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ABSTRACT 

Real-time global illumination has been a very important topic and is widely used in game 

industry. Previous offline rendering requires a large amount of time to converge and reduce the 

noise generated in Monte Carlo method. Thus, it cannot be easily adapted in real-time rendering. 

Using voxels in the field of global illumination has become a popular approach. While a naïve 

voxel grid occupies huge memory in video card, a data structure called sparse voxel octree is often 

implemented in order to reduce memory cost of voxels and achieve efficient ray casting 

performance in an interactive frame rate.  

However, rendering of voxels can cause block effects due to the nature of voxel. One 

solution is to increase the resolution of voxel so that one voxel is smaller than a pixel on screen. 

But this is usually not feasible because higher resolution results in higher memory consumption. 

Thus, most of the global illumination methods of SVO (sparse voxel octree) only use it in visibility 

test and radiance storage, rather than render it directly. Previous research has tried to incorporate 

SVO in ray tracing, radiosity methods and voxel cone tracing, and all achieved real-time frame 

rates in complex scenes. However, most of them only focus on static scenes and does not consider 

dynamic updates of SVO and the influence of it on performance. 

In this thesis, we will discuss the tradeoff of multiple classic real-time global illumination 

methods and their implementations using SVO. We will also propose an efficient approach to 

dynamic update SVO in animated scenes. The deliverables will be implemented in CUDA 11.0 

and OpenGL. 
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CHAPTER 1 PROBLEM AND PURPOSE 

Introduction 

Global illumination is a very important topic in computer graphics, it can greatly improve 

the realism of the scene and generate photorealistic images. Currently offline physically based 

rendering is widely used in movie and animation industry. And real-time global illumination is 

popular in video game industry. The most popular solution of GI was proposed by Kajiya (1986), 

also known as the rendering equation. It uses an equation with a very simple form to demonstrate 

how to simulate the light transport in real world. 

Lo(𝑥, 𝜔𝑜, 𝜆, 𝑡) = 𝐿𝑒(𝑥, 𝜔𝑜, 𝜆, 𝑡) + ∫ 𝑓𝑟 (𝑥, 𝜔𝑖,
 

Ω

𝜔𝑜, 𝜆, 𝑡)𝐿𝑖(𝑥, 𝜔𝑖 , 𝜆, 𝑡)(𝜔𝑖 ⋅ 𝑛)𝑑𝜔𝑖  

 Kajiya points out that the light of an object has two contributions, which are its emission 

and reflection. And reflection comes from every other object in the scene. Therefore, it is a 

recursive equation, and it is mathematically impossible to solve. Because there are two infinities 

in it. First, light can bounce between different objects for an infinite amount of time. Second the 

reflection of an object is the result of infinite light transport. Although Kajiya used Monte Carlo 

path tracing to approximate the result of this equation and got plausible global illumination, the 

amount of time used in path tracing is not acceptable in real-time applications. This is because path 

tracing need lots of samples to converge and ray-triangle intersections are slow in complex scenes. 

Therefore, another class of geometry representation called voxels is used to discretize the 

original scene information. Voxel is a unit of graphical information in 3-dimensional space, which 

is similar to pixel in 2D space. Voxels has several good properties, for example, voxels’ complexity 

is independent from triangle complexity (voxels usually remain the same regardless of the 

tessellation level of triangle meshes). Ray-voxel intersection is much faster than ray-triangle 

intersection. And finally, voxel can be easily fit into octree, while BVH-tree or kd-tree (Foley 

&amp; Sugerman, 2005) using triangles are much more complicated to construct. But voxels also 

have some drawbacks such as large memory cost and blockiness in rendering. 
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Figure 1. Voxels in different resolutions of Stanford Dragon (Left: 2563, Right: 643) 

 

 

Figure 2. Sparse Voxel Octree structure. Bricks are 23 voxel tiles used to store voxels of leaf 

nodes in texture memory. (Image Courtesy of Crassin & Green, 2012) 

The Problem 

The problem addressed by this study is that it is very inefficient for traditional global 

illumination methods to achieve real-time frame rates. In traditional rasterization pipeline, 

developers always use some tricks to simulate the effect of indirect illumination like ambient or 

soft shadows. However, although these approaches are plausible to some extent, they lack many 

important effects in indirect illumination such as color bleeding and caustics. Goral et al., (1984) 
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came out with the radiosity method to approximate indirect illumination. It divides the scene into 

lots of tiny patches and treats each patch as a potential light source. Then it calculates the lighting 

effect between different patches and runs recursively to get global illumination. However, radiosity 

method is a view independent method, it is a huge waste to calculate for objects that cannot be 

seen. Also, since this method needs to run recursively, it is difficult to parallel it on modern 

graphics cards. Kajiya (1986) proposed a method called path tracing. It uses rays to represent light 

path and sends out one ray per pixel from camera to do backward tracing and gather light 

accumulation. It uses Monte Carlo method to solve the integration in the rendering equation. 

Monte Carlo method is great at handling diffuse or glossy reflection, but it is extremely slow to 

converge. It requires a lot of samples to denoise in final image.  

Besides, the methods mentioned above are both very time-consuming, it would be 

impossible to use them in real-time rendering. The original radiosity and path tracing method 

usually takes several minutes or even hours to converge an image. There are many optimizations 

that aims to accelerate the convergence process, for example, bi-directional path tracing (Lafortune 

& Willems, 1993) combines backward tracing and forward tracing to greatly speed up the 

convergence in indoor scenes. Also, many data structures can be used to organize the data in the 

scene, such as kd-tree (Foley & Sugerman, 2005) and BVH-tree. But with these improvements, it 

is still far from achieving real-time framerate (at least 30 frames per second). Offline rendering 

approach usually focus on physical accuracy rather than computation time, but real-time rendering 

needs to guarantee framerate first. Hence the requirement of accuracy could be waived in most 

situations, sometimes one or two bounces of indirect light is enough. Users often cannot 

distinguish the details of indirect light in a dynamic scene.  

In order to reduce the complexity of light transport simulation, screen-space methods 

(Shanmugam & Arikan, 2007) and near-filed illumination are commonly used in many real-time 

applications. These techniques restrict the indirect illumination to geometry that is visible from 

camera hence greatly increase the efficiency of indirect illumination. However, these methods may 

lose indirect illumination when light sources that are blocked from camera and generate artifacts 

when dynamic objects moves in/out the view. 
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Figure 3. Left: screen space methods. Note that two light sources are hidden behind the column, 

and screen space method failed to display their reflections. (Image courtesy of Thiedemann et al., 

2011) 

 

 

 

 

Figure 4. The specular reflection in voxel cone tracing. notice the reflection on the wall shows 

blockiness due to the nature of voxel. 
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Significance 

As hardware, especially personal GPU, becomes more and more powerful, game 

developers wish to pursue better graphics effect in games. But traditional rendering pipeline seems 

to encounter a bottleneck on simulating global illumination. It would be too complex and 

inconvenient to simulate global illumination using traditional rasterization pipeline. Many 

developers are trying to migrate the ray tracing method from offline rendering to real-time 

rendering. Interactive realistic rendering can also benefit other field like medical training or 

scientific research. 

