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ABSTRACT

Several socially and economically important real-world systems comprise large num-

bers of interacting constituent entities. Examples include the World Wide Web and

Online Social Networks (OSNs). Developing the capability to forecast the macroscopic

behavior of such systems based on the microscopic interactions of the constituent parts

is of considerable economic importance.

Previous researchers have investigated phenomenological forecasting models in such

contexts as the spread of diseases in the real world and the diffusion of innovations in the

OSNs. The previous forecasting models work well in predicting future states of a system

that are at equilibrium or near equilibrium. However, forecasting non-equilibrium states–

such as the transient emergence of hotspots in web traffic–remains a challenging problem.

In this thesis we investigate a hypothesis, rooted in Ludwing Boltzmann’s celebrated H-

theorem, that the evolutionary dynamics of a large system–such as the World Wide

Web–is driven by the system’s innate tendency to evolve towards a state of maximum

entropy.

Whereas closed systems may be expected to evolve towards a state of maximum en-

tropy, most real-world systems are not closed. However, the stipulation that if a system

is closed then it should asymptotically approach a state of maximum entropy provides a

strong constraint on the inverse problem of formulating the microscopic interaction rules

that give rise to the observed macroscopic behavior. We make the constraint stronger by

insisting that, if closed, a system should evolve monotonically towards a state of max-

imum entropy and formulate microscopic interaction rules consistent with the stronger

constraint.

We test the microscopic interaction rules that we formulate by applying them to two

real world phenomena: the flow of web traffic in the gaming forums on Reddit and the

spread of Covid-19 virus. We show that our hypothesis leads to a statistically significant

improvement over the existing models in predicting the traffic flow in gaming forums on

Reddit. Our interaction rules are also able to qualitatively reproduce the heterogeneity in
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the number of COVID-19 cases across the cities around the globe. The above experiments

provide supporting evidence for our hypothesis, suggesting that our approach is worthy

of further investigation.

In addition to the above stochastic model, we also study a deterministic model of

attention flow over a network and establish sufficient conditions that, when met, signal

imminent parabolic accretion of attention at a node.
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1. INTRODUCTION

In the emerging hyper-connected world, systems comprising large numbers of interacting

entities have become ubiquitous. The World Wide Web and social networks are proto-

typical examples of such large systems. As diverse large systems of increasing size and

complexity emerge there is considerable economic interest in predicting–even if over a

short time horizon–the evolution of such systems. For example, metrics such as the num-

ber of DAUs (Daily Active Users), which quantify the amount of user-attention accreted

at a website, are being used to evaluate online enterprises.

In Section 3 we investigate the following question: is it possible to detect an imminent

surge in the accretion of user-attention (eg., number of DAUs) at a website solely based

on an analysis of the flow of the user-attention across a network? We establish a set of

sufficient conditions that, when met, signal an imminent parabolic surge in the accre-

tion of user-attention at a website. Although the model we study is deterministic it is

instructive in that it shows that signals about imminent parabolic surge can be gleaned

from a purely kinematic analysis of the flow.

Most large real-world systems are not deterministic but inherently stochastic. The

key question about large stochastic systems then is: what are the dynamical principles

underlying the evolution of large real-world stochastic systems? The question was studied

in the context of systems comprising large numbers of interacting microscopic particles

by Ludwig Boltzmann.

In his famous H-Theorem Ludwig Boltzmann established, under very general con-

ditions, that a closed system with a large number of interacting degrees of freedom

eventually reaches a state of maximum entropy [ 1 ]. Hence it is reasonable to hypothesize

that the evolution of modern real-world systems with large numbers of interacting de-

grees of freedom is driven by an innate tendency of the system to reach a configuration

of maximum entropy.

Whereas Boltzmann’s result pertains to closed systems, the modern large systems of

interest are not closed systems. Nevertheless, the innate tendency of a system to progress
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towards configurations of increasing entropy, discovered by Boltzmann in the context

of closed systems, we hypothesize, provides the dynamical principle that underlies the

evolution of open real-world systems as well. In fact, we use the constraint that the

entropy of a real-world system should not only increase with time, but that it should

increase monotonically with time, to guide our formulation of microscopic interaction

rules. The numerical experiments we present appear to support our hypothesis.

To the best of our knowledge, the present models of evolution of large social and

economic systems are not based on the principle of entropy maximization. Rather they

are based on phenomenological hypotheses (see Section  2 ). Our hypothesis enables us

to derive the stochastic evolution equations of large systems from first principles. We

validate our hypothesis by applying it to two real-world problems: predicting the flow

of web traffic into pages in Reddit, and on capturing the variation in the number of

infections due to COVID-19 in cities across the globe. We present results from numerical

experiments to demonstrate the predictive value of our stochastic evolution equations for

large systems.

The ensuing discussion is organized as follows. In Chapter  2 , we review existing

models of evolution of complex networks in general. In Chapter  3 , we describe and

analyze a deterministic model of user-base flow within a social network. We analytically

derive the sufficient conditions that, when met, signal an imminent parabolic surge in the

accretion of user-base at a node in the network. In Chapter  4 we present the principles of

statistical mechanics that provide the necessary background for our discussion. We also

formulate our hypothesis and present preliminary empirical evidence to demonstrate the

plausibility of the hypothesis.

In Chapter  5 , we develop a collision-based model for the evolution of large systems.

Specifically, following the philosophy of statistical mechanics, which seeks to explain

the bulk properties of a system based on the microscopic interactions among the con-

stituent particles in the system, we seek to explain the macroscopic evolution of a large

infrastructure—such the World Wide Web—based on the microscopic interactions—
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called ‘collisions’—among the constituent interacting ‘entities’ (such as websites) in the

infrastructure. Following a closer examination of the conditions that must be met in

order for the entropy of a large infrastructure to increase monotonically, we devise some

candidate interaction rules that drive a closed infrastructure monotonically towards con-

figurations of maximize entropy. As shown by Fluctuation Dissipation Theorem, entropy

may not increase monotonically in real physical systems. Rather, real physical systems

approach configurations of maximum entropy only asymptotically. For computational

ease, however, we formulate a stronger criterion that the entropy should increase mono-

tonically, and restrict attention to only those microscopic interaction rules that conform

to the stronger criterion. We also clarify how we model stochastic perturbations to

infrastructures and heterogeneity of interactions.

In Chapter  6 we describe the details of the simulation process and the datasets that

we use to numerically validate our hypothesis. We also present and discuss the results

of the simulation, comparing our results with the results from other models reported in

the literature. Chapter  7 contains the concluding remarks.
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2. LITERATURE REVIEW

A marketplace of user-bases is an increasingly important notion in this digital age since

users are constantly bombarded with information about products, ideas through mediums

that are equally available to all competing entities. One could even argue this makes the

users in charge to decide where they divert their user-base [ 2 ]. By attracting user-base,

products build a social capital, off of which they generate income , primarily through

advertisements. A large body of work has used this facet of user-base scarcity from the

perspective of entities themselves; to model their growth online. The spread of popularity

is the same as a gain in the user-base directed towards the entity.

A relevant work here is that of Ratkiewicz et al.[ 3 ],in which the popularity of online

systems like Wikipedia is modelled using existing preferential popularity mechanisms [ 4 ],

[ 5 ] coupled with random bursts in popularity of its webpages due to external factors.

The randomness is introduced by way of a uniform distribution to rerank a webpage,

such that it is suddenly exposed to greater user user-base. The authors claim that the

sustained popularity of webpages and sites is explained by these bursts of user-base

they receive rather than a more intuitive notion of gradually accumulating user-base. In

[ 6 ],the impact of social influence on the propagation of products is analysed. Using the

ecosystem of Facebook [ 7 ], the popularity of applications is studied as an effect of the

behaviour of the friends/acquaintances of the user and behaviour of the population as a

whole. Interestingly, the Facebook ecosystem is one where the drivers of popularity are

internal to the system ; the model avoids dealing with exogenous drivers

Ribeiro et al. [ 8 ] utilise the principle of a marketplace of user-base to model the

success of Facebook coinciding with the simultaneous fall of other social networks. Using

a set of catalytic reactions and diffusion equations, the interaction between the active,

non-active and non-members constrained by their finite user-base is studied to capture

the trajectory of total Daily Active Users (DAU) in the competing websites. Hood et al.

[ 9 ], utilized a Yelp Dataset in predicting future user-base a business receives by learning

features of existing successful business. The model does not explain the why businesses
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show an uneven amount of success, rather uses the features extracted for prediction of

number of reviews(user-base) received in the future, using machine learning models.

The increase in user-base towards an entity can also be thought of as a rise in popu-

larity. Existing work in the propagation of competing products, ideas and information in

graph topologies have been predominantly inspired by biological process like the spread

of an epidemic [ 10 ]–[ 12 ]. Prakash et al. [ 13 ], model two competing products and ‘the

word of mouth’ adoption factor amongst them, using the principles of propagation of

viruses. Attributing a rate of virus attack and healing to each product, the paper eval-

uates the stationary points of this dynamic system to show that once a product crosses

an epidemic threshold it will not only have an increased market share but also complete

domination of the market i.e attract all of the available user user-base.

In [  14 ] , the author analyses the observed inequality in the distribution of user user-

base across the contents of web , using tools in the study of economic inequality. The

concentration of user-base towards a small fraction of the web is empirically shown. An

interesting conjecture put forward in the paper is that the effective size of the Web

remains bounded despite increasing number of web-based entities. Goldhaber details the

impact of the scarcity of user-base in [ 15 ]. The economy that arises as a result of this , is

claimed to potentially replace the existing market economy , just as capitalism replaced

the feudal system. The author claims that user-base will gain dominance over monetary

itself. Since people are spending a significant amount of time on the web with a finite

amount of user-base, the monetary value generated from exploiting where the user-base

is directed to, is in itself gaining importance. A rigourous investigation of these claims

are in order.

A large body of work has been aimed at studying the diffusion and adoption of inno-

vations through online networks of persons , [ 16 ]–[ 19 ]. Threshold models [ 20 ] have been

widely used in comprehending the dissemination of information/ideas among networks

of users. These models work on the principle that a user in a network graph adopts

an idea/product if sufficient number of his/her friends adopt it. Acemoglu et al. [  21 ],
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explored interesting results in the process of innovation diffusion in social networks; they

studied the widely used linear threshold model with an interesting addition of the notion

of path dependence; by modelling the adoption of an innovation as a stochastic process

rather than a purely deterministic one, they show that a such behaviour can vastly alter

the course of the diffusion process. Another popular model is the cascade model of spread

of innovations. Unlike the threshold models, the principle here is that for every node v

that has adopted an innovation, it tries to influence its neighbours w into adopting the

innovation as well at time t with some probability p that may/ may not be dependent on

the neighbours of w that have already tried to influence it into adopting the innovation.

The in/dependence on the history of attemtped influence lead to independent/general

cascade models.

An interesting associated problem here is one that pertains to marketing. Assuming

that diffusion of innovations follows the above prescribed models, how many seed nodes

(nodes that have initially adopted the product without a prior diffusion) are required

to maximise the expected number of adopters. Classic compartmental models of disease

spreading, the SIR AND SIRS models have also been widely studied to explain the

diffusion of innovations [ 22 ]–[ 24 ]. The SIS model of propagation defines a set of users as

either being Susceptible (S) to infection or being Infective (I). A susceptible individual

can become infected with some probability by interaction with an infective individual.

Similarly with some non-zero probability they can be healed from being infected to being

susceptible again. The SIRS model in addition to the features of the SIS model has an

addition compartment of Removed (R) users who essentially are considered removed from

the system once they are healed (i.e cannot be infected again). Obviously the two models

may be used in modelling the propagation of different types of innovations.These epidemic

models have been fairly successful in predicting the spread of innovations across arbitrary

networks. In [  13 ], the authors have extended the SIS model to a system of two competing

viruses and shown that the steady state populations infected by each of the viruses can
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have different scenarios depending on certain constraints the infection transmission and

recovery rates for each virus.

In [ 25 ] the adoption/spread of an innovation is modelled taking into consideration the

interdependencies between multiple exposures a node has to the innovation. In effect a

memory feature was introduced for every node such that the probability that the node

itself is infected is dependent on the number of past exposures and the dose of the

exposures in a short period of time. The probability of being exposed to an infected

node and the dose of the exposure themselves are tunable distributions in the model. Its

interesting to observe that the authors make no accommodation for the structure of the

network; this plays a crucial role in the diffusion of user-base [ 21 ]. In [  26 ], the authors

explain the propagation of recommendations and the observed power-law distribution of

their cascade sizes, using a massive person-to-person network. Using the temporal nature

of this network several interesting observations have been put forward. [ 27 ], [ 28 ] present

an exhaustive survey of the literature on complex networks. It is interesting to note

here that a principle guideline for the research on random networks has been to identify

critical probabilities when certain properties of the graph undergo a sudden transition.

