
NOVEL ANALYSIS FRAMEWORK USING QUANTUM

OPTOMECHANICAL READOUTS FOR DIRECT DETECTION OF DARK

MATTER

by

Ashwin Nagarajan

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Aeronautics and Astronautics

School of Aeronautics and Astronautics

West Lafayette, Indiana

May 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Rafael Lang, Chair

School of Physics and Astronomy

Dr. Kathleen Howell

School of Aeronautics and Astronautics

Dr. James Longuski

School of Aeronautics and Astronautics

Approved by:

Dr. Gregory Blaisdell

3

Dedicated to all

4

ACKNOWLEDGMENTS

My sincere thanks to Dr. Rafael Lang for agreeing to mentor and supervise this project,

and to Dr. Kathleen Howell and Dr. James Longuski for agreeing to be part of the advisory

committee. Furthermore, my heartfelt thanks to the entire Windchime collaboration, which is the

basis of this thesis, right from the software inputs and framework suggestions of Bahaa Elshimy,

Juehang Qin, and Vinay Samuel, to the hardware work along with Juan Pablo, Shengchao Li,

Mayukh Bagchi, Qingyang Li., and Rebecca Hackett. My thanks also to the other members of the

team for their inputs along the way, including Abigail Kopec, Amanda Depoian, and Michael Clark,

and the remaining members of the Windchime collaboration.

5

TABLE OF CONTENTS

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

ABSTRACT .. 8

 INTRODUCTION ... 9

1.1 History... 9

1.2 Modern Approaches .. 9

1.3 Detection Methods .. 11

1.3.1 Collider Searches ... 11

1.3.2 Indirect Detection .. 12

1.3.3 Direct Detection ... 12

1.4 Gravitational Direct Detection .. 13

 METHODS .. 14

2.1 Mass Range Calculations .. 14

2.2 Array of Detectors... 16

2.3 Building a Prototype ... 17

 RESULTS .. 18

3.1 Analysis... 18

3.2 Prototype ... 20

 DISCUSSION .. 22

4.1 Analysis... 22

4.2 Prototype ... 23

 CONCLUSION.. 24

APPENDIX A. CODE .. 25

REFERENCES ... 53

6

LIST OF TABLES

Table 1.1. Percentage composition of the universe in terms of its mass-energy density. 11

Table 3.1. The following table lists the entry and exit truth values and calculated values of one

instance of this simulation, with a sample track running through the array of sensors 18

7

LIST OF FIGURES

Figure 1.1. The figure above depicts the general relation between velocity and distance. Curve A

is the predicted relation between the two, while Curve B is the observed dependence. The above

plot confirms the analysis by Oort and Zwicky. ... 10

Figure 1.2. A composite image of the Bullet Cluster, with the X-Ray portion in pink against

backdrop of visible light data; blue indicates the matter distribution estimated from gravitational

lensing ... 10

Figure 2.1. This figure shows the total range of masses available to probe in blue, while the red

region indicating MPlanck is the slice pertaining to gravitational direct detection 14

Figure 2.2. Relation between mass of the Dark Matter candidate and transit rate across a given

detector geometry and orientation .. 15

Figure 2.3. The above figure shows a simulated array of force detectors with the bigger spheres

indicating the passing of track; the colors aid in visualizing the passage of time and thereby give

directional information of the orientation and approach of the track ... 16

Figure 3.1. The plot above shows the the corner plots between the parameters involved in this

analysis, with the color bar indicating the signal strength .. 19

Figure 3.2. Image of ADXL1005 (black) in the evaluation board (green) used in the setup of an

array of accelerometers ... 20

Figure 3.3. Sensitivity behavior of the accelerometer, obtained from its data sheet 20

Figure 3.4. This figure shows the initial setup of one accelerometer wired to the oscilloscope and

power supply, along with the transducer .. 21

Figure 4.1. The above figure shows a Velocity-Time with the red cross indicating the signal that

can be recovered from this integral transform; the plot was for an entry time of 401.5 µs and exit

time of 424.35 µs .. 22

8

ABSTRACT

With the increase in speculation about the nature of our universe, there has been a growing

need to find the truth about Dark Matter. Recent research shows that the Planck-Mass range could

be a well-motivated space to probe for the detection of Dark Matter through gravitational coupling.

This thesis dives into the possibility of doing the same in two parts. The first part lays out the

analysis framework that would sense such an interaction, while the second part outlines a prototype

experiment that when scaled up using quantum optomechanical sensors would serve as the

skeleton to perform the analysis with.

9

 INTRODUCTION

Ever since Lord Kelvin gave an estimate [1] on the number of dark bodies in the Milky

Way after careful observation of the velocity dispersion of the stars in orbit around the center of

the galaxy, the search for Dark Matter has been a holy grail in modern physics. This chapter

outlines some of the history followed by the modern methods of detection, before highlighting the

core principle of this thesis.

1.1 History

Through the 20th century, there was growing interest in this hypothesis, but without much

actual evidence. This changed in 1922, when Dutch astronomer Jacobus Kapteyn suggested the

existence of Dark Matter [2] after studying stellar velocities which was soon corroborated within

a decade by fellow Dutch astronomer Jan Oort who studied stellar motions [3] in the local galactic

neighborhood.

Fast-forwarding to the 1960s and 1970s, Vera Rubin, Kent Ford, and Ken Freeman

strengthened the argument [4] for the existence of Dark Matter using galaxy rotation curves. Rubin

and Ford later went on to publish another influential paper [5] in the 1980s that brought to light

the fact that Dark Matter was a major unsolved problem in modern astronomy.

1.2 Modern Approaches

Primary motivations for proving the existence of Dark Matter come from indirect

observations. While there has a plethora of theories proposed and many more experiments

conducted to validate the same, one of the key insights to the existence of Dark Matter was

obtained from the application of the Virial Theorem [6] to mass distribution in bound systems.

Fritz Zwicky was one of the first [7] to use the Virial Theorem to deduce the presence of what he

referred to as “unseen matter” at that time. Plotting the velocity dispersion estimates in elliptical

galaxies, it was observed that there was a mismatch between the expected and actual rotation

curves, as shown below.

10

Figure 1.1. The figure above depicts the general relation between velocity and distance.

Curve A is the predicted relation between the two, while Curve B is the observed dependence.

The above plot confirms the analysis by Oort and Zwicky.

Another important case for the existence of Dark Matter comes from a region hosting the

collision of two clusters of galaxies, known as the Bullet Cluster. After a time when Modified

Newtonian Dynamics [8] was proposed and gaining traction to explain the observed properties of

galaxies, the Bullet Cluster proved to be a nail in the coffin against it.

Figure 1.2. A composite image of the Bullet Cluster, with the X-Ray portion in pink

against backdrop of visible light data; blue indicates the matter distribution estimated from

gravitational lensing

11

With a statistical significance of 8𝜎, this showed that the spatial offset of the center of total

mass from the center of the baryonic mass of this region could not successfully by explained just

with a modified theory of gravity alone.

The case for Dark Matter was further strengthened when standard models could easily

explain the observations [9] and were model-independent. Following these theoretical proposals,

the Planck Mission launched by the European Space Agency and the Wilkinson Microwave

Anisotropy Probe gave insights [10] on the possible composition of the universe, which can be

tabulated as follows:

Table 1.1. Percentage composition of the universe in terms of its mass-energy density.

Type Percent

Dark Energy 70%

Dark Matter 25%

Baryonic Matter 5%

 This leads to the question of how one goes about with the detection of the above quantities.

Here, the focus is on Dark Matter.

1.3 Detection Methods

There are many suggested ways of detecting Dark Matter. These can broadly be divided into

three main categories: Collider Searches, Indirect Detection, and Direct Detection.

1.3.1 Collider Searches

In this method, Dark Matter is attempted to be produced within the confines of a laboratory.

Similar to how the Large Hadron Collider [11] probes the space of particle physics, a setup could

detect Dark Matter particles in terms of missing energy and momentum from the collisions that do

not register on the detectors of the experiment. A similar experiment, called the Large Electron-

Positron Collider, also set limits [12] by probing the interaction of Dark Matter particles with

electrons instead of quarks.

