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ABSTRACT 

The capability of continuously producing good quality products with high productivity and 

low cost is critical for manufacturers. Generally, products are made up of components, which 

enable the product to perform its purpose. A complex product may be assembled from many 

components through multiple assembly stages. Any quality defects in a component may build up 

in the product. A good understanding of how the quality of components impacts the quality of 

products in a complex manufacturing system is essential for keeping the competitiveness of a 

manufacturer.  

In this research, a series of quality management models are proposed based on studying the 

relationship between component quality and product quality. Optimal quality control leads to 

increased competitiveness of a manufacturer, since it helps reduce cost, increase production, and 

limit environmental impact. The research starts from studying the tolerance allocation problem, 

which is fundamental of managing the tradeoff between quality, productivity, cost, and waste. First, 

a tolerance allocation method that minimizes cost is proposed. This model jointly considers 

process variation and tolerance specifications. The relation between manufacturer, user, design, 

and processing are embedded in the cost model. To solve the tolerance allocation problem from 

the root cause, i.e., the variations in production processes, a second tolerance allocation model is 

then provided. This model considers both product design (tolerance selection) and operation 

planning (or production rate selection). Relations among production rate, production cost, 

processing precision, and waste are considered. Furthermore, a new process control model that 

extends traditional statistical process control techniques is proposed. Data acquired from a 

manufacturing system are usually in the forms of time series, and anomalies in the time series are 

generally related to quality defects. A new method that can detect anomalies in time series data 
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with long length and high dimensionality is developed. This model is based on recurrent neural 

networks, and the parameters of the neural networks can be trained using data acquired during 

routine operation of a manufacturing system. This is very beneficial because often, there are few 

data labeled as anomalies, since anomalies are hopefully rare events in a well-managed system. 

Last, quality control of remanufacturing is studied. A component-oriented reassembly model is 

proposed to manage the varied quality of returned component and varied needs of customers. In 

this model, returned components are inspected and assigned scores according to their 

quality/function, and categorized in a reassembly inventory. Based on the reassembly inventory, 

components are paired under the control of a reassembly strategy. A reassembly-score iteration 

algorithm is developed to identify the optimal reassembly strategy. The proposed model can 

reassemble products to meet a larger variety of customer needs, while simultaneously producing 

better remanufactured products. 

In summary, this dissertation presents a series of novel quality management models to keep 

manufacturers’ competitiveness. These models are based on studying factors that impact 

component and product quality at multiple stages of a product life cycle. It was found that 

analyzing the relationship between component and product quality is a very effective way of 

improving product quality, saving cost, and reducing environmental impact of manufacturing.  
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 INTRODUCTION 

1.1 Problem Description and Motivation 

Products are systems that are produced by manufacturers and sold to customers to perform 

a purpose. The ability to produce high quality products with high productivity and low cost is 

critical for manufacturers to stay competitive. Generally, products are made up of components, 

which enable the product to perform its purpose. In this research, a series of quality management 

models are proposed based on studying the relationship between component and product quality.  

As defined by Juran, quality is “fit for purpose” [1]. Functional deviation of a product from 

its purpose generally is associated with deviation of a component/product from its engineering 

specifications. And such deviations produce negative impacts on the manufacturer, and perhaps 

even the customer if the quality problem is not addressed by the manufacturer. For example, when 

variation of a process is high, the productivity will decrease since more time will be spent on 

inspecting and repairing defective components/products. Costs and waste will be incurred by failed 

components/products because of rework or recycling. Product failure causes high warranty cost 

and hurts customer satisfaction, which may lead to decreased market share of the products.  

To reduce the negative impact of quality deviation, manufacturers usually put significant 

amounts of efforts into quality improvement. These efforts may have direct benefits, such as 

reducing defective products that are delivered to customers. Furthermore, the pursuit of high-

quality helps builds the idea of never-ending improvement, which also benefits a manufacturer in 

the long run. For example, statistical process control is one of such techniques. It is used to increase 

the consistency of product/process performance. With an increased process performance, less 

resources would be spent on corrective actions that do not bring direct value, such as inspecting, 
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repairing, and recycling. These strategies help continually increase the competitiveness of the 

manufacturer, with an increased productivity, increased market share, and reduced cost.  

Increasing the quality of products has been an everlasting goal in the manufacturing industry. 

Quality control has been applied before the industrial revolution, and it has been improved along 

with the development of manufacturing technologies and management methods. And in the past 

decades, with the globalization, the capability of effective quality management has been critical 

for the survival of manufacturers.  

A historical perspective of quality control is summarized by DeVore et al [2]), as given in 

Figure 1.1. Before the industrial revolution, individuals such as craftsman are responsible for 

managing product qualities. In the nineteenth century, when the industry widely adopted mass 

production, laborers were divided to sections of assembly lines and were only responsible for part 

of the production. The lack of involvement in the whole production made the laborers acquires 

less ownership of the products, which brought about the reduction of product quality and 

productivity. Industrial management pioneers such as Frederick Winslow Taylor proposed 

scientific management in manufacturing, which standardized the evaluation of workers’ 

performance, i.e., the number of units produced per unit time. These efforts solved the productivity 

problem, but the quality issues remained. Walter Shewhart found the relation between a steady 

manufacturing process and the quality of products. Statistical approaches were then introduced to 

detect variations in a process. Causes that incurred the variations are generally the sources of 

quality defect. Detecting and then removing them may help solve quality issues timely. At the 

beginning of the twentieth century, quality control was considered a separate task from production. 

Quality assurance was usually carried out by a team separate from the production team. The 

production team is responsible for increasing the production, and the quality team was responsible 
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for inspecting all the products and detecting the unsatisfactory ones (products that were outside of 

tolerances). This approach generally has low efficiency and may not be suitable for mass 

productions. To solve this issue, H.F. Dodge and H.G. Romig proposed the “acceptance sampling” 

methods, which inspect quality of small samples as a judgement of the quality of lots of goods. 

Starting from the latter half of the twentieth century, global competitiveness became an important 

issue for manufacturers. Pioneers such as Deming and Taguchi proposed statistically based quality 

management techniques. These techniques emphasized the importance of design on quality control. 

Product characteristics were designed in such a way that they are not sensitive to the change of 

environment. Design of experiments were widely applied in this process. Because design generally 

has a big impact on product quality but a low cost, the design-based approach greatly helped 

manufacturers increase product quality and reduce cost. In the past decades, manufacturers have 

obtained a better understanding of how other stages of production, such as packing, delivery, and 

field service, impact product quality [1]. Quality management is now generally considered at an 

institutional level, i.e., it is involved in multiple departments, such as design, supply chain, 

processing, inspection, and after market.  
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Figure 1.1. Historical perspective of quality control (adapted from [2]). 

Pre-Industrial Revolution

Birth of  Taylorism 

Shewhart Introduces Statistical Process Control

Dodge and Romig Introduce Acceptance Sampling Methods

Deming Approach to Quality/Productivity Improvement

United States Recognizes the Deming Approach and Taguchi Methods

Institutionalization of Quality within the Organization

1875

1925

1930

1950

1980

2000

Through sustained efforts, driven by continued competitive forces in the 

global marketplace as well as national efforts aimed at individual and 

organizational learning accompanied by certification and evaluation 

programs, quality design and improvement becomes institutionalized within 

the organization.

U.S. industrial leaders begin to embrace the Deming philosophy of quality 

improvement and America begins to transform its industrial sector. The 

United States is introduced to the methods of Taguchi, and the techniques of 

statistical design of experiments become well known. Emphasis begins to be 

placed on pushing the quality issue upstream into engineering design

W. Edwards Deming develops a statistically based approach to quality/

productivity improvement. Central to this approach is emphasis on the 

responsibilities and obligations of top management. Deming does not get the 

attention of management in the United States but is accepted readily in Japan 

and leads their transformation into a leader in the world marketplace.

Dodge and Romig develop a system of lot-by-lot sampling inspection of 

manufactured product for the purpose of determining its suitability for 

shipment to the customer. The methods are based on a probabilistic approach 

to the prediction of the lot character based on sampling results.

Walter Shewhart of Bell Labs develops a statistical approach to the study of 

manufacturing process variation for the purpose of improving the economic 

viability of the process. The methods are based on the continual on-line 

monitoring of process variations.

The concepts and methods of mass production and the notion of the division 

of labor begin to appear in the American industrial sector. F. W. Taylor 

develops the principles of scientific management and in so doing introduces 

such  institutions  as the work standard and wage incentive plans.

Quality  controlled  by the individual craftsman/artisan who is involved in 

all aspects of the product life cycle.
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Complexity of products has been continuously growing, as well as the manufacturing 

systems that produce the products. This brings new challenges to quality control. As variation in 

manufacturing is unavoidable, products cannot exactly meet the designed nominal values. In mass 

production, tolerances are assigned to components to guarantee quality and interchangeability 

(beneficial for increasing productivity and saving cost). Product designers determine 

characteristics of products based on their functionality (purpose of product). Product designers 

assign tolerances to the quality characteristics of the assembly. Process designers then “translate” 

the tolerances to process parameters. A complex product may be assembled at multiple stages. 

Variations at these stages will build up into the final products. How to optimize the tolerances of 

components considering the variations across multiple components through the assembly stages is 

very difficult and important. If tolerances are too loose, components with larger variations will be 

assembled, these variations will stack-up in the products, thus cause quality deviation of product. 

On the other hand, if tolerances are too tight, unnecessary scrap/rework of components are incurred, 

and more precise equipment may be deployed, which increase costs. 

If anomalies of a process can be identified, it may reveal sources of quality deterioration, 

such as wear of cutters. Many anomaly detection techniques have been proposed, these techniques 

are extensions of the traditional statistical process control. The advent of low-cost sensors, wireless 

communication, and advances in computing, which collectively are often conveyed as the 

industrial internet of things, has made available large amounts of data to manufacturers. This data, 

from multiple sensors, is collected over time and forms a multidimensional time series. The 

accumulation of large amounts of time series data brings opportunities to better monitor the 

manufacturing system, but the anomaly detection process may also become more challenging, 

because the sensor data may be of longer length and higher dimensionality.  
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With increased awareness of the environmental issues attributable to manufacturing 

processes and products, researchers have started to investigate methods to make manufacturing 

processes and products more sustainable. Extending a product into multiple life cycles is one of 

these techniques. This has presented a new challenge, i.e., how to manage product quality across 

multiple life cycles. Once a product reaches end-of-life, it can be returned to manufacturers and 

may be repaired and remanufactured for another life cycle. One difficulty in these procedures is 

controlling the quality of the returned products/component, also known as the cores. After one life 

cycle, the quality levels of the cores may be very different. How to manage the cores so that they 

can be returned into the market with a satisfactory cost and quality is an important research topic.  

The challenges summarized above show that quality design and validation affect many 

stages of a product life cycle. Figure 1.2 provides the relation between product quality control and 

the stages of a product life cycle. If some of the stages are ignored, conflicted results that causes a 

waste of resource may be incurred. For example, if the capability of the process is ignored in design, 

an unnecessary high-quality requirement may be requested. Process with low efficiency may be 

applied to achieve this requirement (such as low feed rate in machining), and unnecessary scrap of 

good components may occur. This is a waste of energy and resources. On the other hand, if the 

cost of processing is reduced by sacrificing quality, this may lead to products that may fail early 

in their life cycle. The energy and resources embedded in these products are wasted. An overall 

view of the whole product life cycle is necessary to improve this capability. 

Few studies on quality control consider multiple life stages of a product. In the next section, 

a literature review is carried out. It is focused on quality control, and more specifically, on 

tolerance allocation, anomaly detection in production processes, and quality control in reassembly.  
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Figure 1.2. Quality management on multiple phases of a product [3]. 

1.2 Literature Review1 

1.2.1 Tolerance Allocation 

Most studies on tolerance allocation have focused on minimizing cost using tolerance-cost 

models. Various forms of functions have been proposed to model the tolerance-cost relationship 

[4] [5] [6] [7] [8] [9]. In some production systems, inspection is carried out on individual 

components. If a component fails to meet the specification, it will be scrapped, and this creates 

another cost. Some research has incorporated inspection and scrap costs in tolerance allocation 

models [10] [11]. To consider the broader cost caused by deviation of product quality 

characteristics from their nominal values, some studies have included quality loss in their models 

[12]–[14]. Various forms of functions have been proposed to model the tolerance-cost relation. 

Based on these tolerance-cost models, the task of optimally allocating the tolerance is usually 

transformed to a constrained optimization problem. The objective of this optimization problem is 

to minimize cost, the constraints are tolerance requirements, and the optimization variables are 

tolerances of individual components. 

 
1 Reprinted with permission (portions enhanced/adapted) from [3], [141]–[144]. 
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Few studies on tolerance optimization consider the linkage between design and production. 

For the few studies that have considered this linkage, the impact of processing parameters on 

tolerance for specific machining processes are considered. Wang and Liang [15] proposed a 

tolerance allocation method that minimizes machining cost. Based on the relation between cost 

and machining parameters, the tolerance of components, the machining sequences, and machining 

parameters are selected. Liu and Qiu [16] integrated machining time into the tolerance 

optimization model. The methods that consider both design and production can help practitioners 

estimate how machining conditions for common machining methods affect the overall design of 

tolerance. Process variables, such as feed rate and cutting speed in machining or scanning speed 

in additive manufacturing, directly affect the cost and precision (variation) of a process [17]. A 

process usually has multiple variable settings (e.g., cutting speed, cutting depth, and feed rate in 

machining), and the impacts of each variable on the cost and process variation are different [15] 

[18]. The coupling effect among different conditions/variables makes it difficult to find the optimal 

variable settings (for a variety of objectives), and the optimization result for one type of process 

are difficult to generalize to other types of processes.  

Another difficulty on tolerance allocation is predicting how the variations of components 

stack-up into the overall variation of the product. Traditionally, this task has been solved using 

simple approaches such as a worst-case model or root sum square model [15] [19]. Generally, 

simple models are only applicable to simple assemblies. For a complex assembly, tolerances 

optimized by simple models may result in high manufacturing costs due to excessively tight 

tolerances.  

One of the most common ways to address the tolerance allocation problem for complex 

assemblies has been heuristic methods. Heuristic methods have the potential to find optimal or 
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near-optimal solutions to complex problems. Singh et al. [20] and Haq et al. [21] used genetic 

algorithms to optimally allocate product tolerances. Zahara and Kao [22] combined the Nelder-

Mead simplex method with a particle swarm optimization method to minimize manufacturing cost 

and quality loss. Zhang et al. [23] applied a particle swarm algorithm to satisfy tolerance 

requirements. While these heuristic algorithms have had success in tolerance allocation, a 

challenge with them is that they are very sensitive to tuning parameters, and unfortunately, such 

parameters are generally determined by trial and error. The lack of general guidance for selecting 

parameters limits the wide applicability of heuristic methods to industrial practitioners.  

Some researchers applied optimization strategies in the tolerance allocation problem for 

complex assemblies. The method of Lagrange multipliers has been used to find optimal tolerances 

[5] [24] [25]. The Lagrange multiplier method is a strategy that transform a constrained 

optimization problem into an unconstrained problem. It helps find closed-form optimal tolerances. 

Tlija et al. [26] combined the Lagrange multiplier method with a technique that evaluates the 

difficulties of manufacturing a given part. This combination enables designers to estimate the 

difficulty and cost of manufacturing the product by simulation. Another common method is the 

Lambert W function, which is usually used in physics. Shin et al. [27] used the Lambert W function 

to find the tolerances that minimize the summation of manufacturing cost and rejection costs. 

Sofiana et al. [28] used a third-party software package to solve a tolerance optimization model. 

This model considered the impact of rework on the quality of product, and the impact of a profit-

sharing policy, which may stimulate the commitment of suppliers in quality improvement.  

Simulation-based strategies have also been widely used in predicting the stack-up of 

component variations. Qureshi et al. [29] proposed an iterative optimization procedure based on 

Monte Carlo simulation. Samples of given distribution is fist generated, and then the impact of 
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component variation on the assembly is estimated by simulation. Wu et al. [30] used Monte Carlo 

simulation in the statistical analysis and introduced a genetic algorithm to improve the efficiency 

of the estimation. Hoffenson et al. [31] provided survey-based tolerance allocation method that 

considers the economic and environmental impact of scrapping components and products. Design 

of experiment and Monte Carlo simulation are deployed to predict the stack-up of individual 

tolerance into a product. Haghighi and Li [32] proposed a tolerance design method for additive 

manufacturing. This method estimates characteristics of population using a bootstrap statistical 

technique, which is based on simulation. Huang et al. [33] proposed a method that optimize 

tolerances on two stages. First, a tolerance model is built based on sampling, then a gradient-based 

strategy is used to optimize the model. Rosyidi et al. [34] and Rosyidi et al. [35] proposed a 

simulation-based method that considered a situation where the process capability of suppliers are 

a variable. A fuzzy quality loss function is included in the model to consider the cost related to the 

quality of products. 
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Table 1.1. Common tolerance optimization methods and limitations. 

Method Advantage Disadvantage 

Optimize process parameters 

Solve the problem from the 

root-cause, variation of 

processes. 

Difficult to find the optimal 

variable settings. Results are 

difficult to generalize.  

Heuristic  

Can find near optimal 

tolerances. Do not need 

rigorous optimization 

procedures. 

Results are sensitive to tuning 

parameters, which are 

determined by trial and error. 

Difficult to generalize. 

Optimization strategies 

Can be used in complex 

assemblies. No need of tuning 

parameters. 

Statistical analysis is needed 

to build such a model, and the 

precision of the prediction 

depends on the model. 

Simulation-based  

No need to build statistical 

models to predict the 

accumulation of tolerances. 

The precision of the 

prediction is high. 

Time-consuming. It generally 

needs simulation of large 

samples and many iterations. 

Method of this chapter 

Have an overall consideration on quality, cost, and waste. The 

linkage between design and production are considered 

(considers both product design and operation planning.) 

1.2.2 Anomaly Detection 

The advent of low-cost sensors, wireless communication, and advances in computing, which 

collectively are often conveyed as the industrial internet of things, has made available large 

amounts of data to manufacturers [36]–[38]. This data, from multiple sensors, is collected over 

time and forms a multidimensional time series. The accumulation of large amounts of time series 

data brings opportunities to better monitor the manufacturing system, but the anomaly detection 

process may also become more challenging, because the sensor data may be of longer length and 

higher dimension. For example, every time step of the time series collected from a motor may be 

a vector containing acceleration signals of multiple axes and vibration signals of multiple 

directions for a long period of time [39] [40]. Traditional anomaly detection methods may not be 

capable of detecting anomalies in time series data of long length and high dimensionality [41].  
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Many efforts have been carried out to solve the challenge of detecting anomalies from time 

series data, and these efforts may be classified into two groups. The first group of studies takes a 

strategy that preprocesses the time series data. This can be a two-step process, with the first step 

finding sub-sequences within a time series that have the largest differences from other 

subsequences, with large differences being evidence of an anomaly [42] [43]. For a time series 

with a long length, the series can be divided into segments, and a clustering algorithm can be 

employed to locate an anomaly [44]. For a time series of high dimensionality, it can first reduce 

the dimensionality of the data and find key signatures using, for example, multilinear principal 

component analysis, then use a classification model to detect anomalies [45]. These methods have 

gained popularity. However, a good understanding of the structure of time series data is needed to 

preprocess the data, which may be a difficult task for high dimensional data. One way to avoid 

preprocessing of data is to use supervised learning to train models that can automatically acquire 

features from the data [46]–[49]. But these methods need a large number of labeled anomalies (the 

anomalies must be identified a priori) to train the model; such detailed information is usually not 

available [41]. Sipple [50] proposed a model that can generate samples with anomalies using 

anomaly-free data. Random forests and neural networks were trained using the samples to detect 

anomalies. Zhang et al [51] introduced a convolutional neural network to analyze the correlations 

among time series data. A feature map was then built to represent the temporal information. Wang 

et al [52] transformed a one-dimensional time series data into time-frequency images using wavelet 

analysis. A convolutional neural network was then used to learn features in the time series data.  

A second group of studies uses semi-supervised learning or unsupervised learning to solve 

the problems caused by the lack of labeled anomalies [41]. The basic idea of these methods is to 

use time series data collected under routine operation to establish a time series model (including 
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estimates of parameters). The differences between the raw data and model predictions serves as 

the residuals, and the estimation procedure is focused on minimizing these residuals. There are 

two common ways to form the models. The first model uses a subsequence of data from past time 

steps to predict data in future timesteps. Malhotra et al. [53] proposed a model to use time series 

data of past time steps to predict data of multiple future time steps. The data at each time step is 

predicted multiple times (at multiple time steps), and the distribution of the predicted data are used 

to predict the probability of the data being abnormal. Hundman et al. [54] proposed a similar 

method to predict a one-dimensional time series data for each dimension. A predetermined length 

of time series is used to predict the signal of the next time step. The reconstruction errors are then 

smoothed and monitored for anomalies. Hayton et al. [55] used data collected from a jet engine to 

train a support vector machine model, which built a hyper plane that could separate anomalies 

from anomaly-free data. A more powerful reconstruction model applies the encoder-decoder 

structure [51], [56]–[59]. The encoder-decoder structure was first proposed for machine translation 

[60] [60]. A series of neural networks are used as the encoder, which summarizes information from 

the time series data, then another series of neural networks are used as the decoder, which takes 

the information summarized by the encoder to reconstruct the time series.  