As mentioned before, it is difficult to simulate indirect illumination using traditional 

rasterization pipeline. Recently, both Nvidia and AMD have published their new generation 

graphics card, specially designed for real-time ray tracing. Also, Xbox and PlayStation have 

announced that their next generation consoles will support ray tracing. Many game companies 

have incorporated indirect illumination in their games. For instance, Control (Burnes, 2019) is a 

game that supports ray tracing which was released in 2019. It has amazing graphics effects like 

color bleeding and dynamic reflection on broken glasses. However, it is still impossible to runs it 

with 4k resolution 60 FPS on almost the most powerful modern graphics card like RTX 3080. The 

strategy they used was de-noise filtering the results generated by ray tracing, but sometimes players 

can still see the noise of indirect light clearly in the game. On the other hand, as memory of video 

cards grows larger, it is possible to fit the entire scene into it as voxels. Kampe et al. successfully 

store voxels of extremely high resolution (128K3). Fully voxel-based rendering is more feasible 

with the help of these techniques. The remaining problems mainly focus on dynamic updating of 

voxels and octrees. 

The Purpose 

Traditional rendering has some methods to fake single bounce indirect illumination. For 

example, shadow maps are generated by rendering the scene from the view of light source and use 

the depth buffer to determine whether each pixel is in shadow or not. Cube maps are often used to 

simulate reflections or refractions. Also, indirect light maps can be pre-baked in order to add 

indirect illumination of static objects and light sources. However, these techniques are usually 

limited to single-bounce indirect light and static scenes, and often requires pre-constructing. 
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The purpose of this study is to explore the possibility of dynamic sparse voxel octree in 

global illumination. With the help of efficient octree construction methods, plenty of research (Sun 

& Agu, 2015) have successfully achieved real-time performance with a static scene. Also, efficient 

approaches of interactively modifying voxels have been proposed by Careil (2020). Inspired by 

these researches, we want to develop a feasible algorithm to interactively modify SVO. 

Research Questions 

 The research questions proposed by this study is that: 

1. What is an efficient approach to dynamically update sparse voxel octree? 

2. How seriously will the updating influence the performance of rendering?  

3. How to quickly undo changes to sparse voxel octree. 

Deliverables 

 The deliverables of this study will be a real-time algorithm that can edit sparse voxel octree 

efficiently. And it will be implemented in OpenGL and CUDA. The method will be based on 

Morton code to manage voxels. 

Definitions 

Ray tracing is a method used in computer graphics to simulate light transport in real world. 

Light is considered as an infinite number of rays. Therefore, light transport can be simulated by 

using ray-triangle intersection and bi-directional reflectance distribution function (BRDF). Ray 

tracing includes forward tracing which means rays are sent from light sources, and backward 

tracing which means rays came from camera. Ray tracing usually use Monte Carlo method to 

sample diffuse light, hence generate significant noise. Ray tracing methods are usually very slow 

and need acceleration algorithms. 

Voxel cone tracing (Crassin et al., 2011) is a real time ray tracing algorithm. The difference 

is that, instead of using lots of rays to uniformly sample hemisphere for each hit, it uses multiple 

cones to represent the area of the hemisphere. Each cone sample on certain level sparse voxel 

octree depending on the radius of cone. Therefore, it is a noise-free algorithm. 
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Radiosity method (Goral et al., 1984) is a recursion approach to simulate global 

illumination. It divides the scene geometry into numerous patches and considers each patch as a 

potential light source. It computes the direct light in each patch recursively to get indirect light.  

This method also does not suffer from noise hence is preferred by a lot of research in the field of 

real-time rendering.  

Limitations 

The GPU memory in this study is limited to 8GB, so we will have limited size of voxels.
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CHAPTER 2 REVIEW OF THE LITERATURE 

There are many algorithms trying to approximate global illumination. Kajiya proposed 

Monte Carlo Path Tracing and try to solve the rendering equation using backward tracing. Also, 

Photon mapping (Jensen, 1996) and radiosity (Goral et al., 1984) are both powerful methods in 

global illumination. However, they are designed for offline rendering and cannot be easily adapted 

in real-time application. The purpose of this section is to discuss offline global illumination 

algorithms and their voxel-based implementations. 

Traditional Methods 

The reason why traditional Monte Carlo ray tracing cannot be applied in an interactive 

framerate is that, Monte Carlo method cannot generate enough samples quickly enough, so that 

the noise effect in rendering will be quite obvious. The most straight forward solution is to use de-

noise filtering to eliminate noise (Bauszat et al., 2011). Various types of filters could be used in 

this situation, for example, bilateral filter is an edge-preserving filter that can both reduce the noise 

in image and not cause much loss of details. 

 

 

Figure 5. Noise in path tracing due to insufficient sampling (64 samples). 



 

 

20 

Photon mapping (Jensen, 1996) uses the strategy of shooting and storing photons in a so-

called photon map and fetch indirect light by interpolating nearby photons for each pixel. This 

approach needs giant memory to store photons and has problems dealing with discontinuity in 

scene. Although Stochastic Progressive Photon Mapping (Hachisuka & Jensen, 2009) greatly 

increase the efficiency computing distributed ray tracing effects, and also resolve the problem of 

memory-intensity in original photon mapping, it still cannot achieve real-time framerate and it 

often suffers from flickering, splotches and artifacts. 

Traditional offline algorithms value physical accuracy, but the first few rays captures most 

of the indirect light information. Therefore, it would be a good idea to sacrifice some extent of 

accuracy in order to save time. Most real-time algorithms only calculate single bounce or two 

bounce of indirect illumination. And combines indirect illumination with direct illumination. 

Instant Radiosity (Keller, 1997) is an extension to radiosity (Goral et al., 1984) method, and it 

comes up with the concept of Virtual Point Light (VPL), which is used to represent the light 

information of reflection. In pre-processing, many rays are shot from light sources randomly, once 

a ray hit a surface, we create a point light there (VPL). Therefore, VPLs can be used to approximate 

indirect illumination. But if the light sources move frequently, this method could run costly by 

generating numerous new light sources each frame. Reflective Shadow Maps (Dachsbacher & 

Stamminger, 2005) has greatly improve the performance of instant radiosity (Keller, 1997). RSM 

considers each pixel as light source and stores not only depth but also reflection radiance flux and 

geometric data in shadow map. However, this method does not consider the visibility issues of 

indirect light, because occlusion information of pixels cannot be queried using shadow map. 

Updating RSMs in many-light scenes will be time-consuming. But it is an overall very efficient 

method in real-time rendering of indirect light.  

Since diffuse indirect light does not vary frequently, computing diffuse light for each pixel 

would be a huge waste. Multiresolution methods choose to compute diffuse indirect light in low 

resolution and upsample the result to full-screen resolution. Hierarchical Image-space Radiosity 

(Nichols, 2009) uses multiple mipmaps of depth field, direct light and normal based on image-

space, hence diffuse indirect light could be computed in low resolution and interpolated to full 

resolution. This method can provide real-time performance but is restricted to diffuse materials 

and one-bounce indirect illumination. But the idea of calculating diffuse reflection in lower level 

of detail is the same among different approaches. 
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Voxel-based Methods 

Some researchers have combined voxels with classic GI methods to achieve interactive 

frame rates. Voxel-based global illumination (Thiedemann et al., 2011) is a union of voxel-based 

visibility and near-field illumination. They implemented a novel binary voxelization method which 

uses a 2D texture atlas to represent 3D voxels. Each texel represent a column in 3D voxel grid and 

each bit represents whether geometry exists at a specific depth. Thus ray-voxel intersection test 

can be done very efficiently. However, this kind of representation may be enough for visibility 

information but is hard to be adapted by voxels that stores colors or normals. Besides, the depth 

resolution can be limited by texture formats which typically allows 128 bits per texel at most. 

Sun implemented a real-time global illumination method based on VPL and use sparse 

voxel octree to conduct visibility test. The result shows SVO greatly increase the speed of visibility 

test, which proves SVO works well in accelerating ray tracing algorithms. But their approach does 

not have any dynamic objects and the process of sampling from VPLs does not take advantage of 

SVO as well. 

