
LEAST-SQUARES RELU NEURAL NETWORK METHOD
FOR SCALAR HYPERBOLIC CONSERVATION LAW

by

Jingshuang Chen

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Zhiqiang Cai, Chair

Department of Mathematics

Dr. Jie Shen

Department of Mathematics

Dr. Xiangxiong Zhang

Department of Mathematics

Dr. Min Liu

School of Mechanical Engineering

Approved by:

Dr. Plamen Stefanov

2

Dedicated to my family for their unconditional love and support.

3

ACKNOWLEDGMENTS

First, I would like to thank my Ph.D advisor, Dr. Zhiqiang Cai, who introduced me to

the field of numerical analysis and always encourages me during my Ph.D. I would not have

made it without his academic guidance and continuous support. Also, I would like to extend

my gratitude to my committee members. Thank you Dr. Min Liu for providing valuable

suggestions and help in coding. Dr. Jie Shen and Dr. Xiangxiong Zhang: your insightful

comments and expertise enlighten my thesis with different perspectives. In addition, I would

like to thank all the knowledge professors I met in Purdue and I learned a lot from them.

Furthermore, I extend my appreciation to the Department of Mathematics for creating such

a good academic atmosphere and providing financial support for my Ph.D study.

Also, many thanks to my friends for making my six years at Purdue enjoyable. In

particular, I would like to thank Dr. Difeng Cai, Xinyu Liu, Xiaodong Huang and Jiahao

Zhang for discussing research problems. I am also grateful to my officemates, Wei Deng

and Dr. Joan Ponce. Special thanks also goes to my former roommate Yun Huang, and

classmates. Thanks for sharing the wonderful time during my six years at Purdue. Finally,

I was so lucky to meet Dali here at Purdue. Thanks for your love and support throughout

my Ph.D.

Most importantly, I would like to thank my family, especially my parents and grand-

mother, for the continuous support and love they have given me throughout my life. I could

not complete my Ph.D without them.

4

TABLE OF CONTENTS

LIST OF TABLES . 7

LIST OF FIGURES . 8

LIST OF SYMBOLS . 9

ABSTRACT . 10

1 INTRODUCTION . 11

2 DEEP NEURAL NETWORK STRUCTURE . 16

3 LEAST-SQUARES NEURAL NETWORK METHOD FOR LINEAR ADVECTION-

REACTION EQUATIONS . 19

3.1 Problem Formulation . 21

3.2 LSNN Method for Linear Advection-Reaction Equations 24

3.3 ReLU NN Approximation of Discontinuous Solutions: I. Discontinuous Inter-

face Along a Straight Line . 26

3.4 Initialization of two-layer neural networks 29

3.5 Numerical Experiments . 32

3.5.1 Problems with a constant advection velocity fields: I. Discontinuity

along a vertical line segment . 34

3.5.2 Problems with a constant advection velocity fields: II. Discontinuity

along the diagonal . 37

3.5.3 Problems with a a piecewise smooth solution: I. Constant jump on the

interface . 40

3.5.4 Problems with a a piecewise smooth solution: II. Non-constant jump

on the interface . 41

3.5.5 Problem with a piece-wise constant advection velocity field 43

3.5.6 Problem with a variable advection velocity field 48

3.6 Method of model continuation . 50

5

3.7 ReLU NN Approximation of Discontinuous Solutions: II. Discontinuous In-

terface Along Line Segments . 54

3.8 Discussion . 56

4 LEAST-SQUARES NEURAL NETWORK METHOD FOR SCALAR NONLIN-

EAR HYPERBOLIC CONSERVATION LAW . 58

4.1 Introduction . 58

4.2 Space-Time Least-Squares Neural Network Method for Scalar Nonlinear Hy-

perbolic Conservation Law . 60

4.3 Conservative Finite Difference Operator . 61

4.4 Block Space-Time Least-Squares Neural Network Method 64

4.5 Implementation and Numerical Experiments 66

4.5.1 Riemann problem for the inviscid Burgers equation–Shock formation 67

4.5.2 Riemann problem for the inviscid Burgers equation–Rarefaction waves 70

4.5.3 Inviscid Burgers equation with piece-wise linear initial condition . . . 72

4.5.4 Inviscid Burgers equation with smooth initial condition 73

4.5.5 Riemann problem with a convex flux 76

4.6 Discussion . 78

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK 81

REFERENCES . 83

VITA . 88

6

LIST OF TABLES

3.1 Relative errors of the problem with discontinuity along a vertical line segment . 36

3.2 Relative errors of the problem with discontinuity along the diagonal using direc-
tional derivative . 39

3.3 Relative errors of the problem with discontinuity along the diagonal using finite
difference quotient . 40

3.4 Relative errors of the problem with a piece-wise smooth solution 41

3.5 Relative errors of problem with a piece-wise smooth solution having a non-
constant jump . 43

3.6 Relative errors of the problem with a piece-wise constant advection velocity field 46

3.7 Relative errors of the problem with a variable advection velocity field 48

3.8 Relative errors of the problem with discontinuity along line segments 51

4.1 Relative errors of Riemann problem (shock) for Burgers equation using Roe and
ENO fluxes . 68

4.2 Relative errors of Riemann problem (rarefaction) for Burgers equation using Roe
flux . 71

4.3 Relative errors of Burgers equation with a piece-wise linear initial condition . . 73

4.4 Relative errors of Burgers equation with a sinusoidal initial condition using ENO
flux . 76

4.5 Relative errors of Riemann problem (shock) with a convex flux using Roe flux . 78

7

LIST OF FIGURES

2.1 Fully-Connected Neural Network with each circle representing a neuron 16

2.2 Activation functions . 18

3.1 Numerical results in [22] of the problem with discontinuity along a vertical line
segment . 35

3.2 Approximation results of the problem with discontinuity along a vertical line
segment . 36

3.3 Numerical results in [22] of the problem with discontinuity along the diagonal . 38

3.4 Approximation results of the problem with discontinuity along the diagonal using
directional derivative . 39

3.5 Approximation results of the problem with discontinuity along the diagonal using
finite difference quotient . 40

3.6 Approximation results of the problem with a piece-wise smooth solution having
a constant jump on the interface . 42

3.7 Approximation results of the problem with a piece-wise smooth solution having
a non-constant jump on the interface . 44

3.8 Approximation results of the problem with a piece-wise constant advection ve-
locity field . 47

3.9 Approximation results of the problem with a variable advection velocity field . . 49

3.10 Discontinuous interface for n = 4 . 52

3.11 Traces of the exact and numerical solutions for the problem with discontinuity
along line segments . 53

4.1 Approximation results of Riemann problem (shock) for Burgers equation using
Roe flux . 69

4.2 Approximation results of Riemann problem (rarefaction) for Burgers equation
using Roe flux . 71

4.3 Approximation results of Burgers equation with a piece-wise linear initial using
Roe flux . 74

4.4 Approximation results of Burgers equation with a piece-wise linear initial using
ENO flux . 75

4.5 Approximation results of Burgers equation with a sinusoidal initial using ENO flux 77

4.6 Approximation results of Riemann problem (shock) with a convex flux using Roe
flux . 79

8

LIST OF SYMBOLS

‖ · ‖ L2 norm (unless otherwise stated)

(·, ·) inner product

[[·]] jump of a function on the interface

Ω a computational domain

∂Ω boundary of Ω

Γ− inflow boundary

T an integration mesh of the computational domain Ω

∇ gradient operator

∇· divergence operator

n a unit outward normal vector to the boundary of the computational domain

Ω

β advection velocity field

N a deep neural network

θ parameters of a neural network

M(θ, L) set of DNN functions

σ DNN activation function

ω DNN weights

b DNN bias

ūN
T

DNN approximation (unless otherwise stated)

9

ABSTRACT

The thesis introduces the least-squares ReLU neural network method for solving scalar

hyperbolic conservation laws with discontinuous solutions. The method is a discretization of

an equivalent least-squares formulation in the set of neural network functions with the ReLU

activation function. Evaluation of the LS functional is done by using numerical integration

and proper finite difference/volume scheme.

We theoretically and numerically show that the least-squares ReLU neural network is

capable of approximating the discontinuous interface of the underlying problem automati-

cally through the free hyper-planes of the ReLU neural network and, hence, outperforms the

traditional mesh-based numerical methods in terms of the number of degrees of freedom.

Numerical results of some benchmark test problems for linear advection-reaction equations

as well as nonlinear equations show that the method can not only accurately approximate the

solution with the least number of parameters, but also avoid the common Gibbs phenomena

along the discontinuous interface.

10

1. INTRODUCTION

Recently, deep neural networks (DNNs) have achieved astonishing performance in computer

vision, natural language processing, and many other artificial intelligence tasks. A special

feature of DNN is its new way to approximate functions through a composition of multiple

linear and activation functions. This feature leads to wide applications to other fields,

including some recent studies (see, e.g., [1]–[5]) of using DNN models to numerically solve

partial differential equations (PDEs).

The idea of solving differential equations using neural networks may be traced back to

a paper in 1994 by Dissanayake and Phan-Thien [6]. For a differential equation L(u) = 0

defined on the domain Ω with boundary condition B(u) = 0 on ∂Ω, a neural network

was trained to minimize the following least-square functional which is defined based on the

original PDEs:

L̃(v) =
∫

Ω

∣∣∣∣L(v)(x)
∣∣∣∣2 dx+

∫
∂Ω

∣∣∣∣B(v)(x)
∣∣∣∣2ds ≡ ‖L(v)‖2

0,Ω + ‖B(v)‖2
0,∂Ω, (1.1)

where ‖·‖0,S is the L2 norm over subdomain S = Ω or ∂Ω. Several follow-up works use similar

ideas with one hidden layer and sampling points from a mesh to numerically approximate the

integrals in L̃ at each iteration [7]–[9]. More recently, there is a limited emerging literature

on the use of deeper hidden layers to solve PDEs [1], [3], [5]. It is also illustrated that the

sampling points can be obtained by a random sampling of the domain rather than using a

physical mesh, which is beneficial in higher-dimensional problem [1], [5].

The purpose of the thesis is to introduce a numerical approach which uses deep neural

networks to solve PDEs. The approach makes use of a deep neural network to approximate

the solutions of PDEs through the compositional construction and employs appropriate loss

function to determine parameters of the deep neural network through an iterative process.

Specifically, we restrict our attention on using the least-squares formulation to solve scalar

hyperbolic conservation laws in the thesis.

The least-squares (LS) methodology has been intensively studied for many PDEs includ-

ing problems arising from solid and fluid dynamics, transport, magnetohydrodynamics, etc.

11

The two striking features of the least-squares method are (i) it naturally symmetrizes and

stabilizes the original problem; and (ii) value of the corresponding LS functional of the cur-

rent approximation is an accurate a posteriori error estimator. The first property enables

us to work on complex systems which might not have underlying minimization principles,

and the second one provides feedback for automatically controlling numerical processes such

as the location of quadrature points for evaluating LS functional and the neural network

structure [10].

During the past several decades, numerical methods for scalar hyperbolic conservation

law have been intensively studied by many researchers and many numerical schemes have

been developed. For linear advection-reaction problems, when the inflow boundary data

is discontinuous, so is the solution. For the nonlinear scalar hyperbolic conservation law,

the solution is often discontinuous as well due to the discontinuous initial condition or the

shock formation. It is well-known that traditional mesh-based numerical methods often

exhibit oscillations near discontinuity interface (called the Gibbs phenomena). Usually, such

spurious oscillations are unacceptable for many applications (see, e.g, [11]). To eliminate or

reduce the Gibbs phenomena, finite difference and finite volume methods often use numerical

techniques such as limiters, filters, Roe, ENO/WENO, etc. [11]–[15]; and finite element

methods usually employ discontinuous finite elements [16]–[18] or adaptive mesh refinement

(AMR) to generate locally refined elements along discontinuous interfaces (see, e.g., [19]–

[22]).

Instead of using the traditional mesh-based method, the thesis focuses on the discussion

about employing the least-squares functional as the loss function of the DNN for solving

scalar hyperbolic conservation laws. The main reason for choosing DNNs is because of its

powerful approximation property and it can output compositions of functions cheaply. As

we observed, one of the striking features of DNN is that it generates a class of functions

which is not subject to a hand-crafted geometric mesh or point cloud as the traditional,

well-studied finite difference, finite volume, and finite element methods. DNN partitions

the computational domain Ω by using free hyper-planes, which is capable of automatically

adapting to the target function. For instance, the location of the hyper-planes can be

adjusted according to the location of the discontinuity interface through an iterative process

12

(see section 3.5). On the other hand, the mesh generated by the AMR strategy is based

on a geometric mesh and subject to mesh conformity requirement. In addition, it is not an

easy task to remove unnecessary elements or points once the discontinuity interface is found.

From this perspective, DNN is favorable for approximating the discontinuous solutions of

scalar hyperbolic conservation laws.

The study on DNN approximation theory draws much attention in recent years and we

present a short list of some papers studying the approximation theory of ReLU DNNs. In

[23], [24], the authors showed that a ReLU DNN with at most [log2(d + 1)] hidden layers

can represent a piecewise linear function Rd → R. Besides, with tailored neural network

structures and more neurons as well as layers in the network, ReLU DNN is capable of

approximating a large class of functions other than linear [25]–[27]. In addition, the authors

theoretically show that the performance of neural networks possess greater approximation

power than the traditional methods of nonlinear approximation [25]. Despite the fact that

the approximation theory of ReLU neural networks has been intensively studied, to the best

of our knowledge, we did not find a result which is applicable to the discontinuous solutions

of scalar hyperbolic conservation laws.

On the other hand, however, the powerful approximation property of DNN comes with

a price. The procedure for determining the values of the parameters of the network is now

a problem in non-convex optimization even though the underlying PDE is linear. In prac-

tice, this high dimensional, non-convex optimization problem tends to be computationally

intensive and complicated. So far, we have limited understanding about the optimization

process and it could be a future research direction. Current method is to use the iterative

optimization methods such as gradient descent (GD), Stochastic GD, Adam, etc. (see, e.g.,

[28] for a review paper in 2018 and references therein). To obtain a desired solution from

the optimization problems, the only approach is to start from a close enough first approxi-

mation since the non-convex optimization problems usually have many solutions. To achieve

that, we propose the initialization strategy for a two-layer neural network (see section 3.4)

as well as the method of model continuation (see section 3.6). We present numerical results

to demonstrate such continuation method is able to reduce the total number of the network

parameters in a large scale.

13

The major contributions of the thesis include the following:

1. Set up the framework for the least-squares neural network (LSNN) method to solve

scalar hyperbolic conservation laws. For the linear advection-reaction problems, the

numerical results indicate that the method is able to not only outperform the tradi-

tional mesh-based numerical methods in terms of the number of degrees of freedom,

but also avoid the common Gibbs phenomena along the discontinuous interface without

any post-processing techniques. For the nonlinear problems, a modified LSNN method

is proposed and the DNN approximation results suggest the method is capable of

resolving the shock;

2. Show theoretically that a three-layer ReLU neural network is sufficient to approximate

the discontinuous solutions accurately without oscillation;

3. Introduce the initialization strategy and the method of model continuation for provid-

ing a good starting point for training the neural network.

