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ABSTRACT

The discovery of topological quantum states of matter has required physicists to look

beyond Landau’s theory of symmetry-breaking, previously the main paradigm for studying

states of matter. This has led also to the development of new topological theories for de-

scribing the novel properties. In this dissertation an investigation in this frontier research

area is presented, which looks at the interplay between the quantum geometry of these

states, defects and disorder. After a brief introduction to the topological quantum states

of matter considered herein, some aspects of my work in this area are described. First, the

disorder-induced band structure engineering of topological insulator surface states is consid-

ered, which is possible due to their resilience from Anderson localization, and believed to

be a consequence of their topological origin. Next, the idiosyncratic behavior of these same

surface states is considered, as observed in experiments on thin film topological insulators, in

response to competition between hybridization effects and an in-plane magnetic field. Then

moving in a very different direction, the uncovering of topological ‘gravitational’ response is

explained: the topologically-protected charge response of two dimensional gapped electronic

topological states to a special kind of 0-dimensional boundary – a disclination – that encodes

spatial curvature. Finally, an intriguing relation between the gravitational response of quan-

tum Hall states, and their response to an apparently unrelated perturbation – nonuniform

electric fields is reported.

9



1. TOPOLOGICAL INSULATING QUANTUM STATES OF

MATTER

1.1 Introduction

Gapped electronic topological states of matter behave like insulators in their bulk but as

conductors at their surfaces. Their band structures are characterized by gapless boundary

states traversing the energy band gap in the bulk, where the boundary states refer to end

states, edge states and surface states for 1,2,3-dimensional topological materials respectively.

In this introductory chapter I will consider some paradigmatic models for demonstrating how

such gapless surface modes arise and how the existence of these modes are related to bulk

topological invariants.

The first electronic states that were identified as topological states of matter are the

integer quantum Hall (IQH) states, which exhibit the integer quantum Hall effect (IQHE)

[1 ]–[5 ]. A two dimensional electronic system placed in a perpendicular magnetic field, at

low temperatures and strong magnetic fields, displays a staircase-like behavior in its Hall

conductance (ratio of total current to the transverse voltage drop) when measured as a

function of the magnetic field strength. Classically, this variation is expected to be a simple

linear dependence on the inverse of the magnetic field strength. At these plateaus, with

unanticipated precision, the values of Hall conductance are quantized at integer multiples

of a combination of fundamental constants of nature, the conductance quantum σ0 = e2/h.

The system, when parked at any of these integer-quantized plateaus, is said to exhibit the

IQHE. For very good quality materials, this quantization can also occur at σ0 times a rational

fraction, when the material exhibits the fractional quantum Hall effect (FQHE) [6 ], [7 ]. The

IQH states can arise in systems of non-interacting electrons, while the existence of fractional

quantum Hall states (FQH) depends on the presence of electronic interactions.

The first theoretical understanding of the IQHE was given by Laughlin using a thought

experiment [2 ]. In his thought experiment, the gapped two-dimensional electronic state

is imagined to exist on the surface of a cylinder. A thin thread of magnetic flux passing

along the axis of the cylinder is then turned on and slowly but steadily increased so as to

induce an azimuthal electromotive force parallel the cylinder surface. If the increase of flux

10



is slow enough, the system evolves adiabatically, continuing to remain in its instantaneous

ground state. Every time the magnetic flux increases by a flux quantum φ0 = h/e, the

ground state wavefunction is repeated, i.e., the system ‘goes back to itself’. Thus, during

this time period an integer number, ν, of electrons must have been transported across the

cylinder along the axial direction. This transfer can be re-interpreted as arising from a

different source: due to the integrated Hall current that arises in response to the induced

azimuthal electric field. Comparing the two, Laughlin deduced that the Hall conductance of

the gapped electronic state is σH = νe2/h. Laughlin’s argument thus yielded a very general

result: the Hall conductance of a gapped electronic system without fractional charges is an

integer multiple of the conductance quantum; it thus either exhibits IQHE or a zero Hall

conductance. Laughlin’s argument can be recast to show that this ‘quantization’ behavior

arises from how the many-body wavefunction behaves as a function of phase twist boundary

conditions in two orthogonal directions (which form a torus because both phase twists are

periodic), thus leading to the characterization of this quantization as ‘topological’.

Laughlin’s argument successfully connected the quantization of Hall conductance in IQH

states to the fundamental physics principles of gauge invariance and charge quantization.

The topological nature of this quantization was firmly established when the integer ν (see

above) in the Hall conductance was shown to be equal to the Chern number of the electronic

band structure by Thouless et al [8 ]. The Chern number is an integer-valued topological

invariant characterizing the occupied valence band, viewed as a functional mapping from the

crystal momentum space – the Brillouin zone torus – to the Bloch wavefunction space.

Following the discovery of IQH states, various other types of topological materials have

also been discovered or proposed. Like the IQH states, these electronic materials are called

‘topological’ because they are characterized by topological invariants peculiar to their inter-

nal quantum structure, such as how their Bloch wavefunctions are defined over the crystal

momentum Brillouin zone. Significant examples of such topological electronic states include

Chern insulators [9 ] and time-reversal invariant topological insulators [10 ]–[12 ]. Chern insu-

lators have nonzero quantized Hall conductance in absence of a net external magnetic field,

thus exhibiting the so-called quantum anomalous Hall effect (QAHE). Topological insula-

tors, on the other hand, are electronic band insulators which respect time-reversal symmetry

11



(TRS) but have gapless surface states which traverse the bulk band gap. These gapless

states are ‘protected’ by TRS – as long as the Hamiltonian respects time reversal and the

bulk band gap does not close, one can continuously modify the Hamiltonian as one wishes,

including by adding disorder, but will not be able to get rid of the gapless character of the

surface states.

As mentioned at the very beginning of this chapter, a significant property of topological

quantum states is the existence of gapless modes at the surface. It is widely believed, given

the absence of examples to the contrary, that the bulk topological invariant is encoded in

the properties of its boundary states. For instance, the Chern number of QHE or QAHE of

a two dimensional gapped electronic system can be obtained either (i) from the bulk band

structure [8 ], or (ii) from the net number of conducting chiral edge modes, i.e., the difference

between the number of right and left-moving edge modes. This sort of functional relation

between the bulk Hamiltonian and boundary states has been observed in all topological

phases of matter and is called the ‘bulk-boundary correspondence’ [13 ], [14 ]. The study of

bulk topological properties, encoded in the geometry of the bulk wavefunctions, thus goes

hand in hand with studying some unusual properties of the topological boundary states.

Later in this dissertation I will consider multiple examples of such connections. In Chap-

ter 2 I discuss disorder-induced band structure engineering of topological insulator surface

states, which is possible due to their resilience from Anderson localization, believed to be

a consequence of their topological roots. In Chapter 3 I investigate the peculiar behavior

of these same surface states, as observed in experiments, in response to turning on a mag-

netic field, which breaks time reversal symmetry that protects the topological properties of

the material. In Chapter 4 I uncover topological ‘gravitational’ response: the topologically-

protected charge response of two dimensional gapped electronic topological states to a special

kind of 0-dimensional boundary – a disclination – which encodes spatial curvature (hence the

historical usage of ‘gravitation’ referring to spacetime curvature). Finally, in Chapter 5 I con-

sider the intriguing relation between gravitational response and responses to an apparently

unrelated perturbation: nonuniform electric fields.
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During the rest of this chapter I will study some prototypical analytical models to demon-

strate the emergence of gapless topological boundary modes and the related bulk topological

invariants.

1.2 Boundary States from Dirac Equations

Many analytical models exist which demonstrate how bulk topological Hamiltonians give

rise to gapless boundary states [15 ]–[18 ]. A general class of approaches start from the massive

Dirac equation in the bulk, giving rise to the Jackiw-Rebbi surface modes which decay

exponentially away from the boundary [19 ], [20 ]. I initially cover this approach below. Within

this approach, one can conclude that Dirac modes with masses of opposite sign belong to

distinct topological classes; however, one cannot identify the topologically ‘nontrivial’ phase

within this approach [16 ], [21 ], [22 ]. Then I consider band structures satisfying the modified

Dirac equation (MDE) with a quadratic mass term. This approach has the advantage of

allowing one to unambiguously identify the topologically ‘trivial’ and ‘non-trivial’ phases

within the same region of space. Topological conditions under which these equations lead

to boundary state are derived, and the connection to topological invariants of the bulk

Hamiltonian is explained.

The Dirac equation is a relativistic wave equation describing spin-1/2 particles [23 ]. It

is relevant to the theory of topological states because the low-energy effective Hamiltonians

for two and three-dimensional topological insulators have the same structure as the Dirac

Hamiltonian in the corresponding dimension [10 ], [24 ], [25 ]. Therefore, the Dirac equation

is a rich analytical playground for exploring low-energy topological boundary states and the

physics of topological phase transitions [24 ]. The massive Dirac equation has the form

Ĥψ ≡ (cpiαi +mc2β)ψ = Eψ, (1.1)

where m is the mass and c the speed of light. The {αi}, i going over the spatial dimensions,

and β are known as Dirac matrices. They satisfy the Clifford algebra

α2
i = β2 = 1, {αi, αj} = 0, {αi, β} = 0. (1.2)

13



Here {, } denotes anti-commutation relation. These matrices can be used to generate repre-

sentations of the Lorentz group, i.e., the group of boosts and rotations.

In 1+1 and 2+1 spacetime dimensions, the matrices {αi, β} have to be at least 2-

dimensional; in 3+1 dimensions, they have to be at least 4-dimensional [23 ]. Let’s first

take 1D space as an example to see how Dirac equation can lead to a bound state solution,

and then generalize it to higher dimensions.

Consider the one-dimensional case where an interface between topological trivial and

nontrivial phases is located at x = 0. We choose the following representation of the Dirac

matrices in terms of the Pauli matrices: α = σx, β = σz. Then the Dirac Hamiltonian

becomes (setting c = 1 for now):

Ĥ = σxp̂x + σzm. (1.3)

p̂x is the differential operator −i∂x. m is the mass which is equal to ml in the left (x < 0)

and mr on the right (x > 0) [26 ], thus creating two different ‘phases’ in the two semi-infinite

spaces. To find a bound state at the interface between these two phases, i.e., around x = 0,

one uses the Jackiw-Rebbi ansatz [19 ]:

ψ(x) = e∓λ±xχ for x ≷ 0, (1.4)

where χ is a 2-dimensional spinor and the existence of real positive λ± are to be determined by

solving the wave equation. Plugging this form into Equation (1.3 ) one obtains an eigenvalue

equation, from which λ± can be written in terms of energy E. Imposing continuity of

wavefunction at x = 0, one arrives at the following condition:

√
m2

l − E2

ml − E
= −

√
m2

r − E2

mr − E
. (1.5)
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Equation (1.5 ) determines the energy spectrum of possible boundary modes. One finds that

this energy is unique, E = 0, and in order to have this mode the masses on two sides must

be of opposite sign,

sgn(mlmr) = −1. (1.6)

Thus, there is a qualitative (topological, see below) difference between two gapped Dirac

fermion phases only when their masses have opposite sign and this is captured in the existence

of a zero energy mode at their interface. This result can be generalized to any continuous

variation of m(x) across the interface, as long as it asymptotically tends to ml,r on the

left/right.

This Jackiw-Rebbi bound mode at the interface of topologically inequivalent phases of the

Dirac model can be straightforwardly generalized to higher dimensions. In 2+1 dimensions,

consider a line interface located at x = 0. One can choose α1 = σx, α2 = σy and β = σz as

a representation of Clifford algebra, leading to the Dirac Hamiltonian:

Ĥ+ = σxp̂x + σyp̂y + σzm. (1.7)

The subscript + indicates the ‘helicity’ of Dirac fermion. The helicity is the eigenvalue of

the helicity operator: the projection of spin in the direction of momentum, (1/2)σ · p/|p|.

Since the system has translational symmetry along y direction, one can use the following

ansatz for edge state wavefunctions bound at interface: ψ(x, y) = eikyyeλxχ, where ky is the

quantum number labeling momentum along y direction. Similar to the 1+1-dimensional

problem, continuity of the wavefunction at x = 0 leads to a consistency condition followed

by the conclusion that the masses on the two sides of the interface must satisfy condition

(1.6 ) in order for the edge mode to exist. Unlike in the 1+1-dimensional case, it is found

that the edge mode enegy has a gapless linear dispersion:

E = ky sgn(mr). (1.8)
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The Hamiltonian Ĥ+ is not time-reversal invariant. Defining the time-reversal operator

as T̂ = iσyK, where K is complex conjugation, the time-reversal counterpart of Ĥ+ is a

Dirac Hamiltonian with opposite helicity:

Ĥ− = T̂ Ĥ+T̂
−1 = σxp̂x − σyp̂y + σzm. (1.9)

Similar to Ĥ+, when condition (1.6 ) is satisfied across the interface, gapless edge modes exist

and dispersion is

E = −ky sgn(mr). (1.10)

Here the group velocity changes sign because ky maps to −ky under time reversal symmetry.

Equations (1.8 ) and (1.10 ) are dispersions corresponding to the so-called helical/chiral edge

modes of the Dirac equation in 2+1 dimesions.

In 3+1 dimensions, the minimum dimension for a representation of the Clifford algebra

is four. Such a representation is given in terms of the Pauli matrices thus: αi = sx ⊗ σi and

β = sz ⊗ σ0. The Dirac Hamiltonian is:

Ĥ = αxp̂x + αyp̂y + αzp̂z + βm. (1.11)

Considering two gapped phases with masses ml,mr separated by an interface at x = 0,

one assumes the ansatz wavefunctions ψ(x, y, z) = ei(kyy+kzz)eλxχ, where ky, kz label the mo-

mentum in y−z plane. Solving the eigenvalue equations one can find two surface modes with

dispersions E± = ±
√
k2 +m2 − λ2

l,r, where k2 = k2
x + k2

y and λl,r are yet to be determined,

indicating the exponential localizations of the surface modes in the two phases. Before con-

sidering the continuity condition across the interface, at a specific bound state energy E, on

each side of the interface there are two independent allowed eigenvectors χ1, χ2. Therefore, a

general surface state wavefunction is a linear combination of the two spinors, with coefficients

al, bl, ar, br. Imposing continuity of the wavefunction at the interface, i.e., using an equation

16



Figure 1.1. Boundary state wavefunction and energy dispersion of Dirac
model. (a) Wavefunction profile along x direction of a boundary state at
interface. (b) Energy spectrum of 2D Dirac model, bulk bands in grey and
linearly dispersed helical edge modes in blue. Dashed blue line shows dispersion
of edge modes in the time-reversal counterpart. (c) Energy spectrum of 3D
Dirac model, top and bottom of bulk bands in yellow and doubly degenerate
surface bands in red.

of the form alχl1 + blχl2 = arχr1 + brχr2, one again arrives at condition (1.6 ) for the surface

states to exist. These surface states have a 2+1-dimensional gapless Dirac dispersion:

E = ±k = ±
√
k2

x + k2
y. (1.12)

So far I have reviewed the main features of gapless interface modes at the junction of

topologically inequivalent Dirac fermions in one, two and three spatial dimensions. Their

energy spectra correspond to an isolated zero mode, a linear-dispersing helical edge mode

and a 2+1-dimensional Dirac-like dispersion, respectively (Figure 1.1 ). Such boundary mode

dispersions have been widely observed in experiments and numerics [11 ], [25 ]. The Dirac

Hamiltonian thus serves as a crude effective long wavelength model encapsulating the physics

of topological band insulators.

