
EFFICIENT SPECTRAL-CHAOS METHODS FOR
UNCERTAINTY QUANTIFICATION IN LONG-TIME

RESPONSE OF STOCHASTIC DYNAMICAL SYSTEMS
by

Hugo Raul Esquivel Otero

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Lyles School of Civil Engineering

West Lafayette, Indiana

May 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Arun Prakash, Co-Chair

Lyles School of Civil Engineering

Dr. Guang Lin, Co-Chair

Department of Mathematics & School of Mechanical Engineering

Dr. Alina Alexeenko

School of Aeronautics and Astronautics & Davidson School of Chemical Engineering

Dr. Ayhan Irfanoglu

Lyles School of Civil Engineering

Dr. Shirley Dyke

School of Mechanical Engineering & Lyles School of Civil Engineering

Approved by:

Dr. Dulcy Abraham

2



To Lord Jesus Christ and my family.

3



ACKNOWLEDGMENTS

First of all, the completion of this work would have not been possible without the

unconditional support of my family—especially that from my mother Hilda and sister Ana.

I am truly grateful to Dr. Arun Prakash and Dr. Guang Lin—my supervisors—for having

shared their expertise and feedback with me during my journey as a doctoral researcher at

Purdue. Their support and guidance are greatly appreciated throughout all these years of

hard work. I also want to extend my sincere thanks to my doctoral dissertation committee for

their advice and suggestions on how to further improve the final draft of my dissertation. I am
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ABSTRACT

Uncertainty quantification techniques based on the spectral approach have been studied

extensively in the literature to characterize and quantify, at low computational cost, the

impact that uncertainties may have on large-scale engineering problems. One such technique

is the generalized polynomial chaos (gPC) which utilizes a time-independent orthogonal basis

to expand a stochastic process in the space of random functions. The method uses a specific

Askey-chaos system that is concordant with the measure defined in the probability space in

order to ensure exponential convergence to the solution. For nearly two decades, this technique

has been used widely by several researchers in the area of uncertainty quantification to solve

stochastic problems using the spectral approach. However, a major drawback of the gPC

method is that it cannot be used in the resolution of problems that feature strong nonlinear

dependencies over the probability space as time progresses. Such downside arises due to the

time-independent nature of the random basis, which has the undesirable property to lose

unavoidably its optimality as soon as the probability distribution of the system’s state starts

to evolve dynamically in time.

Another technique is the time-dependent generalized polynomial chaos (TD-gPC) which

utilizes a time-dependent orthogonal basis to better represent the stochastic part of the solution

space (aka random function space or RFS) in time. The development of this technique was

motivated by the fact that the probability distribution of the solution changes with time, which

in turn requires that the random basis is frequently updated during the simulation to ensure

that the mean-square error is kept orthogonal to the discretized RFS. Though this technique

works well for problems that feature strong nonlinear dependencies over the probability space,

the TD-gPC method possesses a serious issue: it suffers from the curse of dimensionality

at the RFS level. This is because in all gPC-based methods the RFS is constructed using

a tensor product of vector spaces with each of these representing a single RFS over one of

the dimensions of the probability space. As a result, the higher the dimensionality of the

probability space, the more vector spaces needed in the construction of a suitable RFS. To

reduce the dimensionality of the RFS (and thus, its associated computational cost), gPC-based

methods require the use of versatile sparse tensor products within their numerical schemes to
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alleviate to some extent the curse of dimensionality at the RFS level. Therefore, this curse of

dimensionality in the TD-gPC method alludes to the need of developing a more compelling

spectral method that can quantify uncertainties in long-time response of dynamical systems

at much lower computational cost.

In this work, a novel numerical method based on the spectral approach is proposed to

resolve the curse-of-dimensionality issue mentioned above. The method has been called the

flow-driven spectral chaos (FSC) because it uses a novel concept called enriched stochastic

flow maps to track the evolution of a finite-dimensional RFS efficiently in time. The enriched

stochastic flow map does not only push the system’s state forward in time (as would a

traditional stochastic flow map) but also its first few time derivatives. The push is performed

this way to allow the random basis to be constructed using the system’s enriched state as a

germ during the simulation and so as to guarantee exponential convergence to the solution.

It is worth noting that this exponential convergence is achieved in the FSC method by using

only a few number of random basis vectors, even when the dimensionality of the probability

space is considerably high. This is for two reasons: (1) the cardinality of the random basis

does not depend upon the dimensionality of the probability space, and (2) the cardinality is

bounded from above by M + n+ 1, where M is the order of the stochastic flow map and n is

the order of the governing stochastic ODE. The boundedness of the random basis from above

is what makes the FSC method be curse-of-dimensionality free at the RFS level. For instance,

for a dynamical system that is governed by a second-order stochastic ODE (n = 2) and driven

by a stochastic flow map of fourth-order (M = 4), the maximum number of random basis

vectors to consider within the FSC scheme is just 7, independent whether the dimensionality

of the probability space is as low as 1 or as high as 10 000.

With the aim of reducing the complexity of the presentation, this dissertation includes

three levels of abstraction for the FSC method, namely: a specialized version of the FSC

method for dealing with structural dynamical systems subjected to uncertainties (Chapter 2),

a generalized version of the FSC method for dealing with dynamical systems governed by

(nonlinear) stochastic ODEs of arbitrary order (Chapter 3), and a multi-element version of

the FSC method for dealing with dynamical systems that exhibit discontinuities over the

probability space (Chapter 4). This dissertation also includes an implementation of the FSC
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method to address the dynamics of large-scale stochastic structural systems more effectively

(Chapter 5). The implementation is done via a modal decomposition of the spatial function

space as a means to reduce the number of degrees of freedom in the system substantially,

and thus, save computational runtime.
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1. INTRODUCTION

1.1. A point of departure

Uncertainties are ubiquitous. They arise in a number of different fields such as physics,

engineering, economics, sociology, etc. In complex dynamical systems, uncertainties can lead to

undesired random variability in the response, which in turn can adversely affect the intended

use for which they were designed. In fact, almost every physical quantity in a dynamical system

is affected by uncertainty to some extent. In structural engineering, for example, the source

of random variability may arise from: material properties, imperfections in geometry, loading

scenarios, boundary conditions, etc. This random variability, once it is identified, can be

characterized mathematically using random variables, stochastic processes or, more generally,

random fields in space and time. Moreover, thanks to the ever-increasing computational

capabilities, it has been possible to address—for the first time—high-dimensional problems

involving complex physics and random input data through the probabilistic framework, and

to even pose new questions by doing so. It should be clear then that the advent of quantum

computers will further strengthen the use of the probabilistic framework in the years to

come, and the potential to address and solve bigger problems in a reasonable amount of

time. This is for instance the case of the light-based quantum computer Jiuzhang, which

recently demonstrated that it is capable of outperforming the fastest classical supercomputer

in certain tasks [1].

Several methods for solving stochastic differential equations have been proposed to date,

including but not limited to: Monte Carlo-based methods [2–4], perturbation-based methods

[5–8], operator-based methods [9–12], and spectral-based methods [13–15].

In standard Monte Carlo (aka Monte Carlo sampling or MCS), the stochastic problem

is typically solved by sampling a large number of realizations from the probability space to

estimate the statistics of the output. Although this method is straightforward to implement—

as it only requires repetitive executions of deterministic simulations—, it is well known that

the statistics converge relatively slow. (For example, the mean converges asymptotically

as the square root of N−1, where N is the number of realizations.) Therefore, the need
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for a large number of realizations to obtain accurate results often makes the computation

of the statistics prohibitive under the MCS framework. As an alternative, the excessive

computational burden of the Monte Carlo method can significantly be alleviated if techniques

such as the Latin hypercube sampling [16, 17] or the quasi-Monte Carlo sampling [18–20] are

implemented instead. However, when dealing with systems that are already computationally

expensive in their own deterministic settings, these techniques might be considered unsuitable

to implement. Nonetheless, Monte Carlo-based methods have been successfully applied in the

literature to quantify the effects that input uncertainty has on the observables of complex

stochastic dynamical systems—and in some cases MCS is perhaps the only feasible way to

simulate complex systems featuring high-dimensional probability spaces. This is because

MCS is remarkably independent of the dimensionality of the probability space.

In perturbation-based methods, the governing equation of a stochastic dynamical system

is generally expressed as an equation involving small variations known as perturbations. In this

approach, the random variables, or more generally random fields, are expanded via a Taylor

series around their mean and truncated up to a specified order. Then it uses perturbation

theory to find an approximate solution to the governing equation in hand. In the past,

perturbation-based methods were perhaps the most popular of all non-sampling methods used

in engineering to solve problems involving random input data, see e.g. [5–8]. However, because

high-order perturbations has the inevitable drawback to turn out the governing equation

into a complicated system of equations, perturbations were usually limited to second-order

variations in practice. This limitation unfolded the need to demand that the magnitude of

the uncertainties was not too large in order to ensure a good performance of the method.

Operator-based methods have also been used for uncertainty quantification in the past.

They are based on manipulating the stochastic operators in a governing equation to obtain an

approximate version of them. They were used in [9–12] to quantify uncertainties in systems

not involving time. However, as with perturbation-based methods, this type of methods is

limited to problems in which the magnitude of the uncertainties is relatively small.

Finally, and as the name implies, spectral-based methods rely on the application of spectral

theory in the resolution of problems involving uncertainties. Since this dissertation is based

on the spectral approach, a short overview of this approach is presented below.
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1.2. Overview of the spectral approach

1.2.1. Probability space and random space

Because the goal here is to begin with a formal discussion on the spectral approach, a

prototype probability space is defined right below to allow the uncertainties in a dynamical

system to be modeled properly later on.

Definition 1.1 (Probability space and random space). Let (Ω,Ω, λ) be a (complete) proba-

bility space, where Ω is the sample space, Ω ⊂ 2Ω is the σ-algebra on Ω (aka the collection of

events), and λ : Ω→ [0, 1] is the probability measure on Ω. Since in practice it is more conve-

nient to relate the probability space with an Euclidean space for computational purposes, let

ξ : (Ω,Ω)→ (Rd,BRd) be a measurable function (aka random variable1 in probability theory)

given by ξ = ξ(ω), with BRd denoting the Borel σ-algebra over Rd. In this dissertation, the

measure space (Ξ,Ξ, µ) is called random space, where Ξ = ξ(Ω) ⊂ Rd is the set representing

the random domain of the system, Ξ = BRd ∩ Ξ is the σ-algebra on Ξ, and µ : Ξ→ [0, 1] is

the probability measure on Ξ given by the pushforward of λ by ξ, that is µ = ξ∗(λ) := λ ◦ ξ−1.

Note that here d symbolizes the dimensionality of the random space and not necessarily the

dimensionality of the probability space—though in this dissertation they are always assumed

to be equal.

1.2.2. Problem statement

To illustrate how the spectral approach works with a simple problem, an undamped

stochastic single-degree-of-freedom system subjected to free vibration is considered below.

The problem can be stated formally as follows.

1More often than not, ξ also receives the name of ‘random vector’ when d > 1. However, this particular
ξ is not a (random) vector but a (random) point map from Ω into Rd. Moreover, the structure of a vector
space does not need to be specified in this Rd either, and therefore, in this dissertation ξ is never referred to
as ‘random vector’ but always as ‘random variable’. As a matter of fact, Rd is simply a topological space
herein, and this space can induce a Borel space, (Rd,BRd), by itself.
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Problem statement Find the real-valued stochastic process u : T × Ξ → R, such that

(µ-a.e.):

mü+ ku = 0 on T× Ξ (1.1a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ, (1.1b)

where T = [0, T ] is a closed interval defining the time interval of interest for running the

simulation, T ∈ R+ symbolizes the duration of the simulation, m : Ξ → R+ is the mass

of the system, k : Ξ → R+ is the stiffness of the system, and u, v : Ξ → R are the initial

displacement and initial velocity of the system, respectively. Observe here that u̇ := ∂tu is

the velocity of the system and that ü := ∂2
t u is the acceleration of the system.

1.2.3. Random function space

In the literature, it is customary to assume (right away from the beginning) that u, u̇, ü are

stochastic processes of second-order, and that m, k, u, v are random variables of second-order

as well (even though the first two random variables do not need to be assumed this way for

reasons that will be clarified later). In other words, making such an assumption is equivalent

to require that u(t, · ), u̇(t, · ), ü(t, · ),m, k, u, v are square-integrable functions on (Ξ,Ξ, µ).

This motivates the following definition.

Definition 1.2 (Random function space or RFS). Let Z = (L2(Ξ,Ξ, µ;R), 〈 · , · 〉) be a

Lebesgue square-integrable space equipped with its standard inner product

〈 · , · 〉 : L2(Ξ,Ξ, µ;R)× L2(Ξ,Ξ, µ;R)→ R :⇔ 〈f, g〉 =
∫
fg dµ.

This random function space is the space of all (equivalence classes of) measurable functions

f : (Ξ,Ξ)→ (R,BR) that are square-integrable with respect to µ, where BR stands for the

Borel σ-algebra over R. Also, let {Ψj : (Ξ,Ξ)→ (R,BR)}∞j=0 be a complete orthogonal basis

in Z, so that Z= span{Ψj}∞j=0 and Ψ0(ξ) = 1 for all ξ ∈ Ξ. Such a basis is always introduced

herein for computational purposes only.
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Remark 1.1. More precisely,L2(Ξ,Ξ, µ;R) is the set of all (equivalence classes of) Ξ-measurable

R-valued functions that are square µ-integrable on Ξ. That is, L2(Ξ,Ξ, µ;R) is the quotient

set defined by:{
f : (Ξ,Ξ)→ (R,BR)

∣∣∣∣ ∫ f 2 dµ <∞
}/{

f : (Ξ,Ξ)→ (R,BR)
∣∣∣∣ f = 0 µ-a.e.

}
.

Note that a Ξ-measurable R-valued function on Ξ is a function f : Ξ→ R that satisfies the

property

f−1(S) := {ξ ∈ Ξ | f(ξ) ∈ S} ∈ Ξ for all S ∈ BR.

Moreover, it is worth stating that the square µ-integrability property of a function can only

be determined using Lebesgue integration theory. See [21,22] for further details.

Remark 1.2. The space Z is known to form a Hilbert space because it is complete under the

metric induced by 〈 · , · 〉. This gives rise to the following conclusions. First, Z is a vector space

over R. Second, Z induces a complete normed vector space over R whose induced standard

norm ‖ · ‖ : L2(Ξ,Ξ, µ;R)→ R+
0 is given by ‖f‖ =

√
〈f, f〉 (and so, Z also forms a Banach

space with ‖ · ‖ as a norm). Third, Z induces a complete metric space whose induced standard

metric d : L2(Ξ,Ξ, µ;R)×L2(Ξ,Ξ, µ;R)→ R+
0 is given by d(f, g) = ‖f−g‖. Fourth, Z induces

a topological space whose induced standard topology O = τ(B) is the topology generated

by the topological basis B= {Br(f) ⊂ L2(Ξ,Ξ, µ;R) | r ∈ R+, f ∈ L2(Ξ,Ξ, µ;R)}, where

Br(f) := {g ∈ L2(Ξ,Ξ, µ;R) | d(f, g) < r} is the open ball of radius r centered at f .

Remark 1.3. Suppose f, g ∈ Zand {hn ∈ Z}∞n=0 is a Cauchy sequence. Then, three remarks are

in order. First, if f = g µ-almost everywhere (µ-a.e.), then µ(N := {ξ ∈ Ξ | f(ξ) 6= g(ξ)}) = 0,

i.e. f(ξ) = g(ξ) for all ξ ∈ Ξ \ N. Second, if hn → h as n → ∞, then h ∈ Z. Third, the

product fg is not necessarily in Z, which means that Z does not form an algebra over R.

Remark 1.4. The orthogonality property of the basis {Ψj ∈ Z}∞j=0 implies that 〈Ψi,Ψj〉 =

〈Ψi,Ψi〉 δij, where δij is the Kronecker delta.

With this definition of Z in place, one can now write any function f ∈ Z using the

Fourier series:

f =
∞∑
j=0

f jΨj,
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where f j is the j-th coefficient of the series with the superscript not denoting an exponentiation.

