̃]X where coordinate vectors without tilde are

homogenenous, and vectors with tilde are cartesian. The camera projection is defined by

the three by four camera matrix up to a scalar involving interior orientation, camera ro-

tation, and camera position. K is the upper triangular matrix having interior orientation

parameters. R is the rotation matrix having three parameters. C̃ is the camera position

vector.

𝑠𝑥

𝑦0

𝑥0

𝑥𝑝

image plane 𝑐𝑧 = f

𝑠𝑦

𝑐𝑥

𝑐𝑦
𝑖𝑥

𝑖𝑦

𝑠𝑂

𝑐𝑧

Principal point

Camera Center
(perspective center)

Principal axis

𝑐𝑂

Figure 3.2. The pinhole camera interior orientation.
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K has focal length parameters f and principal point location x0 and y0.

K =


f 0 x0

0 f y0

0 0 1

 (3.1)

In photogrammetry, the collinearity eqautions are


sx = x0 + fu/w + ∆x

sy = y0 + fv/w + ∆y
and


u

v

w

 = RT
f

[
X̃ − C̃

]
. (3.2)

In the equations (3.2 ), ∆x and ∆y are corrections for lens distortions. The forward

rotation from object to image space is represented by Rf , which rotates object space basis

vectors into image space basis vectors, all expressed in object space coordinates. To effect

the transformation from object space vectors in object space coordinates into images space

vectors in image coordinates we use the transpose of Rf , RT
f . This is a subtle but important

distinction. Equations (3.2 ) are used in the camera calibration, spatial intersection and

resection. As mentioned above the rotation matrix used in equations (3.2 ) is RT
f . Since

RT
f = R−1

f = Rb, we are using the backward rotation matrix in equations (3.2 ). This slight

confusion of language is explained above. In real work, the camera could be calibrated using

a printed template. There are mature calibration techniques to ensure that the added lens

distortion parameters can be determined. Note that the calibration is only strictly valid at

the focus position of the calibration setup. Some researchers fix the focus at that position

for all work until a new calibration is done. After calibration, the ∆x and ∆y are computed

to guarantee the calibrated camera has the ideal projection. It is written as x ∼ R[I| − C̃]X

concisely.(∼ means proportional to)
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One object point gives two equations to one camera in the equations (3.2 ). There is a

modified projection relation here, as shown below.

x ∼ M [I| − C̃]X where M = KR or R

M−1x ∼ [I| − C̃]X where χ = M−1x = [u, v, w]T

[χ]× χ ∼ [χ]× [I| − C̃]X = 0

where the [·]× notation indicates the vector cross product

by matrix mutiplication

The above derivation shows [M−1x]× [I| − C̃]X = 0. If w = χ3 6= 0(i = 1), or v = χ2 6=

0, (i = 2), or u = χ1 6= 0(i = 3), there are three corresponding matrices Si with det(Si) 6= 0.

For instance, if χ3 = w 6= 0, there is a matrix S1 which gives the equation below.

S1 [χ]× [I| − C̃]X = 0
1 0 −u/w

0 1 −v/w

0 0 0

 [I| − C̃]X = 0


1 0 −u/w −c1 + c3u/w

0 1 −v/w −c2 + c3v/w

0 0 0 0

 X = 0

or more familiarly,

 1 0 −u/w

0 1 −v/w




x

y

z

 =

 c1 − c3u/w

c2 − c3v/w



where [c1, c2, c3]T = C̃

(3.3)
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The expressions of three matrices Si are

S1 =


−uv u2 + w2 −vw

−v2 − w2 uv uw

uw vw w2

 · 1
(u2 + v2 + w2)w

S2 =


uw vw −u2 − v2

uv v2 vw

v2 + w2 −vu −uw

 · 1
(u2 + v2 + w2)v

S3 =


u2 uv uw

−uw −vw u2 + v2

uv −u2 − w2 wv

 · 1
(u2 + v2 + w2)u

The S−1
i is the matrix, which replaces the (4 − i)th, i ∈ [1, 3] column of the [χ]× using the

vector χ. This is a convenient way to build the matrix Si. Equation (3.3 ) is rewritten as the

one below. The detailed steps of the derivation are in the appendix (A.1 ).

 1 0 m n

0 1 p q

 X = 0 and

 m n

p q

 =

 −u/w −c1 + c3u/w

−v/w −c2 + c3v/w

 (3.4)

The above equation is noted as As1X = 0. The ”1” in the subscript refers to a single

frame. If the camera is the first one, then R is the identity matrix I� and C̃ = 0. This yields,

 1 0 −x 0

0 1 −y 0

 X = 0 and


x

y

1

 = x. (3.5)

One three dimensional object point gives 2n equations for n cameras. So the number of

redundant equations is (2n − 3). This is the starting point of the column vector approach.
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3.2 Two-Frame Geometry

This section reviews the two-frame geometry to motivate the following analyses. Al-

though the epipolar geometry is well-studied, we do it in a way to anticipate the extension

to more than two frames. The subsequent sections use the properties of two-frame geom-

etry. Using the conventional assumption P1 = I[I|0], and the second camera matrix is

P2 = R2[I| − C̃2].

෩C 1 ෩C 2

෨𝑋

𝜃1 𝛽1

𝛼1

𝑐x1

x1

l1 l2
Translation / Baseline

𝑅2
𝑇𝑐x2

Figure 3.3. The epipolar geometry.

The bilinear equation describes the coplanarity condition, where the three vectors x1,

RT
2 x2, and C̃2 are coplanar and therefore have a common normal vector.

ሚ𝐶2

෨𝑋

𝜃1 𝛽1

𝛼1

𝑐x1

𝑛 ሚ𝐶1 ሚ𝐶2 ෨𝑋

Ԧ𝑎

𝑏

ሚ𝐶1

𝑅2
𝑇𝑐x2

Figure 3.4. The two normal vectors of two frames plane.

In the figure (3.4 ), the two normal vectors are noted as a and b, and a = [a1 a2 a3]T .
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a = x1×RT
2 x2 b = C̃2×RT

2 x2 a ‖ b ⇔ B12

where script B12 a bilinear equation betweeen frame 1 and 2.

For the calibrated camera, one way to state the coplanarity equation is xT
1 b = 0.

xT
1 b = 0 ⇔ xT

1

[
C̃2

]
×

RT
2 x2 = 0 ⇔ B12 (3.6)

The three-by-three matrix E =
[
C̃2

]
×

RT
2 is known as the essential matrix. If we allow the

first frame to have non-identity rotation matrix and non-zero position, then the projection

equation is x1 = R1[I| − C̃1]X, The base vector becomes C̃2 − C̃1, the first frame object

vector is RT
1 x1, and the revised equation for b is

b = (C̃2 − C̃1) ×RT
2 x2 , or

b =
[
C̃2 − C̃1

]
×

RT
2 x2 ,

and the revised equation for coplanarity in equation (3.6 ) is

xT
1 R1

[
C̃2 − C̃1

]
×

RT
2 x2 = 0. (3.7)

3.2.1 Analysis By Column Vector Approach

Back to the assumption of zero rotation and zero position for frame 1, one object point

gives four equations for these two frames P1 = I[I|0] and P2 = R2[I|−C̃2]. So the number of

redundant equations is 1. Using the simplified projection (3.5 ) and (3.4 ), the four equations

are below in the stacked matrix format.



1 0 m1 0

0 1 p1 0

1 0 m2 n2

0 1 p2 q2


X = 0 (3.8)
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The above equation is noted as As2X = 0. The subscript 2 denotes the 2-frame equation.

Gaussian elimination gives the equation below.


1 0 m1 0

0 1 p1 0

0 0 U2 V2

 X = 0 (3.9)

where
[

U2 V2

]
=

 m2 − m1 n2

p2 − p1 q2

 and U2 ‖ V2

There are two vectors, U2 and V2, in the lower right corner of the matrix in (3.9 ). The

rank of the stacked matrix is less than four making the U2 ‖ V2. This gives the equation

below.

U ‖ V ⇔ m2 − m1

p2 − p1
= n2

q2
⇔ B12 (3.10)

The above equation(3.10 ) shows that there is only one equation between the two frames,

the coplanarity equation. It is proved by the Werman and Shashua(1995)[9 ]. The assump-

tion, P1 = I[I|0], makes the expression concise without losing information.

3.3 Three-Frame Geometry

This section talks about three-frame geometry and the trilinear point-point-point equa-

tions. The skeletons of two derivations of the trilinear equations are given here. Full details

of the derivation are in the appendix(A.2 ). Image point coordinates of a space point X, are

assumed given. The matrix determinant approach gives the derivation. Two analyses are by

the spatial geometry approach and column vector approach sections.
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ሚ𝐶1

ሚ𝐶2

ሚ𝐶3

x3

෨𝑋

x1

Figure 3.5. The figure of three-frame geometry.

3.3.1 Derivation By Determinant Approach

The matrix determinant approach starts from the situation where three rays intersect in

one common object space point x1 ∼ I[I|0]X, x2 ∼ R2[I| − C̃2]X and x3 ∼ R3[I| − C̃3]X.

The space point can be represented by the projection elements and relative lengths, X̃ =

λ1x1 = C̃2 + λ2R
T
2 x2 = C̃3 + λ3R

T
3 x3.

 RT
2 x2 0 −x1 C̃2

0 RT
3 x3 −x1 C̃3




λ2

λ3

λ1

1


= 0 (3.11)

The above equation is noted as AΛ3Λ3 = 0. It is commonly used in the derivations of

other researchers. The rank of the 6 by 4 matrix AΛ3 is smaller than four. The matrix AΛ3

is composed of image points and projection elements only. The homogeneous coordinate

vector of the scale elements is in the null space of this matrix. If some of the vectors are
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unitized, the equations will still hold. The relative scale ‖C̃3‖/‖C̃2‖ = t2 is important, so

let ‖x1‖ = ‖RT
2 x2‖ = ‖RT

3 x3‖ = ‖C̃2‖ = 1 and ‖C̃3‖ = t2.

 RT
2 x2 0 −x1 C̃2

0 RT
3 x3 −x1 C̃3




λ′
2

λ′
3

λ′
1

1


= 0 (3.12)

The λ′s represent lengths with the preceding scale assumptions. Since the rank of AΛ3

is less than 4, then each choice of 4 rows of the matrix is a square matrix with determinant

equal to 0. That is a cumbersome way to proceed and it obscures the projection elements.

Multiplying on the left by the transpose of the AΛ3 gives a way to deal those elements as a

unit. This is the key of the matrix determinant approach. The four by four matrix AT
Λ3AΛ3

obtained is as follows.

xT
2 R2RT

2 x2 0 −xT
2 R2x1 xT

2 R2C̃2

0 xT
3 R3RT

3 x3 −xT
3 R3x1 xT

3 R3C̃3

−xT
1 RT

2 x2 −xT
1 RT

3 x3 2xT
1 x1 −xT

1 (C̃2 + C̃3)

C̃T
2 RT

2 x2 C̃T
3 RT

3 x3 −(C̃T
2 + C̃T

3 )x1 C̃T
2 C̃2 + C̃T

3 C̃3


(3.13)

The determinant of this four by four matrix is zero, which gives the condition of three-

frame geometry without needing space points. The components of the matrix are well defined

by the space vectors and their intersection angles. These geometric elements are shown in

the following figure, and accompanying equations.
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𝑅2
𝑇𝑐x2

ሚ𝐶2

ሚ𝐶3

෨𝑋

𝜃1

𝛽1

𝛽2

𝛼1
𝛼2

𝜃2

𝑐x1

ሚ𝐶1

𝑅3
𝑇𝑐x3

Figure 3.6. The notation of spatial element.

xT
1 RT

2 x2 = cos α1 xT
1 RT

3 x3 = cos α2

C̃T
2 RT

2 x2 = cos (π − β1) C̃T
3 RT

3 x3 = cos (π − β2) t2

xT
1 C̃2 = cos θ1 xT

1 C̃3 = cos θ2t2

The matrix M = AT
Λ3AΛ3 can be partitioned into four 2 by 2 blocks. The determinant of

the matrix is computed by the blocks.

det (M) = det (Ma) det
(
Md − McM

−1
a Mb

)
(3.14)

with

M =

 Ma Mb

Mc Md

 .

det (Ma) =
(
xT

2 x2
) (

xT
3 x3

)
= 1 6= 0. So the determinant condition,det (M) = 0, is equivalent

to (Md − McM
−1
a Mb) = 0.

Md − McM
−1
a Mb =

 sin2α1 + sin2α2 − sin α1 sin β1 − sin α2 sin β2t2

− sin α1 sin β1 − sin α2 sin β2t2 sin2β1 + sin2β2t2
2



det
(
AT

Λ3AΛ3
)

= det
(
Md − McM

−1
a Mb

)
= (sin α2 sin β1 − t2 sin α1 sin β2)2
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The expression of the determinant of AT
Λ3AΛ3 has a quadratic format. The detailed steps

of the derivation are in the appendix(A.2 ). So the determinant condition is equivalent the

following equation.

det = 0 ⇒ sin α2 sin β1 − t2 sin α1 sin β2 = 0 (3.15)

The λ′s can be resolved as below with a value s > 0. The constraints of the λ′s > 0
guarantee that the object point X̃ is located in the front of the image planes. This condition
is used to check the reconstructed results by many researchers.

s = 2 −
(
xT

2 R2x1
)2

−
(
xT

3 R3x1
)2

v1 =
(
xT

2 R2C̃2
)

RT
2 x2

v2 =
(
xT

3 R3C̃3
)

RT
3 x3

λ′
1 =

(
C̃2 + C̃3 − v1 − v2

)T
x1/s

λ′
2 =

(
λ′

1x1 − C̃2
)T

RT
2 x2

λ′
3 =

(
λ′

1x1 − C̃3
)T

RT
3 x3

(3.16)

The determinant condition (3.15 ) can also be deduced by a geometric approach using

pure geometry only. The geometric analysis yields the condition in a much more concise

way.

ሚ𝐶1

𝛽1 𝛼1

𝛼2

ሚ𝐶3

ሚ𝐶2
𝜃1

𝜃2

ሚ𝐶3

ሚ𝐶2

Figure 3.7. The plane plot of the three-frame element.
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The two equivalent expressions of ‖C̃1X̃‖ give the determinant condition (3.15 ).

‖h1‖ = ‖C̃1X̃‖ sin α1 = ‖C̃2‖ sin β1

‖h2‖ = ‖C̃1X̃‖ sin α2 = ‖C̃3‖ sin β2

⇒ ‖C̃1X̃‖ = ‖C̃2‖ sin β1

sin α1
= ‖C̃3‖ sin β2

sin α2

⇒ t2 = ‖C̃3‖
‖C̃2‖

= sin β1 sin α2

sin α1 sin β2

⇒ sin β1 sin α2 − t2 sin α1 sin β2 = 0

The angles can be derived from the cross product of the vectors, which gives the condition

expressed by the projection elements.

sin α1 = ‖x1 × RT
2 x2‖

‖x1‖‖RT
2 x2‖

sin β1 = ‖C̃2 × RT
2 x2‖

‖C̃2‖‖RT
2 x2‖

sin α2 = ‖x1 × RT
3 x3‖

‖x1‖‖RT
3 x3‖

sin β2 = ‖C̃3 × RT
3 x3‖

‖C̃3‖‖RT
3 x3‖

The determinant condition (3.15 ) is equivalent to the following equation, which is also a

rearrangement of the equations just above.

‖x1×RT
2 x2‖‖C̃3×RT

3 x3‖ = ‖C̃2×RT
2 x2‖‖x1×RT

3 x3‖ (3.17)

This equation indicates that the relation does not need the prior length assignments,

which were used in this matrix determinant approach. There are four normal vectors in this

equation. The normal vectors are introduced in the previous two-frame geometry.
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3.3.2 Analysis By Spatial Geometry Approach

𝑅2
𝑇𝑐x2

ሚ𝐶2ሚ𝐶3

෨𝑋

𝑐x1

ሚ𝐶1

𝑅3
𝑇𝑐x3

Ԧ𝑐

Ԧ𝑑

Figure 3.8. The four normal vectors of two planes.

In figure (3.8 ), the vectors a and b are the normal vectors of the first C̃1C̃2X̃ plane. The

vectors c and d are the normal vectors of the second C̃1C̃3X̃ plane. Therefore vectors a

and b are parallel, the vectors c and d are parallel. The parallelism of the normal vectors is

described by the bilinear equation Bij. All of them are perpendicular to the vector C̃1X̃ ‖ x1.

The vector a is [a1 a2 a3]T for example.