1.3 Boundary States from Modified Dirac Equations

In the preceding calculations one has seen that the existence of boundary states at the

interface between two Dirac band structures requires the Dirac masses on the two sides to
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have opposite signs. This does not let one consider the absolute topological non-triviality

of either phase with respect to vacuum which is, as tacitly assumed, topologically trivial. I

describe now a modified Dirac model for boundary states which allows one to compare the

topological nature of the Dirac phase vs. vacuum [20 ], [22 ].

Starting from the 1+1-dimensional case, I will consider how the Dirac equation dressed

with a quadratic mass term, the so-called modified Dirac equation (MDE), possesses bound-

ary states when satisfying a topological condition which depends only on parameter values

of the MDE phase; placing another Dirac fermion on the other side of the interface is no

longer needed. This allows one to consider a topologically trivial vacuum on the other side,

and thus vanishing of the wavefunction there. I will extend this method to higher spatial

dimensions. In particular, I obtain the exact boundary state solutions to the MDE in two-

and three-dimensional space, instead of using a perturbation method [20 ], [22 ]. More details

of analytical solutions to MDEs are provided in Appendix A .

In 1+1 dimensions, the modified Dirac Hamiltonian is

Ĥ = σxp̂x + σz(m−Bp̂2
x). (1.13)

Comparing with the Dirac equation (1.3 ), the mass term has been modified with a quadratic

contribution, −Bp̂2
x. This correction can be motivated as arising from retaining more terms

in the Taylor expansion of the band Hamiltonian near the Dirac point momentum. Suppose

now that the region x > 0 is topological and bound states are localized near x = 0. Similar

to the Dirac equation, one can assume an ansatz solution of the form ψ(x) = eλxχ for x > 0,

while the wavefunction vanishes for x ≤ 0. The Schrödinger equation, Ĥψ = Eψ, leads to

the following quartic equation for λ:

E2 = (m+Bλ2)2 − λ2. (1.14)
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The four roots of this equation come in pairs, which are denoted by ±λ1,±λ2. One finds

that

λ2
1,2 = 1

2B2

(
1 − 2mB ±

√
1 + 4B2E2 − 4mB

)
. (1.15)

Localization of the boundary states to the region near x = 0 requires these roots to have

negative real parts – this will be referred to as the ‘decaying condition’ below. Imposing

the boundary condition at the interface, ψ(0) = 0, one needs to find two distinct roots with

negative real parts, λ1,2, which possess a common spinor as the allowed eigenvector. The

boundary mode can then be constructed as

ψ(x) = (eλ1x − eλ2x)χ. (1.16)

Inspecting Equation (1.15 ), the decaying condition is satisfied if

1 + 4B2E2 − 4mB < 0,

or, 1 + 4B2E2 − 4mB > 0 and mB <
1
2 and E2 < m2.

(1.17)

After some algebra, from the vanishing of wavefunction at x = 0, i.e. χ1 = χ2, it is found

that the only possible solution to boundary state energy is E = 0. To have this solution, a

topological condition must be satisfied,

mB > 0. (1.18)

This is a simple condition expressed in terms of parameters of the given bulk Hamiltonian

(1.13 ) only, no longer relying on comparing with another Dirac phase across the interface.

Next, consider the MDE in 2+1 dimensions. Suppose there is a line interface at x = 0

and x > 0 is the topological region to be investigated. As usual, ψ(0) = 0, the condition for

there being a vacuum on the other side. The Hamiltonian with positive helicity is:

Ĥ+ = σxp̂x + σyp̂y + σz(m−Bp̂2), (1.19)
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where p̂2 = p̂2
x + p̂2

y. To find edge modes localized at x = 0, one assumes the ansatz

ψ(x, y) = eikyyeλxχ and the Schordinger equation leads to a quartic equation for λ:

E2 = (m−Bk2
y +Bλ2)2 + k2

y − λ2. (1.20)

The four roots are ±λ1 and ±λ2, with

λ2
1,2 = 1

2B2 (1 − 2mB + 2B2k2
y ±

√
1 + 4B2E2 − 4mB). (1.21)

Similar to the 1+1-dimensional problem analysis, existence of two roots with negative real

parts necessitate the following condition:

1 + 4B2E2 − 4mB < 0,

or, 1 + 4B2E2 − 4mB > 0 and mB <
1
2 +B2k2

y

and E2 < k2
y + (m−Bk2

y)2.

(1.22)

Imposing now the boundary condition ψ(0) = 0, one finds a linear energy spectrum at the

boundary:

E = sgn(B)ky. (1.23)

Meanwhile, the vanishing of wavefunction at interface reproduces the same topological con-

dition (1.18 ) as the 1+1 dimensional MDE.

For the time-reversed MDE counterpart, Ĥ− = σxp̂x − σyp̂y + σz(m− Bp̂2), we find the

same topological condition but an inverted linear dispersion, E = − sgn(B)ky. The edge

modes of Ĥ±, corresponding to the momentum ±ky, have equal energy but opposite group

velocity, and are thus referred to as helical/chiral modes.

Finally, in 3+1 dimensions, one can choose the Clifford algebra representation same as

Dirac equation, αi = sx ⊗ σi and β = sz ⊗ σ0, with i = x, y, z. The MDE Hamiltonian is

Ĥ = αxp̂x + αyp̂y + αzp̂z + β(m−Bp̂2). (1.24)
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Here p̂2 = p̂2
x + p̂2

y + p̂2
z. Assuming the surface mode ansatz ψ(x, y, z) = ei(kyy+kzz)eλxχ for

x > 0, the Schrödinger equation leads to the following quartic equation for λ:

E2 = (m−Bk2 +Bλ2)2 + k2 − λ2, (1.25)

with k2 = k2
x + k2

y. The four roots are ±λ1 and ±λ2, with

λ2
1,2 = 1

2B2 (1 − 2mB + 2B2k2
y + 2B2k2

z ±
√

1 + 4B2E2 − 4mB). (1.26)

Similar to the lower dimensional cases, a decaying condition needs to be satisfied, leading to

a similar set of conditions. Incorporating the boundary condition at interface, ψ(0) = 0, one

obtains the following energy dispersion of the surface states:

E = ±k = ±
√
k2

x + k2
y. (1.27)

This is a Dirac-cone dispersion relation which is same as that obtained from Dirac equation

in three-dimensional space. One also finds the same topological condition mB > 0 as before.

We note, in closing, that the boundary modes for all three cases of MDEs studied have

the same energy spectrum as a gapless Dirac fermion in one lower spatial dimension. Also

note that these boundary mode dispersions are restricted to the energy range |E| <
√
m/B,

at which enegy the interface bands merge with the bulk bands. The wavefunction profile

and dispersion relations of modified Dirac models are illustrated in Figure 1.2 .

In the next section I connect the topological criterion for obtaining boundary states with

bulk topological invariants for the MDE.

1.4 Topological Invariants Of Bulk Hamiltonian

This section reviews the theory of the topological invariant corresponding to a two-band

Chern insulator [9 ], [21 ]. I apply this criterion to the MDE and show that the topological

condition is the same as obtained when considering the existence of gapless surface states .
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Figure 1.2. Boundary state wavefunction and energy dispersion of modified
Dirac model. (a) Wavefunction profile along x direction of a boundary state
on one side of the interface, where λ1,2 are roots with negative real part solved
from the polynomial equation. To generate this plot both λ1,2 being real and
negative are assumed. (b) Energy spectrum of 2D modified Dirac model,
bulk bands in grey and linearly dispersed helical edge modes in blue. Dashed
blue line shows dispersion of edge modes in the time-reversal counterpart.
(c) Energy spectrum of 3D modified Dirac model, top and bottom of bulk
bands in yellow and doubly degenerate surface bands in red. For (b) and (c),
|E| =

√
m/B is the cutoff energy of edge/surface state band where it intercepts

with bulk bands.

Consider a generic two-band lattice model. The Hamiltonian in momentum space can be

expressed using Pauli matrices:

h(k) = d0(k) +
∑

i=x,y,z

di(k)σi. (1.28)

k is the crystal momentum and d0, {di} are all real functions. Since the crystal momentum

space is periodic across the Brillouin zone due the Bloch’s theorem, the space of k is home-

omorphic to the circle (S), torus (S × S) and three-torus (S × S × S) in one, two and three

spatial dimensions respectively. The energy spectrum of this two-band model is

ε±(k) = d0(k) ± d(k), (1.29)
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where d =
√
d2

x + d2
y + d2

z is the magnitude of d ≡ (dx, dy, dz). d0 controls the zero point

of energy at each momentum k and vector d determines the band gap at that momentum.

With functions dx, dy, dz, the space of crystal momentum k is mapped to a closed manifold

in d-space. Since considering insulators only, the band gap never closes and one has to

exclude the origin when considering d-space, which makes this space homotopy-equivalent

to a 2-sphere.

Using this formulation, one can now find all possible classes of 2-band insulating Hamil-

tonians which cannot be transformed continuously into each other without closing the energy

gap. This is just equal to the number of ways that the Brillouin zone can be mapped to the

2-sphere corresponding to d-space without the origin.

For example, consider the one-dimensional case first. Crystal momentum has only one

component kx, so under function dx, dy, dz, the kx-circle is mapped to a loop in d-space, the

2-sphere. Since all loops on a sphere surface can be shrunk to a single point by continuous

deformation, there is only one ‘trivial’ class of such Hamiltonians.

But then, how to obtain a ‘nontrivial’ phase of the MDE? To see how that came about,

consider the Hamiltonian to be constrained by symmetries [27 ]. Suppose that the Hamilto-

nian has a chiral symmetry Γ̂ = σy:

Γ̂ĤΓ̂ = −Ĥ, (1.30)

such that under this chiral symmetry an energy eigenstate is transformed to another state

of opposite energy. Plugging in the Hamiltonian (1.28 ), one finds that d0 = 0 and more

importantly, dy = 0 also. Thus, under this symmetry, d-space minus the origin is equivalent

to a 1-sphere, i.e., a circle.

Since a circle mapping to another circle can be characterized by the winding number,

an integer, therefore there exists an infinity of topologically distinct classes of chiral 2-band

Hamiltonians in 1+1 dimensions. Each topological class is labeled by an integer-valued

winding number and Hamiltonians cannot be continuously transformed between distinct
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topological classes without closing the energy gap (see Figure 1.3 ). This is a primitive

example of a symmetry-protected topological (SPT) insulator.

Figure 1.3. Winding number in dx − dz plane. Two loops with winding
number +1 (blue) and 0 (yellow) are shown. Black arrows show direction of
increasing parameter kx. To deform one loop to the other, it must pass the
origin of dx −dz plane (gap closing) or be lifted away from the plane (breaking
chiral symmetry), crossing dy axis and back to the plane again.

The winding number can be analytically calculated thus. Introduce a complex function

α = dx + idz. The winding number is then the number of times α winds around the origin

in the complex plane as kx traverses the Brillouin zone once:

nw = 1
2πi

∮
γ

dα

α
, (1.31)

where γ is the mapping loop of momentum kx. If the one-dimensional Brillouin zone is

chosen to be [0, 2π], this integral can be converted to

nw = 1
2πi

∫ 2π

0

d′
x + id′

z

dx + idz

dkx. (1.32)

The winding number is a topological invariant, and topological phases of distinct wind-

ing numbers cannot be continuously deformed into one another. Mathematically, this is

because integers are discrete so there is no way to change from one to another continuously.

Alternately, physically, if one wants to continuously modify a loop (representing a starting

Hamiltonian) to the other with a different winding number (the final Hamiltonian in a dif-
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ferent class), it must pass the origin, which means that the energy gap will need to close

sometime(s) during the process. Otherwise, one can lift the loop off dx − dz plane, passing

through dy axis and then back to the plane, which means breaking the chiral symmetry.

One can now apply formula (1.32 ) to the 1+1-dimensional MDE, where dx = px, dz =

m − Bp2
x [20 ]. Assuming that the topological properties flow from the physics of the long

wavelength effective Dirac model only, one can convert the integral limit in Equation (1.32 )

to (−∞,∞). The replacement can be motivated by noting that in the continuum limit, the

lattice constant approaches zero and thus the size of the Brillouin zone tends to infinity.

Then the winding number of of the 1+1-dimensional MDE is

nw = 1
2πi

∫ ∞

−∞

1 − 2Bipx

px + i(m−Bp2
x)dpx. (1.33)

The quadratic correction term Bp2
x helps converge the integral. Using straightforward com-

plex analysis, one finds that the winding number is equal to −(1/2)[ sgn(m)+sgn(B)], which

means the phase is topological only when m and B have same sign. This is the same condition

as the one required for observing the topological boundary mode in the MDE! Thus, I have

shown that the boundary modes of the MDE are deeply related to a topological invariant of

the bulk Hamiltonian. This reveals what is known as the bulk-boundary correspondence.

Next, consider the two-band insulator model in 2+1 dimensions. The two-dimensional

Brillouin zone, S×S, a 2-torus, now needs to be mapped to the 2-sphere-equivalent manifold

in d-space. Such maps are classified by the first Chern class or simply, the Chern number.

The Chern number of valence band can be computed as [8 ]

C = i
2π

∫ 2π

0
dkx

∫ 2π

0
dky

(〈∂u0

∂kx

∣∣∣∂u0

∂ky

〉
−

〈∂u0

∂ky

∣∣∣∂u0

∂kx

〉)
, (1.34)

where the Brillouin zone is assumed to be [0, 2π]×[0, 2π] and u0 is the periodic part of valence

band wavefunction. The quantity i(〈∂u0/∂kx|∂u0/∂ky〉 − 〈∂u0/∂ky|∂u0/∂kx〉) is the ‘Berry

curvature’ which measures the mismatch of Berry phases when transporting the function u0

along different curves [28 ].
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At first sight, the surface integral in (1.34 ) seems to always be zero (trivial), since if one

introduces Berry connection A = i〈u0|∇ku0〉, the integral can be converted to a line integral

of A around the Brillouin zone boundary. Since the Brillouin zone boundary is equivalent to

a point, this line integral is zero. This argument fails if the Berry curvature is not analytical

everywhere on the Brillouin zone [29 ], which leads to the nontrivial case. In this case, the

wavefunction is not single-valued on the torus of Brillouin zone. By a gauge fixing, one can

show the Chern number is an integer which is the sum of winding numbers of these fixing

gauges at all singular points in the Brillouin zone.

For the two-band insulator Hamiltonian (1.28 ), the Chern number of the valence band

has a simple formula. Equation (1.34 ) can be rewritten as [30 ]

C = i
2π

∫ 2π

0
dkx

∫ 2π

0
dky tr(∇kP × P∇kP )z, (1.35)

where P̂ = |u0〉〈u0| is the projection operator onto the valence band. For the generic Hamil-

tonian (1.28 ), one finds that

P̂ = 1
2

(
I − d · σ

d

)
, (1.36)

where I is the 2 by 2 identity matrix. Using this in Equation (1.35 ), one obtains [21 ]

C = 1
4π

∫ 2π

0
dkx

∫ 2π

0
dky

d · (∂kxd × ∂kyd)
d3 . (1.37)

Formula (1.37 ) allows one to calculate the Chern number from the d vector of a two-band

model Hamiltonian. It shows the Chern number is determined from how the 2-manifold

parameterized by kx, ky encloses the topological defect d = 0 [31 ]. Figure 1.4 shows the d

vector plot of a lattice Chern insulator model.