The rest of the thesis is organized as follows. We introduce the deep neural network

structure through the functional terminology in Chapter 2. Chapter 3 presents a general

framework of the least-squares neural network method for linear advection-reaction equa-

tions. The approximation property of the ReLU neural network is analyzed and the numeri-

cal experiments are presented to demonstrate the advantage over the traditional mesh-based

approaches. In Chapter 4, we employ the method for nonlinear scalar hyperbolic conserva-

tion law and introduce the modified block space-time least-squares neural network method.

Numerical experiments for the benchmark one dimensional problems are presented to show

the capability of the LSNN method for resolving the shock. Finally, concluding remarks,

limitations and future research work are presented in Chapter 5.

Throughout the thesis, the standard notations and definitions are used for the Sobolev

space Hs(Ω)d and Hs(Γ−)d when s ≥ 0. The associated norms with these two spaces are

denoted by ‖·‖s,Ω and ‖·‖s,Γ− , and their respective inner products are denoted as (·, ·)s,Ω and

(·, ·)s,Γ− . For s = 0 case, Hs(Ω)d is the same as L2(Ω)d, then the norm and inner product

14

are simply denoted as ‖ · ‖ and (·, ·), respectively. The subscripts Ω in the designation of

norms will be suppressed when there is no ambiguity.

15

2. DEEP NEURAL NETWORK STRUCTURE

In this chapter, we briefly describe the deep neural network (DNN) structure through the

functional terminology. To this end, we consider a deep neural network (DNN) with a

multi-dimensional output:

N : x ∈ Rd −→ y = N (x) ∈ Rc,

where d and c are dimensions of input x ∈ Rd and output y = N (x) ∈ Rc, respectively. A

special feature of DNN is its new way to approximate functions through a composition of

multiple linear and activation functions. Typically, the DNN function N (x) is represented

as compositions of many different layers of functions:

y = N (x) = N (L) ◦ · · ·N (2) ◦N (1)(x), (2.1)

where the symbol ◦ denotes the composition of functions: f ◦ g(x) = f(g(x)), and L is the

depth of the network. In this case, N (1) is called the first layer of the neural network, N (2) is

called the second layer, and so on. All layers except for the last one N (L) are called hidden

layers since they are hidden in between input and output layers. Figure 2.1 presents an

illustration of a deep neural network.

Figure 2.1. Fully-Connected Neural Network with each circle representing a neuron

16

Each layer is typically a vector-valued function. The choice of the function N (l)(x(l−1))

is guided by many mathematical and engineering disciplines. Specifically, throughout the

thesis, we employ fully connected (FC) hidden layers for the network. A FC layer N (l) :

Rnl−1 → Rnl is defined as a composition of a linear transformation T (l) : Rnl−1 → Rnl and

an activation function σ(l) : R→ R as follows:

N (l)(x(l−1)) = σ(l)
(
T (l)(x(l−1))

)
= σ(l)(ω(l)x(l−1) − b(l)) for x(l−1) ∈ Rnl−1 , (2.2)

where ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl , x(0) = x, and application of σ(l) to a vector is defined

component-wise. There is typically no activation function in the output layer. Components

of ω(l) and b(l) are called weights and bias, respectively, and are parameters to be determined

(trained). Each component of the vector-valued function N (l) is interpreted as a neuron and

the dimension nl defines the width or the number of neurons of the lth layer in a network.

The n0 = d and nL = c are the respective dimensions of input and output. There are

nl × (nl−1 + 1) parameters at the lth layer, and the total number of parameters of the DNN

function N (x) defined in (2.1) is given by

N =
L∑
l=1

nl × (nl−1 + 1). (2.3)

Choices of the activation function σ have influences on the model output, approximation

accuracy, and computational efficiency of the training. A widely used activation function is

the rectified linear unit (ReLU) given by

σ(t) = max{0, t} =


0, if t ≤ 0,

t, if t > 0.
(2.4)

Another commonly used activation function is a modification of ReLU activation and it is

termed “leaky ReLU”:

σ(t) =


0.01t, if t ≤ 0,

t, if t > 0.

17

Both ReLU and leaky ReLU activation are piece-wise linear functions. The reason for

modifying ReLU activation function is to avoid possible gradient vanishing issue in the

training process. Besides the linear activation functions, sigmoid function is also widely

used in practice. Specifically, the sigmoid activation function is defined as:

σ(t) = 1
1 + e−t , t ∈ R. (2.5)

All three activation functions are depicted in Figure 2.2 . Both ReLU and leaky ReLU

are easier to compute compared with the non-linear sigmoid function. But using a smooth

activation function such as the sigmoid function is essential for some applications. More

details can be found in [2].

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1

0

1

2

3

4

5

6

y

Activation Functions

Sigmoid

Leaky ReLU

ReLU

Figure 2.2. Activation functions

Besides the deep neural network structure introduced in this chapter, there are some other

types of network models which are commonly used in practice. For instance, the convolution

network network (CNN) is employed mainly for image processing and the recurrent network

network (RNN) is most commonly applied to natural language processing. The discussion

of the applications for these neural network structures are beyond the scope of the thesis.

In particular, we will use the fully-connected neural network with ReLU as the activation

function in the thesis.

18

3. LEAST-SQUARES NEURAL NETWORK METHOD FOR

LINEAR ADVECTION-REACTION EQUATIONS

A version of this chapter has been submitted for publication [29].

In this chapter, we introduce the least-squares ReLU neural network (LSNN) method for

solving the linear advection-reaction problem with discontinuous solution. Since DNN func-

tions are nonlinear functions of the parameters, then the advection-reaction equation will be

discretized through least-squares principles. In the context of finite element approximations,

several least-squares methods have been studied (see, e.g., [22], [30]–[35]). Basically, there

are two least-squares formulations which are equivalent to the original differential equation.

One is a direct application of least-squares principle (see, e.g., [30], [34]) with a weighted L2

norm for the inflow boundary condition, where the weight is the magnitude of the normal

component of the advection velocity field. The other is to apply the least-squares principle

to an equivalent system of the underlying problem by introducing an additional flux variable

(see [22], [35]). Some numerical techniques such as feedback least-squares finite element

method [31], adaptive local mesh refinement with proper finite elements [22], etc. were in-

troduced in order to reduce the common Gibbs phenomena for problems with discontinuous

solutions.

The LSNN method is based on the least-squares formulation studied in ([30], [34]), i.e., a

direct application of the lease-squares principle to the underlying problem, and on the ReLU

neural network as the approximation class of functions. The class of neural network functions

enables the LSNN method to automatically approximate the discontinuous solution without

using a priori knowledge of the location of the discontinuities. Compared to various AMR

methods that locate the discontinuous interface through local mesh refinement, the LSNN

method is much more effective in terms of the number of the degrees of freedom (see, e.g.,

Fig. 3.1 (c) and Fig. 3.2 (c)).

Theoretically, it is proved in [34] that the homogeneous least-squares functional is equiv-

alent to a natural norm in the solution space Vβ consisting of all square-integrable functions

whose directional derivative along β is also square-integrable (see section 3.1). This equiv-

alence enables us to prove Ceá’s lemma for the LSNN approximation, i.e., the error of the

19

LSNN approximation is bounded by the approximation error of the set of ReLU neural net-

work functions. This result is extended to the LSNN method with numerical integration as

well. Even though approximation theory of the ReLU neural network has been intensively

studied by many researchers (see, e.g., [36] for work before 2000 and [37], [38]), we are not

able to find a result which is applicable to the discontinuous solution of the advection-reaction

problem.

To explore how well the ReLU neural network approximates the discontinuous solution,

we consider two-dimensional transport problems, i.e., (3.4) with γ̂ = 0. When the boundary

data g is discontinuous at point x0 ∈ Γ−, the solution of the transport problem is discontin-

uous across an interface: the streamline of the advection velocity field starting at x0. The

solution of this problem can be decomposed as the sum of a piece-wise constant function

and a continuous piece-wise smooth function (see, e.g., (3.19)). We show that the piece-wise

constant function can be approximated well without the Gibbs phenomena by either a two-

or a three-layer ReLU neural network with the minimal number of neurons depending on

the geometric property of the interface (see Lemmas 3.3.2 and 3.7.1). Together with the

universal approximation property, this implies that a two- or three-layer ReLU neural net-

work is sufficient to well approximate the solution of the linear transport problem without

oscillation. These theoretical results are confirmed by the numerical results in section 3.5.

However, the procedure for determining the values of the parameters of the network

becomes a non-convex optimization even though the underlying PDE is linear. In order to

obtain the desired solution given the fact that the non-convex optimization problem usually

has many solutions, it is required to start from a close enough first approximation and a

common way to do so is by the method of continuation. In this chapter, we also propose

the method of model continuation through approximating the advection velocity field by

a family of piece-wise constant vector fields. Numerical results for a test problem with

a variable velocity field show that this method is able to reduce the total number of the

parameters in a large scale.

This chapter is organized as follows. Section 3.1 introduces the advection-reaction prob-

lem formulation, its least-squares formulation, and preliminaries. The least-squares neural

network method is described in section 3.2. The ReLU NN approximation of discontinuous

20

solutions is analyzed in section 3.3 and section 3.7. Initialization for the two-layer neural

networks and the method of model continuation for initialization are presented in sections

3.4 and 3.6, respectively. Finally, numerical results for various benchmark test problems are

given in section 3.5.

3.1 Problem Formulation

Let Ω be a bounded domain in Rd with Lipschitz boundary, and denote the advective

velocity field by β(x) = (β1, · · · , βd)T ∈ C1(Ω̄)d. Define the inflow and outflow parts of the

boundary Γ = ∂Ω by

Γ− = {x ∈ Γ : β(x) · n(x) < 0} and Γ+ = {x ∈ Γ : β(x) · n(x) > 0}, (3.1)

respectively, where n(x) is the unit outward normal vector to Γ at x ∈ Γ.

As a model hyperbolic boundary value problem, we consider the linear advection-reaction

equation  ∇·(βu) + γu = f in Ω,

u = g on Γ−,
(3.2)

where γ ∈ C(Ω̄), f ∈ L2(Ω), and g ∈ L2(Γ−) are given scalar-valued functions. As usual, we

assume that there exist a positive constant γ0 such that

γ(x) + 1
2∇ · β(x) ≥ γ0 > 0 for all x ∈ Ω. (3.3)

For simplicity of presentation, we also assume that g is bounded so that streamline functions

from Γ− to Γ+ is not needed (see [34]).

Denote by vβ = β · ∇v the directional derivative along the advective velocity field β,

then (3.2) may be rewritten as follows


uβ + γ̂ u = f in Ω,

u = g on Γ−,
(3.4)

21

where γ̂ = γ +∇·β. The solution space of (3.2) is given by

Vβ = {v ∈ L2(Ω) : vβ ∈ L2(Ω)},

which is equipped with the norm as

|||v|||β =
(
‖v‖2

0,Ω + ‖vβ‖2
0,Ω

)1/2
.

Denote the weighted L2(Γ−) norm over the inflow boundary by

‖v‖−β = 〈v, v〉1/2−β =
(∫

Γ−
|β ·n| v2 ds

)1/2

.

Then the following trace and Poincaré inequalities are proved in [34] (see also [31]) that there

exist positive constants Ct and Cp such that

‖v‖−β ≤ Ct |||v|||β, ∀ v ∈ Vβ (3.5)

and

‖v‖0,Ω ≤ Cp (‖v‖−β +D ‖vβ‖0,Ω) , ∀ v ∈ Vβ, (3.6)

respectively, where D = diam(Ω) is the diameter of the domain Ω.

Remark 3.1.1. Let C be the streamline of the advection velocity field β starting at x0 ∈ Γ− in

two dimensions. Assume that the inflow boundary condition g is discontinuous at x0. Then it

is easy to see that the solution of (3.2) is also discontinuous across C because the restriction

of the solution on C satisfies the same differential equation but different initial condition.

Moreover, if γ̂ = 0, then the jump of the solution along C is a constant |g(x+
0) − g(x−0)|,

where g(x+
0) and g(x−0) are the values of g at x0 from different sides. The streamline C is

referred to be the discontinuous interface.

22

In the remainder section, we introduce the least-squares (LS) formulation for the lin-

ear advection-reaction equations (3.4) following [31], [34]. To this end, we define the LS

functional

L(v; f) = ‖vβ + γ̂ v − f‖2
0,Ω + ‖v − g‖2

−β (3.7)

for all v ∈ Vβ, where f = (f, g). Now, the corresponding least-squares formulation is to seek

u ∈ Vβ such that

L(u; f) = min
v∈Vβ

L(v; f). (3.8)

It follows from the trace, triangle, and Poincaré inequalities and assumptions on β and γ

that the homogeneous LS functional L(v; 0) is equivalent to the norm |||v|||2β, i.e., there exist

positive constants α and M such that

α |||v|||2β ≤ L(v; 0) ≤M |||v|||2β. (3.9)

In addition, the problem (3.8) has a unique solution u ∈ Vβ which satisfies the following a

priori estimate

|||u|||β ≤ C (‖f‖0,Ω + ‖g‖−β) . (3.10)

Denote the bilinear and linear forms by

a(u, v) = (uβ + γ̂ u, vβ + γ̂ v) + 〈u, v〉−β and f(v) = (f, vβ + γ̂ v) + 〈g, v〉−β ,

respectively. Then the minimization problem in (3.8) is to find u ∈ Vβ such that

a(u, v) = f(v), ∀ v ∈ Vβ. (3.11)

23

3.2 LSNN Method for Linear Advection-Reaction Equations

The main idea of the least-squares neural network (LSNN) method is to employ DNN

functions for approximating the solution u(x) of the LS minimization problem in (3.8). For

each x ∈ Ω ⊂ Rd and given integers {nl}Ll=1, we denote the set of DNN functions by

M(θ, L) =
{
N (x) = N (L) ◦ · · · ◦N (1)(x) : ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl for l = 1, ..., L

}
,

where N (l)(x(l−1)) is defined in (2.2) and θ denotes all parameters in the network: ω(l) and

b(l) for l = 1, ..., L. It is easy to see thatM(θ, L) is a subset of Vβ, but not a linear subspace.

For each x ∈ Ω ⊂ Rd, a DNN is implemented to compute an approximation uN (x;θ) at

the point x. Then the LSNN method for the linear advection-reaction equations is to find

uN (x;θ∗) ∈M(θ, L) such that

L
(
u

N
(x; θ∗); f

)
= min

v∈M(θ,L)
L
(
v(x; θ); f

)
= min

θ∈RN
L
(
v(x; θ); f

)
, (3.12)

where N is the total number of parameters in M(θ, L) which is given in (2.3).

