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PREFACE 

As of the time of submission, two chapters of this dissertation (Chapters 2 and 5) have been 

published in peer- reviewed journals, noted at the start of those chapters. Additionally, two 

chapters of this dissertation (Chapters 3 and 4) will have been submitted for publication in peer- 

reviewed journals, similarly noted at the start of those chapters. Minor edits to the formatting and 

wording have been made in these chapters to produce a cohesive piece of writing. The organization 

of this dissertation begins with a brief introduction on the scope of cardiomyopathies, mouse 

models thereof, and various imaging techniques available to study murine cardiac function 

(Chapter 1). We then detail the preliminary work done to validate the recently developed high-

frequency four-dimensional ultrasound (4DUS) imaging technique (Chapter 2). Chapters 3 and 4 

outline subsequent applications of 4DUS to two models of hypertrophic cardiomyopathy, namely 

Cpt2M-/- (Chapter 3) and Nkx2-5183P/+ (Chapter 4) for their genetic targets, as well as propose novel 

4DUS analysis endpoints to better characterize cardiac function. We then describe the 

development and relative performance of three machine learning algorithms that can be applied to 

automatically predict the location of left ventricular boundaries based on 4DUS-derived images 

(Chapter 5). Finally, we conclude by reflecting on the scientific contribution of this dissertation 

and potential future directions of this work (Chapter 6). For a comprehensive list of authored 

journal articles and their scientific impact, please refer to PUBLICATIONS on page 122. 
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ABSTRACT 

Cardiac disease remains the number one cause of all mortality in the United States, prompting a 

continued effort to understand the various factors that exacerbate heart disease. To this end, murine 

models of cardiac disease have served a crucial role by allowing researchers to systematically 

manipulate disease-linked factors and longitudinally track changes in cardiovascular function. 

Routine assessment of heart function in these mice is often conducted using high-frequency 

ultrasound; however, cardiac function metrics drawn from conventional ultrasound imaging 

heavily relies on measurements obtained from a representative slice of the heart and idealized 

geometries of the left ventricle. While high-field cine-MRI can circumvent these limitations with 

volumetric imaging, our group has recently developed and validated a high frequency four-

dimensional ultrasound (4DUS) technique that provides higher spatiotemporal resolution, 

comparable accuracy in cardiac metrics, and relatively faster acquisitions compared to cine-MRI. 

We have also developed standardized analysis methods for left-ventricular 4DUS data, 

encapsulated in a custom interactive software toolbox. Our software helps users measure 

regionally-specific myocardial kinematics, interpolates a four-dimensional mesh of the endo- and 

epi-cardial boundaries, and then quantifies various myocardial strain metrics. We have applied 

these tools to study disease progression in two murine models of pathological cardiac hypertrophy 

(i.e. Cpt2M-/- and Nkx2-5183P/+). Backed by our demonstrated findings, we aim to provide 

researchers studying cardiac disease a more comprehensive approach to characterizing their 

chosen models, and increase the scientific reach of cardiovascular research at large. 
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INTRODUCTION 

The heart is arguably one of the most critical organs of the human body as it drives the 

distribution of nutrients, signaling factors, and heat throughout the entire body. Any form of 

cardiac dysfunction can thus compromise an individual’s quality-of-life; severe cases leading to 

organ failure and death. According to the 2021 American Heart Association (AHA) annual report, 

heart disease remains the number one cause of death in the United States [1]. Projections estimate 

a 46% increase in incidence (i.e. more than 8 million individuals 18+ years old) and a 127% 

increase in total heart failure costs (i.e. to $69.7 billion) by 2030 [2], highlighting both physical 

and fiscal needs for improved treatment. Epidemiologic studies into the underlying causes of heart 

failure have revealed a vast array of contributing factors, from both physiological (e.g., genetics, 

diabetes, metabolic syndrome, high blood pressure) and lifestyle (e.g., smoking, poor nutrition, 

physical inactivity) origins [1]. These identified risk factors have helped healthcare professionals 

and researchers alike target their therapies, with the unified goal of improving patients’ quality-of-

life. Reducing the overall prevalence of heart failure should in turn reduce the associated fiscal 

burden on our healthcare system. While some preventative measures such as strict dieting, anti-

hypertensive medications, and statins have demonstrated widespread success, there remains a gap 

in proper solutions outside transplantation for patients with genetic factors or irreversible damage 

(i.e. myocardial infarction) leading to heart failure [3, 4]. To bridge this knowledge gap, murine 

models provide a framework to systematically study how these genetic factors and irreversible 

damage can exacerbate disease phenotypes [5-9]. 

 Complementary to the use of murine models as a foundation for developing cardiac disease 

therapies, in vivo imaging technology has proven crucial to disease diagnosis, monitoring of 

disease progression, and evaluation of treatment efficacy. Echocardiography in particular has 

proven its value in the clinic for assessing cardiac function, routinely used after any sign of cardiac 

distress for initial assessment and subsequent follow-ups [10, 11]. It seems natural then that 

ultrasound technology has been adapted for studying preclinical models of cardiac disease, 

utilizing novel probe designs that produce high-frequency ultrasound waves (~40MHz vs ~6MHz 

for adult humans) [12]. Similar to clinical echo, global metrics such as left-ventricle (LV) ejection 

fraction (EF), stroke volume (SV), end-diastolic volume (EDV), and LV mass (LVM) have so far 

been the standard in literature for reporting murine cardiac function [13-15]. Nevertheless, it must 
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be considered that these measurements suffer from the same limitations as clinical echo; they rely 

heavily on the use of idealized LV geometries, as ultrasound is traditionally a planar modality [16-

18].  While recent advancements in multi-array transducers for clinical ultrasound have overcome 

this limitation, employing simultaneous acquisition of three-dimensional information under the 

probe head [19-22], this hardware has yet to be adapted for researchers studying cardiac disease 

in small animal models. Outside of ultrasound technology, high-field cine-MRI is capable of 

providing this volumetric information – often considered the gold-standard in these regards – yet 

still has notable limitations in system expense and acquisition duration [23-28]. 

 Aiming to fill this gap in preclinical ultrasound, we have developed a technique to collect 

four-dimensional ultrasound (4DUS) data, using the same linear-probe hardware currently 

available to preclinical researchers. Preliminary validation work focused on global metrics of 

cardiac function (i.e. EF, SV, etc.) has demonstrated that 4DUS can provide higher spatiotemporal 

resolution, comparable accuracy in cardiac metrics, and relatively faster acquisitions compared to 

cine-MRI [29, 30]. Motivated by these preliminary findings, we further worked to establish a 

standalone analysis software from which left-ventricular dynamics can comprehensively 

quantified and robustly compared across cohorts of data. The developed 4DUS tools should 

provide researchers studying cardiac disease a more streamlined approach to comprehensively 

characterize cardiac function within their chosen disease models, and subsequently increase the 

scientific reach of the cardiovascular research community at large.  
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 BACKGROUND 

 Cardiomyopathies are a set of cardiac diseases that alter the structure and function of the 

musculature of the heart. These can be induced by either genetic or acquired mechanisms, or a 

mixture of thereof, and these mechanisms are the subject of widespread research efforts aiming to 

identify better therapeutic avenues [31]. The most recent clinical classifications are listed in Figure 

1, alongside illustrations of the three common forms that will be the focus of this review. Dilated 

cardiomyopathy (DCM) is clinically characterized by a dilated left ventricle and systolic 

dysfunction, and is the most common form of cardiomyopathy found among children <18 years 

old (annual incidence 0.57 per 100,000 overall) [32, 33]. Symptoms include shortness of breath, 

palpitations, peripheral edema, and fatigue, which are most likely consequences of impaired 

systolic function [34].  

 

Figure 1. Recent clinical characterizations of primary cardiomyopathies. Highlighted in red and 
shown visually on the right are the three forms to be reviewed. Although ischemic 
cardiomyopathies are not included in the most recent clinical definitions, it has been included in 
the past and will be discussed in this review. Adapted from Maron et al. [31], Wilde et al. [35], 
and Thygesen et al. [36]. 
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Hypertrophic cardiomyopathy (HCM) manifests as an enlarged left ventricular myocardium and 

progressive diastolic failure, and is the most common form of acquired cardiomyopathy 

(prevalence approximately 1 of 500 individuals) [33, 37]. While symptoms mimic that of DCM, 

HCM can also often progress asymptomatically and has led to a phenomena of sudden cardiac 

death in young athletes [38]. Finally, ischemic cardiomyopathy (ICM) involves hypoxia-induced 

injury to the myocardium (i.e. myocardial infarction (MI)) predominantly marked by fibrotic 

remodeling, diminished contractile function at the ischemic site, and progressive chamber dilation. 

Symptoms commonly include angina, shortness of breath, and fatigue, which can occur either in 

acute (i.e. coronary embolism) or chronic (i.e. atherosclerosis) settings [36, 39]. In fact, ICM has 

been the leading cause of death amongst all cardiovascular diseases, accounting for 42.1% in the 

2021 AHA report [1]. Ongoing debates still exist over characterizing ICM solely under coronary 

artery disease (CAD) [31, 40]; however, here we will keep ICM as the overarching descriptor. 

1.1 Mechanisms and Animal Models 

1.1.1 Dilated Cardiomyopathy 

 Dilated cardiomyopathy (DCM) is defined as a complex of an enlarged left- and/or right-

ventricular chamber, progressive systolic contractile failure, and often thinning of the myocardial 

wall [34]. Most clinical presentations of DCM are observed alongside heart failure [40], in which 

weakened cardiac muscles inadequately circulate enough blood to meet the body’s demands [34]. 

Since heart failure is a late stage diagnosis, it is not always clear whether DCM is the de novo 

cause or a secondary consequence to another stress-adaption process. Acknowledging this 

uncertainty, DCM research using murine models have primarily focused on understanding the de 

novo mechanisms, where DCM is not preceded by another process prior to heart failure (e.g. 

hypertrophy or ischemia) [41]. 

 Transgenic DCM models have identified several genes within the sarcomeric–

cytoskeletal–extracellular matrix network that induce hallmarks of clinical DCM [41, 42] (Figure 

2). These genes encode structural proteins integral to the backbone architecture of cardiomyocytes 

and ensure stability during sarcomere contraction. Here we will highlight: muscle LIM protein 

(MLP) [43], Cypher [44, 45], dystrophin/utrophin [46-50], a-actin [51], and laminin A/C [52]. 

MLP and Cypher are both proteins within the z-line of cardiac sarcomeres, serving as a branch 
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point for actin filaments by means of a-actinin links. While mutations in these anchoring proteins 

inherently compromise sarcomere rigidity, research suggests that the z-line unit also acts as a 

mechanical stretch sensor [53] and can exacerbate systolic dysfunction by initiating signaling 

cascades [43-45]. Dystrophin and utrophin are components of the complex that stabilizes the 

cardiomyocyte cytoskeleton against the extracellular matrix. The mdx-/- mouse line contains a 

nonsense mutation in the dystrophin gene and compromises the alignment of adjacent contractile 

units. Interestingly, in order to mimic hallmarks of clinical DCM, utrophin must also be knocked-

out in these mdx mice [46-49]. This suggests utrophin may substitute for dystrophin in mdx-/- mice, 

a notable difference from clinical dystrophin-linked DCM. The a-actin protein is a primary 

building block for the actin-myosin contraction complex. Mutations in the murine cardiac a-actin 

gene (mActin-Tg) lead to decreased myofilament Ca2+ sensitivity (i.e. weakened cardiomyocyte 

contractions), p53 driven cardiomyocyte apoptosis, and subsequent DCM [51]. Finally, despite not 

directly interacting with the force generating units of cardiomyocytes, laminin proteins stabilize 

the nuclear membrane and prevent nuclear-stress induction of apoptotic pathways [34]. Mice with 

lmna-/- gene deletions are subject to changes in nuclear morphology, apoptosis of cardiomyocytes, 

and conduction abnormalities associated with severe DCM [52]. Similar to clinical presentations 

of DCM, each of these models have suffered from issues of early lethality. Nevertheless, observed 

trends in the literature show gradual improvement in animal lifespans, potentially a consequence 

of recent advancements in transgenic techniques. 

1.1.2 Hypertrophic Cardiomyopathy 

 In contrast to DCM and its strong association with heart failure, cardiac hypertrophy is 

often a non-pathogenic adaptation to cardiovascular stress such as exercise, where contractile units 

are temporarily recruited to meet increased cardiac demand. However, when those stressors exist 

for prolonged durations or cardiomyocyte adaptation is compromised, progression to hypertrophic 

cardiomyopathy (HCM) can occur [34]. Hypertrophy of the myocardium can either occur 

eccentrically (i.e. new sarcomeres added in-series) or concentrically (i.e. new sarcomeres added 

in-parallel), depending on volume- or pressure-overloading, respectively [54]. HCM is defined by 

asymmetric hypertrophy of the right- and/or left-ventricle, normal or reduced left-ventricular 

volume, and myocardial remodeling that often includes fibrosis [31, 40, 55]. If left untreated, HCM 

can gradually progress to DCM and heart failure. Research into HCM using murine models has 
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thus focused on systematically studying this transition to pathological hypertrophy, identifying 

predominant genetic factors, and developing preventative strategies [5, 56, 57]. 

 

Figure 2. Diagrammatic representations of the various genetic and surgical targets to induce 
various models of cardiomyopathy. The color of each box indicates the form of cardiomyopathy 
modeled (i.e. blue for DCM, red for HCM, and green for ICM). Adapted from Bezzina et al. [58] 
and Patten et al. [5]. 

 



 
 

25 

One of the most widely used techniques to induce and study cardiac hypertrophy in mice 

is transverse aortic constriction (TAC; Figure 2). This procedure involves surgically placing a 

suture around the aortic arch of an anesthetized mouse, between the innominate and left carotid 

arteries, to constrict the aorta and pressure-overload the left ventricle (i.e. increased afterload) [59-

61]. The induced drop in cardiac function is then re-established, often within one week, by 

physiologic hypertrophic adaptation. As the TAC mice continue to age, the energy demands of the 

additional contractile units cannot be sustained and subsequent heart failure ensues [62, 63]. 

This procedure has been used to shed light onto several pathways involved in the 

remodeling process. Excessive Ca2+ from the sarcoplasmic reticulum [64] and deficiencies in 

proliferator-activated receptor (PPAR-γ) [65] both show to exacerbate HCM. In contrast, 

angiotensin II receptor inhibitors have been shown to mitigate HCM progression [66]. Still, several 

limitations are of note. First and foremost, TAC is a difficult and invasive procedure, requiring a 

skilled surgeon before acceptable survival rates are achieved. Second, hypertrophic responses to 

TAC seem to depend on parentage in certain wild-type strains [67, 68], potentially driven by 

inherent mouse-strain cardiac variability [69]. Finally, unintended complications such as 

internalization of the band into aortic wall can lead to further variability in the hypertrophic 

response [70]. While the TAC model can be a useful tool to study the progression of pressure-

overload derived hypertrophy, careful attention to mouse strain and surgical technique should be 

employed. 

 Complimentary transgenic mouse studies have identified several genes that can be targeted 

to model inherited forms of HCM (Figure 2). In contrast to DCM, these HCM associated genes 

encode the sarcomere itself. Mice with heterozygous mutations of Myosin binding protein C 

(mybp-c+/-) and a-myosin heavy chain (a-mhc+/-) each demonstrate hallmarks of familial HCM [6, 

71-74]. The mybp-c+/- and a-mhc+/- genes encode sarcomere proteins involved in the Ca2+ sensitive 

power-stroke of cardiomyocytes, thus mutations impair contractility and promote a hypertrophic 

response. While both models naturally develop left-ventricular hypertrophy, interestingly only the 

aMHC develops significantly impaired cardiac function [6]. Other sarcomere protein encoding 

genes have been explored such as cardiac Troponin T (cTnT) [75, 76]; however, their mild to 

absent hypertrophy phenotypes have further illustrated the multi-factorial nature of HCM.  
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 Two novel murine models that genetically 

manipulate cellular bioenergetics to induce a HCM 

phenotype will be the primary focus of this thesis 

work. The NK2 homeobox 5 (Nkx2-5183P/+) model 

was developed by Dr. Mauro Costa and the Carnitine 

Palmitoyltransferase 2 (Cpt2M-/-) model was 

developed by Dr. Jessica Ellis, and both models are 

based on familial genetic mutations. The NKX2-5 

gene is a cardiac transcription factor [77] and 

faithfully reproduces the hallmarks of HCM in mice 

[78]. Preliminary work with these mice have also 

revealed novel symptoms of the disease, including an 

early decrease in mitochondrial density and cellular 

respiration, compensated by increased fatty acid 

oxidative dependence (Figure 3). Mutations in the 

CPT2 gene cause a loss of an obligate enzyme in 

mitochondrial long-chain fatty acid oxidation [79, 

80], resulting in a more severe myocardial 

hypertrophy and rapid progression to heart failure. 

These genes influence similar cellular pathways in 

cardiomyocytes to create energy handling defects, which then induce left-ventricular hypertrophy, 

chamber dilation, and progressive heart failure.  

1.1.3 Ischemic Cardiomyopathy 

 Ischemic cardiomyopathies (ICM) encompass pathologies driven by compromised blood 

supply to the myocardium, predominantly due to acute or chronic occlusion of coronary arteries 

(i.e. myocardial infarction (MI)) [31]. This diminished blood supply causes focal cardiomyocyte 

necrosis and apoptosis distal to the occlusion, compensatory fibrosis to stabilize the dysfunctional 

region, and a hypertrophy response in the remaining muscle to reestablish cardiac function [34, 

55]. Murine models of MI are most commonly formed through surgical intervention (Figure 2); 

however, select chemical and transgenic models of MI/ICM are also highlighted. 

Figure 3. Western blot (top) in 8-week-old 
NkxPD/- hearts demonstrate a loss in 
proteins involved in cellular energy 
handling, and suggest (bottom) a potential 
metabolic reprogramming. 
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 While specifications in occlusion protocols differ between studies, the overarching 

procedure to induce MI in mice includes: 1) anesthesia and ventilation of the mouse, 2) 

thoracotomy at the 4th intercostal space, 3) identification and isolation of the left coronary artery 

(LCA) with a suture, 4) occlusion of the LCA, and 5) recovery of the mouse [81-83]. The 

aforementioned steps are illustrated in Figure 4. Occlusion methods that permanently ligate the 

LCA just below the left auricle serve as models of acute MI (i.e. thrombotic event), useful for 

studying the post-MI remodeling process/scar formation [84-86] and lethal complications (i.e. 

ventricular rupture) [87, 88]. In order to model more chronic forms of MI/ICM associated with 

coronary plaques and transient ischemia, surgical ischemia-reperfusion techniques for mice have 

been developed [81, 83, 89]. While responsive fibrosis and cardiac dysfunction can seemingly 

reverse after discontinuation of the ischemia-reperfusion protocol, these studies have also shed 

light onto the myocardial hibernation phenomenon. This leads to the hypothesis that 

cardiomyocytes may downregulate internal function as protection from transient ischemia [89]. 