One limitation of the aforementioned anomaly detection methods is the accumulation of 

reconstruction errors. Because of their capability in retaining information of sequential data, 

recurrent neural networks (RNN) are one of the most commonly used approaches to create such a 

reconstruction model. The reconstruction process in an RNN model is carried out recurrently; thus, 

prediction errors of former timesteps accumulate through time. This may limit the effectiveness of 

using the reconstruction errors as an anomaly detector.  
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Another limitation of the RNN based encoder-decoder model is that it may have difficulties 

characterizing dynamics of high frequency in the input data. In general, there is a tradeoff between 

time series model complexity and the character of model reconstruction errors (residuals). A 

simple model may not adequately describe high frequency dynamics in the raw data, or it may well 

describe high frequency content, but fail to describe a slow drift in the signal. Increasing the 

complexity of the model allows more features of the raw data to be described, but this comes at 

the expense of more parameters to estimate. For common RNNs, it is not uncommon for high 

frequency, low amplitude components in the raw data to appear in the reconstruction errors, even 

though these components may not be anomalies [61]. 

1.2.3 Component-Oriented Reassembly 

Usually, reassembly processes of remanufacturing systems are managed in a product-

oriented model [62], as the quality and functional levels of a product are the easiest to determine. 

In a product-oriented model, when products reach end-of-life, they are returned to remanufacturers. 

Often, the constituent components of the product are also assumed to have reached end-of-life, 

and these components are considered for remanufacturing [63]. Such an approach has two 

drawbacks. 

First, many components are likely received before they require remanufacturing. A product 

is returned for remanufacturing when it fails, perhaps because of failure of a single component. 

But, since components fail at different rates, and for different reasons, many of the remaining 

components will still retain a portion of their utility and could have several years of potential 

service remaining before reconditioning is needed. If the components in “good” and “bad” 

conditions are not identified and separated from one another, and all the components are 
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remanufactured to a “like new condition,” the potential utilities of the components in a “good” 

condition are effectively wasted.  

Second, the product-oriented model is not flexible, because it only remanufactures products 

to “like new” or better condition [64]. However, customers have a wide variety of needs, and some 

may not require “like new” performance. When customers evaluate products by matching their 

needs with the functional capabilities of the products, and the products perform better than needed 

and cost more than the customer wants to spend, then the customer may not purchase the product 

[65]. Thus, the product-oriented model cannot satisfy the needs of every customer. It is better to 

offer a variety of different products to better satisfy different customer demands. 

To avoid the problems inherent in the product-oriented model, a component-oriented model 

can be used. In a component-oriented model, the returned components are categorized into classes 

according to their quality or functional levels and can be reassembled into products with functional 

levels different from those of new products [66]. As the quality of the returned components are 

considered in the reassembly process, the timing of the return of the components and the optimal 

time for remanufacturing the components may be matched. The returned components can be 

reassembled into products with predefined qualities and functions [67] [68]. Due to this flexibility, 

the prices of the remanufactured products can also have a larger range than new products. Thus, a 

wider variety of customer needs can be satisfied, which means more components will be 

remanufactured and sold [69]. Some companies such as Pitney Bowes [70], Ricoh [71], Airbus 

[67], and IBM [72] have developed remanufactured products using a business model that is 

different from new products.  

When dealing with the component-oriented model, many uncertainties make it challenging 

for the remanufacturers to control the remanufacturing system. One of the uncertainties originates 



 

27 

from the quality of the returned components, because the remanufacturers often have little control 

over the quantity, quality, timing of return, variety, and complexity of the returned components. 

Instead, they passively deal with components from returned products of different generations and 

types [73] [74]. Some companies deal with these uncertainties by using manual labor to manage 

the materials [75], which increases the cost of operation. The uncertainty of returned components 

requires control strategies that cost-effectively operate the remanufacturing system and provide 

the required quality of products [67]. 

Some models have been developed to characterize the varied quality of returned components 

and the components quality-driven and customer needs-driven models have been developed, as 

summarized in  

Table 1.2. These models provide insight in optimizing the reassembly process, however, the 

models have limitations. Research on component-quality driven models mainly focuses on the 

techniques to deal with the variation in quality of the returned components but ignores the variety 

of needs of customers. Customer-needs driven models react passively to the needs of customers, 

therefore, using a reassembly strategy to fulfill a certain order may not be an optimal strategy at 

the reassembly inventory level. 
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Table 1.2. Representative literature addressing uncertain quality of returned components and 

satisfying varied customer needs. 

Focus area Author Brief description of work Remarks 

Varied 

qualities of 

returned 

components  

Liu et al. 

[76] 

Quantitatively estimates 

reassembly precision by 

studying features of recycled 

components. 

Improves the reassembly 

precision but ignores variety of 

needs of the customers. 

Shen et al. 

[77] 

Uses an assembly Jacobian-

torsor model to analyze 

geometric error of 

remanufactured components.  

Focuses on geometrical 

variations of returned 

components, ignores functional 

variations. 

Mashhadi et 

al. [78] 

Analyzes the relationships 

between quality, buy-back 

pricing, and profit of used 

electronic components based 

on previous product life cycle 

data. 

Improves understanding about 

collecting previous life cycle 

data. 

Zhang et al. 

[79] 

Categorizes returned 

components into categories 

suitable for reuse, 

remanufacturing, or recycling. 

Provides scientific strategies to 

deal with returned components 

with different reliability levels 

for remanufacturers. Functional 

levels are ignored. 

Varied 

customer 

needs 

Jin et al. 

[80] 

Proposes an assemble-to-

order model to match 

different quality-based orders. 

Improves the flexibility of the 

reassembly system by 

interchangeably assembling 

components with different 

quality levels. 

Mont et al. 

[81] 

Provides a product-service 

system that leases refurbished 

or remanufactured prams 

consider customers’ need. 

Examines business models 

which lease remanufactured 

products. 

Sakai and 

Takata [65] 

Presents a reconfiguration 

method that remanufactures 

components returned from 

different generations of 

products into products with 

varied combinations of 

functions. 

Provides a new concept of 

remanufacturing products with 

different performance levels and 

functional combinations. 
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1.3 Research Gaps 

As analyzed in the previous two subsections, tremendous progress has been made on quality 

control, specifically, in the areas of tolerance allocation, anomaly detection, and quality 

optimization in reassembly. But some research gaps still exist.  

There are two major problems in the tolerance optimization methods mentioned above. First, 

these methods focus on minimizing cost and ignore the corresponding waste. Failure to consider 

waste, i.e., focusing exclusively on cost, may result in unnecessary scrapping/recycling because of 

excessively tight tolerances (unnecessarily rejecting components) or quality issues in assembly 

that result in product rejects. Second, these methods allocate tolerances using a product/component 

design-oriented approach, in which almost all the focus is placed upon the tolerances of the 

product/components, e.g., costs are modeled as a function of tolerance. Such a focus fails to capture 

the linkage between design and manufacturing. Also, the root cause of the problem, i.e., variations 

in production, is not considered in the tolerance allocation problem. 

Products and manufacturing systems are becoming more complex, a complex product may 

be produced at multiple assembly stages. During manufacturing processes, a large amount of data 

is collected. Generally, these data are of high dimensionality and high length. Traditional statistical 

process control methods may have difficulties analyzing these data. New data analysis techniques 

such as machine learning and deep learning may be combined with techniques of quality control 

to better manage production data.  

In the component-oriented reassembly model, many uncertainties make it challenging for 

the remanufacturers to control the remanufacturing system. One major uncertainty originates from 

the quality of the returned components, because the remanufacturers often have little control over 

the quantity, quality, timing of return, variety, and complexity of the returned components. Also, 

research on component-quality driven models mainly focuses on the techniques to deal with the 
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variation in quality of the returned components but ignores the variety of needs of customers. New 

control methods are needed to consider these uncertainties in remanufacturing. 

1.4 Objectives, Approaches, and Contributions 

Good management of product quality is fundamental of keeping the competitiveness of 

manufacturers. Managing product quality requires finding tradeoffs among multiple relations 

surrounding a product, as shown in Figure 1.3. For example, the relation between manufacturers 

and users, cost and productivity, design and manufacturing, and precision and waste. To have an 

“optimal” solution of quality management, multiple questions must be answered. For example, 

how could manufacturers satisfy the generally high but diversified requirements of quality from 

users? How to have an overall consideration of design and manufacturing? As analyzed in former 

subsections, components are the bridges between these relations, and thus, the core of finding 

answers to the questions. A series of studies are carried out to get a fundamental understanding of 

the relationship between component and product quality. 

First, a tolerance allocation model is proposed. This model minimizes cost by jointly 

considering process variation and tolerance specifications. The model employed a cost model that 

includes processing cost, scrap cost, and quality loss (impact of quality deviation in users evaluated 

in a monetary scale). The relation between manufacturer, user, design, and manufacturing are 

embedded in the cost model.  

To solve the tolerance allocation problem from the root cause, i.e., the variation in 

production, a second tolerance allocation model was provided. This model considers both product 

design (tolerance selection) and operation planning (or production rate selection). Relations among 

production rate, production cost, processing precision, and waste are considered. Compared to 

earlier models, this method produces more satisfactory products at a lower cost while producing 
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less waste. It is found that when the precision of a process is high, it is not necessary from an 

economic standpoint to inspect the quality of individual components. For poor precision processes, 

inspecting the quality of individual components is the preferred approach from a cost/throughput 

standpoint.  

An anomaly detection model that can detect anomalies in time series data collected from 

manufacturing systems is then developed. This model is based on recurrent neural networks, and 

it can be trained using data acquired during routine system operation. The model takes time series 

data as an input and reconstructs the input data. Time series data with an anomaly would causes 

patterns in the reconstruction errors that are inconsistent with error patterns of anomaly-free data. 

The performance of the proposed method is assessed using data from a diesel engine assembly 

process. Three common types of anomalies are detected from the time series data.  

Quality control of remanufacturing is also studied. A component-oriented reassembly model 

is proposed. In this model, used and returned components are inspected and assigned scores 

according to their quality/function, and categorized in a reassembly inventory. Based on the 

reassembly inventory, components are paired under the control of a reassembly strategy. To 

evaluate the performance of different reassembly strategies under uncertain conditions, the 

reassembly problem is described as an agent-environment system. The platform is modeled as a 

Markov decision process, based on which, a reassembly-score iteration algorithm is developed to 

identify the optimal reassembly strategy. The effectiveness of the method is demonstrated via a 

case study using the reassembly process of diesel engines. 

In summary, this dissertation presents a series of novel quality management models. These 

models are based on studying the relationship between component and product quality at multiple 

stages of a product life cycle. It was found that effectively managing this relationship is 
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fundamental of improving product quality, saving cost, and reducing environmental impact. This 

is a novel approach to keep the competitiveness of manufacturers.  

 

Figure 1.3. Component quality as bridges between product quality and other factors. 

  



 

33 

 ALLOCATION OF ASSEMBLY TOLERANCES TO MINIMIZE 

COSTS2 

The cost and quality of an assembly depend on the processes used to manufacture its 

components. The specific processes and process settings are often dictated by the tolerances on the 

components. One long-standing challenge is allocating the assembly tolerance to components. 

Many methods have been proposed, most of which endeavor to minimize cost. A tolerance 

allocation method that minimizes cost by jointly considering process variation and tolerance 

specifications is developed. This model is based on a new cost model that considers processing 

cost, scrap cost, and quality loss. The cost is minimized by a heuristic strategy. An overrunning 

clutch assembly case study is used to evaluate the method. 

2.1 Introduction 

Products are usually designed based on functional requirements (strength, durability, 

reliability, etc.). To ensure these performances, nominal values are specified. As variation in 

manufacturing is unavoidable, products cannot exactly meet the designed nominal values [82]. 

Product designers assign tolerances to the quality characteristics of the assembly. Since products 

are usually assembled from components, the assembly tolerances are allocated to these individual 

components.  

Generally, the tighter the tolerance allocated to individual components, the better the 

function expected of the assembled product. However, components with tight tolerances must 

 
2 Reprinted (portions enhanced/adapted) from Y. Wang, L. Li, N. W. Hartman, and J. W. Sutherland, “Allocation of 

assembly tolerances to minimize costs,” CIRP Ann., vol. 68, no. 1, pp. 13–16, 2019. 

https://doi.org/10.1016/j.cirp.2019.04.027. Published by Elsevier Ltd on behalf of CIRP. 



 

34 

typically be manufactured using machines/processes with high precision, which increases costs. 

Thus, there is a trade-off that must be made between quality and cost. 

When a bilateral tolerance is applied to a quality characteristic, it creates lower and upper 

specification limits. The variation or precision of a process (characterizable by σ2) is inversely 

related to the processing cost. Excessive process precision may inflate processing costs, while 

inadequate process precision may increase the number of products with low quality. 

To address the issues noted above, a tolerance allocation method is proposed that considers 

both alternative processes and processing conditions. A cost model is built to address processing 

cost, scrap cost, and quality loss. 

To minimize the cost, tolerance (more correctly referred to as variation) stack-up must be 

considered. As shown in Figure 2.1, manufactured quality characteristics of individual components 

may be viewed as stochastic variables that follow statistical distributions [82]. Component 

uncertainties will stack-up in the assembled products. 

 

Figure 2.1. Tolerance allocation and tolerance/variation stack-up in assembly. 
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Tolerance allocation, when there is component variation stack-up, is often addressed using 

simple approaches such as worst-case model or root sum square model. Both models have 

limitations [19] [83]. Tolerances allocated using the worst-case model tend to be tighter than 

necessary, and lead to high manufacturing costs. In the root sum square model, the variance of the 

product’s quality characteristics is assumed to be equal to the sum of the variances of the 

components’ quality characteristics. In many cases, this assumption is not realistic. Monte Carlo 

simulation is well suited to predicting the distribution of products assembled from components 

drawn from statistical distributions [84] [85]. 

In this chapter, a Monte Carlo simulation is used to analyze the stack-up effect of tolerances 

(variations) in an assembly caused by process variations and changes in the tolerance specifications. 

Optimal tolerance allocation for an assembly is modeled as a discrete, nonlinear optimization 

problem. A heuristic strategy is proposed to solve the problem. A case study shows that this method 

reduces costs compared with a traditional approach based on Taylor series expansion and a loss 

function. 

2.2 A Cost Model for Tolerance Allocation in Assembly 

A cost model for tolerance allocation should include expenses from a variety of different 

sources. The total cost for a batch of product assemblies, CT, can be expressed as 

T P S LC C C C= + + , (2.1) 

where, CP, CS, and CL are processing cost, scrap cost, and quality loss, respectively. 

It is to be noted that a product assembled with satisfactory components may still fall outside 

the specifications. Components/products with quality characteristics outside the specifications are 

deemed unsatisfactory and will be scrapped with an associated cost. For each type of component, 
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a constant number of satisfactory components, Q, must be delivered for assembling. The number 

of satisfactory products assembled is noted as M. Since some assembled products may not meet 

the specifications, M is equal to or less than Q.  

The average cost per satisfactory product, U, can be used as the metric to evaluate the 

allocated tolerances [11]. U may be computed as: 

TC
U

M
= . (2.2) 

The processing cost, scrap cost, and quality loss are described in the following sub sections. 

2.2.1 Processing Cost and Process-based Analysis 

The processing cost of components (including unsatisfactory components that will be 

scrapped), CP, can be computed by:  

1

m

P i i

i

C N C
=

=  . (2.3) 

in which, Ci is the unit processing cost of the ith component type and m is the number of different 

types of components assembled into one product. Ni is the number of ith components that must be 

manufactured to produce Q satisfactory components. Ni is given by:  

i

i

Q
N


= , (2.4) 

where γi is the probability that the ith component meets its specifications, and is given by 
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( )
i

i

US

i i
LS

f x dx =  , (2.5) 

where, fi(x) is the probability density function for the ith component’s quality characteristic, and 

LSi and USi are the lower and upper specification limits for the component. 

Usually, product designers assign tolerances to components based on functional 

requirements. Process designers often divide these tolerances by a constant, k (perhaps set to 3), 

to obtain the standard deviation, σ. The value for σ generally dictates which processes may be used 

and may also indicate allowable values for processing conditions. 

Many studies have modeled the processing cost as a function of tolerance, noted as C(t) [4] 

[5]. However, it is not the tolerance, but rather, the σ that is associated with a process. With this in 

mind, in this section the production cost is modeled as a function of σ. This serves to establish a 

connection between the product design and product manufacturing. Based on this discussion, a σ-

cost model for the ith component type is shown in the following equation: 

( ) ( )i i i i iC C t C k= = . (2.6) 

Figure 2.2 provides examples of σ-cost models. Figure 2.2 (a) shows how the cost and as-

manufactured quality characteristic distribution (and σ) may change for different processing 

conditions. Also evident is an inverse relationship between processing cost and σ. Figure 2.2 (b) 

shows an example of three σ-cost curves corresponding to three processes (two processes for 

component A and one process for component B). Optimization should be carried out to select the 

types of manufacturing processes and the values of σ, so that U is minimized. 
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Figure 2.2. Cost and σ changes for (a) different processing conditions (b) alternative processes 

2.2.2 Component Scrap Cost and Component Specification-Based Analysis 

For the ith type of component, the lower and upper specification limits, LSi and USi, are 

given by (2.7) and (2.8): 

i i iLS D k= − , (2.7) 

i i iUS D k= + , (2.8) 

where Di is the nominal quality characteristic of the component. Instead of being fixed at given 

values, specifications of components may be optimized (actually, the value for k is optimized), as 

suggested by Taguchi [86] [87]. The rationale behind undertaking this optimization is that a fixed 

value of k (usually 3) is not necessarily optimal. A small k will increase the scrap cost of 

components, while a large k will increase the possibility of assembling low quality components 

into products, which may increase the scrap cost of products and quality loss. A trade-off can be 

made by optimizing k. Since the processing cost of each component is different, the optimal value 

of k may also be different for each component. 
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It may be that different values for k can further decrease the average cost based on optimized 

values of σ from process-based analysis. Moreover, optimizing k can also be used independently 

when the relationship between σ and processing cost is not available, and σ is fixed at a given value.  

An example of how component specification limits affect tolerance allocation and scrap cost 

is shown in Figure 2.3. Two processes with different precisions (process 2 is more precise) may 

be used to produce two types of components, A and B. If the tolerance on component B for process 

1 is increased from t1B to t’1B, the probability, γi, that the ith component meets its specifications 

will increase. Thus, more B components will be considered satisfactory and be assembled. Even 

though the cost of scrapping unsatisfactory components might decrease, the total scrap cost might 

increase because more unsatisfactory products might be assembled (which are then scrapped). 

Note that only the component specifications are optimized, the product specifications are fixed by 

the design. 

 

Figure 2.3. Optimize specifications 

value

Process 1

LSA2 LSB2USA2 USB2

LSA1 LSB1USA1 USB1

Process 2

DA DB

DA DB

tB1

B

scrap

scrapscrap

scrap
t'B1

A

tA1

LS'B1 US'B1

B

A

value

tA2 tB2

f

f



 

40 

2.2.3 Quality Loss 

The best product function should occur when a product quality characteristic is at the 

nominal value. When a quality characteristic deviates from the nominal value, product function 

degrades. If customers are dissatisfied with functional performance, and/or poorer function leads 

to product failure, loss will result (e.g., warranty costs and erosion of market position). One way 

to consider such broader economic costs is by introducing the loss function of a product. The loss 

function expresses the monetary loss due to departure of a product quality characteristic from the 

design nominal [86] [87]. The loss function establishes a criterion that promotes adherence to the 

nominal value. The most widely used loss function is the quadratic loss function (see equation 

(2.9)): 

2

02
( ) ( )L a a a

a

A
C L D D D

t
= = − , (2.9) 

where, Da and Da0 are the as-manufactured quality characteristic and nominal value for the 

assembled product. A is the sum of all losses associated with a product when the product quality 

characteristic equals the upper or lower specification limit [12], and ta is the distance between the 

upper specification limit and nominal value. If a product falls within the specification limits, a 

societal loss is incurred; if a product falls outside the specification limits, a scrap cost is incurred. 

Here, the “nominal is best” form of the loss function is used; other forms may also be employed. 

2.3 Tolerance Optimization Strategy and a Heuristic Algorithm 

The goal of optimal tolerance allocation is achieved by minimizing the average cost per 

satisfactory product, U. This is a nonlinear, discrete optimization problem. It is difficult to solve 
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the problem because of the variation/tolerance stack-up, especially for a complex assembly with 

alternative processes.  

We carry out a Monte Carlo simulation to consider the variation stack-up. A numerical 

heuristic search strategy was utilized to select processes and find near optimal values of tolerances 

for individual components. This strategy can be used to allocate tolerances for nonlinear assembly 

problems when multiple processes for each component are available.  

The heuristic consists of two stages: i) process-based analysis and ii) specification-based 

analysis. For the process-based analysis, the processes are chosen and the value of σi is optimized, 

while the constants ki for the components are fixed at 3. For the specification-based analysis, the 

process types are given (values of σi are fixed), and the value of ki for each component is optimized. 