Ԧ𝑎 𝑏

Ԧ𝑐

Ԧ𝑑

𝑐x1

Ԧ𝑎, Ԧ𝑐

Figure 3.9. The four normal vectors of two planes.
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In the figure (3.9 ), x1 is perpendicular with the paper. The four normal vectors are

perpendicular to the vector C̃1X̃ ( or ‖ x1).

a = x1×RT
2 x2 b = C̃2×RT

2 x2 a ‖ b ⇔ B12

c = x1×RT
3 x3 d = C̃3×RT

3 x3 c ‖ d ⇔ B13

(3.18)

Then equation (3.17 ) is ‖a‖‖d‖ = ‖b‖‖c‖ in compact form. Considering the parallelism,

the two pairs of vectors have a proportionality relationship a = λb, d = 1
λ
c. The relationship

guarantees that aT Nd = bT Nc is true, where N is any three by three matrix .

a = λb d = 1
λ

c ⇒ aT Nd = bT Nc (3.19)

The expression aT Nd = bT Nc is a general equation of the conditions for the four normal

vectors. The format of the general equation is identical to the bilinear condition of the point

on the second and third images, xT
2 E23x3 = 0. This is restated as follows.

xT
2 R2

(
[x1]× N

[
C̃3

]
×

−
[
C̃2

]
×

N [x1]×
)

RT
3 x3 =0 (3.20)

This function can be written in the following way.

xT
2 R2

(
x1H

1
N + y1H

2
N + z1H

3
N

)
RT

3 x3 = 0

H i
N = [ei]× N

[
C̃3

]
×

−
[
C̃2

]
×

N [ei]×
(3.21)

If the projection matrix of first frame is x1 ∼ R1[I| − C̃1]X, the above equation (3.20 ) is

the one below.

xT
2 R2

([
RT

1 x1
]

×
N

[
C̃3 − C̃1

]
×

−
[
C̃2 − C̃1

]
×

N
[
RT

1 x1
]

×

)
RT

3 x3 =0 (3.22)

This completes the geometric derivation. The above equation is also the general expres-

sion of the trilinear equation. Based on these equivalent derivations, the exploitation and

analysis is described in the following section.

There are nine matrices Nij = eieT
j corresponding to the outer products of the three basis

vectors. Each of them gives a trilinear equation corresponding to aidj = bicj. It is clear that
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these nine equations are the same as the outer product equations, adT = bcT . The outer

product, adT = bcT , is the one below. The full derivation of the outer product(3.23 ) is in

the appendix(A.4.1 ).

RT
2 [x2]× R2

(
x1C̃T

3 − C̃2xT
1

)
RT

3 [x3]× R3 = [0]3×3 (3.23)

This expression gives the same equation as the trifocal tensor point-point-point equation

in Hartley’s(2004)[1 ] book,

[x2]× R2
(
x1C̃T

3 − C̃2xT
1

)
RT

3 [x3]× = [0]3×3

[x2]× R2 (x1H1 + y1H2 + z1H3) RT
3 [x3]× = [0]3×3

(3.24)

where, Hi = eiC̃T
3 − C̃2eT

i . The matrices Hi, i = 1, 2, 3 have a close relation with the trifocal

tensor. Using the formulas Ti = R2HiR
T
3 , equation (3.24 ) is equivalent to the trifocal tensor

as presented in Hartly’s(2004)[1 ] book.

There are three degrees of freedom among the nine equations corresponding to Nij ⇔

aidj = bicj. Each normal vector, such as a = x1 × RT
2 x2 = [x1]× RT

2 x2, has 2 degrees of

freedom. If both a and d are not parallel to e3, each third component of a and d is the

dependent one. Then a1d1 = b1c1, a1d2 = b1c2, a2d1 = b2c1 and a2b2 = c2d2 can represent the

other five equations. It is explained in the appendix(A.4.2 ). Each of these four conditions

can be proved by the other three.

(a1d2) (a2d1)
(a2d2)

= (b1c2) (b2c1)
(b2c2)

⇒ a1d1 = b1c1

So each three of the four equations will make the remaining one hold. Therefore, there

are only three algebraically independent equations among the nine. This correspondes to

the three equations which we get by classical photogrametric analysis of a photo triplet.

the relative orientations are determined by eleven parameters, and for each point, visible on

three photos, we can write three equations : two coplanarity and one scale restraint, Theiss

et al.(2000)[123 ]. For each of the nine equations, aidj = bicj, there is a singular configuration

which makes the equation trivial. The configuration C̃2 ‖ ei and C̃3 ‖ ej makes the equation
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aidj = bicj equivalent to 0 = 0. The nine equations cannot be used arbitrarily. They should

be selected for the reasons above.

Group the nine equations into two groups which are the inner product group atd = btc

and the cross product group a × d = b × c. This is the geometric product of two vectors in

geometric algebra, Macdonald(2010)[124 ]. The nine equations, aidj = bicj, are also studied by

Indelman(2011)[125 ]. But He considered the inner product only. The closed form expressions

are in the appendix(A.4.3 ).

The sum of the base equations corresponding to N11,N22 and N33 yields the inner product

equation, aT d = bT c. When a is perpendicular to c, the inner product equation is trivial.

N11 + N22 + N33 = I ⇒ aT d = bT c (3.25)

From the figure 3.9 , (a − c) ‖ (b − d) ⇒ (a − c) × (b − d) = 0 is equivalent to a × d =

b × c. Since the four normal vectors are perpendicular to vector C̃1X̃, one may conclude

that a × d = b × c = −λ0x1 with a scale, λ0.

The differences between N32 and N23, between N13 and N31, and between N21 and N12

generate these cross products. When the four vectors are parallel the cross products are

trivial.

Njk − Nkj = [ei]× ⇒ aT [ei]× d = bT [ei]× c = −λ0eT
i x1 (3.26)

In the three cross product equations, there are only two linear independent ones. There are

still three algebraically independent equations in this grouping analysis.

Some scholars propose their three-frame models instead of using the pure trifocal tensor.

They also decompose N-frame geometry into three-frame geometry. Their models are listed

in the table below.
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Table 3.1. Some three frame models

Author Model Remark

Liu Bij

Steffen B12, T123 line-line-line

Indelman B12, B13, T123 aT d = bT c

Schneider B12, B13, T123 point-line-line

Liu et al.(2003)[114 ] uses the (2n − 3) B equations only. Steffen(2010)[116 ], Indel-

man(2012)[117 ], Schneider(2017)[118 ] propose their mixed models with different Tijk. The

T of Steffen(2010)[116 ] are two of the line-line-line equations of the image line, whose

closed form expression is not given. His model has one bilinear equation. The T of In-

delman(2012)[117 ] has a singular case when a ⊥ c. His model has two bilinear equations.

The T of Schneider(2017)[118 ] is the point-line-line relation which needs the two auxiliary

image lines. Mayer(2002)[66 ] studies the method to design the auxiliary image lines effi-

ciently and avoiding singular cases. Heyden and Åström (1996)[77 ] (1997)[78 ] indicated that

the trilinear equations are indispensable for object points on the trifocal plane. They also

show that the necessary number of B is larger than the redundant equation number (2n − 3)

if the purely bilinear equation method is used. For instance, for four frames, six B equations

are needed rather than five.

𝑥1 𝑥3

ሚ𝐶1 ሚ𝐶2 ሚ𝐶3

෨𝑋

l2

l3 𝑥1

ሚ𝐶1 ሚ𝐶2 ሚ𝐶3

෨𝑋

l1,𝑏

l1,𝑎

𝑙2

l3,𝑎

l3,𝑏

Figure 3.10. Two models: a Schneider’s model, and b Steffen’s model
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Based on the analysis of previous section, a new three-frame model(TFM) is given here.

Let λcos = cos〈a, c〉.

Table 3.2. The new three-frame model

Equation Geometry Condition

B12 x1 ⊥ a ‖ b

B13 x1 ⊥ c ‖ d

T123 aT d = bT c ‖λcos‖ ≥
√

2
2

aT [ei]× d = bT [ei]× c ‖λcos‖ <
√

2
2

It is abbreviated as shown below.

TFM(1, 2, 3) =


B12

B13

T123

135𝑜

Ԧ𝑐1

Ԧ𝑎

45𝑜

𝑐x1

Ԧ𝑐2 Ԧ𝑎 ∙ Ԧ𝑐 = 0

Ԧ𝑎 × Ԧ𝑐 = 0

Ԧ𝑎, Ԧ𝑐

Figure 3.11. The singularity of the trilineary equation.

This figure(3.11 ) shows the two singularities of the trilinear equation for the inner product

and the cross product. When the vector angle is small, the inner product is stable. When the

vector angle is large, the cross production is stable. Selection of the trilinear equat depends
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on the vector angle between a and c. The upper and lower thresholds are 45 and 135 degrees

here.

The new model covers the singular case of aT d = bT c and avoids the extra auxiliary

image lines. B expresses the parallelism of the normal vectors. T ensures ‖a‖‖d‖ = ‖b‖‖c‖.

Considering a × d = b × c = −λ0x1, and if the i − th component of x1 is nonzero, the cross

product a × d = b × c can be represented by aT [ei]× d = bT [ei]× c. If the i − th component

of x1 is the maximal absolute value, the i− th equation of the cross product is recommended.

So this model can be implemented on an image point at infinity whose third component is

zero.

In this section, a new derivation and analysis of the trilinear equations are given. Based

on the analysis, a new model is restated. The new model overcomes the singular case and

avoids the auxiliary image lines.

3.3.3 Analysis By Column Vector Approach

One object point gives six equations for the three frames P1 = I[I|0], P2 = R2[I| − C̃2]

and P3 = R3[I| − C̃3]. So the number of redundant equations is three. Using the simplified

projection (3.5 ) and (3.4 ), the six equations are below in the stacked matrix format.



1 0 m1 0

0 1 p1 0

1 0 m2 n2

0 1 p2 q2

1 0 m3 n3

0 1 p3 q3


X = 0 (3.27)
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The above equation is noted as As3X = 0. Gaussian elimination gives the equation below

as the shown in prior section.


1 0 m1 0

0 1 p1 0

0 0 U3 V3

 X = 0 (3.28)

where
[

U3 V3

]
=



m2 − m1 n2

p2 − p1 q2

m3 − m1 n3

p3 − p1 q3


and U3 ‖ V3

There are two parallel vectors, U3 and V3, in the lower right corner of the matrix in

(3.28 ). The rank of the stacked matrix is less than four making the U3 ‖ V3. The first and

the last two rows, noted as row1,2 and row3,4, of these vectors give two bilinear equations B12

and B13 referring to (3.10 ). The first and the third row,noted as row1,3, give the equation

involving three frames. And there are four ways to generate this expression, for instance

row1,3, row1,4, row2,3 and row2,4 .

(1) row1,3 → m2 − m1

m3 − m1
= n2

n3

(2) row1,4 → m2 − m1

p3 − p1
= n2

q3

(3) row2,3 → p2 − p1

m3 − m1
= q2

n3

(4) row2,4 → p2 − p1

p3 − p1
= q2

q3

(3.29)

Selecting two rows row2n−1,2n and one of row2m−1,2m gives two three-dimensional vectors

noted as the u and v. For instance, selecting the row one, two, and three noted as row1,2,3

gives two vectors.
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[
u v

]
=


m2 − m1 n2

p2 − p1 q2

m3 − m1 n3

 and u ‖ v

The cross product of v and u is [v]× u = 0.


0 −n3 q2

n3 0 −n2

−q2 n2 0




m2 − m1

p2 − p1

m3 − m1

 =


−n3(p2 − p1) + q2(m3 − m1)

n3(m2 − m1) − n2(m3 − m1)

q2(m2 − m1) + n2(p2 − p1)

 = 0 ⇔


T123 of row2,3

T123 of row1,3

B12


The above relation indicates the dependency between T123 and B12. Given these bilinear

equations, there is only one unknown scalar in the three-frame geometry, referring to (3.18 )

and (3.19 ). It is proven to be the minimal and sufficient condition of three-frame geometry.

Faugeras and Mourrain(1995)[75 ] show that, given two bilinear equations, there is only one

algebraically independent trilinear equation.

The U3 ‖ V3 gives two bilinear equations B12 and B13, and four independent T123.

Although there are nine trilinear equations in Hartly’s trifocal tensor expression, only four

of them are linearly independent but algebraically dependent. It is proved by Werman

and Shashua(1995)[9 ]. Hartley(1995)[74 ] suggests to choose four equations by a so-called

householder matrix method. Also he shows that utilizing the whole equations together

gives the best numerical performance. The spatial geometry motivates these four trilinear

equations. One equation comes from the inner product, and three equations come from the

cross product.

So in the nine equations(3.21 ), there are only three algebraically independent equations.

They are represented by B12, B13 and one T123, which depends on the spatial configuration.

This column vector approach consolidates the former analysis and the three-frame model

derivation, and restates the new proposed model.
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3.4 Four-Frame Geometry

This section has the same structure as the last one. A simplified derivation and analyses

of four-frame geometry are given here. It shows that the bilinear and trilinear equations can

guarantee the four-frame geometry. The three-frame geometry is exploited here under the

four-frame geometry situation. Utilizing the previous conclusions simplifies the derivation

and analysis. Some details of the derivation are in the appendix (A.3 ).

ሚ𝐶2

ሚ𝐶1

ሚ𝐶3
x3

෨𝑋

x2 x4

ሚ𝐶4

Figure 3.12. The figure of four-frame geometry.

3.4.1 Derivation By Determinant Approach

The matrix determinant approach starts from the situation where four rays intersect in

one common object space point x1 ∼ I[I|0]X, x2 ∼ R2[I| − C̃2]X , x3 ∼ R3[I| − C̃3]X,

and x4 ∼ R4[I| − C̃4]X. The space point can be represented by the projection elements and

relative lengths, X̃ = λ1x1 = C̃2 + λ2R
T
2 x2 = C̃3 + λ3R

T
3 x3 = C̃4 + λ4R

T
4 x4.


RT

2 x2 0 0 −x1 C̃2

0 RT
3 x3 0 −x1 C̃3

0 0 RT
4 x4 −x1 C̃4





λ2

λ3

λ4

λ1

1


= 0 (3.30)
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The above equation is noted as AΛ4Λ4 = 0. The rank of the nine by five matrix AΛ4 is

smaller than five. The homogeneous coordinate vector of the scale elements is in the null

space of this matrix. It gives the below equation.

AT
Λ4AΛ4Λ4 = 0 (3.31)

The determinant of the AT
Λ4AΛ4 is zero, which gives the condition of four-frame geometry

without needing space points. The relative scale ‖C̃3‖/‖C̃2‖ = t2 and ‖C̃4‖/‖C̃2‖ = t3 are

important, so let ‖x1‖ = ‖RT
2 x2‖ = ‖RT

3 x3‖ = ‖C̃2‖ = 1 , ‖C̃3‖ = t2,and ‖C̃4‖ = t3. The

expression of AT
Λ4AΛ4 is defined by the space vectors and their intersection angles. These

geometric elements are shown in the following figure, and accompanying equations.

xT
1 RT

2 x2 = cos α1 xT
1 RT

3 x3 = cos α2 xT
1 RT

4 x4 = cos α3

c̃T
2 RT

2 x2 = cos (π − β1) c̃T
3 RT

3 x3 = cos (π − β2) t2 c̃T
4 RT

4 x4 = cos (π − β3) t3

xT
1 C̃2 = cos θ1 xT

1 C̃3 = cos θ2t2 xT
1 C̃4 = cos θ3t3

ሚ𝐶2

ሚ𝐶1

ሚ𝐶3

෨𝑋

𝑐x1

ሚ𝐶4
𝜃1

𝛽1

𝛽2

𝛼1
𝛼2

𝜃2

𝜃3

𝛼3

𝛽3
𝑅2
𝑇𝑐x2

𝑅3
𝑇𝑐x3

𝑅4
𝑇𝑐x4

Figure 3.13. The vectors of three planes.
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The matrix M = AT
Λ4AΛ4 can be partitioned into four blocks. The determinant of the

matrix is computed by the blocks.

det (M) = det (Ma) det
(
Md − McM

−1
a Mb

)
(3.32)

with

M =

 Ma Mb

Mc Md

 .

Ma is a three-by-three matrix in the upper left corner. Md is a two-by-two matrix in the

lower right corner. det (Ma) =
(
xT

2 x2
) (

xT
3 x3

)
= 1 6= 0. So the determinant condition,

det (M) = 0, is equivalent to (Md − McM
−1
a Mb) = 0.

det
(
AT

Λ4AΛ4
)

= det
(
Md − McM

−1
a Mb

)
= (sin α2 sin β1 − t2 sin α1 sin β2)2

+ (sin α3 sin β1 − t3 sin α1 sin β3)2

+ (t2 sin α3 sin β2 − t3 sin α2 sin β3)2

The expression of the determinant of AT
Λ4AΛ4 has a quadratic format. The detailed steps of

the derivation are in the appendix (A.3 ). So the determinant condition is equivalent to the

three following equations.

sin α2 sin β1 − t2 sin α1 sin β2 = 0 (3.33a)

sin α3 sin β1 − t3 sin α1 sin β3 = 0 (3.33b)

t2 sin α3 sin β2 − t3 sin α2 sin β3 = 0 (3.33c)

The angles can be derived from the cross product of the vectors, which gives the condition

expressed by projection elements.
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sin α1 = ‖x1 × RT
2 x2‖

‖x1‖‖RT
2 x2‖

sin β1 = ‖C̃2 × RT
2 x2‖

‖C̃2‖‖RT
2 x2‖

sin α2 = ‖x1 × RT
3 x3‖

‖x1‖‖RT
3 x3‖

sin β2 = ‖C̃3 × RT
3 x3‖

‖C̃3‖‖RT
3 x3‖

sin α3 = ‖x1 × RT
4 x4‖

‖x1‖‖RT
4 x4‖

sin β3 = ‖C̃4 × RT
4 x4‖

‖C̃4‖‖RT
4 x4‖

The determinant condition (3.33 ) is equivalent to the following equations. These equa-

tions indicate that the relations do not need the prior length assignments,‖x1‖ = ‖RT
2 x2‖ =

‖RT
3 x3‖ = ‖C̃2‖ = 1.