12

1.3.2 Indirect Detection

In this approach, secondary effects of Dark Matter are the main goal. This could include self-

annihilation or decay of Dark Matter particles. In regions such as the center of galaxies, where the

Dark Matter density is supposed to be high, two Dark Matter particles could annihilate, producing

particle-antiparticle pairs, or one unstable particle could decay into Standard Model particles.

These processes would upset the balance of gamma rays, antiprotons, positrons, or other particles

in the region, revealing [13] the presence of Dark Matter.

A few Dark Matter particles passing through the Earth may lose energy by scattering off

atoms. Dark Matter could accumulate at the center of such particles, thereby increasing the

probability of collision or annihilation. This could lead to the formation of a signal in the form of

high-energy neutrinos. Such an event would strengthen the possibility of a Weakly Interacting

Massive Particle (WIMP), which is what high-energy neutrino telescopes [14] such as the

Antarctic Muon and Neutrino Detector Array (AMANDA), IceCube, and Astronomy with a

Neutrino Telescope and Abyss environmental Research project (ANTARES), are looking for.

Recently, IceCube discovered [15] the presence of high-energy astrophysical neutrino flux which

could be attributed to Dark Matter decay.

1.3.3 Direct Detection

This tactic is the most important in the context of this thesis. Direct detection involves

observing the recoils of a chosen nuclei induced by the Dark Matter candidate. In order to keep

the background interactions to a minimum, such experiments are usually conducted deep under

the surface of Earth. Some examples of such experiments are Stawell Mine, the Gran Sasso

National Laboratory, the Boulby Underground Laboratory, and the Deep Underground Science

and Engineering Laboratory. In order to keep the reactivity down, these detectors use cryogenic or

noble liquid inside their detectors. For example, the Gran Sasso National Laboratory in Italy uses

Xenon to distinguish the background particles that scatter off electrons, from the Dark Matter

particles [16] that scatter off nuclei.

A new and crucial approach is the direct detection by leveraging [17] the gravitational

interaction of Dark Matter. The crux of this thesis was presented [18] in the last couple of years,

coupling gravitational direct detection with quantum optomechanics.

13

Earlier this decade, Laura Baudis enlisted methods [19] to achieve direct detection using

apparatus on Earth. Baudis gives a range of 10-22 eV to 1015 GeV for the possible masses. These

46 orders of magnitude could be expanded to 60 if one approaches the subject in terms of

interaction strength with Standard Model particles. Building on the detection of WIMPs, this paper

states that direct detection experiments placed deep underground aim to observe a weak scattering

signal between a WIMP and a chosen atomic nucleus where the background noise from natural

radioactivity is kept to a minimum.

The focus is brought back to the potential detection with quantum optomechanics, starting

with building the analysis framework before ideating a small-scale prototype for experimental

verification.

1.4 Gravitational Direct Detection

The globally accepted notion of the presence of Dark Matter has not yet meant the confirmed

existence of the same, and while other methods may prove fruitful, probing the gravitational

interaction of Dark Matter may bring rewards sooner than later.

The quantum angle of the detection is to have an array of close to a billion sensors in the

micro-to-milligram scale, within a lattice of spacing in the millimeter-to-centimeter range. These

mechanical resonators are sensitive to optical light, and use quantum noise-evading measurement

protocol, to give readouts of the mechanical position of these sensors.

Laser interferometers [20] could be used to infer the presence of Dark Matter by scanning

for macroscopic objects that interact gravitationally with the setup. If the size of the Dark Matter

candidate is limited to be smaller than the physical dimensions of a given detector, a correlation

between a range of given masses and the corresponding gravitational effect can be produced. This

is the key idea behind this thesis, and steps to achieve the eventual goal are enlisted at a smaller

scale.

14

 METHODS

This section details the various steps required to build this analysis framework. They are

broadly divided into a section on the initial calculations to establish mass limits, followed by one

on setting up the virtual array of sensors, before finally outlining the a prototype in the works to

eventually realize the experiment in its physical form.

2.1 Mass Range Calculations

Despite the methods suggested above for several years, there has so far been no confirmed

detection [21] of Dark Matter in the neighborhood of Earth. While most of the attempts have been

using the interaction of Dark Matter with non-gravitational forces which puts the mass range in

the relatively light spectrum, gravitational direct detection hopes to probe the mass range on the

heavier side, as shown below.

Figure 2.1. This figure shows the total range of masses available to probe in blue, while the red

region indicating MPlanck is the slice pertaining to gravitational direct detection

Next, given the mass range to be looked at, some insight must be gained to predict the

probability of such an interaction with the detector occurring. In order to accomplish that, consider

the following values [22] which are taken to be roughly constant:

𝜌𝐷𝑀 = 0.3 𝐺𝑒𝑉 𝑐𝑚3⁄ (1)

𝑚𝑃𝐿 = 1.22 × 1019 𝐺𝑒𝑉 𝑐2⁄ (2)

𝑣 = 220 𝑘𝑚 𝑠⁄ = 0.75 × 10−3𝑐 (3)

𝑣𝑒𝑠𝑐 = 544 𝑘𝑚 𝑠⁄ (4)

𝑟 = 5.2𝑚 = 520𝑐𝑚 (5)

15

 This gives:

𝜎 = 𝜋𝑟2 = 84.95 𝑚2 = 8.49 × 105𝑐𝑚2 (6)

𝑛 =
𝜌𝐷𝑀

𝑚
=

0.3

𝑚
𝑐𝑚−3 (7)

𝜙 = 𝑛 × 𝑣 =
0.3

𝑚
𝑐𝑚−3 × 22 × 106 𝑐𝑚 𝑠⁄ =

66

𝑚
× 105𝑐𝑚−2𝑠−1 (8)

𝐹 = 𝜙 × 𝜎 =
66

𝑚
× 105𝑐𝑚−2𝑠−1 × 8.49 × 105𝑐𝑚2 =

5.6066

𝑚
× 1012𝑠−1 (9)

Where:

𝜌𝐷𝑀 ≡ 𝐷𝑎𝑟𝑘 𝑀𝑎𝑡𝑡𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑚𝑃𝐿 ≡ 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐷𝑎𝑟𝑘 𝑀𝑎𝑡𝑡𝑒𝑟 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑣 ≡ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑣) 𝑎𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡

𝑣𝑒𝑠𝑐 ≡ 𝐸𝑠𝑐𝑎𝑝𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑟 ≡ 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟

𝜎 ≡ 𝐶𝑟𝑜𝑠𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎

𝑛 ≡ 𝑁𝑢𝑚𝑏𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝜙 ≡ 𝑀𝑎𝑠𝑠 𝐹𝑙𝑢𝑥

𝐹 ≡ 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝐹𝑙𝑢𝑥

This can also be visualized in the following log-log plot:

Figure 2.2. Relation between mass of the Dark Matter candidate and transit rate across a given

detector geometry and orientation

16

The above calculations show that, for the given size of detector, assuming it is a bounding

sphere through which a track of Dark Matter particle would pass through, and that the chosen

candidate is of the Planck Mass scale of 1019 GeV/c2, there would be roughly 1~3 events per

year.

2.2 Array of Detectors

The setup includes an array of force sensors, which is sensitive to the various background

forces it would be subject to. A Dark Matter particle passing through this arrangement would exert

a correlated, albeit small, force on the sensors of the array that are nearest to its trajectory. This

correlated force signal can then be selected out of the remaining noise, revealing the presence of

the Dark Matter particle. The advantage with this approach is that, since the data measures the

track of the incoming Dark Matter particle, directional information is preserved.

The quantum optomechanics part of the detection provides limits on the sensitivity [23] of

these detectors, which is in turn limited by the noise from the thermal motion of the detectors, and

limits inherently present in making such measurements. The array of detectors would roughly look

like the diagram below:

Figure 2.3. The above figure shows a simulated array of force detectors with the bigger spheres

indicating the passing of track; the colors aid in visualizing the passage of time and thereby give

directional information of the orientation and approach of the track

17

The next step involves creating an analysis framework that can perform the task of detecting

the fluctuations in the force sensors produced by the incoming track. The results of this simulation

can be found in the next chapter.