An overview of the algorithm to optimize σ is given below. Note that m is the number of 

different types of components assembled in one product, and ni is the number of available 

processes that can be used to realize the ith component. Note σi,j is the precision for the jth process 

of the ith component, j∈{1, 2, … ni}. 

1) assign process index, j, to 1 for each type of component. Set σi,j equal to lower end 

of precision (σ) range as shown in Figure 2.2 (a); 

2) iterate through all values of σ up to upper end of precision range. Select the σ that 

minimizes the value of U; 

3) for ith component, consider all possible values for j,  

4) perform steps 2) and 3) for each component (one at a time) until the maximum 

number of iterations or U converges.  

The structure of the algorithm to optimize ki parallels that of the algorithm above. 
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2.4 An Overrunning Clutch Assembly Case Study 

To validate the proposed tolerance allocation method, an overrunning clutch assembly is 

analyzed. This problem is adapted from Greenwood and Chase [19] and Choi et al. [12]. A quality 

characteristic of the overrunning clutch performance is the contact angle, the nonlinear form of 

which is given by equation (2.10): 

1 1 2 3
1 2 3 4

4 2 3

( ) / 2
( , , , ) cos ( )

( ) / 2

x x x
y g x x x x

x x x

− + +
= =

− +
, (2.10) 

where, y is the contact angle, x1 is the diameter of the hub, x2 and x3 are the diameters of the rollers, 

and x4 is the inside diameter of the cage. The nominal dimensions of x1, x2, x3, and x4 are 55.29 

mm, 22.86 mm, 22.86 mm, and 101.69 mm, respectively, as shown in Figure 2.4. For proper 

function, the contact angle, y, should be constrained between 0.122±0.035 rad (7.0±2.0 deg). 

 

Figure 2.4. Overrunning clutch assembly [12] 
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In the case study of Choi et al. [12], a reciprocal tolerance-cost function was used. 

Employing our notation, this becomes: 

( ) i
i i i i

i i

b
C k a

k



= + , (2.11) 

where ai is the fixed cost related to tooling, setup, etc., and bi/kiσi is the variable cost of processing 

a component with the given tolerance. 

Each component has alternative processes, and each process has a tolerance range. For 

comparison purposes, the constants (ai and bi) for the alternative processes, the tolerance ranges, 

and the values for A in the product quality loss function are those used by Choi et al. [12]. 

The sample size for the Monte Carlo simulation was 10,000. The scrap cost of each 

unsatisfactory component was assumed to be 10% of ai. The scrap cost of each unsatisfactory 

product was $1.5, which was about 8 percent of the cost of producing a new product. 

2.4.1 Process-based Analysis 

In this section, the process for each component was chosen and the value of σ was optimized 

while the tolerance constant k was fixed at 3. The value ranges for σ were calculated by dividing 

each tolerance range given in Choi et al. [12] by 3. 

The results using the methods of Choi et al. [12] and the methods proposed in Chapter 2.3 

are shown in Error! Reference source not found.. The two methods selected the same process t

ypes. When A equals 0 or 20, the proposed method allocated a larger σ (looser tolerance) to each 

component. Even though fewer satisfactory products were assembled, a lower average cost per 

satisfactory product, U, was achieved. When the loss constant A equals 100, the proposed method 

allocated a smaller σ (tighter tolerance) to each component, and assembled more satisfactory 
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products with a smaller value of U. It seems that the proposed method reduced average cost by 

avoiding excessive precision (σ) and by more effectively allocating tolerances among individual 

components.  

2.4.2 Specification-Based Analysis 

In this section, the values of k for each type of component are optimized while the process 

type and σ for each component remain fixed at the values obtained in Chapter 2.4.1. In the iteration 

process, the upper bound for each k is 6. Results using the heuristic algorithm proposed in Chapter 

2.3 are shown in Error! Reference source not found..  

From the table it can be concluded that adjusting the value of ki can further reduce the value 

of U and assemble more satisfactory products. The specifications for components with lower 

processing cost (inexpensive components) were tightened, while the specifications for components 

with higher processing cost (expensive components) were loosened. This reduces the loss caused 

by assembling expensive components into products that will be scrapped because of large variance 

stack-up, which is mainly accumulated from the variance of inexpensive components. 
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Table 2.1. Results of process-based analysis 

 Choi et al. [12] This study 

 A=0 A=20 A=100 A=0 A=20 A=100 

 Proc. 

index 

σ N-Q Proc. 

index 

σ N-Q Proc. 

index 

σ N-Q Proc. 

index 

σ N-Q Proc. 

index 

σ N-Q Proc. 

index 

σ N-Q 

x1 3 0.059935 24 3 0.057957 20 2 0.045559 29 3 0.083033 19 3 0.083033 31 2 0.049700 22 

x2 2 0.055119 30 2 0.055415 31 2 0.049850 24 2 0.096400 21 2 0.078100 30 2 0.049900 18 

x3 1 0.040044 20 1 0.042796 31 1 0.038527 28 1 0.063967 24 1 0.056167 33 1 0.043867 29 

x4 3 0.066860 32 3 0.066667 36 3 0.066667 35 3 0.128533 23 3 0.089533 29 3 0.067333 27 

CL 0 32352 146580 0 46862 143730 

M 9950 9954 9978 9259 9724 9980 

U 24.68 27.90 40.83 20.26 25.84 39.85 

 

Table 2.2. Results of specification-based analysis 

 A=0 A=20 A=100 

 k Ci N-Q k Ci N-Q k Ci N-Q 

x1 5.48 6.51 0 2.45 6.51 241 5.06 8.35 0 

x2 3.16 5.25 22 2.31 5.77 0 5.40 7.34 2 

x3 3.25 4.06 11 2.49 4.28 0 2.16 4.78 398 

x4 1.78 2.78 1106 1.79 3.78 832 1.59 4.86 1774 

CL 0 42190 129988 

M 9450 9841 9996 

U 20.02 25.58 39.09 
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2.4.3 Summary and Conclusions 

This study has proposed a method for tolerance allocation that minimizes costs. The cost 

model considered processing cost, scrap cost, and quality loss. By optimizing the precision of 

manufacturing processes and width of tolerance specifications, a trade-off was made among costs 

of production, scrap, and quality loss. The tolerance allocation problem was modelled as a 

nonlinear, discrete optimization problem. A Monte Carlo simulation was used to analyze the 

variation/tolerance stack up. A heuristic search strategy was proposed to find solutions. In a case 

study, a traditional method was compared to the proposed model. The results showed that the 

proposed model decreases the average cost by avoiding unnecessary process precision, more 

effectively allocating tolerances among individual components, and optimizing tolerance 

specifications.  

The proposed method approaches the tolerance allocation problem by optimizing both the 

precision of manufacturing processes (σ) and the specification limits (k) of components. This 

establishes a connection between product design and product manufacturing. If specification limits 

of expensive components are loosened, and specification limits of inexpensive components are 

tightened, a lower average cost per satisfactory product can be achieved. As is evident from the 

case study, the proposed approach provides a superior solution to the tolerance allocation problem.  
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 TOLERANCE ALLOCATION: BALANCING QUALITY, COST, AND 

WASTE THROUGH PRODUCTION RATE OPTIMIZATION3 

Dimensional tolerance allocation is a very important and difficult task that traditionally seeks 

to balance cost/productivity and quality. Common tolerance allocation models have two 

shortcomings: i) they are overly reliant on models focused on minimizing cost and tend to ignore 

waste, and ii) they fail to connect to the root cause of many quality issues: process variation. This 

chapter proposes a tolerance allocation model that addresses these shortcomings. The proposed 

model considers both product design (tolerance selection) and operation planning (or production 

rate selection). Relations among production rate, production cost, processing precision, and waste 

are considered. A gradient-based optimization method is proposed to minimize the cost and waste. 

A clutch assembly case study is analyzed to evaluate the method. Monte Carlo simulations are 

employed to validate the accuracy of the proposed cost model. The proposed method is compared 

to the method proposed in Chapter 2. The proposed method produced more satisfactory products 

at a lower cost while producing less waste. For the case study, it is found that when the precision 

of a process is high, it is not necessary from an economic standpoint to inspect the quality of 

individual components. For poor precision processes, inspecting the quality of individual 

components is the preferred approach from a cost/throughput standpoint. 

 

 
3 Reprinted (portions enhanced/adapted) from Y. Wang, A. Huang, C. A. Quigley, L. Li, and J. W. Sutherland, 

“Tolerance allocation: Balancing quality, cost, and waste through production rate optimization,” J. Clean. Prod., vol. 

285, p. 124837, 2021. https://doi.org/10.1016/j.jclepro.2020.124837. Published by Elsevier Ltd 
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3.1 Introduction 

Table 3.1. Nomenclature. 

β Product pass rate CS ($) Total scrap/recycle cost 

γ Component pass rate CT ($) Total production cost 

δ Design function sensitivity  E (mm) Process related constant 

μ Process mean F (mm∙min2) Process related constant 

σ Process standard deviation L Number of scrapped components 

k Tolerance spread LS Lower specification limit 

r Production rate M Number of satisfactory products 

t Tolerance N Number of components processed 

x Characteristic value of a component Q Number of components assembled 

y Characteristic value of a product RN Remainder of Maclaurin series 

A ($) Fixed cost (set-up cost) SC ($) Scrap/recycle cost of a component 

B ($/min) Cost coefficient SN Maclaurin series 

BE ($/min) Electricity cost SP ($) Scrap/recycle cost of a product 

BL ($/min) Labor cost U ($) Average unit cost of a product 

BM ($/min) Machine tool cost US Upper specification limit 

CB ($) Processing cost W Number of unsatisfactory products 

 

The ability to produce high quality products with low cost and high production rate is critical 

for manufacturers. In addition, waste from manufacturing has become a severe environmental 

burden, thus, reducing the production of waste streams and efficient use of material resources in 

manufacturing is ever more important from an environmental sustainability perspective [88]. 

Usually, high quality (precision), low cost, low waste, and high production rate are conflicting 

objectives, because excessive precision leads to excessive cost and processing time [27] [89]. For 

example, to achieve high precision, a larger investment must be made in purchasing and 

maintaining highly precise machine tools and maintaining them more carefully at an associated 

higher cost (e.g., changing the tooling more frequently) [90]. In addition, more precise machine 
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tools are generally more complex and precise metrology equipment, which is more expensive. On 

the other hand, when inexpensive processes with low precision are applied, component-to-

component variation will be large, and the resulting quality of assembled products may not meet 

the expectation of customers [91]. Also, when variation is large, components/products outside the 

specifications are likely rejected, and, if they cannot be reworked or recycled, they are scrapped 

(i.e., enter the waste stream), which is also wasteful in terms of energy consumption and resource 

depletion.  

Owing to the ever increasing requirements of high-quality, low-cost products, and the 

awareness of sustainability, more and more efforts have been carried out to study the relations 

among product quality, cost, and waste reduction [81], [92]–[96]. This chapter extends this effort 

by providing a tolerance allocation model that balances quality, time, cost, and waste through the 

optimization of production rate. 

Tolerances are assigned for critical product/component characteristics during the 

engineering design process. Tolerance is the amount by which a characteristic value is allowed to 

deviate from the nominal value; it acknowledges that a manufacturing process cannot exactly 

realize a nominal value [97]. Most often, tolerances are selected based on product/component 

function considerations, as well as quality and cost. The tolerance on a component is used by 

manufacturing planners to select appropriate processes and their sequences (process planning) and 

the settings and tooling for each process (operation planning) [98] [99].  

The tolerancing problem in engineering design has been widely studied by transforming it 

into a constrained optimization problem. The most common way of formulating such a problem is 

to establish allowable tolerances on a product based on functional considerations, e.g., the 

clearance between a shaft and hole must not be too small (this may inhibit assembly) and it must 



 

50 

not be too large (this may not provide sufficient sealing). While the tolerances on a product are 

likely based on functional considerations and cost, since products are composed of components a 

designer must address the issue of how to allocate product tolerances to the components.  

Traditional tolerance allocation methods allocate tolerances using a product/component 

design-oriented approach, in which almost all the focus is placed upon the tolerances of the 

product/components. Product engineering uses “tolerance” to communicate what is acceptable in 

terms of function. Manufacturing decision-makers must translate “tolerance” into their language 

because they think in terms of process variation or precision. The authors believe that rather than 

a single-minded focus on tolerance, that it is better to think in terms of process variation, since the 

same process settings that influence variation also determine cycle time, production cost, and 

amount of waste.  

Few studies on tolerancing that consider the linkage between design and production have 

been carried out. For the few studies that have considered this linkage, attention was devoted to 

relating process variables and process variation for a specific situation – the connection among 

process variables, process variation, and tolerance was not considered in a broader sense. It is a 

relatively simple matter to describe how different conditions/variable settings affect the production 

rate for an operation, and production rate is strongly linked to the variation/precision and cost of 

an operation [100]. A planner has the latitude to explore different production rates (e.g., by 

adjusting process types and process variables), so long as the required tolerance is met [100]. For 

a given tolerance and associated process, if the maximum allowable production rate does not 

produce high enough throughput, or has too high a cost, then the tolerance will need to be loosened. 

This begins to illustrate the types of trade-offs that need to be made among quality, cost, and 

production rate [101]–[104].  
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To fill the research gap summarized above, a new tolerance allocation method is proposed. 

This method avoids the three problems of traditional tolerance allocation methods. One, not only 

cost, but also waste is minimized. This method avoids both unnecessary excessive precision and a 

large level of product/component scrap caused by quality or assembly issues. Two, instead of 

considering how to allocate a product tolerance by minimizing the sum of the costs associated with 

individual operations by changing process parameters, this chapter optimizes the production rate 

for operations to achieve the product tolerance. Optimizing production rate makes the model easy 

to be generalized to different operations. Three, the linkage between design and production are 

considered. This is achieved by using statistical theory to characterize the relations among 

production rate, process precision, and process/component variation stack-up. A gradient-based 

optimization method is proposed to find optimal production rates that satisfies the tolerance 

requirement on a product and minimizes cost and waste. An overview of the research is shown in 

Figure 3.1. 

 

Figure 3.1. Overview of this research. 
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3.2 Problem Description and a Cost Model 

This chapter considers a tolerance allocation problem, i.e., how to best allocate the tolerance 

on a product assembly to the individual components. The tolerance of a component can be defined 

as the distance between the nominal value and the upper/lower specification limit. For a symmetric 

bilateral case, where the upper and lower specification limits have the same distance from the 

nominal value, the tolerance, t, is given by equation (3.1): 

 0 0t x LS US x k= − = − = , (3.1) 

where, LS is the lower specification limit, US is the upper specification limit, x0 is the nominal 

value, σ is the process standard deviation, and kσ is the size of the tolerance (k will be referred to 

as the tolerance spread).  

The tolerance allocation challenge can be illustrated by a shaft-hole assembly example, as 

shown in Figure 3.2. It is assumed that only products/components with characteristic values 

between the lower/upper specifications, noted as satisfactory products, can be sold. Unsatisfactory 

products/components lying outside the specifications will be scrapped and managed as waste. The 

ratio between the number of satisfactory products and the total products assembled is the product 

pass rate, β. The shaft-hole clearance, i.e., characteristic value of the assembly, y, is the difference 

between the diameter of the shaft, xs, and the hole, xh. The diameters of the shaft and hole are 

assumed to be normally distributed and are centered at the nominal values, xs0 and xh0 (the nominal 

value for the shaft/hole clearance is y0=xh0-xs0). The tolerance for the clearance is ty, which should 

be allocated to the tolerances on the diameters of the shaft, ts, and hole, th. Based on the allocated 

tolerances, manufacturing planners select appropriate processes settings and tooling to produce the 

shaft and hole. It is assumed that random assembly is employed, i.e., a shaft and a hole are each 

randomly selected and assembled. The shaft and hole each have a probability distribution 
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associated with their size, and based on random assembly, the clearance also has a distribution 

(hole and shaft stack-up). In allocating the clearance tolerance to the tolerances on the shaft and 

hole diameters, statistical methods are needed to predict how the variations in the shaft and hole 

creation processes influence the clearance variation.  

 

Figure 3.2. A shaft and hole tolerance allocation example. 

One strategy that might be considered by a manufacturer would be to use low precision 

processes to fabricate the components, which would keep manufacturing costs low. Then, a tight 

tolerance could be applied to the components to filter out poor quality components (this would 

lead to higher scrap costs/waste). This strategy would probably lead to a relatively high proportion 

of assembled products that satisfy the product specifications (less scrap products waste). 

Alternatively, process type and process parameter settings could be used to achieve precise 

processes, but this would come with a higher cost. However, this would likely lead to less scrap 

components/waste. In general, tolerances on the components should be set with an overall 

consideration of precision, cost, and waste. 

The production rate for a process depends on the type of process and the condition/variable 

settings for the process. The production rate in turn impacts the precision and cost of an operation 

[100]. Many studies have been carried out to study the relation between production rate, product 
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quality, and processing cost [102] [103]. General relations between production rate (r), processing 

cost (CB), and process standard deviation (σ) are shown in Figure 3.3 (a) and (b). It may be noted 

that as the process standard deviation, σ (or variation, σ2) increases, the process precision erodes. 

Generally, the higher the production rate (usually achieved by increasing a process variable such 

as feed rate, step over, and cutting depth), the lower the processing cost. This is the case, since for 

high production rates more components are produced per unit time, and thus fixed costs are 

allocated across more components. However, many studies have shown that when a high 

production rate is applied, component-to-component variation is larger, i.e., quality and precision 

are decreased [105] [106]. For example, consider a milling process; when a large feed rate is used, 

the quality of the machined part (evaluated by a criterion such as surface roughness or form error) 

will decrease [107]. This work will propose a tolerance allocation method that optimizes the 

production rate, r, so as to balance quality, cost, and waste.  

Many in industry use inspection-oriented approaches to identify and remove out of 

specification component to ensure quality. The tolerance and nominal value together serve to 

define the specification limits. During inspection, components within the specification limits are 

deemed satisfactory, and can be assembled. Otherwise, the components are rejected and scrapped 

(where they enter the waste stream or are recycled). Both the tolerance and process precision affect 

the component pass rate, γ, which is the ratio between the number of satisfactory components and 

the total number of manufactured components, as shown in Figure 3.3 (b) and (c). The precision 

of the process depends on the production rate, with higher rates generally leading to reduced 

precision. The often utilized ±3σ tolerance band may also be modified to adjust the pass rate; herein 

values other than “3” for k (tolerance spread) are considered. k may be adjusted to avoid 
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unnecessary scrap or to avoid passing too many low-quality components, as shown in Figure 3.3 

(c).  

 

Figure 3.3. The relation among production rate (r), processing cost (CB), precision (σ), and 

tolerances spread (k) 

To find a trade-off among quality, cost, and waste, an optimal tolerance allocation method 

has to consider three factors: (1) the impact of production rate on the cost, variance of components, 
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for an assembled product, and (3) different quality management strategies, and their impact on 

cost and the quality of products/components. The average unit cost of a satisfactory product 

assembled, U, will be used to evaluate the economic and environmental performance (since the 

cost of waste is considered) of the production system. This work builds a cost model to calculate 

U, with these three factors considered.  

To understand the cost model, it is necessary to define the relations between the number of 

products and components, under different quality inspection strategies. Consider an assembly 

process, in which m types of components are assembled into a product. For each component type, 

Q components are provided for assembly. All the products are assembled and are then inspected. 

The number of unsatisfactory products is W, and the number of satisfactory products is M. The 

summation of W and M equals to Q. For random assembly, a product that is assembled from 

satisfactory components may still have a characteristic value that falls outside its tolerance. 

Three common component inspection strategies are considered: i) no inspection, ii) 100% 

inspection, and iii) acceptance sampling. If no inspection is carried out, all components are 

assembled. If 100% inspection is carried out, every component is inspected, and only the 

satisfactory components will be assembled, and the unsatisfactory components will be 

scrapped/recycled [108]. For acceptance sampling, inspection is carried out on a small subset of 

the components. If the qualities of the sampled components are acceptable, then all the components 

will be considered acceptable, and will be assembled. But if the subset of components is deemed 

to have poor quality, then 100% inspection is performed on all the components.  

For both the case of no inspection and the case of acceptance sampling (when the sample of 

components pass inspection), the vast majority of components are not inspected. These two cases 

will serve as scenario one: “no component inspection.” For the case of 100% inspection and the 
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case of acceptance sampling (when the sample of components fails inspection), every component 

is inspected. These two cases will serve as scenario two: “100% inspection.” 

The assembly processes for both scenarios are shown in Figure 3.4, which is illustrated by a 

product assembled from two types of components. In scenario one, there will be no waste 

associated with scrapping/recycling components. For each component type, the total number of 

components that are processed is equal to Q. In scenario two, every component is inspected. Only 

satisfactory components will be assembled, while unsatisfactory components are scrapped. For the 

ith component type, Ni components are manufactured, with Li not meeting the specifications and 

Q meeting the specifications. For both scenarios, the quality of every product is inspected. The 

numbers of satisfactory product and unsatisfactory products are M and N. 

