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ABSTRACT

While the interest in the Martian moons increases, the low-thrust propulsion technology

is expected to enable novel mission scenarios but is associated with unique trajectory design

challenges. Accordingly, the current investigation introduces a multi-phase low-thrust design

framework. The trajectory of a potential spacecraft that departs from the Earth vicinity to

reach both of the Martian moons, is divided into four phases. To describe the motion of the

spacecraft under the influence of gravitational bodies, the two-body problem (2BP) and the

Circular-Restricted Three Body Problem (CR3BP) are employed as lower-fidelity models,

from which the results are validated in a higher-fidelity ephemeris model. For the computa-

tion and optimization of low-thrust trajectories, direct collocation algorithm is introduced.

Utilizing the dynamical models and the numerical scheme, the low-thrust trajectory design

challenge associated each phase is located and tackled separately. For the heliocentric leg,

multiple optimal control problems are formulated between the planets in heliocentric space

over different departure and arrival epochs. A contour plot is then generated to illustrate

the trade-off between the propellant consumption and the time of flight. For the tour of

the Martian moons, the science orbits for both moons are defined. Then, a new algorithm

that interfaces the Q-law guidance scheme and direct collocation algorithm is introduced to

generate low-thrust transfer trajectories between the science orbits. Finally, an end-to-end

trajectory is produced by merging the piece-wise solutions from each phase. The validity

of the introduced multi-phase formulation is confirmed by converging the trajectories in a

higher-fidelity ephemeris model.
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1. INTRODUCTION

The natural satellites of Mars, Phobos and Deimos, are appealing destinations for future

space explorations. Characterizing the physical composition of Phobos and Deimos is con-

sidered a key to solving various questions about the Martian system [ 1 ]. For instance, the

origin of the Martian moons remains mysterious, while the two compelling hypotheses suggest

the moons results from capture of asteroids or from formation in situ by either co-accretion

or by a giant impact on Mars [  2 ]. The observations and sample returns from the future ex-

plorations are expected to confirm one of the two scenarios, and deliver additional valuable

insights. If the moons are captured asteroids, they will offer information on the process of

delivering organic substances and water to the terrestrial planets [ 3 ]. Alternatively, if the

composition supports the in situ hypothesis, the moons are witness to the formation of the

Martian system as the materials of the moons record the early history of Mars [ 1 ]. The

Martian moons are envisioned as key to the future of human exploration of Mars as well.

The moons may serve as bases for teleoperations as part of robotic exploration missions on

Mars. Manned missions to the moons may act as relatively low-risk stepping stones prior to

eventually reaching the surface of Mars [ 4 ]. Additionally, the early observations of Phobos

suggests the possibility of iced water on Phobos [ 5 ], a hypothesis that remains inconclusive

[ 6 ]. If further observations of the moons confirm the existence of in situ resources including

hydrogen, oxygen, and carbon, these may be extracted to enable a smaller spacecraft, leading

to a cheaper configuration for human exploration missions [  7 ], [  8 ].

Despite the importance of the Martian moons in both planetary science and human

exploration of the Martian system, no dedicated mission has successfully explored the moons

[ 2 ]. In 1988, the first dedicated mission, Phobos 2, acquired 37 photos of the surface of Phobos

[ 9 ] but the contact with the spacecraft was lost during its maneuver to encounter the moon.

The observation of the Martian moons has subsequently been conducted solely with Earth-

based telescopes and Mars orbiters or landers [ 2 ], including the Mars Express mission that

measured Phobos’ gravity field with multiple Phobos flybys in 2010 [ 6 ]. In the past decade,

recognizing the importance of both moons, an increasing number of missions that primarily

target Phobos and Deimos have been proposed by multiple space agencies. The proposed
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missions include Phootprint from the European Space Agency (ESA) [ 10 ], PADME and

PANDORA from the National Aeronautics and Space Administration (NASA) [ 11 ], [ 12 ],

and MMX from the Japanese Aerospace eXploration Agency (JAXA) [ 13 ]. While Phobos is

considered the primary target in most of the previous mission concepts, mainly due to the

proximity to the red planet [ 14 ], a number of proposed missions include the exploration of

both Phobos and Deimos [ 11 ], [  13 ].

For the exploration of deep space, chemical engines that are capable of imparting large

acceleration to the spacecraft over a short period of time are traditionally used. More recently,

low-thrust propulsion has emerged, where the engine provides a fuel efficient maneuver but

with the acceleration of a small magnitude, hence, low-thrust. The low-thrust propulsion

has been tested in a number of missions from multiple space agencies, including NASA’s

Deep Space 1, JAXA’s Hayabusa-1, and ESA’s SMART-1, proving the effectiveness of the

technology in both cislunar and deep space [  15 ]–[ 17 ]. In particular, NASA’s Dawn mission

utilized a Mars flyby with a low-thrust engine to finally arrive at the dwarf planets Vesta

and Ceres [ 18 ] and proved that low-thrust propulsion is applicable to the exploration of

the Martian system. The largest benefit of the low-thrust propulsion is the efficiency of the

engine, represented by a high specific impulsive in comparison to a chemical engine [  19 ].

The efficiency allows for designing a mission to the Martian system with a smaller spacecraft

and, thus, a mission with a cheaper configuration as envisioned by previous authors [ 20 ]–[ 22 ].

Accordingly, strategies the low-thrust trajectory design that are well-suited to a potential

mission that explores the Martian moons, are in demand.

1.1 Low-Thrust Trajectory Design Factors and Assumptions

This investigation focuses on the trajectory design process for a potential mission scenario

where both of the Martian moons are explored by a spacecraft with low-thrust propulsion

capabilities. The design process depends upon with some associated challenges and assump-

tions as listed in Table  1.1 . The focus of the current work involves the multi-body dynamics

aspect of the problem, i.e., a variety of celestial bodies including the Sun, the planets, and

the Martian moons that all exert gravitational forces on the spacecraft. Such a complex

gravitational environment as the spacecraft moves from the Earth to the Martian moons
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compounds the trajectory design process. A multi-phase approach is typically employed to

address this challenge [ 22 ]–[ 27 ], where the problem is divided into smaller parts, or phases.

The phases are defined via a number of criteria, including a shift in recognizing the most

significant gravitational bodies depending on the location of the spacecraft. This strategy

is advantageous since it allows analyses that are more tractable as the gravitational bodies

with the most influence on the spacecraft are fixed within each phase. Such a strategy greatly

reduces the complexity of the problem.

The multi-phase formulation in the current investigation is illustrated in Figure  1.1 ,

where the problem is decomposed into four distinct phases: (1) departure, (2) heliocentric

leg, (3) arrival, and (4) tour of the Martian moons. The first phase, departure, corresponds

to the Earth vicinity where the Earth and the Sun have a strong impact on the spacecraft

trajectory; the spacecraft is expected to escape from the Earth gravity field to heliocentric

space. The second phase, the heliocentric leg, is the region where the gravitational force on

the spacecraft is dominated by the Sun, and the spacecraft traverses from the Earth vicinity

to the Mars vicinity in the heliocentric space. The third phase corresponds to the vicinity

of the Martian system where the spacecraft is most influenced by the gravity of the Sun

and Mars and is expected to be captured into orbit about Mars. Finally, the tour of the

Martian moons is accommodated in the fourth phase, where the gravity of the Sun, Mars, or

even the Martian moons may be incorporated as required. After decomposing the trajectory

into multiple phases, the design challenge for each phase is identified and tackled separately.

The scope of the current investigation lies in the second through the fourth phases, the

heliocentric leg and a tour of the Martian moons. The heliocentric leg refers to the transfer

trajectory between the Earth and Mars in heliocentric space, where the challenge is associated

with characterizing the optimal heliocentric trajectories that depend on the locations of the

planets, i.e., the Earth and Mars, over different epochs. It is assumed that the flybys of

the Moon or the planets do not occur, although the flybys can be utilized to compute

propellant efficient trajectories [ 28 ], [ 29 ]. For the fourth phase, the challenge arises from the

fact that the transfer trajectory between the Martian moons requires multiple revolutions

around Mars and also an additional rendezvous constraint that exists when the spacecraft

departs from one of the moons and finally arrives at the second moon. The first and third
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phases, i.e., departure and arrival, remain out of the scope of the current investigation, and

a simplifying assumption is introduced. They share a common trait that many-revolution

spiral arcs around the planets are required when the spacecraft departs from the Earth and

arrives at Mars, as a low-thrust engine typically requires longer time of flight to achieve the

change in energy to either escape from or be captured by gravity of the planets. Although

multiple strategies are available to compute the planetocentric low-thrust trajectories [ 30 ], a

trade-off generally exists between the time of flight and the propellant consumption for the

optimal spiral arcs [ 31 ]. In the current investigation, simple control laws are introduced to

avoid optimizing the multi-revolution arcs around the Earth and Mars. For the departure,

the thrust is fixed at the maximum value while the direction is aligned with the rotating

velocity. Similarly, for the arrival, the thrust level is also fixed at the maximum value but

the direction is in the opposite of the rotating velocity. These control strategies represent

a near time-optimal solutions given an energy gap, and provide useful reference costs for

phase 1 and 3 without navigating the trade-off between the time of flight and the propellant

consumption.

Earth

Martian System

Phase 1

Departure

Phase 2

Heliocentric Leg

Phase 3

Arrival

Phase 4

Tour

Sun

Figure 1.1. Multi-phase formulation of the trajectory design process

In addition to the multi-body dynamics aspect of the problem to explore the Martian

moons, the trajectory design also depends on the departure or deployment state near the

Earth. While various launch vehicles result in different departure states, the current analysis

assumes one particular scenario: the spacecraft is launched as a secondary payload attached

to an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)

where the launch reaches a geostationary transfer orbit (GTO). This scenario corresponds

to one of the novel mission concepts enabled by the low-thrust propulsion technology, and is

envisioned as one of the cheapest configurations for the mission concepts in the current decade
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[ 20 ]. The benefits include the flexibility offered by lacking a requirement for a dedicated

launch vehicle, and also the frequent launch opportunities to the GTO, more than 10 launches

per year [ 22 ].

Finally, the low-thrust propulsion capability poses additional challenges to the trajectory

design process despite its benefits from increased efficiency. In contrast to a chemical engine

where the trajectory is generated without considering the engine specifications, the low-

thrust trajectory is bound to the spacecraft characteristics including the thrust, mass and

the specific impulse. The current investigation is based on the specifications introduced by

Woolley and Olikara [ 22 ], listed in Table  1.2 . The numbers in Table  1.2 correspond to a

realistic set of values for a spacecraft that departs from a GTO as a secondary payload and

is delivered to an Areostationary orbit around Mars, solely utilizing low-thrust propulsion.

When the second and fourth phases are designed independently following the multi-phase

formulation, the spacecraft mass at the beginning of these phases are assumed to be 340.9kg

and 229.3kg, respectively. The specific impulse and maximum thrust values of the engine are

consistent with the values listed in Table  1.2 , 1733s and 90mN , respectively. It is assumed

that these values do not depend on the spacecraft power.

Table 1.1. Low-thrust trajectory design factors and respective assumptions
Design Factors Assumptions

Multi-body dynamics
Multi-phase approach illustrated in Figure  1.1 

Phase 2: No lunar/planetary flybys
Phase 1 and 3: Sub-optimal control law

Earth Departure Scenario Secondary payload, GTO departure
Spacecraft Specifications Table  1.2 
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Table 1.2. Spacecraft specifications (recreated from Woolley and Olikara [ 22 ]
Table 1 and Figure 11)

Spacecraft Specifications Value

Mass

Beginning of Phase 1 409.3kg
Beginning of Phase 2 340.9kg
Beginning of Phase 3 243.1kg
Beginning of Phase 4 229.3kg

Specific Impulse 1733s
Maximum Thrust 90mN
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1.2 Problem Definition and Previous Contributions

The overarching goal of the current investigation is the development of a multi-phase

design framework for low-thrust trajectories that originate from the Earth and reach both

of the Martian moons. The goal is subdivided into the following objectives:

1. Characterize the optimal transfer trajectories between the Earth and Mars (Phase 2).

2. Develop a strategy to generate tour trajectories to explore both Phobos and Deimos

(Phase 4). Validate the strategy with multiple scenarios and assess the reference costs.

3. Generate sample end-to-end trajectories by collecting strategies for each phase and

validating the multi-phase approach described in Figure  1.1 .

Recall that the current investigation is bound to the assumptions listed in Table  1.1 .

The formulation and the various analyses conducted within this investigation expand on

existing methodologies. The direct collocation algorithm is the basic computational tool in

the current investigation to produce the feasible, as well as optimal, low-thrust trajectories.

Direct collocation is leveraged for low-thrust trajectory design by a number of previous

authors [ 32 ], [ 33 ], recognized for its robustness, i.e., the ability to locate solutions even

with poor initial guesses, and the computational efficiency of the solvers that are available

[ 34 ]. Applying the direct collocation algorithm to a low-thrust trajectory design is very

useful and, yet continue as an ongoing research field. Efforts are also underway to optimize

trajectories in the complex dynamical regimes, where it is often challenging to generate a

suitable initial guess. Ozimek et al. [  35 ] compute non-Keplerian orbits around the Moon

that provide constant line-of-sight to the lunar pole while considering the gravity force from

multiple celestial bodies utilizing the direct collocation algorithm. Parrish et al. [ 36 ], as well

as Pritchett et al. [ 37 ], demonstrate the robustness of direct collocation in the Earth-Moon

multi-body dynamics regime. The robustness of the algorithm is leveraged in the current

investigation to achieve the research objectives, where the exact form of the implementation

is heavily based on the algorithm developed and refined by Pritchett et al. [ 37 ].

For the heliocentric leg between the Earth and Mars, or the second phase in the multi-

phase formulation, attempts to characterize the family of optimal trajectories aid the prelim-
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inary mission design process. Graphical tools that demonstrate the overall costs associated

with the optimal trajectories, those that depend on different departure and arrival dates,

are developed by various authors. Woolley et al. [  38 ] present contour plots, termed “ba-

con plots”, of the optimal trajectories between the Earth and Mars via MALTO, a fast,

medium-fidelity optimizer developed at Jet Propulsion Laboratory (JPL), where the con-

tinuous thrust is approximated as a series of impulsive maneuvers [ 39 ] and optimized with

SNOPT [ 40 ], a nonlinear programming (NLP) solver. Genta and Maffione [ 23 ] present anal-

ogous contour plots labelled “J-plots”, based on an in-house MATLAB package that utilizes

the Euler-Lagrange method to compute the optimal transfer trajectories [  41 ]. The current

investigation reconfirms the results from the previous works with the direct collocation al-

gorithm.

The fourth phase in the multi-phase formulation, i.e., the tour of the Martian moons with

low-thrust, requires multiple revolutions around Mars as well as an additional rendezvous

constraint. There exist multiple attempts to solve this many-revolution problem combined

with the terminal rendezvous constraint. Dachwald [ 42 ] as well as Cremaschi et al. [ 43 ] intro-

duce an evolutionary neurocontroller that consists of a inner loop neurocontroller for which

the parameters are optimized through an evolutionary algorithm. The rendezvous scenario

is examined for the Earth to Mercury transfer as well as the tour of the Jovian moons.

Based on Dachwald’s algorithm, Derz et al. [ 44 ] generate a rendezvous trajectory between

Deimos and Phobos, where the authors note that “the demanding rendezvous constraints

resulted in a very high computational effort”. More recently, Lantoine and Russell [ 45 ] intro-

duce a hybrid differential dynamic programming algorithm and demonstrate it on a mission

scenario with sequential flybys of multiple asteroids as well as the rendezvous constraint

with the final target. Although the low-thrust engine acceleration is modeled as a series of

impulsive maneuvers and the trajectories are comprised of a dozen of revolutions around

the central body. Building on this work, Aziz [  46 ] incorporates the eclipse constraint into

the algorithm and presents a Earth to Mars rendezvous scenario, but does not demonstrate

the rendezvous performance on a many-revolutions transfer. Zhibo and Guzzetti [ 47 ] offer a

simplectic method that is applicable to rendezvous problem in the low-Earth orbit regime

and associated with 228 revolutions while incorporating the gravity from the Earth including
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the J2 perturbation. The authors note that the method converged to an optimal solution

with a good initial guess. The current investigation introduces an alternative method where

the Q-law algorithm, developed by Petropoulos [ 48 ], is employed as an initial guess to the

direct collocation algorithm.

1.3 Document Overview

The current investigation expands upon the work of the previous authors to develop a

multi-phase design framework suitable for missions to Martian moon with low-thrust propul-

sion. This document presents the dynamical models as well as the optimization algorithm

utilized to fulfill the research objectives, followed by the analyses corresponding to each phase

of the multi-phase formulation. The rest of the document is organized as follows:

• Chapter  2 : Dynamical Models

The assumptions for the dynamical models utilized in the current investigation are

introduced. While the gravitational force is generally described by the N -Body prob-

lem, two low-fidelity models, the two-body problem (2BP) and circular restricted three

body problem (CR3BP) are included to facilitate tractable analysis. The equations of

motion for the higher-fidelity ephemeris model are provided, with which the results

from the low-fidelity models are validated. The definitions of coordinate frames as well

as the rotations between the frames are discussed. Finally, the low-thrust engine model

is introduced, completing the dynamical models in the current work.

• Chapter  3 : Low-Thrust Trajectory Computation and Optimization Via Direct Collo-

cation.

The computational tools to generate and optimize low-thrust trajectories are intro-

duced. A collocation integration scheme is described, that serves as the numerical inte-

grator for the differential equations representing the dynamical models. The Newton-

Raphson scheme serves as a core algorithm to implement differential corrections and

produce feasible trajectories. Then, the optimal control problem is defined, where the

direct collocation algorithm is introduced as the selected approach. An illustrative

example of this process for the low-thrust trajectory design is presented.
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• Chapter  4 Heliocentric Leg Design

The process of characterizing the optimal trajectories between the Earth and Mars

(Phase 2) is explained. The initial guess is obtained via a third degree polynomial ap-

proximation and a continuations scheme. The initial guess is optimized, and the results

corresponding to a range of departure and arrival epochs are represented in contour

plots. Discussions regarding the characteristics of the contour plots are provided.

• Chapter  5 Martian Moons Tour Design

First, the sequence for a moon tour is fixed. Initiailly, it is a sequence detailed to explore

the Deimos before Phobos, deduced as the preferred option from the energy levels of

the two moon orbits in the Sun-Mars CR3BP. The science orbits for the two moons

are then defined, where libration point orbits are selected as capture orbits for the

moons and resonant orbits in the Mars-Phobos and Mars-Deimos CR3BPs are selected

as the flyby orbits. The tour scenarios are categorized into (1) capture-to-capture,

(2) flyby-to-capture, (3) and capture-to-flyby. As the low-thrust engine requires many

revolutions along the thrusting arcs to arrive at the Martian system as well as to

transfer between the science orbits, the strategies to compute the spiral-down arcs are

introduced. From the heliocentric leg to the Deimos science orbit (Phase 3), a simple

control law to thrust in the opposite direction of the velocity is employed. From the

Deimos science orbit to the Phobos science orbit (Phase 4), an algorithm that combines

a Q-law guidance scheme and the direct collocation method is presented to tackle the

additional challenges associated with the rendezvous requirement at the end of the arc.

Finally, “costs” measured as the propellant consumption as well as the required time

of flight are summarized for a number of options corresponding to each tour scenario.

• Chapter  6 End-to-end Trajectory Design

The strategies introduced in the preceding chapters are collected to complete the multi-

phase design framework. A simple control law to depart from a GTO (Phase 1) is dis-

cussed. Sample end-to-end trajectories originating from a GTO, that arrive at Phobos

science orbits are generated.
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• Chapter  7 Conclusions

A summary of the results is presented with the concluding remarks, followed by rec-

ommendations for future work.
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2. DYNAMICAL MODELS

A spacecraft that travels from the Earth vicinity to the Martian system is under the influence

of a variety of forces: the gravity from various celestial bodies, any solar radiation pressure

on the vehicle, the atmospheric drag in the vicinity of the planets, and potentially, the

thrust from the engine at suitable times. These forces are mathematically described by

appropriate dynamical models. A trade-off already exists between the simplicity and fidelity

of any dynamical model, and a common practice is to neglect the forces of relatively small

magnitudes. To avoid an overly complex model, it is advantageous to start with the simplest

model that efficiently captures the governing forces. To this end, the forces influencing the

spacecraft are simplified into two categories for the current work: (1) gravitational forces

and (2) the low-thrust engine force. Each of these models and respective assumptions are

detailed as follows.

2.1 Gravitational Force Models

All bodies are assumed to be centrobaric in this investigation, that is equivalent to a

point-mass approximation for the celestial bodies. Following this assumption, further sim-

plifications are necessary in the preliminary mission design process; considering too many

bodies at once often results in chaos and poses a challenge. Instead, celestial bodies that

exert insignificant gravitational forces on the spacecraft are initially ignored, resulting in a

much simpler model that facilitates preliminary analysis. Then, the number of the bodies

included in the model may be gradually increased to validate the preliminary result in a

higher-fidelity model.

For instance, incorporating all the celestial bodies that a spacecraft may encounter while

moving from the Earth to Mars results in a six-body problem including the Sun, both

planets, both Martian moons as well as the spacecraft. While Mars and the moons do affect

the spacecraft, they only exert negligible forces compared to the Sun and Earth in the vicinity

of the Earth. Thus, in a lower-fidelity model, only the Sun and Earth may be incorporated to

efficiently describe motion of the spacecraft in the vicinity of the Earth. The validity of this
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preliminary analysis is ensured by reconverging the obtained trajectory with a higher-fidelity

model that incorporates all five celestial bodies.

All gravitational models in the current investigation originate from a general N -body

problem. As the lower-fidelity models, the two-body problem and the circular restricted

three-body problem (CR3BP) are introduced. Next, A higher-fidelity ephemeris model that

integrates more bodies and captures the actual motion of the bodies is defined. The higher-

fidelity ephemeris model, when combined with the low-thrust engine model, is assumed to

be the true representation of the dynamics that govern the motion of the spacecraft.

2.1.1 N -Body Problem

Under the assumption that all bodies are centrobaric, gravitational forces are most gen-

erally described in terms of the N -Body Problem, where the system is comprised of N total

bodies, under their mutual gravitational influences. A schematic of the N -Body Problem

is represented in Figure  2.1 , where P1, P2, ..., PN denote the bodies and ¯̃R1,
¯̃R2, ...,

¯̃RN refer

to the position vectors that originate from an inertially fixed origin O to each respective

body. The unit vectors X̂, Ŷ , Ẑ represent the directions associated with the inertial frame.

Throughout the document, overbars indicate vectors, carets define vectors of unit magnitude,

and tilde refers to dimensional quantities. By applying Newton’s second law, the motion of

Figure 2.1. N -Body problem schematic
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any body in the system is described by a vector differential equation of the following form,

m̃i

Id2 ¯̃Ri

dt̃2
= −G̃

N∑
j=1, j6=i

m̃im̃j

R̃3
ji
R̄ji, (2.1)

where m̃i, m̃j are the masses of Pi, Pj for 1 ≤ i, j ≤ N , and G̃ is the universal gravitational

constant, Id2 ¯̃Ri
dt̃2

is the second derivative of the position vector ¯̃Ri with respect to the time, t̃.

The superscript I denotes that the vector is differentiated with respect to an inertial observer.

The vector ¯̃Rji represents the relative position vector from Pj to Pi, or ¯̃Rji = ¯̃Ri − ¯̃Rj. The

magnitude of the vector between Pi and Pj, or | ¯̃Rij|, is denoted by R̃ji. The minus sign on

the right side of the equation represents that the gravitational force is an attractive force

between any pair of bodies. While Equation ( 2.1 ) is general and written for any N bodies in

the system, it is known that a closed-form of solution does not exist for N ≥ 3 [ 49 ]. For such

cases, it is impossible to analytically express the motion for all N bodies and necessitates

numerical simulations to describe the motion.

2.1.2 Two-Body Problem (2BP)

When N = 2, Equation ( 2.1 ) results in two vector differential equations corresponding

to 1 ≤ i ≤ 2. This pair of vector equations are rearranged into the following vector equation,

governing the relative motion of P2 with respect to P1,

Id2 ¯̃R12

dt̃2
= −G̃m̃1 + m̃2

R̃3
12

¯̃R12, (2.2)

where ¯̃R12 = ¯̃R2 − ¯̃R1, or the relative position vector from the first body P1 to P2. The

vector differential equation ( 2.2 ) is integrated twice analytically, resulting in a closed-form

solution [ 49 ]. The resulting trajectory for ¯̃R12 is a conic arc, i.e., an ellipse, a parabola,

or a hyperbola. Analytically solvable, six integrals of motion uniquely define the motion

in the two-body problem: (1) semi-major axis, aK , (2) eccentricity, eK , (3) inclination, iK ,

(4) right ascension of the ascending node, ΩK , (5) argument of periapsis, ωK , and (6) true

anomaly, νK . These six parameters are also labelled Keplerian elements, or classical orbital

elements. In the current analysis, the Sun-2BP approximation is a reasonable approximation
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to generate an initial guess for the heliocentric leg that links the Earth and Mars. Similarly,

the Mars-2BP generates an initial guess for the spiral trajectories that connect the Martian

moons.

2.1.3 Circular Restricted Three-Body Problem (CR3BP)

Three-body problem, that is, when N = 3, offers a chance to incorporate another gravi-

tational force. To facilitate analysis, the circular restricted three-body problem (CR3BP) is

formulated by introducing the following assumptions,

1. The mass of the third body is assumed to be infinitesimally small compared to the

other two bodies. Or,

m̃3 << m̃1, m̃2,

where m̃1, m̃2, m̃3 correspond to the masses of bodies P1, P2, P3, respectively.