Since u(t, · ), u̇(t, · ), ü(t, · ),m, k, u, v are already presumed to be square-integrable func-

tions on (Ξ,Ξ, µ), then it is evident that all these functions must be elements of Z for all

t ∈ T. For instance, if u(t, · ) is in Z, then one can write u(t, ξ) in the following manner:

u(t, ξ) =
∞∑
j=0

uj(t) Ψj(ξ) ∀t ∈ T. (1.2)

The coefficient uj(t) is also known as the j-th random mode of u, and as shown, it changes

with time.

Remark 1.5. If u(t, · ) is in Z, then all its time derivatives {u̇(t, · ), ü(t, · ), . . .} are also in Z.

For instance, to check that u̇(t, · ) is in Z, we note that:

u̇(t, · ) := ∂tu(t, · ) =
∞∑
j=0

∂tu
j(t) Ψj ≡

∞∑
j=0

u̇j(t) Ψj ∈ Z ∀t ∈ T.

Moreover, the dual space of Z, usually denoted by Z′ in most textbooks, is the space

spanned by the continuous linear functionals {Ψi : Z→ R}∞i=0 given by

Ψi[f ] := [Ψi, f ] = 〈Ψi, f〉
〈Ψi,Ψi〉

≡ f i,

where [ · , · ] : Z′ ×Z→ R is the natural pairing map between Z and Z′. This space is also

known to form a Hilbert space because of the Riesz representation theorem [23].

Therefore, by applying these linear functionals on both sides of (1.2), one can find an

exact expression for the j-th random mode of u which is given by:

uj(t) = 〈Ψj, u(t, · )〉
〈Ψj,Ψj〉

.

1.2.4. Discretization of random function space

In order to make the solution of (1.1) computationally tractable, Z needs to be either

p-discretized or more generally (h, p)-discretized. In this section, only the former is discussed

to simplify the presentation of the spectral discretization.
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Let Z[P ] be a finite subspace of Z so that Z[P ] = span{Ψj}Pj=0 represents a p-discretization

of Z and P + 1 ∈ N1 defines the dimensionality of Z[P ]. Then, an approximation u[P ](t, · ) of

u(t, · ) can be represented in Z[P ] as

u(t, ξ) ≈ u[P ](t, ξ) =
P∑
j=0

uj(t) Ψj(ξ), (1.3)

provided that the random basis is well-graded to allow the approximation of u to be taken

this way. However, to reduce notational complexity hereafter, the superscript [P ] in u and the

summation sign in (1.3) are dropped to obtain the more appealing expression:

u(t, ξ) = uj(t) Ψj(ξ). (1.4)

(Of course with the understanding that j ∈ {0, 1, . . . , P}.)

Replacing (1.4) into (1.1) gives

müjΨj + kujΨj = 0 on T× Ξ (1.5a){
uj(0) Ψj = u, u̇j(0) Ψj = v

}
on {0} × Ξ. (1.5b)

The next step is to project (1.5) onto Z[P ] in order to get a system of P + 1 ordinary

differential equations of second order in the variable t with 2(P + 1) unknowns (namely, the

random modes uj = uj(t) and u̇j = u̇j(t)). This projection is performed here by applying on

both sides of each equation the linear functionals {Ψi ∈ Z′}Pi=0 (one by one) to obtain:

mi
jü
j + kiju

j = 0 on T (1.6a){
ui(0) = ui, u̇i(0) = vi

}
on {0}, (1.6b)

where i, j ∈ {0, 1, . . . , P} (summation sign implied over repeated index j), and:

mi
j = 〈Ψi,mΨj〉

〈Ψi,Ψi〉
∈ R, kij = 〈Ψi, kΨj〉

〈Ψi,Ψi〉
∈ R,

ui = 〈Ψi, u〉
〈Ψi,Ψi〉

∈ R and vi = 〈Ψi, v〉
〈Ψi,Ψi〉

∈ R.
(1.7)

The application of these linear functionals to system (1.5) ensures that the mean-square error

resulting from the finite representation of u using (1.3) is orthogonal to Z[P ] [24].
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Remark 1.6. From (1.7) it follows that m and k do not need to be square-integrable functions

on (Ξ,Ξ, µ) to ensure that kij and mi
j are finite, but only the products mΨj and kΨj. This

is the reason why in Section 1.2.3 an observation in this respect was made to emphasize

the fact that m and k do not need to be assumed as random variables of second-order to

make the system of equations (1.6) well-defined. However, in practice this assumption is

usually enforced to make possible the computation of Var[m] and Var[k], and therefore, in

this dissertation the same assumption is followed.

1.2.5. Some additional steps regarding the spectral discretization

There are two more steps needed in the spectral discretization of (1.1). Namely:

1. To select a quadrature rule of one’s choice to evaluate the inner products shown in (1.7)

numerically. Examples of common quadrature rules include: ‘grid-based integration’ [25–27]

and ‘Monte Carlo-based integration’ [28]. Nonetheless, if the inner products are both given

in closed-form and relatively easy to integrate (e.g. like in Section 1.3.2), they can be

evaluated exactly using the theory of integration [21,22].

2. To select a suitable time integration technique to push the state of the system forward in

time using small time steps. Examples of common time integration techniques include: the

‘Runge-Kutta method’ [29] and the ‘Newmark-β method’ [30, 31].

1.2.6. Computation of probability moments

To clarify now how the probability moments of interest can be computed using the

spectral approach, suppose that z : T× Ξ→ R is a stochastic process of second-order given

by z = z(t, ξ); that is, z(t, · ) ∈ Z for all t ∈ T.

Then, it is easy to show that the mean of z, E[z] : T→ R, is given by

E[z](t) :=
∫
z(t, · ) dµ = z0(t), (1.8)
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and that the variance of z, Var[z] : T→ R+
0 , is given by

Var[z](t) :=
∫

(z(t, · )− E[z](t))2 dµ = lim
P→∞

P∑
j=1
〈Ψj,Ψj〉 zj(t) zj(t). (1.9)

A formal derivation of (1.8) and (1.9) can be found in Section 3.2.

For instance, the stochastic process z can be interpreted as either the displacement u,

the velocity u̇, the acceleration ü, the kinetic energy 1
2mu̇

2 (provided of course the variance

exists), or any other obtainable response that one may be interested in from the mathematical

model of the system.

1.3. Spectral methods

In the literature, there are a number of spectral methods that one can implement in order

to solve the problem described in Section 1.2.2 numerically. Namely, the ‘polynomial chaos’

(PC) [24, 32] (nowadays superseded by the gPC method), the ‘generalized polynomial chaos’

(gPC) [33], the ‘time-dependent gPC’ (TD-gPC) [34], the ‘modified TD-gPC’ (mTD-gPC) [35],

the ‘gPC-flow map composition’ (gPC-FMC) [36], the ‘dynamical gPC’ (DgPC) [37], and—of

course—the corresponding multi-element version of them all.

1.3.1. Illustrative example

For sake of illustration, a case scenario for (1.1) is furnished here. Assume, for example, that

the system governed by (1.1) has a mass of m = 100 kg, that the stiffness k is an uniformly

distributed random variable defined in [340, 460] N/m and given by k(ξ) = 60ξ+400, and that

the initial conditions are deterministic and taken as u = 0.05 m and v = 0.20 m/s. Then,

two conclusions can be drawn from this case scenario: (1) the random domain of the system

is one-dimensional and given by Ξ = [−1, 1] (for there is only one random variable playing

the role as stochastic input in the problem definition), and (2) the probability measure µ is

uniform and defined as (using volume-form notation):

dµ ≡ µ(dξ) = 1
2dξ.
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Table 1.1. Wiener-Askey scheme for certain types of probability measures [33]

Probability measure, µ Wiener-Askey chaos, {Ψj}∞j=0 Support

Continuous

Gaussian Hermite-chaos R

Gamma Laguerre-chaos R+
0

Beta Jacobi-chaos [a, b] ⊂ R

Uniform Legendre-chaos [a, b] ⊂ R

Discrete

Poisson Charlier-chaos N0

Binomial Krawtchouk-chaos {0, 1, . . . , N}

Negative binomial Meixner-chaos N0

Hypergeometric Hahn-chaos {0, 1, . . . , N}
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1.3.2. The gPC method

To assure exponential convergence to the solution, the gPC method uses a Wiener-Askey

chaos system to span the random function space Z at early times of the simulation optimally.

The chaos system is chosen conditional on the stochastic input’s measure, as listed in Table

1.1. Therefore, since the input’s measure of this problem is uniform, Z is demanded to be

spanned according to the Legendre-chaos system, where the first 10 polynomials of the system

are known to be given by:

Ψ0(ξ) = 1, Ψ1(ξ) = ξ, Ψ2(ξ) = 1
2(3ξ2 − 1), Ψ3(ξ) = 1

2(5ξ3 − 3ξ),

Ψ4(ξ) = 1
8(35ξ4 − 30ξ2 + 3), Ψ5(ξ) = 1

8(63ξ5 − 70ξ3 + 15ξ),

Ψ6(ξ) = 1
16(231ξ6 − 315ξ4 + 105ξ2 − 5), Ψ7(ξ) = 1

16(429ξ7 − 693ξ5 + 315ξ3 − 35ξ),

Ψ8(ξ) = 1
128(6435ξ8 − 12012ξ6 + 6930ξ4 − 1260ξ2 + 35) and

Ψ9(ξ) = 1
128(12155ξ9 − 25740ξ7 + 18018ξ5 − 4620ξ3 + 315ξ).

The Legendre-chaos system forms a complete orthogonal basis in Z, and as shown above,

Ψ0 ≡ 1. Thus, the chaos system in question satisfies the two conditions prescribed in Definition

1.2 for a suitable basis for Z.

As outlined in Section 1.2.4, the initial value problem that we want to solve is given by

(1.6). For instance, when P = 4, the initial value problem becomes specifically the 5-by-5

system of second-order ODEs:

100
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1

1

1

1





ü0(t)
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ü3(t)
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subject to the initial conditions:

u0(0)

u1(0)

u2(0)

u3(0)

u4(0)


= 0.05



1

0

0

0

0


and



u̇0(0)

u̇1(0)

u̇2(0)

u̇3(0)

u̇4(0)


= 0.20



1

0

0

0

0


.

Remark 1.7. Note that for a Legendre-chaos system, we have:

[
〈Ψi,Ψj〉

]
=



1
1
3

1
5

. . .
1

2P+1


.

This probability information is particularly useful when computing, say, the variance response

with (1.9).

1.3.3. Numerical results for the gPC method

To conduct the numerical simulation, system (1.6) is integrated over time using the RK4

method (Runge-Kutta method of fourth order [29]). The time-step size used is ∆t = 0.005 s,

and it is chosen this small in order to minimize the errors coming from the discretization of

the temporal domain. For illustrative purposes, the duration of the simulation is set to last

T = 150 s. Thence the temporal domain T is defined as [0, 150] s for this problem.

Now, for the purpose of quantifying the errors derived from the discretization of Z, two

error measures are introduced below. Namely, the local error ε[f ] : T → R and the global

error εG[f ] : T→ R; they are given by:

ε[f ](t) = |f(t)− fexact(t)|

εG[f ](t) = 1
T

∫
T
ε[f ](t) dt ≈ ∆t

T

bT/∆tc∑
i=0
|f(ti)− fexact(ti)|.
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In this section, the function f : T→ R in both these expressions can be interpreted as the

mean response, E[z], or the variance response, Var[z], as defined in Section 1.2.6.

Figs. 1.1 and 1.2 depict the evolution of the mean and variance of the system’s state

using both the gPC method and the exact solution2 for sake of comparison. As observed,

even using a 7-dimensional random function space, Z[6], to represent the stochastic part of

the solution space is not sufficient to reproduce the exact solution with high fidelity over

time. To further illustrate this lack of convergence when using the gPC method, Figs. 1.3

to 1.5 present the local errors in mean and variance for different p-discretization levels of

Z. As shown, the gPC method tends to break down at early times of the simulation and

as a function of the parameter P (being the results with P = 3 the less accurate among all

results and P = 7 the more accurate, as expected). This figure clearly shows that after a

short while the time-independent nature of the random basis produces a significant reduction

in the efficiency of the method in regard to quantifying long-time response effectively during

the simulation. Though increasing the dimensionality of the random function space does help

delay the long-time integration issue of the method, it is worth noting that the global error

for the mean or variance does not decrease considerably as P increases. This conclusion is

demonstrated in Fig. 1.6. For a simulation that is set to last T = 150 s, it is clear that the

global error thrives due to the impossibility of the gPC method to represent the state of the

system effectively using a polynomial of degree P over time. Furthermore, increasing the

dimensionality of the random function space from 3 to 9 is not even sufficient to reduce the

global error by an order of magnitude, showcasing therefore the highly nonlinear nature of

the solution at later times of the simulation.

1.3.4. Other gPC-based methods

Essentially, the utilization of a time-independent random basis to span the stochastic part

of the solution space is what makes the gPC method be so ineffective at quantifying long-time

response of stochastic dynamical systems suitably. In recent years, a number of authors have

2As derived in Appendix 2.B.
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Figure 1.1. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[2] or Z[6]
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Figure 1.2. Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of
RFS is Z[2] or Z[6]
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Figure 1.3. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS (Set 1/3)

34



0 50 100 150
10-10

10-8

10-6

10-4

10-2

100

10-10

10-8

10-6

10-4

10-2

100

(a) Mean error for Z[4]

0 50 100 150
10-10

10-8

10-6

10-4

10-2

100

10-10

10-8

10-6

10-4

10-2

100

(b) Variance error for Z[4]

Figure 1.4. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS (Set 2/3)
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Figure 1.5. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS (Set 3/3)
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Figure 1.6. Global error of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization levels
of RFS
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recognized this long-time integration issue in the gPC method, and thus, have proposed

new techniques that help alleviate the issue through the implementation of time-dependent

random bases in the simulation.

In the opening of Section 1.3, a list of available numerical methods was introduced

for sake of reference, including: TD-gPC, mTD-gPC, gPC-FMC and DgPC. These more

recent methods use an evolving random basis to better represent the stochastic part of the

solution space in time. Though they all can be used to solve the illustrative problem without

difficulties, the issue lies in how the random basis is constructed at the reset times or even

initially. For high-dimensional probability spaces (or as low as 2-dimensional probability

spaces), all gPC-based methods are known to suffer from the curse of dimensionality at

the random-function-space level because the discretized version of Z is constructed using a

tensor product of vector spaces—each vector space representing a specific dimension in the

probability space and spanned by a set of univariate orthogonal polynomials of up to a certain

degree. Consequently, the higher the dimensionality of the probability space, the more vector

spaces needed in the construction of a suitable random function space. For instance, for a

problem featuring a d-dimensional probability space one can make the following observation

regarding the cardinality of a random basis enriched with univariate orthogonal polynomials

of degree up to p:

dim Z[P ] := P + 1 =


(p+ 1)d for a full tensor product scheme(
d+ p

p

)
for a total-order tensor product scheme.

Thus, for a problem involving d = 10 independent random variables and univariate orthogonal

polynomials of degree up to p = 3, it would be virtually impractical to run a stochastic

simulation with any of the two schemes indicated above. Indeed, observe that for a scheme

based on full tensor products one would need the dreadful amount of 1 048 576 random

vectors to run the simulation, or the much smaller but yet relatively large amount of 286

random vectors for a scheme based on total-order tensor products. This case scenario therefore

unveils the limitations of gPC-based methods in dealing with high-dimensional stochastic
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problems, alluding thereby the need of developing a more compelling spectral method for the

quantification of uncertainties in long-time response of stochastic dynamical systems.

1.4. Motivation and significance of the research

Current building code provisions are moving towards performance-based design (PBD)

approaches. This is partly because in current code design procedures there are still open

questions on how to estimate the lateral demand and lateral capacity of a structure within

certain degree of accuracy. Perhaps the most well-known of them all is how to correctly select

or estimate the response modification coefficient of a given structural system using Table

12.2-1 of ASCE 7-16 [38].

Performance-based design is an engineering approach in which the structural design criteria

are expressed in terms of achieving a set of performance objectives during the design process

of the structure. To reduce costs and ensure safety, different levels of performance objectives

are considered, including the prescription of specific performance goals at the operational level,

immediate-occupancy level, life-safety level and structural-stability level (e.g. as indicated in

the ATC-40 report [39]). Such performance objectives are typically expressed in terms of a

structural limit state or the probability of failure against a prescribed probability demand level.