3.33a ⇒ ‖x1×RT
2 x2‖‖C̃3×RT

3 x3‖ = ‖C̃2×RT
2 x2‖‖x1×RT

3 x3‖ (3.34a)

3.33b ⇒ ‖x1×RT
2 x2‖‖C̃4×RT

4 x4‖ = ‖C̃2×RT
2 x2‖‖x1×RT

4 x4‖ (3.34b)

3.33c ⇒ ‖x1×RT
3 x3‖‖C̃4×RT

4 x4‖ = ‖C̃3×RT
3 x3‖‖x1×RT

4 x4‖ (3.34c)

Dividing the two sides of the two formulas,(3.34a ) and (3.34b ), yields the third formula

(3.34c ).
‖x1×RT

2 x2‖‖C̃3×RT
3 x3‖

‖x1×RT
2 x2‖‖C̃4×RT

4 x4‖
= ‖C̃2×RT

2 x2‖‖x1×RT
3 x3‖

‖C̃2×RT
2 x2‖‖x1×RT

4 x4‖

⇒

‖x1×RT
3 x3‖‖C̃4×RT

4 x4‖ = ‖C̃3×RT
3 x3‖‖x1×RT

4 x4‖

So each two of the three equations make the remaining one hold. The first two equations

give two three-frame geometry models for the four-frame case. This derivation provides no

quadrilinear equations. So the bilinear and the trilinear equations guarantee the four-frame

cases. The relation of the two models and the searching for quadrilinear equations are in the

following section.

54



3.4.2 Analysis By Spatial Geometry Approach

In this section the analysis is provided in the same way as in the previous section.

Ԧ𝑎 𝑏

Ԧ𝑐

Ԧ𝑑

𝑐x1

Ԧ𝑒

Ԧ𝑓

Figure 3.14. The six normal vectors of three frame planes.

Compared to the three-frame geometry, there are six normal vectors in the equations

(3.34a ) and (3.34b ) shown in the figure (3.14 ). All of the six normal vectors are perpendicular

to the vector C̃1X̃ ‖ x1. The two new ones are noted as e and f . They are the normal vectors

of the third C̃1C̃4X̃ plane. Then equation (3.34a ) and (3.34b ) are ‖a‖‖d‖ = ‖b‖‖c‖ and

‖a‖‖f‖ = ‖b‖‖e‖ in compact form. The combination of the two proportion relations is given

here.
‖a‖
‖b‖

= ‖c‖
‖d‖

= ‖e‖
‖f‖

= λ

The unified relation of the proportion and parallelism is provided in the equations below.

a = λb xT
1 b = 0

c = λd xT
1 d = 0

e = λf xT
1 f = 0

(3.35)

Each of (3.34a ) and (3.34b ) gives two sets of trilinear equations including inner products

and cross products. One set has three algebraically independent equations. But there are

only five independent equations in the four-frame geometry. The analysis here is to answer

the question of whether the potential quadrilinear equations are consistent with that. The
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two inner product equations are aT d = bT c and aT f = bT e, which make (aT d)(bT e) =

(aT f)(bT c). The two cross product equations are d×a = c×b and f×a = e×b, which make

(d×a)T (e×b) = (f ×a)T (c×b).

(aT d)(bT e) = (aT f)(bT c) ⇒ aT (fcT − cfT )b = 0

(d×a)T (e×b) = (f ×a)T (c×b) ⇒ aT ([f ]× [c]× − [c]× [f ]×)b = 0

and aT (fcT − cfT )b = aT ([f ]× [c]× − [c]× [f ]×)b

The above derivation shows the dependency of the two sets. The (aT d)(bT e) = (aT f)(bT c)

and (d×a)T (e×b) = (f×a)T (c×b) are equivalent. No quadrilinear equation is found up to

now. This is revisited in the next analysis approach.

Given three bilinear equations B12, B13, and B14, there are two unknown relative distances

‖C̃3‖/‖C̃2‖ = t2 and ‖C̃4‖/‖C̃2‖ = t3. The t3 can be replaced by ‖C̃4‖/‖C̃3‖, because

t3 = (‖C̃4‖/‖C̃3‖)t2. So two trilinear equations, T123 and T134 are required. The total

necessary equations are three bilinear equations and two trilinear equations.

Table 3.3. The TFM for four-frame geometry

Equation Geometry

B12 x1 ⊥ a ‖ b

B13 x1 ⊥ c ‖ d

B14 x1 ⊥ e ‖ f

T123 ‖a‖‖d‖ = ‖b‖‖c‖

T134 ‖c‖‖f‖ = ‖d‖‖e‖

3.4.3 Analysis By Column Vector Approach

The four camera matrices are P1 = I[I|0], Pi = Ri[I| − C̃i]. One object point gives eight

equations for these four frames. So the number of redundant equations is five. Using the
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simplified projection (3.5 ) and (3.4 ), the eight equations are shown in the stacked matrix

format. 

1 0 m1 0

0 1 p1 0

1 0 m2 n2

0 1 p2 q2

1 0 m3 n3

0 1 p3 q3

1 0 m4 n4

0 1 p4 q4



X = 0 (3.37)

The above equation is noted as As4X = 0. Gaussian elimination gives the equation below

as the shown in the prior section.


1 0 m1 0

0 1 p1 0

0 0 U4 V4

 X = 0 (3.38)

where
[

U4 V4

]
=



m2 − m1 n2

p2 − p1 q2

m3 − m1 n3

p3 − p1 q3

m4 − m1 n4

p4 − p1 q4


and U4 ‖ V4

There are two parallel vectors, U4 and V4, in the lower right corner of the matrix in

(3.38 ). The rank of the stacked matrix is less than four making the U4 ‖ V4. The two

rows marked as row2n−1,2n give one bilinear equation, such as B12, B13 and B14 referring to

(3.10 ). The four rows marked as row2n−1,2n and row2m−1,2m, give the trilinear equations,

such as T123, T124 and T134 referring to (3.29 ). The proportion relations can give the B and

T without the Q. (i.e. without an explicit quadrilinear equation)

57



Selecting one row from each of row1,2, row3,4, and row5,6 gives two three-dimensional

vectors noted as the u and v. For instance, selecting the row one, three, and five noted as

row1,3,5 gives the two vectors below.

[
u v

]
=


m2 − m1 n2

m3 − m1 n3

m4 − m1 n4

 and u ‖ v

The cross product of v and u is [v]× u = 0.


0 −n4 n3

n4 0 −n2

−n3 n2 0




m2 − m1

m3 − m1

m4 − m1

 =


−n4(m3 − m1) + n3(m4 − m1)

n4(m2 − m1) − n2(m4 − m1)

n3(m2 − m1) + n2(m3 − m1)

 = 0 ⇔


T134

T124

T123


The above relation indicates the dependency among three equations T123, T124, and T134,

with two of them being independent.

A linear transformation of u, v provides the u′, v′.

[
u′ v′

]
=


m2 − m1 n2

m3 − m2 n3 − n2

m4 − m3 n4 − n3

 and u′ ‖ v′

The cross product of v′ and u′ is


0 −(n4 − n3) n3 − n2

n4 − n3 0 −n2

−(n3 − n2) n2 0




m2 − m1

m3 − m2

m4 − m3

 = 0 ⇔


T134

Q1234

T123

 .

There is a quadrilinear equation in the above expression. Considering a linear transformation

relation, [Mv]× Mu = det(M)M−T ([v]× u), that equation is the linear transformation of

trilinear equations.
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Each linear transformation of [v]× u has two linearly independent equations. There are

eight combinations of rowi,j,k. So there are sixteen equations involving four-frame parame-

ters. It illustrates the dependency relationships between the T and Q. But the closed form

expressions are obscure. Trigg(1995)[71 ] and Heyden(1995)[72 ] (1997)[73 ] conjecture that

there are transformations among B, T and Q. Faugeras and Mourrain(1995)[75 ] show that

the Q equations are algebraically dependent on the other two types by using one quadri-

linear equation as example. It seems that the Q equations are linearly dependent on the

independent T equations. Although the Q equations are dependent ones, they may have

numerical advantages for estimating four frames simultaneously. Hartley(1998)[76 ] indicates

it and provides some algorithms for the four-frame geometry.

3.5 Multi-Frame Geometry

This section talks about multi-frame geometry, including n frames, where n > 4. There

is a lot of redundancy in multi-frame Geometry. Faugeras and Mourrain(1995)[75 ] claim

that there are only three types, B,T , and Q. They indicate that given two bilinear equa-

tions, there is only one algebraically independent trilinear equation among three frames.

Many researchers give their methods to represent multi-frame geometry using these kinds

of equations. Using each type of equation, Heyden(2000)[38 ] gives one such method. Hey-

den and Åström (1996)[77 ] (1997)[78 ] also elaborate that the trilinear equation is essential.

Shashua(1996)[47 ] and Avidan(1996)[44 ] claim that (n − 2) trifocal tensors are a minimal

requirement for n frames. In the previous section, some models are reviewed for three-frame

geometry. Indelman(2012)[117 ] extends his model to the multi-frame cases.

This section extends the previous derivations and analyses to a multi-frame geometry

situation. The previous section concludes that the bilinear and the trilinear equations are

sufficient for four-frame geometry. So this section extends the three-frame model to simplify

the multi-frame geometry.
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Figure 3.15. The multi-frame geometry.

Given n frames, there are (n − 1) image pairs (1, i), where i ∈ [2, n] and 2(n − 1) normal

vectors n1i and n2i. The n1i and n2i represent the first and the second normal vectors of the

image pair (1, i), where n1i ‖ n2i. The first three pairs of normal vectors keep the previous

notation. The following analysis describes the geometry using these normal vectors.

Ԧ𝑎 𝑏

Ԧ𝑐

Ԧ𝑑

Ԧ𝑒

Ԧ𝑓

𝑐x1
𝑛1𝑖

𝑛2𝑖

Figure 3.16. The eight normal vectors of five frame planes.

The matrix determinant approach starts from the situation where n rays intersect in one

common object space point. This gives the n frame intersection equation.

AΛnΛn = 0 (3.39)
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An expression showing the elements of AΛn is omitted. The determinant of the AT
ΛnAΛn is

zero, yielding the equation below.

AT
ΛnAΛnΛn = 0

The homogeneous coordinate vector Λn is in the null space of this matrix. The zero deter-

minant condition of AT
ΛnAΛn gives the equations below.

‖a‖
‖b‖

= ‖c‖
‖d‖

= ‖e‖
‖f‖

= · · · = ‖n1i‖
‖n2i‖

= · · · = ‖n1n‖
‖n2n‖

= λ (3.40)

This equation equates the (n − 2) individual ones as below. This is a conclusion from the

four-frame study.
‖a‖
‖b‖

= ‖n1i‖
‖n2i‖

= λ (3.41a)

‖n1i−1‖
‖n2i−1‖

= ‖n1i‖
‖n2i‖

= λ (3.41b)

The unified relations of the proportion and parallelism are provided below in the (n − 1)

equations.
a = λb xT

1 b = 0

· · · = · · ·

n1i = λn2i xT
1 n2i = 0

· · · = · · ·

n1n = λn2n xT
1 n2n = 0

(3.42)

For each of (n − 1) parallel relations in (3.42 ), there is an equation B1i. For each of the

(n − 2) proportion relations in (3.41b ), there is an equation T1,i−1,i. For the n frames, the

total number is (2n−3), which is equal to the number of redundant equations. The extended

TFM for multi-frame geometry is given below.
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Table 3.4. The TFM for multi-frame geometry

Equation Geometry Number

B1i x1 ⊥ n1i ‖ n2i n-1

T1,i−1,i ‖n1i−1‖‖n2i‖ = ‖n2i−1‖‖n1i‖ n-2

It is abbreviated in the equation below.

TFM(1, i, N) =

 B1i

T1,i−1,i

(3.43)

This method is visualized below by figure(3.17 ). In Indelman’s[117 ] model, a bilinear

equation Bi−1,i is given to two adjacent frames and a trilinear equations Ti−2,i−1,i is given to

three adjacent frames. Considering the expressions of these normal vectors, the equations

B1i are recommended in the new model.

1

2

3

4

5i

N-1

N

camera

B 1,𝑖

T 1,𝑖−1,𝑖

Figure 3.17. The visualization of the TFM function.

The column vector approach also supports the above conclusion and connects some of

the previous studies. The n camera matrices are P1 = I[I|0] and Pi = Ri[I| − C̃i], where
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i ∈ [2, n]. Using the simplified projection (3.5 ) and (3.4 ), these 2n equation are below in the

stacked matrix format. 

1 0 m1 0

0 1 p1 0
... ... ... ...

1 0 mN nN

0 1 pN qN


X = 0 (3.44)

The above equation is noted as AsnX = 0. Gaussian elimination gives the equation below

as the shown in prior section.


1 0 m1 0

0 1 p1 0

0 0 Un Vn

 X = 0 (3.45)

where
[

Un Vn

]
=



m2 − m1 n2

p2 − p1 q2
... ...

mn − m1 nn

pn − p1 qn


and Un ‖ Vn

There are two parallel vectors, Un and Vn, in the lower right corner of the matrix in

(3.45 ). The rank of the stacked matrix is less than four making the Un ‖ Vn. Selecting

one row from each one of row1,2, row3,4, and row2i−3,2i−2 gives two three-dimensional vectors

noted as the u and v, where i ∈ [4, n]. For instance, selecting the row one, three, and 2i − 3

noted as row1,3,2i−3 gives two vectors below. Each selection gives a four-frame including the

first, second, third and i − th frames.

[
u v

]
=


m2 − m1 n2

m3 − m1 n3

mi − m1 ni

 and u ‖ v
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The cross product of v and u is [v]× u = 0.


0 −ni n3

ni 0 −n2

−n3 n2 0




m2 − m1

m3 − m1

mi − m1

 =


−ni(m3 − m1) + n3(mi − m1)

ni(m2 − m1) − n2(mi − m1)

n3(m2 − m1) + n2(m3 − m1)

 = 0 ⇔


T13i

T12i

T123


The above relation indicates the dependency among three equations T123, T12i, and T13i,

with two independent ones. It was mentioned in the four-frame geometry section. The

T123 and (n − 3) T12i are sufficient for Un ‖ Vn, where i ∈ [4, n]. Or the (n − 2) T12i,

where i ∈ [3, n], is the minimal requirement for Un ‖ Vn. It is consistent with the theory

of Shashua(1996)[47 ] and Avidan(1996)[44 ], in which (n − 2) trifocal tensors are sufficient.

Considering the statement of Faugeras and Mourrain(1995)[75 ], given (n − 1) bilinear equa-

tions, these (n−2) trifocal tensors give (n−2) algebraically independent trilinear equations.

This derivation summarizes the conclusions of previous scholars and supports the argument

here.

ሚ𝐶5

ሚ𝐶2

ሚ𝐶1

ሚ𝐶3

x3

෨𝑋

x2

x4

ሚ𝐶4

x1

x5

Figure 3.18. The unstable cases.

In the above derivation of (n − 2) T1,2,i, the first two cameras are fixed. In the extended

TFM, the (n − 2) T1,i−1,i are used. The equivalent of two sets are is proved by equation

(3.41 ). The (n − 2)T1,i−1,i are used because if the ‖C̃2 − C̃1‖ is too small, it will affect the

whole stability. It is illustrated in the above figure.
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3.6 Applications

This chapter provides three applications of the TFM to resolve the issues in the three-

dimensional reconstruction task. They are the image coordinate prediction, relative distance

estimation, and usage in the bundle adjustment (BA).

The goal of the first two applications is to prepare a reliably initial state for the adjust-

ment. The most important one is using the TFM as the condition equations in BA. The

details of how to exploit it in the adjustment mechanics are introduced here.

3.6.1 Image Coordinate Prediction

Image coordinate prediction can be realized through the TFM. Especially for a large view

camera, the TFM gives guidance about point selection.