2. P1 and P2 move on circular orbits around their barycenter, denoted by B.

These assumptions alleviate the complexity associated with a general form of the three-

body problem by assigning simple motions to P1 and P2; the numerical simulations are only

required for the motion of P3. The gravitational bodies P1 and P2 are denoted the “primaries”,

where P1 is assumed to be the celestial body with a larger mass. From the first assumption,

P1 and P2 form a 2BP where the motion of P1 and P2 is represented as a conic. By the

second assumption, the conic becomes a circle, resulting in a more tractable motion. Figure

 2.2 demonstrates a general configuration for the CR3BP. The primaries P1 and P2 move in

circular orbits around the barycenter B. The inertial set of unit vectors X̂− Ŷ − Ẑ is defined

so that X̂, Ŷ span the orbital plane of P1 and P2, and Ẑ is the out-of-plane direction, parallel

to primary orbital angular momentum vector, defined as Ẑ = X̂ × Ŷ . A new rotating frame

is defined, such that x̂ is the direction originating from P1 and pointing P2, ẑ is identical to

Ẑ, and ŷ is defined as the cross product of ẑ and x̂. The same frame is obtained by rotating

the X̂ − Ŷ vectors by θ with respect to Ẑ. Note that P3 is allowed to move freely in space,

including the out-of-plane direction, ẑ.
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Figure 2.2. CR3BP schematic
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The third body, or P3, is often the spacecraft, of which the motion is described under the

gravitation influence from the primaries. It starts with a vector differential equation obtained

with Equation  2.1 ,

Id2 ¯̃R3

dt̃2
= −G̃ m̃1

R̃3
13

¯̃R13 − G̃
m̃2

R̃3
23

¯̃R23, (2.3)

where vectors ¯̃R23 = ¯̃R3− ¯̃R2,
¯̃R13 = ¯̃R3− ¯̃R1. It is known that when Equation ( 2.3 ) is written

in the rotating frame, it results in a form that allows more insight into the dynamics. First,

consider the position vector of the third body in the inertial frame,

¯̃R3 = X̃X̂ + Ỹ Ŷ + Z̃Ẑ, (2.4)

where X̃, Ỹ , Z̃ denote the dimensional position components in the inertial directions. From

Figure  2.2 , the following equations relate the unit vectors in both frames,

x̂ = cos(θ)X̂ + sin(θ)Ŷ (2.5)

ŷ = − sin(θ)X̂ + cos(θ)Ŷ (2.6)

ẑ = Ẑ, (2.7)

where the angle θ in Figure  2.2 denotes the orientation of the rotating frame unit vectors

relative to the inertial frame. Using this relationship, the position vector of the third body

in the rotating frame, ¯̃r3, is obtained as,

¯̃r3 = x̃x̂+ ỹŷ + z̃ẑ, (2.8)

where x̃, ỹ, z̃ denote the dimensional position components in each unit vector corresponding

to the rotating frame. They are related to the components in the inertial frame as follows,


x̃

ỹ

z̃

 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1




X̃

Ỹ

Z̃

 . (2.9)
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Since x̂ is defined as the direction from P1 to P2, position vectors ¯̃R1,
¯̃R2 are written in the

rotating frame as ¯̃r1, ¯̃r2, i.e.,

¯̃r1 = −r̃1x̂ (2.10)

¯̃r2 = r̃2x̂, (2.11)

where r̃1 = |¯̃r1| = | ¯̃R1|, r̃2 = |¯̃r2| = | ¯̃R2|. Note that the magnitudes of the position vectors,

or the distances, do not depend on the frames and are computed in the inertial or rotating

frames. Then the relative position vectors ¯̃r13, ¯̃r23 are represented as,

¯̃r13 = ¯̃r3 − ¯̃r1 = (x̃+ r̃1)x̂+ ỹŷ + z̃ẑ (2.12)

¯̃r23 = ¯̃r3 − ¯̃r2 = (x̃− r̃2)x̂+ ỹŷ + z̃ẑ. (2.13)

The equations of motion are rearranged by nondimensionalization for convenience. First, the

characteristic length l̃∗ is defined as the constant distance between the primaries,

l̃∗ = r̃1 + r̃2. (2.14)

All quantities that represent distances are nondimensioalized via division by l̃∗. For example,

for the position vector ¯̃r3,

r̄3 =
¯̃r3

l∗
= xx̂+ yŷ + zẑ, (2.15)

where r̄ without the tilde accent denotes a nondimensional quantity, and x = x̃/l̃∗, y =

ỹ/l̃∗, z = z̃/l̃∗. The characteristic mass m̃∗ is defined as the sum of the masses of P1 and P2,

m̃∗ = m̃1 + m̃2, (2.16)
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and µ is defined as the ratio of the mass of P2 to the characteristic mass,

µ = m̃2

m̃∗
(2.17)

1− µ = m̃1

m̃∗
. (2.18)

Since P1 and P2 form an isolated system by the assumption, and the origin is at the barycen-

ter, the center of mass of the system should be a zero vector, i.e.,

m̃1 ¯̃r1 + m̃2 ¯̃r2

m̃1 + m̃2
= −m̃1r̃1 + m̃2r̃2

m̃∗
x̂ = (−µr̃1 + (1− µ)r̃2)x̂ = 0x̂. (2.19)

By nondimensionalizing distances with l̃∗,

r1 = r̃1

l̃∗
= µ (2.20)

r2 = r̃2

l̃∗
= 1− µ, (2.21)

implying that the nondimensional distances of the primaries from the barycenter are repre-

sented only with the mass ratio µ. Next, the characteristic time t∗ is defined as,

t̃∗ =

√√√√ (l̃∗)3

G̃m̃∗
, (2.22)

and the nondimensional time is denoted t = t̃
t̃∗

. With the definitions of l̃∗, m̃∗, and t̃∗,

Equation ( 2.3 ) is nondimensionalized as,

Id2r̄3

dt2
= −1− µ

r3
13

r̄13 −
µ

r3
23
r̄23, (2.23)

where r̄13 = (x + µ)x̂ + yŷ + zẑ and r̄23 = (x − 1 + µ)x̂ + yŷ + zẑ. Although all the vector

quantities in Equation ( 2.23 ) are represented in the rotating frame, the second derivative
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term on the left is still differentiated in the inertial frame; it must be computed in the rotating

frame for consistency. The rotating velocity, or the first derivative, is represented as,

Rdr̄3

dτ
= ẋx̂+ ẏŷ + żẑ, (2.24)

where the dot indicates the differentiation with respect to the nondimensional time, t. For

instance, ẋ = dx
dt

. The rotating velocity is related to the inertial velocity by,

Idr̄3

dt
=

Rdr̄3

dt
+ I ω̄R × r̄3, (2.25)

where the nondimensional angular velocity vector I ω̄R is,

I ω̄R = nẑ, (2.26)

where n is the nondimensional mean motion represented as,

n =

√√√√G̃m̃∗

(l̃∗)3
· t̃∗ = 1. (2.27)

The physical meaning of n being 1 is that it requires 2π nondimensional time units for P1

and P2 to complete one revolution around the barycenter. Next, the inertial acceleration is

related to the rotating acceleration by,

Id2r̄3

dt2
=

Rd2r̄3

dt2
+ (I ω̄R ×

Rdr̄3

dt
) + I ω̄R × (

Rdr̄3

dt
+ I ω̄R × r̄3) (2.28)

= (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ, (2.29)
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where the double dot accent indicates the second derivative with respect to the nondimen-

sional time. For instance, ẍ = d2x
dt2

. Equations ( 2.23 ) and ( 2.29 ) are combined and expressed

separately for each component as,

ẍ− 2ẏ − x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

(2.30)

ÿ + 2ẋ− y = −(1− µ)y
r3

13
− µy

r3
23

(2.31)

z̈ = −(1− µ)z
r3

13
− µz

r3
23
. (2.32)

For a pseudo-potential function U∗ defined as,

U∗ = 1− µ
r13

+ µ

r23
+ x2 + y2

2 , (2.33)

the Equations ( 2.30 )-( 2.32 ) are rewritten using U∗ as,

ẍ− 2ẏ = ∂U∗

∂x
(2.34)

ÿ + 2ẋ = ∂U∗

∂y
(2.35)

z̈ = ∂U∗

∂z
. (2.36)

This new form of the equations of motion, written in the rotating frame, allows an integral

of motion to emerge. First perform a dot product between Equations ( 2.34 )-( 2.36 ) and the

rotational velocity vector, Rdr̄
dt

, to obtain,

ẍẋ− 2ẏẋ = ∂U∗

∂x
ẋ (2.37)

ÿẏ + 2ẋẏ = ∂U∗

∂y
ẏ (2.38)

z̈ż = ∂U∗

∂z
ż, (2.39)
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and adding three equations, a single equation emerges,

ẍẋ+ ÿẏ + z̈ż = ∂U∗

∂x
ẋ+ ∂U∗

∂y
ẏ + ∂U∗

∂z
ż. (2.40)

Since U∗ is not an explicit function of time, the right side of Equation ( 2.40 ) is equivalent

to U̇∗. Then, both sides of the equation are integrated with respect to the nondimensional

time t, to yield,

1
2(ẋ2 + ẏ2 + ż2) = U∗ − JC

2 , (2.41)

where the integration constant JC denotes the Jacobi constant. Solving for JC results in,

JC = 2U∗ − (ẋ2 + ẏ2 + ż2). (2.42)

The Jacobi constant is one of several benefits from rearranging Equation ( 2.3 ) into the

rotating frame. Although the number of the integration constants is drastically reduced

from six to one by incorporating another celestial body, the Jacobi constant still offers great

insight that is helpful for designing trajectories.

2.1.4 Higher-Fidelity Ephemeris Model

While the 2BP and the CR3BP do offer insights that are necessary for the initial mis-

sion design, the results must be validated in a higher-fidelity model. In this investigation,

this model is denoted the higher-fidelity ephemeris model or simply the ephemeris model.

In contrast to the lower-fidelity models, the ephemeris model incorporates any number of

celestial bodies. Also, it utilizes ephemerides for the celestial bodies to deliver the true posi-

tions and velocities of the celestial bodies. Consequently, the numerical simulations are only

required for the motion of the spacecraft. The SPICE toolkit, DE421.bsp, and mar097.bsp

from the Jet Propulsion Laboratory’s Navigation and Ancillary Information Facility [ 50 ] are

utilized to access ephemerides of the Sun, planets and the moons. To derive the equations

of motion for the ephemeris model, consider two separate vector differential equations from
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the N -Body problem. The first equation is written for the spacecraft, s/c, and the other one

is written for a user selected reference body, or i,

Id2 ¯̃Rs/c

dt̃2
= −G̃

N∑
j=1, j 6=s/c

m̃j

R̃3
js/c

¯̃Rjs/c (2.43)

Id2 ¯̃Ri

dt̃2
= −G̃

N∑
j=1, j 6=i

m̃j

R̃3
ji

¯̃Rji. (2.44)

Then, the relative vector differential equation for the spacecraft with respect to the reference

body is derived by subtracting Equation ( 2.44 ) from Equation ( 2.43 ),

Id2 ¯̃Ris/c

dt̃2
= −G̃m̃i + m̃s/c

R̃3
is/c

¯̃Ris/c + G̃
N∑

j=1,j 6=s/c,i
m̃j(

¯̃Rji

R̃3
ji
−

¯̃Rjs/c

R̃3
js/c

). (2.45)

The relative position vector of interest, ¯̃Ris/c, is obtained by integrating Equation ( 2.45 )

and the rest of the relative position vectors containing R̄ji, R̄js/c are retrieved from the

ephemerides. Note that mathematically, the choice of central body should not change the

true location of the spacecraft, or,

¯̃Ris/c = ¯̃Rij + ¯̃Rjs/c, (2.46)

must hold for any pair of i and j bodies during the numerical propagation. However, Equation

( 2.46 ) is not perfectly satisfied due to the numerical integration errors that depend on the

user-selected central body. Thus, it is required to employ a central body that results in

an accurate and fast computation. The common practice is to select the celestial body

that is closest to the location of the spacecraft. The dimensional quantities that appear in

Equation (  2.45 ) are nondimensionalized for consistent scaling and better numerical results.

The distance, time, and mass quantities are divided by the CR3BP characteristic quantities

l̃∗, t̃∗, and m̃∗ respectively, where two bodies with the most significant gravity forces are

selected to form the CR3BP characteristic quantities. For example, when the spacecraft is

near the Earth and begins its path to heliocentric space, the Sun-Earth CR3BP characteristic

quantities are utilized to nondimensionalize Equation ( 2.45 ).
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2.2 Coordinate Frames

The gravitational force models employ different coordinate frames. After listing all the

frames that are utilized in the current analysis, the transformation formulas between the

rotating and inertial frames are provided:

1. CR3BP inertial frame, represented as X̂ − Ŷ − Ẑ in Figure  2.2 

2. CR3BP rotating frame, represented as x̂− ŷ − ẑ in Figure  2.2 

3. J2000 Earth equator inertial frame (“J2000”): the first unit vector of this frame points

toward the equinox, which is either of the two positions on the sphere around the Earth,

at which the ecliptic plane intersects the Earth’s equatorial plane. By convention, the

equinox associated with the Sun’s ascending node is selected and simply denoted “the

equinox.” Next, the third unit vector is defined to be aligned with the Earth’s rotational

axis. The second unit vector is determined by the cross product between the third and

the first unit vectors, in that order. The unit vectors are represented as,

X̂J − ŶJ − ẐJ . (2.47)

Since the equinox direction, as well as the out-of-plane direction, of the equatorial

plane change over time, it is necessary to associate a reference epoch from which these

vectors are computed. Noon on January 1, 2000, or J2000, is commonly used as the

reference epoch. The detailed definitions of the directions of the unit vectors are found

in the work by Standish [  51 ].

4. J2000 Earth ecliptic inertial frame (“ECLIPJ2000”): the unit vectors for this frame are

represented as,

X̂EJ − ŶEJ − ẐEJ , (2.48)

where the subscripts EJ refers to the ecliptic J2000. These unit vectors are obtained

via rotating the J2000 unit vectors with respect to the equinox direction, X̂EJ = X̂J ,
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by the axial tilt (obliquitiy) of the Earth computed at J2000. The definition of the

obliquity utilized in the SPICE toolkit is listed in the work by Seidelmann [ 52 ].

5. J2000 Mars equatorial inertial frame (“MARSIAU”): the first unit vector is defined as

the direction from the center of Mars to the ascending node of the equatorial plane

of Mars with respect to the Earth’s equatorial plane, defined at J2000. The third unit

vector is the rotational axis of Mars, and the second unit vector completes the dextral

triad [  53 ]. The unit vectors are represented as,

X̂M − ŶM − ẐM , (2.49)

where the subcripts M refers to the fact that it is the MARSIAU frame.

Note that different origins are coupled with the listed sets of unit vectors to form different

frames. For the current investigation, the origin is labelled ahead of the unit vectors to denote

the coordinate frame. For the CR3BP frames, the barycenter is considered the default origin

and is not mentioned. For example, the following expressions appear throughout the current

work: Earth-Moon CR3BP rotating frame (the origin is at the barycenter of Earth-Moon),

Earth-centered CR3BP inertial frame and Mars-centered MARSIAU frame.

2.2.1 Transformation between CR3BP Frames

Recall that the CR3BP has two associated frames, the inertial frame and the rotating

frame. These frames are both based on the simplifying assumptions associated with the

CR3BP, and the “inertial” frame constructed with the assumptions is not fixed in the true

inertial frames such as J2000 frame or ECLIPJ2000 frame.
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The transformation between these two frames is obtained. First, for simplicity, new sym-

bols are introduced for the position and velocity vectors in the CR3BP frame,

r = r̄3 (2.50)

v =
Rdr̄3

dt
(2.51)

R = R̄3 (2.52)

V =
IdR̄3

dt
, (2.53)

where the first two vectors correspond to the rotating position and velocity vectors, and

the last two vectors denote the inertial position and velocity vectors. Note that the origin

of these vectors is the CR3BP barycenter. The transformation formula is produced via a

direction cosine matrix that relates the position as well as velocity vectors in two frames,

i.e.,

R
V

 = DCMR2I

r
v

 . (2.54)

Indeed, DCMR2I is a 6 by 6 matrix, and is more straightforward to partition into the

submatrices that correspond to the position and velocity. For the transformation of the

position vector, recall Equation ( 2.9 ),

R = CR2Ir, (2.55)

where the 3 by 3 matrix CR2I is computed as,

CR2I =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , (2.56)
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where θ is illustrated in Figure  2.2 . Note that this angle is computed with the nondimensional

time as well,

θ = t+ t0, (2.57)

where t0 corresponds to the initial angle between the two frames, and t corresponds to the

nondimensional time passed from t0. For the relationship between velocity vector, the same

matrix is used to convert the inertial velocity vector represented in both frames by,

V = CR2I

Idr̄

dt
, (2.58)

where the inertial velocity vector represented in the rotating frame is computed with Equa-

tion ( 2.25 ), i.e.,

Idr̄

dt
= v + ẑ × r. (2.59)

Then, Equation (  2.58 ) is rewritten as,

V =
[
ĊR2I CR2I

] r
v

 , (2.60)

where the 3 by 3 matrix ĊR2I is,

ĊR2I = d

dt
CR2I =


− sin(t+ t0) − cos(t+ t0) 0

cos(t+ t0) sin(t+ t0) 0

0 0 1

 . (2.61)

Finally, the direction cosine matrix that converts the rotating state to the inertial state is,

DCMR2I =

CR2I 03×3

ĊR2I CR2I

 . (2.62)
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Note that the same direction cosine matrix is utilized for transformation between CR3BP

frames regardless of the origin. For instance, consider the vectors defined with the first

primary as the origin, i.e.,

rP1 = r − r̄1 (2.63)

vP1 = v −
Rdr̄1

dt
(2.64)

RP1 = R− R̄1 (2.65)

VP1 = V −
IdR̄1

dt
, (2.66)

where r̄1 is a constant vector, i.e.,

r̄1 = µx̂, (2.67)

(2.68)

and consequently, Rdr̄1
dt

is a zero vector. The inertial position and velocity vectors with respect

to the first primary are obtained with the same DCMR2I , i.e.,

RP1

VP1

 = DCMR2I

rP1

vP1

 . (2.69)

Also note that the reverse transformation is readily available with the inverse of the direction

cosine matrix, i.e.,

rP1

vP1

 = DCM−1
R2I

RP1

VP1

 . (2.70)

Equations ( 2.69 ) and ( 2.70 ) summarize the mathematical relationship between CR3BP ro-

tating and inertial frames utilizing the first primary as the origin. Similar process is repeated

for the vectors with the second primary as the origin as well.
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2.2.2 Transformation between CR3BP Rotating Frame and Ephemeris Inertial
Frames

The ephemeris inertial frames refer to the frames based on the ephemerides, i.e., J2000,

ECLIPJ2000, and MARSIAU. The following explanation assumes J2000 as the ephemeris

inertial frame, but it is be applied to other ephemeris inertial frames as well. First,RJ , VJ are

introduced to denote the nondimensional inertial position and velocity vectors in the J2000

frame, respectively. The origin is at the barycenter of the two primaries that constitute the

CR3BP. The position and velocity vectors in the two frames, J2000 and CR3BP rotating

frame, are related via the following matrix equation,

RJ

VJ

 = DCMR2J

r
v

 . (2.71)

The goal is to compute the direction cosine matrix, DCMR2J .

The CR3BP assumes that the two primaries are in planar, circular motion around the

barycenter, not true in the actual ephemerides. Thus, the CR3BP rotating frame unit vector-

sare no longer obtained as a rotation around the out-of-plane direction, since this direction

is not constant. Instead, an instantaneous rotating frame is constructed based on the data

retrieved from the ephemerides. First, retrieve the inertial position and velocity of the second

primary with respect to the first primary, denoted by ¯̃R12 and ¯̃V12, respectively. Then, the

instantaneous rotating frame unit vectors are computed as,

x̂ins =
¯̃R12

R̃12
(2.72)

H̄ins =
¯̃R12 × ¯̃V12

| ¯̃R12 × ¯̃V12|
(2.73)

ẑins = H̄

|H̄|
(2.74)

ŷins = ẑins × x̂ins

|ẑins × x̂ins|
, (2.75)
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where H̄ins is the instantaneous angular momentum vector based on the ephemerides. Addi-

tionally, a pair of instantaneous characteristic quantities are defined,

l̃∗,ins = | ¯̃R12| (2.76)

t̃∗,ins =

√√√√ l̃3∗,ins
G̃(m̃1 + m̃2)

. (2.77)

Then, the relationship between the position vectors in the CR3BP rotating frame and J2000

inertial frame is established as,

RJ = l̃∗,ins

l̃∗
CR2Jr, (2.78)

where the 3 by 3 matrix CR2J is,

CR2J =
[
x̂ins ŷins ẑins

]
. (2.79)

The physical meaning of Equation ( 2.78 ) is that the position vector in the CR3BP rotating

frame is rotated into the J2000 frame with an instantaneous direction cosine matrix con-

structed from the ephemerides. The position vector in the CR3BP rotating frame is first

dimensionalized by multiplying via the instantaneous characteristic length, l̃∗,ins, and nondi-

mensionalized again using the CR3BP characterstic length, l̃∗ [ 54 ].

Next, the inertial velocity vector is obtained via differentiation of Equation (  2.78 ) with

respect to the dimensional time, t̃. This process results the following equation,

IdRJ

dt̃
= 1
l̃∗

(
dl̃∗,ins
dt̃

CR2Jr + l̃∗,ins
dCR2J

dt̃
r + l̃∗,insCR2J

Rdr

dt

)
(2.80)

= 1
l̃∗

(
ṼrCR2Jr + l̃∗,ins

dCR2J

dt̃
r + l̃∗,insCR2J

1
t̃∗,ins

v

)
, (2.81)

40



where Ṽr = dl̃∗,ins

dt̃
is the dimensional, instantaneous radial velocity of the second primary

with respect to the first primary, and is computed with the ephemerides as,

Vr =
¯̃R12 · ¯̃V12

|R̃12|
. (2.82)

And the second term of Equation ( 2.81 ) is computed with,

dCR2J

dt̃
= I ¯̃ωRins × CR2J , (2.83)

where I ¯̃ωRins is the instantaneous, dimensional angular velocity computed as,

I ¯̃ωRins = H̄ins

R̃12
. (2.84)

Finally, Equation ( 2.80 ) is multiplied by t̃∗ for nondimensionalization, i.e.,

VJ =
IdRJ

dt
= t̃∗

l̃∗

(
ṼrCR2Jr + l̃∗,ins(I ¯̃ωRins × CR2J)r + l̃∗,ins

t̃∗,ins
CR2Jv

)
, (2.85)

and all combined, the direction cosine matrix DCMR2J is computed as,

DCMR2J =


l̃∗,ins

l̃∗
CR2J 03×3

t̃∗
l̃∗

(
ṼrCR2J + l̃∗,ins(I ¯̃ωRins × CR2J)

)
l̃∗,ins·t̃∗
l̃∗·t̃∗,ins

CR2J

 . (2.86)

The most noticeable difference between Equation ( 2.62 ) and Equation ( 2.86 ) is the additional

term that depends on Vr, or the rate of change of the distance between the primaries in the

ephemerides. This term accommodates the “pulsating” distances between the primaries. Also

note that the CR2J matrix is constructed instantaneously based on the data retrieved from

the ephemerides.

2.3 Low-Thrust Engine Model

The gravitational models described thus far govern the ballistic motion of the spacecraft.

To achieve a desirable change in the trajectory and to navigate through space, the spacecraft
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is equipped with propulsion capabilities that deliver thrust. In the current investigation, the

thrust is assumed to be generated by a low-thrust engine. The acceleration imparted on the

spacecraft by a low-thrust engine is a function of a number of variables: spacecraft mass m̃,

thrust vector ¯̃T , the available power P̃ , and specific impulse Ĩsp. The tilde accent indicates

that these are dimensional quantities. Consistent with the gravitational forces, it is important

to introduce simplifying but reasonable assumptions that facilitate analysis.

Generally, the power governs the maximum performance of the low-thrust engine. Thus,

the maximum thrust as well as the specific impulse are written as functions of the available

power,

T̃max = f1(P̃) (2.87)

Ĩsp = f2(P̃), (2.88)

where f1, f2 are monotonically increasing functions of which the specific forms depend heavily

on the engine in use. In other words, the performance of the engine, measured as (1) maximum

thrust magnitude, T̃max, and (2) efficiency of the engine, Ĩsp, depend on the available power

P̃ . In the current investigation, it is assumed that the available power is constant, and thus,

T̃max = constant (2.89)

Ĩsp = constant. (2.90)

The acceleration from the low-thrust engine is described with the remaining variables that

do not depend on the power, thus, it is excluded from the engine model. Next, given a T̃max
value that is constant, it is assumed that the thrust magnitude is any value between 0 and

T̃max, i.e.,

0 ≤ T̃ ≤ T̃max, (2.91)
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where T̃ is the magnitude of the thrust, | ¯̃T |. The thrust vector is represented as,

¯̃T = T̃ ûT , (2.92)

where ûT is a three-dimensional unit vector defined as ¯̃T/T̃ . It is assumed that there is no

restriction on the thrusting direction vector ûT , or the spacecraft can thrust in any required

direction. Also note that the thrust vector is represented in any of the frames. For example,

if the CR3BP rotating frame is employed, the thrust vector is expressed as,

¯̃T = T̃xx̂+ T̃yŷ + T̃z ẑ, (2.93)

where T̃x, T̃y, T̃z correspond to the thrust component in the unit vectors for the CR3BP

rotating frame. The acceleration from the thrust, ¯̃aT , follows as,

¯̃aT =
¯̃T
m̃
, (2.94)

where the mass of the spacecraft, m̃, is not constant. The rate of change of m̃ is given by,

dm̃

dt̃
= T̃

Ĩsp · g̃0
, (2.95)

where g̃0 = 9.80665 × 10−3km/s2 is the standard gravitational acceleration at the Earth’s

surface.