The analysis and design methods usually range from linear statics to nonlinear dynamics.

In any case, an essential part of the PBD approach lies in how to quantify reliably the

uncertainties associated with a given structural response, so that such an information can be

utilized subsequently in checking (from a probabilistic standpoint) the structure’s compliance

against the set of performance objectives initially decided. Therefore, the implementation

of stochastic numerical methods that are both accurate and computationally efficient is

indispensable in any PBD framework.

Moreover, stochastic numerical methods based on the spectral approach have been utilized

extensively in the literature to solve problems featuring random input data. Though this type

of methods is particularly efficient when it comes to handling problems with relatively low-

dimensional probability spaces, there are still some challenges to be addressed in stochastic

problems involving complex physics and long-time response integration. As indicated in
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the previous section, gPC-based methods suffer from the curse of dimensionality at the

random-function-space level, and sometimes this curse of dimensionality makes the solution

computationally intractable to find. Furthermore, it is well recognized that if an evolving

random basis is not adopted throughout the simulation, the spectral approach becomes

suboptimal over time, thus making the computed solution very inaccurate at later times of the

simulation. Consequently, the main goal of this research is to develop a new spectral method

that (1) is capable of being implemented in any PBD framework such as those described

in the PEER TBI-2.0 [40] or FEMA P-58 [41] reports, that (2) does not bring the curse of

dimensionality at the random-function-space level, and that (3) features an evolving random

basis within the numerical scheme of the method. In this dissertation, the method that meets

such three goal criteria is called the flow-driven spectral chaos (or FSC for short), and in

the following chapters the method is presented using three levels of abstraction to keep the

formulation as simple as possible in the beginning.

1.5. Objectives of the research

The overall goal of this research is to develop a set of spectral-chaos methods that can

quantify the uncertainties in long-time response of dynamical systems efficiently. This is

achieved herein by studying relatively small, stochastic dynamical systems and comprehending

their local and global behaviors under different settings. Earlier studies conducted towards

this end showed that in the case of dynamical systems driven by a Taylor-based stochastic

flow map, the time derivatives of the solution plays a fundamental role in the description of

the system’s state over a small interval of time. This observation gave rise to the concept of

‘enriched stochastic flow maps’, which is used in the FSC method to track the evolution of a

finite-dimensional RFS efficiently in time. The concept was demonstrated to be very useful

at quantifying uncertainties in long-time response of single-degree-of-freedom systems, and

therefore the need for developing it further.

The specific objectives of this research are:

1. To develop a specialized version of the FSC method to study the behavior of structural

dynamical systems subjected to uncertainties (Chapter 2).
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This objective aims at demonstrating that the FSC method is both curse-of-dimensionality

free at the random-function-space level and capable of quantifying uncertainties effectively

in the long-time response of structural dynamical systems using the spectral approach.

The FSC method is therefore devised as an efficient alternative to methods based on the

spectral approach for use in the area of stochastic dynamics of structures.

2. To develop a generalized version of the FSC method to study the behavior of dynamical

systems governed by stochastic ODEs of arbitrary order (Chapter 3).

This objective aims at generalizing the FSC method proposed in the previous chapter in

order to address more general stochastic dynamical systems encountered in a number of

different fields, such as: physics, engineering, economics, sociology, etc., including stochastic

dynamical systems whose governing differential equation is nonlinear. The FSC method is

thereby devised as a versatile tool to quantify uncertainties in long-time response for a

wide variety of (nonlinear) stochastic dynamical systems.

3. To develop a multi-element version of the FSC method to study the behavior of dynamical

systems that exhibit discontinuities over the probability space, and the potential of running

the stochastic simulations in an embarrassingly parallel manner (Chapter 4).

This objective aims at advancing the capabilities of the FSC method to address situations

where the solution may be discontinuous over the probability space, and to obtain faster

results by taking advantage of the multiple CPU cores available at simulation runtime.

This is put all together in order to continue broadening the range of applications of the

FSC method and to keep improving the computational flexibility of the method.

4. To develop a faster version of the FSC method for the purpose of studying the dynamical

behavior of large-scale stochastic structural systems using, for computational efficiency, a

relatively small random function space (Chapter 5).

This objective aims at proposing a more compelling FSC method that can resolve stochastic

dynamical systems with a large number of degrees of freedom at a lower computational

cost. Here a modal decomposition of the spatial function space is suggested to reduce
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considerably the dimensionality of the random function space, and thus, save computational

resources during the simulation runtime.
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2. FLOW-DRIVEN SPECTRAL CHAOS (FSC) METHOD
FOR LONG-TIME INTEGRATION OF STOCHASTIC

DYNAMICS OF STRUCTURES

2.1. Introduction

In the past few decades, the area of uncertainty quantification has received increasing

attention, primarily in the fields of physics and engineering. This is not surprising since any

mathematical description of a real-life physical system is always subject to the effects of input

randomness. In structural engineering, for example, the randomness of a system may arise

from different sources, such as variability of material properties, imperfections in geometry,

loading scenarios, boundary conditions, etc. Though these physical quantities may be random,

in most cases their stochastic characteristics can be identified and modeled mathematically

using one or more of the numerous distributions available in statistics.

Due to the inherent complexity of real-life systems, closed-form solutions are not always

possible. As an alternative, one uses accurate numerical methods that allow one to propagate

and quantify the effects of input uncertainties in the system response efficiently. Historically,

the polynomial chaos (PC) method developed by Wiener [32] and extended by Ghanem

and Spanos [42] in the context of stochastic finite elements, has been used for uncertainty

quantification. Xiu and Karniadakis [33] further developed the generalized-PC (gPC) method

in which time-independent polynomials are used to decompose a stochastic process into

deterministic and non-deterministic parts using the orthogonality property of the basis in the

random function space (RFS). The benefit of using such orthogonal polynomials in the RFS

is that when the underlying process (i.e. the solution of the ODE) is represented with them,

the method leads to exponential convergence to the solution (provided the stochastic part of

the solution space is not discretized).

The gPC method has undergone several modifications and extensions to improve its

computational efficiency, its effectiveness for long-time integration, and its ability to handle

stochastic discontinuities. The multi-element gPC and related methods, developed by Karni-

adakis and others [43–52], adaptively decompose the probability space into elements until a
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pre-specified threshold for the relative error in variance is reached. Then a stochastic spectral

expansion on each element is used to advance the state of the system one-time step forward,

and this process is repeated every time the threshold is exceeded during the simulation.

Another approach is the dynamically orthogonal PC (DO-PC) method [53–57] where the

time rate of change of the spatio-temporal function space is ensured to be orthogonal to

itself. This condition, called the dynamically orthogonal (DO) condition, is enforced at every

time step as the simulation proceeds. The DO-PC scheme is essentially a generalization of

the POD (Proper Orthogonal Decomposition) method [58,59] and the gPC method in the

framework of continuous stochastic dynamical systems.

For long-time dynamical simulations, when the stochasticity of the system has developed

significantly, the gPC method fails to capture the probability moments accurately because the

probability distribution of the solution changes significantly with time. The time-dependent

gPC (TD-gPC) method was proposed by Gerritsma et al. [34] to allow the basis to evolve

in time so as to better represent the transient nature of the probability distribution of the

solution during the simulation. Heuveline and Schick [35] modified the TD-gPC method

(mTD-gPC) to account for systems governed by second-order ODEs and also improved the

accuracy of the method. Generally speaking, the mTD-gPC method relies on spanning the

stochastic part of the solution space, at certain time steps (aka reset times), by taking a

full tensor product between an evolving RFS (that depends upon the evolution of the state

variables of the system) and the original RFS. However, since a full tensor product is required

to be conducted at the reset times, the method suffers from the curse of dimensionality. A

hybrid generalized polynomial chaos was also developed in [35] to help alleviate the curse of

dimensionality of mTD-gPC. This method, however, requires the use of an (h, p)-discretization

for the stochastic part of the solution space in contrast to mTD-gPC which solely requires

the use of a p-discretization.

More recently, a generalized PC method based on flow map composition was proposed by

Luchtenburg et al. [36] to address the long-time uncertainty propagation in dynamical systems

more effectively. The method fundamentally uses short-time flow maps based on spectral

polynomial bases to account for the stretching and folding effect caused by the evolution

of the system’s state over time. As with mTD-gPC, this method suffers from the curse of
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dimensionality, because a tensor product is needed to construct the spectral polynomial bases

during the simulation. Ozen and Bal [37] developed the dynamical gPC (DgPC) method to

address the long-time behavior of stochastic dynamical systems via a generalization of the

PCE (Polynomial Chaos Expansion) framework. They demonstrated that results from DgPC

match well with those obtained from other standard methods such as Monte Carlo.

In this paper, a flow-driven spectral chaos (FSC) method is proposed which tracks the

evolution of the random basis via an enriched stochastic flow map of the state of the system.

The enriched flow map consists of the time derivatives of the solution up to a specified order.

Unlike any gPC-based method, the number of basis vectors needed in FSC to represent the

stochastic part of the solution space does not grow with the dimensionality of the probability

space. However, as with any gPC-based method, the FSC method requires the computation

of inner products using quadrature points distributed over the entire random domain, and the

number of quadrature points can grow significantly with the dimensionality of the probability

space. Nevertheless, FSC presents a significant advantage over gPC-based methods as its

computational cost, for comparable accuracy, is an order of magnitude lower compared to

existing TD-gPC methods. Conversely, for comparable computational cost, FSC is able to

achieve an order of magnitude of better accuracy than TD-gPC.

This paper is organized as follows. Section 2.2 introduces the notation and definitions

used in this paper and Section 2.3 presents the precise problem statement. The spectral

approach for solving this problem is presented in Section 2.4 and Section 2.5 describes the

proposed FSC method in detail. Three numerical examples are presented in Section 2.6 to

demonstrate and compare the accuracy of FSC to other existing methods, such as mTD-

gPC and Monte Carlo. The FSC method is then applied to quantify uncertainties in the

structural dynamics of a 3-story building subject to an earthquake excitation in Section 2.7.

In Appendix 2.A, we define the random bases that we use to span the random function space

of the problem in hand. Finally, in Appendix 2.B, we provide expressions for the mean and

variance of the exact response of a single-degree-of-freedom system under free vibration and

uniformly-distributed stochastic stiffness, followed by a brief outline of the standard Monte

Carlo method in Appendix 2.C.

45



2.2. Setting and notation

Definition 2.1 (Temporal space). Let (T,O) be a topological space, where T = [0, T ] is a

closed interval representing the temporal domain of the system, T is a positive real number

symbolizing the duration of the simulation, and O = OR ∩ T is the topology on T with OR

denoting the standard topology over R. In this paper, (T,O) is called the temporal space of

the system.

Definition 2.2 (Random space). Let (Ω,Ω, λ) be a (complete) probability space, where Ω

is the sample space, Ω ⊂ 2Ω is the σ-algebra on Ω (aka the collection of events in probability

theory), and λ : Ω → [0, 1] is the probability measure on Ω. Let ξ : (Ω,Ω) → (Rd,BRd)

be a measurable function (aka random variable) given by ξ = ξ(ω), with BRd denoting the

Borel σ-algebra over Rd. In this work, the measure space (Ξ,Ξ, µ) is called random space,

where Ξ = ξ(Ω) ⊂ Rd is a set representing the random domain of the system, d denotes the

dimensionality of the random space, Ξ = BRd ∩ Ξ is the σ-algebra on Ξ, and µ : Ξ→ [0, 1] is

the probability measure on Ξ defined by the pushforward of λ by ξ, that is µ = ξ∗(λ).

Note that more structure can be added to these spaces whenever they are needed in the

analysis. However, in order to keep the above definitions as elementary as possible, we singled

out those mathematical objects that did not play a crucial role in the development of this

work, such as the definition of a metric, a norm or an inner product for the underlying set.

Definition 2.3 (Temporal function space). Let T(n) = Cn(T,O;R) be a continuous n-

differentiable function space. This temporal function space is the space of all functions

f : (T,O)→ (R,OR) that have continuous first n derivatives on (T,O).

Definition 2.4 (Random function space). Let Z = (L2(Ξ,Ξ, µ;R), 〈 · , · 〉) be a Lebesgue

square-integrable space equipped with its standard inner product

〈 · , · 〉 : L2(Ξ,Ξ, µ;R)× L2(Ξ,Ξ, µ;R)→ R :⇔ 〈f, g〉 =
∫
fg dµ.

This random function space (aka RFS in this paper) is the space of all measurable functions

f : (Ξ,Ξ)→ (R,BR) that are square-integrable with respect to µ. (By f we actually mean an

equivalence class of square-integrable functions that are equal µ-almost everywhere; usually
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denoted by [f ] in the literature.) This inner product space is known to form a Hilbert space

because it is complete under the metric induced by the inner product. Furthermore, we define

{Ψj : (Ξ,Ξ)→ (R,BR)}∞j=0 to be a complete orthogonal basis in Z, such that Ψ0(ξ) = 1 for

all ξ ∈ Ξ. It is worth noting that such a basis does not necessarily need to consist of d-variate

polynomials as in Refs. [13, 33], but may also consist of more general functions (including

non-elementary functions such as wavelets).

Therefore, any function f ∈ Z can be represented in a Fourier series of the form:

f =
∞∑
j=0

f jΨj,

where f j denotes the j-th coefficient of the series with the superscript not symbolizing an

exponentiation.

Moreover, the dual space of Z, which we denote by Z′, is simply the space spanned by

the continuous linear functionals {Ψi : Z→ R}∞i=0 defined by:

Ψi[f ] := [Ψi, f ] = 〈Ψi, f〉
〈Ψi,Ψi〉

≡ f i,

where [ · , · ] : Z′×Z→ R is the natural pairing map between Z and Z′. This continuous dual

space is also known to form a Hilbert space, thanks to the Riesz representation theorem [23].

We recall that the orthogonality property of the basis {Ψj ∈ Z}∞j=0 implies that:

〈Ψi,Ψj〉 :=
∫

ΨiΨj dµ = 〈Ψi,Ψi〉 δij,

where δij is the Kronecker delta.

Definition 2.5 (Solution space and root space). Let U= T(2)⊗Z and V= T(0)⊗Z be,

respectively, the solution space and the root space of the system.

In what follows, we assume that the components of the d-tuple random variable ξ =

(ξ1, . . . , ξd) are mutually independent, and as sketched in Fig. 2.1 that the random domain Ξ

is a hypercube of d dimensions obtained by performing a d-fold Cartesian product of intervals

Ξ̄i := ξi(Ω). It is for this reason that we define the probability measure in Z hereafter as

µ =
d⊗
i=1

µi, or equivalently, dµ ≡ µ(dξ) =
d∏
i=1

µi(dξi) ≡ dµ1 · · · dµd,
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where µi(dξi) =: dµi represents the probability measure of dξi in the vicinity of ξi ∈ Ξ̄i.

2.3. Problem statement

In this work, we are interested in solving the non-autonomous, second-order ODE described

below.

Find the real-valued stochastic process u : T× Ξ→ R in U, such that (µ-a.e.):

mü+ F [u, u̇] = p on T× Ξ (2.1a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ, (2.1b)

where m,F [u, u̇], p : T × Ξ → R are elements of V such that m(t, ξ) 6= 0 for all (t, ξ) ∈

T × Ξ, and u, v : Ξ → R are elements of Z. Note that in (2.1), u̇ := ∂tu and ü := ∂2
t u

denote, respectively, the first and second partial derivatives of u with respect to time. Thus,

u̇ : T×Ξ→ R is an element of T(1)⊗Z, and ü : T×Ξ→ R is an element of T(0)⊗Z≡ V

(the root space).

When (2.1) is specialized to study the (nonlinear) behavior of a single-degree-of-freedom

system, mü represents the inertial force of the system with m : T × Ξ → R+ symbolizing

the mass of the system, F [u, u̇] is the damping and resisting force of the system, and p is

the external force acting on the system. Furthermore, in this case u, u̇ and ü denote the

displacement, the velocity and the acceleration response of the system, respectively.