Instead of evaluating the LS functional analytically, we consider numerical approximation

to the LS functional. This means that we will use numerical quadrature to approximate

integrals of the LS functional. For simplicity and generality in high dimensions, we will

adopt composite “mid-point” quadrature rule. To this end, let

T = {K : K is an open subdomain of Ω}

be a partition of the domain Ω. Here, the partition means that union of all subdomains of T

equal the whole domain Ω and that any two distinct subdomains of T have no intersection;

more precisely,

Ω̄ = ∪K∈T K̄ and K ∩ T = ∅, ∀ K, T ∈ T .

In addition, we denote

E− = {E = ∂K ∩ Γ− : K ∈ T }

24

as a partition of the inflow boundary Γ−. Let x
K

and x
E

be the centroids of K ∈ T and

E ∈ E−, respectively. Define the discrete LS functional as follows:

LT
(
v(x;θ); f

)
=
∑
K∈T

(
vβ + γ̂ v − f

)2
(xK ;θ) |K|+

∑
E∈E−

(
|β · n|(v − g)2

)
(xE ;θ)|E|, (3.13)

where |K| and |E| are the d and d− 1 dimensional measures of K and E, respectively; and

vβ is the discrete directional derivative which will be defined in the subsequent sections. We

shall see later that the discretization scheme is critical to ensure the success of the LSNN

method. Then the discrete least-squares approximation is to find uNT (x,θ∗) ∈ M(θ, L) such

that

LT
(
uN
T

(x, θ∗); f
)

= min
v∈M(θ,L)

LT
(
v(x; θ); f

)
= min

θ∈RN
LT
(
v(x; θ); f

)
. (3.14)

To understand approximation property of the LSNN method, by the triangle inequality,

we have

‖u− uN
T
‖ ≤ ‖u− u

N
‖+ ‖u

N
− uN

T
‖, (3.15)

where the first term represents the approximation error caused by the deep neural network

and the second term is the numerical error by evaluating the LS functional through numerical

quadrature. How to estimate the former is still an open problem. The latter can be computed

to a desired accuracy through either a uniform or an adaptive partition of the Ω and Γ− (See

[10] for more details).

In (3.15), uNT (x,θ) is assumed to be the exact solution of the minimization problem in

(3.14). In practice, problem (3.14) is solved numerically by an iterative method such as the

method of gradient decent. Let ukT (x,θ) be the algebraic approximation at the kth iterate,

then the total error of the discrete LSNN method is bounded by the sum of the DNN

approximation error, the quadrature error, and the algebraic error as follows:

‖u− uk
T
‖ ≤ ‖u− u

N
‖+ ‖u

N
− uN

T
‖+ ‖uN

T
− uk

T
‖, (3.16)

which can be easily obtained by the triangle inequality.

25

3.3 ReLU NN Approximation of Discontinuous Solutions: I. Discontinuous In-
terface Along a Straight Line

In this section, we will theoretically show that a two-layer ReLU neural network is capa-

ble of accurately approximating a piece-wise defined solution with a constant jump on the

discontinuous interface consisting of a straight line.

First, we consider the equation (3.4) with γ̂ = 0. When the boundary data g is discontin-

uous at point x0 ∈ Γ−, the solution of the linear advection-reaction problem is discontinuous

across an interface: the streamline of the advection velocity field starting at x0. Then the

key to approximate such discontinuous solution is to decompose the solution as the sum of

a piece-wise constant function as well as a continuous piece-wise smooth function (see, e.g.,

(3.19)).

Lemma 3.3.1. Let u and u
N

be the solutions of problems (3.7) and (3.12), respectively.

Then we have

|||u− u
N
|||β ≤

(
M

α

)1/2
inf

v∈M(θ,L)
|||u− v|||β, (3.17)

where α and M are constants in (3.9).

Proof. For any v ∈M(θ, L) ⊂ Vβ, it follows from the coercivity and continuity of the homo-

geneous functional L
(
v; 0

)
in (3.9), problem (3.2), and (3.12) that

α |||u− u
N
|||2β ≤ L

(
u− u

N
; 0
)

= L
(
u

N
(x; θ∗); f

)
≤ L

(
v(x; θ); f

)
= L

(
u− v; 0

)
≤M |||u− v|||2β,

which implies (3.17). This completes the proof of the lemma.

For a given vector ξ ∈ Rd and c ∈ R, assume that the hyper-plane P : ξ · x = c divides

the domain Ω into two non-empty subdomains Ω1 and Ω2, i.e.,

Ω1 = {x ∈ Ω : ξ · x < c} and Ω2 = {x ∈ Ω : ξ · x > c}.

26

Let χ(x; ξ, c) be a piece-wise constant function defined by

χ(x; ξ, c) =


α1, x ∈ Ω1,

α2, x ∈ Ω2.

Lemma 3.3.2. Let p(x) be a two-layer neural network function given by

p(x) = α1 + α2 − α1

2ε

(
σ(ξ · x− c+ ε)− σ(ξ · x− c− ε)

)

for any ε > 0 such that intersections between the domain Ω and the hyper-planes ξ ·x = c±ε

are not empty. Then we have

‖χ− p‖0,Ω =
(
‖χ− p‖2

0,Ω + ‖χη − pη‖2
0,Ω

)1/2
≤
√
D

6
∣∣∣α1 − α2

∣∣∣√ε, (3.18)

where η is a vector normal to ξ and D is the diameter of the domain Ω.

Proof. Let

Ωε = Ωε,1 ∪ Ωε,2 ≡ {x ∈ Ω : c− ε < ξ · x < c} ∪ {x ∈ Ω : c < ξ · x < c+ ε}.

The equality in (3.18) follows from the fact that χη − pη = 0. To show the validity of the

inequality in (3.18), first we have

χ− p =



α1 − α2

2ε
(
ξ · x− c+ ε

)
, x ∈ Ωε,1,

α1 − α2

2ε
(
ξ · x− c− ε

)
, x ∈ Ωε,2,

0, x ∈ Ω \ Ωε.

By a rotation of the coordinates, x = (s,y), it is easy to see that the domain Ωε,1 is bounded

by the hyper-planes s = c − ε and s = c and the hyper-surfaces ϕ1(s) and ϕ2(s) on ∂Ω.

Hence, we have

∫
Ωε,1

(
ξ ·x− c+ ε

)2
dx =

∫ c

c−ε

∫ ϕ2(s)

ϕ1(s)

(
s− c+ ε

)2
dy ds ≤ Dd−1

∫ c

c−ε

(
s− c+ ε

)2
ds = Dd−1

3 ε3.

27

In a similar fashion, ∫
Ωε,2

(
ξ · x− c− ε

)2
dx ≤ Dd−1

3 ε3.

The above two inequalities imply

‖χ− p‖2
0,Ω ≤

(
α1 − α2

2ε

)2 2Dd−1

3 ε3 = Dd−1(α1 − α2)2ε

6 .

This proves the inequality in (3.18) and, hence, the lemma.

Assume that u is a piece-wise smooth function with respect to the partition {Ω1,Ω2}

such that the jump of u on the interface P = Ω1 ∩ Ω2 is a constant α2 − α1, i.e.,

[[u]]P ≡ u2|P − u1|P = α2 − α1.

Then u has the following decomposition

u = χ(x; ξ, c) + û, (3.19)

where ξ is a vector normal to β. It is easy to see that û is continuous in Ω and piece-wise

smooth. By decomposing the discontinuous function into the sum of a piece-wise constant

function and a continuous piece-wise smooth function, we are able to prove the following

Theorem.

Theorem 3.3.1. Assume that the advection velocity field β is a constant vector field and

that f ∈ C(Ω). Let u and u
N

be the solutions of problems (3.7) and (3.12), respectively.

Then we have

|||u− u
N
|||β ≤ C

(∣∣∣α1 − α2

∣∣∣√ε+ inf
v∈M(θ,L)

|||û− v|||β

)
, (3.20)

where û ∈ C(Ω) is given in (3.19).

Proof. The assumptions on β and f imply that the exact solution u has the decomposition

in (3.19). Now, (3.20) is a direct consequence of Lemmas 3.3.1 and 3.3.2.

28

Lemma 3.3.3. Let u, u
N

, and uN
T

be the solutions of problems (3.7), (3.12), and (3.13),

respectively. Then there exists a positive constant C such that

|||u− u
N
|||β ≤ C

(
inf

v∈M(θ,L)
|||u− v|||β +

∣∣∣(L − LT)(u
N
− uN

T
; 0)

∣∣∣+ ∣∣∣(L − LT)(u− u
N

; 0)
∣∣∣) .

(3.21)

Proof. By the triangle inequality, the fact that LT (uN
T

; f) ≤ LT (u
N

; f), and the continuity of

the homogeneous functional L
(
v; 0

)
in (3.9), we have

1
2 LT (u

N
− uN

T
; 0) ≤ LT (u

N
− u; 0) + LT (u− uN

T
; 0) = LT (u

N
; f) + LT (uN

T
; f)

≤ 2LT (u
N

; f) = 2
(
(LT − L)(u

N
− u; 0) + L(u

N
− u; 0)

)
≤ 2 (LT − L)(u

N
− u; 0) + 2M |||u− u

N
|||2β,

which, together with the coercivity of the homogeneous functional L
(
v; 0

)
in (3.9), implies

that

α
∣∣∣∣∣∣∣∣∣u

N
− uN

T

∣∣∣∣∣∣∣∣∣2
β
≤ L

(
u

N
− uN

T
; 0
)

=
(
L − LT

)(
u

N
− uN

T
; 0
)

+ LT
(
u

N
− uN

T
; 0
)

≤
(
L − LT

)(
u

N
− uN

T
; 0
)

+ 4 (LT − L)(u
N
− u; 0) + 4M |||u− u

N
|||2β.

Now, (3.21) is a direct consequence of the triangle inequality, the above inequality, and

Lemma 3.3.1. This completes the proof of the lemma.

Lemma 3.3.3 indicates that the total error of the LSNN approximation with numerical

integration is bounded by the approximation error of the neural network and the error of

the numerical integration.

3.4 Initialization of two-layer neural networks

Network initialization is important in the training, inappropriate initialization may cause

high computational cost as well as poor results. In this section, we briefly describe the

initialization strategy introduced in [10] for two-layer neural networks.

29

In d-dimension, for i = 1, 2, ..., n1, let ωi ∈ Rd and bi ∈ R be the weights and bias of

the input layer, respectively; and let ci ∈ R and c0 ∈ R be the respective weights and bias

of the output layer. Then a two-layer ReLU neural network with n1 neurons produces the

following set of functions for x ∈ Rd:

M(θ, 1) =
{
c0 +

n1∑
i=1

ciσ(ωi · x− bi) : ci, bi ∈ R, ωi ∈ Rd

}
,

where θ represents all parameters in the network. The σ(t) is a continuous piece-wise linear

function with the discontinuity at t = 0 and belongs to a class of activation functions of the

form

σk(t) = max{0, tk} =


0, t < 0,

tk, t ≥ 0
for k ∈ Z+,

where Z+ is the set of all positive integers. Note that σk(t) ∈ Ck−1(R) is a piece-wise

polynomial of degree k with the discontinuity at t = 0. For simplicity of presentation, we

only discuss the initialization strategy for two-layer ReLU neural networks. Extension of

results to general activation functions σk(t) may be foreseen.

In total, there are (d + 2)n1 + 1 parameters for functions in the set M(θ, 1), where

n1 + 1 of them are the output weights and bias {ci}n1
i=0; and (d+ 1)n1 of them are the input

weights {ωi}n1
i=1 and bias {bi}n1

i=1. We refer to the former as linear parameters and the later

as nonlinear parameters. Hence, M(θ, 1) consists of n1 + 1 linear and (d + 1)n1 nonlinear

parameters. It remains a challenge to determine the values of nonlinear parameters in the

training process. Then to remove n1 nonlinear parameters, we notice that

σ(ω · x− b) = |ω|σ
(
ω

|ω|
· x− b

|ω|

)
,

where |ω| =
√
ω2

1 + · · ·+ ω2
d is the length of a vector ω ∈ Rd. This implies that M(θ, 1) is

equal to

M̂(θ, 1) =
{
c0 +

n1∑
i=1

ciσ(ωi · x− bi) : ci, bi ∈ R, ωi ∈ Sd−1
}
, (3.22)

30

where Sd−1 is the unit sphere in Rd. The number of parameters in M̂(θ, 1) is reduced to

N = (d+ 1)n1 + 1.

First, we restrict our attention to the two dimensional case. When d = 2, S1 is a unit

circle given by:

S1 =
{
ω = (ω1, ω2)T ∈ R2 : ω2

1 + ω2
2 = 1

}
=
{
ω =

(
cos γ, sin γ

)T
: 0 ≤ γ ≤ 2π

}
.

This gives

M̂(θ, 1) =
{
c0 +

n1∑
i=1

ciσ
(
(cos γi)x1 + (sin γi)x2 − bi

)
: ci, bi ∈ R, γi ∈ [0, 2π]

}
, (3.23)

which is the set of continuous piece-wise linear functions with n1 free lines

li : (cos γi)x1 + (sin γi)x2 − bi = 0 for i = 1, ..., n1. (3.24)

Similarly, in the d-dimension, M̂(θ, 1) is the set of continuous piece-wise linear functions

with n1 free hyper-planes

Pi : ωi · x− bi = 0 for i = 1, ..., n1. (3.25)

Let

ϕ0(x) = 1 and ϕi(x) = σ(ωi · x− bi) for i = 1, ..., n1.

For a given input weights and bias

ω = (ω1, ...,ωn1) and b = (b1, ..., bn1),

problem (3.11) may be approximated by finding un1 =
n1∑
i=0
ciϕi(x) such that

a(un1 , ϕj) = f(ϕj) (3.26)

31

for j = 0, 1, ..., n1. Let

A(ω,b) = (a(ϕj, ϕi))(n1+1)×(n1+1) and F (ω,b) = (f(ϕj))(n1+1)×1 ,

then the coefficients, c = (c0, c1, ..., cn), of un1 is the solution of the system of linear algebraic

equations

A(ω,b) c = F (ω,b). (3.27)

Lemma 3.4.1. Assume that hyper-planes {ωi · x = bi}n1
i=1 are distinct. Then the coefficient

matrix A(ω,b) is symmetric, positive definite.

Proof. Obviously, A(ω,b) is symmetric. Positive definiteness of A(ω,b) follows from the

lower bound in (3.9) and the linear independence of {ϕi}n1
i=0 (see Lemma 2.1 of [10]).

As discussed in [10], the hyper-planes (3.25) and the boundary of the domain Ω form

a physical partition of the domain Ω. It is then natural to initialize the input weights ω

and bias b such that the corresponding hyper-planes {Pi}n1
i=1 form a uniform partition of the

domain Ω. The initial for the output weights and bias c may be chosen to be the solution

of problem (3.27). To conclude, initialization of nonlinear parameters are based on their

physical partitioning of the domain and the initial of linear parameters are obtained by

solving a system of linear equations given the nonlinear parameters.

3.5 Numerical Experiments

In this section, we present numerical results for test problems with constant, piece-wise

constant, or variable advection velocity fields. The solutions of these test problems are

discontinuous along an interface which is a line segment, a piece-wise line segment, or a

curve.