Given the low-thrust engine acceleration model, Equations ( 2.94 ) and ( 2.95 ) are incorpo-

rated into the gravitational force models. Note that any of the previously defined model are

available, but the low-thrust terms must be nondimensionalized in a consistent way. Consider

the case where the low-thrust terms are coupled with the CR3BP gravitational force model.

The mass of the spacecraft is nondimensionlized as,

m = m̃

m̃0
, (2.96)
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where m̃0 corresponds to the initial mass of the spacecraft. The thrust and the specific

impulse are nondimensionlized as,

T = T̃ · (t̃∗)2

l̃∗ · m̃0
(2.97)

Isp = Ĩsp
t̃∗

(2.98)

T̄ = Txx̂+ Tyŷ + Tz ẑ, (2.99)

where T̃ is in kilo-newtons. Finally, the rate of change of m with respect to the nondimen-

sional time t = t̃/t̃∗ is,

dm

dt
= ṁ = T̃

Ĩsp · g̃0
· t̃∗
m̃0

= T

Isp · g0
, (2.100)

where g0 = g̃0 · (t̃∗)2/l̃∗. The nondimensional acceleration from the low-thrust engine is

computed as,

āT
m

= T̄

m
= Tx
m
x̂+ Ty

m
ŷ + Tz

m
ẑ. (2.101)

Then, the dynamics of the spacecraft are completely described by following set of differential

equations,

ẍ− 2ẏ = ∂U∗

∂x
+ Tx
m

(2.102)

ÿ + 2ẋ = ∂U∗

∂y
+ Ty
m

(2.103)

z̈ = ∂U∗

∂z
+ Tz
m

(2.104)

ṁ = T

Isp · g0
, (2.105)

where the first three equations now possess the extra acceleration terms from the low-thrust

engine, and the last equation corresponds to the rate of change for the spacecraft mass.
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From Equation ( 2.102 ) through ( 2.105 ), it is evident that the dynamics depend greatly

upon the thrust T , the mass of the spacecraft m, and the specific impulse Isp. And recall

that the maximum level of thrust is bounded by the engine specifications,

T ≤ Tmax. (2.106)

Consequently, the maximum acceleration from the low-thrust engine is also bounded as,

a ≤ aT,max, (2.107)

where aT,max is,

aT,max = Tmax
m

. (2.108)

In the dimensional units, it becomes,

ãT,max = T̃max
m̃

. (2.109)

Note that, as m̃ decreases over time by consuming the propellant, ãT,max increases. This

maximum acceleration value is tied to the control authority, i.e., the level to which the

spacecraft can maneuver itself under the gravitational forces and has a large influence on the

trajectories. Thus, the values for the low-thrust engine characteristics are carefully selected

for realistic analysis. The specifications of the spacecraft are selected to be consistent with

the values that appear in Table  1.2 . For different phases of the transfer, different values

for the initial mass, m̃0, are introduced. For example, the initial mass of the heliocentric

leg trajectory, 340.9kg is greater than the initial mass of the transfer trajectory between

the Martian moons, 229.3kg, as the spacecraft gradually consumes the propellant. For this

investigation, the model for the low-thrust engine assumes a maximum thrust level T̃max =

90mN , and a specific impulse such that Isp = 1733s, listed in Table  1.2 .
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2.4 Selecting a Lower-Fidelity Gravitational Force Model

The two-body problem and the CR3BP are utilized as the lower-fidelity gravitational

force models in this investigation. They incorporate the minimum number of bodies into the

model such that the dynamics can be exploited. This intermediate step is beneficial, as gen-

erating a trajectory in a higher-fidelity without an intelligent initial guess is computationally

demanding, or even impossible. However, the incorporated bodies in the lower-fidelty models

must still capture the core aspects of the true dynamics. Otherwise, the solutions obtained in

the lower-fidelity models will not lead to converged solutions in the higher-fidelity ephemeris

models. Indeed, it is necessary to include the bodies that exert significant accelerations to

the spacecraft.

As a spacecraft traverses through space, the bodies that have most impact on the space-

craft path change over time. For the currently investigated problem, the spacecraft travels

from the Earth to Mars. The bodies with the most dominant influence on the spacecraft

gradually change over time: the Earth at departure, and then the Sun in heliocentric space

and, finally, Mars at arrival. To accommodate this great variance in the dominant body, a

number of different lower-fidelity models are coupled across the phases. For the departure

phase, the Sun-Earth CR3BP is used as the lower-fidelity model to capture the influence

of both bodies. Then, in heliocentric space, the motion of the spacecraft is largely depen-

dent on the Sun’s gravity and thus the Sun-2BP is employed. The motion in the vicinity

of Mars is decomposed into multiple phases. First, Sun-Mars CR3BP approximates the mo-

tion of spacecraft upon the arrival in the Martian system. Then, Mars-2BP, coupled with

Mars-Deimos CR3BP and Mars-Phobos CR3BP, is employed to generate a trajectory that

connects both Martian moons.

This choice of lower-fidelity models is justified on two levels: (1) Approximate modeling

to survey and (2) an eventual validation in the higher-fidelity ephemeris model. Table  2.1 

includes the parameters for the celestial bodies with the most impact on the spacecraft path

from the Earth to Mars. The CR3BP characteristic quantities, l̃∗, and t̃∗, follow the work

done by Cox [  55 ], who took the average of the instantaneous characteristic quantities l̃∗,ins
retrieved from the ephemerides over 100 years to compute l̃∗ and t̃∗. For the approximate
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modeling, it is assumed that all the celestial bodies are in a common plane with a circular

motion around their respective parent body. Then, the gravitational accelerations from the

bodies are compared with the low-thrust engine acceleration to determine the bodies to be

considered, depending on the location of the spacecraft en route from the Earth to Mars. To

that end, the threshold distance d from each body is defined as,

G̃m̃

d2 = ãT,max
100 (2.110)

d =

√√√√100G̃m̃
ãT,max

, (2.111)

or where the gravitational acceleration from the body is equivalent to the 1/100 of the

maximum acceleration from the engine, based on the similar investigation completed by Cox

[ 55 ] and Muralidharan [  56 ]. If the spacecraft is closer to the body than d, it is assumed

that the body must be incorporated into the lower-fidelity model. Otherwise, it may be

neglected from the lower-fidelity model as a “perturbing body”, of which the acceleration

is easily counteracted by the thrust. The last column of Table  2.1 includes the threshold

distance values in km for the listed celestial bodies when ãT,max = 3.3333 × 10−7km/s2.

The areas within the threshold distance for the bodies are plotted in Figure  2.3 , where X̂

and Ŷ correspond to the arbitrary inertial unit vectors that span the orbital plane. Figure

 2.3(a) illustrates the threshold distance for the Sun, where it extends beyond Jupiter’s orbit

implying that, if possible, it is desirable to include the Sun’s gravity into the lower-fidelity

model. Indeed, the Sun is incorporated into the lower-fidelity models in this investigation

via the Sun-Planet CR3BPs or the Sun-2BP. The only exception is the transfer between the

Martian moons, where the Mars-Martian moon CR3BPs or the Mars-2BP are employed.

More background in the reasoning for ignoring the Sun’s gravity is explored later in the

detailed design of the moon tours. The threshold distances for Mars, the Earth and Mars

are illustrated in Figure  2.3(b) as the shaded regions surrounding the circular orbits of the

planets. For a transfer trajectory between the Earth and Mars, it is reasonable to disregard

Venus’s gravity unless a Venus flyby is employed. From this reasoning, Sun-Earth CR3BP

and Sun-Mars CR3BP are employed at the departure from the Earth and arrival at Mars,

respectively. Similarly, Figure  2.3(c) illustrates that Jupiter’s gravity can be neglected for
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the lower-fidelity models. Figure  2.3(d) displays a zoom-in view of the boxed area in Figure

 2.3(b) , where the Earth and Moon’s orbits are depicted. The Moon orbits around the Earth,

a body that that also orbits the Sun. As a result, the darker shade corresponds to the Moon’s

threshold distance while orbiting around the Earth. This figure implies that, in the Earth’s

vicinity, the Moon may also be incorporated into the lower-fidelity model. This investigation

avoids this additional complexity by focusing on the departure from the location outside

of the threshold distance of the Moon. Finally, Figure  2.3(e) depicts the Martian moons’

threshold distance in the Mars-centered inertial frame. Note that the shades are too thin to

be noticed, but it is still desirable to consider their gravitational forces within the threshold

distances. Thus, Mars-Deimos CR3BP and Mars-Phobos CR3BP are employed as the lower-

fidelity models in the vicinity of the moons.

After selecting a suitable lower-fidelity model through the approximate modeling and

survey, the results are ultimately validated in a higher-fidelity model. After introducing more

bodies into the model, and removing the simplifying assumptions of the lower-fidelity models,

the results are reconverged in the higher-fidelity model. This process justifies approximation

through the selected lower-fidelity models.

Table 2.1. Parameters of celestial bodies most relevant to the Earth to Mars trajectory
Bodies G̃m̃(km3/s2) 1 Parent 2 µ(n.d.) 3 l̃∗(km) 3 t̃∗(s) 3 d(km)

Sun 1.3271× 1011 - - - - 6.3098× 109

Earth 3.9860× 105 Sun 3.0035× 10−6 1.4960× 108 5.0226× 106 1.0935× 107

Moon 4.9028× 103 Earth 1.2151× 10−2 3.8475× 105 3.7570× 105 1.2128× 106

Mars 4.2828× 104 Sun 3.2272× 10−7 2.2794× 108 9.4466× 106 3.5845× 106

Phobos 7.0976× 10−5 Mars 1.6549× 10−8 9.3737× 103 4.3853× 103 4.6111× 102

Deimos 9.6156× 10−6 Mars 2.2451× 10−9 2.3457× 104 1.7360× 104 1.6984× 102

1 Gravitation parameter from the ephemerides file, DE421.bsp
2 The body around which each body orbits around
3 The quantities corresponding to the CR3BP constructed with the parent and each body
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(a) Threshold distance of the Sun (b) Threshold distances of Mars, Earth and Venus

(c) Threshold distances of Jupiter, Mars, Earth (d) Threshold distances of the Earth and the Moon

(e) Threshold distances of Phobos and Deimos

Figure 2.3. Visualization of the threshold distance d for the relevant celestial
bodies when ãT,max = 3.3333× 10−7km/s2

49



3. LOW-THRUST TRAJECTORY COMPUTATION AND

OPTIMIZATION VIA DIRECT COLLOCATION

Trajectory design is a process of producing a time history for the spacecraft state and control

that satisfy a set constraints. The constraints include, but are not limited to, the dynamical

constraints, i.e., the state history should satisfy the governing equations of motion, as well as

the boundary constraints that specify the initial and final states of the spacecraft. While the

trajectory design problem is already non-trivial, it is further complicated when a low-thrust

engine model is employed. For a low-thrust trajectory, the governing equations of motion

include the acceleration terms from the low-thrust engine force, increasing the dimension of

the problem. Now, the time history for the low-thrust control variables, or the magnitude

and direction of the low-thrust force must be obtained in addition to the history of the

spacecraft states.

While multiple strategies are available to design low-thrust trajectories, one particu-

lar technique, i.e., direct collocation, is employed in this investigation. Direct collocation

refers to an algorithm that combines collocation and direct optimization techniques. The

implementation of direct collocation can be realized in various forms as detailed in previous

investigations, including survey papers by Betts [ 57 ], Topputo and Zhang [  58 ], and Conway

[ 59 ]. The direct collocation algorithm utilized in this investigation is based on the one im-

plemented and extensively explained by Ozimek [ 24 ] and Pritchett [ 60 ], and the collocation

algorithm in this work is a summary of the work presented by Pritchett [ 60 ].

3.1 Collocation

The equations of motion describe the behavior of an object as it evolves within a dynam-

ical system. As differential equations, if they cannot be integrated analytically, the equations

of motion are propagated using a numerical integration scheme. For a spacecraft under the

influence of both gravitational bodies and low-thrust engine force, no analytical solutions

exist even with the simplest model, thus, a numerical method is required.
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First, the general forms for the state vector and the corresponding equations of motion

are defined. Consider a state vector of a system at a certain time, t = tn, given as,

x = x(t = tn), (3.1)

where x denotes the state vector with dimensions N × 1, i.e., the state consists of N com-

ponents, and t denotes the scalar time. Then, the dynamics of the system are represented

by a set of differential equations f that satisfy,

Idx

dt
= f(t,x), (3.2)

where Idx
dt

denotes the time derivative of the state vector. Note that it is assumed that f is

a function only of the time and the state for simplicity, but can be generalized into other

functions that have additional parameters as the input. Then, a numerical integration scheme

is used to produce the state vector at a next time step, x(tn + ∆t), where ∆t is the time

step of the integration. Equation ( 3.2 ) fully defines the equations of motion that describe

the behavior of an object within a dynamical system.

A numerical integration scheme is applied to Equation ( 3.2 ), where the scheme generally

classified into explicit and implicit methods [ 61 ]. For an explicit method,

x(tn + ∆t) = F(t,x(tn)), (3.3)

where F represents an explicit scheme that is obtained via numerically integrating the

equations of motion, f . Note that for an explicit method, the state at the next time step is

a function only of the time t and the state at the current time, x(tn), thus, Equation ( 3.3 )

is an explicit equation with respect to x(tn + ∆t). In contrast, for an implicit method, the

state vector corresponding to the next time step is evaluated via,

G(t,x(tn),x(tn + ∆t)) = 0, (3.4)
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where G denotes an implicit scheme. As G is a function of time and the states at both tn and

tn + ∆t, an iterative method is employed to search for x(tn + ∆t) that satisfies Equation

( 3.4 ) given the current state, x(tn).

Collocation is one particular approach to implement the implicit integration method. To

employ a collocation algorithm, the entire integration time interval, [tI , tF ], is divided into

multiple segments along a set of boundary points Π,

Π : tI = t1 < t2 < · · · < ts < ts+1 = tF , (3.5)

where Π is also denoted a mesh. A segment is comprised of two consecutive boundary points

along a mesh, where the i-th segment is defined with the time interval Ti,

Ti = [ti, ti+1], (1 ≤ i ≤ s), (3.6)

where s segments result from s + 1 boundary points. Then, the time history of the state

corresponding to an object within a system over each segment is approximated as a set of

polynomial functions of time with degree n, pi(t), for the i-th segment over Ti. Note that

pi(t) comprises N different polynomial functions of degree n, constructed for each of N

components of the state vector x. The coefficients of the polynomials can be different for

each segment, so pi(t) 6= pk(t) for i 6= k in general. To force these polynomials to satisfy

the equations of motion and to accurately describe the true time history of the state, the

implicit equation (Equation (  3.4 ), G) must be satisfied over all segments. Constructing G

for the i-th segment under a collocation algorithm starts by selecting n collocation nodes, or

collocation points, ti,1, ti,2, ...ti,n−1, ti,n that satisfy,

ti ≤ ti,1 < ti,2 < ... < ti,n−1 < ti,n ≤ ti+1 (3.7)

Next, at each collocation node, the equations of motion are enforced to the polynomial by,

dpi(ti,j)
dt

= f(ti,j,p(ti,j)), (1 ≤ j ≤ n), (3.8)
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where the left side of the equation represents the dynamics approximated by the polynomial

pi(t), and the right side corresponds to the derivatives obtained by substituting pi(t) into

the equations of motion, f . The name collocation arises here, as the approximated and the

actual dynamics are collocated at the collocation nodes. Equation (  3.8 ) corresponds to the

implicit equation G, and it is obtained for all existing segments over the mesh. Then an

iterative scheme is employed to satisfy Equation (  3.4 ), where the exact form of the equation

varies depending on the specific scheme for the collocation algorithm that decides the degree

n as well as the location of the collocation nodes.

3.1.1 Seventh Order Legendre-Gauss-Lobatto Scheme

While an arbitrarily high order of integration can be achieved by selecting a polynomial

with a higher degree, the accuracy of the integration also depends on the location of the

collocation nodes. The locations of the nodes that maximize the accuracy are known to be

the roots of the Legendre polynomial, denoted as Pn(t) for the n-th order polynomial, defined

over the time interval Ti. This node placing scheme is called the Legendre-Gauss scheme,

and the resulting accuracy of the integration is 2n. While this level of accuracy bounds the

theoretically highest accuracy achieved by using n-th degree polynomial approximation [ 61 ],

it is typically associated with implementation challenges as the roots of Pn(t) do not include

the end points of the time interval, ti and ti+1. To ease the implementation process, variants

of Legendre-Gauss scheme were developed. In this investigation, the Legendre-Gauss-Lobatto

(LGL) scheme with 7th order polynomials is considered and explained.

The n-th degree LGL scheme places (n − 2) nodes at the roots of Ṗn−1(t), where the

dot accent indicates the derivative of the Legendre polynomial with respect to t, and two

additional nodes are placed at the both end points. This node placement results in the (2n−

2)-th order of accuracy. For example, the 7-th order LGL scheme is a 12-th order integration

method. Consider a i-th segment along the mesh with Ti = [ti, ti+1] as the boundary points.

It is advantageous to nondimensionalize the time interval of each segment as,

τ(t) = 2
ti+1 − ti

(t− ti)− 1, (ti ≤ t ≤ ti+1) (3.9)
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where the nondimensional time τ is mapped from t over Ti such that τ ranges between

[− 1, 1]. The derivative with respect to τ is computed as,

d

dτ
= d

dt

ti+1 − ti
2 , (3.10)

and the derivatives of the states with respect to this nondimensional time becomes,

x′ = dx

dτ
= dx

dt

ti+1 − ti
2 = f(t,x)ti+1 − ti

2 , (3.11)

where the prime superscript indicates the differentiation with respect to τ . The introduction

of τ helps the implementation of LGL scheme by enabling a consistent time scaling across

all segments, and it also lets a separate formulation of the collocation algorithm apart from

the length of the integration. Next, assuming a 7-th order LGL scheme, 7 collocation nodes

are placed, denoted τ1, τ2, ..., τ7. The first and last nodes are placed at the end points, or,

τ1 = −1, τ7 = 1. The 5 other nodes are placed at the roots of Ṗ6(τ), where the Legendre

equation is constructed over −1 ≤ τ ≤ 1. The locations of the nodes are fixed regardless

of the length of the segment, and thus are computed a priori and stored. Recall that the

implicit integration via collocation requires the 7-th order polynomial to satisfy Equation

( 3.8 ) at all the 7 collocation nodes. For a scheme with an odd-numbered order, this process

is described as follows:

1. The states are freely selected for odd-numbered nodes, or τk, for k = 1, 3, 5, 7, as xi,k.

2. The derivatives of the states for odd-numbered nodes are computed from the equations

of the motion as x′i,k,

x′i,k = f(ti,k,xi,k)
ti+1 − ti

2 . (3.12)

3. The coefficients of a set of 7-th degree polynomials are constructed such that they sat-

isfy p(τk) = xi,k, p(τk)′ = x′i,k, where k = 1, 3, 5, 7. Thus, the constructed polynomials

automatically satisfy Equation ( 3.8 ) at the odd-numbered nodes.
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4. At the even-numbered nodes, Equation ( 3.8 ) is enforced. As the states at the even-

numbered nodes depend on the odd-numbered nodes, an iterative algorithm is utilized

to find states of the odd-numbered nodes that satisfy Equation ( 3.8 ) at the even-

numbered nodes.

Recall that when x is a N -dimensional vector, pi is also a set of N polynomials, i.e., poly-

nomials are separately constructed for each component of x. Then, the coefficients of the pi

form a matrix and the above steps involve matrix algebra. Utilizing matrix representation,

pi(τ) is computed as,

pi(τ) = Ci

[
1 τ τ 2 · · · τ 7

]T
, (3.13)

where Ci is a matrix of the polynomial coefficients with dimensions N × 8. The rows of Ci

correspond to different components of the state vector x, and the columns of Ci correspond

to the coefficients of the τ terms with different orders. Each component of Ci is determined

in the way that pi(τ) satisfies,

pi(τk) = xi,k (3.14)

p′i(τk) = x′i,k, (3.15)

for the odd-numbered nodes, k = 1, 3, 5, 7. Then, p′i(τ) is written as,

p′i(τ) = Ci

[
0 1 2τ · · · 7τ 6

]T
, (3.16)

since Ci does not depend on τ . Next, Equations ( 3.14 ) and (  3.15 ) are rewritten by the matrix

representation,

[
xi,1 xi,3 xi,5 xi,7 ẋi,1 ẋi,3 ẋi,5 ẋi,7

]
= Ci

[
τ τ ′

]
, (3.17)
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where τ and τ ′ denote the matrices,

τ =



1 1 1 1

τ1 τ3 τ5 τ7

τ 2
1 τ 2

3 τ 2
5 τ 2

7
... ... ... ...

τ 7
1 τ 7

3 τ 7
5 τ 7

7


(3.18)

τ ′ =



0 0 0 0

1 1 1 1

2τ1 2τ3 2τ5 2τ7
... ... ... ...

7τ 6
1 7τ 6

3 7τ 6
5 7τ 6

7


, (3.19)

where the dimensions of the matrices are 8× 4. Concatenating τ and τ ′, a single matrix of

dimensions 8× 8, A is obtained,

A =
[
τ τ ′

]
. (3.20)

Note that A is a constant matrix across all segments, as its components only depend on

τ1, τ3, τ5, τ7 that are fixed. The coefficient matrix Ci is then computed as,

Ci = XiA
−1, (3.21)

where Xi is,

Xi =
[
xi,1 xi,3 xi,5 xi,7 ẋi,1 ẋi,3 ẋi,5 ẋi,7

]
, (3.22)
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and depends on the choice of xi,1,xi,3,xi,5,xi,7. Next, Equation ( 3.8 ) is enforced at the

even-numbered nodes, τ2, τ4, τ6. To that end, two additional matrices, B and D, are first

constructed as,

B =



1 1 1

τ2 τ4 τ6

τ 2
2 τ 2

4 τ 2
6

... ... ...

τ 7
2 τ 7

4 τ 7
6


(3.23)

D =



0 0 0

1 1 1

2τ2 2τ4 2τ6
... ... ...

7τ 6
2 7τ 6

4 7τ 6
6


, (3.24)

where the dimensions of the matrices are 8×3, and the components are constant. The states

at the even-numbered nodes are evaluated by the following matrix multiplication,

[
xi,2 xi,4 xi,6

]
= CiB, (3.25)

where xi,2,xi,4, and xi,6 correspond to the states at the even-numbered nodes. Then, Equation

( 3.8 ) is identical to the following equation,

CiD =
[
x′i,2 x′i,4 x′i,6

]
, (3.26)

where the left side corresponds to the derivatives of the polynomials, p′i(τ), at the even-

numbered nodes, and the right side corresponds to the derivatives obtained with the equa-

tions of motion, f , at these nodes. Note that whether the equation is satisfied depends on
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the states at the odd-numbered nodes, xi,1,xi,3,xi,5,xi,7. The defect constraints are defined

as the difference between the left and right sides of the Equation ( 3.26 ),

∆i = CiD −
[
ẋi,2 ẋi,4 ẋi,6

]
. (3.27)

Under this formulation, the implicit integration is conducted by iteratively solving for a set

of odd-numbered states, i.e., xi,1,xi,3,xi,5, and xi,7, that result in zero ∆i for all segments,

i.e., 1 ≤ i ≤ s.

3.1.2 Mesh Refinement

For explicit integration methods, the error of the integration is controlled below a user-

defined tolerance by using a smaller time step, ∆t in Equation ( 3.3 ). For implicit methods,

the error control is conducted via a mesh refinement technique, where the locations of the

boundary points are adjusted such that the error over each segment is below a set tolerance

level. There exist multiple mesh refinement schemes as explained by [ 60 ], and a scheme

termed Control with Explicit Propagation (CEP), proposed by Grebow and Pavlak [ 62 ], is

employed here. This method utilizes the states resulting from an explicit integration method

as the “true” values, from which the error of the collocation is computed.

The error control strategy consists of two different actions: (1) adding the segment and

(2) removing the segment. First, the desired tolerance is denoted tol, and recall that the

boundary points are ti, ti+1 for the i-th segment. Then given the initial state at ti as x(ti),

the “true” state at ti+1 is computed with the explicit method,

x(ti+1) = F(t,x(ti)), (3.28)

by Equation ( 3.3 ). The state at ti+1 from the collocation algorithm, xcol(ti+1), satisfies

G(t,x(ti),xcol(ti+1)) = 0, (3.29)
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following Equation ( 3.4 ). The error of the collocation algorithm over the i-th segment is

defined as,

ε = |xcol(ti+1)− x(ti+1)|, (3.30)

where |xcol(ti+1) − x(ti+1)| is the L2 norm of the difference of states computed from the

explicit method and the collocation algorithm. If the error ε is larger than tol, an extra

boundary point is inserted at the middle of the i-th segment, i.e.,

tadd = ti + ti+1

2 . (3.31)

Then, the i-th segment is defined over the new time interval Tadd,i = [ti, tadd] and the i + 1-th

segment is defined over Tadd,i+1 = [tadd, ti+1], increasing the number of the total segments by

1. This process is repeated for all segments, 1 ≤ i ≤ s.

On the other hand, it may be desired to decrease the number of segments for smaller size

of the problem and efficient computation. Consider a time interval over the i-th segment as

well as the i + 1-th segment, [ti, ti+2]. The “true” state at ti+2 is obtained with the state at

ti as,

x(ti+2) = F(t,F(t,x(ti))), (3.32)

where the explicit integration is conducted over Ti as well as Ti+1. Then, the process is

repeated with the collocation algorithm to find xcol(ti+2) that satisfies,

G(t,x(ti),xcol(ti+1)) = 0 (3.33)

G(t,xcol(ti+1),xcol(ti+2)) = 0. (3.34)

The error of the collocation algorithm is defined as,

εr = |xcol(ti+2)− x(ti+2)|, (3.35)
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where subscript r indicates the error corresponds to the removing step. If the error εr is

smaller than an user-selected tolerance level, tolr, the intermediate boundary point ti+1 is

deleted, since the segments are considered to be too dense. Then the new i-th segment

becomes Tremove,i = [ti, ti+2] and the number of segments decreases by 1. The process is

repeated for all i-th segment for 1 ≤ i ≤ s− 1. While the user can define any values for tol

and tolr, 1e− 12 and 1e− 15 have been selected in the current investigation.

