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ABSTRACT

Volumetric cloud generation and rendering algorithms are well-developed to meet the

need for a realistic sky performance in animation or games. However, it is challenging to

create a stylized or designed animation for volumetric clouds using physics-based generation

and simulation methods in real-time.

The problem raised by the research is the current volumetric cloud animation controlling

methods are not art-directable. Making a piece of volumetric cloud move in a specific way

can be difficult when using only a physics-based simulation method. The purpose of the

study is to implement an animating method for volumetric clouds and with art-directable

controllers. Using this method, a designer can easily control the cloud’s motion in a reliable

way. The program will achieve interactive performance using parallel processing with CUDA.

Users will be able to animate the cloud by input a few vectors inside the cloud volume.

After reviewing the literature related to the real-time simulation method of clouds, tex-

ture advection algorithms, fluid simulation, and other processes to achieve the results, the

thesis offers a feasible design of the algorithm and experiments to test the hypotheses. The

study uses noise textures and fractional Brownian motion (fBm) to generate volumetric

clouds and render the clouds by the ray marching technique. The program will render user

input vectors and a three-dimension interpolation vector field with OpenGL. By adding or

changing input vectors, the user will gain a divergence minimization interpolation field. The

cloud volume could be animated by the texture advection technique based on the interpola-

tion vector field in real-time. By inputting several vectors, the user could plausibly animate

the volume cloud in an art-directable way.
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1. INTRODUCTION

Many video games need a natural phenomena simulation to provide users a more realistic

scene and a better immersive experience. Cloud simulation can be used in video games

to improve sky scenes or weather systems. Though there are ways to simulate the cloud

without considering it as volume, it is more difficult to offer a correct scattering effect inside

the cloud. A common way to simulate the cloud is to treat it as volume and perform volume

rendering. Most volumetric cloud generation processes will use noise textures to imitate the

unpredictable shape of real clouds. Volumetric cloud rendering systems can be calculated fast

enough on modern computers to provide real-time rendering. The cloud will look massive

under volume rendering, and the viewport can move inside the cloud just like flying through

real clouds on an airplane.

1.1 Problem

Video game companies have made some improvements in the cloud generation and ren-

dering process in these years. For example, the dynamic atmosphere system in Red Dead

Redemption 2 Bauer [1 ] and the real-time cloudscapes in Horizon: Zero Dawn Schneider [2 ]

are both chasing for realistic. The generation and rendering process from Bauer and Schnei-

der are well developed, and the clouds rendering results are realistic enough. However, those

methods can only work for natural weather systems or skyboxes, which means they can not

generate clouds in a specific shape or animate the cloud by design. The animation industry

or some video games production need more stylized and controllable clouds. Physics ele-

ments will have different shapes and move differently in those animation or games but still

feel real. For example, in the short film Kevin and Peter [3 ], the clouds gather as the shape

of giants and are acting like humans. Figure 1.1 shows the character in this film.

The clouds will partially blow when the giants move their bodies, making the cloud gi-

ants look reliable. Animations and rendering for films are generally calculated offline, but

the previsualization of visual effects usually uses real-time rendering. If animators can test

and generate models or motions for those elements in real-time, it will be more convenient.

Moreover, the idea of a combination of realistic elements performance and controllable an-
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Figure 1.1. Cloud giant in Partly Cloudy

imation is also a potential technique in real-time areas, such as video games. But current

cloud generation and rendering methods used for games do not have enough art-directable

controllers to simulate clouds’ animation. To create real-time animations for clouds, people

will use particle systems, fluid simulation, or flow maps. But those methods are either only

applicable for single spots, not easy to control, or not flexible. Using particles can not dis-

play complex flowings of clouds, such as the convective phenomenon. Fluid simulation is the

most precise method but mostly controlled by physics parameters, such as temperature and

humidity. Those parameters are not directly related to motions. Flow maps are generated

ahead by fluid simulation and stored in textures. They could provide complex and looping

flow motions, but users can not modify the flow map in real-time. Users can not get real-time

responses from a simulation base on flow maps. In a word, those current solutions are not

both look real and art-directable.

In general, the problem addressed by this project is that current real-time volumetric

cloud animation controlling methods are not art-directable.
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1.2 Purpose

The purpose of the study is to implement an animating method for volumetric clouds

and with art-directable controllers, meaning that a designer can easily control the cloud’s

motion in a reliable way.

1.3 Significance

Although physics-based simulation of clouds can provide realistic results, achieve a spe-

cific cloud shape or movement is not easy only based on simulation. “Animators need to

adjust many non-intuitive parameters manually by a trial-and-error process [4 ].” Stam [5 ]

implemented methods to solve Navier-Stokes equations using both Lagrangian and implicit

methods, which propose a stable algorithm to solve the full Navier-Stokes equation for the

first time. Stam used his method to render volumetric clouds as well, but his method can

not shape the cloud in specific ways or animate them. Parameters of Stam’s method and

other physics-based methods are mostly about viscosity, diffusion rate, and dissipation rate.

Changing those parameters makes it hard to generate a certain shape of clouds or control

the movement. Figure 1.2 shows some physics-based volumetric clouds generated by Stam.