2.3 Building a Prototype

While the actual experiment would be large-scale with close to a billion sensors for precise

measurement, for the purpose of this thesis, discussion will be about setting up a small-scale

proof-of-concept.

The basic idea is to have an array of accelerometers on their evaluation boards arranged on

a mechanical board, which is in turn setup of a laboratory table. These accelerometers are wired

up with coaxial cables, and the signal cables are connected to an Analog to Digital Converter

(ADC) to process an incoming input and convert it to a digital signal. The setup is encased in a

grounded housing for purposes of shielding. Additionally, a manifold distributes power from the

main power supper to the array of accelerometers and the ADC, with as efficient a setup as

possible to keep the noise to a minimum. LabVIEW is then used to build the interface that would

work with this setup to obtain a signal, read, and process it, and write the desired output in a file

of suitable format.

For the purposes of a basic test, measuring the speed of sound was picked, as it is relatively

simpler than other measurements, with a form of plastic as the material, as the speed of sound in

plastics is ideal for measurement as compared to metals, without the setup needing to be large in

size.

In the next chapter, results from the simulation and progress on the prototype are

discussed.

18

 RESULTS

 In this chapter, plots of the simulation and images of the prototype setup are shown, which

will then be discussed in the subsequent chapter.

3.1 Analysis

Using code (Appendix A) in Python, an 4x4x4 array of values was created which would

serve as the placeholder for the detectors in this virtual space. A velocity that is randomly

generated based on the standard halo model of Dark Matter in the neighborhood of Earth is used.

A custom track 7.5 meters in length was generated and run through this array. The simulation

then randomizes the number of samples taken before the track intersects the bounding sphere, so

as to make the entry time random. The true values of entry and exit time are then recorded, along

with the truth values of the entry and exit angles for spatial information, and velocity for plotting

the relations between these parameters.

With these initial conditions of space, time, and velocity, an integral transform was

performed to obtain the Signal-to-Noise Ratio (SNR) and the associated four-vectors of 3 spatial

coordinates and time for each of the templates in this analysis. For the purposes of this thesis, the

analysis is performed without taking noise into consideration, so the plots work with the S value

or signal strength, instead of SNR value.

Selecting the pertinent data from all the output (Appendix A), here are the entry and exit

values:

Table 3.1. The following table lists the entry and exit truth values and calculated values of one

instance of this simulation, with a sample track running through the array of sensors

Quantity Truth Value Calculated Value

Entry Time 384.5 µs 383 µs

Exit Time 396.98 µs 399.06 µs

Entry Phi 1.44 rad 1.44 rad

Exit Phi 0.17 rad 0.11 rad

Entry Theta 1.49 rad 1.49 rad

Exit Theta 1.71 rad 1.79 rad

19

While this shows that the track is interacting with the detector and the signal can be recovered

accurately, there is no visual representation of what is going on. In order to do that, plotting these

values against each other is necessary. However, single-variable plots are not enlightening, as they

only have a peak around the truth value, and the relation between the parameters is not obvious.

For this purpose, a corner plot was produced as shown below, which covers the complete phase

space of all the parameters involved in the analysis.

Figure 3.1. The plot above shows the the corner plots between the parameters involved in this

analysis, with the color bar indicating the signal strength

While the plot is in line with what is to be expected, it is to be noted that currently, the

framework can only analyze the phase space at either the exit time alone, or entry time alone. This

is evident in the above plot having one-dimensional results for the exit subplots, since this was

obtained using the velocity, time, and spatial entry values, without the spatial exit values.

20

3.2 Prototype

On the hardware side of things, a simple setup is in the process of being built in order to

detect the speed of sound. The following accelerometer was purchased from Analog Instruments

for this purpose.

Figure 3.2. Image of ADXL1005 (black) in the evaluation board (green) used in the setup of an

array of accelerometers

This accelerometer has a resonant frequency of 42 kHz and provides an analog output

proportional to a mechanical vibration between 100 Hz and 23 kHz. The bottom of the

accelerometer shows the direction in which it is sensitive to movement, which is nothing but the

axis along which the vibration is detected and measured. This accelerometer has a sensitivity of

20 mV/g, which means that 20 mV will be measured for every 9.8 m/s2 that the accelerometer feels

in its proper rest frame, as shown below.

Figure 3.3. Sensitivity behavior of the accelerometer, obtained from its data sheet

21

Fifteen of these accelerometers are then wired to a mechanical board for the eventual

measurement of the speed of sound. Before doing that, the ability of the software to detect this

accelerometer needs to be tested. For this purpose, the accelerometer was wired to an oscilloscope,

which was the Keysight InfiniiVision DSOX3012A Oscilloscope in this case. The accelerometer

was kept in place using a L-shaped piece of plexiglass. These components were wired up with a

BNC to BNC cable and a BNC adaptor. To test that the accelerometer is sensitive to a range of

frequencies, a transducer, namely the COM-10975 Surface Transducer, and a pulse generator were

used. The setup can be seen below.

Figure 3.4. This figure shows the initial setup of one accelerometer wired to the oscilloscope and

power supply, along with the transducer

 As seen in the picture, the system can recover the input signal at a given frequency, verified

by comparing with the Fast Fourier Transform (FFT) which peaks at the input frequency. In the

above picture, the green line is a square wave, while the purple is the FFT corresponding to that.

22

 DISCUSSION

In this chapter, some of the results are discussed. In the analysis section, selected subplots

from the corner plot are explained, whereas in the prototype part, discussion moves to how the

system can be used to achieve the goal of interest.

4.1 Analysis

Looking at the corner plots, it is evident that the parameters in the phase space have a

trend consistent with expectation. In particular, the velocity-time plot shown below is one that

shows that the signal can indeed be recovered using this integral transform analysis.

Figure 4.1. The above figure shows a Velocity-Time with the red cross indicating the signal that

can be recovered from this integral transform; the plot was for an entry time of 401.5 µs and exit

time of 424.35 µs

23

Moreover, in line with expectation, the plots of parameters against themselves are

histograms, with a peak near the truth value. These are placed along the diagonal in the corner

plot.

As mentioned before, since the algorithm is only capable of analyzing either the entry or

the exit at a given time, and since this particular corner plot is with the entry, the exit plots are

one-dimensional.

One other point to be noted is that the final row of the corner plot uses the signal strength

as the amplitude, which is why it has a histogram-like appearance. In an improved model, this

amplitude should be the interaction strength, which would be the range of input masses.

Numerically, this could be the Universal Gravitational Constant G multiplied by the mass of the

Dark Matter candidate.

4.2 Prototype

On the hardware side, what the setup currently shows is that given an input vibration,

which in this case is provided by the transducer, the accelerometer can detect the signal and

display an output to the screen of the oscilloscope. Using LabVIEW, a Field Programmable Gate

Array (FPGA) target can be created, where one can add a Virtual Instrument (VI) and code a

particular set of commands for the program to execute.

Data is written in two streams, a fast-data set, and a slow-data set. The former would

store the values of the frequencies sampling at MHz, while the latter is mainly for measurements

of the setting, such as temperature and humidity.

24

 CONCLUSION

As seen in previous chapters, this thesis lays out a basic framework in eventually

achieving an experimental setup that could measure the presence of a Dark Matter particle.

The analysis portion discusses a virtual array of sensors that uses an integral transform to

recover a signal passing through. Some developments to be made include making the code work

with both entry and exit parameters at the same time to obtain a full-blown two-dimensional

correlation. Moreover, running the analysis over typical mass ranges would make the corner plot

more complete, while providing insight of the potential Dark Matter candidate.

The prototype section suggests a basic setup of accelerometers connected to a system of

ADC and a transducer, to measure the speed of sound through a material, using LabVIEW to

read the input signals and write them in a binary format onto a file. Going forward, the present

setup using one accelerometer needs to be expanded to about 15 on a mechanical board. This

would serve as a small mock-up of an eventual large scale detector with billions of sensors that

use quantum optomechanics to sense the extra perturbation produced by a Dark Matter particle

passing through.