In the context of such critical phenomena , the percolation theory holds importance in

networks ; for a graph with a defined degree sequence , there exists a constraint on the

degree distribution which if satisfied almost surely guarantees the existence of a large

connected component in the graph [ 29 ]. These results are extended to scale free directed

and non-directed networks in [ 30 ]

From empirical studies on real-world networks , a characteristic of several networks is

the power law distribution their node degree follows[ 27 ]. An extensive body of work covers

an explanation for this distribution. A widely utilized growth mechanism of networks to

explain the previously stated distribution has been the ’preferential attachment’ model

[ 4 ], [ 31 ]. Intuitive in principle, the model posits that a node i attaches itself to a node j

with a probability proportional to the degree of node j. In [ 32 ], the user-base inequality in

the Twitter social network, is studied. The paper uses the preferential attachment model
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of gaining user-base. The model is able to capture the skewed nature of the user-base

distribution among users into the future. While this model does explain the power law

distribution of node degree, it is highly questionable to assume this as a de facto model of

network growth[  33 ]. In [ 34 ], the authors build on this preferential attachment model of

growth by adding a local feature to the growth; rather than having the ability to process

the entire network to decide upon the nodes to connect to, this capability is limited to

a fraction of the nodes in the network. Using this paradigm, the authors show that the

power-law distribution is in fact refined to an exponentially truncated one.

Other observed features of real world networks worth mentioning here are the ’small

world’ and clustering property. The ’small world’ property essentially means that the

average path length between two nodes in a network is relatively much small compared

to the size of the graph in itself [ 35 ]. Clustering is the tendency of nodes in a network

to form cliques measured using a clustering coefficient [ 36 ]. A good amount of work has

been focused on studying the evolution of networks, specifically the temporal changes in

the network structure [  26 ], [ 37 ]–[ 39 ] . In [ 40 ], the author provides the definition of a class

of models(stochastic) that explains the power-law distribution observed in a wide range

of empirical data such as word frequencies,scientific publications,city sizes. An alternate

approach to understanding the spread of innovations has been through the agent-based

modelling paradigm [ 41 ], [ 42 ]. In [ 33 ], the authors study network characteristics as

emergent properties of an ensemble of agents interacting through specific rules.

The field of statistical mechanics essentially uses statistical methods to deal with sys-

tems composed of a large number of particles (read as large degree of freedom). Perhaps

the most well known use of statistical mechanics has been to explain the thermodynam-

ics of large systems [ 43 ]. There have been some previous attempts at linking statistical

mechanics and other existing physical phenomena to explain some of the observed charac-

teristics of networks and their growth. In [ 44 ] the authors show that an evolving network

is similar to a Bose gas [ 45 ] at equilibrium. The model treats each node as an energy

level and an edge between two nodes as a set of two particles one on each energy level
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corresponding to the two nodes. Using a continuum approximation of the rate of change

of the degree of the nodes the authors show that under specific conditions imposed on

the system, a preferential attachment mechanism in the growth of the network can be

observed. In [ 46 ], the authors use a simple stochastic process used previously to explain

scaling phenomena in copy growth processes. In this model, the existing nodes in the

network are divided into classes depending on their existing connectivity. At any time

step in the evolution of the network, two possibilities are described; (i) With a non zero

probability, a new node joins the network and can randomly connect itself to any other

node , (ii) if an existing node forms a new edge in the network , the probability of con-

necting to a node belonging to a class k is a function of the product of its connectivity

and cardinality.

Thermodynamics essentially gives us the basis for understanding how heat and work

are related and rules the macroscopic properties of systems follow at equilibrium [  47 ].

There is a natural extension of the thermodynamics at equilibrium to systems away

from but close to equilibrium. It is based on the Local Equilibrium Hypothesis. If

the constraints with respect to which a system is in equilibrium are relaxed , in the

(linear)vicinity of this relaxation , the system can be thought of as being in local equilib-

rium.In other words, if the system is in a steady state in terms of the flux of energy and

particles [ 48 ], it can be divided into small volumes where the Gibbs equation holds and

changes in variables are not infinitely slow [ 49 ]. Because of the usual disparity between

macroscopic and microscopic scales, most steady state systems can be included in this

category.
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3. A DETERMINISTIC MODEL OF INTERACTION

The spectacular rise of Facebook with the simultaneous fall of MySpace,Orkut has been

an interesting subject of discussion and research (Section  2 ) from a system dynamics

perspective. Is it possible to detect the imminent growth of the user-base position of an

entity solely through the kinematics of user-base flow amongst all entities ?. We try to

answer this question by arriving at a set of detectable conditions which when met signal

an entity is on the verge of a parabolic growth in terms of user-base. We regard the online

enterprises vying for user user-base as an interconnected system of nodes. The amount of

user-base–measured using any metric of choice (for example, DAU)–is regarded as a fluid

that accretes at and flows among nodes, subject to the constraint that the amount of fluid

is finite. We present a simple model that allows for continuous influx of user-base into

the network and describes the competition for available user-base. The significance of

our analysis is that it shows the possibility of formulating analytical sufficient conditions

for predicting parabolic growth of user-base position.

3.1 Model of user-base flow

We model the online enterprises vying for user-base–hereafter called just user-base–as

a complete graph. Specifically, we assume that the enterprises are numbered 1, 2, . . . , N .

The associated graph has N nodes with an undirected edge between every pair of nodes.

We model user-base as a fluid, using the continuum approximation. Time is discretized

and labeled by an integer variable n.

The kinematics of user-base in the above network are governed by three equations,

namely ( 3.3 ), ( 3.6 ) and (  3.9 ), which describe respectively the inflow of new user user-

base into the network, the redistribution of user-base among the nodes and the leakage

of user-base from each node, in each step. Deferring a more precise description of the

equations to later discussion we summarize their contents below.
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In each time step, we assume a fixed nonnegative amount of new user-base–denoted

u–flows into the network. For example, if we take a time step to be a day, then a fixed

amount of new user-base flows into the network daily. We do not insist that u > 0,

allowing for the possibility that no new user-base flows into the network. Equation ( 3.3 )

specifies that the inflow is distributed among the enterprises in proportion to the user-

base position of the nodes in the previous instant of time.

The contention for user-base among enterprises is modeled using ( 3.6 ). In each time

step, an enterprise attempts to siphon user-base towards itself from the other enterprises.

The amount of user-base an enterprise k siphons from another enterprise j depends on

j’s user-base position as well as the ratio of the user-base positions of the two enterprises

j and k at the previous instant of time. An enterprise k siphons a greater fraction of

user-base from j than an enterprise i, if the user-base position of k in the previous time

instant is greater than that of i. The net flow of user-base from j to k is the difference

between the user-base-flow from j to k and the user-base-flow from k to j. If the user-base

position of k is greater than that of j, in the previous time instant, then the net flow

from j to k in the current time step is positive, and nonpositive otherwise.

Finally, equation ( 3.9 ) models the leakage of user-base from a node. In every time

step, a fixed fraction, 1 − δ, of the user-base position of a node in the previous instant

is assumed to leak away from the node with a part of it flowing to the other nodes

in the network and the remaining part disappearing altogether from the network. The

accumulation of user-base in a node is thus determined by the net inflow of new user-

base, the net inflow of user-base from other nodes, and the net loss of user-base from the

node due to leakage. The model is described more precisely by the following definitions.

T(n): denotes the time interval (n− 1, n].

Ai(n), 1 ≤ i ≤ N : denotes the attention position of (the amount of user-base vested in)

node i at time t = n.
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AΣ(n): denotes ∑N
i=1 Ai(n). In general, we follow the convention of replacing a subscript

by a summation symbol Σ to indicate the sum over all the values of the subscript.

Āi(n): denotes the sum the user-base positions of all the nodes except node i. Specifically,

Āi(n) = AΣ(n)− Ai(n)

ρi(n), 1 ≤ i ≤ N : denotes the fraction of total user-base resident in the network that is

vested in node i, at t = n. Specifically,

ρi(n) = Ai(n)
AΣ(n) (3.1)

Rij(n), 1 ≤ i, j ≤ N : denotes the ratio of the user-base positions of nodes j and i at

t = n. Specifically,

Rij(n) = Aj(n)
Ai(n) (3.2)

Ui(n), 1 ≤ i ≤ N : denotes the amount of external user-base flowing into node i in the

interval T (n). We assume that a constant amount of new user-base, denoted u,

flows into the network at every time step. We assume that the new user-base is

distributed among the nodes in proportion of their user-base positions. Specifically,

Ui(n) = u · Ai(n− 1)
AΣ(n− 1) (3.3)

Equation (  3.3 ) provides the first kinematic equation of our model.

Ūi(n), 1 ≤ i ≤ N : denotes the sum of the total of external user-base flowing into the

network excluding the external user-base flowing into node i. Specifically,

Ūi(n) =
∑
j6=i
Uj(n)
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Oij(n), 1 ≤ i, j ≤ N, i 6= j: denotes the net

amount of user-base that flows from node j to node i in time interval T (n). Oij(n)

is the amount of user-base, initially vested in node j at t = n− 1 that users divert

towards node i in the interval (n− 1, n]. We assume that the amount of user-base

flowing from node j to node i is proportional to Aj(n− 1), the user-base position of

node j at t = n − 1. Further, we assume that a node with larger position siphons

user-base from nodes that have smaller user-base positions. Therefore

Oij(n) = −Oji(n). (3.4)

We assume that Oij satisfies the following two limits:

lim
Rij(n−1)→0

Oij(n) ∝ Aj(n− 1);

lim
Rij(n−1)→∞

Oij(n) ∝ −Ai(n− 1) (3.5)

Noting that Rij = 1/Rji, it is easily verified that the following functional form of

Oij(n) satisfies the antisymmetry property ( 3.4 ) as well as the limits in (  3.5 ).

Oij(n) = α
{
Aj(n)

(
1− e−Rji(n−1)

)
−Ai(n− 1)

(
1− e−Rij(n−1)

)}
(3.6)

Equation ( 3.6 ) is the second kinematic equation of our model. The factor α is

included to ensure that the amount of flow from node j to node i over the interval

T (n) does not exceed the user-base position of node j at t = n− 1. In Lemma  2 we

show that the outflow from node j will be constrained to be less than the user-base

position at node j if α is chosen so that it does not exceed an upper bound.
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Using the definition of Rij, in ( 3.2 ), we can rewrite ( 3.6 ) as

Oij(n) = αAi(n− 1)[
Rij(n− 1)

(
1− e−1/Rij(n−1)

)
−
(
1− e−Rij(n−1)

)]
= αAi(n− 1) · f (Rij(n− 1)) (3.7)

where f(x) := x
(
1− e−1/x

)
− (1− e−x).

OiΣ(n), 1 ≤ i ≤ N : denotes the sum of Oij over j 6= i. Specifically,

OiΣ(n) =
∑
j6=i
Oij(n) (3.8)

Ii(n), 1 ≤ i ≤ N : denotes the net change in the user-base position of node i over the

interval T (n). Specifically,

Ii(n) = Ai(n)− Ai(n− 1)

Īi(n), 1 ≤ i ≤ N : denotes the net change in the user-base at all the nodes except node

i over the interval T (n). Specifically,

Īi(n) =
∑
j 6=i
Ii(n)

Finally, we state the third kinematic equation for the flow of user-base among the nodes

of the network.

Ai(n) = δAi(n− 1) +OiΣ(n) + Ui(n), (3.9)

where 0 < δ < 1, 1 ≤ i ≤ N .
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That is, we assume that a fraction δAi(n − 1) of the user-base position at node i at

the beginning of the interval T (n) remains at the node at the end of the interval, while

the remaining fraction (1 − δ) Ai(n − 1) leaks away from the node–a part of (1 − δ)

Ai(n− 1) flowing to the other nodes in the network and the remaining part disappearing

altogether from the network. Besides the user-base that a node retains, it also receives

OiΣ(n) amount of user-base from other nodes and Ui(n) amount of external user-base from

users. Equations (  3.3 ), ( 3.6 ) and ( 3.9 ) together provide the three kinematic equations

that govern the flow of user-base in our model.

We complete the definitions by proving the following two Lemmas that establish the

required upper bound on the factor α in ( 3.6 ).

Lemma 1. Given the kinematic equation ( 3.9 ) the total user-base in the network at time

t = n, namely AΣ(n) can be written as

AΣ(n) = u · 1− δn
1− δ

Proof: Recalling the antisymmetry of Oij(n) mentioned in ( 3.4 ) we note that

N∑
i=1

N∑
j=1

Oij(n) =
N∑

i=1
OiΣ(n) = 0 (3.10)

Summing (  3.9 ) and using ( 3.3 ) and ( 3.10 ) we get

AΣ(n) = δAΣ(n− 1) + u =⇒

AΣ(n) = u
(
1 + δ + . . .+ δn−1 + δnAΣ(0)

)
(3.11)

Assuming that there is no user-base in the network at t = 0, AΣ(0) = 0. Summing the

geometric series in ( 3.11 ) yields the result.