Hong and Kim [6 ] generate a shape control method that can fill the volume clouds into a cer-

tain shape. The filling process is still physics-based, which means solving the Navier-Stokes

equations. Figure 1.3 shows one of their results. It looks good, but their method took 21

minutes to compute and 1 minute per frame to render. Besides controlling the motion or

creating art-directable controllers for animators, Hong et al.’s method aims to set the start

and end shape of the cloud and let fluid simulation fill the blank. But, changing between

specific shapes does not have universal usages in cloud animation. A more direct solution of

controlled the cloud’s animation without fluid simulation will save more time. So, developing

an algorithm that helps animators easily edit the cloud’s motion in real-time is significant.
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Figure 1.2. Physics-based simulation clouds from Stam [5 ]’s thesis

Figure 1.3. Physics-based simulation clouds from Hong and Kim [6 ]’s thesis

1.4 Research Question

Following questions need to be answered to develop the deliverable:

How to generate volumetric clouds?

How to make art-directable modifications to the cloud?

How to render the result to the screen?

How to identify and analyze the result of the clouds?
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1.5 Hypothesis

Vector field interpolation with divergence minimization combined with advection will be

able to produce a plausible cloud animation while giving artist control over the final result.

1.6 Project Deliverable

The study’s deliverable will be an executable CUDA program. A volumetric cloud and

a vector field will render on the same screen. The cloud animation is based on the vector

field, and the vector field is calculated from user inputs. Users can input multiple vectors

from the main UI window and adjust the cloud’s parameters. The program will calculate a

divergence-free interpolation vector field from these vectors to simulate the cloud’s movement

without running a fluid simulation. Figure 1.4 shows the user interface design of this study.

Figure 1.4. An design of the user interface of this study

1.7 Assumptions

The assumptions for this study include:

The researcher will assume that each test’s personal computer can support the real-

time rendering requirement and render the game in equal visual qualities.
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The researcher will assume the personal computer used in tests has Nvidia GPU and

the correct CUDA version to run the executable files.

1.8 Limitations

The limitations for this study include:

For the algorithm developed in this study, the clouds’ detail level will be limited by

the textures’ scale and fBm parameters.

The calculating speed will be limited by the CPU and GPU of the personal computer.

The quality of the rendering result will be limited by the GPU and monitor of the

personal computer.

The value of the interpolation result is not guaranteed to be totally divergence-free

on some specific inputs.

Some inputs will cause aliasing animation due to the interpolation results.

The density of the volumetric cloud is not conservative during the animation.

1.9 Delimitations

The delimitations for this study include:

No rendering or lighting model improvement of the cloud will be achieved in this

research. The scope of the research is the modeling and animating of volumetric clouds. So,

the researcher will use the current lighting method implemented by Lague [7 ], with different

parameters.

Only volumetric clouds will be implemented in this research, which means the cloud

is 3D and rendered by the ray marching process.

1.10 Definitions

In the broader context of thesis writing, we define the following terms:

Ray marching A technique used for visualizing three-dimensional data by casting rays

from the camera and accumulating color for each ray [8 ]. In this research, ray marching is

used for volumetric cloud rendering.
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Texture advection Advection is the process by which a fluid’s velocity transports itself

and other quantities in the fluid [9 ]. ” Texture advection is a technique to solve advection

by trace each point of the texture backward in time when sampling [5 ]. In this research,

texture advection is used for volumetric clouds animating.

Vector interpolation a process that does scatter data interpolation [10 ] in a vector

field.

Perlin noise a type of gradient noise developed by Ken Perlin in 1999.

Worely noise a procedural noise developed by Steven Worley in 1996.

fBm a method that adds up the value from different channels multiple with different

weights.

CUDA a development environment provided by NVIDIA for parallel computing, which

can solve many complex computational problems more efficiently on NVIDIA GPUs than

on a CPU. [11 ]

Host refers to CPU and its memory when mentioned in CUDA. [12 ]

Device refers to the GPU and its memory when mentioned in CUDA. [12 ]

ImGui an open-source graphical user interface for C++ used in this study.

1.11 Summary

The problem raised by this research is that a pure physics-based simulation of volu-

metric clouds can not provide a flexible controller to designers and animators in real-time.

The purpose of this study is to implement an real-time art-directable method for users to

interactively animate volumetric clouds.
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2. REVIEW OF LITERATURE

The literature review will include methods of generating and rendering volumetric clouds

and methods of achieving art-directable modeling and animation of clouds and other fluids.

2.1 Art-directable Methods For Fluids Animating and Modeling

2.1.1 Animating methods for water

From these two interview video [13 ], [14 ] between Brian Tong, senior editor, and Kyle

Odermatt, visual effect supervisor from Disney, Kyle explain how they achieve the water

effect in Moana. Moana is a movie ”around water all the time” [13 ]. Besides making lots of

beautiful ocean scenes, those animators even show the ocean as a character [14 ]. The ocean

in Moana could grab stuff and people, nod, even give a high five (Figure 2.1 ).

Figure 2.1. The ocean gives Moana a high five

It looks like a giant soft crystal creature and has a realism splash and millions of water

drops bouncing around to show it is made of water. Figure 2.2 shows how animators combine

the ocean’s designed motion with those splash water drops and render the final scene with

the help of simulation.

First, animators use rigged models, those two gray meshes in the top picture, to represent

the ocean’s movement as a character. After they decide the central movement, they run water

simulation over those meshes and gain the position of each water drops around. Finally, they
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Figure 2.2. Processes of water rendering in Moana

render the final scene shown at the bottom with the help of multiple powerful computers.

It shows both the crystal-like ocean water body, which holds the flower, and small water

streams dripping down. Compare those pictures in Figure 2.2 , the white foam at the bottom

is generated from the blue particles.