 

Figure 3.4. An assembly problem. 
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 TC
U

M
= , (3.2) 

where, M is the number of satisfactory products assembled. CT is the total cost, which includes the 

costs incurred in manufacturing and assembling all the components and managing the scrap. CT is 

defined as: 

 T B SC C C= + , (3.3) 

where, CB is the total processing cost of all the components, and CS is the scrap/recycle cost of all 

the unsatisfactory products and unsatisfactory components.  

The total processing cost, CB, is the summation of processing cost of all m types of 

components assembled into the product, and is given by the following equation: 

 
1

m

B Bi i

i

C C N
=

=  , (3.4) 

where, i is the component type index, Ni is the number of components of type i that are 

manufactured, and CBi is the processing cost per unit of component i. 

The total scrap cost, CS, is 

 
1

m

S p i Ci

i

C WS L S
=

= +  , (3.5) 

where, SP is the cost to scrap an unsatisfactory product, W is the number of unsatisfactory products, 

SCi is the cost to scrap the ith component, and Li is the number of unsatisfactory components of 

type i. 
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3.3 Methodology 

In this section, a tolerance allocation method that minimizes the average unit cost is proposed. 

The influence of production rate on process precision and cost is considered. This method avoids 

both unnecessarily high and unacceptable low process precision. Two assumptions are made for 

the tolerance allocation problem. First, the process is under statistical control (i.e., the process 

mean and variation are assumed stable), and the characteristic value of a component can be 

modeled as a random variable that follows a normal distribution, with the mean, μ, being equal to 

the design-specified nominal value, x0 [87] [109]. Second, there are no constraints on the 

production time, i.e., for a specified production rate there is sufficient time to produce the required 

number of components [13]. 

The component processing cost, CB, can be modeled as a function of production rate, ri: 

 ( )B iC h r= . (3.6) 

Similarly, the value of σ for a component can be modeled as a function of r: 

 ( )ig r = . (3.7) 

Equations (3.6) and (3.7) provide general functional forms for the cost and precision of a 

process. Some studies have provided general forms of the equations [103]. In Section 3.4.2, 

expressions are presented for these two equations.  

Figure 3.5 summarizes how the production rate, r, and the tolerance spread, k, affect the 

average unit cost, U, through a diagram. The relations among these variables are given in Equations 

(3.2)-(3.7). For scenario one, no inspection is carried out for the components. Thus, tolerances are 

not needed for the components and the tolerance spread need not be defined; rather, the production 
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rate (and thus precision, σ) for the component processes is used to control the precision. For 

scenario two, both production rate and tolerance spread, k, are controlled variables.  

As shown in Figure 3.5, for scenario one, the processing cost, CBi, and the variance, σxi
2, of 

individual components is affected by the production rate for that process, ri. The variations of 

individual components σxi
2 will stack-up into the variations of a product, σy

2, which affects the 

product pass rate β (when the products are inspected relative to the specifications). Both the scrap 

cost of products, SP and the number of satisfactory products, M, are determined by β. For scenario 

two, the pass rate, γ, for a given component is determined by σxi
2 and k; the product pass rate, β, 

determined by σy
2; and the product tolerance, ty (a fixed value by design). The tolerance spread, k, 

affects both σxi
2 and σy

2. The pass rates for the components and the product determine the total 

scrap cost associated with the components and product. 

 

Figure 3.5. Logic flow of the cost model including key model parameters 
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Herein, it is assumed that xi is normally distributed. Let us also assume that y is a normally 

distributed random variable (because random assembly is deployed, also, this assumption is 

verified in the case study). 

The number of satisfactory products, M, can be estimated by: 

 1 2( , ,..., )mM Q r r r= , (3.8) 

where, β(r1, r2,… rm) is the pass rate of products, which is a function of the production rate of each 

process, ri. Since the product distribution is unbiased (i.e., the product distribution is centered at 

the nominal value, y0) and a bilateral tolerance is used, the function β(r1, r2,… rm) can be evaluated 

with Equation (3.9). 
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where, erf(x) is the Gauss error function, and ty is the tolerance of the product.  

The number of unsatisfactory products, W, can be computed given the pass rate of the 

product, as shown below: 

 1 2[1 ( , ,..., )]mW Q r r r= − , (3.10) 

Two options are available to predict how the variations in individual components stack-up 

in the product: variation simulation by Monte Carol simulation and statistical theory-based 

approach. Monte Carlo simulation predicts the distribution associated with an assembly as parts 

are randomly drawn from distributions associated with each individual component and virtually 

assembled. Monte Carlo simulation may lead to excessive computation time. The statistical theory-
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based approach relates the component variances σxi
2 to the product variance σy

2 using a first order 

approximation of the design function. This is shown in Equation (3.11) [110]: 
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y i xi
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=

  , (3.11) 

where δi is the partial derivative of y with respect to xi (the design function sensitivity with respect 

to xi): 
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. (3.12) 

In Equation (3.12) it is assumed that the design function f(x1, x2,… xm) is differentiable. If 

f(x1, x2,… xm) is not differentiable, the δi values may be estimated using a numerical approximation.  

3.3.1.1 Scenario One: No Inspection of Components 

In this subsection, scenario one is considered: none of the components are inspected (or, for 

the case of acceptance sampling, very few). The number of components produced, Ni, is equal to 

Q. The number of scrap components of type i, Li, is equal to 0. Thus, the scrap cost of unsatisfactory 

components is 0, and the total scrap cost can be simplified to: 

 S pC WS= . (3.13) 

By placing Equations (3.4), (3.9), and (3.13) into Equation (3.2),the following expression is 

obtained for the average unit cost, U: 
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The production rate, ri, impacts the average unit cost by affecting the processing cost and 

the component variation stack-up (evaluated by σy).  

3.3.1.2 Scenario Two: 100% Inspection of Components 

In this subsection, scenario two is considered: every component is inspected and judged as 

satisfactory/not satisfactory. The number of components of the ith type that must be processed to 

produce Q satisfactory components is Ni, and can be calculated using: 

 i

i

Q
N


= , (3.15) 

where γi is the pass rate for component type i, which is affected by the tolerance spread, ki, of the 

component. Similar to computing the pass rate of a product, β, the pass rate of a component, γi, 

can be evaluated using a normal distribution. Since the process is unbiased (mean of process, μi, is 

equal to the nominal value xi0) and a symmetrical bilateral tolerance is used, the component pass 

rate can be evaluated with Equation (3.16): 
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where, kiσi is the component specification (tolerance).  

The number of components scrapped, Li, is 
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By placing Equations (3.15)-(3.17) into Equation (3.2), the average unit cost, U, can be 

represented as a function of ri and ki: 
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Unsatisfactory components will be removed through inspection, and the resulting 

distribution of “passed” components will follow a truncated normal distribution. The standard 

deviation of the truncated normal distribution, σxi′, is smaller than the standard deviation of the 

distribution before truncation, σxi. The value of σxi′ can be computed from σxi using the following 

expression [87]: 

 ' ( )xi i xih k = , (3.19) 

where, h(ki) is a function of ki, and is given by: 

 ( ) 1 2 ( ) ( )i i i ih k k T k k= − − , (3.20) 

and T(ki) and φ(ki) are functions of ki, and can be expressed as: 
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The function h(ki) is shown in Figure 3.6. When ki (tolerance spread) increases, meaning that 

a larger tolerance is assigned and fewer components are scrapped, then σxi′ also increases and 

approaches σxi. When ki decreases, a tighter tolerance is applied and more components are scrapped, 

and thus the value of σxi′ decreases.  

 

Figure 3.6. Behavior of h(k), ratio of standard deviation of truncated normal distribution to 

standard deviation of starting distribution. 

Figure 3.5 shows how the values of ki for the individual components affects their respective 

standard deviations. The collective effect of these ki values on the standard deviation of the 

assembled products is given by the following function: 
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Furthermore, let us assume that the shape of the distribution of the characteristic value of the 

product, y, is not too dramatically affected by truncations in the distributions of component values. 

This assumption will be verified through the use of Monte Carlo simulations in Chapter 3.4.3.3. 

3.3.2 Optimization 

The average unit cost, U, can be minimized by optimizing manufacturing rates of 

components and the tolerance spread. As a reminder, for a given process, the production rate 

affects the processing cost and the precision of the process. This is an unconstrained multivariate 

optimization problem. The problem can be solved using a variety of optimization methods, 

including gradient based optimization algorithms (e.g., method of moving asymptotes) [111]. 

Compared to optimization methods such as Monte Carlo method and Heuristic method, gradient-

based methods have advantages such as easy to implement, low storage requirement, and easy to 

generalize (little effort of parameter tuning). A gradient-based optimization procedure was used in 

the present research. 

The procedure of the gradient-based optimization method is straightforward. We first find 

the partial derivatives of the average unit cost, U, with respect to all variables (for scenario one, 

only production rates; for scenario two, both production rates and tolerance spreads). Then the 

partial derivatives with respect to intermediate variables and approximations for non-elementary 

functions are needed. The details are given in the sections below. 
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3.3.2.1 Preparing for Optimization of Scenario One 

For scenario one, U only depends on the production rates, ri, and is defined by Equation 

(3.14). For the gradient based optimization procedure, we must be able to evaluate the partial 

derivative of U with respect to ri, with σi being the intermediate variable. The derivative of U with 

respect to ri is:  

 ( ) ( )
2 1
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y
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where z is given by: 
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As the standard deviation of the product, σy, is dependent on the production rates of 

individual components, the partial derivative of σy with respect to ri is: 
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With Equations (3.24) to (3.26) in place, the values of ri may be optimized to minimize U.  

3.3.2.2 Preparing for Optimization of Scenario Two 

For scenario two, U depends on both ri and ki, and is defined by Equation (3.18). Again, the 

gradient based optimization procedure requires values for the partial derivative of U with respect 

to ri and ki, with σi being the intermediate variable. The derivative of U, with respect to ri is: 
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where, z is:  
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The partial derivative of σy, with respect to ri is given by: 
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and the derivative of U with respect to ki is: 
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where, 
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3.3.2.3 Approximation of the Gauss Error Function and Its Derivative 

The Gauss error function, erf(x), is a non-elementary function, its value can be approximated 

using an nth order Maclaurin series: 

 erf ( ) ( ) ( )N Nx S x R x= + , (3.32) 

where, SN(x) is: 

 

2 2 1

0
0 0

2 2
( ) ( 1) ( 1)

! (2 1) !

n j jn nx
j

N

j j

q x
S x dq

j j j 

+

= =

= − = −
+

  , (3.33) 

and RN (x) is the remainder. By using the Leibniz Criterion, the remainder satisfies the following 

inequality equation: 
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Similarly, the derivative of the Gauss error function is: 
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where, DN(x) is the remainder of the derivative of the Gauss error function, which satisfies the 

following inequality equation: 



 

70 

 

2( 1)2
( )

( 1)!

n

N

x
D x

n

+


+

. (3.36) 

The upper bound of approximation errors (remainders) RN and DN can be estimated by 

Equation (3.34) and Equation (3.36). The larger the value of n, the smaller the approximation error. 

For any given maximum allowable error, there exists a lower bound of n that satisfies this 

requirement.  

3.4 Case Study 

To validate the proposed method, an overrunning clutch product is considered [112]. This is 

an example commonly used in the literature on tolerance allocation. Using this example makes it 

easier to compare different methods. Some traditional optimization methods have been applied in 

solving the problem, for example, worst case tolerance analysis [19] and brute-force search [12]. 

Because the simple optimization models could not find optimal/near optimal solutions, these 

methods tend to generate tight tolerance. Some heuristic based algorithms have also been used, 

such as particle swarm optimization [22] [113] and genetic algorithm [20], these algorithms 

usually requires the tuning of optimization parameters, which are difficult to be compared. Thus, 

the proposed method is compared with a heuristic method from the literature that does not need 

parameter tuning. The advantages of the proposed methods are analyzed in the comparison.  

To assess the accuracy of the proposed statistical approach, as described in Eqs.(3.8)-(3.12), 

a Monte Carlo simulation is employed. Analyses are carried out to compare the two scenarios (no 

component inspection and 100% component components).  
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3.4.1 Problem Description 

An overrunning clutch is assembled from three types of components, i.e., hub, roller, and 

cage. For proper functioning, the contact angle (product characteristic), y, of an overrunning clutch 

should be within ±0.035 rad from the nominal value of y0=0.122 rad (ty =0.035). The value of y 

for an assemblage of components is given by the following design function: 
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, (3.37) 

where, x1 is the diameter of the hub, x2 is the diameter of the roller, and x3 is the inner diameter of 

the cage (please refer to Figure 3.7). The nominal values of x1, x2, and x3 are 55.29 mm, 22.86 mm, 

and 101.69 mm. The tolerance of the clutch must be allocated to the three components. 

 

Figure 3.7. An overrunning clutch [112]. 

3.4.2 Rate-Cost and Rate-Sigma Relationships 

In the literature, production rates have been in such terms as material removal rate [18] and 

units per unit time [102]. In this case study, the production rate, r, is expressed in terms of the 

number of components produced per minute. For a single component, the processing cost, CB, is: 

y

x2

x1 x3

Hub

Cage

Roller
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 B

B
C A

r
= + , (3.38) 

where, A is the fixed cost per part such as set-up cost, and B/r is a production rate-dependent cost. 

The values of A for the three components are shown in Table 3.2. 

Turning attention to the production rate-dependent term in the processing cost, its coefficient, 

B, consists of the following: 

 M L EB B B B= + + , (3.39) 

where, BM is the cost of the machine tool (includes machine depreciation and operating cost), BL 

is the cost of labor, and BE is the cost of electricity. These three coefficients are estimated using 

typical cost rates for use of machine tools, labor, and electricity (all expressed in $/min), as shown 

in Table 3.3. The relation between r and CB is shown in Figure 3.8. 

Table 3.2. Values of the fixed cost, A. 

Component A ($) 

Hub 0.98 

Roller 0.52 

Cage 1.22 

Table 3.3. Values of B. 

Component BM ($/min) BL ($/min) BE ($/min) B ($/min) 

Hub 0.142 0.500 1.494 2.136 

Roller 0.150 0.500 1.150 1.800 

Cage 0.368 0.500 1.700 2.568 
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Figure 3.8. The relation between r and CB. 

Let us assume that machining processes are used to produce the components. In machining, 

feed rate is a major factor that affects production rate. It also affects the precision of the process, 

as it is related to measures such as cutting forces, which influence deflection [114]. We propose 

that the precision (σ) is linearly related to the square of feed rate. This hypothesis is supported by 

several studies from the literature. For example, Yeh and Hsu showed that the tolerance value of 

a chord error, G, is linearly related to the square of the  feed rate of a CNC machine [115]. 

Boothroyd and Knight demonstrated that the roughness (Ra) of a process is linearly related to the 

square of feed rate [116]. Lim and Meng expressed the cutting force as a second degree polynomial 

function of the feed rate [117]. Based on these relations from the literature, the following 

expression is proposed to describe the value of σ: 

 
2

xi i i iE Fr = + , (3.40) 

where Ei and Fi are coefficients corresponding to the process used to fabricate the ith component 

type. Ei provides a lower bound for σ (the best precision the process can achieve), and Fi affects 
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the shape of the curve. Figure 3.9 shows the assumed behavior of σ as a function of r for the given 

case (adapted from [12]). The values used for Ei and Fi in the current study are given in Table 3.4. 

Table 3.4. Values of coefficients for Ei and Fi. 

Component Ei (mm) Fi (mm∙min2) 

Hub 0.0320 4×10-4 

Roller 0.0214 2×10-4 

Cage 0.0534 6×10-4 

 

Figure 3.9. The relation between r and σ. 

3.4.3 Results and Analysis 

For the given design function, Equation (3.37), the derivatives, δ1, δ2, and δ3, may be 

determined using the general expression of Equation (3.12). As has been noted, these derivatives 

are needed to compute σy in Equation (3.11). For the specified design function (Equation. (3.37)), 

the derivative relationships are: 
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For the ith component type, to optimize the production rate values, ri, across all values for i, 

the derivative of Cpi and σi, with respect to ri must be determined. Based on the relation between 

r and Cp, as given by Equation (3.38), and the relation between r and σ, as given by Equation 

(3.40), the sensitivity of the processing cost, CB and process variance, σ2, to changes in the 

production rate for each process are: 
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The open source optimization library, NLopt [118], was employed to solve the cost 

optimization problem.  

3.4.3.1 Scenario One: No Inspection of Components 

First, scenario one, as described in Section 3.3.1.1, was considered. Recall that this scenario 

either does not inspect individual components or uses acceptance sampling (and based on the 

sample, the lot is judged to be satisfactory). The components are assembled to create a product, 
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and then these products are inspected. An additional cost is incurred if a product is deemed to be 

unsatisfactory. This cost, SP, is associated with the additional expense of scrapping a product. The 

value of SP was assumed to be ten percent of the summation of the fixed costs, A, of all components 

that are assembled into the product. The average unit cost of a satisfactory product, U, is defined 

by Equation (3.14). The heuristic algorithm-based tolerance allocation method proposed in 

Chapter 2 was compared with the method proposed in this chapter. The heuristic method allocated 

product tolerances by optimizing the σ of the processes. The number of each type of component 

that was processed and assembled, Q, was set equal to 10,000.  

The results of the heuristic method in Chapter 2 and the approach proposed in this chapter 

are shown in Table 3.5. Using the method proposed in this chapter, a lower average unit cost per 

satisfactory product is achieved (a $150 difference for 10,000 parts). Furthermore, 235 more 

satisfactory products can be produced per 10,000 units of components processed (≈2%). 

Table 3.5. Results of scenario one. 

 Method of chapter 2  Method of this chapter 

Component σ  r σ 

Hub 0.077  10.909 0.080 

Roller 0.046  10.149 0.042 

Cage 0.118  9.284 0.105 

U ($) 3.5002  3.485 

M 9410  9645 

 

3.4.3.2 Scenario two: 100% inspection of components 

This section considers scenario two that was described in Section 3.3.1.2. Recall that this 

scenario inspects every component prior to assembly. The cost to scrap/recycle unsatisfactory 

components, SC, is assumed to be ten percent of the fixed cost, A, of the process used to fabricate 

the component. As in Section 3.4.3.1, the cost to scrap/recycle unsatisfactory products, SP, is 
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assumed to be ten percent of the summation of the fixed costs, A, of all components that are 

assembled into the product. The settings of the Monte Carlo simulation are the same as in Section 

3.4.3.1. The results using the method of this research are again compared with the heuristic 

algorithm-based tolerance allocation method Chapter 2. The results of the two methods are shown 

in Table 3.6.  

Compared to the heuristic method proposed in Chapter 2, the method proposed in this 

chapter achieves a smaller average unit cost per satisfactory product (a $160 difference for 10,000 

parts), and assembled 254 more satisfactory products per 10,000 satisfactory products produced 

(≈2.5%). The two methods have similar component pass rates. In the heuristic method, the 

production rate (derived from σ) and tolerance spread, k, had to be optimized separately, while in 

the proposed method of this research, the production rate and tolerance spread were optimized 

together. Thus, a better solution was reached in terms of cost, quality, and waste reduction 

(material efficiency) using the method of this research.  

Table 3.6. Results of scenario two. 

 Method of chapter 2  Method of this chapter 

Component σ k N  r σ k N 

Hub 0.077 3.484 10004  10.9 0.080 4.071 10000 

Roller 0.046 3.785 10001  10.2 0.042 3.030 10024 

Cage 0.118 3.723 10003  9.3 0.105 3.535 10003 

U ($) 3.500  3.484 

M 9401  9655 

 

Several observations associated with the two scenarios, as provided in Tables 4 and 5, merit 

attention. The results of both methods for both scenarios produce a relatively high percentage of 

unsatisfactory assembled products (about 3%). Across all cases, the objective of minimizing the 

average unit cost of a satisfactory product, U, is pursued. The obtained solutions are optimal from 
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a cost perspective given the capabilities (precisions) and costs of the processes. These results can 

help practitioners adjust the production process. For example, if the current scrap rate is 

unacceptable, then this may indicate that the capabilities of the processes need to be improved or 

that the scrap cost is not large enough in the model.  

3.4.3.3 Further analysis 

COMPARISON OF THE TWO SCENARIOS. In an ideal world, it would be desirable for a 

process to be sufficiently precise so that no inspection of components is needed. However, when 

the precision of the process is limited, or when it is expensive to increase the precision of the 

process, inspection may be a cost-effective strategy to ensure that the components/products have 

acceptable quality. Comparison of the cost for the two scenarios will help practitioners make a 

decision as to whether to carry out inspection. As is evident from a comparison of the results of 

Table 3.5 and Table 3.6, the inspection of components, does not dramatically affect either U or M. 

However, this result may be dependent on the precision (σ) of the processes. For processes with 

poorer precision (bigger σ), the difference may be larger. 

In this section, the lower bound for σ of processes is varied, and the average unit cost per 

satisfactory product of the two scenarios are compared. For scenario two, two cases are considered. 

For the first case of scenario two, the value of k is fixed at 3 (i.e., specifications are ±3σ), and for 

the second case of scenario two, the value of k is optimized.  