Kaplanyan (2010) used a nested regular voxel grid to produce diffuse indirect illumination. 

It is low cost and does not have any flickers, but it lacks precisions and is only limited to low-

frequency illumination (diffuse).  

Voxel cone tracing (Crassin et al., 2011) is another powerful algorithm for real-time global 

illumination. The core of this method is to build a hierarchical voxel representation of the scene 

geometry (SVO). First the information of triangles in the scene is voxelized into 3D texture. For 

static objects in the scene, this process only needs to run once. However, for dynamic objects, their 

information needs to be frequently updated. Then in the second step, octree is constructed in a 

bottom-up manner. Finally, direct light information is injected to the leaf nodes of SVO and value 

is interpolated from child node to its parent for every level of the tree (this is similar to mipmap). 

After this, several cones are used to trace light information stored in SVO. Typically, 5 or 9 diffuse 

cones are used to cover the area of hemisphere, and one tiny cone are used to trace glossy or 

specular reflections. This technique directly make use of SVO to simulate light transport and shows 

interactive indirect illumination. But one of the drawbacks is that specular reflections looks blocky, 

and they suffer from light lurking due to the discrete representation of geometry and irradiance. 

Also, they did not provide an efficient way to handle dynamic objects in the scene. 
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Figure 6. Three steps of voxel cone tracing. (Image courtesy of [Crassin et al., 2011]) 

Voxelization 

 Voxels have been popularly used in the context of scientific research, especially with 

volume data. In computer graphics, voxels are generally stored in 3D textures or 2D texture arrays. 

Texture is data (usually images) that is stored in cached and read-only memory on device. Reading 

from texture can be greatly accelerated if reads have certain patterns, i.e., reading in a 2-dimesional 

manner. However, texture has some drawbacks. It is write-prohibited, and it has strict restrictions 

on data alignment and format. Although 1D texture does exist, it is not necessary to store 1D arrays 

in it because caches have already taken care of 1D data. 

 The process of transforming primitives (typically triangles) of 3D geometry to voxels is 

called voxelization. The similar process in 2D is well known as rasterization. There are two types 

of rasterization, which are thin rasterization and conservative rasterization. The former one only 

rasterizes pixels that are close to the line segment while the latter one rasterizes all pixels that 

overlap the line segment. They are also called 4-separating and 8-separating rasterization. 
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Figure 7 Conservative rasterization (left) and thin rasterization. (Image courtesy of Nathan R.) 

 

Just like rasterization, voxelization can be divided into thin voxelization and conservative 

voxelization. In this study, we choose conservative voxelization as it is more intuitive and easier 

to implement. However, our method could be extended to thin voxelization without difficulty.  

Voxel-Triangle Intersection 

 Conservative voxelization means we should voxelize any voxel that overlaps with triangles. 

Because voxels can be represented by axis-aligned bounding box (AABB), to test whether a voxel 

intersects with a triangle, is essentially to test whether an AABB intersects with a triangle. 

 Inspired by Schwarz and Seidel (2010), given a triangle 𝑻 (𝒗𝟎, 𝒗𝟏, 𝒗𝟐) and an axis-aligned 

bounding box 𝑩 (𝒑 + Δ𝒑), we found that 𝑻 overlaps with 𝑩 if and only if: 

a) 𝑻’s plane overlaps 𝑩 and 

b) For each coordinate, 𝑻’s 2D projection overlaps 𝑩’ projection 

To test whether 𝑻’s plane overlaps 𝑩, we can test whether each vertex of 𝑩 and its opposite 

vertex are on the different sides of 𝑻’s plane. If we represent 𝑻’s normal as 𝒏, and define a critical 

point 𝒄 as 

𝑐 = ({
Δ𝑝𝑥, 𝑛𝑥 > 0

0, 𝑛𝑥 ≤ 0
} , {

Δ𝑝𝑦, 𝑛𝑦 > 0

0, 𝑛𝑦 ≤ 0
} , {

Δ𝑝𝑧 , 𝑛𝑧 > 0
0, 𝑛𝑧 ≤ 0

})
𝑇

 

And check whether 𝒑 + 𝒄 and 𝒑 + (Δ𝒑 − 𝒄) are on different sides of the plane. 
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Figure 8 Whether a 2D triangle intersects a square. 

 

 To test condition b, we make use of the edge function proposed by Pineda (1988). In a 2-

dimensional space, whether a triangle intersects with an axis-aligned square is determined by 

a) Test whether the triangle’s axis-aligned bounding box (2D) overlaps the square. 

b) If yes, test whether any edge of the triangle lies inside the square. 

The first problem can be easily resolved because both squares are axis-aligned. Then 

Pineda’s equation can be used to check whether multiple 2D points lie on different sides of a line.  

Overall, voxelization is much more complicated and hence more time-consuming than 

rasterization. But we can make a trade-off between memory and time to greatly lessen the 

computation during this process. We will discuss how to implement this later. 

Morton Order 

Voxel is a graphics unit used to represent 3D volumetric data, thus it is obvious that we can 

store voxel in a 3D data structure. However, practically there are no support for 3D array in most 

of the programming languages. The most common approach is to use a group of 2D array or just 

using a long 1-dimensional array instead. Given that the width, height and depth of the whole voxel 

grid are 𝑫, any voxel that locates at (𝑥, 𝑦, 𝑧) can be transformed to a 1D index as 

𝑥 ∗ 𝐷 ∗ 𝐷 + 𝑦 ∗ 𝐷 + 𝑧 

or 

𝑧 ∗ 𝐷 ∗ 𝐷 + 𝑦 ∗ 𝐷 + 𝑥 

The former one provides coherency at 𝒁 coordinate, while the latter one at 𝑿 coordinate. However, 

due to the topological characteristic of Octree, we usually read 8 voxels together within one node 
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of the octree. Although these 8 voxels are adjacent spatially, they are not located coherently on the 

device memory. Local coherence can significantly reduce the time spent on read/write operations, 

because every time a read operation is performed, processing unit will fetch the target data as well 

as other data that locates closely to the target data and stores them in cache. So in next read 

operation, the processing unit will first try to find the target data in cache, and reading from cache 

is around 100~200 times faster than read from device memory. 

 Morton order is a linearization of an n-dimensional grid that corresponds to the order in 

which the leaf nodes of the corresponding 2n-tree (quadtree, octree) are encountered when 

performing a post-order depth-first traversal of the tree (Baert et al., 2014). By connecting each 

point in space in Morton order, the curve has the appearance of the letter Z. Therefore, Morton 

order is also called Z-order. To encode an n-dimensional coordinate, we can simply interleave the 

binary code of its coordinate values.  
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Figure 9 the Morton code and the z-curve (Image Courtesy of David, E.) 

 

 Such property of Morton order grants us local coherence while we read/write to voxels on 

device memory. Besides, Morton order is also very helpful in octree construction, we can easily 

know the corresponding Morton code of each depth of a 2n-tree. 

𝐶𝑜𝑑𝑒𝑑−1 =
𝐶𝑜𝑑𝑒𝑑

2𝑛
 

Where 𝑑 equals to the depth of the 2n-tree. 
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Octree Construction 

Octree construction is already a complex task, and it is even more challenging on GPU. 