2.1.2 Animating Methods For Cloud And Smoke

An interactive generation method had been published by Dobashi, Kusumoto, Nishita,

et al. [15 ]. By setting new edges of the volume cloud, the cloud will be generated and grow

to meet the edges. By setting a target contour line, they generate a 3D target shape. Their

simulation is controlled to minimize the difference between the current cloud shape and the

target shape. Dobashi, Iwasaki, Yue, et al. [4 ] improved their algorithm in 2008 and compared

the rendering result with real photos. The method of Dobashi et al. could generate unnatural

shapes of clouds. Figure 2.3 is an example of their result that they generated skull-shape

clouds. The color and light parameters could be adjusted to create multiple rendering results

realistically. Dobashi et al.’s method has a similar idea with Hong et al., setting the cloud’s

target shape and letting the fluid simulation fill the process. Dobashi et al. use physical

parameters to offer a basic force of the cloud. For example, they set a higher temperature

at the bottom of the scene to let the cloud rise.

Treuille, McNamara, Popović, et al. [16 ] implemented a key frame control for smoke

simulation. They let the user set keyframes for the smoke and formulate an objective function

to descript the difference between the simulation and the keyframe. Then solve the force

parameters which minimize that function. Their solution takes two to five hours to calculate

each simulation in 50 × 50 pixels. Figure 2.5 shows one of their results. The keyframe in
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Figure 2.3. Dobashi et al. generated a skull-shape cloud

this simulation is the pattern of the text “smoke”. Treuille et al. uses velocity vector field

as control parameters. McNamara, Treuille, Popović, et al. [17 ] use the adjoint method

to control large 3D physics-based simulation of fluid. They use the Gaussian wind forces

presented by Treuille et al. and add sources to their control parameters. McNamara et al.’s

method produces very close matches to the keyframes and works both for water and smoke.

However, their method takes hours, even days, to calculate. Figure 2.4 shows their result

of a man running animation with water and smoke simulation. Fattal and Lischinski [18 ]

implemented a target-driven method for smoke simulation. Their method concludes two

terms: a driving force term to carry the smoke towards the target state and a gathering

term to prevent over diffusion. Their method is much faster but can not provide a real-time

performance in 3D. Fattal et al.’s result is shown in Figure 2.5 .

Figure 2.4. McNamara et al.’s fluid control simulation with adjoint method
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Figure 2.5. Treuille et al.’s key frame control simulation

2.1.3 Modeling Methods For Clouds

Bouthors and Neyret [19 ] proposed a method to build the shape of cumulus clouds by

surface mesh and shaders. They filled the blobs with Perlin noise texture and used a view-

dependent shader to create a fuzzy edge.

2.2 Cloud Rendering Methods

2.2.1 Volume Rendering

Ikits, Kniss, Lefohn, et al. [8 ] offers an overview of volume rendering techniques. The

difference between volume models and regular mesh models is that volume models can show

the inside details rather than the surface. Volume models assume that “light is emitted,

absorbed, and scattered by a large number of particles in the volume [8 ]”. Cloud is a volume

because it is made of plenty of tiny water drops, and those water drops will absorb and

scatter light passing the cloud. Instead of the regular shading method of mesh objects, a

technique called ray marching will be used to see the inside of a volume. Ray marching

provides an accumulated result for each ray passing the volume, but the calculation process

will vary on different scattering and lighting rules. Harris and Lastra [20 ] provided a physics-

based rendering method for static clouds, including light scattering illumination, multiple

forward scattering, and eye scattering. The cloud rendering result of their algorithm includes
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shadows inside the cloud to make it realistic. However, the clouds in Harris et al. are a group

of 2D quads rather than a 3D volume. But the idea of Harris et al. is helpful for their future

works [21 ], which based on 3D clouds.

2.2.2 Cloud Generation Methods

For the generation process, Schpok, Simons, Ebert, et al. [22 ] used only Perlin noise to

model the clouds. Changing the parameters when adding the noise, Schpok, Simons, Ebert,

et al. [22 ] generated multiple types of clouds, such as cumulus and cirrus. Schneider [2 ] used

3D noise textures to generated volumetric clouds and rendered them by volume rendering.

Those textures fill with Worley noise in four channels, from low frequency to high frequency.

Moreover, a 2D texture to control the distribution of clouds in the sky. Hillaire [23 ] shared

the implementation in their game Engine, which also refers to the process of Schneider [2 ]

on the 2D cloud layer control and rendering process. Schneider’s method is working as a

skybox, so as Hillaire, the ray marching process is calculated between two hemispheres. By

accumulating the density and calculating the light scattering at each point with Beer-Powder

laws, each ray’s result will be rendered to the screen. The implementation of Lague [7 ] in

the Unity game engine renders the volumetric clouds inside a box by casting rays from the

camera and intersecting with a box in the scene [8 ]. Then accumulate the cloud density and

color from the front faces to the back faces of the box.

2.3 Physics-based Methods For Fluid Animating

2.3.1 Fluid Simulation

Stam [5 ] implemented methods to solve the Navier-Stokes equations using both La-

grangian and implicit methods, which propose a stable algorithm to solve the full Navier-

Stokes equation for the first time. Harris, Baxter, Scheuermann, et al. [21 ] also implement

a physics-based animate process based on the 3D clouds. However, their algorithm did not

support interaction between the users and the clouds. The simulation is based on the Navier-

Stokes equation, but they only show 2D results of clouds affected by the fluid. They used

a flat 3D texture technique that 2D texture contains all slices of the volume. Therefore, all
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slices could be updated in a single rendering pass. Their work shows a possible approach for

texture-based fluid simulation in cloud simulation. The physical model from Harris et al. is

based on what Stam did in 1999, the stable fluid simulation. Fedkiw, Stam, and Jensen [24 ]

use a fluid simulation equation for smoke simulation. Netzel and Weiskopf [25 ] implement

a texture-based visualization method of advection by blending noise texture and advected

texture.