In the production rate-σ model given by Equation (3.40), the value of E is the lower bound 

on the standard deviation for the process. The precision of the process was varied by multiplying 

the value of E given in Table 3.4 by a “precision scaling constant.” The value of the precision 

scaling constant was varied from 0.5 to 3.0 (a value of 0.5 reduces the lower bound on σ by ½ and 

a value of 3.0 increases the low bound on σ by a factor of 3). The value of F was fixed at the value 
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given in Table 3.4. For both scenarios, the cost-production rate relationship was the same as used 

previously, and the values of the constants A and B in Equation (3.38) were the same as in Table 

3.2 and Table 3.3. Because the cost to inspect the component is independent of production rate, 

and the component scrap cost is negligible (very few components are scrapped), the inspection 

cost and component scrap cost were both assumed to be 0. The minimum values of U for scenario 

one and scenario two (two cases for scenario two) for different precision scaling coefficients are 

shown in Figure 3.10. The figure shows that for processes with high precision, the difference 

among the three cases is small, so the economic benefit of inspection is negligible. As the precision 

of the process decreases (σ increases), the economic benefits of inspection increase. Optimizing 

the value of k can reduce U – the average unit cost per satisfactory product. 

 

Figure 3.10. Comparison of two scenarios 
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INFLUENCE OF PRECISION ON TOLERANCE SPREAD AND PASS RATE. This section 

analyzes the influence of process precision on the allocated tolerance of components. As with the 

former section, the precision of the process was varied by multiplying the value of E given in Table 

3.4 by a precision scaling constant, which was varied from 0.5 to 3.0. The value of F was fixed at 

the value listed in Table 3.4. For all three cases, the values of the constants A and B in Equation 

(3.38) are the same as given in Table 3.2-Table 3.3. The values of γ, β, and k for minimum U are 

shown in Figure 3.11. A general trend for the components is that when the process precision 

decreases (σ increases), the value of k also decreases, which adjusts the tolerances of the 

components. 

The value of k and the pass rate of the roller are the smallest among the three components, 

which means the tolerance of the roller is the tightest, even though the process for the roller has 

the highest precision. Since the process for the roller has the lowest processing cost, tightening the 

tolerance of the roller reduces the loss caused by assembling expensive hub and cage components 

that may be scrapped if the product fails inspection due to large variation stack-up. The 

optimization seems to be telling us that driving down the stack-up variation by focusing on the 

inexpensive rollers is the least expensive way to affect the average unit product cost, U.  
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Figure 3.11. Relation among process precision, tolerance spread, and pass rate. 

ACCURACY OF THE COST MODEL. In the previous subsections, the optimization results, such 

as the average unit product cost, U, and the number of satisfactory products M, were calculated by 

the proposed analytical model. This section reports on the Monte Carlo simulations that were used 

to validate the accuracy of the analytical model. Model validation was achieved by comparing the 

relative error between the average unit product cost estimated by the Monte Carlo simulations and 

the average unit product cost computed by the proposed cost model (scenario one: Equation (3.14), 

scenario two: Equation (3.18)).  

To review, the proposed optimization method finds the optimal production rates and the 

minimum average unit cost of a satisfactory product. For the Monte Carlo simulations, the 

production rates found via the proposed method were used to generate components of each type. 



 

82 

The dimension of each component type was assumed to follow a normal distribution (with mean 

equal to the nominal value, and standard deviation functionally dependent on the production rate).  

Both scenario one and scenario two were considered. For scenario one, 10,000 components 

of each type were generated. These components were randomly assembled, the number of 

satisfactory products was counted, and the average unit cost of a satisfactory product was 

computed. For scenario two, components of each type were again generated, each component was 

inspected, and unsatisfactory components were scrapped. This process continued until 10,000 

satisfactory components of each type were produced. The 10,000 satisfactory components of each 

type were randomly assembled, the number of satisfactory products was counted, and the average 

unit product cost was computed.  

To validate that the accuracy of the model does not change dramatically with the change of 

process precision, the Monte Carlo simulations were carried out multiple times with varying 

precision (multiplying the value of E given in Table 3.3. by a precision scaling constant, which 

was varied from 0.5 to 3.0). The conditions for the simulations were the same as those given in 

Section 3.4.3.1 and 3.4.3.2. The relative errors, (Monte Carlo – analytical model)/Monte Carlo, 

are shown in Figure 3.12. For both cases, the relative errors were all positive, which means the 

cost predicted by Monte Carlo simulations was larger than the theoretical model. The error being 

all positive means the product variance estimated from component variances is slightly smaller 

than the real value. The relative errors in both cases are modest (average of about 1%) and may be 

compensated by slightly increase the estimated product variance in equation (3.11).  
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Figure 3.12. Errors between Monte Carlo simulations and analytical model: scenario one (left) 

and scenario two (right) 

MANAGERIAL INSIGHTS. The case study has shown the advantages of jointly considering 

product design and operation design in allocating tolerance. Based on the analysis from the above 

three subsections, some managerial insights on inspection strategy, cost reduction, and waste 

reduction are provided.  

The results in Table 3.6 shows that tightening the tolerance of components that is less 

expensive to process (inexpensive components) and loosening the tolerance of components that is 

more expensive to process (expensive components) is an effective way to reduce the total cost. 

Though a tighter tolerance may initially look to increase the cost, this strategy reduces the loss 

caused by assembling expensive components into a product that fails inspection. Especially when 

the failing is caused by large variation stack-up from the variation of inexpensive components. It 

should also be noted that this strategy in saving cost should not be exploited because unnecessary 

tight tolerance may cause unnecessary precise process to be used, which increases the energy 

consumption (low production rate and long production time) and increases waste (more 

components are scrapped).  
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Quality inspection is generally time consuming and costly. Practitioners must make 

decisions on whether to carry out inspection based on the precision of the process and the cost of 

inspection. The comparison in the former subchapter only considered the costs that are directly 

affected by tolerance and production rate, so the result reveals how the precision of the process 

affect the cost. The comparison gives practitioners some guidance on the level of process precision 

at which inspection of components becomes economically desirable. Practitioners should evaluate 

cost related to inspection, such as investment on equipment and labor, to make decisions.  

Costs to scrap products and component are generally low [119]. If the solution to tolerance 

allocation is driven only by high quality and low cost, a manufacturer may take a strategy that uses 

low precision processes to produce the components, which would keep manufacturing costs low. 

Then, a tight tolerance could be applied to the components and products to filter out poor quality 

assemblies. This strategy would lead to a higher waste. If the manufacturer would like to reduce 

waste in addition to cost, they can add a “punish” factor into the cost model. The “punish” factor 

can be represented by the ratio between product scrap cost SP, and fixed cost, A (or similarly, the 

ratio between component scrap cost, SC, and A). A high ratio has a higher punish on waste. We 

compared three cases, with three ratios being 10%, 50%, and 100%. The results are shown in Table 

3.7. It is evident that when the punish factor is increased, less products and components go into 

the waste stream. Practitioners can adjust this factor based on requirement.  

Table 3.7. Impact of scrap cost on cost and waste. 

𝑆𝑃

𝐴
 

N 
U ($) M 

Hub Roller Cage 

10% 10000 10000 10000 3.484 9655 

50% 10024 10009 10000 3.514 9701 

100% 10003 10000 10000 3.544 9746 
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3.5 Summary and Conclusions 

This chapter introduced a new tolerance allocation model that considered production cost, quality, 

and waste simultaneously. This model for the first time, jointly considers product design and 

operation design. For product design, a statistical approach was used to predict how component 

variations contributed to the variation of an assembled product. For operation design, the relations 

among production rate, processing precision, processing cost, and waste were characterized. 

An analytical cost model was proposed. The cost model considered processing cost and scrap cost. 

Two scenarios were studied: i) no component inspection, and ii) 100% inspection of components 

(assembled products were always inspected). The tolerance on the product characteristic of interest 

was allocated to individual components by optimizing the production rate for each component (the 

production rate affects the processing cost and precision). For the scenario where components were 

inspected, the tolerance spread, k (tolerances are ±kσ), was also optimized. Since component 

inspection may change the distribution of characteristic values, an adaptation function was 

introduced to appropriately adjust the standard deviation of components. A gradient-based 

optimization method was used to minimize the cost. Tolerance allocation for a clutch assembly 

was used to demonstrate the proposed method. The obtained results were compared with the results 

of a heuristic-based method. It is shown that the proposed method leads to settings (production 

rate and tolerance spread) that produce more satisfactory products at a lower cost and produce less 

waste. In addition, model validation was conducted by comparing the relative error between the 

average cost computed from Monte Carlo simulations and the average cost computed by the 

proposed theoretical cost model.  

Some conclusions and practical guidance may be drawn from this work as follows.  

• Monte Carlo simulations demonstrated the accuracy of the analytical cost model 

(average of about 1% error rate).  
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• The case study showed that the proposed method can optimize tolerance by 

balancing cost, quality, and waste. Compared to a heuristic method from the 

literature, the proposed method produces more satisfactory products at a lower 

average unit product cost and lower waste (fewer scrapped/recycled 

components/products). 

• When the precision of a process is high, it is more economical not to inspect the 

quality of individual components. For poor precision processes (large σ), inspecting 

the quality of individual components is the preferred approach from 

cost/throughput standpoint. In the long term, continuous quality improvement 

should be pursued to improve process precision and minimize waste.  

• The cost model and the optimization method were developed based on general 

functional forms for the rate-cost and rate-sigma relationships. Two specific forms 

of these relationships were considered in the case study. Manufacturers can 

establish these relationships that were suitable to their situation of interest.  

The ability to produce high quality products with low cost and high throughput rate is critical for 

manufacturers. This research has demonstrated how allocating product tolerance by jointly 

considering product design and operation design can help improve this ability while minimizing 

scrap. In moving forward, it should be noted that continuous improvement approaches (a topic not 

addressed in this chapter) that reduce process variation while also reducing costs are likely to add 

to the benefits of this research and produce even smaller levels of scrap/waste.  
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 DETECTING ANOMALIES IN TIME SERIES DATA FROM A 

MANUFACTURING SYSTEM USING RECURRENT NEURAL 

NETWORKS4 

The industrial internet of things allows manufacturers to acquire large amounts of data. This 

opportunity, assuming the right methods are available, allows manufacturers to find anomalies that 

arise during manufacturing system operation. Data acquired from a manufacturing system are 

usually in the forms of time series. This chapter proposes a new method that can detect anomalies 

in time series data. This model is based on recurrent neural networks, and it can be trained using 

data acquired during routine system operation. This is very beneficial because often, there are few 

data labeled as anomalies, since anomalies are hopefully rare events in a well-managed 

manufacturing system. The model takes time series data as an input and reconstructs the input data. 

Time series data with an anomaly would causes patterns in the reconstruction errors that are 

inconsistent with error patterns of anomaly-free data. The performance of the proposed method is 

assessed using data from a diesel engine assembly process. Three common types of anomalies are 

detected from the time series data. It is shown that the method not only can detect anomalies, but 

it can also provide insights into the timestep at which the anomaly occurred. This feature helps a 

manufacturer pinpoint the source of the problem.  

4.1 Introduction 

The ability to detect anomalies in data collected during the operation of a manufacturing 

system provides many benefits to manufacturers. If the root cause of a detected anomaly can be 

 
4 Reprinted (portions enhanced/adapted) from Y. Wang, M. Perry, D. Whitlock, and J. W. Sutherland, “Detecting 

anomalies in time series data from a manufacturing system using recurrent neural networks,” J. Manuf. Syst., 

December, 2020. https://doi.org/10.1016/j.jmsy.2020.12.007. Published by Elsevier Ltd. 
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identified, it may reveal potentially useful information about the manufacturing system, such as 

the health condition of tools [120], the remaining useful life of machinery [121], and the quality 

of parts/products [122]. Detecting these anomalies enables manufacturers to catch failures and 

defects early, and to take remedial actions and precautions.  

The advent of low-cost sensors, wireless communication, and advances in computing, which 

collectively are often conveyed as the industrial internet of things, has made available large 

amounts of data to manufacturers [36]–[38]. This data, from multiple sensors, is collected over 

time and forms a multidimensional time series. The accumulation of large amounts of time series 

data brings opportunities to better monitor the manufacturing system, but the anomaly detection 

process may also become more challenging, because the sensor data may be of longer length and 

higher dimension. For example, every time step of the time series collected from a motor may be 

a vector containing acceleration signals of multiple axes and vibration signals of multiple 

directions for a long period of time [39] [40]. Traditional anomaly detection methods may not be 

capable of detecting anomalies in time series data of long length and high dimensionality [41].  

When things go wrong during the operation of a manufacturing system, anomalous behavior 

may appear in sensor data collected from the system. Anomalies in the data can be in different 

forms, such as extreme values. In general, anomalous data show patterns that are different from 

anomaly-free data (i.e., data collected during routine functioning of the system). For example, as 

shown in Figure 4.1, in assembling a crank, the rotational angle of the driving equipment and the 

corresponding torque applied to rotate the crank can be recorded as a time series. Anomalies in the 

time series may vary in form and reveal quality defects such as improper engagement of gears 

(chatter shown in abnormal time series 1) and missing components (low torque values shown in 

abnormal time series 2). 



 

89 

 

Figure 4.1. Anomalies in time series data. 

In this chapter, we use manufacturing (time series) data collected under routine operation to 

establish a time series model (including estimates of parameters). The differences between the raw 

data and model predictions serves as the residuals, and the estimation procedure is focused on 

minimizing these residuals. It is worth noting that different terminologies have been used in the 

literature. In this research, we refer to the raw data as input data, the model predictions as 

reconstructed data, and the residuals as reconstruction errors. Since the model was trained using 

data having no anomalies, the reconstruction errors corresponding to data with anomalies would 

be large [123]. As shown in Figure 4.2, a time series with a total timesteps of T is noted as X = {Xt, 

t=1,2, …, T, Xt ∈ ℝn}. The reconstruction model takes the original time series data X as input, and 

outputs a time series data, 𝑿̂ = {𝑿̂𝑡 , 𝑡 = 1,2, … , 𝑇, 𝑿𝑡 ∈  ℝ𝑛}, which is the reconstructed X. The 

reconstruction errors, which are the differences between X and 𝑿̂ , are elements of 𝒆 =

{‖𝑿𝑡 − 𝑿̂𝑡‖, 𝑡 = 1,… , 𝑇}. The Euclidean norm of the reconstruction errors of each time step can 

be used as the criteria for detecting an anomaly. By doing so, the problem of detecting anomalies 

within a time series of multidimensional data is transformed into a problem of detecting anomalies 

of a series of real numbers.  
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Figure 4.2. Anomaly detection by analyzing reconstruction errors. 

Because of their capability in retaining information of sequential data, recurrent neural 

networks (RNN) are one of the most commonly used approaches to create such a reconstruction 

model. The reconstruction process in an RNN model is carried out recurrently; thus, prediction 

errors of former timesteps accumulate through time. This may limit the effectiveness of using the 

reconstruction errors as an anomaly detector. In this chapter, we propose an encoder-double 

decoder model that uses an “attention technique” to solve this limitation. The attention model was 

proposed by Bahdanau et al. [124] for machine translation based on the encoder-decoder model. 

We adjusted the attention technique for anomaly detection. By using the attention technique, the 

encoder better summarizes the content in the input time series by automatically detecting which 

parts of the input data are more relevant at each time step. The two decoders that share one encoder 

pass information in the time series both forward and backward through timesteps, which attenuates 

the accumulation of reconstruction errors.  

Another limitation of the RNN based encoder-decoder model is that it may have difficulties 

characterizing dynamics of high frequency in the input data. In general, there is a tradeoff between 

time series model complexity and the character of model reconstruction errors (residuals). A 
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simple model may not adequately describe high frequency dynamics in the raw data, or it may well 

describe high frequency content, but fail to describe a slow drift in the signal. Increasing the 

complexity of the model allows more features of the raw data to be described, but this comes at 

the expense of more parameters to estimate. For common RNNs, it is not uncommon for high 

frequency, low amplitude components in the raw data to appear in the reconstruction errors, even 

though these components may not be anomalies [61]. We solve this issue by not only monitoring 

individual reconstruction errors, but also monitoring the trends that are shown in a series. By doing 

so, more types of anomalies may be detected while avoiding false alarms caused by sharp changes 

in the time series values.  

4.2 Model Description 

4.2.1 RNN and the Encoder-Decoder Model 

In this section, we describe how to use RNNs to reconstruct a time series of sensor data 

collected from a manufacturing system and then use the reconstruction error as criteria for 

detecting anomalies. Generally, an RNN is a neural network that recurrently processes sequential 

data. At time step t, the RNN maps a sequence of data X={X1,…,Xt} to a fixed length vector ht, 

which is a hidden state of the neural network. The hidden state ht summarizes information in the 

sequence of data till time step t. Two important factors of an RNN are recurrent computation and 

parameter sharing, the advantages of which can be explained by a mathematical representation that 

defines the hidden state, ht, of an RNN [125]: 

 
( )

1 1( ,..., ) ( , ; )t

t t t th g X X f h X −= = , (4.1) 

where, g(t) is a function that takes the sequence of data Xt as an input and maps it to the hidden 

state ht. f is a transition function that is shared and applied recurrently at each time step t, and θ is 
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a set of fixed parameters of the transition function f. Recurrently applying function f means 

iteratively passing information in the sequence of data through time steps. This iterative 

computation makes the transition function independent of the number of time steps in the input 

sequence. And, by sharing the constant θ, only one transition function, f, is used at all time steps, 

rather than using a different g(t) at every timestep. The two factors make an RNN model more 

generalizable: it is possible to use RNN models for sequences of data with varied lengths and to 

train the RNN model with fewer training examples [125]. The most common RNN units used to 

model the function f are long short-term memories (LSTM) [126] and gated recurrent unit (GRU) 

[127].  

Since the hidden vector, ht, summarizes the information of the sequence till time step t, a 

mapping can be built to predict the probability of the sequence data of the next time step being 

𝑋̂𝑡+1 given ht: 

 1 1 1
ˆ ˆ( | ,..., ) ( | )t t t tp X X X p X h+ += . (4.2) 

By repeatedly carrying out this prediction process, a sequence of data, 𝑿̂ = {𝑋̂1, … , 𝑋̂𝑇}, are 

reconstructed for the original times series data X={X1, …, Xt}. 

A more powerful RNN model that uses the hidden state to reconstruct the input sequence is 

the encoder-decoder model [60]. The encoder, which is a series of RNN units, reads the input 

sequence and then outputs a vector (the hidden state at the last timestep) that summarizes all the 

information in the time series data. This output vector is passed to the decoder, which is another 

series of RNN units. Based on the information summarized in the output of the encoder, the 

decoder reconstructs the original input sequence, 𝑿̂ = {𝑋̂1, … , 𝑋̂𝑇}. 
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In the encoder-decoder model, information at all timesteps in the input time series is 

compressed into a fixed length vector. Some useful information in the input time series may be 

lost. This is the case especially for data series with a long length, where it is difficult for the decoder 

to find which parts of the sequence are more relevant to reconstructing the data. Bahdanau et al. 

[124] modified the encoder-decoder model to include the attention model, which is used for 

machine translation. At each timestep, for each word, the attention model searches the entire input 

sequence data (a sentence) for the most relevant information to translate the word. By doing so, 

the output vector of the encoder can place weights on different words based on their importance 

to predicting the next word. For example, whether a translated verb should be plural may be 

determined by a noun in the original sentence. An attention model that is adjusted for detecting 

anomalies within a time series data from a manufacturing system is described in the following 

section. 

4.2.2 The Encoder-Decoder Model with Attention 

4.2.2.1 Architecture of the Attention Model 

The encoder-decoder model with attention is constructed using four types of neural network 

units, i.e., the encoder RNN unit, the decoder RNN unit, the attention unit, and the output unit, as 

shown in Figure 4.3. The encoder unit and the decoder unit consist of a series of general forms of 

RNN models such as LSTM and GRU. The attention unit and the output unit contain feed forward 

neural networks. A series of the four types of units are structured together in such a way that the 

information in the input time series are passed through timesteps. The encoder RNN units take the 

sequence data as the input, and outputs a sequence of vectors that summarize the information in 

the input data. For each timestep, the attention units assign weights to these vectors based on their 

relevance in reconstructing the data of the next timestep. The outputs of the attention units are 
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passed into the decoder RNN units. Then, the output units use the information summarized in the 

decoder units to reconstruct the input data. Each unit has some parameters to be trained, and for 

the same types of units, the parameters are shared at all timesteps. 

 

Figure 4.3. Units of the attention model. (a) Encoder RNN unit. (b) Decoder RNN unit. (c) 

Attention unit. (d) Output unit. 

As shown in Figure 4.3 (a), the encoder RNN unit is a bidirectional RNN, which combines 

a forward encoder and a backward encoder. The forward encoder reads the input time series data 

from X1 to XT, and outputs the forward hidden states ℎ⃗ ={ℎ𝑡
⃗⃗  ⃗, 𝑡 = 1,2… , 𝑇, ℎ𝑡

⃗⃗  ⃗ ∈ ℝ𝑚}, which was 

given by Equation (4.1); the backward encoder reads the input time series data from XT to X1, and 

outputs the backward hidden states ℎ⃖⃗ = {ℎ𝑡
⃖⃗ ⃗⃗ , 𝑡 = 1,2… , 𝑇, ℎ𝑡

⃖⃗ ⃗⃗ ∈ ℝ𝑚}. The forward hidden states 

and the backward hidden states are concatenated into a new series of hidden states (h1, …, hT), as 

given below: 
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By concatenating the hidden states of the forward encoder and the backward encoder, the 

information of the whole sequence is summarized in the hidden state, ht, for all time steps from 1 

to T, as shown in Figure 4.4. The relevance of the ith hidden state, hi, in predicting the tth timestep 
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of the output sequence, 𝑋̂𝑡 , is evaluated by the attention unit. The initial hidden states for the 

forward RNN unit, ℎ⃗ 0, and backward RNN units of the encoder, ℎ⃖⃗𝑇, are initialized to be zero. 