Let’s now calculate the Chern number for the 2+1 dimensional MDE [22 ], where dx = px,

dy = py and dz = m−Bp2. In the continuum approximation, one can ignore the periodicity

of px, py and replace the integral limits with (−∞,∞). The Chern number of modified Dirac

model is then

C = 1
4π

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

m+B(p2
x + p2

y)
{p2

x + p2
y + [m−B(p2

x + p2
y)]2}3/2 = 1

2 [ sgn(m) + sgn(B)]. (1.38)
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Figure 1.4. d vector plot of a lattice Chern insulator model. This model has
dx = −

√
3 sin kx sin ky, dy =

√
3(cos kx − cos ky) and dz = m− cos kx − cos ky.

The phase is nontrivial when |m| < 2 and trivial when |m| > 2. Each arrow
loop shows the trace of d vector as kx goes from 0 to 2π at constant ky. Color
of loop changing from red to purple shows ky going from 0 to 2π. (a) m = 1.
The manifold wraps around the origin twice, and for the second wrap both
∂kxd and ∂kyd change direction so give equal contribution as first wrap, leading
to C = 2. (b) m = 3. The manifold does not enclose origin. Each of the two
wraps give zero Chern number so C = 0.

Similar to the 1+1 dimensional case, the phase of 2+1 dimensional MDE has a nonzero

Chern number only when m and B have the same sign, agreeing with the previously ob-

tained topological condition for the existence of gapless edge modes. For the time-reversal

counterpart Ĥ−, there is an additional minus sign in Chern number due to change of sign in

d · (∂kxd × ∂kyd).

1.5 Summary

In this chapter I took a broad overview of electronic quantum topological band insu-

lators. I modeled the topological materials using both simple and modified massive Dirac

models. I motivated the winding number and Chern number as topological invariants and

demonstrated the bulk-boundary correspondence by showing that the same topological in-

dex, which indicates nontrivial topology in the bulk, also indicates the presence of gapless
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modes at the boundary. In what follows, I will delve deeper into some idiosyncratic properties

that characterize these topological materials.
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2. CONNECTION TOPOLOGY OF STEP EDGE BANDS AT

THE SURFACE OF 3D TOPOLOGICAL INSULATORS

2.1 Introduction

Three-dimensional time reversal invariant topological insulators are materials character-

ized by a Z2 (yes/no) topological index [25 ], [32 ]–[35 ]. They have gapless two-dimensional

surface states effectively described by an odd number of (2+1)-dimensional massless helical

Dirac modes, whose gapless nature is protected by time reversal symmetry, even against dis-

order [25 ], [36 ]. Recent studies have shown that in such 3D topological insulators, step-like

surface defects can introduce new in-gap states which modify the band structure near the

Dirac point [37 ], [38 ]. These emergent in-gap states are one-dimensional – in experiments,

they are observed to be localized along the step edge [39 ], [40 ].

In the remainder of the chapter, I will investigate the response of the topological insulator

surface Dirac states to one-dimensional line defect, using the analytical non-perturbative T-

matrix method [41 ]. I will show that one-dimensional bound modes appear at these defects

and persist over a wide range of defect strengths. Moreover, near small momentum, such

a bound one dimensional mode is linearly dispersing and the linear dispersion is always

connected to the Dirac point of the surface states. This connectivity is destroyed by adding

a magnetic field, which breaks time reversal symmetry. My continuum analytical results

have also been confirmed by complimentary numerical calculations in [41 ].

2.2 Topological Insulator Surface States Perturbed by a Line Defect

In the last chapter we saw how the massive Dirac fermions in 3+1 dimensions give rise

to massless 2+1 dimensional Dirac modes on the surface. To model these surface bands

in the long wavelength limit, one can use the 2D massless Dirac Hamiltonian as a low-

energy approximation to the band structure. In the long wavelength limit, one can model

a general line defect on 3D topological insulator surface as a sharp delta function potential.
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Incorporating such a defect at x = 0 and extending along the y direction, the surface

Hamiltonian becomes

Ĥ = Ĥ0 + V̂ , with Ĥ0 = σxp̂x + σyp̂y and V̂ = Uδ(x̂). (2.1)

Here, ~ and Fermi velocity vF have been set to 1. U characterizes the renormalized strength

of the defect in the long length scale limit. It can be used as an effective fitting parameter

to experimental/numerical results.

The unperturbed Hamiltonian, Ĥ0, has the following energy eigenstates [42 ]:

ψk,±(r) = 1√
2LxLy

eik·r

e−iφk

±1

 , (2.2)

with energies Ek,± = ±k. Here, k = |k| =
√
k2

x + k2
y and φk is the polar angle characterizing

k. Since the Ĥ exhibits translational symmetry along the y direction, the y momentum,

ky, remains a good quantum number. Considering only the subspace labeled by ky, the

Hamiltonian becomes:

ĥ(ky) = ĥ0(ky) + V̂ with ĥ0(ky) = σxp̂x + σyky. (2.3)

The energy eigenstates of ĥ0(ky) can be rewritten as:

ψk,±(r) = 1√
Ly

eikyyφkx(x), (2.4)

where φkx(x) can be obtained by comparing with Equation (2.2 ) and satisfies the Schrödinger

equation,

ĥ0(ky)φkx(x) = Ekφkx(x). (2.5)
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The energy spectrum of full Hamiltonian, ĥ(ky), can be found using the T-matrix ap-

proach. First, the Green’s functions corresponding to the unperturbed and full Hamiltonians,

ĥ0 and ĥ, are respectively:

Ĝ0(ω) = 1
ω − ĥ0

and Ĝ(ω) = 1
ω − ĥ

, (2.6)

where ω is a complex frequency variable. Ĝ is related to Ĝ0 through the T matrix:

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0, where T̂ = V̂ + V̂ Ĝ0T̂ . (2.7)

All quantities are assumed to be functions of ω. The energy eigenvalues of the full Hamil-

tonian can be found from poles of operator Ĝ(ω). These poles can correspond to poles

coming from Ĝ0 (continuous spectrum) or from T̂ (isolated bound states). The energy of

the one-dimensional bound state can thus be deduced from the poles of T̂ (ω).

Since the added defect corresponds to a delta function, one can show that 〈x|T̂ |y〉, ex-

pressed in the coordinate basis, must be of the form tδ(x)δ(y). Using this representation in

the defining Equation (2.7 ), one obtains:

〈x|T̂ |y〉 = 〈x|V̂ |y〉 +
∫
dwdz〈x|V̂ |w〉〈w|Ĝ0|z〉〈z|T̂ |y〉, (2.8)

which simplifies to a simple relation between t and perturbation strength U :

t = U

I − U〈0|Ĝ0|0〉
. (2.9)

Here I is the identity matrix; 〈0|Ĝ0|0〉 is the on-site Green’s function:

〈0|Ĝ0|0〉 =
∑
kx

φkx(0)φ†
kx

(0)
ω − Ek

= 1
2

√
k2

y − ω2

 −ω iky

−iky −ω

 . (2.10)
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From Equation (2.9 ) one can see the poles of the T matrix must be zeroes of the denominator

I − U〈0|Ĝ0|0〉. Thus, the one-dimensional bound state energy εb is found by solving the

determinant equation,

det [I − U〈0|Ĝ0(εb)|0〉] = 0, (2.11)

which yields

εb = U2 − 4
U2 + 4 sgn(U)|ky|. (2.12)

This is the promised linear dispersion relation converging to the Dirac point of surface band.

For any strength U , the group velocity dεb/dky has a magnitude smaller than 1 so the bound

state is always in the energy gap at momentum ky.

The dispersion is perfectly linear because Dirac cone of surface band is assumed to extend

to infinite momentum. The bound state dispersion on the surfaces of realistic topological

materials require the imposition of a finite energy band cutoff, usually provided by the bulk

band gap. This corresponds to a high energy momentum cutoff, k0, in Equation (2.10 ). In

that case one can find,

〈0|Ĝ0|0〉 =
∑

|kx|<k0

φkx(0)φ†
kx

(0)
ω − Ek

=
arctan(k0/

√
k2

y − ω2)

π

√
k2

y − ω2

 −ω iky

−iky −ω

 . (2.13)

The bound state energy now has a correction term which is proportional to k2
y and inversely

proportional to cutoff momentum k0:

εb = U2 − 4
U2 + 4 sgn(U)|ky| −

128U3k2
y

π(U2 + 4)3
1
k0

+ o(1/k2
0). (2.14)

The quadratic correction to bound state energy makes the dispersion curve back down,

which captures results obtained from simulations [41 ]. One can also even take the rotational

symmetry of Dirac cone into account, so the cutoff can be made ky-dependent: replacing k0 →√
k2

0 − k2
y in the result. Figure 2.2 shows the dispersion of scaled bound state energy εb/k0

with respect to the scaled momentum, ky/k0, in presence of cutoff
√
k2

0 − k2
y, for different

values of the defect strength U .
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Figure 2.1. Bound state dispersion at line defect on surface of 3D TI with-
out magnetic field, at different defect strength U . The band of bound states
connects to the Dirac point of 2D surface states, with linear dispersion near
the Dirac point, forming the connection topology. Finite cutoff momentum k0
makes the dispersion curves back to surface band at large momentum. Shaded
region is occupied by 2D surface states.

2.3 In Presence of Perpendicular Magnetic Field

I now proceed to break time reversal symmetry by turning on a magnetic field perpen-

dicular to the 3D topological insulator surface. Time-reversal symmetry is broken, so the

protected Kramars degeneracy at the surface Dirac point is also lifted. This phenomenon is

captured by introducing a mass term in the low-energy Hamiltonian in Equation (2.1 ), with

the mass being proportional to the magnetic field:

Ĥ0 = σxp̂x + σyp̂y +mσz. (2.15)

Eigenstates of the unperturbed Hamiltonian are

ψk,±(r) = 1√
2LxLy

1√
m2 + k2 ∓m

√
m2 + k2

eik·r

 ke−iφk

−m±
√
m2 + k2

 , (2.16)
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with corresponding energies Ek = ±
√
m2 + k2. Using the T-matrix method, subject to the

condition ω2 < m2 + k2
y, 〈0|Ĝ0|0〉 can be calculated analytically:

〈0|Ĝ0|0〉 =
arctan(k0/

√
m2 + k2

y − ω2)

π

√
m2 + k2

y − ω2

−ω −m iky

−iky −ω +m

 . (2.17)

k0 is the cutoff momentum. The dispersion relation of 1D bound states is now found to be

εb = U2 − 4
U2 + 4 sgn(U)

√
m2 + k2

y −
128U3(m2 + k2

y)
π(U2 + 4)3

1
k0

+ o(1/k2
0). (2.18)

Figure 2.2. Bound state dispersion at line defect on surface of 3D TI in the
presence of magnetic field, at different defect strength U . To model magnetic
field, mass m is set to be 0.2k0~vF . Shaded region is occupied by 2D surface
states.

Figure 2.2 shows the energy-momentum dispersions of the scaled bound state energy

εb/k0, in presence of a ky-dependent cutoff
√
k2

0 − k2
y, with different values of the defect

strenth U . Clearly, once the topological protection for the gaplessness of topological insulator

surface states is removed by adding a magnetic field, the dispersion of the one dimensional

defect bound mode is no longer tied to the Dirac point.

2.4 Summary

In this work the (2+1)-d Dirac fermion perturbed by a local one-dimensional potential

was used to model the low-energy surface bands of a 3D topological insulator in presence
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of step-edge-like surface line defect. I found the bound state dispersion and by finding the

poles of the T matrix, the energy dispersion of 1D bound states localized at the defect was

obtained. The dispersion was found to linearly converge to the Dirac point, featuring a

connection topology as observed from recent studies [37 ], [38 ]. When the finiteness of band

gap was taken into account, a momentum cutoff was included and it produced a quadratic

correction in the energy dispersion. This analytical result agrees well with the simulation

result [41 ]. I also explored how the connection between the Dirac point and the bound mode

dispersion is broken when time reversal symmetry is violated by adding a magnetic field.

2.5 Chapter Acknowledgements

The content of this chapter has been published and appears in: “Connection topology

of step edge state bands at the surface of a three dimensional topological insulator”, New J.

Phys. 20, 073014 (2018) [41 ].
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3. 3D TOPOLOGICAL INSULATOR THIN FILMS WITH

PARALLEL MAGNETIC FIELD

3.1 Introduction

3D topological insulators (TIs) have helical gapless surface states, whose gapless nature

is protected by time reversal symmetry [25 ], [43 ]. Thus, ideal topological insulators are

semimetals, not insulators, since each Dirac mode on the surface has been found to contribute

a conductance of about 2e2/h. Breaking the gapless nature of these states in a controllable

fashion will allow controlled transition between conducting and insulating states [24 ], [44 ],

[45 ]. Such setups can underlie future switching technologies replacing conventional transitors.

The process also allows one to investigate the nature of topological protection in topological

insulators.

As discussed in the last chapter, turning on a magnetic field will gap the surface states

by breaking time reversal symmetry. There is another route to doing this – by considering a

thin film of the topological insulator, whose thickness is comparable to the bulk decay length

of the surface states. Since surface states on opposite surfaces have opposite helicities, they

can scatter off each other and open an energy gap at the Dirac point [17 ], [46 ].

In the following theoretical accompaniment to experimental studies of TI thin films, I will

study the interplay between both aforementioned gap-opening processes in 3D TI thin films

[47 ]. Surface energy gap opening and closing processes have been experimentally detected

using transport measurements. First, I will analyze the gap-opening caused by hybridization

between surface Dirac modes in thin films using a continuum theory. Next, I will analytically

explain how an insulator-semimetal transition occurs when the thin film band structure is

subjected to a parallel magnetic field. When hybridization exists, an insulator-semimetal

transition driven by tuning the parallel magnetic field is observed, which has been previously

predicted by other theoretical workers [48 ].
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3.2 Hybridization of Surfaces of TI Thin Films

In Chapter 1 the boundary states of topological materials were found to exponentially

decay from the interface and also the decay length was calculated from the bulk Hamiltonian.