While each thread has no information about other thread’s work, to prevent write collision and 

race condition becomes the most significant problem. In Gigavoxels, Crassin and Green (2012) 

provides a solution to construct the octree in a top-down manner. First, they allocate a chunk of 

memory on device which they use to store nodes of octree (this is called node pool). Then they 

open one thread per voxel to do depth-first search on the octree. When one thread finds there 

should be a child node in the octree where there isn’t one, the thread will mark the parent node as 

marked. Second, they open one thread per node on current depth to search if there are any node 

that is marked. If so, they will allocate memory of 8 nodes’ size from the node pool and let the 

parent node points to the index of the first nodes in 8 children. This process will be conducted 

iteratively until it reaches the bottom level (leaf node). Finally, voxel’s value will be assigned to 

leaf nodes, then mipmapped from bottom to top. 

 

 

Figure 10 node pool and allocation of new child nodes (quadtree). 

 

In implementation, this approach requires multiple kernel calls per iteration and large 

amount of write collisions exist in low depth of iteration. Also, the depth-first search needs to 

restart from the root in each iteration, which causes the same path being traversed repeatedly. 

 



 

 

28 

 

Figure 11 octree construction in top-down manner. 

 

Baert et al. (2014) proposed a novel approach for octree construction which build the octree 

from bottom to top. With the help of Morton code, it is easy to split the whole voxel grid into 

multiple small areas and build the octree separately. In the paper they use this property for out-of-

core construction of octree. They come up with a method which is extremely memory-saving (total 

space equals 8 ∗ 𝑑 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑛𝑜𝑑𝑒) , where 𝑑  is the maximum depth of the octree) and 

theoretically they could build octree of any number of voxels.  
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Figure 12 input Morton-sorted voxels, if there are any non-empty voxels in 8 consecutive voxels, 

they can form a new node in lower level. Repeat this process until the root is constructed. 
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However, they did not address how to construct octree with multi-threading on GPU based 

on Morton code. We will mention later how Morton code fit nicely with SIMD (single instruction 

multiple device). 

Dynamic Update 

In computer graphics applications, geometry is usually divided into dynamic part and static 

part. In global illumination, effects like ambient occlusion and indirect illumination that is static 

are usually baked once and dynamic global illumination need to be rendered every frame. Same in 

octree construction, the static nodes need only to be voxelized and constructed once, while the  

nodes which belong to dynamic objects need to be revoxelized and reconstructed in runtime. 

 The simplest method is to use two octrees, one for static objects and one for dynamic 

objects. However, this may cause huge performance loss in rendering, because averagely ray-

casting two octrees will spend twice more time than ray-casting one octree. 

 Therefore, the only solution is to use only one octree, but here raises two problems. First, 

how to edit or add new nodes to the octree while maintain the original data untouched? Second, 

how to safely delete new nodes in every frame? Crassin et al. (2011) believe dynamic nodes need 

to be inserted at the end of the octree buffer, but they did not address how to implement it. Careil 

et al. (2020) implement a novel algorithm to dynamic edit a svDAG (sparse voxel directed acyclic 

graph), which is similar to our approach. While creating new nodes of DAG, they search whether 

there are any existing nodes in the old DAG. If yes, they copy the old node and merge it with new 

node, if not they just simply create a new node instead. After updating, a new root of DAG will be 

generated, and the old root remains in the original data structure. This permits quick undoing to 

editing. 

 

 

 

Figure 13 Overview of the updating process. Red region is the area to be updated. (Image 

Courtesy of Careil et al. (2020)) 
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 Besides full reconstruction of dynamic octree, there are also researches about updating 

octree incrementally (Kim et al., 2018, Lefohn et al., 2006). Recently, Hoetzlein (2016) supports 

dynamic topological updates of octree on GPU by memory pooling. This is often applied in 3D 

volumetric painting applications, in which the dynamic and static parts cannot be separated. Kim 

described a method to dynamically update octree with streaming between CPU and GPU. In their 

study, the octree structure is stored on CPU and mapped to GPU textures. Instead of updating the 

entire tree from CPU to GPU in every frame, they designed a method to update only part of the 

octree that has been modified. Also, they split the process into multiple frames in order to maintain 

consistent frame rates in rendering. 

 

 

Figure 14 The workflow of dynamically updating octree from CPU to GPU. (Image Courtesy of 

Kim et al., 2018) 

 

 In addition, Campbell et al. (2003) have discussed the performance of different space-

filling curves including Morton order in octree-based algorithms. In which they mentioned Hilbert 

code would also be a good choice in octree loading. We are looking forward to exploring it in the 

future.  

 Zeng et al. (2013) proposed a real-time 3D reconstruction method based on octree. They 

implemented an algorithm called NodeSplit to add new nodes to their octree structures. While at 

the same time, they designed an algorithm which is a reversed procedure of NodeSplit to remove 

nodes of moving objects from the octree. We believe deleting nodes explicitly is less efficient 

compared to our approach, which deletes all dynamic nodes in constant time. In fact, in their 

analysis, they have noticed that the node removal operation will slow down the performance. 
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However, they designed a novel octree structure which divides the entire octree into different 

layers depending on the depth of each level. This layered structure can accelerate octree traversal 

by organizing the top few levels of the octree. Octree operations can start from the branch layer 

instead. 

 

 

Figure 15 Layered structure of the octree. (Image Courtesy of Zeng et al., 2013) 

Summary 

Supporting of dynamic light sources and objects requires efficient algorithm of 

voxelization construction and octree generation. Crassin proposed a simple approach of 

voxelization. Instead of rendering the scene from 3 different axis directions, they use geometry 

shader to project each triangle along the dominant axis of its normal, which means the axis that 

maximizes the fragments of the triangle. Therefore, voxelization can be done by a single draw call. 

This could be an alternate voxelization method to our voxelization method. 

Also, atomic operations are used to avoid race conditions in voxelization, but it will easily 

ruin the efficiency of GPU parallel computing. We believe that atomic operations are not necessary 

because in most conditions different threads are writing the same information due to the continuity 

of mesh. 

In Crassin’s implementation (Crassin & Green, 2012), octree is built in a top-down manner, 

and there is a sperate pass mipmapping node value from bottom to up. This process requires more 

than 20 passes to GPU and is redundant to our demands. There are several other efficient octree 
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construction and ray casting methods (Laine & Karras, 2010, Baert et al., 2014, Schwarz & Seidel, 

2010) that worth trying. 

The algorithm of updating voxel nodes proposed by Careil (2020) is very interesting. They 

generate new nodes in every frame for dynamic objects and derived a new root node which 

contains the new nodes. While the static node remains the same. In this way, they provide the 

ability to edit and undo changes to voxels and limit the size of memory that needs to be modified 

in every frame. Our approach will base on the methods mentioned above. 

 

 

Figure 16. Single pass voxelization. (Image courtesy of [Crassin & Green, 2012]) 

 

A lot of research has proved that SVO shows great potential in acceleration to different 

global illumination algorithms. While majority of research were focusing on efficient voxelization 

and octree construction, few have explored the dynamic updating of octree. The remaining 

problem is to find a robust and efficient way of modifying SVO to support dynamic objects and 

dynamic light sources. 
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CHAPTER 3 METHODOLOGY 

Flow Chart 

 

Figure 17. The flow chart of steps used in this study. 
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Research Methods 

The type of research in this study is developmental research. This study will develop and 

validate a real-time algorithm of Modifying sparse voxel octree.  

The variables in this research are the performance and robustness of the algorithm, which 

will be calculated by framerates per second (FPS) or computation time per frame in millisecond. 

Additionally, we need to test whether the algorithm would change static nodes by mistake or cause 

error in rendering in various situations, especially when two objects overlap.  

Data Collection 

The performance of the methods could be collected by counters that is used in the code. 

For instance, frame per second is a good variable to evaluate the computing speed of the algorithm. 