2.3.2 Flowmap

Alex [26 ] introduced the usage of flow maps in their games. They generated a 2D flow

map based on their level geometry in Houdini by fluid simulation in advance. The flow map

provides unique 2D vectors for each point on the water surface. They use the flow map to

distort the water surface’s normal map, which provides real-time water flowing animation.

Simon [27 ] implements software to generate flow maps. However, the flow map generator

from Simon or Houdini can not finish generation in real-time, which means users can not

interact with the flow map by real-time inputs.

2.4 Divergence-free Vector Field Interpolation

A method for generating user-controllable vector fields that represent plausible wind

velocity fields is to impose physically constraints on the vector field. Arbitrary vector fields

are not plausible if they do not represent incompressible flow. One way of imposing this

constraint is to generate vector fields which are divergence-free. Yassine and McGraw [28 ]

and Yassine and McGraw [29 ] developed methods for interpolating tensor fields of arbitrary

order while imposing constraints on the divergence and curl of the resulting field. However,

these methods require that the interpolated data lie on a regular grid. To provide more

general artistic freedom to specify vectors at any location, a scattered-data interpolation

technique will be more useful. McNally [30 ] and Mitrano and Platte [31 ] develop matrix-

valued basis functions for generating scattered-data interpolation methods for divergence-free

vector fields in 2D and 3D.
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2.5 Texture Advection

Nelson, Roger, and Dean [32 ] discovered that advecting the cloud texture coordinates

helps visualize the impact of wind flow. Their study used a 3D texture to render the cloud

over a sphere and advected the texture by wind flow to simulate climate on earth. Yu,

Bruneton, Holzschuch, et al. [33 ] presents a Lagrangian method for advecting textures. Their

method takes a 2D velocity field and a Perlin noise texture as inputs and produces the noise

texture following the velocity field. Their method aims to avoid over distorts of the input

textures during advection. Figure 2.6 shows their method works for a climate simulation on

earth, which likes Nelson et al.’s result but in higher resolution. Neyret [34 ] implemented

an animated fluid method by combing layers of advected parameterizations to increase the

details of the animation.

Figure 2.6. Yu et al.’s method on 3D clouds
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3. METHODOLOGY

The methodology chapter presents the framework of the deliverable projects. It includes the

main workflow, code organization, and implementation details of each step.

3.1 Development Tools

The project is using OpenGL and CUDA. The version of OpenGL is 4.6, and the CUDA

version is 11.1. A computer needs to install a corresponding version of OpenGL and CUDA

and a Navida GPU card to run this project.

3.2 Research Approach

This research is developmental. An art-directable animating program of volumetric

clouds will be created based on the findings relevant to the proposed methodologies in the lit-

erature review chapter. The algorithmic implementation will use parallel computing, which

means doing lots of independent computing at the same time with the help of a GPU card.

The program expects the user to modify the volumetric cloud and set an appropriate

vector field before calculating the advection. The result of the cloud and vector field will

update and display per frame. Users can add input vectors into the vector field or set

fBm parameters. The program will calculate a divergence-free interpolation vector field and

adjust the clouds’ appearance based on the inputs. The result of the vector field and clouds

will be stored in a 3D buffer. After the user chose to start the advection calculation, the

program will stop updating the cloud’s appearance and calculate advection based on current

clouds. While calculating advection, the user can still modify the input vectors but can not

adjust the fBm parameters.

3.3 Project Framework

3.3.1 Working Flow

Figure 3.1 gives a flowchart of the primary process in the program. The program starts

from the preparation and initiation of multiple buffers. The preparation process includes
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malloc buffers on the host and device, including buffer storing the vector field and cloud

density, 3D noise textures, input vectors, interpolation matrix, and render texture. After

buffer malloc, the program will calculate the initial interpolation matrix based on the initial

input vector and copy the host’s data to the device. While running the main loop, the user

can use two switches to control the calculation and rendering processes, which lead to three

different CUDA kernels. Those kernels match three different program states: Shaping the

volumetric clouds, running the advection, pausing the advection.

In shaping the volumetric clouds state, the program will run the cloud generation (fBm)

kernel. The user can modify the vector field by adding or adjusting input vectors. The

program will solve the divergence-free interpolation matrix and update the buffer on the

device. The user can shape the cloud in this kernel by modifying the fBm parameters too.

The cloud’s shape will be stored as a 3D density buffer on the device. The kernel’s inputs are

vector field and cloud density data from the previous frame, user input vectors, interpolation

matrix, and fBm parameters. When updating the vector field, the kernel will call a device

function to calculate the interpolation value at the current position based on the coordinates

and inputs. The kernel will update the vector field and cloud density data.

In running the advection state, the program will run the advect kernel. The user can

still modify the vector field as the cloud shaping state and see real-time feedback. The user

can not shape the cloud anymore. The cloud density will advect based on the velocity values

from the current vector field. New density will be stored on the device. The kernel’s inputs

are vector field and cloud density data from the previous frame, user input vectors, and

interpolation matrix. The kernel will update the vector field and cloud density data.

In pausing the advection state, the program will run the pause kernel. The user can

only modify the vector field like previous states and see real-time feedback. The user can

not shape the cloud, and the cloud will not move. This state is designed for observing the

volume. The user can pause the advect calculation and rotate or scale the volume to observe

it under different views. The cloud density value will remain unchanged in the buffer. The

kernel’s inputs are as same as the advect kernel. The kernel will only update the vector field

data.