Lemma  1 is used to establish an upper bound on α in Lemma  2 .
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Lemma 2. The total outflow of user-base from node j over an interval T (n) to all of the

other nodes is less than the total amount of user-base at node j available for redistribution,

that is,

∑
i 6=j
Oij(n) < (1− δ)Aj(n− 1)

if

α <
1− δ
N − 1

Proof: The net flow of user-base from node j to node i, namely Oij over an interval

T (n) is the difference of the flow from j to i and the flow from i to j over the interval

T (n). The flow from node j to node i over the interval T (n) is Fij, given by

Fij(n) = αAj(n− 1)
(
1− eRij(n−1)

)

We want

∑
i 6=j
Fij(n) = α

∑
i 6=j
Aj(n− 1)

(
1− e−Rij(n−1)

)
< (1− δ)Aj(n− 1) (3.12)

Noting that 1 − e−Rij(n−1) < 1 we conclude that in order to satisfy ( 3.12 ) it is sufficient

if α satisfies

α
∑
i 6=j
Aj(n− 1)

(
1− e−Rij(n−1)

)
< αAj(N − 1)

< (1− δ)Aj(n− 1) =⇒ α <
1− δ
N − 1

as claimed.
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3.2 Accelerated accretion of user-base

Our main result–which establishes sufficient conditions for accelerated accretion of

user-base–is contained in Theorem  1 . The proof of the theorem requires a few interme-

diate results, which are established in Lemmas  3 to  9 . We begin by stating Theorem  1 ,

but defer its proof until after the required intermediate results are stated and proved.

The following remarks about the notation we use will likely make the discussion more

readable. Our interest is in determining if a chosen node–which we call node k in this

section–is about to experience a surge in the user-base flowing towards it. Thus, it is

helpful to remember that among the many subscripts and node labels that will be used

in the following discussion, the subscript or label k has a special status. It is also helpful

to remember that the parabolic surge, if it occurs, is assumed to start at time n∗. Since

we work with discretized time, we use the symbol n to denote time.

Theorem 1. Assume that

1. for 1 ≤ i, j ≤ N , the user-base flow into and within the network are governed by the

kinematic equations ( 3.3 ), ( 3.6 ) and ( 3.9 )

Ui(n) = u · Ai(n− 1)
AΣ(n− 1)

Oij(n) = α
[
Aj(n)

(
1− e−Rji(n−1)

)
−Ai(n− 1)

(
1− e−Rij(n−1)

)]
Ai(n) = δAi(n− 1) +OiΣ(n) + Ui(n),

where 0 < δ < 1, α < 1− δ
N − 1 ,

2. at some n∗ > 0, the internode flows satisfy the following conditions for some node

labeled k,
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OkΣ(n∗) > 0 (3.13)

OiΣ(n∗) < 0, 1 ≤ i ≤ N,

i 6= k (3.14)

OkΣ(n∗)
OkΣ(n∗ − 1) >

1− δn∗

1− δn∗−1 (3.15)

3. and that

Rki(n) > R∗, 1 ≤ i ≤ N, i 6= k (3.16)

for all n ∈ [n∗, n∗ + r], where r ≥ 0.

Then, the fraction of the total user-base vested in node k, undergoes accelerated

(parabolic) growth in the time interval [n∗, n∗ + r]. Specifically,

∆2
k(n)j := jρk(n)− 2ρk(n− 1)) + ρk(n− 2)

> 0, n ∈ [n∗, n∗ + r]

∼∼ ◦ ∼∼

The intermediate results needed to prove Theorem  1 are established in the following

sequence of lemmas. Lemma  3 shows that the condition for accelerated growth of user-

base position–that is the condition that the second time derivative of user-base position

is positive–can be reformulated in terms of inequalities involving the inter-node flows

(the OiΣ).
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Lemma 3. For 1 ≤ i ≤ N and n ≥ 2, the following two inequalities are equivalent.

∆2
k(n) > 0 and OiΣ(n)

OiΣ(n− 1) >
1− δn

1− δn−1

Proof: Noting that AΣ(n) = δAΣ(n− 1) + u, and Uk(n) = uρk(n− 1), we have

ρk(n)− ρk(n− 1)

= δAk(n− 1) + Uk(n) +OkΣ(n)
AΣ(n) − Ak(n− 1)

AΣ(n− 1)

= δAk(n− 1) + u · ρk(n− 1) +OkΣ(n)
δAΣ(n− 1) + u

−Ak(n− 1)
AΣ(n− 1)

= OkΣ(n)
AΣ(n) (3.17)

Using (  3.17 ) we can write ∆2
k(n) as,

∆2
k(n)j := jρk(n)− 2ρk(n− 1) + ρk(n− 2)

= OkΣ(n)
AΣ(n) −

OkΣ(n− 1)
AΣ(n− 1)

If OkΣ(n− 1), AΣ(n) > 0, then ∆2
k(n) > 0 can be rewritten as

OkΣ(n)
OkΣ(n− 1) >

AΣ(n)
AΣ(n− 1) = 1− δn

1− δn−1 (3.18)

Lemma 4. For all 1 ≤ i ≤ N , and n ≥ 1, the following two inequalities are equivalent:

ρi(n) > ρi(n− 1) and OiΣ(n)
1− ρi(n− 1) > 0.
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Proof:

〈Ai(n)〉 = δ 〈Ai(n− 1)〉+ 〈OiΣ(n)〉+ 〈Ui(n)〉

〈Ii(n)〉 = Ai(n)− Ai(n− 1)

= (δ − 1) 〈Ai(n− 1)〉+ 〈Ui(n)〉+ 〈OiΣ(n)〉〈
Ii(n) + Īi(n)

〉
= (δ − 1) 〈AΣ(n− 1)〉+ 〈UΣ(n)〉 (3.19)

We can write

ρi(n) > ρi(n− 1),

as

〈Ai(n− 1)〉+ 〈Ii(n)〉
〈AΣ(n− 1)〉+ 〈Ii(n)〉+

〈
Īi(n)

〉 >
〈Ai(n− 1)〉
〈AΣ(n− 1)〉 (3.20)

Assuming 〈Ai(n− 1)〉 , 〈AΣ(n− 1)〉 ,
〈
Ii(n) + Īi(n)

〉
> 0, (  3.20 ) can be rewritten as

〈Ii(n)〉
〈Ai(n− 1)〉 >

〈
Ii(n) + Īi(n)

〉
〈AΣ(n− 1)〉 (3.21)

Using (  3.19 ), (  3.21 ) can be rewritten as

(δ − 1) + 〈Ui(n)〉+ 〈OiΣ(n)〉
〈Ai(n− 1)〉

> (δ − 1) + 〈UΣ(n)〉
〈AΣ(n− 1)〉 (3.22)
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Noting that AΣ(n−1) = Ai(n−1)+∑N
i6=k Ai(n−1) := Ai(n−1)+ Āi(n−1) and similarly

UΣ(n) = Ui(n) + Ūi(n) (  3.22 ) can be rewritten as

〈OiΣ(n)〉 〈AΣ(n− 1)〉 > −〈Ui(n)〉
〈
Āi(n− 1)

〉
+
〈
Ūi(n)

〉
〈Ai(n− 1)〉 (3.23)

Dividing (  3.23 ) throughout by AΣ(n− 1) and rearranging we get

〈OiΣ(n)〉+ (1− ρi(n− 1)) 〈Ui(n)〉

−ρi(n− 1)
〈
Ūi(n)

〉
> 0 (3.24)

We observe that

∑
i
OiΣ(n) = OiΣ(n) + ŌiΣ(n) = 0

Therefore,

ρi(n− 1) 〈OiΣ(n)〉+ ρi(n− 1)
〈
ŌiΣ(n)

〉
= 0 (3.25)

Subtracting ( 3.25 ) from ( 3.24 ) and dividing throughout by 1− ρi(n− 1), we get

〈OiΣ(n) + Ui(n)〉

− ρi(n− 1)
1− ρi(n− 1)

[〈
Ūi(n) + ŌiΣ(n)

〉]
> 0 (3.26)

Using (  3.3 ) and noting that ŌiΣ(n) = −OiΣ(n) (see (3.25)) we get

〈u · ρi(n− 1) +OiΣ(n)〉 − ρi(n− 1)
1− ρi(n− 1)

[u · (1− ρi(n− 1))− 〈OiΣ(n)〉 ] > 0 (3.27)

29



which can be rewritten as

〈OiΣ(n)〉
1− ρi(n− 1) > 0

thereby establishing the equivalence of the inequalities as claimed.

Lemma 5. If the conditions ( 3.13 ) and ( 3.14 ), listed in Theorem  1 , are satisfied, then

the following inequalities hold at n∗.

ρk(n∗) > ρk(n∗ − 1) (3.28)

ρi(n∗) < ρi(n∗ − 1), 1 ≤ i ≤ N, i 6= k (3.29)

Proof: The Lemma follows at once from Lemma  4 and inequalities ( 3.13 ) and ( 3.14 )

in the statement of the Theorem.

Lemma 6. If the conditions ( 3.13 ) and ( 3.14 ), listed in Theorem  1 , are satisfied, then

the following inequalities hold at n∗:

Rki(n∗) < Rki(n∗ − 1) 1 ≤ i ≤ N, i 6= k

Ak(n∗) > Ak(n∗ − 1)

Proof: The first inequality follows from the two inequalities in Lemma  5 . The second

inequality follows from the first inequality in Lemma  5 by observing that

AΣ(n∗) = u
1− δn∗

1− δ > u
1− δn∗−1

1− δ = AΣ(n∗ − 1)

Lemmas  8 and  9 are based on certain properties of the function f (see ( 3.7 )) that are

established in Lemma  7 . Before stating Lemma  7 it is helpful to illustrate the graph of f

over the interval [0,1]; see Figure  3.1 . The salient features of the graph are that f attains
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Figure 3.1. Graph of f(x) := x
(
1− e− 1

x

)
− (1− e−x) over the interval [0, 1]

a maximum at R∗ki ≈ 0.47471184 and is monotonically decreasing in the interval (R∗ki, 1).

Theorem  1 shows that the parabolic growth continues as long as Rki > R∗ for all i 6= k.

Lemma 7. In the interval [0.4, 1], the function

f(x) := x
(
1− e− 1

x

)
−
(
1− e−x

)

has a unique maximum at x∗ ≈ 0.47471184. Further, f is a monotonically decreasing

function in the interval (x∗, 1). That is, if x∗ < x < x < 1, then f(x) > f(x) > 0.

Proof: Note that

f(x) := d2f(x)
dx2 = e−x − e−1/x

x3

We show that f(x) < 0 for 0.4 < x < 1. Since x > 0 in the interval (0.4, 1), we note that

the following inequalities are equivalent.

f(x) < 0 ⇐⇒ e−x < e−1/x

x3 ⇐⇒ x3 < ex−1/x
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Since log(y) is a monotonically increasing function of y for 0 < y < 1, in order to establish

that x3 < ex−1/x for 0.4 < x < 1, we take logarithms on both sides to conclude that the

following two inequalities are equivalent.

f(x) < 0 ⇐⇒ 3 log x < x− 1
x
⇐⇒

x− 1
x
− 3 log x > 0, 0.4 < x < 1

Change variables by setting x = ez. For 0.4 < x < 1, the range of z is log(0.4) < z < 0.

Using (  3.30 ) we note that the following inequalities are equivalent

f(x) < 0 ⇐⇒ sinh(z) > 3z
2 (3.30)

We note that the function g(z) := sinh(z)− 1.5z, has exactly three real zeros at z0 = 0,

and at z1 ≈ −1.62213 and z2 ≈ +1.62213. For z1 < z < z0, g(z) > 0. Since z1 < log(0.4),

for log(0.4) < z < 0 we conclude that g(z) > 0. From ( 3.30 ) we conclude that f(x) < 0

over 0.4 < x < 1.

Since f(x) < 0 over 0.4 < x < 1, f(x) := df(x)
dx

is a monotonically decreasing function

of x over the interval. Therefore, f(x) can have at most one zero in (0.4, 1). We note

that

f(0.45) ≈ 0.0132, f(0.50) ≈ −0.0125

showing that f(x) has a zero in the interval (0.45, 0.50). We denote the zero of f(x), as

x∗. Since f(x) < 0 in the interval (0.45,0.50), x∗ is a maximum of f(x).

Since f(x∗) = 0 and f(x) < 0 on the interval (0.4,1), we conclude that f(x) is a

monotonically decreasing function in the interval (x∗, 1). Noting that f(1) = 0, completes

the proof.

Lemma 8. If assumptions (  3.13 ), ( 3.14 ) and ( 3.15 ), listed in Theorem  1 , are satisfied,

then OkΣ(n∗ + 1) > 0.
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Proof: From Lemma  6 , Lemma  7 and assumption ( 3.16 ) in Theorem  1 , we have

f(Rki(n∗)) = Oki(n∗ + 1)
Ak(n∗)

>
Oki(n∗)

Ak(n∗ − 1)
= f(Rki(n∗ − 1)) =⇒

OkΣ(n∗ + 1) >
Ak(n∗)

Ak(n∗ − 1) ·OkΣ(n∗)

> OkΣ(n∗)

> 0

Lemma 9. If assumption ( 3.16 ), listed in Theorem  1 , is satisfied then OiΣ(n∗ + 1) < 0.

