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ABSTRACT

Deep learning has become an important toolkit for data science and artificial intelligence.

In contrast to its practical success across a wide range of fields, theoretical understanding

of the principles behind the success of deep learning has been an issue of controversy. Op-

timization, as an important component of theoretical machine learning, has attracted much

attention. The optimization problems induced from deep learning is often non-convex and

non-smooth, which is challenging to locate the global optima. However, in practice, global

convergence of first-order methods like gradient descent can be guaranteed for deep neu-

ral networks. In particular, gradient descent yields zero training loss in polynomial time

for deep neural networks despite its non-convex nature. Besides that, another mysterious

phenomenon is the compelling performance of Deep Residual Network (ResNet). Not only

does training ResNet require weaker conditions [ 1 ], the employment of residual connections

by ResNet even enables first-order methods to train the neural networks with an order of

magnitude more layers [  2 ]. Advantages arising from the usage of residual connections remain

to be discovered.

In this thesis, we demystify these two phenomena accordingly. Firstly, we contribute to

further understanding of gradient descent. The core of our analysis is the neural tangent

hierarchy (NTH) [  3 ] that captures the gradient descent dynamics of deep neural networks.

A recent work [  4 ] introduced the Neural Tangent Kernel (NTK) and proved that the limiting

NTK describes the asymptotic behavior of neural networks trained by gradient descent in the

infinite width limit. The NTH outperforms the NTK in two ways: (i) It can directly study

the time variation of NTK for neural networks. (ii) It improves the result to non-asymptotic

settings. Moreover, by applying NTH to ResNet with smooth and Lipschitz activation

function, we reduce the requirement on the layer width m with respect to the number of

training samples n from quartic to cubic, obtaining a state-of-the-art result. Secondly, we

extend our scope of analysis to structural properties of deep neural networks. By making

fair and consistent comparisons between fully-connected network and ResNet, we suggest

strongly that the particular skip-connection architecture possessed by ResNet is the main

reason for its triumph over fully-connected network.
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1. INTRODUCTION

1.1 Introduction

Deep neural networks have achieved transcendent performance in a wide range of tasks

such as speech recognition, computer vision, and natural language processing. There are

various methods to train neural networks, such as first-order gradient based methods, which

have been proven to achieve satisfactory results [  5 ]. Experiments in [ 6 ] established that,

even though with a random labeling of the training images, if one trains the state-of-the-art

convolutional network for image classification using stochastic gradient descent, the network

is still able to fit them well. There are numerous works trying to demystify such phenomenon

theoretically. Du et al. [  7 ] proved that gradient descent can obtain zero training loss for two-

layer networks, and Zou et al. [ 8 ] analyzed the convergence of stochastic gradient descent on

networks assembled with Rectified Linear Unit (ReLU) activation function. All these neural

networks are heavily overparameterized: the number of learnable parameters is much larger

than the number of the training samples. It is widely accepted by the machine learning

community that overparameterization enables the neural network to fit all training data,

and it brings no harm to the power of its generalization, i.e., the ability to predict well on

unseen data [  9 ]. In particular, the deep neural networks that evaluated positions and selected

moves for the well-known program AlphaGo are highly overparameterized [ 10 ], [ 11 ].

Another advance is the outstanding performance of Deep Residual Network (ResNet)

proposed by He et al. [ 2 ]. ResNet is arguably one of the most groundbreaking works in deep

learning, in that it can train up to hundreds or even thousands of layers and still achieves

compelling performance. Recent works have shown that ResNet can utilize the features in

transfer learning with better efficiency, and its residual link structure enables faster con-

vergence of the training loss [  12 ], [  13 ]. Theoretically, Hardt and Ma [ 14 ] proved that for

any residual linear networks with arbitrary depth, there are no spurious local optima. Du

et al. [ 1 ] showed that in the scope of the convergence of gradient descent via overparame-

terization for different networks, training ResNet requires weaker conditions compared with

fully-connected networks. In this thesis, we make fair comparisons between ResNet and

fully-connected networks by enforcing exactly same assumptions on input samples and acti-
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vation functions, such settings would thus potentially enable us to explore more structural

benefits of deep neural networks.

1.2 Fully-connected Neural Networks

We present two types of neural network architectures respectively in Section  1.2 and

Section  1.3 , one is the fully-connected network, the other is ResNet. A fully-connected

neural network consists of a series of fully connected layers that connect every neuron in one

layer to every neuron in the other layer. Pictorially, a fully connected layer is represented in

Figure  1.1 .

Figure 1.1. A fully connected layer in a deep network

According to the classical universal approximation theorem [ 15 ], a two-layer neural net-

work with sigmoid-like activation functions is sufficient to represent any continuous function
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on the unit cube. However, its single hidden layer might be massive and the network is

prone to overfitting the data. Overfitting is a serious problem in machine learning, it hap-

pens when a model learns the detail and noise in the training data to the extent that it

negatively impacts the performance of the model on new data [  16 ]. Therefore, the machine

learning community has a common trend that network architecture needs to go deeper. Nat-

urally, given fully connected layers, it is directly possible to form a network by stacking more

of them, as depicted in Figure  1.2 .

Figure 1.2. Multilayer deep fully-connected network

Let x ∈ Rd be an input sample, then the network has d input nodes. Moreover, we have

a series of weight matrices
{
W [l]

}L

l=1
. Note that W [1] ∈ Rm×d is the first weight matrix,

and W [l] ∈ Rm×m is the weight at the l-th layer, for 2 ≤ l ≤ L. Let x[l] be the output of

layer l, with x[0] = x. We consider the fully-connected network given below:

x[l] = 1√
m

σ(W [l]x[l−1]),

fnn(x, θ) = aᵀx[L],

(1.1)

where σ(·) is applied coordinate-wisely to its input, and fnn(x, θ) is the output function.

Specifically, for the case in Figure  1.2 , the parameters are set to be d = 12, m = 16, L = 4.

The scaling factor 1/
√

m is key to obtaining a consistent asymptotic behavior of neural

networks as the width m of the hidden layers grow to infinity [  4 ]. In the infinite-width limit,
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the output function at initialization converges to a Gaussian distribution, and it follows

a linear differential equation during training. There are, of course, other scaling factors

that are employed extensively. For instance, the mean-field scaling 1/m. For two-layer

networks, a line of papers [ 17 ]–[ 19 ] used optimal transport theory equipped with the mean-

field scaling to establish that for infinitely wide neural networks, the empirical distribution

of the neural network parameters can be described as a Wasserstein gradient flow. However,

their results are limited to two-layer networks and may require an exponential amount of

overparametrization. The current situation of neural network study is similar to an early

era of statistical mechanics, when we observe different states of a matter at several discrete

conditions without the guidance of a unified phase diagram. Therefore, inspired by that, a

recently published work [  20 ] presented a systematic and comprehensive analysis in drawing

the first phase diagram for two-layer neural networks at the infinite-width limit, in pursuit

of a complete characterization of its dynamical regimes and their dependence on different

scaling factors.

1.3 ResNet

As mentioned both in Section  1.2 and [ 21 ], deeper and deeper network architectures are

being developed nowadays. There is even a mathematical proof in [  22 ] that reveals the utility

of having deeper networks than that of wider networks. However, increasing network depth

also introduce the issues of vanishing gradients [ 23 ] and degradation [  2 ]. As the gradient is

computed out by backward propagation, repeated multiplication with small weights renders

it ineffectively small. Vanishing gradients, however, has been largely addressed by some

normalizing tricks [ 24 ], [ 25 ].

When deeper networks are able to start converging, a degradation problem has been

exposed: the training accuracy gets saturated and then degrades rapidly [  26 ]. This is counter-

intuitive in that by providing our model with more parameters, it shall be able to fit the

training data at least as good as its predecessor. Surprisingly, such degradation is not due

to overfitting. The degradation of training performances reveals that not all networks are

similarly easy to optimize by brutal force. Moreover, the problem suggests that it might be
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hard for the solvers to learn identity mappings with multiple nonlinear layers. Ultimately,

this conjecture motivates the setup for learning small residuals and directly adding them to

the input. The core idea of ResNet [ 2 ] is the employment of residual learning building block,

Figure 1.3. Residual learning: a building block

as shown in Figure  1.3 .

We use the same notations as the fully-connected neural networks to rigorously define

our version of ResNet:

x[1] =
√

cσ

m
σ(W [1]x),

x[l] = x[l−1] + cres

L
√

m
σ(W [l]x[l−1]), for 2 ≤ l ≤ L,

fres(x, θ) = aᵀx[L],

(1.2)

where the constant cσ =
(
Ez∼N (0,1) [σ(z)2]

)−1
serves as a normalizing factor, N (0, 1) is the

standard Gaussian distribution. cres is a small constant satisfying 0 < cres < 1, and fres(x, θ)

is the output function. Note that here we use a cres
L

factor combined with the 1/
√

m scaling,

the cres
L

factor guarantees that the width per layer m does not blow up exponentially with

respect to depth L, intuitively shown in Equation (  3.70 ). Although Equation ( 1.2 ) differs

by the standard ResNet architecture in [ 2 ], it will not be hard to generalize the analysis to

architectures with skip-connections at every two or more layers. We also believe that the

phase diagram in [ 20 ] can be drawn out similarly for ResNet.
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1.4 Main Results

Owing to the non-convex nature of optimization neural networks, it is challenging to

locate the global optima. A popular way to analyze such problems is to identify the geometric

properties of each critical point. Some recent works have shown that for the set of functions

satisfying:

• all local minima are global;

• every saddle point possesses a negative curvature (i.e. it is non-degenerate),

then gradient descent can find a global optima [ 27 ]–[ 29 ]. The objective functions of some

shallow networks are in such set [ 14 ], [ 30 ]. However, even for a three-layer linear network,

there exists degenerate saddle points without negative curvature [  31 ]. So it is doubtful that

global convergence of gradient descent can be ensured for deeper neural networks.

Alternatively, we directly study the dynamics of the gradient descent for specific neural

network architectures. This is another approach widely taken to obtain general convergence

results. Recently, it has been shown that if the network is overparameterized, gradient

descent is able to find a global optima for two-layer networks [  7 ], deep linear networks [  14 ],

[ 32 ], [  33 ] and ResNet [  34 ]. Jacot et al. [  4 ] established that in the infinite width limit, the full

batch gradient descent corresponds to a specific kernel regression predictor. Consequently,

in the regime of infinite width, the convergence of gradient descent for neural network can be

characterized by a fixed kernel [ 35 ]. This is the cornerstone upon which rests the outstanding

performance of overparameterization. Inspired by the existence of such kernel, extraordinary

efforts have been trying to improve it to the non-asymptotic setting, where only finite width

is required.

In the regime of finite width, many works have suggested that the network can reduce

training loss at exponential rate using gradient descent [ 8 ], [  32 ]. Our thesis also belongs

to this category. In this thesis, we contribute to further understanding of the gradient de-

scent dynamics for training fully-connected networks and ResNet models. We use the same

ResNet structure as in [  1 ]. Details of the network structure are provided in Section  1.3 .

More importantly, we assume that the n data points are not parallel with each other. Such
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assumption holds in general for standard dataset, and we focus on the empirical risk min-

imization problem given by the quadratic loss. We show that if m = Ω (n3L2), then the

empirical risk RS(t) under gradient descent decays exponentially. More precisely,

RS(t) ≤ RS(0) exp
(

−λt

n

)
,

where λ is the least eigenvalue of K [L+1], definition of which can be found in Defini-

tion  2.4.5 Equation ( 2.19 ). It is worth noticing that:

(1). Given identical ResNet architectures, for the convergence of randomly initialized

gradient descent, our results improve upon [ 1 ] (Theorem  2.5.2 ) in the required number of

width per layer from m = Ω(n4L2) to m = Ω(n3L2) (Theorem  3.2.3 ).

(2). For fully-connected network, the required amount of overparametrization in [  3 ] is

m = Ω
(
n32O(L)

)
(Theorem  2.6.1 ). We are able to reproduce the result of Du et al. [ 1 ],

showing that the exponential dependence of m on the number of layers L can be eliminated

for ResNet, i.e., m = Ω(n3L2) (Theorem  3.2.3 ).

1.5 Assumptions and Notations

We introduce some assumptions and notations that will be used throughout the thesis.

We set X = {x1, x2, ..., xn} for the set of input samples, and we assume that:

1. all samples are of uniform length, i.e., for any α = 1, 2, · · · , n, ‖xα‖L2
= 1;

2. all samples are non-parallel with each other, i.e., xα1 ∦ xα2 , for any α1 6= α2.

We use σ(·) to denote the activation function, and we assume that:

1. σ(·) is non-polynomial, 1-Lipschitz and (infinitely) smooth;

2. its derivative of any order is also 1-Lipschitz;

3. function value at 0 satisfy |σ(0)| ≤ 1.

These assumptions hold for many activation functions, including the soft-plus and sigmoid

activation.

Moreover, we set n for the number of input samples, m for the width of the neural

network, and L for the number of hidden layers. We denote vector L2 norm as ‖·‖2, vector
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or function L∞ norm as ‖·‖∞, matrix spectral (operator) norm as ‖·‖2→2, matrix Frobenius

norm as ‖·‖F, matrix infinity norm as ‖·‖∞→∞, and a special matrix norm, matrix 2 to infinity

norm as ‖·‖2→∞. We set a special vector (1, 1, 1, . . . , 1)ᵀ ∈ Rm by 1 := (1, 1, 1, . . . , 1)ᵀ. We

use Im to signify the identity matrix in Rm×m. For a semi-positive-definite matrix A, we

denote its smallest eigenvalue by λmin (A). We use O(·) and Ω(·) for the standard Big-O and

Big-Omega notations. Finally, we use 〈·, ·〉 to denote the inner product between two vectors

or matrices and N (0, 1) for the standard Gaussian distribution. These general notations are

summarized in Table  1.1 .

Table 1.1. Notation Table
Symbol Representations of the symbol

X The set of input samples
σ(·) Nonpolynomial, 1-Lipschitz smooth function
n Number of input samples
m Width of a neural network
L Number of hidden layers

‖·‖2 L2 (Euclidian) norm of a vector
‖·‖2→2 Operator norm of a matrix
‖·‖F Frobenius norm of a matrix
‖·‖∞ Infinity norm of a matrix

1 The vector (1, 1, 1, . . . , 1)ᵀ in Rm

Im The identity matrix in Rm×m

λmin (A) Least eigenvalue of a matrix
N (0, 1) Standard Gaussian distribution

〈·, ·〉 Inner product
O(·) Big-O notation
Ω(·) Big-Omega notation

Next, since we are going to perform massive computations, some useful notations shall

also be introduced but not listed out in Table  1.1 . We denote σ
(
W [l]x[l−1]

α

)
as σ[l](xα), and

the diagonal matrix generated by the r-th derivatives of σ[l](xα), i.e., diag
(
σ(r)(W [l]x[l−1]

α )
)

by σ
(r)
[l] (xα), where r ≥ 1. We also write the output function f(xα, θt) as fα(t). Moreover,

we define a series of special matrices,

E
[l]
t,α :=

Im + cres

L
σ

(1)
[l] (xα)W

[l]
t√
m

 , 2 ≤ l ≤ L. (1.3)
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The above matrices are termed skip-connection matrices. Given
{
E

[l]
t,α

}L

l=2
, we let E

[l:L]
t,α be the

direct parameterization of the end-to-end mapping realized by the group of skip-connection

matrices, i.e., E
[l:L]
t,α := E

[L]
t,αE

[L−1]
t,α · · · E

[l]
t,α, where we set E

[i:j]
t,α := Im, i > j for the purpose of

completeness.

Finally, we introduce a notion of high probability events that has been commonly used,

for instance, see [  3 , Section 1.3]. We say that an event holds with high probability if the

probability of the event is at least 1 − exp (−mε) for some constant ε > 0. Since for a

deep neural network in practice, we always have m . poly(n) and n . poly(m), then the

intersection of a collection of many high probability events still has the same property as

long as the number of events is at most polynomial in m and n.
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2. GRADIENT DESCENT FINDS GLOBAL MINIMA

2.1 Introduction

In this chapter, we begin with an introduction to empirical risk minimization problems.

We focus particularly on the empirical risk minimization problem with a quadratic loss:

min
θ

RS(θ) = 1
2n

n∑
α=1

‖f(xα, θ) − yα‖2
2 . (2.1)

In the above equation, {xα}n
α=1 are the training inputs, {yα}n

α=1 are the labels. f (xα, θ) is

the prediction function, which in our case is a neural network, and θ are the parameters to

be optimized.

2.2 Gradient Descent

To learn the deep neural network, we introduce the randomly initialized gradient descent

algorithm to find the global minimizer of the empirical loss Equation (  2.1 ). The core of

the algorithm consists of two steps. The first step incorporates a random initialization of

parameters. As the vector containing all parameters is denoted by

θ =
(
vec

(
W [L]

)
, vec

(
W [L−1]

)
, . . . , vec

(
W [1]

)
, a
)

,

where vec is the standard vectorization operation, we initialize the parameters following the

adopted Xavier initialization scheme [ 25 ], i.e.,

W
[l]
i,j ∼ N (0, 1), ak ∼ N (0, 1), 1 ≤ l ≤ L, 1 ≤ i, j, k ≤ m. (2.2)

The second step is to train all layers of the neural network with continuous time gradient

descent (gradient flow): for l = 1, 2, · · · , L, and time t ≥ 0,

∂tW
[l]
t = −∂W [l]RS(θt),

∂tat = −∂aRS(θt).
(2.3)
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A discrete version of gradient descent can be found in other literature [ 7 ], where the param-

eters are updated via

W [l](k) = W [l](k − 1) − η
∂RS(θ(k − 1))
∂W [l](k − 1) ,

a(k) = a(k − 1) − η
∂RS(θ(k − 1))

∂a(k − 1) ,

(2.4)

with k being the index of the step to be taken, and η > 0 being the step size.

We shall write out the dynamics ( 2.3 ) respectively for fully-connected network and

ResNet. Recall that the output function f(xβ, θt) is denoted by fβ(t), then for fully-

connected network, dynamics ( 2.3 ) reads

∂tat = − 1
n

n∑
β=1

x
[L]
β (fβ(t) − yβ),

∂tW
[l]
t = − 1

n

n∑
β=1

σ
(1)
[l] (xβ)

(
W

[l+1]
t

)ᵀ
√

m
· · · σ

(1)
[L](xβ) at√

m

⊗ (x[l−1]
β )ᵀ(fβ(t) − yβ),

(2.5)

and for ResNet, dynamics ( 2.3 ) reads

∂tat = − 1
n

n∑
β=1

x
[L]
β (fβ(t) − yβ),

∂tW
[L]
t = − 1

n

n∑
β=1

cres

L
√

m
diag

(
σ

(1)
[L](xβ)at

)
1 ⊗ (x[L−1]

β )ᵀ(fβ(t) − yβ),

for l = 2, 3, · · · , L − 1,

∂tW
[l]
t = − 1

n

n∑
β=1

cres

L
√

m
diag

(
σ

(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

)
1 ⊗ (x[l−1]

β )ᵀ(fβ(t) − yβ),

∂tW
[1]
t = − 1

n

n∑
β=1

√
cσ

m
diag

(
σ

(1)
[1] (xβ)

(
E

[2:L]
t,β

)ᵀ
at

)
1 ⊗ (xβ)ᵀ(fβ(t) − yβ).

(2.6)

A recent line of work tries to understand the optimization process of training deep neural

networks from the perspective of over-parameterization and random weight initialization.

It has been observed that over-parameterization and proper random initialization can help

the optimization in training neural networks, and various theoretical results have been es-

tablished [  32 ], [  36 ]. Our results mainly build on two ideas from previous works on gradient
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descent. First, we use the observation by Du et al. [  1 ] that the required width m relies heav-

ily on the structure of networks. Second, we applied the neural tangent hierarchy (NTH) to

ResNet, a framework initially proposed by Huang and Yau [ 3 ], to directly study the change

of its neural tangent kernel (NTK) [ 4 ].

With these in mind, we start with a review of NTK in Section  2.3 . In Section  2.4 we

introduce the concept of Gram matrices. In Section  2.5 we give out the outline of analysis

and main results obtained by Du et al. [  1 ] without proof, and we treat the counterparts in

Huang and Yau [ 3 ] similarly in Section  2.6 .

2.3 NTK

A flurry of recent papers in theoretical deep learning endeavor to tackle the common

theme of analyzing neural networks in the infinite-width limit. At first glance, this limit

may seem impractical and even pointless to study. But for mathematicians, there is a

tradition of deriving insights into questions by studying them in the infinite limit, which

usually tends to be easier in theory. As it turns out, neural networks in this regime simplify

to linear models with a regression kernel called the NTK [ 4 ].