Usually, a high FPS results in high performance. As for the robustness of the algorithm, we will 

test under extreme conditions and prove it in theory. 

Data Analysis 

Comparing efficiency of different algorithms is simple. Quantitative data like FPS and 

running time per frame will be recorded, and different scenes will be used to test the robustness of 

this algorithm. 
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CHAPTER 4 IMPLEMENTATION 

System Overview 

 In this study, our algorithm is implemented using CUDA and modern OpenGL. CUDA is 

designed for high performance GPU-accelerated applications. With CUDA, we will be able to use 

C/C++ style programming language on GPU, which provides more flexibility on coding compared 

to compute shader in graphics API. OpenGL is only used for the purpose of rendering, which is 

ray-casting in this case.  

 The GPU used in this study is RTX 3080, one of the most powerful consumer GPUs, which 

has a memory capacity of 10 Gigabytes. The CPU used in this study is AMD Ryzen 7 3700x with 

16 Gigabytes RAM. However, since voxelization, octree construction and updating are running on 

GPU, CPU’s performance has little impact on our methods.  

Voxel 

 In this study, voxels are used to represent geometry information, in which color and 

normal are two most important data in rendering. Note that the position of voxels do not need to 

be explicitly defined, it is because the position of a voxel can be calculated using its coordinate 

𝒄𝒐𝒐𝒓𝒅 and the axis-aligned bounding box (𝒑, 𝒑 + 𝚫𝒑)of its root node. 

𝑝𝑜𝑠 =
𝑐𝑜𝑜𝑟𝑑

𝑑𝑖𝑚
∗ Δ𝑝 + 𝑝 

Where 𝒑𝒐𝒔 is the position of the voxel and 𝒅𝒊𝒎 is the size of voxels in current level (dim = 2𝑛). 

 To store the normal information, we could use 3 floats where each coordinate (𝑥, 𝑦, 𝑧) 

occupies one float. Similarly, we could use 3 floats to store color information, where each channel 

(𝑟, 𝑔, 𝑏) use one float. Therefore, totally we will need 6 floats to store one voxel, which equals 24 

bytes in memory. However, we should know that time cost of read and write operations to memory 

increases with data size linearly. Since we are dealing with a 3-dimensional data structure, it is 

most likely that we need read/write millions of voxels per kernel call (function that runs on device 

in CUDA). With 24 bytes in one voxel, not only it will greatly slow down the performance of our 

method, but it will also limit the maximus size/depth of our octree structure. The less size of the 

voxel is, the more voxels we can store in our device memory. 
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 A common approach is to compress the data into smaller data type. For example, one of 

the most popular format of color information in computer graphics is RGBA8, which means 8 

bytes for each channel of color (red, green, blue and alpha). Hence each channel will have a value 

from 0 to 255. Then we are able to store color in an unsigned integer. Normal can also be stored 

in one unsigned integer in the same way. However, since normal itself is a signed value, we need 

to use 1 bit for the sign, which means normal only have a precision of 7 bits. The method below 

can be easily implemented using bitwise operation, for example,  

given that 

𝑐𝑜𝑙𝑜𝑟 = (𝑟, 𝑔, 𝑏, 𝑎) 

The compressed value is 

(unsigned int(a) & 0x000000FF) << 24U | (unsigned int(b) & 0x000000FF) << 16U 
| (unsigned int(g) & 0x000000FF) << 8U | (unsigned int(r) & 0x000000FF) 

 Now we only need 8 bytes for each voxel, theoretically we have gained a 300% speed up. 

It should be noted that normal only requires 24 bits in total (8 bits per coordinate), with 8 bits left 

in an unsigned integer. Normally we do not need alpha information in color if transparent objects 

are not involved, this gives us extra 8 bits. In fact, we are only using 6 bytes per voxel.  

 So why not use an unsigned integer (4 bytes) and a short integer (2 bytes) to represent one 

voxel? Unfortunately, the operation system will automatically align the data in memory by 4 bytes. 

Unless we reduce the size of one voxel to 4 bytes, it will not make any difference whether we are 

using 6 bytes per voxel or 8 bytes per voxel. Then is it possible to store color and normal both in 

a single unsigned integer?  

 There is another more compact format for color called RGB565, which means 5 bytes for 

red and blue channel and 6 bytes for green channel (human eyes are more sensitive to green). Then 

we have 16 bits left for normal. We could use 5 bits for each coordinate, but regarding normal is a 

signed value, 4 bits’ precision is not accurate enough for rendering. However, remind that normal 

is a normalized value, its length will always be exactly 1. 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑛) = 𝑛. 𝑥2 + 𝑛. 𝑦2 + 𝑛. 𝑧2 = 1.0 

Which means we only need to store 2 coordinates of the normal and use one bit to store the sign 

of the last coordinate, we should be able to calculate the last coordinate in runtime. In this way, 

both color and normal can lie in one unsigned integer. As for the extra one bit for last coordinate, 

it could be stored in the pointer value in node which we will discuss in next section. 
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Octree and Node 

 Our octree structure consists of nodes of different depths, in which the node of lowest depth 

is called root and the node of highest depth or with no children is called leaf. Each node other than 

the root node has its parent node and each node other than leaf nodes has 8 child nodes.  

 

 

 

Figure 18 the large cube is the parent node, and 8 small cubes are the children of the parent node.  

 

 Since rendering of sparse voxel octree is not the major topic of this study, we choose the 

simplest form of octree nodes, where each node only stores a pointer to its first children. 

Additionally, we always put 8 child nodes in consecutive memory. Thus, we can fetch each one of 

them once we know the index of the first child node. Because we are using Morton code, we will 

also know each child node’s position regarding its parent. 

 

 

Figure 19 How parent node and child nodes are connected in a 1D array. Yellow square 

represents parent node. 
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 Other than a pointer to its children, each node also has a voxel. Nodes in the bottom level 

of octree represent voxels with a one-to-one ratio, while nodes in lower levels have voxels that 

contain average values of their children’s voxels. As mentioned in last section, we could compress 

voxels into 4 bytes. But that may cause precision loss and glitches in rendering, but we are glad to 

test it in future experiments. For now, we use a voxel of 8 bytes, and that makes the size of our 

node structure 12 bytes totally. Note that we use a bitmask of 8 bits totally to indicate whether 

each children node is an empty node (node that does not contain geometry information). This 

permits quick child node check in ray-casting. 

 

 

Figure 20 data alignment of our node structure, each square represents one byte in memory. Note 

that we have one empty byte which could be used for other purpose (i.e., alpha channel). 

Voxelization 

 Our voxelization method is very straight-forward. We launch one thread per triangle and 

calculate the triangle’s axis-aligned bounding box. Then we can find the start voxel and the end 

voxel based on the minimum corner and maximum corner of the triangle’s AABB. Finally, we 

iterate each voxel in the AABB for voxel-triangle intersection test, if result returns yes, we store 

the corresponding color and normal information (interpolated using barycentric coordinates) into 

that voxel. Here is the pseudocode of this process. 

 

minAABB, maxAABB = GetAABB(Triangle) 

startVoxel = GetVoxel(minAABB) 

endVoxel = GetVoxel(maxAABB) 

for( i = startVoxel.x; i <= endVoxel.x; i++) 

 for( j = startVoxel.y; i <= endVoxel.y; j++) 

  for( k = startVoxel.z; k <= endVoxel.z; k++) 
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   if intersect(Triangle, Voxel(i,j,k)) 

    arrayIdx = EncodeMorton(i,j,k) 

    voxelList[arrayIdx] = Voxel(color, normal) 

 

 As mentioned in last chapter, the process of voxelization, specifically voxel-triangle 

intersection test, can be accelerated by precompute and repeatedly used some intermediate value. 