Myocardial hibernation has thus been suggested as a potential therapeutic avenue for ICM by 

Figure 4. Representative steps in the myocardial infarction surgery performed in our lab. The 
duration by which the left coronary artery is occluded differentiates the two models we will employ 
for this proposed research. 
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“preconditioning” the myocardium [90, 91]. Additional promising therapies include targeted 

inhibition of the cytokine producing NF-κB pathway, which is notable as drugs that target this 

pathway already exist clinically for other applications [92, 93]. 

 Complimentary to these popular surgical models of murine ICM, chemically injured and 

genetically modified models also exist. ICM induced by drug cardiotoxicity is of particular interest 

to pharmaceutical companies as irreversible damage to cardiomyocytes is a life-threatening side 

effect. Notable cardiotoxic drugs include isoproterenol [94, 95] and doxorubicin [96, 97]. Tissues 

surrounding coronary capillaries are susceptible to oxidative stress from these drugs, mimicking 

hallmarks of ischemia; however, their cardiotoxicity based mechanism makes them suboptimal 

models of ICM. Furthermore, recent transgenic models using mice deficient in both HDL receptor 

scavenger receptor class B type I (SR-BI) and apoE have shown to develop small diffuse MIs 

following diet-accelerated atherogenesis [98-100]. This atherogenesis involvement suggests that 

it may more closely reflect clinical forms of ICM [34]; however, the model still requires refinement 

to prevent relatively rapid death following induction, critical for researchers to study the post-MI 

remodeling process. 

1.2 In Vivo Assessment of Myocardial Kinematics 

1.2.1 Conventional Imaging Techniques 

 Addressing the needs of patients suffering from the aforementioned cardiomyopathies, the 

development and use of in vivo imaging has been crucial to monitoring disease progression. For 

example, echocardiography is often recommended as a preliminary workup for any sign of cardiac 

distress [10, 11, 101]. While the general imaging principles do not drastically shift from humans 

to animals, small animal models (e.g. rabbits, rats, mice, etc.) give researchers a greater level of 

control over the underlying pathophysiology and experimental factors [5], as discussed above. This 

allows imaging-derived biomarkers to be validated against disease phenotypes prior to clinical 

adaptation, which in turn could raise confidence in their clinical utility. 

 Three primary options for preclinical include micro-computed tomography (micro-CT), 

high-field magnetic resonance imaging (MRI), and high-frequency ultrasound (US). Micro-CT 

can rapidly acquire three-dimensional data of internal structures, with contrast derived from the 

relative density of adjacent tissues. Unfortunately, CT has limited utility for in-vivo murine cardiac 
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studies as its use of ionizing radiation can be harmful with routine exposure, adding unintentional 

confounding factors to these studies. Furthermore, the need for contrast agents to enhance heart 

morphology can be costly with larger cohorts [102-104]. High-field MRI can provide both 

dynamic and compositional information of the heart without the need for ionizing radiation or 

contrast agents. MRI produces image contrast by exploiting the magnetic properties of hydrogen 

protons, found abundantly in water molecules throughout the body. Cine-MRI protocols in 

particular exploit simultaneously acquired cardiac and respiratory signals to retrospectively 

construct image loops synchronized to one representative cardiac cycle [105, 106]. Cine-loops are 

then used acquired in spatial parallel to provide volumetric information across the heart. 

Researchers have then used these cine MRI data to extract ventricular geometries and quantify 

global function changes in vivo for select models of DCM [107, 108], HCM [24, 70], and MI/ICM 

[109-111]. Simultaneous addition of dobutamine, a b1-receptor agonist, can simulate exercise-

induced stress in diseased mice and help to also measure systolic reserve function [112-114]. 

Nevertheless, while cine-MRI is a versatile tool and commonly considered the gold-standard 

technique for preclinical cardiac imaging, the relatively higher costs and longer acquisitions are 

practical obstacles to its more widespread usage in this field. 

1.2.2 Direct MRI Measurement of Myocardial Kinematics 

 While high-field MRI techniques will not be the focus of this thesis, notable advancements 

in this field have been made that can directly estimate ventricular deformations and quantify intra-

myocardial kinematics. One of the initial iterations used spatially distributed pre-saturation pulses 

to embed a signal-nulled grid onto the end-diastolic frame of cine data, which can be 

algorithmically tracked through the cardiac cycle [115-118]. Several studies have applied these 

“tagging” methods to murine DCM models and demonstrated reductions in strain localized to the 

thinned regions of the myocardium [47, 119, 120]. A study by Hankiewicz, et al. systematically 

tracked strain changes over several months and suggested that reductions in strain may even 

precede wall thinning [121]. More recent work looking to both streamline the analysis and improve 

the reliability of findings from these types of images have applied methods such as non-linear 

image registration [117] and machine learning [122] with notable success. 

 Nevertheless, any conclusions drawn using tagging should also address the technique 

limitations. Tagging methods currently necessitate prospective gating in order to ensure placement 
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of the un-deformed grid at end-diastole, reintroducing potential issues inherent to prospective-

gating (discussed above). Furthermore, as grid spacing must allow the underlying signal to be 

adequately captured, only regional deformations can be measured rather than displacement of 

individual voxels. Finally, most literature on tagging methods so far have imaged planar 

deformations, a suboptimal representation of physiological dynamics. This has though been 

addressed in recent studies that have demonstrated success in volumetric tagging and measurement 

of 3D cardiac strain in mice [47]. 

 

 

Figure 5. Representative images of three MR strain quantification techniques: (A) tagging, (B) 
DENSE, and (C) TPM. Corresponding pulse sequences, magnitude images at peak-systole, and 
peak-systolic displacement (tagging and dense) and velocity (TPM) maps are shown in line 
together. Figure adapted from Hankiewicz et al. [121], Gilson et al. [123], and Herold et al. [124]. 
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 With the same aim of providing strain measurements in vivo, two more recent techniques 

have focused on signal phase information, in contrast to signal magnitude used in tagging. The 

first technique, Displacement ENcoding with Simulated Echoes (DENSE), uses a series of two 

90° preparation pulses separated by a spatial encoding gradient to set a known phase distribution 

that can be subsequently reassessed when the k-space signal is acquired [125]. Under this paradigm, 

displacements can be measured at each voxel. Furthermore, strain values have been validated in 

mice against echocardiography [126] and tagging [123] methods. While limited literature exists 

with applications to murine models of cardiomyopathy [127], recent studies have at least 

demonstrated capabilities comparable to tagging methods with measuring strain in three-

dimensions [128, 129] and at multiple stages of the cardiac cycle [130]. 

 The second method Tissue Phase Mapping (TPM) employs bi-polar velocity-encoding 

gradients in the phase-encoding direction, just prior to the echo readout, allowing velocity 

information to be mapped at a voxel-wise resolution [124, 131-133]. Velocity information is 

captured as the bi-polar gradients essentially null the phase of stationary tissues leaving dynamic 

tissue with a phase accumulation, and thus strain can be calculated through integration [127, 134]. 

While TPM still requires further development due to signal-to-noise limitations, we believe if 

some promising research into 4D ultra-short TE (UTE) phase-contrast imaging is adapted for TPM 

applications [135], TPM could eventually provide the best spatiotemporal resolution of the three 

presented. 

1.2.3 High-Frequency Ultrasound 

High-frequency ultrasound is a commonly employed alternative to micro-CT and high-field MRI, 

which both avoids ionizing radiation and is more cost-effective. It is particularly useful for routine 

cardiac imaging due to its relatively high spatial-temporal resolution, portability, and ease-of-use 

[12]. Still, its inherent nature as a planar imaging technique necessitates geometric assumptions of 

heart morphology to estimate cardiac function metrics. This can be particularly problematic when 

studying models such as ICM where dysfunction is localized and asymmetric. Furthermore, as 

ultrasound contrast is based on acoustic impedance, the amount of compositional information 

probed from myocardial tissue is limited. Recent developments in photoacoustic ultrasound are 

working to provide such non-invasive compositional information, yet applications in the mouse 

heart have not been demonstrated and is typically limited to imaging hemoglobin otherwise [136]. 
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In order to match the volumetric imaging capabilities of cine-MRI and expand the capabilities of 

high-frequency ultrasound technology, recent developments in our own lab have introduced a four-

dimensional ultrasound (4DUS) technique that directly addresses these needs [29, 30, 137]. A 

more detailed introduction to this technology is provided in Preliminary 4DUS Validation.  



 
 

33 

 PRELIMINARY 4DUS VALIDATION 

 In this section, we showcase the validation work done regarding our 4DUS technology. 

This study served as the motivational foundation for the subsequent research outlined in this 

document. We detail here the design and results of our study that compared 4DUS-based 

measurements of global left-ventricular function (i.e. ejection fraction, stroke volume, etc.) to 

short-axis M-mode and cine MRI data, assessed on the same cohort of mice [29]. The content 

presented in this chapter was adapted from the work published in Tomography entitled “High-

Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac 

Function”; made available under a Creative Commons Attribution License through the following 

link: http://dx.doi.org/10.18383/j.tom.2017.00016. 

2.1 Abstract 

In vivo imaging has provided a unique framework for studying pathological progression in various 

mouse models of cardiac disease. While conventional short-axis motion-mode (SAX MM) 

ultrasound and cine MRI are two of the most prevalent strategies to quantify cardiac function, they 

have notable limitations including imprecision, inaccuracy, and geometric assumptions with 

ultrasound, or large and costly systems with substantial infrastructure requirements with MRI. 

Here we present an automated four-dimensional ultrasound (4DUS) technique that provides 

comparable information to cine MRI through the spatiotemporally synced imaging of cardiac 

motion. Cardiac function metrics derived from SAX MM, cine MRI, and 4DUS data show close 

agreement between cine MRI and 4DUS, but overestimations by SAX MM. The inclusion of a 

mouse model of cardiac hypertrophy further highlights the precision of 4DUS compared to SAX 

MM, with narrower groupings of cardiac metrics based on health status. Our findings suggest that 

murine 4DUS can be used as a reliable, accurate, and cost-effective technique for longitudinal 

studies of cardiac function and disease progression. 

2.2 Introduction 

 The development of murine cardiac disease models has become a foundation to 

systematically study mechanisms and factors that influence negative outcomes, such as heart 
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failure [5, 42, 57]. While ex vivo techniques (e.g. histology, proteomics) provide substantial 

information regarding gross and molecular composition, their information is limited to the state of 

tissue at sacrifice. In vivo imaging on the other hand can provide longitudinal information and 

result in a more comprehensive understanding of disease progression, particularly when studying 

changes in cardiac function. Though many noninvasive imaging modalities exist, high frequency 

ultrasound and cine magnetic resonance imaging (MRI) are most widely used to assess murine 

cardiac function [17, 18, 23]. 

 High frequency ultrasound uses MHz frequency ultrasonic waves to acquire images of the 

heart, with contrast corresponding to differences in acoustic impedance between tissue types. This 

modality is particularly useful for imaging mice, as even with their rapid heart rates (approaching 

600 bpm), near real-time temporal resolution can be achieved. Nevertheless, standard ultrasound 

imaging techniques for calculating cardiac function (e.g. short-axis motion-mode or M-Mode) 

require the use of geometric models to estimate the ventricular volumes as spheres, ellipsoids, or 

other shapes [16, 138]. While these geometric assumptions are commonly used to study heart 

function in vivo [10, 11], the left ventricle (LV) in a mouse has a complicated three-dimensional 

shape, which can increase in complexity with varying disease states. 

 Cardiac cine MRI exploits the contrasting magnetic properties of myocardial tissue and 

flowing blood to collect volumetric information across a heartbeat. These 4D (3D+time) data are 

spatiotemporally compiled from spatially adjacent slices of cine data across the heart. Compared 

to ultrasound, cine MRI takes longer to acquire since the region of interest must be sampled several 

times before each slice of cine data can be properly reconstructed. Still, cine MRI is often 

considered a gold-standard method for acquiring LV information as the chamber’s entire boundary 

can be directly imaged [24, 28, 110]. Unfortunately, acquiring cine MRI data is often costlier due 

to system availability, maintenance, and required infrastructure needed to operate a 

superconducting magnet.  

 Building upon the idea of spatiotemporally compiling loops of MRI data, we present here 

an automated 4D ultrasound technique that can provide comparable information free of heuristics. 

We compared this technique against conventional short-axis M-Mode and cine MRI, using cardiac 

function metrics to assess their relative performance. The results of this murine study suggest that 

4D cardiac ultrasound has advantages over standard 2D techniques and can be used as an 

alternative to cine MRI. 
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Figure 6. Representative displays of the imaging modalities used on a representative mouse: (top) 
short-axis MM (SAX MM), (mid) 4D ultrasound (4DUS), and (bottom) bright-blood gradient echo 
MRI. The SAX MM row shows the prescribed cursor for sampling (dashed yellow line) along with 
corresponding M-Mode data time-synced to ECG signals. The 4DUS and MRI rows both show 
long-axis (left), short-axis (center), and four-chamber (right) views at corresponding slice locations. 

2.3 Methodology 

2.3.1 Murine Models 

A total of ten female mice were used in this study. All mice were bred at Purdue University and 

derived from Cpt2-floxed mice crossed with Cre-expressing mice where Cre was driven by the 

muscle creatine kinase promoter (Stock No: 006475; Jackson Laboratories, Bar Harbor, ME, USA; 

[79, 80]). Mice deficient in cardiac Cpt2 (Cpt2M-/-; n = 5; age = 11.2 weeks; body mass = 20.1±0.71 
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grams), hereafter referred to as the Cpt2M-/- cohort, have impaired cardiomyocyte fatty acid 

oxidative metabolism due to compromised transport of long-chain fatty acids into the mitochondria 

through acyl-carnitine-mediated transport [79]. Our previous work showed that the loss of cardiac 

Cpt2 results in left ventricular hypertrophy [80]. Control mice, hereafter referred to as the wild-

type cohort, were littermates lacking the Cre gene (Cpt2flox/flox; n = 5; age = 11.2 weeks; body mass 

= 19.5±0.57 grams). All animal experiments were approved by the Purdue Animal Care and Use 

Committee. 

2.3.2 Magnetic Resonance Imaging (MRI) 

Cardiac MRI data were compiled for each mouse from adjacent short-axis cine loops across the 

left-ventricle using a small-bore 7T MRI system (BioSpec 70/30 USR, Bruker Corporation, 

Billerica, MA). A circularly polarized transmit/receive 1H volume coil was used in combination 

with a retrospectively-gated Fast Low-Angle SHot (IntraGateFLASH) sequence with in-slice 

navigator [106, 113] with a repetition time/echo time [TR/TE] = 7/3 ms; flip angle [FA] = 20o; 

slice thickness = 1.0 mm, cine frames = 14, matrix size = 2562, NEX = 1, field of view [FOV] = 

35 x 25 mm, and pixel size = 137 x 98 µm. To help position sequential short-axis slices, a four-

chamber long-axis view of the heart was acquired with similar parameters. Short-axis slices were 

prescribed ensuring coverage from the apex to the ascending aorta. Magnitude cine data were 

extracted and spatiotemporally concatenated into 4D data using MATLAB (MathWorks, Natick, 

MA, USA). Figure 6C shows representative MR data at end-diastole with axial, sagittal, and 

coronal slices through the center of the LV. 

2.3.3 High-Frequency Ultrasound: 4DUS and Short-Axis M-Mode 

Four-dimensional ultrasound (4DUS) and short-axis M-Mode (SAX MM) data were acquired 

using a high frequency small animal ultrasound system (Vevo 3100, FUJIFILM VisualSonics Inc., 

Toronto, Ontario, Canada) and a 40 MHz center frequency linear array transducer (MX550D, 

FUJIFILM VisualSonics Inc.). In preparation for ultrasound imaging, depilatory cream was 

applied to the ventral thorax to prevent hair-based artifacts. The ultrasound probe was clamped to 

a linearly translating step motor and positioned parallel to the short-axis of the LV. System 

integrated triggering between the probe and motor automatically acquired high frame rate (300 fps) 
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cardiac- and respiratory-gated cine loops and spatiotemporally compiled them into 4D data. A 

volumetric FOV was prescribed to ensure that the end-diastolic epicardium would fit in all frames, 

spanning from the apex to the aortic valve. The axial and lateral pixel sizes were set at 12.0 x 55.2 

µm (axial resolution = 40 µm; lateral resolution = 90 µm), with a step-size of 76.2 µm. Figure 6B 

shows a representative example of 4DUS data at end-diastole, with axial, sagittal, and coronal 

slices through the center of the LV, similar to the MR data display.  

 Following 4D data collection, the probe was positioned mid-papillary with a short-axis 

orientation. A line and cursor defining the SAX MM data was prescribed down the center of the 

ventricle, and approximately five seconds of data were acquired. Figure 6A shows a representation 

of the prescribed cursor and corresponding SAX MM data. 

2.3.4 Anesthesia and Physiological Monitoring 

Mice were anesthetized during each imaging procedure using a low-flow vaporizer (SomnoSuite, 

Kent Scientific, Torrington, CT, USA) with ~2.5% isofluorane at 250 ml/min [139]. Exact 

anesthetic level was modulated as needed to maintain a heart rate near 500 beats per minute and 

respiration rate near 60 breaths per minute. During MRI, heart rate and respiration were monitored 

using three subcutaneous needle electrodes and a pneumatic pillow pressure sensor, respectively 

(SA Instruments, Stony Brook, NY, USA). Furthermore, each animal was maintained at 37oC 

using a feedback modulated fan that blew heated air into the bore of the magnet. During ultrasound 

imaging, a heated stage with integrated gold-plated electrodes (Vevo Imaging Station, FUJIFILM 

VisualSonics Inc.) warmed the animal to a temperature of approximately 37oC while also obtaining 

heart rate and respiratory signals. Respiratory signals were simultaneously extracted from gold-

plated electrodes by filtering low frequency signal fluctuations, caused by changes in impedance 

across the lungs during inhalation. Rectal temperature probes were used to monitor core body 

temperature with both imaging systems. 
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Figure 7. Overview of masking and slice analysis. Example (A) short-axis 4DUS slice with 
outlines of endocardial (blue) and epicardial (green) borders drawn. Adjacent short-axis border 
definitions are pieced together to create a volumetric mask, as shown in (B) with an example mask 
(blue) of the left ventricle in a long-axis view. The epicardial border (green) was included in (B) 
as well for reference. In order to identify the sensitivity of total mask volume to interpolated 
borders across skipped slices, (C; top) a complete masking (i.e. every slice across the volume was 
manually outlined) had equally sized subsets of slices deleted, (C; middle/bottom) which were 
subsequently filled using cubic spline interpolation. A slice thickness of 0.0762 mm was used to 
calculate physical gap sizes. At each gap size, the set of remaining slices – excluding the most 
proximal and distal slices – were serially shifted to identify variability based on gap positioning. 
Total volumes were calculated for each paradigm as the sum of all cross-sectional areas. Percent 
differences in volume from the complete masking across all gap paradigms are shown for a 
representative (D; left) wild-type, (D; middle) early stage disease, and (D; right) late stage disease 
mouse. 
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2.3.5 Cardiac Function Assessment 

Using a custom MATLAB GUI and Vevo 3100 compatible VevoLAB analysis software (v3.0) for 

the MRI and 4DUS data, respectively, the endocardial and epicardial borders of the LV were 

manually outlined across short-axis views of the heart. The endocardial border was used to define 

the LV chamber, and the endocardial and epicardial borders were used in conjunction to define the 

LV myocardium. Maintaining conventions set by the American Society of Echocardiography [10, 

11], the proximal extent of the LV cavity was defined as the mitral and aortic valves, and papillary 

muscles were considered part of the LV cavity. These guidelines were followed across all animals, 

regardless of gross differences in heart size or shape. Figure 7A and B illustrates an example of 

the aforementioned border definitions. 