We shall refer the readers to the connection between infinitely wide neural networks and

kernel methods [ 37 ]. Specifically, for any parametrized function f(x, θt) equipped with two

inputs xα, xβ (xα, xβ could be identitcal), the corresponding kernel is

Gθt(xα, xβ) = 〈∇θf(xα, θt), ∇θf(xβ, θt)〉 . (2.7)

The key difference between the kernel above and the one in [  37 ] is that our kernel is defined

through the inner product between the gradients of the function with respect to its parame-

ters, while the counterpart in [  37 ] comprises the product of the output function. Emergence

of the gradient arises from the usage of gradient descent.
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In the situations where f(x, θt) is the output of a fully-connected network or ResNet

introduced in Chapter  1 , it consists of a series of kernels
{
G [l]

t (xα, xβ)
}L+1

l=1
, i.e.,

Gθt(xα, xβ) = 〈∇θf(xα, θt), ∇θf(xβ, θt)〉

= 〈∂af(xα, θt), ∂af(xβ, θt)〉 +
L∑

l=1
〈∂W [l]f(xα, θt), ∂W [l]f(xβ, θt)〉

:= G [L+1]
t (xα, xβ) +

L∑
l=1

G [l]
t (xα, xβ)

=
L+1∑
l=1

G [l]
t (xα, xβ).

(2.8)

For fully-connected network, G [l]
t (xα, xβ) individually reads

G [L+1]
t (xα, xβ) =

〈
x[L]

α , x
[L]
β

〉
,

for 1 ≤ l ≤ L

G [l]
t (xα, xβ) =

〈 1√
m

σ
(1)
[l] (xα)

(
W

[l+1]
t

)ᵀ
√

m
· · · σ

(1)
[L](xα)at,

1√
m

σ
(1)
[l] (xβ)

(
W

[l+1]
t

)ᵀ
√

m
· · · σ

(1)
[L](xβ)at

〉〈
x[l−1]

α , x
[l−1]
β

〉
,

(2.9)

while for ResNet

G [L+1]
t (xα, xβ) =

〈
x[L]

α , x
[L]
β

〉
,

for 2 ≤ l ≤ L

G [l]
t (xα, xβ) =

〈
cres

L
√

m
σ

(1)
[l] (xα)

(
E

[(l+1):L]
t,α

)ᵀ
at,

cres

L
√

m
σ

(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

〉〈
x[l−1]

α , x
[l−1]
β

〉
,

G [1]
t (xα, xβ) =

〈√
cσ

m
σ

(1)
[1] (xα)

(
E

[2:L]
t,α

)ᵀ
at,√

cσ

m
σ

(1)
[1] (xβ)

(
E

[2:L]
t,β

)ᵀ
at

〉〈
xα, xβ

〉

(2.10)

Up to this point, we have only given out the exact computations of the regression kernel,

where the property of infinite width have not been used. In the large width limit, it turns
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out that the time-varying kernel Gθt (xα, xβ) is close to a deterministic kernel K∞(xα, xβ),

the limiting NTK. This property is proved in two steps. Firstly, at initial stage (t = 0), with

appropriate scaling factor 1/
√

m for the parameters θ0, there exists an infinite width limit

(m → ∞) of Gθ0 (xα, xβ), denoted by K∞(xα, xβ). Secondly, the kernel Gθt (xα, xβ) itself

barely changes during the entire training process, i.e. Gθt (xα, xβ) ≈ Gθ0 (xα, xβ). Hence, as

m → ∞, Gθt (xα, xβ) ≈ K∞(xα, xβ) for all t > 0.

The results above allow us to capture the behavior of networks trained by gradient

descent. In large width limit, a single output function f(x, θt) evolves as a linear differential

equation

∂t (f(x, θt) − y) = − 1
n

n∑
β=1

K∞(x, xβ)(f(xβ, θt) − yβ), (2.11)

where K∞(·) only depends on the training inputs. More importantly, it is independent of

the neural network parameters. As a direct consequence of Equation (  2.11 ), we have

∂t

n∑
α=1

‖f(xα, θt) − yα‖2
2 = − 2

n

n∑
α,β=1

K∞(xα, xβ)(f(xα, θt) − yα)(f(xβ, θt) − yβ)

≤ − 2
n

λmin
(
[K∞(xα, xβ)]1≤α,β≤n

) n∑
γ=1

‖f(xγ, θt) − yγ‖2
2 .

(2.12)

From Equation (  2.12 ), we observe that the empirical loss ( 2.1 ) converges at a linear rate

determined by the least eigenvalue of matrix [K∞(xα, xβ)]1≤α,β≤n. To sum up, in the regime

of infinite width, the empirical loss converges exponentially to zero regardless of the fully-

connected or ResNet structure, and its convergence rate relies heavily on the limiting NTK.

2.4 Gram Matrices

In linear algebra, the Gram matrix K of a set of real vectors {k1, k2, · · · , kn} in an

inner product space is the Hermitian matrix of inner products, whose entries are given by

Kij := 〈ki, kj〉. Consequently, if we denote the column matrix of {k1, k2, · · · , kn} by D,

then K = DᵀD.
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Jacot et al. [  4 ] pointed out that convergence of the empirical loss (  2.1 ) is related to the

positive-definiteness of the limiting NTK. For any parametrized function f(x, θt), its limiting

NTK reads

K∞(xα, xβ) = Eθ0∼W 〈∇θf(xα, θ0), ∇θf(xβ, θ0)〉 ,

where xα, xβ are two inputs, and W is the initial distribution over θ.

In our cases, where f(x, θt) is the output of a fully-connected network or ResNet, and

θ =
(
vec

(
W [L]

)
, vec

(
W [L−1]

)
, . . . , vec

(
W [1]

)
, a
)
, its limiting NTK is the sum of a series

of kernels
{
K[l](xα, xβ)

}L+1

l=1
, i.e.,

K∞(xα, xβ) =
L+1∑
l=1

K[l](xα, xβ),

where

K[L+1](xα, xβ) = Eθ0∼W 〈∂af(xα, θ0), ∂af(xβ, θ0)〉 ,

K[l](xα, xβ) = Eθ0∼W 〈∂W [l]f(xα, θ0), ∂W [l]f(xβ, θ0)〉 , 1 ≤ l ≤ L.

We remark that at t = 0, respectively for all l, the limiting values of G [l]
0 (xα, xβ), whose

definition can be found in Equation (  2.9 ) and Equation ( 2.10 ), equal to K[l](xα, xβ). This is

a crucial finding in [  38 , Corollary 2.4.]. As is shown in Equation (  2.12 ), dynamics of the em-

pirical loss is governed by spectral property of matrix [K∞(xα, xβ)]1≤α,β≤n. With some abuse

of notations, we name matrix K∞ := [K∞(xα, xβ)]1≤α,β≤n by Gram matrix. Also with addi-

tional abuse of terminologies, for 1 ≤ l ≤ L+1, the matrices K [l] :=
[
K[l](xα, xβ)

]
1≤α,β≤n

are

entitled Gram matrices, whose definitions can be traced back to [  1 , Definition 5.1, Definition

6.1].

As stated in [ 38 , Corollary 2.4], to assure the convergence of NTK, θ is required to be

suitably randomized. As mentioned in Section  2.2 , we initialize θ using the adopted Xavier

initialization scheme (  2.2 ). Furthermore, it shall be noted that derivation of the Gram

matrices depends on the series of matrices
{
K̃ [l]

}L

l=1
,
{
Ã[l]

}L+1

l=1
and vectors

{
b̃[l]
}L

l=1
to be

defined immediately in the next two sections.
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2.4.1 Gram Matrices for Fully-connected Networks

In this section, as a warm up, we give out definitions of Gram matrices generated by

fully-connected networks. We are able to write out the explicit formulas for K [L+1] and

K [L]. However, it is not the case for
{
K [l]

}L−1

l=1
. A slightly different approach shall be taken

to write out the expressions for them.

Definition 2.4.1. Given input samples X and activation function σ(·), the matrices
{
K̃ [l]

}L

l=1
,{

Ã[l]
}L+1

l=1
are defined recursively: for 1 ≤ i, j ≤ n, 1 ≤ l ≤ L

K̃
[0]
ij = 〈xi, xj〉 ,

Ã
[l]
ij =

K̃
[l−1]
ii K̃

[l−1]
ij

K̃
[l−1]
ji K̃

[l−1]
jj

 ,

K̃
[l]
ij = E

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) σ(u)σ(v),

Ã
[L+1]
ij =

K̃
[L]
ii K̃

[L]
ij

K̃
[L]
ji K̃

[L]
jj

 .

(2.13)

Definition 2.4.2 (Gram Matrices K [L+1] and K [L] for Fully-connected Networks). Given
{
K̃ [l]

}L

l=1
,{

Ã[l]
}L+1

l=1
, Gram matrices K [L+1], K [L] ∈ Rn×n are defined as follows: for 1 ≤ i, j ≤ n

K
[L+1]
ij = E

(u,v)ᵀ∼N
(

0,Ã
[L+1]
ij

) σ(u)σ(v), (2.14)

K
[L]
ij = K̃

[L−1]
ij E

(u,v)ᵀ∼N
(

0,Ã
[L]
ij

) [σ(1)(u)σ(1)(v)
]

. (2.15)

Definition 2.4.3. Given
{
K̃ [l]

}L

l=1
,
{
Ã[l]

}L+1

l=1
, Gram matrices K [l] ∈ Rn×n are defined as

follows: for 1 ≤ i, j ≤ n, 1 ≤ l ≤ L − 1

K
[l]
ij = lim

m→∞

1
m

〈
σ

(1)
[l] (xi)

(
W

[l+1]
0

)ᵀ
√

m
· · · σ

(1)
[L](xi)a0,

σ
(1)
[l] (xj)

(
W

[l+1]
0

)ᵀ
√

m
· · · σ

(1)
[L](xj)a0

〉〈
x

[l−1]
i , x

[l−1]
j

〉
.

(2.16)
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2.4.2 Gram Matrices for ResNet

We give out the derivation of Gram matrices generated by ResNet with slight abuse of

notations. Similarly, only K [L+1] and K [L] can be written into closed forms.

Definition 2.4.4. Given input samples X and activation function σ(·), the matrices
{
K̃ [l]

}L

l=1
,{

Ã[l]
}L+1

l=1
and vectors

{
b̃[l]
}L

l=1
are defined recursively: for 1 ≤ i, j ≤ n, 2 ≤ l ≤ L

K̃
[0]
ij = 〈xi, xj〉 ,

Ã
[1]
ij =

K̃
[0]
ii K̃

[0]
ij

K̃
[0]
ji K̃

[0]
jj

 ,

K̃
[1]
ij = E

(u,v)ᵀ∼N
(

0,A
[1]
ij

) cσσ(u)σ(v),

b̃
[1]
i = √

cσ E
u∼N

(
0,K̃

[0]
ii

) [σ(u)] ,

Ã
[l]
ij =

K̃
[l−1]
ii K̃

[l−1]
ij

K̃
[l−1]
ji K̃

[l−1]
jj

 ,

K̃
[l]
ij = K̃

[l−1]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) cresb̃
[l−1]
i σ(v)
L

+
cresb̃

[l−1]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2

 ,

b̃
[l]
i = b̃

[l−1]
i + cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] ,

Ã
[L+1]
ij =

K̃
[L]
ii K̃

[L]
ij

K̃
[L]
ji K̃

[L]
jj

 .

(2.17)

Definition 2.4.5 (Gram Matrices K [L+1] and K [L] for ResNet). Given
{
K̃ [l]

}L

l=1
,
{
Ã[l]

}L+1

l=1
,{

b̃[l]
}L

l=1
, Gram matrices K [L+1], K [L] ∈ Rn×n are defined as follows: for 1 ≤ i, j ≤ n

K
[L+1]
ij = K̃

[L]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[L+1]
ij

) cresb̃
[L]
i σ(v)
L

+
cresb̃

[L]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2

 , (2.18)

K
[L]
ij = c2

res
L2 K̃

[L−1]
ij E

(u,v)ᵀ∼N
(

0,Ã
[L]
ij

) [σ(1)(u)σ(1)(v)
]

. (2.19)
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Definition 2.4.6. Given
{
K̃ [l]

}L

l=1
,
{
Ã[l]

}L+1

l=1
,
{
b̃[l]
}L

l=1
, Gram matrices K [l] ∈ Rn×n are

defined as follows, for 1 ≤ i, j ≤ n, 2 ≤ l ≤ L − 1,

K
[l]
ij = c2

res
L2 K̃

[l−1]
ij lim

m→∞

1
m

〈
σ

(1)
[l] (xi)

(
E

[(l+1):L]
0,i

)ᵀ
a0, σ

(1)
[l] (xj)

(
E

[(l+1):L]
0,j

)ᵀ
a0
〉

, (2.20)

and for 1 ≤ i, j ≤ n, l = 1,

K
[1]
ij = cσK̃

[0]
ij lim

m→∞

1
m

〈
σ

(1)
[1] (xi)

(
E

[2:L]
0,i

)ᵀ
a0, σ

(1)
[1] (xj)

(
E

[2:L]
0,j

)ᵀ
a0
〉

. (2.21)

We remark that the 1
m

scalings in (  2.16 ), (  2.20 ) and (  2.21 ) originate from the inner

product between the gradients, i.e., 1
m

= 1√
m

× 1√
m

. Thanks to the Strong Law of Large

Numbers, the above limits ( 2.16 ), (  2.20 ) and (  2.21 ) exist [  38 , Corollary 2.4]. As we send

m → ∞, Gram matrices
{
K [l]

}L−1

l=1
only depend on the input samples and the activation

patterns. Hence we conclude that all Gram matrices
{
K [l]

}L+1

l=1
only depend on the input

samples and independent of θ.

2.5 Main Results of Du et al.

Jacot et al. [  4 , Proposition 2] proved the positive-definiteness of the limiting NTK when

the data is supported on the sphere and the non-linearity is non-polynomial. Du et al. [ 1 ,

Proposition F.1, Proposition F.2] extended their results and showed that as long as the

input training data is not degenerate and supported on the unit sphere, λmin
(
K [L]

)
is

strictly positive. Since gram matrices of all orders are positive semi-definite, λmin
(
K [L]

)
is an explicit lower bound of the least eigenvalue of the limiting NTK matrix K∞, i.e.,

λmin (K∞) ≥ λmin
(
K [L]

)
. Moreover, using the contribution of all the gram matrices to

the minimum eigenvalue can potentially improve the convergence rate, as is shown in [ 3 ,

Corollary 2.5].

The high-level analysis framework of Du et al. consists of mainly two components. At

first stage, they showed that at t = 0,
[
G [L]

0 (xα, xβ)
]

1≤α,β≤n
is close to K [L] via repeated

application of concentration inequality. Instead of sending the width m of every layer to ∞,

as is the setting for Jacot et al., one only needs it to be greater than a finite threshold of
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order Ω (n2) in order for λmin

([
G [L]

0 (xα, xβ)
]

1≤α,β≤n

)
to maintain a lower bound with high

probability. We observe that K [L] is recursively defined, and so is
[
G [L]

0 (xα, xβ)
]

1≤α,β≤n
.

Due to the randomness inherited from the initialization scheme and the introduction of

finite threshold of m, inevitably we have some perturbation in the first layer, and how this

perturbation propagates to the L-th layer shall be analyzed carefully. Du et al. derived a

general formulation that allows readers to analyze the initialization behavior for the fully-

connected network, ResNet, and even convolutional ResNet in a unified way.

One important finding in the perturbation analysis is that ResNet architecture makes

the propagation more stable. For fully-connected network, such perturbation propagates

to the L-th layer exponentially, hence forcing the threshold of m to maintain exponential

dependency on the depth L. Heuristically speaking, let E1 be the perturbation in the first

layer, then EL, perturbation in the L-th layer, admits the form

EL ≤ 2O(L)E1. (2.22)

However, for ResNet, thanks to the skip connection structure, its counterpart reads

EL ≤
(

1 + O
( 1

L

))L

E1. (2.23)

Therefore, the issue of exponential explosion can be avoided, and the above analysis sheds

light on the benefit of using ResNet architecture for training.

At the second stage, for t > 0, the averaged Frobenius norm 1√
m

∥∥∥W [l]
t − W

[l]
0

∥∥∥
F

is used

to control the absolute change of eigenvalues, so that the lower bound of the eigenvalue of

matrix
[
G [L]

t (xα, xβ)
]

1≤α,β≤n
can be guaranteed during the whole training process. In purpose

of bounding the averaged Frobenius norm, another threshold of order Ω (n4) is required for

width m. Such analysis, whose high-level intuition is similar to (  3.70 ), once again sheds light

on the benefit of using ResNet architecture for training.

We may proceed to state the main theorems of Du et al. [  1 , Theorem 5.1, Theorem 6.1].
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Theorem 2.5.1 (Convergence of Gradient Descent for Fully-connected Networks). Given

X , σ(·) and K [L] defined in Equation ( 2.15 ), with high probability w.r.t random initialization,

for width

m = Ω
(

2O(L) max
{

n4

λ4
min (K [L]) , n,

n2 log (Ln)
λ2

min (K [L])

})
, (2.24)

and if we set the step size

η = O

λmin
(
K [L]

)
n22O(L)

 ,

then for k = 0, 1, 2, · · · , the loss at each iteration satisfies

RS(θ(k)) ≤

1 − η
λmin

(
K [L]

)
2

k

RS(θ(0)).

Main assumption of Equation (  2.24 ) is that a large enough width for each layer is required.

We notice that the requirement of m has three terms. The first term is used to show the

Gram matrix remain stable during training. The second term is used to guarantee the

output in each layer is approximately normalized at initial phase. The third term is used to

show the perturbation of Gram matrix at initial phase is small. However, its dependency on

depth L is exponential. Such exponentiality comes from the instability of the fully-connected

architecture. In the next theorem, equipped with ResNet architecture, dependency on L can

be reduced from 2L to poly(L).

Theorem 2.5.2 (Convergence of Gradient Descent for ResNet). Given X , σ(·) and K [L]

defined in Equation ( 2.19 ), with high probability w.r.t random initialization, for width

m = Ω
(

max
{

n4

λ4
min (K [L]) ,

n2

λ2
min (K [L]) L2 , n,

n2 log (Ln)
λ2

min (K [L])

})
, (2.25)

and if we set the step size

η = O

λmin
(
K [L]

)
L2

n2

 ,
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then for k = 0, 1, 2, · · · , the loss at each iteration satisfies

RS(θ(k)) ≤

1 − η
λmin

(
K [L]

)
2

k

RS(θ(0)).

In contrast to Theorem  2.5.1 , the required width m is fully polynomial in n and L. The

main reason why the problematic exponential explosion can be circumvented is that the skip

connection blocks enable the network structure to be more stable at both the initialization

and the training phase. The requirement on m has four terms. The first two terms are used

to show the stability of Gram matrix during training. The third term is used to assure that

the output in each layer is approximately normalized at the initialization phase. The fourth

term is used to bound the size of the perturbation of the Gram matrix at initial stage.

2.6 Main Results of Huang and Yau

Huang and Yau [  3 ] proposed a framework in which an infinite hierarchy of ordinary

differential equations, the neural tangent hierarchy (NTH), is derived.

Theorem 2.6.1 (NTH for Fully-connected Networks). Given X and σ(·), with high proba-

bility w.r.t random initialization, there exists an infinite family of operators G(r)
t : X r → R,

where r ≥ 2, that describes the continuous time gradient descent:

∂t(fα(t) − yα) = − 1
n

n∑
β=1

G(2)
t (xα, xβ)(fβ(t) − yβ), (2.26)

and for any r ≥ 2,

∂tG(r)
t (xα1 , xα2 , · · · , xαr) = − 1

n

n∑
β=1

G(r+1)
t (xα1 , xα2 , · · · , xαr , xβ)(fβ(t) − yβ). (2.27)

There also exists a deterministic family of operators (independent of m):

G(r) : X r → R, 2 ≤ r ≤ p + 1,
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where G(r) ≡ 0 if r is odd, and some constants C, C∗ > 0, such that with high probability

w.r.t random initialization,

∥∥∥∥∥
(

G(r)
0 − G(r)

mr/2−1

)
(·)
∥∥∥∥∥

∞
.

(ln m)C

m(r−1)/2 , (2.28)

and for time 0 ≤ t ≤ m
p

2(p+1) /(ln m)C∗
,

∥∥∥G(r)
t (·)

∥∥∥
∞

.
(ln m)C

mr/2−1 . (2.29)

For fully-connected network defined in Equation (  1.1 ), with width m = Ω(2O(L)n3),

gradient descent converges at a linear rate.