For example, the normal of each triangle is the same among each intersection test, but by 

precomputing and storing it with each triangle, we can save time for one cross product and one 

normalize operation for each test. 

 Nevertheless, it is possible one voxel may be shared by multiple triangles. This often 

happens on the edges of triangles. In multi-thread programs, this problem is called write collisions 

or race conditions, where multiple threads try to read/write to the same area in memory. This could 

cause serious problem if not handled. For example, if one thread needs to add one to a variable 

sum in device memory, it requires 3 steps. First, fetch the value of sum in device memory; Second, 

add one the sum in local memory; Third, copy the new value back to device memory. But if two 

threads A and B are trying to perform addition to sum at the same time, it may result in unexpected 

behavior.  

 

 

Figure 21 here is an example where thread A and B are trying to add one to the same variable in 

device memory and return a false result. Circle means local variable in each thread. 

 

 Atomic operations are created to prevent race conditions, it guarantees multiple writes to 

the same variable will be performed in chronological order, but it will have a huge impact on 
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performance. Considering that normal and color information are usually changing smoothly on the 

same object, we may assume that even a voxel is written by two adjacent triangles, they are given 

the same color and normal. Therefore, it is safe to abandon atomic operations in exchange of high 

performance. 

Octree Construction 

 Our octree construction method is an extension to Baert’s (2014) method. In previous 

chapter, we introduced how to implement out-of-core octree construction using only a small buffer. 

Now we need to combine it with multi-threading on GPU. Since we are using Morton code, every 

group of 8 consecutive nodes of Morton code 𝑖 (𝑖 𝑚𝑜𝑑 8 = 0 ~ 7) are guaranteed to have the 

same parent node. Therefore, we can launch one thread per 8 nodes.  

 The input of the algorithm should be two buffers with the size equals to the total amount 

of voxels in current depth (8𝑛). One buffer should contain voxels (color and normal) and another 

buffer contains the corresponding pointer for each voxel in the first buffer. Note that these two 

buffers consist of all potential voxels’ information, empty and valid.  

 First, we scan 8 voxels per thread to find whether there are nonempty voxels among them. 

If yes, we accumulate the color and normal value, then create a parent voxel based on the average 

value of all nonempty voxels. At the same time, we create 8 nodes using the voxels and pointers 

in input buffers and store them in a pre-allocated node buffer. Finally, we store the parent voxel 

and its pointer (the index of the first node of aforementioned 8 nodes in node buffer). By repeating 

this process for each depth in octree, we achieve the octree construction from bottom to top. Below 

is the pseudocode of our octree construction (one iteration), we can switch the pointers of voxelList 

and nextVoxelList after each iteration. 

 

Input voxelList, pointerList 

Input threadIdx 

counter = 0 

acc_color, acc_normal = 0 

for i = threadIdx * 8, i < threadIdx * 8 + 8, i++ 

 if !empty(voxelList[i]) 

  acc_color += voxelList[i].color 
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  acc_normal += voxelList[i].normal 

  counter++ 

if counter > 0 

 index = AtomicAdd(nodeCount, 8) 

 nextVoxelList[threadIdx] = Voxel(acc_color/8, acc_normal/8) 

nextPointerList[threadIdx] = index 

for i = 0, i < 8, i++ 

node[index + i] = Node(voxelList[threadIdx * 8 + i], 

pointerList[threadIdx * 8 + i]) 

 

 The octree’s capacity depends on the maximum depth. In the worst case, the octree needs 

to contain all possible nodes in each level. Given an octree with maximum 𝑛 levels, the total 

amount of nodes is 

1 + 8 + 82 + 83 + ⋯ + 8𝑛 =
8𝑛+1 − 1

8 − 1
 

However, due to the sparseness of our voxel data, the number of nodes generated is far less than 

this. The size of the nodeList should be determined by the geometry in practice. 

Dynamic Update 

 The dynamic objects in the scene should be updated separately in runtime. After octree 

construction, we should have a complete octree structure of all static objects in the scene. The 

structure is called static octree, in contrast to dynamic octree. In order to quickly undo the 

updating, the static octree should remain unchanged in the process of updating. Therefore, we only 

modify part of the nodeList at the end of all static nodes. 

 

 

Figure 22 dynamic nodes should be updated at the end of static nodes (empty part in the list). 

The benefit of this is that when we want to delete dynamic nodes, we can simply clear all the 

data after the last static nodes in nodeList.  
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 The method of updating is pretty similar to construction, while the major difference is that 

every time we need to create a node, we need to do depth-first searching (this is easy using Morton 

code) in the static octree to find whether there is an existing node. If yes, we need to copy static 

node and merge it with the new node we created. Thus, the dynamic octree can be connected with 

the static octree.  

 

 

Figure 23 shows how to merge a static node and a dynamic node while updating. 
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After updating, we will use the new root generated instead of the static root for rendering. 

When octree need to be updated again or the dynamic object is destroyed, we can switch back to 

the static root immediately.  

Rendering 

 Although rendering is beyond the focus of this study, we still need a ray-casting algorithm 

to demonstrate our results. The standard method to render a voxel grid is ray-marching. For each 

pixel on the screen, a ray is casted out to move step by step in the voxel grid and accumulate 

occlusion information along the ray direction. The time complexity of this method is apparently 

𝑂(𝑛), where 𝑛 equals the size of voxels in the grid. Instead, using octree will help us reduce the 

time complexity to 𝑂(log 𝑛). 

 Ray-casting can be easily implemented based on our data structure. We start traversing 

from the root node. First, we need to find all nonempty (this can be obtained using the bitmask in 

parent node) child nodes that are hit by the ray. Second, sort them in an ascending order of 𝑡, where 

𝑡 is the distance from the ray origin and the hit point. Finally, start the traversal again in child 

nodes. Repeat the above process until we find the first node in the maximum depth. Because we 

are always tracing the nearest node over ray origin, the result is guaranteed to be correct in 

rendering. 
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CHAPTER 5 RESULTS 

 In this chapter, we present the results of our sparse voxel octree algorithm, as well as 

images rendered with using our data structure. Our test platform is RTX 3080 8GB. The dimension 

of our voxel grid is 5123, which corresponds to a sparse voxel octree of 9 depths. The meshes we 

are using include Stanford bunny, Stanford dragon, happy Buddha and Crytek Sponza. The 

resolution in the ray-casting algorithm is 1280 × 720. The following table shows the details in 

each scene, the performance of our voxelization, octree construction and octree updating methods. 

 

Table 1: Detailed amount of triangle, voxel and node in the test scene of our algorithm. The 

number of voxel or node of the dynamic mesh may vary in runtime. The voxel dimension is 

5123, and the actual size of voxel is depending on the AABB of the static mesh. 

 Triangle Voxel Node 

Stanford Bunny 4968 35300 ± 300 16500 ± 300 

Stanford Dragon 871414 4880000 ± 30000 643000 ± 3000 

Happy Buddha & 

Cube 

110782 1261258 843576 

Crytek Sponza 262205 7355495 5579960 

 

 We designed two scenes to experiment on our dynamic updating algorithm. In the first 

scene, the static objects include the Happy Buddha and a cube, while the dynamic object in the 

scene is the Stanford Dragon. The dynamic mesh is rotating orbiting its center. We also tried to 

make two meshes overlap as much as possible to test the robustness of our algorithm. In the other 

scene, the static object is the Crytek Sponza and the dynamic object is Stanford Bunny. The 

dynamic mesh is moving uniformly along a straight line.  
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Table 2: timings of critical processes of our method measured in milliseconds. The voxelization 

is divided into two phases: preprocess and voxelization.  