The refinement process starts by removing the segments until εr > tolr. Then, the re-

finement process is repeated multiple times to ensure that the mesh satisfied ε < tol. Note

that the final solution may have segments where εr > tolr, but having more segments than

necessary do not degrade the accuracy of the solution and further removal is not needed.

3.2 Newton-Raphson Method

A Newton-Raphson method is a numerical scheme that determines a root of an equation

or a system of equations. For the collocation algorithm, Newton-Raphson method is utilized

to determine the feasible solution of states and control that satisfy Equation ( 3.4 ) along with

additional boundary and path constraints. The goal of Newton-Raphson method is to find a

design vector X, composed of nd design variables, that satisfies a constraint vector F that

consists of nc scalar constraints,

F (X∗) = 0, (3.36)

whereX = X∗ denotes the root of the given constraint vector. WhenX∗ cannot be found via

an analytical relationship, it requires an iterative process based on a Taylor series expansion

neglecting higher order terms around the root, X∗, of Equation ( 3.36 ),

F (X∗ + ∆X) ≈ F (X∗) +DF (X)∆X = DF∆X, (3.37)

60



where ∆X is the deviation from X∗ and DF (X) is the Jacobian of F with respect to X.

Assuming that at the i-th step of the iteration, X = Xi does not satisfy Equation (  3.36 )

but is away from X∗ by a small deviation ∆X, i.e.,

Xi = X∗ + ∆X, (3.38)

Equation ( 3.37 ) is re-written as,

F (Xi) = DF (Xi)∆Xapprox, (3.39)

where ∆Xapprox denotes the approximate deviation from the root X∗, since Equation (  3.37 )

neglects higher-order terms. Solving Equation ( 3.39 ) for ∆Xapprox, Xi+1 is computed as,

Xi+1 = Xi −∆Xapprox ≈X∗. (3.40)

To compute Xapprox, the size of nd and nc should be compared, where the following two cases

are considered.

1. For nd = nc, or when the number of design variables is same as the number of con-

straints, Xapprox is uniquely determined via the inversion of the Jacobian,

∆Xapprox = (DF (Xi))−1F (Xi). (3.41)

The matrix DF (Xi) must be a non-singular matrix to allow the inverse matrix to

exist, which is equivalent to having constraints that are linearly independently at a

given Xi.

2. For nd > nc, or when the number of design variables is larger than the number of

constraints, an infinite number of ∆Xapprox exist that satisfy Equation ( 3.39 ). While
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multiple methods can be employed to select a specific solution among infinite choices,

the minimum-norm solution is commonly utilized, i.e.,

Minimize |∆Xapprox|2 (3.42)

Subject to F (Xi) = DF (Xi)∆Xapprox, (3.43)

where |∆Xapprox|2 = ∆XT
approx∆Xapprox, or the square of the norm of ∆Xapprox. This

formulation represents the assumption that it is desirable to locate X∗ that is closest

to the given Xi. An augmented cost function is generated using a vector of Lagrangian

multipliers, λ,

G = ∆XT
approx∆Xapprox + λ(F (Xi)−DF (Xi)∆Xapprox). (3.44)

Then, the minimum-norm solution is found when the following equations are satisfied,

(
∂G

∂(∆Xapprox)

)T
= 2∆Xapprox −DF (Xi)Tλ = 0 (3.45)

(
∂G

∂λ

)T
= F (Xi)−DF (Xi)∆Xapprox = 0, (3.46)

i.e., the first derivatives of the augmented cost function must be zero vectors with

respect to both ∆Xapprox and λ to be a stationary point. The combination of λ and

∆Xapprox that satisfy the necessary conditions are,

λ = 2
(
DF (Xi)(DF (Xi))T

)−1
F (Xi) (3.47)

∆Xapprox = (DF (Xi))T
(
DF (Xi)(DF (Xi))T

)−1
F (Xi), (3.48)

where Equation (  3.48 ) corresponds to the minimum-norm solution and is utilized.

3. For nd > nc, ∆Xapprox that satisfies Equation ( 3.39 ) does not exist in general. Although

an optimization problem can be formulated to select ∆Xapprox that is most desirable,

it is not explained in detail as this case does not correspond to the design problem

examined in the current investigation.
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3.3 Direct Optimization

When generating low-thrust transfer trajectories, the goal is often to obtain trajectories

that minimize a function of costs represented as the propellant consumption and the time of

flight. This optimization problem is categorized as a special case of an optimal control problem

[ 63 ], that is mathematically described with (1) the equations of motion, (2) constraints, and

(3) the cost function. The equations of motion refer to a given set of N first-order differential

equations that govern the dynamics of the state vector,

ẋ = f(t,x,u,ρ), (tI ≤ t ≤ tF ) (3.49)

where tI and tF denote the initial and final time of the problem, and ρ denotes a additional set

of parameters that are constant across time. The constraints are categorized into boundary

constraints, path constraints, and the bounds for the states and the control. The boundary

constraints refer to the initial and final conditions, described as,

ΨI,l ≤ ΨI [tI ,x(tI),u(tI),ρ] ≤ ΨI,u (3.50)

ΨF,l ≤ ΨI [tF ,x(tF ),u(tF ),ρ] ≤ ΨF,u, (3.51)

where Ψ refers to a vector bounds with subscripts I, F denoting the initial and final time

respectively, and subscripts l, u denoting the lower and upper bounds, respectively. Equality

constraints are achieved by setting the upper bounds equal to the lower bounds. Additionally,

there exist path constraints, or the constraints that must be satisfied at the inside of the

initial and final times,

gl ≤ g[t,x(t),u(t),ρ] ≤ gu. (3.52)

And bounds may exist for the state and control as,

xl ≤ x ≤ xu (3.53)

ul ≤ u ≤ uu, (3.54)
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completing the definitions of constraints. Finally, a scalar cost is defined as,

Jo = φ(tF ,x(tF ),u(tF ),ρ) +
∫ tF

tI
L[tF ,x(tF ),u(tF ),ρ)dt, (3.55)

where φ and L correspond to the terminal and the path costs, respectively. Solving the opti-

mization problem is equivalent to finding x(t), u(t) and ρ that minimize J while satisfying

all the constraints.

Multiple strategies exist to solve optimization problems for continuous time systems, and

they are generally categorized into three kinds [  59 ]: direct, indirect and global optimization

methods via evoluationary algorithms (EAs). As a direct optimization method has been em-

ployed in the current investigation, detailed explanation of the method is provided, followed

by the comparisons with the other methods. Note that there exist methods that cannot be

strictly classified into the three categories. Hybrid methods, for example, combine more than

one optimization methods.

A direct optimization method discretizes the state and control method, and the problem

is represented as a finite set of variables [ 57 ]. Then, this finite-dimensional problem is solved

via a parameter optimization method, also known as the nonlinear programming (NLP). The

goal of a NLP problem is to locate a design vector X of dimensions nd × 1 that minimizes

a scalar objective function,

Jo = Jo(X), (3.56)

subject to nm constraints,

cL ≤ c(X) ≤ cU , (3.57)

and bounds,

XL ≤X ≤XU . (3.58)
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The subscripts L,U refer to the lower and upper constraints and bounds. The constraint

functions c(X) taks an arbitrary form, hence labeled NLP for the general, nonlinear con-

straints. Note that the dynamics for the problem is converted into the algebraic constraints,

so the dynamics is not explicitly present within the NLP. Finding X that minimizes the ob-

jective function while satisfying all constraints as well as bounds is achieved via the Karush-

Kuhn-Tucker (KKT) condition. A specific case, where cL = cU and bounds do not exist, is

examined to derive the KKT condition. First consider an augmented cost function,

Lo = Jo + λTo c(X), (3.59)

where λo is a nm × 1 Lagrange multiplier vector. Then for a set of vectors (X∗,λ∗o) that

minimize L, the necessary conditions are derived as,

∂Lo
∂X

= 0 (3.60)
∂Lo
∂λo

= 0. (3.61)

Since the roots are needed for Equations ( 3.60 ) and ( 3.61 ), a Newton-Raphson method can

be applied to iteratively search for a combination of X and λo. Equations ( 3.60 ) and ( 3.61 )

represent the KKT conditions, although the exact forms of the equation vary depending on

the existence of the inequality constraints and the bounds on X. A rich number of software

or functions, both open-source and proprietary, exist to solve the NLP problem, including

SNOPT [ 40 ], MATLAB’s fmincon [ 64 ], IPOPT [ 65 ] and GPOPS-II [ 66 ]. The open-source

software, IPOPT [ 65 ], has been utilized throughout the current investigation to generate

optimal trajectories.

3.3.1 Comparison with Indirect Optimization Methods

Indirect optimization method utilizes the calculus of variations, and the necessary con-

ditions of optimality are satisfied by applying Euler-Lagrange theorem. The optimization

problem is recast into a two-point boundary value problem (TPBVP) where the costate

variables are found. The indirect method results in rapid convergence given a good starting
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guess for the initial costates, and an accurate solution of the optimal control can be located,

as it is an outcome of the analytical optimal condition acquired via the Euler-Lagrange the-

orem. However, it is associated with several disadvantages compared to the direct method.

The convergence radius is typically small, or it is challenging to find the initial guess that re-

sults in a solution TPBVP [ 57 ]. On the other hand, the direct optimization methods tend to

be more robust to poor initial guesses, but have a larger dimension of parameters compared

to the indirect method.

3.3.2 Comparison with Evolutionary Algorithms

Evolutionary algorithms (EA’s) correspond to the more recent development in the op-

timization field, and utilize mechanisms that are inspired by the biological evolution [ 59 ].

Some of the best known methods of EA’s include genetic algorithms, Particle Swarm Opti-

mizer and ant colony optimization. The conventional indirect and direct methods rely on the

necessary condition of the optimality, i.e., E-L theorem for the indirect method and KKT

conditions for the direct method. These methods all require gradient-based methods includ-

ing the Newton-Raphson method and NLP solvers. On the contrary, EA’s in general do not

require gradient-based methods as well as an initial guess to start the iteration. This feature

is advantageous, as providing an initial guess that is close enough to a local minimum tends

to be the most challenging step in utilizing the gradient-based methods, both for the indirect

and direct methods. Additionally , EA’s are capable of converging to the global minima of

the solutions that are not readily accessible with the gradient-based methods. Despite these

merits, EA’s typically require significantly more computational resources and time compared

to the gradient-based methods.
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3.4 Low-Thrust Trajectory Design with Direct Collocation

The direct collocation algorithm is applied to the low-thrust trajectory design problem.

Since the gravitational force models have second derivative terms, it is necessary to define

the state vector x as,

x =
[
x y z ẋ ẏ ż m

]T
, (3.62)

corresponding to the position, velocity and mass in the CR3BP rotating frame in the nondi-

mensional units. Note that the state vector can be alternatively represented in other frames

too. For example, representation in the J2000 frame results in,

xJ =
[
XJ YJ ZJ ẊJ ẎJ ẎJ m

]T
, (3.63)

where XJ and ẊJ denote the position and inertial velocity in the J2000 frame, nondimen-

sionlized with the user-selected CR3BP characteristic quantities. While the implemented

direct collocation algorithm is capable of handling states represented in different frames, x

is assumed to be associated with the CR3BP rotating frame for the explanation here. Next,

the control vector, u, is defined as,

u =
[
T ux uy uz

]T
, (3.64)

where T corresponds to the nondimensional low-thrust engine force, and ux, uy, uz are the

components of the thrust direction unit vector, i.e.,

ûT = uxx̂+ uyŷ + uz ẑ. (3.65)

Similar to the state, the control vector is represented in different frames as well. For example,

uJ =
[
T uXJ

uYJ
uZJ

]T
, (3.66)
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where uXJ
corresponds to the thrust direction component in the X̂J direction of the J2000

frame. Then, the dynamics is fully represented by the following first order vector differential

equation,

ẋ = f(x,u,ρ), (3.67)

where f corresponds to the first order vector differential equations. The vector ρ corresponds

to the constant parameters that includes the specific impulse of the engine, Isp and the

standard gravitational parameter, g0. Note that f is not a function of time, since the CR3BP

is a time-independent system. Writing out each component of Equation ( 3.67 ),

ẋ = f(x,u,ρ) =



ẋ

ẏ

ż

2ẏ + ∂U∗

∂x
+ Tux

m

−2ẋ+ ∂U∗

∂y
+ Tuy

m

∂U∗

∂z
+ Tuz

m

T
Isp·g0



, (3.68)

where the rows 4-7 are identical to Equations ( 2.102 )-( 2.105 ). With the definitions of the

state and control vectors, as well as the first order equations of motion, the direct collocation

technique is applied.

Applying the direct collocation technique to the low-thrust trajectory design problem

typically requires three steps, illustrated in Figure  3.1 . As the iterative process of direct

collocation algorithm resorts on gradient based methods, it often fails to converge if the

starting point of the algorithm is not near a local basin. The optimization process often

requires significant computation time, and providing a “good” starting point is the key

to obtaining an optimized trajectory. This challenge is overcome by the extra steps prior

to the optimization. First, an initial guess is generated that need not satisfy all the design

constraints. The initial guess guides the corrections process, through which the it is converged

to a feasible trajectory. A feasible trajectory refers to a solution that satisfies all the design
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constraints. The existence of a feasible trajectory alludes to the existence of a local basin

as well, at the bottom of which resides an optimal trajectory. Since the corrections process

typically take less time compared to the optimization process, obtaining a feasible trajectory

first prevents the waste of time searching for a local basin that may not exist. Note that

when ultimately validating a trajectory in a higher-fidelity ephemeris model, the process

in Figure  3.1 is repeated. It is first employed for a lower-fidelity dynamics model, and the

resulting optimized trajectory is utilized as an initial guess in a higher-fidelity model and

then is converged to an optimal trajectory again.

Feasible Trajectory Initial Guess 

Corrections

Optimization

Optimized Trajectory

Figure 3.1. Process of low-thrust trajectory design

3.4.1 Design Variable Vector Formulation

Recall that a Newton-Raphson method as well as a NLP algorithm requires a nd × 1

design vector X that determines nd scalar design variables. For the low-thrust trajectory

design problem, the design variables are categorized into the state, control, slack variables,

as well as the optional, additional variables. First, the states at the variable nodes of each

segment form Xs,

Xs =
[
xT1,1 xT1,3 xT1,5 xT1,7 · · · xTs,1 xTs,3 xTs,5 xTs,7

]T
, (3.69)

where the subscripts i, k pair refers to the states belonging to i-th segment where 1 ≤ i ≤ s,

and k is the index of the variable nodes. Similarly, the control of each segment form Xu,

Xu =
[
uT1 uT2 · · · uTs

]T
, (3.70)
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where ui corresponds to the control vector at each segment,

ui =
[
Ti ux,i uy,i uz,i

]T
. (3.71)

Note that the components of the control vector are constant over each segment; the thrust

and the direction do not change within a segment. While this assumption may limit the

optimality of the final solution, it helps reduce the size of the design vector and mirrors the

“turn and hold” strategy that is utilized in realistic missions [ 67 ]. Next, the slack variables

that are necessary to handle inequality constraints form Xslack,

Xslack =
[
σ1 σ2 · · · σs

]T
, (3.72)

where the slack variable σi corresponds to an inequality constraint over i-th segment. If

other inequality constraints exist, the additional slack variables
[
κ1 κ2 · · · κs

]T
are con-

catenated to Xslack. Finally, depending on the setup of the problem, additional variables

may be incorporated,

Xadd =
[
xadd,1 xadd,2 · · · xadd,na

]T
, (3.73)

where xadd,j corresponds to any additional design variables where 1 ≤ j ≤ na, where na

corresponds to the number of the additional design variables. The design vector X is formed

by concatenating the above vectors,

X =
[
XT

s XT
u XT

slack XT
add

]T
. (3.74)

When na = 0, Xadd becomes a blank vector and is not incorporated to the design vector, X.

The concatenated vector, X, is utilized as the design vector of the Newton-Raphson method

and the NLP algorithm.
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3.4.2 Constraint Vector Formulation

The design constraints associated with the low-thrust trajectory design are incorporated

into a constraint vector. Assume the Newton-Raphson method is employed to obtain a

feasible solution, then from Equation (  3.36 ),

F = F (X), (3.75)

where the constraint vector F depends on the design vector X, and it consists of different

types of constraints. First, consider the dynamical constraints that are formed as the defect

constraints by Equation ( 3.27 ),

Fdefect =
[
∆T

1 ∆T
2 · · · ∆T

s

]T
, (3.76)

where ∆i is the defect constraints over i-th segment and the dimensions are 21×1. The next

type of the constraint is the continuity of the states at the boundary points of mesh,

Fcont =
[
(x2,1 − x1,7)T (x3,1 − x2,7)T · · · (xs,1 − xs−1,7)T

]
, (3.77)

where xi+1,1 − xi,7 corresponds to the continuity constraint between the state of the first

variable node of the (i + 1)-th segment and the state of the last variable node of the i-th

segment for 1 ≤ i ≤ s − 1. Next, an inequality constraint exists for the magnitude of the

thrust, or recalling Equation ( 2.91 ),

0 ≤ Ti ≤ Tmax, (3.78)

where Ti corresponds to the thrust magnitude at each segment. This inequality constraint is

transformed to an equality constraint by utilizing the slack variables as,

FT,slack =
[
(T1 − Tmax sin(σ1)2) (T2 − Tmax sin(σ2)2) · · · (Ts − Tmax sin(σs)2)

]
, (3.79)
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where σi is the slack variable at the i-th segment that belongs to Xslack. Also, an equality

constraint is imposed on the direction vector of the thrust direction to be 1,

FT,unit =
[
(u2

x,1 + u2
y,1 + u2

z,1 − 1) (u2
x,2 + u2

y,2 + u2
z,2 − 1) · · · (u2

x,s + u2
y,s + u2

z,s − 1)
]T
.

(3.80)

Next, boundary constraints, if they exist, are imposed at the initial and the final states as,

Fini = x1,1(jjjini)− xini (3.81)

Ff in = xs,7(jjjf in)− xf in, (3.82)

where xini and xf in are user-defined initial and final states. jjj corresponds to the index vector

of the component that needs to be targeted. For example, if jjjini =
[
1 3

]T
, the first and

third components of the state vector, or x and z of the initial state are incorporated as the

boundary constraints. Typically, following index vectors are utilized,

jjjini =
[
1 2 3 4 5 6 7

]T
(3.83)

jjjf in =
[
1 2 3 4 5 6

]T
, (3.84)

where all seven components are targeted for the initial state, and all components except the

mass are targeted for the final state. These index vectors can also be blank, corresponding to

a problem without any boundary constraints. Finally, an additional constraint vector Fadd
can be incorporated. The additional constraints may include a minimum distance constraint

from the gravitational bodies, or inexact forms of boundary constraints such as departure

from periodic orbits, where xini and xf in also depend on additional variables, Xadd. The

constraint vector F is formed as,

F =
[
F T
defect F T

cont F T
T,slack F T

T,unit F T
ini F T

f in F T
add

]T
. (3.85)

While the general structures of X and F persists, Xadd, Fini,Ff in,Fadd may vary much

depending on the specific scenarios. Also note that the variable vector and the constraint
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vector for the NLP problem is similar, but typically result in a smaller number of variables

and constraints as the linear constraints are handled separately, i.e., the user need not define

slack variables.

3.4.3 Jacobian Formulation

Recall that the gradient based methods, i.e., the Newton-Raphson method and NLP

algorithms, all depend on computing the Jacobian of the constraint vector with respect to

the design vector,

DF (X) = ∂F

∂X
. (3.86)

As X and F consist of different categories of variables and constraints, it is more efficient

to compute different parts of the Jacobian matrix separately and then concatenate the parts

together. Consider the Jacobian of the defect constraint Fdefect with respect to the state

variable vector Xs,

∂Fdefect

∂Xs

. (3.87)

One advantageous trait of the Jacobian from the collocation algorithm is that it typically

results in a sparse matrix. For example, the i-th defect constraints ∆i is a function only of

the states of the same segment, i.e.,

∆i = ∆i(xi,1,xi,3,xi,5,xi,7). (3.88)

Thus, the matrix from Equation ( 3.87 ) is written as a sparse matrix,

∂Fdefect

∂Xs

=



∂∆1
∂x1

021×28 · · · 021×28

021×28
∂∆2
∂x2

· · · 021×28
... ... . . . ...

021×28 021×28 · · · ∂∆s

∂xs


, (3.89)
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where xi is a 28 × 1 vector composed of xi,1,xi,3,xi,5, and xi,7. ∂∆i
∂xj

is a zero matrix of

dimensions 21× 28 if i 6= j. Thus, only the non-zero elements are computed to leverage the

sparsity of the matrix from Equation ( 3.87 ). Other parts of the Jacobian matrix DF (X) also

have sparse structures that are leveraged for efficient computations. Figure  3.2 illustrates the

sparsity pattern of the Jacobian DF (X) when the number of the segment, s, is three, where

the blue dots correspond to the non-zero elements. For simplicity, additional variables as

well as additional constraints are not considered. Note that as the segment number grows,

the Jacobian becomes more sparse, or the ratio of the non-zero elements decreases.

Figure 3.2. Sparsity pattern of the Jacobian matrix DF (X) for s = 3

The non-zero elements of the Jacobian is computed analytically if the constraint equations

allows an analytical differentiation with respect to the design vector. Otherwise, a numerical
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method, also known as the finite difference method, is utilized to compute the elements of

the Jacobian.

3.4.4 Cost Function for Optimization

The two main costs associated with the low-thrust trajectory are the propellant and the

time of flight. While either of these two cost variables, or even a combined cost may be

utilized, this investigation only considers the minimization of the propellant consumption.

The cost function is formulated as,

Jo = −ms,7, (3.90)

where ms,7 corresponds to the final mass of the spacecraft. Minimizing Jo is equivalent to

minimizing the propellant consumption over the trajectory. Optimal or optimized trajectories

in this work refer to trajectories that minimize the defined cost function, Jo. These optimal

trajectories are also denoted the propellant optimal or mass optimal trajectories throughout

the current analysis.

3.4.5 An Example Scenario

The low-thrust trajectory design via direct collocation is illustrated with a sample scenario

which is recreated from the work by Pritchett [  60 ]. Consider a transfer between L1 halo

orbit a L2 halo orbit in the Earth-Moon CR3BP, where the initial and final states of the

transfer as well as the associated Jacobi constants are included in Table  3.1 . The spacecraft

is assumed to be associated with the initial mass of 2000kg and is equipped with a low-thrust

engine with Ĩsp = 2000s and T̃max = 0.2N . Figure  3.3 illustrates the process of low-thrust

trajectory design, both for the state history of the transfer trajectory in the three-dimensional

position space, as well as the control history. Figure  3.3(a) represents the initial guess of the

transfer, which consists of one ballistic revolution of the initial L1 halo orbit and two ballistic

revolutions of the final L2 halo orbit. This strategy is denoted orbit stacking, where ballistic

periodic orbits of the CR3BP are stacked as an initial guess of the state history [ 60 ]. This

initial guess results in the violation of the constraints as the trajectory is not continuous.
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Figure  3.3(b) illustrates the control history, or the thrust profile of the initial guess. Note

that the magnitude of the thrust is assumed to be 70% of the maximum thrust level. And

the thrust vector is selected to be parallel to the rotating velocity vector. This initial guess

for the state and control is passed to the Newton-Raphson algorithm to converge in Figure

 3.3(c) and  3.3(d) . Note that the blue lines indicates the segments where the thrust is below

5% of the maximum thrust, Tmax. The dotted lines illustrate the initial and final halo orbits.

The feasible trajectory is utilized as the starting point for the NLP solver, and results in

the optimal trajectory as illustrated in Figure  3.3(e) and  3.3(f) . It is evident that it requires

less propellant after the optimization, as the thrust profile indicates less thrust segments.

Note that the optimization process employs Jo defined from Equation ( 3.90 ) and does not

change the time of flight of the transfer. The optimal trajectory requires ∆m = 18.57kg for

TOF = 40.75days.

Table 3.1. Sample transfer scenario between Earth-Moon L1 halo orbit and
Earth-Moon L2 halo orbit: initial and final states information

Initial State Final State
Orbit L1 halo orbit L2 halo orbit
x [n.d.] 0.828389 1.163325
z [n.d.] 0.103044 0.115930
ż [n.d.] 0.218573 −0.204262
JC [n.d.] 3.099490 3.099800

If the goal is to generate generate a trajectory in a higher-fidelity model, the feasible or

optimal trajectory from a lower-fidelity model, e.g., CR3BP, can be utilized as the initial

guess again. This process is illustrated in Figure  3.4 . Figure  3.4(a) illustrates the initial

guess from the CR3BP as the dotted cyan arc. Utilizing this arc as the initial guess, the

design process in Figure  3.1 is repeated in the Sun-Earth-Moon ephemeris model, resulting

in a magenta arc. Note that the transformation Equation ( 2.71 ) is utilized to transform the

states into the J2000 frame first, and they are rotated back into the Earth-Moon CR3BP

rotating frame. Figure  3.4(a) illustrates the thrust profile of the optimal trajectory in the

higher-fidelity ephemeris model. Although the magnitude of the thrust reveals similar trend

as in Figure  3.3(f) , the components of the thrust vector are different as the thrust direction is
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(a) Initial guess of the state in the position space
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(b) Initial guess of the control

(c) Feasible trajectory in the position space

0 5 10 15 20 25 30 35 40

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(d) Feasible trajectory: control

(e) Optimal trajectory in the position space
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(f) Optimal trajectory: control

Figure 3.3. An example transfer from the L1 halo orbit to L2 halo orbit in
the Earth-Moon CR3BP
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defined in X̂J− ŶJ− ẐJ unit vectors instead of x̂− ŷ− ẑ unit vectors. The optimal trajectory

requires ∆m = 18.30kg for TOF = 40.75days.