Theorem 2.6.2. Given X and σ(·), we further assume that there exists λ > 0 (might depend

on m)

λmin

([
G(2)

0 (xα, xβ)
]

1≤α,β≤n

)
≥ λ, (2.30)

and the width m of the neural network satisfies

m ≥ C∗
(

n

λ

)3
(ln m)C ln

(
n

ε

)2
, (2.31)

for some constants C, C∗ > 0. Then with high probability w.r.t. random initialization, the

training error decays exponentially,

n∑
α=1

‖fα(t) − yα‖2
2 ≤ exp

(
−λt

n

)
n∑

α=1
‖fα(0) − yα‖2

2 , (2.32)

which reaches the training accuracy ε with time complexity

T = O
(

n

λ
ln
(1

ε

))
. (2.33)

We remark that the operator G(2)
t (·) by definition is the same as the NTK Gθt(·) in Equa-

tion (  2.7 ). Also in Theorem  2.6.2 , a further assumption on the least eigenvalue of the

NTK G(2)
0 (·) has been imposed directly, see Equation (  2.30 ). However, as is shown in The-
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orem  2.5.1 , there shall be some additional requirements on width m in order for the NTK

at initial phase to be positive-definite. We complement this technical issue in Chapter  B ,

showing that the least eigenvalue of the NTK G(2)
0 (·) can be ensured for a finite threshold of

the width m.
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3. RESNET USING NTH

3.1 Introduction

In this chapter, we study the ResNet model ( 1.2 ) with finite width using NTH. We

rigorously prove that as long as no two training inputs from X are parallel and the width

m is large enough, gradient descent achieves zero training loss at a linear convergence rate,

i.e., it finds a solution θ(t) with RS(θ(t)) ≤ ε in time t = O
(
ln
(

1
ε

))
. Thus, our results give

a quantitative convergence rate involving the desired accuracy.

Our exposition mainly follows the settings of [  3 ]. However, different from [  3 ] in analyzing

the fully-connected network, we focus on the investigation of ResNet. We exploit further

benefits of using ResNet architecture for training and advantages of choosing NTH over

kernel regression.

3.2 Main Results

Theorem 3.2.1 (NTH for ResNet). Given X and σ(·), there exists an infinite family of

operators G(r)
t : X r → R, r ≥ 2 that describes the continuous time gradient descent

∂t(fα(t) − yα) = − 1
n

n∑
β=1

G(2)
t (xα, xβ)(fβ(t) − yβ), (3.1)

and for any r ≥ 2,

∂tG(r)
t (xα1 , xα2 , · · · , xαr) = − 1

n

n∑
β=1

G(r+1)
t (xα1 , xα2 , · · · , xαr , xβ)(fβ(t) − yβ), (3.2)

then with high probability w.r.t random initialization, there exist some constants C, C∗ > 0,

such that for r ≥ 2, time 0 ≤ t ≤
√

m/(ln m)C∗
,

∥∥∥G(2)
t (·)

∥∥∥
∞

. 1,∥∥∥G(r)
t (·)

∥∥∥
∞

.
(ln m)C

mr/2−1 .

(3.3)

Following Theorem  3.2.1 , we shall remark that:
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• The operator G(2)
t (·) is the same as the NTK Gθt(·) derived in Equation ( 2.10 );

• Constant C depends linearly on r;

• Pre-factors in Inequality ( 3.3 ) explode exponentially fast in r.

Even though the pre-factors explode exponentially, this does not exert influence on the

convergence of gradient descent. Since the landscape of empirical loss RS(θt) is mainly

affected by lower order kernels. As is shown in the proof of Theorem  3.2.2 , we only need to

analyze kernels up to order r = 4.

It has been proved in Theorem  3.2.1 and other literatures [  7 ], [ 35 ], [ 38 ] that the change

of NTK during the gradient descent dynamics for Deep Neural Network is bounded by

O
(

1√
m

)
. However, it was observed by Lee et al. [  39 ] that time variation of the NTK is closer

to O
(

1
m

)
, indicating that there exists a performance gap between the kernel regression using

the limiting NTK and neural networks. Such an observation has been confirmed by Huang

and Yau in [ 3 , Corollary 2.4], and we present a different approach to obtain similar results.

Recall that the NTK G(2)
t (·) consists of a series of kernels

{
G [l]

t (·)
}L+1

l=1
,

G(2)
t (xα, xβ) =

L+1∑
l=1

G [l]
t (xα, xβ),

and for ResNet

G [L+1]
t (xα, xβ) =

〈
x[L]

α , x
[L]
β

〉
,

for 2 ≤ l ≤ L

G [l]
t (xα, xβ) =

〈
cres

L
√

m
σ

(1)
[l] (xα)

(
E

[(l+1):L]
t,α

)ᵀ
at,

cres

L
√

m
σ

(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

〉〈
x[l−1]

α , x
[l−1]
β

〉
,

G [1]
t (xα, xβ) =

〈√
cσ

m
σ

(1)
[1] (xα)

(
E

[2:L]
t,α

)ᵀ
at,√

cσ

m
σ

(1)
[1] (xβ)

(
E

[2:L]
t,β

)ᵀ
at

〉〈
xα, xβ

〉
.

(3.4)
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Theorem 3.2.2. Given X and σ(·), with high probability w.r.t random initialization, there

exist some constants C, C∗ > 0, such that for time 0 ≤ t ≤
√

m/(ln m)C∗
,

∥∥∥∂tG [L+1]
t (·)

∥∥∥
∞

.
(1 + t) (ln m)C

m
, (3.5)

where the constant C is independent of the depth L. Moreover, the pre-factor in the inequal-

ity ( 3.5 ) is at most of order O (L2).

As a direct consequence of Theorem  3.2.2 , for ResNet defined in Equation (  1.2 ), with

width m = Ω(n3L2), gradient descent converges at a linear rate. Precise statements are

given out below.

Theorem 3.2.3. Given X , σ(·) and K [L+1] defined in Equation ( 2.18 ), set λ0 > 0 yielding

λ0 ≤ λmin
(
K [L+1]

)
, there exists a small constant γ1 > 0, such that with high probability w.r.t

random initialization, for m = Ω
((

n
λ0

)2+γ1
)

,

λmin

([
G(2)

0 (xα, xβ)
]

1≤α,β≤n

)
≥ 3

4λ0. (3.6)

Furthermore, there exists a small constant γ2 > 0, such that for m = Ω
((

n
λ0

)3+γ2
L2 ln

(
1
ε

)2
)

,

the quadratic training loss RS(θt) decays exponentially

RS(θt) ≤ RS(θ0) exp
(

−λ0t

n

)
, (3.7)

where ε > 0 is the desired accuracy of RS(θt).

First of all, we note that positive-definiteness of K [L+1] is guaranteed from results in

Chapter  A . For convenience, we summarize Theorem  3.2.3 as follows. If width m satis-

fies that m = max {Ω (n2) , Ω (n3L2)}, then the continuous time gradient descent converges

exponentially, and it reaches training accuracy ε with time complexity T = O
(
n ln

(
1
ε

))
.

Before we end this section, we present a fair comparison of our results with others. First

of all, Du et al. [  1 , Theorem 6.1] require m = Ω
(

n4

λmin
(

K[L]
)4

L6

)
. Since there is a scaling

factor 1
L2 in λmin

(
K [L]

)
, this leads to m = Ω (n4L2). Their iteration complexity for discrete
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time gradient descent converges with T = Ω
(
n2L2 ln

(
1
ε

))
. Our Theorem  3.2.3 improves

their result in two ways:

(i) The quartic dependence on n is reduced directly to cubic dependence;

(ii) Faster convergence of the training process of gradient descent.

Secondly, our work serves as an extension of the results established in [ 3 ] from fully-

connected network to ResNet. We show that for ResNet, in one hand, it is possible for

us to study directly the time variation of NTK using NTH. In the other hand, compared

with fully-connected network, ResNet is more stable in many aspects. Our Theorem  3.2.3 

improves the results in [  3 ] in three ways: (i) With ResNet architecture, the dependency of

the amount of over-parameterization on the depth L can be reduced from 2O(L) to L2;

(ii) While the time interval for the result in [  3 ] takes the form 0 ≤ t ≤ m
p

2(p+1) /(ln m)C∗
for

some p ≥ 2, we extend the interval to 0 ≤ t ≤
√

m/(ln m)C∗
. Additionally, we are able to

show even further that the results hold true for t = ∞;

(iii) In the proof of Corollary 2.5. of [  3 ], further assumptions on least eigenvalue of the NTK

at initial stage were imposed directly. We have rigorously shown in Chapter  A and Chapter  B 

that least eigenvalue of the NTK G(2)
0 (·) stays strictly positive as long as the width m satisfies

m = Ω(n2). Moreover, for fully-connected networks, Huang and Yau asserted that adding up

the whole L + 1 kernels would give rise to the convergence rate of RS (θ), for the belief that

the sum of the least eigenvalues of all the kernels G [l]
t is much larger than the counterpart of

a single kernel, i.e.,

λmin

(
L+1∑
l∗=1

[
G [l∗]

t (xα, xβ)
]

1≤α,β≤n

)
= λmin

([
G(2)

t (xα, xβ)
]

1≤α,β≤n

)

� λmin

([
G [l]

t (xα, xβ)
]

1≤α,β≤n

)
.

However, for ResNet, even if we assume straightforward that all kernels G [l]
t are positive

definite, adding them up will not give substantial increase to the least eigenvalue. On

account of the fact that there exists a scaling factor 1
L2 for kernels

{
G [l]

t

}L

l=2
, heuristically,

the gap of the least eigenvalues between G(2)
t (·) and G [L+1]

t (·) + G [1]
t (·) is at most of order

O
(

L−1
L2

)
= O

(
1
L

)
. Hence for ResNet, even if it goes really deep, the least eigenvalue of its
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NTK still ‘concentrates’ on the kernels G [L+1]
t (·) and G [1]

t (·). Thanks to that observation, we

only need to bring G [L+1]
t (·) to the spotlight. Analysis of G [1]

t (·) is omitted because it is not

needed for our proof.

3.3 Key Technique Number One: Kernel Structure

The core idea of this technique is to simply take derivatives.

3.3.1 Replacement Rules

We revisit the NTK

G(2)
t (xα, xβ) =

L+1∑
l=1

G [l]
t (xα, xβ),

where G(2)
t (·) is the sum of L + 1 terms, with each term being the inner product of vectors

containing components at, x[l]
α , E

[l]
t,α, and σ

(1)
[l] (xα), as is shown in Equation ( 3.4 ). Fol-

lowing Equation (  2.6 ), we are able to write down the gradient dynamics of at, x[l]
α , E

[l]
t,α,

and σ
(1)
[l] (xα). As is shown in Equation (  2.6 ), whenever we take derivatives over a specific

term, its expression heuristically reads

∂t (Anti-Derivative) = − 1
n

n∑
β=1

(Derivative) (fβ(t) − yβ), (3.8)

where ‘Anti-Derivative’ refers to the term we take derivative over. For instance, while the

dynamics of at is written into

∂tat = − 1
n

n∑
β=1

1√
m

√
mx

[L]
β (fβ(t) − yβ), (3.9)
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we refer to at as ‘Anti-Derivative’, and 1√
m

√
mx

[L]
β as its ‘Derivative’. For simplicity, we

symbolize the dynamics ( 3.9 ) as at → 1√
m

√
mx

[L]
β . Similarly, for the dynamics of x[l]

α ,

√
mx[1]

α → cσ√
m

diag
(
σ

(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1 〈xα, xβ〉 ,

for 2 ≤ l ≤ L,

√
mx[l]

α → cσ√
m

diag
(
E

[2:l]
t,α σ

(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1 〈xα, xβ〉

+
l∑

k=2

c2
res

L2√m
diag

E
[(k+1):l]
t,α

σ
(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

1
〈
x[k−1]

α , x
[k−1]
β

〉
,

(3.10)

of W
[l]
t ,

W
[L]
t → cres

L
√

m
diag

(
σ

(1)
[L](xβ)at

)
1 ⊗ (x[L−1]

β )ᵀ,

for 2 ≤ l ≤ L − 1,

W
[l]
t → cres

L
√

m
diag

(
σ

(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

)
1 ⊗ (x[l−1]

β )ᵀ,

W
[1]
t →

√
cσ

m
diag

(
σ

(1)
[1] (xβ)

(
E

[2:L]
t,β

)ᵀ
at

)
1 ⊗ (xβ)ᵀ,

(3.11)
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of σ
(1)
[l] (xα), where r ≥ 1,

σ
(r)
[1] (xα) →

√
cσ

m
σ

(r+1)
[1] (xα)diag

(
σ

(1)
[1] (xβ)

(
E

[2:L]
t,β

)ᵀ
at

)
〈xα, xβ〉 ,

σ
(r)
[2] (xα) → cres

L
√

m
σ

(r+1)
[2] (xα)diag

(
σ

(1)
[2] (xβ)

(
E

[3:L]
t,β

)ᵀ
at

) 〈
x[1]

α , x
[1]
β

〉

+ cσ√
m

σ
(r+1)
[2] (xα)diag

W
[2]
t√
m

σ
(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

 〈xα, xβ〉 ,

for 2 ≤ l ≤ L − 1,

σ
(r)
[l+1](xα) → cres

L
√

m
σ

(r+1)
[l+1] (xα)diag

(
σ

(1)
[l+1](xβ)

(
E

[(l+2):L]
t,β

)ᵀ
at

) 〈
x[l]

α , x
[l]
β

〉

+
l∑

k=2

c2
res

L2√m
σ

(r+1)
[l+1] (xα)diag

W
[l+1]
t√
m

E
[(k+1):l]
t,α

σ
(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

〈x[k−1]
α , x

[k−1]
β

〉

+ cσ√
m

σ
(r+1)
[l+1] (xα)diag

W
[l+1]
t√
m

E
[2:l]
t,α

σ
(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

 〈xα, xβ〉 ,

(3.12)
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and finally of E
[l]
t,α

E
[2]
t,α → c2

res
L2√m

diag
(
σ

(1)
[2] (xα)σ(1)

[2] (xβ)
(
E

[3:L]
t,β

)ᵀ
at

)
1 ⊗ (

√
mx

[1]
β

m
)ᵀ

+ cres

L
√

m
σ

(2)
[2] (xα)diag

(
σ

(1)
[2] (xβ)

(
E

[3:L]
t,β

)ᵀ
at

) cres

L

W
[2]
t√
m

〈
x[1]

α , x
[1]
β

〉

+ cσ√
m

σ
(2)
[2] (xα)diag

W
[2]
t√
m

σ
(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

cres

L

W
[2]
t√
m

〈xα, xβ〉 ,

for 2 ≤ l ≤ L − 1,

E
[l+1]
t,α → c2

res
L2√m

diag
(
σ

(1)
[l+1](xα)σ(1)

[l+1](xβ)
(
E

[(l+2):L]
t,β

)ᵀ
at

)
1 ⊗ (

√
mx

[l]
β

m
)ᵀ

+ c2
res

L2√m
σ

(2)
[l+1](xα)diag

(
σ

(1)
[l+1](xβ)

(
E

[(l+2):L]
t,β

)ᵀ
at

) W
[l+1]
t√
m

〈
x[l]

α , x
[l]
β

〉

+
l∑

k=2

c3
res

L3√m
σ

(2)
[l+1](xα)diag

W
[l+1]
t√
m

E
[(k+1):l]
t,α

σ
(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

W
[l+1]
t√
m

〈
x[k−1]

α , x
[k−1]
β

〉

+ cσ√
m

cres

L
σ

(2)
[l+1](xα)diag

W
[l+1]
t√
m

E
[2:l]
t,α

σ
(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

W
[l+1]
t√
m

〈xα, xβ〉 .

(3.13)

Altogether Equation (  3.10 ), Equation ( 3.11 ), Equation (  3.12 ) and Equation ( 3.13 ) are termed

the Replacement Rules. We instantly obtain the derivative for fα(t), from Equation (  1.2 ), we
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have that fα(t) = fres(xα, θt) = aᵀ
t x[L]

α =
〈
at, x[L]

α

〉
, then by applying one of the replacement

rules (Equation ( 3.10 )) on fα(t), we have

〈
at, x[L]

α

〉
→
〈
x

[L]
β , x[L]

α

〉
+
〈

at,
cσ

m
diag

(
E

[2:l]
t,α σ

(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1 〈xα, xβ〉

〉

+
L∑

k=2

〈
at,

c2
res

L2m
diag

E
[(k+1):l]
t,α σ

(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

1
〈
x[k−1]

α , x
[k−1]
β

〉〉

=
〈
x[L]

α , x
[L]
β

〉
+
〈

at,
cσ

m
E

[2:l]
t,α σ

(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

〉
〈xα, xβ〉

+
L∑

k=2

〈
at,

c2
res

L2m
E

[(k+1):l]
t,α σ

(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

〉〈
x[k−1]

α , x
[k−1]
β

〉
=
〈
x[L]

α , x
[L]
β

〉
+ 1

m

〈√
cσσ

(1)
[1] (xα)

(
E

[2:l]
t,α

)ᵀ
at,

√
cσσ

(1)
[1] (xβ)

(
E

[2:L]
t,β

)ᵀ
at

〉
〈xα, xβ〉

+
L∑

k=2

1
m

〈
cres

L
σ

(1)
[k] (xα)

(
E

[(k+1):l]
t,α

)ᵀ
at,

cres

L
σ

(1)
[k] (xβ)

(
E

[(k+1):L]
t,β

)ᵀ
at

〉〈
x[k−1]

α , x
[k−1]
β

〉
,

and we notice that sum of these terms altogether reads G(2)
t (xα1 , xα2), hence we obtain that

∂t (fα(t) − yα) = ∂tfα(t) = − 1
n

n∑
β=1

G(2)
t (xα1 , xα2)(fβ(t) − yβ).

Applying the replacement rules once again, the derivative for NTK G(2)
t (·) is obtained in the

following form

∂tG(2)
t (xα1 , xα2) = − 1

n

n∑
β=1

G(3)
t (xα1 , xα2 , xβ)(fβ(t) − yβ),

with each term in G(3)
t (xα1 , xα2 , xβ) consisting of the summation of all the terms generated

from G(2)
t (xα1 , xα2) by performing the replacement procedure. In order to illustrate the idea,

besides the above computational example where fα(t) is the main object, another example

is given out in the proof of Theorem  3.2.2 in Section  3.6 .
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By same reasoning, we could obtain higher order kernels inductively by performing all

the possible replacements. For kernel G(r)
t (xα1 , xα2 , . . . , xαr), where r ≥ 2, the following

Ordinary Differential Equation gives G(r+1)
t (xα1 , . . . , xαr ; xβ):

∂tG(r)
t (xα1 , xα2 . . . , xαr) = − 1

n

n∑
β=1

G(r+1)
t (xα1 , xα2 . . . , xαr , xβ)(fβ(t) − yβ),

and it finishes the proof for Equation ( 3.1 ) and Equation ( 3.2 ) in Theorem  3.2.1 .

Furthermore, in order to describe the members appearing in G(p)
t (xα1 , xα2 . . . , xαp), p ≥ 3

more systematically, some notations shall be introduced.

3.3.2 Hierarchical Sets of Kernel Expressions

Firstly, we denote A0 as the first set of expressions, which corresponds to the terms in

G(2)
t (xα1 , xα2). We define A0 as:

A0 , {eses−1 . . . e1e0 : 0 ≤ s ≤ 4L} , (3.14)

where ej is chosen following

e0 ∈
{
at, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
,

for 1 ≤ j ≤ s,

ej ∈
{{

E
[2]
t,β,

(
E

[2]
t,β

)ᵀ
, . . . , E

[L]
t,β ,

(
E

[L]
t,β

)ᵀ}
1≤β≤n

,
{
σ

(1)
[1] (xβ), . . . , σ

(1)
[L](xβ)

}
1≤β≤n

}
.

(3.15)

From Equation ( 3.4 ), each term in G(2)
t (xα1 , xα2) reads

〈u1(t), u2(t)〉
m

or 〈u1(t), u2(t)〉
m

〈u3(t), u4(t)〉
m

,

with vectors u1(t), u2(t), u3(t), u4(t) ∈ A0.
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We remark that compared with Huang and Yau [ 3 ], their ej (1 ≤ j ≤ s) is chosen

differently. The counterpart in [  3 ] is selected from the set


W

[2]
t√
m

,

W
[2]
t√
m

ᵀ

, . . . ,
W

[L]
t√
m

,

W
[L]
t√
m

ᵀ
1≤β≤n

,
{
σ

(1)
[1] (xβ), . . . , σ

(1)
[L](xβ)

}
1≤β≤n

 .

Such change arises from the difference in network structures, and it will be shown further

that skip-connection matrices E
[l]
t,β possess more stability than W

[l]
t /

√
m.