25

APPENDIX A. CODE

CODE

The following is the code that was used to obtain the results above. It makes use of an

integral transform to recover a signal. This can be thought of as a template-matching scheme that

tries to match different signals distributed in a higher-dimensional space. It can also be visualized

as a modified four-dimensional x-ray transform that takes an inverse-square distribution into

account.

This code demonstrates the analysis framework based on the integral transform with

simulated data. Using a 4x4x4 grid of sensors, the framework recovers a signal that is not trivially

visible.

from planckmc.track_generation import halo_model

from planckmc.track_generation import halo_model

from planckmc.track_generation import make_tracks

from planckmc.detector_characteristics import

DETECTOR_CHARACTERISTICS

from planckmc.response import sensor_response, RESPONSE_DICT

from planckmc.config import CONFIG

import planckanalysis.separated_integral_transform as pint

import numpy as np

from numba import njit, jit

from tqdm import tqdm

import numericalunits as nu

from scipy.signal import peak_widths

from scipy.signal import peak_prominences

from random import randrange, uniform

import json

%matplotlib inline

26

import matplotlib # plotting libraries

import matplotlib.pyplot as plt

import matplotlib.colors as clr

from matplotlib.colors import LogNorm

from mpl_toolkits.mplot3d import Axes3D

import os.path

import time

from multiprocessing import Pool, Manager

#import seaborn as sn

#%pdbfrom planckmc.track_generation import halo_model

from planckmc.track_generation import halo_model

from planckmc.track_generation import make_tracks

from planckmc.detector_characteristics import

DETECTOR_CHARACTERISTICS

from planckmc.response import sensor_response, RESPONSE_DICT

from planckmc.config import CONFIG

import planckanalysis.separated_integral_transform as pint

import numpy as np

from numba import njit, jit

from tqdm import tqdm

import numericalunits as nu

from scipy.signal import peak_widths

from scipy.signal import peak_prominences

from random import randrange, uniform

import json

%matplotlib inline

import matplotlib # plotting libraries

27

import matplotlib.pyplot as plt

import matplotlib.colors as clr

from matplotlib.colors import LogNorm

from mpl_toolkits.mplot3d import Axes3D

import os.path

import time

from multiprocessing import Pool, Manager

#import seaborn as sn

#%pdb

scl_fct = 1e4 # Scale Factor for Optimized Time variables (entry

time and time difference)

hnds_un = 1e-2 # Units to Hundreds -> Because Some values are

already multiplied by one hundred (i.e. every unit is one

hundred of the value)

tnsMS_ms = 1e-1 # Tens of microseconds to microseconds

s_ns = 1e9 # Seconds to nanoseconds

s_ms = 1e6 # Seconds to microseconds

Simulation Accelerations and Definition of Truth Values

First, a velocity is randomly generated based on the standard halo model. Then, a track

that intersects the detector is generated. The simulation code is asked to start recording a random

number of samples (between 50 and 200) before the track enters the bounding sphere of the

detector, so as to make the time at which the event starts random

#Custom Track: 7.5 m in length

#vel, entry_vecs, exit_vecs, t_entry, t_exit =

np.array([257500.]), np.array([[2.10893786], [3.19662096],

[3.51766905]]), np.array([[-3.94093443], [3.26567685], [-

0.91890723]]), np.array([0.]), np.array([2.91362915e-05])

28

#Randomized Track:

vel = halo_model.generate_vel_array(n_vels=1) # The number

infront of n_vels is how many tracks are produced, Keep at one

for analysis

entry_vecs, exit_vecs, t_entry, t_exit =

make_tracks.generate_tracks(vel, np.zeros(vel.shape))

#t_entry, t_exit are in seconds, the space variables are in

meters

track=0 # Identifies that we are looking at the first track,

number of tracks is equal to n_vels

radius = float(CONFIG['Track

Generation']['BoundingSphereRadius'])

track_len = np.linalg.norm(exit_vecs - entry_vecs)

adc_timestep_size = int(CONFIG['Track

Generation']['Timestep'])/s_ns

sensors = tuple(DETECTOR_CHARACTERISTICS.keys()) # Loads the

sensor information

Make sure the linear response in RESPONSE_DICT (simulation) is

the same as the one used in the analysis (Run Response_update)

Eventually, the linear response and the FIR filter used for

the template generation, which is currently this same one, will

be the same

as that of the sensors used in the physical experiment. By

matching the two linear responses and FIR filters together, the

matching can work

lin_resp = RESPONSE_DICT[sensors[0]]['linear_response']

29

lin_resp_len = len(lin_resp)

The floor value is important because of two reasons: 1) it

provides a way to analyze for entry time, 2) it makes the length

of the data longer than

the response length (which is CRUCIAL)

floor_val = ((lin_resp_len - (((t_exit - t_entry) * hnds_un *

s_ns) + 2)) // 2) + 1

Padding is in 10s of microseconds (nanoseconds/100)

if floor_val > 1:

 n_pad_strt = randrange(floor_val, floor_val + 5000)

 n_pad_end = randrange(floor_val, floor_val + 5000)

else:

 floor_val = 1

 n_pad_strt = randrange(floor_val, floor_val + 5000)

 n_pad_end = randrange(floor_val, floor_val + 5000)

Acceleration without noise:

out = make_tracks.generate_acceleration_dict(entry_vecs,

exit_vecs, t_entry, t_exit, {'M':1e8, 'G':6.67e-11},

strt_padding=n_pad_strt, end_padding=n_pad_end)

accels = []

sensors_pos = []

cnt = 0

Below we initialize for the acceleration array and the sensor

positions array

for key in out[track]:

 if key not in ['time', 'particle_location']:

 accels.append(out[track][sensors[cnt]])

30

sensors_pos.append(DETECTOR_CHARACTERISTICS[key]['position'])

 cnt += 1

To make a 'zero track', uncomment the line below:

#accels = np.zeros(np.array(accels).shape)

Below we generate the corresponding truth angle spatial

information of the track from the cartesian truth data:

alpha_theta = np.array([0, 0, 1]) # Z-axis

cos_theta_entry = pint.py_ang(entry_vecs.T[0], alpha_theta.T)

if cos_theta_entry < -1:

 cos_theta_entry = -1

if cos_theta_entry > 1:

 cos_theta_entry = 1

theta_entry_truth = np.arccos(cos_theta_entry) # Theta entry

truth

cos_theta_exit = pint.py_ang(exit_vecs.T[0], alpha_theta.T)

if cos_theta_exit < -1:

 cos_theta_exit = -1

if cos_theta_exit > 1:

 cos_theta_exit = 1

theta_exit_truth = np.arccos(cos_theta_exit) # Theta exit truth

alpha_phi = np.array([1, 0, 0]) # X-axis

phi_entry_truth = np.arctan2(entry_vecs[1], entry_vecs[0])[0] #

Phi entry truth

phi_exit_truth = np.arctan2(exit_vecs[1], exit_vecs[0])[0] # Phi

exit truth

31

Note: Theta goes from 0 to 180 deg, and phi goes from -180 to

180 deg

t_0 = t_entry + ((n_pad_strt - 1) / (hnds_un * s_ns)) # Truth

start time of track; This variable is in Seconds

d_t = t_exit - t_entry # Period of track; This variable is in

Seconds

The conversion below of t_entry and n_pad_strt is what matches

the padding and the time to be in nanoseconds ->

(t_entry*s_ns)+(n_pad_strt/hnds_un)

sensor_response(sensors[0], out[0][sensors[0]]), track_len,

n_pad_strt, n_pad_end, len(out[track]['time']),

(t_entry*s_ns)+(n_pad_strt/hnds_un)

Analysis Alpha Generation

 This cell takes the type of analysis requested and defines the analysis alphas. Then, the

signal is integrated along these possible tracks to complete the integral transform. Typically,

possible tracks would be evenly distributed in the parameter space. For the purposes of this code

snippet, the possible tracks are manually generated.

time_track = out[track]['time']-out[track]['time'][0]