 Expediting mask creation in the 4DUS data, we manually outlined slices that were 

approximately 0.3-0.5mm (i.e. 4-6 slices) apart and then used cubic spline interpolation to fill in 

the boundaries over skipped regions (e.g. Figure 7C; middle). In order to ensure that using such 

interpolation wouldn’t produce large deviations from the expected ground truth, a sensitivity 

analysis was performed; LV mask volumes were compared over a series of gap size and position 

paradigms. Figure 7C shows an example cross-sectional area profile for a mask without any gaps 

(i.e. complete masking), as well as for two subsequent gap paradigms. Quantifying the percent 

difference in volume of every gap paradigm from the complete masking, Figure 7D demonstrates 

the results of sensitivity analysis for an example wild-type, early-stage disease, and late-stage 

disease mouse. We observed that gap sizes approximately 0.5mm or less did not produce percent 

differences in mask volumes over 1%, thus providing us confidence in the reliability of our 

masking protocol. 

 To extract measurements from the SAX MM data, the VevoLAB software was used to 

draw lines corresponding to the endocardial and epicardial borders through at least three cardiac 

cycles. Estimates of left ventricular geometry were thus calculated using the mean of 

corresponding measurements at end-diastole and peak-systole (i.e. maximum and minimum 

distances between endocardial borders). A single reviewer performed all measurements to prevent 

inter-operator variability. 

 Ventricular chamber volumes defined by the endocardial border from MRI and 4DUS data 

measured at end-diastole (EDV) and peak-systole (PSV) were used to calculate the LV stroke 

volume (SV) and ejection fraction (EF). To estimate the mass of the LV myocardium (i.e. Left 
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Ventricle Mass (LVM)), EDV was subtracted from the total volume defined by the epicardial 

border at end-diastole (EpiEDV), and the resultant volume multiplied by a cardiac tissue density 

of 1.05 mg/µL [140, 141]. The equations used to calculate cardiac function include:  

𝐸𝐹	 =
(𝐸𝐷𝑉	– 	𝑃𝑆𝑉)

𝐸𝐷𝑉
	𝑥	100 [1] 

𝑆𝑉	 = 	𝐸𝐷𝑉	– 	𝑃𝑆𝑉 [2] 

𝐿𝑉𝑀	 = 	1.05	𝑥	(𝐸𝑝𝑖𝐸𝐷𝑉	 − 	𝐸𝐷𝑉) [3] 

In contrast to direct measurements from the volumetric data, the M-Mode analysis used the 

Teichholz equation to quantify LV Volume (LVV),  

𝐿𝑉𝑉	 = 	 N
7.0

(2.4 + 𝐿𝑉𝐼𝐷)S
𝑥	𝐿𝑉𝐼𝐷T [4] 

in which Left Ventricular Inner-Diameter (LVID) is used to estimate the geometry of the ventricle 

at any corresponding point in the cardiac cycle [142]. These estimated volumes at end-diastole and 

peak-systole were used with the same equations as above to calculate EF and SV. Calculations of 

LVM based on M-Mode data incorporated the measured thickness of the LV Anterior Wall 

(LVAW) and Posterior Wall (LVPW), as shown in the equation: 

𝐿𝑉𝑀	 = 	1.05	𝑥	[(𝐿𝑉𝐼𝐷	 + 	𝐿𝑉𝐴𝑊	 + 	𝐿𝑉𝑃𝑊)T	–	𝐿𝑉𝐼𝐷T]	𝑥	0.8 [5] 

2.3.6 Histology 

Following imaging, mice were euthanized with CO2 overdose and cervical dislocation. Hearts 

were excised and then placed directly in 4.0% paraformaldehyde (PFA) and stored at 4oC. After 

six days, hearts were transferred to 0.1% PFA and again stored at 4oC until histology was 

performed. Each heart was embedded in paraffin and sectioned along the mid-papillary short-axis 

of the LV. Tissue sections were stained with H&E and Masson’s Trichrome following standard 

protocols. 

2.3.7 Statistical Analysis 

Differences between imaging methods were assessed in scatter dot plots. A one-way ANOVA with 

multiple comparisons was performed to identify significant differences between each pairing of 
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methods. In order to compare cardiac function metrics between the three methods and two groups 

of mice (wild-type and Cpt2M-/-), a two-way ANOVA with Tukey corrections for multiple 

comparisons was performed. 

2.4 Results 

 The presented study introduces an automated 4DUS technique and compares its 

performance in assessing cardiac function against conventionally employed SAX MM and MRI 

methods. Quantified metrics of cardiac function (i.e. EDV, PSV, EF, SV, and LVM) from each of 

the three aforementioned techniques, acquired on each subject, were the basis for comparison. The 

4DUS and MRI methods did not produce significant differences in any of the employed metrics, 

while SAX MM overestimated these values on average (Figure 8). A one-way ANOVA indicated 

a significantly larger EF from SAX MM versus 4DUS (p = 0.020), larger SV from SAX MM 

versus both the 4DUS (p = 0.001) and MRI methods (p = 0.005), and larger EDV from SAX MM 

versus 4DUS (p = 0.021). As cine MRI data are widely accepted as a gold-standard in measuring 

chamber volumes, our findings suggest that 4DUS could be a reliable alternative to cine MRI. 

Furthermore, as 4DUS and MRI do not rely on simplified models of LV geometries, these results 

provide further evidence that the geometric models used in SAX MM could be a source of 

inaccuracy in assessing cardiac function [10, 11, 16]. 

Subsequent analysis compared method performance taking into account cohort 

classifications (i.e. wild-type or Cpt2M-/-). Table 1 shows metric averages separated by cohort and 

identifies significant differences following a two-way ANOVA, which incorporated both imaging 

modality and cohort as factors. Neither wild-type or diseased mice demonstrated any significant 

difference between the 4DUS and MRI techniques, similar to the results of our initial one-way 

ANOVA analysis. However, significantly larger values were observed for SAX MM versus MRI 

methods in 1) the wild-type group for EDV (p = 0.014) and SV (p = 0.002), and 2) the diseased 

group for EF (p = 0.02) and LVM (p = 0.002). Furthermore, the SAX MM had significantly larger 

values than the 4DUS methods in 1) the wild-type group for EDV (p = 0.013) and SV (p = 0.001), 

and 2) the diseased group for SV (p = 0.014) and LVM (p = 0.002). The only insignificant 

interaction between imaging method and cohort was for LVM (p = 0.116); however, this is most 

likely due to the large overestimation by SAX MM in the Cpt2M-/- cohort. Interestingly, SAX MM 

overestimated EDV in our wild-type mice, but the differences in LVM measurements were not 
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significant; an opposite trend observed in the Cpt2M-/- group. We originally hypothesized that if 

either SAX MM metric would be inaccurate, it would be when cardiac morphology deviated from 

the wild-type state. Instead, the observed overestimation of LVM in the wild-type cohort suggests 

that the wild-type murine myocardium may be smaller than assumed in the employed geometric 

models. Conversely, future use of SAX MM in murine models may consider refinement of the 

equations used to calculate the presented metrics, to better match the morphology of the murine 

heart. 

 

Table 1. Average values for all measured and calculated metrics for (A) wild-type and (B)  
Cpt2M-/- cohorts. Two-way ANOVA analysis with Tukey post-hoc comparisons were performed 
on the shown data. Significant within-group differences are designated with * for SAX MM versus 
MRI values and + for SAX MM versus 4DUS values, as well as one, two, or three symbols for 
significance levels of p < 0.05, p < 0.01, and p = 0.001, respectively. No significant differences 
were found between the 4DUS and MRI values for any metrics. 
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Figure 8. Scatter dot plots with mean and standard deviation bars comparing measurement 
differences between each pair of imaging methods. In each plot, the left blue column represents 
the 4DUS - MRI values, the green center column represents the SAX MM - 4DUS values, and the 
red right column represents the SAX MM - MRI values. The plots of (A) ejection fraction, (B) 
stroke volume, and (C) left ventricle mass each represent metrics derived from volume estimates 
made at (D) end-diastole and (E) peak-systole, commonly used to evaluate left ventricular function. 
One-way ANOVA analysis identified statistical significance between methods as designated by * 
(p < 0.05) and ** (p < 0.01) respectively. 

 

 While we have so far focused on the agreement between each imaging modality, the use of 

Cpt2M-/- mice also demonstrate the benefit of acquiring reliable function metrics toward 

characterizing cardiac remodeling and the ultimate progression to heart failure. As observed in 

recent literature, this mouse model develops early concentric hypertrophy of the LV followed by 

chamber dilation [80]. Representative histology (Figure 9) confirms the presence of both late (n=2) 

and early (n=3) stages of the disease within the Cpt2M-/- cohort, characterized by gross 

cardiomyocyte hypertrophy with or without notable cardiomyocyte necrosis (i.e. 

hypereosinophilia and loss of cross striations), respectively. Plots of EF versus SV and EDV versus 

LVM (Figure 10) illustrate how both the wild-type and diseased cohorts can be characterized by 

physiologic or morphologic oriented metrics, respectively. In plots of EF versus SV, we note that 

while stroke volume is relatively conserved for all mice, only early stage disease mice preserve an 

EF comparable to wild-type mice. In plots of EDV versus SV, both metrics seem to gradually 

increase with the relative stage of disease, illustrating somewhat distinct groupings based on the 
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wild-type, Cpt2M-/- phenotype with early-stage disease, and Cpt2M-/- phenotype with late-stage 

disease. To demonstrate these groupings, data was displayed both as individual points and average 

distributions for the wild-type and Cpt2M-/- cohorts. These plots qualitatively exhibit the method 

agreement between MRI and 4DUS methods that have been quantitatively studied above. 

 

 

 

Figure 9. Representative Masson’s Trichrome histology of the various disease stages imaged, with 
magnifications at (A) 4x (scale bar = 1.0mm), (B) 10x (scale bar = 200 μm), and (C) 40x (scale 
bar = 100 μm). The first row shows a representative non-mutated mouse (n = 5) in which wild-
type cardiomyocyte size and density is observed. The second row shows an early stage of 
hypertrophy (n = 3) where enlarged cardiomyocytes are observed without any noticeable necrosis. 
The third row shows a late stage of hypertrophy (n = 2) in which enlarged cardiomyocytes and cell 
necrosis with less stain uptake are both observed. 
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Figure 10. Characterization plots of the wild-type, early stage disease, and late stage disease mice 
derived from the 4DUS based metrics. The top three plots of EF versus SV for (A) SAX MM, (B) 
MRI, (C) 4DUS illustrate the relative spread of cardiac function metrics across the study animals. 
Distributions are more closely matched for the MRI and 4DUS techniques. This agreement in 
metric distributions in also observed for the structural metrics EDV versus LVM (D-F). The 
characteristics expected for the Cpt2M-/- model are highlighted in these plots showing relative 
clusters depending on health status. 

2.5 Discussion and Conclusion 

 Despite the advantages of 4DUS including rapid acquisition (e.g. 5-10 min for 4DUS, <1 

min for SAX MM, and 45-60 min for cine MRI), relatively low-cost, and high spatiotemporal 

resolution, this approach does have several limitations compared to cine MRI. Sternum, rib, and 

lung artifacts limit the imaging window and can obscure portions of the heart. This can be 

particularly hindering if interested in right ventricular pathologies, as the sternum artifact can blur 

a large portion of its endocardial borders. Second, similar to cine MRI, accurate ECG and 

respiration signals are required to spatiotemporally compile the 4DUS images. To this end, 

pathologies which suffer from cardiac arrhythmias will need to be tested to ensure proper 

spatiotemporal compilation. Third, the higher spatial and temporal resolution of 4DUS information 

comparably increases the digital size of the data. While most commonly available computational 

resources can handle such data sizes for analysis, down-sampling in the spatial and/or temporal 

domain can serve to reduce computational costs if desired. 
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 In conclusion, we demonstrate in this study that 4DUS can provide data comparable to cine 

MRI for quantifying cardiac function metrics, with improved precision and accuracy over SAX 

MM ultrasound. Nevertheless, SAX MM is used widely as a relatively rapid and economical 

option for longitudinal studies of cardiac disease in murine studies [17, 18]. Fortunately, the 

benefits of ultrasound and volumetric acquisition can be combined with only a slightly longer scan 

time compared to SAX MM. Using 4DUS imaging, rapid assessments with high frequency 

ultrasound can be conducted with the crucial advantage of producing reliable measurements 

similar to the gold-standard of cardiac MRI without assuming an idealized geometric model. 

Furthermore, the added benefit of higher through-plane resolution compared to MRI may help 

provide clearer data for studying cardiac disease models in which the myocardium evolves into 

even more complex shapes (e.g. myocardial infarction). In the following section, we will outline 

the research planned to take this next step with the 4DUS technology, further exploring regional 

metrics of cardiac function extracted for the 4DUS data and how those metrics may help explain 

disease progression.   
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 REGIONAL KINEMATIC ANALYSIS OF DISEASE PROGRESSION 
IN CPT2M-/- MODEL OF HYPERTROPHIC CARDIOMYOPATHY 

 In this section, we highlight an application of 4DUS imaging to study cardiac dysfunction 

progression in murine model of hypertrophic cardiomyopathy (Cpt2M-/-). We detail here a 

standardized procedure for analyzing 4DUS data and simultaneously extracting measurements of 

left-ventricular global function, morphometry, and regional strain. We further pose a novel metric, 

the Hybrid Strain Index (HSI), which demonstrates the greatest utility in characterizing disease 

progression. The content presented in this chapter has been submitted for publication in American 

Journal of Physiology Heart and Circulatory Physiology entitled “Improving characterization of 

hypertrophy-induced murine cardiac dysfunction progression using four-dimensional ultrasound 

derived strain metrics”. 

3.1 Abstract 

Mouse models of cardiac disease have become essential tools in the study of pathological 

mechanisms, but the small size of rodents makes it challenging to quantify heart function with 

noninvasive imaging. Building off recent developments in high-frequency four-dimensional 

ultrasound (4DUS) imaging, we have applied this technology to study cardiac dysfunction 

progression in a murine model of hypertrophic cardiomyopathy. Cardiac knockout of carnitine 

palmitoyltransferase 2 (Cpt2M-/-) in mice hinders cardiomyocyte bioenergetic metabolism of long-

chain fatty acids, and leads to progressive hypertrophic cardiomyopathy and heart failure. The 

proposed analysis provides a standardized approach to measure localized wall kinematics and 

simultaneously extract metrics of global cardiac function, LV morphometry, regional 

circumferential strain, and regional longitudinal strain from an interpolated 4D mesh of the endo- 

and epi-cardial boundaries. Comparison of metric changes due to aging suggest that 

circumferential strain at the base and longitudinal strain along the posterior wall are most sensitive 

to disease progression. We further introduce a novel Hybrid Strain Index (HSI) that incorporates 

information from these two regions and may have greater utility to characterize disease progression 

relative to other extracted metrics. Future work will look to apply these methods to additional 
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disease models and further demonstrate the utility of metrics derived from 4DUS imaging and 

strain mapping. 

3.2 New & Noteworthy  

High-frequency four-dimensional ultrasound can be used in conjunction with standardized 

analysis procedures to simultaneously extract left-ventricular global function, morphometry, and 

regional strain metrics. Furthermore, a novel hybrid strain index (HSI) formula demonstrates 

greater performance compared to all other metrics in characterizing disease progression in a model 

of hypertrophic cardiomyopathy. 

3.3 Introduction 

Due to the heart’s central role in the distribution of oxygen, nutrients, signaling factors, and heat 

throughout the body, progressive cardiac dysfunction can not only compromise an individual’s 

quality-of-life, but also lead to systemic organ failure, morbidity, and mortality [33]. While cardiac 

hypertrophy is often a non-pathogenic adaptation to cardiovascular stress (e.g., aerobic exercise), 

when stressors persist or cardiomyocyte adaptation is compromised, the heart may progress to 

hypertrophic cardiomyopathy (HCM) [31, 34, 40]. Conditions that cause HCM, such as metabolic 

disease and hypertension, result in dysfunctional fatty acid oxidative metabolism in the 

myocardium, thereby limiting biogenetic contributions an important energy substrate for the heart 

[143, 144]. As such, patients and animal models genetically predisposed to metabolic inflexibility 

present with often severe forms of HCM [145-149]. 

 Establishing a better understanding of the pathological mechanisms and progression of 

HCM using murine models allows for controlled manipulations of disease-linked factors and 

longitudinal monitoring of cardiac function [5-9, 150]. Herein we focus on one such model, in 

which HCM is induced due to a cardiac homozygous knockout of the carnitine 

palmitoyltransferase 2 (Cpt2) enzyme in the heart. We have demonstrated that deficiency of CPT2, 

a required enzyme for mitochondrial fatty acid oxidation of long-chain fatty acids, causes 

cardiomyocyte metabolic inflexibility and leads to progressive myocardial hypertrophy [79, 80].  

 Complementary to such murine models of cardiac disease, high-frequency ultrasound has 

become one of the most commonly used imaging tools to longitudinally and non-invasively 
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monitor heart function. Traditional ultrasound transducers for small animals only allow for planar 

imaging, thus reported metrics of global cardiac function (e.g., ejection fraction, stroke volume, 

cardiac output) heavily rely on predictions of the idealized geometries of the left ventricle (LV) 

[14, 16-18]. Fortunately, measurements of regional left-ventricular strain can be derived directly 

from planar imaging views and demonstrate greater sensitivity to myocardial function compared 

to ejection fraction [151]. Still, collection of multiple non-parallel views of the left-ventricle 

requires physical repositioning of the ultrasound probe, introducing potential misalignment errors 

when comparing values within a mouse or across animals. Recent advancements in high-frequency 

four-dimensional ultrasound (4DUS) imaging mitigates these issues, providing gated volumetric 

data of the entire murine left-ventricle, with faster acquisitions and higher spatiotemporal 

resolution compared to high-field cine-MRI [29, 30, 152].  