In a 3D TI film whose thickness is much larger than the decay length of surface states, there is

no overlap between the surface states and they remain gapless. However, when the thickness

of the film is reduced, such that it is smaller than or of the order of decay length, the surface

states hybridize and an energy gap appears in the spectrum. Around the Dirac point, this

finite thickness hybridization effect can be modeled by adding a tunneling term coupling the

massless Dirac fermions, with opposite helicities, on the two surfaces [48 ]:

Ĥ = vF τ
z(ẑ × σ) · p̂ + ∆0τ

x. (3.1)

Here, I have set ~ = 1; vF is the Fermi velocity; σ and τ are Pauli matrices acting on

spin and surface degrees of freedom respectively; τ z(ẑ × σ) · p is the Hamiltonian for two

independent gapless Dirac fermions with opposite helicities; and ∆0τ
x is a spin-conserving

tunneling term. The energy spectrum of Hamiltonian (3.1 ) is doubly degenerate, with an

energy gap of magnitude 2∆0 (one can choose ∆0 > 0 by adjusting the definition of τ):

Ek,± = ±
√
vF (k2

x + k2
y) + ∆2

0. (3.2)

When the TI film thickness decreases, ∆0 will increase due to increasing hybridization of

opposite surfaces. ∆0 should also depend on the energy, as one can deduce below. The

thickness-dependence of the tunneling amplitude, ∆0, can be computed from matrix elements

〈ψt|ĤTI|ψb〉, where ψt,b are the wavefunctions of the top/bottom surface modes and ĤTI is

the full TI Hamiltonian. ψt,b have the same form as the eigenstates of Hamiltonian (3.1 ),

multiplied by a decaying factors of the form e−λzt,b , zt,b being the coordinates pointing into

the bulk for either surface. ∆0 thus depends on the film thickness, t, with an asymptotic

behavior e−λt for large t. 1/λ is an energy-dependent decay length whose energy-dependence

can be modeled using Equations (1.21 ),(1.26 ).
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In the following, I will adopt such an exponential dependence of ∆0 on thickness, however,

ignore the energy-dependence of λ since I will exclusively consider the value of ∆0 around

the neutrality point, where its dependence on energy is minimum. When the film thickness

is reduced below t ∼ 1/λ, ∆0 increases rapidly and so do the energy gap and the mixing of

the Dirac modes. This gap opening can be experimentally detected by measuring the drop

in longitudinal conductivity in thinner and thinner TI films.

Figure 3.1. Conductivity measurement of BiSbTeSe2 thin films. (a)
Schematic of a dual-gated TI device. (b) σmin as function of thickness and the
extracted ∆∗

0 (to distinguish from theoretical ∆0) from changing-temperature
measurement. (c)-(f) Measured conductivity as function of gate voltages
Vtg, Vbg. (c)-(e) at T = 0.35K and (f) at T = 1.6K. (c) Semimetal phase.
Black and white dashed lines show trace of Dirac points of top and bottom
surfaces. They are parallel to y, x axes since the two surfaces are independent.
(d) Crossover region. Slanted black and white traces of neutrality points indi-
cate two surfaces start to hybridize. (e) Critical thickness. σmin drops below
4e2/h. (f) Insulating phase. Deep blue region shows nearly vanishing conduc-
tivity. This figure has been adapted from our publication [47 ].

In accompanying experiments [47 ], transport meaurements were made on a sequence of

BiSbTeSe2 films with varying thickness, in the Hall-bar geometry. These devices had two

gates, affecting the top and bottom surfaces of the film. Using such dual gating, the con-
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ductivities of the top and bottom surfaces can be individually modulated through changing

their carrier densities. The minimum conductivity, σmin, is achieved when two surfaces are

gated simultaneously to charge neutrality point (see Figure 3.1 ). Thick samples (t >20nm)

yield σmin close to the value 4e2/h, corresponding to 2e2/h per gapless Dirac modes. When

the thickness is reduced to 17nm, hybridization becomes important as indicated by trans-

port. When the thickness drops below 12nm, a proper energy gap opens in the surface

bands which is indicated by nearly vanishing σmin region. Thus, we deduce that the critical

thickness for the insulator-semimetal transition driven by surface hybridization is around

10nm in BiSbTeSe2. Independently, measuring σmin vs. temperature in the insulating state

yields the energy gap, ∆0, also the thermal activation behavior, by fitting with the form

σmin ∝ e−∆0/2kBT . The exponentially decaying relation ∆0 ∝ e−λt was verified in experi-

ments.

3.3 Insulator-Semimetal Transition Driven By Parallel Magnetic Field

Applying a magnetic field parallel to an isolated TI surface does not change its physics

much, since the vector potential introduced by magnetic field is equivalent to a gauge trans-

formation on wavefunctions and results in a shift of the surface band in momentum space.

In a thin film, such a magnetic field has a nonzero flux through the cross section of the film

and so the vector potential fields at the top and bottom surfaces are not equal. Thus, the

surface bands get shifted in opposite directions, creating a distance between their Dirac band

structures in momentum space.

Assuming the parallel magnetic field is applied along x direction and choosing the Landau

gauge A = −Bzŷ, the vector potentials at the two surfaces, whose locations are given by

z = ±t/2, are ∓Btŷ/2 respectively. Replacing p → p+eA in Equation (3.1 ), the low energy

effective Hamiltonian becomes [48 ]

Ĥ = vF τ
z(ẑ × σ) · (p̂ − κBτ

zŷ) + ∆0τ
x, (3.3)

where κB = t/2l2B is the ‘magnetic wave vector’, lB =
√
c/eB being the magnetic length.
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One finds the energy eigenvalues to be ±εk±, where

εk± =
√
v2

F (k2
x + k2

y) + ε2
B + ∆2

0 ± 2εB

√
v2

Fk
2
y + ∆2

0. (3.4)

Here εB = vFκB is the ‘magnetic energy’. Since ε+ and ε− are interchanged if parallel

magnetic field flips direction, one can assume εB > 0 in the following. When both ∆0

and εB are nonzero, the spectrum is gapless at point(s) in momentum space satisfying the

following conditions

kx = 0, εB =
√
v2

Fk
2
y + ∆2

0. (3.5)

Let’s consider the possibilities below.

The first case to consider is when the hybridization strength is stronger than the magnetic

energy, ∆0 > εB. In this case conditions (3.5 ) cannot be satisfied, so the thin film remains

insulating, similar to the extreme limit when there is no magnetic field. The valence and

conduction bands are closest when kx = 0 and
√
v2

Fk
2
y + ∆2

0 − εB is minimized, i.e., at k = 0.

Next, consider the critical case ∆0 = εB. This is a semimetal phase with single gapless

point at the origin. Near k = 0, ε− ∼ vF

√
k2

x + (v2
F/4∆2)k4

y, so the energy gap (between ±ε−)

closes at k = 0. Thus, at this value of the magnetic field, the energy gap initially opened

by the hybridization process is closed again. Therefore by applying a parallel magnetic field

one should expect an insulator-semimetal phase transition in 3D TI thin films.

Finally, when the magnetic field becomes larger, ∆0 < εB. One can find two Dirac points

located at

ky = ±
√
κ2

B − (∆0/vF )2. (3.6)

In the strong field limit ∆0 � εB, these two Dirac points can be identified as the hybridization-

free independent gapless Dirac fermions of opposite chiralities being shifted by ±κB ŷ in mo-

mentum space, as discussed previously. The hybridization, ∆0, considered as a perturbation

which couples states at the same momentum value, is effective only at the intersection points

between two un-hybridized surface bands. At these intersection points, new gaps of magni-

tude 2∆0 appear. As reasoned by [48 ], [49 ], the two Dirac points in strong field limit are also

topologically protected and cannot be gapped by small surface hybridization. The two Dirac
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Figure 3.2. Insulating phase, ∆0 > εB. (a) Dispersion of bands along ky

direction. (b),(c) Band structure and spin texture of top, bottom bands and
two middle bands. The spin texture arrows show averages of three spin com-
ponents of a state, 〈sx〉, 〈sy〉, 〈sz〉, where 〈si〉 (i = 1, 2, 3) of a state φ is defined
as 〈φ|τ0 ⊗σi|φ〉 with τ0 the identity matrix acting on surface degree of freedom.
From spin texture plot one can see the four insulating bands have zero helicity.

cones, separated in momentum space, both have definite helicities. Hybridization processes

with zero momentum transfer, which fail to couple states with opposite helicities, cannot

destroy the gapless points because helicity, a discrete quantity, cannot be continuously de-

stroyed, which it needs to be in order to produce an insulating band which must have zero

helicity due to continuity of spin texture in momentum space.

When the Dirac points coincide at the critical parameter values ∆0 = εB, this protection

can no longer operate due to the hybridization of the two opposite helicities. Thus, a gap can

begin to open near this point in parameter space. If ∆0 keeps increasing beyond this value,

the hybridization gap opens and has a ‘compensated’ form 2(∆0 − εB). Figures 3.2 ,3.3 ,3.4 

show plots of the band structure and spin texture of the four bands in the three cases

discussed above.

Our theoretical analysis qualitatively agrees with the corresponding experimental results

[47 ]. The energy band gap of 3D TI thin films, in the presence of a parallel magnetic field,

was detected through magnetoresistance (MR) measurements (Figure 3.5 ). For thin films of
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Figure 3.3. Critical semimetal phase, ∆0 = εB. (a) Dispersion of bands
along ky direction. (b) Top and bottom insulating band. (c) Two middle
bands touch at a gapless point. kx axis is a nodal line for the spin texture, and
on its two sides the pattern of two Dirac cones are preserved (see Fig). Spin
vector vanishes along the nodal line, since the spin here is defined as overall
spin of both surfaces. Vanishing spin vector means these on two surfaces
exactly cancel each other.

Figure 3.4. Dirac-Weyl semimetal phase, ∆0 < εB. (a) Dispersion of bands
along ky direction. (b) Top and bottom insulating bands. (c) Two middle
bands touch at two Dirac points with helicity ±1.
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Figure 3.5. Magnetoresistance measurement of 3D TI thin films. (a),(c),(e)
Resistivity measurement of three devices as a function of Vtg and parallel B
field. Vbg is fixed at chosen values such that sweeping Vtg will pass through
ρmax = 1/σmin. (b),(d),(f) ρmax and MR as functions of parallel B field, at
fixed Vtg and Vbg. This figure has been adapted from our publication [47 ].
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relatively large thickness (t = 17nm) where Dirac nodes have not been destroyed by surface

hybridization, small resistivity and small positive MR values were observed, indicating the

stability of gapless surface Dirac nodes against the parallel magnetic field. For thinner

films with substantial surface hybridization and energy gaps, increasing parallel magnetic

field closes the energy gap, causing an insulator-semimetal phase transition and resulting in

negative MR values. In some cases, some positive MR values near the low field region were

also observed. These disappear when increasing temperature and we believe that they are

attributed to phase coherent transport [50 ], [51 ].

3.4 Summary

As discussed in the last chapter, turning on a magnetic field allows us to gap the surface

states by breaking time reversal symmetry. There is another route to doing this – by con-

sidering a thin film of the topological insulator, whose thickness is comparable to the bulk

decay length of the surface states. Since surface states on opposite surfaces have opposite

helicities, they can scatter off each other and open an energy gap at the Dirac point [17 ],

[46 ].

We presented a theoretical explanation of experimental studies of TI thin films studying

the interplay between two kinds of gap-opening processes in 3D TI thin films [47 ] – surface

state hybridization and parallel magnetic fields. We analyzed, using both continuum theory

and topological arguments, the gap-opening and closing processes caused by an competition

between (a) the hybridization of surface Dirac modes in thin films and (b) the momentum

space separation of the two Dirac nodes by a parallel magnetic field, which prevents hy-

bridization from affecting them. These conclusions have been validated in temperature and

dual gate-tuned transport measurements in 3D topological insulator (BiSbTeSe2) films with

varying thicknesses [47 ].
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4. TOPOLOGICAL GRAVITATIONAL RESPONSE IN

TWO-DIMENSIONAL TOPOLOGICAL MATERIALS

4.1 Introduction

Since the discovery of quantum Hall effect it has been known there exists a class of

material properties which can only assume discrete values and are thus precisely fixed over

finite range of material parameters. The physics of these quantized properties are explained

using topological arguments, such as the Chern number formulation for Hall conductance

relates the quantization of the Hall conductance to the discreteness of electron charge and

the principle of gauge invariance [2 ], [8 ], [52 ].

The Hall conductance is a well-known but rare example of measurable material property

that is topologically quantized (can be zero!) in a wide class of materials, viz., in all two-

dimensional insulating states of matter. Herein I consider another apparently quantized

property of quantum Hall states, the gravitational coupling constant (GCC). The GCC

characterizes linear charge response to spatial curvature, as theoretically predicted by Wen

and Zee when studying the effects of space-time deformations, i.e., gravity, to the Chern-

Simons field theories describing quantum Hall states [53 ]. This is the reason why the phrase

‘gravitational response’ is used.

In this work I establish that quantized gravitational response occurs in a wide class of two

dimensional topological quantum states on the lattice – I call this ‘topological gravitational

response’, or TGR for short. Unlike in continuous space, only discrete singular values of

Gaussian curvature can be realized on the lattice [54 ]. Specifically, lattice disclinations carry

Gaussian curvature (equal to the Frank angle of the disclination) and our TGR formulation

describes how fractional charges accumulate at such disclinations in a universal fashion that

only depends on the disclination curvature and the topological properties of the topological

phase being studied. Extending calculations involving quantum Hall states on a lattice

reported before [54 ], I will describe how to adapt any flat-lattice tight binding model to a

lattice with a disclination and implement well-known models Chern insulators and topological

insulators on these lattice disclinations to study and demonstrate TGR.
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I will first describe the construction of some paradigmatic Chern insulator models around

disclinations, calculate their spectra and report observations of quantized fractional charges

at these disclinations. I will finally close with analysis that extracts the universal part of

this response, establishing TGR in these models.

4.2 Tight-binding Calculation of Disclination Charge

I will use the tight-binding method to calculate the energy spectrum and charge density

in topological systems [55 ]. The general tight-binding Hamiltonian for a lattice system has

the form

Ĥ =
∑
R,δ

Ψ̂†(R + δ)t(δ)Ψ̂(R). (4.1)

Here, R is a vector labeling positions of unit cells. Ψ̂†(R) and Ψ̂(R) are d-dimensional vectors

whose components are creation and annihilation operators of internal degrees of freedom,

e.g. sublattices and spins, inside the Bravais unit cell at location R. t(δ) are d-dimensional

hopping matrices prescribing hopping amplitudes between cells connected by the hopping

vectors δ. Of course, the model is explicitly translation invariant and so is defined on a

lattice, i.e., on flat space. Diagonalizing the tight-binding Hamiltonian yields energy the

spectrum and wavefunctions of single-electron eigenstates. When these single-electron states

are filled up to some Fermi level EF not coinciding with the energy of any state, the local

charge density within a unit cell is given by formula

ρ(R) =
∑

E<EF

d∑
α=1

|ψ(E)(R, α)|2. (4.2)

ψ(E) denote energy eigenstate(s) with energy E and the internal degree of freedom is labeled

by α. For clean topological band insulators on an infinite lattice, there is a clear bulk band

gap and when the Fermi level is placed in the gap, ρ(R) should be everywhere equal, yielding

the ‘filling factor’ ν. A band insulator with the Fermi level inside the gap separating k valence

bands from the conduction bands, the number of electrons is ν = k per Bravais unit cell. If

the unit cell has multiple lattice points (hence equivalent), this charge is evenly distributed

among them. If the lattice has a finite boundary or point defect, the tails of in-gap edge

47



states or impurity bound states can shift the local density from the above-mentioned value of

ν. However, sum of the discrepancies along an edge or around a point defect should give an

integer excess charge, which is equal to the number of filled edge states or impurity bound

states. The excess charge is defined as [56 ]

δQ =
∑
R̃

[ρ(R̃) − ν] (4.3)

where R̃ goes over all sites near the edge or point defect. Around usual (non-topological)

defects on flat lattices, this quantity is an integer.