Proof: We note that for all n ≥ 1,

Oij(n) = α
[
Aj(n− 1)

(
1− e−Rji(n−1)

)
−Ai(n− 1)

(
1− e−Rij(n−1)

)]
= α Ai(n− 1)[

Rij(n− 1)
(
1− e−Rji(n−1)

)
−
(
1− e−Rij(n−1)

)]
= α Ai(n− 1) · f(Rij(n− 1))

Oij(n)
Ai(n− 1) = αf(Rij(n− 1)) (3.31)

Lemma  6 and assumption ( 3.16 ) imply that R∗ < Rki(n∗) < Rki(n∗−1). Therefore, from

Lemma  7 we get

α f(Rki(n∗)) > α f(Rki(n∗ − 1)) > 0 (3.32)
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Since f(Rki) = −f(Rik), using ( 3.31 ) and ( 3.32 ) we get

α f(Rik(n∗)) < α f(Rik(n∗ − 1)) < 0 ⇐⇒
Oik(n∗ + 1)
Ai(n∗)

<
Oik(n∗)

Ai(n∗ − 1) < 0 (3.33)

Since k is the label of the largest node at time n∗, Oik(n∗) < 0. From ( 3.33 ), and noting

Ai(n∗), Ai(n∗ − 1) > 0, the claim follows.

Proof of Theorem  1 : From Lemma  3 and assumption  3.15 we conclude that

∆2
k(n∗) > 0

In order to prove Theorem  1 , it is sufficient to show that if inequalities (  3.13 ), ( 3.14 ),

( 3.15 ) and (  3.16 ) are satisfied at n∗ and inequality ( 3.16 ) is satisfied at n = n∗ + 1, that

is,

Rki(n∗ + 1) > R∗, 1 ≤ i ≤ N, i 6= k (3.34)

then analogous forms of inequalities ( 3.13 ), (  3.14 ) and ( 3.15 ) will remain valid at n∗+ 1;

that is, the following inequalities will be satisfied at n∗ + 1.

OkΣ(n∗ + 1) > 0 (3.35)

OiΣ(n∗ + 1) < 0, 1 ≤ i ≤ N, i 6= k (3.36)
OkΣ(n∗ + 1)
OkΣ(n∗) >

1− δn∗+1

1− δn∗ (3.37)

Establishing inequalities ( 3.35 ), ( 3.36 ) and ( 3.37 ), assuming the validity of inequality

( 3.34 ), will prove by induction that

∆2
k(n) > 0, n∗ ≤ n ≤ n∗ + r (3.38)
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as claimed in the Theorem.

Inequality ( 3.35 ) is established in Lemma  8 , which assumes the validity of inequalities

( 3.13 ), ( 3.14 ) and ( 3.15 ). Inequality ( 3.36 ) is established in Lemma  9 , which assumes

the validity of inequalities ( 3.13 ), ( 3.14 ) and (  3.16 ) . In the following we will establish

inequality ( 3.37 ).

From Lemma  6 and the validity of inequality ( 3.16 ) at n = n∗, we know that

R∗ < Rki(n∗) < Rki(n∗ − 1) 1 ≤ i ≤ N, i 6= k (3.39)

Using Lemma  7 and (  3.39 ) we can then conclude that for 1 ≤ i ≤ N, i 6= k,

f(Rki(n∗)) > f(Rki(n∗ − 1)) > 0

(3.40)

Summing inequality (  3.40 ) over all i with i 6= k, we obtain

∑
i 6=k

f(Rki(n∗)) >
∑
i 6=k

f(Rki(n∗ − 1)) > 0 (3.41)

Using (  3.31 ) we can write the left hand side of ( 3.37 ) as

OkΣ(n∗ + 1)
OkΣ(n∗) = Ak(n∗ + 1)

Ak(n∗)

·
∑

i 6= f(Rki(n∗))∑
i 6=k f(Rki(n∗ − 1))

(3.42)
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Using (  3.40 ), (  3.30 ) and ( 3.13 ), and noting that Ak(n∗) > 0, we obtain

Ak(n∗ + 1)
Ak(n∗)

= δAk(n∗) + u · ρk(n∗) +OkΣ(n∗)
Ak(n∗)

= δ + u

AΣ(n∗) + OkΣ(n∗)
Ak(n∗)

> δ + u

AΣ(n∗)

= 1− δn∗+1

1− δn∗ (3.43)

Using (  3.41 ), (  3.42 ) and ( 3.43 ) we obtain

OkΣ(n∗ + 1)
OkΣ(n∗) >

1− δn∗+1

1− δn∗

thereby establishing inequality (  3.37 ).

To summarize, we have presented a simple model in which the flow of user-base across the

network of enterprises depends nonlinearly on the state of the network. It is somewhat

surprising that the model allows us to formulate a set of sufficient conditions to detect

the onset of parabolic surge in the user-base position of a specific node. Note that the

sufficient conditions do not require that a specific node (node k in the above discussion)

garner a singularly large user-base position before it undergoes parabolic growth. In

fact, the condition that Rki > R∗ ≈ 0.48 shows that the user-base position of node k

is required to be less than about twice (≈ 2.1 times) the size of every other node.The

signal of imminent parabolic surge, hence, appears to be rather subtle, and cannot be

inferred by looking at merely the user-base position of the most dominant node. Our

model is based on a deterministic dynamical system. Clearly, a realistic network of

enterprises involves stochastic events that are not captured by a deterministic model.

If the deviations from the deterministic model due to stochastic events are sufficiently

small, then a deterministic model could provide useful insights.
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4. BACKGROUND

A large real world system, such as the World Wide Web, may be thought of as a macro-

scopic system of particles (websites/webpages) interacting with each other. The sheer

size of the system makes it very difficult to concentrate on the behaviour of every particle;

we have to rely heavily on probabilistic arguments to understand the behaviour of large

systems in general. In this section we present a brief overview of statistical mechanics,

a discipline that has enabled us to gain an understanding of the bulk behavior of large

systems, ab initio, by looking at the microscopic interactions of the constituent parti-

cles. We also present our hypothesis and preliminary evidence in support of it, before

undertaking a deeper investigation of the hypothesis in later chapters.

4.1 Overview of Statistical Mechanics

Statistical mechanics in general concerns with the connection between the microscopic

and macroscopic dynamics of systems comprising large numbers of particles. We begin

with a few preliminary remarks.

We assume a large system is characterized by a certain set Ωsys of configurations also

called microstates. For example, in case of the World Wide Web, a microstate would be

a vector of the user-base position of each and every entity on the World Wide Web. A

system is assumed to evolve through random transitions between its microstates.

An equilibrium state is characterized by uniformity of properties in an average sense.

The significance of the equilibrium state is that in it the system attains its maximum

possible entropy.

Entropy maybe thought of as the amount of information required to describe a sys-

tem. Entropy of a macrostate–a state that is fully described by bulk parameters such as

temperature and pressure–may understood as logarithm of the number of microstates as-

sociated with the macrostate. The second law of thermodynamics states that an isolated

system will tend to move towards the state of maximum entropy.
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Let us take the example of the World Wide Web. We’ll derive the theoretical distri-

bution of user-base amongst it’s entities in an equilibrium state.

Considering a total of N entities, let a1 entities have user-base level ε1, a2 entities

user-base level ε2 and so on. We can define pj as the probability of finding an entity in

an user-base level εj. We use the Gibbs definition of entropy

S = −
∑

i
pi ln pi

In a state of equilibrium, the entropy is maximized subject to the constraints that the

total user-base E and the total number of particles N are conserved. These constraints

may be written as :

∑
i
piεi = E

N∑
i
pi = 1

Hence the maximization problem can be formulated as

P = −
∑

i
pi ln pi + α(

∑
i
pi − 1) + β(

∑
i
piεi −

E

N
)

dP

dpi
= − ln pi − 1 + α + βεi = 0

pi = e−βεi−α+1 = Ce−βεi (4.1)

It may be shown that the density of states between ε and ε+ dε is of the form g(ε)dε =

C2ε
θdε. So the number of particles n(ε) found in user-base states between ε and ε+ dε is

of the form

n(ε)dε = f(ε)g(ε)dε (4.2)
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We know that
∫∞

0 n(ε)dε = N . So it follows that

∫ ∞
0

f(ε)g(ε)dε = N

M
∫

e−βεεθdε = N

M
∫

e−βε
(βε)θ
βθ

d(βε)
β

= N

Mβ−θ−1
∫

e−βε(βε)(θ+1)−1d(βε) = N

The integral term here is the gamma function Γ(θ + 1), so that M = N
β−θ−1·Γ(θ+1) .Using

this in ( 4.2 ), we have

n(ε)dε = N

β−θ−1 · Γ(θ + 1) · e
−βε · εθdε (4.3)

4.2 Empirical evidence

We evaluate the distribution of user-base amongst entities where the change in number

of users and content is ∼ 0 and no perturbations exist i.e approximately an isolated

system. We focus on the popular open-source social-media/aggregation website Reddit.

Users post content on subreddits which is then ’upvoted’ or ’downvoted’ by other users.

The website has numerous user-defined categories of content. We identified collections

of such subreddits in a category with an almost constant amount of online users and

entities; they may be approximated as an isolated system so that the user-base amongst

the webpages should be distributed as a gamma distribution (general form of Maxwell-

Boltzmann distribution) as per our hypothesis. We arrive at the same conclusion from

the empirical data. The distribution of user-base is recorded against several timestamps (

the distribution at two timestamps separated by ∼ 6 months are shown in Figure  4.1 ). In

each instance, the histogram has been fitted against three gamma curves. The expected

value of this gamma distribution is a measure of the ’temperature’ of the system since

the expected value of the distribution is essentially the average user-base per entity in
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Figure 4.1. The user-base distribution at 2 instances

the website. Notice that the fit curve is of the least temperature denoted by T1 in all

cases.
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4.3 Proposed hypothesis

The empirical data suggests that in pockets of the Web where the user-base and entity

population have approached approximately constant values, the distribution of user-base

amongst the entities follows a gamma distribution. In section  4.1 , we have shown that an

isolated system (fixed user-base, entity count and no new perturbations) should evolve

to such a state of maximum entropy.

This leads us to posit that such macroscopic systems of interacting entities are infact

trying to move towards a state of maximum entropy; however, perturbations such as the

ever changing number of users and entities implies that this state of maximum entropy

is also ever-changing. The rules of interaction amongst the entities must consequently

embody such an entropic force. In the ensuing discussion we develop such an interaction

rule based model.
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5. BINARY INTERACTION MODEL

We approximate the interactions among entities of a system as a series of binary ’colli-

sions’ in which the colliding entitites exchange some amount of a finite conserved resource.

For example, in the case of colliding particles, the resource is energy or angular momen-

tum, and in the case of a ‘collision’ between websites the resource could be number of of

DAUs (Daily Active Users). The collision is a stochastic process subject to a conservation

law. In the World Wide Web consider a collision between two websites labeled i and j

having user-base levels (for eg., DAUs) Ai and Aj. The exact metric used to quantify

user-base levels or the time scale of the collision depend on the context. An example of

such a collision on the web could result when a user follows a link on, say, a news website

i to a different news website j and subsequently shifts his/her attention gradually towards

website j. The user-base levels of the websites i and j after the collision will be denoted

Ai and Aj. The conservation law then stipulates that

Ai + Aj = Ai + Aj

We model the evolution of a system as a Markov process, and seek to understand the

properties that the interactions among entities must have in order for the entropy of the

system to be maximized asymptotically.

5.1 Microscopic interaction rules and entropy maximization

When the system of entities (like the World Wide Web) is isolated, we expect the

system to evolve to a state of equilibrium (signified by maximum entropy). In this

section, we take a closer look at the evolution of the entropy of the isolated system, with

the objective of understanding the conditions that interactions among the constituent

entities in a closed system must satisfy in order for the system to reach a configuration

of maximum entropy asymptotically. Our discussion is based on Boltzmann’s argument

[ 1 ]
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The Gibbs entropy of the system is given by

S(t) = −
∑

i
p(i, t) ln p(i, t)

where p(i, t) is the probability of an entity with user-base of magnitude i . Recalling that

∑
i
p(i, t) = 1

it is easily verified that

dS

dt
= −

∑
i

dp(i, t)
dt

ln p(i, t)

We can express the evolution of the probability as

dp(i, t)
dt

=
∑

j
p(j, t)w(j→ i)− p(i, t)w(i→ j) (5.1)

w(i→ j) is the probability of transitioning from a state with user-base i to a state with

user-base j. Therefore,

w(i→ j) =
∑
k

∑
m

p(k, t) pc(i, k → j,m) δi+k−j−m,0

where

δi+k−j−m,0 =

 1, ji + k − j−m = 0

0ji + k − j−m 6= 0

and pc(i, k → j,m) is the probability that the collision of a website A with user-level i

with another website B with user-level k, will result in the website A having user-level
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j and website B having user-level m after the collision. For brevity, in the following we

will use the abbreviation

∆j := jδi+k−j−m,0

Equation ( 5.1 ), can be rewritten as follows

dp(i, t)
dt

= ∆
∑

j
p(j, t)

∑
m

∑
k

p(m, t) pc(j,m→ i, k)− p(i, t)
∑
k

∑
m

p(k, t) pc(i, k → j,m)

= ∆
∑

j

∑
m

∑
k

p(j, t) p(m, t) pc(j,m→ i, k)− p(i, t) p(k, t) pc(i, k → j,m)

Using this in the expression dS
dt

, we have

dS

dt
= −∆

∑
i

∑
j

∑
m

∑
k

[p(j, t)p(m, t) pc(j,m→ i, k)− p(i, t)p(k, t) pc(i, k → j,m)] ln p(i, t)

Noting that i, j, k,m are dummy indices, and relabeling them we get

dS

dt
= −∆

∑
i

∑
j

∑
m

∑
k

[p(j, t)p(m, t) pc(j,m→ i, k)− p(i, t)p(k, t) pc(i, k → j,m)] ln p(k, t)

dS

dt
= ∆

∑
i

∑
j

∑
m

∑
k

[p(j, t)p(m, t) pc(j,m→ i, k)− p(i, t)p(k, t) pc(i, k → j,m)] ln p(j, t)

dS

dt
= ∆

∑
i

∑
j

∑
m

∑
k

[p(j, t)p(m, t) pc(j,m→ i, k)− p(i, t)p(k, t) pc(i, k → j,m)] ln p(m, t)

Adding the above equations we get

4
[
dS

dt

]
= −∆

∑
i

∑
j

∑
m

∑
k

jj[ p(j, t) p(m, t) pc(j,m→ i, k)− p(i, t) p(k, t) pc(i, k → j,m)] ln p(i, t) p(k, t)
p(m, t) p(j, t)︸ ︷︷ ︸

a(t)

(5.2)
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Using the abbreviation

fjj := jp(j, t)

we have

a(t) = [fj fm pc(j,m→ i, k)− fi fk pc(i, k → j,m)] ln
(
fifk
fmfj

)

For entropy to increase monotonically, the following condition must be satisfied:

a(t) < 0 (5.3)

If fifk
fmfj

> 1, then condition ( 5.3 ) reduces to

fjfm pc(j,m→ i, k)− fifk pc(i, k → j,m) < 0 (5.4)

Similarly if fifk
fmfj

< 1, then condition ( 5.3 ) reduces to

fjfm pc(j,m→ i, k)− fifk pc(i, k → j,m) > 0 (5.5)

We consider the two cases pc(j,m → i, k) 6= pc(i, k → j,m), and pc(j,m → i, k) =

pc(i, k → j,m) separately below.