(a) Optimal trajectory
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(b) Initial guess for the control

Figure 3.4. An example transfer from the L1 halo orbit to L2 halo orbit in
the Sun-Earth-Moon ephemeris model
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4. HELIOCENTRIC LEG DESIGN

Any potential mission from the Earth to Mars with a low-thrust engine expends a consid-

erable amount of propellant in the heliocentric space. Woolley et al. [ 38 ] indicate that for

a mission from a GTO to Phobos, the propellant spent for the heliocentric leg accounts

for more than a half of the total propellant consumption. Thus, analyzing the the optimal

propellant costs corresponding to the heliocentric leg, is a necessary step.

The most immediate challenge with computing the heliocentric leg is the time-dependent

nature of the problem; the locations of the planets in the heliocentric space are constantly

changing. Moreover, the transfer trajectories between the Earth and Mars are not perfectly

periodic [ 23 ]. Table  4.1 includes the mean orbital elements of the Earth and Mars around the

Sun over the time span between 2000 and 2050, where the inclination, iK , is computed with

respect to the ECLIPJ2000, or the Earth ecliptic inertial frame. The information is obtained

from the SPICE database [ 50 ]. The orbit of Mars is associated with a large eccentricity

compared to that of the Earth, and it is slightly inclined with respect to the Earth ecliptic

plane. Thus, the relative configuration of the planets in heliocentric space does not exactly

repeat itself, as the orbits of the Earth and Mars are not coplanar nor circular. Instead,

the configuration is uniquely defined by a selected pair of departure and arrival epochs.

The heliocentric leg, or the transfer trajectory between the Earth and Mars is characterized

by separately obtaining solutions corresponding to a range of possible configurations of the

planets.

Table 4.1. Sun-2BP orbital data of the Earth and Mars
aK [km] eK [nd] iK [◦]

Earth 1.497× 108 0.017 0.001
Mars 2.279× 108 0.093 1.850

Utilizing an impulsive engine, or an engine that is capable of imparting an instantaneous

change in velocity, characterizing the transfer trajectories between the Earth and Mars is

relatively straightforward. Traditionally, Lambert’s equation has been employed, where a

two-point boundary value problem is formulated based on the departure and arrival epochs.
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The positions of the planets in heliocentric space are retrieved at the respective epochs and

set as the boundary constraints of the transfer arc. Then, an iterative solver is utilized to

solve for the initial and final velocities that result in a ballistic, Sun-2BP conic arc that

links the boundary positions with the given time of flight. The impulsive engine provides

the required velocity changes between the end points of the ballistic arc and the states of

the planets, corresponding to the cost associated with the transfer. This method is employed

for a range of departure and arrival epochs of interest to obtain multiple transfer arcs. To

efficiently illustrate the trend of cost over the epochs, a contour plot, denoted “porkchop

plot”, is produced from the solutions to characterize the transfer trajectories and guide the

mission design process [ 68 ].

On the contrary, a ballistic transfer arc cannot be utilized for a low-thrust engine as it

fails to instantaneously deliver the required velocity change at the ends of the ballistic arc.

Rather, it results in a continuous optimal control problem where the history of the state

and control that enables a transfer between the planets must be obtained. It is further com-

pounded by the fact that the low-thrust trajectory optimization problem also depends on

additional design parameters including the Earth departure scenario as well as the spacecraft

specifications (Table  1.1 ), which necessitates simplifying assumptions. Previous authors in-

vestigate methods that iteratively solve the optimal control problem over multiple pairs of

epochs under specific assumptions. Woolley et al. [ 38 ] compute families of optimal trajecto-

ries by approximating the continuous thrust to a series of impulsive burns where different

sets of low-thrust design parameters each result in a unique family of transfer arcs. Sim-

ilarly, Genta and Maffione [ 23 ] solve the optimal control problem via the Euler-Lagrange

method while assuming a departure from a 800km altitude circular orbit around the Earth.

A variable specific impulse engine, where the specific impulse is also an optimized variable,

is mainly investigated. Both methods produce contour plots that illustrate the overall costs

of the Earth-to-Mars transfer trajectories over a range of departure and arrival epochs, i.e.,

the plots effectively characterize the heliocentric leg.

The current work expands on these existing methods by computing the optimal transfer

trajectories via the direct collocation algorithm (Chapter  3 ) and produces an analogous

contour plot. The setup of the optimization problem as well as the corresponding assumptions
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are introduced. Two strategies to generate an initial guess for the direct collocation algorithm

are presented, followed by the resulting contour plot.

4.1 Problem Formulation

To characterize the heliocentric leg, a set of simplifying assumptions are introduced to

avoid the complexity from the perturbations from multi-body dynamics as well as the plane-

tocentric arcs around the Earth and Mars [ 23 ], [ 38 ]. The assumptions utilized in the current

investigation are as follows:

1. The Sun-2BP is utilized as the dynamical model for the heliocentric leg, i.e., gravity

from other celestial bodies is ignored.

2. For a given pair of departure and arrival epochs, the boundary constraints of the

heliocentric leg are set as the states of the planets in heliocentric space.

The first assumption implies that at both end states of the heliocentric leg, the spacecraft

has effectively escaped the gravity of the planets and only the Sun’s gravity needs to be

considered for the leg. The second assumption is also denoted rendezvous constraint [ 23 ],

[ 38 ], as the states of the spacecraft coincide with those of the planets in the heliocentric space

at the end points. While the results in the current chapter are bound to these assumptions,

they are validated in the higher-fidelity ephemeris model in Chapter  6 .

To generate a contour plot over different pairs of the epochs, an optimal control problem

is formulated for each pair of epochs. The time of flight, ˜TOF , of the leg is fixed to be the

difference between the provided dates,

˜TOF = JDA − JDD, (4.1)

where JDD and JDA correspond to the Julian dates of the departure and arrival epochs,

respectively. Then, the boundary states of the legs are fixed as the states of the Earth
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and Mars in the heliocentric space, retrieved from the ephemerides file. In the Cartesian

coordinate, the states are written as,

X̃Earth,Cart =
[
X̃Earth ỸEarth Z̃Earth ṼX,Earth ṼY,Earth ṼZ,Earth

]T
(4.2)

X̃Mars,Cart =
[
X̃Mars ỸMars Z̃Mars ṼX,Mars ṼY,Mars ṼZ,Mars

]T
, (4.3)

where the tilde accent refers to the dimensional quantities. Each element of these vectors

corresponds to the position and inertial velocity component in the Sun-centered ECLIPJ2000

frame. For example, the position vector of the Earth is represented as,

R̃Earth = X̃EarthX̂EJ + ỸEarthŶEJ + Z̃EarthẐEJ , (4.4)

where the unit vectors correspond to the directions in the ECLIPJ2000 frame. Similarly, the

velocity of the Earth is represented as,

ṼEarth =
IdR̃Earth

dt̃
= ṼX,EarthX̂EJ + ṼY,EarthŶEJ + ṼZ,EarthẐEJ . (4.5)

The state of the Earth at JDD becomes the initial state of the heliocentric leg, and similarly,

the state of Mars at JDA is set as the final state of the leg.

Next, the transfer trajectory is discretized into multiple segments to formulate an opti-

mization problem suitable for the direct collocation algorithm. While the number of segments

affect the computation time and also the optimality of the solution, 40 segments are em-

ployed, a number consistent with a previous work [ 69 ]. The segments are placed by equally

dividing the given time of flight. Thus, the mesh of the direct collocation algorithm is con-

structed as,

Π̃ = t̃1 < t̃2 < · · · < t̃40 < t̃41, (4.6)

where the length of each segment is constant as,

t̃i+1 − t̃i =
˜TOF

40 (i ≤ i ≤ 40). (4.7)
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Then, the direct collocation algorithm searches for the design vectorX(Equation( 3.74 ))thatsatisf iestheconstraintvectorF (Equation( 3.85 ))whileminimizingthefollowingobjectivefunction, where40,7

corresponds to the mass of the spacecraft at the last node of the 40th segment, or the final

mass.

This process of setting and solving an optimization problem is repeated over a grid of the

departure epochs and the time of flight. For the departure epochs, or JDD, 2000 days starting

from 01/01/2024, are sampled with a 10-day increment. The arrival epochs are selected such

that the time of flight from each departure epoch spans between 900 and 100 days by a

10-day decrement. For example, for the departure epoch of 01/01/2024, the arrival epoch is

selected to be between 06/19/2026 ( ˜TOF = 900 days) and 04/10/2024 ( ˜TOF = 100 days),

equally spaced by 10 days. The steps to compute the optimal transfer arc corresponding to

each point of the grid are provided in Algorithm  1 , which consists of two iteration loops. The

outer loop corresponds to the iteration on the departure epoch, JDD. The inner loop iterates

on the ˜TOF value, starting from 900 days and gradually decreasing until ˜TOF = 100 days.

Within each iteration of the inner loop, an initial guess is formed and passed to the optimizer

to result in a propellant optimal trajectory for the departure epoch and ˜TOF pair. If the

direct collocation algorithm fails to converge, it is considered that the ˜TOF is too short

to allow for a feasible trajectory to exist for the given departure epoch, and the algorithm

proceeds to the next iteration of the outer loop.

Algorithm 1 Sun-2B Propellant Optimal Solution
1: for Every departure epoch do
2: for ˜TOF = 900, 890, 880, ..., 100 (days) do
3: if ˜TOF == 900 (days) then
4: Initial guess from the polynomial approximation
5: else
6: Initial guess from the continuation
7: end if
8: Optimize Jo via direct collocation
9: if Fails to converge then

10: Break
11: end if
12: end for
13: end for
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4.2 Initial Guess

Obtaining an optimal trajectory for each pair of the epochs requires a suitable initial guess

(Figure  3.1 ). Two different strategies, (1) polynomial approximation and (2) continuation,

are provided to generate an initial guess for the heliocentric leg. The inner loop of Algorithm

 1 iterates on the time of flight that starts from 900 days and gradually decreases. For the

maximum value, 900 days, a third degree polynomial approximation is utilized to generate

an initial guess, and for the rest of the iteration within the inner loop, previously converged

solution is utilized as the initial guess.

4.2.1 Third Degree Polynomial Approximation

An approximate solution of the heliocentric leg is formed as a third degree polynomial

function of time to serve as an initial guess. The known data points of the function are the

states of the planets corresponding to the departure and arrival epochs, which are also the

boundary constraints of the optimization problem. For the polynomial fitting, it is advanta-

geous to transition the Cartesian state vectors, Equations ( 4.2 ) and ( 4.3 ), to the vectors in

the cylindrical coordinate frame. The position and velocity components in the ẐEJ direction

stay constant in both coordinate frames, whereas the rest of the components are transformed

via the following equations,

R̃XY = X̃2 + Ỹ 2 (4.8)

φ = tan−1
2
Ỹ

X̃
(4.9)

dR̃XY

dt̃
= ṼRXY

= X̃ṼX + Ỹ ṼY

R̃XY

(4.10)

dφ

dt̃
= Ṽφ = X̃ṼY − Ỹ ṼX

R̃2
XY

(4.11)
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where tan−1
2 is a four quadrant arctangent. Then, the states of the planets are re-written in

the cylindrical coordinate frame as,

X̃Earth,Cyl =
[
R̃XY,Earth φEarth Z̃Earth ṼRXY ,Earth Ṽφ,Earth ṼZ,Earth

]T
(4.12)

X̃Mars,Cyl =
[
R̃XY,Mars φMars Z̃Mars ṼRXY ,Mars Ṽφ,Mars ṼZ,Mars

]T
. (4.13)

These vectors are considered as the boundary constraints that the approximated polynomial

function must satisfy. For example, R̃XY,Earth, ṼRXY ,Earth, R̃XY,Mars, ṼRXY ,Mars correspond to

the values and the time derivatives of the variable R̃XY at the departure and arrival epochs.

Any approximated polynomial function for R̃XY between the two planets must satisfy these

four boundary constraints. Since a third degree polynomial is associated with four coefficients,

the four boundary conditions for each variable uniquely determine the polynomial function.

Consider a third degree polynomial function for R̃XY ,

pRXY
(τp) = C0 + C1τp + C2τ

2
p + C3τ

3
p , (4.14)

where C0, C1, C2, and C3 denote the four unknown coefficients of the polynomial, and τp

corresponds to the nondimensional time computed as,

τp = 2 t̃− t̃1˜TOF
− 1, (4.15)

where t̃1 corresponds to the first boundary point of the mesh from Equation ( 4.6 ), and τp is

defined between −1 and 1 that correspond to the initial and final times, respectively. Enforc-

ing the boundary constraints to the polynomial function results in the following equations,

pRXY
(1) = C0 + C1 + C2 + C3 = R̃XY,Earth (4.16)

pRXY
(−1) = C0 − C1 + C2 − C3 = R̃XY,Mars (4.17)

dpRXY

dτp
|1 = C1 + 2C2 + 3C3 = ṼRXY ,Earth (4.18)

dpRXY

dτp
|−1 = C1 − 2C2 + 3C3 = ṼRXY ,Mars, (4.19)
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which are interchangeably represented with the following matrix equation,



C0

C1

C2

C3


=



1 1 1 1

1 −1 1 −1

0 1 2 3

0 1 −2 3



−1 

R̃XY,Earth

R̃XY,Mars

ṼRXY ,Earth

ṼRXY ,Mars


. (4.20)

The same process is repeated for the other two variables to construct three different third

degree polynomial functions that together approximate the transfer trajectory between the

planets given the epochs. It is noted that other formulations of the polynomial approximation

are available too. Patel et al. [ 70 ] introduce an algorithm where Chebyshev polynomials of

higher degrees are utilized to compute a feasible Earth-to-Mars heliocentric trajectories. In

this investigation, it is discovered that a third degree polynomial already works properly as

an initial guess for the direct collocation algorithm, and higher order polynomial functions

are not considered.
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To illustrate the steps of generating an initial guess, consider a departure from the Earth

on 01/01/2024, and arrival at Mars after 900 days, or on 06/19/2026. The initial and final

Cartesian states of the planets in the Sun-centered ECLIPJ2000 are retrieved as,

X̃Earth,Cart =



−2.4811× 107km

1.4499× 108km

−8.2153× 103km

−2.9841× 101km/s

−5.1263km/s

1.1842× 10−3km/s


, (4.21)

X̃Mars,Cart =



1.8761× 108km

1.0247× 108km

−2.4529× 106km

−1.0687× 101km/s

2.3334× 101km/s

7.5106× 10−1km/s


, (4.22)

where the X̂EJ and ŶEJ components of the position for the boundary constraints are plotted

in Figure  4.1 . The dotted lines correspond to the orbits of the planets. The Cartesian vectors
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are then transitioned into the cylindrical coordinate frame via Equations ( 4.8 )-( 4.9 ) to result

in,

X̃Earth,Cyl =



1.4710× 108km

−4.5429rad

−8.2153× 103km

−1.9614× 10−2km/s

2.0583× 10−7rad/s

1.1842× 10−3km/s


(4.23)

X̃Mars,Cyl =



2.1378× 108km

4.9992× 10−1rad

−2.4529× 106km

1.8062km/s

1.1976× 10−7rad/s

7.5106× 10−1km/s


. (4.24)

Then, three third degree polynomials are formed by solving Equation ( 4.20 ) for each vari-

able in the cylindrical coordinate frame, R̃XY , φ and Z̃. The position history of the computed

polynomials in the X̂EJ−ŶEJ plane is plotted in Figure  4.2 . From the polynomial approxima-

tions, an initial guess is constructed by first dividing the polynomials over the mesh, Π̃. This

process is illustrated in Figure  4.3 , where the polynomial functions are equally divided into

40 segments that each contains four nodes, plotted as black dots. Although the polynomials

are constructed in the cylindrical coordinate frame, the discretized states are transitioned

back into the Cartesian coordinate frame to be consistent with the frame utilized in the

direct collocation algorithm. Figure  4.3 only illustrates the position components in the X̂EJ

and ŶEJ directions, but the same process is executed for the rest of the components, i.e., the

position in the ẐEJ direction as well as the velocities in all three directions.

While the position and velocity components of the initial guess are readily available from

the polynomial approximations, additional steps are required to generate the initial guess for
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Figure 4.1. The retrieved states in the position space, Sun-centered
ECLIPJ2000 frame view

Figure 4.2. Position history of the constructed polynomials
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Figure 4.3. Discretized states from the polynomials
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the mass and the control. To this end, the spacecraft is assumed to thrust at the maximum

available value, that results in a constant decrease of the spacecraft mass, i.e.,

T̃ = T̃max (4.25)

m̃ = m̃0 −
T̃

g̃0Ĩsp
∆t̃, (4.26)

where ∆t̃ is the dimensional time since the initial time, ∆t̃ = t̃− t̃1. m̃0 corresponds to the

initial mass of the spacecraft upon the departure of the Phase 2, the heliocentric leg, and

is assumed to be 340.9 kg following the assumptions listed in Table  1.1 . Then, the values

of the mass corresponding to each of 160 nodes are computed and incorporated into the

initial guess. While the thrust magnitude is fixed at the maximum value, the direction of

the thrust must also be obtained. An error is defined over each segment to be the difference

of the velocities between the value from the polynomial approximations and the propagated

value utilizing the Sun-2B dynamical model for the segment. Then, the initial guess for

the thrust direction is decided to be aligned with the error vector, such that the thrust

allows the polynomial approximations to better follow the actual dynamics. Finally, the state

and control of the constructed initial guess are nondimensionalized utilizing the Sun-Earth

CR3BP characteristic quantities (Table  2.1 ) to avoid scaling problems during optimization.

The initial guess obtained via this process is employed as the input to the direct collocation

method to converge to a feasible as well as optimal trajectory, illustrated in Figure  4.4 .

4.2.2 Continuation

Recall that the inner loop of Algorithm  1 iterates on the time of flight. When ˜TOF 6= 900

days, or when an optimized solution already exists from the previous iteration, it is utilized

as the initial guess for the current step. Assume, for example, that an optimal transfer

converged from the pair of epochs (01/01/2024, 06/19/2026) is,

Xopt,900 = arg min
X

Jo(X), (4.27)
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Figure 4.4. The converged optimal trajectory
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where the subscript 900 refers to the time of flight of the transfer. Then, the next step of

the inner loop iteration solves for the pair of epochs with the same departure date, i.e.,

01/01/2024, and the arrival date of 06/09/2026, corresponding to ˜TOF = 890 days. The

initial guess for this new pair of dates is readily derived from Xopt,900. The state and the

control from the optimal solution are utilized without any change, but the mesh is recon-

structed to mirror the decreased total time of flight from 900 days to 890 days. Additionally,

the state of Mars corresponding to the new arrival epoch is retrieved again to update the

final constraint on the heliocentric leg.

4.3 Results

Based on two strategies for the initial guess generation, Algorithm  1 is run to generate

a contour plot, demonstrated in Figure  4.5 . The x and y axes correspond to the departure

epoch and the time of flight, respectively, and the color scheme describes the level of the

propellant consumption. While the colored region corresponds to the points of the grid where

the algorithm succeeds in finding an optimal trajectory, the white region indicates where the

algorithm fails to converge to a feasible solution. Although smaller steps for the time of flight

may be utilized to slightly expand the solutions to the white region, it still corresponds to

the end of the family of the heliocentric leg, where a feasible solution stops to exist under the

given set of spacecraft parameters, listed in Table  1.2 . It is noted that the plot is analogous

to the results that appear in the previous literature (Potter et al. [ 69 ] Figure 10, Genta and

Maffione [ 23 ] Fig. 4). The difference originates from the problem formulation, i.e., different

launch scenarios from the Earth and different models utilized for the engine.

The contour plots illustrate a general tendency of trade-off between the time of flight and

the propellant consumption, where for a given departure epoch, the propellant consumption

decreases in exchange for an increased time of flight. It is noted that the propellant con-

sumption decreases asymptotically, i.e., once a certain level of time of flight is reached, the

required propellant does not decrease significantly. Three blue triangular shapes are apparent

in Figure  4.5 , that represent the points of the grid where the required propellant only slowly

decreases for an increase in the time of flight, requiring approximately 100 kg of propellant.

Although these shapes do not exactly repeat themselves, the patterns do demonstrate peri-
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odicity, where the period roughly corresponds to the synodic period of the Earth and Mars,

i.e., 780 days. The result are also illustrated with different axes as in Figure  4.6 , where the

y-axis corresponds to the arrival epoch instead of the time of flight. The discontinuities are

apparent in the contour plots, where a small increment in the departure epoch results in a

large change in the optimized propellant level. In Figure  4.7(a) , two pairs of the initial epoch

and the time of flight are selected across the discontinuity. One of the pair, illustrated in

Figure  4.7(b) , corresponds to the solution where the number of revolutions around the Sun is

larger than 1 but smaller than 2, whereas the other pair, plotted in Figure  4.7(c) illustrates

the optimal solution with number of revolutions between 2 and 3. The configuration of the

planets changes in a time-dependent way, where the Earth rotates more around the Sun

compared to Mars for a given length of time. Thus, when departure date is moved forward,

at certain epochs, the transfer arcs corresponding to number of revolutions between n and

n + 1 cease to exist, as the configuration of the planets does not allow such transfer tra-

jectories. Then, the new family of solutions emerge, corresponding to number of revolutions

between n+1 and n+2. This discontinuity is also observed and discussed in Potter et al. [ 69 ].

Thus, Figure  4.5 contains four different families, differentiated by the three discontinuities

where the color shifts dramatically over departure epochs. Except for these discontinuities,

the propellant consumption over different pairs of epochs change continuously.
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Figure 4.5. The contour plot of the propellant optimal transfers between the
Earth and Mars

Figure 4.6. The contour plot with the arrival date for the y-axis
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(a) Selected pairs to illustrate the discontinuity of the families

(b) Solution corresponding to revolutions larger than
1 but smaller than 2

(c) Solution corresponding to revolutions larger than
2 but smaller than 3

Figure 4.7. Discontinuity between the optimal transfer families
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5. MARTIAN MOONS TOUR DESIGN

Recall that the overarching goal of the current investigation is to develop a framework for

designing low-thrust trajectory that includes the observation of both Martian moons, or

tour of Martian moons. This concept of sequentially approaching different moons of the

planets has been investigated by previous authors over different planetary systems. For the

Saturnian system, a successful mission, Cassini-Huygens [ 71 ] visited a number of Saturnian

moons via flybys. And Jupiter has been a popular location as the proving ground of the tour

concept, as the masses of Jovian moons are relatively large with respect to the mass of Jupiter

compared to the other planetary systems, that aids fuel-efficient transfer between the moons

by enabling low-energy trajectories. Including a seminal work by Ross et al. [ 72 ], missions

have been proposed to for Jovian moons tour, including JIMO [ 73 ] and JUICE [ 74 ] missions,

proposed by National Aeronautics and Space Administration (NASA) and European Space

Agency (ESA), respectively. Finally, research on the tour of the Martian system has been

conducted as well, including the work by Derz et al. [ 44 ], and an active project by Japan

Aerospace Exploration Agency (JAXA), MMX [  13 ].

While the tour of moons of a planet is indeed an appealing oppotunity, providing an

“all-in-one” option to explore multiple moons with a single spacecraft, it poses additional

challenges. Apart from the systems requirement from the prolonged mission duration from

exploring multiple moons, it is associated with problems that are related to the trajectory

design as well. The most apparent problem is that the tour concept requires a rendezvous;

when the spacecraft departs from a moon and arrives at another, the other moon must

be collocated with the spacecraft and results in a phasing issue. For the impulsive engine,

while the well-known Hohmann transfer [ 63 ] can be used as an approximate solution to the

problem, it assumes that the initial and final orbits of the moons are coplanar as well as

circular, and it neglects the gravity from the departure and arrival moons.

These assumptions may limit the accuracy of the approximate solution, as the orbital

data of the Martian moons indicate that they reside in different orbital planes, as apparent

from Table  5.1 , where the orbital elements are computed in the MARSIAU frame. It is also

noted that both moons have negligible eccentricities compared to other celestial bodies, for
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examples, Earth (0.017) and Mars (0.093) around the Sun. And although the masses of

Phobos and Deimos are negligible compared to that of Mars (Table  2.1 ), they still affect

the trajectories in the vicinity of the moons. Previous authors have investigated methods

that remove some of the simplifying assumptions to facilitate a realistic analysis. One of the

proposed strategy is to utilize coupled CR3BP between the planet-departure moon CR3BP

and the planet-arrival moon CR3BP [ 75 ]-[ 76 ]. Then, the dynamical structures from the

CR3BP as well as the Poincaré section technique are utilized to find the connections between

two moons. However, the moons are still assumed to be in the same plane, and the relative

phasing issue remains. More recently, Canales et al. [  77 ] introduces a necessary condition that

need be satisfied for a single-burn transfer trajectory to exist between two moons, considering

the real orbital planes of the moons as well as the relative phase.