For topological materials on curved lattices, i.e., in the presence of disclinations, δQ

need not be an integer. Indeed, discarding the effects of non-universal aspects arising from

disorder and vacancies, one can see that only the fractional part of δQ can be universal.

Firstly, one notices that translation symmetry is broken and Hamiltonian (4.1 ) needs to be

redefined. For elementary models with simple hopping amplitudes this redefinition can be

straightforward, however for others it needs to be consistent with all symmetries of the flat

space Hamiltonian. I have developed a systematic method for constructing tight-binding

Hamiltonians around disclinations on a lattice with n-fold rotattion symmetry (Appendix),

utilizing the n-fold rotation symmetry obeyed by the flat space Hamiltonian.

I will now provide examples of three prototype tight-binding models around disclinations:

the Haldane model Chern insulator on the honeycomb lattice, the QWZ Chern insulator on

the square lattice and the Kane-Mele time reversal invariant topological insulator on the

honeycomb lattice.

4.2.1 The Haldane Model

The Haldane model was the first Chern insulator model proposed [9 ] – it exhibits the

quantized Hall effect in the absence of a net external magnetic field, the so-called quantum

anomalous Hall effect (QAHE). The Hamiltonian is

Ĥ =
∑

i
Miĉ

†
i ĉi + t1

∑
〈ij〉
ĉ†

i ĉj + t2(eiφ ∑
r.t.〈〈ij〉〉

ĉ†
i ĉj + h.c.), (4.4)
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where Mi = ±M are onsite masses for A/B sublattices; ĉ†
i , ĉi are creation and annihi-

lation operators at site i; t1, t2 denote nearest- and second-nearest-neighbor (〈〉 and 〈〈〉〉,

respectively) hopping amplitudes; r.t. indicates second nearest-neighbor hops realized with

one right-turn; φ is a tunable phase capturing a time reversal breaking staggered internal

magnetic flux which is crucial for achieving QAHE. The Haldane model has two topological

phases with Chern numbers C = ±1 [9 ], which are determined by condition

|M | < 3
√

3|t2| sinφ (4.5)

and separated by two nodes at φ = 0 and π. The phase diagram is shown in Figure 4.1 .

Figure 4.1. Phase diagram of Haldane model [9 ].

The behavior of the Haldane model at disclinations has been discussed by others [57 ]. On

the hexagonal lattice one can choose various Wyckoff positions in hexagon as disclination

center, so different types of disclinations can be created [58 ]. I will focus on the center-

type and vertex-type disclinations of hexagonal lattice, which have 6-fold and 3-fold rotation

symmetries respectively (Figure 4.2 ). Using the cut-and-glue process [59 ] (Figure 4.3 ), one

breaks the flat hexagonal lattice into sectors, with each sector having an apical angle of

π/3 or 2π/3 depending on the disclination type. Removing or adding extra sectors lead

to disclinations with positive or negative curvatures. Since the hopping amplitudes of the

Haldane model are unchanged under rotations, two boundaries of the seam can be naturally

joined without any further rotational gauge transformation. Using formula (4.3 ), excess

charges of the two disclination types are calculated in Table 4.1 and 4.2 .
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Figure 4.2. (a) Center-type and (b) vertex-type disclination of hexagonal lattice.

Figure 4.3. Cut-and-glue process to join a 5-sector center-type disclination
of hexagonal lattice.

The calculation provides following important information for disclination charge of Hal-

dane model. The excess charge is nonzero for both topological phases C = ±1 and zero

for trivial phase C = 0. Within the same topological phase, e.g. C = 1, its fractional

part is quantized and stable against tuning parameters within the phase. When phase φ

changes sign, i.e., under time reversal, the disclination charge should remain the same be-

cause charge is even under time-reversal. Thus, phases C = ±1 have the same disclination

charges. Lastly, the fractional part of the excess charges is proportional to the integrated

curvature of the disclinations, which is an analogous result to the Hall fluid in continuous
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space [53 ] and Hofstadter model on polyhedrons [54 ]. Finally, I find that the excess charges

at site-centered disclinations depend on whether there is an atom at the center. Since at

half-filling every atom contributes 1/2 electron-charge, such vacancies can change all charges

by integer multiples of 1/2. However, the GCC, or the linear response coefficient, will be

unaffected. This physics is incorporated in our universal formulation of TGR, presented in

a later section.

Table 4.1. Excess charge of Haldane Model, center-type disclination, C = ±1 phase.
Number of sectors m 1 2 3 4 5 6 7 8 κ
Singular curvature/2π 5/6 2/3 1/2 1/3 1/6 0 -1/6 -1/3
[δQcenter

H ]frac 3/4 0 1/4 1/2 3/4 0 1/4 1/2 -3/2

Table 4.2. Excess charge of Haldane Model, vertex-type disclination, C = ±1 phase.
Number of sectors m 1 2 3 4 5 κ
Singular curvature/2π 2/3 1/3 0 -1/3 -2/3
[δQvertex

H ]†frac 0 0 0 0 0 0

4.2.2 The QWZ Model

The QWZ model is a protoype two-band Chern insulator model on the square lattice

[12 ]. Its Hamiltonian is

Ĥ =
∑

ij
Ψ̂†

i,jmσ3Ψ̂i,j + Ψ̂†
i+1,j

σ3 + iσ1

2 Ψ̂ij + Ψ̂†
i,j+1

σ3 + iσ2

2 Ψ̂ij + h.c., (4.6)

where i, j are the integer-valued x and y coordinates; Ψ̂†
ij, Ψ̂ij are 2-dimensional vectors whose

components are the creation/annihilation operators corresponding to the two orbital states

at site (i, j); m is the onsite mass gap and σi (i = 1, 2, 3) are Pauli matrices. This system can

exist in two possible topological phases, with C = ±1 (corresponding to −2 < m < 0 and

0 < m < 2, respectively), and the trivial phase with C = 0 (for |m| > 2).

The flat space QWZ Hamiltonian, unlike the Haldane model Hamiltonian, cannot be

directly applied to lattices with disclinations since the hopping matrices are not equal in
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different directions related by rotational symmetry. Choosing Bravais lattice vectors a1 =

(1, 0) and a2 = (0, 1), the hopping vector δ can take four different values ±a1, ±a2. The

hopping matrices along these four directions are

t(a1) = t(−a1)† = σ3 + iσ1

2 , t(a2) = t(−a2)† = σ3 + iσ2

2 . (4.7)

It is found that they are related to each other by a rotation-dependent unitary operation:

t(Rδ) = Ut(δ)U−1, with U = eiη

1 0

0 i

 , (4.8)

where R is counterclockwise rotation of 90◦ and δ is among the four values. η is an unde-

termined phase depending on the angular momentum of orbitals. For ‘Bosonic’ rotations,

U4 = 1 so η is an integer multiple of π/2. Fourier transforming the Hamiltonian to momen-

tum space, h(k), rotational invariance (4.8 ) can also be seen from relation

h(Rk) = Uh(k)U−1. (4.9)

The preceding analysis suggests that I can use the cut-and-glue process only after per-

forming a unitary gauge transformation on one side of the seam. After the transformation,

hopping matrices across the seam can be naturally defined. More details are provided in Ap-

pendix B . This way of defining the disclination Hamiltonian has the merit that away from

the disclination core, it is everywhere equivalent to the flat space Hamiltonian. In other

words, if one picks out a random patch away from the disclination core, including across the

seam, Hamiltonian of the patch will be equivalent to the flat lattice Hamiltonian of QWZ

model up to a unitary transformation. Another way of showing this is by observing that an

additional gauge transformation can make the disclination Hamiltonian periodic, where the

joined seam has no difference from any other nodal line between neighboring sectors. I have

also provided a proof of this periodic property in Appendix C .

I calculated the excess charges on the center and vertex-type square lattice disclinations,

they are sketched in Figure 4.4 . Similar to the Haldane model, the disclination charge of
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QWZ model is found to be nonzero only in the topological phases C = ±1. The excess

charge also depends on the angular momentum of orbitals because the boundary conditions

are η-dependent. For disclination Hamiltonians with different η values, an alternative way of

thinking is to imagine the angular momentum of orbitals is unchanged but with a magnetic

flux inserted through the disclination center, so the change of excess charges can be inter-

preted from Laughlin’s argument [2 ]. This physics will be incorporated in our later section

describing TGR.

Taking η as a control and comparing disclinations at different curvatures, the fractional

excess charges are found to be proportional to the disclination curvature. The excess charges

for C = ±1 phases with four different η values and two disclination types of square lattices

are listed in Table 4.3 , 4.4 , 4.5 and 4.6 .

Figure 4.4. (a) Center-type and (b) vertex-type disclination of square lattice.

Table 4.3. Excess charge of QWZ model, center-type disclination, C = 1 phase.
Number of sectors m 1 2 3 4 5 6 7 κ
Singular curvature/2π 3/4 1/2 1/4 0 -1/4 -1/2 -3/4
[δQcenter

QW Z ]frac η = 0 5/8 3/4 7/8 0 1/8 1/4 3/8 -1/2
η = π/2 7/8 1/4 5/8 0 3/8 3/4 1/8 -3/2
η = π 1/8 3/4 3/8 0 5/8 1/4 7/8 -5/2
η = 3π/2 3/8 1/4 1/8 0 7/8 3/4 5/8 1/2
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Table 4.4. Excess charge of QWZ model, center-type disclination, C = −1 phase.
Number of sectors m 1 2 3 4 5 6 7 κ
Singular curvature/2π 3/4 1/2 1/4 0 -1/4 -1/2 -3/4
[δQcenter

QW Z ]frac η = 0 7/8 1/4 5/8 0 3/8 3/4 1/8 -3/2
η = π/2 5/8 3/4 7/8 0 1/8 1/4 3/8 -1/2
η = π 3/8 1/4 1/8 0 7/8 3/4 -3/8 1/2
η = 3π/2 1/8 3/4 3/8 0 5/8 1/4 7/8 3/2

Table 4.5. Excess charge of QWZ model, vertex-type disclination, C = 1 phase.
Number of sectors m 1 2 3 4 5 6 7 κ
Singular curvature/2π 3/4 1/2 1/4 0 -1/4 -1/2 -3/4
[δQvertex

QW Z ]frac η = 0 5/8 3/4 7/8 0 1/8 1/4 3/8 -1/2
η = π/2 7/8 1/4 5/8 0 3/8 3/4 1/8 -3/2
η = π 1/8 3/4 3/8 0 5/8 1/4 7/8 -5/2
η = 3π/2 3/8 1/4 1/8 0 7/8 3/4 5/8 1/2

Table 4.6. Excess charge of QWZ model, vertex-type disclination, C = −1 phase.
Number of sectors m 1 2 3 4 5 6 7 κ
Singular curvature/2π 3/4 1/2 1/4 0 -1/4 -1/2 -3/4
[δQvertex

QW Z ]frac η = 0 3/8 1/4 1/8 0 7/8 3/4 -3/8 1/2
η = π/2 1/8 3/4 3/8 0 5/8 1/4 7/8 3/2
η = π 7/8 1/4 5/8 0 3/8 3/4 1/8 -3/2
η = 3π/2 5/8 3/4 7/8 0 1/8 1/4 3/8 -1/2

For square lattice both the center and vertex of square have four-fold rotation symmetry,

but comparing Table 4.3 and 4.5 , 4.4 and 4.6 , one notices the GCC κ of different η values

are shifted. This is resolved by noting that they correspond to different values of η, which

non-topological dependence needs to be removed from the definition of TGR. I address this

in a later section.

4.2.3 The Kane-Mele Model

In 2005 Kane and Mele proposed the first 2D topogical insulator model on the honeycomb

lattice [10 ], [11 ]. This model stacks two Haldane models with opposite Chern numbers,
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C = ±1, and couples them with a Rashba term. This construction is constrained by imposing

time reversal symmetry. The Hamiltonian is:

Ĥ = t1
∑
〈ij〉

Ψ̂†
i Ψ̂j + t2(eiszφ

∑
r.t.〈〈ij〉〉

Ψ̂†
i Ψ̂j + h.c.) + iλR

∑
〈ij〉

Ψ̂†
i (s × d̂ij)zΨ̂j. (4.10)

Here I use a slightly different Hamiltonian from the original Kane-Mele model, explicitly

retaining the phase φ of the Haldane model and eliminating the mass term, which breaks

the sixfold rotation symmetry. Apart from the last Rashba term which couples the two

spin layers, the Hamiltonian looks similar to Haldane model except ĉ†
i , ĉi are replaced with 2-

dimensional vectors Ψ̂†
i , Ψ̂i which have taken into account the two spin species. s = (sx, sy, sz)

are Pauli matrices acting on spin space, and d̂ij is the unit vector along a nearest-neighbor-

hopping bond.

Due to the presence of time-reversal symmetry, pairs of gapless counter-propagating

modes of opposite spins always exist along the edge and connect the valence and conduction

bands [10 ], [11 ]. Therefore when voltage is applied, there is no net charge current but

only spin current at the edge, yielding the so-called quantum spin Hall effect (QSHE). The

topological trivial or nontrivial phases are characterized by even or odd number of pairs

of counter-propagating edge modes, so fit into the Z2 classification of topological materials

[60 ][61 ].

The Kane-Mele model cannot be implemented on disclinations directly due to the pres-

ence of non-identical Rashba couplings in different directions. To apply the cut-and-glue

technique, a unitary transformation acting in spin space is needed to join the seam.

To do this, let us express d̂ij in the Rashba term as (cosα, sinα), where α is the polar

angle of bond dij. Then, the Rashba hopping matrix is

t(α) = (s × d̂ij)z = sx sinα− sy cosα. (4.11)
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It is clear that under 60◦ rotation the matrices are related by following transformation:

t(α + π

3) = Ut(α)U−1, with U = eiηe−isz
π

3 = eiη

e−iπ/6 0

0 eiπ/6

 , (4.12)

where η is a phase depending on the spin of two layers. Traditionally, the Kane-Mele model

is thought of as composed of spin-up and -down of spin-1/2 fermions and so η can be an

integer multiple of π/3. I use the same approach as for QWZ model to join the boundaries

of seam, with the only difference being that now the gauge transformation takes place on

two spin layers instead of two orbitals.

With the disclination Hamiltonian of Kane-Mele model defined, the excess charge can be

computed. They are found to be proportional the disclination curvature, but independent

of η. This can be understood from Laughlin’s argument, since change of η is equivalent to

flux insertion at disclination center, which induces zero net charge because the Kane-Mele

model has the net Chern number value C = 0. Excess charges at center-type disclinations

with different curvatures are given in Table 4.7 : Only charges for QSH phase 0 < φ < π

Table 4.7. Excess Charge of Kane-Mele Model, center-type disclination, QSH
phase 0 < φ < π.

Number of sectors m 1 2 3 4 5 6 7 8 κ
Total Curvature/2π 5/6 2/3 1/2 1/3 1/6 0 -1/6 -1/3
[δQcenter

KM ]frac 1/3 2/3 0 1/3 2/3 0 1/3 2/3 -2

are listed. For the other phase −π < φ < 0, the two layers are switched but the fictitious

magnetic flux inserted by U matrix is the same, so disclination charges will change sign.