In all experiments, the integration mesh T is obtained by uniformly partitioning the

domain Ω into identical squares with mesh size h = 10−2. To train (numerically compute)

parameters θ associated with the DNN functions uNT (x,θ), the Adam optimizer version of

gradient descent [39] is implemented as an iterative method to numerically solve the min-

32

imization problem in (3.13). The iterative parameter (may vary at each iteration) of the

method of gradient decent is called the step size or learning rate.

Choosing a proper approach to approximate the differential operator in the least-squares

functional (3.13) is crucial for success of the LSNN method. In general, there are two

numerical approaches. The first approach is to use the backward finite difference quotient

along coordinate directions. Let x
K

= (x1
K
, x2

K
), then the differential operator in (3.13) is

approximated by

vβ(x1
K
, x2

K
) ≡ (β1, β2) · ∇v(x1

K
, x2

K
)

≈ β1
v(x1

K
, x2

K
)− v(x1

K
− h1, x

2
K

)
h1

+ β2
v(x1

K
, x2

K
)− v(x1

K
, x2

K
− h2)

h2

(3.28)

with h1 ∈ R and h2 ∈ R being the finite difference step size along x1 and x2 directions,

receptively. The second method is to employ the backward finite difference quotient along

the β direction:

vβ(x
K

) ≈
v(x

K
)− v

(
x

K
− ρβ̄(x

K

)
)

ρ
(3.29)

where ρ ∈ R is chosen to be smaller than the integration mesh size h, and β̄ is the unit

vector along the β direction. In section 3.5.2, we will present the numerical results for both

schemes.

Let u be the exact solution of problem (3.2) and ūN
T

be the LSNN approximation. Tables

3.1 –3.7 report the numerical errors in the relative L2, Vβ, and graph norms. In these tables, a

network structure is expressed by 2-n-1 for a two-layer network with n neurons, by 2-n1-n2-1

for a three-layer network with n1 and n2 neurons in the respective first and second layers, and

so on. Figures 3.2 –3.9 depict the traces of the exact solution and the numerical approximation

on a plane perpendicular to both the x1x2-plane and the discontinuous interface, which

accurately illustrate the quality of the numerical approximation.

33

3.5.1 Problems with a constant advection velocity fields: I. Discontinuity along
a vertical line segment

First, we present numerical results for two test problems with constant advection velocity

fields whose solutions are piece-wise constants (see, e.g., [22]). A two-layer neural network

is employed and the network is initialized by the method described in section 3.4.

The first test problem is the equation in (3.2) with the domain Ω = (0, 2) × (0, 1), the

inflow boundary Γ− = {(x, 0) : x ∈ (0, 2)}, a constant advection velocity field β = (0, 1)T ,

γ = f = 0, and the inflow boundary data g(x) = 0 for x ∈ (0, π/3) and g(x) = 1 for

x ∈ (π/3, 2). Let Ω1 = {(x, y) ∈ Ω : 0 < x < π/3} and Ω2 = {(x, y) ∈ Ω : π/3 < x < 2}, it

is then easy to see that the exact solution is a piece-wise constant given by

u(x, y) =


0, (x, y) ∈ Ω1,

1, (x, y) ∈ Ω2.

The discontinuous interface is the vertical line x = π/3.

This problem was used to test various adaptive least-squares finite element methods in

[22]. In particular, the discontinuous interface x = π/3 was chosen so that if the initial mesh

does not align with the interface, so is the mesh generated by either global or local mesh

refinements.

Numerical results in [22] (see Fig. 3.1) showed that the conforming least-squares finite

element method (C-LSFEM) exhibits the Gibbs phenomena even with very fine mesh and

that the newly developed flux-based LSFEM in [22] using a pair of the lowest-order elements

is able to avoid overshooting on an adaptively refined mesh.

The LSNN method using the directional derivative is implemented with ρ = h/2 in

(3.29) and a fixed learning rate 0.003 with 50000 iterations. Our first set of experiments are

done by using networks: 2-200-1 and 2-25-15-15-1. These two networks have 601 and 705

parameters, respectively, and provide good approximations (similar to Fig. 3.2 (a,b)) to the

exact solution.

Lemma 3.3.2 indicates that a two-layer network with 2 neurons is sufficient to approxi-

mate the exact solution accurately. Our second set of experiments are done by using net-

34

(a) C-LSFEM vertical cross
section

(b) flux-based LSFEM verti-
cal cross section

(c) An adaptively refined mesh

Figure 3.1. Numerical results in [22] of the problem with discontinuity along
a vertical line segment

35

works: 2-2-1 and 2-4-1 with the respective 7 and 13 parameters. The 2-2-1 network fails to

approximate the exact solution when the initial breaking lines are chosen to be the vertical

line x = 1 and the horizontal line y = 1/2. This is because the iterative solver of the non-

convex optimization is not capable of moving the initial horizontal breaking line to the right

place. The initial breaking lines for the 2-4-1 network are chosen to be the vertical lines

x = 2/3 and x = 4/3 and the horizontal lines y = 1/3 and y = 2/3.

Table 3.1. Relative errors of the problem with discontinuity along a vertical line segment

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-4-1 0.058046 0.058304 0.050491 13
2-200-1 0.058745 0.058926 0.048537 601

(a) Numerical solution ūNT (b) Vertical cross section

(c) Network breaking lines

Figure 3.2. Approximation results of the problem with discontinuity along a
vertical line segment

Errors of numerical results are presented in Table 3.1 . The second and third columns in

Table 3.1 show that the approximation of the small network is slightly more accurate than

36

that of the large network while the values of the loss functions are reversed. This indicates

that the large network is trapped in a local minimum. The numerical solution of the 4-neuron

network is depicted in Fig. 3.2 (a). The traces of the exact and numerical solutions on the

plane y = 1 are depicted in Fig. 3.2 (b), which shows no oscillation. Fig. 3.2 (c) displays

breaking lines of the network with two vertical lines x = 1.02882 and x = 1.06114 closing to

the interface x = π/3. This indicates that breaking lines of neural network are capable of

automatically adapting to the discontinuous interface. This simple test problem shows that

the LSNN method out-performs the traditional mesh-based numerical methods.

3.5.2 Problems with a constant advection velocity fields: II. Discontinuity along
the diagonal

The second test problem is again equation (3.2) with a constant advection velocity vector

and a piece-wise constant inflow boundary condition. Specifically, β = (1, 1)T/
√

2, Ω =

(−1, 1)2, Γ− = Γ1
− ∪ Γ2

− ≡ {(−1, y) : y ∈ (−1, 1)} ∪ {(x,−1) : x ∈ (−1, 1)}, γ = 1, g and f

are piece-wise constants given by

g(x, y) =


1, (x, y) ∈ Γ1

−,

0, (x, y) ∈ Γ2
−,

and f(x, y) =


1, (x, y) ∈ Ω1,

0, (x, y) ∈ Ω2,

where Ω1 = {(x, y) ∈ Ω : y > x} and Ω2 = {(x, y) ∈ Ω : y < x}. The exact solution of the

test problem is u(x, y) = f(x, y) with the discontinuous interface: y = x.

Again, we presented the numerical results produced by traditional mesh-based method.

Fig. 3.3 shows the results generated by the conforming least-squares finite element method

(C-LSFEM) in [22], which indicates that the C-LSFEM exhibits Gibbs phenomena along the

discontinuous interface even though a fine mesh is used.

For the LSNN method, we present two sets of numerical experiments. The first set is done

by using the directional derivative (3.29) with ρ = h/2. Numerical results of a 2-6-1 network

are presented in Table 3.2 and Figure 3.4 . The traces of the exact and numerical solutions

on the plane y = −x are depicted in Fig. 3.4 (b). Clearly, the LSNN method with only 19

parameters approximates the exact solution accurately without the Gibbs phenomena. This

37

(a) Adaptive mesh (b) Numerical solution

Figure 3.3. Numerical results in [22] of the problem with discontinuity along the diagonal

38

test problem shows that the LSNN method is able to rotate and shift the initial breaking

lines to approximate the discontinuous interface. Again, the LSNN method outperforms the

traditional mesh-based approach.

Table 3.2. Relative errors of the problem with discontinuity along the diagonal
using directional derivative

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-6-1 0.073534 0.073826 0.067531 19

(a) Network approximation ūNT (b) Vertical cross section

(c) Network breaking lines

Figure 3.4. Approximation results of the problem with discontinuity along
the diagonal using directional derivative

Comparably, the second set of experiment is done by approximating the differential op-

erator in the least-squares functional (3.13) by the finite difference quotient along each co-

ordinate direction (3.28). With h1 = h2 = h/2, we report the results for a 2-6-1 network in

Table 3.3 and Figure 3.5 . The results indicate that the LSNN method fails to resolve the

39

discontinuous interface. From this perspective, we see that the discretization approach is

critical for the success of the LSNN method.

Table 3.3. Relative errors of the problem with discontinuity along the diagonal
using finite difference quotient

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-6-1 0.192157 0.210532 0.120123 19

(a) Network approximation ūNT (b) Network breaking lines

Figure 3.5. Approximation results of the problem with discontinuity along
the diagonal using finite difference quotient

3.5.3 Problems with a a piecewise smooth solution: I. Constant jump on the
interface

The third test problem is a modification of the second test problem by changing the

inflow boundary condition from the piece-wise constant to a discontinuous piece-wise smooth

function and the domain from Ω = (−1, 1)2 to Ω = (0, 1)2, i.e.,

g(x, y) =


sin(y), (x, y) ∈ Γ1

− = {(0, y) : y ∈ (0, 1)},

cos(x), (x, y) ∈ Γ2
− = {(x, 0) : x ∈ (0, 1)}.

40

Set γ = f = 0, the exact solution of this test problem is

u(x, y) =


sin(y − x), (x, y) ∈ Ω1 = {(x, y) ∈ (0, 1)2 : y > x},

cos(x− y), (x, y) ∈ Ω2 = {(x, y) ∈ (0, 1)2 : y < x}.

The LSNN method is employed with ρ = h/2 and a fixed learning rate 0.003 for 30000

iterations. Numerical results of three network models are reported in Table 3.4 . Figure 3.6

presents the NN approximation of the 2-40-1 network. The traces of the exact and numerical

solutions on the plane y = 1 − x are depicted in Fig. 3.6 (b), which exhibits no oscillation.

It is expected that the network with additional neurons is needed in order to approximate

the solution well since the solution of the test problem is a piece-wise smooth function.

Moreover, this test problem conforms Theorem 3.3.1 that a piece-wise smooth function

having a constant jump on a line segment discontinuous interface may be approximated well

by a two-layer network.

Table 3.4. Relative errors of the problem with a piece-wise smooth solution

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-20-1 0.110745 0.110754 0.035571 61
2-30-1 0.107525 0.107641 0.013568 91
2-40-1 0.101411 0.101413 0.003509 121

3.5.4 Problems with a a piecewise smooth solution: II. Non-constant jump on
the interface

The fourth test problem is a modification of the third by changing γ from 0 to 1. Choose

g and f accordingly such that the exact solution u is

u(x, y) =


sin(x+ y), (x, y) ∈ Ω1 = {(x, y) ∈ (0, 1)2 : y > x},

cos(x+ y), (x, y) ∈ Ω2 = {(x, y) ∈ (0, 1)2 : y < x}.

The discontinuous interface of the problem is along the diagonal y = x. Clearly, the jump

on the interface is not a constant value.

41

(a) Network approximation ūNT (b) Vertical cross section

(c) Network breaking lines

Figure 3.6. Approximation results of the problem with a piece-wise smooth
solution having a constant jump on the interface

42

The LSNN method uses ρ = h/2 in (3.29) and a fixed learning rate 0.003. Three neural

network structures are tested for the problem: 2-40-1, 2-200-1 and 2-5-5-1. The initialization

of the first layer employs the method described in the section 3.4, and that of the subsequent

layers are randomly generated. The numerical results are presented in Table 3.5 . The traces

of the exact and numerical solutions on the plane y = 1 − x are depicted in Fig. 3.7 .

Obviously, even though the discontinuous interface is a straight line, a two-layer network

fails to approximate the solution which has a non-constant jump on the interface. Although

the breaking lines capture the discontinuous interface, certain level of oscillation is exhibited

which is not acceptable for this type of application. Hence, a three-layer network is needed

to accurately approximate the solution.

Table 3.5. Relative errors of problem with a piece-wise smooth solution having
a non-constant jump

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-50-1 0.046258 0.091179 0.078722 151
2-200-1 0.045368 0.083268 0.072652 601
2-15-15-1 0.003964 0.045277 0.035135 286

3.5.5 Problem with a piece-wise constant advection velocity field

The fifth test problem is equation (3.2) defined on Ω = (0, 1)2 with γ = f = 0 and a

piece-wise constant advection velocity field. Specifically, the advection velocity field is given

by

β =


(1−

√
2, 1)T , (x, y) ∈ Υ1 = {(x, y) ∈ Ω : y < x},

(−1,
√

2− 1)T , (x, y) ∈ Υ2 = {(x, y) ∈ Ω : y ≥ x}.
(3.30)

and, hence, the inflow boundary of the problem is

Γ− = {(x, 0) : x ∈ (0, 1)} ∪ {(1, 0)} ∪ {(1, y) : y ∈ (0, 1)}. (3.31)

43

(a) 2-layer network approximation ūNT (b) 3-layer network approximation ūNT

(c) 2-layer network vertical cross sec-
tion

(d) 3-layer network vertical cross sec-
tion

(e) 2-layer network breaking lines (f) 3-layer network breaking lines

Figure 3.7. Approximation results of the problem with a piece-wise smooth
solution having a non-constant jump on the interface

44

Let Γ1
− = {(x, 0) : x ∈ (0, a)} with a = 43/64. For the inflow boundary condition

g(x, y) =


−1, (x, y) ∈ Γ1

−,

1, (x, y) ∈ Γ2
− = Γ− \ Γ1

−,

(3.32)

then the exact solution is a piece-wise constant: u = −1 in Ω1 and u = 1 in Ω2, where

Ω2 = Ω \ Ω̄1 and

Ω1 = {x ∈ Υ1 : ξ1 · x < a} ∪ {x ∈ Υ2 : ξ2 · x < a}.

Here, ξ1 = (1,
√

2 − 1)T and ξ2 = (
√

2 − 1, 1)T are two vectors normal to β|Υ1
and β|Υ2

,

respectively.

The LSNN method with ρ = h/2 in (3.29) and a fixed learning rate 0.003 with 50000

iterations is implemented for networks: 2-30-1, 2-200-1, and 2-5-5-1. Initialization of the

first layer is done by the approach described earlier, and that of the subsequent layers are

randomly generated. The experiment is replicated three times to reduce the variability of

random initialization of some parameters in the network. The best result is presented in

Table 3.6 and Figure 3.8 , and the figures of the two-layer network is for the 2-200-1 model.

The traces of the exact and numerical solutions on the plane x = 0 and the breaking lines

of these two networks are depicted in Fig. 3.8 (c,d) and Fig. 3.8 (e,f), respectively.