Secondly, we shall investigate the set of expressions in higher orders. Given constructions

of A0,A1, . . . ,Ar, we denote Ar+1 as the set of expressions in the following form:

Ar+1 , {eses−1 . . . e1e0 : 0 ≤ s ≤ 4L} , (3.16)

where e0 is chosen from

e0 ∈
{
at, 1, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
, (3.17)

while for 1 ≤ j ≤ s, each ej is chosen from one of the three following sets

{{
E

[2]
t,β,

(
E

[2]
t,β

)ᵀ
, . . . , E

[L]
t,β ,

(
E

[L]
t,β

)ᵀ}
1≤β≤n

,
{
σ

(1)
[1] (xβ), . . . , σ

(1)
[L](xβ)

}
1≤β≤n

}
,{

diag(g), g ∈ A0 ∪ A1 ∪ · · · ∪ Ar

}
,

with 2 ≤ l ≤ L, 1 ≤ β ≤ n, 1 ≤ u ≤ r,σ
(u+1)
[l] (xβ) diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu


cres

L

W
[l]
t√
m

Qu+1

,

cres

L

(
W

[l]
t

)ᵀ
√

m

Qu+1

σ
(u+1)
[l] (xβ) diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 :

g1, g2 . . . gu ∈ A0 ∪ A1 ∪ · · · ∪ Ar, Q1, Q2 . . . Qu+1 ∈ {0, 1}

.

(3.18)

We use Proposition  3.3.1 to shed light on the structures of the elements in Ar, and conse-

quently on the structures of each term in kernel G(r)
t (xα1 , xα2 , . . . , xαr).
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Proposition 3.3.1. For any vector u(t) ∈ Ar, the new vector obtained from u(t) by applying

the replacement rules is sum of the terms with the following forms

(a). C√
m

u∗(t) : u∗(t) ∈ Ar,

(b). C√
m

u∗(t)〈p, q〉
m

: u∗(t) ∈ Ar+1, p, q ∈ A0,

(c). C√
m

u∗(t)〈p, q〉
m

: u∗(t) ∈ Ar−s+1, p ∈ As, q ∈ A0, for some s ≥ 1,

(d). C√
m

u∗(t)〈p, q〉
m

: u∗(t) ∈ As, p ∈ Ar−s+1, q ∈ A0, for some s ≥ 1.

(3.19)

Proof. We remark that the constant C in Equation ( 3.19 ) may change from term to term.

(i). Firstly, since at appears only at the position e0, if u(t) ∈ Ar, from replacement rules

u(t) = eses−1 . . . e1at → ũ(t) = 1√
m

eses−1 . . . e1
√

mx
[L]
β = 1√

m
u∗(t),

then u∗(t) = eses−1 . . . e1
√

mx
[L]
β ∈ Ar.

(ii). Similarly,
√

mx[l]
α also appears only at e0, then if u(t) ∈ Ar, from replacement rules

u(t) = eses−1 . . . e1
√

mx[l]
α → ũ(t),

ũ(t) =
∑

k

C√
m

eses−1 . . . e1 diag(fk) 1

〈√
mx[k]

α ,
√

mx
[k]
β

〉
m

=
∑

k

C√
m

u∗
k(t)

〈√
mx[k]

α ,
√

mx
[k]
β

〉
m

,

with fk ∈ A0, then u∗
k(t) ∈ Ar+1.
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(iii). Moreover, for σ
(u)
[l] (xα), which only appears at the starting or middle position. For

u = 1, σ
(1)
[l] (xα) has no diag operations accompanied with it, and any vector u(t) ∈ Ar could

contain σ
(1)
[l] (xα) for r ≥ 0. From replacement rules

u(t) = es . . . ej+1σ
(1)
[l] (xα)ej−1 . . . e0 → ũ(t),

ũ(t) = C√
m

es . . . ej+1σ
(2)
[l] (xα)diag (f1) ej−1 . . . e0

〈p1, q1〉
m

+
∑

k

C√
m

es . . . ej+1σ
(2)
[l] (xα)diag

W
[l]
t√
m

fk

 ej−1 . . . e0
〈pk, qk〉

m

=
∑

l

C√
m

u∗
l (t)

〈pl, ql〉
m

,

with fk ∈ A0, then u∗
l (t) ∈ Ar+1, and pl, ql ∈ A0.

For u 6= 1, σ
(u)
[l] (xα) has at most u − 1 diag operations behind it, and only for u(t) ∈ Ar

with r ≥ u − 1 could it contain σ
(u)
[l] (xα),

u(t) = es . . . ej+1ejej−1 . . . e0 → ũ(t),

∃ ej = σ
(u)
[l] (xα)diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu−1

gu−1


cres

L

W
[l]
t√
m

Qu

,

or ej =
cres

L

(
W

[l]
t

)ᵀ
√

m

Qu

σ
(u)
[l] (xα)diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu−1

gu−1

 ,
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after applying replacement rules on ej → e∗
j ,

e∗
j = C√

m
σ

(u+1)
[l] (xα) . . .

cres

L

W
[l]
t√
m

Qu

〈p1, q1〉
m

+
∑

k

C√
m

σ
(u+1)
[l] (xα)diag


W

[l]
t√
m

Q0

fk

 . . .

cres

L

W
[l]
t√
m

Qu

〈pk, qk〉
m

,

or e∗
j = C√

m

cres

L

(
W

[l]
t

)ᵀ
√

m

Qu

σ
(u+1)
[l] (xα)diag (f1) . . .

〈p1, q1〉
m

+
∑

k

C√
m

cres

L

(
W

[l]
t

)ᵀ
√

m

Qu

σ
(u+1)
[l] (xα)diag


W

[l]
t√
m

Q0

fk

 . . .
〈pk, qk〉

m
,

hence

ũ(t) =
∑

l

C√
m

u∗
l (t)

〈pl, ql〉
m

,

with fk ∈ A0, then u∗
l (t) ∈ Ar+1, and pl, ql ∈ A0.

(iv). Since W
[l]
t√
m

only appears at the starting or the middle position, if u(t) ∈ Ar, from

replacement rules

u(t) = eses−1 . . . ej+1
W

[l]
t√
m

ej−1 . . . e1e0 → ũ(t),

ũ(t) = C

m
eses−1 . . . ej+1diag(g) 1 ⊗ (x[l−1]

β )ᵀej−1 . . . e1e0

= C√
m

eses−1 . . . ej+1diag(g) 1

〈
ej−1 . . . e1e0,

√
mx

[l−1]
β

〉
m

= C√
m

u∗(t)〈p, q〉
m

,

with u∗(t) ∈ Ar−s+1, and p ∈ As, q ∈ A0, for some s ≥ 1.
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Similarly for (W [l])ᵀ
t√
m

,

u(t) = eses−1 . . . ej+1
(W [l]

t )ᵀ√
m

ej−1 . . . e1e0 → ũ(t)

ũ(t) = C

m
eses−1 . . . ej+1x

[l−1]
β ⊗ 1ᵀ diag(g) ej−1 . . . e1e0

= C√
m

eses−1 . . . ej+1
√

mx
[l−1]
β

〈diag(g) ej−1 . . . e1e0, 1〉
m

= C√
m

u∗(t)〈p, q〉
m

,

with u∗(t) ∈ Ar−s, and p ∈ Ar−s+1, q ∈ A0, for some s ≥ 1.

(v). Finally for E
[l]
t,α, whose scenario is the situations combined with W

[l]
t√
m

and σ
(1)
[l] (xα), we

shall skip the analysis and conclude the proof.

From the discussion above, we apply Proposition  3.3.1 sequentially to G(2)
t (xα1 , xα2) for

(r − 1) many times to obtain kernel G(r)
t (xα1 , xα2 , . . . , xαr), whose individual components

takes the form

1
mr/2−1

s∏
j=1

〈u2j−1(t), u2j(t)〉
m

, 1 ≤ s ≤ r, ui(t) ∈ A0 ∪ A1 ∪ · · · ∪ Ar−2. (3.20)

We remark that Equation ( 3.20 ) brings partial proof to Equation ( 3.3 ).

3.4 Key Technique Number Two: Apriori Estimates

Huang and Yau obtained Equation ( 3.20 ) in [  3 , Equation (3.8)], and they use the tensor

program [  38 ] to estimate the initial value of the kernel G(r)
0 (·). They showed that for each

vector uj(t) at t = 0, it is a linear combination of projections of independent Gaussian

vectors. Hence, if we consider such quantity

η(t) = {‖u(t)‖∞ : u(t) ∈ A0 ∪ A1 · · · ∪ Ar} , (3.21)

then with high probability,

η(0) . (ln m)C (3.22)
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holds, since any u(0) is a linear combination of projections of independent Gaussian vectors.

For t > 0, Huang and Yau derived a self-consistent Ordinary Differential Inequality for

η(t),

∂
(p+1)
t η(t) . η(t)2p

mp/2 , (3.23)

η(0) . (ln m)C , (3.24)

for some p ≥ 2. Then for time 0 ≤ t ≤ m
p

2p+1 /(ln m)C∗
,

η(t) . (ln m)C .

Our approach is different from theirs, instead of using tensor programs, we use a special

matrix norm, the 2 to infinity matrix norm, to show Equation (  3.22 ). Then we derive a

Gronwall-type inequality for η(t),

η(t) . (ln m)C + 1√
m

∫ t

0
η(s) ds,

Hence it follows that for time 0 ≤ t ≤
√

m/ (ln m)C∗
,

η(t) . (ln m)C

holds, which brings the complete proof to Equation ( 3.3 ).

3.4.1 Apriori L2 Bounds for Expressions in A0

We begin our proof with several lemmas.

Lemma 3.4.1. Given X and σ(·), for t ≥ 0,

RS(θt) ≤ RS(θ0) ∼ O(1). (3.25)
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Proof. We get inequality ( 3.25 ) by non-negative definiteness of kernel G(2)
t (·). From Equa-

tion ( 3.1 ), we obtain that

∂t

n∑
α=1

‖fα(t) − yα‖2
2 = − 2

n

n∑
α,β=1

G(2)
t (xα, xβ)(fα(t) − yα)(fβ(t) − yβ) ≤ 0, (3.26)

hence

RS(θt) ≤ RS(θ0),

which finishes the proof of the lemma.

Our next lemma is mainly on the spectral property of random matrices, which was given

out in [ 1 , Lemma G.2.], also consequence of results in [ 40 ].

Lemma 3.4.2. Given W ∈ Rm×m, with entry Wi,j ∼ N (0, 1), then with probability at least

1 − exp
(
− (cw,0−2)2m

2

)
, the following holds

‖W ‖2→2 ≤ c
′

w,0
√

m, (3.27)

where the constant c
′
w,0 > 2.

Our next lemma is on the tail bound of the chi-square distribution, whose proof can be

found in [ 41 ].

Lemma 3.4.3. If Z ∼ χ2(m), then we have a tail bound

P
(
Z ≥ m + 2

√
mx + 2x

)
≤ e−x. (3.28)

Our next proposition is similar to Proposition B.1. in [ 3 ].

Proposition 3.4.1. Given X and σ(·), define ξ(t)

ξ(t) = sup
0≤t∗≤t

max

1,
1√
m

{ ∥∥∥W [2]
t∗

∥∥∥
2→2

,
∥∥∥(W [2]

t∗

)ᵀ∥∥∥
2→2

, . . .

. . . ,
∥∥∥W [L]

t∗

∥∥∥
2→2

,
∥∥∥(W [L]

t∗

)ᵀ∥∥∥
2→2

, ‖at∗‖2

},

(3.29)
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then with high probability w.r.t the random initialization, for t .
√

m

ξ(t) ≤ cw,t, (3.30)

where the constant cw,t > 2 is independent of the depth L. Moreover for t .
√

m, cw,t has a

uniform upper bound in t, i.e.,

cw,t ≤ c̄, (3.31)

where c̄ is independent of the depth L and time t.

Proof. (i). Firstly, set Z = ‖a‖2
2 in Lemma  3.4.3 . Then if we write 2tm = m + (2t − 1)m,

with x = mt
10 ,

P
(

‖a0‖2
2 ≥ m + 2m

(√
t/10 + t/10

))
≤ exp(−tm/10)),

and for t ≥ 1, we have 2t − 1 ≥ 2
(√

t/10 + t/10
)
. Thus, if we choose t properly, we see that

such event
1√
m

‖a0‖2 ≤ cw,0

holds with high probability, where cw,0 is the constant in Lemma  3.4.2 . Hence, combined

with Lemma  3.4.2 for t = 0, ξ(0) ≤ max
{
1, c

′
w,0

}
= cw,0.

(ii). Secondly, we derive the upper bound for ∂tξ(t). In order for that, the L2 bound on

each output layer shall be estimated. For l = 1,

∥∥∥x[1]
∥∥∥

2
=
√

cσ

m

∥∥∥σ(W [1]
t x)

∥∥∥
2

≤
√

cσ

(
|σ(0)| + 1√

m

∥∥∥W [1]
t x

∥∥∥
2

)

≤
√

cσ (1 + ξ(t) ‖x‖2) ≤ Cξ(t),
(3.32)

and for 2 ≤ l ≤ L,

∥∥∥x[l]
∥∥∥

2
≤
∥∥∥x[l−1]

∥∥∥
2

+ cres

L
√

m

∥∥∥σ (W [l]
t x[l−1]

)∥∥∥
2

≤
∥∥∥x[l−1]

∥∥∥
2

+ cres

L

(
|σ(0)| + ξ(t)

∥∥∥x[l−1]
∥∥∥

2

)
≤
∥∥∥x[l−1]

∥∥∥
2

+ cres

L

(
1 + ξ(t)

∥∥∥x[l−1]
∥∥∥

2

)
≤
(

1 + 2cres

L
ξ(t)

) ∥∥∥x[l−1]
∥∥∥

2
.

(3.33)
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Hence an inductive relation on the 2-norm of x[l] can be obtained

∥∥∥x[l]
∥∥∥

2
≤ C

(
1 + 2cres

L
ξ(t)

)l−1
ξ(t). (3.34)

Based on Equation ( 2.6 ), combined with Lemma  3.4.1 

∂t

∥∥∥W [l]
t

∥∥∥
2→2

≤ 1
n

n∑
β=1

C√
m

∥∥∥σ(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

∥∥∥
2

∥∥∥x[l−1]
β

∥∥∥
2

|fβ(t) − yβ|

≤ 1
n

n∑
β=1

C
(

1 + cres

L
ξ(t)

)L−l

ξ(t)
(

1 + 2cres

L
ξ(t)

)l−1
ξ(t) |fβ(t) − yβ|

≤ C
(

1 + 2cres

L
ξ(t)

)L−1
ξ(t)2

√√√√ 1
n

n∑
β=1

‖fβ(t) − yβ‖2
2

≤ C
(

1 + 2cres

L
ξ(t)

)L−1
ξ(t)2

√
RS (θ0)

≤ C
(

1 + 2cres

L
ξ(t)

)L−1
ξ(t)2 ≤ C exp (2cresξ(t)) ξ(t)2,

∂t ‖at‖2 ≤ 1
n

n∑
β=1

∥∥∥x[L]
β

∥∥∥
2

|fβ(t) − yβ|

≤ C
(

1 + 2cres

L
ξ(t)

)L−1
ξ(t)

√√√√ 1
n

n∑
β=1

‖fβ(t) − yβ‖2
2

≤ C
(

1 + 2cres

L
ξ(t)

)L−1
ξ(t)

√
RS (θ0)

≤ C
(

1 + 2cres

L
ξ(t)

)L−1
ξ(t) ≤ C exp(2cresξ(t)) ξ(t).

(3.35)

Consequently, we have
√

m ∂tξ(t) ≤ C exp(2cresξ(t))ξ2(t),

then an integration inequality can be obtained,

∫ ξ(t)

ξ(0)

du

exp(2cresu)u2 ≤ Ct√
m

. (3.36)
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Hence the integration term on the LHS of Equation ( 3.36 ) is

∫ ξ(t)

ξ(0)

du

exp(2cresu)u2 ≥ 1
exp(2cresξ(t))

∫ ξ(t)

ξ(0)

du

u2

= 1
exp((2cresξ(t))

(
1

ξ(0) − 1
ξ(t)

)

≥ 1
exp(2cresξ(t))

(
1

cw,0
− 1

ξ(t)

)
.

We shall notice that, for the single variable function f(z)

f(z) = 1
exp(2cresz)( 1

cw,0
− 1

z
),

the maximum of f(z) can be achieved at point

z0 =
cw,0 +

√
c2

w,0 + 2cw,0/cres

2 ,

and f(z) is monotone increasing in the interval [cw,0, z0]. Thus, if we choose time t properly,

say t ≤ c
√

m, c small enough, the following holds

ξ(t) ≤
cw,0 +

√
c2

w,0 + 2cw,0/cres

2 .

In other words, if t ≤ c
√

m for some small enough c > 0,

ξ(t) ≤ cw,t ≤
cw,0 +

√
c2

w,0 + 2cw,0/cres

2 ,

where the last quantity is independent of depth L and time t, and we denote this by

c̄ =
cw,0 +

√
c2

w,0 + 2cw,0/cres

2 , (3.37)

which finishes the proof of Proposition  3.4.1 .

We state the inductive relation ( 3.34 ) as a proposition.
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Proposition 3.4.2. Given X and σ(·), then with high probability w.r.t the random initial-

ization, for each l, given time t .
√

m,

∥∥∥x[l]
∥∥∥

2
≤ C, (3.38)

where C > 0 is a constant independent of the depth L.

We remark that the constant C in Proposition  3.4.2 only depends on cres and cσ. However,

for fully-connected networks, Equation ( 3.38 ) in Proposition  3.4.2 become

∥∥∥x[l]
∥∥∥

2
≤ C 2l. (3.39)

Hence the Euclidean norm of each output layer increases exponentially layer by layer for

fully-connected networks, revealing that ResNet possesses more stability.

Finally, we make Apriori estimates on the Euclidean norm of arbitrary vector u(t) ∈ A0.

Proposition 3.4.3. Given X and σ(·), with high probability w.r.t the random initialization,

uniformly for any vector u(t) ∈ A0, given time t .
√

m,

‖u(t)‖2 ≤ c
√

m, (3.40)

where c > 0 is a constant independent of the depth L and time t.

Proof. We shall start our analysis on the whole expressions in set A0. For any vector u(t) ∈

A0, it can be written into

u(t) = eses−1 . . . e1e0, 0 ≤ s ≤ 4L.

We start with the estimate on e0, since e0 is chosen from

e0 ∈
{
at, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
.
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• (a). If e0 = at, then by Lemma  3.4.3 , for t .
√

m,

‖at‖2 ≤ cw,t

√
m ≤ c

√
m.

• (b). If e0 =
√

mx
[l]
β , then based on Proposition  3.4.2 , for t .

√
m,

∥∥∥√mx
[l]
β

∥∥∥
2

=
√

m
∥∥∥x[l]

β

∥∥∥
2

≤ c
√

m.

Now we proceed to ej, j ≥ 1.

• (i). If ej = σ
(1)
[l] (xβ), then we have

‖u(t)‖2 = ‖eses−1 . . . e1e0‖2

= ‖es‖2→2 ‖es−1‖2→2 . . . ‖e1‖2→2 ‖e0‖2 .

Since
∥∥∥σ(1)

[l] (xβ)
∥∥∥

2→2
≤ 1, thus for all j ≥ 1 with ej = σ

(1)
[l] (xβ)

‖u(t)‖2 ≤ c
√

m.

• (ii). If ej = E
[l]
t,β or ej =

(
E

[l]
t,β

)ᵀ
, then based on Proposition  3.4.1 

‖u(t)‖2 = ‖es‖2→2 ‖es−1‖2→2 . . . ‖e1‖2→2 ‖e0‖2 .

Since ∥∥∥E[l]
t,β

∥∥∥
2→2

=
∥∥∥(E[l]

t,β

)ᵀ∥∥∥
2→2

≤
(

1 + cres

L
ξ(t)

)
≤
(

1 + crescw,t

L

)
,

thus for all j ≥ 1 with ej = E
[l]
t,β or ej =

(
E

[l]
t,β

)ᵀ
,

‖u(t)‖2 ≤
(

1 + crescw,t

L

)s

‖e0‖2 , (3.41)
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then by taking supreme on 0 ≤ s ≤ 4L, we have

‖u(t)‖2 ≤
(

1 + crescw,t

L

)4L

‖e0‖2

≤ c exp(4crescw,t)
√

m ≤ c
√

m.

Combining these two observations, we finish the proof.

To sum up, we define

ξ∞,0(t) = sup
0≤t∗≤t

{‖u(t∗)‖2 : u(t∗) ∈ A0} . (3.42)

Then directly from Proposition  3.4.3 , for time 0 ≤ t ≤
√

m/(ln m)C∗
,

ξ∞,0(t) ≤ c
√

m. (3.43)

3.4.2 Apriori L∞ Bounds for Expressions in A0

In this part, we shall make estimate on such quantity

η∞,0(t) = sup
0≤t∗≤t

{‖u(t∗)‖∞ : u(t∗) ∈ A0} . (3.44)

We begin with a lemma on the ‖·‖∞ norm of a standard Gaussian vector.