Case 1: pc(j,m→ i, k) 6= pc(i, k → j,m)

If fifk
fmfj

< 1, then ( 5.5 ) can be written as

fjfm
fifk

>
pc(i, k → j,m)
pc(j,m→ i, k) (5.6)

We note that pc(i, k → j,m) and pc(j,m → i, k), the scattering probabilities for

collisions between two websites are independent of the fi, fj, fk and fm, which are

proportional to the numbers of websites with user-bases of magnitude i, j, k and m.
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Hence, ( 5.6 ) does not hold in general. The same reasoning holds for fifk
fmfj

> 1, and

we conclude that in this case, entropy does not increase monotonically with time,

in general.

Case 2: pc(j,m→ i, k) = pc(i, k → j,m)

If fifk
fmfj

< 1, then ( 5.5 ) reduces to

fifk
fjfm

j < j pc(j,m→ i, k)
pc(i, k → j,m) = 1

which is clearly satisfied. The same reasoning holds for fifk
fmfj

> 1 and we conclude

that the entropy will increase monotonically regardless of the initial configura-

tion of the system, as Boltzmann observed. In this case, it is easy to see that

at equilibrium—that is, when dS
dt

= 0—the system is described by the Boltzmann

distribution. At some t

dS

dt
= 0 =⇒ fjfm

fifk
= 1 =⇒ ln fj + ln fm = ln fi + ln fk

So ln f is summational invariant in the binary collision. However , as per our

definition of the collision, the only summational invariant in the binary collision is

the total user-base. Hence, ln f has to be a linear function of the user-base amount.

That is,

ln fj = lnC − βj =⇒ fj = Ce−βj

yielding the Boltzmann distribution, which characterizes the equilibrium.
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5.2 Boltzmann interaction rules

In Section  5.1 , we saw that if

pc(i, j→ m, k) = pc(m, k → i, j) ∀i, j,m, k (5.7)

then a closed system, governed by an interaction rule satisfying the above property evolves

monotonically to a state of maximum entropy irrespective of the initial configuration of

the isolated system. We call an interaction rule satisfying (  5.7 ) a Boltzmann Interaction

Rule. In section  5.2 , we focus on the nontrivial task of constructing Boltzmann interaction

rules. We start by showing, through two examples, that not all collision rules satisfy ( 5.7 ).

The first is a simple rich-get-richer rule and the second involves a Gaussian damping

factor. In both the rules described below, we consider a collision in which two colliding

entities have user-base positions A and B before the collision and A and B after the

collision.

• Rule 1: The rule stipulates that

A = A+min(B, |A−B|) if A > B

A = A−min(A, |A−B|) if A < B

B = B +min(A, |A−B|) if B > A

B = B −min(B, |A−B|) if B < A

The rule ensures conservation of total user-base amount and implies that the rich

get richer. Simulation results for a system with 1000 interacting entities (particles)

are shown in Figure Figure  5.1 b. The simulation results show that in a system

governed by the above interaction rule all of the user-base eventually accrues at a

single entity. Thus a system governed by the above rule does not asymptote to a

configuration of maximum entropy.
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• Rule 2: The second interaction rule we consider is given by the following joint

probability density function

f(A,B,A,B)j ∝ je−(A−A)2
δ(A+B − A−B)

where δ(x) is the Dirac delta function. We see that Rule 2 satisfies the Boltzmann

condition. With this rule, it is more likely that the interacting entities will remain

at or close to their user-base levels prior to their interaction. Simulation results for

this interaction rule are shown in Figure  5.1 c.

We simulate system with 1000 interacting entities. The system is assumed to

be closed, that is we assume that the total user-base and number of entities are

constant. The Initially the system of entities is randomly allocated a user-base

amount (epoch = 0) as shown in Figure  5.1 a. Notice that in case of Rule 1

(Figure  5.1 b), all of the user-base is eventually accrued by a single entity. In case

of Rule 2 (Figure  5.1 c), the user-base is distributed in a gamma distribution (shape

= 1.5591, scale = 2, R2
adj =0.91) across the entities.
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Figure 5.1. a) Initial user-base positions, b) user-base position after
100000 epochs with Rule 1, c) user-base distribution after 100000 epochs
with Rule 2
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5.3 Enhancements of the microscopic model of interactions

The real-world large systems embody two complex features that are not present in sys-

tems comprising distinguishable, but identical, interacting particles. First, a real-world

system, such as the World Wide Web, endures unforeseen, stochastic perturbations, such

as the emergence of an innovation or a novel social phenomenon, that affect the subse-

quent evolution of the system. Secondly, unlike the simple system of interacting identical

particles, a real-world system is heterogeneous—it comprises different species of con-

stituent entities and consequently different types of interactions among the entities. In

order to be able to predict the behavior of such large real-world systems, the micro-

scopic interaction rule that we have discussed above needs to be enhanced to allow for

stochastic perturbations, and heterogeneity. The significant challenge that arises due to

such enhancements is to devise interaction rules that, in the face of heterogeneity and

perturbations, still drive a closed system (modulo perturbations) towards a configuration

of maximum entropy. We address the above challenging task in this section.

In section  5.3.1 , we quantify perturbations and their temporal nature. In section  5.3.2 ,

we define a candidate rule of interaction that will drive the atomic-level interactions in

the system. Section  5.3.3 is a discussion on establishing that with the given candidate

rules we can maintain the probability mass function (p.m.f) of the interaction model. In

section  5.3.4 , we show that the collision model will ensure that the necessary and sufficient

condition for entropy maximization follows from our interaction rule when the system

is isolated, except for the perturbations. In section  5.3.5 , we reformulate our collision

model and interaction rule to accommodate for the heterogeneous nature of real world

n-body systems. Section  5.3.6 shows the probability mass function of the heterogeneous

model. Finally in section  5.3.7 we show that even in the heterogeneous case, the system

reaches a state of maximum entropy when its isolated.
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5.3.1 Perturbations

There is almost no restriction on the mathematical modelling of perturbations. The

only requirement is that the perturbations should vanish within some time t <∞. We’ll

detail how we’ve modelled the perturbations for the experiments that we have performed

on Reddit.

Our objective is to predict the amount of DAU (Daily Active Users) on gaming forums

in Reddit. The perturbations affecting this system are a) updates to existing games, b)

new games. These perturbations are introduced into the system at fixed points in time.

A record of these perturbations are available in [ 50 ]. In order to simulate perturbations,

we need to predict their impact using historical data; by impact, we mean the magnitude

of perturbations. The two available and measurable independent variables in this regard

are number of pre-release responses for a game/game-update and the average rating of

these responses (also extracted from [ 50 ]).

Our intention is to model the perturbation as an exponentially decaying signal. The

magnitude of the perturbation is a probabilistic estimate. Based on the discretised lev-

els of current user-base position of the entity and predictive parameters (number of

pre-release responses and average rating/score of these responses), the perturbation is

sampled from empirical data (a histogram). For example: let the predictive parameters

(pre-release responses average score and number of pre-release responses) be in ranges

0 - 10 and 1000 - 1100 respectively and the current user-base position be in the range

10000 - 11000. The magnitude of perturbation is sampled from a histogram of historical

observations satisfying these criterion.

We observed that on an average, the time taken for a perturbation to die out (we

take ’die out’ to mean that the mentions regarding the perturbation dies down to ∼

1% of initial amount on the reddit forums) is 100 days (Figure  A.1 a). We estimate a

perturbation’s magnitude by measuring the change in Daily Active Users over the next

365 days (from the date that the perturbation was introduced).
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In the case of Reddit, let an entity E denote a gaming forum, t0j be the instance

when the jth perturbation is imposed on it and t1j be set to t0j + 365 days. Then τj is

estimated by approximating that the perturbation should decay to 1 percent of initial

value within next 100 days (as per the empirical data). Let KE,j be the initial value of

the exponential function. Then for a perturbation of magnitude M , the value of KE,j is

calculated by solving

M =
∫ 365

0
KE,j · e−t·τjdt

Then the magnitude of the jth perturbation on entity E at time t as

s(E, j, t) = [KE,j · e−(t−t0)·τj ](u(t− t0j)− u(t− t1j)), t ≥ t0j (5.8)

where u(t) denotes the unit step function.

5.3.2 Candidate rule of interaction

We have already defined the magnitude of the jth perturbation impacting entity E

at time t as s(E, j, t). We use s(E, j) as a shorthand for s(E, j, t). When two entities

interact, they exchange some quantity (e.g. user-base in the World Wide Web, virus load

in disease transmission etc.).

Let the two entities colliding (interacting) be E1 and E2 such that E1 is at user-base

level A1, and E2 is at B1. Let the perturbations impacting E1 be referenced by i and

similarly j for E2. Hence, the magnitude of the ith perturbation on E1 is s(E1, i) at time

t. Similarly, s(E2, j) for E2.

At time t, let the set of all perturbations impacting E2 be denoted as {NE2,t}. Then

the total impact of these perturbations on E2 at time t is merely∑i∈{NE2,t}
s(E2, i). Notice

that {NE2,t} will vary with time as not only does the magnitude of perturbations change

over time, but also new perturbations might enter the system and old ones may die out.
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When E1, E2 collide, let the two levels they arrive at after collision be A2, B2. Let

the total amount of user-base before collision be T . Given that the total user-base level

is conserved, the total amount after collision is also T . Then at time t we have

∣∣∣∣∣∣A2 − (A1 +
∑

i∈{NE1,t}
s(E1, i, t)−

∑
j∈{NE2,t}

s(E2, j, t))
∣∣∣∣∣∣

=
∣∣∣∣∣∣(T −B2)− ((T −B1) +

∑
i∈{NE1,t}

s(E1, i, t)−
∑

j∈{NE2,t}
s(E2, j, t))

∣∣∣∣∣∣
=
∣∣∣∣∣∣−B2 − (−B1 +

∑
i∈{NE1,t}

s(E1, i, t)−
∑

j∈{NE2,t}
s(E2, j, t))

∣∣∣∣∣∣
=
∣∣∣∣∣∣−B2 +B1 −

∑
i∈{NE1,t}

s(E1, i, t) +
∑

j∈{NE2,t}
s(E2, j, t)

∣∣∣∣∣∣
=
∣∣∣∣∣∣B2 −B1 +

∑
i∈{NE1,t}

s(E1, i, t)−
∑

j∈{NE2,t}
s(E2, j, t)

∣∣∣∣∣∣
=
∣∣∣∣∣∣B2 − (B1 −

∑
i∈{NE1,t}

s(E1, i, t) +
∑

j∈{NE2,t}
s(E2, j, t))

∣∣∣∣∣∣
Let’s consolidate the above expression into

∣∣∣∣∣∣A2 − (A1 +
∑

i∈{NE1,t}
s(E1, i, t)−

∑
j∈{NE2,t}

s(E2, j, t))
∣∣∣∣∣∣ =

∣∣∣∣∣∣B2 − (B1 +
∑

j∈{NE2,t}
s(E2, j, t)−

∑
i∈{NE1,t}

s(E1, i, t))
∣∣∣∣∣∣ =

βA1→A2,(E1,E2),T,t =

βB1→B2,(E1,E2),T,t

(5.9)
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Let the entities in the system be the set {E∗}. Lets define a quantity Ncp = ∑
Ei∈{E∗} 1

We now define the probability distribution of E1 at user base A1 colliding with E2 at

user base B1 to arrive at user base levels A2, B2 at time t as

pc([A1, B1 → A2, B2], E1, E2, t) =


e
−β2

A1→A2,(E1,E2),T,t

Ncp
, jA1 +B1 = A2 +B2 , A1 6= A2

0jA1 +B1 6= A2 +B2

(5.10)

From ( 5.10 ), we have

pc([A1, B1 → A1, B1], E1, E2, t) = 1−
∑
j 6=1

pc([A1, B1 → Aj, A1 +B1 − Aj], E1, E2, t),

When entities E1, E2 at user base levels A1, B1 collide, they can arrive at several user-base

levels, restricted only by the conservation of the total user-base amount before and after

collision. For an entity E1, let the possible user base levels it can take be {A∗}. From

the expression ( 5.9 ) we see that at some time t if we no longer have any perturbations

impacting the system (i.e. ∑i∈{NE1,t}
s(E1, i, t) = 0,∑j∈{NE2,t}

s(E2, j, t) = 0) , we have

βA1→A2,(E1,E2),T,t = βA2→A1,(E2,E1),T,t

5.3.3 Probability mass function of transition probability

Once again considering the example of the World Wide Web, let us verify that the

transition probability sums to 1 for a transition of entity E1 from user-base level A1 to

all possible levels. Let’s consider the case where an entity E1 at user-base level Ai has to

transition to level Aj. We denote this transition probability at time t as

w(Ai → Aj, E1, t)
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This can happen only through an instantaneous collision of E1 with some other entity

E2 at user-base level B1 possibly leading to two new user-base levels A2, B2. We use the

following notation:

• p(E1, t) : the probability of randomly selecting an entity E1 at time t.