When (2.1) is written in modeling notation, it becomes

y = M[u][x] subject to initial condition I[u], (2.1*)

where M[u] : V3 → Vs represents the mathematical model of the system defined by (2.1a),

x = (x1, x2, x3) : T×Ξ→ R3 is the 3-tuple input of M[u], and y = (y1, . . . , ys) : T×Ξ→ Rs

is the s-tuple output of M[u] (aka the s-tuple observable in physics or the s-tuple response

in engineering). In addition, I[u] represents the initial condition for M[u] which is given

by (2.1b). Thus, by comparing (2.1) to (2.1*), the components of x can be identified in the

following way: x1 = m, x2 = F [u, u̇] and x3 = p. The objective of this mathematical model is

to propagate and quantify the effects of input uncertainty x on system’s output y. Therefore,
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besides seeking u in U as mentioned earlier, it is also important to compute the probability

moments of y as time progresses.

2.4. Solution based on the spectral approach

2.4.1. Discretization of random function space

Since by hypothesis u is an element of U, then it can be represented by the Fourier series

u(t, ξ) =
∞∑
j=0

uj(t) Ψj(ξ), (2.2)

where uj is a temporal function in T(2) denoting the j-th random mode of u. This series,

usually referred to as stochastic spectral expansion in the literature [14,15], has the remarkable

property that when u is sufficiently smooth in the solution space (and, of course, provided

that the basis is orthogonal with respect to the probability measure defined in Z), it leads to

exponential convergence to the solution [33,60].

For the purpose of this manuscript, let us simply consider a p-discretization of the random

function space as follows. Let Z[P ] = span{Ψj}Pj=0 be a finite subspace of Z with P + 1 ∈ N1

denoting the dimensionality of the subspace. If we let u[P ](t, · ) be an element of Z[P ], then it

is evident from (2.2) that1:

u(t, ξ) ≈ u[P ](t, ξ) =
P∑
j=0

uj(t) Ψj(ξ) ≡ uj(t) Ψj(ξ), (2.3)

where for notational convenience we have omitted the summation sign in the last equality (aka

Einstein summation convention). Therefore, unless otherwise noted hereinafter, a summation

sign will always be implied over the repeated index j ∈ {0, 1, . . . , P}.

Substituting (2.3) into (2.1) gives

müjΨj + F [ujΨj, u̇
jΨj] = p on T× Ξ (2.4a){

uj(0) Ψj = u, u̇j(0) Ψj = v
}

on {0} × Ξ. (2.4b)

1As long as we assume that {Ψj}∞j=0 is well-graded to carry out the approximation of u this way.
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Projecting (2.4) onto Z[P ] yields a system of P + 1 ordinary differential equations of

second order in the variable t, where the unknowns are the random modes uj = uj(t) and

u̇j = u̇j(t):

〈Ψi,mΨj〉 üj + 〈Ψi,F [ujΨj, u̇
jΨj]〉 = 〈Ψi, p〉 on T (2.5a){

ui(0) = 〈Ψi, u〉/〈Ψi,Ψi〉, u̇i(0) = 〈Ψi, v〉/〈Ψi,Ψi〉
}

on {0} (2.5b)

with i, j ∈ {0, 1, . . . , P}. Note that in order to get (2.5), we simply applied on both sides of

each equation the linear functionals {Ψi ∈ Z′}Pi=0 one by one, and then we simplified the

resulting expressions. It is also worth noting that because the randomness of the stochastic

system has effectively been absorbed by the application of the aforementioned functionals,

the system of equations that we are dealing with at this point is no longer ‘stochastic’ but

‘deterministic’. In other words, the system now depends merely on the time variable t rather

than on the tuple (t, ξ).

System (2.5) can also be restated using multilinear and tensor algebra notation as follows:

mi
jü
j + F i[uj, u̇j] = pi on T (2.6a){

ui(0) = ui, u̇i(0) = vi
}

on {0}, (2.6b)

where i, j ∈ {0, 1, . . . , P} (summation sign implied over repeated index j), and:

mi
j(t) = 〈Ψi,m(t, · ) Ψj〉/〈Ψi,Ψi〉, F i[uj, u̇j](t) = 〈Ψi,F [ujΨj, u̇

jΨj](t, · )〉/〈Ψi,Ψi〉,

pi(t) = 〈Ψi, p(t, · )〉/〈Ψi,Ψi〉, ui = 〈Ψi, u〉/〈Ψi,Ψi〉 and vi = 〈Ψi, v〉/〈Ψi,Ψi〉,

whence mi
j,F i[uj, u̇j], pi ∈ T(0) and ui, vi ∈ R. To simplify notation, we have taken

F i[uj, u̇j] as the short notation for F i[u0, . . . , uj, . . . , uP , u̇0, . . . , u̇j, . . . , u̇P ].

To evaluate the inner products approximately, any integration technique of one’s choice

can be used, including those addressed in [25–28]. If, for instance, a Gaussian quadrature

rule is adopted, the inner products are computed with:

〈f, g〉 :=
∫
fg dµ ≈ Q[Q][fg] :=

Q∑
i=1

f(ξi) g(ξi)wi,
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where wi ∈ R+ denotes the quadrature weight associated with the Gaussian quadrature

point ξi ∈ Ξ (w.r.t. µ), and Q ∈ N1 represents the number of quadrature points involved in

approximating the evaluation of the inner product.

2.4.2. Discretization of temporal function space

Once Z has been discretized, the temporal function space can be discretized using

an (h, p)-discretization for T(2). In the literature, there exists an extensive list of time

integration techniques that one can employ in order to solve the ODE system given by (2.6)

numerically. For example, the Runge-Kutta method [29] of fourth-order (aka RK4 method)

or the Newmark-β method [30,31].

2.4.3. Computation of probability moments

In this manuscript, the probability moments of interest are the mean and the variance of

the system’s response. For this reason, we define these objects below.

Suppose that z := yk is the k-th component of output y = M[u][x]. If z ∈ V, then it can

approximately be expanded with a truncated Fourier series similar to the one set forth in

(2.3) to obtain:

z(t, ξ) ≈ z[P ](t, ξ) =
P∑
j=0

zj(t) Ψj(ξ) ≡ zj(t) Ψj(ξ), (2.7)

where the j-th random mode of z is given by

zj(t) = 〈Ψj, z(t, · )〉
〈Ψj,Ψj〉

.

(Note that P in expression (2.7) does not necessarily need to be the same as in (2.3).)

The expectation of z, E[z] : T→ R, is simply given by the first random mode of z:

E[z](t) :=
∫
z(t, · ) dµ = z0(t), (2.8)
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whereas the variance of z, Var[z] : T→ R+
0 , is defined by the partial sum:

Var[z](t) :=
∫

(z(t, · )− E[z](t))2 dµ =
P∑
j=1
〈Ψj,Ψj〉 zj(t) zj(t). (2.9)

2.5. Flow-driven spectral chaos (FSC) method

2.5.1. Stochastic flow map

Observe that the stochastic system given by (2.1) can also be expressed as:

∂2
t u(t, ξ) := f(t, ξ, s(t, ξ)) =

(
p(t, ξ)−F [u, u̇](t, ξ)

)
/m(t, ξ) on T× Ξ (2.10a){

u(0, ξ) = u(ξ), u̇(0, ξ) = v(ξ)
}

on {0} × Ξ, (2.10b)

where s = (u, u̇) ∈ ∏2
j=1 T(3− j)⊗Z is the configuration state of the system over T× Ξ,

and f : T× Ξ× R2 → R is a noisy, non-autonomous function defining the response ü = ∂2
t u.

Therefore, if the solution is analytic on T for all ξ ∈ Ξ, then it can be represented by the

Taylor series:

u(ti + h, ξ) =
∞∑
j=0

hj

j! ∂
j
tu(ti, ξ) =

M∑
j=0

hj

j! ∂
j
tu(ti, ξ) +O(hM+1)(ξ), (2.11)

where h := t − ti is the time-step size used for the simulation around ti (once t is fixed),

ti ∈ T is the time instant of the simulation, and M ∈ N1 is the order of the flow map we are

interested to implement.

For this system, the stochastic flow map of order M , ϕ(M) : R×Z2 → Z2, can be defined

as a random map given by:

ϕ(M)(h, s(ti, · )) =: s(ti + h, · ) =
(
u(ti + h, · ), u̇(ti + h, · )

)
−O(hM+1)

=
(

M∑
j=0

hj

j! ∂
j
tu(ti, · ),

M∑
j=0

hj

j! ∂
j+1
t u(ti, · )

)
, (2.12)

where this s(ti + h, · ) is the same as in (2.10) if M → ∞. However, to avoid unnecessary

complexity in notation, no distinction between these definitions will be made in this work.

That is, from now on we will assume that there is an equivalence relation ∼ between
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s(ti + h, · )−O(hM+1) and the s(ti + h, · ) defined in (2.12). Notice that (2.12) now requires

that s = (u, u̇) ∈ ∏2
j=1 T(M − j + 2)⊗Z.

For the sake of illustration, suppose M = 4. Differentiating (2.10a) with respect to time

three times (i.e. M − 1 times) gives

∂3
t u := Dtf= ∂tf+ ∂uf∂tu+ ∂u̇f∂

2
t u (2.13a)

∂4
t u := D2

tf= ∂2
tf+ 2 ∂2

tuf∂tu+ (2 ∂2
tu̇f+ ∂uf) ∂2

t u+ ∂u̇f∂
3
t u (2.13b)

∂5
t u := D3

tf= ∂3
tf+ 3 ∂3

ttuf∂tu+ 3 (∂3
ttu̇f+ ∂2

tuf) ∂2
t u

+ (3 ∂2
tu̇f+ ∂uf) ∂3

t u+ ∂u̇f∂
4
t u. (2.13c)

Hence, when M = 4, the stochastic flow map of the system, ϕ(4) = (ϕ1(4), ϕ2(4)), is given

by:

ϕ(4)(h, s(ti, · )) =: s(ti + h, · ) =
(
u(ti + h, · ), u̇(ti + h, · )

)
−O(h5)

=
( 4∑
j=0

hj

j! ∂
j
tu(ti, · ),

4∑
j=0

hj

j! ∂
j+1
t u(ti, · )

)
, (2.14)

where the second and higher time derivatives of u at t = ti are computed with (2.10a) and

(2.13), respectively.

Note that if (2.10) is an autonomous ODE, the expressions prescribed by (2.13) reduce to:

∂3
t u = ∂uf∂tu+∂u̇f∂2

t u, ∂4
t u = ∂uf∂

2
t u+∂u̇f∂3

t u and ∂5
t u = ∂uf∂

3
t u+∂u̇f∂4

t u. (2.13*)

2.5.2. Enriched stochastic flow map

In this work, we define the enriched stochastic flow map of order M , ϕ̂(M) : R×ZM+2 →

ZM+2, such that its k-th component is given by:

ϕ̂k(M)(h, ŝ(ti, · )) =: ŝk(ti + h, · ) =


ϕk(M)(h, s(ti, · )) for k ∈ {1, 2}

Dk−3
t f(ti + h, · , s(ti + h, · )) otherwise,

(2.15)

where ŝ = (u, u̇, . . . , ∂M+1
t u) ∈ ∏M+2

j=1 T(M − j + 2)⊗Z is called the enriched configuration

state of the system over T× Ξ, and k ∈ {1, 2, . . . ,M + 2}.
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For instance, when M = 4, the components of the enriched stochastic flow map, ϕ̂(4), are

ϕ̂1(4)(h, s(ti, · )) := ϕ1(4)(h, s(ti, · )) = s1(ti + h, · ) = u(ti + h, · )−O(h5), (2.16a)

ϕ̂2(4)(h, s(ti, · )) := ϕ2(4)(h, s(ti, · )) = s2(ti + h, · ) = u̇(ti + h, · )−O(h5), (2.16b)

ϕ̂3(4) := f= ∂2
t u, ϕ̂4(4) := Dtf= ∂3

t u, ϕ̂5(4) := D2
tf= ∂4

t u

and ϕ̂6(4) := D3
tf= ∂5

t u, (2.16c)

where ϕ̂1(4) and ϕ̂2(4) are computed with (2.14), ϕ̂3(4) with (2.10a), and {ϕ̂k(4)}6
k=4 with

(2.13).

2.5.3. Derivation of the FSC method

According to Section 2.5.1, the state of a system driven by a stochastic flow map of order

M is:

u(t, ξ) =
M∑
j=0

(t− ti)j
j! ∂jtu(ti, ξ) and u̇(t, ξ) =

M∑
j=0

(t− ti)j
j! ∂j+1

t u(ti, ξ), (2.17)

with the provision that the stochastic process u is analytic on the temporal domain.

From these two expressions, it can be seen that the state of the system has been decomposed

effectively into deterministic and non-deterministic parts. That is, the deterministic part

(t− ti)j/j! consisting of a temporal function in T, and the non-deterministic part ∂jtu(ti, ξ)

consisting of a random function in Z. If the set of functions associated with the non-

deterministic part, i.e. {∂jtu(ti, · )}M+1
j=0 , is orthogonalized with respect to the measure in Z,

then (2.17) can also be written in the following way:

u(t, ξ) =
M+2∑
j=1

uj(t) Ψj(ξ) and u̇(t, ξ) =
M+2∑
j=1

u̇j(t) Ψj(ξ). (2.18)

Hence, if the space associated with the stochastic part of the solution space were to be

spanned with {Ψj}M+2
j=1 , then u(t, · ) and u̇(t, · ) would be elements of that space around t = ti.
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However, since one cannot always guarantee that the constant functions are in such a space

construction, we prefer to write (2.18) in the following final form instead:

u(t, ξ) =
M+2∑
j=0

uj(t) Ψj(ξ) and u̇(t, ξ) =
M+2∑
j=0

u̇j(t) Ψj(ξ), (2.19)

where Ψ0 ≡ 1 is the identically-equal-to-one function as per Definition 2.4.

Therefore, for a system driven by a stochastic flow map of order M , the maximum number

of basis vectors to use in a simulation with FSC is bounded from above by M + 3. Hence,

regardless of the dimensionality of the random space, the probability information of the

system’s state can be completely captured in Z[P ] if P = M + 2. It is for this reason that

our FSC scheme is superior in terms of efficiency in comparison to mTD-gPC which uses

a combination of full and total-order tensor products to construct a suitable basis for Z[P ]

around t = ti. We emphasize, however, that the FSC scheme does not address by itself the

curse of dimensionality at the random-space level, since we still have the issue that the bigger

the random space is (d� 1), the more difficult it is to compute the inner products accurately

in (2.6) and (2.9). This is still an open area of research and there are several approaches

available in the literature for dealing with this issue [25–28].

Moreover, to reduce the computational cost associated with orthogonalizing M + 2 basis

vectors, it is sometimes convenient to start the FSC analysis with the smallest value for M

(i.e. M = 1), and then to progressively increment it if more accurate results are desired for

the simulation. Therefore, the minimum number of basis vectors to use in a simulation with

FSC is bounded from below by 4.

2.5.4. FSC scheme

Suppose that a stochastic system such as (2.1) has been given. Let {Ti}N−1
i=0 be a partition

of the temporal domain, where Ti 6= ∅ represents the i-th interval of the partition, and define

s.i = s|cl(Ti)×Ξ to be the restriction of s to Ri := cl(Ti)×Ξ. (Recall that s = (u, u̇) represents

the configuration state of the system over T×Ξ.) Then, if the system is driven by a stochastic

flow map of order M (Fig. 2.2), proceed as follows:

1. Loop across the temporal domain from i = 0 to i = N − 1.
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(a) Define a solution representation for the configuration state s.i in the following way.

• Take {Φj.i := ϕ̂j(M)(0, ŝ(ti, · ))}Pj=1 to be an ordered set of linearly indepen-

dent functions in Z with 3 ≤ P ≤ M + 2, and define Φ0.i ≡ 1. Observe that

ϕ̂(M)(0, ŝ(ti, · )) ≡ ŝ.i(ti, · ) = ŝ.i−1(ti, · ) for i ≥ 1. However, if i = 0, then

ϕ̂(M)(0, ŝ(t0, · )) ≡ ŝ(0, · ). (Note: When the initial conditions are deterministic

or linearly dependent, please see Remark 2.1.)