Lemma 3.4.4. For any i.i.d. standard normal distribution X1, X2, . . . , Xm, it holds with high

probability that L∞-norm of the Gaussian vector X = (X1, X2, . . . , Xm)ᵀ is upper bounded

by

‖X‖∞ ≤ (ln m)C ,

for some large constant C > 0.
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Proof. For any Xi ∼ N (0, 1), for some ε, λ > 0,

P (Xi ≥ ε) = P (exp (λXi) ≥ exp (λε))

≤ E (λXi)
exp (λε) =

exp
(

1
2λ2

)
exp (λε) = exp

(1
2λ2 − λε

)
.

We shall optimize over λ,

P (Xi ≥ ε) ≤ min
λ>0

exp
(1

2λ2 − λε
)

= exp
(

−ε2

2

)
,

from symmetry of Gaussian variables

P (|Xi| ≥ ε) ≤ 2 exp
(

−ε2

2

)
,

hence by taking over m unions

P (‖X‖∞ ≥ ε) ≤ 2m exp
(

−ε2

2

)
.

Set ε = (ln m)C , we have

P
(
‖X‖∞ ≤ (ln m)C

)
≥ 1 − 2m exp

(
−(ln m)2C

2

)
.

We remark that when C > 0 is large enough, (ln m)C ≈ mε for some small ε > 0.

Our next lemma concerns the matrix two to infinity norm.

Lemma 3.4.5. Given W ∈ Rm×m with entry Wi,j ∼ N (0, 1), then with high probability,

‖W ‖2→∞ = sup
‖x‖2=1

‖W x‖∞ ≤ (ln m)C , (3.45)

for some large constant C > 0.

Proof. Note that W x shares the same distribution as the Gaussian vector X in Lemma  3.4.4 ,

i.e. W x ∼ X. Then apply Lemma  3.4.4 directly, we finish the proof.
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To evaluate η∞,0(t), another lemma shall be stated.

Lemma 3.4.6. Given X and σ(·), for vectors in A0, define

ηq,0(t) := sup
0≤t∗≤t

{
‖uq(t∗)‖∞ : uq(t∗) = eqeq−1 . . . e1e0, uq(t∗) ∈ A0

}
. (3.46)

Moreover, define

ω(t) := sup
0≤t∗≤t

max
{∥∥∥W [2]

t∗

∥∥∥
2→∞

,
∥∥∥(W [2]

t∗

)ᵀ∥∥∥
2→∞

, . . . ,
∥∥∥W [L]

t∗

∥∥∥
2→∞

,
∥∥∥(W [L]

t∗

)ᵀ∥∥∥
2→∞

}
,

then with high probability w.r.t the random initialization, for t .
√

m,

ηq,0(t) ≤ η0,0(t) + c ω(t)
(

1 + crescw,t

L

)q

, (3.47)

where constants cw,t > 2, c > 0 are independent of the depth L.

Proof. For any vector uq(t) ∈ A0 of length q, 0 ≤ q ≤ 4L, it can be written into

uq(t) = eqeq−1 . . . e1e0.

We shall prove Equation (  3.47 ) by performing induction on q. Firstly, for q = 0, Equa-

tion ( 3.47 ) is trivial. For q ≥ 1, we shall investigate on the terms ej in the expression

uq(t).

• (i). If ej = σ
(1)
[l] (xβ), then

‖uq(t)‖∞ = ‖eqeq−1 . . . e1e0‖∞

= ‖eq‖∞→∞ ‖eq−1‖∞→∞ . . . ‖e1‖∞→∞ ‖e0‖∞ ,

since
∥∥∥σ(1)

[l] (xβ)
∥∥∥

∞→∞
≤ 1, we have

‖uq(t)‖∞ ≤ ‖e0‖∞ ,
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then

ηq,0(t) ≤ η0,0(t).

• (ii). If ej = E
[l]
t,β or ej =

(
E

[l]
t,β

)ᵀ
, ‖ej‖∞→∞ ≥ 1, so we need to tackle it differently.

‖uq(t)‖∞ =
∥∥∥E[l]

t,βuq−1(t)
∥∥∥

∞

=

∥∥∥∥∥∥uq−1(t) + cres

L
σ

(1)
[l] (xβ)W

[l]
t√
m

uq−1(t)

∥∥∥∥∥∥
∞

≤ ‖uq−1(t)‖∞ + cres

L

∥∥∥∥∥∥W
[l]
t√
m

∥∥∥∥∥∥
2→∞

‖uq−1(t)‖2 ,

or ‖uq(t)‖∞ =
∥∥∥(E[l]

t,β

)ᵀ
uq−1(t)

∥∥∥
∞

=

∥∥∥∥∥∥uq−1(t) + cres

L

W
[l]
t√
m

ᵀ

σ
(1)
[l] (xβ)uq−1(t)

∥∥∥∥∥∥
∞

≤ ‖uq−1(t)‖∞ + cres

L

∥∥∥∥∥∥
W

[l]
t√
m

ᵀ∥∥∥∥∥∥
2→∞

‖uq−1(t)‖2 ,

recall definition of ω(t), we have

‖uq(t)‖∞ ≤ ‖uq−1(t)‖∞ + cres

L
√

m
ω(t) ‖uq−1(t)‖2 .

Based on Proposition  3.4.1 

‖uq−1(t)‖2 ≤ c
(

1 + crescw,t

L

)q−1 √
m,

then

‖uq(t)‖∞ ≤ ‖uq−1(t)‖∞ + cres

L
√

m
ω(t) ‖uq−1(t)‖2

≤ ‖uq−1(t)‖∞ + c cres

L
ω(t)

(
1 + crescw,t

L

)q−1
,
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inductively

‖uq(t)‖∞ ≤ ‖u0(t)‖∞ + c

cw,t

ω(t)
(

1 + crescw,t

L

)q

≤ ‖u0(t)‖∞ + c ω(t)
(

1 + crescw,t

L

)q

,

where properties of geometric sums are used. By taking supreme, we have

ηq,0(t) ≤ η0,0(t) + c ω(t)
(

1 + crescw,t

L

)q

.

These lemmas above enables us to state a proposition on the quantity η∞,0(0).

Proposition 3.4.4. Given X and σ(·), then with high probability w.r.t the random initial-

ization,

η∞,0(0) ≤ c(ln m)C , (3.48)

where c, C > 0 are constants independent of the depth L.

Proof. As always, any vector u(t) ∈ A0 can be written into

u(t) = eses−1 . . . e1e0, 0 ≤ s ≤ 4L.

We start with the estimate on η0,0(0), since e0 is chosen from

e0 ∈
{
at, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
.

• (a). If e0 = at, then by Lemma  3.4.4 ,

‖a0‖∞ ≤ (ln m)C .

59



• (b). If e0 =
√

mx
[l]
β , for l = 1,

∥∥∥√mx
[1]
β

∥∥∥
∞

= √
cσ

∥∥∥σ (W [1]
0 xβ

)∥∥∥
∞

≤
√

cσ

(
|σ(0)| +

∥∥∥W [1]
0 xβ

∥∥∥
∞

)
≤

√
cσ

(
1 +

∥∥∥W [1]
0

∥∥∥
2→∞

‖xβ‖2

)
≤

√
cσ

(
1 + (ln m)C

)
≤ c(ln m)C .

Moreover, for l ≥ 1, from Proposition  3.4.2 ,

∥∥∥√mx
[l]
β

∥∥∥
∞

≤
∥∥∥√mx

[l−1]
β

∥∥∥
∞

+ cres

L

∥∥∥σ (W [l]
0 x

[l−1]
β

)∥∥∥
∞

≤
∥∥∥√mx

[l−1]
β

∥∥∥
∞

+ cres

L

(
1 +

∥∥∥W [l]
0

∥∥∥
2→∞

∥∥∥x[l−1]
β

∥∥∥
2

)
≤
∥∥∥√mx

[l−1]
β

∥∥∥
∞

+ cres

L

(
1 + C(ln m)C

)
≤
∥∥∥√mx

[l−1]
β

∥∥∥
∞

+ c

L
(ln m)C ,

inductively, ∥∥∥√mx
[l]
β

∥∥∥
∞

≤ c

(
1 + l

L

)
(ln m)C ≤ c(ln m)C , (3.49)

where c is independent of the depth L.

Consequently,

η0,0(0) ≤ c(ln m)C . (3.50)

Directly from Lemma  3.4.6 

ηq,0(0) ≤ η0,0(0) + c(ln m)C
(

1 + crescw,0

L

)q

≤ c(ln m)C + c(ln m)C exp(4crescw,0) ≤ c(ln m)C ,

by taking supreme on 0 ≤ q ≤ 4L, we finish our proof.

Our next proposition is on the estimate of η∞,0(t) for time 0 ≤ t ≤
√

m/(ln m)C∗
, it is

one of the most important propositions in this thesis.
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Proposition 3.4.5. Given X and σ(·), then with high probability w.r.t the random initial-

ization, for time 0 ≤ t ≤
√

m/(ln m)C∗
,

η∞,0(t) ≤ c(ln m)C , (3.51)

where c, C, C∗ > 0 are constants independent of the depth L.

Proof. We start with the estimate on η0,0(t), since e0 is chosen from

e0 ∈
{
at, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
.

We observe that from the replacement rules given in Section  3.3.1 

at → 1√
m

√
mx

[L]
β ,

√
mx[1]

α → cσ√
m

diag
(
σ

(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1 〈xα, xβ〉 ,

for 2 ≤ l ≤ L,

√
mx[l]

α → cσ√
m

diag
(
E

[2:l]
t,α σ

(1)
[1] (xα)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1 〈xα, xβ〉

+
l∑

k=2

c2
res

L2√m
diag

E
[(k+1):l]
t,α

σ
(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

1
〈
x[k−1]

α , x
[k−1]
β

〉
,

then for 0 ≤ t ≤
√

m/(ln m)C∗
, from Proposition  3.4.2 

∂t ‖at‖∞ ≤ C√
m

∥∥∥√mx
[L]
β

∥∥∥
∞

,

∂t

∥∥∥√mx[l]
α

∥∥∥
∞

≤
l∑

k=1

C√
m

∥∥∥E[(k+1):l]
t,α σ

(1)
[k] (xα)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

∥∥∥
∞

,
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by taking supreme on time 0 ≤ t ≤
√

m/(ln m)C∗
,

η0,0(t) ≤ c(ln m)C + C√
m

∫ t

0
η∞,0(s) ds. (3.52)

Secondly, for the estimate of ω(t), from the replacement rules,

W
[l]
t → cres

L
√

m
σ

(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at ⊗ (x[l−1]

β )ᵀ,
(
W

[l]
t

)ᵀ
→ cres

L
√

m
x

[l−1]
β ⊗

(
σ

(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

)ᵀ
,

then from Proposition  3.4.3 ,

∂t

∥∥∥W [l]
t

∥∥∥
2→∞

≤ C√
m

∥∥∥σ(1)
[l] (xβ)

(
E

[(l+1):L]
t,β

)ᵀ
at

∥∥∥
∞

,

∂t

∥∥∥(W [l]
t

)ᵀ∥∥∥
2→∞

≤ C√
m

∥∥∥√mx
[l−1]
β

∥∥∥
∞

,

hence by taking supreme on time 0 ≤ t ≤
√

m/(ln m)C∗
,

ω(t) ≤ (ln m)C + C√
m

∫ t

0
η∞,0(s) ds. (3.53)

Directly from Lemma  3.4.6 

ηq,0(t) ≤ η0,0(t) + c ω(t)
(

1 + crescw,t

L

)q

≤
(

c(ln m)C + C√
m

∫ t

0
η∞,0(s) ds

)(
1 +

(
1 + crescw,t

L

)q)
.

Finally, by taking supreme on 0 ≤ q ≤ 4L,

η∞,0(t) ≤ c(ln m)C + C√
m

∫ t

0
η∞,0(s) ds. (3.54)

We notice that Equation ( 3.54 ) gives us a Gronwall-type inequality, hence

η∞,0(t) ≤ c(ln m)C exp
(

Ct√
m

)
. (3.55)

62



To sum up, for t ≤
√

m/(ln m)C∗
,

η∞,0(t) ≤ c(ln m)C . (3.56)

3.4.3 Apriori L2 and L∞ Bounds for Expressions in Ar, r ≥ 1

In this part, we shall make estimates on the norms ‖·‖∞ and ‖·‖2 of vectors belonging

to higher order sets Ar, r ≥ 1. Naturally, several quantities for vectors in Ar with length q

shall be defined

ξq,r(t) := sup
0≤t∗≤t

{
‖uq(t∗)‖2 : uq(t∗) = eqeq−1 . . . e1e0, uq(t∗) ∈ Ar

}
, (3.57)

Specifically, from Proposition  3.4.1 and Proposition  3.4.3 ,

ξq,0(t) ≤ c
(

1 + crescw,t

L

)q √
m. (3.58)

Moreover, we define

ξ∞,r(t) = sup
0≤q≤4L

{ξq,r(t)} , (3.59)

and we remark that ξ∞,0(t) is consistent with ξ∞,r(t) for r = 0.

Similarly we define

ηq,r(t) := sup
0≤t∗≤t

{
‖uq(t∗)‖∞ : uq(t∗) = eqeq−1 . . . e1e0, uq(t∗) ∈ Ar

}
, (3.60)

and

η∞,r(t) = sup
0≤q≤4L

{ηq,r(t)} . (3.61)

Once again, for any vector u(t) ∈ Ar, it can be written into

u(t) = eses−1 . . . e1e0, 0 ≤ s ≤ 4L,
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Since e0 is chosen from

e0 ∈
{
at, 1, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
.

Since e0 is chosen from

e0 ∈
{
at, 1, {

√
mx

[0]
β ,

√
mx

[1]
β ,

√
mx

[2]
β , . . . ,

√
mx

[L]
β }1≤β≤n

}
.

and ‖1‖∞ = 1, ‖1‖2 =
√

m, then from Proposition  3.4.1 and Proposition  3.4.5 , for time

0 ≤ t ≤
√

m/(ln m)C∗
,

ξ0,r(t) ≤ c
√

m, η0,r(t) ≤ c(ln m)C .

Next we proceed to ej, j ≥ 1. For each ej,

• (i) ej = σ
(1)
[l] (xβ), ej = E

[l]
t,β or ej =

(
E

[l]
t,β

)ᵀ
, 2 ≤ l ≤ L.

• (ii) ej = diag(g), g ∈ A0 ∪ A1 ∪ · · · ∪ Ar−1.

• (iii)

ej = σ
(u+1)
[l] (xβ)diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu


cres

L

W
[l]
t√
m

Qu+1

,

or

ej =
cres

L

(
W

[l]
t

)ᵀ
√

m

Qu+1

σ
(u+1)
[l] (xβ)diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 .

We observe that the total number of diag operations in u(t) ∈ Ar is at most r, and that

is how a vector belonging to different hierarchical sets is characterized. Especially if ∃ ej

belonging to case (iii), there are two scenarios:

• Qu+1 = 0, then ej is just multiplication of several diagonal matrices, a special situation

for case (ii).
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• Qu+1 = 1, since diagonal matrices commute, ej reads

ej = diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

σ
(u+1)
[l] (xβ)cres

L

W
[l]
t√
m

,

or

ej =
cres

L

W
[l]
t√
m

ᵀ

σ
(u+1)
[l] (xβ)diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 ,

we shall take advantage of the special structure of ej. Define a new type of skip-

connection matrix

Ẽ
[l,r]
t,β :=

Im + cres

L
σ

(r)
[l] (xβ)W

[l]
t√
m

 r ≥ 2. (3.62)

Then ej can be written into

ej = diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

σ
(u+1)
[l] (xβ)cres

L

W
[l]
t√
m

= diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 Ẽ
[l,u+1]
t,β

− diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 ,

or

ej =
cres

L

W
[l]
t√
m

ᵀ

σ
(u+1)
[l] (xβ)diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu


=
(
Ẽ

[l,u+1]
t,β

)ᵀ
diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu


− diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 .
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To illustrate such relation, if some vector ū(t) contains ej belonging to case (iii), it can be

decomposed into

ū(t) = eses−1 · · · ej+1diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

σ
(u+1)
[l] (xβ)cres

L

W
[l]
t√
m

ej−1 · · · e0

= eses−1 · · · ej+1diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 Ẽ
[l,u+1]
t,β ej−1 · · · e0

− eses−1 · · · ej+1diag


W

[l]
t√
m

Q1

g1

 . . . diag


W

[l]
t√
m

Qu

gu

 ej−1 · · · e0.

From the analysis above, we are able to characterize an element in set Ar. If u(t) ∈ Ar, then

there exists ej1 , ej2 , · · · , ejk , such that

ej1 = diag


W

[l1]
t√
m

Q1

g1

 , g1 ∈ Ar1−1,

ej2 = diag


W

[l2]
t√
m

Q2

g2

 , g2 ∈ Ar2−1,

...

ejk = diag


W

[lk]
t√
m

Qk

gk

 , gk ∈ Ark−1,

with

r1 + r2 + · · · + rk = r, r1, r2, · · · , rk ∈ N+, (3.63)

then Equation (  3.63 ) serves as the counting of the number of diag operations contained in

u(t), while for other ej (j /∈ {j1, j2, · · · , jk, 0}), chosen from

{
E

[l]
t,β,

(
E

[l]
t,β

)ᵀ
: 2 ≤ l ≤ L

}
1≤β≤n

, (3.64){
σ

(1)
[l] (xβ) : 1 ≤ l ≤ L

}
1≤β≤n

, (3.65){
Ẽ

[l,p]
t,β ,

(
Ẽ

[l,p]
t,β

)ᵀ
: 2 ≤ l ≤ L, p ≥ 2

}
1≤β≤n

, (3.66)
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note that the elements in set (  3.64 ) and set (  3.66 ) share the same matrix properties, thanks

to the assumptions concerning the activation function.

Hence, in order to make estimates on ξq,r(t) and ηq,r(t), we shall perform induction on

the number of diag operations, which is shown in the proof of Proposition  3.4.6 . We remark

that Proposition  3.4.6 is also one of the most important proposition in this thesis.

Proposition 3.4.6. Given X and σ(·), then with high probability w.r.t the random initial-

ization, for some finite r ≥ 1 and time 0 ≤ t ≤
√

m/(ln m)C∗
,

ξ∞,r(t) ≤ c(ln m)C√
m,

η∞,r(t) ≤ c(ln m)C ,
(3.67)

where c, C, C∗ > 0 are constants independent of the depth L.

Proof. We recall the definition of ω(t), η∞,0(t) and ξ∞,0(t), then with high probability, for

time 0 ≤ t ≤
√

m/(ln m)C∗
,

ω(t) ≤ c(ln m)C ,

η∞,0(t) ≤ c(ln m)C ,

ξ∞,0(t) ≤ c
√

m.

(i). Let us start out induction with r = 1. For u(t) ∈ A1, since there exists only one solution

to Equation (  3.63 ), then there is one and it is the only index i, such that ei = diag (g), or

ei = diag
(

W
[l]
t√
m

g
)

, with g ∈ A0. Consequently,

ξi,1(t) ≤ sup
g∈A0

‖diag (g)‖2→2 ξi−1,0(t)

≤ sup
g∈A0

‖g‖∞ ξi−1,0(t) ≤ η∞,0(t)ξi−1,0(t) ≤ c(ln m)Cξi−1,0(t),

or ξi,1(t) ≤ sup
g∈A0

∥∥∥∥∥∥diag
W

[l]
t√
m

g

∥∥∥∥∥∥
2→2

ξi−1,0(t)

≤ sup
g∈A0

∥∥∥∥∥∥W
[l]
t√
m

g

∥∥∥∥∥∥
∞

ξi−1,0(t) ≤ ω(t)√
m

ξ∞,0(t)ξi−1,0(t) ≤ c(ln m)Cξi−1,0(t),
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and for q > i,

ξq,1(t) ≤
(

1 + crescw,t

L

)
ξq−1,1(t),

then inductively,

ξq,1(t) ≤
(

1 + crescw,t

L

)q−i
ξi,1(t).

By taking supreme on q and i,

ξ∞,1(t) ≤ exp(4crescw,t)c(ln m)Cξ∞,0(t) ≤ c(ln m)C√
m. (3.68)

(ii). For ηi,1(t), we have

ηi,1(t) ≤ sup
g∈A0

‖diag (g)‖∞→∞ ηi−1,0(t)

≤ sup
g∈A0

‖g‖∞ ηi−1,0(t) ≤ η∞,0(t)ηi−1,0(t) ≤ c(ln m)Cηi−1,0(t),

or ηi,1(t) ≤ sup
g∈A0

∥∥∥∥∥∥diag
W

[l]
t√
m

g

∥∥∥∥∥∥
∞→∞

ηi−1,0(t)

≤ sup
g∈A0

∥∥∥∥∥∥W
[l]
t√
m

g

∥∥∥∥∥∥
∞

ηi−1,0(t) ≤ ω(t)√
m

ξ∞,0(t)ηi−1,0(t) ≤ c(ln m)Cηi−1,0(t),

and for q > i, inductively

ηq,1(t) ≤ ηq−1,1(t) + cres

L
√

m
ω(t)ξq−1,1(t)

≤ ηi,1(t) + cres

L
√

m
ω(t)ξq−1,1(t) + cres

L
√

m
ω(t)ξq−2,1(t) + · · · + cres

L
√

m
ω(t)ξi,1(t),

by taking supreme on q and i, combined with Equation ( 3.68 ),

η∞,1(t) ≤ c(ln m)Cη∞,0(t) + 4cres√
m

ω(t)ξ∞,1(t)

≤ c(ln m)C + c(ln m)C ≤ c(ln m)C .
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(iii). In the following we assume that Equation ( 3.67 ) holds for 1, 2, · · · , r − 1 and we will

prove it for r.