Input the particular names of the analyses requested into the

analysis_parameter below:

 # Analysis Types: 'Time', 'Velocity', 'Spatial',

'Spatial_entry', 'Spatial_exit'

analysis_parameter = ['Velocity', 'Spatial_entry', 'Time']

32

Note: vel, entry_vecs, exit_vecs, n_pad_strt, n_pad_end,

radius, and time_track are all truth values from the simulation

'Time' Only Variables: vel, entry_vecs, exit_vecs,

time_track

'Velocity' Only Variables: num_bins, entry_vecs, exit_vecs,

n_pad_strt, n_pad_end, time_track

'Time' & 'Velocity' Variables: num_bins, entry_vecs,

exit_vecs, time_track

'Spatial' Only Variables: vel, n_pad_strt, n_pad_end,

radius, N_thetas, N_phis_at_eq, epsilon

'Spatial_entry' Only Variables: vel, n_pad_strt, n_pad_end,

radius, N_thetas, N_phis_at_eq, epsilon, entry_Anl=True,

exit_vals=[theta_exit_truth, phi_exit_truth]

'Spatial_exit' Only Variables: vel, n_pad_strt, n_pad_end,

radius, N_thetas, N_phis_at_eq, epsilon, exit_Anl=True,

entry_vals=[theta_entry_truth, phi_entry_truth]

'Spatial' & 'Velocity' Variables: num_bins, n_pad_strt,

n_pad_end, radius, N_thetas, N_phis_at_eq, epsilon

'Spatial_entry' & 'Velocity' Variables: num_bins,

n_pad_strt, n_pad_end, radius, N_thetas, N_phis_at_eq, epsilon,

entry_Anl=True, exit_vals=[theta_exit_truth, phi_exit_truth]

'Spatial_exit' & 'Velocity' Variables: num_bins,

n_pad_strt, n_pad_end, radius, N_thetas, N_phis_at_eq, epsilon,

exit_Anl=True, entry_vals=[theta_entry_truth, phi_entry_truth]

'Spatial' & 'Time' Variables: vel, radius, N_thetas,

33

N_phis_at_eq, epsilon

'Spatial_entry' & 'Time' Variables: vel, radius, N_thetas,

N_phis_at_eq, epsilon, exit_vals=[theta_exit_truth,

phi_exit_truth]

'Spatial_exit' & 'Time' Variables: vel, radius, N_thetas,

N_phis_at_eq, epsilon, entry_vals=[theta_entry_truth,

phi_entry_truth]

'Spatial' & 'Velocity' & 'Time' Variables: num_bins, radius,

N_thetas, N_phis_at_eq, epsilon

'Spatial_entry' & 'Velocity' & 'Time' Variables: num_bins,

radius, N_thetas, N_phis_at_eq, epsilon,

exit_vals=[theta_exit_truth, phi_exit_truth]

'Spatial_exit' & 'Velocity' & 'Time' Variables: num_bins,

radius, N_thetas, N_phis_at_eq, epsilon,

entry_vals=[theta_entry_truth, phi_entry_truth]

num_thetas = 15

num_phis_at_eq = 2*num_thetas

if 'Velocity' in analysis_parameter:

 num_bin = 50

 velocity_bins = np.linspace(1e5, 8e5, num_bin)

 vel_array = velocity_bins[:-1] + np.diff(velocity_bins) / 2

else:

 vel_array = [vel]

if 'Time' in analysis_parameter:

 # Acceleration Settings: Analyzing the whole time parameter

space

 tm_steps = 5

 tmstep_strt = 0

34

 tmstep_end = len(time_track) - 1

else:

 # Acceleration Settings: Removing the padding and only

considering the true entry time

 tm_steps = len(time_track) - n_pad_strt - n_pad_end

 tmstep_strt = n_pad_strt - 1

 tmstep_end = len(time_track) - n_pad_end - 1

length_of_run = int((tmstep_end-tmstep_strt) / tm_steps)

print("Number of start times:", length_of_run)

if 'Spatial' in analysis_parameter:

 alphas, angles = pint.Spatial_Analysis_alphas(vel=vel_array,

radius=radius, N_thetas=num_thetas, N_phis_at_eq=num_phis_at_eq)

elif 'Spatial_entry' in analysis_parameter:

 alphas, angles = pint.Spatial_Analysis_alphas(vel=vel_array,

radius=radius, entry_Anl=True,

exit_vals=[theta_exit_truth, phi_exit_truth],

N_thetas=num_thetas, N_phis_at_eq=num_phis_at_eq)

elif 'Spatial_exit' in analysis_parameter:

 alphas, angles = pint.Spatial_Analysis_alphas(vel=vel_array,

radius=radius, exit_Anl=True,

entry_vals=[theta_entry_truth, phi_entry_truth],

N_thetas=num_thetas, N_phis_at_eq=num_phis_at_eq)

else:

 alphas = pint.Non_Spatial_Analysis_alphas(vel_array,

entry_vecs, exit_vecs)

35

Template Generation

This block runs the transform and gives back templates composed of each sensor’s

accelerations in the three dimensions for each timestep in the generated track.

def transform_temp(input_list):

 alpha_index, alpha_pair, sensors_pos, lin_resp,

adc_timestep_size = input_list

 response_length = len(lin_resp)

 signal_array = []

 dir_vector = np.array([

 alpha_pair[4] - alpha_pair[0],

 alpha_pair[5] - alpha_pair[1],

 alpha_pair[6] - alpha_pair[2],

])

 initial_pos = np.array([alpha_pair[0], alpha_pair[1],

alpha_pair[2]])

 dir_vector_step = dir_vector / (alpha_pair[7] -

alpha_pair[3]) * adc_timestep_size

 n_steps = int(np.ceil((alpha_pair[7] - alpha_pair[3]) /

adc_timestep_size))

 particle_pos_arr = np.array([initial_pos + j *

dir_vector_step for j in range(n_steps)])

 for sens_num, sensor_pos in enumerate(sensors_pos):

 vector_delta = np.zeros((n_steps, 4))

 for j in range(n_steps):

 vector_delta[j, 0] = (particle_pos_arr[j][0] -

sensor_pos[0])

36

 vector_delta[j, 1] = (particle_pos_arr[j][1] -

sensor_pos[1])

 vector_delta[j, 2] = (particle_pos_arr[j][2] -

sensor_pos[2])

signal_array.append(np.array(pint.signal_function(vector_delta,

lin_resp, adc_timestep_size)))

 return alpha_index, signal_array

input_list = []

for indx in range(len(alphas)):

 input_list.append((indx, alphas[indx, :], sensors_pos,

lin_resp, adc_timestep_size))

Library = {"Alpha_num": [], "Signal": []}

with Pool(50) as p:

 starttime = time.time()

 #for thing in p.imap(f, input_list):#, chunksize=1):

 for i, result in enumerate(p.imap(transform_temp,

input_list, chunksize=1)):

 Library['Alpha_num'].append(result[0])

 Library['Signal'].append(result[1])

 print('Time taken = {} seconds'.format(time.time() -

starttime))

37

Sensor Response and Analysis

This cell block runs the transform given the times and start time analysis. The transform

gives back the signal strength and the two associated four-vectors for each of the templates

considered in the analysis.

def transform_function(time_track, tm_steps, tmstep_strt,

tmstep_end, accels, alphas, sensors_pos, Library):

 start_time_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

 start_times = time_track[start_time_indices]

 transformed_data = pint.transform_calc(accels,

np.array(alphas), sensors_pos, time_track/1e9, start_times/1e9,

start_time_indices, Library)

 return transformed_data

if tm_steps == len(time_track) and (tmstep_strt != n_pad_strt -

1 or tmstep_end != len(time_track) - n_pad_end):

 raise ValueError("You are only analyzing 1 time step, but

you also are considering the padding. Please input correct

values")

else:

 transformed_data = transform_function(time_track, tm_steps,

tmstep_strt, tmstep_end, accels, alphas, sensors_pos, Library)

Plotting

 The following cells define some variables that aid in plotting, which is followed by the call

to plot.