• p2(Ak, E2, t) : the probability of finding an entity E2 at user-base level Ak at time

t. Let the set of all possible user-base levels be {A∗}. It follows that for an entity

Ej,
∑
Ai∈{A∗} p(Ai, Ej, t) = 1.

• pc([Ai, Ak → Aj, Am], E1, E2, t) : the probability of entities E1, E2 at user base

levels Ai, Ak colliding to end up at levels Aj, Am respectively, at time t. This is

already defined in ( 5.10 ).

Let the entities in the system be the set {E∗}. Let the set of all possible user-base levels

be {A∗}. We can now express the transition probability w(Ai → Aj, E1, t) at some time

t as

w(Ai → Aj, E1, t) =
∑

E2∈{E∗}
p(E2, t)

∑
Ak∈{A∗}

p2(Ak, E2, t)
∑

Am∈{A∗}
pc([Ai, Ak → Aj, Am], E1, E2, t)

(5.11)

Let’s analyze the sum of transition probabilities to all possible user-base levels Aj,

∑
Aj∈{A∗}

w(Ai → Aj, E1, t) =

∑
Aj∈{A∗}

∑
E2∈{E∗}

p(E2, t)
∑

Ak∈{A∗}
p2(Ak, E2, t)

∑
Am∈{A∗}

pc([Ai, Ak → Aj, Am], E1, E2, t)
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On the R.H.S, let’s push the newly introduced summation term inwards so that the R.H.S

now translates to

∑
E2∈{E∗}

p(E2, t)
∑

Ak∈{A∗}
p2(Ak, E2, t)

∑
Aj∈{A∗}

∑
Am∈{A∗}

pc([Ai, Ak → Aj, Am], E1, E2, t)

(5.12)

We make a few observations:

• From ( 5.10 ), we have a probability distribution for pc([Ai, Ak → Aj, Am], E1, E2, t).

For any Ai, Ak, it follows from this probability distribution definition that

∑
Aj∈{A∗}

∑
Am∈{A∗}

pc([Ai, Ak → Aj, Am], E1, E2, t) = 1

• Since an entity E2 has to be at some user-base level at time t, it follows that∑
Ak∈{A∗} p2(Ak, E2, t) = 1

• ∑
E2∈{E∗} p(E2, t) = 1

Using these observations in  5.12 , we have

∑
Aj∈{A∗}

w(Ai → Aj, E1, t) = 1
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5.3.4 Verifying entropy maximization when system is isolated

Extending the discussion from Section  5.3.2 , let E be some entity and i be an

event/perturbation impacting it. We have defined s(E, i, t) in Equation ( 5.8 ). Notice

that in the definition, we have enveloped the exponentially decaying function with a

rectangular wave u(t− ti0)− u(t− ti1), where ti0 is the time when the perturbation was

introduced and ti1 = ti0 + 365. This ensures that any perturbation affecting the system

will only have a finite time of impact.

Let the system be isolated at t∗. Then it is obvious there is some δ ≥ t∗ such that

we can guarantee s(Ej, i, t) = 0 ∀t ≥ δ, ∀Ej ∈ {E∗}, ∀i ∈ {NEj,t∗}. All that we are

saying here is, after some finite time after the system is isolated, all the perturbations

affecting entities within the system will cease to exist. Using Equation ( 5.9 ), for t ≥ δ,

the collision operation for entities E1, E2 from user base levels A1, B1 to A2, B2 may be

rewritten as

|A2 − A1| = |B2 −B1| = βA1→A2,(E1,E2),T,t or βB1→B2,(E1,E2),T,t , t ≥ δ

Similarly, the collision operation for E1, E2 from user base levels A2, B2 to A1, B1 may

be rewritten as

|A1 − A2| = |B1 −B2| = βA2→A1,(E1,E2),T,t = βB2→B1,(E1,E2),T,t , t ≥ δ (5.13)

Combining the relation from ( 5.13 ) and the probability distribution defined in ( 5.10 ), we

see that

pc([A1, B1 → A2, B2], E1, E2, t) = pc([A2, B2 → A1, B1], E1, E2, t) ∀t ≥ δ ≥ t∗ ≥ 0

In Section  5.1 , we have already shown that such a symmetry in the collision probability

(i.e. the probability of two entities at user base levels A1, B1 colliding to arrive at levels

A2, B2) will ensure a monotonic growth in entropy.
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5.3.5 Accomodating for the heterogeneity of entities

Let us take the example of the World Wide Web. In the previous discussion, we have

implicitly assumed that the entities in the system are of the same ’type’ i.e. they have

same properties. However, empirically we can easily observe the heterogeneity of the

Web (e.g Amazon.com , cnn.com are two entities on the web with almost no similarity

and consequently there is a very low probability that they compete with each other

for user-base). We have to accommodate for such heterogeneity. One possibility is to

tag the entities by a feature vector and develop a measure of similarity that should be

incorporated into the probabilistic interaction rule.

Let si be the feature vector for an entity i, sj be the feature vector for entity j. We

define the similarity measure as the cosine of the angle between them. The ’coupling’

between two entities with feature vectors i, j colliding is sij = cos (θij). We add this

component to the definition of interaction rule.

Consider E1 at user base A1 with feature vector m colliding with E2 at user base

B1 with feature vector n to arrive at user base levels A2, B2 respectively, at time t. We

update the probability distribution in (  5.10 ) to incorporate the heterogeneity as follows:

p(h)
c ([A1, B1 → A2, B2], E1, E2, t) =


e
−

(
β2
A1→A2,(E1,E2),T,t

smn

)
Ncp

, jA1 +B1 = A2 +B2 , A1 6= A2

0jA1 +B1 6= A2 +B2

(5.14)

From ( 5.14 ), we have

p(h)
c ([A1, B1 → A1, B1], E1, E2, t) = 1−

∑
j 6=1

p(h)
c ([A1, B1 → Aj, A1 +B1 − Aj], E1, E2, t),
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Having added heterogeneity to our system, we must now show that the transition proba-

bilities still sum to 1 and similar to Section  5.1 , the argument for entropy maximization

still holds.

5.3.6 Probability mass function of transition probability in a heterogeneous
setting

Once again we have to show that the sum of transition probabilities is 1 , this time in

a heterogeneous setting. Notice that even with the addition of heterogeneity, the same

sequence of arguments as in Section  5.3.4 may be used.

5.3.7 Trajectory of entropy growth in a heterogeneous setting

This is an extension of Section  5.1 to a heterogeneous setting. Once again, we assume

the system is isolated. We denote a few probability notations first:

• p([k, L], t) : probability of finding an entity with user base Ak and feature vector

sL.

• pc([[i, K], [k, L]→ [j, K], [m,L]], t) : the probability that the collision leads to web-

site with user base level Ai and feature vector sK moving to user-base level Aj and

Ak user-base website moving to level Am, with feature vector sL at time t.

The probability of an entity at user base level Ai with feature vector sK moving to user

base level Aj at time t is expressed as

w([i, K]→ [j, K], t) =
∑
L

∑
k

∑
m

p([k, L], t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)
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The Equation (  5.1 ), is then rewritten as follows

dp([i, K], t)
dt

=
∑

j
p([j, K], t)

∑
L

∑
m

∑
k

p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p([i, K], t)
∑
L

∑
k

∑
m

p([k, L], t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)

dp([i, K], t)
dt

=
∑
L

∑
j

∑
m

∑
k

[p([j, K], t)p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p([i, K], t)p([k, L], t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)]

Using this in the expression dS
dt

, we have

dS

dt
= −

∑
i

∑
K

∑
j

∑
L

∑
m

∑
k

[p([j, K], t)p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p([i, K], t)p([k, L], t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)] ln p([i, K], t)
dS

dt
= −

∑
i

∑
K

∑
j

∑
L

∑
m

∑
k

[p([j, K], t)p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p([i, K], t)p([k, L], t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)] ln p([k, L], t)

Similarly , we may also write

dS

dt
=
∑

i

∑
K

∑
j

∑
L

∑
m

∑
k

[p([j, K], t)p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p(i, t)p(k, t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)] ln p([j, K], t)
dS

dt
=
∑

i

∑
K

∑
j

∑
L

∑
m

∑
k

[p([j, K], t)p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p(i, t)p(k, t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)] ln p([m,L], t)
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so that adding them we have,

dS

dt
= −

∑
i

∑
K

∑
j

∑
L

∑
m

∑
k

[p([j, K], t)p([m,L], t) pc([[j, K], [m,L]→ [i, K], [k, L]], t)−

p([i, K], t)p([k, L], t) pc([[i, K], [k, L]→ [j, K], [m,L]], t)] ln p([i, K], t)p([k, L], t)
p([m,L], t)p([j, K], t)

It can now be seen that the same argument used in Section  5.1 may be used here to show

that dS
dt
> 0 until equilibrium is reached.
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6. SIMULATION

The question we seek to answer is: with the given rules of interaction, can we predict the

evolution and emergence of hotspots in large systems?. Let’s clarify what we mean by this:

Take the case of the World Wide Web. We already have access to a list of significant

perturbations affecting the system over the period of 2014-2018. Can we predict the

time-dependence of the DAUs of all the entities when subjected to these perturbations?

Understanding the time-evolution of DAUs will enable us to detect the emergence of

hotspots in the system.

We also consider the ongoing pandemic. For the spread of COVID-19, we are inter-

ested in capturing the heterogeneity of the number of observed infections across the globe.

Given variations in the (1) proximity to the origin of the virus, (2) population density of

the cities, (3) time of introduction of non-pharmaceutical intervention measures and (4)

number of undetected cases initially entering the local population, estimating the number

of infections is a non-trivial undertaking. To get precise estimates of the infections we

need robust and high-resolution geo-spatial information. Since we’re interested in only

capturing the heterogeneity, we work with a coarse description of the system using the

above mentioned descriptor variables.

6.1 Datasets

Reddit

The data we use to evaluate the model pertains to active users of online games. It is

estimated that around 1 billion people game online [ 51 ]. This includes a mixture of con-

sole, smartphones and PCs. The projected year-on-year growth is 6.4% [ 52 ]. However,

the user activity measures from online gaming sites themselves are not publicly available.

Hence, we use the activity on the social media site Reddit as an approximation. Histori-

cal reddit data is publicly available and accessible through a free API. Almost all of the

online gaming companies have a dedicated discussion forum where users discuss about
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latest game releases, strategies to play etc. We record the Daily Active Users (DAU) on

these forums as the measure of popularity of online gaming companies. We evaluate the

model in the time period from 2009 to 2018 (data from 2009 to 2014 is used to arrive at a

probability distribution for the magnitude of perturbations). The perturbations impact-

ing this system are (1) updates to existing games (2) introduction of new games. A time

stamped record of these perturbations are available on [ 50 ]. Their impact is estimated

by measuring the change in DAU of the respective gaming company forums. The two

independent and measurable parameters for predicting the magnitude and direction of

the perturbation are the count and average rating of pre-release responses. These are

copies of the games handed out to popular gamers before the release date, who then post

their review on sites like [  50 ].

COVID-19

To simulate the spread of infections from COVID-19 through human to human in-

teractions we need the population densities and an estimate of the initial number of

undetected cases entering the local population. For the density, we source available

data from Wikipedia articles on individual cities/counties. The initial number of cases

to a city is estimated as being proportional to the incoming traffic from the source of

the virus. Ideally we need granular data to estimate the initial number of undetected

COVID-19 cases. The absence of this data leads us to approximate this quantity as being

proportional to the traffic of tourists to a city from the source of the virus.