Implementation details for these functions will be present in the following sections.
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Figure 3.1. The main flowchart of the deliverable project in this research

3.3.2 Data Management

Table 3.1 lists and describe major data buffers used in this program, including the data

types, location (host or device), default scale and buffers’ function. The “Number” column

is for easier description. Each buffer only implements once in the project. The data type

includes vec3 and vec4 from the math lab, GLM.

Buffer name starts with “h” means the buffer is on the host, start with “d” means the

buffer is on the device. A device buffer can only read and write by device or global functions.

The program is passing only pointers of these buffers between functions.

Buffer 1 and 2 store the user inputs from the interface, including position, vector value,

and weight. The weight is a float value that and that controls the influence area of the vector

during interpolation. The program packs the vector value and weight as a vec4. Buffer 3

stores the interpolation matrix calculated by the host. The device functions need data in

buffer 1, 2, and 3 to calculate the vector field interpolation. So, buffer 4, 5, and 6 copy the

data from them and move to the device. Default scales of buffer 1 to 6 are all equal to 5.

The program will malloc the maximum scale for those buffers even the initiate input number

is one. The maximum scale number could be bigger, but this research aims to use fewer

controllers to achieve the art-directable animating process.
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Buffer 7 stores the data for user inputs display and bind to VBO, including vector value

and color. The buffer scale is four times the input vector because each vector needs four

vec3 to display: start position, start color, end position, and end color. This data is updated

and used only on the host.

Buffer 7 stores the data for user inputs display and bind to VBO, including vector value

and color. The buffer scale is four times the input vector because each vector needs four

vec3 to display: start position, start color, end position, and end color. This data is updated

and used only on the host. Buffer 8 stores the data for the vector field interpolation display.

It has the same structure as buffer 7, including two positions and two colors. However, the

buffer is linked to its VBO through CUDA. The program uses cudaGraphicsResource to bind

this data with VBO. The data will be updated only on the device.

Buffer 11 and 12 are noise textures generated on the host during buffer preparation.

These data will be set as CUDA texture for cloud generation on the device. They are using

float3 and float4 rather than vec3 or vec4 to match the data type of CUDA texture.

Buffer 13 is a 2D texture buffer store the volume rendering result of the program. The

program uses cudaGraphicsResource to bind this data with a pixel buffer object and use

ImGui image to display.

3.4 Vector Field Interpolation

Figure 3.2. Interpolation process on the host and on the device
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The program uses matrix-valued basis functions to generate divergence-free vector fields

in 3D. The functions include calculating the interpolation coefficient matrix on the host and

calculating the interpolation vector values for each point on the device. Figure 3.2 shows the

process of interpolation on the host and on the device. When calculating the interpolation

coefficient matrix, the program first fills all user input vector scale components into the

column vector d. Suppose the number of inputs is N, the size of the column vector is 3×N .

Then the program fills a matrix Phi with the data of input vector position and weights. The

algorithm will calculate a 3 × 3 matrix from the vector position difference and weights in

the filling process and fills the nine components of the matrix into the Phi matrix. The Phi

matrix’s size is 3N×3N . The pseudocode of the 3×3 matrix calculation algorithm is shown

in Algorithm 1 and the filling algorithm is shown in Algorithm 2 . The program uses a c++

linear algebra library, armadillo, to solve the inverse matrix.

Algorithm 1 Calculate 3× 3 matrix
Require: vector p, weight ε

r2← p dot p
d← e−ε×r2

New 3× 3 matrix phi
phi← ((4× ε−4× ε× ε× r2)×glm :: mat3(1)+4× ε× ε×glm :: outerProduct(p, p))×d
return matrix phi

After copy the user inputs data and the interpolation coefficient matrix to the device,

the program can use these data and the volume’s current coordinates to calculate the exact

interpolation vector at this point. Algorithm 3 shows the process on the device. During the

process of this device algorithm, Algorithm 1 is still needed. So, the program implements it

again on the device. The final output of this algorithm is the interpolated vector at a given

position. Figure 3.3 shows an interpolation result with these algorithms in MATLAB. These

four red vectors are the input vector, and these algorithms generate other blue vectors.

3.5 Cloud Generation and Rendering

The Cloud generation process includes two parts. One is generating 3D noise textures

before the loop. The other is sampling from the noise to make an fBm cloud result.
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Algorithm 2 Fill the interpolation matrix
Require: position x[N], scale v[N], weight ε[N]

for i = 0 to N do
d[i]← v[i].x
d[i + N ]← v[i].y
d[i + 2×N ]← v[i].z

end for
for i = 0 to N do

for j = 0 to N do
Call Algorithm1 with x[i] - x[j] and ε[i] on the host
Get 3 ×3 matrix p
Phi[i, j]← p[0][0]
Phi[i + N, j]← p[0][1]
Phi[i + 2×N, j]← p[0][2]
Phi[i, j + N ]← p[1][0]
Phi[i + N, j + N ]← p[1][1]
Phi[i + 2×N, j + N ]← p[1][2]
Phi[i, j + 2×N ]← p[2][0]
Phi[i + N, j + 2×N ]← p[2][1]
Phi[i + 2×N, j + 2×N ]← p[2][2]

end for
end for
New vector cvec
New vector c
cvec← Phi/d
for i = 0 to N do

c[i].x← cvec[i]
c[i].y ← cvec[i + N ]
c[i].z ← cvec[i + 2×N ]

end for
return vector c

Algorithm 3 Interpolation on the device
Require: pos, position x[N], scale v[N], weight ε[N], coefficient matrix interp[N]

for i = 0 to N do
Call Algorithm1 with pos - x[N] and ε[i] on the device
Get 3 ×3 matrix p
v ← v + phi× interp[i]

end for
clamp v between 0 to 1
return vec3 v
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Figure 3.3. An interpolation result in MATLAB

3.5.1 3D Noise Generation

The program generates two types of 3D textures: a shape texture and a detail texture.