 Using a series of longitudinal 4DUS data collected from both Cpt2M-/- mice and littermate 

controls, we describe here for the first time a standardized method for extracting regional 

kinematics information from the endo- and epi-cardial boundaries of the LV myocardium and 

investigate how cardiac strain metrics derived from these kinematic data can be used to 

characterize disease progression. Furthermore, we propose a hybrid strain index (HSI) metric 

which combines basal circumferential and posterior free-wall longitudinal strains, and demonstrate 

its superior utility in characterizing HCM progression. 

3.4 Methods 

3.4.1 Animal Models and Study Timeline. 

Heart and skeletal muscle (Cpt2M-/-) CPT2 conditionally deficient C57BL/6 female mice were 

generated using the MCK-Cre mice (Jackson Laboratories stock no. 006475) as described [80]. 

Littermates lacking Cre expression were used as controls. Mice were given free access to water 

and standard chow (PicoLab 5053, Lab Diets), in pathogen-free housing under 12-hour light-dark 

cycles. A total of 26 mice were used for this study, comprised of 12 Cpt2M-/- mice (47 total 4DUS 

datasets) and 14 littermate controls (41 total 4DUS datasets), each imaged longitudinally at least 

twice between 4 and 18 weeks of age. Figure 11 provides example 4DUS images, gross sections, 

and histology from a representative mouse in each cohort. Cpt2M-/- and littermate control mice 

were euthanized at week 18 and had hearts freshly isolated and similarly prepared for histology 
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(H&E and Masson’s Trichrome). If all Cpt2M-/- mice in a cohort died prior to week 18, the 

corresponding littermate controls were euthanized. All animal experiments were approved by the 

Purdue Animal Care and Use Committee. 

 

 
Figure 11. Cpt2M-/- induced hypertrophy compared to control. Representative control (top) and 
Cpt2M-/- (bottom) mouse hearts at 15 weeks of age visualized with A) three orthogonal views from 
four-dimensional ultrasound (4DUS) data at end-diastole, B) gross anatomical sections post-
fixation, and C) H&E and Masson’s Trichrome histology from selected box regions. Ultrasound 
and gross section scale bar = 2mm. Histology scale bar = 100𝝁m. Ultrasound image planes are 
designated as short-axis (SAX), long-axis (LAX), and coronal; orientation is designated with 
labels for the posterior (P), inferior (I), and left (L) sides of the heart. 

3.4.2 Ultrasound Imaging 

4DUS data was collected using the Vevo2100 high-frequency ultrasound system (FUJIFILM 

VisualSonics Inc., Toronto, Ontario, Canada), a 40 MHz center frequency transducer (MS550D), 

and a translating linear step motor. Mice were weighed prior to imaging and then anesthetized 

using a low-flow vaporizer (SomnoSuite, Kent Scientific, Torrington, CT, USA) with ~2.5% 

isoflurane at 250 ml/min [139]. Mice were then secured to a heated stage with gold-plated 

electrodes and had ventral thorax hair removed using depilatory cream. Serial short-axis ECG-

gated Kilohertz Visualization (EKV) cine loops were acquired across the full left-ventricle (i.e., 

inferior to the epicardial apex through superior to the aortic valve), with step sizes of approximately 
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200 𝜇m and gating by cardiac- and respiratory-signals [29, 30]. Extracted ultrasound data was then 

spatiotemporally compiled into a 4DUS dataset in MATLAB (MathWorks Inc., Natick, MA). 

3.4.3 Boundary Definition and Kinematics Analysis.  

An in-house MATLAB graphical user interface (GUI) was used to visualize 4DUS data and track 

LV kinematics along the endo- and epi-cardial borders. Figure 12 shows a schematic 

representation of the standardized analysis procedure: 

A. Spatially reorient volumes to a standard set of x, y, and z axes (i.e., the apex-to-base line 

defines a central z-axis, the anterior and posterior walls lie perpendicular to the y-axis, and 

the free-wall and septum lie perpendicular to the x-axis); 

B. Track the translation of the LV chamber base and apex along the z-axis throughout the 

cardiac cycle; 

C. Using a grid of automatically defined endo- and epi-cardial boundary points, track local 

wall motion throughout the cardiac cycle using the distance between each point and the 

central z-axis as reference; and 

D. Using the tracked grid positions, interpolate a final 4D mesh of each boundary, sampled 

uniformly at 60 rotations around the z-axis, 60 slices from base to apex, and at 60 time 

points across the cardiac cycle. 

The grid defined in step C is structured such that points lie along four parallel short-axis slices (i.e., 

25, 50, 75, and 100% from the apex to base) and at six rotations around the kinematic axis (i.e., 

30, 90, 150, 210, 270, and 330º from the free-wall oriented axis). As the base and apex positions 

are time dependent, tracked in step B, the z-positions of grid points are subsequently dependent on 

the base and apex positions at any given point across the cardiac cycle. 

 Using the derived 4D meshes of each LV boundary, measurements of global cardiac 

function (e.g., ejection fraction, stroke volume), LV morphometry (e.g., end diastolic volume, left-

ventricular mass), and regional strain were calculated, similar to those previously reported [15, 

153, 154]. 
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Figure 12. Schematic for standardized 4DUS analysis procedure. The outlined steps include: A) 
reorientation of data to defined axes, B) tracking z-axis position (posY) of the left-ventricular base 
and apex across relative time (t) in the cardiac cycle, C) defining and tracking local wall motion 
(posZ,[,\) at a grid of endo- (E=o) and epi-cardial (E=x) points equally spaced across four short-
axis slices (Z) and six rotations (Θ) around the left ventricle, and D) quantification of regional 
kinematics from which strain metrics are calculated. Meshes in section D) are oriented such that 
the viewer is looking at the septal wall (top) or the free-wall (bottom), at 10% increments 
throughout a representative cardiac cycle. Red-axes denote the same central “z-axis” that the data 
is oriented to in the first step.  

3.4.4 Derivation of Regional Cardiac Strain. 

We calculated the circumferential component of the Green-Lagrange strain tensor to estimate 

cyclic strain (𝐸]]), assuming a circular cross-section at each short-axis slice location [155]: 
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𝐸]](𝑧, 𝑡) =
1
2
^_
𝐶(𝑧, 𝑡)
𝐶a(𝑧)

b
c

− 1d [6] 

where C represents the relative circumference at short-axis slice z and time t in the cardiac cycle; 

𝐶a  is the circumference at end-diastole (i.e., t=0). Curves of 𝐸]]  were derived for slices 

corresponding to the basal, mid-ventricular, and apical regions of the left ventricle, from which 

peak-strain, early systolic strain rate, late systolic strain rate, early diastolic strain rate, and late 

diastolic strain rate were extracted. 

 Complementary measurements of longitudinal (𝐸ff)  strain were calculated using the 

engineering linear small strain approximation:  

𝐸ff(𝜃, 𝑡) =
𝐿(𝜃, 𝑡) − 𝐿a(𝜃)

𝐿a(𝜃)
[7] 

where L represents the apex-to-base length along the boundary at rotation 𝜃 and time t in the 

cardiac cycle, and 𝐿a is the respective length at end-diastole. Metrics of peak-strain, systolic strain 

rate, early diastolic strain rate, and late diastolic strain rate were similarly extracted for each of the 

strain curves corresponding to the anterior free-wall, anterior, anterior septum, posterior septum, 

posterior, and posterior free-wall sections of the heart.  

3.4.5 Hybrid Strain Index 

Since the circumferential and longitudinal reference frames reflect the two conventional views of 

the LV (i.e. short-axis and long-axis), we sought to investigate whether a combination of the most 

sensitive location-specific metric in each respective reference frame could create an even better 

marker of cardiac dysfunction progression. Thus, we propose here a novel metric, the Hybrid 

Strain Index (HSI): 

𝐻𝑆𝐼 = h𝐸]],ijklc + 𝐸ff,mnkolpqnpc [8] 

computed as the L2 norm of the peak circumferential strain value at the base of the heart r𝐸]],ijkls 

and peak longitudinal strain value along the posterior wall r𝐸ff,mnkolpqnps, which were identified 

as the most sensitive metrics in the circumferential and longitudinal reference frames, respectively. 
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3.4.6 Longitudinal Metric Analysis 

To assess the rate of change in each studied metric through time, a linear regression was fit to 

values from the same animal against age at the time of imaging. Herein, we refer to the slope 

derived from linear regression as the metric’s “trend”. Additionally, to assess changes as a function 

of genotype and age only, a linear regression was fit to a pool of all values from each cohort against 

the age at imaging, treating all data as independent. Using 95% confidence intervals (CI) associated 

with linear regression from each cohort, the earliest age at which the CIs no longer overlap was 

used as a marker for how soon the respective metric might be able to differentiate Cpt2M-/- mice 

from controls.  

3.4.7 Receiver Operating Characteristic Analysis 

In order quantify the degree to which each metric can differentiate data from each cohort, using 

either the metric value or aging-based trends, we calculated area under the curve (AUC) values for 

each respective receiver operating characteristics (ROC) curve. While disease progression in the 

Cpt2M-/- cohort was variable (i.e., some mice died prematurely while others reached 18 weeks of 

age to be sacrificed), all Cpt2M-/- mice were considered to represent progressive cardiac 

dysfunction. 

3.4.8 Statistics 

All statistical tests were performed in Prism (GraphPad Software, San Diego, CA). Cohort 

differences in metric trends were investigated using a non-parametric Mann-Whitney test, and p < 

0.05 was considered statistically significant. All cohort-specific metric trend summaries are 

reported as median [interquartile range]. To further assess the relative variability of metric trends 

in the Cpt2M-/- cohort compared to control, an interquartile range (IQR) ratio is computed: 

𝐼𝑄𝑅	𝑅𝑎𝑡𝑖𝑜 =
𝐼𝑄𝑅wxoc
𝐼𝑄𝑅ynzopn{

[9] 

where 𝐼𝑄𝑅wxoc  is the interquartile range of the Cpt2M-/- cohort values, and 𝐼𝑄𝑅ynzopn{  is the 

respective interquartile range of the control cohort values. Metric summary information, Mann-

Whitney test p-values, IQR ratio, AUC values, and 95% CI intersections for all computed metrics, 
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except strain rate, are reported in Table 2. All comparable information for strain rate metrics are 

reported in Supplemental Table 1. 

3.5 Results 

3.5.1 Global Function and LV Morphometry 

Three-dimensional renderings of a representative heart are shown in Figure 13A at end-diastole 

and peak-systole, from which global cardiac function and morphometry measurements were 

calculated. Focusing on longitudinal changes in each animal, Figure 13B, D, and E show 

significant trend differences in ejection fraction (EF), end-diastolic volume (EDV), and left-

ventricular mass (LVM), respectively. No significant trend differences were observed for stroke 

volume (SV; Figure 13A) or wall thickness (Figure 13F). Figure 13C demonstrates with EF the 

use of linear regression 95% confidence intervals to identify the earliest age at which the 

confidence intervals no longer overlap; subsequent measurements for all metrics are shown in 

Table 2. It is notable that stroke volume showed no separation based on 95% CI, suggesting that 

regardless of age no significant differences in stroke volume would be observed. Furthermore, 

both left-ventricular mass and wall thickness had no overlapping regions of 95% CI, suggesting 

that significant differences between control and Cpt2M-/- mice were present even prior to four 

weeks of age. EF demonstrated the highest AUC value (AUC = 1.000) amongst all global function 

trends, with an 95% CI intersection at 7.11 weeks of age (Table 2); however, produced a lower 

AUC (AUC = 0.839) compared to left-ventricular mass (AUC = 0.949) and wall thickness (AUC 

= 0.981) when comparing metric values independent of age. 
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Table 2. Measurements of metric trends through aging. For each cohort, medians [interquartile 
ranges] are provided for control and Cpt2M-/- mice, along with p-values from Mann-Whitney tests, 
ratio of interquartile ranges (IQR) in Cpt2M-/- and control trends, area under curve (AUC) values, 
and the 95% confidence interval (CI) intersection locations. Metrics where 95% confidence 
intervals overlapped for the entire age range of the study were noted with “---”, and metrics where 
95% confidence intervals did not overlap are noted with “DNO”. 

 
 

 
 

 
 

 
 

 
 

Metric Control (n=14) Cpt2M-/- (n=12) p-value IQR
Ratio

Trend 
AUC

95% CI 
Int.

Metric 
AUC

End-Diastolic Volume 0.711 [0.187,1.194] 5.826 [2.537,16.037] 0.0001 13.40 0.946 8.96 0.720
Peak-Systolic Volume 0.265 [0.048,0.603] 5.768 [1.850,16.034] 0.0000 25.57 0.988 8.64 0.789

Stroke Volume 0.397 [0.037,0.802] 0.281 [-0.086,0.687] 0.6620 1.01 0.554 --- 0.536
Ejection Fraction -0.205 [-0.741,0.216] -3.364 [-6.559,-1.633] 0.0000 5.15 1.000 7.11 0.839

Left Ventricle Mass 2.078 [1.299,2.525] 9.302 [8.599,25.402] 0.0000 13.71 0.988 DNO 0.949
LV Wall Thickness 0.007 [0.003,0.010] 0.024 [0.002,0.034] 0.0760 4.85 0.708 DNO 0.981

Peak !""
Base 0.106 [-0.093,0.404] 1.586 [1.065,3.148] 0.0000 4.19 0.988 6.52 0.861

Mid-LV 0.181 [-0.157,0.435] 1.712 [0.670,3.346] 0.0002 4.52 0.929 8.30 0.730
Apical 0.007 [-0.126,0.338] 1.787 [0.414,2.840] 0.0037 5.22 0.839 9.77 0.652

Peak !##

Ant. FW 0.168 [-0.006,0.429] 0.898 [0.547,1.118] 0.0002 1.31 0.929 4.58 0.903
Anterior 0.129 [-0.043,0.396] 0.893 [0.496,1.089] 0.0002 1.35 0.940 6.06 0.860
Ant. Sep. 0.160 [-0.026,0.361] 0.845 [0.509,1.115] 0.0001 1.57 0.952 6.91 0.821
Post. Sep 0.062 [-0.034,0.263] 1.068 [0.641,1.314] 0.0000 2.27 0.976 6.17 0.880
Posterior 0.069 [-0.064,0.427] 1.223 [0.708,1.684] 0.0000 1.99 0.982 5.27 0.913
Post. FW 0.155 [-0.041,0.478] 1.002 [0.594,1.254] 0.0001 1.27 0.952 4.86 0.909

Hybrid Strain Index -0.100 [-0.445,0.180] -1.893 [-3.723,-1.261] 0.0000 3.94 1.000 5.72 0.907
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Figure 13. Global function and morphometric quantification of hypertrophy driven dysfunction 
through aging. Global function and anatomy metrics derived from endo- and epi-cardial surfaces 
at both end-diastole and peak-systole are investigated, including A) stroke volume (SV), B) 
ejection fraction (EF), D) end-diastolic volume (EDV), E) left-ventricular mass (LVM), and F) 
wall thickness (LVWT). On each scatter plot of longitudinally collected measurements, data from 
control mice are shown in blue and Cpt2M-/- mice are shown in red. Points from the same mouse 
are shown connected, and linear regression performed on across each cohort are visualized with 
thick dashed lines. To assess the earliest age in which metrics from a Cpt2M-/- mouse might deviate 
from the control population, the cumulative linear regression lines with 95% confidence intervals 
C) for ejection fraction were plotted and the age at which the confidence intervals no-longer 
overlap was identified (i.e., 7.11 weeks for EF). Additionally, dot plots are shown for each metric 
comparing slopes derived from mouse-specific linear regression, with horizontal lines designating 
median and interquartile ranges. Markers above each comparison plot indicate significance levels 
from non-parametric Mann-Whitney tests (***p < 0.001). 
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3.5.2 Regional Circumferential Strain 

Locations at which circumferential strain (𝐸]]) metrics were derived are shown in Figure 14A, 

alongside a representative strain curve with markings for peak strain, systolic strain rate, early 

diastolic strain rate, and late diastolic strain rate. Similar to those shown for global function metrics, 

longitudinal changes in peak 𝐸]]  at the base, mid-ventricle (Mid-LV), and apical regions are 

plotted in Figure 14B. Comparisons of peak 𝐸]] trends show statistically significant differences 

between control and Cpt2M-/- mice at each location, with p-values given in Table 2. Computed 

AUC values suggest that the greatest trend differences were observed at the base (AUC = 0.988), 

followed by Mid-LV (AUC = 0.929), and then apical regions (AUC = 0.839). Furthermore, while 

IQR ratios are similar between all three regions (i.e., 4.19, 4.52, and 5.22 respectively), trends at 

the base observed the earliest 95% CI intersection at 6.52 weeks old. When comparing metric 

values independent of age, peak 𝐸]] at the base still showed the highest AUC (AUC = 0.861) 

compared to the Mid-LV (AUC = 0.730) and apical regions (AUC = 0.652). 

 Complementary to peak strain values, example longitudinal metric plots are shown in 

Figure 14C for systolic strain rate (𝛥𝐸]],k~k.), early diastolic strain rate (𝛥𝐸]],ljp{~	�qj.), and late 

diastolic strain rate (𝛥𝐸]],{jol	�qj.)  at the base of the heart. Supplemental Figure 1 provides 

longitudinal and trend comparison plots of all strain rate metrics at the base, mid-LV, and apical 

regions. Comparisons of individual trends, with values at the base shown in Figure 14C, indicate 

significant differences between control and Cpt2M-/- mice for all 𝛥𝐸]]  metrics. Despite these 

significant differences, no 𝛥𝐸]] metric had an AUC > 0.988, suggesting that peak 𝐸]] at the base 

still demonstrates the best performance amongst circumferential strain metrics in differentiating 

trends from Cpt2M-/- mice. Of note, 𝛥𝐸]],{jo	�qj. at the base did not show any overlap in 95% CIs, 

suggesting that myocardial relaxation at the base may be compromised even prior to 4 weeks of 

age. 
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Figure 14. Regional circumferential strain measurements. Schematic (A) of where across the left 
ventricle circumferential strain was measured, and how peak strain (𝐸]] ), systolic strain rate 
(∆𝐸]],k~k.), early diastolic strain rate (∆𝐸]],ljp{~	�qj.), and late diastolic strain rate (∆𝐸]],{jol	�qj.) 
were defined on a representative strain curve. Longitudinally measured peak circumferential strain 
(B) are shown for the base, mid-ventricle (Mid-LV), and apical slices, with data from control mice 
shown in blue and Cpt2M-/- mice shown in red. Points from the same mouse are shown connected, 
and linear regression performed on across each cohort are visualized with thick dashed lines. 
Comparison plots of strain trends from each mouse and region are shown (bottom), with horizontal 
lines designating median and interquartile ranges. Significance markers above each comparison 
plot indicate p-value level from non-parametric Mann-Whitney tests (***p < 0.001; **p < 0.01). 
Additionally, example plots of longitudinal measurements, and trend comparisons, are provided 
(C) for systolic (sys.), early diastolic (early dia.), and late diastolic (late dia.) strain rates at the 
base of the heart. 
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3.5.3 Regional Longitudinal Strain 

Locations at which circumferential strain (𝐸ff) metrics were derived are schematically shown in 

Figure 15A. Longitudinal changes in peak 𝐸ff along the posterior septum, posterior, posterior free-

wall, anterior free-wall, anterior, and anterior septum regions are plotted in Figure 15B. 