Among the 9 Nij equations, there are 6 which have 27 terms. The other 3 equations have

18 terms each. These 3 equations are derived from the base matrices Nii, i = 1, 2, 3. In the

format of the trilinear equation(3.21 ), Nii makes the H i
N into a 3 by 3 zero matrix. These

3 equations indicate the ratios of the three components of the vector x1. These equations

then give a quick way for estimation of the image point on image one from the second and

third images.

y1/z1 = −xT
2 R2H

2
11R

T
3 x3/xT

2 R2H
3
11R

T
3 x3

x1/z1 = −xT
2 R2H

1
22R

T
3 x3/xT

2 R2H
3
22R

T
3 x3

x1/y1 = −xT
2 R2H

1
33R

T
3 x3/xT

2 R2H
2
33R

T
3 x3

The TFM could be used for the prediction of x1, x2, and x3 when the other two are

known.

For the prediction of x1, B12 and B13 will be dependent when a ‖ c. In order to overcome

this case, T123 is selected as aT d = bT c. The three frame model gives three equations for

the prediction of x1.

For the prediction of x2 or x3, x1 is given, so aT [ei]× b = cT [ei]× d can be chosen

corresponding to the nonzero component of x1, if ‖λcos‖ <
√

2
2 . The three frame model gives
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two equations for the prediction of x2 and x3. The λcos will be computed in alternative ways,

in consideration of the unknown being x2 or x3. There are two normal vectors n1 and n2,

which are parallel to a and c respectively.

a = x1×RT
2 x2 n1 = x1×C̃2 a ‖ n1

c = x1×RT
3 x3 n2 = x1×C̃3 c ‖ n2

The 〈a, c〉 will be replaced by 〈n1, c〉 or 〈a, n2〉 corresponding to the prediction of x2 or

x3.

Table 3.5. Image point prediction

Given Unknown Equations Angle

x1, x2 x3 B13, T123 〈a, n2〉

x1, x3 x2 B12, T123 〈n1, c〉

x2, x3 x1 B12, B13, T123

Both B and T can be written in the form of the inner product of the two 3 dimensional

vectors.


u

v

w

 = xT
2 R2


H1

H2

H3

 RT
3 x3

[
u v w

]


x1

y1

z1

 = 0

For the prediction of x1, the three equations can be written in the matrix form A1x1 = 0.

The vector x1 is a null-space vector of the 3 by 3 matrices A1. For the prediction of x2 or

x3, B and T contribute two parameter vectors, whose cross product is the prediction.

66



ሚ𝐶1

ሚ𝐶2 ሚ𝐶3

x1

x2 x3

x1
′

x3
′x2

′

෨𝑋

Figure 3.19. Very large field of view camera.

In the figure(3.19 ) the circular arcs, arrows and solid line represent view angles, Z direc-

tions and XOY plane. The x and x′ represent the image points on the same light ray.

But there still is ambiguity for the sign of the predicted coordinate, which cannot be

resolved by epipolar geometry or trifocal tensor based prediction. Because both of The

vectors ±x satisfy the linear conditions. In equation(3.16 ),the sign of λ′s is dependent on

the corresponding predicted image coordinates. The constraints λ′ > 0 resolve it by forcing

the object point to be located in the front of the image points. For a very large field of view

camera, whose view angle is larger than 180 degrees, this is very important.

3.6.2 Relative Distance Estimation

There is a relative distance issue among three-frame positions. The relative distance is

the invariant of the similarity transform. For the 3 frames, the relative scale ‖C̃3‖/‖C̃2‖ = t

is ambiguous which can be resolved from B. The two groups of elements R2, C̄2 and R3,

C̄3 can be computed from two B individually, with the constraints ‖C̄2‖ = 1 and ‖C̄3‖ = 1.

The T gives the method of relative scale estimation, by supplying the linear relations among

all the projection elements and all the observations. Without a known scale t, C̃3 = tC̄3 ,

the object point cannot be reconstructed in a unique position, which is shown in the figure.
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Figure 3.20. Scale ambiguity

Both B and T can be written in the form of an inner product as follows.

[
at

c2 at
c3

]  C̃2

C̃3

 = 0

ac2 and ac3 are two 3 by 1 parameter vectors. For B12 the vector ac3 = 0 for example.

In order to enforce consistency, an adjustment vector is added to tC̄3 then C̃3 = tC̄3 + δC3

and C̃2 = C̄2.

𝑣𝑎

𝑣𝑏 (δ𝑐3)

𝑑0 ( ҧ𝑐3)

𝑑𝑎

𝑑𝑏 (𝑡 ҧ𝑐3)

Figure 3.21. Ambiguity of scale and adjustment vector
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The above graph shows, for the unit direction vector d0 any scale will make vector d

with an adjustment vector v. For this reason, we enforce C̄t
3δc3 = 0. The following equation

will be obtained.

 Ac3 Ac3c̄3

C̄T
3 0


 δC3

t

 =

 −Ac2C̄2

0

 (3.46)

Ac2 and Ac3 are two matrices containing the vectors at
c2 and at

c3 as the row vectors. In

this TFM, B13 and T123 contribute two equations for each image point triplet. In order to

resolve the equation(3.46 ), 2 image point triplets are needed in this method.

By using the result of the two-frame geometry, recovering the relative orientation of three

frames is much easier than using the six-point algorithm. Plus, it avoids using the object

point X, which is unreliable when the point is very far from the cameras or when the two

cameras are separated by a small displacement, which will reduce the occlusion area.

Here, we propose a two-step algorithm for three frame relative orientation. First, compute

the relative orientation for two pairs B12 and B13 individually for the three frames. Second,

resolve the scale ambiguity using the first step results with T123.

Algorithm 1 Two Step Relative Orientation for Three Frames
Input: The matched point pairs;
Output: The three frame relative orientation elements and matched image points;

1: Relative Orientation for pairs ij using Bij, including linear estimation and nonlinear
optimization;

2: Eliminate the mismatches by using Bij and match the common points for three frames;
3: Resolve scale problem for three frames,including linear estimation using the proposed

three frame model and nonlinear optimization such as block adjustment;
4: Eliminate the mismatches by using T123;

Given more than two frames, the ‖C̃2‖ will be fixed as 1. Given more than three frames,

the n frames can be grouped into a sequence of three frame models ijk triplets. The relative

scale tij = ‖C̃i‖/‖C̃j‖ can be estimated one by one. The global length of ‖C̃i‖ is tij‖C̃j‖.
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3.6.3 New Bundle Adjustment Methods

The numerical implementation of bundle block adjustments can lead to large systems of

equations, which may possibly contain nearly parallel rays for multi-image observations of

a given object point, leading to instabilities. Locating and deleting the nearly parallel rays

can be tedious and slow. The proposed strategy (a) obviates the need to do this editing step,

and (b) has the side benefit of reducing the size of the system of the equations which need

to be solved. The strategy will accomplish this by not carrying object point parameters for

any points where unnecessary.

The objective is to exploit both strong and weak geometry by mixed utilization of the

indirect observations model (Gauss-Markoff-model) and the general model (Gauss-Helmert-

model). The space points are divided into two classes. A first class object point is any

point that has space information, such as a control point or any point with other object

space constraints. This kind of point requires not only the image conditions but also the

additional external constraints. A second object class point requires the image conditions

only.

The Indirect observations model using the collinearity equations for camera geometry

can accommodate external information into the adjustment. Using the bilinear and trilinear

equations, the general model can avoid the space point parameters, which are not necessary,

and may introduce instabilities.

In this section, two BA algorithms are developed, which employ the TFM. The TFM is

used to compose condition equations totally or partially replacing the collinearity equations.

The first one uses the TFM only as default. Considering the weak geometry situations,

this method has the numerical advantage by avoiding the unstable estimations of the object

structures. The second one uses both the TFM and the collinearity equations. In this

method, the collinearity equation is used for the class one object points, and TFM is used

for the second class object points.

Faig(1975)[91 ] has developed two camera calibration algorithms. One uses the bilinear

equation only. The other one uses both the bilinear equation and the collinearity equations.
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For the different environments and purposes, the BA methods have different requirements

and priorities. These kinds of BA algorithms still deserve attention and study.

Because this research assumes a calibrated camera, the current unknowns in the two

methods are only the positions and attitudes.

Table 3.6. BA methods

Method Condition Constraint Model

Traditional BA Collinearity Yes Indirect Observation

Method One B and T No General

Method Two All of above Yes Constrained General

B, T

Col

Coplanarity

Collinearity

Distance

I/O

GNo requirement
for object 

coordinates

All
Object
Points 

Class I

Class II

Figure 3.22. The visualization of the two classes of object points.

This figure indicates the two different choices for different kinds of object points.

A, Bc and Bp are the Jacobian matrices for image points, camera parameters and object

point parameters, respectively. ∆c and ∆p are the unknowns for camera parameters and

space point parameters. v is the vector of the residuals.

The indirect observations model is shown below.

I1v + Bc1∆c + Bp1∆p = f1. (3.47)
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The indirect observations model is widely used in the BA. It is appropriate for class one

object points. The model can be used if the observations can be expressed as functions of

the unknowns, such as (3.2 ). This model requires the space point coordinates, as well as

good initial approximations.

Table 3.7. Traditional BA

Traditional BA Name Expression

Condition Collinearity 3.2 

Model Indirect observations model 3.47 

The first new method uses the TFM as condition equations and the general adjustment

model. The general model is appropriate for object points of class two. This model can be

used if the observations have only internal condition equations. This model does not require

the object point coordinates. It avoids the space point estimation. As mentioned earlier,

estimation of these parameters may introduce instabilities, depending on geometry, and will

significantly enlarge the system of equations to be solved.

The general model is displayed below.

A2v + Bc2∆c = f2. (3.48)

Table 3.8. The new BA method one

Method One Name Expression

Condition B and T 3.43 

Model General model 3.48 

The second new adjustment model is the constrained general adjustment model. If the

first kind of point is observed, external constraints among the object space parameters can
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be added to the above method. The external constraints could be the known coordinates or

any prior geometric relationship.

External constraints are:

Dp∆p + Ds∆s = h.

∆s is the parameter vector of spatial features or spatial constraints, and ∆p is the vector of

the object points.

When both models are used in the same adjustment, the combined form will be:

A3v + Bc3∆c + Bp3∆p = f3,

Dp∆p + Ds∆s = h.
(3.49)

And the first equation in above expression is

 I1 0

0 A2

 v +

 Bc1 Bp1

Bc2 0


 ∆c

∆p

 =

 f1

f2

 (3.50)

Table 3.9. The new BA method two

Method One Name Expression

Condition All

Model General model 3.49 

Considering the singular cases of the equations (3.7 ) and (3.22 ), the C̃i = C̃j makes the

TFM trivial. Under the numerically unstable situation when ‖C̃i − C̃j‖ is very small, the

results could converge to C̃i = C̃j.

Rodríguez(2011)[115 ] suggests using the normalized bilinear equation below.

Bij/‖C̃i − C̃j‖ = 0 (3.51)
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The normalized trilinear equation is given below. The derivatives of it are in the ap-

pendix(A.4.4 ). This also addresses the case of the short baselines.

Tijk/‖C̃j − C̃k‖ = 0 (3.52)

And the normalized TFM for BA is given below.

TFM(1, i, n) =

 B1i/‖C̃i − C̃1‖

T1,i−1,i/‖C̃i − C̃i−1‖
(3.53)

The B1i/‖C̃i − C̃1‖ makes sure C̃i 6= C̃1. And the T1,i−1,i/‖C̃i − C̃i−1‖

makes sure C̃i 6= C̃i−1.
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4. EXPERIMENTS With The DEVELOPED MODELS And

ALGORITHMS

Some numerical experiments are presented here to demonstrate and verify the new methods.

The first two experiments demonstrate the two applications: image transfer and relative

distance estimation.

The third set of experiments compare the conventional BA and the two new ways with

regard to success rate, accuracy, and precision. Before the description of the BA experi-

ments, the issues of weak spatial geometry and spatial constraints are also introduced. The

algorithms and methods are tested on simulated data as well as on one real data set.

4.1 Image Transfer on Wide Field of View Camera

For the prediction application, the following experiment is done using synthetic camera

positions and space points. The projections and predictions are computed for the space

points. The projections are computed by projecting the space points via the camera model.

The predictions of the third camera are computed by using the three frame method described

here both with and without the constraint of λ′s > 0. The two groups of images are

compared.
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𝐙

(a) Cameras and space points

𝐗

𝐘

(b) Projection on 1st camera(image)

𝐗

𝐘

(c) Projection on 2nd camera(image)

𝐗

𝐘

(d) Projection on 3rd camera(image)

Figure 4.1. Comparison of the projections using wide field of view camera.

In the plots above, the three triangles represent three cameras. The red and green

segments represent the x and y axis of camera coordinate system respectively. The z axis is

perpendicular with the paper on the image plots. The black asterisk is camera perspective

center.

In the first plot (a) above, the space points are on a horizontal plane which is above

the three cameras (cameras looking horizontally) and parallel to the XOZ plane of the first

camera. In the other plots, the image points are normalized with ‖x‖ = 1, in each camera

coordinate system. The purpose is to show the ambiguities inherent in conventional wide

field of view camera models(that is field of view > 180 degrees), which are resolved by proper

invocation of the λ′ > 0 constraint with the new model.
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view sphere

View direction

perspective 
center

Image plane
Field of view 

(>180𝑜)

object points

Figure 4.2. Fisheye camera geometry.

In the figure(4.2 ), the view direction and the field of view are shown. The green and

red points represent object points and image points. That is, the points are first projected

onto a sphere of radius 1, then projected onto the image plane as in figure(4.2 ). This is to

simulate the image geometry of a ”fisheye” lens.

𝐗

𝐘

(a) Prediction of 3rd camera(image) without
λ′s > 0

𝐗

𝐘

(b) Prediction of 3rd camera(image) with
λ′s > 0

Figure 4.3. Comparison of the predictions using wide field of view camera.

Without the constraint of λ′s > 0, the predictions can be ±x, which is indicated in figure

(4.3a ). Some predicted points appear behind the camera perspective center. For very large

field of view cameras, the equations (3.16 ) are used to resolve this problem.
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4.2 Relative Distance Estimation

For the relative length estimation, three methods are compared in this experiment. A

synthetic small view angle calibrated camera is used. Gaussian noise with mean zero and

standard deviation(std) σ pixels are added to the synthetic image points with an assumption

that the focal length is 3000 pixels. The three camera axes are all parallel. The three camera

positions are C̃1 = [0 0 0]T , C̃2 =
[
−

√
2/2

√
2/2 0

]T
, and C̃3 =

[√
2

√
2

√
2

]T
.

For the main purpose, which is to resolve the scale factor t32 = ‖C̃3‖/‖C̃2‖, the experiment

assumes that the other elements, such as C̄2 and C̄3 (normalized camera stations), are

known.

The experiment is done under two scenarios. In the first one, the space points are close to

these frames. The distances between the first camera and space points are around 30 units.

In the second one, the space points are far from these frames. The distances are around 300

units. The experiment is repeated 10 times with σ increasing in equal increments from to

0.3 to 3 for each scenario.

The three methods are the three-frame model, the trilinear equation only, and the space

resection method. The first method is introduced in the previous section. The trilinear

equation method uses the three trilinear equations, (3.20 ), corresponding to N11, N22, and

N21 + N12. The space resection method reconstructs the space points from the first two

frames then estimates the relative length by space resection. The unknowns of equation

(3.46 ) are resolved by the three methods, respectively.

The graphs below show the mean and standard deviation of distances between the true

position and its estimate. The solid, point and dash lines represent the three frame model,

the trilinear and resection methods.
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(a) plot of means of first scenario(points close)(b) plot of standard deviations of first sce-
nario(points close)

(c) plot of means of second scenario(points far
away)

(d) plot of standard deviations of second sce-
nario (points far away)

Figure 4.4. Comparison of the three methods under two scenarios(points
close and far away).

Under the first scenario(nearby points), the three methods have commensurable per-

formance. With image errors increasing, the error magnitude of the proposed three frame

model method is still smaller than the other two methods. Under the second scenario(far

away points), the means of the error of the trilinear and resection methods are commensu-

rable and higher than the proposed three frame model method. The standard deviations of

three frame model and trilinear methods are smaller than the resection method.

This experiment shows that for both of the ”close space points” and ”far space points”

scenarios, the methods without the space points reconstruction have the better performance.
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Under the two situations, the proposed three frame model method has advantages over the

others.

4.3 Small Intersection Angle

Before the BA experiments, this section shows the issue of weak spatial configurations.

The weak space configurations here are the ones that make unstable object point estimation.

This issue often occurs when the intersection angle is small. Then small errors of observations

will cause significant changes in the estimates of space points.

Some cameras, exposure frequency, platform motion, and object point structures will

cause this issue, yielding large camera to point distance, relative to the base distance. A

short baseline means a short camera-to-camera distance. And a large depth makes the large

point-to-camera distance. The ratio of the depth to the length of the baseline is called the

depth-base ratio.

rdb = Depth

Base
(4.1)

The larger the ratio, the worse the geometric conditions for intersection stability.

Depth Depth 𝐷α

Baseline 𝐿

Figure 4.5. Schematic diagram of intersection angle and space intersection
from two images.

In the figure above, the red points are image observations, and the green point is an

object point. The yellow segment in the right diagram is the baseline between two cameras.