Format: variable = np.array(transformed_data['variable_name'])

38

SNR_data_plt = np.array(transformed_data['SNR'])

Calculate variable from the standard varaibles of transform if

necessary (e.g. theta from the cartesian coordinates)

tm_strt_plt = np.array(transformed_data['alpha0_t'])

tm_end_plt = np.array(transformed_data['alpha1_t'])

vel_plt = np.array(np.sqrt((transformed_data['alpha1_x'] -

transformed_data['alpha0_x'])**2 +

 (transformed_data['alpha1_y'] -

transformed_data['alpha0_y'])**2 +

 (transformed_data['alpha1_z'] -

transformed_data['alpha0_z'])**2) /

(transformed_data['alpha1_t'] - transformed_data['alpha0_t']))

theta_entry_plt = np.arccos(transformed_data['alpha0_z'] /

np.sqrt(transformed_data['alpha0_x'] ** 2 +

transformed_data['alpha0_y'] ** 2 + transformed_data['alpha0_z']

** 2))

theta_exit_plt = np.arccos(transformed_data['alpha1_z'] /

np.sqrt(transformed_data['alpha1_x'] ** 2 +

transformed_data['alpha1_y'] ** 2 + transformed_data['alpha1_z']

** 2))

phi_entry_plt = np.arctan2(transformed_data['alpha0_y'],

transformed_data['alpha0_x'])

phi_exit_plt = np.arctan2(transformed_data['alpha1_y'],

transformed_data['alpha1_x'])

fig = plt.figure(figsize=(13, 13))

ax = fig.add_subplot(7,7,1)

plt.hist(tm_strt_plt*(10**6), bins=50)

39

plt.ylabel('Time (us)')

ax = fig.add_subplot(7,7,8)

timestep_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

timesteps = time_track[timestep_indices]

theta_exit_bin_edges = np.linspace(0, 6.28, 30)

if len(timesteps) > 1:

 timestep_edges = list(timesteps-(timesteps[1]-

timesteps[0])/2)

 timestep_edges.append(timesteps[-1] + (timesteps[1]-

timesteps[0])/2)

 timestep_edges = np.array(timestep_edges)*1e-3

else:

 timestep_edges = np.array([timesteps[0] * 1e-3])

X, Y = np.meshgrid(timestep_edges, theta_exit_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(timestep_edges, row['alpha1_t']*1e6) - 1

 i = np.searchsorted(theta_exit_bin_edges,

theta_exit_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter((len(time_track) - n_pad_end)/10, theta_exit_truth,

c='red', marker='x', s=10)

ax.set_xlim([n_pad_strt*0.1 - 10, n_pad_strt*0.1 + 10])

plt.ylabel('Theta Exit')

ax = fig.add_subplot(7,7,9)

plt.hist(theta_exit_plt, bins=50)

40

ax = fig.add_subplot(7,7,15)

timestep_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

timesteps = time_track[timestep_indices]

theta_entry_bin_edges = np.linspace(0, 6.28, 30)

if len(timesteps) > 1:

 timestep_edges = list(timesteps-(timesteps[1]-

timesteps[0])/2)

 timestep_edges.append(timesteps[-1] + (timesteps[1]-

timesteps[0])/2)

 timestep_edges = np.array(timestep_edges)*1e-3

else:

 timestep_edges = np.array([timesteps[0] * 1e-3])

X, Y = np.meshgrid(timestep_edges, theta_entry_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(timestep_edges, row['alpha1_t']*1e6) - 1

 i = np.searchsorted(theta_entry_bin_edges,

theta_entry_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter((len(time_track) - n_pad_end)/10, theta_entry_truth,

c='red', marker='x', s=10)

ax.set_xlim([n_pad_strt*0.1 - 10, n_pad_strt*0.1 + 10])

plt.ylabel('Theta Entry')

ax = fig.add_subplot(7,7,16)

theta_exit_bin_edges = np.linspace(0, 6.28, 30)

theta_entry_bin_edges = np.linspace(0, 6.28, 30)

X, Y = np.meshgrid(theta_exit_bin_edges, theta_entry_bin_edges)

C = np.zeros(X.shape)

41

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_exit_bin_edges,

theta_exit_plt[i_row]) - 1

 i = np.searchsorted(theta_entry_bin_edges,

theta_entry_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_exit_truth, theta_entry_truth, c='red',

marker='x', s=10)

ax = fig.add_subplot(7,7,17)

plt.hist(theta_entry_plt, bins=50)

ax = fig.add_subplot(7,7,22)

timestep_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

timesteps = time_track[timestep_indices]

phi_exit_bin_edges = np.linspace(-3.14, 3.14, 30)

if len(timesteps) > 1:

 timestep_edges = list(timesteps-(timesteps[1]-

timesteps[0])/2)

 timestep_edges.append(timesteps[-1] + (timesteps[1]-

timesteps[0])/2)

 timestep_edges = np.array(timestep_edges)*1e-3

else:

 timestep_edges = np.array([timesteps[0] * 1e-3])

X, Y = np.meshgrid(timestep_edges, phi_exit_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(timestep_edges, row['alpha1_t']*1e6) - 1

42

 i = np.searchsorted(phi_exit_bin_edges, phi_exit_plt[i_row])

- 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter((len(time_track) - n_pad_end)/10, phi_exit_truth,

c='red', marker='x', s=10)

ax.set_xlim([n_pad_strt*0.1 - 10, n_pad_strt*0.1 + 10])

plt.ylabel('Phi Exit')

ax = fig.add_subplot(7,7,23)

theta_exit_bin_edges = np.linspace(0, 6.28, 30)

phi_exit_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(theta_exit_bin_edges, phi_exit_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_exit_bin_edges,

theta_exit_plt[i_row]) - 1

 i = np.searchsorted(phi_exit_bin_edges, phi_exit_plt[i_row])

- 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_exit_truth, phi_exit_truth, c='red',

marker='x', s=10)

ax = fig.add_subplot(7,7,24)

theta_entry_bin_edges = np.linspace(0, 6.28, 30)

phi_exit_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(theta_entry_bin_edges, phi_exit_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

43

 j = np.searchsorted(theta_entry_bin_edges,

theta_entry_plt[i_row]) - 1

 i = np.searchsorted(phi_exit_bin_edges, phi_exit_plt[i_row])

- 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_entry_truth, phi_exit_truth, c='red',

marker='x', s=10)

ax = fig.add_subplot(7,7,25)

plt.hist(phi_exit_plt, bins=50)

ax = fig.add_subplot(7,7,29)

timestep_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

timesteps = time_track[timestep_indices]

phi_entry_bin_edges = np.linspace(-3.14, 3.14, 30)

if len(timesteps) > 1:

 timestep_edges = list(timesteps-(timesteps[1]-

timesteps[0])/2)

 timestep_edges.append(timesteps[-1] + (timesteps[1]-

timesteps[0])/2)

 timestep_edges = np.array(timestep_edges)*1e-3

else:

 timestep_edges = np.array([timesteps[0] * 1e-3])

X, Y = np.meshgrid(timestep_edges, phi_entry_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(timestep_edges, row['alpha1_t']*1e6) - 1

 i = np.searchsorted(phi_entry_bin_edges,

phi_entry_plt[i_row]) - 1

44

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter((len(time_track) - n_pad_end)/10, phi_entry_truth,

c='red', marker='x', s=10)

ax.set_xlim([n_pad_strt*0.1 - 10, n_pad_strt*0.1 + 10])

plt.ylabel('Phi Entry')

ax = fig.add_subplot(7,7,30)

theta_exit_bin_edges = np.linspace(0, 6.28, 30)

phi_entry_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(theta_exit_bin_edges, phi_entry_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_exit_bin_edges,

theta_exit_plt[i_row]) - 1

 i = np.searchsorted(phi_entry_bin_edges,

phi_entry_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_exit_truth, phi_entry_truth, c='red',

marker='x', s=10)

ax = fig.add_subplot(7,7,31)

theta_entry_bin_edges = np.linspace(0, 6.28, 30)

phi_entry_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(theta_entry_bin_edges, phi_entry_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_entry_bin_edges,

theta_entry_plt[i_row]) - 1

45

 i = np.searchsorted(phi_entry_bin_edges,

phi_entry_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_entry_truth, phi_entry_truth, c='red',

marker='x', s=10)

ax = fig.add_subplot(7,7,32)

phi_exit_bin_edges = np.linspace(-3.14, 3.14, 30)

phi_entry_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(phi_exit_bin_edges, phi_entry_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(phi_exit_bin_edges, phi_exit_plt[i_row])