The shape texture uses RGBA color channels, and its resolution is 128 × 128 × 128. The

basic shape of clouds is sampled from the shape texture by fBm. Figure 3.4 and 3.5 show

the cutting surfaces of noise textures filled in each channel. The shape texture includes

one Perlin noise texture and three Worley noise textures. The detail texture is using RGB

color channels, and its scale is 32× 32× 32. However, Both textures need to be seamlessly

repeating, so that the user can scale it without limit, and the texture will self-repeating with

higher frequency. Both noise textures are copied to the device as CUDA textures. They are

read-only from the device faster than stored in global memory. And they can easily linearly

sampled by tex3D functions.

Figure 3.4. The cutting surface of each shape noise channel
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Figure 3.5. The cutting surface of each detail noise channel

3.5.2 Cloud rendering with fBm

Figure 3.6 shows each shape noise channel’s ray marching result and the result combined

by fBm. If the ray intersects with the box containing the volumetric clouds, the marching

will begin between the entry and exit points. For each step of the marching, the program will

unify the current position to texture coordinates and sample the shape and detail textures’

value. Those values will combine as a density of the current point. The program will then

cast a ray from the current point against the light direction and do another marching to

calculate the lighting. Figure 3.7 shows that those yellow points represent the marching

for lighting calculation. The result of this marching process represents the cloud density

between the light source and the starting point. Large density leads to smaller transmission,

and the result of the current position (the green point) will be darker.

After lighting calculation, the program will check if the position reaches the exit point or

the density is already opaque. If not, it will match a small step forward and accumulating

the density and lighting results. If so, the marching will end, and the program will write the

result color to the pixel buffer.

Figure 3.6. The fBm result and the ray marching result of each shape noise channel
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Figure 3.7. A schematic diagram of ray marching process

3.6 Volume Texture Advection

The program uses Ping-Pong buffers to save the cloud from the previous frame and the

advection result. When calculating the advection, each point inside the cloud box will sample

from the 3D vector field for velocity and cloud density. The program will trace against the

velocity and reach the new position. A new density value will be sampled from this new

position [34 ] and blended with the old one.

Figure 3.8 shows a 2D example of advection. When tracing back a vector, the example

calculates a linear interpolation result from neighboring grids. However, in this research,

the program uses the exact value from the current grid because the resolution of the 3D

texture is large enough. The possibility of a 3D linear interpolation sampling method for

the advection will be discussed later in future works section.

3.7 Vector Field Display

The program will use two groups of vectors to display the user input vectors and the

interpolation vector field. Each group of vectors is bound to separate VAO and VBO. The
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Figure 3.8. A 2D example of advection algorithm [9 ]

input vectors are stored and update on the host, but the interpolation vector field data are

updated by the device. The program uses cudaGraphicsResource to bind the display data

array with VBO. The vector field display function is called after calculation processes per

frame and sample from the vector field data buffer. The sample number is related to a

constant parameter: vector field view scale. The view scale should be obviously smaller than

the data scale (256× 256× 256 by default) but large enough to show the trend of the field.

Figure 3.9 shows the vector field display in different scales.

Figure 3.9. Four display results under different view scales

Figure 3.9 shows the rendering details for each vector and a 64×64×64 view scale result.

The color of each interpolation vector is related to its direction, and the length represents

the vector length. For interpolation vectors, the start of the vector will be brighter, and the
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end of the vector will be darker. The input vector has a larger line width, and the color

is bright yellow and white. However, if the view scale is too big, the input vectors will be

blocked. So, the program uses 32× 32× 32 as a default view scale.

Figure 3.10. Rendering detail of vectors (Left) and a 64× 64× 64 view scale
result (Right)

3.8 User Interaction and Interface

The user can make multiple interactions during the animating process, including moving

the camera by mouse drag and setting parameters through the user interface. The program

will show different user interfaces in different states. If the value is unable to modify in

the current state, the input slider will be hidden. The camera implementation refers to the

volume rendering CUDA example project. Mouse action will update the view matrix. The

view matrix affects the rendering of VBO vectors and the camera during volume rendering.

So, the vector field and cloud volume will rotate at the same angle.

The user can use checkboxes to switch between three program states: cloud shaping,

advection, and pause. The default state is cloud shaping. After check the “Run Advection”

checkbox, the program will switch to the advection state and hide cloud shaping parameters.
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In this state, the “Pause Advection” checkbox will appear. The user can check it to pause

or continue the advection. If the user unchecks the “Run Advection” checkbox, the program

will switch back to cloud shaping and automatically hide and uncheck the “Pause Advection”

checkbox. Figure 3.11 shows the main parameter window in cloud shaping and advection

states. Only during the cloud shaping state, the user can shape the cloud by modifying the

fBm parameters. There are two groups of fBm parameters. One is for the cloud shape, and

the other is for the cloud details. The user can set the scale of the detail by a slider as well.