• Orthogonalize the set {Φj.i}Pj=0 using the Gram-Schmidt process [61], so that the

resulting set {Ψj.i}Pj=0 is an orthogonal basis in Z. That is, for j ∈ {0, 1, . . . , P}:

Ψj.i := Φj.i −
j−1∑
k=0

〈Φj.i,Ψk.i〉
〈Ψk.i,Ψk.i〉

Ψk.i. (2.20)

• Define Z
[P ]
i = span{Ψj.i}Pj=0 to be a p-discretization of Z over the region Ri.

Since Z
[P ]
i is an evolving function space, expansion (2.3) is now to be read as:

u.i(t, ξ) ≈ u
[P ]
.i (t, ξ) =

P∑
j=0

uj.i(t) Ψj.i(ξ) ≡ uj.i(t) Ψj.i(ξ). (2.3*)

Hence, u̇.i = ∂tu.i.

(b) Transfer the random modes of s.i−1 = (u.i−1, u̇.i−1) to s.i = (u.i, u̇.i) at t = ti, given

that i ≥ 1.

One way to achieve this is to ensure that the probability information of the system’s

state is transferred in the mean-square sense. Put differently, we wish to make sure

that the equalities shown below hold in the mean-square sense (summation sign

implied only over repeated index k):

u.i(ti, ξ) = u.i−1(ti, ξ) ⇐⇒ uk.i(ti) Ψk.i(ξ) = uk.i−1(ti) Ψk.i−1(ξ) (2.21a)

u̇.i(ti, ξ) = u̇.i−1(ti, ξ) ⇐⇒ u̇k.i(ti) Ψk.i(ξ) = u̇k.i−1(ti) Ψk.i−1(ξ). (2.21b)

Projecting (2.21) onto Z
[P ]
i gives:

uk.i(ti) 〈Ψj.i,Ψk.i〉 = uk.i−1(ti) 〈Ψj.i,Ψk.i−1〉 (2.22a)

u̇k.i(ti) 〈Ψj.i,Ψk.i〉 = u̇k.i−1(ti) 〈Ψj.i,Ψk.i−1〉. (2.22b)
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Thus, upon simplification yields the random modes of s.i = (u.i, u̇.i) at t = ti:

uj.i(ti) = 〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

uk.i−1(ti) and u̇j.i(ti) = 〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

u̇k.i−1(ti), (2.6b*)

where j ∈ {0, 1, . . . , P} (summation sign implied over repeated index k). These are

to be interpreted as the initial conditions of the system over the region Ri.

If i = 0, the initial conditions are computed with (2.6b) directly.

(c) Substitute (2.3*) into (2.1) to obtain (2.4).

(d) Project (2.4a) onto Z
[P ]
i to obtain (2.6a) subject to (2.6b*). Note that if i = 0, (2.6a)

is subject to (2.6b).

(e) Integrate (2.6) over time, as long as a suitable time integration method has been

selected for solving the resulting system of equations. This step requires to find the

random modes {uj.i(ti+1)}Pj=0 and {u̇j.i(ti+1)}Pj=0.

(f) Compute both the mean and the variance of each of the components of output

y = M[u][x] over Ri, by recurring to the formulas prescribed by (2.8) and (2.9).

2. Post-process results.

Remark 2.1. Any of the following two approaches can be carried out at the start of the

simulation (i = 0) to address the case when the initial conditions are deterministic or, more

generally, linearly dependent:

• When the initial conditions are deterministic, the first two vectors are required to be

removed from the set {Φj.i := ϕ̂j(M)(0, ŝ(ti, · ))}Pj=1 for they are constant, and when

the initial conditions are stochastic but linearly dependent, only one of them needs to

be removed from the set.

• When the initial conditions are deterministic or linearly dependent, the gPC method

[13,33] can be employed instead to advance the state of the system one-time step forward;

that is, from s(t0 = 0, · ) to s(t1, · ). After this, the gPC method can be switched over

FSC to continue pushing the system’s state forward in time.

Remark 2.2. Compared to the standard TD-gPC by Gerritsma et al. [34], in our FSC scheme

we update the stochastic part of the solution space at every time step to minimize the error
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propagation over time. We do this without loss of generality since the scheme can conveniently

be modified to incorporate a stopping criterion of one’s choice and update the random basis

only when the criterion is met.

2.6. Numerical results

We demonstrate and compare the performance of the FSC scheme to the mTD-gPC

scheme using two numerical examples for the dynamical system described in Section 2.3. We

also define the local error, ε : T→ T, and the global error, εG : T→ R, with the following

expressions:

ε[f ](t) = |f(t)− fexact(t)| (2.23a)

εG[f ] = 1
T

∫
T
|f(t)− fexact(t)| dt ≈

∆t
T

N∑
i=0
|f(ti)− fexact(ti)|, (2.23b)

where ∆t is the time-step size used for the simulation, ti ∈ T is the time instant of the

simulation, and N denotes the number of time steps employed in the simulation (with t0 = 0

and tN = N ∆t = T ).

2.6.1. Single-degree-of-freedom system under free vibration

We consider an undamped single-degree-of-freedom system governed by mü + ku = 0

with mass m = 100 kg and stochastic stiffness k(ξ) = ξ subjected to free vibration. Three

different cases of stochasticity are considered as listed in Table 2.1. The system has an initial

displacement of u(0, · ) ≡ 0.05 m, and an initial velocity of u̇(0, · ) ≡ 0.20 m/s. The duration

of the simulation is set to T = 150 s. To minimize the errors coming from the discretization

of T(2), the time-step size is taken as ∆t = 0.005 s, meaning that a total of N = 30 000 time

steps are employed in the simulation. To integrate (2.6) over time2, we use the RK4 method,

and as described in Section 2.5.4, the stochastic part of the solution space is updated at every

time step in order to obtain accurate results. Lastly, because the initial conditions of the

2In this problem we have taken F [u, u̇] = ku, and thus F i[uj , u̇j ](t) = kij u
j(t) with kij =

〈Ψi, kΨj〉/〈Ψi,Ψi〉.
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system are deterministic, we opt to employ the gPC method (with P = 6) [33] for the first 5

seconds of the simulation, in an effort to ensure that the stochasticity of the system’s state is

well developed for the analysis with FSC or mTD-gPC.

Figs. 2.3 and 2.4 show the evolution of the mean and variance of the system’s state. From

these figures, it is observed that the response obtained with FSC using only 7 basis vectors

has the ability to reproduce the exact response (from Appendix 2.B) with high fidelity. This

is the reason why the two plots appear to be indistinguishable from each other. The figures

also show the limit values for each response computed using the exact expressions given by

(2.30) and (2.32).

Figs. 2.5 to 2.7 present the local errors in mean and variance of the system’s state using

different choices of number of basis vectors ranging from 3 to 7. Note that even though the FSC

scheme requires P to be greater than or equal to 3, here we also study the case when P = 2

for sake of comparison. Figs. 2.5 to 2.7 show that as the number of basis vectors increases,

so does the accuracy of the results. In particular, by increasing the number of basis vectors

from 3 to 5, the accuracy of the results improves significantly by an order of magnitude of 6

(approximately from 10−1 to 10−7 for the mean), whereas when the number of basis vectors is

increased from 5 to 7, the improvement in error is more moderate (to approximately 10−8 for

the mean). However, for the 7-basis-vector case we do see an improvement in the accuracy

of the solution as time progresses due to the increase in the number of basis vectors used.

Fig. 2.8 presents the convergence of global errors as a function of the number of basis vectors

and the different distributions used to define the stochasticity of k. The FSC scheme achieves

exponential convergence when 3, 4 and 5 basis vectors are used, but adding more basis vectors

does not improve the accuracy of the response. The primary reason for this slow-down in

convergence is that the accuracy of the solution is limited by machine precision and the fact

that the probability information is being transferred in the mean-square sense at every time

step (for P is finite). In fact, these plots indicate that there is no reason to implement more

than 5 basis vectors into the simulation as it does not improve the accuracy of the results

significantly. It is also apparent from this figure that when k is assumed gamma-distributed,

the results are not as accurate as those obtained from the uniform and beta distributions. The
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Figure 2.3. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[6] and µ ∼ Uniform
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Figure 2.4. Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of
RFS is Z[6] and µ ∼ Uniform
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Figure 2.5. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS and for µ ∼ Uniform (Set 1/3)
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Figure 2.6. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS and for µ ∼ Uniform (Set 2/3)
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Figure 2.7. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS and for µ ∼ Uniform (Set 3/3)
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Figure 2.8. Global error of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization levels
of RFS
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Figure 2.9. Global error versus computational cost for µ ∼ Uniform

69



reason behind this outcome is that when k is gamma-distributed its support is unbounded,

which from a numerical viewpoint leads to the dreaded case of unbounded basis vectors.

Fig. 2.9 plots the global errors as a function of computational cost3 of the FSC and mTD-

gPC schemes expressed in terms of the wall-clock time taken to complete the computation.

The implementation of both schemes was optimized as much as reasonably possible, and

the labels P2Q0, P2Q1 and P2Q2 are defined in Ref. [35] (Pg. 45). The comparison of

computational cost is shown here only for Case 1 of Table 2.1 (for sake of brevity), but similar

trends are observed for cases 2 and 3 as well. Note that FSC is much faster in comparison

to mTD-gPC for a similar level of error. For instance, in order to attain a global error of

approximately 10−8, FSC runs about 3.5 times faster than mTD-gPC. This is because, in

general, FSC requires much fewer basis vectors than mTD-gPC—to achieve an error of about

10−8, FSC requires only 6 basis vectors in comparison to 12 for mTD-gPC. Another reason

for the superior efficiency of FSC is that, for mTD-gPC, the orthogonalization process needs

to be conducted three times when the random basis is demanded to be updated during the

simulation (one time for the monomials of u, another time for the monomials of u̇, and one

more time after performing the tensor product)4. This also explains why using 6 basis vectors

in both methods, FSC runs slightly faster than mTD-gPC. Furthermore, we see that the

probability information is better encoded in FSC because it uses a fewer number of basis

vectors to achieve the same level of accuracy. Fig. 2.9 also reveals that increasing the number

of basis vectors from 6 to 7 for FSC and 12 to 18 for mTD-gPC does not improve the accuracy

of the results significantly. This, again, is because of the limited precision of the machine and

the fact that the probability information is being transferred in the mean-square sense.

3All problems in this work were run in MATLAB R2016b [62] on a 2017 MacBook Pro with quad-core
3.1 GHz Intel Core i7 processor (hyper-threading technology enabled), 16 GB 2133 MHz LPDDR3 memory
and 1 TB PCI-Express SSD storage (APFS-formatted), running macOS Mojave (version 10.14.6).

4We tested the method by orthogonalizing only once—namely, after performing the tensor product between
the monomials of u and u̇—, and found that the accuracy of the results degrades noticeably.
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2.6.2. Single-degree-of-freedom system under forced vibration

In this example, we show that the number of basis vectors needed in the simulation does

not increase when the dimensionality of the random space increases. For this, we consider

the same system described in the Example 2.6.1 (including the same deterministic initial

conditions), with the only difference being that the system is subjected to a stochastic external

force given by p(t, · ) = q sin(t). That is, the system is now governed by mü+ku = p. Here the

stiffness k(ξ) = ξ1 is taken to be the same as Case 1 of Table 2.1 with Ξ̄1 = [340, 460] N/m.

The amplitude of the external force q(ξ) = ξ2 is assumed beta-distributed with parameters

α = 2 and β = 5 in Ξ̄2 = [51, 69] N, giving thereby probability moments: E[ξ2] ≈ 56.14 N and

Var[ξ2] ≈ 8.265 N2. Because two random variables are present in the mathematical model, the

random domain of the system is 2-dimensional, and thus, it is defined by Ξ = Ξ̄1 × Ξ̄2 with

µ ∼ Uniform⊗ Beta. For this example, the inner products are computed using a quadrature

rule constructed by performing a cartesian product between 100 Gauss-Legendre points

distributed along the ξ1-axis and 95 Gauss-Jacobi points distributed along the ξ2-axis. Finally,

the gPC method (with P = 8) is used for the first 0.5 seconds of the simulation to allow the

stochasticity of the system to develop sufficiently before using the FSC scheme.

Figs. 2.10 and 2.11 show the evolution of the mean and variance of the system’s state.

As in the previous example, the numerical solution obtained using FSC with 7 basis vectors

is indistinguishable from the exact response5. Figs. 2.12 to 2.15 depict the local and global

errors in mean and variance of the system’s state. Here we also notice the same trend found

in Figs. 2.5 to 2.8. That is, as the number of basis vectors increases, so does the accuracy of

the results. Moreover, when the number of basis vectors increases from 3 to 5, the error for

the mean drops down from approximately 10−1 to 10−7, whereas increasing the number of

basis vectors from 5 to 7 does not result in a noticeable improvement in the computation of

the probability moments. Note that using the same number of basis vectors as in Example

2.6.1 led to similar levels of error, even though the dimensionality of the random space in

5To obtain the ‘exact’ solution for E[u], Var[u], E[u̇] and Var[u̇], the corresponding values for E[u(ti, · )],
Var[u(ti, · )], E[u̇(ti, · )] and Var[u̇(ti, · )] were computed at each instant of time ti ∈ T using the vpaintegral
command (provided in the MATLAB’s Symbolic Math Toolbox [62]) with RelTol set equal to 10−14. The exact
displacement response, u, is well known and can be found in any structural dynamics textbook, e.g. [31, 63].
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Figure 2.10. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[6] and µ ∼ Uniform⊗ Beta
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Figure 2.11. Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of
RFS is Z[6] and µ ∼ Uniform⊗ Beta
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Figure 2.12. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-
discretization levels of RFS and for µ ∼ Uniform⊗ Beta (Set 1/3)
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0 50 100 150
10-10

10-8

10-6

10-4

10-2

100

10-10

10-8

10-6

10-4

10-2

100

(b) Variance error for Z[4]

Figure 2.13. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-
discretization levels of RFS and for µ ∼ Uniform⊗ Beta (Set 2/3)
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(b) Variance error for Z[6]

Figure 2.14. Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-
discretization levels of RFS and for µ ∼ Uniform⊗ Beta (Set 3/3)
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Figure 2.15. Global error of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization
levels of RFS
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Figure 2.16. Global error versus computational cost for µ ∼ Uniform⊗ Beta
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this example is twice that of Example 2.6.1. However, despite the number of basis vectors

being the same, the computational cost of this example is much higher than that of Example

2.6.1 (as per Fig. 2.16) because of the increase in the number of quadrature points needed to

compute the inner products accurately.

2.6.3. Nonlinear single-degree-of-freedom system under free vibration

In this last example, we explore the nonlinear behavior of a single-degree-of-freedom

system in order to test the ability of the FSC method to solve nonlinear problems. The

governing differential equation for this system is set to be given by

mü+ (1 + ρu2)ku = 0, (2.24)

where m = 100 kg is the mass of the system, k(ξ) = ξ1 is a beta-distributed random

variable representing the strength of the stiffness which is given by Case 2 of Table 2.1 with

Ξ̄1 = [340, 460] N/m, and ρ(ξ) = ξ2 is a uniformly-distributed random variable denoting the

contributing factor to the nonlinearity of the system in Ξ̄2 = [−20,−30] m−2. The probability

moments for ξ2 are thus: E[ξ2] = −25 m−2 and Var[ξ2] ≈ 8.333 m−4. The system has an

initial displacement of u(0, · ) ≡ 0.05 m and an initial velocity of u̇(0, · ) ≡ 0.20 m/s. As

in the previous example, the random domain of the system is two-dimensional and defined

by Ξ = Ξ̄1 × Ξ̄2 with µ ∼ Beta ⊗ Uniform. The inner products are again computed with a

Gaussian quadrature rule using the same number of points indicated in the previous section,

and the gPC method (with P = 8) is used for the first second of the simulation. The system

is integrated over time using the RK4 method with a time-step size of ∆t = 0.005 s, and the

simulation is set to last T = 150 s.

Remark 2.3. According to (2.6), the temporal function F i[uj, u̇j] associated with F [u, u̇] =

(1 + ρu2)ku is given by:

F i[uj, u̇j](t) = 〈Ψi, kΨj〉
〈Ψi,Ψi〉

uj(t) + 〈Ψi, ρkΨjΨkΨl〉
〈Ψi,Ψi〉

uj(t)uk(t)ul(t).