80



Camera movements(along a flight line, for example) make the intersection angle different.

If the camera moves the same distance in different directions, the intersection angles are

different. For an object point in front of the camera, the camera moving perpendicular to

the optical axis results in a larger intersection angle. The camera moving along the optical

axis leads to a small intersection angle.

Figure 4.6. The camera movements make the intersection angle different.

Segment C1C2 represents the movement perpendicular to the optical axis. Segment

C1C3 represents the movement along the optical axis. Two baselines have the same length.

The two types are the horizontal one and the forward one.

(a) Two views of the horizontal movement. (b) Two views of the forward movement.

Figure 4.7. Two types of camera movements
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The two different movements make different space camera-point structures. With the

horizontal type, the camera moves along a direction that is perpendicular to the optical axis.

On the contrary, with the forward type, the camera moves along the optical axis only. In

traditional photogrammetric tasks, the first mode is the normal case in aerial photogramme-

try�which has always dominated network design, such as overlap and fight height. The second

situation is common when using a portable camera or a vehicle-mounted video recorder. In

practice, the real camera movement is more complicated. The more flexibility and diversity

of camera movements cause depth-base variability. Processing algorithms should be able to

seamlessly accommodate such variability.

The following plots indicate the strength benefits of the two movements.

Figure 4.8. Small intersection angle of the horizontal movement.

The orange segmentation presents the distance between the two cameras. In this hori-

zontal case, the short camera baselines and the large point-to-camera distances cause small

intersection angles. A longer baseline results in a larger intersection angle from horizontal

movement. Compared to this case, the small intersection angle issue occurs much more in
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the forward movement(along the depth axis). Even a long camera baseline cannot avoid the

issue.

Depth

𝐿𝑎

Depth

𝐿𝑏

α𝑎

α𝑏

Figure 4.9. Small intersection angle of the forward movement.

In the forward path, the overlapped area always appears in front of the cameras. The

closer the object points are to the optical axis, the smaller the intersection angle. When the

object point is located in the center of the view, increasing the length of the baseline cannot

increase the intersection angle dramatically, which is shown in the figure(4.9 ).

In photogrammetric tasks, point-camera relative positioning is often carefully designed to

avoid weak geometry. When using a portable handheld camera, such weak geometry cannot

be easily avoided. The so-called inverse depth technique is developed for far object points.

In some optimization techniques, the object points are classified into two classes, which are

close object points and far object points. An experiment to show the benefits of the proposed

three-frame model versus conventional modeling in the case of weak intersection geometry

is described in section (4.6 ).

4.3.1 Experiment of Incorrect Estimates

This experiment tests the incorrect estimation of one object point caused by the small

intersection angle issue. The incorrect estimate here means the estimated object point ap-
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pears behind any cameras� which observe this object point. The estimation method uses the

camera projection function, together with a cross product.

[x]× R[I| − C̃]X = 0

[x]× R[X̃ − C̃] = 0

[x]× RX̃ = [x]× RC̃

(4.2)

Each expression has two independent equations. Given n frames, there is a matrix having

2n independent equations. If some Ri and C̃i are known, the X̃ could be computed. Two

frames are the least requirements. The estimated X̃ is the initial value of the intersection

point for the BA algorithm. It is tested repeatedly under different conditions.

The experiment has five variables. They are the movement type, the number of frames,

the depth-base ratio rdb, the noise of the camera attitudes and positions. In the all trials,

the zero-mean Gaussian distributed noise is added to the image observations. The standard

deviation of measurement errors is one pixel. For the small intersection angle issue, the

influence of the camera angle errors on the object point estimation is far greater than the

influence due to camera position errors. The experiment tests the camera attitude errors

mainly.

The first variable is movement type. The two types are demonstrated in the figure(4.7 ).

The coordinate system of first camera is established as the reference coordinate system. All

the cameras are parallel to each other. The distance between each pair of adjacent cameras

is one unit distance.

The second variable is the number of the cameras. The number ranges from two to four.

The third one is the the depth-base ratio rdb. The ratio have seven levels, rdb =

[15, 30, 45, 60, 75, 90, 105].

The fourth variable is the errors of the camera attitudes. The zero-mean Gaussian noise

has two levels. The standard deviations of the two levels are 0.1 degree and 0.3 degree.

The fifth variable is the errors of the camera positions. The standard deviation of these

errors is 0.03 unit distance.
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At each depth-base ratio or error level, the test is repeated ten thousand times. Each time

only one space point is tested. When the estimated object point appears behind any camera,

this estimate is considered incorrect. The incorrect Estimate ratio rie is the proportion of

the number of incorrect estimates relative to the total number.

rie = the number of incorrect estimation
the total number of estimations

(4.3)

The experiment results are plotted here.

(a) camera rotation error level one. (b) camera rotation error level two.

Figure 4.10. Result of horizontal movement

The two graphs (Figure 4.10 ) indicate the results of horizontal movement under two

attitude error levels. In these tests, the true camera positions are kept. The left graph shows

that no incorrect estimate appears under attitude error level one. The right graph indicates

that the larger attitude error makes the incorrect estimates increase when the frame number

is two. The ratio of incorrect estimates increases rapidly as the depth increases. When the

frame number increases, there is no incorrect estimate.
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(a) camera rotation error level one. (b) camera rotation error level two.

Figure 4.11. Result of horizontal movement with position errors

These two graphs (Figure 4.11 ) show the results of adding the position errors into the

corresponding previous tests. Comparing the two previous results, small position errors

change the estimate only a little. So the influence of the camera angle errors is far greater

than the influence brought by camera position errors.

(a) camera rotation error level one. (b) camera rotation error level two.

Figure 4.12. Result of forward movement

The two graphs (Figure 4.12 ) indicate the tests of the forward movement(along the depth

direction) under two attitude error levels. In the two tests, the true camera positions are kept.
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The left one has a small attitude error. This graph group indicates that more redundancy

makes the incorrect ratio lower. The larger attitude error makes the ratio higher significantly.

Comparing the graphs between two movement types shows that the ratio can change

dramatically depending on spatial configurations. Not only object point distribution but

also the distribution of camera locations are important. With the same distance, the same

observation, and orientation error level, the forward trajectory has a higher incorrect esti-

mate ratio than the horizontal one. The experiment indicates that with practical camera

movements, such as a handheld camera orbit, small intersection angle issues may be a signifi-

cant problem. Considering the diversity and variability of camera movements, any algorithm

should be robust in the face of such variability.

4.4 Three Spatial Features, to Be Used As Constraints

There are three kinds of spatial features used in the constrained BA experiment. They

are the point-to-point distance, the spatial line, and the spatial plane. The combination of

the spatial plane and spatial line is also used. The unit vector and a rotation matrix are

introduced to simplify the expressions.

4.4.1 Point Distance

z

𝑥
𝑦O

𝑃𝑖

𝑃𝑗

𝑃𝑚

𝑃𝑛

𝑃𝑎

𝑃𝑏

d

Figure 4.13. The same distance between the three pairs of points.
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One possible point-to-point distance constraint could be that some pairs of object points,

such as PiPj, have the same unknown distances.

‖PiPj‖ = d (4.4)

In the Figure (4.13 ), three pairs of object points have the same distance, and the con-

straint is expressed as ‖PaPb‖ = ‖PiPj‖ = ‖PmPn‖ = d. The distance d is the unknown of

the constraint. One pair of points gives one equation, with the introduction of the unknown,

d.

4.4.2 Unit Vector and Rotation

The unit vector and a rotation matrix are introduced before the other spatial features.

𝑧

𝑥

𝑦
𝑂 ѳ

α

𝑠𝑖𝑛ѳ

𝑐𝑜𝑠ѳ𝑠𝑖𝑛α

W

(a) Coordinates of a unit vector.

V

U

𝑧

𝑥

𝑦𝑂

W

(b) Vectors of the rotation matrix .

Figure 4.14. Unit vector and designed rotation matrix

The above-left figure shows a unit vector W. A rotation matrix RW rotates the three

basis vectors to the three vectors U, V and W. It is designed below using the components of
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the unit vector W. The rotation axis is the normal vector of the plane ZOW . The rotation

angle is one from OZ to OW .

W =


wx

wy

wz

 =


cos θ cos α

cos θ sin α

sin θ



RW =


1 − w2

x/(1 + wz) −wxwy/(1 + wz) wx

−wxwy/(1 + wz) 1 − w2
y/(1 + wz) wy

−wx −wy wz

 =
[

U, V, W
]

Both the vector W and this designed rotation RW have two unknowns. They simplify the

expressions of the following spatial features.

4.4.3 Spatial Plane

(a) One figure of a spatial plane. (b) Normal vector and translation of a spatial
plane.

Figure 4.15. Two figures of a spatial plane.

The spatial plane constraint is appropriate for the points distributed on the same plane.

The vector W is the normal vector of the spatial plane π. The normal vector W defines a

plane passing through the origin. Moving it along the vector W with a certain distance dw

gives the plane π. All object points on the plane have the same projection onto the vector
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W, which is marked by the red point on the plot above. The expression of the point X̃ on

the spatial plane is the below one. This expression is from common knowledge of geometry.

WT X̃ = dw[
WT −dw

]
X = 0.

(4.5)

Each spatial plane has three unknowns. One point gives one equation of the plane feature.

4.4.4 Spatial Line

The two-dimensional line and the spatial line are introduced here.

(a) One figure of two-dimensional line. (b) Direction and translation of the line.

Figure 4.16. A two dimensional line.
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In the above plots, unit vectors U′ and V′ are the normal vector and direction vector of

the two-dimensional line. The V′ defines a line passing through the origin. Moving it along

the vector U′ with a certain distance dl gives the line lj. All points on the line have the

same projection onto vector U′, which is marked by the red point on the plot above. The

angle from U to V′ is β, noted as β = 〈U, V′〉. The expression of the two-dimensional point

x̃ = [pu, pv]T on the line is the one below.

[
sin β − cos β

]  pu

pv

 = dl

[
sin β − cos β −dl

]
x = 0.

(4.6)

(a) Two spatial lines are defined by their af-
filiated points.

(b) Direction and translation of the spatial
line.

Figure 4.17. Two figures of spatial line

In the above right plot, the vector W is the direction vector of the spatial line. The

vector W defines a line passing through the origin. Moving it along the U and V with

certain distances du and dv gives the line lm. The expression of the object point X̃ on the

line is the one below.  UT

VT

 X̃ =

 du

dv


 UT −du

VT −dv

 X = 0.

(4.7)
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All points on the line have the same projection on the plane OUV , which is marked by

the red point on the above plot. The spatial line constraint applies to some points that are

distributed on the same spatial line. Each spatial line has four unknowns. Each spatial point

contributes two equations to the line parameters.

Figure 4.18. A line on the spatial plane.

The combination of a spatial line and a spatial plane is studied here. The object point on

the line gives one equation (4.6 ) to the line and one equation (4.5 ) to the spatial plane. In

the equation (4.6 ), the coordinates of the point x̃ = [pu, pv]T in the plane’s local coordinate

system is [pu, pv]T = [U, V]T X̃. The combination of the two equations is the one below.

 sin β − cos β 0

0 0 1




UT

VT

WT

 X̃ =

 dl

dw




 sin β − cos β 0

0 0 1

 RT
w, −

 dl

dw


 X = 0

(4.8)

Each combination has five unknowns. Three of them are belonging to the spatial plane,

and the other two are belonging to the dependent line feature. The first equation in (4.8 )

includes the dependent line parameters. The second one has plane parameters only.
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4.4.5 Equation Setup for the Compound Constraint

This section introduces a way to establish the equations for the compound constraint. The

compound constraint here is for the points on more than one spatial feature. For example,

the line feature on a given plane has two group parameters. Sometimes object points are

located on more than one feature. In this case, the method to set up the parameters and

functions is presented here.

A point on the plane, not on any line on the plane, contributes one equation (4.5 ) to the

plane parameters. A point located on line in a plane gives the two equations in equation

(4.8 ).

(a) A example of compound Features.

𝑃𝑎

𝑃𝑐

π𝑖

𝑙

π𝑗

π𝑘

(b) Intersection of multi-plane.

Figure 4.19. Two examples of compound constraint

On the above plot, the points Po, Pp and Pq present the first kind of the point. And the

points Pi, Pj and Pk present the second kind of point. When adding a line feature to the

plane, one group of dependent line parameters is added.

In the right graph, if a spatial line coincides with more than one plane, this line is defined

by the intersection of these planes. The points on this line give the plane equation (4.5 ) to

each plane instead of the line equation (4.7 ). And the points Pa, Pb and Pc are considered

as the point on the planes only. No line parameters exist in the computation.
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4.5 BA Experiments Introduction

There are two experiments in the following sections. The first experiment deals with the

acceptance ratio of adjustment results. It compares the conventional BA and the first new

method. The performance of these two methods is evaluated by the acceptance ratio of the

two-sided hypothesis test. The new method has a higher acceptance ratio.

The second experiment discusses the estimation accuracy and precision. The comparisons

are among the conventional BA and two new methods. From the perspective of accuracy

and precision, conventional BA and the new methods have the same performance. Spatial

constraints reduce the error and variances of the estimations.

We now introduce the experiment environment. In the experiment, there are sixty frames.

They are arranged with horizontal displacements as in figure (4.7 ). The leftmost frame is

the first frame. The first camera coordinate system acts as the reference coordinate system.

All the cameras are placed along the X-axis. The true position of i − th frame is [i −1, 0, 0]T .

The distance between the adjacent two cameras equals 1, which is the unit of length in this

experiment. The true rotation angle vector of each frame is [0, 0, 0]T . During the iterations,

the distance between the first frame and final frame is fixed. Then the seven coordinate

system parameters are fixed.

The depth of the object points is a variable of the two experiments. The two experiments

are tested under a series of depth-base ratios. The depth series is 15, 30, 45, 60, 75. This is

compared to 1 unit for the between camera baseline. Object points are distributed within a

narrow range about the nominal depth range. The depth is the mean of the vertical distance

between the camera and object points.

94



Depth 𝐷 = 15

Distance of Movement 𝐿=59

Figure 4.20. Visualization of the distribution of cameras and points at depth 15.

The spatial configuration at depth 15 is demonstrated above. The small color triangles

represent the cameras. The small dots represent the object points.

There are 256 object points which have no spatial constraints. Each camera observes 20

of this kind of object points. Each object point is observed by 2 to 5 frames.

Table 4.1. Summary of frames per point, maximum 5, minimum 2.

Frame Number 2 3 4 5

Point Number 16 8 8 224

The last column means that 224 object points are visible in 5 images. This distribution

is kept the same for the two experiments.

There are 56 object points, which have spatial constraints. These object points are

used in the second experiment only. There are four distance constraints (4.4 ). Each distance

unknown employs three pairs of points. there are three spatial line constraints(4.7 ) with four

points in each one. There are two spatial plane constraints(4.5 ). The first plane has eight

points. The second one has twelve points. Among the twelve points, two two-dimensional

lines(4.8 ) have four points each, and the other four are not assigned.
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Zero-mean Gaussian noise is added to the image measurements, camera attitudes, and

positions. The standard deviations of these errors are one pixel, 0.3 degrees, and 0.03 unit

distance. The incorrect estimation ratio is tested under this condition in the figure(4.11 )

The level of error remains the same in the two experiments.

The two experiment results are evaluated by statistical techniques. The prerequisite

background of least squares adjustment is introduced here. The table below includes the

common notations.

Table 4.2. Notations of Least Squares Adjustment

Name Expression

Measurement vector l

Measurement covariance Σll

Parameter vector x

Parameter covariance Σxx

Wight Matrix W

Residuals vector v

Redundancy r

Prior variance σ2
0

Posterior variance σ̂2
0

The expression of posterior variance is the one below.

σ̂2
0 = vT Wv

r
where W = σ2

0Σ−1
ll (4.9)

The adjustment computation and necessary expressions in the least squares methods are

stated in Mikhail’s(1976)[2 ] survey and adjustment book.
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4.6 BA Experiment about Acceptance Ratio

The two tested methods are the conventional BA and the first new method. This ex-

periment tests the acceptance ratio of computation results. The first new method uses

the bilinear and trilinear equations and general adjustment model. In the adjustment, the

vT Σ−1
ll v has a Chi-square distribution.

vT
−1∑
ll

v = vT Wv
σ2

0
= σ̂2

0
σ2

0
r ∼ χ2

r (4.10)

In the expression χ2
r, r is the redundancy or, statistical degrees of freedom. This ex-

periment performs a two-sided hypothesis test on the reference variance at a 0.05 level of

significance. The hypotheses of this experiment is below.

H0 : σ2 = σ2
0

H1 : σ2 6= σ2
0

(4.11)

The σ2
0 in this experiment is the variance chosen for the measurement error. If the test

statistic rσ̂2
0

σ2
0

is between the two-sided 95 percent critical values , the experiment accepts H0

or rejects it otherwise.