If u(t) ∈ Ar, there exists ej1 , ej2 , · · · , ejk , such that

ej1 = diag


W

[l1]
t√
m

Q1

g1

 , g1 ∈ Ar1−1,

ej2 = diag


W

[l2]
t√
m

Q2

g2

 , g2 ∈ Ar2−1,

...

ejk = diag


W

[lk]
t√
m

Qk

gk

 , gk ∈ Ark−1,

with

r1 + r2 + · · · + rk = r, r1, r2, · · · , rk ∈ N+.

Let i be the largest index among j1, j2, · · · , jk, i.e.

i = max{j1, j2, · · · , jk},

and without loss of generality, let i = j1, we have ei = diag (g1) , or ei = diag
(

W
[l]
t√
m

g1

)
with

g1 ∈ Ar1−1, then

ξi,r(t) ≤ sup
g∈Ar1−1

‖diag (g)‖2→2 ξi−1,r−r1(t)

≤ sup
g∈Ar1−1

‖g‖∞ ξi−1,r−r1(t) ≤ η∞,r1−1(t)ξi−1,r−r1(t) ≤ c(ln m)Cξi−1,r−r1(t),

or ξi,r(t) ≤ sup
g∈Ar1−1

∥∥∥∥∥∥diag
W

[l]
t√
m

g

∥∥∥∥∥∥
2→2

ξi−1,r−r1(t) ≤ sup
g∈Ar1−1

∥∥∥∥∥∥W
[l]
t√
m

g

∥∥∥∥∥∥
∞

ξi−1,r−r1(t)

≤ ω(t)√
m

ξ∞,r1−1(t)ξi−1,r−r1(t) ≤ c(ln m)Cξi−1,r−r1(t),
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inductively

ξq,r(t) ≤
(

1 + crescw,t

L

)q−i
ξi,r−r1(t),

by taking supreme on q and i,

ξ∞,r(t) ≤ exp(4crescw,t)c(ln m)Cξ∞,r−r1(t) ≤ c(ln m)C√
m. (3.69)

(iv). For ηi,r(t),

ηi,r(t) ≤ sup
g∈Ar1−1

‖diag (g)‖∞→∞ ηi−1,r−r1(t)

≤ sup
g∈Ar1−1

‖g‖∞ ηi−1,r−r1(t) ≤ η∞,r1−1(t)ηi−1,r−r1(t) ≤ c(ln m)Cηi−1,r−r1(t),

or ηi,r(t) ≤ sup
g∈Ar1−1

∥∥∥∥∥∥diag
W

[l]
t√
m

g

∥∥∥∥∥∥
∞→∞

ηi−1,r−r1(t) ≤ sup
g∈Ar1−1

∥∥∥∥∥∥W
[l]
t√
m

g

∥∥∥∥∥∥
∞

ηi−1,r−r1(t)

≤ ω(t)√
m

ξ∞,r1−1(t)ηi−1,r−r1(t) ≤ c(ln m)Cηi−1,r−r1(t),

and for q > i,

ηq,r(t) ≤ ηq−1,r(t) + cres

L
√

m
ω(t)ξq−1,r(t)

≤ ηi,r(t) + cres

L
√

m
ω(t)ξq−1,r(t) + cres

L
√

m
ω(t)ξq−2,r(t) + · · · + cres

L
√

m
ω(t)ξi,r(t),

by taking supreme on q and i,

η∞,r(t) ≤ c(ln m)Cη∞,r−r1(t) + 4cres√
m

ω(t)ξ∞,r(t)

≤ c(ln m)C + c(ln m)C ≤ c(ln m)C .

We observe from the above proof that for different r, the constant c grows exponentially

in r, while the growth rate of C is linear.
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3.5 Proof of Theorem  3.2.1 

Since for each term in kernel G(r)
t (xα1 , xα2 , . . . , xαr), r ≥ 2, it takes the form

1
mr/2−1

s∏
j=1

〈u2j−1(t), u2j(t)〉
m

, 1 ≤ s ≤ r, ui(t) ∈ A0 ∪ A1 ∪ · · · ∪ Ar−2, 1 ≤ i ≤ s.

Firstly, from Equation ( 3.43 ), for time 0 ≤ t ≤
√

m/(ln m)C∗
,

∥∥∥G(2)
t (·)

∥∥∥
∞

.

(
ξ∞,0(t)2

m

)2

. 1,

and for r ≥ 3, from Proposition  3.4.6 , for time 0 ≤ t ≤
√

m/(ln m)C∗
,

∥∥∥G(r)
t (·)

∥∥∥
∞

.
1

mr/2−1

(
ξ∞,r−2(t)2

m

)s

.
1

mr/2−1


(
c(ln m)C√

m
)2

m


r

.
(ln m)2rC

mr/2−1 .

3.6 Proof of Theorem  3.2.2 

Since there exists a 1
L2 scaling in some kernels, we use C(r, L) to denote the ‘effective

terms’ in each kernel. We need to investigate the order of C(r, L) for r = 2, 3, 4 respectively.

Firstly, G [L+1]
t (xα1 , xα2) =

〈
x[L]

α1 , x[L]
α2

〉
, then C(2, L) = O(1), since there is only one term.

Secondly, from the replacement rule, all possible terms generated from G [L+1]
t (·) are

G [L+1]
t (xα1 , xα2) =

〈
x[L]

α1 , x[L]
α2

〉
→ G [L+1],(1)

t (xα1 , xα2 , xβ)

G [L+1],(1)
t (xα1 , xα2 , xβ) = cσ

m

〈
diag

(
E

[2:L]
t,α1 σ

(1)
[1] (xα1)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1, x[L]

α2

〉
〈xα1 , xβ〉︸ ︷︷ ︸

I

+
L∑

k=2

c2
res

L2m

〈
diag

(
E

[(k+1):L]
t,α1 σ

(1)
[k] (xα1)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

)
1, x[L]

α2

〉 〈
x[k−1]

α1 , x
[k−1]
β

〉
︸ ︷︷ ︸

II

+ cσ

m

〈
diag

(
E

[2:L]
t,α2 σ

(1)
[1] (xα2)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at

)
1, x[L]

α1

〉
〈xα2 , xβ〉

+
L∑

k=2

c2
res

L2m

〈
diag

(
E

[(k+1):L]
t,α2 σ

(1)
[k] (xα2)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at

)
1, x[L]

α1

〉 〈
x[k−1]

α2 , x
[k−1]
β

〉
.

71



Thanks to the 1
L2 scaling, we obtain that

C(3, L) = O
(

2
(

1 + L − 1
L2

))
= O

(
1 + 1

L

)
.

In order to analyze the dynamics for G [L+1],(1)
t (·), we need the information of its derivative.

Hence, we apply replacement rules once again to G [L+1],(1)
t (·) to obtain G [L+1],(2)

t (·) , i.e.,

G [L+1],(1)
t (xα1 , xα2 , xα3) → G [L+1],(2)

t (xα1 , xα2 , xα3 , xβ).

Finally for G [L+1],(2)
t (·), by symmetry, only terms I and II need to be analyzed.

• There are at most (2L + 2) symbols in term I to be replaced, and each replacement

operation will bring about up to (L + 1) many terms.

• For term II, for each summand, there are also at most (2L+2) symbols to be replaced.

Since there are L − 1 summands in II, and each replacement will bring about up to

(L + 1) many terms, then

C(4, L) = O
(

2
(

(2L + 2)(L + 1) + 1
L2 (L − 1)(2L + 2)(L + 1)

))
= O

(
L2
)

. (3.70)

Next, we turn to the proof of Equation (  3.5 ). From Proposition  3.4.6 , for time 0 ≤ t ≤
√

m/(ln m)C∗
,

∥∥∥G [L+1],(2)
t (·)

∥∥∥
∞

≤ C(4, L)
m

(
ξ∞,2(t)2

m

)4

≤ C(4, L)
m


(
c(ln m)C√

m
)2

m


4

≤ C(4, L)(ln m)C

m
,
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then

∣∣∣∂tG [L+1],(1)
t (xα1 , xα2 , xα3)

∣∣∣ ≤ sup
1≤β≤n

∣∣∣G [L+1],(2)
t (xα1 , xα2 , xα3 , xβ)

∣∣∣
√√√√∑n

β=1 |fβ(t) − yβ|2

n

≤
∥∥∥G [L+1],(2)

t (·)
∥∥∥

∞

√
RS(θ0)

≤ C(4, L)(ln m)C

m
,

moreover, for 1 ≤ α1, α2, α3 ≤ n, and time 0 ≤ t ≤
√

m/(ln m)C∗
,

∣∣∣G [L+1],(1)
t (xα1 , xα2 , xα3)

∣∣∣ ≤
∣∣∣G [L+1],(1)

0 (xα1 , xα2 , xα3)
∣∣∣+ t sup

0≤s≤t

∣∣∣∂sG [L+1],(1)
s (xα1 , xα2 , xα3)

∣∣∣
≤
∥∥∥G [L+1],(1)

0 (·)
∥∥∥

∞
+ t C(4, L)(ln m)C

m
.

Finally, estimates shall be made on
∥∥∥G [L+1],(1)

0 (·)
∥∥∥

∞
. We rewrite G [L+1],(1)

t (·) into

G [L+1],(1)
t (xα1 , xα2 , xβ) = cσ

m

〈
E

[2:L]
t,α1 σ

(1)
[1] (xα1)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at, x[L]

α2

〉
〈xα1 , xβ〉

+
L∑

k=2

c2
res

L2m

〈
E

[(k+1):L]
t,α1 σ

(1)
[k] (xα1)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at, x[L]

α2

〉 〈
x[k−1]

α1 , x
[k−1]
β

〉
+ cσ

m

〈
E

[2:L]
t,α2 σ

(1)
[1] (xα2)σ(1)

[1] (xβ)
(
E

[2:L]
t,β

)ᵀ
at, x[L]

α1

〉
〈xα2 , xβ〉

+
L∑

k=2

c2
res

L2m

〈
E

[(k+1):L]
t,α2 σ

(1)
[k] (xα2)σ(1)

[k] (xβ)
(
E

[(k+1):L]
t,β

)ᵀ
at, x[L]

α1

〉 〈
x[k−1]

α2 , x
[k−1]
β

〉
.

We observe that each term in G [L+1],(1)
t (·) is of the form

c

m

〈
Bat, x[L]

α1

〉 〈
x[l]

α2 , x
[l]
β

〉
, (3.71)

where B is some matrix that varies from term to term, c is a constant that also changes

term by term. Since

〈
at, Bᵀx[L]

α1

〉 〈
x[l]

α2 , x
[l]
β

〉
=
〈
Bat, x[L]

α1

〉 〈
x[l]

α2 , x
[l]
β

〉
(3.72)
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holds, then at t = 0, we shall focus on the term

〈
a0, Bᵀx[L]

α1

〉 〈
x[l]

α2 , x
[l]
β

〉
. (3.73)

Note that a0 is a standard Gaussian vector, from Proposition  3.4.1 and Proposition  3.4.2 ,

with high probability w.r.t random initialization, there exists a uniform constant C > 0,

such that

‖Bᵀ‖2→2 ,
∥∥∥x[L]

α1

∥∥∥
2

,
∥∥∥x[l]

α2

∥∥∥
2

,
∥∥∥x[l]

β

∥∥∥
2

≤ C,

after taking conditional expectation,

〈
a0, Bᵀx[L]

α1

〉 〈
x[l]

α2 , x
[l]
β

〉
∼ N

(
0,
(〈

x[l]
α2 , x

[l]
β

〉)2 ∥∥∥Bᵀx[L]
α1

∥∥∥2

2

)
, (3.74)

apply Lemma  3.4.4 directly, with high probability

c

m

〈
a0, Bᵀx[L]

α1

〉 〈
x[l]

α2 , x
[l]
β

〉
≤ c

(ln m)C

m
. (3.75)

Consequently, ∥∥∥G [L+1],(1)
0 (·)

∥∥∥
∞

≤ C(3, L)(ln m)C

m
, (3.76)

then for 1 ≤ α1, α2, α3 ≤ n, and time 0 ≤ t ≤
√

m/(ln m)C∗
,

∣∣∣G [L+1],(1)
t (xα1 , xα2 , xα3)

∣∣∣ ≤
∥∥∥G [L+1],(1)

0 (·)
∥∥∥

∞
+ tC(4, L)(ln m)C

m

≤ C(3, L)(ln m)C

m
+ tC(4, L)(ln m)C

m
.

Set xβ = xα3 ,

∣∣∣∂tG [L+1]
t (xα1 , xα2)

∣∣∣ ≤
(

C(3, L)(ln m)C

m
+ tC(4, L)(ln m)C

m

)√√√√∑n
β=1 |fβ(t) − yβ|2

n

≤ (C(3, L) + tC(4, L)) (ln m)C

m
,

(3.77)
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which finishes the proof of Theorem  3.2.2 .

3.7 Proof of Theorem  3.2.3 

Firstly, based on Proposition  B.3.2 , for m = Ω
((

n
λ0

)2+ε
)

, then with high probability

w.r.t random initialization,

λmin
[
G(2)

0 (xα, xβ)
]

1≤α,β≤n
≥ λmin

(
G[L+1](0)

)
≥ 3λ0

4 ,

set γ1 = ε, we finish the first part of the proof.

We move on to the change of the least eigenvalue of the NTK. Recall Equation (  3.77 ) in

the proof of Theorem  3.2.2 (Section  3.6 ), for time 0 ≤ t ≤
√

m/(ln m)C∗
,

∣∣∣∂tG [L+1]
t (xα1 , xα2)

∣∣∣ ≤ (C(3, L) + tC(4, L)) (ln m)C

m
,

consequently,

∣∣∣G [L+1]
t (xα1 , xα2) − G [L+1]

0 (xα1 , xα2)
∣∣∣ ≤ t (C(3, L) + tC(4, L)) (ln m)C

m
.

The inequality above can be used to derive an upper bound of the change of the least

eigenvalue of the G [L+1]
t (·).

∥∥∥(G [L+1]
t − G [L+1]

0

)
(·)
∥∥∥

2→2
≤
∥∥∥(G [L+1]

t − G [L+1]
0

)
(·)
∥∥∥

F
≤ n

∥∥∥(G [L+1]
t − G [L+1]

0

)
(·)
∥∥∥

∞

≤ nt (C(3, L) + tC(4, L)) (ln m)C

m
,

set t∗ satisfying

nt∗ (C(3, L) + t∗C(4, L)) (ln m)C

m
= λ0

4 ,
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rewrite the equation above,

C(4, L)(t∗)2 + C(3, L)t∗ = λ0m

4(ln m)Cn
, (3.78)

solving ( 3.78 ), we obtain that

t∗ =
−C(3, L) +

√
(C(3, L))2 + C(4, L)λ0

m
(ln m)Cn

2C(4, L) , (3.79)

since we are in the regime of over-parametrization, for m large enough,

t∗ ≥ 1
4

√√√√ λ0m

C(4, L)(ln m)Cn
. (3.80)

Moreover

λmin

([
G(2)

t (xα, xβ)
]

1≤α,β≤n

)
≥ λmin

([
G [L+1]

t (xα, xβ)
]

1≤α,β≤n

)
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([
G [L+1]

0 (xα, xβ)
]

1≤α,β≤n

)
−
∥∥∥(G [L+1]

t − G [L+1]
0

)
(·)
∥∥∥

2→2
,

set t̄ := inf
{

t : λmin
[
G(2)

t (xα, xβ)
]

1≤α,β≤n
≥ λ0/2

}
, then

t∗ ≤ t̄, (3.81)

for any 0 ≤ t ≤ t̄,

∂t

n∑
α=1

‖fα(t) − yα‖2
2 = − 2

n

n∑
α,β=1

G(2)
t (xα, xβ)(fα(t) − yα)(fβ(t) − yβ)

≤ −λ0

n

n∑
γ=1

‖fγ(t) − yγ‖2
2 ,

then

RS(θt) ≤ exp
(

−λ0t

n

)
RS(θ0). (3.82)
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Set RS(θt) = ε, it takes time

t ≤ n

λ0
ln(C∗

ε
)

for RS(θt) to reach accuracy ε, hence if

t ≤ n

λ
ln
(

C∗

ε

)
≤ t∗ ≤ t̄, (3.83)

then width m is required to yield the lower bound for t∗ derived in Equation ( 3.80 ),

n

λ0
ln
(

C∗

ε

)
≤ 1

4

√√√√ λ0m

C(4, L)(ln m)Cn
. (3.84)

then for

m ≥ C(4, L)
(

n

λ0

)3
(ln m)C ln

(
C∗

ε

)2
,

since C(4, L) = O (L2), we conclude that the required width m should be

m = Ω
((

n

λ0

)3
L2 (ln m)C ln

(
C∗

ε

)2)
, (3.85)

where ε is the desired training accuracy.
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4. SUMMARY AND FUTURE WORK

In this thesis, we described a framework for analyzing the training behavior of ResNet in

continuous time gradient descent dynamics. At a high level, our approach is illustrated using

Figure  4.1 , which builds upon sharp analysis of the least eigenvalue of randomly initialized

Gram matrix, and upon uniform estimates for kernels of all orders in the NTH. Finally, we

would like to re-emphasize the significance of the cres
L

scaling placed in ResNet, which has been

proven to be successful in the stabilization of random propagation (Proposition  B.3.2 , Equa-

tion (  B.36 )), in the uniform estimate of ξ(t) (Proposition  3.4.1 ), ξ∞,0(t) (Proposition  3.4.3 ,

Equation (  3.43 )), and η∞,r(t) (Proposition  3.4.6 ) with r ≥ 1, and most importantly, in

lowering the magnitude of C(4, L) (Equation ( 3.70 )).

Figure 4.1. Diagram for the Proof of Main Theorems
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Some future directions are listed out for our research:

• The NTH is an infinite sequence of relationship. Huang and Yau showed that under

certain conditions, the NTH can be truncated and its truncated version is still able

to approximate the original dynamics up to any precision. We have faith in that for

ResNet, such technical conditions can be loosened.

• In Theorem  3.2.3 , the dependence of m on the depth L is quadratic, we believe that

the dependence can be reduced even further. We conjecture that m depends linearly

in L.

• In this thesis, we focus on gradient descent, and we believe that it can be extended to

stochastic gradient descent, while maintaining the linear convergence rate.

• The test loss has not been addressed in our work. To further investigate the general-

ization power of ResNet, some Apriori estimates for its generalization error would be

useful [ 42 ].
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A. LEAST EIGENVALUE OF GRAM MATRICES

A.1 Introduction

We shall recall the series of matrices
{
K̃ [l]

}L

l=1
,
{
Ã[l]

}L+1

l=1
and vectors

{
b̃[l]
}L

l=1
given in

Definition  2.4.4 :

K̃
[0]
ij = 〈xi, xj〉 ,

Ã
[1]
ij =

K̃
[0]
ii K̃

[0]
ij

K̃
[0]
ji K̃

[0]
jj

 ,

K̃
[1]
ij = E

(u,v)ᵀ∼N
(

0,A
[1]
ij

) cσσ(u)σ(v),

b̃
[1]
i = √

cσ E
u∼N

(
0,K̃

[0]
ii

) [σ(u)] ,

Ã
[l]
ij =

K̃
[l−1]
ii K̃

[l−1]
ij

K̃
[l−1]
ji K̃

[l−1]
jj

 ,

K̃
[l]
ij = K̃

[l−1]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) cresb̃
[l−1]
i σ(v)
L

+
cresb̃

[l−1]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2

 ,

b̃
[l]
i = b̃

[l−1]
i + cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] ,

Ã
[L+1]
ij =

K̃
[L]
ii K̃

[L]
ij

K̃
[L]
ji K̃

[L]
jj

 .

Given expressions above, we shall recall definitions of K [L+1] and K [L] (Definition  2.4.5 ):

K
[L+1]
ij = K̃

[L]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[L+1]
ij

) cresb̃
[L]
i σ(v)
L

+
cresb̃

[L]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2

 ,

K
[L]
ij = c2

res
L2 K̃

[L−1]
ij E

(u,v)ᵀ∼N
(

0,Ã
[L]
ij

) [σ(1)(u)σ(1)(v)
]

.

We shall state two lemmas concerning full rankness of K [L+1] and K [L], which have been

stated as [ 1 , Lemma F.1, Lemma F.2].
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Lemma A.1.1 (Lemma F.1 in [  1 ]). Assume σ(·) is analytic and not a polynomial function.