The decoder RNN unit is a unidirectional RNN, as shown in Figure 4.3 (b). The hidden state 

of the RNN, st, is computed recurrently from the hidden state of the former timestep, si-1, and a 

vector dt. The vector dt is a concatenation of the output of the attention unit (context vector) ci, and 

the former reconstructed data 𝑋̂𝑡, as shown in Figure 4.4. The initial reconstructed data 𝑋̂0 is set to 

be equal to a random vector or a zero vector. The context vector, ci, contains both the forward and 

backward information from the encoder. The hidden state si-1 and the data 𝑋̂𝑡 contain data that have 

been constructed, which passes the information forward. Using the abstract form of the RNN unit 

as given in Equation (4.1), the recurrent computation in the decoder can be represented as:  

 1 1
ˆ( , , ) ( , )i i i i i is f s c X f s d− −= = , (4.4) 

where, di is the concatenation of ci and Xi, and is given below:  

 
ˆ

i

i

i

c
d

X

 
=  

 
. (4.5) 

As shown in Figure 4.3 (c), at time step t, the inputs to the attention unit are hidden states of 

the encoder for all timesteps, {h1, …, hT}, and the hidden state of the decoder of the previous 

timestep, st-1. The attention unit learns the relevance of these hidden states and outputs a context 

vector ct, which is a weighted sum of all the hidden states. The architecture of the hidden states is 

given in Sec. 4.2.2.2. Both the decoder RNN unit and the attention unit need an initial hidden state, 

s0, to start the recurrent computations. The value of s0 is calculated by the last hidden state of the 

backward RNN unit of the encoder,  ℎ1
⃖⃗⃗⃗⃗, using a one-layer feedforward neural network  



 

96 

The output unit is a feedforward neural network that takes the output of the decoder unit, st, 

as the input and reconstructs the data of step t, 𝑋̂𝑡 , as shown in Figure 4.3 (d). Based on the 

complexity of the problem, the structure of the neural network can be adjusted. Also, based on the 

type of the sequence data X, different activation functions can be deployed at the last layer. For 

example, if Xi is a vector that indicates which category this time step belongs to, then each element 

of Xt may be modeled as the probability corresponding to the category, and the softmax function 

may be deployed as the activation function of the last layer. If Xi is a vector of real values, then a 

linear transformation may be the activation function of the last layer.  

Figure 4.4 shows the structure of the encoder-decoder model with attention. Similar to the 

encoder-decoder model, the attention model structure can also be divided into an encoder and a 

decoder. The encoder includes the encoder RNN units and the attention units. The decoder includes 

the decoder RNN units and the output units. The information in the time series data, {𝑋1, …𝑋𝑇}, is 

transformed from bottom-up, i.e., from the encoder to the decoder. But different from the normal 

encoder-decoder model, both the encoder RNN unit and the attention unit process all the 

information at each timestep. The information is passed from the encoder to the decoder through 

the attention unit. For the decoder RNN unit and the output unit, the information is passed from 

the past to the future (left to right). A vector 𝑋̂0, which can be a random vector or a zero vector, is 

passed to the first decoder RNN unit to start the decoding process. After carrying out this recurrent 

computation T times, a sequence of data, {𝑋̂1, … , 𝑋̂𝑇}, is generated.  

The four units of the attention model can be viewed as four function approximators. The four 

units learn four functions that pass the information from the input time series data, {𝑋1, …𝑋𝑇}, to 

hidden vectors, context vectors, and then to the reconstructed time series data, {𝑋̂1, … , 𝑋̂𝑇}), as 

given in Equation (4.6): 
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where, θ, τ, λ, and γ are functions associated with the encoder RNN unit, the attention unit, the 

decoder RNN unit, and the output unit, respectively. By sharing parameters, only one function is 

learned for each type of unit.  

In the training process, the objective function, 𝐿 =
1

𝑇
∑ ‖𝑋𝑡 − 𝑋̂𝑡‖

2𝑇
𝑡=1  is minimized. The 

objective function is the mean of the square of the l2-norm of the difference vector between the 

input time series data and the reconstructed time series data. 

 

Figure 4.4. RNN Encoder-Decoder architecture. 
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4.2.2.2 Architecture of the attention unit 

The attention unit is called at every timestep by the encoder, and it searches the input 

sequence data to find the most relevant information that the decoder should use to reconstruct the 

data for the next time step. The relevance of the data at a time step is evaluated by a weight, and a 

weighted sum of all the time steps is the context vector ct. 

The architecture of the attention unit is shown in Figure 4.5. At timestep t, the output of the 

encoder, {h1, …, hT}, and the hidden state of the decoder RNN unit of the previous timestep, st-1, 

are the inputs to the attention unit. The context vector ct is given by the following equation:  

 
1

T

t ti i

i

c h
=

=  , (4.7) 

where αti is the weight that evaluates the importance/relevance of the input Xi to reconstruct 𝑋̂𝑡. 

Bahdanau et al [124] proposed the idea of using a feed forward neural network to learn the function 

that approximates the weight αti. The value of αti is between 0 and 1, thus, a softmax function is 

deployed as the activation function of the output layer. To reconstruct a sequence with T timesteps, 

the attention network is called T2 times, the high order of computational complexity limits the 

complexity of the attention network. The attention network is trained together with the encoder 

and decoder. 
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Figure 4.5. The attention unit. 

4.2.3 The Encoder-Double Decoder Model 

Unlike the encoder, which passes information both forward and backward through timesteps, 

the decoder in the architecture shown in Figure 2.4, only passes information forward. At timestep 

t, the decoder reconstructs 𝑋̂𝑡 based on st and 𝑋̂𝑡−1, which only reflects the information from earlier 

timesteps. Thus, the prediction error of 𝑋̂1, … 𝑋̂𝑡−1, will accumulate through timesteps. For a long 

series of data, the accumulated error will be mixed with the errors caused by anomalies from the 

input timeseries. The accumulation of reconstruction errors makes the anomaly detection task more 

difficult.  

We propose an encoder-double decoder model that helps avoid the problems caused by the 

accumulated reconstruction errors. As shown in Figure 4.6, two decoders, i.e., a forward decoder 
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and a backward decoder, are used. The RNN units of the two decoders have the same structure but 

separate sets of parameters. A series of forward decoder RNN units are connected and pass 

information from timestep 1 forward to T, and a series of backward decoder RNN units are 

connected and pass information from timestep T backward to 1.  

To limit the number of parameters, so that fewer samples are needed to train the model, some 

of the parameters of the units are shared. For the forward and backward reconstruction processes, 

only one set of parameters are used for the encoder RNN units, the attention units, and the output 

units, respectively. 

As shown in Figure 4.6, when the attention unit generates the context vector, 𝑐 𝑡, for the 

forward decoder RNN unit, it takes the hidden states of the forward decoder RNN unit of the 

former step, 𝑠 𝑡−1, and the outputs of the encoder, {h1, …, hT}, as inputs. Similarly, when the 

attention unit generates attention for the backward decoder RNN unit, 𝑐𝑡, it takes the hidden states 

of the backward decoder RNN unit of the former step, 𝑠⃖𝑡+1, and the outputs of the encoder, {h1, 

…, hT}, as inputs. The forward context vector 𝑐 𝑡 is concatenated with the data reconstructed by the 

forward decoder RNN unit, 𝑋 ̂𝑡−1. The concatenated vector is fed into the forward decoder RNN 

unit to generate 𝑠 𝑡. The vector 𝑠 𝑡 passes information forward and is fed into the output unit to 

reconstruct 𝑋 ̂𝑡. And the backward context vector, 𝑐𝑡, is concatenated with the data reconstructed 

by the backward decoder RNN unit, 𝑋̂⃖𝑡+1 . The concatenated vector is fed into the backward 

decoder RNN unit to generate 𝑠⃖𝑡. The vector 𝑠⃖𝑡 passes information backwards, and it is fed into 

the output unit to reconstruct 𝑋̂⃖𝑡. By carrying out this process for T timesteps both for the forward 

reconstruction process and the backward reconstruction process, two series of data are 
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reconstructed, i.e., data reconstructed forward, {𝑋 ̂1, … , 𝑋 ̂𝑇} , and data reconstructed backward, 

{𝑋̂⃖1, … , 𝑋̂⃖𝑇}.  

Similar to the case with one decoder, the initial hidden state of the forward decoder RNN 

unit and the first input to the attention unit, s 0, are calculated by the last hidden state, ℎ⃖⃗1, of the 

backward RNN unit of the encoder, using a one-layer linear neural network. Note 𝑠⃖𝑇+1 as the 

initial hidden state of the backward decoder RNN unit and the first input to the attention unit that 

connects to the backward decoder, its value is calculated by the last hidden state, ℎ⃗ 𝑇, of the forward 

RNN unit of the encoder, using another one-layer linear neural network. The initial reconstructed 

data for the forward decoder RNN unit, 𝑋 ̂0, and the backward decoder RNN unit, 𝑋̂⃖𝑇+1, are zero 

vectors. 

Since the parameters of the encoder RNN unit, the attention unit, and the output unit are 

shared by the forward decoder and the backward decoder, the training process should be 

synchronized in the forward and backward reconstruction processes. This can be achieved by 

combining the objective functions of the two decoders, as shown in Equation (4.8): 

 ( ) ( )
2 22 2

1 1

1 1T T

t tt t t t

t t

L L L e e X X X X
T T= =

= + = + = − + −  , (4.8) 

where, 𝒆⃗ = {𝑒 𝑡 = 𝑋𝑡 − 𝑋 ̂𝑡 , 𝑡 = 1,… , 𝑇} , and 𝒆⃗⃖ = {𝑒⃖𝑡 = 𝑋𝑡 − 𝑋̂⃖𝑡 , 𝑡 = 1,… , 𝑇}  are reconstruction 

errors corresponding to the forward decoder and the backward decoder. 

The training is carried out by back-propagation. The neural networks shared by the two 

decoders automatically learn to generalize information for the forward and backward 

reconstruction processes, and the two independent neural networks for the forward decoder and 

the backward decoder learn independently. 
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At each timestep, the reconstruction error vector with the smaller norm is saved in the 

reconstruction error vector, 𝒆 = {min(‖𝑒 𝑡‖, ‖𝑒⃖𝑡‖) , 𝑡 = 1,… , 𝑇} . This has two benefits: 1) 

avoiding accumulation of reconstruction errors. 2) removing patterns brought in by noisy outliers.  

 

Figure 4.6. Architecture of the encoder-double decoder model. 
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anomaly may lead to false positive (extreme value is associated with routine operation) or false 

negative (anomalous behavior does not manifest as an extreme value) signals. When an anomaly 

occurs, not only may the reconstruction errors increase, but the character of the reconstruction 

errors may also change, which may manifest itself in patterns/trends within the reconstruction 

errors. Thus, rather than only searching for singular extreme values as evidence of an anomaly, the 

reconstruction error series may also be monitored [61]. This is similar to using control charts to 

detect anomalies in a manufacturing process, in which not only are extreme points looked for in 

individual values, but also trends/patterns in the time series.  

When anomalies occur, the magnitude of a reconstruction error may not be large, but it may 

show patterns/trends. For example, a time series, X, is shown by the dashed green curve in Figure 

4.7(a). The reconstructed time series, 𝑿̂, is shown by the solid blue curve in Figure 4.7(a). The 

time series does not have an anomaly, and the reconstruction errors distribute randomly around 

the center line, as shown in Figure 4.7(c). The dashed red curve in Figure 4.7(b) corresponds to a 

time series, X, with an anomaly that occurred at time step tA (the time series data are larger than 

values without an anomaly). Again, the reconstructed time series is shown as a solid blue curve. 

The magnitude of deviation is relatively small, and the reconstruction errors are within the limits, 

as shown in Figure 4.7(d). If only the magnitude of the reconstruction errors is considered, one 

might conclude that no anomaly has occurred. However, the reconstructed error data shows a 

pattern: after the anomaly, the errors are all positive. Such patterns in the reconstruction error data 

may also be used as criteria in anomaly detection. 
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Figure 4.7. A pattern in reconstruction errors. 
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routine operation of a diesel engine assembly line (anomaly-free data set). We show the benefits 

of using double decoders, and then show that the proposed model can detect anomalies in the 

sensor data from an assembly process subjected to three types of quality issues. The proposed 

models were implemented using Python and PyTorch. 

4.3.1 Time Series Data of an Engine Assembly and the Model Structure 

The assembly of a diesel engine consists of a number of individual processes. One such 

process is the installation of the crankshaft into an engine block. Once the crankshaft is installed, 

several other steps must be undertaken, e.g., setting valve positions. During the valve position 

setting, the crankshaft is rotated. Time series data are collected during this rotation process. At 

each timestep, data containing measurements such as torque and rotational angle are collected to 

form a multidimensional vector. The data considers 240 timesteps, i.e., T=240, and the raw time 

series are the input to the encoder. To simplify the illustration, in Sections 4.3.2 to 4.3.3, we only 

considered anomalies related to torque, i.e., the input time series is one-dimensional. A multi-

dimensional data set is used in Section 4.3.4.  

As has been noted, abrupt changes in the time series data, may not necessarily be due to 

anomalies. For example, when an operator adjusts the height of a valve during crankshaft rotation, 

an abrupt change in torque value may result, but this change is not necessarily caused by a quality 

problem. Moreover, again as has been noted, anomalies may not manifest themselves as extreme 

values within the reconstruction errors. 

In this experiment, LSTM was used in both the encoder RNN unit and the decoder RNN 

unit, with the hidden dimension being 512. The parameters are selected based on the literature and 

by experiments. Both the attention unit and the output unit were feedforward neural networks with 

two hidden layers. We built a training set using engines that have no assembly anomalies (noted 
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as normal engines below). And then we trained the encoder-decoder attention model given in 

Chapter 4.2.2.1 using the training set.  

Figure 4.8(a) shows the original time series and the time series reconstructed by the trained 

model. This was an engine without anomalies (quality issues) but with an abrupt change in the 

values (shown in the circle). The input time series data is not smooth, and the reconstructed time 

series follows the trend of the input time series, but it cannot fully reconstruct the changes of value 

with high frequencies. As shown in Figure 4.8(b), the reconstruction errors corresponding to the 

abrupt change is much higher (in the circle). This is because LSTM is generally sensitive to abrupt 

changes of value [61]. For the subsequence that is not smooth (the time steps between 100 to 150), 

the reconstruction errors are higher. But other than the peak that was caused by the abrupt change 

of the input time series data, no patterns are shown in the reconstruction errors. 

 

(a) Original and reconstructed time series (b) Reconstruction errors 

Figure 4.8. A time series data of an engine with no anomaly. 
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respectively. The two decoders have the same structure but separate sets of parameters. We use 

the first decoder to reconstruct the data forward, from timestep 0 to 250, and use the second 

decoder to reconstruct the data backward, from timestep 250 to 0, as shown in Figure 4.9(a) and 

(b).  

In Figure 4.9(c) and (d), we show both groups of reconstruction errors forward in timesteps 

to make it easier to compare them stepwise. The reconstruction errors accumulate with timesteps 

in the reconstruction direction (shown by the arrows in the figures). As highlighted by the circles 

in Figure 4.9 (c), when reconstructing data in the forward direction, there are a few reconstruction 

errors, seen later in the time series, that are much larger than the neighboring points. Similarly, as 

shown in Figure 4.9 (d), when reconstructing the data in the backward direction, there are a few 

reconstruction errors, seen early in the time series (later part of the reconstruction process), that 

are much larger than the neighboring points. For every timestep forward, the smaller ones of the 

two sets of reconstruction errors are included in a combined set of reconstruction errors, as shown 

in Figure 4.9 (e). As is evident from the figure, in the combined set of reconstruction errors, the 

extreme reconstruction errors are removed. 
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 4.9. Reconstructed and original time series. 
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4.3.3 Anomaly Detection Results 

Three types of common anomalies were considered, i.e., nonproper engagement of tools, 

stuck crank (e.g., nonsmooth change of torque caused by debris), and large torque. Four criteria 

were used to interpret the reconstruction errors: (1) A single point beyond the limits (33.50 and -

43.12). (2) More than 12 points in a row on same side of the center line. (3) More than 11 points 

in a row, all increasing or all decreasing. (4) More than 14 points in a row, alternating up and down. 

Since there are few labeled anomalies, these criteria were first estimated by a validation set, and 

then tuned by analysis based on experience and criteria used in control charts [87]. Because there 

are few labelled anomalies, we tested one type of anomaly detected in the real manufacturing case 

and two types of anomalies that were manually introduced into anomaly-free time series data.  

The first type of anomaly is caused by improper engagement between the gears of the driving 

tool and the crank of the engine. The shape of the time series with anomalies generally follows the 

shape of anomaly-free cases and with the maximum and minimum values being similar to 

anomaly-free time series. Therefore, it may be difficult for traditional anomaly detectors, which 

monitor general profile and extreme values of the time series, to detect the anomaly. The original 

and the reconstructed timeseries are shown in Figure 4.10 (a), and the reconstruction errors are 

shown in Figure 4.10 (b). The model successfully detected the anomaly. In the reconstruction 

errors, there are three subsequences shown through patterns (more than 12 points in a row on same 

side of center line), as shown in the three circles of Figure 4.10 (b).  

The second type of anomaly simulates the case of a crank that got stuck during rotation. The 

time series with anomalies is produced by modifying an anomaly-free time series. As shown in the 

circle in Figure 4.10 (c), the torques fluctuate near -60 for 10 timesteps. The model successfully 

detected the anomaly. As shown in the circle in Figure 4.10 (d), the reconstruction errors failed 

criteria 3 (more than eight points in a row, all decreasing).  
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The third type of anomaly simulates the case of missing components or extra components 

being assembled. With missing/extra components, the torque needed to rotate the crank may be 

different from the routine cases. For example, with an extra washer, it may need a higher torque, 

at each timestep, to rotate the crank. The time series with this anomaly is produced by scaling the 

torques of a normal engine by a factor of 1.3 (the maximum/minimum torque is still within limits). 

The input time series and the reconstructed time series are shown in Figure 4.10 (e). The model 

successfully detected the anomaly. The reconstruction errors failed criteria 2 (more than 12 points 

in a row on same side of the center line), as circled in Figure 4.10 (f). 
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(a) (b) 

Nonproper engagement of tools 

 
(c) (d) 

Stuck crank 

 
(e) (f) 

Large torque 

Figure 4.10. Three cases of detected anomalies. Left column: original and reconstructed time 

series. Right column: reconstruction errors. 
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4.3.4 Multi-Dimensional Time Series Data 

This section compares the model proposed in this study to a model proposed by Malhotra et 

al. [56]. The comparison shows the advantage of the attention model as well as using two decoders. 

Experiments are also carried out to validate that the proposed model can detect anomalies in multi-

dimensional time series data. As discussed in Section 4.1, for a multi-dimensional time series data, 

the Euclidean norm of the reconstruction errors, e, can be used as the metric for detecting an 

anomaly. In such a case, the reconstruction errors at all time steps are positive. Experiments show 

that the anomaly detection criteria proposed in Section 4.2.4 are still applicable.  

A two-dimensional time series data is considered. Other than the torque value used in the 

previous sub sections, time series data of rotational angles are also included. Results acquired by 

the two-dimensional data may be extended to data with higher dimensionalities. When the range 

of values in different dimensions varies too much, the data of a certain dimension may dominate 

the result. For example, in the two-dimensional time series data, the values of torque take on values 

from 0 to100, and the values of rotational angle vary from 0 to 2300. The Euclidean norm of the 

error vector will be dominated by the rotational angle. To avoid this situation, we rescaled the 

torque and rotational angles to be in the range of 0 to 1.  

As mentioned in Section 4.2.2 and 4.2.3, compared to the traditional encoder-decoder model, 

the attention model and the structure of two decoders help summarize information in time series 

data and help attenuate the accumulation of reconstruction errors. Torque-rotational angle time 

series data with no anomalies are reconstructed by the traditional encoder-decoder model proposed 

by Malhotra et al. [56], and by the model proposed in this study (encoder-double decoder model 

with attention), as shown in Figure 4.11. It is apparent that the reconstruction errors for the model 

of this study are smaller. This means that the model of this study has a lower chance of making 

type I errors (false positives for anomaly detection). 
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(a) Malhotra et al. [56] (b) This study 

Figure 4.11. Reconstruction errors of an anomaly-free time series. 

Two examples are used to validate the effectiveness of the proposed model in detecting 

anomalies in multi-dimensional time series data. There are anomalies in both examples, and the 

model successfully detects the presence of these irregularities. The limits for magnitude and trends 

in the multi-dimensional data are the same as given in Section 4.3.3. The reconstruction errors of 

the first example are shown in Figure 4.12 (a). The points in the circles are successfully detected 

anomalies where there are more than 11 points in a row, all increasing or all decreasing. The 

reconstruction errors of the second example are shown in Figure 4.12 (b). The points in the circles 

are anomalies where either there are more than 11 points in a row, all increasing or all decreasing, 

or there are 11 points in a row on same side of center line. 
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(a) Time series one (b) Time series two 

Figure 4.12. Reconstruction errors of two time series data with anomalies. 