To understand the charge Table 4.7 from a microscopic point of view, I first consider the

Kane-Mele model without Rashba coupling, which becomes just two independent Haldane

models with C = ±1. Such a system preserving time-reversal symmetry is not unique,

since one can insert fictitious magnetic flux Φ0 through layer C = 1 and −Φ0 through layer

C = −1. Applying Laughlin’s argument to the two layers separately, one would find they give

equal contributions to the disclination charge, so the charge would depend on Φ0. However,

when Rashba term is turned on, it implies additional constraints on rotational invariance
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(4.12 ) which requires that the fluxes through two layers must differ by π/3, plus some other

external flux η which has no effect on total charge. Therefore, the disclination charge of

Kane-Mele model with the prescribed form of the Rashba term is unique. (However, other

values of the flux can be considered by changing the detailed form of the Rashba term.)

Consider an example where time-reversal symmetry is preserved and the two layers are spin-

up and down of a spin-1/2 system, then η = 0 and Φ0 = π/6 per sector. Following these

arguments, if one is given disclination charges of Haldane model in Table, then charges of

Kane-Mele model can be derived using equation

δQcenter
KM (m) = 2[δQcenter

H (m) ∓m
π/6
2π

], (4.13)

where the sign ∓ depends on QSH phase 0 < φ < π or −π < φ < 0.

For the other type of disclination, where vertex of a hexagon is chosen as disclination

center, one needs to use rotations through 2π/3 and t(α + 2π/3) = U2t(α)U−2, with U the

same matrix as in Equation (4.12 ). The disclination charges are listed in Table 4.8 . Similarly,

Table 4.8. Excess Charge of Kane-Mele model, vertex-type disclination, QSH
phase 0 < φ < π.

Number of sectors m 1 2 3 4 5 κ
Total Curvature/2π 2/3 1/3 0 -1/3 -2/3
[δQvertex

KM ]frac 2/3 1/3 0 2/3 1/3 -2

one can derive charges in Table from Table of the same disclination type of Haldane model.

The relation is

δQvertex
KM (m) = 2[δQvertex

H (m) ∓m
π/3
2π

], (4.14)

where the phase π/6 has been replaced with π/3.

4.3 Topological Gravitational Response – finding the GCC

The GCC κ calculated for topological lattice systems in this work will be generalized

from Wen and Zee’s effective theory of the gravitational response of Hall fluids on continuous

curved spaces [53 ]. Wen and Zee discussed the continuum physics of Hall fluids in presence of
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electromagnetic fields and small curvature variations in space using the effective Lagrangian

[53 ]

L = 1
4π

(aKε∂a+ 2Atε∂a+ 2ωsε∂a) + aj. (4.15)

The first term is a Chern-Simons self interaction for the internal gauge fields a; the second

and third term describe couplings of current to electromagnetic potential A and spatial

connection, ω, respectively; the last term is coupling between gauge field to quasiparticle

current j; K and t are an integer-value matrix and vector characterizing the topological order

of the system; s is the so-called spin vector which should not be confused with electronic spins.

By the variational method one obtains the charge density or 0-component of electromagnetic

current J0:

ρ(x) = 1
2π

[tK−1t(∂1A2 − ∂2A1) + tK−1s(∂1ω2 − ∂2ω1)] ≡ 1
2π

[νB + κKG(x)]. (4.16)

The first term is proportional to magnetic flux density, B = ∂1A2 − ∂2A1, and the second

term is proportional to the local Gaussian curvature KG(x) = ∂1ω2 −∂2ω1. κ is the so-called

gravitational coupling constant (GCC), the excess charge density response with Gaussian

curvature.

Integrating ρ(x) over a closed manifold, Wen and Zee found

Ne = νNφ + 2κ(1 − g). (4.17)

Ne and Nφ are the integer number of electrons and flux quanta over the area respectively. g,

an integer, is the genus of the surface. ν is the filling factor, a rational fraction. This equation

can only be satisfied if κ is a rational fraction. This indicates that the GCC is topologically

quantized and this is the central reason motivating us to explore generalizations to a broader

class of insulating states.

Thus, we will generalize the quantized curvature-induced charge response,

ρ(x) = κKG(x)
2π

, (4.18)
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to other lattice topological states of matter. The case of quantum Hall states on the lat-

tice has been studied in [54 ]. We will consider Chern insulators or timer-reversal invariant

topological insulators.

Before deriving an analogous equation for topological lattice systems, I will point out an

important distinction between Hall fluids and Chern/topological insulators. Chern/topolog-

ical insulators have no net magnetic field. Thus, their charge density on a flat lattice is a

fixed amount per lattice site, as dictated by band theory. This is different in QH states,

where the density is fixed by the magnetic flux density. A consequence is that vacancies can

change the total charge near the disclination. These correspond to an integer in square and

triangular lattices, and 1/2 per occupied band on the honeycomb lattice.

Another consideration is that we have to consider the total accumulated charge at discli-

nations, not a charge density since the long-wavelength picture is no longer valid. Removing

the non-universal corrections considered this far, the TGR equation looks like

[δQ]frac =
(
κ
KG

2π

)
frac

, (4.19)

where δQ is the net excess charge at the disclination, KG is the total Gaussian curvature of

the disclination (the Frank angle) and the fraction operation mods out the integer part (or

1/2 for the Honeycomb lattice with odd number of occupied bands).

Our next consideration is the following: if the topological state carries Chern number C,

when an effective magnetic flux is inserted through the disclination center, an excess charge

will accumulate which can be calculated from Laughlin’s argument. Therefore the charge at

a disclination center, corrected for non-universal effects stemming from local bound states

and vacancies, arise from two sources: the quantum Hall effect acting on fictitious magnetic

fluxes and singular curvature of disclinations.

We next consider the source of this fictitious magnetic flux. As discussed while con-

structing tight-binding models, the U matrix associated with rotation symmetry has an

undetermined phase η, which can only take a set of discrete values. η exerts a nontrivial
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effect at disclinations, yielding an overall Aharonov-Bohm-like phase of mη as a particle

rotates around an m-fold disclination. Incorporating this,

[δQ]frac =
(
κ
KG

2π
+ C

mη

2π

)
frac

, (4.20)

Since models with different η values are all topologically the same, we have to mod out its

effect when calculating the GCC. For a lattice model without external magnetic field, fixing

the rotation matrix U to satisfy either Un = 1 or Un = −1, η can only take value 2πk/n,

with k an integer going from 0 to n−1. Combining all these successive modular observations,

I conclude that the value of mod (κ, g.c.d.(n,C)) is universal for a specific kind of lattice

topological phase of matter. This is true for all calculations I have done so far.

4.4 Summary

I considered the charge response of a large class of quantum topological lattice states to

real space curvature and implemented them onto disclinations. I first implemented a pro-

cedure for adapting any tight-binding models, defined in translation-invariant flat space, to

disclinations on the lattice. I discovered fractional quantization of the disclination charge

and discuss how to extract topological phase-specific universal behaviors from the data. Fi-

nally, a universal generalization of the Wen-Zee theory of gravitational response in continuum

quantum Hall states was formulated, applicable to all lattice topological states of matter. I

look forward to what this means for the general theory of topological invariants in quantum

condensed matter physics.
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5. GEOMETRIC RESPONSE OF QUANTUM HALL STATES

TO ELECTRIC FIELDS

5.1 Introduction

Quantum Hall states are first examples of topological states of matter discovered to have

quantized charge Hall conductance [1 ]–[5 ]. Less is known about any universal aspects of

their response to nonuniform electric fields. Some recent developments, involving effective

field theory formulations of quantum Hall physics in the continuum, have connected the

gravitational coupling constant, in the guise of anomalous viscosity, to coefficients in the

gradient expansion encapsulating local current density response to a nonuniform electric

field [62 ]–[64 ]. This is a surprising observation, since it signifies a connection between the

response of quantum Hall states to two very different kinds of perturbations – linear charge

density response to real space curvature (the gravitational coupling constant is the response

coefficient there) and current response to non-uniform fields.

Here, to elucidate this remarkable connection, we start from a novel geometric picture of

quantum Hall wavefunctions and derive that nonuniform electric fields mimic the presence

of spatial curvature [65 ]. We describe quantum Hall physics in terms of gauge-invariant

variables (GIV), i.e. kinetic momentum and guiding center coordinates of electronic motion

[66 ]. The two components belonging to each of these operators satisfy canonical commutation

relations, similar to that between position and momentum in quantum mechanics, while these

two sets of operators mutually commute and are independent. These pairs can therefore be

chosen as coordinates of two independent dynamical phase spaces, allowing definitions of a

new quantum basis for expressing the electronic wavefunctions.

Under the GIV formalism, we will first show how Landau quantization occurs and the

extensive degeneracy of Landau levels can be calculated. We will then present calculations

within this formalism which clearly show the shearing, shifting and drifting of cyclotron

orbits in the presence of a nonuniform electric field. The nonuniform field gives rise to an

effective metric, thus the charge density response should contain a part that arises from the

physics of gravitational response and thus involves the gravitational constant! We present
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analytic and numerical calculations which validate this reasoning in IQH states, neglecting

spin effects.

5.2 Gauge Invariant Variables in Quantum Hall Physics

The kinetic momentum operator and guiding center coordinate operator for cyclotron

motion of 2D electron gas in magnetic field are defined as [66 ]

π̂ = p̂ + eA, R̂ = r + l2B
~
ẑ × π̂, (5.1)

where A is the vector potential of magnetic field, lB =
√
~/eB is the magnetic length

and magnetic field is assumed to be along z direction, B = Bẑ. For brevity, we will set

the magnetic length lB, electric charge e and ~ to be unity, then these operators satisfy

commutation relation

[R̂x, R̂y] = i, [π̂y, π̂x] = i, [π̂i, R̂j] = 0 (5.2)

These operators are found to be gauge invariant, since under a gauge transformation A →

Aω = A + ∇ω, the position basis 〈x, y| → 〈x, y|e−iω, which implies the momentum operator

undergoing a change p̂ → p̂ − ∇ω, therefore π̂ = p̂ + A remains invariant.

Due to commutation relation (5.2 ), simultaneous eigenstates of a pair of operators {π̂i, R̂j}

can be found, which is denoted as |πi, Rj〉. These states can be further written into basis of

coordinates x, y. For instance, define the basis wave χRx,πy(x, y) ≡ 〈x, y|Rx, πy〉. χRx,πy(x, y)

may assume different forms under different gauge choices. If one chooses the Landau gauge

AL = xŷ (B has been set to 1), then it satisfies eigenvalue equations

R̂xχ
L
Rx,πy

= i∂yχ
L
Rx,πy

= Rxχ
L
Rx,πy

,

π̂yχ
L
Rx,πy

= (−i∂y + x)χL
Rx,πy

= πyχ
L
Rx,πy

.
(5.3)

The solution is found to be

χL
Rx,πy

(x, y) = δ(x−Rx − πy)e−iRxy. (5.4)
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This set of basis wavefunctions satisfy orthogonality relation

∫∫
dxdyχL

Rx,πy
(x, y)∗χL

Rx,πy
(x, y) = δ(Rx −Rx)δ(πy − πy). (5.5)

If alternatively one chooses the symmetric gauge AS = (−yx̂ + xŷ)/2, then the eigenvalue

equaitons become

R̂xχ
S
Rx,πy

= (i∂y + x

2 )χS
Rx,πy

= Rxχ
S
Rx,πy

,

π̂yχ
S
Rx,πy

= (−i∂y + x

2 )χS
Rx,πy

= πyχ
S
Rx,πy

(5.6)

whose solution is

χS
Rx,πy

(x, y) = δ(x−Rx − πy)e−iRxyei xy
2 . (5.7)

Comparing (5.4 ) and (5.7 ) one can see the two basis waves are different by a factor eixy/2,

which is as expected from the gauge transformation AS = AL + ∇(−xy/2). With the

normalized basis wave χ(x, y) determined, a single-particle electronic wavefunction in rep-

resentation of spatial coordinates x, y can be brought to Rx, πy coordinates, using formula

Ψ(Rx, πy) =
∫∫

dxdyχ∗(x, y)Φ(x, y). (5.8)

Within the GIV formalism, let us consider the Hamiltonian of 2D electrons in a purely

magnetic field:

Ĥ = K(p̂ + A) = K(π̂) = π̂
2

2 , (5.9)

where the kinetic energy K is assumed to be quadratic in kinetic momentum π̂. Then

variables Rx, πy of the wavefunction are separable, Ψ(Rx, πy) = ψ(Rx)η(πy). Here ψ(Rx)

is an arbitrary square-integrable function and η(πy) satisfies equation of simple harmonic

oscillator. An energy eigenstate is found to be

Ψn(Rx, πy) = ψ(Rx)ηn(πy), n = 0, 1, ... (5.10)
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with energy eigenvalue εn = n + 1/2 and ηn the nth harmonic oscillator. Solution (5.10 )

shows that the Landau levels structure of 2D electron gas is featured by ηn and the extensive

degeneracy of each level is given by degree of freedom of the arbitrary function ψ(Rx).

Function ψ(Rx) can be expanded with different basis. For example, one can consider the

set of eigenstates of operator R̂
2 = R̂2

x + R̂2
y since it is another harmonic oscillator whose

eigenstates form a complete orthogonal basis of the one-dimensional Hilbert space. The

eigenstates are ηm(Rx),m = 0, 1, ... with eigenvalue 2m+ 1. Therefore an energy eigenstate

can be cast as

Ψm,n(Rx, πy) = ηm(Rx)ηn(πy), m, n = 0, 1, ... (5.11)

Transforming back to x, y coordinate representation using the basis wave of symmetric gauge,

χS
Rx,πy

, one obtains

Ψ̃m,n(x, y) =
∫∫

dRxdπyχ
S
Rx,πy

(x, y)Ψmn(Rx, πy)

∝ ei xy
2 e− x2+y2

4 (x+ iy)
|m−n|−(m−n)

2 (x− iy)
|m−n|+(m−n)

2 L
|m−n|
n+m−|m−n|

(x2 + y2

2
)
,

(5.12)

Here Lm
n is the associated Legendre polynomials. The wavefunction (5.12 ) differs from the

energy eigenstate in symmetric gauge [67 ] by a phase factor ei xy
2 .

5.3 Response to Nonuniform Electric Field: Analytical Result

Considering the situation where a nonuniform electric field is present. The Hamiltonian

becomes

Ĥ = K(p̂ + A) − V (r) = π̂
2

2 − V (R̂ + π̂ × ẑ), (5.13)

where V is potential energy due to electric field, with a minus sign accounting for negative

charge of electrons. Our target is to calculate the local charge and current density operators

in terms of gradient expansions of the electric potential: V . We assume the change of V is

slow in space such that its variation in a magnetic length is much smaller than gap between
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Landau levels. Since magnetic length l and energy gap ~ωc have been set equal to 1, the

slowly varying condition is equivalent to following

∂m
r V (r) � 1, m = 1, 2, ... (5.14)

This condition on V can be used to approximate operator V (R̂ + π̂ × ẑ) by the first few

terms of Taylor series:

V (R̂ + π̂ × ẑ) = V (R̂) + ∂aV (R̂)εapπ̂p + 1
2∂

2
abV (R̂)εapεbqπ̂pπ̂q + 1

6∂
3
abcV (R̂)εapεbqεcrπ̂pπ̂qπ̂r + ...

(5.15)

where the summations over repeated indices have been omitted, and ε is Levi-Civita tensor

in two dimensions. Here only the perturbative terms up to 3rd order of kinetic momentum

π̂ are written out explicitly, since we will show this approximation can be simplified to a

quadratic polynomial of R̂ and π̂.