Additionally, comparisons of peak 𝐸ff trends show statistically significant differences between 

control and Cpt2M-/- mice at each location. Computed AUC values are comparable across all 

regions (AUC = 0.929-0.982), though greatest performance is observed along the posterior wall 

(AUC = 0.982). Computed 95% CI intersections show earlier separation for peak 𝐸ff along the 

posterior wall at 5.27 weeks old, though the earliest intersection is seen at 4.58 weeks of age along 

the anterior free-wall. When comparing metric values independent of age, peak 𝐸ff  along the 

posterior wall still showed the highest AUC (AUC = 0.913) compared to all other regions (AUC 

= 0.821-0.909). 

 Longitudinal and trend comparison plots of systolic strain rate (𝛥𝐸ff,k~k.), early diastolic 

strain rate (𝛥𝐸ff,ljp{~	�qj.), and late diastolic strain rate (𝛥𝐸ff,{jol	�qj.) for each respective region 

are provided in Supplemental Figure 2. All 𝛥𝐸ff trend differences were statistically significant, 

except for 𝛥𝐸ff,{jol	�qj. along the posterior free-wall. The highest computed AUC value for 𝛥𝐸ff 

trends was for 𝛥𝐸ff,k~k. along the posterior wall (AUC = 0.893), suggesting that peak 𝐸ff along 

the posterior wall still demonstrates the best performance in differentiating trends from Cpt2M-/- 

mice amongst all longitudinal strain metrics. Of note, 𝛥𝐸ff,{jol	�qj. along the anterior free-wall, 

posterior wall, and posterior free-wall did not show any overlap in 95% CIs, suggesting that similar 

to findings with 𝛥𝐸]],{jo	�qj. , myocardial relaxation along the entire free-wall may be 

compromised even prior to 4 weeks of age. 
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Figure 15. Regional longitudinal strain measurements. Schematic (A) localizing the area from 
which the left ventricle longitudinal strain (𝐸ff) was measured. Peak longitudinal strain measured 
across time (B) are shown for rotations around the central z-axis corresponding to the posterior 
septum (Post. Sep.), posterior, posterior free-wall (Post. FW), anterior free-wall (Ant. FW), 
anterior, and anterior septum (Ant. Sep.) regions of the heart. Data from control mice shown in 
blue and Cpt2M-/- mice shown in red. Points from the same mouse are shown connected, and linear 
regression performed on across each cohort are visualized with thick dashed lines. Comparison 
plots (C) of strain trends from each mouse and region are shown (bottom), with horizontal lines 
designating median and interquartile ranges. Significance markers above each comparison plot 
indicate p-value level from non-parametric Mann-Whitney tests (***p < 0.001). 
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3.5.4 Hybrid Strain Index 

Plotting peak posterior wall 𝐸ff values along the against peak base 𝐸]] values, as shown in Figure 

16A, we can visualize the potential utility of using both metrics simultaneously to differentiate 

data from control and Cpt2M-/- mice. Taking the L2 norm of these two values – effectively the 

distance from (0,0) to any given point – we compute the proposed Hybrid Strain Index (HSI). 

Longitudinal plots of HSI values and associated comparison of HSI trends are provided in Figure 

16B, demonstrating a significant difference in trends between control and Cpt2M-/- mice (p < 

0.0001).  

 Comparing the relative utility of all computed metrics in differentiating disease progression 

in Cpt2M-/- mice against natural aging in control mice, Figure 16C shows trend IQR ratios plotted 

against AUC values. Axes are zoomed to show metrics for which AUC > 0.97 and IQR < 6, 

respectively. Not only does HSI have the highest achievable AUC value (AUC = 1.00), but it has 

a lower IQR ratio (3.94) than EF (AUC = 1.00; IQR Ratio = 5.15) and peak base 𝐸]] (AUC = 

0.988; IQR Ratio = 4.19). While lower IQR ratios are observed in peak 𝐸ff along the posterior 

wall (1.99) and posterior septum (2.27), neither of these metrics show trend AUC values > 0.985. 

Figure 16D further highlights the age-independent utility of HSI by plotting 95% confidence 

interval intersections against metric AUC values.  
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Figure 16. Hybrid Strain Index (HSI). Scatter plot (A) of the basal peak circumferential strain (𝐸��) 
value against posterior peak longitudinal strain (𝐸ff) value for each 4DUS dataset, with data from 
control mice shown in blue and Cpt2M-/- mice shown in red, visualizes the relationship between the 
two components incorporated into the HSI metric. Similar to those shown for circumferential and 
longitudinal strain, HSI measurements across time (B) are overlaid with cumulative linear 
regression results as thick dashed lines, as well as a comparison plot of HSI trends for individual 
mice. Significance markers indicate p-value level from non-parametric Mann-Whitney tests (***p 
< 0.001). Demonstrating of the use of HSI in better characterizing disease progression, a scatter 
plot (C) of AUC values from ROC analysis against the ratio of trend standard deviations is 
provided, with HSI (green) providing the maximum area-under-curve (AUC) value alongside 
ejection fraction (EF; orange), yet with a lower interquartile range (IQR) ratio. Other shown 
metrics include: left-ventricular mass (LVM), peak circumferential strain at the base (CSB), and 
peak longitudinal strain at the posterior wall (LSP), anterior septum (LSAS), and posterior septum 
(LSPS). Metric utility is further explored by plotting 95% confidence interval intersections against 
age-independent metric AUC values (D), demonstrating with a higher AUC and earlier intersection 
that HSI could also be a more sensitive diagnostic marker of disease than ejection fraction. 
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3.6 Discussion 

In this study we demonstrate how high-frequency 4DUS and derived metrics can be used to 

comprehensively study cardiac dysfunction progression in a murine model of hypertrophic 

cardiomyopathy (HCM). We specifically outline a standardized procedure for analysis of left-

ventricular 4DUS data. This approach was taken to try and mitigate noted issues in reproducibility 

during standard echocardiographic data acquisition due to physical manipulation of the ultrasound 

probe [156-158]. This is accomplished by leveraging the relatively high spatial resolution of 4DUS 

to allow post-acquisition alignment of data to a standard set of axes, based on landmarks common 

to left-ventricular anatomy. Following reorientation, tracking of base and apex motion along the 

central z-axis allows us to compensate for the longitudinal contraction of the heart when extracting 

short-axis views across the cardiac cycle, effectively minimizing effects of through-plane motion 

common to cardiac imaging. Finally, the proposed 24-point grid structure from which endo- and 

epi-cardial 4D meshes are interpolated provides a uniformly distributed subset of spatial locations 

around the left-ventricle, which also simplifies wall motion tracking to a single axis (i.e., radius 

between each point and the center z-axis). 

 Applying these methods to the Cpt2M-/- mouse model, measurements of LV morphometry 

suggest that hallmarks of HCM, namely LV mass and wall thickness are significantly increased 

even before the earliest imaging time-points of 4 weeks old. Observed significant increases in end-

diastolic volume and decreases in EF provide additional evidence that Cpt2M-/- mice exhibit HCM 

hallmarks of progressive LV chamber dilatation and cardiac dysfunction leading to heart failure, 

respectively. This is further supported by the fact that six of the twelve Cpt2M-/- mice (50%) died 

premature to the planned final time-point. Predicting mouse survival is not possible without 

establishing cardiac parameters that are directly related to the progression and severity of the 

cardiomyopathy. Hence, the presentation of variable rates of disease progression in this Cpt2M-/- 

model provided us with the power to correlate imaging data to the progression towards heart failure. 

This approach provides insights into highly predictive correlates with the potential for use in both 

research and clinical applications.  

 Looking to better understand regional drivers of cardiac dysfunction, we investigated 

circumferential and longitudinal strain metrics from select regions around the heart. As recent 

literature has pointed to regional strain being a more sensitive metric to cardiac dysfunction than 

EF [151], we focused here on identifying which regions and strain metrics that were most sensitive 
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to disease progression. In these regards, peak 𝐸]] at the base and peak 𝐸ff along the posterior wall 

were identified as two important regional metrics. While the identification of peak 𝐸ff along the 

posterior wall may reflect the overall reduction of LV contractility, as this is where the highest 

magnitude 𝐸ff values are observed around the LV, the disproportionately large reduction in peak 

𝐸]] at the base may hint at effects of diastolic dysfunction with its proximity to the mitral valve 

[159]. Future studies acquiring additional pulse wave Doppler data through the mitral valve could 

further investigate this hypothesis. 

 As an extension information provided by the outlined 4DUS analysis methods, our 

proposed novel Hybrid Strain Index (HSI) draws from the best performing circumferential and 

longitudinal strain metrics to provide a more sensitive marker of disease progression than all other 

computed function metrics. The relative performance of all metrics were quantified using both 

metric and trend AUC values, IQR ratio, and 95% CI intersection, from which HSI demonstrates 

the best overall utility in identifying Cpt2M-/- mice against controls. While both EF and HSI provide 

maximal trend AUC values, thus suggesting similar utility in describing disease progression, HSI 

provides both a higher metric AUC and earlier 95% CI intersection than EF, indicating that it 

might be more sensitive to mild cardiac dysfunction and would decrease prior to EF. This seems 

intuitive as HSI reflects the contractility of two orthogonal reference frames (i.e., circumferential 

and longitudinal) that together cover the extent of the LV, yet isolates the metric in each frame that 

demonstrates the greatest sensitivity to cardiac dysfunction. With this in mind, different variations 

of the HSI metric could be formulated that are specific to unique cardiomyopathies. 

 Finally, while the imaging timepoints of the mice in this study were inconsistent, a variety 

of ages, disease states, and follow-up scan timings are commonplace in the clinic. As numerous 

factors might influence the frequency by which patients have echocardiographic assessments, the 

focus on changes in measurements over several imaging sessions is more informative to potential 

declines in cardiac function than an isolated measurement. While further validation work is needed, 

our results suggest that in this paradigm HSI could be a complementary marker to help characterize 

cardiac dysfunction progression and disease progression. In particular, the use of HSI could prove 

useful in the characterization of heart failure with preserved ejection fraction (HFpEF) where a 

more sensitive marker to cardiac dysfunction could help in diagnosis and to better assess patient 

responses to subsequent treatment [160-162]. 
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3.6.1 Limitations 

 Despite the demonstrated promise in the proposed analysis and results, several limitations 

still exist. The use of ultrasound technology for cardiac imaging inherently presents issues with 

both shadowing artifacts from the ribcage and mirror artifacts from the surrounding lungs. Their 

impact can be mitigated during imaging with proper probe placement, and during 4DUS analysis 

by using multi-planar views to estimate borders through impacted regions. Secondly, the 

calculation of strain in both the circumferential and longitudinal frames is assumed to be uniform 

throughout the cardiac cycle. While this assumption allows the tracking of regional wall motion at 

any given grid point to be simplified to the radius of that point to the center z-axis, recent literature 

has suggested this assumption may not always being valid and might oversimplify more complex 

disease models, such as myocardial infarction where focal akinetic regions of the heart are 

observed [163, 164]. Finally, one component of cardiac kinematics that has not been addressed in 

this analysis is myocardial twist. While it is known that the rotation of the base and apex of the 

heart through the cardiac cycle can be impacted in various cardiomyopathies, the ability to quantify 

rotation and twist has not yet been integrated into the current analysis. Future work will be needed 

to both incorporate rotational information into the creation of LV 4D meshes and quantify its 

impact in various disease models. 

3.7 Conclusion 

We demonstrate here for the first time the application of high-frequency 4DUS imaging to a 

murine model of hypertrophic cardiomyopathy. The proposed analysis provides a standardized 

approach to measure localized wall kinematics and simultaneously extract metrics of global 

cardiac function, LV morphometry, regional circumferential strain, and regional longitudinal 

strain from an interpolated 4D mesh of the endo- and epi-cardial boundaries. We further propose 

a Hybrid Strain Index (HSI), composed of peak circumferential strain at the base and longitudinal 

strain along the posterior wall, which provides greater utility to characterizing disease progression 

than all other extracted metrics. Future could be used to apply these methods to additional disease 

models and further validate the utility of metrics derived from the 4DUS imaging and strain 

mapping.   
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 SPATIOTEMPORAL STRAIN MAPS OF DISEASE PROGRESSION IN 
NKX2-5 MODEL OF HYPERTROPHIC CARDIOMYOPATHY 

In this section, we highlight an application of 4DUS imaging to study cardiac dysfunction 

progression in another murine model of hypertrophic cardiomyopathy (Nkx2-5183P/+). Similar to 

Chapter 3, we detail here a standardized procedure for analyzing 4DUS data that can 

simultaneously extract measurements of left-ventricular global function, morphometry, and 

regional strain. We further pose a paradigm for displaying the circumferential and longitudinal 

strain results as spatiotemporal maps, which can provide a more comprehensive visualization of 

cardiac function. The content presented in this chapter will be submitted for publication in 

Cardiovascular Research entitled “Kinematic Analysis of Murine Cardiac Hypertrophy Using 

High-Frequency Four-Dimensional Ultrasound”. 

4.1 Introduction 

 Murine models play a critical role in uncovering the underlying mechanisms of cardiac 

disease and progression [5, 57]. These models are particularly useful in the study of congenital 

heart disease (CHD), where clinical manifestations often lead to early lethality. While recent 

advancements in corrective interventions for CHD malformations have led to more frequent 

patient survival into adulthood, suggesting maintenance of global heart function, further research 

is still needed to better understand on how specific genetic precursors of CHD alter regional 

cardiac function through aging. One factor of recent interest is the NKX2-5 gene, which has been 

identified as a homeobox transcription factor in cardiac precursors and is essential for early heart 

development and myocardial cell fate. Mutations in the human NKX2-5 gene have been associated 

with a diverse range of CHD and conduction defect (CD) phenotypes, including atrial and 

ventricular septal defects, atrioventricular conduction block, tetralogy of Fallot, hypoplastic left 

heart, transposition of the great arteries, dextrocardia, and valvular malformations.  

 Aiming to better understand the impact of NKX2-5 mutations on cardiac physiology, here 

we investigate a murine model with these mutations and propose novel analysis methods that might 

provide more comprehensive information into how regional ventricular function is altered. 

Absence of NKX2-5 in mice results in impaired cardiac growth and chamber formation, disrupted 
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gene regulatory network, and early embryonic lethality. Conditional deletion at postnatal stages 

has shown that NKX2-5 activity is also essential for maintenance of the cardiac conduction system. 

Preliminary work with these mice has demonstrated an early decrease in cardiomyocyte 

mitochondrial density and cellular respiration. This shift in metabolic capacity leads to an 

increased dependence on fatty acid oxidation [77], progressive concentric hypertrophy, and 

subsequent heart failure. 

 Complementary to mouse models of cardiac disease, high-frequency ultrasound has 

become an integral tool for quantifying global cardiac function in vivo (i.e., ejection fraction, stroke 

volume, etc.) [150]. More recent developments in high-frequency four-dimensional ultrasound 

(4DUS) have advanced this imaging technologies’ capabilities even further to provide localized 

quantification of left ventricular (LV) kinematics, with higher spatiotemporal resolution than high-

field cardiac cine-MRI [29, 30]. We propose here a novel analysis paradigm that not only 

standardizes the analysis of LV 4DUS data to quantify ventricular kinematics, but also creates 

novel visualizations of circumferential and longitudinal strain in the form of spatiotemporal maps. 

4.2 Methods 

4.2.1 Animal Models 

Six C57BL/6J male mice with genetically induced cardiac hypertrophy (Nkx2-5183P/+) [77, 78, 165] 

and six littermate controls were used for this study. To identify both cross-sectional and 

longitudinal differences between Nkx2-5183P/+ (i.e., mutant) and littermate control (i.e., wild-type) 

mice, imaging was performed at 8, 12, and 16 weeks old. Following imaging at 16 weeks old, all 

mice were euthanized, had saline perfused through the inferior vena cava to clear blood in the heart 

chambers, and then had their hearts were excised, sectioned, and snap frozen for proteomics 

analysis. Each heart was sectioned into four pre-defined regions: basal free-wall, basal septum, 

apical free-wall, and apical septum. All animal experiments were approved by the Purdue Animal 

Care and Use Committee. 
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4.2.2 Ultrasound Acquisition  

4DUS data was collected using a Vevo2100 high-frequency ultrasound system (FUJIFILM 

VisualSonics Inc., Toronto, Ontario, Canada) with a 40 MHz center frequency transducer 

(MS550D) attached to a translating linear step motor. In preparation for imaging, mice were 

anesthetized using a low-flow vaporizer (SomnoSuite, Kent Scientific, Torrington, CT, USA) with 

~2.5% isoflurane at 250 ml/min [139], secured to a heated stage with gold-plated electrodes that 

collected cardiorespiratory signals, and had ventral thorax hair removed using depilatory cream. 

Serial short-axis ECG-gated Kilohertz Visualization (EKV) cine loops were acquired starting 

inferior to the left-ventricular apex and ending at the aortic arch, stepping approximately 200 µm 

between slices. 4DUS data was then compiled in MATLAB (MathWorks Inc.) using the spatial 

position of each slice and gating by associated cardiac and respiratory signals [29, 30]. 