- 1

 i = np.searchsorted(phi_entry_bin_edges,

phi_entry_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(phi_exit_truth, phi_entry_truth, c='red',

marker='x', s=10)

ax = fig.add_subplot(7,7,33)

plt.hist(phi_entry_plt, bins=50)

ax = fig.add_subplot(7,7,36)

timestep_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

timesteps = time_track[timestep_indices]

if 'Velocity' in analysis_parameter:

 v_bin_edges = np.linspace(1e5, 7e5, 30)

46

else:

 v_bin_edges = vel

if len(timesteps) > 1:

 timestep_edges = list(timesteps-(timesteps[1]-

timesteps[0])/2)

 timestep_edges.append(timesteps[-1] + (timesteps[1]-

timesteps[0])/2)

 timestep_edges = np.array(timestep_edges)*1e-3

else:

 timestep_edges = np.array([timesteps[0] * 1e-3])

X, Y = np.meshgrid(timestep_edges, v_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(timestep_edges, row['alpha0_t']*1e6) - 1

 i = np.searchsorted(v_bin_edges, vel_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y/1e3,C)

#ax.scatter(n_pad_strt*0.1, vel[0]/1e3, c='red', marker='x',

s=10)

ax.set_xlim([n_pad_strt*0.1 - 10, n_pad_strt*0.1 + 10])

plt.ylabel('Velocity (km/s)')

ax = fig.add_subplot(7,7,37)

if 'Velocity' in analysis_parameter:

 v_bin_edges = np.linspace(1e5, 7e5, 30)

else:

 v_bin_edges = vel

theta_exit_bin_edges = np.linspace(0, 6.28, 30)

X, Y = np.meshgrid(theta_exit_bin_edges, v_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

47

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_exit_bin_edges,

theta_exit_plt[i_row]) - 1

 i = np.searchsorted(v_bin_edges, vel_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y/1e3,C)

#ax.scatter(theta_exit_truth, vel[0]/1e3, c='red', marker='x',

s=10)

ax = fig.add_subplot(7,7,38)

if 'Velocity' in analysis_parameter:

 v_bin_edges = np.linspace(1e5, 7e5, 30)

else:

 v_bin_edges = vel

theta_entry_bin_edges = np.linspace(0, 6.28, 30)

X, Y = np.meshgrid(theta_entry_bin_edges, v_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_entry_bin_edges,

theta_entry_plt[i_row]) - 1

 i = np.searchsorted(v_bin_edges, vel_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y/1e3,C)

#ax.scatter(theta_entry_truth, vel[0]/1e3, c='red', marker='x',

s=10)

ax = fig.add_subplot(7,7,39)

if 'Velocity' in analysis_parameter:

 v_bin_edges = np.linspace(1e5, 7e5, 30)

else:

 v_bin_edges = vel

48

phi_exit_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(phi_exit_bin_edges, v_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(phi_exit_bin_edges, phi_exit_plt[i_row])

- 1

 i = np.searchsorted(v_bin_edges, vel_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y/1e3,C)

#ax.scatter(phi_exit_truth, vel[0]/1e3, c='red', marker='x',

s=10)

ax = fig.add_subplot(7,7,40)

if 'Velocity' in analysis_parameter:

 v_bin_edges = np.linspace(1e5, 7e5, 30)

else:

 v_bin_edges = vel

phi_entry_bin_edges = np.linspace(-3.14, 3.14, 30)

X, Y = np.meshgrid(phi_entry_bin_edges, v_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(phi_entry_bin_edges,

phi_entry_plt[i_row]) - 1

 i = np.searchsorted(v_bin_edges, vel_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y/1e3,C)

#ax.scatter(phi_entry_truth, vel[0]/1e3, c='red', marker='x',

s=10)

ax = fig.add_subplot(7,7,41)

49

plt.hist(vel/1000, bins=50)

ax = fig.add_subplot(7,7,43)

timestep_indices = np.array(range(tmstep_strt, tmstep_end,

tm_steps))

timesteps = time_track[timestep_indices]

amplitude_bin_edges = np.linspace(0, 5, 30)

if len(timesteps) > 1:

 timestep_edges = list(timesteps-(timesteps[1]-

timesteps[0])/2)

 timestep_edges.append(timesteps[-1] + (timesteps[1]-

timesteps[0])/2)

 timestep_edges = np.array(timestep_edges)*1e-3

else:

 timestep_edges = np.array([timesteps[0] * 1e-3])

X, Y = np.meshgrid(timestep_edges, amplitude_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(timestep_edges, row['alpha1_t']*1e6) - 1

 i = np.searchsorted(amplitude_bin_edges,

SNR_data_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter((len(time_track) - n_pad_end)/10, theta_exit_truth,

c='red', marker='x', s=10)

ax.set_xlim([n_pad_strt*0.1, n_pad_strt*0.1 + 20])

plt.ylabel('Amplitude')

plt.xlabel('Time (us)')

ax = fig.add_subplot(7,7,44)

theta_exit_bin_edges = np.linspace(0, 6.28, 30)

50

amplitude_bin_edges = np.linspace(0, 5, 30)

X, Y = np.meshgrid(theta_exit_bin_edges, amplitude_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_exit_bin_edges,

theta_exit_plt[i_row]) - 1

 i = np.searchsorted(amplitude_bin_edges,

SNR_data_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_exit_truth, vel[0]/1e3, c='red', marker='x',

s=10)

plt.xlabel('Theta Exit')

ax = fig.add_subplot(7,7,45)

theta_entry_bin_edges = np.linspace(0, 6.28, 30)

amplitude_bin_edges = np.linspace(0, 5, 30)

X, Y = np.meshgrid(theta_entry_bin_edges, amplitude_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(theta_entry_bin_edges,

theta_entry_plt[i_row]) - 1

 i = np.searchsorted(amplitude_bin_edges,

SNR_data_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(theta_entry_truth, vel[0]/1e3, c='red', marker='x',

s=10)

plt.xlabel('Theta Entry')

51

ax = fig.add_subplot(7,7,46)

phi_exit_bin_edges = np.linspace(-3.14, 3.14, 30)

amplitude_bin_edges = np.linspace(0, 5, 30)

X, Y = np.meshgrid(phi_exit_bin_edges, amplitude_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(phi_exit_bin_edges, phi_exit_plt[i_row])

- 1

 i = np.searchsorted(amplitude_bin_edges,

SNR_data_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(phi_exit_truth, vel[0]/1e3, c='red', marker='x',

s=10)

plt.xlabel('Phi Exit')

ax = fig.add_subplot(7,7,47)

phi_entry_bin_edges = np.linspace(-3.14, 3.14, 30)

amplitude_bin_edges = np.linspace(0, 5, 30)

X, Y = np.meshgrid(phi_entry_bin_edges, amplitude_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(phi_entry_bin_edges,

phi_entry_plt[i_row]) - 1

 i = np.searchsorted(amplitude_bin_edges,

SNR_data_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X,Y,C)

#ax.scatter(phi_entry_truth, vel[0]/1e3, c='red', marker='x',

s=10)

52

plt.xlabel('Phi Entry')

ax = fig.add_subplot(7,7,48)

if 'Velocity' in analysis_parameter:

 v_bin_edges = np.linspace(1e5, 7e5, 30)

else:

 v_bin_edges = vel

amplitude_bin_edges = np.linspace(0, 5, 30)

X, Y = np.meshgrid(v_bin_edges, amplitude_bin_edges)