 Buddha and Dragon (ms) Crytek Sponza (ms) 

Voxelization 0.32/0.82 0.25/401.26 

Octree Construction (bottom-

top) 

20.33 20.80 

Octree Construction (top-

bottom) 

15.88 21.18 

Dynamic Voxelization 1.29/1.07 0.17/0.20 

Dynamic Update  22.23 20.90 

Ray-casting 10.04 20.12 

 

 

 

Figure 24 Rendering of the test scene. The white mesh is static while the red mesh is dynamic. 

The dynamic mesh is revoxelized and updated in octree in every frame. Note that how our 

method merges static nodes with dynamic nodes when two objects overlap. 
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Figure 24 continued 
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Figure 24 continued 
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Figure 24 continued
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CHAPTER 6 CONCOLUSION 

Discussion 

 We have presented an alternate method to construct and update sparse voxel octree in real 

time on GPU. Our method utilizes Morton code to organize voxels, which results in easy octree 

construction and traversal. We preprocess triangle information to accelerate the voxel-triangle 

intersection test in voxelization. In dynamic updating, our method achieves fast undo and 

modifying SVO by copying and merging new nodes with static nodes. Our algorithm is fully 

automatic and supports complex geometry. 

 Similar to other voxel-based methods, the time complexity of our method is independent 

from scene’s geometry complexity. Instead, it seems to be relative to the area of the geometry. 

Because we are launching one thread per triangle, the more triangles the mesh has, the faster our 

algorithm performs. We should avoid large triangles in practice as much as possible. It is usually 

a good idea to subdivide the large triangles before voxelization. 

 Our method shows strong robustness in updating even when two objects overlap. Although 

we only show translation and rotation in our experiments, it would work for any animated objects. 

Because animations will only influent the input geometry information and will have no direct 

effect on our voxel-based algorithm. 

 Notice that our method of octree construction is slower in some cases than Crassin’s 

method (top-down). This is because in our octree construction and updating method, we need to 

traverse all the nodes whether they are empty or nonempty, while Crassin’s method only need to 

traverse all valid voxels. However, our approach shows better performance in more complex 

scenes. In development, we always find that most area in the octree remains empty. It would be a 

good idea to use some global variable to constrain our method, so that we will not open thread for 

areas that are totally empty. For example, we can use two variables to record the smallest and the 

largest Morton code encountered, and only construct the octree based on nodes between these two 

values. We can use atomic exchange operation to keep updating them, we would like to explore 

how effectively it can simplify our method. 

 Our algorithm of octree updating is running in constant time among different scenes. This 

may be beneficial in complex scenes with numerous dynamic objects. While Crassin’s method is 
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faster when fewer voxels need to be updated. Because the octrees that are generated by different 

construction methods are identical. In real application, we can switch between two methods 

adaptively to achieve the best performance. 

Future Works 

 One of the most important implementations of our method is dynamic global illumination. 

It is well known that static global illumination can be approximated by using pre-baked textures. 

However, interactive global illumination is a very challenging topic in computer graphics. SVO 

has been proved to be helpful to some real-time global illumination methods. However, voxels are 

essentially tiny axis-aligned cubes. Therefore, pre-filtering of voxel data may be needed for anti-

aliasing in global illumination.   

 Another important goal is to incorporate our algorithm into graphics APIs. In this study, 

our method is implemented in CUDA because its flexibility and convenience in GPU programming. 

However, in graphics APIs, memory management and GPU programming would be more 

challenging. But it is feasible considering most graphics APIs have supported GPGPU. Besides, 

we can take advantage of the fast rendering pipeline of graphics APIs to improve the performance 

of our voxelization method. 

 In our experiment, the dynamic part of the objects and the octree are revoxlized and 

reconstructed in every frame. In real application, this level of accuracy is usually less important. 

It is common to distribute the update of indirect illumination temporally into multiple frames for 

better performance. Likewise, the update of octree can be separated into multiple frames because  

the octree is constructed level by level. 

 Inspired by Zeng et al. (2013), we find that nodes in the top few levels of the octree are 

always occupied regardless of the scene’s arrangement. We wonder whether we can use the similar 

approach to accelerate our octree operations. Also, it is interesting to test different space filling 

curves other than Morton Order to analyze their performance in octree updating. 

 Finally, in graphics applications, some dynamic objects do not keep moving in the whole 

time. In other word, how can we choose the objects selectively, so that only the objects that moved 

in current frame will be updated. One idea is to create multiple layers of dynamic octrees. This 

needs further experiment in the future. 

 



 

52 

REFERENCE 

Baert, J., Lagae, A., & Dutré, P. (2014). Out-of-Core Construction of Sparse Voxel Octrees. 

Computer Graphics Forum, 33(6), 220–227. https://doi.org/10.1111/cgf.12345  

Bauszat, P., Eisemann, M., & Magnor, M. (2011). Guided Image Filtering for Interactive High-

quality Global Illumination. Computer Graphics Forum, 30(4), 1361–1368. Oxford, UK: 

Blackwell Publishing Ltd. Retrieved July 25, 2020 from https://doi.org/10.1111/j.1467-

8659.2011.01996.x 

Burnes, A. (2019, August 27). Control: Multiple Stunning Ray-Traced Effects Raise The Bar For 

Game Graphics. Artificial Intelligence Computing Leadership from NVIDIA. Retrieved 

July 12, 2020 from https://www.nvidia.com/en-us/geforce/news/control-rtx-ray-tracing-

dlss-out-now/. 

Campbell, P. M., Devine, K. D., Flaherty, J. E., Gervasio, L. G., & Teresco, J. D. (2003). 

Dynamic octree load balancing using space-filling curves. Williams College Department of 

Computer Science, Tech. Rep. CS-03-01. 

Careil, V., Billeter, M., & Eisemann, E. (2020). Interactively Modifying Compressed Sparse 

Voxel Representations. Computer Graphics Forum, 39(2), 111–119. 

https://doi.org/10.1111/cgf.13916  

Crassin, C., & Green, S. (2012). Octree-Based Sparse Voxelization Using the GPU Hardware 

Rasterizer. OpenGL Insights, 303–320. https://doi.org/10.1201/b12288-26  

Crassin, C., Neyret, F., Sainz, M., Green, S., & Eisemann, E. (2011, September). Interactive 

Indirect Illumination Using Voxel Cone Tracing. Computer Graphics Forum, 30(7), 1921–

1930. Oxford, UK: Blackwell Publishing Ltd. Retrieved July 7, 2020 from 

https://doi.org/10.1111/j.1467-8659.2011.02063.x 

Crassin, C., Neyret, F., Lefebvre, S., & Eisemann, E. (2009). Gigavoxels: Ray-guided streaming 

for efficient and detailed voxel rendering. In E. Haines, M. McGuire, D.G. Aliaga, & M.M. 

Oliveira (Co-chairs), Proceedings of the 2009 Symposium on Interactive 3D Graphics and 

Games - I3D '09, 15-22. Boston, MA Feb 27-March 1, 2009. New York, NY: ACM. 