4.2.3 Boundary Definition and Kinematics Analysis  

A custom MATLAB toolbox was developed to analyze each 4DUS dataset using the following 

standardized steps (Figure 17): 

A. Reorienting the input spatial axes to standard axes (i.e., z-axis = the apex-to-base line, 

y-axis = the anterior to posterior walls line, and x-axis = the free-wall to septum line); 

B. Tracking z-axis positions of the apex and base across the cardiac cycle, from which 

four parallel short-axis slices (i.e., 25, 50, 75, and 100% to the base) are extracted; 

C. Defining a grid of endocardial and epicardial boundary points located at each relative 

short-axis slice, and uniformly spaced across six rotations around the kinematic axis 

(i.e., 30, 90, 150, 210, 270, and 330º from the free-wall oriented axis), from which local 

wall motion is tracked across the cardiac cycle; and 

D. Using the tracked grid positions at each time-point to interpolate a final 4D grid of each 

boundary, sampled spatially at 60 uniform rotations around and 60 uniformly spaced 

slices down the left-ventricle, and temporally at 60 uniformly distributed points across 

the cardiac cycle. 
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Figure 17. Schematic for standardized 4DUS analysis procedure. The outlined steps include: A) 
reorientation of data to defined axes, B) tracking z-axis position (posY) of the left-ventricular base 
and apex across relative time (t) in the cardiac cycle, C) defining and tracking local wall motion 
(posZ,[,\) at a grid of endocardial (E=o) and epicardial (E=x) points equally spaced across four 
short-axis slices (Z) and six rotations (Θ) around the left ventricle, and D) quantification and 
plotting of regional kinematics as circumferential and longitudinal spatiotemporal strain maps. Red 
axes denote the same central “z-axis” that the data is oriented to in the first step. 
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 Similar to those reported in literature [15, 153, 154], measurements of global cardiac 

function (e.g., ejection fraction, stroke volume, and left-ventricular mass) and regional myocardial 

kinematics (i.e., circumferential and longitudinal strain) were extracted from the final 4D left-

ventricular meshes. Regarding circumferential strain (𝐸]]), we used the Green-Lagrange strain 

tensor definition assuming circular cross-sections [155]: 

𝐸]](𝑡) =
1
2
^_
𝐶(𝑡)
𝐶a

b
c

− 1d [10] 

where C represents the relative circumference at time t in the cardiac cycle; 𝐶a is the circumference 

at end-diastole (i.e., t=0). Curves of 𝐸]] were derived for slices corresponding to the basal, mid-

ventricular, and apical regions of the left ventricle, from which peak-strain, systolic strain rate, and 

diastolic strain rate can be extracted. 

 Complementary measurements of longitudinal (𝐸ff) strain can be calculated using the 

linear strain approximation:  

𝐸ff(𝑡) =
𝐿(𝑡) − 𝐿a

𝐿a
[11] 

where L represents the cross-sectional length at time t in the cardiac cycle, and 𝐿a is the respective 

length at end-diastole. 𝐸ff was derived at each of the six rotations around the central z-axis (i.e., 

30, 90, 150, 210, 270, and 330º from the left free-wall). Furthermore, peak-strain, systolic strain 

rate, and diastolic strain rate can also be extracted for each of these strain curves. 

4.2.4 Spatiotemporal Strain Mapping 

Since each 4D mesh is defined by equally sized matrices of spatiotemporal boundary information, 

changes in mesh morphology across the cardiac cycle can be systematically quantified and 

compiled into spatiotemporal maps. Herein, we describe two such maps that are based on the 

commonly reported circumferential and longitudinal strain metrics, illustrated in Figure 17D. 

Spatiotemporal maps of circumferential strain effectively visualize strain curves computed at each 

short-axis slice down the 4D LV mesh, described using a modified Equation 10: 

𝐸]](𝑧, 𝑡) =
1
2
^_
𝐶(𝑧, 𝑡)
𝐶a(𝑧)

b
c

− 1d [12] 
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where C represents the relative circumference at slice z and time t in the cardiac cycle; 𝐶a is the 

circumference at end-diastole (i.e., t=0). Comparable maps of longitudinal strain were derived 

using the linear small strain approximation at each rotation around the center axis: 

𝐸ff(𝜃, 𝑡) =
𝐿(𝜃, 𝑡) − 𝐿a(𝜃)

𝐿a(𝜃)
[13] 

where L represents the apex-to-base length along the boundary at rotation 𝜃 and time t in the 

cardiac cycle; 𝐿a is the respective length at end-diastole. 

4.2.5 Cross-Sectional and Longitudinal Assessments.  

Since spatiotemporal strain map matrix sizes were standardized during analysis using shape-

preserving interpolations (i.e., 60 spatial locations by 60 time-points across the normalized cardiac 

cycle), resultant maps can be stacked by cohort and age, allowing for pixelwise statistical 

comparisons. Demonstrated in Figure 18 using age and cohort averaged circumferential strain 

maps, cross-sectional differences between cohorts are quantified using area under the curve (AUC) 

values for pixelwise receiver operating characteristics (ROC) curves. Additionally, aging based 

trends are calculated by averaging slopes from linear regression run pixelwise on each animal’s 

respective data from 8, 12, and 16 weeks old. Trend maps are shown as percent strain per month 

for both circumferential and longitudinal strain maps. 
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Figure 18. Visualization of pixelwise cross-sectional and aging based trend analysis, demonstrated 
using (A) circumferential spatiotemporal strain maps. Dotted black lines highlight both the time 
within the cardiac cycle (t) and location across the left-ventricle (z) for which data are isolated for 
analysis, stratified by both cohort and age. Cross-sectional analysis is performed by calculating (B) 
area under the curve (AUC) values from receiver operating characteristics (ROC) curves. Aging 
based trend analysis is performed with (C) linear regression through data from 8, 12, and 16 weeks 
old, displayed as percent strain per month. 

4.2.6 Statistics 

All statistical tests were performed in Prism (GraphPad Software, San Diego, CA). Cohort 

differences in global function, morphometry, and regional strain metrics at each imaged age were 

investigated using a two-way repeated measures ANOVA with post-hoc Bonferroni's multiple 

comparisons test; p < 0.05 was considered statistically significant. All cohort-specific metric 

summaries are reported as mean (standard deviation). 
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4.3 Results and Discussion 

4.3.1 Global Function and Regional Strain 

Comparisons of global function and morphometry are plotted in Figure 19A, showing ejection 

fraction and LV mass significantly different between groups at weeks 8 (EF p = 0.0015; LVM p = 

0.0018), 12 (EF p = 0.0022; LVM p = 0.0081), and 16 (EF p = 0.0115; LVM p = 0.0022). In 

contrast, no significant differences were found at any week for end-diastolic volume and stroke 

volume. Comparisons of peak circumferential strain at the base, mid-ventricular, and apical 

regions are plotted in Figure 19B, with all three regions showing significant differences between 

cohorts at weeks 12 (base p = 0.0018; mid-LV p = 0.0060; apical p = 0.0043) and 16 (base p = 

0.0045; mid-LV p = 0.0104; apical p = 0.0083). At week 8, significant differences were only found 

at the base (p = 0.0015) and mid-LV (p = 0.0105). Interestingly, comparisons of longitudinal strain 

metrics at all six rotations around the LV show no significant differences between groups. A 

summary of all computed global function and morphometry, as well as regional circumferential 

and longitudinal strain, metrics compared at weeks 8, 12, and 16 are provided in Supplemental 

Table 2. 

 Noting that the circumferential reference frame seems to be the more sensitive to the 

induced hypertrophic cardiomyopathy than the longitudinal frame, and the apical region of the 

heart does not show a significant difference between groups at week 8, we further explored the 

relationship between the base and apical regions throughout aging. Figure 19C plots the peak 

circumferential strain at the base against the apical strain, with data at weeks 8, 12, and 16 shown 

with increasing levels of transparency. While the ratio between the two regions seem similar, there 

is a notable separation between each cohorts’ data cluster. Additionally, while the control data 

seems to remain in the same region across aging, there is a shift to lower magnitude apical strain 

values in the Nkx2-5183/+ cohort. Future work may leverage this approach of clustering base versus 

apical strain information to better characterize the cardiac disease progression against control data. 
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Figure 19. Comparisons of global function, morphometry, and regional circumferential strain. 
Global function (i.e., end-diastolic volume, stroke volume, and ejection fraction) and morphometry 
(i.e., left-ventricular mass) measurements (A) are shown for both control (blue) and Nkx2-5183/+ 

(red) mice, with significance markers for cross-sectional comparisons. Peak circumferential strain 
𝐸]] measurements (B) are shown for the base, mid-ventricle (Mid-LV), and apical slices, with 
comparable statistical comparison markers. Significance markers above each comparison plot 
indicate p-value level from two-way ANOVA with post-hoc Bonferroni's multiple comparisons 
test (**p < 0.01; *p < 0.05). Additionally, a scatter plot of peak 𝐸]] at the base versus apical 
regions (C) with data from weeks 8, 12, and 16 shown with increasing levels of transparency, 
demonstrate the shift in the base to apical region relationship throughout aging in each cohort. 
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4.3.2 Spatiotemporal Strain Mapping 

Figure 20 highlights circumferential strain maps for each cohort across weeks 8, 12, and 16. At 

the earliest age imaged, circumferential strain magnitude deficits in the Nkx2-5183P/+ cohort were 

primarily observed at the base of the heart during systole, suggesting weakened contractility near 

the mitral and aortic valves. As both cohorts aged to week 16, a disproportionately lower 

magnitude circumferential strain was observed apically for the Nkx2-5183P/+ cohort. Interestingly, 

both cohorts showed a decrease in strain magnitude in the basal region through aging, suggesting 

a natural shift of systolic contractility towards the apex over time. A visualization of all 

circumferential strain maps that were used to perform this analysis are provided in Supplemental 

Figure 3. 

 

 

Figure 20. Colormaps of circumferential strain profiles averaged at each time-point for both wild-
type and Nkx cohorts. Plots as shown with relative short-axis slice locations on the y-axis and 
normalized time from R-peak through a cardiac cycle on the x-axis (bottom right diagram). For 
each time-point (first three columns), pixelwise z-scores are computed for the Nkx cohort against 
the wild-type cohort distribution; averaged z-score colormaps are then displayed above (bottom 
row). Additionally, using linear regression, the pixel-wise slope across time (last column) is 
computed for each cohort (last column), normalized to a per-month basis. 
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 Figure 21 highlights longitudinal strain maps for each cohort across weeks 8, 12, and 16. 

In both cohorts, the posterior free-wall observes higher magnitude longitudinal strain throughout 

systole. Although unlike circumferential strain, negligible differences in the AUC maps were 

observed at week 8, suggesting that circumferential systolic contractility may be more sensitive to 

the early development of hypertrophy. By week 16, the distribution of longitudinal strain in the 

Nkx2-5183P/+ cohort show more uniformity around the ventricle, and the duration of the systolic 

contraction wave appears shortened. Interestingly, both cohorts show a trend of increased early 

systolic longitudinal strain, suggesting a more rapid systolic contraction around the entire 

myocardium. A visualization of all longitudinal strain maps that were used to perform this analysis 

are provided in Supplemental Figure 4. 

 

 

Figure 21. Colormaps of regional longitudinal strain profiles averaged at each time-point for both 
wild-type and Nkx cohorts. Plots as shown with relative rotations around kinematic axis on the y-
axis and normalized time from R-peak through a cardiac cycle on the x-axis (bottom right diagram). 
For each time-point (first three columns), pixelwise z-scores are computed for the Nkx cohort 
against the wild-type cohort distribution; averaged z-score colormaps are then displayed above 
(bottom row). Additionally, using linear regression, the pixel-wise slope across time (last column) 
is computed for each cohort (last column), normalized to a per-month basis. 
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4.4 Conclusions 

 We demonstrate here the ability to use 4DUS imaging to produce spatiotemporal maps of 

both circumferential and longitudinal strain, from which we can quantify changes in cardiac 

kinematics that correlate with age and phenotype. In this study, we identified when and where 

kinematic patterns deviate in a genetic model of cardiac hypertrophy (Nkx2-5183P/+). Our findings 

suggest that inhibited cardiomyocyte energy handling induced by the Nkx2-5183P/+ mutation not 

only induces a hypertrophic myocardium [166], but also alters the systolic contraction profile. As 

research exploring regionally specific strain in mice using 4DUS technology remains limited [152], 

these findings may provide a framework for how 4DUS can be leveraged to provide more 

comprehensive characterizations of cardiac function and disease. 

 Not only will these metrics provide a deeper understanding of the regional cardiac 

dynamics, but will also help researchers improve techniques for multi-array echocardiography 

analysis [19-22]. Furthermore, researchers who already use small animal ultrasound systems in 

their studies could immediately benefit from our work as our acquisition procedure and proposed 

analysis toolbox use commercially available equipment (i.e. FUJIFILM VisualSonics 

Vevo2100/3100 systems; MATLAB). Finally, future work will look to combine our regional strain 

information with proteomics analysis performed on tissue excised from those specific regions in 

order to better quantify the relationship between cardiac function and the makeup of the underlying 

myocardial tissue. We hope that with widespread adoption of our methods, we will enable research 

groups throughout our field to expand the breadth of knowledge obtained with ultrasound imaging 

in murine models of cardiac disease. 
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 MACHINE LEARNING APPLICATIONS TO 4DUS KINEMATICS 
ANALYSIS 

 In this section we detail, to our knowledge, the first application of machine learning to the 

problem of automatic boundary detection to murine four-dimensional ultrasound (4DUS) data. We 

propose three models that are constructed such that short-axis images are analyzed individually 

(Model 1), parallel slices are incorporated simultaneously (Model 2), and predictions are assisted 

by a single user-input position (Model 3). We built our models based on ground-truth data drawn 

from 136 4DUS datasets, comprised of mice with healthy and hypertrophic hearts, each having 

30-40 time-frames across a representative cardiac cycle. Our results imply an increase in prediction 

performance from Model 1 to 3, and we discuss why certain regions of the heart might experience 

increased errors. Furthermore, various metrics of cardiac function are computed from model 

predictions alone and we compared them to ground-truth. The content presented in this chapter 

was adapted from the work recently accepted in Applied Sciences entitled “Machine Learning 

Driven Contouring of High-Frequency Four-Dimensional Cardiac Ultrasound Data”; made 

available under a Creative Commons Attribution License through the following link: TBD. 

5.1 Abstract 

 Automatic boundary detection of 4D ultrasound (4DUS) cardiac data is a promising yet 

challenging application at the intersection of machine learning and medicine. Using recently 

developed murine 4DUS cardiac imaging data, we demonstrate here a set of three machine learning 

models that predict left ventricular wall kinematics along both the endo- and epi-cardial boundaries. 

Each model is fundamentally built on three key features: 1) the projection of raw US data to a 

lower dimensional subspace, 2) a smoothing spline basis across time, and 3) a strategic 

parameterization of the left ventricular boundaries. Model 1 is constructed such that boundary 

predictions are based on individual short-axis images, regardless of their relative position in the 

ventricle. Model 2 simultaneously incorporates parallel short-axis image data into its predictions. 

Model 3 builds on the multi-slice approach of model 2, but assists predictions with a single ground-

truth position at end-diastole. To assess the performance of each model, Monte Carlo cross 

validation was used to assess the performance of each model on unseen data. For predicting the 
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radial distance of the endocardium, models 1, 2, and 3 yielded average R2 values of 0.41, 0.49, and 

0.71, respectively. Monte Carlo simulations of the endocardial wall showed significantly closer 

predictions when using model 2 versus model 1 at a rate of 48.67%, and using model 3 versus 

model 2 at a rate of 83.50%. These finding suggest that a machine learning approach where multi-

slice data is simultaneously used as input and predictions are aided by a single user input yields 

the most robust performance. Subsequently, we explore the how metrics of cardiac kinematics 

compare between ground-truth contours and predicted boundaries. We observed negligible 

deviations from ground-truth when using predicted boundaries alone, except in the case of early 

diastolic strain rate, providing confidence for the use of such machine learning models for rapid 

and reliable assessments of murine cardiac function. To our knowledge, this is the first application 

of machine learning to murine left ventricular 4DUS data. Future work will be needed to strengthen 

both model performance and applicability to different cardiac disease models. 

5.2 Introduction 

 As heart disease remains the number one cause of death in the United States [33], 

echocardiography remains an integral tool to the proper diagnosis and prognosis of abnormal 

cardiac function. Furthermore, the development of murine models of cardiac disease have provided 

researchers a strong foundation to further our understanding of pathological hallmarks and how 

specific genetic and/or environmental factors might drive progression [5-9]. To bridge the gap 

between imaging technology and murine disease models, high-frequency ultrasound uses MHz 

frequency ultrasonic waves to acquire images of small structures (e.g. mouse left ventricle with a 

thickness of ~1mm) that are rapidly moving (e.g. mouse heart rate is ~500-600 bpm), thus too 

difficult to be adequately viewed using clinical ultrasound systems. Recent advancements in high-

frequency ultrasound technologies have also introduced a collection of four-dimensional 

ultrasound (4DUS) approaches, allowing for more thorough analyses of cardiac motion beyond 

global metrics based on idealized geometries (i.e., ejection fraction, stroke volume), similar to that 

commonly reported with clinical cine-magnetic resonance imaging (cine-MRI) [29, 30, 152]. 

 In tandem with the advancement of ultrasound imaging technology, integrations of 

machine learning and artificial intelligence algorithms -- particularly deep neural nets -- have 

shown promise in rapidly and robustly characterizing cardiac kinematics and ultrasound data in 

general [167-174]. While machine learning has demonstrated notable successes in ventricle 
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segmentation on 4D cardiac MRI data [175-177], epicardial fat segmentation in Computed 

Tomography (CT) data [178, 179], and even boundary detection in clinical 2DUS 

echocardiography data [10], applications to murine 4DUS data remain limited [169]. This is in 

part due to unique challenges presented by 4DUS data. Most notably, cardiac US images in mice 

show lower image contrast in combination with large amounts of speckle noise (e.g., see Figure 

25). Furthermore, as the probe typically covers half of the entire ventral thorax, these artifacts can 

even renderer manual segmentation difficult. Finally, 4DUS data in general suffers from high 

dimensionality; even 3DUS segmentation is considered a difficult problem given current tools [10]. 

The high dimensionality in combination with the relatively small sample sizes commonly seen in 

medical applications, of which our dataset is no exception, presents even further challenges. 

 Here we develop a machine learning model to contour 4DUS data acquired from healthy 

and diseased (i.e., hypertrophic cardiomyopathy) mice. To our knowledge, this is the first 

publication of machine learning applied to murine cardiac 4DUS data. While our model is 

described in detail below, it contains three fundamental components: 1) a low dimensional 

representation of the raw US data, 2) a basis expansion of time to incorporate the regularity in 

epicardial movement throughout the cardiac cycle, and 3) the requirement that the model need 

only predict output values at preselected anchor points using interpolating cubic splines to form 

the final output structure. 

The following section “Materials and Methods” outlines the procedures followed to acquire the 

data used in training our models, details each model’s composition, and describes how we test 

each model’s predictive accuracy. The “Results and Discussion” section then demonstrates our 

quantitative model performance tests’ results and provides context regarding broader applicability 

and limitations. Finally, we discuss other modelling approaches for future work and potential 

clinical translatability. 

5.3 Materials and Methods 

5.3.1 Ultrasound Data 

Imaging was performed using a Vevo3100 high-frequency ultrasound system (FUJIFILM 

VisualSonics Inc.) with a 40 MHz center frequency transducer (MX550D) and a translating linear 

step motor. In preparation for imaging, mice were anesthetized using approximately 1.5-2.0% 



 
 

82 

isoflurane, secured supine on a heated stage with gold-plated electrodes that collected cardiac and 

respiratory signals, and had hair removed from the ventral surface via a depilatory cream. Each 

4DUS dataset was acquired by translating through short-axis slices from below the apex of the 

heart to above aortic arch, with a sampling frame rate of approximately 300 fps and total scan time 

of 6-10 minutes. 