Table 5.1. Orbital data of Phobos and Deimos around Mars (recreated from
Canales et al. [ 78 ] Table 1)

aK [km] Period [hour] eK [nd] iK [◦] ΩK [◦] Radius [km]
Phobos 9, 377.82 7.65 0.01482 1.05 131.71 11.2
Deimos 23, 459.61 30.29 0.00019 2.44 260.12 6.2

The strategies from these previous investigations cannot be applied directly to the low-

thrust trajectory design, as they require an impulsive burn, or a significantly large but

instantaneous change in the velocities. A low-thrust engine typically requires longer time of

thrust to provide the same amount of change in velocity compared to an impulsive engine, and

results in a many-revolution trajectories [ 46 ], i.e., spiral trajectories. As the thrust is modeled

as a continuous variable, it results in an optimal control problem, where the direction and

magnitude of the thrust at each instant must be provided to produce the transfer trajectories

between the moons. Thus, the low-thrust engine model compounds the tour design problem

with a larger size of the problem consisting of many revolutions of arc around the planet, for

which the continuous thrust direction and magnitude must be found to generate a feasible

or an optimal solution. The assumptions regarding the low-thrust trajectory design of the

Martian tour are introduced, followed by the explanation of the selected strategies to tackle

the challenges associated with the low-thrust engine model. Utilizing these strategies, tour

trajectories are generated and the corresponding results, including the transfer geometry
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as well as the costs, are presented. It is noted that the remaining part of this chapter is a

restatement of and an augmentation to the work by Canales et al. [ 78 ].

5.1 Structure of Tour of the Martian Moons

As there exist an infinite number of possible routes to explore both moons using a low-

thrust engine, simplifying assumptions are introduced. After an analysis of the energy history

of a low-thrust trajectory corresponding to a potential Martian tour mission, the sequence

of the mission is fixed to be first exploring Deimos and then Phobos. The tour trajectory is

divided into two types of arcs: the first type that approaches the Deimos science orbit from

heliocentric space (Phase 3), and the second type that connects the Deimos science orbit

to the Phobos science orbit (Phase 4). The options for science orbits for both moons are

defined, that provide either capture or flyby opportunities of the moons.

5.1.1 Jacobi Constant History from the Heliocentric Leg

Due to the small masses of the Martian moons, the Sun and Mars mainly govern the

dynamics of the vicinity of Mars (Table  2.1 , Figure  2.3(e) ). If the Sun-Mars CR3BP is

employed for the preliminary analysis, the JCSM , or the Jacobi constant in the system

efficiently captures the energy variation of the spacecraft states in the vicinity of the Martian

system. It is noted that a greater JCSM indicates less energy in the Sun-Mars CR3BP system,

and vice a versa. The Earth, Phobos and Deimos’s states in the Sun-Mars CR3BP rotating

frame possess the Jacobi constants included in Table  5.2 , where the second column illustrates

the difference from the Jacobi constant of Sun-Mars L1. Note that the Jacobi constants of

the Earth and the moons depend on the epoch. The states of the bodies are retrieved from

the ephemerides over one year for 10, 000 equally spaced points in time, and then the states

are rotated into the Sun-Mars CR3BP rotating frame to compute the mean JCSM of the

bodies over this period. While Mars-2BP energy can be utilized to compare the energy levels

of the moons, JCSM offers an opportunity to consider the energy of the Earth as well as

the Sun-Mars libration points, L1 and L2. It is noted that JCSM and the Mars-2BP energy

follow similar trends for the orbits associated with the energy levels of the moons, and both
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energy quantities are used interchangeably. This investigation utilizes JCSM for a consistent

analysis.

Four energy levels corresponding to the Earth, JCSM,Earth, one exemplary energy level

above JCSM,L2 , JCSM = 3.00020000, and the moons, JCSM,Deimos and JCSM,Phobos are

illustrated in Figure  5.1 . The plotted zero velocity curves and the forbidden regions indicate

the required variations in energy of the state along a transfer trajectory from the Earth to

Mars. If a spacecraft approaches the Martian system from the Earth through a low-energy

trajectory discussed in Chapter  4 , the energy level of the spacecraft state upon departure

can be roughly estimated to be the Jacobi constant of the Earth, JCSM,Earth. At this level

of energy, the spacecraft cannot reach the Martian system, as the L1 gateway is blocked by

the forbidden region as it is apparent from Figure  5.1(a) , i.e., the energy is insufficient. The

blue dotted line corresponds to the Earth’s orbit over a year starting from Jan 01, 2022,

viewed in the Sun-Mars CR3BP rotating frame. The energy level of the spacecraft must be

raised until it is high enough to open the L1 gateway. Figure  5.1(b) and  5.1(c) illustrate

the energy level corresponding to JCSM = 3.00020000, or when the gateways are open both

at L1 and L2. Then, the energy must be lowered again until Mars captures the spacecraft,

and the spacecraft enters an orbit around Mars that offers access to the Martian moons.

Figure  5.1(d) - 5.1(g) illustrate the energy levels corresponding to Deimos and Phobos. It is

noted that the views in Figure  5.1(d) and  5.1(f) do not effectively demonstrate the size of

the Deimos and Phobos’s orbits, and are zoomed-in further as in Figure  5.1(e) and  5.1(g) ; a

significant amount of energy must changed to close the L1 gateway and force the spacecraft

to be captured by Mars.

Table 5.2. Jacobi constants in the Sun-Mars CR3BP: Sun-Mars L1, L2, Pho-
bos, and Deimos

JCSM JCSM − JCL1,SM

L1 3.00020249 0
L2 3.00020206 ≈ −4e− 7

Earth 3.11977074 ≈ 1e− 1
Phobos 3.00745257 ≈ 7e− 3
Deimos 3.00298702 ≈ 3e− 3

100



Since the energy level of Phobos is lower than that of Deimos, it is straightforward to

first explore Deimos and then transfer to Phobos from the low-thrust engine perspective;

the energy can only be changed in a continuous manner, and it is more efficient to visit

Deimos before finally lowering the energy until the level of Phobos. Previous investigations

also assume the sequence from the outer moons to the inner moons, for the Jovian system

[ 73 ] and the Martian system [ 44 ]. Note that the reverse sequence may be considered efficient

only when the spacecraft first arrives at a highly elliptic orbit around Mars that offers Phobos

flybys, then the maneuver may be employed to transfer to Deimos science orbits. However,

it is also noted that the eccentricity of the moons are negligibly small, implying that the

capture orbits around the moons possess similar level of eccentricity. And any attempts to

utilize highly eccentric orbits may increase the propellant consumption associated with the

transfers from these eccentric orbits to nearly circular capture orbits around the moons. For

this reason, current analysis focuses on the sequence that is based on the energy order.
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5.1.2 Science Orbit Definition

Figure  5.2 illustrates the tour concept and sequence investigated in the current work.

As a low-thrust engine requires a significantly long time to achieve the energy change, it

requires spiral-down trajectories, demonstrated as black and purple arcs in Figure  5.2(a) .

These spiral-down arcs are divided into two types to facilitate analysis. The first type of

trajectory, labeled spiral-down (A), is required to close the energy gap between the incoming

heliocentric leg that is associated with greater energy than Sun-Mars L1, and the Deimos

science orbit. This arc corresponds to the Phase 3 of the multi-phase formulation of the

current investigation, illustrated in Figure  1.1 . Then the second type of spiral-down arc,

spiral-down (B), is employed to transfer from the Deimos science orbit to the Phobos science

orbit. Spiral-down (B) corresponds to the Phase 4 of the multi-phase formulation, described

in Figure  1.1 . The sequence is also labeled in Figure  5.2(b) with the associated chapters.

While the tour sequence is fixed, there exist multiple options to explore both moons. Hence,

it is necessary to define the science orbits for both moons, and they are categorized into two

options: (1) capture and (2) flyby.

As the masses of the Martian moons are small compared to that of Mars, it is necessary

to include both Mars and moons to the dynamical models to describe the motion of the

spacecraft that is captured by the moons. As Phobos has been considered as a primary

target for a number of previously proposed missions, the motion of spacecraft in the vicinity

of Phobos, or the capture orbit around Phobos, is investigated by a number of authors

who include the gravity from both Mars and Phobos. Chen et al. [  79 ] as well as Wallace

et al. [ 80 ] utilize the Mars-Phobos CR3BP, where the retrograde orbits around Phobos are

computed. Other authors, including Zamaro et al. [ 81 ] and Wang et al. [ 82 ], investigated

higher-fidelity models by utilizing Mars-Phobos elliptic restricted three body problem to

account for the eccentricity of Phobos and to incorporate the irregular gravitational field

of Phobos. As these previous works prove that both Phobos and Mars gravity must be

included to facilitate transition to higher-fidelity model, the Mars-Phobos CR3BP and the

Mars-Deimos CR3BP are considered for the capture orbits around Phobos and Deimos,

respectively. More specifically, Lyapunov orbits around Mars-Phobos L2 and Mars-Deimos
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(a) JCSM = JCSM,Earth

(b) JCSM = 3.00020000 < JCSM,2 (c) JCSM = 3.00020000 < JCSM,2
zoomed-in

(d) JCSM = JCSM,Deimos zoomed-
in

(e) JCSM = JCSM,Deimos further
zoomed-in

(f) JCSM = JCSM,P hobos zoomed-
in

(g) JCSM = JCSM,Deimos further
zoomed-in

Figure 5.1. Zero velocity surface and the forbidden region corresponding to
different energy levels
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Sun
Mars

Phobos

(a) Tour schematic (recreated from Canales et al. [ 78 ], Figure 11)

Phase 2: Heliocentric Leg
(Chapter  4 )

Phase 3: Spiral-down (A)
(Section  5.2 )

Deimos Science Orbit
(Section  5.1.2 )

Phase 4: Spiral-down (B)
(Section  5.3 )

Phobos Science Orbit
(Section  5.1.2 )

(b) Labels and relevant sec-
tions

Figure 5.2. Sequence of a Martian tour with a low-thrust engine
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L1 are considered. Note that it is still assumed that Deimos and Phobos are centrobaric; the

irregular shapes of the moons are not considered in the current investigation.

For the Phobos capture option, libration point orbits around the Mars-Phobos L2 are

considered. Figures  5.3(a) and  5.3(b) illustrate the L2 Lyapunov and halo orbit families in

the Mars-Phobos CR3BP, respectively, plotted in the Mars-Phobos CR3BP rotating frame.

The color scheme represents the variation of Jacobi constant of the Mars-Phobos CR3BP,

JCMP , along the orbit, where the same color corresponds to the same JCMP for two plots.

Even though halo orbits are spatial, the energy level is associated with similar spectrum as

the planar, Lyapunov orbit. The energy of these libration point orbits is also investigated in

the Sun-Mars CR3BP system with JCSM , as shown in Figure  5.4 . For the starting epoch at

Jan 1st of 2023, the initial states of the orbits are rotated into the Sun-Mas CR3BP along

1000 equally spaced times for one year and JCSM is computed as the average over the 1000

sampled times. Note that across all members of the both families, the maximum variation

in JCSM is less than 5e − 5, two orders smaller than the difference of the Jacobi constant

of both moons. This small variation implies that any member of the two families would

result in similar results with respect to the associated propellant consumption and time of

flight; they represent similar options viewed from the larger scale in the Sun-Mars CR3BP

system. For this investigation, the capture orbit is selected to be a member of the family

with JCMP = 3.000023, illustrated in black arc in Figure  5.3(a) . Again, it is emphasized that

the results demonstrated in the following sections can be easily extrapolated to any other

members of the both families in Figures  5.3(a) and  5.3(b) . The initial state of the selected

Phobos capture orbit, and period as well as the associated Jacobi constants in relevant

CR3BP system are included in Table  5.4 .

Next, for the Deimos exploration, the capture option is represented as the Mars-Deimos

L1 orbits in the Mars-Deimos CR3BP. Applying the preceeding reasoning here, it is deduced

that any member of the Mars-Deimos L1 Lyapunov or halo orbit families result in orbits

with similar level of energy in the Sun-Mars CR3BP. The selected orbit is associated with

the Jacobi constant in Mars-Deimos CR3BP as 3.000005, but the costs obtained with this

orbit can be extrapolated to any other members of the same family. The data for the selected

Deimos science orbit are provided in Table  5.3 .
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(a) Mars-Phobos L2 Lyapunov orbit family with the
selected capture orbit (Recreated from [ 78 ], Figure
6(a))

(b) Mars-Phobos L2 halo orbit family (Recreated
from [ 78 ], Figure 6(b))

Figure 5.3. Mars-Phobos L2 libration point orbit families: Lyapunov and halo
orbit families

Figure 5.4. JCSM variation of the Mars-Phobos L2 Lyapunov and halo orbit families
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Figure 5.5. Mars-Deimos L1 Lyapunov orbit family with the selected capture orbit

107



It is noted that the selected capture orbits are unstable by the Lyapunov criterion, and

the spacecraft departs the capture orbits within few revolutions unless stationkeeping ma-

neuvers are employed. However, these capture orbits are utilized as an intermediate science

orbits, from which another capture orbit with desired characteristics [ 83 ] or landing on the

moons [ 84 ] is achieved. The current work focuses on the selected capture orbits that are

representative of the libration point orbits around Mars-Phobos L2 and Mars-Deimos L1.

The other kind of option considered by previous authors is the flyby opportunities enabled

by resonant orbits. The resonant orbits are represented with p : q ratio, where p denotes the

number of revolutions of the spacecraft around Mars and q denotes the number of revolutions

of moons around Mars for the same time. For example, 2 : 1 Mars-Deimos resonant orbit

refers to an orbit that completes two revolutions around Mars while Deimos completes one

revolution. Many previously proposed missions include the resonant orbits to obtain flyby

opportunities for the moons. The PADME mission [  85 ] proposes repeated flybys of Phobos

through Mars-Phobos resonant orbits (MP-ROs) and flybys of Deimos through Mars-Deimos

resonant orbits (MD-ROs), where a number of intermediate ∆V s are required to adjust the

apoapsis and periapsis of the orbits around Mars. Total of 16 Phobos flybys and 9 Deimos

flybys are obtained, where the altitudes of flybys vary from 2km to 10km for both moons,

and the relative velocities vary from 0.946km/s to 2.27km/s for the Phobos flybys, and

0.643km/s to 1.016km/s for the Deimos flybys. Gonzales-Franquesa et al. [ 86 ] survey a range

of MD-ROs that can be potentially utilized for Deimos exploration of the MMX mission.

1 : 1, 2 : 1, 3 : 1, 2 : 3, 3 : 5 MD-ROs are analyzed that offer relative velocities between

377m/s and 1223m/s with the altitudes of flybys ranging from 100km to 1000km. Note that

the previous authors focused on the Mars-Deimos resonant orbits computed in the Mars-2B

dynamics, where the flybys may not occur at the apsis of the resonant orbits. For the current

investigation, resonant orbits that exist in the Mars-Phobos CR3BP and the Mars-Deimos

CR3BP are considered for the flyby opportunities. The CR3BP resonant orbits are periodic

in the respective CR3BP dynamics models, where the flybys of the moons occur only at

one of the apsis. For example, for the CR3BP MP-ROs plotted in Figure  5.6 , Phobos flybys

occur at the periapsis of the orbit, illustrated in Figure  5.6(b) .
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Of course, as the spacecraft spends most of the time in a resonant orbit that does not

provide science opportunities of a moon except during the flyby, the flyby option provide

less science gain compared to the capture option. However, the key concept behind utilizing

the flyby orbits is that without strictly matching the energy level of the spacecraft to that

of the moon, the spacecraft is nonetheless able to observe the target moon. For example,

the investigated capture orbits in Tables  5.4 and  5.3 are associated with closer energy levels

measured as JCSM , to the respective moons compared to the flyby orbits. Thus, energy-wise,

it is cheaper to employ flyby orbits instead of the capture orbits. Despite the opportunity

to gain access to the moons with less adjustment of energy, it is yet associated with a neg-

ative factor; the flyby opportunities are obtained essentially by introducing a non-negligible

eccentricity to the Mars-centered orbits. For the Phobos flyby orbits, the periapsis of the

orbit are fixed at the Phobos radius from Mars, while different levels of eccentricity can be

introduced for larger apoapsis and thus greater energy that implies less energy adjustment

from the Deimos science orbits. Assuming that the spacecraft departs from the Deimos cap-

ture orbit that is associated with negligible eccentricity of the moon itself, the maneuver

from a low-thrust engine is required to gradually change the eccentricity of the trajectory to

target the value of the Phobos flyby orbit. Thus, a major trade-off exists between the energy,

measured as JCSM , and the eccentricity around Mars, in the Mars-2BP system. Although

Phobos and Deimos reside in different planes and the low-thrust maneuvers are required to

change the inclination and direction of the orbit, it is noted that significant portions of the

maneuvers are required to correct the energy, JCSM , and the eccentricity, eK .

For the Phobos flyby option, the Mars-Phobos resonant orbits in the Mars-Phobos

CR3BP are considered. As an infinite number of resonant orbits exist depending on the

combination of p and q of the p : q ratio, it is necessary to narrow down to a fewer families

of the resonant orbits to facilitate analysis. Considering the sequence of the exploration, i.e.,

Deimos first and then Phobos, it is reasonable to assume that p < q, such that the resonant

orbits have bigger energy than Phobos, or a smaller JCSM . Then, a series of resonant orbits

are selected so that p = q − 1 for 2 ≤ q ≤ 5. Although the selected Mars-Phobos resonant

orbit families do not represent all possible configuration of the resonant orbit families, they

are sufficient to illustrate the relationship between the p : q ratio and the costs associated
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with the transfer from the Deimos science orbit to the Phobos science orbit. For a larger

p/q ratio, the energy gap from the Deimos science orbit is larger, but the shape of the flyby

orbit becomes more circular. Among the selected 1 : 2, 2 : 3, 3 : 4 and 4 : 5 MP-RO families,

the members that are associated with the flyby altitude of 3.73km are selected and plotted

in Figure  5.6 . The MP-RO with the largest ratio, 4 : 5 corresponds to the option where

the flyby orbit is associated with a smaller eccentricity but a larger energy gap from the

Deimos science orbit. Vice a versa, 1 : 2 represents the option is associated with less energy

difference from the Deimos science orbit but also a significant eccentricity. The numbers of

the MP-ROs for the energy, JCSM , and the eccentricity, eK are included in Table  5.4 . FA,

FV, and OW refer to flyby altitude, flyby velocity, and observation window, respectively.

Observation is defined as the radius of Deimos divided by the flyby velocity.

(a) Mars-Phobos rotating frame view (b) Selected Phobos flyby orbits: zoomed-in view
near Phobos

Figure 5.6. Selected Phobos flyby orbits: Mars-Phobos 1 : 2, 2 : 3, 3 : 4, and
4 : 5 resonant orbits

The flyby option of Deimos using MD-ROs in the Mars-Deimos CR3BP is extensively

investigated by Canales et al. [  78 ], where the candidate resonant orbits are selected among a

large number of resonant orbit families depending on the impulsive engine costs associated

with the transfer trajectories from the resonant orbits to a Phobos L2 Lyapunov orbit. This

investigation adopts the same members of the previous work that provide Deimos flybys at

the altitude of 17.257 km, which is closer compared to the orbits investigated by Gonzales-
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Franquesa [  86 ] but is farther than the ones proposed for PADME [  11 ]. The selected three

MD-ROs are demonstrated in Figure  5.7 , where Figure  5.7(a) illustrates MD-ROs as well

as the Phobos’s orbit in the Mars-Deimos rotating frame. The zoom-in view near Deimos is

plotted in Figure  5.7(b) .
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(a) Mars-Deimos rotating frame view (b) Selected Deimos flyby orbits: zoomed-in view
near Deimos (recreated from Canales et al. [ 78 ], Fig-
ure 5

Figure 5.7. Selected Deimos flyby orbits: Mars-Deimos 2 : 1, 3 : 2, and 5 : 4
resonant orbits
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5.2 Phase 3: Spiral-Down (A)

The spiral-down (A) arc connects the incoming heliocentric trajectory to each Deimos

science orbit. As the the vicinity of the Martian system is governed by Sun and Mars gravity,

the Sun-Mars CR3BP is utilized to compute the first type of arc. Specifically, an anti-velocity

steering law in the Sun-Mars CR3BP is employed to generate spiral-down (A), where the s/c

is thrusting with the maximum thrust magnitude in the direction opposite to the rotating

velocity. Thus, the low-thrust term in Eq. (  2.102 )-( 2.104 ) is evaluated as follows: T̄ = T v
|v| ,

where v denotes the rotating velocity of the s/c in the Sun-Mars CR3BP. This steering law

offers a minimum time of flight for a given difference in JCSM , and is a useful reference

value for the cost associated with a specified time of flight and propellant consumption,

corresponding to arrival at a Deimos science orbit. From each Deimos science orbit, the

trajectories are propagated in reverse time with the anti-velocity steering law until the value

of the Jacobi constant reaches a threshold value JCSM = 3.00018 < JCSM,L1 ≈ 3.00020,

or when the energy is sufficient to open the L1 gateway. Although this strategy offers a

limited control over the targeted quantity, it can be coupled with a differential corrections

scheme to produce feasible and optimized trajectories from the Earth vicinity to connect to

the heliocentric leg to generate an end-to-end trajectory. Since back-propagating from the

Deimos science orbit assumes that the remaining mass of the spacecraft upon the arrival at

the orbit a priori, it is assumed that the remaining mass is m̃ = 150kg. It is also assumed that

the rest of the engine parameters are T̃ = 60mN and Ĩsp = 3000s. This set of parameters

are consistent with the numbers defined in Table  1.2 , as both sets produce similar levels of

maximum thrust.

Figure  5.8 illustrates a low-thrust arc connected to a heliocentric leg that enters the

Martian system through the Sun-Mars L1 gateway, where the arrival state corresponds to

JCSM = 3.00018, the threshold value. Thus, the anti-velocity steering law provides useful

estimates of the costs associated with arriving at the Deimos science orbits given the dif-

ference in the energy of the s/c along a heliocentric path and the energy of the s/c in the

Deimos science orbits. The corresponding costs, measured as the time of flight and the pro-
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pellant consumption for spiral-down (A) are included in Table  5.5 . The ∆V corresponds to

the equivalent ∆V , computed as,

∆V = Ĩspg̃0 ln m̃0

m̃0 −∆m̃, (5.1)

where m̃0 and ∆m correspond to the initial mass before the spiral-down (A) arc, and the

consumed mass, respectively. The threshold value for JCSM can be adjusted for different

set of reference values, but the order of the costs of the spiral-down (A) corresponding to

each Deimos science orbit remains the same, as the costs depend heavily on the JCSM of

the Deimos science orbit. It is noted that the costs may vary depending on the epoch, since

the Deimos science orbit states are defined in the Mars-Deimos CR3BP rotating frame, and

should be rotated into the Sun-Mars CR3BP rotating frame in the respective epochs. The

costs included in Table  5.5 are computed as the mean value over 365 Earth days, starting

from Jan 01, 2022.

Figure 5.8. Spiral-down (A) example in the Sun-Mars CR3BP rotating frame
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5.3 Phase 4: Spiral-Down (B)

Another arc with multiple of revolutions is introduced to connect the Deimos science

orbits to the Phobos science orbits, defined as the spiral-down option (B) in Figure  5.2(a) .

Since all the Deimos science orbits are periodic in the Mars-Deimos CR3BP, the spiral-

down (B) is solved independently from the spiral-down (A). A spiral-down (B) arc differ

from an (A) arc due to an additional boundary constraint on the final state along the arc

that coincides with the state of the Phobos science orbit that is defined in the Mars-Phobos

rotating frame. The initial and final states are defined in different rotating frames, i.e., Mars-

Deimos CR3BP rotating frame and Mars-Phobos CR3BP rotating frame, respectively, and

it may be considered as a rendezvous problem; Phobos should be at the desired location

at the end of the spiral-down (B) arc for the spacecraft to arrive at the final state defined

in the Mars-Phobos CR3BP rotating state. An algorithm capable of incorporating multiple

revolutions as well as the terminal rendezvous constraint is required, as the state along the

manifold or the MP-RO changes with the epoch when it is rotated into the inertial frame.

Note that this is equivalent to targeting all six elements of the target object while also

controlling the time of flight of the transfer.

As an alternative method to the previously developed techniques, a methodology that

combines a Lyapunov feedback controller, Q-law [  48 ], and direct collocation [ 60 ] is devel-

oped. The difference of the proposed method to the previously investigated strategies is that

it generates rendezvous trajectory with multiple revolutions over 50, while incorporating

third body gravity from the Sun and the moons over a reasonable computation time. While

pairing a controller with the direct collocation algorithm are proposed by a number of authors

including Betts [  87 ] and Shannon et al. [ 88 ], it is noted that the rendezvous requirement is

not dealt in these investigations. The history of state and control along the spiral-down (B)

arc generated by Q-law is introduced as an initial guess for the direct collocation process, by

which the rendezvous is achieved and also the trajectory is optimized. First, the assumptions

on the spiral-down (B) arcs are provided, and the dynamical model is recast to the Gaus-

sian Variational Equations to facilitate generation of an initial guess. The Q-law algorithm
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is briefly summarized, followed by a step-by-step description of the interface between the

algorithms.

5.3.1 Assumptions

Additional assumptions on the spiral-down (B) arc are introduced for a consistent analy-

sis. The resulting trajectory for the spiral-down (B) trajectory depends on the exact locations

of the departure and arrival along the Deimos and Phobos science orbits that are periodic in

the respective CR3BP system. First, for the Phobos capture orbit, or the Mars-Phobos L2

Lyapunov orbit plotted in black from Figure  5.3(a) , is associated with a planar stable mani-

fold in the Mars-Phobos CR3BP. The manifold offers a dynamical channel through which the

spacecraft arrives at the Phobos capture orbit without maneuver. To utilize this advantage,

the final state for the Phobos capture orbit is defined as the state along the stable manifold

of the Phobos capture orbit where the gravity from Phobos is small enough to be neglected.