4.4 Conclusions 

New technologies such as smart sensors and internet of things have enabled manufacturers 

to accumulate a large amount of data collected from manufacturing systems, which may take the 

form of a multidimensional time series of long length. This chapter has proposed a new model that 

can detect anomalies in a time series data, which usually contain useful information of the 

manufacturing system such as failures and defects. Detecting these anomalies enables 

manufacturers to catch failures and defects early, and to take remedial actions and precautions. 

The proposed model is based on the encoder-decoder reconstruction model. The model takes 

time series data as an input and reconstructs the input time series. The differences between the 

input time series data and the output time series data are analyzed to detect anomalies. Both the 

encoder and the decoder are recurrent neural networks. An attention model was incorporated into 

the reconstruction model, which improved the model’s ability to summarize information from the 

time series data. Based on the attention model, an encoder-double decoder model was proposed. 

Using two decoders decreases the accumulation of the reconstruction errors. A few anomaly 

0 50 100 150 200 250

0.1

0

0.2

0.3

0.4

0

0.05

0.10

0.15

0 50 100 150 200 250



 

115 

detection criteria that were inspired by statistical process control techniques were introduced to 

detect trends in the reconstruction errors. These criteria can be used in conjunction with the limits 

for the reconstruction errors in detecting anomalies. The performance of the proposed method was 

assessed using data from a diesel engine assembly process. Three common types of anomalies 

were successfully detected from the time series data. It was also shown that the method can not 

only detect anomalies, but it may also provide information on the timestep at which the anomaly 

occurred. This feature allows a manufacturer to pinpoint the source of the problem.  

The major contributions of the chapter are  

• An attention model, which was used in machine translation, was adapted, and 

incorporated into the encoder-decoder model. The attention model enables the 

encoder to better summarize the content in the input time series by automatically 

detecting which parts of the input data are more relevant in reconstructing the data 

at each time step. 

• A double decoder model was proposed. Using two decoders attenuates the 

accumulation of reconstruction errors. The two decoders share model units such as 

the encoder, which greatly reduced the parameters in the training process. 

• The introduction of additional criteria in interpreting the reconstruction errors. 

Other than only using extreme values of reconstruction errors as evidence of an 

anomaly, we introduced the idea of using trends in the reconstruction errors as 

criteria of an anomaly. Such a technique decreases the false alarms and improves 

the capability of the model to detect multiple types of anomalies.  

The fact that the proposed model can be trained using data acquired during routine system 

operation makes it very practical. Often, there are few data labeled as anomalies, since anomalies 
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are generally rare cases in a manufacturing system that is under control. However, the current 

model needs human experience in tuning the criteria used in monitoring the trends of 

reconstruction errors.  

Future research such as statistical analysis may be carried out to automatically set the criteria 

used to interpret the reconstruction errors. The structure of the proposed neural network and some 

of the hyper parameters such as learning rates are selected based on experience and experiments, 

studies may be carried out to optimize these parameters. Two-dimensional data are used to validate 

the applicability of the model for multi-dimensional data. Like control charts can be applied to 

many manufacturing processes and systems, the proposed methods can likewise be applied in 

many circumstances. Readers are encouraged to test the model using data with even higher 

dimensions. 
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 COMPONENT-ORIENTED REASSEMBLY IN REMANUFACTURING 

SYSTEMS: MANAGING UNCERTAINTY AND SATISFYING 

CUSTOMER NEEDS5 

Remanufacturing has recently received significant interest due to its environmental and 

economic benefits. Traditionally, the reassembly processes in remanufacturing systems are 

managed using a product-oriented model. When a product is returned and disassembled, the used 

components may be processed incorrectly, and the quality of the remanufactured products may not 

meet customer needs. To solve these problems, a component-oriented reassembly model is 

proposed. In this model, returned components are inspected and assigned scores according to their 

quality/function, and categorized in a reassembly inventory. Based on the reassembly inventory, 

components are paired under the control of a reassembly strategy, and these pairs are then 

assembled into reassembly chains. Each chain represents a product. To evaluate the performance 

of different reassembly strategies under uncertain conditions, we describe the reassembly problem 

using an agent-environment system. The platform is modeled as a Markov decision process, and a 

reassembly-score iteration algorithm (RSIA), is developed to identify the optimal reassembly 

strategy. The effectiveness of the method is demonstrated via a case study using the reassembly 

process of diesel engines. The results of the case study show that the component-oriented 

reassembly model can improve the performance of the reassembly system by 40%. Sensitivity 

analysis is carried out to evaluate the relationship between the parameters and the performance of 

the reassembly system. The component-oriented model can reassemble products to meet a larger 

variety of customer needs, while simultaneously producing better remanufactured products. 

 
5 Reprinted with permission from (portions enhanced/adapted) Y. Wang, G. Mendis, S. Peng, and J. Sutherland, 

“Component-Oriented Reassembly in Remanufacturing Systems: Managing Uncertainty and Satisfying Customer 

Needs,” J. Manuf. Sci. Eng., vol. 141, no. 2, pp. 0210051–02100512, 2019. 
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With increased awareness of the environmental issues attributable to manufacturing 

processes and products, researchers have started to investigate methods to make manufacturing 

processes and products more sustainable. Remanufacturing is one of these efforts that closes the 

loop in a product life cycle. As defined by Ortegon et al. [128], remanufacturing is a process that 

preserves the functional values of end-of-life products that are added in the design and 

manufacturing stages of the product life cycle. By transforming end-of-life products back to use-

phase products, the material, energy, and labor that was originally invested in the products can be 

reused, thus decreasing the environmental burden of the product life cycle. In addition to these 

environmental benefits, remanufacturing has many other benefits. For example, remanufacturing 

is usually a faster and more cost effective way to customize products, to maintain products by 

replacing bad components, and to develop products that satisfy a variety of customers’ needs [129]. 

Products, such as engines, are complete systems that are sold to customers. Products are 

made up of components, which enable the product to perform its purpose. While the distinction 

between a component and a product is somewhat arbitrary, a product is always the more complex 

system. A product has a set of functions; for instance, an engine provides mechanical energy to a 

rotating output shaft. Products/components also have functional levels, which are the degrees to 

which a product/component performs specified functions. In the engine example, an engine might 

be designed to produce 600 kW of maximum power, but after years of usage, may only be able to 

produce 500 kW of maximum power. The quality level of a component refers to specific 

characteristics that often relate to function. For example, the quality level of an engine block could 

be related to a characteristic such as the average diameter of the cylinders. The functional level of 

a product is dependent on both the functional level and the quality level of the components in the 

product. Failure to recognize this fact can lead to lost and wasted value during remanufacturing.  
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This chapter proposes a component-oriented model to control the reassembly process of a 

remanufacturing system by taking the uncertainties of returned components and the variety of 

customer needs into consideration. In this model, returned components are inspected, a score is 

assigned to each component according to its quality and/or functional level, and the components 

are organized in a reassembly inventory. Reassembly strategies are developed using an agent-

environment system. The reassembly process is modelled as a Markov decision process (MDP). 

A reassembly-score iteration algorithm (RSIA) is developed to identify the optimal reassembly 

strategy and a Monte Carlo method is used to deal with uncertainties. These methods are applied 

to a case study of the remanufacturing of a diesel engine, and sensitivity analysis is performed to 

examine the performance of the model in comparison with an exhaustive reassembly strategy. 

5.1 Component-Oriented Reassembly 

A remanufactured product consists of components, and for each component, a quality or 

function score may be estimated based on its quality level or functional capability. The specifics 

of the quality and function assessment are outside the scope of this work, but a number of 

researchers have investigated methods for inspecting and evaluating products [78] [79] [130]. 

While quality and functional level may express two different attributes of a component, here we 

assume that the inspection process can assign a single score to a component, based on its quality 

level or functional capability. By choosing returned components with different functional 

capabilities (scores), different requirements can be quantitatively achieved using a strategy that 

governs the reassembly process of the system (hereafter called the reassembly strategy). 
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5.1.1 Reassembly System 

The reassembly system consists of four major processes, as shown in Figure 5.1. First, 

returned products are collected. Then the products are dismantled into components. An inspection 

process gives a score to each returned component according to factors such as appearance, service 

years, and presence of cracks, corrosion, pitting, and wear. Components with scores below a given 

threshold will be recycled, while components that are worth remanufacturing will be sorted into 

the reassembly inventory according to their scores. Some of these components may be 

reconditioned/remanufactured (the component is then rescored), and some new components may 

be added to the inventory. Finally, the reassembly process is carried out under the control of a 

reassembly strategy. Each reassembled product is then assigned a product score, which is based 

on the scores of all the components in the product. The performance of the reassembly system can 

be evaluated using the total scores of all the reassembled products. 

 

Figure 5.1. Reassembly system. 

5.1.2 Reassembly Processes 
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5.1.2.1 Inspection 

One of the challenges in developing a remanufacturing system is characterizing the quality 

and/or functional level of returned components. Let us assume that a component’s actual functional 

performance is described by a true score (TS). In practice, however, this TS is characterized 

through an inspection operation that provides a measured score (MS). The obtained measurement 

score is subject to measurement uncertainty and is therefore a random, continuous variable [131]. 

While precise measurement could be used to best estimate the actual TS, this can be difficult and 

costly. Often, simple, less precise, and less costly measurement technologies may be used. And, 

as has been noted, once a component has been measured, it may be placed into grades or categories 

(C1, C2, C3, etc.), with each category having an associated nominal value of c1, c2, c3, etc. (often, 

interval mid-points). The category score (CS) for a given MS is the value of ci corresponding to 

the appropriate category. The value of CS is discrete. The three types of scores are described in 

Table 5.1. 

Table 5.1. Summarization of Scores. 

Score Purpose  Value 

True score (TS) True quality level of a returned component Single 

Measured score (MS) 
A measurement that seeks to characterize 

component quality. An estimate of TS. 
Continuous 

Category score (CS) Categorization of MS  Discrete 

 

Once a component is placed in a category, there is no memory of its original measurement, 

MS. CS is an estimate of the TS for a component. The relationships among TS, MS, and CS are 

illustrated by an example in Figure 5.2. In this case, a specific component is drawn from the 

measurement distribution and has a value equal to r. This specific measured component is then 

assigned to category C2, which has a midpoint of c2. Thus, CS=c2 for that specific component. It 
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is assumed that the measurement distribution is unbiased (i.e., E[MS]=TS). Due to measurement 

uncertainties, there are possibilities that the CS value for this component could have been c1 or c3. 

The probability of such occurrences may be calculated using the measurement distribution. This 

uncertainty is considered in the reassembly strategy in Chapter 5.2 and is estimated by simulation 

in the case study.  

 

Figure 5.2. An example of the relationship among TS, MS, and CS. (unbiased measurement 

distribution). 

5.1.2.2 Reassembly Inventory and Reassembly Strategy 

A reassembly inventory is used to manage the reassembly process. The reassembly inventory 

stores the components based on their corresponding category scores (CS values). A reassembly 

inventory can be modelled as a table with m rows and n columns, in which m is the number of 

components required to reassemble a product and n is the number of different categories. n can be 

determined by remanufacturers using a variety of methods, for instance, by surveying customers 
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In the reassembly inventory, when a component with a certain CS does not exist, a new 

component can be purchased to fill the gap. The quality score of a new component is greater than 

or equal to the highest quality score of a returned component in the reassembly inventory. This 

choice on whether to buy a new component is controlled by the reassembly strategy, which takes 

total costs/benefits of the reassembly system into consideration.  

Each product can be viewed as a reassembly chain, in which m components are grouped. 

The scores of components in a reassembly chain determines the score of this chain. The summation 

of scores of all reassembly chains, noted as the total score of the inventory, can be used to evaluate 

a given reassembly strategy. 

Figure 5.3 shows a reassembly inventory and several possible reassembly strategies 

corresponding to different scores. The task of identifying the optimal strategy to reassemble 

components is transformed into the task of finding the optimum strategy of building reassembly 

chains. It should be noted that the order of the components in the reassembly chain does not 

necessarily correspond to the physical connections/relationships in the reassembly processes.  
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Figure 5.3. A reassembly inventory and multiple reassembly chains. 
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challenge, a reassembly chain is viewed as links of component pairs: by grouping components 

from the reassembly inventory into component pairs, and by linking the component pairs into a 

reassembly chain, a product is reassembled. The structure of reassembly chains is adjusted by 

pairing, which is a series of processes of selectively grouping two different types of components 

that will be reassembled into the same product.  

Figure 5.4 shows the CSs and corresponding measurement distributions for two types of 

hypothetical components. The upper plot and the lower plot correspond to the green cylinder and 

red cube components, respectively, from the example product in Figure 5.3. In the figure, different 

shades of color refer to components placed in different categories (the measurement distributions 

are different). In this illustrative example, four groups of components are paired under the control 

of a certain reassembly strategy. The components will be assembled into four products (together 

with other components, which are not shown in this figure).  

If a product is made from m components, then (m-1) steps of pairing processes are needed, 

and each step of the pairing process affects the following steps, because the score of the products 

is determined by all the links in the chain.  



 

126 

 

Figure 5.4. An example of pairing processes. 

5.1.2.4 The Objective Function 

An objective function is used to evaluate a reassembly chain according to the requirements 

of the manufacturer. The score of the kth product, Wk, is computed using a function F. A general 

form of F is shown below: 
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which is the summation of the scores of all the reassembled products. u is the number of products 

that are reassembled, and the value of u is less than or equal to the number of columns of the 

reassembly inventory, i.e., u ≤ n.  

Different objectives, such as minimizing the number of wasted components, minimizing the 

cost of the system, and increasing the quality of reassembled products, can be implemented by 

adjusting the objective function in Equation (5.1). Two specific forms of the objective function are 

given below, and other forms may be designed according to needs. 

FORM ONE: COMPONENT PAIR-BASED FUNCTION. If the physical condition of a 

component, such as its dimensional accuracy or wear is used as a major indicator of the score, 

mating relationships between the components (for example, two components that are in contact 

with each other) can be considered in the objective function. Some studies provide methods to 

grade used components based on dimensional variations [77] [133]. The score of the kth product 

is defined as the summation of the scores of all the component pairs, and the score of a component 

pair is the lower score of the two mating components: 

 , , 1,({ }) Min({ , }), 1,2... 1, {1,2... }, {1,2... }i i j i j i kJ F c c c i m j n k n+= = = −   . (5.3) 

 
1

,

1
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m

k i j i

i

W F c J
−

=

= =  . (5.4) 

In Equation (5.3), Ji is the score of the component pair, {ci,j, ci+1,k}. 
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FORM TWO: WEAKEST COMPONENT-ORIENTED FUNCTION. The remaining useful 

life (RUL) of a remanufactured product is one of the most important metrics to estimate the value 

of the product [69]. The RUL of a product heavily relies on the RULs of its components. Some 

methods have estimated the RUL of the returned components [134][135][136], so the RULs can 

be used as the CSs of the components. The score of a reassembly chain is an estimation of the RUL 

of the reassembled product. We can design the objective function F using the weakest link 

principle: the RUL of the product is determined by the component with the lowest RUL in the 

reassembly chain. The score of the kth product can be computed using Equation (5.5):  

 , ,({ }) Min({ }), 1,2... , {1,2... }k i j i jW F c c i m j n= = =  . (5.5) 

These two forms of the objective function can be used to optimize reassembled products for 

different business scenarios. To achieve the best business results, the reassembly strategy, which 

controls the reassembly process, should be optimized. 

5.2 Optimal Reassembly Strategy 

For a given objective function, reassembly chains with optimal combinations of components 

should be built. For any given reassembly inventory, there exists an optimal reassembly strategy 

with a corresponding total score, W, that is not lower than any other reassembly strategy. To find 

the optimal reassembly strategy considering the uncertainty in the scores of components, we model 

the reassembly process using the agent-environment system. The agent-environment system is a 

powerful tool to evaluate different strategies by estimating the current state of the system and 

potential improvements [137]. The platform is modeled as a Markov decision process. A 

reassembly-score iteration algorithm (RSIA), which is an algorithm based on dynamic 
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programming, is used to analyze the agent-environment system, and find the optimal reassembly 

strategy. 

5.2.1 Agent-Environment System and Optimal Reassembly Strategy 

In the agent-environment system, the agent and the environment interact in a sequence of 

“time steps.” At each time step, the agent selects from the possible actions under the control of a 

policy. At time step t, the state of the environment is represented as St. For a finite state problem, 

the set of all possible states is noted as S, and St∈S. At each state, the agent takes an action At, the 

set of all available actions is noted as A, and At∈A. After each action, the agent receives a reward 

Rt+1∈R and will be in a new state St+1. The agent evaluates the state, St, it is in, and uses policy, 

𝜋𝑡, to determine what action to perform. In the agent-environment system, the agent achieves the 

goal of maximizing the rewards it will receive over the long run. 

The reassembly system can be viewed as an agent-environment system, as shown in Figure 

5.5. The reassembly decision maker is the agent, and the reassembly inventory is the environment 

that the agent interacts with. The current pairing relationships between the components in the 

reassembly inventory is the state St. Changing the current pairing relationships from state St to state 

St+1 is action At. The reassembly strategy is the policy 𝜋𝑡(A=a|S=s), which controls the reassembly 

process according to the current pairing relationships. The reward Rt+1 is the change of product 

score due to the change of the pairing relationships. It should be noted that the time step t is used 

to distinguish states and actions; it does not necessarily correspond to physical time. The agent-

environment system enables iterative evaluations of the reassembly system. 
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Figure 5.5. Agent-environment system for a reassembly system, adapted from Sutton and Barto 

[29]. 

The goal of the reassembly decision maker, i.e., the agent, is to accumulate the most rewards 

from the reassembly processes over the long term (as opposed to the short term). This is achieved 

by finding the optimal reassembly strategies to pair the components in the reassembly inventory 

so that the total score of the products assembled from the reassembly system is maximized. 

Maximizing the reward is equivalent to achieving the objectives that are embedded in objective 

function F of Equation (5.1). Using this notation, the process is performed by evaluating the 

expected future rewards of being in state St, then carrying out action At, as controlled by policy 𝜋𝑡, 

until an optimal reassembly strategy is found.  

The expected accumulated rewards Gt can be computed using the following equation: 
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in which Dt is a number that represents all the negative effects of the current pairing relationships. 

Remanufacturers can assign values to Dt, in order to consider costs in their remanufacturing 

systems, for example, inventory costs, inspection costs, maintenance costs, handling costs, and so 

on [138]. 𝛾 is the discount rate, and 0 ≤ 𝛾 ≤ 1. The discount rate determines whether the agent is 

shortsighted or farsighted: when 𝛾 = 0, only the immediate (shortsighted) reward is considered; 

when 0 < 𝛾 < 1, the future reward is considered less valuable than the current reward; when 𝛾 =

1 , the future reward is equally valuable as the current reward. In this reassembly agent-

environment system, because the time t does not correspond to physical time, 𝛾 = 1 is used, so 

that the maximum total score can be found. 

As the goal of the reassembly decision maker is to accumulate the highest rewards from the 

reassembly processes in the long run, the long-term reward, Gt, equals the expected total score of 

the reassembly inventory, W(St, At):  

 
* *

1 1 1 1( , ) [ max{ ( , ) | , }]t t t t t t t tW S A E R D W S A S s A a+ + + += − + = = . (5.7) 

For a given timestep, the total score of the reassembly inventory under the control of optimal 

reassembly strategy, 𝜋*, can be evaluated by the optimal reassembly value function, W*(St, At), 

which is the highest score that the given reassembly system can achieve. W*
n(s, a) can be computed 

by the following Bellman optimality equation: 

 ( , ) [ | , ]t t t t tW S A E G S s A a= = = . (5.8) 

Equation (5.8) is a system of T nonlinear equations, in which each state of the reassembly 

inventory corresponds to an equation, and the number of variables can be computed using the 

following equation: 
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 ( !)mT n= , (5.9) 

in which, m is the number of components, and n is the number of CS categories. Equation (5.9) 

does not consider cases when missing components exist; in this scenario, there will be more states 

to consider. 

The optimal reassembly strategies are found when Equation (5.8) is solved. However, it is 

very hard to find closed form solutions of the Bellman optimality equation for the reassembly 

system, for three major reasons: 

1) The expected value of the total score is very difficult to calculate because of the 

uncertainties inherent in the inspection processes. 

2) The scale of the equation system may be too large to solve if the total number of 

possible states T increase. For example, if a reassembly inventory with five 

components and six scores, there will be more than 1012 unknown variables. 

3) The equations are nonlinear.  

Due to the reasons mentioned above, instead of using an analytical method, we develop a 

reassembly-score iteration algorithm (RSIA) to solve the optimal reassembly-value function, W*(St, 

At). 