 A total of 136 4DUS datasets were used to implement the machine learning algorithm, 

taken from previous studies on genetically-induced cardiac hypertrophy. One effort focused on a 

mutation of Nkx2-5183P/+ [77, 78, 165], consisting of 24 mutant and 24 littermate-control 4DUS 

datasets. The second focused on a mutation of CPT2M-/- [79, 80], consisting of 41 mutant and 47 

littermate-control 4DUS datasets. While each of these studies does include repeated imaging on 

some mice at numerous time-points, for the scope of this work each 4DUS scan was treated as 

independent data. All animal experiments were approved by the Purdue University Institutional 

Animal Care and Use Committee (protocol code 121100077326; approved December 11, 2015). 

5.3.2 4DUS Analysis and Contour Structure 

Each 4DUS dataset is loaded into a custom interactive toolbox developed in MATLAB 

(MathWorks Inc.), where data is first reoriented to align to a standard axis and then the endo- and 

epi-cardial boundaries are manually tracked across a representative cardiac cycle (Figure 22A). 

The standard axes follow a cartesian coordinate system, and are defined by: 1) the left-ventricular 

apex and center of the base both fall on the z-axis, 2) the anterior and posterior walls fall along the 

y-axis, and 3) the septal wall falls on the negative x-axis (i.e., standard radiological orientation). 

Following reorientation, the z-axis location of the apex and base are tracked across the cardiac 

cycle (Figure 22B). Then iteratively at each point in time, four equally spaced parallel short-axis 

slices are interpolated from the reoriented 4DUS data, corresponding to 25, 50, 75, and 100% of 

the distance from the apex to base. The initial tracking of base and apex locations allows for 

through-plane motion to be compensated for during subsequent wall-tracking. 

 In order to create a final three-dimensional mesh of the endo- and epi-cardial boundaries 

of the left ventricle, a structured subset of points was defined (Figure 22C) such that: 1) each of 

the four parallel slices contains six points for each of the two boundaries, 2) those points are 

constrained to equally spaced rotations around the central z-axis (i.e., 30, 90, 150, 210, 270, and 

330 degrees relative to the positive x-axis), and 3) the distance between each point and the central 
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z-axis is a function of relative time across the cardiac cycle. Once all points are individually 

repositioned across the cardiac cycle to define the regional kinematics, hobby splines were used to 

interpolate a three-dimensional mesh of the left-ventricle at a standardized array of cycle-positions. 

Specifically for this work, the final 4D mesh of the left-ventricle included 60 locations around the 

z-axis, 60 locations from the apex-to-base along the z-axis, and 60 time-points across the cardiac 

cycle. 

 

 

Figure 22. Schematic for post-acquisition analysis on left-ventricular 4DUS data, including: (A) 
spatial reorientation to align with a central z-axis (i.e., inferior (-z) to superior (+z)), (B) tracking 
of apex and base locations, and (C) definition of boundary points on the endo- and epi-cardial 
boundaries (Eq. 14), excluding papillary muscles, to be tracked across the cardiac cycle. 

5.3.3 Machine Learning Algorithms 

5.3.3.1 Prediction Objective 

In this context, a machine learning model takes a given 4DUS image as input and returns two 

predicted 3D surfaces (one for the endocardial boundary, one for the epicardial boundary) for each 

timepoint. The nature of the task immediately presents several difficulties: the data is high 

dimensional (160,000 pixels per image with about 5,000 total images), US data naturally contains 
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speckle noise, and the model output consists of two smooth 3D surfaces across time with no 

specified parametric form. The data processing approach described in section 2.2 significantly 

reduces the problem complexity while still allowing for flexible contours to be estimated. 

Predicting radial distances of each anchor point becomes a regression problem, with the complete 

contours being inferred using smoothing splines after the anchor points have been estimated. 

5.3.3.2 Modeling Approach 

In order to manage the high dimensionality of the image data, principal component analysis (PCA) 

was used to project the US images onto a lower dimensional subspace. Since the selected anchor 

points have fairly regular movement patterns, we further incorporated smoothing splines to capture 

the average path for each anchor point across time. The full model incorporates both the rotated, 

compressed image data along with a smoothing spline basis: 

𝑦�],�,Y(𝑡) = 𝑾�,Y𝛽],�,Y + 𝛷(𝑡)𝛾],�,Y [14] 

where 𝑦�],�,Y indicates the predicted response vector of radii for the anchor point indexed by the 

given angle, boundary, and horizontal slice respectively. 𝑾� is represents the pixel image data for 

image slice z, which has been compressed using the first k principal components. 𝛷(𝑡) represents 

the time-dependent smoothing spline basis, and 𝛽],�,Y and 𝛾],�,Y represent the parameter vectors to 

be fit for each (𝜃, 𝑏, 𝑧) combination. The model was fit using least squares. 

5.3.3.3 Model Variants 

 We also explored two other model variations for comparison. With model 1 (Eq. 14) given 

above, the second model (Eq. 15) uses principal components from all z slices combined for each 

anchor point, instead of only using the horizontal slice of the target anchor point: 

𝑦�],�,Y(𝑡) = 𝑾�𝛽],�,Y + 𝛷(𝑡)𝛾],�,Y [15] 

This approach was utilized to see if information from the other three slices aids in model prediction. 

Our third model (Eq. 16) simulates a scenario where the machine learning model is human-assisted: 

𝑦�],�,Y(𝑡) = 𝑾�𝛽],�,Y + 𝛷(𝑡)𝛾],�,Y + 𝛿𝜇]�,��,Y� [16] 
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where 𝜇]�,��,Y�  is the true radius for the given anchor point, and 𝛿 is a single additional scalar 

parameter to be fit. In this case, the model assumes that a user has provided the annotation of a 

single anchor point, of the 48 total, at the beginning image of each full US dataset. Thus, the model 

has access to the true target response value for one of the roughly 1500 anchor points to be 

predicted for a given spatiotemporal location. This approach was taken to see whether a single 

annotation could significantly help in the prediction of the rest of the anchor points in the video 

sequence. If effective, this strategy could enhance model accuracy with only minor additional 

effort from a user. 

5.3.4 Measuring Model Performance 

To test the effectiveness of the developed models, 100 iterations of Monte Carlo cross-validations 

were used on the dataset with a training/validation/test split ratio of 6:1:1. The validation sets were 

used to select the number of principal components for each permutation of the data, while mean 

squared error (MSE) and R2 values were evaluated on the held-out test set. To provide an additional 

measure of difference between the models, we performed pairwise t-tests across the three models 

for the MSE within each permutation of the test set for each setting of (𝜃, 𝑏, 𝑧). Due to the large 

test-set sample size (i.e., over approximately 500), assumption of normality of the sample mean 

difference was considered appropriate. The percentage of t-tests with p < 0.05 was computed, 

aggregated across the angles, short-axis slices, and Monte Carlo sample. We note that this does 

not necessarily provide any statistical guarantees regarding Type I/II error rates, but is intended 

instead to serve as an additional metric for model comparison. 

5.3.5 Description of Metrics Derived from LV Mesh 

Once a final 4D mesh of the left-ventricle is created, a series of metrics that characterize its regional 

kinematics are systematically extracted based on the Lagrangian-definition of linear or engineering 

strain [14, 15, 18, 180] in both the circumferential (Eq. 17) or longitudinal frame (Eq. 18): 

𝜀w(𝑡, 𝑧) =
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟o − 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟o��

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟o��
[17] 

𝜀f(𝑡, 𝜃) =
𝑙𝑒𝑛𝑔𝑡ℎo − 𝑙𝑒𝑛𝑔𝑡ℎo��

𝑙𝑒𝑛𝑔𝑡ℎo��
[18] 
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where each metric is a function of time t (i.e., a given position within the cardiac cycle), and 

circumferential and longitudinal strain curves are a function of both position z (i.e., location along 

the z-axis) and angle 𝜃  (i.e., rotation from the positive x-axis), respectively. Furthermore, 

additional metrics can be derived from each curve including the early/late systolic strain rates and 

early/late diastolic strain rates, providing insight into how the heart is moving between end-

diastolic and peak-systolic states. 

 To assess the robustness and practical use of the machine learning-based predictions of 

wall kinematics, these metrics were computed at select locations in the circumferential (e.g. basal, 

mid-LV, and apical) and longitudinal (e.g. anterior, posterior, anterior free-wall and septum, and 

posterior free-wall and septum) frames. Derived metrics from both the ground-truth and machine 

learning-predicted boundaries were compared using paired t-tests with Bonferroni-Dunn’s 

multiple comparisons corrections. We note that the distribution of several metrics showed some 

minor deviations from normality (e.g. slight skewness). Adjusted Shapiro-Wilk tests suggested 

non-normality for roughly 10% of the cross-validation samples. However, the central limit 

theorem ensures that even when deviations exist from normality among the individual observations, 

the sampling distribution of the test statistic converges to a normal distribution with larger sample 

sizes. The recommended sample size threshold for assuming normality via the central limit 

theorem is 30 [181]. As the sample sizes used for our t-tests were roughly 600, it is safe to assume 

normality of the computed test statistics.  

5.4 Results and Discussion 

5.4.1 Model Fitting Results 

A visual summary of the test set prediction results for models 1, 2, and 3 are demonstrated in 

Figure 23A, B, and C, respectively. Qualitatively, we can see improvements in R2 and mean 

squared error (MSE) for each successive model. Of note, we observe higher MSE for all three 

models around the posterior-septum in the basal slice. We believe this may be because the basal 

septum commonly lies posterior to the sternum and is thus affected by shadowing artifacts. Not 

only does that make the basal septum harder to annotate, which lowers precision in the ground-

truth data, but also the lack of border contrast means it may be incorrectly accounted for in the 

PCA-based image compression. 
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 Table 3 provides a numerical summary of the three models’ performance. We notice that 

with regard to every metric in Table 3, model 2 outperforms model 1, and model 3 outperforms 

model 2. Taken together, these results suggest that simultaneously incorporating all four slices in 

the prediction model (model 2) yields modest but noticeable improvement over using individual 

slices (model 1). Furthermore, annotation of a single point at t=0 (model 3) can significantly 

improve model predictive accuracy above the previous versions not incorporating user annotations. 

 

Table 3. Numerical comparison of model performance for both endocardial and epicardial 
boundaries. With each model, mean test-set MSE with associated standard deviations and R2 
values are displayed. Additionally, the percentage of significant t-tests when the given row’s 
model’s test set MSE is smaller than that of the model indicated in the column is also provided. 

 Endocardial Epicardial 

 MSE (mm2) R2 
vs. 
M1 
(%) 

vs. 
M2 
(%) 

MSE (mm2) R2 
vs. 
M1 
(%) 

vs. 
M2 
(%) 

Model 1 0.069 ± 0.054 0.41 --- --- 0.068 ± 0.044 0.51 --- --- 
Model 2 0.060 ± 0.049 0.49 48.7 --- 0.058 ± 0.039 0.59 54.4 --- 
Model 3 0.030 ± 0.021 0.71 88.0 83.5 0.037 ± 0.020 0.71 81.9 71.3 

 

 

 While Figure 23 and Table 3 summarize aggregated model performance across all 100 test-

set permutations, it also is instructive to see a particular example of the models’ predictions vs. the 

ground truth. Figure 24A shows the predicted vs. actual radii for the 30° endocardial anchor point 

at the base of the heart plotted for a single test set using model 2. Qualitatively, model 2’s 

predictions overall appear relatively close to the ground truth. Errors in predictions seem to be 

mainly due to offsets in the size of the heart, rather than the wall kinematics (i.e., curve shape is 

correct but placed off from border). Figure 24B and E shows the accuracy gained using model 3 

by incorporating user-assistance on an endocardial point. The heart size is more accurately inferred 

in this case, yielding better predictions overall. These results illustrate that qualitatively, both the 

unassisted and assisted models show reasonable performance for both the endocardial and 

epicardial boundaries on unseen data, with slightly higher accuracy for the endocardial boundary 

(Figure 24A and B vs. D and E). Additionally, although the unassisted model’s predictions are 

relatively close to the ground truth (Figure 24A and D), the assisted model yields noticeably 

improved performance, especially for the endocardial boundary (Figure 24B). 
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Figure 23. Heatmap representations of median mean-squared-error (left) and associated R values 
(right) following 100 Monte Carlo simulations of the 6:1:1 testing paradigm, stratified by theta, b, 
and z. Predictions are based on models (A) 1 (i.e., individual z slices), (B) 2 (i.e., combined z 
slices), and (C) 3 (i.e., assisted). Specifically here, model 3 was assisted by incorporating t=0 radius 
values taken from the endocardial anterior mid-ventricle position (i.e., z=0.5, theta=90 deg). 
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Figure 24. Example predictions on a series of anterior free-wall test set data, based on the 
implemented 6:1:1 Monte Carlo cross-validation. Raw predictions for 17 separate mice are shown 
overlaid onto the ground-truth data for unassisted (model 2) predictions at both the (A) endocardial 
and (D) epicardial borders, as well as for the (B/E) assisted (model 3) predictions. Squared error 
plots at each temporal sample for the (C) endocardial and (F) epicardial positions demonstrate the 
potential lower errors resulting from the assisted approach. 

5.4.2 Performance of Predication-Based Metrics 

Aiming to assess the practicality of using the three proposed models to characterize cardiac 

function, we computed all metrics described in section 2.4 and compared results based on predicted 

and ground-truth boundaries. The results of paired t-tests on all 80 metrics, with Bonferroni-

Dunn’s multiple comparisons corrections, are shown in Supplemental Table 3, stratified by model. 

Following trends observed in section 3.1, the number of metrics that were flagged as significantly 

different (i.e., adjusted p < 0.001) from the ground-truth values were relatively low amongst 
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models 1 (8/80), 2 (7/80), and 3 (8/80). Interestingly, seven metrics showed significant differences 

regardless of model, suggesting further refinement of the modelling approach would be needed to 

trust those values if based on machine learning predictions alone. As shown in Supplemental Table 

3, these metrics were all variants of early diastolic strain rate: 1) circumferential early diastolic 

strain rates at the mid-ventricle and apex; and 2) longitudinal strain at each of the six rotations 

around the z-axis, except at the posterior-septum. While it is not clear why early diastolic strain 

rate has trouble being properly inferred using our methods, it may be due to the incorporation of 

severely diseased mice with abnormal diastolic kinematic profiles adversely skewing the imposed 

temporal-smoothing. 

 It should be noted that no global function metrics (i.e., end-diastolic or peak-systolic 

volumes, ejection fraction, or stroke volume) or peak-strain values showed any statistically 

significant differences between the gold-standard and prediction-based analyses. These results 

appear promising as the errors are only observed with strain-rate values, specifically early diastolic 

strain rate, suggesting that the machine learning model predictions of left-ventricle boundaries can 

be used reliably to assess both global cardiac function and peak circumferential and longitudinal 

strain. Nevertheless, it is important to note that accurate measurements of early diastolic strain rate 

are critical to the assessment of diastolic dysfunction [182]. Future work increasing model 

complexity or implementing novel strategies is thus critical to providing more reliable assessments 

of cardiac kinematics and function for researchers and clinicians. 

5.4.3 Limitations 

While we are able to measure model performance, more thorough assessment of inter-observer 

variability in creation of ground-truth could be used to give further confidence in the physiological 

accuracy of detected boundaries. For example, if model predictions were well within the range of 

different users’ annotations, then this would give further support to the model’s capability. 

Furthermore, as seen in Figure 23 and visualized in Figure 25, the septal and posterior walls at the 

base of the left ventricle are susceptible to prediction errors due to the presence of sternum shadow 

artifacts and the mitral valve and myocardium interface, respectively. The shadow artifacts can be 

mitigated by angling the ultrasound probe during acquisition; however, this must be traded-off 

with undesirable air-based artifacts from the left lung. Additionally, while the mitral valve 
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blending into the myocardium can reduce local contrast, carefully selecting a base location just 

inferior to the interface can help maintain a proper view of the endo- and epi-cardial borders. 

 

 

Figure 25. Example short-axis ultrasound image at the base of the heart demonstrating the location 
of sternum shadow artifacts (yellow) and mitral valve attachments to the left ventricular 
myocardium (red). Points most commonly affected are color-coded and displayed on a 
corresponding long-axis schematic. 

 

 Another natural limitation in working with medical image data is the tendency to have 

small sample sizes relative to the dimensionality of the data. While we did have a moderate number 

of videos to work with – 136 in total with 30-40 temporal samples – this is relatively few compared 

to several standard machine learning datasets (e.g. the ImageNet database containing 14 million 

plus images), but future work will be needed increase the number of training datasets used to build 

these models. Larger sample sizes not only improve the performance of a given model, but allow 

for more flexible (i.e., higher dimensional) models to be trained with less risk of overfitting. 

5.4.4 Future Applications 

As more data is gathered, several avenues exist for extensions or alternatives of the methods 

proposed in this paper. Notably, with a larger number of images, the use of deep learning for image 
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segmentation, especially convolutional neural networks, would likely become a promising option 

to explore. Even with moderate sample sizes, the use of deep generative models such as generative 

adversarial networks (GANs) [183] may provide a mechanism to augment the true dataset with 

near-realistic images that would enhance model training. GANs have already shown promise in 

several areas of medical imaging [184-187], and thus would be a natural choice for generation of 

realistic-looking murine US images. Other data augmentation strategies that have been proposed 

for medical image generation specifically, such as ASNG [188], could be explored as well. 

Transfer learning [189] may be a viable option that could be applied even without additional real 

or generated data, incorporating a pre-trained network from another application domain. Finally, 

if a network were developed that could segment murine cardiac images with very high accuracy, 

it is likely that such a model would be useful in clinical applications, even if downstream transfer 

learning is only used to fine-tune models on human cardiac images.  

 Another aspect of this work that could have a more direct impact on clinical translation is 

the use of a structured grid to sample cardiac kinematics (i.e., four-slices across and six rotations 

around the LV). While recent studies into 3D speckle-tracking echocardiography have shown 

promise in characterizing clinical data [153], contours of the left-ventricular boundaries are often 

unstructured and tracking speckle-patterns is susceptible to error propagation if there is subpar 

image quality or notable image artifacts. Using an approach similar to the one presented here could 

allow for the problem of boundary predictions to be simplified and lead to more robust results 

when speckle-tracking is insufficient, which is a common obstacle associated with murine 4DUS 

data analysis. 