Consider input data set U = {u1, u2, . . . , un} of n non-parallel points, i.e., uj /∈ span (uk)

for any j 6= k. Define

G(U)ij := Ew∼N (0,I) [σ(wᵀui)σ(wᵀuj)] , (A.1)

then λmin (G(U)) > 0.

Lemma A.1.2 (Lemma F.2 in [  1 ]). Assume σ(·) is analytic and not a polynomial function.

Consider input data set U = {u1, u2, . . . , un} of n non-parallel points, i.e., uj /∈ span (uk)

for any j 6= k. Define

G(U)ij := Ew∼N (0,I)
[
σ(1)(wᵀui)σ(1)(wᵀuj) (uᵀ

i uj)
]

, (A.2)

then λmin (G(U)) > 0.

Given Lemma  A.1.1 and Lemma  A.1.2 , we may proceed to quantify the least eigenvalues

of K [L+1] and K [L].

A.2 Full Rankness for (L + 1)-th Gram matrix

Lemma A.2.1. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, then for each l, each diagonal entry

of K̃ [l] is the same with each other, and each element of the vector b̃[l] is also the same, i.e.,

K̃
[l1]
ii = K̃

[l1]
jj , b̃

[l2]
i = b̃

[l2]
j , for i 6= j.

Moreover (
1 − l

L

c
√

cσ

)2

≤ K̃
[l]
ii ≤

(
1 + l

L

c
√

cσ

)2

, (A.3)

and (
b̃

[l]
i

)2
< K̃

[l]
ii , (A.4)

where c > 0 and depends solely on cres and activation function σ(·).
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Proof. We shall prove it by induction on l. Firstly, we notice that K̃
[0]
ii = K̃

[0]
jj for any i 6= j,

which is obvious since ‖xi‖2 = 1, then K̃
[0]
ii = K̃

[0]
jj = 1.

Next we need to show that (  A.3 ), (  A.4 ) hold true for l = 1. Based on definition, we recall

that cσ =
(
Ex∼N (0,1) [σ(x)2]

)−1
,

K
[1]
ii = cσ E

u∼N
(

0,K̃
[0]
ii

) (σ(u)2
)

= cσ Eu∼N (0,1)
(
σ(u)2

)
= 1,

b̃
[1]
i = √

cσ E
u∼N

(
0,K̃

[0]
ii

) [σ(u)] = √
cσ Eu∼N (0,1) [σ(u)] ,

then (
b̃i

[1]
)2

= cσ

E
u∼N

(
0,K̃

[0]
ii

) [σ(u)]
2

< 1, (A.5)

Equation ( A.5 ) holds because

(
Ex∼N (0,1) [σ(x)]

)2
< Ex∼N (0,1)

[
σ(x)2

]
,

since the quantity is independent of choice of the index i, then K̃
[1]
ii = K̃

[1]
jj , b̃

[1]
i = b̃

[1]
j , for

any i 6= j.

Now we assume that ( A.3 ), (  A.4 ) hold for 1, 2, · · · , l − 1, and we want to show that it is

also the case for l. First of all, since

K̃
[l]
ii = K̃

[l−1]
ii + E

u∼N
(

0,K̃
[l−1]
ii

) cresb̃
[l−1]
i σ(u)
L

+ cresb̃
[l−1]
i σ(u)
L

+ c2
resσ(u)σ(u)

L2

 ,

b̃
[l]
i = b̃

[l−1]
i + cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] ,

then such quantities K̃
[l]
ii , b̃

[l]
i are independent of choice of the index i.
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Secondly, concerning b̃
[l]
i , we assume Equation ( A.4 ) holds for l = 1, 2, · · · , l − 1, then

(
b̃

[l]
i

)2
=
(
b̃

[l−1]
i

)2
+ 2b̃

[l−1]
i

cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] +
cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)]
2

<
(
b̃

[l−1]
i

)2
+ 2b̃

[l−1]
i

cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] + c2
res

L2 E
u∼N

(
0,K̃

[l−1]
ii

) [σ(u)2
]

< K̃
[l−1]
ii + 2b̃

[l−1]
i

cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] + c2
res

L2 E
u∼N

(
0,K̃

[l−1]
ii

) [σ(u)2
]

= K̃
[l]
ii .

Finally, for K̃
[l]
ii , we note that the following inequality holds

√K̃
[l−1]
ii − cres

L

√
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)2]
2

≤ K̃
[l]
ii ≤

√K̃
[l−1]
ii + cres

L

√
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)2]
2

.

Since σ(·) is 1-Lipschitz, then for any 1/2 ≤ α ≤ 2, we have

∣∣∣EX∼N (0,1)
[
σ(αX)2

]
− EX∼N (0,1)

[
σ(X)2

]∣∣∣
≤ EX∼N (0,1)

[∣∣∣σ(αX)2 − σ(X)2
∣∣∣]

≤ |α − 1|EX∼N (0,1) [|X (σ (αX) + σ (X))|]

≤ |α − 1|EX∼N (0,1) [|X| |2σ(0)|] + |α + 1|EX∼N (0,1)
[
X2
]

= |α − 1|

|2σ(0)|
√

2
π

+ |α + 1|


≤ C

cσ

|α − 1| ,

then

EX∼N (0,1)
[
σ(αX)2

]
≤ 1

cσ

+ C

cσ

|α − 1| .

Based on our induction hypothesis,

1 − l − 1
L

c
√

cσ

≤
√

K̃
[l−1]
ii ≤ 1 + l − 1

L

c
√

cσ

,
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set α =
√

K̃
[l−1]
ii , we obtain

E
X∼N

(
0,K̃

[l−1]
ii

) [σ(X)2
]

≤ 1
cσ

+ C

cσ

l − 1
L

c
√

cσ

,

we shall choose c wisely, for instance, set c as

c = Cc2
res

2√
cσ

+
√

C2c4
res

4cσ

+ c2
res,

by our choice of c, combined with Equation ( A.6 ), we have

(√
K̃

[l−1]
ii − 1

L

c
√

cσ

)2

≤ K̃
[l]
ii ≤

(√
K̃

[l−1]
ii + 1

L

c
√

cσ

)2

,

then (
1 − l

L

c
√

cσ

)2

≤ K̃
[l]
ii ≤

(
1 + l

L

c
√

cσ

)2

,

which finishes our proof.

Our next lemma is crucial in that it revels a covariance type structure for the series of

matrices
{
K̃ [l]

}L

l=1
. A standard notation related to matrices shall be introduced. We denote

that A � B if and only if A − B is a semi-positive definite matrix, and A � B if and only

if A − B is strictly positive definite.

Proposition A.2.1. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, then for each l,

K̃ [l] − b̃[l] ⊗
(
b̃[l]
)ᵀ

� K̃ [l−1] − b̃[l−1] ⊗
(
b̃[l−1]

)ᵀ
. (A.6)

Set λ0 > 0 as

λmin
(
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ)

= λ0,

then for all 2 ≤ l ≤ L,

λmin
(
K̃ [l]

)
≥ λ0. (A.7)
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Proof. Since for 1 ≤ i, j ≤ n, and 1 ≤ l ≤ L,

K̃
[l]
ij − b̃

[l]
i b̃

[l]
j

= K̃
[l−1]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) cresb̃
[l−1]
i σ(v)
L

+
cresb̃

[l−1]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2


−

b̃
[l−1]
i + cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)]
b̃

[l−1]
j + cres

L
E

v∼N
(

0,K̃
[l−1]
jj

) [σ(v)]


= K̃
[l−1]
ij − b̃

[l−1]
i b̃

[l−1]
j + E

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) [c2
resσ(u)σ(v)

L2

]

− cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] cres

L
E

v∼N
(

0,K̃
[l−1]
jj

) [σ(v)]

= K̃
[l−1]
ij − b̃

[l−1]
i b̃

[l−1]
j + c2

res
L2 Cov

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) [σ(u)σ(v)] .

We define another series of covariance matrices
{
P [s] : 1 ≤ s ≤ L

}
,

P
[s]
ij := c2

res
L2 Cov

(u,v)ᵀ∼N
(

0,Ã
[s+1]
ij

) [σ(u)σ(v)] , 1 ≤ s ≤ L.

We notice that P [s] are covariance matrices, hence naturally P [s] � 0. Inductively, we have

for all l,
K̃ [l] � K̃ [l] − b̃[l] ⊗

(
b̃[l]
)ᵀ

= K̃ [l−1] − b̃[l−1] ⊗
(
b̃[l−1]

)ᵀ
+ P [l−1]

� K̃ [l−1] − b̃[l−1] ⊗
(
b̃[l−1]

)ᵀ
= K̃ [l−2] − b̃[l−2] ⊗

(
b̃[l−2]

)ᵀ
+ P [l−2]

...

� K̃ [1] − b̃[1] ⊗
(
b̃[1]
)ᵀ

,

(A.8)

the last line brings us to notice of the entry of K̃ [1] − b̃[1] ⊗
(
b̃[1]
)ᵀ

, which reads respectively

[
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ]

ij
= cσ Cov

(u,v)ᵀ∼N
(

0,Ã
[1]
ij

) [σ(u)σ(v)] .
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We notice that
[
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ]

is a covariance matrix, hence naturally

[
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ]

� 0,

and
[
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ]

� 0 except when one of the samples is an exact linear combination

of the others. From Lemma  A.1.1 , we see that K̃ [1] � 0, consequently

λmin
(
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ)

= λ0 > 0,

then λ0 > 0, and it depends solely on the input samples and activation function.

Proposition A.2.2. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, if we set λ0 > 0 as

λmin
(
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ)

= λ0,

then

λmin
(
K [L+1]

)
≥ λ0. (A.9)

Proof. Proof of Proposition  A.2.2 is quite similar to the proof of Proposition  A.2.1 . We

recall that

K
[L+1]
ij = K̃

[L]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[L+1]
ij

) cresb̃
[L]
i σ(v)
L

+
cresb̃

[L]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2

 ,

and we define further that

b
[L+1]
i := b̃

[L]
i + cres

L
E

u∼N (0,K̃
[L]
ii ) [σ(u)] ,

then

K
[L+1]
ij − b

[L+1]
i b

[L+1]
j = K̃

[L]
ij − b̃

[L]
i b̃

[L]
j + c2

res
L2 Cov

(u,v)ᵀ∼∼N
(

0,Ã
[L+1]
ij

) [σ(u)σ(v)] ,
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hence by same reasoning in Equation ( A.8 ),

K [L+1] � K [L+1] − b[L+1] ⊗
(
b[L+1]

)ᵀ
� K̃ [L] − b̃[L] ⊗

(
b̃[L]

)ᵀ
� K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ

,

apply Proposition  A.2.1 directly, we are able to finish the proof.

From Proposition  A.2.2 , we observe that λmin
(
K [L+1]

)
∼ Ω(1).

A.3 Full Rankness for the L-th Gram matrix

Our next proposition concerns the least eigenvalue of K [L], which has been stated as

Proposition F.2 in Du et al. [ 1 ].

Proposition A.3.1. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, then

λmin
(
K [L]

)
≥ c2

res
L2 κ, (A.10)

where κ is independent of depth L.

Proof. Based on Lemma  A.2.1 , there exits a constant c > 0, such that

1/c ≤ K̃
[L]
ii ≤ c.

We define function G : Rn×n → Rn×n:

G(U )ij := Uij E
(u,v)ᵀ∼N

0,

Uii Uij

Uji Ujj




σ(1)(u)σ(1)(v),

from which a scalar function g(λ) could be defined as

g(λ) := min
U :U�0,1/c≤Uii≤c,λmin(U)≥λ

λmin (G(U)) ,
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and Lemma  A.1.2 guarantees that

g(λ0) > 0.

From Proposition  A.2.1 , we observe that

λmin
(
K̃ [L−1]

)
≥ λ0,

hence

λmin
(
K [L]

)
≥ c2

res
L2 g(λ0). (A.11)

Set κ = g(λ0) > 0, since κ is independent of depth L, we finish our proof.

From Proposition  A.3.1 , we remark that λmin
(
K [L]

)
∼ Ω( 1

L2 ).
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B. RANDOM INITIALIZATION OF NTK

In this chapter, we are going to show that

λmin

([
G [L+1]

0 (xα, xβ)
]

1≤α,β≤n

)
≥ 3λ0

4 , (B.1)

holds with high probability, where λ0 > 0 is set to be the least eigenvalue of matrix K̃ [1] −

b̃[1] ⊗
(
b̃[1]
)ᵀ

, i.e.,

λ0 = λmin
(
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ)

.

B.1 Several Lemmas on Gaussian Concentration and Other Aspects

We investigate the concentration properties of Lipschitz functions of Gaussian variables.

Let us say that a function f(·) : Rp → R is CL-Lipschitz function with respect to the

Euclidean norm ‖·‖2, if for any x, y ∈ Rp,

|f(x) − f(y)| ≤ CL ‖x − y‖2 .

Our next lemma reveals that any Lipschitz function of Gaussian variables is itself a sub-

Gaussian variable.

Lemma B.1.1 (Gaussian Concentration Inequality). Let X = (X1, · · · Xp)ᵀ ∈ Rp, whose

components X1, X2, · · · , Xp are i.i.d. Gaussian variables drawn from N (0, σ2), and f(·) :

Rp → R is a CL-Lipschitz function with respect to the Euclidean norm ‖·‖2, then for all t ≥ 0:

P (|f(X) − E f(X)| ≥ t) ≤ 2 exp(− t2

2CL
2σ2 ). (B.2)

We refer to [  43 , Theorem 5.6] for the proof of Lemma  B.1.1 , and remarkably, this is a

dimension free inequality.

Next we shall state two lemmas, which have been stated as [  1 , Lemma G.3, Lemma G.4]

Lemma B.1.2 (Lemma G.3 in [ 1 ]). If σ(·) is CL-Lipschitz, then for a, b > 0, satisfying

1/c ≤ min(a, b), max(a, b) ≤ c,
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for some c > 0, we have

∣∣∣Ez∼N (0,1) [σ(az)] − Ez∼N (0,1) [σ(bz)]
∣∣∣ ≤ C |a − b| , (B.3)

where C > 0 only depends on c and Lipschitz constant CL.

Lemma B.1.3 (Lemma G.4 in [ 1 ]). If σ(·) is CL-Lipschitz, define F (K) : R2×2 → R

F (K) = E(u,v)ᵀ∼N (0,K) [σ(u)σ(v)] ,

then for any two matrices A, B, with

A =

 a2
1 ρ1a1b1

ρ1a1b1 b2
1

 ,

B =

 a2
2 ρ2a2b2

ρ2a2b2 b2
2

 ,

whose entries satisfy

1/c ≤ min(a1, b1), min(a2, b2), max(a1, b1), max(a2, b2) ≤ c,

−1 ≤ ρ1,ρ2 ≤ 1

for some c > 0. Then, we have

|F (A) − F (B)| ≤ C ‖A − B‖F ≤ 2C ‖A − B‖∞ ,

where C > 0 only depends on c and Lipschitz constant CL.
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B.2 Analysis of Random Propagation

We recall readers once again the series of matrices
{
K̃ [l]

}L

l=1
,
{
Ã[l]

}L+1

l=1
and vectors{

b̃[l]
}L

l=1
given in Definition  2.4.4 :

K̃
[0]
ij = 〈xi, xj〉 ,

Ã
[1]
ij =

K̃
[0]
ii K̃

[0]
ij

K̃
[0]
ji K̃

[0]
jj

 ,

K̃
[1]
ij = E

(u,v)ᵀ∼N
(

0,A
[1]
ij

) cσσ(u)σ(v),

b̃
[1]
i = √

cσ E
u∼N

(
0,K̃

[0]
ii

) [σ(u)] ,

Ã
[l]
ij =

K̃
[l−1]
ii K̃

[l−1]
ij

K̃
[l−1]
ji K̃

[l−1]
jj

 ,

K̃
[l]
ij = K̃

[l−1]
ij + E

(u,v)ᵀ∼N
(

0,Ã
[l]
ij

) cresb̃
[l−1]
i σ(v)
L

+
cresb̃

[l−1]
j σ(u)
L

+ c2
resσ(u)σ(v)

L2

 ,

b̃
[l]
i = b̃

[l−1]
i + cres

L
E

u∼N
(

0,K̃
[l−1]
ii

) [σ(u)] ,

Ã
[L+1]
ij =

K̃
[L]
ii K̃

[L]
ij

K̃
[L]
ji K̃

[L]
jj

 .

We shall begin with a proposition on the tail probabilities concerning the outputs of each

layer at initial state, denoted by x
[l]
i (0) for all 1 ≤ i ≤ n and 1 ≤ l ≤ L.

Proposition B.2.1. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, then for all t > 0, 1 ≤ i ≤ n,

1 ≤ l ≤ L :

P
(∣∣∣∣∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃
[l]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)
, (B.4)

P

∣∣∣∣∣∣
〈

x
[l]
i (0)√

m
, 1
〉

− b̃
[l]
i

∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−cmt2

)
, (B.5)

where c > 0 is independent of depth L.
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Proof. (i). For l = 1, we have

∥∥∥x[1]
i (0)

∥∥∥2

2
= cσ

m

m∑
j=1

σ
(
(W [1]

0 xi)j
)2

,

with

E
[∥∥∥x[1]

i (0)
∥∥∥2

2

]
= cσEx∼N (0,1)

[
σ(x)2

]
= K̃

[1]
ii = 1.

Since for all i, ‖xi‖2 = 1, then for each j = 1, 2, · · · , m,
(
W

[1]
0 xi

)
j

is a standard Gaussian,

i.e.,
(
W

[1]
0 xi

)
j
∼ N (0, 1). Moreover, σ(·) is 1-Lipschitz, then σ

(
(W [1]

0 xi)j
)

is sub-Gaussian,

hence
{

σ
(
(W [1]

0 xi)
)2

j

}m

j=1
is a collection of i.i.d. sub-exponential variables. Consequently,

for all t > 0,

P
(∣∣∣∣∥∥∥x[1]

i (0)
∥∥∥2

2
− K̃

[1]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)
,

hence,

P
(∣∣∣∣∥∥∥x[1]

i (0)
∥∥∥2

2
− K̃

[1]
ii

∣∣∣∣ ≥ 2t
)

≤ P
(∣∣∣∣∥∥∥x[1]

i (0)
∥∥∥

2
−
√

K̃
[1]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)
.

We have shown already for l = 1, Equation ( B.4 ) holds. We need to show further that

Equation ( B.5 ) holds.

We shall note that 〈
x

[1]
i (0)√

m
, 1
〉

=
√

cσ

m

m∑
j=1

σ
(
(W [1]

0 xi)j
)

,

and

E

〈x
[1]
i (0)√

m
, 1
〉 = b̃i

[1]
.

Since x
[1]
i (0) can be written into the form

x
[1]
i (0) =

√
cσ

m
σ (X) ,

where X is a standard normal Gaussian vector.
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We shall focus on the inner product function g[1](·) : Rm → R,

g[1](X) =
√

cσ

m
〈σ (X) , 1〉 .

We show that g[1](·) is also Lipschitz with respect to the Euclidean norm ‖·‖2:

For any X1, X2 ∈ Rm :

∣∣∣g[1](X1) − g[1](X2)
∣∣∣ ≤

∣∣∣∣∣
√

cσ

m
〈σ (X1) , 1〉 −

√
cσ

m
〈σ (X2) , 1〉

∣∣∣∣∣
≤

√
cσ

m
|〈X1 − X2, 1〉| ≤

√
cσ

m
‖X1 − X2‖2 .

Hence g[1](·) is C√
m

-Lipschitz. Apply Lemma  B.1.1 directly, we have

P
(∣∣∣g[1](X) − E g[1](X)

∣∣∣ ≥ t
)

≤ exp(−cmt2),

then

P

∣∣∣∣∣∣
〈

x
[1]
i (0)√

m
, 1
〉

− b̃i
[1]
∣∣∣∣∣∣ ≥ t

 ≤ exp(−cmt2).

(ii). Our next step is to prove that Equation ( B.4 ) and Equation (  B.5 ) hold for l ≥ 2,

and we will prove it by induction. Assume that Equation ( B.4 ) and Equation (  B.5 ) hold

true for 1, 2, 3, · · · , l, and we show further that it is also the case for l + 1, i.e.,

P
(∣∣∣∣∥∥∥x[l+1]

i (0)
∥∥∥

2
−
√

K̃
[l+1]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)
, (B.6)

P

∣∣∣∣∣∣
〈

x
[l+1]
i (0)√

m
, 1
〉

− b̃
[l+1]
i

∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−cmt2

)
. (B.7)

The structure of outputs of each layer at initial state shall be recalled as follows

x
[l+1]
i (0) = x

[l]
i (0) + cres

L
√

m
σ
(
W

[l+1]
0 x

[l]
i (0)

)
,
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and the counterpart of K̃
[l]
ii and b̃

[l]
i

K̃
[l+1]
ii = K̃

[l]
ii + E

u∼N (0,K̃
[l]
ii )

cresb̃
[l]
i σ(u)
L

+ cresb̃
[l]
i σ(u)
L

+ c2
resσ(u)σ(u)

L2

 ,

b̃
[l+1]
i = b̃

[l]
i + cres

L
E

u∼N (0,K̃
[l]
ii ) [σ(u)] ,

then

∥∥∥x[l+1]
i (0)

∥∥∥2

2
=
∥∥∥x[l]

i (0)
∥∥∥2

2
+ 2cres

L

〈
x

[l]
i (0)√

m
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
︸ ︷︷ ︸

I

+ c2
res

L2
1
m

〈
σ
(
W

[l+1]
0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
︸ ︷︷ ︸

II

.