Figure 3.11. Main parameter window in cloud shaping state (Left) and
advection state (Right)

The user can add a new vector by clicking the “New Vector” button until the input

vectors’ number reach the maximum number. The user can use the “Input Vector ID” slider

to pick a vector to modify its position, scale, and weights during interpolation. Figure 3.12 

shows the user use the “Input Vector ID” slider to switch between two different input vectors.

The picked vector will be highlighted in yellow, and the others will be gray.

3.9 Research Questions

Research question 1: How to generate volumetric clouds?

Based on the literature, the process of cloud generation and rendering will be based on the

approach of Lague. 3D noise textures will be used, and the cloud will be rendered in a box.

The noise textures will be generated by CUDA. The generation kernel will be called once

before the main loop. Since the noise texture will remain the same during the interaction
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Figure 3.12. Using the “Input Vector ID” slider to switch between two input vectors

and rendering processes of the algorithm, there is no good to generate the noise per frame

on the GPU since it is busy enough to deal with the calculation of animating and rendering

processes. Furthermore, the texture can even be generated once and loaded into the program

to make the algorithm more efficient. The algorithm will not need to generate new textures

every time after it started since the noise will look pretty similar generated by the same

function. If needed, The noise texture could be made in other software and load to the

program.

The program will use Worley noise as Schneider suggested in his study to achieve the

cloud’s blobby appearance. Worley noise is a noise function introduced by Steven Worley in

1996, widely used in natural phenomena simulation in the computer graphics area. While

in Schpok et al. choose Perlin noise, a type of gradient noise developed by Ken Perlin in

1983, for this step. Consider their sampling method and research preference is to simulate

multiple types of clouds, it is also a possible choice. In general, both Perlin noise and Worley

noise will be used for cloud generation. The sampling method is to use fractional Brownian

motion to combine textures in different frequencies.
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Research question 2: How to make art-directable modifications to the cloud?

The user will input vectors to the program, and the inputs will be interpolated to a vector

field. The volume cloud area will be divided into small blocks as Dobashi et al. did in their

study. The program will use 3D texture advection based on the interpolation vector field

and cloud density from the previous frame. When the user inputs are not empty, the clouds

will advect based on the vector field per frame.

Research question 3: How to render the result to the screen?

For vector field display, the program will sample from the vector field data and set the

color based on the direction. The sampling result will be bound to VBO and rendered by

OpenGL. For volume cloud rendering, the method implemented by Lague will be used during

ray marching. The output of this method is the accumulated color of the cloud for each ray.

The result will be stored in a pixel object buffer and display by ImGui image.

Research question 4: How to identify and analyze the result of the clouds?

Referring to the literature, other researchers will take screenshots for the rendering result

in each short period and compare them to see how the results change over time [4 ], [6 ],

[15 ], which called image sequence. So, the research will use this method too. Figure 3.13 

is an example of the result display by image sequence. The researcher will also analyze the

framerate to assess whether interactive performance has be achieved.

Figure 3.13. An example of image sequence from Hong and Kim
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3.10 Data Collection and Analysis

The results of the deliverable shown in the thesis are image sequences generated by

multiple tests. The researchers will input different vectors and output the volumetric cloud

rendering result every multiple frame. Moreover, use these output images to make an image

sequence. Suppose the input vectors can be interpolated into the divergence-free vector field,

and the vector field can modify the volumetric cloud in a fluid-like way. In that case, this

study’s hypotheses will be considered correct.
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4. ANALYSIS OF RESULTS

This section presents and analyzes the data of the deliverable project in this research. The

data includes vector field interpolation results, cloud shaping results, and the advection and

animation image sequence. All results are gathered in real-time around 30 fps.

4.1 Vector Interpolation

4.1.1 Single Input Vector

Figure 4.1 shows an interpolation result in a lower view scale. There is one input vector

at the center of the vector field, pointing up. The interpolation vectors’ directions perform

as vortexes around the input vector. These vortexes will help to imitate fluid phenomenons

of cloud animation.

Figure 4.1. Red arrows show the tendency of curves at each side of the input

Figure 4.2 shows the interpolation vector field with one input at the center and the

bottom with the same vector scale and weight. When the vector field’s current position is

outside the influence area of the input vector, the interpolation result will be zero.

Figure 4.3 shows the interpolation vector field with one input in different weights. The

position and scale of the inputs are the same. The input vector is pointing up, which maps

to green when shading. So, the interpolation vectors are mostly green when the weight is

large.
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Figure 4.2. Interpolation vector field with one input at the center (Left) and
the bottom (Right)

Figure 4.3. Interpolation vector field with large weight (Left) and small weight (Right)

Figure 4.4 shows the interpolation vector field with one input at the center but pointing

at different directions. Because the color of the vectors is mapped from the direction, the

vector field has different shading color.

4.1.2 Multiple Input Vectors

Figure 4.5 shows the interpolation vector field with multiple inputs. The vector field is

transiting smoothly between different inputs and generates complex vortex patterns. The
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Figure 4.4. Interpolation vector field with one input point at up (Left) left
up (Medium) and down (Right)

red arrows highlight some vortexes from the current view direction. The functions of these

vortexes will be displayed by cloud advection in the following chapter.

Figure 4.5. Interpolation vector field with two inputs

However, an interpolation problem will occur with multiple inputs. When two inputs are

near and their directions are different, the interpolation result will blow up. The program

clamps the result of interpolation to avoid this effect. Figure 4.6 shows the vector field

before and after clamp when the result blows up. The program limits the input number
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because there is not enough place for each input when there are many of them. With the

blow-up interpolation result, advection will trace for unreasonable large steps, which makes

the animation distorted.