Under the same error and depth condition, the test is repeated one thousand times. The

final acceptance ratio rap of the two methods will be compared.

rap = the number of acceptance cases
the total number of test cases

(4.12)

The numbers of equations, unknowns, and redundancy of the two methods are compared

here.
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Table 4.3. Numbers of two methods

Conventional BA New method

Camera unknowns 353 353

Object point unknowns 768 0

Total unknowns 1121 353

Equations 2416 1648

Redundancy 1295 1295

As mentioned before, the small intersection angle issue will cause incorrect estimates

of object points. An incorrect estimate means that the estimated object point appears

behind any camera. During the one thousand trials, the random errors are added to the

measurements and true values of camera parameters. Each initial value of the object point

is computed from the current state. If the incorrect estimate appears, the initial condition

of this trial is called a bad initial condition. Otherwise, the trial has a good initial condition.

The total condition includes both of them.

Table 4.4. Three initial conditions

Condition Meaning

Good No incorrect object point estimates

Bad Any object point appears behind any cameras

Total All of them

The bad condition ratio = the number of Bad cases
the total number of cases

(4.13)
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Figure 4.21. Bad condition ratio

With the growth of the distance, the frequency of the bad condition increases. The charts

below show the result of the experiment. For each depth level, the total number of cases

is 1,000. The numbers of bad cases are 0, 1 , 20, 59 and 138. The bad condition has not

enough cases at depth 15 and 30 to give a meaningful ratio. The plots of bad condition start

from depth 45.

(a) Result of conventional BA. (b) Result of new method.

Figure 4.22. Comparison of acceptance ratio

In the legend of the chart, ‘Col Method’ means the conventional method. The ’BT

Method’ means the new method. The right plot shows that under any conditions, the ratios

of new method are around 95 percent. The left plots indicates that the performance changes
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as the depth increases for the conventional method. The individual comparisons of the two

methods under the good, bad, and total conditions are displayed below.

Figure 4.23. Compare the ratio under good condition

When the depth increases, under the good initial condition, the new method has a higher

acceptance ratio. Its ratio has a little variety. With the growth of the distance, the acceptance

ratio of the conventional method goes lower. Given reasonable estimates, the computations

are still impacted by the initial values. Reasonable estimates here means that all the object

points are located in front of all cameras.

Figure 4.24. Compare the ratio under bad condition
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The acceptance ratio of the bad condition states that the incorrect estimates make the

conventional method fail. The initial values impact this method a lot. The method employing

bilinear and trilinear equations does not require the initial estimates of object points.

Figure 4.25. Compare the ratio under total condition

Then under the all condition, the new method has a higher acceptance ratio than the

other. When the depth is small, the small intersection angle issue is not present, so the

incorrect estimates are not the factor to worry about. The two methods have the same

acceptance ratio. When the depth is large, the incorrect estimates caused by weak geometry

become the important factors. If the experiment is tested under the forward movement type,

this difference will be even more obvious.

There are two criteria for stopping the iterative computation. The first one is that the

update is small enough. The second one is that computation has enough iterations. After

the computation is stopped, it gives an estimated value σ̂2
0

σ2
0
r. The number of iterations of the

computations, which pass the two-sided hypothesis test, range from 6 to 13. The threshold

for max iterations is 30 . So the lower acceptance ratio is a numerical problem caused by

the unstable initial estimates. This experiment shows that the new method has a better

performance considering overcoming weak geometry.
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4.7 BA Experiment about Accuracy and Precision

This experiment tests the accuracy and precision of three methods. They are one conven-

tional method and two new methods. The first new method uses the bilinear and trilinear

equations and the general adjustment model. The second new method uses mixed collinear-

ity, bilinear and trilinear equations and constraints. These methods are evaluated by the

error and variance of camera exterior orientation parameters(EOP). In comparisons, these

parameters are separated into position and rotation parameters.

There are three comparisons among these methods. The first comparison between the

conventional method and first new one shows the properties of different condition equations.

The second comparison between the two new methods can illuminate the role of the spatial

constraint. The third comparison discusses the properties of the close and the far object

points.

There are three conclusions from those comparisons. Firstly, from the perspective of

accuracy and precision, the conventional method and the first new method have the same

accuracy and precision. Secondly, spatial constraints reduce the error and variances of the

estimations. Thirdly, both the close object points and far object points contribute to the

computation significantly.

The accuracy is evaluated by the Euclidean distance between the estimated values and

the real simulated values

d(x̂, x) = ‖x̂x‖.

The errors of position and rotation are the Euclidean distance of the position and rotation

vectors,

dpos(x̂pos, xpos) = ‖x̂posxpos‖,

and

drot(x̂rot, xrot) = ‖x̂rotxrot‖.

The parameter variances are estimated using the cofactor matrix and the estimate of the

posterior variance.

Σxx = Qxxσ̂2
0.

102



In the above expression, Qxx is the cofactor matrix of parameters. The variance of the

position and rotation are a composite of the variances position and rotation vector elements,

σ2
pos = σ2

x + σ2
y + σ2

z ,

and

σ2
rot = σ2

1 + σ2
2 + σ2

3.

The following section will compare the three methods using the dpos, drot, σ2
pos and σ2

rot.

The usage of the constraints increases the redundancy. The redundancy without con-

straint equations is

r = nc − nu,

where nc and nu are the numbers of condition equations and unknowns.

The redundancy with constraint equations is

r = nc + ns − nu − nq,

where ns and nqare the numbers of constraints and added unknowns. The added unknowns

are the parameters of the spatial features.

The table below states the redundancies of three instances in this experiment. The

numbers of equations, unknowns, and redundancy of the three methods are shown here.
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Table 4.5. Numbers of three methods

Conventional BA New One New Two

Camera unknowns 353 353 353

Object point unknowns 936 0 168

Added unknowns 0 0 26

Total unknowns 1289 353 547

Condition Equations 3072 2136 2304

Constraint Equations 0 0 64

Redundancy 1783 1783 1821

The three adjustments are tested as before at the 0.05 significance level. If the three test

statistics fall between the critical values, the result will be accepted. Under each depth level,

these methods are repeated until all of them are accepted simultaneously 50 times. The final

error values and variances are the average values of these 50 times.

4.7.1 Comparison One

The first comparison is between the conventional method and the first new method. The

differences between them are the condition equations and adjustment models. In the legend

of the chart, ‘Col Method’ means the conventional method. The ’B T Method’ represents

the new method.
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(a) dpos from two methods (b) drot from two methods

Figure 4.26. First Comparison: dpos and drot at depth 15

In figure(4.26 ) are comparisons of the dpos and drot at depth 15. The left one and right

one are the errors of position and rotation respectively. The horizontal axis represents the

camera sequence from the second camera to the last camera. The vertical axis is the error

quantity.

(a) dpos from two methods (b) drot from two methods

Figure 4.27. First Comparison: dpos and drot at depth 60
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In figure(4.27 ) are comparisons of the dpos and drot at depth 60. The first camera is

fixed. The errors increase as the frame sequence increases as it moves from left to right. At

different depths, the error plots from the two methods coincide exactly.

(a) σ2
pos from two methods (b) σ2

rot from two methods

Figure 4.28. First Comparison: σ2
pos and σ2

rot at depth 15

In figure(4.28 ) are the comparisons of σ2
pos and σ2

rot at depth 15.

(a) σ2
pos from two methods (b) σ2

rot from two methods

Figure 4.29. First Comparison: σ2
pos andσ2

rot at depth 60

In figure(4.29 ) are the comparisons of σ2
pos and σ2

rot at depth 60, again no differences here.
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The results show that the variances increase with increasing frame number as it moves

away from the first camera. At different heights, both the error and the variance plots from

two methods exactly coincide. There is no difference between the two methods in terms of

accuracy and precision from the statistical results.

So, the conversion of the condition equations and adjustment models has no impact on

the computation results. The TFM modelling achieves the same results as the collinearity

modelling. This is a demonstration of the correctness of the TFM model. So the two condi-

tion equations may be used together. In the following section, the comparison is between a

constrained versus unconstrained adjustment using TFM.

4.7.2 Comparison Two

The next comparison is between the two new methods to demonstrate the advantages

of spatial constraints. The difference between them is whether spatial constraints are used.

In the legend of the chart, ‘Adj no constraint’ means the unconstrained method. The ’Adj

with constraints’ represents the constrained, new method.

(a) dpos from two methods (b) drot from two methods

Figure 4.30. Second Comparison: dpos and drot at depth 15

In figure(4.30 ) are comparisons of the dpos and drot at depth 15.
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(a) dpos from two methods (b) drot from two methods

Figure 4.31. Second Comparison: dpos and drot at depth 60

In figure(4.31 ) are comparisons of the dpos and drot at depth 60.

The plots show that the constraints have a beneficial influence on the computation. At

the relatively small depth, all the estimation errors are reduced by the presence of constraints

in figure (4.30 ). At a relatively larger depth, most of the errors are reduced in figure (4.31 ).

(a) σ2
pos from two methods (b) σ2

rot from two methods

Figure 4.32. Second Comparison: σ2
pos and σ2

rot at depth 15

In figure(4.32 ) are comparisons not of position and rotation errors, but of their uncer-

tainties σ2
pos and σ2

rot at depth 15.
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(a) σ2
pos from two methods (b) σ2

rot from two methods

Figure 4.33. Second Comparison: σ2
pos and σ2

rot at depth 60

In figure(4.33 ) are the same comparisons of the σ2
pos and σ2

rot at depth 60.

At different heights, the variances with constraints are always lower than the ones without

the constraints. When the depth is relatively small, the constraints have a more noticeable

effect. At the relatively large depth, the influence is reduced.

4.7.3 Comparison Three

The third comparison presents the performance of the two new methods under different

depths individually.
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(a) dpos at two depths. (b) drot at two depths.

Figure 4.34. Third Comparison: dpos, drot from the unconstrained method

In figure(4.34 ) are presentations of dpos and drot at different depths, always with no

constraints. The two depths represent the close and far object point scenarios. The above

plots show that the estimation of the position weakens as the depth increases, but the

estimation of rotation is just the opposite.

(a) dpos at two depths. (b) drot at two depths.

Figure 4.35. Third Comparison: dpos, drot from the constrained method

In figure(4.35 ) are the same comparisons of dpos and drot but this time with the constrained

method at depth 15 and 60. Compared to the previous plots, the conclusion is not changing

110



after adding the constraints. The two position error graphs are very similar, and so are the

two rotation error graphs.

(a) σ2
pos at four depths. (b) σ2

rot at four depths.

Figure 4.36. Third Comparison: σ2
pos, σ2

rot from the unconstrained method

In figure(4.36 ) are comparisons of the σ2
pos and σ2

rot from the unconstrained method at

four different depths.

(a) σ2
pos at four depths. (b) σ2

rot at four depths.

Figure 4.37. Third Comparison: σ2
pos, σ2

rot from the constrained method

In figure(4.37 ) are comparisons of the σ2
pos and σ2

rot from the constrained method at four

different depths.
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The two plots of σ2
pos show that the position variance increases with depth increase. The

two plots of σ2
rot show that the inverse rule applies to the rotation variance.

As the depth increases, the errors and variances of positions will increase, but the errors

and variances of rotations decrease. This phenomenon of the estimation error and variances

means that the close points enhance the estimation of camera positions, and the far points

improve the estimation of camera rotation. The significant role of far points is also shown

in Schneider’s(2012)[122 ] experiment. The close point scenario gives a much more stable

position estimation but a weaker rotation estimation than the far point scenario. So it is

needed to keep both of the far object points and the close points. Elimination of the far

object points in the adjustment will decrease the estimation quality.

4.8 Real Data Experiment

A real data experiment includes camera calibration and BA algorithm testing in the

following section.

4.8.1 Camera Calibration

The camera calibration has two steps and uses a printed checkerboard target array. The

first step is the initial linear estimation of the elements of the K matrix. Zhang’s(2000)[126 ]

algorithm is used to realize it. The second step is the nonlinear estimation of the camera

interior orientation parameters and lens distortion parameters using the conventional BA

algorithm. In the experiment, the conventional radial distortion and decentering distortion of

Alharthy and Bethel(2002)[93 ] are considered. The radial distortion needs three parameters

(k1, k2, k3). Decentering distortion needs two parameters (p1, p2). The size of the sensor in

the camera is 4032 pixels by 3024 pixels. There are 47 images of the template used in the

camera calibration. Each image has 80 detected Harris corner points.

Note that there may be issues with calibration taking place at one focus distance and

camera use taking place at different focus setting. The autofocus feature makes this difficult

to control.
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Figure 4.38. One image of Template

Figure 4.39. Detected corners

In the figure above, the green points are the detected corners using Harris’s(1988)[127 ]

algorithm.

The estimated K matrix is the one below.


3349.39 −1.35 2011.73

0 3357.60 1518.52

0 0 1

 (4.14)
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The initial value of the focal length is 3353.50, which is the average of 3349.39 and

3357.60. The initial values of the (k1k2, k3) and (p1, p2) are zero. The estimated values and

standard deviations are in the below table.

Table 4.6. Camera Calibration Result

parameter x0 y0 f k1 k2 k3 p1 p2

value 2018.39 1505.86 3342.00 -0.0609 0.146 -0.110 0.777 -0.302

σ 1.91 1.84 2.67 0.0012 0.0033 0.0027 0.34 0.32

These parameters are used to rectify the image measurements in the work below.

Figure 4.40. Calibrated image points

In the figure above, the green points are the detected corner points. And the red points

are the rectified ones. The largest correction in this example is around 15 pixels in the figure

above. The corrections become large when points are close to the boundaries.
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4.8.2 BA Algorithm Testing

This experiment involves 15 images and 24 object points. The 24 object points are visible

from all images. The camera moves forward while taking the photos. The first images and

object points are displayed below. The observations are marked by blue points in the images.

Four rectangles are used and their corner points are measured.

Figure 4.41. View of testing field

(a) One rectangle with measured corner
points.

(b) Corners of a plane.

Figure 4.42. Object points distribution

All of the image points are measured manually. The image points are rectified and

normalized. So only camera positions and rotations are considered in the experiment.
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The coordinate system of the first camera is fixed as the reference coordinates system.

Every other frame’s initial position and rotation values are computed using the image-pair

method with respect to the first camera. Each essential matrix E is linearly estimated using

the eight-point algorithm. The relative position C̃i and rotation R are retrieved from the

essential matrix and optimized nonlinearly. The relative distance ‖C̃j‖/‖C̃i‖is estimated

using the designed method in a previous section. These three steps prepare the initial values

for each camera for the following test.

The two designed BA methods(constrained and unconstrained) are tested individually.

The figures below show the reconstructed objected points and the camera movement.

(a) View from front. (b) View from the side.

Figure 4.43. Reconstruction and camera movement (camera movement
clearly shown on the plot on the right)

The small colored triangles represent the cameras. The blue points represent the object

points. The distance between the first two cameras is set as 1 unit distance. The computed

distance between the rectangles and first camera is around 34. The true size of the rectangles

is 7.6 cm by 7.6 cm.

The second test involves BA with spatial constraints. The distance constraint is employed

for the length of the rectangle sides. And the plane constraint is engaged for the four corner
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points on the basketball backboard. The differences brought by the constraints are evaluated

by the Euclidean distances between the two results, in figure(4.44 ).

(a) Distance of position. (b) Distance of rotation.

Figure 4.44. Differences brought by spatial constraints

There are no dramatic conclusions from these plotted differences, just that the new

method appears to work in both constrained and unconstrained form using the new TFM

methods. An instructive additional step would have been to compare estimated lengths to

measured lengths to get an absolute indication of the benefit of the constraints. But this

was not done.
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5. SUMMARY And FUTURE WORK

This chapter gives the conclusion of the thesis and some recommended future work.

5.1 Summary

This study has three parts. The first one is the derivations and the analyses of the multi-

frame geometry. The second part has the two new TFM-based BA methods. The third part

is the collection experiments to illustrate the important contributions of the study.

In the first part, this thesis gives the nested derivations and analyses of multi-frame

geometry. There are three different approaches given in the derivation and analysis sec-

tion. These approaches are the matrix determinant, spatial geometry, and column vector

approaches. The zero-determinant condition is used for the derivations of the trilinear and

quadrilinear equations. But a quadrilinear equation is not found in this way. And it shows

that the two-frame and three-frame conditions will guarantee the four-frame cases. The spa-

tial geometry approach starts from the two-frame case to the multi-frame case. It explains

some spatial properties of the trilinear equations, including the cross product and the inner

product. It also indicates the minimal and sufficient equations in three-frame geometry. Fi-

nally, this approach promotes a new TFM and extends it from three-frame geometry to the

general multi-frame cases. This TFM provides a concise set of minimal and sufficient equa-

tions, including (n − 1) bilinear equations and (n − 2) trilinear equations for n frames. The

column vector approach studies and analyzes the dependence of the three types of equation.

It starts from single-frame projections to the multi-frame case. For each type of equation,

it gives the way to find out redundant equations. But the closed-form expressions of those

equations are not displayed in the thesis. Finally it leads to revisiting the many conclusions

from the other two approaches. For example, it also indicates that the quadrilinear equations

are dependent on the trilinear equations.