The simplest case is to ignore all perturbative terms, i.e., V (r) ≈ V (R̂). Since [R̂, π̂] = 0,

variables of eigenstates of Hamiltonian (5.13 ) are still separable. An energy eigenstate has

the form

Ψm,n(Rx, πy) = ψm(Rx)ηn(πy), (5.16)

where ηn is still the nth harmonic oscillator, and ψm is an eigenstate of operator V (R̂):

V (R̂)ψm = −vmψm. (5.17)

The energy eigenvalue of state Ψm,n is the Landau level energy εn modified by electric

potential energy vm,

Em,n = εn + vm. (5.18)

Next, to take the higher order perturbations into account, for a general treatment, one

can use Wick contraction to reduce each term to degree 1 or 2 of the kinetic momentum. In
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the expansion (5.15 ) which is up to π̂3, only the cubic term is affected. For instance, as a

perturbation to nth Landau level, Wick contraction gives

π̂pπ̂qπ̂r ≈ 〈π̂qπ̂r〉nπ̂p + 〈π̂pπ̂r〉nπ̂q + 〈π̂pπ̂q〉nπ̂r = εn(δqrπ̂p + δprπ̂q + δpqπ̂r), (5.19)

where 〈〉n means the average under nth Landau level wavefunction ηn(πy), and εn = n + 1
2

is the Landau level energy. As a result, the effective Hamiltonian for nth Landau level

perturbed up to 3rd order of π̂ is:

Ĥ(n) ≈ π̂
2

2 − V (R̂) − ∂aV (R̂)εapπ̂p − 1
2∂

2
abV (R̂)εapεbqπ̂pπ̂q − εn

2 ∂
3
accV (R̂)εarπ̂r

= π̂
2

2 − V (R̂) +
[
Ea(R̂) + εn

2 ∂a∇ · E(R̂)
]
εapπ̂p + 1

2
[
δab∇ · E(R̂) − ∂aEb(R̂)

]
π̂aπ̂b.

(5.20)

where E(R̂) = −∇V (R̂) has been used.

The quadratic expression (5.20 ) enables one to extract a metric form of the perturbed

Hamiltonian,

Ĥ(n) = 1
2gab(π̂a − ∆a)(π̂b − ∆b) − V (R̂), (5.21)

where gab,∆a are the induced metric tensor and kinetic momentum shift by the nonuni-

form electric field, which can be explicitly written in terms of E and its derivatives. This

Hamiltonian can be further simplified to a modified simple harmonic oscillator form:

Ĥ(n) = 1
2ω(X̂)Π̂2 − V (X̂), (5.22)

where X̂, Π̂ are the modified guiding center coordinates and kinetic momentum operator,

respectively; ω(X̂) is the modified gap between Landau levels. To obtain X̂ and Π̂, one

can decompose the metric tensor matrix as g =
√

det(g)(Λ−1)T Λ−1 where Λ is a unimodular
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matrix related to shearing and rotation of electron orbitals. In terms of the shifting ∆ and

shearing Λ,

X̂a = R̂a + (∂p∆a)π̂p − 1
2εarεps(∂rΛsq)π̂pπ̂q,

Π̂a = (Λ−1)ab(π̂b − ∆b),
(5.23)

and they are found the satisfy same commutation relation as R̂ and π̂ to lowest-order approx-

imation. Since 〈Π̂〉 = 0, 〈π̂〉 = δ(R) showing that the orbit drifts with velocity vd = δ(R).

The preceding analysis yields a physical picture of how the cyclotron orbit is shifted and

sheared by the nonuniform electric field, and drifts in a direction that is perpendicular to

the electric field. This picture is summarized in Figure 5.1 .
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Figure 5.1. A geometric summary of how a non-uniform electric field, E,
deforms a cyclotron orbit. The changes can be expressed in terms of a vector
field, ∆(R), and a shearing field, Λ(R). The new orbit is shifted by amount
δ(R) = ẑ × ∆(R) with respect to the original center, R, and acquires a drift
velocity, vd = ∆(R). The orbit is also sheared into an ellipse with aspect
ratio λ2, where λ and 1/λ are the eigenvalues of Λ(R). The guiding center
coordinate, R, labels the field-free orbit center while the kinetic momentum,
π, gives the velocity of the electron. This figure has been reproduced from our
publication [65 ].

In terms of the modified Hamiltonian (5.22 ), one can make a further assumption of

Landau level projection that in its eigenstate wavefunctions the variables X̂ and Π̂ are

separable, Wm,n(X,Π) = Wm(X)wn(Π), where n is the Landau level index and m labels
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different perturbed states in the level. These wavefunctions are related to Ψm,n(Rx, πy)

through Wigner pseudoprobability distribution [68 ].

To calculate the local charge and current densities of nth Landau level, one needs to

evaluate the average of operators:

ρ̂(x) = −δ2(r̂ − x),

ĵ(x) = −1
2{π̂, δ2(r̂ − x)},

(5.24)

for a single particle state Wm,n and sum over all states in the same Landau level:

ρ(n)(x) = −
∑
m

∫∫
d2Xd2ΠWm,n(X,Π)δ2(r − x),

j(n)
a (x) = −

∑
m

∫∫
d2Xd2ΠWm,n(X,Π)πaδ

2(r − x).
(5.25)

They are found to have contributions from the drifting and shearing of cyclotron orbitals

separately. Using ρ0 = −1/2π to denote the charge density for each Landau level in absence

of electric field, the charge and current responses are:

[ρ(n)(x) − ρ0

ρ0

]
∆

= ∇ · E(x) + εn∇2(∇ · E),

[ρ(n)(x) − ρ0

ρ0

]
Λ

= −εn

4 ∇2(∇ · E);

[j(n)
a (x)]∆ = −εab

2π
[E + 2εn∇(∇ · E)]b,

[j(n)
a (x)]Λ = εab

2π

εn

2 [∇(∇ · E)]b.

(5.26)

In the charge response above, [δρ(n)/ρ0]∆ can be interpreted as charge polarization due

to shifting of orbitals centers, while the shearing contribution [δρ(n)/ρ0]Λ can be shown as

equivalent to the gravitational response. It is known from Wen and Zee’s shift theory of

quantum Hall fluid [53 ] that local spatial curvature can induce an extra charge density for

a filled Landau level. The induced charge is proportional to Gaussian curvature through

gravitational coupling constant κ. κ is believed to be a topological invariant, and for nth

68



(n = 0, 1, ...) Landau level, it happens to coincide with the Landau level spectrum, κ(n) =

n+ 1/2.

According to my analysis, the nonuniform electric field induces an effective metric of

space, so using Brioschi formula [69 ], a local Gaussian curvature can be extracted from the

shearing matrix Λ:

KG(R) = −1
4∇2(∇R · E(R)). (5.27)

Therefore the gravitational response of charge density is

δρ
(n)
G (x) = −κ(n)

2π
KG(x) = −ρ0

εn

4 ∇2(∇ · E), (5.28)

which agrees with the shearing contribution [δρ(n)/ρ0]Λ in (5.26 ).

5.4 Response to Nonuniform Electric Field: Numerical Result

I use the Hofstadter model to numerically study the response of quantum Hall states to

nonuniform electric fields. The Hofstadter model is a nearest-neighbor tight-binding model

of spinless electrons propagating on the square lattice in the presence of a uniform magnetic

field [70 ]. The magnetic field is incorporated into the tight-binding hopping amplitudes by

the Peierls substitution method [71 ]. Assuming isotropic hoppings along x, y direction and

choosing the Landau gauge, A = (0, Bx), the Hamiltonian of Hofstadter model is:

Ĥ0 = −
Lx∑

m=1

Ly∑
n=1

t(ĉ†
m+1,nĉm,n + ei2πmφĉ†

m,n+1ĉm,n) + h.c.. (5.29)

Here Lx, Ly are the lengths of the lattice along the x, y directions respectively, in units of

the lattice constant a; t is the isotropic hopping amplitude; φ is the number of flux quanta

per unit cell and related to B through φh/e = Ba2. When φ = p/q with p, q coprime, the

translational symmetry of square lattice is partially broken (cf. when φ is irrational, then

translational symmetry along x direction is totally broken), such that the total translation

group shrinks to a subgroup called magnetic translation group [72 ]–[74 ] and a Bloch-like band
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structure can be derived. Hofstadter discovered that the energy spectrum versus (rational)

φ is an elegant fractal, the Hofstadter butterfly [70 ] (Figure 5.2 ).

Figure 5.2. Plot of the Hofstadter butterfly. Energy eigenvalues of the Hof-
stadter model versus flux quanta per unit cell, φ. We consider only rational
values for the flux, φ = p/q, so as to be able to impose periodic boundary
conditions. Because of periodicity of spectrum with φ, it suffices to consider
only 0 < φ < 1. The length Lx must be an integer multiple of q. For each
φ = p/q, I have chosen the square lattice to have dimensions Ly = 20 and Lx

the largest multiple of q not exceeding 100. t and a have been set to 1.

The strong field limit of Hofstadter model, 0 � φ � 1, can be understood from per-

turbation theory [8 ]. In this limit, the energy spectrum consists of a handful of subbands

with their bandwidths being comparable to the inter-band energy gaps. Here we focus on

the weak field limit, φ → 0, and low energy, E → 0 since we wish to reproduce the physics

of continuum Landau levels.

The nearest neighbor tight-binding model on the square lattice, without magnetic field,

yields the band dispersions:

εk± = ±2t[ cos(kxa) + cos(kya)], (5.30)

where a is the lattice constant. The effective mass of the electron in the continuum limit,

k → 0, can be obtained by Taylor-expanding of the band dispersion near the bottom of the

band, i.e., about k = 0:

εk,− ≈ −4t+ ta2(k2
x + k2

y). (5.31)
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Comparing with the free electron dispersion, the effective mass is found to be m∗ = ~2/2ta2.

Recalling that the magnetic flux through a unit cell is Ba2 = φh/e, one obtains the effective

cyclotron frequency and magnetic length as

ω∗
c = 4πtφ

~
, l∗B = a√

2πφ
. (5.32)

To model electrons in a magnetic field in the continuum, the magnetic length needs to be

much larger than lattice constant (but smaller than dimension of lattice) such that discrete

details of the lattice are invisible. This condition, a � l∗B � Lxa, Lya, leads to the following

constraint on choosing simulation parameters:

1
L2

x

,
1
L2

y

� φ � 1. (5.33)

Figure 5.3 shows good match between continuum calculations and the low energy spectrum

of the Hofstadter model with |φ| � 1.

Figure 5.3. Disturbed Landau levels of Hofstadter model in the weak field
limit. t = 1, Lx = Ly = 100, φ = 1/200. (a) Energy dispersion with respect
to ky. In the Landau gauge chosen, translation symmetry along x direction is
broken but along y direction is not, so ky is a quantum number. (b) Inset plot
of (a) in energy range −4 ∼ −3.5. Gap between Landau levels is estimated
to be 4πtφ ≈ 0.063 which agrees with the calculation result. This figure has
been reproduced from our publication [65 ].
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Next, I turn on the nonuniform electric field. The electric field in lattice can be modeled

by an on-site potential energy that varies from site to site. I will consider sinusoidal potential

profiles corresponding to a single wavelength allowing us to directly obtain the k-dependent

Fourier transforms of the response functions (see below). The electrostatic term in the

Hamiltonian is:

Ĥ1 =
Lx∑

m=1

Ly∑
n=1

V0 sin 2πm

λ
ĉ†

m,nĉm,n, (5.34)

where λ is the wavelength of electric field in units of a. I will choose λ to be commensurate

with Lx so as to be able to use periodic boundary conditions.

From linear response theory, the charge density response δρ(x) is related to electric

potential V (x) through the formula:

δρ(x)
ρ0

=
∫
V (x′)K(x− x′)dx′, (5.35)

where K(x− x′) is the kernel of response and no y-dependence has been assumed. By doing

a Fourier transform, the above equation leads to δρ(k)/ρ0 = V (k)K(k). Since the electric

potential is a single-frequency mode, V (x) = V0 sin(2πx/λ), the charge response will be of

the form δρ(x)/ρ0 = A(λ) sin(2πx/λ + ϕ), whence one can find the corresponding value of

the Fourier-transformed response function: K(k = 2π/λ) = A(λ)/V0.

In order to compare our numerical results with analytical calculations, it is easier to

consider a sequence of N filled Landau levels. The total local charge density at x is then

just the sum of the modulus-squared amplitudes of all occupied states, evaluated at x. The

analytical result (5.26 ) yields:

δρ(n)

ρ0
= ∇ · E(x) + 3εn

4 ∇2(∇ · E). (5.36)

This, when summed over N lowest Landau levels, in turn yields the total excess charge to

be
δρ(x)
ρ0,tot

= 1
N

N−1∑
n=0

δρ(n)

ρ0
= ∇ · E(x) + 3N

8 ∇2(∇ · E), (5.37)
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where ρ0,tot = Nρ0 is the total charge density in the absence of an electric field. Reintroducing

units and considering the x-dependent electric potential V (x) = V0 sin(kx), corresponding

to k = 2π/λ and an electric field E = −∇V , the theoretical prediction for charge response

of Hofstadter model is:

δρ(x)
ρ0,tot

= [(kl∗B)2 − 3N
8 (kl∗B)4]V (x)

4πtφ
. (5.38)

The left side can be measured in our numerical experiments for various values of k, φ, N and

V0, and compared to the expression on the right. Similar expressions can be derived for the

local orbit energy and the current density. Comparisons between the theoretical predictions

and numerical results, for the charge density, current density and local cyclotron energy are

provided in Figures 5.4 , 5.5 and 5.6 respectively. Evidently, there is an excellent match

between numerical data and analytic theory.

5.5 Summary and Future Work

In this work a Hilbert space representation based on gauge-invariant variables (GIV)

was provided to describe the quantum mechanics of 2D electrons in the presence of uniform

magnetic fields. A nonuniform electric field was included as background and interactions

between electrons were ignored. The case with interactions has been discussed elsewhere

[75 ].

Using the GIV formalism, we derived a geometric picture of response of electron cyclotron

orbitals to the nonuniform electric field. To recapitulate, the orbits get shifted from their

original position and sheared. These modifications are characterized by the shift vector

field ∆ and shearing metric g, respectively. We then combined this geometric picture with

the Wigner quasiprobability formalism to calculate linear responses of charge and current

density to nonuniform electric fields and derived insights into how the gravitational coupling

constant can be related to shearing of cyclotron orbits due to nonuniform electric field. A

new result was obtained– the gravitational coupling constant appears in the charge density

response to nonuniform electric fields.
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Figure 5.4. The spatial variation of local fractional charge density modula-
tion in a nonuniform (sinusoidal) electric field. The Landau levels are modeled
by the lowest bands in a Hofstadter model on a square lattice. The nonuniform
electric field is generated by a sinusoidal background potential, which is small
compared to the inter-Landau-level energy gap so that the system is in the
linear response regime. The brown circles correspond to the local charge den-
sity values obtained via numerical diagonalization. The dashed green curve is
the response obtained correct to the second derivative in the electric field, cor-
responding to the nonuniform polarization induced by cyclotron orbit shifts.
The thick blue curve corresponds to our analytical results, correct to the third
order in the derivatives of the electric field. For these plots, V0/ec = 0.05,
kl∗B = 0.49. This figure has been reproduced from our publication [65 ].