Figure 4.6. Interpolation blow up result before (Left) and after (Right) clamp

4.2 Cloud Generation

Figure 4.7 shows the cloud’s generation results influenced by different texture channels.

The left one shows a cloud result combined by the all shape noise channel. The right figures

show the impact of each shape channel.

Figure 4.7. Rendering result of the cloud with different shape fBm values

Figure 4.8 shows the cloud’s generation results influenced by different texture channels.

The left one shows a cloud result without any details. The right figures show the impact

of each detail channel. More details will appear when using high resolution Worely noise

textures.
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Figure 4.8. Rendering result of the cloud with different detail fBm values

4.3 Cloud Animation

Figure 4.9 shows the cloud’s animating result from different angles under the same input.

Figure 4.9. Rendering result of the cloud with single input

Figure 4.10 shows the cloud’s rendering result with different input vectors in image se-

quences.

Figure 4.10. Rendering result of the cloud with two input vectors
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4.4 Performance

Table 4.1 shows the program performance under different buffer settings in release mode.

The FPS is for the advection state, which is the lowest FPS among all states. The increase

of vector field buffer highly increases GPU memory usage and decreases the FPS. Due to the

memory malloc process in this program, GPU memory usage will not change while running.

The increase of inputs will slightly decrease the FPS because the more inputs the program

have, the more calculation will be down during the advection. The blow-up result will not

influence the FPS under the same input number.

Table 4.1. Program performance in this study

Inputs Num VF Buffer Scale FPS GPU Memory Usage
1 512× 512× 512 11 4.2 GB
1 256× 256× 256 33 0.8 GB
1 128× 128× 128 >120 0.3 GB
2 256× 256× 256 31 0.8 GB
3 256× 256× 256 30 0.8 GB
4 256× 256× 256 30 0.8 GB
5 256× 256× 256 29 0.8 GB
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5. SUMMARY

5.1 Conclusion

The problem addressed by this research is that a pure physics-based simulation of volu-

metric clouds can not provide a flexible controller to designers and animators in real-time.

This study aims to implement a real-time art-directable method for users to interactively an-

imate volumetric clouds. The study’s hypothesis is vector field interpolation with divergence

minimization combined with advection will be able to produce a plausible cloud animation

while giving artists control over the final result. In this research, the user can animate shape

volumetric clouds by a few inputs. The inputs are used to generate a divergence-free interpo-

lation vector field. The vector field is used in the advection process for animation creation.

By adding and modifying input vectors, the user can interactively animate the clouds as

their wish. So, the hypothesis is considered true.

However, the interpolation result’s value is not guaranteed to be divergence-free on some

specific inputs. When two input vectors are near to each other, the interpolation result

will blow up. The vector field’s divergence is still minimized to zero, but all vectors’ total

length is too large and not making sense. It is like getting infinity power from nowhere. The

program in this study chooses to clamp the maximum length of each vector to a reasonable

value. The vector field’s divergence may not equal zero, but the animation in such situations

is still plausible.

The research process that creates the interpolation vector field has the same meaning

as calculating a flow map in 3D per frame. The flow map uses physics-based algorithms

and takes a much longer time to calculate, while the divergence-free interpolation is much

faster. The output of these two processes are both textures storing vectors at each point

and used for advection or distorting. The research is trying to use the interpolation result

to replace the physics-based simulation result. Though the animation made by this research

looks plausible, the volumetric clouds are not conservative under the interpolation vector

field. It means, for most interpolation vector fields, the total density of clouds inside the

vector field area will get down little by little when there is no source in the volume. However,
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animations using a flow map are loopable no matter the distorting happens on albedo or

normal textures.

Compared with other cloud animating methods in the literature related to this study,

the delivery program focuses on simulating the wind flow that animates the clouds. This

program’s result is similar to what Yu, Bruneton, Holzschuch, et al.’s result in Figure 2.6 ,

but can not achieve a specific shape result like Dobashi et al., Treuille et al. or McNamara

et al. Their results showed in Figure 2.3 , Figure 2.5 and Figure 2.4 , all need to generate a

target or keyframe for the animation and offline computing. The method in this study offers

real-time user interaction will the volumetric clouds. The cloud can not turn into specific

shapes by the user inputs but can plausibly move as blew by wind flow. If the user can use

multiple input vectors to represent the target shape, the cloud in this study may achieve a

stable shape. Currently, it is easier to dig a hole inside the cloud by input vectors with small

weights. The cloud inside the affected area will be blown out of the vector field or compress,

and the rest remain unchanged. However, it is still difficult for this method to hold a certain

shape. The researcher considers the study’s method as a real-time approach to generate a

3D interactable flow map. Users will have a chance to animate the cloud under specific and

art-directable winds.

5.2 Future works

There are a few suggestions for future works:

First, volumetric clouds in this study are placed inside a box, which has limited video

game usage. It will be helpful for skybox rendering if the algorithm could be extended to

hemisphere coordinate systems. Alternatively, implement a 2D solution for 2D games or

background.

Second, the user interface could be improved. Currently, the user can only add input

vectors and modify them by button and sliders, which is not very convenient. The user

can not remove the input either. If the program could be extended to a VR system and let

the user input by a VR controller and surrounded by the volumetric clouds, the interaction
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experience will be highly improved. The input vectors may be automatically generated by

the controller’s motion trails and fade after a few seconds.

Last, the data management in this project still needs optimization. The vector field data

does not have a read-write conflict and calculated on the device. It could be unpacked from

the data density and use CUDA surface for a linear interpolation sampling during advect.
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