In the application section, there are two TFM-based BA methods developed. The two

methods use TFM as the condition equation fully and partially, replacing the collinearity

equations. The second method uses the collinearity equations to exploit the object structures’

spatial characteristics, i.e. by constraints for lines, planes, and point distances. Two other
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two applications, image coordinate prediction, and relative distance estimation, are designed

and tested, the first one in the context of fisheye imaging.

Synthetic and real data experiments demonstrate the functionality, and validity, and some

advantages of the TFM and the two TFM-based methods. The conclusions are summarized

here. When an unstable estimate of the object points appears, the TFM-based BA methods

have a higher acceptance ratio of the adjustment results. The TFM-based BA method

achieves the same ability as the collinearity-based BA method with respect to accuracy

and precision. And utilizing the spatial constraints promotes improved estimations. The

experiment also shows that close object points give a more stable position estimation but

a weaker rotation estimation than distant object points. So eliminating the distant object

points in the adjustment will decrease the estimation quality. And the TFM, in general,

handles distant points in an improved manner versus explicit object point methods.

5.2 Summary of Original Contributions of this Research

1. New derivations of the trilinear equations.

This paper gives two new derivations of the trilinear equations for the three-frame and

four-frame geometry.

2. A new analysis of multi-frame geometry.

The spatial geometry analysis approach gives a new TFM for multi-frame geometry. The

column vector approach shows that the quadrilinear equations are linear combinations of the

trilinear equations.

3. This thesis gives two algorithms for conventional applications.

In the image coordinate prediction algorithm, the new method resolves the ambiguity in

the wide-field camera. The relative distance estimation algorithm works well for close and

distant object points.

4. There are two BA algorithms using bilinear and trilinear equations different from

other researchers.

This thesis implements the new TFM model in the BA algorithm. Another new BA

method, which combinates the TFM and collinearity equations with spatial constraints, is
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given in the thesis. The research discovers that the TFM-based BA algorithm has a higher

acceptance ratio than the conventional method.

5.3 Future Work

There is still some necessary work should be done. This includes the theoretical model

study and pratical algorithm developments.

The TFM should integrate the line feature(without object points). The point-point-line,

point-line-line, and line-line-line relations are not addressed in this thesis. These relations

should also be considered under the multi-frame cases to give minimal and sufficient equa-

tions. This is a future work of the model study.

In order to make the two TFM-based BA methods become realistic and comprehensive,

some necessary functions should be added to the current techniques, such as self-calibration

and free network adjustment. Up to now, only the camera positions and rotations are con-

sidered. The camera interior orientation parameters and lens distortion parameters should

be integrated into the TFM and BA methods. The free network adjustment technique is a

necessary function for close-range photogrammetry. In the current algorithms, the reference

system is fixed to the first camera. This should be improved for practical applications.

The TFM has some advantages in different implementing environments. There are four

particular situations which fit with the strengths of the TFM methods.

Firstly, the TFM works on the image points at infinity, whose third component equals

zero. This kind of point may be common for a large view angle camera. The tiny third

component makes the proportion in the collinearity equation numerically unstable. Any

future TFM should work on the fisheye camera model.

The second advantage is memory saving. The unknowns of the object structure param-

eters are saved using the TFM, irrespective of being point or line features. And the TFM

saves three condition equations for each point. In conventional computations, the size of the

object feature parameters is much larger than the size of the camera parameters. When the

number of frames is vast, the advantage of saving unknowns and condition equations will
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be obvious. After the BA computation, the object structures could be reconstructed from

optimized camera parameters and observations.

Thirdly, the trilinear equation deals with the line feature easily. The line features will

increase the number of the condition equations. The line-line-line, point-line-line equations

could give the condition equation even for the images with no overlap!

Finally, the TFM has the potential advantage in the vision-based real-time orientation

such as SLAM, as the TFM is more stable when unstable object structures appear. It seems

promising to implement the TFM in such applications.
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A. APPENDICES

There are some full steps derivations in the appendix. The first one is the derivation of the
simplified projection equation (3.4 ). The second one is the derivation of zero determinant
condition of three-frame matrix. The third one is the derivation of zero determinant condition
of four-frame matrix. The final section is the derivations, expressions and derivatives of the
trilinear equation.

A.1 Derivation of Column Vector Approach

One object point gives two equations to one camera in the equation (3.2 ). There is a
simplified projection relation for this issue, as shown below.

x ∼ M [I| − C̃]X where M = KR or R

M−1x ∼ [I| − C̃]X where χ = M−1x = [u, v, w]T

[χ]× χ ∼ [χ]× [I| − C̃]X = 0

The above derivation shows [M−1x]× [I| − C̃]X = 0. If χ4−i 6= 0, i ∈ [1, 3], there are three
matrices Si with det(Si) 6= 0 corresponding. This expression is abbreviated as the one below.

[χ]× [I| − C̃]X = 0 (A.1)

A.1.1 Format One

If χ3 = w 6= 0, replacing the third column of [χ]× by the vector χ gives a designed matrix
S−1

1 .

S−1
1 =

 0 −w u
w 0 v

−v u w

 where det(S−1
1 ) = (u2 + v2 + w2)w,

and

S1 =

 −uv u2 + w2 −vw
−v2 − w2 uv uw

uw vw w2

 · 1
det(S−1

1 )
where S1 [χ]× ∼

 1 0 −u/w
0 1 −v/w
0 0 0

 .

Multiplying the S1 to (A.1 )gives equation below.

S1 [χ]× [I| − C̃]X = 0 1 0 −u/w −c1 + c3u/w
0 1 −v/w −c2 + c3v/w
0 0 0 0

 X = 0 where [c1, c2, c3]T = C̃
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This expression is abbreviated as the one below.[
1 0 m n
0 1 p q

]
X = 0 (A.2)

A.1.2 Format Two

If χ2 = v 6= 0, replacing the second column of [χ]× by the vector χ gives a designed
matrix S−1

2 .

S−1
2 =

 0 u v
w v −u

−v w 0

 where det(S−1
2 ) = (u2 + v2 + w2)v,

and

S2 =

 uw vw −u2 − v2

uv v2 vw
v2 + w2 −vu −uw

 · 1
(det(S−1

2 )
where S2 [χ]× ∼

 1 −u/v 0
0 0 0
0 −w/v 1

 .

Multiplying the S2 to (A.1 )gives equation below.

S2 [χ]× [I| − C̃]X = 0 1 −u/v 0 −c1 + c2u/v
0 0 0 0
0 −w/v 1 −c3 + c2w/v

 X = 0 where [c1, c2, c3]T = C̃

This expression is abbreviated as the one below.[
1 m 0 n
0 p 1 q

]
X = 0 (A.3)

A.1.3 Format Three

If χ1 = u 6= 0, replacing the first column of [χ]× by the vector χ gives a designed matrix
S−1

3 .

S−1
3 =

 u −w v
v 0 −u
w u 0

 where det(S−1
3 ) = (u2 + v2 + w2)u,

and

S3 =

 uw vw −u2 − v2

uv v2 vw
v2 + w2 −vu −uw

 · 1
det(S−1

3 )
where S3 [χ]× ∼

 0 0 0
−v/u 1 0
−w/u 0 1

 .
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Multiplying the S3 to (A.1 )gives equation below.

S3 [χ]× [I| − C̃]X = 0 0 0 0 0
−v/u 1 0 −c2 + c1v/u
−w/u 0 1 −c3 + c1w/u

 X = 0 where [c1, c2, c3]T = C̃

This expression is abbreviated as the one below.[
m 1 0 n
p 0 1 q

]
X = 0 (A.4)

A.1.4 Column Vectors

At here the combinations of the three types of equations are talked about. The combi-
nation of two simplified projection (A.2 ) gives the four equations, which are below in the
stacked matrix format. 

1 0 m1 n1
0 1 p1 q1
1 0 m2 n2
0 1 p2 q2

 X = 0

Gaussian elimination of the above equation gives the equation below.
1 0 m1 n1
0 1 p1 q1
0 0 m2 − m1 n2 − n1
0 0 p2 − p1 q2 − q1

 X = 0

where
[

U2 V2
]

=
[

m2 − m1 n2
q2 − q1 q2

]
and U2 ‖ V2

The combination of simplified projection (A.2 ) and (A.3 ) gives the four equations, which
are below in the stacked matrix format.

1 0 m1 n1
0 1 p1 q1
1 m2 0 n2
0 p2 1 q2

 X = 0

Gaussian elimination of the above equation gives the equation below.
1 0 m1 n1
0 1 p1 q1
0 0 −m1 − m2p1 n2 − n1 − m2q1
0 0 1 − p2p1 q2 − p2q1

 X = 0
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where
[

U2 V2
]

=
[

−m1 − m2p1 n2 − n1 − m2q1
1 − p2p1 q2 − p2q1

]
and U2 ‖ V2

The combination of simplified projection (A.2 ) and (A.4 ) gives the four equations, which
are below in the stacked matrix format.

1 0 m1 n1
0 1 p1 q1

m2 1 0 n2
p2 0 1 q2

 X = 0

Gaussian elimination of the above equation gives the equation below.
1 0 m1 n1
0 1 p1 q1
0 0 −m2m1 − p1 n2 − m2n1 − q1
0 0 1 − p2m1 q2 − p2n1

 X = 0

where
[

U2 V2
]

=
[

−m2m1 − p1 n2 − m2n1 − q1
1 − p2m1 q2 − p2n1

]
and U2 ‖ V2

Given many frames, and the below format is easy to get. 1 0 m1 n1
0 1 p1 q1
0 0 U V

 X = 0 and U ‖ V (A.5)

To brief the discussion, the expression (A.2 ) is used in the column vector approach analyses.
Given four sets of equations (A.2 ), the eight equations are below in the stacked matrix

format. 

1 0 m1 n1
0 1 p1 q1
1 0 m2 n2
0 1 p2 q2
1 0 m3 n3
0 1 p3 q3
1 0 m4 n4
0 1 p4 q4


X = 0
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Let the i − th group minus the first group. This Gaussian elimination of the above
equation gives the equations below.

1 0 m1 n1
0 1 p1 q1
0 0 m2 − m1 n2 − n1
0 0 p2 − p1 q2 − q1
0 0 m3 − m1 n3 − n1
0 0 p3 − p1 q3 − q1
0 0 m4 − m1 n4 − n1
0 0 p4 − p1 q4 − q1


X = 0 (A.6)

There is another format of this expression. Let the i−th group minus the (i−1)th group.
This Gaussian elimination of the above equation gives the equations below.

1 0 m1 n1
0 1 p1 q1
0 0 m2 − m1 n2 − n1
0 0 p2 − p1 q2 − q1
0 0 m3 − m2 n3 − n2
0 0 p3 − p2 q3 − q2
0 0 m4 − m3 n4 − n3
0 0 p4 − p3 q4 − q3


X = 0

This method is the linear transformation previous way (A.6 ). It will makes some dependent
expressions talked in the column vector analyses. The method (A.6 ) is always used in this
thesis.

A.2 Zero Determinant Condition of Three-Frame Geometry

The derivation starts from the zero determinant condition of in AT
Λ3AΛ3 in (3.13 ). There

is a simplified projection relation for this issue, as shown below.

AT
Λ3AΛ3 =


xT

2 R2RT
2 x2 0 −xT

2 R2x1 xT
2 R2C̃2

0 xT
3 R3RT

3 x3 −xT
3 R3x1 xT

3 R3C̃3

−xT
1 RT

2 x2 −xT
1 RT

3 x3 2xT
1 x1 −xT

1 (C̃2 + C̃3)

C̃T
2 RT

2 x2 C̃T
3 RT

3 x3 −(C̃T
2 + C̃T

3 )x1 C̃T
2 C̃2 + C̃T

3 C̃3


The components of the matrix M = AT

Λ3AΛ3 are well defined by the space vectors and
their intersection angles, in the following equations. And ‖x1‖ = ‖RT

2 x2‖ = ‖RT
3 x3‖ =

‖C̃2‖ = 1 and ‖C̃3‖ = t2.
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xT
1 RT

2 x2 = cos α1 xT
1 RT

3 x3 = cos α2

C̃T
2 RT

2 x2 = cos (π − β1) C̃T
3 RT

3 x3 = cos (π − β2) t2

xT
1 C̃2 = cos θ1 xT

1 C̃3 = cos θ2t2

The matrix M = AT
Λ4AΛ4 equals to the one below.

AT
Λ3AΛ3 =


1 0 − cos α1 cos (π − β1)

0 1 − cos α2 cos (π − β2) t2

− cos α1 − cos α2 2 −(cos θ1 + cos θ2t2)

cos (π − β1) cos (π − β2) t2 −(cos θ1 + cos θ2t2) 1 + t2
2



The matrix M = AT
Λ3AΛ3 can be partitioned into four 2 by 2 blocks. The determinant of

the matrix is computed by the blocks.

det (M) = det (Ma) det
(
Md − McM

−1
a Mb

)
(A.7)

with
M =

[
Ma Mb

Mc Md

]
,

where
Ma =

[
1 0
0 1

]

Mb =
[

− cos α1 cos (π − β1)
− cos α2 cos (π − β2) t2

]

Mc =
[

− cos α1 − cos α2
cos (π − β1) cos (π − β2) t2

]

Md =
[

2 −(cos θ1 + cos θ2t2)
−(cos θ1 + cos θ2t2) 1 + t2

2

]
.

And det (Ma) = 1.

det (M) = 0 ⇔
(
Md − McM

−1
a Mb

)
= (Md − McMb) = 0
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Md − McM−1
a Mb =

 2 −(cos θ1 + cos θ2t2)

−(cos θ1 + cos θ2t2) 1 + t2
2


−

 − cos α1 − cos α2

cos (π − β1) cos (π − β2) t2

  − cos α1 cos (π − β1)

− cos α2 cos (π − β2) t2


=

 2 −(cos θ1 + cos θ2t2)

−(cos θ1 + cos θ2t2) 1 + t2
2


−

 cos2α1 + cos2α2 cos α1 cos β1 + cos α2 cos β2t2

cos α1 cos β1 + cos α2 cos β2t2 cos2β1 + cos2β2t2
2


=

 2 cos(α1 cos β1) + cos(α2 cos β2)t2

cos(α1 cos β1) + cos(α2 cos β2)t2 1 + t2
2


−

 cos2α1 + cos2α2 cos α1 cos β1 + cos α2 cos β2t2

cos α1 cos β1 + cos α2 cos β2t2 cos2β1 + cos2β2t2
2


=

 2 − cos2α1 − cos2α2 − sin α1 sin β1 − sin α2 sin β2t2

− sin α1 sin β1 − sin α2 sin β2t2 1 + t2
2 − cos2β1 − cos2β2t2

2


=

 sin2α1 + sin2α2 − sin α1 sin β1 − sin α2 sin β2t2

− sin α1 sin β1 − sin α2 sin β2t2 sin2β1 + sin2α2t22


The determinant of this 2 by 2 matrix is zero. It represents the determinant condition

of the full 4 by 4 matrix.

det
(
Md − McM

−1
a Mb

)
=

(
sin2α1 + sin2α2

) (
sin2β1 + sin2β2t2

2
)

− (sin α1 sin β1 + sin α2 sin β2t2)2

= sin2β1sin2α2 − 2t2 sin α1 sin β1 sin α2 sin β2 + t2
2sin2α1sin2β2

= (sin α2 sin β1 − t2 sin α1 sin β2)2

The expression of determinant of AT
Λ3AΛ3 has a quadratic format.

det
(
AT

Λ3AΛ3
)

= (sin α2 sin β1 − t2 sin α1 sin β2)2 (A.8)

So the determinant condition is equivalent the equation below.

det = 0 ⇒ sin α2 sin β1 − t2 sin α1 sin β2 = 0 (A.9)
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A.3 Zero Determinant Condition for Four-Frame Geometry

The derivation starts from the zero determinant condition of in AT
Λ4AΛ4 in (3.31 ). There

is a simplified projection relation for this issue, as shown below.

AT
Λ4AΛ4 =



xT
2 R2RT

2 x2 0 0 −xT
2 R2x1 xT

2 R2C̃2

0 xT
3 R3RT

3 x3 0 −xT
3 R3x1 xT

3 R3C̃3

0 0 xT
4 R4RT

4 x4 −xT
4 R4x1 xT

4 R4C̃4

−xT
1 RT

2 x2 −xT
1 RT

3 x3 −xT
1 RT

4 x4 3xT
1 x1 −xT

1 (C̃2 + C̃3 + C̃4)

C̃T
2 RT

2 x2 C̃T
3 RT

3 x3 C̃T
4 RT

4 x4 −(C̃T
2 + C̃T

3 + +C̃T
4 )x1 C̃T

2 C̃2 + C̃T
3 C̃3 + C̃T

4 C̃4



The components of the matrix M = AT
Λ4AΛ4 are well defined by the space vectors and

their intersection angles, in the following equations. And ‖x1‖ = ‖RT
2 x2‖ = ‖RT

3 x3‖ =
‖RT

4 x4‖ = ‖C̃2‖ = 1 and ‖C̃3‖ = t2,‖C̃4‖ = t3.

xT
1 RT

2 x2 = cos α1 xT
1 RT

3 x3 = cos α2 xT
1 RT

4 x4 = cos α3

c̃T
2 RT

2 x2 = cos (π − β1) c̃T
3 RT

3 x3 = cos (π − β2) t2 c̃T
4 RT

4 x4 = cos (π − β3) t3

xT
1 C̃2 = cos θ1 xT

1 C̃3 = cos θ2t2 xT
1 C̃4 = cos θ3t3

The matrix M = AT
Λ4AΛ4 equals to the one below.