Note that a summation sign is implied over every repeated index j, k and l.
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Since a closed-form solution for (2.24) does not exist, we use the standard Monte Carlo

method described in Appendix 2.C to compare the accuracy of the FSC results against it.

To this end, one million realizations are randomly sampled from the random domain to

conduct the Monte Carlo simulation. The evolution of the mean and variance of the system’s

displacement is depicted in Figs. 2.17 and 2.18. These figures show that by using only 5 basis

vectors, the FSC results can effectively reproduce the Monte Carlo results. In fact, Figs. 2.19

and 2.20 further indicate that when P = 4, 5, the FSC results are 4-order-of-magnitude

accurate for the mean and about 5-order-of-magnitude accurate for the variance. However,

this is not the case for P = 3, which overall is one order of magnitude less accurate and

displays a nearly linear drift after 50 s. Moreover, it can be seen that the FSC results with

P = 4 and P = 5 are indistinguishable from each other, chiefly because the one-million Monte

Carlo simulation used as the reference solution is an approximate version of the solution.

This explains why the accuracy of the results did not increase when P was set equal to 5.

Therefore, comparable results are achievable for this nonlinear problem if FSC is run with

P = 4.

2.7. Application to structural dynamics

In structural dynamics, real-life systems are commonly modeled as multiple-degree-of-

freedom systems. In order to demonstrate how FSC can be utilized in a more general setting,

in this section we quantify the response uncertainties of a 3-story building (Fig. 2.21a) excited

by the effects of a ground motion. The ground motion is taken here to be one of the ground

accelerations recorded from the 1940 El Centro Earthquake6 event. A plot of this ground

motion is depicted in Fig. 2.21b for sake of reference.

The governing differential equation of motion for this system is:

Mü + Cu̇ + Ku = −Mιüg (=: p), (2.25)

6This ground acceleration was obtained from the PEER Ground Motion Database [64].
Website: https://ngawest2.berkeley.edu. Event’s name: Imperial Valley-02.
Station’s name: El Centro Array #9. File’s name: RSN6 IMPVALL.I I-ELC180.AT2.
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Figure 2.17. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[5] and µ ∼ Beta ⊗ Uniform
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Figure 2.18. Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of
RFS is Z[5] and µ ∼ Beta ⊗ Uniform
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Figure 2.19. Local error evolution of E[u] and Var[u] for different p-discretization levels of
RFS with respect to the 1-million Monte Carlo simulation (µ ∼ Beta ⊗ Uniform)

83



0 50 100 150
10-6

10-5

10-4

10-3

10-2

10-1

100

(a) Mean error

0 50 100 150
10-6

10-5

10-4

10-3

10-2

10-1

100

(b) Variance error

Figure 2.20. Local error evolution of E[u̇] and Var[u̇] for different p-discretization levels of
RFS with respect to the 1-million Monte Carlo simulation (µ ∼ Beta ⊗ Uniform)
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(a) Surrogate model of a 3-story building for lateral-load analysis in one direction
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(b) Ground acceleration of 1940 El Centro Earthquake

Figure 2.21. Surrogate model of a 3-story building to investigate its lateral behavior under
an earthquake scenario
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where M ∈ L(R3,R3) is the mass matrix, C : Ξ → L(R3,R3) is the damping matrix,

K : Ξ → L(R3,R3) is the stiffness matrix, ι ∈ R3 is the influence vector, and üg : T → R

is the ground acceleration characterized by a real-valued function of time. The vectors

u, u̇ := ∂tu, ü := ∂2
t u : T × Ξ → R3 represent, respectively, the displacement, the velocity

and the acceleration of the system, where uT = [u1, u2, u3] is the unknown vector sought, and

u3 denotes the roof displacement of the 3-story building (our response of interest here).

The parameters of this system are defined as

M = m


1

1

1

 , K(ξ) =


k1(ξ) + k2(ξ) −k2(ξ)

−k2(ξ) k2(ξ) + k3(ξ) −k3(ξ)

−k3(ξ) k3(ξ)

 ,

and C(ξ) = α(ξ) M + β(ξ) K(ξ), where m = 500 Mg, k1(ξ) = ξ1 ∼ Beta(2, 5) in [850 ×

103, 1 150 × 103] kN/m, k2(ξ) = ξ2 ∼ Beta(2, 5) in [680 × 103, 920 × 103] kN/m, k3(ξ) =

ξ3 ∼ Beta(2, 5) in [680 × 103, 920 × 103] kN/m, α(ξ) = ξ4 ∼ Uniform in [0.4, 0.7] s−1, and

β(ξ) = ξ5 ∼ Uniform in [0.4×10−3, 0.7×10−3] s. Furthermore, ιT = [1, 1, 1], and üg is defined

according to Fig. 2.21b. The random domain for this system is thus 5-dimensional:

Ξ =
5∏
i=1

Ξ̄i ≡ [850× 103, 1 150× 103]× [680× 103, 920× 103]2

× [0.4, 0.7]× [0.4× 10−3, 0.7× 10−3],

and we assume that the initial state of the system is at rest, i.e. u(0) = u̇(0) = 0. Note that

when the expected values of k1, k2 and k3 are utilized to define K, the fundamental period of

the system is approximately 0.33 s, which is consistent with a typical 3-story building found

in practice featuring a damping ratio of about 2% for the first two modal frequencies.

Following the formulation presented in Section 2.4, the system of equations (2.6) takes

the form:

Mi
jüj + Ci

ju̇j + Ki
juj = pi on T = [0, 50] s (2.26a){

ui(0) = 0, u̇i(0) = 0
}

on {0}, (2.26b)
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where a summation sign is implied over the repeated index j, Mi
j = Mδij , pi(t) = −Mι üg(t) δi0,

Ci
j = m


1

1

1


〈Ψi, αΨj〉
〈Ψi,Ψi〉

+


1

0

0


〈Ψi, βk1Ψj〉
〈Ψi,Ψi〉

+


1 −1

−1 1

0


〈Ψi, βk2Ψj〉
〈Ψi,Ψi〉

+


0

1 −1

−1 1


〈Ψi, βk3Ψj〉
〈Ψi,Ψi〉

,

and

Ki
j =


1

0

0


〈Ψi, k1Ψj〉
〈Ψi,Ψi〉

+


1 −1

−1 1

0


〈Ψi, k2Ψj〉
〈Ψi,Ψi〉

+


0

1 −1

−1 1


〈Ψi, k3Ψj〉
〈Ψi,Ψi〉

with i, j ∈ {0, 1, . . . , P}, and δij denoting the Kronecker delta.

For this problem, we take P = 9 for the set of linearly independent functions {Φj.i :=

ϕ̂j(0, ŝ(ti, · ))}Pj=1, where ϕ̂ : R×Z9 → Z9 is given by

ϕ̂(h, ŝ(ti, · )) =: ŝ(ti + h, · ) = (u(ti + h, · ), u̇(ti + h, · ), ü(ti + h, · )),

and ŝ = (u, u̇, ü) ≡ (u1, u2, u3, u̇1, u̇2, u̇3, ü1, ü2, ü3).

Remark 2.4. Notice that this P is the smallest value we can choose for a problem featuring

three degrees of freedom and whose governing stochastic differential equation is of second-order

in time. This is because for each degree of freedom, the smallest RFS that one can construct

using the FSC method is one whose P is equal to 3. However, we emphasize that this issue is

not particular to the FSC method. It is well recognized that the more degrees of freedom a

dynamical system has, the more basis vectors needed to construct a suitable random function

space for the system’s state at any given time. For example, in TD-gPC-based methods, this
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would be equivalent to perform a full tensor product between all the RFS’s generated at each

degree of freedom.

To integrate (2.26) numerically, we employ the RK4 method with a time-step size of

∆t = 0.01 s (which is concordant with the sample frequency of the ground acceleration record).

To evaluate the inner products approximately, we use 15 Gaussian quadrature points on

each random axis, resulting in 155 = 759 375 quadrature points distributed across the entire

random domain.

The results in Figs. 2.22 and 2.23 depict the solutions obtained from employing FSC and

the standard Monte Carlo method (as described in Appendix 2.C) to quantify the uncertainties

of the response. One million realizations were randomly sampled from the random domain to

conduct the Monte Carlo simulation. Once again, it is apparent that FSC is able to capture

the system’s uncertainties with high fidelity and its solution is indistinguishable from that

of the Monte Carlo method. For clarity, only the first 25 s of the solution are presented

in Figs. 2.22 and 2.23, however, the conclusion drawn above applies to the last 25 s of the

solution as well.

2.8. Conclusion

A novel numerical method, called the flow-driven spectral chaos (FSC) method, is presented

for capturing uncertainties in structural dynamics using the spectral approach. The FSC

method uses the concept of enriched stochastic flow maps to track the evolution of the

system’s state efficiently in an augmented random phase space. The method is not only

computationally more efficient than the TD-gPC approach but also easy to implement, since

the flow map that we use in the scheme is nothing but the time derivatives of the solution up

to a specific order. Moreover, since the random basis is defined with these time derivatives, the

number of basis vectors required to characterize the stochastic part of the solution space does

not depend upon the dimensionality of the probability space. This remarkable property opens

up the possibility of investigating systems with high-dimensional probability spaces at low

computational cost—an issue that has plagued the spectral approach since the introduction

of the PC method.
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Figure 2.22. Evolution of E[u3] and Var[u3] for the case when the p-discretization level of
RFS is Z[9] and µ ∼ Beta⊗3 ⊗ Uniform⊗2
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Figure 2.23. Evolution of E[u̇3] and Var[u̇3] for the case when the p-discretization level of
RFS is Z[9] and µ ∼ Beta⊗3 ⊗ Uniform⊗2
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The three numerical examples presented in Section 2.6 show that the FSC scheme is able

to capture the response of the system with high accuracy using a small number of basis

vectors and at a relatively low computational cost. The illustrative problem described in

Section 2.7 also shows that the FSC method can be readily applied to real-world structures

involving multiple degrees of freedom. As a result, the FSC method has the potential to be

used in the context of large-scale structural engineering problems to quantify the uncertainties

of long-time response with high fidelity.
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2.A. Random bases for illustrative examples

Tables 2.2 and 2.3 present the non-orthogonalized version of the random bases that we

use in this manuscript to solve the examples described in Section 2.6.

2.B. Undamped single-degree-of-freedom system under free vibration

The objective of this section is to provide the exact response expressions of an undamped

single-degree-of-freedom system subjected to free vibration for the case when the stiffness is

assumed uniformly distributed with parameters ka and kb. The problem is stated formally as

follows.

Problem statement Consider a stochastic, undamped single-degree-of-freedom system

with mass m ∈ R+, and stiffness k : Ξ → R+ given by k(ξ) = ξ ∼ Uniform in [ka, kb],

subjected to free vibration. Note that: kb > ka > 0.

The first problem is to find the displacement of the system u : T × Ξ → R in U, such

that:

mü+ ku = 0 on T× Ξ (2.27a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ (2.27b)

where u, v ∈ R, and u̇ := ∂tu and ü := ∂2
t u are the velocity and acceleration of the system,

respectively.

The second problem is to find the expectation and variance of u, u̇ and ü as a function of

time.

Exact solution The solution of (2.27) is well-known [31,63], and it is given by

u(t, ξ) = ucos
(
(ω ◦ k)(ξ) t

)
+ v

(ω ◦ k)(ξ) sin
(
(ω ◦ k)(ξ) t

)
, (2.28)

where the natural circular frequency of the system, ω : R+ → R+, is defined by

ω(k) =
√
k

m
.
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Table 2.2. Non-orthogonalized version of the random bases used in Section 2.6 (Set 1/2)

Single-degree-of-freedom system under free vibration (Section 2.6.1)∗:

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = −k(ξ)

m
u.i(ti, ξ)

Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3
t u.i(ti, ξ) = −k(ξ)

m
u̇.i(ti, ξ)

Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4
t u.i(ti, ξ) = −k(ξ)

m
∂2
t u.i(ti, ξ)

Φ6.i(ξ) := ϕ̂6(M)(0, ŝ(ti, ξ)) = ∂5
t u.i(ti, ξ) = −k(ξ)

m
∂3
t u.i(ti, ξ)

... (until P = M + 2 if needed)

Single-degree-of-freedom system under forced vibration (Section 2.6.2)∗:

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = 1

m

(
q(ξ) sin(ti)− k(ξ)u.i(ti, ξ)

)
Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3

t u.i(ti, ξ) = 1
m

(
q(ξ) cos(ti)− k(ξ) u̇.i(ti, ξ)

)
Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4

t u.i(ti, ξ) = 1
m

(
−q(ξ) sin(ti)− k(ξ) ∂2

t u.i(ti, ξ)
)

Φ6.i(ξ) := ϕ̂6(M)(0, ŝ(ti, ξ)) = ∂5
t u.i(ti, ξ) = 1

m

(
−q(ξ) cos(ti)− k(ξ) ∂3

t u.i(ti, ξ)
)

... (until P = M + 2 if needed)

∗The random basis is defined over the region Ri = cl(Ti)× Ξ.
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Table 2.3. Non-orthogonalized version of the random bases used in Section 2.6 (Set 2/2)

Nonlinear single-degree-of-freedom system under free vibration (Section 2.6.3)∗:

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = −k(ξ)

m
(1 + ρ(ξ)u2

.i(ti, ξ))u.i(ti, ξ)

Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3
t u.i(ti, ξ) = −k(ξ)

m
(1 + 3 ρ(ξ)u2

.i(ti, ξ)) u̇.i(ti, ξ)

Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4
t u.i(ti, ξ) = −k(ξ)

m
(1 + 3 ρ(ξ)u2

.i(ti, ξ)) ∂2
t u.i(ti, ξ)

− 6 ρ(ξ) k(ξ)
m

u̇2
.i(ti, ξ)u.i(ti, ξ)

... (until P = M + 2 if needed)

∗The random basis is defined over the region Ri = cl(Ti)× Ξ.
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Then, the following exact expressions can be derived for the expectation and variance of

u, u̇ and ü.

Exact expectation The expectation of u, u̇ and ü are given by:

E[u](t) = κ(t) (τu(t, kb)− τu(t, ka)) (2.29a)

E[u̇](t) = κ(t) (τv(t, kb)− τv(t, ka)) (2.29b)

E[ü](t) = κ(t) (τa(t, kb)− τa(t, ka)), (2.29c)

where κ : T→ R+ is given by κ(t) = 2m/((kb−ka)t2), and τu, τv, τa : T×R+ → R are defined

in Table 2.4.