Clearly, the two-layer network with 200 neurons (over 600 parameters) fails to approxi-

mate the solution well in average (see Table 3.6) and point-wise (see Figure 3.8). A three-layer

network with less than 8% of parameters outperforms this large two-layer network in every

aspects including breaking lines. Comparing these two networks, obviously, a three-layer

network is necessary to accurately approximate the solution having a constant jump on a

piece-wise line segment discontinuous interface. In the subsequent sections, we will theoreti-

cally show that a three-layer network is necessary and sufficient in order to well approximate

a discontinuous solution with an interface in R2 that is not a straight line.

45

Table 3.6. Relative errors of the problem with a piece-wise constant advection
velocity field

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-30-1 0.487306 0.556949 0.386919 91
2-200-1 0.317839 0.402699 0.259592 601
2-5-5-1 0.086122 0.086131 0.016945 46

46

(a) 2-layer network approximation ūNT (b) 3-layer network approximation ūNT

(c) 2-layer network vertical cross sec-
tion

(d) 3-layer network vertical cross sec-
tion

(e) 2-layer network breaking
lines

(f) 3-layer network breaking
lines

Figure 3.8. Approximation results of the problem with a piece-wise constant
advection velocity field

47

3.5.6 Problem with a variable advection velocity field

The sixth test problem is equation (3.2) defined on the domain Ω = (0, 1)2 with a variable

advection velocity field β = (−y, x)T and γ = f = 0 (see, e.g., [31], [40]). With the inflow

boundary condition g given in (3.32), the exact solution is a piece-wise constant given by

u(x, y) =


−1, (x, y) ∈ Ω1,

1, (x, y) ∈ Ω2,

(3.33)

where Ω1 = {(x, y) ∈ Ω : x2 + y2 < a2} and Ω2 = {(x, y) ∈ Ω : x2 + y2 > a2}.

For the LSNN method, again we use a uniform integration mesh T with the mesh size

h = 10−2; the finite difference quotient in (3.29) is calculated with ρ = h/10 to avoid the use

of values on both sides of the interface, if possible; and the parameters are initialized by the

strategy described in section 3.4 for the first layer and randomly for the subsequent layers.

The learning rate starts with 0.005, and is reduced by half for every 25000 iterations. This

learning rate decay strategy is used with 150000 iterations. Due to the random initialization

of some parameters, numerical experiments are replicated three times and the best results for

the three- and four-layer networks are reported in Table 3.7 and Figure 3.9 . The traces of the

exact and numerical solutions at the plane x = 0 are depicted in Fig. 3.9 (b) and (d) for the

respective three- and four-layer networks. As shown in Fig. 3.9 (b), the LSNN approximation

of the three-layer network with 40 neurons at each layer smears the discontinuity. A careful

examination of the iterative process, it seems to us that the smear is due to the initialization

(see Fig. 3.11).

Table 3.7. Relative errors of the problem with a variable advection velocity field

Network structure ‖u−ūN
T ‖0

‖u‖0
|||u−ūN

T |||β
|||u|||β

L1/2(ūN
T ;f)

L1/2(ūN
T ;0) Parameters

2-40-40-1 0.146226 0.187823 0.108551 1761
2-30-30-30-1 0.109266 0.122252 0.039993 1951

48

(a) 3-layer network approximation ūNT (b) 3-layer network vertical cross section

(c) 4-layer network approximation ūNT (d) 4-layer network vertical cross section

Figure 3.9. Approximation results of the problem with a variable advection velocity field

49

3.6 Method of model continuation

As observed from our numerical experiments for the test problem with a curved dis-

continuous interface, initial of the parameters plays an important role in training neural

networks. This is because the high dimensional non-convex optimization usually have many

solutions. Without a good initial, our previous simulations rely on over-parameterized neu-

ral networks to approximate the underlying problem well. In practice, the strategy of over-

parameterization is computationally expensive.

Based on our numerical experiments in the previous sections, to generate a good initial for

the parameters, we introduce the method of continuation through models for the advection-

reaction problem in (3.2) with a variable advection velocity field β(x). To this end, let

{βn(x)} be a sequence of piece-wise constant vector fields. Consider the following advection-

reaction problem with the advection velocity field βn(x):

 (un)βn + γ̂ un = f, in Ω,

un = g, on Γ−.
(3.34)

Let u be the solution of (3.2), it is easy to see that u− un satisfies

 (u− un)βn + γ̂ (u− un) = uβn − uβ, in Ω,

u− un = 0, on Γ−,
(3.35)

which, together with the stability estimate in (3.10), implies

‖u− un‖0,Ω ≤ |||u− un|||βn
≤ C ‖uβn − uβ‖0,Ω = C

(∫
Ω

(
(βn − β) · ∇u

)
dx
)1/2

.

Hence, if βn is a good approximation to β, then un is a good approximation to u. This

indicates that (3.34) provides a continuation process on the parameter n for (3.2).

For the test problem in section 3.5.6, since streamlines of the advection velocity field

β = (−y, x)T are quarter circles in Ω = (0, 1)2 oriented counterclockwise, it is natural to

50

approximate the quarter-circle by n line segments. To this end, let ti = iπ
2n for i = 0, 1, ..., n

and

Υi+1 = {(x, y) ∈ Ω : (sin ti)x < (cos ti)y and (sin ti+1)x ≥ (cos ti+1)y}.

Then {Υi+1}n−1
i=0 forms a partition of Ω (see Fig. 3.10 for n = 4 case). This type of approxi-

mations leads to

βn = (cos ti+1 − cos ti, sin ti+1 − sin ti)T in Υi+1

for i = 0, 1, ..., n − 1. Note that β2 is the same vector field given in (3.30). Hence, (3.34)

with n = 2 and the test problem in section 3.5.5 are the same.

The method of model continuation starts with a three-layer neural network (2-5-5-1) to

approximate u2 (see the third row of Table 3.6 and Fig. 3.8 (b,d)). This trained network

is used as an initial for the parameters in the hidden layers of the 2-6-6-1 network to ap-

proximate u3 by randomly generated the parameters of new neurons. The initial for the

output weights and bias may be chosen as the solution of the system (3.27). The adaptive

learning rate strategy which starts with 0.01 and decays by 20% for every 50000 iterations is

implemented with the method. The networks for un with n = 4, 5 are initialized sequentially

in a similar fashion. Numerical results for approximating un and u are reported in Table

3.8 , and the traces of the exact and numerical solutions at the plane x = 0 are depicted

in Fig. 3.11 . The third and fourth columns show that the difficulty of the corresponding

problems increase as the number of line segments increase. The fifth column shows that un
approaches to u monotonously. Comparing Table 3.7 with the last row of Table 3.8 , it is

clear that the method of model continuation is capable of reducing the number of parameters

in the network significantly.

Table 3.8. Relative errors of the problem with discontinuity along line segments

n Network structure ‖un−ūN
T ‖0

‖un‖0
|||un−ūN

T |||
|||un|||

‖u−ūN
T ‖

‖u‖
L1/2(ūN

T ;f)
L1/2(ūN

T ;0) Parameters
3 2-6-6-1 0.075817 0.080026 0.244483 0.059422 61
4 2-6-6-1 0.104372 0.110954 0.216481 0.064744 61
5 2-8-8-1 0.097836 0.109648 0.135606 0.049938 97
curve 2-25-25-1 0.141261 0.187616 0.141261 0.077233 726

51

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

4

Figure 3.10. Discontinuous interface for n = 4

52

(a) 3 line segments (b) 4 line segments

(c) 5 line segments (d) Curved discontinuity

(e) Network breaking lines of the problem
with curved discontinuity

Figure 3.11. Traces of the exact and numerical solutions for the problem
with discontinuity along line segments

53

3.7 ReLU NN Approximation of Discontinuous Solutions: II. Discontinuous
Interface Along Line Segments

In section 3.3, we theoretically showed that a two-layer ReLU neural network is sufficient

to accurately approximate a piece-wise defined solution with a constant jump on the discon-

tinuous interface consisting of a straight line. Numerical experiments in section 3.5.1-3.5.3

confirm our theoretical results. Besides, in section 3.5.5 and 3.6, we also numerically show

that a three-layer ReLU neural network is needed to approximate the solution well if the

discontinuity interface is not a straight line. Then the goal of this section is to theoretically

show that a three-layer ReLU is necessary to approximate such solution.

First, we restrict our attention to the solution of problem in section 3.5.5, i.e., the solution

is a piece-wise constant and the discontinuous interface consists of two line segments. To

make it slightly general, let

χ =


α1, x ∈ Ω1,

α2, x ∈ Ω2.

Without loss of generality, assume that α1 < α2. Let p1(x) and p2(x) be two-layer neural

network functions given by

pi(x) = α1 + α2 − α1

2ε

(
σ(ξi · x− a+ ε)− σ(ξi · x− a− ε)

)

for any ε > 0 such that intersections between the domain Ω and the hyper-planes ξi ·x = a±ε

are not empty.

Lemma 3.7.1. Let p(x) = max{p1(x), p2(x)}, then we have

‖χ− p‖0,Ω =
(
‖χ− p‖2

0,Ω + ‖χβ − pβ‖2
0,Ω

)1/2
≤
√

2
3D

(d−1)/2
∣∣∣α1 − α2

∣∣∣√ε, (3.36)

where D is the diameter of the domain Ω.

Proof. Since p(x) = pi(x) in Υi for i = 1, 2 and Ω = Υ1 ∪Υ2, we have

‖χ− p‖2
0,Ω = ‖χ− p1‖2

0,Υ1 + ‖χ− p2‖2
0,Υ2 .

54

Combining with the fact that χβ − pβ = 0 in Ω, (3.36) is then a direct consequence of

Lemma 3.3.2.

Similar as the discussion in [41], the maximum operation can be constructed by using an

additional hidden layer of the ReLU network with 4 neurons:

max{a, b} = a+ b

2 + |a− b|2 = v σ

ω
a
b




where the row vector and the 4× 2 matrix are given by

v = 1
2 [1,−1, 1, 1] and ω =



1 1

−1 −1

1 −1

−1 1


,

respectively.

Lemma 3.7.1 indicates that a three-layer neural network is sufficient when the interface

consists of two line segments and the jump is a constant. This result may be extended to

discontinuous interfaces consisting of more than two line segments in a similar fashion. In

the remainder of this section, we theoretically show that a three-layer neural network is able

to accurately approximate the solution with the discontinuous interface along multiple line

segments.

The result is established on the lattice representation theorem [24]. Assume that f :

Rd → R is a continuous function that are piecewise linear on m subdomains of the domain

Ω:

Ωi, i = 1, · · · ,m.

This is the same as on each Ωi, f is a linear function:

f(x) = fi(x) = ai · · ·x+ bi, x ∈ Ωi

55

where ai ∈ Rd and b ∈ R. Then there exists M unique-order subdomains Ω̃k for k = 1, · · ·M

such that the sign of fi−fj does not change on each Ω̃k. The main theorem states as follows:

Theorem 3.7.1. For every continuous piece-wise linear function f : Rn → R with finite

pieces defined by the distinct local linear functions li for i = 1, · · · ,m and {Ω̃k}Mk=1 be the

unique order subdomains. Then there exists finite non-empty subsets of {1, 2, · · · ,m}, say

sk for 1 ≤ k ≤M such that

f(x) = max
1≤k≤M

{min
i∈sk

li}. (3.37)

Based on the theorem, the authors in [41], [42] showed that every continuous piece-wise

linear function in Rd can be represented by a ReLU neural network model with at most

dlog(d+1)
2 e hidden layers. Then we denote {Cn} as a set of regions of un that determines

a domain partition and un is expressed by a piece-wise constant function in each region

C ∈ Cn. Therefore, un can be represented by (3.37) and a three-layer ReLU network is able

to express such function. Note that the lattice representation theorem does not require the

region to be convex, it is applicable to both convex and non-convex {Cn}.

Together with the universal approximation property, the results of this section as well as

conclusions of section 3.3 imply that a two- or three-layer ReLU neural network is sufficient

to accurately approximate the solution of the linear advection-reaction problem without

oscillation.

3.8 Discussion

For the linear advection-reaction problem, we proposed the least-squares neural network

(LSNN) method. The least-squares formulation, based on a direct application of the least-

squares principle to the underlying problem, does not require additional smoothness of the

solution if f ∈ L2(Ω). In the Vβ norm, the LSNN approximation is proved to be quasi-

optimal, i.e., the error of the LSNN approximation is bounded above by the approximation

error of the network.

The main challenge in numerical simulation of the hyperbolic partial differential equation

is the discontinuity of their solution. In this chapter, we theoretically and numerically show

that the LSNN method using a two- or three-layer network is capable of approximating the

56

discontinuous solution accurately without oscillation. In particular, the piece-wise constant

solution can be approximated well by a ReLU network with a small number of neurons.

From this perspective, the LSNN method outperforms the traditional mesh-based method.

In addition, numerical test in section 3.5.2 indicates that properly choosing the scheme

to approximate the differential operator in the least-squares functional is important for the

success of the LSNN method. Discretizing the differential operator along each coordinate

direction would result in the failure of resolving the discontinuous interface. More discussions

will be presented in the subsequent chapter for the nonlinear case.

Furthermore, we also proposed a method of model continuation motivated by the test

problem in section 3.5.6. By employing the method of model continuation, numerical results

show that the strategy is effective for reducing the number of the parameters of the network.

In the subsequent chapter, we will extend the LSNN method to solve scalar nonlinear

hyperbolic conservation laws.

57

4. LEAST-SQUARES NEURAL NETWORK METHOD FOR

SCALAR NONLINEAR HYPERBOLIC CONSERVATION LAW

A version of this chapter has been submitted for publication [43].

In the previous chapter, we introduced the least-squares ReLU neural network method

for solving linear advection-reaction problems with discontinuous solutions and showed that

the method outperforms mesh-based numerical methods in terms of the number of degrees

of freedom. In this chapter, we focus on the application of the least-squares ReLU neural

network method to scalar nonlinear hyperbolic conservation laws.

4.1 Introduction

Let Ω be a bounded domain in Rd (d = 1, 2, or 3) with Lipschitz boundary, consider the

scalar nonlinear hyperbolic conservation law



ut(x, t) +∇x · f(u) = 0, in Ω× I,

u = g, on Γ−,

u(x, 0) = u0(x), in Ω,

(4.1)

where ut is the partial derivative of u with respect to temporal variable t; ∇x· is a divergence

operator with respect to spatial variable x; f(u) = (f1(u), ..., fd(u)) is the spatial flux vector

field; I = (0, T) is temporal interval; Γ− is the part of the boundary ∂Ω × I where the

characteristic curves enter the domain Ω× I; and the boundary data g and the initial data

u0 are given scalar-valued functions.

Numerical methods for the scalar nonlinear hyperbolic conservation law (4.1) have been

intensively studied during the past several decades by many researchers and many numerical

schemes have been developed. A major difficulty in numerical simulation is that the solution

of a scalar hyperbolic conservation law is often discontinuous due to the discontinuous initial

condition or shock formation; in addition, there is no a priori knowledge of the location and

shape of the discontinuity interface. Given the success of using LSNN method to approxi-

58

mate the discontinuous solutions for the linear advection-reaction problems, it is desired to

replicate such success for scalar nonlinear hyperbolic conservation laws.