5.2.2 Reassembly Score Iteration Algorithm 

In this section, a RSIA is proposed to find the optimal reassembly strategy. It is based on a 

value iteration algorithm, which is an iterative method used to find the optimal policy of MDP 

models [137] [139]. As can be proved using Bellman optimality equation, the RSIA converges to 

the optimal value function W*(St, At). In the iteration process, the reassembly-value function is 

updated using Equation (5.10):  
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 ( )1 1 1 1 1( , ) max [ ( , ) | , ]k t t t t k t t t t
a

W S A E R D W S A S s A a+ + + + +


= − + = =
A

, (5.10) 

in which k is the iteration step. One way to compute the expected value in Equation (5.10) is to 

multiply the possible score by various probabilities of obtaining such a score. However, at issue is 

estimating these probabilities. 

As has been noted, every component is measured (distribution of MS is assumed normal 

with variance 𝜎2), and the measured value, r, allows the component to be placed in a category, Ci, 

where it assumes the value CS=ci. Once a component is categorized, no memory remains of the 

measured value, r. For a given CS, and depending on the measurement uncertainty, there is a 

probability that the component has any TS. Perhaps CS is very close to TS, or it could be that CS 

is very different from TS. While this latter case is unlikely, it could occur (especially when 

measurement uncertainty is large) because the probability of having a TS very different from ci, is 

greater than zero. To estimate these probabilities, an understanding is needed of: i) how TS may 

differ from component to component, and ii) the measurement distribution. With such information, 

the probabilities of TS aligning with a category or a different category for a given CS may be 

determined analytically or estimated from a Monte Carlo simulation. Essentially, for each 

component, a table is needed that shows the probability of being in each range of TS (TSs are 

categorized to integers to simplify computation) given the CS of the component. An illustrative 

example shows this situation in Figure 5.6. In this example, components are placed into three 

categories.  
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Figure 5.6. Probability table for a three-level categorization. 

Based on the probability table, the expected value of score, Wk+1(St, At), can be computed. 

Since each component in a reassembly chain has a measurement uncertainty, the average score is 

used: action At is carried out H times at each iteration, and the average total score for these H 

actions is the expected total score. When the value of H is large enough, the average total score 

converges to the expected value of the total score for the given reassembly strategy. 

As presented in Section 5.1.2.2, the task of finding the optimal strategy to control the 

reassembly system is equivalent to finding the optimum strategy of grouping components from the 

reassembly inventory into reassembly chains. The RSIA is built based on a data structure that uses 

the pairing relationships of the reassembly chains. This approach simplifies the search process by 

adjusting the pairing relationship between the sub chains.  

It is to be noted that Tz(i,j) is the component in the ith row and jth column of the reassembly 

inventory, and the component is grouped in the zth reassembly chain. For component Tz(i,j), the 

value of Tz(i-1,k) and Tz(i+1,h) are stored, which are the positions of the components in the row 

P(1.5<TS<2.5|CS=2)

TS1 2 30 1.5 2.5 3.5

CS

1

2

3

0

P(TS<1.5|CS=2)

3.5

2.5

1.5

P(TS<1.5|CS=1)

P(TS<1.5|CS=3) P(TS>2.5|CS=3)P(1.5<TS<2.5|CS=3)

P(1.5<TS<2.5|CS=1)

P(TS>2.5|CS=2)

P(TS>2.5|CS=1)



 

135 

above and the row below it, respectively, in the reassembly inventory. By doing this, a reassembly 

chain is stored as a group of links and can be dismantled at any link without changing the 

connections elsewhere in the chain. 

The details of the proposed RSIA are shown in Table 5.2. 

Table 5.2. Reassembly score iteration algorithm. 

This algorithm builds the optimal chains of the reassembly inventory 

Input:  

 m: The number of rows of the reassembly inventory 

 n: The number of columns of the reassembly inventory 

 U 

Chaining information. U={Ux,y}, x=2,3,…,m. y=1,2,…,n. Ux,y is the column index of the component 

in row (x-1), to which the component with coordinate (x,y) pairs.  

 B 

Chaining information. B={Bv,z}, v=1,2,…,m-1. z=1,2,…,n. Bv,z is the column index of the 

component in row (v+1), to which the component with coordinate (v,z) pairs. 

Output: 

D: The optimal state of the reassembly inventory (the states with the highest total score), D={U, B} 

W: The total score of the reassembly inventory  

Local: 

b, u, W', U’, B’, D'={U’, B’} 

1.  Assign U and B arbitrarily, U’=U, B’=B 

2.  W := compute the total score of state D 

3.  for i = 1 up to m-1 do 

4.   for j = 1 up to n do 

5.    for k = 1 up to n do 

6.     if j≠U(i+1, k) 

7.      B’(i,j) := k, U’(i+1,k) := j 

8.      u := U(i+1,k), b := B(i,j) 
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9.      B’(i,u) := b, U’(i+1,b) := u 

10.      W’ := compute the total score of state D’ 

11.      if W’>W 

12.       B := B’, U := U’, W := W’ 

13.      end if 

14.     end if 

15.    end for  

16.   end for  

17.  end for 

 

Figure 5.7 is an illustrative example that shows one iteration step of the RSIA at a given 

state. The reassembly inventory in this example consists of four components and four CSs. For 

ease of illustration, this example does not consider missing components or the uncertainty of 

inspection. Different colors in the reassembly inventory correspond to different reassembly chains, 

and cells with the same color belong to the same reassembly chain. 

At time step t (with Wn(s, a) =26), action At=a makes the reassembly system change to state 

St=s, and then the agent can choose between four actions a’1, a’2, a’3, and a’4. As action a’3 

corresponds to a state with the highest total score (27), action a’3 is selected, and the reassembly 

table transfers to state St+1=S’, with the new total score Qk+1(s, a)=27. St+1=S’ is the state for step 

t+1, which is the initial state for the next iteration. This method can now be used to identify the 

optimal reassembly strategy. 



 

137 

 

Figure 5.7. Backup diagram for iterating through the reassembly-value function. There are four 

components and four CSs. The diagram shows one step of the search process for the highlighted 

cell (the component in the second row, third column). 

5.3 Case Study 

In this section, a numerical example using representative industry data from the 

remanufacturing of diesel engines is analyzed as a case study. To demonstrate the benefits of the 

component-based reassembly strategy, the scores of reassembled products using this strategy and 

a commonly used exhaustive reassembly strategy are compared. Two policies are used in the 
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exhaustive reassembly strategy: i) returned components with differing quality/functional levels are 

not distinguished and are reassembled randomly, and ii) when any of the components in the 

reassembly inventory is missing, a corresponding new component will be purchased to complete 

a product.  

Diesel engines consist of many complicated components and are widely remanufactured. 

Diesel engines are used in a wide range of equipment, and different customers have different 

performance requirements for each engine type. For instance, remanufactured diesel engines with 

lower quality levels satisfies the needs of customers of low-end equipment, because they prefer 

lower prices and may not need attributes such as high torque or high maximum power. The 

reassembly process of a certain model of diesel engines remanufactured by a Chinese company is 

analyzed. The company generally disassembles the diesel engine into seven components, which 

are then reassembled by the company. These components are the cylinder block, the cylinder head 

(set), the flywheel housing, the gearbox, the connecting-rod (set), the crankshaft, and the flywheel 

[140].  

5.3.1 Validation of Component-oriented Optimal Reassembly Strategy 

Ferguson et al. [70] showed that a remanufacturing system is most profitable when five 

quality levels are used. We consider five columns for the reassembly inventory. Each of the seven 

types of engine components from all the end-of-use engines was inspected and measured. Based 

on this measurement, each component was assigned a CS value. For ease of computation, the CSs 

were normalized to integer values from one to five (one corresponds to the lowest 

quality/functional level). The scored components were put into the reassembly inventory according 

to their normalized CSs. The probability of a measurement being placed into each category is 

estimated using a Monte Carlo simulation. Given a component with CS=ci, a random score that 
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follows a normal distribution, with 𝜇=ci and 𝜎=0.1 is generated, this score is then categorized into 

the nearest integer, which is the categorized TS.   

An example of the reassembly inventory for the engine component is shown in Figure 5.8. 

Because components have uncertain timing of return, for a reassembly inventory, any type of 

component with any score can be missing. In this illustration, four components (a cylinder head 

set with score 3, a gearbox with score 4, a connecting-rod set with score 2, and crankshaft with 

score 4) are missing. To consider this uncertainty, N reassembly inventory is randomly generated. 

For a reassembly inventory, each component has a probability p=0.2 to be missing. The average 

score of these N reassembly inventories is the score of a reassembly strategy. 

 

Figure 5.8. Reassembly inventory for the seven pieces of engine components. 

At the company where the data was collected, a remanufactured engine assembled using an 

exhaustive strategy is sold for 5,000 – 6,000 USD, which is 50-60% of the price of a new engine. 

Components 1 2 3 4 5

Cylinder block

Cylinder head 

Flywheel housing

Gearbox

Connecting-rod

Crankshaft

Fly wheel

CS

Available components

Missing components
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We assume that the selling price of reassembled engines is proportional to their scores, and that a 

willing customer exists for all reassembled engines (at a price proportional to the score). This is a 

common assumption in remanufacturing systems planning literature. The data from some 

companies (including Bosch, Cisco, and IBM) that perform remanufacturing show that the average 

demand for remanufactured products is (typically) much higher than the number of returned 

products in any given period except at the beginning of the product’s lifecycle [70].  

To quantitatively analyze the influence of using new components when components with 

certain scores are missing, Equation(5.11) is used to transform the price of new components to 

equivalent scores, 
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(5.11) 

in which, gi,j is the price of the new components, 𝑖 ∈ {0,1, … ,7}, 𝑗 ∈ {0,1, … ,5}. Remanufacturers 

can adjust Equation (5.11) if they are more (or less) sensitive to prices. The prices of new engine 

components and the corresponding transformed scores are shown in Table 5.3. 

Table 5.3. Price and equivalent score of components in a diesel engine. 

Component 
Price, 

gi,j (USD) 

Equivalent score, ei,j, Equation 

(5.11) 

cylinder block 1400 -0.42 

cylinder head 820 -0.25 

flywheel housing 110 -0.03 

gearbox 110 -0.03 

connecting-rod 230 -0.07 

crankshaft 580 -0.17 

flywheel 80 -0.02 
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The expected total score of the reassembly inventory W(St,At) is computed using the 

objective function form one, and Dt  is computed by Equation (5.12), 

, ,( )t t

t h k i jD d e= + , (5.12) 

in which, dt
h,k is the inventory cost (component holding cost) for component {h,k} in the 

reassembly inventory, if the component is not used in reassembly. t is the iteration index. When 

the score of a chain is negative because of using new components, components in this chain will 

not be assembled.  

To estimate the number of reassembly inventory, N, for the average scores, 𝑊̅, to converge 

to the expected score of a reassembly strategy, W, both our process and the exhaustive reassembly 

process are simulated from 2 to 30 times, and the values of 𝑊̅ are recorded. The relationship 

between 𝑊̅ and N is shown in Figure 5.9. The scores of the reassembly system controlled by the 

component-oriented reassembly strategy (CORS) and the exhaustive reassembly strategy 

converges to 14.05 and 10.04, respectively, after scores of 20 reassembly inventories are averaged. 

To balance the computational load and accuracy, the value of N is set to 20 in the sensitivity 

analysis of the following subsection. 

As shown in Figure 5.9, the component-oriented reassembly model can greatly improve the 

remanufacturer’s ability to control the quality (or functional level) of a remanufactured engine, 

and thus can lead to increased profits. 
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Figure 5.9. The relationship between W and N for p=0.2, d(h, k)=0.01. 

The exhaustive reassembly strategy and the CORS assemble products with different 

distributions of total scores. Figure 5.10 shows the histograms of the total score using the 

exhaustive reassembly strategy and the CORS. In each of the figures, 3000 diesel engines are 

assembled. In Figure 5.10 (a), the distribution of the exhaustive reassembly strategy creates a 

roughly normal distribution of the total product scores, as would be expected from a random 

reassembly process. In Figure 5.10 (b) (dashed lines), the CORS creates total scores that span 

across the score range; there is a clustering of scores for each quality level. The purchasing of new 

components and the inventory costs decrease the score of the total products, which is shown by 

the fractional scores of products to the left of the values 1, 2, 3, 4, and 5 (solid lines in Figure 5.10 

(b)). If the new component cost and inventory cost were zero, the four bars to the left of 1, 2, 3, 4 

and 5 would all add up to the bars on the integers (dashed lines in Figure 5.10 (b)), and a relatively 

flat distribution of product scores would be seen. The wide distribution generated by the CORS is 
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able to meet a wider range of customer needs, and also produces a significantly larger number of 

high quality products than the exhaustive reassembly strategy. 

 

(a) exhaustive reassembly strategy 

 

(b) component-oriented model 

Figure 5.10. Histogram of total score for 600 simulations. 

5.3.2 Sensitivity Analysis 

The numerical case study described above demonstrate the advantages of the component-

oriented reassembly model and the effectiveness of the methods proposed in this chapter. Some of 

the reassembly system parameters are selected subjectively, which may affect the experiment 

outcome. To study the relationship between the parameters and performance of the reassembly 

system, sensitivity analysis was carried out. Remanufacturers can adjust the parameters of their 

reassembly system based on the results of the sensitivity analysis. The averaged total score of the 

reassembly system is computed while one parameter is varied, and the other parameters are fixed 

at the values shown in Table 5.4.  
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Table 5.4. Fixed parameters for the sensitivity analysis. 

Sample size, 

N 

Missing probability, 

p 

Equivalent score,  

ei,j 

Inventory cost, 

dh,k 

Standard 

deviation, 𝜎 

20 0.2 value in Table 5.3 0.01 0.1 

 

• Probability of missing components, p. 

The probability of missing components is changed in the range of 0 to 1. As shown 

in Figure 5.11 (a), when the probability of missing components is high (for instance 

when the components are returned at random times during their useful life and the 

quantities of returned components are more uncertain), the total score of the 

reassembly system decreases for both the CORS and the exhaustive strategy, while 

the average total score of the component-oriented model is higher than the 

exhaustive strategy by about 40% for all probabilities of missing components.  

• The equivalent score of the price for purchasing new components, ei,j. 

The influence of the price of new components is studied by multiplying the 

equivalent Score, ei,j, in Table 5.3 by scaling factors ranging from 1 to 10. As shown 

in Figure 5.11 (b), when the prices of the new components increase, the total score 

for both the CORS and the exhaustive reassembly strategy of the reassembly system 

decrease. If the reassembly system is controlled by the exhaustive strategy, the total 

score may be negative when the summation of the equivalent scores of the new 

components used in a reassembled product is higher than the total score of the 

product. This situation means that a reassembled product is not profitable. The 

CORS can avoid this situation by avoiding assembling those components.  

• Inventory cost, dh,k 
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Figure 5.11 (c) shows the influence of the cost of maintaining an inventory of 

unused components. Because the price of the new engine components are relatively 

low compared to the selling price of a remanufactured new engine (in the initial 

simulation, ei,j =1), it is more profitable if new components are used to fill the gaps 

caused by missing components. This result shows that the inventory costs have little 

effect on the total scores of the products if the prices of new components are low 

compared to the selling price of the remanufactured products. 

• Standard deviation of the true score, 𝜎 

To study how the accuracy of the inspection process influences the CORS, a series 

of simulations are carried out with measurement uncertainty, 𝜎, ranging from 0 to 

1.5. As shown in Figure 5.11 (d), when the uncertainty of the inspection process is 

low, i.e., when 𝜎 is small (the CS is an accurate estimation of TS), the average total 

score of the CORS is higher than the exhaustive strategy by about 40%, but when 

𝜎 is bigger than 0.6, the precision of the inspection processes is too low for the 

CORS to discriminate between scores with different TSs. Based on this comparison, 

the remanufacturers can estimate whether it would be cost-effective to inspect the 

returned components.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.11. Results of sensitivity analysis. 

The sensitivity analysis shows that the probability of missing components and the price of 

new components can cause the average score of the two strategies decrease, but the CORS 
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performs 40% better than the exhaustive model on average. The inventory cost has few effects on 

the total score if the price of new components is relatively low compared to the selling price of a 

remanufactured product. The precision of the inspection process is a critical factor for the 

component-oriented reassembly process. The sensitivity analysis shows that the CORS performs 

at least as well, and sometimes significantly better than, the exhaustive strategy. 

5.4 Conclusions and future research 

A component-oriented model was designed to control the reassembly process of 

remanufacturing systems by taking into consideration the uncertainties of returned components 

and a variety of customer needs. In the component-oriented model, the returned components are 

inspected, and a score is assigned to each component according to its quality/functional level. The 

components are paired with one-another and chains of component pairs are used to assemble and 

evaluate products based on product scores, under the control of a reassembly strategy. These 

reassembly strategies are evaluated, and the product scores are calculated using different objective 

functions, which represent different goals or remanufacturing scenarios. The reassembly strategies 

are evaluated using an agent-environment system, which is modelled as a Markov decision process 

(MDP). The optimal reassembly strategy is identified using a reassembly-score iteration algorithm 

(RSIA), and the performance of the RSIA is evaluated by comparison with a commonly used 

exhaustive (random) reassembly strategy in a diesel engine case study. The case study showed that 

compared with the exhaustive reassembly strategy, the component-oriented reassembly method 

improved the performance of the reassembly system up to 40%, created a distribution of products 

that can meet a wider variety of customer needs, and created more high-quality products. 

Sensitivity analysis showed that variables such as the probability of missing components, the price 
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of new components, and the accuracy of the inspection process affects the performance of the 

models.  

There are several directions for future research. The optimal reassembly strategy is searched 

based on a static reassembly inventory, in which the state of the inventory is fully observable and 

does not change during the control process. Future extensions to this work can consider a dynamic 

inventory, in which the state is not fully observable or is unstable. In this research, two forms of 

the objective function are provided, but other forms of the objective function could be used to 

consider other objectives such as optimization of the reassembly strategies for environmental 

performance. Additional simulation could be carried out to study the influence of inspection 

uncertainty. 
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 CONCLUSION 

In this dissertation, the issue of product quality control in manufacturing has been addressed. 

To start, the importance of having an overall consideration of multiple stages of the product life 

cycle in quality control was analyzed. This means optimally managing product quality requires 

finding tradeoffs among multiple relations surrounding a product. It was also pointed out that 

components are the bridges connecting these relations. A series of studies were carried out to get 

a fundamental understanding of the relationship between component and product quality, with an 

emphasis on improving the competitiveness of a manufacturer, i.e., to improve quality, reduce cost, 

and limit environmental impact. Contributions of the dissertation are concluded below. 

First, a tolerance allocation method that minimizes cost by jointly considering process 

variation and tolerance specifications was developed. This model employed a cost model that 

includes processing cost, scrap cost, and quality loss (impact of quality deviation evaluated in a 

monetary scale). The relation between manufacturer, user, design, and processing were embedded 

in the cost model. The results showed that the proposed model decreased the average cost by 

avoiding unnecessary process precision, more effectively allocating tolerances among individual 

components, and optimizing specification limits of components. The proposed method approached 

the tolerance allocation problem by optimizing both the precision of manufacturing processes and 

the specification limits of components. This model established a connection between product 

design and product manufacturing. As was evident from the case study, the proposed approach 

provided a superior solution to the tolerance allocation problem. 

Then, a second tolerance allocation model that considered both product design (tolerance 

selection) and operation planning (or production rate selection) was developed. Relations among 

production rate, production cost, processing precision, and waste were considered. This model 
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solved the tolerance problem from the root cause, i.e., the variation in production. Compared to 

earlier models, this method produced more satisfactory products at a lower cost while producing 

less waste. Based on the results, some managerial insights were given. For example, it was found 

that when the precision of a process was high, it was not necessary from an economic standpoint 

to inspect the quality of individual components. For poor precision processes, inspecting the 

quality of individual components was the preferred approach from a cost/throughput standpoint.  

To extend traditional statistical process control to the area of processes monitoring where 

multiple sensors are deployed, a model to detect anomalies in time series data with long length and 

high dimensionality was developed. This model was based on recurrent neural networks, and the 

parameters of the neural networks can be trained using data acquired during routine system 

operation. The model takes time series data as an input and reconstructs the input data. Time series 

data with an anomaly causes patterns in the reconstruction errors that are inconsistent with error 

patterns of anomaly-free data. The performance of the proposed method was assessed using data 

from a diesel engine assembly process. Three common types of anomalies were detected from the 

time series data.  

Quality control of remanufacturing was also studied. A component-oriented reassembly 

model was proposed. In this model, returned components were inspected and assigned scores 

according to their quality/function, and categorized in a reassembly inventory. Based on the 

reassembly inventory, components were paired under the control of a reassembly strategy. To 

evaluate the performance of different reassembly strategies under uncertain conditions, the 

reassembly problem was described by an agent-environment system, and the platform was 

modeled as a Markov decision process. A reassembly-score iteration algorithm was developed to 
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identify the optimal reassembly strategy. The effectiveness of the method was demonstrated via a 

case study using the reassembly process of diesel engines. 

In summary, this dissertation has presented a series of quality management models. These 

models are based on studying the relationship between component and product quality at multiple 

stages of a product life cycle. It was found that effectively managing this relationship is 

fundamental of improving product quality, saving cost, and reducing environmental impact. We 

believe that further research on quality control will help improve the competitiveness of 

manufacturers greatly.  
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