The daily number of infections is obtained from USAFACTS.org [ 53 ]. We use this to

qualitatively assess our model’s capability to predict the disease spread.
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6.2 Estimating model parameters

Reddit

To estimate the model parameters we use the data from 2009 - 2014. We identify all

the instances of perturbations affecting the system. The reddit forums are scraped for

keywords referencing the perturbation, over the next 400 days. We have already described

how we’ve estimated the magnitude of the perturbations. We classify the entities based

on the following features:

• First Person Shooter

• Real-time Strategy

• Massively Mulitplayer Online Game

• Player vs Environment

• Player vs Player

Using these, we design a feature vector for each gaming company. For example, if a com-

pany designs First Person Shooter games alone, its feature vector would be [1, 0, 0, 0, 0].

COVID-19

Epidemiology studies are generally concerned with how changing parameters can mod-

ify the spread of diseases. To show the validity of our model we try to capture the hetero-

geneity in the peak number of infections across cities with different population densities.

The observed number of COVID-19 cases are available on the World Wide Web [ 53 ]. The

population density and annual tourist traffic from countries across the globe and annual

traffic in large airports are obtained from Wikipedia. We approximate the initial number

of COVID cases entering a local population as proportional to an estimate of the number

of tourists from the origin of the virus entering the local population. We evaluate the

infection numbers in the following 15 cities:
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• Chicago, Milan, Tokyo, Kuala Lumpur, Seattle, New York, Indianapolis, Singapore,

Rome, Paris, London, Seoul, Ho Chi Minh City, Taipei, Los Angeles, Rome.

External Perturbations

• Demography based infection probability: The age group spread of the popu-

lation. The age groups are 0− 30, 30− 60, 60− 100. Depending on the age group,

the probability of hospitalisation-after-infection varies [ 54 ].

• Threshold for infection spread: The minimum amount of virus quantity re-

quired in a host’s body so that the host may then become infected.

• Social Distancing: As a Bernoulli random variable to decide if an interaction

will take place. Here p is the probability of a success. The value of p should

proportionally increase with social distancing strictness.

• Infection Testing Rate: The publicly available testing rates are scaled to match

our population count. Let the number of tests in the simulation be estimated as n.

Then in every iteration, n people are randomly selected for testing, and if infected,

they are quarantined.

• Population density in a city: Let the initial virus load be A1 and possible virus

load after interaction with an infected be A2. Let β2 denote the density equivalent.

Then the probability of this event occurring is ∝ e−
(A1−A2)2

β2 . We set the density

β2 = α× population density.

• Initial number of infections (Boundary Condition): Let the historic tourist

fraction to a city be x. Let the fraction of air-traffic to nearby airports relative to

air-traffic to all concerned cities in the associated country be y. Let the relative air

traffic to the concerned country from the origin of the virus be z. Let the number

of initial cases in the city of origin be e. Let the relative air traffic to this city be
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k. Then we approximate the initial number of infected cases to the said city as

x · y · z · e · k.

We do not assume the presence of any sort of restrictions on the daily movement of the

local populace (excluding social distance). We allow for each entity to interact with some

other entity in every iteration (i.e. every day). Hence we don’t expect the trajectory of

disease spread to be inline with the actual numbers. Each iteration of the simulation

is one day. We randomly divide the population into pairs of two and let them interact.

For any pair of entities, the virus load after interaction is estimated through the collision

model taking into consideration the demography based hospitalisation after infection

probability and population density. Following this, the threshold for infection spread

and social distancing are introduced to ascertain if the interaction is truly successful.

6.3 Algorithms

In Section  6.2 , we have explained how we measure the impact of a perturbation on

the reddit forums. In Section  5.3.1 we have detailed how we predict the magnitude of

impact of such perturbations. We describe the mechanism of interaction in Algorithm  1 .

The entities are made to undergo random binary collisions obeying the interaction rule

(in Section  5.3.2 ).
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Algorithm 1: N entities competing for user-base through ”collisions”
Result: User-base positions of N entities

initialise the user-base of N entities to their respective DAU, d to 0, a list of 4-variable tuples for each entity;

while d <= prediction time-horizon do

initialise i to 0;

while i <= N-1 do

if list for entity is non-empty then

initialise k to first element of list;

while k ! = end of list do

I = first element of tuple, τ = second element of tuple;

K(t) = third element of tuple, t∗ = fourth element of tuple;

update K(t) = I ∗ e−(d−t∗)/τ ;

point k to next element of list;

end

end

if perturbation introduced for entity then
create and add tuple of initial value, time constant, current value (same as initial value), time of

origin;

end

increment i by 1;

end

initialise epoch to 0;

while epoch <= N − 1 do

randomly divide N entities into 2 groups;

initialise j to 0, set M to size of smaller of two groups;

while j <= M do

with uniform prob. remove two entities, one from each group;

follow the collision rule to let the two entities interact;

update their respective user-base to values following collision;

increment j by 1;

end

increment epoch by 1;

end

end

increment d by 1;
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Algorithm 2: N entities competing for user-base through preferential attach-
ment

Result: User-base positions of N entities
initialise the user-base of N entities to their respective DAU, d to 0, a list of 4-variable tuples for each entity;
while d <= prediction time-horizon do

initialise i to 0;
while i <= N-1 do

if list for entity is non-empty then
initialise k to first element of list;
while k ! = end of list do

I = first element of tuple, τ = second element of tuple;
K(t) = third element of tuple, t∗ = fourth element of tuple;
update K(t) = I ∗ e−(d−t∗)/τ ;
point k to next element of list;

end
end
if perturbation introduced for entity then

create and add tuple of initial value, time constant, current value (same as initial value), time of
origin;

end
increment i by 1;

end
for each entity update new user-base amount by sampling from total user-base amount with sampling

weight = existing user-base + K(t)
end
increment d by 1;
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Algorithm 3: N entities competing for user-base through cascade effect
Result: User-base positions of N entities
initialise the user-base of N entities to their respective DAU, d to 0, a list of 4-variable tuples for each entity;
while d <= prediction time-horizon do

initialise i to 0;
while i <= N-1 do

if list for entity is non-empty then
initialise k to first element of list;
while k ! = end of list do

I = first element of tuple, τ = second element of tuple;
K(t) = third element of tuple, t∗ = fourth element of tuple;
update K(t) = I ∗ e−(d−t∗)/τ ;
point k to next element of list;

end
end
if perturbation introduced for entity then

create and add tuple of initial value, time constant, current value (same as initial value), time of
origin;

end
increment i by 1;

end
Readjust number of users adopting a game by sampling from total user-base proportional to perturbations;
Randomly select a neighbour of an entity and with non-zero probability let the neighbour adopt the user’s

preference;
update total user-base levels for each product;

end
increment d by 1;

6.4 Validation

Reddit

Previous literature has extensively treated the spread of popularity of competing

entities from a user perspective (i.e. the spread of innovations/products amongst a (ho-

mogeneous) network of users). Broadly speaking, there are two models that have been

used to study the competition for user-base amongst entities on the World Wide Web.

• In [ 3 ], the classic preferential attachment mechanism is used, with random shifts

in popularity to represent external factors. The authors were able to verify critical

features observed in empirical analysis of the networks considered. We’ll refer to

this model as b1. The datasets used here were the entire Wikipedia and the Chilean

Web. The popularity of a document on Wikipedia is determined by considering the

number of hyperlinks pointing to it and the traffic to it expressed by the number of

clicks on it. The fractional change in these measurements is used to represent the
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variation of popularity with time. Upon plotting the distribution of this measure,

the authors were able to find heavy tailed distribution. The authors also observed

pages receiving intermittent spikes in traffic owing to exogenous factors. Given

these two factors, the model tries to accomodate both the scale free distribution

observed and the spikes in attention. To model the powerlaw distribution, a prefer-

ential attachment mechanism is adopted. Every page is assigned a rank such that

the probability that a page receives a unit of attention is proportional to its existing

attention/popularity rank. The authors observe that this preferential attachment

model does not sufficiently capture the long-tailed distribution of relative change

in traffic. They argue that the long-tailed nature is because the model fails to

account for external factors affecting the current popularity levels. A simple and

straightforward mechanism to do this is to randomly alter the popularity rank such

that with a non-zero probability every item in the ranked list is moved to the front

of the list, chosen uniformly between the current rank and 1. This is defined as the

rank-shift model. This new model is able to capture the ditribution of traffic and

the long-tailed nature of the distribution of fractional change in attention.

• In [ 55 ], the cascade effect model is used to study the competition amongst memes

for user limited user-base. The agent based simulation was able explain the wide

heterogeneity in the popularity of memes. We’ll refer to this model as b2. The

model has agents with limited attention. The memes are essentially competing with

one another for this finite resource. The dataset used here is a temporal snapshot

of Twitter. A notion of heterogeneity is introduced in terms of the interests of the

users sharing/accepting memes from their neighbours. Based on the set of memes

tweeted by a user, her interests are defined by the set of the 10 most recent memes.

The Maximum Information Path is used to measure similarity between two users.

Using empirical data, the authors observe the heterogeneous behaviour in meme

popularity. The model has a fixed number of users (agents). Each agent maintains

a time-ordered record of memes. Each agent is assigned a screen. At every instant,
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each user receives memes shared by her connections. With a probability ps, the

agent chooses to post a new meme which is also stored in memory. Otherwise with

a probability 1−ps the user checks her screen and selects a meme on the screen with

probability pm. Then with a probability pk either a meme from memory is chosen

or this previously selected meme is posted with probability 1− pm. To capture the

notion of limited user attention, posts on the screen and in memory remain only for

a finite time. The parameters are chosen from fitting empirical data. The model

is able to capture the long-tailed distributions of meme popularity, time to death.

The authors try to argue here that external factors aren’t required to capture the

essentially features of propagation of meme popularity.

We need to measure how well the DAU time series can be predicted by our model

as compared to the benchmarks. We utilise statistical hypothesis testing to arrive at a

conclusion on this. We use the RMSE (root mean squared error) of our prediction vs

the actual DAU of the entities, sampled every 50-days over the test period (2014-2018),

as our experiment statistic. We perform a one-sided t-test [ 56 ] to study if our model

shows a statistically significant improvement in prediction of the DAU time series when

compared to the RMSE from the benchmark models specified above. We perform 1000

simulations of each of the three models (the entropic force, b1 and b2). The convergnce

plots are in Appendix  B . Let the mean RMSE of the entropy model be µ and the mean

RMSE of one the benchmark models be µ0. Then our hypothesis test is as follows:

Ho : µ0 = µ

Ha : µ0 > µ

We use a 95% confidence interval. Below are the results of the experiments.

The results show that at the very least, our model performs better than existing

models in the literature in predicting the evolution of user-base amongst a system of

entities on the World Wide Web. An interesting phenomenon observed in real-world
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Table 6.1. Average RMSE Values

model type RMSE (averaged over 1000 runs)
Entropy 2191
Preferential attachment (b1) 4469
Cascade effect (b2) 8939

Table 6.2. t-test Results
vs. model t0 t0.05,999 p-value
b1 55.88 1.6464 < 0.00001
b2 82.77 1.6464 < 0.00001

networks like the World Wide Web is the existence of a long-tailed distribution of traffic

across the web entities. In Figure  6.1 , we plot the distribution of average DAU from 1000

simulations. As can be seen it is well fit by a power-law curve with scale 2.7. Hence,

collision based model is also able to capture this peculiar feature of the World Wide Web.

A key consequence of being able to predict the evolution of DAU across the entities

is the possible early detection of hotspots. The simulation should be able to detect such

abnormal events. We shall classify a hotspot as a 15% or more deviation in DAU over a

100-day period. We compare the actual % change against that predicted by the model.

We choose 15% because the dataset shows 95 percentile of perturbations impact the user-

base with less than this amount. Hence it is a good approximation of what a hotspot

means in the context of this dataset. We use the 100-day period as we have estimated it

to be the average time a perturbation impacts an entity. Interestingly, we observe that

on an average (over the 1000 simulation runs), hotspots are predicted by the model to

within 2% of the actual magnitude of user-base. The results are posted in Appendix  C .

Once we isolate this system, as per the interaction rules we expect the system to

tend towards a state of maximum entropy after a sufficiently long time. We plot the

distribution of the average state of the system over the 1000 simulation runs in Figure

 6.2 . We can see that it is well fit by a gamma distribution with shape a = 2.7 and scale

= 1 (R2
adj = 0.89).
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Figure 6.1. a) Power Law fit for predicted DAU (R2
adj = 0.87) b) Power

Law for actual DAU (R2
adj = 0.9)

COVID-19 Study

We want to determine if the entropy based model can capture the heterogeneity of

the number of infections across the globe. Since we don’t have any historical data to
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Figure 6.2. a) Distribution of average user-base levels after 5000 iterations
once the system is isolated

calibrate the model parameters (i.e threshold for infection spread, social distancing, α),

we need to evaluate the model on a range of values of these parameters to ensure its

robustness. The infection testing rate and initial number of infections are purely derived

from available data and hence are not subject to design. In [ 54 ], the authors record one

the earliest hospitalization-after-infection rates across China (using data until February

25, 2020). We use this infection rate across the age groups to estimate unknown model

parameters. We shall evaluate the model by simulating the spread of COVID-19 from

March to December of 2020.
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The threshold for infection and the sensitivity to deviations in post interaction level

of virus are related to each other in the following sense: Let the threshold be β. Then

the sensitivity to deviations should be such that, in a sufficiently large sample of Monte

Carlo Simulations of interaction between two persons, the fraction of instances where a

successful transmission takes place is inline with the hospitalisation-after-infection rates

from [ 54 ]. We use a grid-search approach to arrive at suitable values of α corresponding

to β. The estimated α are in Appendix  E .