For the nonlinear case, the partial differential equation is not generally sufficient to

determine the solution. An additional constraint the so-called Rankine-Hugoniot (RH) jump

condition [14], [44], [45], is needed at where the solution is not continuous. To enforce this

condition weakly, [35] introduced an independent variable, the spatial-temporal flux, for the

inviscid Burgers equation and applied the least-squares principle to the resulting equivalent

system. A variant of this method was also studied in [35], [46] by using the Helmholtz

decomposition of the flux.

Due to the training difficulty of the least-squares method of [35], we employ the naive

least-squares method used for the linear advection-reaction problems, i.e., a direct applica-

tion of least-squares principle to the PDE, initial and inflow boundary conditions. For the

nonlinear hyperbolic conservation law, to ensure that the numerical solution does not vio-

late the RH jump condition condition, we approximate the differential operator by following

ideas of the conservative schemes such as Roe’s scheme, ENO, etc.

The numerical results show that it is difficult to train the space-time LSNN method

when the computational domain Ω × I is relatively large, even though the NN model we

used is relatively small for approximating the solution of the underlying problem well. This

experience motivates us to propose the modified LSNN method for the nonlinear problem,

i.e., the block space-time LSNN method. The basic idea is to partition the computational

domain into a number of blocks based on the “inflow” boundary and initial conditions, then

the LSNN method solves problems on these blocks sequentially. The trained parameters

of the NN model for the previous block is used as an initial for the current block, which

guarantees a close enough first approximation as the network initialization.

This chapter is organized as follows. The space-time LSNN method for scalar nonlinear

hyperbolic conservation law is introduced in section 4.2. Conservative finite difference opera-

tors are described in section 4.3. The block LSNN method is proposed in section 4.4. Finally,

implementation and numerical results for various benchmark one dimensional problems are

presented in section 4.5.

59

4.2 Space-Time Least-Squares Neural Network Method for Scalar Nonlinear
Hyperbolic Conservation Law

In this section, we will apply the LSNN method to solve the scalar nonlinear hyperbolic

conservation laws on a space-time computational domain.

As described in chapter 2, we employ the deep neural network (DNN) to define the

following scalar-valued function of the spatial and temporal variables:

N : z = (x, t) ∈ Rd+1 −→ N (z) ∈ R.

Then denote the set of such DNN functions by

M(θ, L) =
{
N (z) = ω(L)

(
N (L−1) ◦ · · ·N (2) ◦N (1)(z)

)
− b(L) : ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl

}
,

whereN (l)(z(l−1)) is defined in (2.2) and θ denotes all parameters: ω(l) and b(l) for l = 1, ..., L.

It is easy to see that M(θ, L) is a set, but not a linear space.

Applying the least-squares principle directly to the problem in (4.1), we have the following

least-squares (LS) functional

L(v; g) = ‖vt +∇x · f(v)‖2
0,Ω×I + ‖v − g‖2

0,Γ− + ‖v(x, 0)− u0(x)‖2
0,Ω. (4.2)

Then the least-squares approximation is to find uN (x, t;θ∗) ∈M(θ, L) such that

L
(
u

N
(·; θ∗); f

)
= min

v∈M(θ,L)
L
(
v(·; θ); g

)
= min

θ∈RN
L
(
v(·; θ); g

)
, (4.3)

where N is the total number of parameters in M(θ, L) given by

N = Md(L) =
L∑
l=1

nl × (nl−1 + 1).

60

Similar to the LSNN method for the linear advection-reaction equations and [2], the

integral in the LS functional is evaluated by numerical integration. To do so, let

T = {K : K is an open subdomain of Ω× I}

be a partition of the domain Ω. Then

E− = {E = ∂K ∩ Γ− : K ∈ T } and E0 = {E = ∂K ∩ (Ω× {0}) : K ∈ T }

are partitions of the boundary Γ− and Ω × {0}, respectively. Let z
K

= (x
K
, t

K
) and z

E
=

(x
E
, t

E
) be the centroids of K ∈ T and E in E− or E0, respectively. Define the discrete LS

functional as follows:

LT
(
v(·;θ); g

)
=
∑
K∈T

(
δτv +∇h · f(v)

)2
(zK ;θ) |K|+

∑
E∈E−

(
v − g

)2
(zE ;θ)|E|+

∑
E∈E0

(
v − u0

)2
(zE ;θ)|E|,

(4.4)

where |K| and |E| are the d and d − 1 dimensional measures of K and E, respectively; δτ
and ∇h· are finite difference operators to be defined in the subsequent section. Then the

discrete least-squares approximation is to find uT (z,θ∗) ∈M(θ, L) such that

LT
(
uT (·, θ∗); g

)
= min

v∈M(θ,L)
LT
(
v(·; θ); g

)
= min

θ∈RN
LT
(
v(·; θ); g

)
. (4.5)

4.3 Conservative Finite Difference Operator

How to discretize the differential operator is fairly critical for the success of the LSNN

method. For the linear advection-reaction problems, we observe that using finite difference

quotient along coordinate directions to approximate the differential operator fails to resolve

the discontinuity (as shown in section 3.5.2). For the nonlinear problems, we employ con-

servative finite volume schemes to evaluate the derivatives in the least-squares functional in

(4.4). There are many well-developed conservative schemes such as Roe’s scheme, ENO, and

WENO, etc. (see, e.g., [15], [47], [48]). For simplicity, we briefly describe the discrete finite

61

difference operator using the idea of either Roe’s scheme or the second-order accurate ENO

scheme in this section.

For any K ∈ T , let (x
K
, t

K
) be the centroid of K. Let (h, τ) = (h1, ..., hd, τ) be sufficiently

small step size such that (x
K
± h, t

K
± τ) ∈ K. For i = 1, ..., d, let hi = hiei, where ei is

the unit vector in the xi-coordinate direction. Then the finite difference operator of the

least-squares functional in (4.4) at the point (x
K
, t

K
) is given by

(
δτv +∇h · f(v)

)
(x

K
, t

K
)

=
v
(
x

K
, t

K

)
− v

(
x

K
, t

K
− τ

)
τ

+
d∑

i=1

f̂i
(
v(x

K
+ 1

2hi, tK
))− f̂i

(
v(x

K
− 1

2hi, tK
))

hi
, (4.6)

where f̂i
(
v(x

K
± 1

2hi, tK
)) are the ith component of the numerical flux at (x

K
± 1

2hi, tK
).

Various conservative schemes are more or less on how to reconstruct proper numerical flux.

Below, we describe how to reconstruct numerical fluxes by either Roe’s scheme or ENO.

To this end, we introduce the Roe speed at point (x
K
± 1

2hi, tK
) in the ei direction

ai

(
x

K
± 1

2hi, tK

)
=



fi
(
v(x

K
± hi, tK

))− fi
(
v(x

K
, t

K
))

v
(
x

K
± hi, tK

)
− v(x

K
, t

K
)

, if v
(
x

K
± hi, tK

)
6= v(x

K
, t

K
),

f ′i
(
v(x

K
, t

K
)
)
, if v

(
x

K
± hi, tK

) = v(x
K
, t

K
).

(4.7)

Then the ith components of the Roe numerical flux at (x
K
± 1

2hi, tK
) are given by

f̂i

(
v
(
x

K
± 1

2hi, tK

))

=
fi
(
v(x

K
, t

K
)
)

+ fi
(
v(x

K
± hi, tK

))
2 ∓

∣∣∣∣ai

(
x

K
± 1

2hi, tK

)∣∣∣∣ v
(
x

K
± hi, tK

)
− v(x

K
, t

K
)

2 .

The key idea of the Roe’s scheme is to enforce the RH condition by using the finite

volume approximation and use only grid points, if possible, on one side of the interface for

constructing a finite difference scheme. This is done through the signs of the Roe speed

ai at midpoints. This idea was further explored for developing higher order schemes, e.g.,

the ENO schemes introduced in [49] (see also [47], [48]), by employing extra grid points.

62

To make sure all used grid points locate on one side of the interface, it requires additional

decisions and, hence, the ENO schemes are generally sophisticated.

For simplicity, we describe the second order ENO numerical flux here. The ENO uses

the sign of the Roe speed to build up upwind scheme. Specifically,

f̂i

(
v(x

K
+ 1

2hi, tK
)
)

=


f̂−i

(
v(x

K
+ 1

2hi, tK
)
)
, if ai

(
x

K
+ 1

2hi, tK

)
≥ 0,

f̂+
i

(
v(x

K
+ 1

2hi, tK
)
)
, if ai

(
x

K
+ 1

2hi, tK

)
< 0.

(4.8)

Additionally, ENO uses the magnitudes of the finite difference quotient of the ith com-

ponent of the flux with respect to xi over the neighboring intervals to determine which side

of grid points are used. In this way, again ENO tries to use grid points on one side of the

discontinuity if possible. More precisely, let

fi(xK
, t

K
; hi) =

fi
(
v(x

K
+ hi, tK

))− fi
(
v(x

K
, t

K
))

hi

and fi(xK
, t

K
;−hi) =

fi
(
v(x

K
, t

K
)
)
− fi

(
v(x

K
− hi, tK

))
hi

.

In the case that ai
(
x

K
+ 1

2hi, tK

)
≥ 0, combining with (4.8), the ENO numerical flux is

given by

f̂i

(
v(x

K
+ 1

2hi, tK
)
)

=


−1

2fi
(
v(x

K
− hi, tK

))+ 3
2fi
(
v(x

K
, t

K
)), if

∣∣∣fi(xK
, t

K
;−hi)

∣∣ < ∣∣fi(xK
, t

K
; hi)

∣∣,
1
2fi
(
v(x

K
, t

K
)
)

+ 1
2fi
(
v(x

K
+ hi, tK

)), if
∣∣∣fi(xK

, t
K

;−hi)
∣∣ ≥ ∣∣fi(xK

, t
K

; hi)
∣∣.(4.9)

63

If ai
(
x

K
+ 1

2hi, tK

)
< 0, then the numerical flux is reconstructed by

f̂i

(
v(x

K
+ 1

2hi, tK
)
)

=


1
2fi
(
v(x

K
, t

K
)
)

+ 1
2fi
(
v(x

K
+ hi, tK

)), if
∣∣∣fi(xK

+ hi, tK
;−hi)

∣∣ < ∣∣fi(xK
+ hi, tK

; hi)
∣∣,

3
2fi
(
v(x

K
+ hi, tK

))− 1
2fi
(
v(x

K
+ 2hi, tK

)), if
∣∣∣fi(xK

+ hi, tK
;−hi)

∣∣ ≥ ∣∣fi(xK
+ hi, tK

; hi)
∣∣.

In a similar fashion, f̂i
(
v(x

K
− 1

2hi, tK
)
)

may be defined accordingly and we finish describing

the numerical flux reconstruction by using ENO.

Similar idea can be extended to construct higher-order accurate ENO scheme, more

details can be found in [49].

4.4 Block Space-Time Least-Squares Neural Network Method

For the linear advection-reaction equations, we directly implement the LSNN method

on the entire computational domain. However, for the nonlinear hyperbolic conservation

law, our numerical results show that it is difficult to train the LSNN method when the

computational domain Ω is relatively large, even though the NN model we used is relatively

small for approximating the solution of the underlying problem well. Since we have limited

understanding about the optimization (training) process, this numerical experience motivates

us to propose the block space-time least-squares neural network method to compensate.

For clarity of exposition, let us consider one-dimensional problem defined on Ω = (a, b)×

(0, T). Without loss of generality, assume that Γ̃− = {(a, t)| t ∈ (0, T)} is the part of the

boundary where the characteristic curves enter the domain Ω. Hence,

Γ− = Γ̃− ∪ {(x, 0)|x ∈ (0, T)}

is the “inflow” boundary of Ω. Let m0 be a positive integer and let

Ω1 =
(
a, a+ b− a

m0

)
×
(

0, T
m0

)
and Ωi =

(
a, a+ i(b− a)

m0

)
×
(

0, i T
m0

)
\ Ωi−1

64

for i = 2, ...,m0 − 1. It is clear that {Ωi}m0
i=1 forms a partition of the domain Ω. Denote

by ui = u|Ωi the restriction of the solution u of (4.1) on Ωi, then ui is the solution of the

following problem:



(ui)t +∇x · f(ui) = 0, in Ωi ∈ R2,

ui = g, on Γi
− = Γ− ∩ ∂Ωi,

ui = ui−1, on Γi−1,i = ∂Ωi−1 ∩ ∂Ωi

(4.10)

for i = 1, ...,m0, where ∂Ω0 = ∅.

Define the least-squares functional for problem (4.10) by

Li
(
v;ui−1, g

)
= ‖vt(x, t) +∇x · f(v)‖2

0,Ωi + ‖v − g‖2
0,Γi
−

+ ‖v − ui−1‖2
0,Γi−1,i .

Then the corresponding discrete least-squares functional Li
T

(
v(·; θ);ui−1, g

)
over the subdo-

main Ωi may be defined in a similar fashion as in (4.4). Now, we can introduce the block

space-time LSNN method accordingly, i.e., the method is to find ui
T (z,θ∗i) ∈ M(θ, L) such

that

Li
T

(
ui
T

(·, θ∗i); g
)

= min
v∈M(θ,L)

Li
T

(
v(·; θ); g

)
= min

θ∈RN
Li
T

(
v(·; θ); g

)
(4.11)

for i = 1, ...,m0. In a similar fashion, the block space-time LSNN method can be extended

to multi-dimensional problems.

Remark 4.4.1. To start from a close enough first approximation in the training process, the

NN model M(θ, L) is determined by the first subdomain and will be used for all subdomains.

The trained parameter θ∗i from the ith-subdomain is a good approximation to the parameters

of the (i + 1)th-subdomain and, hence, may be used as an initial. This is because the solution

in the current block is the evolution of the solution in the previous block.

The block space-time LSNN method is based on a proper partition of the domain Ω

depending on the “inflow” boundary of the domain. For example, in one dimension case, if

Γ− = {(x, t) ∈ [a, b]× [0, T]|x = a, x = b, or , t = 0},

65

then the domain Ω may be partitioned by time blocks as

Ωi = (a, b)×
(
(i− 1)T/m0, iT/m0

)
(4.12)

for i = 1, ...,m0. Then the block space-time LSNN method may be defined accordingly.

4.5 Implementation and Numerical Experiments

In this section, we present numerical results for one dimensional benchmark test problems.

Test problems include scalar nonlinear hyperbolic conservation law: (1) inviscid Burgers

equation, i.e., f(u) = 1
2u

2 (section 4.5.1-4.5.4) and (2) f(u) = 1
4u

4 (section 4.5.5).