Based on our induction hypothesis, there exits estimates on
∥∥∥x[l]

i (0)
∥∥∥2

2
. We need to focus

on terms I and II. Firstly for term I, there is a 1√
m

scaling factor contained in x
[l]
i (0), and

σ
(
W

[l+1]
0 x

[l]
i (0)

)
has distribution

σ
(
W

[l+1]
0 x

[l]
i (0)

)
∼ σ

(∥∥∥x[l]
i (0)

∥∥∥
2

Y
)

,

with Y being a standard normal Gaussian vector, then

E
[

1√
m

〈
x

[l]
i (0), σ

(
W

[l+1]
0 x

[l]
i (0)

)〉]
= 1√

m

〈
x

[l]
i (0),E

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
Y
)]〉

.

We shall focus on the inner product function g[l](·) : Rm → R,

g[l](Y ) = 1√
m

〈
x

[l]
i (0), σ

(∥∥∥x[l]
i (0)

∥∥∥
2

Y
)〉

,

then for any Y1, Y2 ∈ Rm:

∣∣∣g[l](Y1) − g[l](Y2)
∣∣∣ ≤ 1√

m

∣∣∣〈x[l]
i (0), σ

(∥∥∥x[l]
i (0)

∥∥∥
2

Y1
)〉

−
〈
x

[l]
i (0), σ

(∥∥∥x[l]
i (0)

∥∥∥
2

Y2
)〉∣∣∣

≤ 1√
m

∣∣∣〈x[l]
i (0),

∥∥∥x[l]
i (0)

∥∥∥
2

|Y1 − Y2|
〉∣∣∣ ≤ 1√

m

∥∥∥x[l]
i (0)

∥∥∥2

2
‖Y1 − Y2‖2 .
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Based on our induction hypothesis, with high probability, there exists a uniform constant C >

0, such that for 1, 2, · · · , l,
∥∥∥x[l]

i (0)
∥∥∥

2
≤ C. Hence g[l](·) is C√

m
-Lipschitz, apply Lemma  B.1.1 

once again, we have

P
(∣∣∣∣∣ 1√

m

〈
x

[l]
i (0), σ

(
W

[l+1]
0 x

[l]
i (0)

)〉
− 1√

m

〈
x

[l]
i (0),E

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
Y
)]〉∣∣∣∣∣ ≥ t

)

≤ exp(−cmt2).
(B.8)

From our induction hypothesis

P

∣∣∣∣∣∣
〈

x
[l]
i (0)√

m
, 1
〉

− b̃
[l]
i

∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−cmt2

)
,

then differ by a multiplication of constant, the inequality

P
(∣∣∣∣∣ 1√

m

〈
x

[l]
i (0),E

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
Y
)]〉

− b̃i
[l]
Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]∣∣∣∣∣ ≥ t

)

≤ exp(−cmt2)
(B.9)

holds. From Lemma  B.1.2 ,

∣∣∣∣Eu∼N (0,1)
[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]

− Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]∣∣∣∣ ≤ C

∣∣∣∣∥∥∥x[l]
i (0)

∥∥∥
2

−
√

K̃
[l]
ii

∣∣∣∣ ,
naturally, we have

∣∣∣∣b̃i
[l]
Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]

− b̃i
[l]
Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]∣∣∣∣

≤ C

∣∣∣∣b̃i
[l]
∣∣∣∣ ∣∣∣∣∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃
[l]
ii

∣∣∣∣ . (B.10)

Once again from our induction hypothesis,

P
(∣∣∣∣∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃
[l]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)
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holds, then from Equation ( B.10 ), we obtain that

P
(∣∣∣∣b̃i

[l]
Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]

− b̃i
[l]
Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]∣∣∣∣ ≥ t

)
≤ P

(∣∣∣∣C ∣∣∣∣b̃i
[l]
∣∣∣∣ ∣∣∣∣∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃
[l]
ii

∣∣∣∣∣∣∣∣ ≥ t
)

≤ exp(−cmt2).
(B.11)

Combine altogether Equation ( B.8 ), Equation ( B.9 ) and Equation ( B.11 ),

P
(∣∣∣∣∣ 1√

m

〈
x

[l]
i (0), σ

(
W

[l+1]
0 x

[l]
i (0)

)〉
− b̃i

[l]
Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]∣∣∣∣∣ ≥ t

)

≤ P
(∣∣∣∣∣ 1√

m

〈
x

[l]
i (0), σ

(
W

[l+1]
0 x

[l]
i (0)

)〉
− 1√

m

〈
x

[l]
i (0),E

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
Y
)]〉∣∣∣∣∣ ≥ t

3

)

+ P
(∣∣∣∣∣ 1√

m

〈
x

[l]
i (0),E

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
Y
)]〉

− b̃i
[l]
Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]∣∣∣∣∣ ≥ t

3

)

+ P
(∣∣∣∣b̃i

[l]
Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]

− b̃i
[l]
Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]∣∣∣∣ ≥ t

3

)
≤ exp(−cmt2).

(B.12)

Secondly for term II, notice that σ
(
W

[l+1]
0 x

[l]
i (0)

)
has distribution

σ
(
W

[l+1]
0 x

[l]
i (0)

)
∼ σ

(∥∥∥x[l]
i (0)

∥∥∥
2

Y
)

,

with Y being a standard normal Gaussian vector, then

E
[ 1
m

〈
σ
(
W

[l+1]
0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉]
= Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)2
]
,

we recall once again that
{

σ
(
(W [1]

0 xi)
)

j

}m

j=1
is a collection of i.i.d. sub-Gaussian variables,{

σ
(
(W [1]

0 xi)
)2

j

}m

j=1
sub-exponential. Consequently, for all t > 0,

P
(∣∣∣∣ 1

m

〈
σ
(
W

[l+1]
0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
− Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)2
]∣∣∣∣ ≥ t

)
≤ exp

(
−cmt2

) (B.13)
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holds. From Lemma  B.1.3 ,

∣∣∣∣∣∣∣Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)2
]

− Eu∼N (0,1)

σ

√K̃ii
[l]

u

2

∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣
∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃ii
[l]
∣∣∣∣∣∣ .

(B.14)

Based on our induction hypothesis,

P
(∣∣∣∣∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃
[l]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)

holds, then from Equation ( B.14 ), we obtain that

P


∣∣∣∣∣∣∣Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)2
]

− Eu∼N (0,1)

σ

√K̃ii
[l]

u

2

∣∣∣∣∣∣∣ ≥ t


≤ P

∣∣∣∣∣∣C
∣∣∣∣∣∣
∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃ii
[l]
∣∣∣∣∣∣
∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−cmt2

)
.

(B.15)

Combine altogether Equation ( B.13 ) and Equation ( B.15 ), since

P


∣∣∣∣∣∣∣

1
m

〈
σ
(
W

[l+1]
0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
− Eu∼N (0,1)

σ

√K̃ii
[l]

u

2

∣∣∣∣∣∣∣ ≥ t


≤P

(∣∣∣∣ 1
m

〈
σ
(
W

[l+1]
0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
− Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)2
]∣∣∣∣ ≥ t

2

)

+P


∣∣∣∣∣∣∣Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)2
]

− Eu∼N (0,1)

σ

√K̃ii
[l]

u

2

∣∣∣∣∣∣∣ ≥ t

2

 ,

then

P


∣∣∣∣∣∣∣

1
m

〈
σ
(
W

[l+1]
0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
− Eu∼N (0,1)

σ

√K̃ii
[l]

u

2

∣∣∣∣∣∣∣ ≥ t


≤ exp

(
−cmt2

)
.

(B.16)
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We recall once again that

∥∥∥x[l+1]
i (0)

∥∥∥2

2
=
∥∥∥x[l]

i (0)
∥∥∥2

2
+ 2cres

L

〈
x

[l]
i (0)√

m
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
︸ ︷︷ ︸

I
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1
m

〈
σ
(
W
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0 x

[l]
i (0)

)
, σ
(
W

[l+1]
0 x

[l]
i (0)

)〉
︸ ︷︷ ︸

II

,

where term I is close to b̃i
[l]
Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]

, as is shown in Equation ( B.12 )

P
(∣∣∣∣∣ 1√

m

〈
x

[l]
i (0), σ

(
W

[l+1]
0 x

[l]
i (0)

)〉
− b̃i

[l]
Eu∼N (0,1)

[
σ
(√

K̃
[l]
ii u
)]∣∣∣∣∣ ≥ t

)

≤ exp(−cmt2),
(B.17)

and term II is close to Eu∼N (0,1)

[
σ
(√

K̃ii
[l]

u
)2]

, as is shown in Equation ( B.16 )

P
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1
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(
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)
, σ
(
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)〉
− Eu∼N (0,1)

σ
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u
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
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(
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)
,

(B.18)

then

P
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2
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∣∣∣∣ ≥ t

(
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)
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2
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)

+ P
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〈
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m
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(
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[l]
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[
σ
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L
t
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(
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)〉
− Eu∼N (0,1)

σ
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)
.
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We shall remark that thanks to the cres
L

structure, with high probability, the difference∣∣∣∣∥∥∥x[l]
i (0)

∥∥∥2

2
− K̃ii

[l]
∣∣∣∣ does not explode exponentially with respect to the number of layer. From

inequality above, we have

P
(∣∣∣∣∥∥∥x[l+1]

i (0)
∥∥∥2

2
− K̃ii

[l+1]
∣∣∣∣ ≥ t

(
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L

)2
)

≤ exp
(
−cmt2

)
,

if we choose cres and t smartly, set t∗ = t
(
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L

)2
, then t = t∗

(
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L

)−2
, there exists a

uniform constant c∗, such that

1/c∗ ≤
(
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L

)−2L

≤ c∗,

then

P
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∥∥∥2

2
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)
≤ exp

(
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)
, (B.19)

which finishes the proof of Equation ( B.6 ).

Finally, we need to prove Equation (  B.7 ) for b̃
[l+1]
i . The structure of outputs of each layer

at initial state shall be recalled once again,

x
[l+1]
i (0) = x

[l]
i (0) + cres

L
√

m
σ
(
W

[l+1]
0 x

[l]
i (0)

)
,

and the counterpart of b̃
[l]
i

b̃
[l+1]
i = b̃

[l]
i + cres

L
E

u∼N (0,K̃
[l]
ii ) [σ(u)] .

Apply Lemma  B.1.1 ,

P

∣∣∣∣∣∣
〈

σ
(
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0 x

[l]
i (0)

)
m

, 1
〉
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[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
u
)]∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−cmt2

)
. (B.20)
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Apply Lemma  B.1.3 ,

∣∣∣∣∣∣∣Eu∼N (0,1)

[
σ
(∥∥∥x[l]

i (0)
∥∥∥

2
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]
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(B.21)

from induction hypothesis, since

P
(∣∣∣∣∥∥∥x[l]

i (0)
∥∥∥

2
−
√

K̃
[l]
ii

∣∣∣∣ ≥ t
)

≤ exp
(
−cmt2

)

holds, then from Equation ( B.21 ), we obtain that

P
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)
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(B.22)

combine Equation ( B.20 ) and Equation ( B.22 ),

P
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(∥∥∥x[l]

i (0)
∥∥∥
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(B.23)
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then

P
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(B.24)

We shall see once again that thanks to the cres
L

structure, with high probability, the difference∣∣∣∣〈x
[l]
i (0)√

m
, 1
〉

− b̃
[l]
i

∣∣∣∣ only has linear increment with respect to the number of layer. If we choose

cres and t smartly, set t∗ = t
(
1 + cres

L

)
, then t = t∗

(
1 + cres

L

)−1
, there exists a uniform

constant c∗, such that

1/c∗ ≤
(

1 + cres

L

)−L

≤ c∗,

then

P

∣∣∣∣∣∣
〈

x
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i (0)√

m
, 1
〉

− b̃
[l+1]
i

∣∣∣∣∣∣ ≥ t∗

 ≤ exp
(
−cmt∗2

)
, (B.25)

which finishes the proof of Equation ( B.7 ).

B.3 Analysis on Random Initialization

Our next proposition is on the least eigenvalue of the randomly initialized Gram matrix.

First, we shall denote the series of randomly initialized Gram matrices by
{
G[l](0)

}L+1

l=1
,

whose components read:

G
[l]
ij (0) =

〈
x

[1]
i (0), x

[1]
j (0)

〉
. (B.26)

Proposition B.3.1. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, set λ0 > 0 as

λmin
(
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ)

= λ0,
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there exists a small constant ε > 0, such that with high probability w.r.t random initialization,

for m = Ω
((

n
λ0

)2+ε
)

, then

λmin
(
G[1](0)

)
≥ 3λ0

4 . (B.27)

Proof. We have that

G
[1]
ij (0) =

〈
x

[1]
i (0), x

[1]
j (0)

〉
K̃

[1]
ij = cσ E(u,v)ᵀ∼N

(
0,Ã

[1]
ij

) [σ(u)σ(v)] .

Now we need to apply Lemma  B.1.1 again, except that we are going to apply it to the inner

product function h[1](·) : R2m → R,

h[1](Z) = cσ

m

〈
σ(X), σ(ρX +

√
1 − ρ2Y )

〉
,

where Zᵀ = (Xᵀ, Y ᵀ), X, Y are standard normal Gaussian vectors, and −1 ≤ ρ ≤ 1.

For any Z1, Z2 ∈ Rm,

∣∣∣h[1](Z1) − h[1](Z2)
∣∣∣ ≤

√
cσ

m

∥∥∥∥σ(ρX1 +
√
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∥∥∥∥

2

√
cσ

m
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+
√

cσ

m
‖σ(X2)‖2

√
cσ

m

(
|ρ| ‖X1 − X2‖2 +

√
1 − ρ2 ‖Y1 − Y2‖2

)
,

combined with Proposition  B.2.1 , with high probability, there exists a uniform constant

C > 0, such that

√
cσ

m

∥∥∥∥σ(ρX1 +
√

1 − ρ2Y1)
∥∥∥∥

2
,

√
cσ

m
‖σ(X2)‖2 ≤ C.

So we have ∣∣∣h[1](Z1) − h[1](Z2)
∣∣∣ ≤ 4C

√
cσ

m
‖Z1 − Z2‖2 ,

hence h[1] (Z) is 4C
√

cσ

m
-Lipschitz. Then set ρ = K̃

[0]
ij , for all 1 ≤ i, j ≤ m,

P
(∣∣∣G[1]

ij (0) − K̃
[1]
ij

∣∣∣ ≥ t
)

≤ exp(−cmt2).
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Note that based on Proposition  A.2.1 , λmin
(
K̃ [1]

)
≥ λ0, also we have

∥∥∥G[1](0) − K̃ [1]
∥∥∥

2→2
≤
∥∥∥G[1](0) − K̃ [1]

∥∥∥
F

≤ n
∥∥∥G[1](0) − K̃ [1]

∥∥∥
∞

,

then if we choose t = λ0
4n

and with a union of m2 such events, we have with probability

1 − m2 exp (−cmλ2
0/n2), ∥∥∥G[1](0) − K̃ [1]

∥∥∥
2→2

≤ λ0

4

holds. Hence if there exists a small constant ε > 0, such that m = Ω
((

n
λ0

)2+ε
)

, then with

probability 1 − exp(−mε),

λmin(G[1](0)) ≥ λmin(K̃ [1]) −
∥∥∥G[1](0) − K̃ [1]

∥∥∥
2→2

≥ 3λ0

4 . (B.28)

Our next proposition is on the least eigenvalue of other randomly initialized Gram ma-

trices G[l](0), l 6= 1.

Proposition B.3.2. Given X , σ(·),
{
K̃ [l]

}L

l=1
, and

{
b̃[l]
}L

l=1
, set λ0 > 0 as

λmin
(
K̃ [1] − b̃[1] ⊗

(
b̃[1]
)ᵀ)

= λ0,

there exists a small constant ε > 0, such that with high probability w.r.t random initialization,

for m = Ω
((

n
λ0

)2+ε
)

, then

λmin
(
G[l](0)

)
≥ 3λ0

4 , 2 ≤ l ≤ L. (B.29)
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Proof. (i). For l = 2, we shall make estimate on norm
∥∥∥G[2](0) − K̃ [2]

∥∥∥
∞

. Since by definition,

G
[2]
ij (0) =

〈
x

[2]
i (0), x
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〉
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)
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L
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 .

We need to tackle the difference between I, II, III and I’, II’, III’. For I and I’, we need to

write the difference into:
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)]∣∣∣∣∣ ,
similar to the proof in Proposition  B.2.1 , with Y being a standard normal Gaussian vector,

P
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(B.30)

By symmetry, for II and II’,

P
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〈
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(B.31)
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For the difference between III and III’, we define another inner product function h[2](·) :

R2m → R:

h[2](Z) = 1
m

〈
σ
(∥∥∥x[1]

i (0)
∥∥∥

2
X
)

, σ
((∥∥∥x[1]

i (0)
∥∥∥

2

(
ρX +

√
1 − ρ2Y

)))〉
,

where Zᵀ = (Xᵀ, Y ᵀ), X, Y are standard normal Gaussian vectors, and −1 ≤ ρ ≤ 1.

For any Z1, Z2 ∈ Rm,

∣∣∣h[2](Z1) − h[2](Z2)
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(
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√
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)
,

combined with Proposition  B.2.1 , with high probability, there exists a uniform constant

C > 0, such that ∥∥∥x[1]
i (0)

∥∥∥
2

≤ C,

consequently,
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with abuse of notations, h[2](·) is C√
m

-Lipschitz, then

P
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)

≤ exp(−cmt2),

hence we have
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with

A
[2]
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
〈
x
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〉 〈
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〉
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〉
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Combine Lemma  B.1.3 and Proposition  B.2.1 
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consequently, we have
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[2]
ij

) [σ(u)σ(v)]

∣∣∣∣∣∣ ≥ t


≤ P

∣∣∣∣∣∣ 1
m

〈
σ
(
W

[2]
0 x

[1]
i (0)

)
, σ
(
W

[2]
0 x

[1]
j (0)

)〉
− E

(u,v)ᵀ∼N
(

0,A
[2]
ij

) [σ(u)σ(v)]

∣∣∣∣∣∣ ≥ t

2


+ P

∣∣∣∣∣∣E(u,v)ᵀ∼N
(

0,A
[2]
ij

) [σ(u)σ(v)] − E
(u,v)ᵀ∼N

(
0,Ã
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To sum up, we have
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Inductively, for 2 ≤ l ≤ L,
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specifically, for l = L,
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(ii). We recall the matrix inequality once again,

∥∥∥G[L+1](0) − K [L+1]
∥∥∥

2→2
≤
∥∥∥G[L+1](0) − K [L+1]

∥∥∥
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≤ n
∥∥∥G[L+1](0) − K [L+1]

∥∥∥
∞

,

based on Proposition  A.2.1 , λmin(K [L+1]) > λ0. Then if we choose t = λ0
4n exp(2cres) , then for

all l, with probability 1 − exp (−cmλ2
0/n2),

∥∥∥G[l](0) − K̃ [l]
∥∥∥

2→2
≤ λ0

4 (B.38)

holds. Hence if there exists a small constant ε > 0, such that m = Ω
((

n
λ0

)2+ε
)

, then with

probability 1 − exp(−mε),

λmin(G[l](0)) ≥ λmin(K̃ [l]) −
∥∥∥G[l](0) − K̃ [l]

∥∥∥
2→2

>
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4 . (B.39)

In particular, with probability 1 − exp (−cmλ2
0/n2),

∥∥∥G[L+1](0) − K [L+1]
∥∥∥

2→2
≤ λ0

4 , (B.40)

hence if m = Ω
((

n
λ0

)2+ε
)

, with probability 1 − exp(−mε)

λmin(G[L+1](0)) ≥ λmin(K [L+1]) −
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>
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We remark that [
G [L+1]

0 (xα, xβ)
]

1≤α,β≤n
= G[L+1](0),

then directly from Proposition  B.3.2 , for m = Ω
((

n
λ0

)2+ε
)

,

λmin

([
G [L+1]

0 (xα, xβ)
]

1≤α,β≤n

)
≥ 3λ0

4 (B.42)

holds with high probability w.r.t random initialization.
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