C = np.zeros(X.shape)

analysis_min_steps = 10

for i_row,row in enumerate(transformed_data):

 j = np.searchsorted(v_bin_edges, vel_plt[i_row]) - 1

 i = np.searchsorted(amplitude_bin_edges,

SNR_data_plt[i_row]) - 1

 C[i,j] = row['SNR']

pcm = ax.pcolormesh(X/1e3,Y,C)

#ax.scatter(vel[0]/1e3, vel[0]/1e3, c='red', marker='x', s=10)

plt.xlabel('Velocity (km/s)')

ax = fig.add_subplot(7,7,49)

plt.hist(transformed_data['SNR'], bins=50)

plt.xlabel('Amplitude')

plt.show()

53

REFERENCES

[1] Bertone, G., & Hooper, D. (2016, May 24). A History of Dark Matter. Review of Modern

Physics, Vol. 90, Issue 4, pp. 1-88.

https://doi.org/10.1103/RevModPhys.90.045002

[2] Kapteyn, J., C. (1922, May 18). First Attempt at a Theory of the Arrangement and Motion of

the Siderial System. Astrophysical Journal, Vol. 55, Issue 80, pp. 302-328.

 https://doi.org/10.1086/142670

[3] Oort, J., H. (1932, August 17). The Force Exerted by the Stellar System in the Direction

Perpendicular to the Galactic Plane and Some Related Problems. Astronomical Institutes

of The Netherlands, Vol. 6, Issue 238, pp. 249-287.

https://doi.org/10.1073/pnas.10.6.253

[4] Freeman, K., C. (1970, June 8). On the Disks of Spiral and S0 Galaxies. The Astrophysical

Journal, Vol. 160, Issue 53, pp. 811-830.

https://doi.org/10.1086/150474

[5] Rubin, V., C., Ford. W., K., & Thonnard., N. (1980, June 1). Rotational Properties of 21 Sc

Galaxies with a Large Range of Luminosities and Radii, from NGC 4605 (R = 4 kpc) to

UGC 2885 (R = 122 kpc). The Astrophysical Journal, Vol. 238, Issue 25, pp. 471-487.

https://doi.org/10.1086/158003

[6] Clausius, R., J., E. (1870, May 13). On a Mechanical Theorem Applicable to Heat. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, Issue 265,

pp. 122-127.

https://doi.org/10.1080/14786447008640370

[7] Zwicky, F. (1933, June 29). The Redshift of Extragalactic Nebulae. Helvetica Physica Acta,

Vol. 6, Issue 15, pp. 110-127.

 https://doi.org/10.1007/s10714-008-0706-5

[8] Milgrom, M. (1983, July 15). A Modification of the Newtonian Dynamics as a Possible

Alternative to the Hidden Mass Hypothesis. The Astrophysical Journal, Vol. 270, Issue 71,

pp. 365-370.

 https://doi.org/10.1086/161130

https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1073/pnas.10.6.253
https://doi.org/10.1073/pnas.10.6.253
https://doi.org/10.1073/pnas.10.6.253
https://doi.org/10.1073/pnas.10.6.253
https://doi.org/10.1073/pnas.10.6.253
https://doi.org/10.1086/158003
https://doi.org/10.1080/14786447008640370
https://doi.org/10.1007/s10714-008-0706-5
https://doi.org/10.1086/161130

54

[9] Robertson, A., Massey, R., & Eke, V. (2016, May 13). What Does the Bullet Cluster Tell Us

about Self-Interacting Dark Matter? Monthly Notices of the Royal Astronomical Society,

Vol. 465, Issue 267, pp. 569-587.

 https://doi.org/10.1093/mnras/stw2670

[10] Ostriker, J., P., & Steinhardt, P. (2003, June 20). New Light on Dark Matter. Science, Vol.

300, Issue 5627, pp. 1909-1913.

 https://doi.org/10.1126/science.1085976

[11] Kane, G., & Watson, S. (2008, July 18). Dark Matter and LHC: What is the Connection?

Modern Physics Letters A, Vol. 23, Issue 26, pp. 2103-2123.

 https://doi.org/10.1142/S0217732308028314

[12] Fox, P., J., Harnik, R., Kopp, J., & Tsai, Y. (2011, July 22). LEP Shines Light on Dark Matter.

Physics Review D, Vol. 84, Issue 11, pp. 11-29.

 https://doi.org/10.1103/PhysRevD.84.014028

[13] Ellis, J., Flores, R., A., Freese, K., Ritz, S., Seckel, D., & Silk, J. (1988, November 24).

Cosmic Ray Constraints on the Annihilations of Relic Particles in the Galactic Halo.

Physics Letters B, Vol. 214, Issue 3, pp. 403-412.

 https://doi.org/10.1016/0370-2693(88)91385-8

[14] Bertone, G., Hooper, D., & Silk, J. (2005, January 17). Particle Dark Matter: Evidence,

Candidates, and Constraints. Physics Reports, Vol. 405, Issue 5, pp. 279-390.

 https://doi.org/10.1016/j.physrep.2004.08.031

[15] Esmaili, A., Kang, S., K., & Serpico, P., D. (2014, December 23). IceCube Events and

Decaying Dark Matter: Hints and Constraints. Journal of Cosmology and Astroparticle

Physics, Vol. 2014, Issue 54, pp. 12-38.

 https://doi.org/10.1088/1475-7516/2014/12/054

[16] Drukier, A., K., Freese, K., & Spergel, D., N. (1986, June 15). Detecting Cold Dark Matter

Candidates. Physics Review D, Vol. 33, Issue 12, pp. 3495-3508.

 https://doi.org/10.1103/PhysRevD.33.3495

[17] Lee, S., K., Lisanti, M., Peter, A., H., G., & Safdi, B., R. (2014, January 3). Effect of

Gravitational Focusing on Annual Modulation in Dark-Matter Direct-Detection

Experiments. Physics Review Letters, Vol. 112, Issue 10, pp. 11-16.

https://doi.org/10.1103/PhysRevLett.112.011301

https://doi.org/10.1093/mnras/stw2670
https://doi.org/10.1126/science.1085976
https://doi.org/10.1142/S0217732308028314
https://doi.org/10.1103/PhysRevD.84.014028
https://doi.org/10.1016/0370-2693(88)91385-8
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1103/PhysRevD.33.3495
https://doi.org/10.1103/PhysRevD.33.3495
https://doi.org/10.1103/PhysRevD.33.3495
https://doi.org/10.1103/PhysRevLett.112.011301

55

[18] Carney, D., Ghosh, S., Krnjaic, G., & Taylor, J., M. (2019, March 5). Gravitational Direct

Detection of Dark Matter. Physics Review D, Vol. 102, Issue 7, pp. 7-12.

 https://doi.org/10.1103/PhysRevD.102.072003

[19] Baudis, L. (2017, December 26). The Search for Dark Matter. European Review, Vol. 26,

Issue 1, pp. 70-81.

https://doi.org/10.1017/S1062798717000783

[20] Hall, E., D., Adhikari, R., X., Frolov, V., V., Muller, H & Pospelov, M. (2018, October 23).

Laser Interferometers as Dark Matter Detectors. Physics Review D, Vol. 98, Issue 8, pp. 3-

21.

 https://doi.org/10.1103/PhysRevD.98.083019

[21] Tanabashi, M., Particle Data Group. (2018, August 17). Review of Particle Physics. Physics

Review D, Vol. 98, Issue 3, pp. 3-1901.

 https://doi.org/10.1103/PhysRevD.98.030001

[22] Read, J., I. (2014, June 13). The Local Dark Matter Density. Journal of Physics G: Nuclear

and Particle Physics, Vol. 41, Issue 6, pp. 6-67.

 https://doi.org/10.1088/0954-3899/41/6/063101

[23] Aasi, J., The LIGO Scientific Collaboration. (2015, March 3). Advanced LIGO. Classical and

Quantum Gravity, Vol. 32, Issue 7, pp. 7-48.

 https://doi.org/10.1088/0264-9381/32/7/074001

https://doi.org/10.1103/PhysRevD.102.072003
https://doi.org/10.1017/S1062798717000783
https://doi.org/10.1103/PhysRevD.98.083019
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001