The domain Ω = (a, b) × (0, T) is partitioned into time blocks as (4.12) and m0 is the

number of blocks, which is empirically chosen for different test problems. Integration mesh

T is obtained by uniformly partitioning all subdomains Ωi into identical squares with the

mesh size h = 0.01 for i = 1, · · · ,m0. The block space-time LSNN method is implemented,

and the minimization problem in (4.11) is numerically solved using the Adams version of

gradient descent [39] with a fixed or an adaptive learning rate. To ensure the conservation,

the discretization sizes τ and hi in both Roe (4.6) and ENO (4.9) schemes should be the

same as the quadrature size.

As presented in the previous chapter, a three-layer NN is sufficient for approximating the

discontinuous solutions of linear advection-reaction problems. This is the reason for us to

choose three-layer neural networks for all test problems since there is not a priori knowledge

of the location and shape of the shock. The same architecture of three-layer NN models are

used for all blocks. As suggested in Remark 4.4.1, the parameters of the network for the

current block are initialized by the values of the parameters of the network in the previous

block. For the first block, the parameters of the second hidden layer are initialized randomly;

and those of the first hidden layer are initialized using the strategy introduced in section 3.4.

Again, we briefly describe here for the convenience of reading: Let ωi ∈ S1 and bi ∈ R be

the weights and bias of the ith neuron of the first hidden layer of the first block NN model,

respectively, where S1 is the unit circle in R2. Initial of {(ωi, bi)}n1
i=1 is chosen so that the

hyper-planes {ωi · (x, t) = bi)}n1
i=1 form a uniform partition of the first block Ω1. In addition,

66

without an effective training strategy, we observe from the experiment that adding a weight

α to the L2 loss of the initial condition in (4.11) is helpful for the training. Then the following

least-squares functional is used in the implementation

Li
(
v;ui−1, g

)
= ‖vt(x, t) +∇x · f(v)‖2

0,Ωi + ‖v − g‖2
0,Γi
−

+ α‖v − ui−1‖2
0,Γi−1,i (4.13)

for i = 1, · · · ,m0.

Let ui be the solution of the problem in (4.10) and ui,T be the DNN approximation.

The relative error in the L2 norm for each block is reported in Tables 4.1 -4.5 . The network

structure is expressed as 2-n1-n2-1 for a three-layer network with n1 and n2 neurons in

the respective first and second layers. The traces of the exact solution and the numerical

approximation are depicted in Figures 4.1 -4.6 on a plane perpendicular to the space-time

plane. Those traces exhibit the capability of the numerical approximation in resolving the

shock/rarefaction. Since those planes are generally not perpendicular to the discontinuous

interface, the errors shown in those traces are larger than the actual error.

4.5.1 Riemann problem for the inviscid Burgers equation–Shock formation

For the one dimensional inviscid Burgers equation, f(u) = f(u) = 1
2u

2, we report numer-

ical results for the corresponding Riemann problem where the initial condition with a single

discontinuity is given by:

u0(x) =


u

L
, if x ≤ 0,

u
R
, if x > 0.

(4.14)

When u
L
> u

R
, the characteristic lines intersect and a shock forms immediately for t > 0.

The weak solution is given by

u(x, t) =


u

L
, if x ≤ st,

u
R
, if x > st,

(4.15)

67

with the shock speed determined by the RH condition

s = f(u
L
)− f(u

R
)

u
L
− u

R

= f(1)− f(0)
1− 0 = 1/2.

The first test problem is corresponding to the case

u
L

= 1 > 0 = u
R

with a computational domain Ω = (−1, 2)× (0, 0.6). The inflow boundary is

Γ− = ΓL− ∪ ΓR− ≡ {(−1, t) : t ∈ [0, 0.6]} ∪ {(2, t) : t ∈ [0, 0.6]}

with the boundary conditions: g = u
L

on ΓL− and g = u
R

on ΓR−. The block space-time LSNN

method is employed with m0 = 3 blocks, a fixed learning rate 0.003, and 30000 iterations

for each block.

The set of experiments is done by using the numerical fluxes of Roe (4.6) and the second

order ENO (4.9). Numerical results of both schemes are reported in Table 4.1 by choosing

α = 20 in (4.13). Since the results of the ENO flux are similar, only the traces of the exact

and numerical solution generated by the Roe flux are depicted on the planes t = iT/m0

for i = 1, · · · ,m0 in Figure 4.1 (b)-(f). Clearly, the block space-time LSNN method with

a conservative scheme is able to resolve the shock and accurately approximate the solution

without the Gibbs phenomena. For this simple Riemann problem, Roe and ENO schemes

generate similar results and we do not observe the advantage of using higher-order scheme

for flux reconstruction.

Table 4.1. Relative errors of Riemann problem (shock) for Burgers equation
using Roe and ENO fluxes
Network structure Block Roe flux

‖ui−ui,T ‖0
‖ui‖0

ENO flux
‖ui−ui,T ‖0
‖ui‖0

2-10-10-1 Ω1 0.049553 0.050115
2-10-10-1 Ω2 0.046321 0.051211
2-10-10-1 Ω3 0.044123 0.049623

68

(a) Network approximation uT
on Ω

(b) Traces of exact and numerical
solutions u1,T on the plane t = 0.2

(c) Traces of exact and numerical
solutions u2,T on the plane t = 0.4

(d) Traces of exact and numerical
solutions u3,T on the plane t = 0.6

Figure 4.1. Approximation results of Riemann problem (shock) for Burgers
equation using Roe flux

69

4.5.2 Riemann problem for the inviscid Burgers equation–Rarefaction waves

When u
L
< u

R
in (4.14), the range of influence of all points in R is a proper subset of

R × [0,∞). This fact implies that the week solution of the scalar hyperbolic conservation

law is not unique. To ensure the underlying Cauchy problem having a unique solution over

the whole domain R × [0,∞), the so-called vanishing viscosity weak solution is introduced

(see, e.g., [14], [44], [45]) and defined as follows:

u(x, t) =



u
L
, if x < u

L
t,

x/t, if u
L
t ≤ x ≤ u

R
t,

u
R
, if x > u

R
t.

The second test problem is corresponding to the case

u
L

= 0 < 1 = u
R

with a computational domain Ω× I = (−1, 2)× (0, 0.4). The inflow boundary is

Γ− = ΓL− ∪ ΓR− ≡ {(−1, t) : t ∈ [0, 0.4]} ∪ {(2, t) : t ∈ [0, 0.4]}

with the boundary conditions: g = u
L

on ΓL− and g = u
R

on ΓR−. The block space-time LSNN

method is employed with m0 = 4 blocks, a fixed learning rate 0.003, and 20000 iterations

for each block.

Numerical results of a 2-10-10-1 network using the Roe flux (4.6) are reported in Table

4.2 . The traces of the exact and numerical solutions in Fig. 4.2 indicate that Roe’s scheme

fails to resolve the rarefaction. This is because the scheme approximates the numerical flux

depending the sign of the speed ai (4.7) at midpoints. If the sign differs on two sides and

u(x, t) travels slower on the left, Roe’s scheme may not be able to capture such behavior.

From this perspective, we do observe certain limitations of using such conservative scheme

in the block space-time LSNN method. In the traditional mesh-based method, “entropy fix”

is proposed to address such issue [14], [50].

70

Table 4.2. Relative errors of Riemann problem (rarefaction) for Burgers equa-
tion using Roe flux

Network structure Time block ‖ui−ui,T ‖0
‖ui‖0

2-10-10-1 Ω1 0.047435
2-10-10-1 Ω2 0.074521
2-10-10-1 Ω3 0.098679
2-10-10-1 Ω4 0.122921

(a) Exact solution u on Ω

(b) Traces of exact and numerical
solutions u1,T on the plane t = 0.1

(c) Traces of exact and numerical
solutions u2,T on the plane t = 0.2

(d) Traces of exact and numerical
solutions u3,T on the plane t = 0.3

(e) Traces of exact and numerical
solutions u4,T on the plane t = 0.4

Figure 4.2. Approximation results of Riemann problem (rarefaction) for
Burgers equation using Roe flux

71

4.5.3 Inviscid Burgers equation with piece-wise linear initial condition

The third test problem is the inviscid Burgers equation defined on the computational

domain Ω× I = (−1, 2)× (0, 1.2) with a continuous piece-wise linear initial condition

u0(x) =



1, if x < 0,

1− x, if 0 ≤ x ≤ 1,

0, if x > 1.

The inflow boundary is

Γ− = ΓL− ∪ ΓR− ≡ {(−1, t) : t ∈ [0, 1.2]} ∪ {(2, t) : t ∈ [0, 1.2]},

with the boundary conditions: g = 1 on ΓL− and g = 0 on ΓR−. Even though the initial value

u0 is continuous, the shock will appear at some point since u(x, t) travels faster on the left-

hand side than on the right-hand side. Specifically, when t < 1, the solution is continuous

and it is determined by the characteristic lines as well as the initial conditions:

u(x, t) =



1, if x < t < 1,
1− x
1− t , if t ≤ x ≤ 1,

0, if x > 1.

When t > 1, the shock appears and the desired weak solution satisfying RH condition is

given by the following

u(x, t) =


1, if x < (t+ 1)/2,

0, if x ≥ (t+ 1)/2.

The block space-time LSNN using a 2-10-10-1 network is implemented with m0 = 6 blocks,

a learning rate which starts with 0.003 and decreased by 0.001 for every 10000 iterations.

The total number of iterations for each block is 30000. Additionally, we empirically choose

α = 5 in (4.13) during the training.

72

Using the same initialization and quadrature size, numerical results for both the Roe

(4.6) and the second order ENO (4.9) fluxes are reported in Table 4.3 . For i = 1, · · · ,m0,

the traces of the exact and numerical solutions on the plane t = iT/m0 for both schemes are

depicted in Fig. 4.3 and 4.4 , respectively. Clearly, the block space-time LSNN method with

a conservative finite difference operator can accurately approximate the solution and resolve

the shock. A careful examination of two NN approximations, we observe that the ENO flux

performs slightly better than the Roe flux near the left side of the transition layer as well as

the relative error in the L2 norm.

Table 4.3. Relative errors of Burgers equation with a piece-wise linear initial condition
Network structure Block Roe flux

‖ui−ui,T ‖0
‖ui‖0

ENO flux
‖ui−ui,T ‖0
‖ui‖0

2-10-10-1 Ω1 0.009801 0.007791
2-10-10-1 Ω2 0.012359 0.012027
2-10-10-1 Ω3 0.014977 0.012418
2-10-10-1 Ω4 0.021336 0.013142
2-10-10-1 Ω5 0.044073 0.047582
2-10-10-1 Ω6 0.065152 0.066512

4.5.4 Inviscid Burgers equation with smooth initial condition

The fourth test problem is again the inviscid Burgers equation defined on the computa-

tional domain Ω× I = (0, 2)× (0, 0.4) with the inflow boundary

Γ− = ΓL− ∪ ΓR− ≡ {(0, t) : t ∈ [0, 0.4]} ∪ {(2, t) : t ∈ [0, 0.4]}

and a sinusoidal initial condition

u0(x) = 0.5 + sin(πx).

The shock forms at t = 1/π ≈ 0.318. Since the exact solution of the test problem is

defined implicitly, in order to measure the quality of the NN approximation, we generate

a benchmark reference solution û using the traditional mesh-based approach. Specifically,

73

(a) Exact solution u on Ω

(b) Traces of exact and numerical
solutions u1,T on the plane t = 0.2

(c) Traces of exact and numerical
solutions u2,T on the plane t = 0.4

(d) Traces of exact and numerical
solutions u3,T on the plane t = 0.6

(e) Traces of exact and numerical
solutions u4,T on the plane t = 0.8

(f) Traces of exact and numerical
solutions u5,T on the plane t = 1.0

(g) Traces of exact and numerical
solutions u6,T on the plane t = 1.2

Figure 4.3. Approximation results of Burgers equation with a piece-wise
linear initial using Roe flux

74

(a) Traces of exact and numerical
solutions u1,T on the plane t = 0.2

(b) Traces of exact and numerical
solutions u2,T on the plane t = 0.4

(c) Traces of exact and numerical
solutions u3,T on the plane t = 0.6

(d) Traces of exact and numerical
solutions u4,T on the plane t = 0.8

(e) Traces of exact and numerical
solutions u5,T on the plane t = 1.0

(f) Traces of exact and numerical
solutions u6,T on the plane t = 1.2

Figure 4.4. Approximation results of Burgers equation with a piece-wise
linear initial using ENO flux

75

the third order accurate WENO scheme [47] is employed for the spatial discretization with

a fine grid (∆x = 0.001 and ∆t = 0.0002) on the computational domain Ω; and the fourth

order Runge-Kutta method is used for the temporal discretization [51]. The block space-time

LSNN method is implemented with m0 = 8 blocks and an adaptive learning rate which starts

at 0.005 and decays by half for every 25000 iterations. The learning rate decay strategy is

employed with 50000 iterations on each time block.

Since the initial condition of the test problem is a smooth function, it is expected that

a network with additional neurons is needed for approximation. Choosing α = 5 in (4.13),

numerical results of a 2-30-30-1 network using the ENO flux are reported in Table 4.4 . Figure

4.5 depicts the traces of the reference solution and numerical approximation on the plane

t = iT/m0 for i = 1, · · · ,m0. We observe some error accumulation when block evolves

and the block space-time LSNN method can accurately approximate the solution as well as

resolve the shock.

Table 4.4. Relative errors of Burgers equation with a sinusoidal initial con-
dition using ENO flux

Network structure Time block ‖ûi−ui,T ‖0
‖ûi‖0

2-30-30-1 Ω1 0.010461
2-30-30-1 Ω2 0.012517
2-30-30-1 Ω3 0.019772
2-30-30-1 Ω4 0.022574
2-30-30-1 Ω5 0.029011
2-30-30-1 Ω6 0.038852
2-30-30-1 Ω7 0.075888
2-30-30-1 Ω8 0.078581

4.5.5 Riemann problem with a convex flux

The last numerical experiment is the Riemann shock problem with a convex flux f(u) =

f(u) = 1
4u

4. We choose the initial condition

u
L

= 1 > 0 = u
R

76

(a) Traces on the plane t = 0.05 (b) Traces on the plane t = 0.1

(c) Traces on the plane t = 0.15 (d) Traces on the plane t = 0.2

(e) Traces on the plane t = 0.25 (f) Traces on the plane t = 0.3

(g) Traces on the plane t = 0.35 (h) Traces on the plane t = 0.4

Figure 4.5. Approximation results of Burgers equation with a sinusoidal
initial using ENO flux

77

in (4.14), then the weak solution is given by (4.15) with the speed s = 1/4. The computa-

tional domain of the problem is given by Ω× I = (−1, 1)× (0, 0.6) and the inflow boundary

is

Γ− = ΓL− ∪ ΓR− ≡ {(−1, t) : t ∈ [0, 0.6]} ∪ {(1, t) : t ∈ [0, 0.6]}

with the boundary conditions: g = 1 on ΓL− and g = 0 on ΓR−.