This threshold radius from Phobos, also called the sphere of influence (SoI), and follows the

definition by Canales et al. [ 77 ]. The threshold distance is computed at the location along the

x̂ axis of the respective CR3BP rotating frame, where the ratio of the gravity force from the

second primary, or the moon, to the first primary, Mars, is equal to 5× 10−4. Following this

definition, the radii of Phobos’s SoI and Deimos’s SoI are 174km and 158km, respectively.

Similarly, for the Deimos capture orbit, or the selected Mars-Deimos L1 Lyapunov orbit il-

lustrated in Figure  5.5 , the initial state is defined as the state along the unstable manifold

of Deimos with the same definition of the SoI ratio. The intersection between the manifolds

and the SoI of the moons result in a portion of arc of the SoI, enabling infinite choices of the

boundary states.

The low-thrust maneuvers of spiral-down (B) are required to close the gaps between the

energy as well as the eccentricity, or the shapes, of the Phobos and Deimos science orbits.

From this perspective, the manifold is deemed as a natural flow that utilizes the gravity

of the second primaries, the moons, to adjust the energy of the state of the spacecraft.

Figure  5.10 illustrates the trade-off of the energy and eccentricity change along the manifold

for both moons. The x-axis of the plots indicate the different locations along the periodic

orbit where the spacecraft transitions to the manifolds. For the Deimos capture orbit, it is
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desirable if the unstable manifold provides the decrease in the energy such that the energy

level is closer to that of Phobos, or the increase of JCSM . But as apparent from Figure

 5.10(a) , the arc of the manifold that provides maximum “boost” in energy also changes the

eccentricity by the largest amount. As the capture orbits are nearly circular around Mars,

it is considered desirable to minimize the variation of the eccentricity so that the transfer

depends less on the relative phasing of the moons. Thus, the arc that provides minimum

change in the eccentricity, that also provides minimum change in the energy is selected and

plotted in Figure  5.9(a) . Vice a versa, for the Phobos capture orbit manifold, decrease in the

energy is desired but is in the trade-off between the eccentricity. From the similar reasoning,

the arc that provides minimum eccentricity change is selected and plotted in figure  5.9(b) .

(a) Selected departure state for the Deimos capture
orbit, along the unstable manifold from the selected
capture orbit

(b) Selected arrival state for the Phobos capture or-
bit, along the stable manifold into the selected cap-
ture orbit

Figure 5.9. Departure and arrival states along the manifolds at the SoIs of the moons

For the flyby orbits defined as the Mars-Deimos or Mars-Phobos resonant orbits in Table

 5.4 and  5.3 , the departure and arrival locations are illustrated in Figure  5.7(b) and  5.6(a) .

For the Mars-Deimos resonant orbits, the spacecraft is assumed to depart from the apse that

is closer from Deimos, and for the Mars-Phobos resonant orbits, the spacecraft is assumed

to depart from the apse that is farther from Phobos in order to avoid numerical problems

that may occur when trying to target a state very close to Phobos. Finally, the departure

epoch, JD0, is fixed for every investigated scenario to be Nov 12th, 2021.
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(a) Tradeoff of Deimos captur orbit, unstable mani-
fold

(b) Tradeoff of Phobos captur orbit, stable manifold

Figure 5.10. Tradeoff between energy and eccentricity of different arcs along
the manifold: JCSM and eK variations depending on different locations of the
departure from and arrival at the capture orbits.
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5.3.2 Gaussian Variational Equations

For the initial guess of low-thrust trajectories between the martian moons, it is advanta-

geous to initially consider only the Martian gravity that results in a Keplerian motion of the

spacecraft. This simplification allows the description of the spacecraft state with Keplerian

elements: aK , eK , iK , ΩK , ωK , and νK , where the six elements stay constant without any

perturbing forces. Introducing the low-thrust engine thrust as the only perturbing force, the

Gaussian variational equations (GVE) are obtained [ 49 ], where the rates of change of the

six orbital elements are represented as functions of the orbital elements and the perturbing

low-thrust acceleration terms, i.e.,

daK
dt̃

= 2a2
K

h2

(
eK sin νK

T̃r
m

+ p

r

T̃t
m

)
(5.2)

deK
dt̃

= 1
h

(
p sin(νK) T̃r

m
+ ((p+ r) cos νK + re) T̃t

m

)
(5.3)

diK
dt̃

= r cos(νK + ωK)
h

T̃h
m

(5.4)

dΩK

dt̃
= r sin(νK + ωK)

h sin iK
T̃h
m

(5.5)

dωK
dt̃

= 1
eK + h

(−p cos νK
T̃r
m

+ (p+ r) sin νK
T̃t
m

)− r sin(νK + ωK) cos iK
h sin iK

T̃h
m

(5.6)

dνK
dt̃

= h

r2 + 1
eh(p cos νK

T̃r
m
− (p+ r) sin νK

T̃t
m

), (5.7)

(5.8)

where p = aK(1 − e2
K), h =

√
G̃m̃Marsp, and r = p/(1 + e cos ν). The thrust components,

T̃r, T̃t, and T̃h, are represented in the local-vertical local-horizontal (LVLH) frame,

¯̃T = T̃rr̂ + T̃tĥ+ T̃hĥ, (5.9)
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where the unit vectors are defined as,

r̂ =
¯̃R12

R̃12
(5.10)

ĥ =
¯̃R12 ×

Id ¯̃R12
dt̃

| ¯̃R12 ×
Id ¯̃R12
dt̃
|

(5.11)

t̂ = ĥ× r̂, (5.12)

where ¯̃R12 corresponds to the vector defined in Equation ( 2.2 ), and is the position vector

from the central body, Mars, to the spacecraft. Two thrusting angles α and β are defined as,

α = tan−1 T̃t

T̃r
(5.13)

β = sin−1 T̃h

T̃
, (5.14)

to result in,

T̃r = T̃ cos β sinα (5.15)

T̃t = T̃ cos β cosα (5.16)

T̃h = T̃ sin β. (5.17)

With GVE, a many-revolution low-thrust trajectory problem is recast into a two-body prob-

lem, where low-thrust engine accelerations are utilized to control the orbital elements to

target the elements of the destination orbit. It is noted that the right sides of Equations

( 5.2 )-( 5.7 ) are not explicit functions of time, t̃.

Although the rates of change of the orbital elements are coupled with thrust in three

directions, some orbital elements are more strongly affected by a portion of the directions

and are conceptually separated. The angles iK and ΩK are only coupled with the out-of-

plane direction thrust, T̃h. Additionally, when eK is small, the rate of change of aK is under

a greater influence of T̃t, or the tangential direction thrust, compared to the radial direction

thrust, T̃r. The eccentricity, eK , is coupled with both T̃r and T̃t, but the the relative influence

they have on eK depends strongly on the true anomaly, νK , especially when eK is small. If
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the spacecraft is at a location where | sin νK | > 2| cos νK |, the radial direction thrust T̃r has

generally more influence on the eccentricity compared to T̃t. When eK is small, while aK is

mainly changed via T̃t, eK is changed via both T̃t and T̃r. And for the investigated scenarios,

the eK is small near departing from or approaching the capture orbits of the moons. It

is noted that the portion of T̃r compared to T̃t may serve as an indirect indication of the

maneuvers that are required to change the eccentricity, while portion of T̃h compared to the

thrust magnitude, T̃ , indicates the maneuvers needed to change the orbital plane, iK and

ΩK .

5.3.3 Q-law

The Q-law algorithm used in this investigation is originally presented by Petropoulos

[ 48 ], and part of this section is a restatement of his work. A Q-law control strategy utilizes

a candidate Lyapunov function, Q, to quantify the distance from the osculating orbital

elements to the target orbital elements,

Q = (1 +WPP )
∑
œ
WœSœ

(
d(œ,œT )

œ̇xx

)2

, (5.18)

where œ represents the osculating orbital elements and œT denotes the target elements,

except for the true anomaly, i.e.,

œ = aK , eK , iK ,ΩK , ωK (5.19)

œT = aK,T , eK,T , iK,T ,ΩK,T , ωK,T . (5.20)

Note that all six osculating orbital elements follow the equations of motion described by

Equations ( 5.2 )-( 5.7 ) that depend only on the osculating elements as well as the low-thrust

engine acceleration. P represents the minimum periapsis constraint and takes the form as,

P = exp
(
k(1− rp

rp,min
)
)
, (5.21)
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where k is a scalar, rp and rp,min are osculating periapsis radius and the minimum periapsis

radius, respectively. The term WP denotes a scalar weight for the penalty function. Next,

Sœ corresponds to a scaling function that prevents the aK from diverging from the target

value, and takes the form,

Sœ =


(

1 + (aK−aK,T

c1aK,T
)c2

)1/c3

for œ = aK

1 for œ = eK , iK ,ΩK , ωK ,

(5.22)

where the user-selected constants c1, c2, and c3 are defined as 3, 4, and 5, respectively, follow-

ing Petropoulos’s definition. The function d(œ,œT ) denotes the distance from the osculating

elements to the target elements, defined as,

d(œ,œT ) =


œ−œT for œ = aK , eK , iK

d(œ,œT ) = cos−1
(

cos(œ−œT )
)

for œ = ΩK , ωK ,
(5.23)

where cosine functions for ΩK , ωK are introduced to search for distances that are smaller

than 180◦. Next, œ̇xx refers to the maximum rate of change of the orbital elements given the

current œ, that is achievable by constantly thrusting at the maximum level, and depends on

the direction of the force, α, β, as well as the location along the osculating Keplerian orbit,

νK , i.e,

œ̇xx =


max
α,β,νK

(œ̇) for œ = aK , eK , iK ,ΩK

max
α,νK

(œ̇|β=0) for œ = ωK ,

(5.24)

where Petropoulos introduced a simplifying assumption to ωK that β = 0, due to the com-

plexity of the right hand side of Equation ( 5.6 ) [ 89 ]. Note that the analytical expressions

for œ̇ are provided in Petropoulos [  48 ]. Finally, Wœ denotes the user-defined scalar weights,

or control gains, for each orbital elements, greater than or equal to zero. As it determines

the priority of the elements to be targeted, different combinations of the gains for result in

significantly varying performance. While an outer-loop genetic algorithm can be utilized for
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gain tuning and to obtain globally optimal solution of the inner-loop Q-law algorithm, [ 90 ],

it remains out of the scope of the current investigation. Therefore, the gains for all five target

elements are set to be 1 for an unbiased formulation.

Equation ( 5.18 ), Q, denotes the distance of the osculating orbital elements to the target

orbital elements, measured as the square of the estimated time that is required for the tar-

geting. Note that it is not an actual measure of the time, but an overly optimistic projection

since the distance for each element is divided by the corresponding maximum rate of change

achievable. And this maximum value for each element occurs at different set of α, β, νK val-

ues and cannot be reached simultaneously for all œ. Since when Q becomes zero, the target

orbital elements are achieved, the goal is to minimize the time rate of change of Q at each

instant, i.e.,

dQ

dt̃
=
∑
œ

∂Q

∂œ
dœ
dt̃
, (5.25)

where minimizing dQ
dt̃

results in decreasing Q in the fastest way until Q becomes zero. It is

noted that Q is not an explicit function of time, t̃. Instead, it is a function of the thrusting

angles α and β at each instant, and is re-written as [ 91 ],

dQ

dt̃
= D1 cos β cosα +D2 cos β sin β +D3 sin β, (5.26)

where D1, D2, and D3 are the partial derivatives of Q with respect to each thrust component,

i.e.,

D1 =
∑
œ

∂Q

∂œ
∂œ
∂T̃t

(5.27)

D2 =
∑
œ

∂Q

∂œ
∂œ
∂T̃r

(5.28)

D3 =
∑
œ

∂Q

∂œ
∂œ
∂T̃h

. (5.29)
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Then, the optimal thrusting angles, α∗, β∗ that minimizes dQ
dt̃

is computed as,

α∗ = tan−1
2 (D2,−D1) (5.30)

β∗ = tan−1( −D2√
D2

1 +D2
2

), (5.31)

where tan−1
2 is a four quadrant arctangent. Note that the partial derivatives of the orbital

elements with respect to the thrust components are readily available from Equations ( 5.2 )-

( 5.7 ). The partial derivatives ofQ with respect to the orbital elements, on the other hand, may

be difficult to obtain. In this investigation, finite difference method is utilized to compute

the derivatives. Although Q-law, in its simplest form, is efficient in generating a possible

transfer between two orbits, it fails to target the fast-variable (true anomaly), implying

that it cannot specify the exact location along the destination orbit where the spacecraft

arrives at. Moreover, the time of flight along a trajectory generated with Q-law is unknown a

priori; thus, the Q-law algorithm by itself cannot handle a rendezvous problem. This poses a

problem since in this analysis, for the spacecraft to arrive at the Phobos science orbit, both

the true anomaly of the s/c along the Phobos science orbit at the arrival and the time of

flight for the spiral-down arc should be specified. This investigation overcomes this challenge

by leveraging direct collocation, and the trajectory generated with Q-law only serves as an

initial guess and remains a preliminary transfer solution.

An example of this preliminary solution generated with the Q-law algorithm is illustrated

in Figure  5.11 . First, the departure state from the Deimos science orbit, 5:4 MD-RO in the

example, is rotated into the MARSIAU frame to be converted into the oscualating Mars-2BP

orbital elements at JD0. Then, the the state of Phobos is retrieved from the ephemerides

at an epoch 30 days later from JD0, and is converted to Mars-2BP orbital elements. Then,

all the Phobos’s orbital elements except for the true anomaly become the target orbital

element, œT for the Q-law algorithm. The Q-law algorithm produces a transfer geometry in

Figure  5.11(a) , where the yellow and the red circles correspond to the state of Phobos at the

final epoch and the final state of the Q-law trajectory, respectively. Indeed, the algorithm

fails to target the true anomaly. Figure  5.11(b) illustrates the time history of the orbital

elements of the Q-law trajectory. It is noted that the elements gradually approach the target
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elements through by continuously thrusting at the maximum level with the Q-law controller.

As Q-law only approaches the target elements asymptotically, it is possible that the process

takes significantly long time to arrive at the targeted elements. To prevent this behavior, the

tolerances for each element are introduced, below which the Q-law algorithm stops targeting

that element by setting the respective gain to zero [ 88 ]. 1km, 0.001, 0.001◦, 0.001◦, 0.001◦ have

been utilized in this investigation for aK , eK , iK ,Ω, ω, respectively. Again, it is emphasized

that the time of the flight of the Q-law algorithm is not known a priori.

(a) Geometry of the transfer in the MARSIAU frame

(b) Time history of the orbital elements of the transfer trajectory

Figure 5.11. An example of the preliminary transfer solution generated with
the Q-law algorithm
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5.3.4 Interface

Recall that the main challenge with a Q-law control approach for the application of the

spiral-down (B) scheme is that it fails to target the true anomaly of the s/c upon its arrival

at the Phobos science orbit. To address this deficiency, the results from Q-law are now passed

to a direct collocation algorithm that not only accommodates the Phobos rendezvous, but

also serves as an optimizer under the higher-fidelity ephemeris model. The algorithm that

interfaces the Q-law control history and the direct collocation targeting is described with

the following steps:

1. The initial state from a selected Deimos science orbit, is rotated into the MARSIAU

frame at the initial epoch, JD0. The position and velocity components in the MAR-

SIAU frame are converted to the osculating Keplerian elements in the same frame and

utilized as the initial œ for the Q-law algorithm.

2. The final state, defined as either the state along the stable manifold associated with the

Phobos capture orbit when it crosses the SoI for Phobos (Figure  5.9(b) ) or the state

along the Phobos flyby orbits (Figure  5.6(a) ), is converted into the osculating orbital

elements in the Mars-2BP at an estimated final epoch, JDf,est. These elements serve

as the target variables for the Q-law guidance process. The position of this final state

in a Mars-centered inertial frame is represented as the yellow circle in Figure  5.12(a) .

JDf,est is provided by the user with the estimates on the time of flight the transfer

requires from JD0, can be adjusted by trial and error.

3. A preliminary transfer from the elements of the initial state to the target elements of

the final state is generated with the Q-law algorithm. As a result, the state and control

history for this transfer is constructed, where the position history is represented as the

dotted purple arc in Figure  5.12(a) .

4. Since Q-law fails to target the true anomaly, the location at the end of the preliminary

transfer (red circle in Figure  5.12(a) ) does not coincide with the anticipated final state.

This discrepancy in positions is accommodated by shifting the yellow circle closer to
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the red circle by selecting a different final epoch. This new final epoch is determined

via the equation,

JDf,new = arg min
JDf

| ¯̃R12,Qf − ¯̃R12,f (JDf )| (5.32)

Here, ¯̃R12 denotes a position vector of the spacecraft with respect to Mars in the

MARSIAU frame. The additional subscripts f and Qf correspond to the actual final

state to be targeted (yellow circle in Figure  5.12(a) ) and the final location along the

preliminary transfer generated with the Q-law strategy (red circle in Figure  5.12(a) ),

respectively. Note that ¯̃R12,f depends on the final epoch, JDf , since the epoch deter-

mines the location of Phobos as well as the location of the final state in the MARSIAU

frame. On the contrary, ¯̃R12,Qf is computed once from the preliminary transfer of the

Q-law algorithm and is constant over different epochs, which is a valid assumption if

the osculating orbital elements of Phobos around Mars do not change substantially

over the period between JCf,est and JDf,new. Then, Eq. (  5.32 ) is equivalent to deter-

mining a new final epoch that minimizes the distance between the final state at the

final epoch, ¯̃R12,f (JDf ), represented as the yellow circle, and the final location (the red

circle) along the original trajectory generated with the Q-law guidance scheme, ¯̃R12,Qf ,

represented as the red circle.

5. The difference between the estimated and the new final epoch is defined as ∆JDf =

JDf,new − JDf,est. An intermediate Mars-centered conic arc, with a period equal to

∆JDf , is introduced. Then, the semi-major axis corresponding to this period is com-

puted as aK,I = (G̃m̃Mars∆JD2
f )1/3, where G̃m̃Mars the gravitational parameter of

Mars included in Table  2.1 . When the aK from the Q-law preliminary solution crosses

aK,I , one revolution of the corresponding conic, i.e., the blue arc in Figure  5.12(a) , is

inserted into the state history of the state generated by Q-law. As the s/c spends more

time on this conic, the distance between ¯̃R12,Qf and ¯̃R12,f is minimized. It is noted

that as the preliminary solution from the Q-law is not an explicit function of time,

inserting one revolution of an intermediate conic does not shift the final state of the

Q-law preliminary trajectory, ¯̃R12,Qf . The key is to utilize the Q-law algorithm once
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and to utilize that information, as time of flight of the Q-law algorithm shifts every

time it is solved again.

6. The state and control histories, including the intermediate ballistic conic, is discretized

to form an initial guess for the direct collocation scheme, as illustrated in Figure  5.12(b) .

Each revolution of the spiral-down arc is discretized into five to ten segments. And the

orbital elements history from the Q-law algorithm is converted into the Cartesian states

in the MARSIAU frame, i.e., position and velocity. For better scaling, the states are

nondimensionalized using Mars-Deimos CR3BP characteristic quantities included in

Table  2.1 . While the orbital elements are not utilized within the direct collocation

algorithm to avoid singularity issues and thus position and velocity are employed in-

stead, it is possible to utilize modified equinoctial elements to circumnavigate the issue,

investigated by Shannon et al. [  88 ]. It is noted that the thrust vector of each segment

is still defined in the LVLH frame to facilitate convergence,

uLV LH,i =
[
Ti ur,i ut,i uh,i

]
, (5.33)

where Ti corresponds to the nondimensional thrust magnitude over each segment, and

each of the control component at each segment is defined as,

ur,i = T̃r

T̃
(5.34)

ut,i = T̃t

T̃
(5.35)

uh,i = T̃h

T̃
. (5.36)

Subsequently, the initial guess is computed for a feasible solution where the trajec-

tory is continuous along all segments while satisfying the boundary conditions. The

ephemeris model incorporating Sun, Mars, Phobos and Deimos is utilized for verifica-

tion of the strategy. The feasible solution is then optimized for propellant consumption.

An example of an optimized solution is plotted in Figure  5.20(a) .
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(a) Preliminary transfer generated with Q-law (b) Discretized state and control for direct collocation

Figure 5.12. Interfacing Q-law and direct collocation for generating spiral-down (B)
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The above steps consist the interface between the Q-law control and the direct collocation

targeter, and succeed in acquiring optimized transfers from each Deimos science orbit to the

Phobos science orbit. The associated costs are included in Table  5.5 . Again, ∆V corresponds

to the equivalent ∆V computed as ∆V = Ĩspg̃0 log (m̃0/(m̃0 −∆m)).

5.4 Results

The resulting geometries in different frames and the thrust histories are illustrated in

Figures  5.13 - 5.20 . Each figure consists of six plots associated with different information. The

spiral-down (A) arc is not demonstrated due to the similar geometry where it gradually spiral

in from the heliocentric leg, represented in Figure  5.8 . Taking the capture to capture scenario

as an example, the first plot in Figure  5.13(a) demonstrates the orbits of the moons and the

spiral-down (B) arc in the MARSIAU inertial frame. It is followed by the history of the

thrust magnitude and thrust components in the LVLH frame along the transfer, illustrated

in Figure  5.13(b) . Recall that the initial guess from the Q-law algorithm has consistent

maximum thrust throughout the transfer, and the regions where the the thrust magnitude is

not maximum are the results of optimization via the direct collocation algorithm. The thrust

magnitude is nondimensionalized with respect to the maximum thrust, and the y axis of the

plot corresponds to the ratio of the thrust with respect to the maximum level of thrust. The

thrust components in the LVLH are associated with which of the orbital elements are changed

at the given time along the transfer trajectory, via Equations (  5.2 )-( 5.7 ). The following plot

in Figure  5.13(c) corresponds to the view in the Mars-Deimos CR3BP rotating frame, where

Figure  5.13(d) provides a zoomed-in view near Deimos to illustrate the departure from the

Deimos science orbit. It is noted that the Deimos science orbits are also computed in the

ephemeris model including Sun, Mars, and the moons. The spiral-down (B) arc appears to

be in a counter-clockwise motion in the Mars-Deimos rotating frame. The last two plots in

Figures  5.13(e) and  5.13(f) correspond to the views in the Mars-Phobos CR3BP rotating

frame, where the latter corresponds to the view near the vicinity of the Phobos to illustrate

the arrival at the Phobos science orbit through the manifold, or at the MP-RO. The Phobos

science orbits are computed in the same ephemeris model as well. The spiral-down (B) arc

is in a clockwise motion in the Mars-Phobos CR3BP rotating frame.
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5.4.1 Capture to Capture Scenario

For the Deimos capture orbit to the Phobos capture orbit scenario (Figure  5.13 ), the

spiral-down (B) arc connects the initial and final states defined as the unstable and stable

manifold crossings at Deimos’s SoI and Phobos’s SoI (Figure  5.13(d) and  5.13(f) ), respec-

tively. The geometry of the transfer exhibits little variations in the eccentricity, as both the

Deimos and Phobos capture orbits are associated with small eccentricities in the MARSIAU

frame. This tendency is also indirectly illustrated in the thrust profile in Figure  5.13(b) ,

where the portion of the thrust in the radial direction is relatively small compared to other

scenarios that involve science orbits with non-negligible eccentricities (Figure  5.14(b) and

 5.15(b) ).

5.4.2 Capture to Flyby Scenario

For the Deimos capture orbit to the Phobos flyby orbit scenario (Figure  5.14 - 5.17 ), the

Mars-Deimos CR3BP rotating frame view also illustrates one period of the selected MP-RO.

Note that as orbits of Phobos and Deimos around Mars have a period ratio of approximately

1 : 4, apparent from the values in Table  2.1 , the 1 : 2 MP-RO and 3 : 4 MP-RO also appear

to have repeating geometries in the Mars-Deimos CR3BP rotating frame (Figure  5.14(c) and

 5.16(c) ), whereas the other two ratios, 2 : 3 and 4 : 5 do not appear to be periodic in the

same frame (Figure  5.15(c) and  5.17(c) ). It is noted that the eccentricity of the Phobos flyby

orbits decreases as the p/q ratio increases. The portion of the radial direction thrust T̃r tends

to decrease as the p/q ratio increases as well for the selected epoch, JD0. The spiral-down

(B) arcs corresponding to this scenario originate from the end of the unstable manifold of

the Deimos capture orbit at Deimos’s SoI, and finally arrive at the apoapsis of the Phobos

flyby orbits.

5.4.3 Flyby to Capture Scenario

The Deimos flyby orbit to the Phobos capture orbit scenario options are illustrated

in Figures  5.18 - 5.20 . The MD-ROs have repeating geometries in the Mars-Deimos CR3BP

rotating frame. And due to the orbital period ratio between Phobos and Deimos, 2 : 1 MD-
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RO appears to be periodic in the Mars-Phobos rotating frame as well, while orbits with

different ratios, 3 : 2 MD-RO and 5 : 4 MD-RO do not have repeating geometries in the

Mars-Phobos CR3BP rotating frame. It is apparent that due to the eccentricity of 2 : 1

MD-RO, significantly more portion of the maneuvers are in the radial direction, compared

to the less eccentric 5 : 4 MD-RO. The spiral-down (B) arcs all originate from the periapsis

of the MD-ROs, and arrive at the end of the stable manifold of the Phobos capture orbit at

Phobos’s SoI.

5.4.4 Concluding Remarks

A capability of the framework to generate the tour trajectories of the Martian moons

utilizing a low-thrust engine is developed. The sequence of the exploration is fixed to be in

the order of Deimos and Phobos. The science orbits for each moon are defined to be either

capture or flyby orbits. Three scenarios, (1) Deimos capture to Phobos capture, (2) Deimos

capture to Phobos flyby, and (3) Deimos flyby to Phobos capture are examined, and the

associated costs corresponding to both types of arc, (A) and (B), are included in Table  5.5 .