5.5 Conclusions 

We demonstrate here the first application of machine learning to the prediction of left-ventricular 

wall boundaries in murine 4DUS image data. Our results demonstrate notably better agreement 

between ground-truth and predicted locations when using a model based on a combination of 

parallel short-axis images compared to treating all images separately. This agreement of predicted 

locations can then be marginally improved further when incorporating a single boundary point 

starting location into the model. Furthermore, our results suggest that reliable assessments of 

global cardiac function and strain, except early diastolic strain-rates, can be derived from the 

machine learning predictions alone. While future work will aim to strengthen the model efficiency 
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and account for additional murine cardiac disease models, this study reveals that incorporation of 

machine learning can help vastly increase the reliability and speed of murine cardiac 4DUS data 

analysis.  
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 CONTRIBUTIONS TO SCIENTIFIC KNOWLEDGE 

6.1 Overview and Impact of Research Findings 

We have demonstrated in this dissertation the development of high-frequency four-dimensional 

ultrasound (4DUS) and its application to two separate models of hypertrophic cardiomyopathy. 

Conventional use of high-frequency ultrasound to evaluate murine cardiac function has relied on 

either M-Mode or B-Mode imaging, which both require assumptions of ventricular geometry to 

estimate chamber volumes and extract global function metrics. Not only have we shown that these 

assumptions lead to a larger variability in measurements compared to volumetric imaging 

approaches, but they are also subject to errors based on proper positioning of the ultrasound probe 

to either the true short-axis or long-axis of the heart. The results of our validation study show that 

not only can 4DUS provide global cardiac function measurements on par with cine-MRI, but its 

inherent volumetric structure allows for it to be digitally reoriented to a standardized reference 

frame and thus can mitigate misalignment errors in the subsequent results. 

 As an extension of our 4DUS validation work, we also present here a standardized protocol 

from which a comprehensive set of regional kinematics can be measured. This can be of significant 

benefit to the cardiac research community, as a simultaneous measurement of global function, 

myocardial morphometry, and both regional circumferential and longitudinal strain can help 

streamline the cardiac assessment process. Additionally, the 4D mesh of endocardial and epicardial 

left-ventricular boundaries that are created from our analysis can serve as a foundation for more 

advanced explorations of myocardial tissue biomechanics. Our study of Cpt2M-/- mice provided 

insight that the circumferential strain at the base of the heart and longitudinal strain along the poster 

wall may be the most sensitive metrics to disease progression. Using a mathematical combination 

of these two metrics, which we named the Hybrid Strain Index (HSI), we were able to create a 

marker of pathological hypertrophy that was more sensitive to disease progression than ejection 

fraction. Our study of Nkx2-5183P/+ mice similarly showed that the circumferential strain at the base 

of the heart is impacted early in the disease process (i.e., 8 weeks old), reinforcing our findings in 

the Cpt2M-/- work. This study also proposed the derivation of spatiotemporal strain maps, which 

provide a more comprehensive visualization of cardiac kinematics in both the circumferential and 

longitudinal reference frames. We demonstrate how these spatiotemporal maps can be used to 
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perform pixelwise analysis across cross-sectional and longitudinal data, and suggest how future 

research using these maps and associated analysis methods may further support their use as a novel 

way to characterize cardiac function. 

 Finally, as data science further integrates into biomedical engineering as a means to make 

sense of big data, we explored the application of machine learning to help accelerate the analysis 

of 4DUS data. Using the vast array of 4DUS data collected for the Cpt2M-/- and Nkx2-5183P/+ studies, 

comprised of both healthy and diseased hearts, we developed and tested three different machine 

learning models to predict endocardial and epicardial boundaries based on images derived from 

4DUS data. Our findings show that the best prediction performance is achieved using a 

combination of multiple parallel short-axis slices and a single ground-truth position, suggesting 

that leveraging the volumetric nature of 4DUS data produces more reliable results. Additionally, 

we have integrated the machine learning algorithms into the developed 4DUS analysis toolbox, 

which can predict boundaries in a new 4DUS dataset within seconds. Taken all together, the 

presented dissertation lays the foundation for a semi-automatic and comprehensive cardiac 

assessment toolbox that can help researchers both better understand cardiac disease mechanics and 

evaluate treatment efficacy using high frequency 4DUS technology.  

6.2 Directions for Future Research 

Future work in this area would look to further develop our 4DUS analysis methods through three 

specific avenues. First, and likely the most necessary next step, would be the incorporation of wall 

rotation into the characterization of left-ventricular kinematics. The twisting of the left ventricle 

through the cardiac cycle is a known phenomenon due to the varying transmural myocardial fiber 

directions, and literature suggests that that twisting motion can be impacted by disease processes 

[130, 190, 191]. Incorporating an additional step into the 4DUS analysis procedure to track the 

relative rotation of the endocardial and epicardial borders at each parallel short-axis slice might 

help to estimate torsion and more completely characterize left-ventricular kinematics. Second, 

applications of these methods to a more diverse array of cardiac disease models would help to both 

further demonstrate the utility of our analysis and identify disease-specific patterns of wall 

kinematics. Third, leveraging a growing pool of 4DUS data, further exploration of machine 

learning algorithms and artificial intelligence could help to turn the developed 4DUS toolbox into 

a reliable push-button software. Not only would this be of significant use to the researchers 
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investigating small animal models of cardiac disease, but it could also help innovate on machine 

learning methods for analyzing clinical cardiac imaging data. 

 Complementary to the envisioned advancements for high-frequency 4DUS technology, we 

also envision this work to also translate for clinical applications. As the developed standardized 

procedure for characterizing regional left-ventricular kinematics only necessitates 4D imaging data 

as an input, we would look to obtain and analyze various human 4D cardiac disease data. Following 

additional validation studies, not only could our methods provide both novel function metrics and 

visualizations of cardiac kinematics, but it could also serve as a foundation for understanding the 

connection between the cardiac biomechanics we observe in small animal models and their clinical 

counterparts. This future work could then strengthen the ability for preclinical studies to make an 

impact on important clinical decisions and more directly improve patient care.  
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APPENDIX A. SUPPLEMENTAL DATA TO CHAPTER 3 

 
 
 
 
Supplemental Table 1. Measurements of strain rate trends through aging. For each cohort, medians 
[interquartile ranges] are provided for control and Cpt2M-/- mice, along with p-values from Mann-
Whitney tests, ratio of interquartile ranges (IQR) in Cpt2M-/- and control trends, area under curve 
(AUC) values, and the 95% confidence interval (CI) intersection locations. Metrics where 95% 
confidence intervals overlapped for the entire age range of the study were noted with “---”, and 
metrics where 95% confidence intervals did not overlap are noted with “DNO”. 
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Supplemental Figure 1. Measurements of systolic (sys.; left column), early diastolic (early dia.; 
middle column), and late diastolic (late dia.; right column) circumferential strain rates, derived 
from the base, mid-ventricle (Mid-LV), and apical regions of the left ventricle. Data from control 
mice shown in blue and Cpt2M-/- mice shown in red. Points from the same mouse are shown 
connected, and linear regression performed on across each cohort are visualized with thick dashed 
lines. Comparison plots of strain rate trends from each mouse and region are shown (bottom), with 
horizontal lines designating median and interquartile ranges. Significance markers above each 
comparison plot indicate p-value level from non-parametric Mann-Whitney tests (***p < 0.001; 
**p < 0.01). 
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Supplemental Figure 2. Measurements of systolic (sys.; left column), early diastolic (early dia.; 
middle column), and late diastolic (late dia.; right column) longitudinal strain rates, derived from 
the posterior septum (Post. Sep.), posterior (Post.), posterior free-wall (Post. FW), anterior free-
wall (Ant. FW), anterior (Ant.), and anterior septum (Ant. Sep.) regions of the heart. Data from 
control mice shown in blue and Cpt2M-/- mice shown in red. Points from the same mouse are shown 
connected, and linear regression performed on across each cohort are visualized with thick dashed 
lines. Comparison plots of strain rate trends from each mouse and region are shown (bottom), with 
horizontal lines designating median and interquartile ranges. Significance markers above each 
comparison plot indicate p-value level from non-parametric Mann-Whitney tests (***p < 0.001; 
**p < 0.01; *p < 0.05).  
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APPENDIX B. SUPPLEMENTAL DATA TO CHAPTER 4 

Supplemental Table 2. Global and regional cardiac function metrics derived from wild-type and 
Nkx2-5183P/+ 4DUS data, compared at 8, 12, and 16 weeks old. Summary values for each cohort 
and imaging time-point are shown as mean (standard deviation). Comparisons were performed 
using a two-way repeated measures ANOVA with post-hoc Bonferroni’s multiple comparisons 
test; p < 0.05 was considered statistically significant and corresponding values were highlighted 
in red. For each region from which either circumferential or longitudinal strain information was 
analyzed, peak strain, systolic strain rate, early-diastolic strain rate, and late-diastolic strain rate 
was reported. 

 
  

Week 8 Week 12 Week 16

Location and Metric Wild-Type Nkx2-5183P/+ p-value Wild-Type Nkx2-5183P/+ p-value Wild-Type Nkx2-5183P/+ p-value

Global

End-Diastolic Volume (uL) 36.33 (1.57) 40.63 (2.22) 0.4434 39.32 (1.25) 45.03 (2.88) 0.3397 37.06 (0.78) 38.31 (2.47) >0.9999

Peak-Systolic Volume (uL) 13.95 (0.82) 18.01 (1.08) 0.0433 14.85 (0.62) 21.09 (1.80) 0.0482 13.81 (0.64) 17.54 (1.28) 0.0997

Stroke Volume (uL) 22.38 (0.82) 22.62 (1.23) >0.9999 24.47 (0.79) 23.94 (1.29) >0.9999 23.26 (0.59) 20.77 (1.51) 0.5126

Ejection Fraction (%) 61.72 (0.86) 55.70 (0.84) 0.0015 62.26 (0.83) 53.44 (1.44) 0.0022 62.79 (1.33) 54.15 (1.81) 0.0115

Left-Ventricular Mass (mg) 85.29 (2.10) 102.35 (2.66) 0.0018 99.80 (1.72) 114.14 (2.90) 0.0081 105.33 (2.76) 122.25 (1.61) 0.0022

Average Wall Thickness (mm) 0.86 (0.01) 0.95 (0.02) 0.0151 0.93 (0.01) 0.99 (0.01) 0.0094 0.97 (0.01) 1.07 (0.02) 0.0039

Circumferential 
Strain

Base

Peak Strain (%) -28.10 (0.29) -23.16 (0.72) 0.0015 -28.50 (0.50) -22.47 (0.95) 0.0018 -28.28 (0.51) -22.78 (1.00) 0.0045

Systolic Rate (%/norm) -1.56 (0.05) -1.54 (0.07) >0.9999 -1.66 (0.06) -1.39 (0.07) 0.0590 -1.75 (0.05) -1.69 (0.04) >0.9999

Early Dia. Rate (%/norm) 0.94 (0.17) 1.06 (0.13) >0.9999 1.14 (0.12) 1.16 (0.20) >0.9999 1.23 (0.20) 1.06 (0.09) >0.9999

Late Dia. Rate (%/norm) 1.41 (0.08) 1.30 (0.04) 0.6901 1.45 (0.06) 1.36 (0.06) >0.9999 1.34 (0.08) 1.11 (0.09) 0.2191

Mid-LV

Peak Strain (%) -28.05 (0.55) -25.31 (0.45) 0.0105 -28.53 (0.67) -24.89 (0.56) 0.0060 -29.03 (0.55) -25.22 (0.80) 0.0104

Systolic Rate (%/norm) -1.54 (0.05) -1.41 (0.04) 0.2765 -1.64 (0.09) -1.36 (0.08) 0.1241 -1.76 (0.08) -1.77 (0.02) >0.9999

Early Dia. Rate (%/norm) 1.80 (0.11) 1.80 (0.06) >0.9999 2.33 (0.12) 1.85 (0.14) 0.0972 1.87 (0.08) 1.45 (0.12) 0.0526

Late Dia. Rate (%/norm) 1.36 (0.08) 1.47 (0.02) 0.8459 1.37 (0.06) 1.41 (0.05) >0.9999 1.46 (0.07) 1.18 (0.06) 0.0364

Apical

Peak Strain (%) -29.21 (0.83) -26.99 (0.42) 0.1387 -30.25 (0.96) -24.79 (0.79) 0.0043 -30.29 (0.95) -25.02 (0.93) 0.0083

Systolic Rate (%/norm) -1.36 (0.11) -1.32 (0.07) >0.9999 -1.37 (0.05) -1.21 (0.08) 0.3468 -1.59 (0.12) -1.67 (0.08) >0.9999

Early Dia. Rate (%/norm) 2.23 (0.05) 2.16 (0.13) >0.9999 2.73 (0.25) 2.02 (0.10) 0.1150 2.24 (0.14) 1.49 (0.20) 0.0386

Late Dia. Rate (%/norm) 1.05 (0.15) 1.49 (0.05) 0.0968 1.04 (0.18) 1.25 (0.14) >0.9999 1.50 (0.18) 1.19 (0.11) 0.5236

Longitudinal 
Strain

Anterior 
Free-Wall

Peak Strain (%) -19.87 (0.87) -18.82 (0.60) >0.9999 -18.21 (0.75) -17.68 (0.55) >0.9999 -17.42 (0.52) -15.59 (1.09) 0.5164

Systolic Rate (%/norm) -0.98 (0.05) -0.91 (0.02) 0.5807 -0.94 (0.06) -0.86 (0.06) >0.9999 -1.00 (0.08) -0.93 (0.04) >0.9999

Early Dia. Rate (%/norm) 1.41 (0.14) 1.32 (0.14) >0.9999 1.35 (0.15) 1.23 (0.15) >0.9999 0.98 (0.15) 1.00 (0.14) >0.9999

Late Dia. Rate (%/norm) 1.14 (0.14) 1.13 (0.09) >0.9999 0.95 (0.09) 0.98 (0.04) >0.9999 0.91 (0.06) 0.77 (0.10) 0.8754

Anterior

Peak Strain (%) -18.02 (0.76) -17.41 (0.51) >0.9999 -16.52 (0.63) -15.70 (0.66) >0.9999 -16.73 (0.61) -14.56 (0.86) 0.2092

Systolic Rate (%/norm) -0.89 (0.05) -0.86 (0.03) >0.9999 -0.84 (0.06) -0.82 (0.04) >0.9999 -0.95 (0.09) -0.90 (0.06) >0.9999

Early Dia. Rate (%/norm) 1.27 (0.16) 1.24 (0.12) >0.9999 1.32 (0.14) 1.10 (0.15) 0.8797 1.00 (0.13) 0.95 (0.13) >0.9999

Late Dia. Rate (%/norm) 1.01 (0.13) 1.00 (0.05) >0.9999 0.84 (0.10) 0.84 (0.03) >0.9999 0.87 (0.05) 0.69 (0.08) 0.2789

Anterior 
Septum

Peak Strain (%) -17.91 (0.75) -16.98 (0.41) 0.9386 -16.61 (0.61) -15.81 (0.43) 0.9254 -16.68 (0.64) -14.36 (0.91) 0.2008

Systolic Rate (%/norm) -0.91 (0.06) -0.92 (0.02) >0.9999 -0.88 (0.05) -0.87 (0.04) >0.9999 -0.97 (0.08) -0.93 (0.04) >0.9999

Early Dia. Rate (%/norm) 1.44 (0.12) 1.21 (0.11) 0.5872 1.43 (0.15) 1.10 (0.09) 0.2647 1.05 (0.14) 0.95 (0.12) >0.9999

Late Dia. Rate (%/norm) 1.00 (0.15) 0.91 (0.07) >0.9999 0.75 (0.08) 0.77 (0.03) >0.9999 0.83 (0.05) 0.67 (0.09) 0.5420

Posterior 
Septum

Peak Strain (%) -18.75 (0.73) -17.65 (0.63) 0.8469 -17.38 (0.71) -16.34 (0.53) 0.8142 -17.29 (0.47) -15.00 (1.03) 0.2492

Systolic Rate (%/norm) -0.98 (0.04) -0.96 (0.01) >0.9999 -0.96 (0.06) -0.95 (0.05) >0.9999 -1.03 (0.08) -1.01 (0.04) >0.9999

Early Dia. Rate (%/norm) 1.49 (0.13) 1.32 (0.11) >0.9999 1.56 (0.11) 1.15 (0.13) 0.1198 1.09 (0.16) 0.93 (0.11) >0.9999

Late Dia. Rate (%/norm) 1.01 (0.14) 1.03 (0.06) >0.9999 0.77 (0.10) 0.89 (0.04) 0.8200 0.91 (0.04) 0.70 (0.09) 0.2530

Posterior

Peak Strain (%) -20.70 (0.95) -19.13 (0.70) 0.6566 -18.76 (0.77) -18.06 (0.73) >0.9999 -18.68 (0.83) -15.98 (1.22) 0.3029

Systolic Rate (%/norm) -1.05 (0.04) -1.01 (0.02) >0.9999 -1.00 (0.06) -0.97 (0.06) >0.9999 -1.07 (0.07) -1.00 (0.05) >0.9999

Early Dia. Rate (%/norm) 1.44 (0.14) 1.34 (0.15) >0.9999 1.44 (0.13) 1.23 (0.16) 0.9859 1.02 (0.16) 0.99 (0.14) >0.9999

Late Dia. Rate (%/norm) 1.19 (0.17) 1.14 (0.07) >0.9999 1.01 (0.09) 1.01 (0.03) >0.9999 0.98 (0.02) 0.75 (0.11) 0.2633

Posterior 
Free-Wall

Peak Strain (%) -20.90 (0.76) -20.10 (0.42) >0.9999 -19.34 (0.86) -18.86 (0.60) >0.9999 -18.35 (0.65) -16.50 (1.14) 0.5852

Systolic Rate (%/norm) -1.03 (0.04) -1.00 (0.02) >0.9999 -0.98 (0.07) -0.94 (0.05) >0.9999 -1.07 (0.07) -1.01 (0.04) >0.9999

Early Dia. Rate (%/norm) 1.39 (0.12) 1.44 (0.13) >0.9999 1.42 (0.15) 1.31 (0.13) >0.9999 0.99 (0.16) 1.12 (0.15) >0.9999

Late Dia. Rate (%/norm) 1.21 (0.15) 1.18 (0.07) >0.9999 1.01 (0.10) 1.06 (0.05) >0.9999 1.00 (0.07) 0.76 (0.10) 0.2903
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Supplemental Figure 3. Spatiotemporal circumferential strain maps derived from each 4DUS 
dataset, grouped by cohort (i.e., wild-type (left column) and Nkx2-5183P/+ (right column)). Within 
each column, each row contains strain maps from the same mouse at 8, 12, and 16 weeks old, 
respectively. 
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Supplemental Figure 4. Spatiotemporal longitudinal strain maps derived from each 4DUS dataset, 
grouped by cohort (i.e., wild-type (left column) and Nkx2-5183P/+ (right column)). Within each 
column, each row contains strain maps from the same mouse at 8, 12, and 16 weeks old, 
respectively. 
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APPENDIX C. SUPPLEMENTAL DATA TO CHAPTER 5 

Supplemental Table 3. Results of serial paired t-tests with Bonferroni-Dunn’s multiple 
comparisons corrections on metrics derived using each of the three proposed machine learning 
models, compared to ground-truth values. 
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