A closer look at the above expressions indicates that in the long term the absolute mean

of the response is dominated by κ = κ(t) which is a function that tends to zero as time goes

to infinity. For this reason,

E[u],E[u̇],E[ü]→ 0 as t→∞. (2.30)

Exact variance The variance of u, u̇ and ü are given by:

Var[u](t) = κ(t)
(
%u(t, kb)− %u(t, ka)

)
− E[u]2(t) (2.31a)

Var[u̇](t) = κ(t)
(
%v(t, kb)− %v(t, ka)

)
− E[u̇]2(t) (2.31b)

Var[ü](t) = κ(t)
(
%a(t, kb)− %a(t, ka)

)
− E[ü]2(t), (2.31c)

where %u, %v, %a : T× R+ → R are defined in Table 2.5. In the expression for %u, the function

Ci : R+ → R is the cosine integral given by

Ci(x) = −
∫ ∞
x

cos y
y

dy.
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Table 2.4. Definition of τ -functions for a single-degree-of-freedom system subjected to free
vibration with k ∼ Uniform in [ka, kb]

τu(t, k) =
{
ω(k) t sin(ω(k) t) + cos(ω(k) t)

}
u− cos(ω(k) t) vt

τv(t, k) = −
{
2ω(k) t sin(ω(k) t) + (2− ω2(k) t2) cos(ω(k) t)

}
ut−1 +

{
ω(k) t sin(ω(k) t)

+ cos(ω(k) t)
}
v

τa(t, k) = −
{
(ω3(k) t3 − 6ω(k) t) sin(ω(k) t) + 3(ω2(k) t2 − 2) cos(ω(k) t)

}
ut−2

−
{
2ω(k) t sin(ω(k) t) + (2− ω2(k) t2) cos(ω(k) t)

}
vt−1

Table 2.5. Definition of %-functions for a single-degree-of-freedom system subjected to free
vibration with k ∼ Uniform in [ka, kb]

%u(t, k) = −1
4
{
sin2(ω(k) t)− ω(k) t sin(2ω(k) t)− ω2(k) t2

}
u2 − 1

2 cos(2ω(k) t) uvt

+ 1
4
{
ln(k)− 2 Ci(2ω(k) t)

}
v2t2

%v(t, k) = 1
16
{
2 (3ω(k) t−2ω3(k) t3) sin(2ω(k) t)+3 (1−2ω2(k) t2) cos(2ω(k) t)+2ω4(k) t4

}
u2t−2

− 1
4
{
2ω(k) t sin(2ω(k) t) + (1− 2ω2(k) t2) cos(2ω(k) t)

}
uvt−1

− 1
4
{
sin2(ω(k) t)− ω(k) t sin(2ω(k) t)− ω2(k) t2

}
v2

%a(t, k) = 1
48
{
6 (2ω5(k) t5 − 10ω3(k) t3 + 15ω(k) t) sin(2ω(k) t)

+ 15 (2ω4(k) t4 − 6ω2(k) t2 + 3) cos(2ω(k) t) + 4ω6(k) t6
}
u2t−4

+ 1
8
{
4 (2ω3(k) t3 − 3ω(k) t) sin(2ω(k) t)− 2 (2ω4(k) t4 − 6ω2(k) t2 + 3) cos(2ω(k) t)

}
uvt−3

− 1
16
{
2 (2ω3(k) t3 − 3ω(k) t) sin(2ω(k) t) + 3 (2ω2(k) t2 − 1) cos(2ω(k) t)− 2ω4(k) t4

}
v2t−2
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We see that not only the variance of the response is bounded for all t ∈ T, but also as t

goes to infinity:

lim
t→∞

Var[u](t) = 1
2u

2 + 1
2 ln

(
kb
ka

)(
m

kb − ka

)
v2 (2.32a)

lim
t→∞

Var[u̇](t) = 1
4

(
ka + kb
m

)
u2 + 1

2v
2 (2.32b)

lim
t→∞

Var[ü](t) = 1
6

(
k2
a + kakb + k2

b

m2

)
u2 + 1

4

(
ka + kb
m

)
v2. (2.32c)

Therefore, the underlying process u is naturally of second-order.

2.C. Overview of standard Monte Carlo method

The Monte Carlo method is the most popular numerical technique used in stochastic

modeling to quantify the effects of input uncertainty on system’s outputs. It is basically a

‘brute-force’ method of attack that typically involves sampling a large number of realizations

from the random space to estimate the statistics of the output. It is well-known that when N

realizations are considered, the mean converges asymptotically as the square root of N−1,

and thus, it is remarkably independent of the dimensionality of the random space [3]. In this

paper we use standard Monte Carlo to validate the FSC method in Sections 2.6.3 and 2.7.

The general procedure for conducting a standard Monte Carlo simulation is simple.

Consider the stochastic system given by (2.1*):

y(t, ξ) = M[u][x](t, ξ) subject to initial condition I[u](ξ). (2.1**)

Then:

1. Generate N realizations of the d-tuple random variable ξ in order to obtain the random set

{ξi}Ni=1. These N realizations are based on randomly sampling N points from the random

domain Ξ according to the cumulative distribution function F : Ξ→ [0, 1] given by

F (ξ) =
d∏
j=1

µj
(
(−∞, ξj]

)
, or equivalently, F (ξ) =

∫ ξ1

−∞
· · ·

∫ ξd

−∞
dµ1 · · · dµd. (2.33)

This way we can also obtain the input set {x(t, ξi)}Ni=1 for reference purposes.
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2. Solve (2.1**) for each random point ξi to obtain the output set {y(t, ξi)}Ni=1.

3. Aggregate results to estimate the statistics of output y as a function of time. For instance,

if we let z denote the k-th component of y = (y1, . . . , ys), then its statistical mean

E∗[z] : T→ R and statistical variance Var∗[z] : T→ R+
0 are given by:

E∗[z](t) = 1
N

N∑
i=1

z(t, ξi) and Var∗[z](t) = 1
N − 1

N∑
i=1

(
z(t, ξi)− E∗[z](t)

)2
. (2.34)
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3. FLOW-DRIVEN SPECTRAL CHAOS (FSC) METHOD
FOR SIMULATING LONG-TIME DYNAMICS OF

ARBITRARY-ORDER NON-LINEAR STOCHASTIC
DYNAMICAL SYSTEMS

3.1. Introduction

The need for quantifying uncertainties for real-world applications arises in different fields,

such as in physics, engineering, economics, sociology, etc. In structural engineering, for example,

the source of random variability can arise from: material properties, imperfections in geometry,

loading scenarios, boundary conditions, etc. Once this random variability is identified, it can be

characterized mathematically using random variables, stochastic processes or, more generally,

random fields in space and time. Various methods for solving stochastic differential equations

have been proposed to date, among which we mention: Monte Carlo-based methods [2–4],

collocation-based methods [46, 50, 65–67], perturbation-based methods [5–8], operator-based

methods [9–12], and spectral-based methods [13–15]. This work is based on the spectral

approach, for which we give a short historical overview below.

The polynomial chaos (PC), as originally introduced by Wiener in 1938 [32] and then

further extended in [68,69], is a spectral-based method to model stochastic processes with

(independent) Gaussian random variables. Roughly speaking, the method uses Hermite

polynomials as the underlying basis to expand a stochastic process in the space of random

functions, and it is considered to be an extension of the theory of nonlinear functionals

developed by Volterra in 1913 [70] for stochastic systems. Such an expansion is known to be

convergent in the mean-square sense for stochastic processes with a finite second moment,

thanks to the Cameron-Martin theorem [71]. Therefore, these processes are also termed

second-order stochastic processes in the literature. Even though the PC method was applied

to solve different stochastic problems at the time, it was later recognized that it suffered from

non-uniform convergence for systems with non-Gaussian random variables. Lucor et al. [72]

demonstrated that, under Wiener’s framework of Hermite functionals, the convergence rate of

systems subjected to Gaussian input is exponential but substantially slower otherwise [33,73].

99



Nonetheless, steady progress was made between the 1950s and 1980s towards generalizing

Wiener’s ideas for systems with non-Gaussian inputs (e.g. [74–78]).

In the early 1990s, Ghanem and Spanos [24, 42] developed a method in the context of

stochastic finite elements. The method essentially uses Wiener’s theory on polynomial chaos

to decompose a second-order stochastic process into deterministic and non-deterministic parts.

The non-deterministic part of the process can then be treated as an element of a Hilbert

space, and thus, be approximated by its Galerkin projection onto a subspace spanned by a

finite number of Hermite polynomials. Because the subspace still needs to be spanned by

Hermite polynomials, this method is only capable of achieving exponential convergence for

stochastic systems involving Gaussian random variables. Yet, the method was successfully

applied by several researchers in the branch of continuum mechanics, including solid and

fluid mechanics, in problems displaying random variability in their definition (e.g. [79–82]).

In 2002, Xiu and Karniadakis [33] introduced the generalized polynomial chaos (gPC)

method to overcome the issue of convergence rate of the PC method. By employing an

orthogonal basis from the Askey family—but concordant with the measure defined in the

probability space—, they showed that a process expanded with such a basis leads to ex-

ponential convergence to the solution. Thus, in the years that followed, the gPC method

was demonstrated to be capable of solving a wider number of stochastic problems found in

practice (e.g. [83–86]). The method, however, was later found not to be suitable for problems

that feature strong nonlinear dependencies over the probability space as time progresses. For

example, for long-time integration of stochastic dynamical systems, the gPC method fails

to capture the probability moments accurately because the probability distribution of the

solution changes significantly with time. In 2005, Wan and Karniadakis [43] developed the

multi-element generalized polynomial chaos (ME-gPC) method to account for these nonlinear

dependencies in time, such as the ability to handle stochastic discontinuities and long-time

response of stochastic dynamical systems on-the-fly. The key idea of ME-gPC is to adaptively

decompose the random space into elements until a pre-specified threshold for the relative

error in variance is reached. Then, a stochastic spectral expansion is used on each random

element to push the system’s state forward in time. This process is repeated every time

the threshold is exceeded during the simulation. The ME-gPC method and its variants
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(e.g. [44,46,48,50,52,87]) have been proved to be capable of solving numerous problems in

engineering and sciences (e.g. [45,47,49,51,88,89]).

The dynamically orthogonal PC (DO-PC) is another approach used for uncertainty

quantification. It was formulated by Sapsis and Lermusiaux [53] in 2009 to study the response

of continuous stochastic dynamical systems more effectively. In this approach, the time rate

of change of the spatio-temporal function space is ensured to be kept orthogonal to itself as

the simulation proceeds. This condition, called the dynamically orthogonal (DO) condition,

is enforced at every time step to derive an exact, closed set of evolution equations in time.

With additional restrictions on the form of the solution representation, the DO-PC approach

can recover both the POD (Proper Orthogonal Decomposition) method [58, 59] and the gPC

method. Since its inception, the DO-PC has undergone further modifications and extensions

to broaden its range of applications (e.g. [54–57]). An error analysis for the DO-PC method

can be found in [90].

In 2010, the time-dependent gPC (TD-gPC) method was proposed by Gerritsma et al. [34]

to address the issue of long-time integration in the gPC method. This was motivated by the

fact that the probability distribution of the solution changes with time, which in turn requires

that the random basis (of the solution space) is frequently updated during the simulation to

ensure that the mean-square error is kept orthogonal to the discretized random function space.

To keep the computational cost low, the random basis is adaptively updated whenever a preset

threshold value is met during the simulation. Whenever this threshold value is met, a new

set of orthogonal polynomials is generated from the monomials of the system’s state for use

in subsequent time steps of the simulation. Heuveline and Schick [35] modified the TD-gPC

method (mTD-gPC) to account for stochastic dynamical systems governed by second-order

ODEs, and in doing so they also improved the accuracy of the method. In mTD-gPC, the

stochastic part of the solution space is spanned (at the reset times) by performing a full tensor

product between an evolving random function space (that depends upon the evolution of the

system’s state) and the original random function space (which is spanned according to the

gPC method). However, since both TD-gPC and mTD-gPC use tensor products to construct

a suitable random basis, they both suffer from the curse of dimensionality because the number

of basis vectors in both these approaches grows considerably fast with the dimensionality of
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the probability space (and sometimes this growth may be exponential if not addressed well).

Heuveline and Schick [35] also developed a multi-element version of the mTD-gPC method

called the hybrid generalized polynomial chaos as a means to keep the dimensionality of the

random function space relatively low on each random element.

More recently, Luchtenburg et al. [36] developed a method for long-time uncertainty

propagation in dynamical systems. The method consists of approximating the intermediate

short-time flow maps by spectral polynomial bases, so that the system’s long-time flow map is

constructed via a flow map composition. These short-time flow maps are represented by low-

degree polynomial bases to account for the stretching and folding effect caused by the evolution

of the system’s state in phase space. Ozen and Bal [37] introduced the dynamical gPC (DgPC)

method to quantify uncertainties in the long-time response of stochastic dynamical systems.

The method uses a generalization of the PCE (Polynomial Chaos Expansion) framework to

construct a set of orthogonal polynomials from measures that evolve dynamically in time. They

demonstrated that results obtained with DgPC compare well with other standard methods

such as Monte Carlo. However, the method has limited applicability for large stochastic

dynamical systems.

In this paper, a novel method called the flow-driven spectral chaos (FSC) is proposed

to capture the long-time response of stochastic dynamical systems. The FSC method uses

the concept of enriched stochastic flow maps to track the evolution of a finite-dimensional

random function space efficiently in time. In this approach, the enriched stochastic flow map

of the system is by definition a flow map that pushes forward the first few time derivatives

of the solution (including the solution itself) in an augmented random phase space. Unlike

mTD-gPC (or gPC), the number of basis vectors needed to construct the orthogonal bases

in FSC does not grow with the dimensionality of the probability space. Therefore, the FSC

method does not suffer from the curse of dimensionality at the random-function-space level.

However, as with all spectral-based methods, it does suffer from the curse of dimensionality

at the random-space level, because the number of quadrature points needed to compute the

inner products accurately can grow exponentially with the dimensionality of the probability

space. Nevertheless, as we show in Section 3.9, when the FSC method is used in conjunction

with Monte Carlo integration to compute the inner products, the curse of dimensionality can
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be eliminated altogether. Thus, the FSC method presents a major advance over gPC-based

methods since for the same level of accuracy in the solution it is computationally far more

efficient.

This paper is organized as follows. Section 3.2 introduces the setting and notation used in

this manuscript, and then a quick overview of the standard gPC method is provided. Section

3.3 discusses the Gram-Schmidt process for random function spaces and also outlines a new

theorem that has been developed for orthogonalizing a sequence of independent random

functions. This theorem is then utilized in the FSC scheme (Section 3.6) to transfer the

probability information of the system’s state exactly at the current time of the simulation.

Section 3.4 reviews the concept of stochastic flow map, followed by the definition of enriched

stochastic flow map in Section 3.5. In Section 3.6 we describe the proposed FSC method in

detail using two different approaches (FSC-1 and FSC-2) for the transfer of the probability

information. Six numerical examples are then presented in Section 3.7, followed by a discussion

of the numerical results in Section 3.8. In Section 3.9 we solve a parametric, high-dimensional

stochastic problem to demonstrate (from a numerical standpoint) that using the FSC method,

in conjunction with Monte Carlo integration to compute the inner products, it is possible

to overcome the curse of dimensionality at both the random-function-space level and the

random-space level—thus eliminating it altogether. In Appendices 3.A and 3.B we present in

detail the discretization of the two random function spaces needed to simulate the stochasticity

of a Van-der-Pol oscillator and the system described in Section 3.9 using the spectral approach.

Finally, Appendix 3.C presents a comparison between the time-complexity analyses of our

new theorem and the traditional Gram-Schmidt process in order to assess the computational

cost of both approaches algebraically.

3.2. Setting and notation

Spaces The spaces that we use in this work are defined below.

Definition 3.1 (Temporal space). Let the topological space (T,O) be called temporal space,

where T = [0, T ] is a closed interval representing the temporal domain of the system, T is

103



a positive real number symbolizing the duration of the simulation, and O = OR ∩ T is the

topology on T with OR denoting the standard topology over R.

Remark 3.1. Although this temporal space can be specialized further to be a Hilbert space,

in this manuscript we only need the topological structure of it to assist Definition 3.3 in

regard to continuity of functions in time. In simple terms, this temporal space defines the

time interval of interest for running the stochastic simulations.

Definition 3.2 (Random space). Let (Ω,Ω, λ) be a (complete) probability space, where

Ω is the sample space, Ω ⊂ 2Ω is the σ-algebra on Ω (aka the collection of events), and

λ : Ω→ [0, 1] is the probability measure on Ω. Let ξ : (Ω,Ω)→ (Rd,BRd) be a measurable

function (aka random variable) given by ξ = ξ(ω), with BRd denoting the Borel σ-algebra over

Rd. Furthermore, let the measure space (Ξ,Ξ, µ) be called random space, where Ξ = ξ(Ω) ⊂ Rd

is a set representing the random domain of the system, Ξ = BRd ∩ Ξ is the σ-algebra on Ξ,

and µ : Ξ→ [0, 1] is the probability measure on Ξ defined by the pushforward of λ by ξ, that

is µ = ξ∗(λ). Here d symbolizes the dimensionality of the random space.

Remark 3.2. In addition to the standard definition of a ‘probability space’, we define a ‘random

space’ in Definition 3.2 to address cases where the probability space may be abstract. The

random variable ξ relates these two spaces and aids in computation.

From these two definitions it is clear that more structure can be added to these spaces;

for example, a metric, a norm, an inner product, etc. However, we opt not to do so herein to

keep the above definitions as simple as possible, and more importantly, because they are not

needed in this manuscript.

Definition 3.3 (Temporal function space). Let T(n) = Cn(T,O;R) be a continuous n-

differentiable function space. This temporal function space is the space of all functions

f : (T,O)→ (R,OR) that have continuous first n derivatives on (T,O).