The costs are represented with the propellant consumption, ∆m, the equivalent ∆V , and

the time of flight, TOF . As the spiral-down (A) assumes a constant thrust at the maximum

level, and the initial guess for spiral-down (B) from the Q-law algorithm also assumes the

maximum thrust, ∆m and TOF are generally proportional, where variations may result from

the optimization of the spiral-down (B) arcs for the propellant consumption. As the total

time of flight combined for both types of arcs, (A) and (B), is much smaller than the time

of flight of the Earth to Mars trajectory, more fuel efficient trajectories may be obtained in

exchange for more time of flight.

The capture to capture scenario represents a tour option that offers the maximum science

gain from both moons, as it offers an opportunity to orbit around both Phobos and Deimos.

For the capture to flyby scenario, both 1 : 2 and 4 : 5 MP-ROs offer similar level of propellant

savings compared to the capture to capture scenario. It is noted that 4 : 5 offers more time

for the observation (Table  5.3 ) of Phobos, and may be preferred to 1 : 2. The propellant

saving from utilizing the flyby option for Phobos is approximately 10%. The best candidate

orbit for the flyby to capture scenario is 5 : 4 MD-RO, where it results in about 3% saving
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of propellant. If this propellant saving is deemed negligible compared to the extra science

gain from orbiting around both moons, the capture to capture scenario may be preferred to

the scenarios where the spacecraft is captured by one of the moons but only visits the other

through flybys.

It is noted that the costs in Table  5.5 are bound to the simplifying assumptions regarding

the spiral-down (B) trajectories. From the dynamics perspective, Mars and the moons are

assumed to be centrobaric, and the potential eclipse from Mars for the spacecraft is ne-

glected. Also, the locations of the departure from and arrival at the science orbits are fixed

for consistent analysis, that may be removed for further optimization of the costs. More

importantly, the initial epoch of the departure, JD0, is fixed for all investigated options,

which may restrict the generalization of the obtained costs since the relative phasing as well

as the relative orientation of the orbital planes of the moons heavily depend on the epoch.

Despite these restrictions from the underlying assumptions, the values in Table  5.5 may sup-

port potential low-thrust tour missions in the Martian system by providing a set of reference

values.

134



(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.13. Deimos capture orbit to Phobos capture orbit
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.14. Deimos capture orbit to Phobos flyby orbit, 1 : 2 MP-RO
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.15. Deimos capture orbit to Phobos flyby orbit, 2 : 3 MP-RO
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.16. Deimos capture orbit to Phobos flyby orbit, 3 : 4 MP-RO
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.17. Deimos capture orbit to Phobos flyby orbit, 4 : 5 MP-RO
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.18. Deimos flyby orbit, 2 : 1 MD-RO, to Phobos capture orbit
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.19. Deimos flyby orbit, 3 : 2 MD-RO, to Phobos capture orbit
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(a) Spiral-down (B) in MARSIAU frame (b) Thrust history

(c) Spiral-down (B) in Mars-Deimos CR3BP rotat-
ing frame

(d) Zoomed-in view near Deimos

(e) Spiral-down (B) in Mars-Phobos CR3BP rotat-
ing frame

(f) Zoomed-in view near Phobos

Figure 5.20. Deimos flyby orbit, 5 : 4 MD-RO, to Phobos capture orbit

142



T
ab

le
5.

5.
T

he
co

st
s

as
so

ci
at

ed
w

ith
ea

ch
op

tio
n

of
th

re
e

sc
en

ar
io

s
of

to
ur

:
(1

)
ca

pt
ur

e
to

ca
pt

ur
e,

(2
)

ca
pt

ur
e

to
fly

by
,a

nd
(3

)
fly

by
to

ca
pt

ur
e

Sc
en

ar
io

R
es

on
an

t
O

rb
it

Ph
as

e
3:

Sp
ira

l-d
ow

n
(A

)
Ph

as
e

4:
Sp

ira
l-d

ow
n

(B
)

(A
)

+
(B

)

∆
m

[k
g]

∆
V

[m
/s

]
T

O
F

[d
ay

s]
∆
m

[k
g]

∆
V

[m
/s

]
T

O
F

[d
ay

s]
∆
m

[k
g]

∆
V

[m
/s

]
T

O
F

[d
ay

s]

C
ap

tu
re

to
C

ap
tu

re
-

4.
89

94
4

27
.7

5
4.

19
*

83
4*

36
.1

4
9.

08
17

78
63

.8
9

C
ap

tu
re

to
Fl

yb
y

1:
2

4.
89

94
4

27
.7

5
3.

31
*

65
6*

28
.6

4
8.

20
16

01
56

.4
0

2:
3

4.
89

94
4

27
.7

5
3.

33
*

66
0*

31
.0

8
8.

22
16

05
58

.8
4

3:
4

4.
89

94
4

27
.7

5
3.

66
*

72
6*

33
.1

2
8.

55
16

71
60

.8
8

4:
5

4.
89

94
4

27
.7

5
3.

31
*

65
7*

28
.6

4
8.

20
16

01
56

.4
0

Fl
yb

y
to

C
ap

tu
re

2:
1

7.
10

14
31

40
.3

1
4.

43
*

92
8*

31
.4

6
11

.5
3

23
59

71
.7

7

3:
2

6.
00

12
05

34
.0

7
3.

62
*

75
2*

25
.9

8
9.

63
19

57
60

.0
6

5:
4

5.
47

10
96

31
.0

2
3.

35
*

69
3*

25
.4

8
8.

82
17

89
56

.4
9

143



6. END-TO-END TRAJECTORY DESIGN

The strategies discussed the preceding chapters are combined to generate an end-to-end

trajectory between the Earth and the tour of the Martian moons. A higher-fidelity model

that incorporates the gravity of the Sun, Earth, Moon, Mars, and Martian moons is utilized

to validate the multi-phase framework illustrated in Figure  1.1 . Note that an end-to-end

trajectory consists of four distinct phases, where Phase 2 and Phase 4 are separately discussed

in Chapters  4 and  5 , respectively. The current chapter provides the method to generate the

rest of the trajectory, Phase 1 and 3, and the steps to convert the piece-wise solutions to an

end-to-end trajectory. Each step is illustrated with an exemplary scenario, and the resulting

end-to-end trajectory is plotted in different coordinate frames and the associated costs are

provided.

6.1 End-to-End Trajectory Design Process

The process of generating an end-to-end trajectory is discussed in detail. It is illustrated

in Figure  6.1 , consisting of five steps.

6.1.1 Selecting a Pair of Epochs for Phase 2

The process is initiated by a user-provided pair of the epochs for the departure and arrival

of the heliocentric leg, or Phase 2. The selected pair is illustrated in Figure  6.2(a) , where

the departure epoch is selected as 08/08/2026 and the arrival epoch is 500 days after the

departure date. The optimal transfer corresponding to this point is plotted in Figure  6.2(b) .

While the rest of the example proceeds with this selected pair, it is noted that any point

of the colored region of the contour plot may be utilized instead. Figure  6.1(a) illustrates

the schematic for the current step, where the selected pair of the epochs, JDD and JDA,

are assigned to the interface points between Phase 1/2 and Phase 2/3, respectively. Note

that the vertical dotted lines of the schematic correspond to the interface points between the

phases.
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Phase 1 Phase 2 Phase 3 Phase 4

Earth Martian system

(a) Selecting a pair of epochs for Phase 2

time

(b) Generating Phase 1 and 3 trajectories

Sun-2B

(c) Reconverging Phase 2

(d) Reconverging Phase 1 through 3

(e) Reconverging Phase 4

Figure 6.1. The steps of constructing an end-to-end trajectory
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(a) Selected pair of epochs from the contour plot

(b) Selected heliocentric leg in the Sun-centered ECLIPJ2000
frame

Figure 6.2. The selected pair of epochs and the corresponding heliocentric leg
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6.1.2 Generating Phase 1 and 3 Trajectories

The heliocentric leg plotted in Figure  6.2(b) is generated between the exact states of the

planets in the heliocentric space, also denoted the rendezvous condition. Under this strategy,

it is impossible to incorporate the gravity of the Earth and Mars as the trajectory coincides

with the planetary states at both end points. Thus, realistic planetocentric spiral arcs must

be computed, between which the heliocentric leg is generated again within the higher-fidelity

model. These arcs correspond to Phase 1 and Phase 3 according to the multi-phase formu-

lation of the current investigation, illustrated in Figure  1.1 . These arcs are generated via

simple control laws, following the assumptions in Table  1.1 .

For Phase 1, or the spiral arc that departs from the Earth, a velocity-aligned control

law is utilized. However, it is first necessary to define the exact state of the spacecraft upon

the departure along the initial orbit. The current work assumes the departure from a GTO,

where the definition of the specific GTO utilized is introduced in Table  6.1 , where the orbital

elements are computed with respect to the J2000 frame. The set of values corresponds to a

GTO with an apogee at the geostationary orbit (35,622 km altitude) and a perigee at 1,000

km altitude which appears in a relevant work by Ojeda Romero and Howell [ 92 ]. Note that

the the orbital plane of the GTO coincides with the mean Earth equator plane as plotted

in Figure  6.3 in the Earth-centered J2000 frame. It is further assumed that the spacecraft

departs from the perigee of the GTO, illustrated as the red point in the same figure. With

this assumption, the position and velocity at the beginning of Phase 1 is parameterized as

a function of JDI , or the initial epoch at the GTO departure. Note that the initial mass is

not a function of time, and is fixed as 409.8 kg, following the value from Table  1.2 . Given a

JDI value, the initial state is fully determined and Phase 1 arc is computed by propagating

the differential equations from the dynamical model, the higher-fidelity ephemeris model.

The thrust magnitude is fixed at the maximum value, and the direction is aligned with

the direction of the velocity in the Sun-Earth CR3BP rotating frame. The duration of the

propagation is given as the time difference between JDD and JDI . Thus, the end state of

Phase 1, under the current formulation, only depends on JDI which needs to be properly

selected. Recall that the contour plot in Figure  6.2(a) is generated with an assumption that

147



the gravity of the Earth is ignored at the beginning of the heliocentric arc. This escape

condition is enforced at JDD, or at the interface point between Phase 1 and 2 to find a

suitable initial epoch, JDI . To this end, the end state of Phase 1 is obtained in the Earth-

centered ECLIPJ2000 frame. The position and velocity magnitude are computed as R̃E and

ṼE. Then, the escape condition is equal to the following equation,

Ṽ 2
inf,E = 2( Ṽ

2
E

2 −
G̃m̃E

R̃E

) = 0, (6.1)

where Ṽinf,E is also denoted the Earth-2BP excess velocity and m̃E corresponds to the mass

of the Earth. The value of JDI that satisfies Equation ( 6.1 ) after propagating for JDD −

JDI is found by a differential corrector. The corresponding spiral arc around the Earth is

plotted in Figure  6.4 , where the end of the Phase 1 is associated with the selected JDD, and

corresponding states for position, velocity and mass define the beginning of the heliocentric

leg, or Phase 2. The spiral arc around the Earth is also represented as a black arrow from

the Earth in Figure  6.1(b) , where the red dot corresponds to the end of Phase 1 but also the

beginning of Phase 2.

For Phase 3, or the Mars-centered spiral arc, a similar process is repeated. From Chapter

 5 , it is assumed that the spacecraft arrives at one of the Deimos science orbits listed in

Table  5.3 . Here, for the demonstrative purpose, 5:4 MD-RO is selected, but the same process

applies to the other science orbits as well. For simplicity, the arrival state along the science

orbit is assumed to be the apoapsis from Mars. Then, it only requires two additional inputs

to specify the arrival state: the final epoch, JDF , and the final mass, m̃F , upon the arrival

at the Deimos science orbit. The largest difference between Phase 1 and 3 is the mass. While

at the beginning of Phase 1, the mass is fixed as the initial value of the spacecraft, the mass

value at the end of Phase 3 is not known a priori as it depends on Phase 1 and 2. Thus, the

final state of Phase 3 is a function of two variables that must be selected: JDF and also m̃F .

For a preliminary analysis, it is first assumed that m̃F is 95% of the mass value corresponding

to the end state of heliocentric leg in Figure  6.2(b) . Then, provided a value for JDF , the

arrival state along 5:4 MD-RO is fully determined and is back propagated for JDF − JDA,

or the time difference between the arrival epoch of the heliocentric leg and the final epoch.
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The thrust magnitude is fixed at the maximum available value, while the direction is in the

opposite direction of the velocity in the Sun-Mars CR3BP rotating frame. At the interface

point between Phase 2 and 3, it is desired that the spacecraft escapes the Martian gravity,

or,

Ṽ 2
inf,M = 2( Ṽ

2
M

2 −
G̃m̃M

R̃M

) = 0, (6.2)

where the subscript M refers to the values are computed with respect to Mars. R̃M and ṼM
correspond to the inertial position and velocity magnitudes in the Mars-centered ECLIPJ2000

frame. The value of JDF is iteratively searched such that at the end of the back propaga-

tion, or at the beginning of Phase 3, Equation ( 6.2 ) is satisfied. The computed spiral arc

around Mars is illustrated in Figure  6.5 , in the Sun-Mars CR3BP rotating frame. It is also

represented as the black arrow originating from the Martian system in Figure  6.1(b) , where

the direction of propagation is in reverse time.

Table 6.1. The orbital parameters of the Earth GTO
Orbital Parameters aK [km] eK [n.d.] ωK [◦] iK [◦]

Values 2.4689× 104km 0.70116 0 0

6.1.3 Reconverging Phase 2

The heliocentric leg is solved again utilizing the new boundary points linked to the

planetocentric spiral arcs. The heliocentric leg computed in the Sun-2BP, plotted in Figure

 6.2(b) , is utilized as an initial guess of its counterpart in the higher-fidelity ephemeris model.

This is illustrated in Figure  6.1(b) , where the dotted line corresponds to the solution for

Phase 2 computed in the Sun-2BP. The solution in the Sun-2BP is computed again in the

ephemeris model to link the boundary points of the spiral arcs while optimizing for the

maximum mass value at the end of the heliocentric leg. Note that between Phase 1 and 2,

the state and epoch continuity is achieved. However, between Phase 2 and 3, the position,

velocity and epoch continuity is obtained but the mass is discontinuous in general. From

Phase 2, the mass value at the interface point is an optimized variable and cannot be exactly
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Figure 6.3. The GTO and the departure location (Earth-centered J2000 frame view)

Figure 6.4. Phase 1 and the new departure state for Phase 2 (Sun-Earth
CR3BP rotating frame view)
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Figure 6.5. Phase 3 and the new arrival state for Phase 2 (Sun-Mars CR3BP
rotating frame view)
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targeted, and from Phase 3, the value depends on m̃F . This discontinuity necessitates the

next step.

6.1.4 Reconverging Phase 1 through 3

As the computed trajectory involves the discontinuity in mass at the interface point be-

tween Phase 2 and 3, the problem is solved again as a whole for continuity. The planetocentric

spiral arcs are parameterized by three variables. JDI fully determines Phase 1 arc, whereas

JDF and m̃F determine the Phase 3. A differential corrector is employed to search for these

three variables while simultaneously solving for a feasible heliocentric leg, Phase 2, such that

the continuity of state end epoch is achieved at the interface points. This step is illustrated

in Figure  6.1(d) , where now the trajectory is continuous at all locations throughout Phase

1, 2, and 3. Note that the resulting trajectory is suboptimal, due to the assumptions in gen-

erating the planetocentric arcs, i.e., simple control laws are employed and the solution space

explored by the optimizer is restricted. Although it is possible to further optimize the result,

since the planetocentric arcs involve multiple revolutions around the planets, it is observed

that only little improvements are achieved while requiring long computation times. Instead,

the Phase 1 and 3 can be discretized and incorporated into the direct collocation scheme,

but this approach remains out of the scope of the current investigation.

6.1.5 Computing Phase 4

The state of the spacecraft at the interface point between Phase 3 and 4 is retrieved.

Utilizing this value as well as the final epoch, JDF , the tour trajectory between the Martian

moons, Phase 4, is computed. The method is explained in Chapter  5 , where the results are

plotted in Figure  5.20 for the scenario between 5:4 MD-RO and the Phobos capture orbit. It

is possible that the spacecraft stays in the Deimos science orbit to achieve multiple Deimos

flybys. In this case, the epoch at the beginning of Phase 4 does not coincide with JDF . For

the example result, it is assumed that the spacecraft leaves the Deimos science orbit as soon

as the spacecraft arrives at 5:4 MD-RO.
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6.2 Results

The obtained end-to-end trajectory is illustrated in Figure  6.6 utilizing different coordi-

nate frames. Figure  6.6(a) illustrates the position of the spacecraft along the trajectory in

the Sun-centered ECLIPJ2000 frame. Note that the transfer also has spatial components,

but it is represented in the X̂EJ − ŶEJ plane. The different colors represent the trajectories

corresponding to each phase. Compared to the heliocentric leg plotted in Figure  6.2(b) , the

end-to-end trajectory is much longer as it incorporates the other phases before and after the

heliocentric leg. Figure  6.6(b) illustrates the vicinity of the Earth in the Sun-Earth CR3BP

rotating frame, where the Phase 1 arc spirals out from the GTO and is linked to the Phase

2 arc at JDD. Similarly, trajectory in the vicinity of Mars is plotted in Figure  6.6(c) where

the Phase 2 arc is interfaced with Phase 3 arc at JDA. The views of the tour trajectory are

available when this plot is further zoomed in near Mars, as in Figure  6.6(d) . JDF denotes

the interface point between Phase 3 and 4. When the Phase 4 trajectory is rotated, the

geometry of the tour of the moons becomes more apparent as illustrated in Figure  5.20 .

The corresponding costs, measured as the consumed propellant, equivalent delta-V, and

time of flight, are listed in Table  6.2 . These values are bound to the assumptions listed in

Table  1.1 as well as the selected pair of the epochs and the Deimos science orbit. It is noted

that the propellant consumption for the heliocentric leg, or Phase 2, decreased compared

to the Sun-2B solution as the optimizer leverages the gravity of the planets. Next to the

heliocentric leg, the spiral arc around the Earth accounts for the most significant amount

of propellant consumption as well as the time of flight. Similar mission scenarios where the

spacecraft departs from a GTO requires corresponding propellant and/or time of flight to

escape the Earth’s gravity.

Table 6.2. The costs of the sample end-to-end trajectory
m̃ [kg] ∆Ṽ [km] Time of flight [days]

Phase 1 81.4 3.766 178
Phase 2 86.2 5.180 500
Phase 3 12.5 0.900 27
Phase 4 9.4 0.714 26
Total 189.6 10.559 732
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(a) Sun-centered ECLIPJ2000 frame view (b) Sun-Earth CR3BP rotating frame view

(c) Sun-Mars CR3BP rotating frame view (d) Sun-Mars CR3BP rotating frame view
(Zoomed-in)

Figure 6.6. Sample end-to-end trajectory in differnt coordinate frames
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7. CONCLUSIONS

7.1 Investigation Summary

While the interest in the exploration of the Martian moons increases, the low-thrust

propulsion technology enables novel mission scenarios with smaller spacecrafts. The current

investigation focuses on the trajectory design challenges associated with one of such scenarios,

where a spacecraft departs from a GTO and finally explores both Martian moons utilizing

a low-thrust engine. The low-thrust trajectory design problem is set up within a multi-

phase framework, where simplifications are introduced to focus on the heliocentric leg (Phase

2) and the tour of the Martian moons (Phase 4). Design challenges associated with these

phases are defined and solved independently. Initial guesses are generated within two types

of lower-fidelity models, two-body problem (2BP) and the circular restricted three body

problem (CR3BP). Then, the direct collocation algorithm is utilized to obtain feasible as

well as optimal trajectories. Finally, the results from each phase are combined to a end-to-

end trajectory in the higher-fidelity ephemeris model, proving the validity of the framework.

7.1.1 Heliocentric Leg Design (Phase 2)

The heliocentric leg, or the transfer trajectory between the Earth and Mars in the helio-

centric space, accounts for a considerable amount of propellant consumption and needs to

be properly characterized. As the states of the planets in the heliocentric space are time-

dependent, multiple optimal control problems are constructed over a grid of the departure

epoch and the time of flight, in the Sun-2BP model. While the boundary constraints of

the problems consist of the planetary states obtained via the ephemerides, two initial guess

generation strategies that involve polynomial approximation and a continuation scheme are

provided. A contour plot is generated from the optimized trajectories over the grid to char-

acterize the heliocentric leg; the trend of propellant consumption over different relative con-

figurations of the planets is efficiently captured.
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7.1.2 Martian Moons Tour Design (Phase 4)

The structure of the tour of the Martian moons is discussed, where Deimos is visited first

prior to Phobos, considering the energy of the moons in the Sun-Mars CR3BP. The science

orbits for the moons are selected based on the capture and flyby exploration opportunities

they grant. The tour scenarios are then divided into (1) capture to flyby, (2) flyby to capture

and (3) capture to capture, and the transfer trajectories between the science orbits of the

moons are generated for each specific scenario. The main challenge for the transfer trajectory

design is the presence of the terminal rendezvous constraint between the spacecraft and the

Phobos science orbit while involving multiple revolutions of spiral arcs around Mars. To

address this challenge, a strategy that combines an initial guess generated via the Q-law

algorithm and the direct collocation algorithm is developed and explained. The proposed

strategy succeeds in obtaining transfer trajectories for all the investigated scenarios, and the

reference costs are generated assuming a set of spacecraft parameters. To better estimate

the costs associated with each scenario, the arrival costs from the heliocentric space to each

Deimos science orbit are included as well, generated with an anti-velocity control law (Phase

3).

7.1.3 End-to-End Trajectory Design (Phase 1 - 4)

The results obtained separately for Phase 2 and 4 are combined to generate an end-

to-end trajectory within a higher-fidelity ephemeris model. The steps of such process are

provided along with an illustrative example. First, a pair of departure and arrival epochs

of the heliocentric leg are selected. Planetocentric spiral arcs, corresponding to Phase 1

and 3, are incorporated to update the end points of the heliocentric leg. From the Earth’s

side, a velocity-aligned control law is employed to escape the gravity field of the Earth,

assuming departure from an initial state along a GTO. Similarly, an anti-velocity control

law is employed to back propagate a spacecraft state along a Deimos science orbit until

the spacecraft escapes the gravity of Mars. Then, the trajectories for Phase 1 through 3

are combined to be solved for a feasible solution, i.e., the position, velocity, mass, and the

epoch along the trajectory are continuous. And based on the final values of the Phase 3, the
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tour of the Martian moons, or Phase 4, is generated and completes the end-to-end trajectory

design. Although the resulting trajectory remains suboptimal, the validity of the multi-phase

framework proposed in the current investigation is confirmed via the end-to-end trajectory.

7.2 Recommendations for Future Work

This research effort proposes a multi-phase framework for the Earth to Martian moons

low-thrust trajectory design. Many avenues for future research are apparent, mainly related

to removing the simplifying assumptions introduced in the current work.

7.2.1 Low-Thrust Design Factors

The current analysis is bound to the low-thrust design factors listed in Table  1.1 . The

numbers provided in the current investigation correspond to a potential mission scenario

with departure from a GTO, while different departure scenario would introduce different

sets of values for the spacecraft numbers as well as the initial state. For the future work, it is

necessary to validate the multi-phase framework with the alternative scenarios to compare

the results. These scenarios include, but are not limited to, launch as a secondary payload

on interplanetary and cislunar missions.

7.2.2 Higher-Fidelity Analysis

The results of the current investigation may be validated within a more realistic model.

From an operational aspect, the low-thrust engine cannot provide thrust when the eclipse

occurs, or when the planets block the line-of-sight between the spacecraft and the Sun. It is

possible to update the direct collocation algorithm to detect the eclipse regions and enforce

the no-thrust constraint. Also, while the current analysis assumes that a constant amount of

power is available throughout the whole trajectory, it can be treated as a variable quantity

that mainly depends on the distance of the spacecraft from the Sun. And the rest of the

engine parameters, including the maximum thrust and the specific impulse, will also be a

function of the available power. Finally, all the celestial bodies are assumed to be centrobaric
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in the current work, but this assumption can be reconsidered in the vicinity of the planets

to incorporate the precise geopotential models.

7.2.3 Planetocentric Spiral Trajectories (Phase 1 and 3)

Phase 1 and 3, corresponding to the departure from the Earth and arrival at Mars,

respectively, are generated with simple control laws in the current investigation. For a more

complete analysis, the trade-off between the time of flight and propellant consumption for

the arcs must be analyzed. Either a parametrized model [  22 ] or fully discretized model of

the spiral arcs [ 87 ] can be utilized to navigate the trade-off relationship. And the knowledge

about the relationship can be leveraged to further optimize the end-to-end trajectory to

locate a solution associated with desirable costs: time of flight and propellant consumption.

7.2.4 Low-Energy Transfers for the Heliocentric Leg (Phase 2)

The Sun-2BP is mainly utilized for the the characterization of heliocentric leg in the

current investigation. Previous authors introduce low-energy transfers between the Earth

and Mars where the gravity of the Sun and the planets are considered together to produce

propellant-efficient trajectories [ 93 ], [ 94 ]. Future studies may involve exploiting dynamical

structures in the multi-body dynamics regime to characterize low-energy transfers between

the Earth and Mars.

7.2.5 Different Martian Moons Science Orbits (Phase 4)

Different science orbits may be considered when specific science requirements are im-

posed to a potential mission. These may include, but are not limited to, the minimum

altitude constraint from the moons, a window for observation of the surface, and the re-

quired stationkeeping maneuver for the spacecraft to stay within the orbit. The currently

introduced strategy for the tour of the Martian moons may be then validated with various

science orbits.
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