AT
Λ4AΛ4 =



1 0 0 − cos α1 cos (π − β1)

0 1 0 − cos α2 cos (π − β2) t2

0 0 1 − cos α3 cos (π − β3) t3

− cos α1 − cos α2 − cos α3 3 −(cos θ1 + cos θ2t2 + cos θ3t3)

cos (π − β1) cos (π − β2) t2 cos (π − β3) t3 −(cos θ1 + cos θ2t2 + cos θ3t3) 1 + t2
2 + t2

3



The matrix M = AT
Λ3AΛ3 can be partitioned into four 2 by 2 blocks. The determinant of

the matrix is computed by the blocks.

det (M) = det (Ma) det
(
Md − McM

−1
a Mb

)
(A.10)

with
M =

[
Ma Mb

Mc Md

]
,
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where

Ma =

 1 0 0
0 1 0
0 0 1



Mb =

 − cos α1 cos (π − β1)
− cos α2 cos (π − β2) t2
− cos α3 cos (π − β3) t3


Mc =

[
− cos α1 − cos α2 − cos α3

cos (π − β1) cos (π − β2) t2 cos (π − β3) t3

]

Md =
[

3 −(cos θ1 + cos θ2t2 + cos θ3t3)
−(cos θ1 + cos θ2t2 + cos θ3t3) 1 + t2

2 + t2
3

]
.

And det (Ma) = 1.

det (M) = 0 ⇔
(
Md − McM

−1
a Mb

)
= (Md − McMb) = 0

Md − McM−1
a Mb =

 3 −(cos θ1 + cos θ2t2 + cos θ3t3)

−(cos θ1 + cos θ2t2 + cos θ3t3) 1 + t2
2 + t2

3



−

 − cos α1 − cos α2 − cos α3

cos (π − β1) cos (π − β2) t2 cos (π − β3) t3




− cos α1 cos (π − β1)

− cos α2 cos (π − β2) t2

− cos α3 cos (π − β3) t3


=

 3 −(cos θ1 + cos θ2t2 + cos θ3t3)

−(cos θ1 + cos θ2t2 + cos θ3t3) 1 + t2
2 + t2

3


−

 cos2α1 + cos2α2 + cos2α3 cos α1 cos β1 + cos α2 cos β2t2 + cos α3 cos β3t3

cos α1 cos β1 + cos α2 cos β2t2 + cos α3 cos β3t3 cos2β1 + cos2β2t2
2 + cos2β3t2

3


=

 3 cos(α1 cos β1) + cos(α2 cos β2)t2 + cos(α3 cos β3)t3

cos(α1 cos β1) + cos(α2 cos β2)t2 + cos(α3 cos β3)t3 1 + t2
2 + t2

3


−

 cos2α1 + cos2α2 + cos2α3 cos α1 cos β1 + cos α2 cos β2t2 + cos α3 cos β3t3

cos α1 cos β1 + cos α2 cos β2t2 + cos α3 cos β3t3 cos2β1 + cos2β2t2
2 + cos2β3t2

3


=

 3 − cos2α1 − cos2α2 − cos2α3 − sin α1 sin β1 − sin α2 sin β2t2 − sin α3 sin β3t3

− sin α1 sin β1 − sin α2 sin β2t2 − sin α3 sin β3t3 1 + t2
2 + t2

3 − cos2β1 − cos2β2t2
2 − cos2β3t2

3


=

 sin2α1 + sin2α2 + sin2α3 − sin α1 sin β1 − sin α2 sin β2t2 − sin α3 sin β3t3

− sin α1 sin β1 − sin α2 sin β2t2 − sin α3 sin β3t3 sin2β1 + sin2α2t22 + sin2α3t32
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The determinant of this 2 by 2 matrix is zero. It represents the determinant condition
of the full 5 by 5 matrix.

det
(
Md − McM

−1
a Mb

)
=

(
sin2α1 + sin2α2 + sin2α3

) (
sin2β1 + sin2β2t2

2 + sin2β3t3
2
)

− (sin α1 sin β1 + sin α2 sin β2t2 + sin α3 sin β3t3)2

= sin2β1sin2α2 − 2t2 sin α1 sin β1 sin α2 sin β2 + t2
2sin2α1sin2β2

+ sin2β1sin2α3 − 2t3 sin α1 sin β1 sin α3 sin β3 + t3
2sin2α1sin2β3

+ t2
2sin2β2sin2α3 − 2t2t3 sin α2 sin β2 sin α3 sin β3 + t3

2sin2α2sin2β3

= (sin α2 sin β1 − t2 sin α1 sin β2)2 + (sin α3 sin β1 − t3 sin α1 sin β3)2

+ (t2 sin α3 sin β2 − t3 sin α2 sin β3)2

The expression of determinant of AT
Λ4AΛ4 has a quadratic format.

det
(
AT

Λ4AΛ4
)

= (sin α2 sin β1 − t2 sin α1 sin β2)2 + (sin α3 sin β1 − t3 sin α1 sin β3)2

+(t2 sin α3 sin β2 − t3 sin α2 sin β3)2

(A.11)
So the determinant condition gives the equations below.

det = 0 ⇒ sin α2 sin β1 − t2 sin α1 sin β2 = 0
sin α3 sin β1 − t3 sin α1 sin β3 = 0
t2 sin α3 sin β2 − t3 sin α2 sin β3 = 0

(A.12)

A.4 Derivations, Expressions and Derivatives of the trilinear equation

The derivations, closed form expressions and the derivatives are displayed here to let
users implement them easily.

A.4.1 Derivation of the outer product

This section gives the derivation of outer product equation (3.23 ) . The four normal
vectors are

a = x1×RT
2 x2 b = C̃2×RT

2 x2

c = x1×RT
3 x3 d = C̃3×RT

3 x3.

They can be noted in the below expressions, considering u × v = [u]× v = − [v]× u.

a = −
[
RT

2 x2
]

×
x1 b = −

[
RT

2 x2
]

×
C̃2

c = −
[
RT

3 x3
]

×
x1 d = −

[
RT

3 x3
]

×
C̃3.
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The outer product, adT = bcT , is the one below,[
RT

2 x2
]

×
x1(

[
RT

3 x3
]

×
C̃3)T =

[
RT

2 x2
]

×
C̃2(

[
RT

3 x3
]

×
x1)T

The following steps are given here.[
RT

2 x2
]

×
x1(C̃3)T (

[
RT

3 x3
]

×
)T =

[
RT

2 x2
]

×
C̃2(x1)T (

[
RT

3 x3
]

×
)T

Moving the right part to the left gives the expression below.[
RT

2 x2
]

×
x1(C̃3)T (

[
RT

3 x3
]

×
)T −

[
RT

2 x2
]

×
C̃2(x1)T (

[
RT

3 x3
]

×
)T = [0]3×3[

RT
2 x2

]
×

(x1C̃T
3 − C̃2xT

1 )
[
RT

3 x3
]

×
= [0]3×3

RT
2 [x2]× R2(x1C̃T

3 − C̃2xT
1 )RT

3 [x3]× R3 = [0]3×3

The expression of outer product(3.23 ) is got in the final row.

[x2]× R2(x1C̃T
3 − C̃2xT

1 )RT
3 [x3]× = [0]3×3

Then the expression of outer product(3.24 ) is got.

A.4.2 Derivation of dependency in the outer product

This section shows the dependency in the outer product. The four normal vectors are

a = x1×RT
2 x2 b = C̃2×RT

2 x2

c = x1×RT
3 x3 d = C̃3×RT

3 x3.

The x1 = [x, y, 1]T and RT
2 x2 = [u, v, w] give the equation below.

a = [x1]× RT
2 x2 =

 0 −1 y
1 0 −x

−y x 0


 u

v
w

 =

 v − yw
−u + xw
uy − vx

 =

 a1
a2
a3

 (A.13)

The above equation shows that a3 = (−x)a1+(−y)a2. The expression of c shows that c3 =
(−x)c1 + (−y)c2. The a ‖ b and c ‖ d give b3 = (−x)b1 + (−y)b2 and d3 = (−x)d1 + (−y)d2.

Then the outer product adT = bcT

 a1d1 a1d2 a1d3
a2d1 a2d2 a2d3
a3d1 a3d2 a3d3

 =

 b1c1 b1c2 b1c3
b2c1 b2c2 b2c3
b3c1 b3c2 b3c3

 ,
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has the expression below. a1d1 a1d2 −xa1d1 − ya1d2
a2d1 a2d2 −xa2d1 − ya2d2

−xa1d1 − ya2d1 −xa1d2 − ya2d2 x2a1d1 + xya1d2 + xya2d1 + y2a2d2


=  b1c1 b1c2 −xb1c1 − yb1c2

b2c1 b2c2 −xb2c1 − yb2c2
−xb1c1 − yb2c1 −xb1c2 − yb2c2 x2b1c1 + xyb1c2 + xyb2c1 + y2b2c2

 .

The above expression shows the dependency in the outer product. Then a1d1 = b1c1, a1d2 =
b1c2, a2d1 = b2c1 and a2b2 = c2d2 can guarantee the other five equations.

A.4.3 Expressions of the trilinear equations

The trilinear equation (3.22 ) for the frame triplet (o, p, q) using the notations vo = RT
o xo,

vp = RT
p xp and vq = RT

q xq. This equation is noted as To,p,q. And the three base vectors are
e1, e2, and e3.

vT
p

(
[vo]× N

[
C̃q − C̃o

]
×

−
[
C̃p − C̃o

]
×

N [vo]×
)

vq =0 (A.14)

This equation is written in the following inner product form of two three dimensional
vectors. [

vT
p H1

Nvq, vT
p H2

Nvq, vT
p H3

Nvq

]
vo = 0

and H i
N = [ei]× N

[
C̃q − C̃o

]
×

−
[
C̃p − C̃o

]
×

N [ei]× .
(A.15)

There are the closed form expressions of the H i
N , respect to the different N matrices.

The three camera positions are noted as C̃o = [xo, yo, zo]T ,C̃p = [xp, yp, zp]T , and C̃q =
[xq, yq, zq]T .

When N = I, the three matrices H i
N are

H1
N =

 0 yo − yp zo − zp

yq − yo xp − xq 0
zp − zo 0 xp − xq

 ,

H2
N =

 yp − yq xq − xo 0
xo − xp 0 zo − zp

0 zq − zo yp − yq

 ,

H3
N =

 zp − zq 0 xq − xo

0 zp − zq yq − yo

xo − xp yo − yp 0

 .
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When N = [e1]×, the three matrices H i
N are

H1
N =

 0 zo − zp yp − yo

zo − zq 0 xq − xp

yq − yo xp − xq 0

 ,

H2
N =

 zp + zq − 2zo 0 xo − xq

0 0 0
xo − xp 0 0

 ,

H3
N =

 2yo − yp − yq xq − xo 0
xp − xo 0 0

0 0 0

 .

When N = [e2]×, the three matrices H i
N are

H1
N =

 0 0 0
0 2zo − zp − zq yq − yo

0 yp − yo 0

 ,

H2
N =

 0 zq − zo yp − yq

zp − zo 0 xo − xp

yq − yp xo − xq 0

 ,

H3
N =

 0 yo − yp 0
yo − yq xp + xq − 2xo 0

0 0 0

 .

When N = [e3]×, the three matrices H i
N are

H1
N =

 0 0 0
0 0 zo − zp

0 zo − zq yp + yq − 2yo

 ,

H2
N =

 0 0 zp − zo

0 0 0
zq − zo 0 2xo − xp − xq

 ,

H3
N =

 0 zq − zp yo − yq

zp − zq 0 xq − xo

yo − yp xp − xo 0

 .
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A.4.4 Derivatives of the trilinear equations

The derivatives use the Lie algebra knowledge. A three-dimensional vector φ defines a
rotation matrix R = exp([φ]×). For example, Ro is exp([φo]×). The two useful derivative
equations are given below.

∂RT v
∂φ

= RT [v]×

∂Rv
∂φ

= −[Rv]×

In the above equations, thev is a three-dimensional vector. They compute the derivatives
of the φ respect to the RT v and Rv. Each derivative is a three by three matrix. After
getting the increment ∆φ, the φ the is updated using the approximate Baker-Campbell-
Hausdorff(BCH) formula.

The equation (A.15 ) is written in the following way, in order to brief the expressions.[
a1 a2 a3

]
vo = 0

ai = vT
p H i

Nvq

va =
[

a1 a2 a3
]T

The below expression of H matrix gives the short expression.

H = H1
Nvo1 + H2

Nvo2 + H3
Nvo3,

and ,vo =
[

vo1 vo2 vo3
]T

The To,p,q equals to vT
p Hvq = 0. There are some useful vectors in the derivative compu-

tation.

rva = Rova

hvp = HT vp hvq = Hvq

rhvp = Rqhvp rhvq = Rphvq

The hvp and rhvp give expression below.

To,p,q = hvT
p vq = hvT

p RT
q xq = rhvT

p xq = 0

The hvq and rhvq give expression below.

To,p,q = vT
p hvq = xT

p Rphvq = xT
p rhvq = 0

The va and rva give expression below.

To,p,q = vT
a vo = vT

a RT
o xo = xT

o rva = 0
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The derivatives are computed by the above vectors very easy. The derivatives of image
measurements, camera rotations and camera positions are given below. The three image
point coordinates are noted as xo = [pxo, pyo, 1]T ,xp = [pxp, pyp, 1]T , and xq = [pxq, pyq, 1]T .

The derivatives of the three image measurements are given here.

∂To,p,q

∂pxo

= eT
1 rva

∂To,p,q

∂pyo

= eT
2 rva

∂To,p,q

∂pxp

= eT
1 rhvq

∂To,p,q

∂pyp

= eT
2 rhvq

∂To,p,q

∂pxq

= eT
1 rhvp

∂To,p,q

∂pyq

= eT
2 rhvp

The derivatives of the three camera rotations are given here.

∂To,p,q

∂φo

= ∂xT
o Rova

∂φo

= −xT
o [Rova]× = −xT

o [rva]×

∂To,p,q

∂φp

=
∂xT

p Rphvq

∂φp

= −xT
p [Rphvq]× = −xT

p [rhvq]×

∂To,p,q

∂φq

=
∂xT

q Rqhvp

∂φq

= −xT
q [Rqhvp]× = −xT

q [rhvp]×

The derivatives of the three camera positions have same format. Here gives the derivatives
of first camera positions only, where C̃o = [xo, yo, zo]T .

∂To,p,q

∂xo

=
[

vT
p

∂H1
N

∂xo
vq vT

p
∂H2

N

∂xo
vq vT

p
∂H3

N

∂xo
vq

]
vo

∂To,p,q

∂yo

=
[

vT
p

∂H1
N

∂yo
vq vT

p
∂H2

N

∂yo
vq vT

p
∂H3

N

∂yo
vq

]
vo

∂To,p,q

∂zo

=
[

vT
p

∂H1
N

∂zo
vq vT

p
∂H2

N

∂zo
vq vT

p
∂H3

N

∂zo
vq

]
vo

In the normalized equation (3.52 ), the function is f(x)o,p,q = To,p,q

‖C̃p−C̃q‖
. If note the dp,q =

‖C̃p − C̃q‖, the derivative of f(x)o,p,q is

∂f(x)o,p,q

∂x
= 1

dp,q

∂To,p,q

∂x
− To,p,q

d2
p,q

∂dp,q

∂x
. (A.16)

A.4.5 Changes brought about by Forward rotation

In order to work with the collinearity equation together, the forward rotation is used
in camera projection matrix. For different reference system, vector φ in Ro = exp([φo]×) is
different. Then the camera projection is x ∼ RT

f [I| − C̃]X.
In the equation (A.15 ), vo = Roxo, vp = Rpxp and vq = Rqxq. The other changes are

rva = RT
o va, rhvp = RT

q hvp, and rhvq = RT
p hvq.
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It will cause the changes in the derivatives of the camera rotations. The new derivatives
are given here.

∂To,p,q

∂φo

= ∂vT
a Roxo

∂φo

= −vT
a [Roxo]× = −vT

a [vo]×

∂To,p,q

∂φp

=
∂hvT

q Rpxp

∂φp

= −hvT
q [Rpxp]× = −hvT

q [vp]×

∂To,p,q

∂φq

=
∂hvT

p Rqxq

∂φq

= −hvT
p [Rqxq]× = −hvT

p [vq]×

Other expressions of derivatives are same.
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