Empirically, we choose α = 20 in (4.13) in the training. Employing the block space-time

LSNN method with m0 = 3 blocks, a fixed learning rate 0.003 and 30000 iterations for each

block, we report the numerical results of a 2-10-10-1 network in Table 4.5 and Fig. 4.6

using Roe flux. Again, the results imply that the discontinuous interface can be accurately

captured as the NN approximation is almost overlapped with the exact solution.

Table 4.5. Relative errors of Riemann problem (shock) with a convex flux using Roe flux

Network structure Block ‖ui−ui,T ‖0
‖ui‖0

2-10-10-1 Ω1 0.035034
2-10-10-1 Ω2 0.036645
2-10-10-1 Ω3 0.036798

4.6 Discussion

In this chapter, we proposed the block space-time LSNN method for solving scalar non-

linear hyperbolic conservation laws. Similar to the linear advection-reaction problem, the

least-squares formulation is a direct application of the least-squares principle to the under-

lying problem: the equation, the inflow boundary condition, and the initial condition. The

block version of the LSNN method is introduced to compensate with some uncertainty of

the not well-understood non-convex optimization procedure.

How to approximate the differential operator in the least-squares functional is critical for

the success of the block space-time LSNN method. Employing conservative finite difference

operators, for the benchmark one dimensional problems, we show numerically that the block

space-time LSNN method is capable of accurately approximating the solution and resolving

78

(a) Network approximation uT on
Ω

(b) Traces of exact and numerical
solutions u1,T on the plane t = 0.2

(c) Traces of exact and numerical
solutions u2,T on the plane t = 0.4

(d) Traces of exact and numerical
solutions u3,T on the plane t = 0.6

Figure 4.6. Approximation results of Riemann problem (shock) with a convex
flux using Roe flux

79

the shock without oscillation. However, we do observe that Roe’s scheme has a limitation

for the rarefaction as indicated by the numerical experiments in section 4.5.2.

80

5. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this thesis, we proposed the least-squares neural network (LSNN) method for solving scalar

hyperbolic conservation laws. The least-squares formulation is based on a direct application

of the least-squares principle to the underlying problem.

As pointed out earlier, the major challenge in numerical simulation of hyperbolic con-

servation law lies in the discontinuity of the solution. The numerical results suggest that

the LSNN method is capable of resolving the discontinuity by using a small number of neu-

rons. Given these facts and the comparisons presented in the thesis (see section 3.5.1 and

section 3.5.2), the LSNN method outperforms the traditional mesh-based method in terms

of the number of degree of freedoms. Moreover, we also theoretically show that a three-layer

ReLU neural network has the capability to accurately approximate the discontinuous solu-

tion without the common Gibbs phenomena, and the theory is confirmed by the numerical

results in section 3.5. In addition, as emphasized in the thesis that how to discretize the

differential operators in the least-squares functional is fairly critical for the success of the

LSNN method. For the linear problems, section 3.5.2 presents the results produced by two

discretization approaches and only the one using the directional derivative is able to resolve

the discontinuous interface. For the nonlinear problems, Roe’s scheme has a limitation to

resolve the rarefaction (see section 4.5.2).

However, on the other hand, the powerful approximation property of DNN comes with a

price. Now, determining the DNN parameters values through a iterative process becomes a

non-convex optimization even though the underlying PDE is linear. Since we have limited

understanding about this field, we proposed the initialization strategy for two-layer network,

a method of model continuation and block space-time LSNN method as compensations for

training difficulties. Nevertheless, this is still a challenging problem in the implementations

since the learning rate of the methods of the gradient type is difficult to tune. A reasonably

good learning rate can only be discovered through the method of trial and error. Without a

appropriate learning rate, the iterative solver may be trapped at a local minimum which does

not produce a good approximation. This may explain why an “over-parametrized” network

81

is often used in practice. Study on the non-convex optimization algorithm could be a future

research direction.

82

REFERENCES

[1] J. Berg and K. Nystrom, “A unified deep artificial neural network approach to partial
differential equations in complex geometries,” Neurocomputing, vol. 317, pp. 28–41,
2018.

[2] Z. Cai, J. Chen, M. Liu, and X. Liu, “Deep least-squares methods: An unsupervised
learning-based numerical method for solving elliptic PDEs,” Journal of Computational
Physics, vol. 420, p. 109 707, 2020.

[3] T. Dockhorn, “A discussion on solving partial differential equations using neural net-
works,” CoRR, vol. abs/1904.07200, 2019. arXiv: 1904.07200 . [Online]. Available: http:
//arxiv.org/abs/1904.07200 .

[4] W. E and B. Yu, “The deep ritz method: A deep learning-based numerical algorithm for
solving variational problems,” Communications in Mathematics and Statistics, vol. 6,
no. 1, Mar. 2018.

[5] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial
differential equations,” Journal of Computational Physics, vol. 375, pp. 1139–1364,
2018.

[6] M. W. M. G. Dissanayake and N. Phan-Thien, “Neural network based approximations
for solving partial differential equations,” Communications in Numerical Methods in
Engineering, vol. 10, no. 3, pp. 195–201, 1994.

[7] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordi-
nary and partial differential equations,” IEEE Transactions on Neural Networks, vol. 9,
no. 5, pp. 987–1000, 1998.

[8] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, “Neural-network methods for
boundary value problems with irregular boundaries,” IEEE Transactions on Neural
Networks, vol. 11, no. 5, pp. 1041–1049, 2000.

[9] K. S. McFall and J. R. Mahan, “Artificial neural network method for solution of bound-
ary value problems with exact satisfaction of arbitrary boundary conditions,” IEEE
Transactions on Neural Networks, vol. 20, no. 8, pp. 1221–1233, 2009.

[10] M. Liu, Z. Cai, and J. Chen, “Adaptive two-layer ReLU neural network,” submitted,
2020.

[11] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms,
analysis, and applications. Springer Science & Business Media, 2007.

83

https://arxiv.org/abs/1904.07200
http://arxiv.org/abs/1904.07200
http://arxiv.org/abs/1904.07200

[12] D. Gottlieb and C.-W. Shu, “On the gibbs phenomenon and its resolution,” SIAM
review, vol. 39, no. 4, pp. 644–668, 1997.

[13] J. S. Hesthaven, Numerical methods for conservation laws: From analysis to algorithms.
SIAM, 2017.

[14] R. J. LeVeque and R. J. Leveque, Numerical methods for conservation laws. Springer,
1992, vol. 3.

[15] P. L. Roe, “Approximate riemann solvers, parameter vectors, and difference schemes,”
Journal of computational physics, vol. 43, no. 2, pp. 357–372, 1981.

[16] F. Brezzi, L. D. Marini, and E. Süli, “Discontinuous galerkin methods for first-order
hyperbolic problems,” Mathematical models and methods in applied sciences, vol. 14,
no. 12, pp. 1893–1903, 2004.

[17] W. Dahmen, C. Huang, C. Schwab, and G. Welper, “Adaptive petrov–galerkin methods
for first order transport equations,” SIAM journal on numerical analysis, vol. 50, no. 5,
pp. 2420–2445, 2012.

[18] L. Demkowicz and J. Gopalakrishnan, “A class of discontinuous petrov–galerkin meth-
ods. part i: The transport equation,” Computer Methods in Applied Mechanics and
Engineering, vol. 199, no. 23-24, pp. 1558–1572, 2010.

[19] E. Burman, “A posteriori error estimation for interior penalty finite element approx-
imations of the advection-reaction equation,” SIAM journal on numerical analysis,
vol. 47, no. 5, pp. 3584–3607, 2009.

[20] P. Houston, J. A. Mackenzie, E. Süli, and G. Warnecke, “A posteriori error analysis
for numerical approximations of friedrichs systems,” Numerische Mathematik, vol. 82,
no. 3, pp. 433–470, 1999.

[21] P. Houston, R. Rannacher, and E. Süli, “A posteriori error analysis for stabilised
finite element approximations of transport problems,” Computer methods in applied
mechanics and engineering, vol. 190, no. 11-12, pp. 1483–1508, 2000.

[22] Q. Liu and S. Zhang, “Adaptive least-squares finite element methods for linear trans-
port equations based on an H(div) flux reformulation,” Computer Methods in Applied
Mechanics and Engineering, vol. 366, p. 113 041, 2020.

[23] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep neural networks
with rectified linear units,” in International Conference on Representation Learning,
Vancouver, BC, Canada, 2018.

84

[24] J. Tarela and M. Martinez, “Region configurations for realizability of lattice piecewise-
linear models,” Mathematical and Computer Modelling, vol. 30, no. 11-12, pp. 17–27,
1999.

[25] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova, “Nonlinear approxi-
mation and (deep) ReLU networks,” arXiv preprint arXiv:1905.02199, 2019.

[26] D. Yarotsky, “Error bounds for approximations with deep ReLU networks,” Neural
Networks, vol. 94, pp. 103–114, 2017.

[27] D. Yarotsky, “Optimal approximation of continuous functions by very deep ReLU
networks,” in Conference on Learning Theory, PMLR, 2018, pp. 639–649.

[28] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[29] Z. Cai, J. Chen, and M. Liu, “Least-squares ReLU neural network method for linear
advection-reaction equation,” submitted, 2021.

[30] P. Bochev and J. Choi, “Improved least-squares error estimates for scalar hyperbolic
problems,” Computational Methods in Applied Mathematics, vol. 1, no. 2, pp. 115–124,
2001.

[31] P. Bochev and M. Gunzburger, “Least-squares methods for hyperbolic problems,” in
Handbook of Numerical Analysis, vol. 17, Elsevier, 2016, pp. 289–317.

[32] P. B. Bochev and J. Choi, “A comparative study of least-squares, supg and galerkin
methods for convection problems,” International Journal of Computational Fluid Dy-
namics, vol. 15, no. 2, pp. 127–146, 2001.

[33] G. F. Carey and B. Jianng, “Least-squares finite elements for first-order hyperbolic
systems,” International journal for numerical methods in engineering, vol. 26, no. 1,
pp. 81–93, 1988.

[34] H. De Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson, “Least-squares finite
element methods and algebraic multigrid solvers for linear hyperbolic PDEs,” SIAM
Journal on Scientific Computing, vol. 26, no. 1, pp. 31–54, 2004.

[35] H. De Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson, “Numerical conser-
vation properties of H(div)-conforming least-squares finite element methods for the
burgers equation,” SIAM Journal on Scientific Computing, vol. 26, no. 5, pp. 1573–
1597, 2005.

85

[36] A. Pinkus, “Approximation theory of the mlp model in neural networks,” Acta numer-
ica, vol. 8, no. 1, pp. 143–195, 1999.

[37] Z. Shen, H. Yang, and S. Zhang, “Deep network approximation characterized by num-
ber of neurons,” arXiv preprint arXiv:1906.05497, 2019.

[38] J. W. Siegel and J. Xu, “Approximation rates for neural networks with general activa-
tion functions,” Neural Networks, 2020.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-
tional Conference on Representation Learning, San Diego, 2015.

[40] L. Mu and X. Ye, “A simple finite element method for linear hyperbolic problems,”
Journal of Computational and Applied Mathematics, vol. 330, pp. 330–339, 2018.

[41] J. He, L. Li, J. Xu, and C. Zheng, “ReLU deep neural networks and linear finite
elements,” arXiv preprint arXiv:1807.03973, 2018.

[42] S. Wang and X. Sun, “Generalization of hinging hyperplanes,” IEEE Transactions on
Information Theory, vol. 51, no. 12, pp. 4425–4431, 2005.

[43] Z. Cai, J. Chen, and M. Liu, “Least-squares neural network method for scalar nonlinear
hyperbolic conservation law,” submitted, 2021.

[44] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of
conservation laws. Springer Science & Business Media, 2013, vol. 118.

[45] J. W. Thomas, Numerical partial differential equations: finite difference methods. Springer
Science & Business Media, 2013, vol. 22.

[46] D. Z. Kalchev and T. A. Manteuffel, “A least-squares finite element method based on
the helmholtz decomposition for hyperbolic balance laws,” arXiv preprint arXiv:1911.05831v2,
2020.

[47] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes
for hyperbolic conservation laws,” in Advanced numerical approximation of nonlinear
hyperbolic equations, Springer, 1998, pp. 325–432.

[48] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-
capturing schemes,” Journal of computational physics, vol. 77, no. 2, pp. 439–471, 1988.

[49] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly high order ac-
curate essentially non-oscillatory schemes, iii,” in Upwind and high-resolution schemes,
Springer, 1987, pp. 218–290.

86

[50] A. Harten, “High resolution schemes for hyperbolic conservation laws,” Journal of
computational physics, vol. 135, no. 2, pp. 260–278, 1997.

[51] Y. Wang, Z. Shen, Z. Long, and B. Dong, “Learning to discretize: Solving 1d scalar
conservation laws via deep reinforcement learning,” arXiv preprint arXiv:1905.11079,
2019.

87

VITA

Jingshuang Chen is a Ph.D candidate in the Department of Mathematics, Purdue Univer-

sity. She obtained her Bachelor’s degree in Applied Mathematics from Huazhong University

of Science and Technology in June 2015 and became a graduate student of Purdue University

in Aug 2015. During her Ph.D, she did an internship in Disney research in 2019 summer

and focused on cloth simulation project. In 2020 summer, she did a remote internship in

Microsoft as a data scientist and used statistical tool to analyze the impact of security

features.

88

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABSTRACT
	INTRODUCTION
	DEEP NEURAL NETWORK STRUCTURE
	LEAST-SQUARES NEURAL NETWORK METHOD FOR LINEAR ADVECTION-REACTION EQUATIONS
	Problem Formulation
	LSNN Method for Linear Advection-Reaction Equations
	ReLU NN Approximation of Discontinuous Solutions: I. Discontinuous Interface Along a Straight Line
	Initialization of two-layer neural networks
	Numerical Experiments
	Problems with a constant advection velocity fields: I. Discontinuity along a vertical line segment
	Problems with a constant advection velocity fields: II. Discontinuity along the diagonal
	Problems with a a piecewise smooth solution: I. Constant jump on the interface
	Problems with a a piecewise smooth solution: II. Non-constant jump on the interface
	Problem with a piece-wise constant advection velocity field
	Problem with a variable advection velocity field

	Method of model continuation
	ReLU NN Approximation of Discontinuous Solutions: II. Discontinuous Interface Along Line Segments
	Discussion

	LEAST-SQUARES NEURAL NETWORK METHOD FOR SCALAR NONLINEAR HYPERBOLIC CONSERVATION LAW
	Introduction
	Space-Time Least-Squares Neural Network Method for Scalar Nonlinear Hyperbolic Conservation Law
	Conservative Finite Difference Operator
	Block Space-Time Least-Squares Neural Network Method
	Implementation and Numerical Experiments
	Riemann problem for the inviscid Burgers equation–Shock formation
	Riemann problem for the inviscid Burgers equation–Rarefaction waves
	Inviscid Burgers equation with piece-wise linear initial condition
	Inviscid Burgers equation with smooth initial condition
	Riemann problem with a convex flux

	Discussion

	CONCLUSIONS, LIMITATIONS AND FUTURE WORK
	REFERENCES
	VITA