Additionally, we have to set discrete levels for the social distancing measure (Appendix

 E ). We perform a t-test with n = 50 simulations for 15 cities excluding Tokyo, for each

combination of the variables. Let µ0 = 1. Let µ be the mean accuracy of the simulations.

The test is

Ho : µ0 = µ

Ha : µ0 > µ

We use a 99% confidence interval. In order to show that there isn’t a significant statistical

deviation in ranking accuracy, we need to show a lack of evidence to reject the null

hypothesis. In Appendix  E , we’ve tabulated the results. The experiment’s results suggest

our entropy model (with the included perturbations) is able to satisfactorily capture

the heterogeneity in infection numbers around the globe. In Figure  E.1 , we show the

heterogeneous nature of infections across two cities in the US and the corresponding

predicted infection numbers.

A Curious Observation

Experimentally, we notice that Tokyo is expected to have the highest peak number

of infections going against the data on actual number of COVID-19 cases. On further

inspection, we’ve found that this anomaly has been independently reported [ 57 ]. Despite

the high population density and minimal social distancing measures, the number of in-
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fected cases is rather low as of July, suggesting that existing social practices or a form

of immunity to corona viruses already exists in the local population. The entropy model

we’ve designed doesn’t accommodate for this variability.
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7. SUMMARY-CONCLUSION

The overarching theme of this thesis is to arrive at a general ab initio model for predicting

the evolution of large systems. Existing phenomenological models work well for systems

that are at or near equilibrium but fall short when modelling real-world large complex

systems like the World Wide Web (i.e. systems far away from equilibrium).

We commence with a deterministic model of user-base flow in the World Wide Web,

in Section  3 . Here we treat the entities on the Web as a network interacting with each

other. We were able to show the existence of a set of sufficient conditions which if met

by an entity would signal its imminent parabolic growth of its accrued user-base. This

result although powerful, is restricted to a purely deterministic setting.

To capture the stochastic nature of real world systems we have employed the tools of

statistical mechanics (Section  4 ). In particular, we utilize the H-Theorem and hypothesize

that isolated large systems are driven by an innate tendency to reach a state of maximum

entropy. We identify the sufficient conditions that an interaction rule must satisfy in order

for it to drive a closed system towards a configuration of maximum entropy. Subsequently,

we design an interaction rule that satisfies the sufficient condition, and extend the rule

to incorporate stochastic perturbations of the system as well as heterogeneity among the

interacting constituent entities that make up the system.

For the World Wide Web, we compare the performance of our model against existing

models in the literature (Section  6.4 ). We use the RMSE of actual DAU vs predicted DAU

sampled every 50 days over the period from 2014-2018. We use a statistical hypothesis

test over 1000 simulations to evaluate the performance. We are able to show a statistically

significant improvement in performance through the collision-based model. Importantly,

our model is able to capture the emergence of hotspots to within 2% of the actual

magnitude of user-base. Additionally, our model captures the power-law distribution of

user-base across the entities of the Web.

For the COVID-19 infection study, we perform a t-test to measure the accuracy. We

performed an experiment to ensure that the ranking of cities by the peak number of
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infections based on our simulations does not have a statistically significant deviation

from the actual ranking. We record that our model does reproduce the actual ranking,

except in the case of Tokyo.

Our results suggest that the principle of entropy maximization might indeed be the

guiding principle for understanding the evolution of large systems. Our work, thus,

introduces a new paradigm in understanding the behaviour of large complex systems.
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A. EMPIRICAL ESTIMATIONS

In Figure  A.1 a, we have plotted the time over which a perturbation remains in the system.

This is measured as the interval from the time of introduction of the perturbation to the

time when mention of the perturbation in the subreddit attenuates to ≈ 1.

Figure A.1. a)Decay Times
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B. CONVERGENCE PLOTS

Here we plot the lagging mean of RMSE across simulation runs for each of the 3 models.

Figure B.1. Convergence plots for a) preferential attachment model, b)
entropy-based model, c) cascade effect based model
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C. PREDICTION EMERGENCE OF HOTSPOTS

Table C.1. Predicted vs. Actual change in Daily Active Users (a)

date actual change predicted change
2015-08-18 0.388288 0.350742
2014-08-26 0.831094 0.550722
2018-12-04 0.753645 0.695370
2015-02-17 0.180983 0.211810
2016-11-22 0.207015 0.193559
2017-08-21 0.326308 0.326640
2017-07-26 0.362151 0.313675
2015-09-01 0.210019 0.277959
2015-09-15 0.443388 0.270366
2016-11-08 0.316609 0.285963
2015-08-25 0.158862 0.153144
2013-11-12 0.194014 0.146860
2018-09-25 0.310303 0.306083
2017-09-12 0.300710 0.282940
2014-09-09 0.176157 0.187725
2018-09-14 0.186543 0.137408
2016-10-25 0.322832 0.291494
2018-07-13 0.189420 0.155817
2016-07-26 0.184936 0.163917
2015-06-12 0.181120 0.161066
2016-06-17 0.289179 0.332455
2018-12-04 0.195213 0.254286
2017-05-30 0.277095 0.254341
2015-02-17 0.852333 0.781008

In Tables ( C.1 , C.2 ), we have displayed the predictive performance of the entropy

based model. The 1st column marks the date of the perturbation. The 2nd column

represents the actual change in DAU due to the perturbation and the 3rd column is the

predicted change in DAU.
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Table C.2. Predicted vs. Actual change in Daily Active Users (b)

date actual change predicted change
2016-06-28 0.320954 0.216146
2017-05-02 0.381113 0.336923
2016-07-19 0.185952 0.121904
2014-11-18 0.190014 0.183388
2017-08-01 0.162102 0.135741
2016-09-13 0.166855 0.133941
2018-01-23 2.019831 2.255991
2014-12-16 0.211077 0.313293
2017-03-27 0.198320 0.278170
2015-07-21 0.166824 0.139513
2015-11-30 0.184524 0.166459
2017-03-30 1.194280 1.383813
2017-09-26 0.340274 0.338192
2018-05-15 0.652558 0.744999
2016-08-02 0.264101 0.327900
2017-11-14 0.174526 0.227170
2015-10-13 0.270061 0.351184
2016-10-13 0.299536 0.342183
2015-09-15 0.211452 0.300023
2016-12-01 0.179757 0.193537
2016-08-23 0.213049 0.291780
2017-08-29 1.784665 1.875254
2018-05-29 0.265843 0.375416
2015-08-21 0.653490 0.674729
2014-06-24 0.546812 0.452296
2016-12-06 0.297427 0.325384
2016-04-21 0.485130 0.529604
2017-04-21 0.269286 0.243246
2018-10-19 0.193738 0.221009
2016-02-09 0.182510 0.206909
2016-01-19 0.307617 0.299922
2018-12-13 0.218207 0.252423
2017-06-13 0.206621 0.130548
2016-04-19 0.647346 0.741916
2017-08-15 0.656456 0.772220

87



D. BOLTZMANN’S H-THEOREM

We should take a moment to appreciate the fact that with this theorem and its ensuing

derivation, Boltzmann kick-started the field of statistical mechanics and made it a useful

tool in physics.

We closely follow the derivation in [ 58 ] to explain in relatively simplistic terms, the

arguments weaved by Boltzmann to arrive at the H-theorem. Consider f as a distribution

function of the number of particles ni in the spatial region δxiδyiδzi and having momentum

δpxiδpyiδpzi . We relate the number of particles to the density function as follows:

ni = f(.)δxiδyiδziδpxiδpyiδpzi (D.1)

The term δxiδyiδziδpxiδpyiδpzi can be thought of at the volume of a cell in the 6 dimen-

sional phase space of the 3 position coordinates and 3 momentum coordinates. We can

denote this ’volume’ of a unit in the 6-dimensional space as dvi. Utilizing this represen-

tation, Boltzmann proceeded to make the following definition of a quantity H:

H =
∑

i
fi ln(fi)dvi

It may be trivially shown that we can rewrite this function H as

H = N
∑

i

ni

N
ln
(
ni

N

)
+ constant

If we can take ni
N

as the probability Pi of a particle being found in the ith cell of the phase

space, we can rewrite H as ∑i pi ln(pi) + constant. From the definition of mechanical

entropy (S) [ 45 ], we can see that H may be related to S as H = −S
k
+ constant, but only

as the system approaches equilibrium since the definition of mechanical entropy assumes

the relation pi = ni
N

when system has reached a state of equilibrium. Consequently,

in regions close to equilibrium, the time derivative of S can extracted from the time

derivative of H which inturn we have shown can be obtained from the derivative of the
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particle distribution function f(.). We now proceed to show that dH
dt
≤ 0. Since we are

summing over the differential volume in the definition of H, we can regard f as being

continuous in the phase space so that we may redefine H as
∫
...
∫
f ln fdv. Since we

are integrating over the six coordinates of the phase space (3 position and 3 momentum

coordinates), dH
dt

,

dH

dt
=
∫
...
∫

(df
dt

ln f + df

dt
)dv

Using the Leibniz rule, we see that the second term in the above integro differential

equation is 0. Further, making the assumption that f is independent of position (in order

to make the derivation easier), we can write

dH

dt
= V

∫ ∫ ∫ df

dt
ln fdω

where, dω is the momenta differential dpxdpydpz. Using the assumption that f() is inde-

pendent of the position, we can write

Ni = V fiδωi (D.2)

i.e the number of particles with the momentum in the range dωi , with volume of container

being V . Now lets observe the collision between two particles with initial momenta in

ranges dωi, dωj such that the collide to produce particles with momenta ranges dωl, dωm.

By using the assumption of molecular chaos, Boltzmann argues that the collision will

proportionally increase Nl, Nm and decrease Ni, Nj such that the frequency is Cfifj.

Here C is a collision constant. We can determine the rate of change of the number of

particles in the ranges (momentum) as

Cijfifj = −dNi

dt
= dNm

dt
= ...
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Using this in Equation  D.2 , we can see that

dNl

dt
= V

dfl
dt
δωl

This similarly hold for particles in the other involved momenta differentials. Notice that

we can use the above relation in the summation expression for dH
dt

so that the contribution

from the collision of two particles in momenta differentials dωi, dωj to the summation is

−Cfifj ln fi − Cfifj ln fj + Cfifj ln fl + Cfifj ln fm

Now considering the reverse collision process i.e. the collision of particles in momenta

differentials dωl, dωm to produce particles in momenta differentials dωi, dωj. We can write

a similar expression as before for the frequency of collision so that

Cmlfifj = dNi

dt
= −dNm

dt
= ...

By the application of Liouville’s theorem, Boltzmann shows that the collision constant

in the forward collision Cij is the same as Cml. Hence for this pair of forward and reverse

collisions, the constituent terms in the summation representation of dH
dt

may be written

as

C(fifj − flfm) ln
(
fmfl
fifj

)

This expression is always negative or zero for positive values of fi, fj, fl, fm. Given that for

spherical particles binary collisions occur in forward and reverse pairs, we can state that
dH
dt
≤ 0 or dS

dt
≥ 0. Since by definition H is bounded from below, dH

dt
has tend to a limit

where dH
dt

= 0.It can be shown that in the case that dH
dt

= 0, the distribution functions

f() take the form of a Maxwell Boltzmann distribution which inturn corresponds to a

state of maximum entropy [ 58 ].
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E. COVID-19 SIMULATION PARAMETERS

Range of infection thresholds and corresponding α values selected using grid search.

Infection Threshold Age Group α

5
0-30
30-60
60-90

0.000001
0.00002
0.00008

10
0-30
30-60
60-90

0.000005
0.00006
0.00009

20
0-30
30-60
60-90

0.000007
0.00009
0.0001
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1− p: for the Bernoulli random variable representing social distancing. Here p is the

probability of a successful interaction. The social distancing measure is stratified into 3

levels: Low, Medium, High. We define the Low, Medium and High levels as the following:

Sl.No Low Medium High
1 0.2 0.4 0.7
2 0.2 0.5 0.8
3 0.3 0.6 0.9

• Low: mild lockdown where advisories are sent regarding restriction of movement,

workplaces are made online and social gatherings are avoided.

• Medium: moderate lockdown where workplaces are made online, movement of peo-

ple is moderately restricted and social gatherings are avoided.

• High: severe lockdown where movement of people is completely restricted eg.

Wuhan.

Results of t-tests for all variable combinations

Infection Threshold Low Medium High t-score (p value)
5 0.2 0.4 0.7 −2.3(p > 0.01)
10 0.2 0.4 0.7 −2.2(p > 0.01)
20 0.2 0.4 0.7 −2.4(p > 0.01)
5 0.2 0.5 0.8 −2.1(p > 0.01)
10 0.2 0.5 0.8 −2.2(p > 0.01)
20 0.2 0.5 0.8 −2.25(p > 0.01)
5 0.3 0.6 0.9 −2.21(p > 0.01)
10 0.3 0.6 0.9 −2.21(p > 0.01)
20 0.3 0.6 0.9 −2.22(p > 0.01)
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Figure E.1. Actual vs Predicted count of daily infections in Chicago and
Indianapolis, from March 10, 2020 to December 31, 2020. (0th index on the
x-axis represents March 10, 2020.)
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