Retrieved July 12, 2020 from https://doi.org/10.1145/1507149.1507152 

Dachsbacher, C., & Stamminger, M. (2005). Reflective shadow maps. In A. Lastra & M. Olano 

(Co-chairs), D. Luebke & H. Pfister (Program Charis). Proceedings of the 2005 

Symposium on Interactive 3D Graphics and Games - SI3D '05. District of Columbia, 

Washington, April 3-6, 2005. New York, NY: ACM. Retrieved July 25, 2020 from 

https://doi.org/10.1145/1053427.1053460 

 

https://doi.org/10.1111/j.1467-8659.2011.01996.x
https://doi.org/10.1111/j.1467-8659.2011.01996.x
https://www.nvidia.com/en-us/geforce/news/control-rtx-ray-tracing-dlss-out-now/
https://www.nvidia.com/en-us/geforce/news/control-rtx-ray-tracing-dlss-out-now/
https://doi.org/10.1111/cgf.13916
https://doi.org/10.1111/j.1467-8659.2011.02063.x
https://doi.org/10.1145/1507149.1507152


 

53 

Foley, T., & Sugerman, J. (2005). KD-tree acceleration structures for a GPU raytracer. In M. 

Harris & D. Luebke (Co-chairs), Proceedings of the ACM SIGGRAPH/EUROGRAPHICS 

Conference on Graphics Hardware - HWWS '05. Los Angeles, CA. July 30-31, 2005. New 

York, NY: ACM. Retrieved 8 July, 2020 from https://doi.org/10.1145/1071866.1071869  

Goral, C. M., Torrance, K. E., Greenberg, D. P., & Battaile, B. (1984). Modeling the interaction 

of light between diffuse surfaces. In D. A. Luther, R. M. Mueller, R. A. Weinberg & R. A. 

Ellis (Charimans), H. Christiansen (Editor). Proceedings of the 11th Annual Conference on 

Computer Graphics and Interactive Techniques - SIGGRAPH '84, 213–222. New York, 

NY: ACM. Retrieved July 5, 2020 from https://doi.org/10.1145/800031.808601  

Hachisuka, T., & Jensen, H. W. (2009). Stochastic progressive photon mapping. In M. Inakage 

(Co-chairs). ACM SIGGRAPH Asia 2009 Papers on - SIGGRAPH Asia '09. Yokohama, 

Japan, December 16-19, 2009. New York, NY: ACM. 

https://doi.org/10.1145/1661412.1618487 

Horn, D. R., Sugerman, J., Houston, M., & Hanrahan, P. (2007). Interactive k-d tree GPU 

raytracing. In B. Gooch & P. Sloan (General Chairs), J. Cohen, G. Turk & B. Watson 

(Program Chairs). Proceedings of the 2007 Symposium on Interactive 3D Graphics and 

Games - I3D '07, 167–174. Washington, Seattle, April 30 – May 2, 2007. New York, NY: 

ACM. Retrieved July 28, 2020 from https://doi.org/10.1145/1230100.1230129 

Hoetzlein, R. K. (2016). GVDB: Raytracing sparse voxel database structures on the GPU. 

In Proceedings of High Performance Graphics (pp. 109-117). 

http://dx.doi.org/10.2312/hpg.20161197 

Jensen, H. W. (1996). Global Illumination using Photon Maps. In: Pueyo X., Schröder P. (eds). 

Eurographics Rendering Techniques ’96, 21–30. Eurographics. Springer, Vienna. 

Retrieved July 5, 2020 from https://doi.org/10.1007/978-3-7091-7484-5_3 

Kajiya, J. T. (1986, August). The rendering equation. In D.C. Evans & R.J. Athay, ACM 

SIGGRAPH Computer Graphics, 20(4), 143–150. New York, NY: ACM. Retrieved July 

12, 2020 from https://doi.org/10.1145/15886.15902 

Kaplanyan, A., & Dachsbacher, C. (2010). Cascaded light propagation volumes for real-time 

indirect illumination. Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D 

Graphics and Games - I3D 10. https://doi.org/10.1145/1730804.1730821  

Keller, A. (1997). Instant radiosity. In G. S. Owen, T. Whitted & B. Mones-Hattal (Chairman). 

Proceedings of the 24th Annual Conference on Computer Graphics and Interactive 

Techniques - SIGGRAPH '97. ACM Press/Addison-Wesley Publishing Co.  

https://doi.org/10.1145/258734.258769 

Kämpe, V., Sintorn, E., & Assarsson, U. (2013). High resolution sparse voxel DAGs. ACM 

Transactions on Graphics, 32(4), 1. New York, NY: ACM. 

https://doi.org/10.1145/2461912.2462024 

https://doi.org/10.1145/1071866.1071869
https://doi.org/10.1145/800031.808601
https://doi.org/10.1145/1661412.1618487
https://doi.org/10.1145/1230100.1230129
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/2461912.2462024


 

54 

Kim, Y., Kim, B., & Kim, Y. J. (2018). Dynamic deep octree for high‐resolution volumetric 

painting in virtual reality. Computer Graphics Forum, 37(7), 179–190. 

https://doi.org/10.1111/cgf.13558  

Lafortune, E. P., & Willems, Y. D. (1993). Bi-directional path tracing. Proceedings of Third 

International Conference on Computational Graphics and Visualization Techniques 

(Compugraphics '93), 145–153. Alvor, Portugal, December, 1993. Retrieved July 26, 2020 

from http://graphics.cs.kuleuven.be/publications/BDPT/ 

Laine, S., & Karras, T. (2010). Efficient sparse voxel octrees. Proceedings of the ACM 

SIGGRAPH Symposium on Interactive 3D Graphics and Games - I3D 10. 

https://doi.org/10.1145/1730804.1730814  

Lefohn, A. E., Sengupta, S., Kniss, J., Strzodka, R., & Owens, J. D. (2006). Glift. ACM 

Transactions on Graphics, 25(1), 60–99. https://doi.org/10.1145/1122501.1122505  

Nichols, G., Shopf, J., & Wyman, C. (2009). Hierarchical Image-Space Radiosity for Interactive 

Global Illumination. Computer Graphics Forum, 28(4), 1141–1149. Oxford, UK: 

Blackwell Publishing Ltd. Retrieved July 19, 2020 from https://doi.org/10.1111/j.1467-

8659.2009.01491.x 

Pineda, J. (1988, June). A parallel algorithm for polygon rasterization. In Proceedings of the 15th 

annual conference on Computer graphics and interactive techniques (pp. 17-20). 

Schwarz, M., & Seidel, H.-P. (2010). Fast parallel surface and solid voxelization on GPUs. ACM 

SIGGRAPH Asia 2010 Papers on - SIGGRAPH ASIA '10. 

https://doi.org/10.1145/1882262.1866201  

Shanmugam, P., & Arikan, O. (2007). Hardware accelerated ambient occlusion techniques on 

GPUs. Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games - I3D 

'07. https://doi.org/10.1145/1230100.1230113  

Sun, C., & Agu, E. (2015). Many-Lights Real Time Global Illumination Using Sparse Voxel 

Octree. Advances in Visual Computing Lecture Notes in Computer Science, 150–159. 

https://doi.org/10.1007/978-3-319-27863-6_14  

Thiedemann, S., Henrich, N., Grosch, T., & Müller, S. (2011). Voxel-based global illumination. 

Symposium on Interactive 3D Graphics and Games on - I3D '11. 

https://doi.org/10.1145/1944745.1944763  

Zeng, M., Zhao, F., Zheng, J., & Liu, X. (2013). Octree-based fusion for realtime 3D 

reconstruction. Graphical Models, 75(3), 126–136. 

https://doi.org/10.1016/j.gmod.2012.09.002  

 

http://graphics.cs.kuleuven.be/publications/BDPT/
https://doi.org/10.1111/j.1467-8659.2009.01491.x
https://doi.org/10.1111/j.1467-8659.2009.01491.x