Numerical calculations on Hofstadter model in the weak field limit confirm our analytical

results. Future directions may include investigating if the gravitational coupling constant

continues to appear in the charge density response to nonuniform electric fields in interact-

ing quantum Hall states, say in the Laughlin states, or to even wider classes of topological
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Figure 5.5. The spatial variation of local current density in a nonuniform
(sinusoidal) electric field. The Landau levels are modeled by the lowest bands
in a Hofstadter model on a square lattice. The nonuniform electric field is
generated by a sinusoidal background potential, which is small compared to the
inter-Landau-level energy gap so that the system in the linear response regime.
The brown circles correspond to the local current density values obtained via
numerical diagonalization. The dashed green curve is the quantized local Hall
response, which is correct when the electric field is uniform. The thick blue
curve corresponds to our analytical results, correct up to the second order in
the derivatives of the electric field. For these plots, V0/ec = 0.05, kl∗B = 0.32.
This figure has been reproduced from our publication [65 ].

materials. If our result holds generally, it will have implications for improving current for-

mulations of the universal effective theory of quantum Hall states [64 ] and other topological

band insulators.
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Figure 5.6. The variation of cyclotron orbit energy with orbit location, x.
The Landau levels are modeled by the lowest bands in a Hofstadter model on a
square lattice. The nonuniform electric field is generated by a sinusoidal back-
ground potential, which is small compared to the inter-Landau-level energy
gap, so that the system in the linear response regime. The brown circles cor-
respond to the cyclotron energies obtained via numerical diagonalization. The
dashed green curve is the sum of the Landau level energy and the local poten-
tial energy, which is the correct energy when the electric field is uniform. The
thick blue curve corresponds to our analytical results, correct up to the second
order in the derivatives of the electric field. For these plots, V0/ec = 0.05,
kl∗B = 0.65. This figure has been reproduced from our publication [65 ].
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A. ANALYTICAL SOLUTION TO BOUNDARY STATES OF

MODIFIED DIRAC EQUATIONS

In reference [20 ], [22 ], perturbation method was used to solve the modified Dirac equations

(MDE) for boundary states in two and three-dimensional space. Here I provide exact solu-

tions of MDE in one, two and three-dimensional space.

A.1 One-Dimensional Space

The eigenvector associated with energy E of Hamiltonian (1.13 ) when px is replaced with

−iλ is

χ =

 iλ

m+Bλ2 − E

 , (A.1)

where E is related to λ through Equation (1.14 ). For the bound state to vanish at x = 0, it

is required χ1 = χ2, i.e.
iλ1

m+Bλ2
1 − E

= iλ2

m+Bλ2
2 − E

, (A.2)

where λ1,2 are two roots with negative real parts sorted out based on condition (1.17 ). One

notices the sorting result depends on sign of 1 + 4B2E2 − 4mB only.

For the case 1 + 4B2E2 − 4mB < 0, no matter mB > 1
2 or < 1

2 , the two roots with

negative real part are

λ1 = −
√

1
2B2 (1 − 2mB +

√
1 − 4mB + 4B2E2),

λ2 =
√

1
2B2 (1 − 2mB −

√
1 − 4mB + 4B2E2).

(A.3)

Plug into Equation (A.2 ) one obtains the possible solutions E = 0,m and ±
√

−1+4mB
2B

, where

the latter three are eliminated by condition 1 + 4B2E2 − 4mB < 0.
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For the other case 1 + 4B2E2 − 4mB > 0, the two roots with negative real part are

λ1 = −
√

1
2B2 (1 − 2mB +

√
1 − 4mB + 4B2E2),

λ2 = −
√

1
2B2 (1 − 2mB −

√
1 − 4mB + 4B2E2).

(A.4)

One can get the same four solutions of E and again the latter three are eliminated. In

this case since both λ1,2 are negative, from (A.2 ) one notices λ1λ2 = m/B is possitive, so

mB > 0.

To conclude, when topological condition mB > 0 is satisfied, the only boundary state

has energy E = 0.

A.2 Two-Dimensional Space

When px, py are replaced with −iλ, ky respectively, the eigenvector associated with energy

E of Hamiltonian (1.19 ) is

χ =

 i(λ+ ky)

m+Bλ2 −Bk2
y − E

 , (A.5)

where E is related to λ through Equation (1.20 ). For the bound state to vanish at x = 0, it

is required
i(λ1 + ky)

m+Bλ2
1 −Bk2

y − E
= i(λ2 + ky)
m+Bλ2

2 −Bk2
y − E

, (A.6)

where λ1,2 are two roots with negative real parts sorted out based on condition (1.22 ).

For the case 1 + 4B2E2 − 4mB < 0, the two roots with negative real part are

λ1 = −
√

1
2B2 (1 − 2mB + 2B2k2

y +
√

1 + 4B2E2 − 4mB),

λ2 =
√

1
2B2 (1 − 2mB + 2B2k2

y −
√

1 + 4B2E2 − 4mB).
(A.7)
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Plug into Equation (A.6 ) one obtains the possible solutions E = ±ky,m and ±
√

−1+4mB
2B

,

where the latter three are eliminated by condition 1 + 4B2E2 − 4mB < 0. To determine

E = ky or −ky, notice in this case λ1,2 have been simplified to

λ1,2 = − 1
2|B|

(1 ±
√

1 − 4mB + 4B2k2
y). (A.8)

Plug into (A.6 ) one obtains the final solution E = sgn(B)ky.

For the other case 1 + 4B2E2 − 4mB > 0, the two roots with negative real part are

λ1 = −
√

1
2B2 (1 − 2mB + 2B2k2

y +
√

1 + 4B2E2 − 4mB),

λ2 = −
√

1
2B2 (1 − 2mB + 2B2k2

y −
√

1 + 4B2E2 − 4mB).
(A.9)

Similarly one can get E = ±ky, therefore λ1,2 are simplified to

λ1 = − 1
2|B|

(1 +
√

1 − 4mB + 4B2k2
y),

λ2 = − 1
2|B|

|1 −
√

1 − 4mB + 4B2k2
y|.

(A.10)

By plugging into (A.6 ) one can find to have a solution, λ2 must be equal to −(1/2|B|)(1 −√
1 − 4mB + 4B2k2

y), which imposes constraints mB > 0 and |E| <
√
m/B. The energy

spectrum is still E = sgn(B)ky.

To conclude, when topological condition mB > 0 is satisfied, the edge states exist with

spectrum E = sgn(B)ky and limited in the range |E| <
√
m/B.
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A.3 Three-Dimensional Space

When px, py, pz are replaced with −iλ, ky, kz respectively, the two eigenvectors associated

with energy E of Hamiltonian (1.24 ) are

χ1 =



iky+λ
k2

y+k2
z−λ2 (Bk2

y +Bk2
z −m−Bλ2 − E)

kz

k2
y+k2

z−λ2 (Bk2
y +Bk2

z −m−Bλ2 − E)

0

1


,

χ2 =



−kz

k2
y+k2

z−λ2 (Bk2
y +Bk2

z −m−Bλ2 − E)
i(λ−ky)

k2
y+k2

z−λ2 (Bk2
y +Bk2

z −m−Bλ2 − E)

1

0



(A.11)

where E is related to λ through Equation (1.25 ). For the bound state to vanish at x = 0, it

is required

a1χ1(λ1) + b1χ2(λ1) = a2χ1(λ2) + b2χ2(λ2), (A.12)

where λ1,2 are two roots with negative real parts sorted out based on the decaying condition

1 + 4B2E2 − 4mB < 0,

or, 1 + 4B2E2 − 4mB > 0 and mB <
1
2 +B2(k2

y + k2
z)

and E2 < (k2
y + k2

z) + (m−Bk2
y −Bk2

z)2.

(A.13)

Inspecting Equation (A.12 ), one must have a1 = a2, b1 = b2. Then (A.12 ) leads to a

determinant equation

det [χ̃1(λ1) − χ̃1(λ2), χ̃2(λ1) − χ̃2(λ2)] = 0, (A.14)

where χ̃i is a two-dimensional vector formed by the first two components of χi.
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For the case 1 + 4B2E2 − 4mB < 0, the two roots with negative real part are

λ1 = −
√

1
2B2 [1 − 2mB + 2B2(k2

y + k2
z) +

√
1 + 4B2E2 − 4mB],

λ2 =
√

1
2B2 [1 − 2mB + 2B2(k2

y + k2
z) −

√
1 + 4B2E2 − 4mB].

(A.15)

Plug into Equation (A.14 ) one obtains the possible solutions E = ±
√
k2

y + k2
z and −m, where

E = −m is eliminated by 1 + 4B2E2 − 4mB < 0. In this case, λ1,2 are simplified to

λ1,2 = − 1
2|B|

[1 ±
√

1 − 4mB + 4B2(k2
y + k2

z)] (A.16)

For the other case 1 + 4B2E2 − 4mB > 0, the two roots with negative real part are

λ1 = −
√

1
2B2 [1 − 2mB + 2B2(k2

y + k2
z) +

√
1 + 4B2E2 − 4mB],

λ2 = −
√

1
2B2 [1 − 2mB + 2B2(k2

y + k2
z) −

√
1 + 4B2E2 − 4mB].

(A.17)

Similarly one can get the dispersion E = ±
√
k2

y + k2
z , and λ1,2 are simplified to

λ1 = − 1
2|B|

[1 +
√

1 − 4mB + 4B2(k2
y + k2

z)],

λ2 = − 1
2|B|

|1 −
√

1 − 4mB + 4B2(k2
y + k2

z)|.
(A.18)

By plugging into (A.12 ) one can find a solution exists only when λ2 = −(1/2|B|)[1 −√
1 − 4mB + 4B2(k2

y + k2
z)], which imposes constraints mB > 0 and |E| <

√
m/B.

To conclude, when topological condition mB > 0 is satisfied, the surface states exist with

spectrum E = ±
√
k2

y + k2
z and limited in the range |E| <

√
m/B.
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B. GAUGE TRANSFORMATION TO JOIN THE

DISCLINATION

B.1 Unitary Representation of the Rotation Symmetry

I am using the convention that R and U correspond to fundamental counterclockwise

rotation of a lattice model. For an m-sector disclination, the sectors are labeled by w which

goes from 1 to m counterclockwise. R acts on real space vectors while the operator acting

on quantum states is denoted by R̂ (with a hat).

For a flat lattice Hamiltonian

Ĥ0 =
∑
rδ

Ψ̂†
r+δt(δ)Ψ̂r, (B.1)

the rotational invariance

t(Rδ) = Ut(δ)U−1 (B.2)

implies that U matrix furnishes a unitary representation for the rotation symmetry of Hamil-

tonian. In other words, if one defines the action R̂ on states as

R̂|r, α〉 = Uβα|Rr, β〉, 〈r, α|R̂† = U∗
βα〈Rr, β|, (B.3)

where r is the vector label of unit cells and α, β are indices for internal degrees of freedom,

then easy to check Ĥ0 and R̂ commute

R̂Ĥ0R̂
−1 = Ĥ0. (B.4)

B.2 Join the Boundary

There are two ways of labeling orbital basis states on a flat lattice with some deficiency

angle (the flat lattice has been divided into m sectors but not joined into disclination yet).

One way is |r, α〉 as used in Equation (B.3 ), where r can go to any unit cell on the entire flat
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lattice. The other way is |w, r, α〉 which includes label of sectors, but then r will be positions

restricted in sector 1 only. The two notations are related by

|w, r, α〉 = |Rw−1r, α〉 (B.5)

with r restricted in sector 1 again. Since the first labeling way will be no longer suitable

for disclinations, the Hamiltonian language will be translated to second way. The matrix

elements of flat lattice Hamiltonian now become

〈w, r, α|Ĥ0|w, r, β〉 = t(Rw−1r −Rw−1r)αβ. (B.6)

In order to join the seam of flat lattice to make a disclination, a disclination Hamiltonian

Ĥ needs to be defined. In particular, one needs to define the hopping elements from sector

m to sector 1 across the seam. To do this, I perform a gauge transformation at the edge of

sector 1, i.e. define new orbital basis

˜|1, r, α〉edge ≡ |1, r, β〉edge(U−m)βα (B.7)

where the summation over dummy indices is suppressed. After this transformation the

hoppings along edge of sector 1 become

edge ˜〈1, r, α|Ĥ0 ˜|1, r, β〉edge = (U−m)∗
δα edge〈1, r, δ|Ĥ0|1, r, γ〉edge(U−m)γβ = t(Rmr −Rmr)αβ.

(B.8)

Equation (B.8 ) says the new hoppings along edge of sector 1 are equal to these along edge

of sector m in their local frame, therefore the bonds across seam can be naturally defined as

same as these in sector m but perpendicular to the edge. The definition is

edge ˜〈1, r, α|Ĥ|m, r, β〉edge ≡ t(Rmr −Rm−1r)αβ. (B.9)
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Also after transformation (B.7 ), the hoppings in sector 1 from edge to sites near the edge but

without being transformed will undergo some adaptive change. The new matrix elements

are

〈1, r, α|Ĥ0 ˜|1, r, β〉edge = 〈1, r, α|Ĥ0|1, r, γ〉edge(U−m)γβ = [t(r − r)U−m]αβ. (B.10)

Equation (B.8 ),(B.9 ) and (B.10 ) complete the definition of disclination Hamiltonian Ĥ.
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C. A PERIODIC DEFINITION OF THE DISCLINATION

HAMILTONIAN

One can perform an additional gauge transformation on the disclination Hamiltonian Ĥ

defined in Appendix C, making the hoppings periodic in each sector. In this definition, the

seam between sector m and 1 looks exactly same as other nodal lines between neighboring

sectors, therefore proving the disclination Hamiltonian Ĥ is everywhere locally flat except

at disclination center.

This additional gauge transformation is defined as

|w, r, α〉p ≡ |w, r, β〉(Uw−1)βα, (C.1)

where the superscript p means under this basis the disclination Hamiltonian Ĥ will be

periodic. Special attention should be paid to the orbital basis at edge of sector 1. Combining

(B.7 ), it means

|1, r, α〉p
edge = ˜|1, r, β〉edge(U

m)βα. (C.2)

After transformation (C.1 ), the hoppings within sector w become

p〈w, r, α|Ĥ0|w, r, β〉p = t(r − r)αβ, 1 6 w 6 m, (C.3)

where both r, r are restricted in sector 1 so they are independent of w. The hoppings across

nodal lines between neighboring sectors become

p〈w + 1, r, α|Ĥ0|w, r, β〉p = [U−1t(Rr − r)]αβ, 1 6 w 6 m− 1, (C.4)

which are also independent of w. The final step is to examine the hoppings from sector m

to 1 across the seam. They are

edge
p〈1, r, α|Ĥ|m, r, β〉p

edge = (Um)∗
γα edge ˜〈1, r, γ|Ĥ|m, r, δ〉edge(Um−1)δβ = [U−1t(Rr − r)]αβ

(C.5)
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which is the same as (C.4 ). Equations (C.3 ),(C.4 ) and (C.5 ) complete the proof of periodicity

of disclination Hamiltonian Ĥ under basis |w, r, α〉p.
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