Remark 3.3. The temporal function space is thus defined to indicate the level of differentiability

that some temporal functions need to possess in Sections 3.4 and 3.5—especially those

concerning with the state of the dynamical system under consideration.
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Definition 3.4 (Random function space). Let Z = (L2(Ξ,Ξ, µ;R), 〈 · , · 〉) be a Lebesgue

square-integrable space equipped with its standard inner product 〈 · , · 〉 : L2(Ξ,Ξ, µ;R) ×

L2(Ξ,Ξ, µ;R)→ R given by 〈f, g〉 =
∫
fg dµ. This random function space (aka RFS in this

manuscript) is the space of all (equivalence classes of) measurable functions f : (Ξ,Ξ) →

(R,BR) that are square-integrable with respect to µ. This space is known to form a Hilbert

space because it is complete under the metric induced by the inner product. In addition, let

{Ψj : (Ξ,Ξ)→ (R,BR)}∞j=0 be a complete orthogonal basis in Z, such that Ψ0(ξ) = 1 for all

ξ ∈ Ξ.

Remark 3.4. In the literature, the ‘random function space’ just defined is also called ‘random

space’ to simplify the terminology of the space. However, in this work, a distinction between

the two spaces is needed. We claim that the FSC method does not suffer from the curse

of dimensionality at the random-function-space level, because the number of basis vectors

that we use to span Z does not depend upon the dimensionality of the random space—in

contrast to other spectral methods such as gPC, TD-gPC, etc. which use tensor products to

construct Z. However, as with all spectral methods the FSC method does suffer from the

curse of dimensionality at the random-space level, because we still have the issue that the

higher the dimensionality of the random space is, the more difficult is to compute the inner

products accurately. We emphasize, however, that this is still an open area of research and

that there are several numerical techniques available in the literature that deal with this issue,

e.g. [25–28]. In Section 3.9, for example, we show that Monte Carlo integration can be used

to address the curse of dimensionality at the random-space level, and that together with the

FSC method, it can eliminate the curse of dimensionality of the proposed spectral approach

at both random levels.

From Definition 3.4 it follows that any function f ∈ Z can be represented in a Fourier

series of the form:

f =
∞∑
j=0

f jΨj,

where f j denotes the j-th coefficient of the series with the superscript not denoting an

exponentiation.
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Moreover, let Υij = 〈Ψi,Ψj〉 be the (i, j)-th component of the inner-product tensor

associated with the chosen orthogonal basis in Z. Then, because of the orthogonality property

of the basis and the selection of the first basis vector to be identically equal to one (Ψ0 ≡ 1),

one obtains:

Υij = 〈Ψi,Ψi〉 δij =



1 for i = j = 0

〈Ψi,Ψi〉 for i = j with i, j > 0

0 otherwise.

Following the notation and conventions of multilinear and tensor algebra, we note that

Υ = Υij Ψi ⊗Ψj : Z2 → R is a symmetric tensor of type (0, 2) given by Υ[f, g] = Υijf
igj,

where Ψi : Z→ R is the i-th dual basis vector in Z′ defined by

Ψi[h] := [Ψi, h] = 〈Ψi, h〉
〈Ψi,Ψi〉

≡ hi.

Here [ · , · ] : Z′ × Z → R represents the dual pairing between Z and Z′ satisfying the

property: [Ψi,Ψj] = δij with δij denoting the Kronecker delta. The second equality follows

from the Riesz representation theorem [23], which means that the map Ψi 7→ Ψi/〈Ψi,Ψi〉 is

an isometric isomorphism between Z′ and Z.

Definition 3.5 (Solution space and root space). Let U= T(n)⊗Z and V= T(0)⊗Z be

the solution space and the root space of the system, respectively. Then, as a result of these

definitions, we have: Z⊂ U⊂ V.

Remark 3.5. These two definitions are used below to relate the solution space and the root

space via the partial differential operator L. They are also used in the manuscript to simplify

the notation of these spaces.

Throughout this paper, we assume that the components of the d-tuple random variable

ξ = (ξ1, . . . , ξd) are mutually independent and that the random domain Ξ is a hypercube

of d dimensions obtained by performing a d-fold Cartesian product of intervals Ξ̄i := ξi(Ω).
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Letting µi(dξi) =: dµi denote the probability measure of dξi around ξi ∈ Ξ̄i, one can then

define the measure in Z by

µ =
d⊗
i=1

µi, or equivalently, dµ ≡ µ(dξ) =
d∏
i=1

µi(dξi) ≡ dµ1 · · · dµd.

Problem statement In this work, we consider the following stochastic problem (assumed

well-posed).

Find the real-valued stochastic process u : T× Ξ→ R in U, such that (µ-a.e.):

L[u] = f on T× Ξ (3.1a){
Bk[u](0, · ) = bk

}n
k=1

on {0} × Ξ, (3.1b)

where L : U→ V is a partial differential operator of order (n, 0), Bk[ · ](0, · ) : U→ Z is a

partial differential operator of order (n−1, 0) that upon differentiation evaluates the resulting

function at t = 0, f : T× Ξ→ R is a function in V given by f = f(t, ξ), and bk : Ξ→ R is a

function in Z given by bk = bk(ξ).

The operators L and Bk take differentiations only in time and can be, in general, nonlinear.

For the case when (n, d) = (2, 3) and L and Bk are linear operators, we get: ξ = (ξ1, ξ2, ξ3)

and

L[u](t, ξ) = a2(t, ξ) ü(t, ξ) + a1(t, ξ) u̇(t, ξ) + a0(t, ξ)u(t, ξ)

B1[u](0, ξ) = b11(ξ) u̇(0, ξ) + b10(ξ)u(0, ξ)

B2[u](0, ξ) = b21(ξ) u̇(0, ξ) + b20(ξ)u(0, ξ),

where a0, a1, a2 ∈ V with a2 6= 0, and b10, b11, b20, b21 ∈ Z such that b10b21 − b11b20 6= 0.

Observe that in these expressions, u̇ := ∂tu and ü := ∂2
t u denote the first and second partial

derivatives of u with respect to time. This example also shows that, for the more general

case, the stochasticity of the system can enter via the operators L and Bk, and the source

functions f and bk.

Because u is already assumed to be an element of U in (3.1), the stochastic systems that

we are interested in are those whose underlying process is of second-order only. A stochastic
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process u is said to be of second-order if its second moment is finite, or equivalently, if

u(t, · ) ∈ Z for all t ∈ T.

In this sense, since u ∈ U, it can be represented by the Fourier series:

u(t, ξ) =
∞∑
j=0

uj(t) Ψj(ξ), (3.2)

where uj is a temporal function in T(n) denoting the j-th random mode of u. This series,

usually referred to as stochastic spectral expansion in the literature [14,15], will be used herein

as the solution representation of the underlying process to seek.

It is worth mentioning that if we demand u to be sufficiently smooth in the solution space,

especially in Z, the expansion given by (3.2) will lead to exponential convergence to the

solution, since {Ψj}∞j=0 is an orthogonal basis with respect to the probability measure µ in Z.

This particular selection of the basis for the underlying process is known as the optimal basis,

and it can be obtained by using any orthogonalization technique such as the Gram-Schmidt

process [61].

A system governed by (3.1) can also be expressed in modeling notation as

y = M[u][x] subject to initial condition I[u], (3.1*)

where M[u] : Vr → Vs represents the mathematical model of the system defined by (3.1a),

x = (x1, . . . , xr) : T×Ξ→ Rr is the r-tuple input of M[u], and y = (y1, . . . , ys) : T×Ξ→ Rs

is the s-tuple output of M[u] (aka the s-tuple observable in physics or the s-tuple response

in engineering). In addition, I[u] represents the initial condition for M[u] which is given

by (3.1b). The objective of this mathematical model is to propagate and quantify the effects

of input uncertainty x on system’s output y. Note that here x is to be understood as the

model’s input and not necessarily as the system’s input. Therefore, the components of x

might not only include the source function f in (3.1) but also the coefficients of operator L.

Discretization of random function space (standard gPC method) For this work,

let us simply consider a p-discretization of the random function space Z as follows. Let

Z[P ] = span{Ψj}Pj=0 be a finite subspace of Z with P + 1 ∈ N1 denoting the dimensionality

of the subspace, and let u[P ](t, · ) be an element of Z[P ].
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Then, from (3.2) it follows that:

u(t, ξ) ≈ u[P ](t, ξ) =
P∑
j=0

uj(t) Ψj(ξ), (3.3)

provided that {Ψj}∞j=0 is well-graded to carry out the approximation of u this way.

If d denotes the dimensionality of the random space, and p is the maximal order polynomial

in {Ψj}Pj=0, then the total number of terms that we obtain after expanding (3.3) can be

determined as

P + 1 =
(
d+ p

p

)
= (d+ p)!

d!p! . (3.4)

This expression shows that the total number of terms used in (3.3) grows combinatorially fast

as a function of d and p, and thus, it suffers to some extent from the curse of dimensionality.

In practice, the usefulness of representing the solution with such a construction (i.e. by means

of a total-order tensor product) is limited for problems where d and p are less than 10 or

so [15]. For higher-dimensional spaces, more general sparse tensor products can be utilized

to help alleviate better the curse of dimensionality, e.g. by means of Smolyak-based tensor

products. However, for low dimensional spaces, full tensor products can still be used whenever

d is 2 or 3. In full tensor products, the total number of terms increases exponentially fast as

a function of d and p. That is, P + 1 = (p+ 1)d.

Remark 3.6. An orthogonal basis in Z[P ] can be constructed as products of univariate

orthogonal polynomials in the following way. Let {Ψ(i)
j : Ξ̄i → R}∞j=0 be an orthogonal basis

with respect to µi, where i ∈ {1, 2, . . . , d}. These bases are usually chosen to be univariate

polynomials along the i-th dimension satisfying the condition that Ψ(i)
0 (ξi) = 1 for all ξi ∈ Ξ̄i.

Then, one defines:

Ψj ≡ Ψπ(k) :=
d⊗
i=1

Ψ(i)
ki

= Ψ(1)
k1 ⊗ · · · ⊗Ψ(d)

kd
, (3.5)

where k = (k1, . . . , kd) ∈ Nd
0 is a multi-index with |k| = k1 + · · ·+ kd, and Ψπ(k) is a function

given by

Ψπ(k)(ξ) =
d∏
i=1

Ψ(i)
ki

(ξi) = Ψ(1)
k1 (ξ1) · · · Ψ(d)

kd
(ξd).
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In these expressions, π : Nd
0 → N0 is an ordering map that sorts the elements in ascending

order based on the multi-index degree |k|, followed by a reverse-lexicographic ordering for

those elements that share the same multi-index degree. In case of resorting to a total-order

tensor product, the condition |k| ≤ p is enforced in (3.5) to make p (which is always taken

less than max |k|) be the maximal order polynomial in {Ψj}Pj=0.

Remark 3.7. In Section 3.6 we will see that in our FSC method the basis {Ψj}Pj=0 is not

constructed by performing a tensor product like in Remark 3.6, but by recurring instead

to the time derivatives of the solution itself. This is in contrast to the standard TD-gPC

method [34], which uses tensor products to construct a basis based on the monomials of the

solution, and for which it is known suffers from the curse of dimensionality.

For notational convenience, expansion (3.3) will simply be written hereafter as

u(t, ξ) = uj(t) Ψj(ξ), (3.6)

where a summation sign is implied over the repeated index j, and j ∈ {0, 1, . . . , P} unless

indicated otherwise. Observe that the superscript [P ] in u was dropped to avoid unnecessary

complexity in notation.

Substituting (3.6) into (3.1) gives

L[ujΨj] = f on T× Ξ (3.7a){
Bk[ujΨj](0, · ) = bk

}n
k=1

on {0} × Ξ. (3.7b)

Projecting (3.7) onto Z[P ] yields a system of P + 1 ordinary differential equations of order

n in the variable t, where the unknowns are the random modes uj = uj(t) and their first

n− 1 time derivatives:

Ψi
[
L[ujΨj]

]
= Ψi[f ] on T (3.8a){

Ψi
[
Bk[ujΨj](0, · )

]
= Ψi[bk]

}n
k=1

on {0} (3.8b)

with i, j ∈ {0, 1, . . . , P}. This is the so-called orthogonal projection of (3.7) onto Z[P ], and it

ensures that the mean-square error resulting from the finite representation of u using (3.3) is

orthogonal to Z[P ] [24].
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A closer look at (3.8) indicates that the system of equations that we are dealing with at

this point is no longer ‘stochastic’ but ‘deterministic’ since the randomness of the stochastic

system has effectively been absorbed by the application of the dual vectors {Ψi ∈ Z′}Pi=0. In

other words, system (3.8) does not depend on the tuple (t, ξ) but only on t at this stage of

the analysis.

Discretization of temporal function space Because (3.8) is a system of ordinary dif-

ferential equations with initial conditions, any suitable time integration method can be used

to find its solution at discrete times; giving therefore rise to an (h, p)-discretization for T(n)

in general.

Probability moments In probability theory, the real-valued expectation, E : Z→ R, is a

linear map that outputs the expected value of a real-valued random variable, and it is given

by:

E[f ] =
∫
f dµ.

In contrast, the real-valued covariance, Cov : Z2 → R, is a symmetric, bilinear map that

measures the joint variability of two real-valued random variables. It is defined by:

Cov[f, g] = E
[(
f − E[f ]

)(
g − E[g]

)]
.

These two maps can be used as the building block to construct other maps, such as the

variance of f which is defined as Var[f ] = Cov[f, f ]. Higher probability moments (e.g. skewness,

kurtosis, etc.) are not considered in this work. However, we do so for the sake of brevity and

without loss of generality, chiefly because higher probability moments are not guaranteed to

exist for second-order stochastic processes.

Now, let z = yk be the k-th component of output y = M[u][x] (from (3.1*)). If z ∈ V,

then it can be expanded with a polynomial chaos similar to the one set forth in (3.3) to

obtain:

z(t, ξ) ≈ z[P ](t, ξ) =
P∑
j=0

zj(t) Ψj(ξ) ≡ zj(t) Ψj(ξ),
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where P does not need to be the same as in (3.3), and the j-th random mode of z is given by:

zj(t) = 〈Ψj, z(t, · )〉
〈Ψj,Ψj〉

.

This representation of z will allow us to compute the probability moments of interest with

minimal computational effort, as demonstrated below.

The expectation of z, E[z] : T→ R, is easy to compute and it is given by the first random

mode of z:

E[z](t) :=
∫
z(t, · ) dµ = zj(t)

∫
Ψj dµ = zj(t) 〈Ψj,Ψ0〉 = z0(t). (3.9)

The autocovariance of z, Cov[z, z] : T2 → R, is defined as:

Cov[z, z](t, s) := E
[(
z(t, · )− E[z](t)

)(
z(s, · )− E[z](s)

)]
= E

[(
zj(t) Ψj − z0(t)

)(
zk(s) Ψk − z0(s)

)]
with j, k ∈ {0, 1, . . . , P}

= E
[
zj(t) zk(s) ΨjΨk

]
, with j, k ∈ {1, 2, . . . , P}

and thus, upon further simplification we get

Cov[z, z](t, s) =
P∑
j=1

P∑
k=1

zj(t) zk(s)
∫

ΨjΨk dµ

=
P∑
j=1

P∑
k=1

zj(t) zk(s) 〈Ψj,Ψk〉 =
P∑
j=1

Υjj z
j(t) zj(s).

The variance of z, Var[z] : T→ R+
0 , is nothing but:

Var[z](t) := Cov[z, z](t, t) =
P∑
j=1

Υjj z
j(t) zj(t). (3.10)

Probability distributions In this paper, we employ four different probability distributions

to characterize the stochasticity in the systems defined in Sections 3.7 and 3.9, namely:

uniform, beta, gamma and normal. Because the measures associated with these distributions
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are absolutely continuous with respect to the Lebesgue measure, they possess probability

density functions, f : Ξ→ R+
0 , given by:

Uniform ∼ f(ξ) = 1
b− a

on Ξ = [a, b],

Beta(α, β) ∼ f(ξ) = (ξ − a)α−1 (b− ξ)β−1

(b− a)α+β−1 B(α, β) on Ξ = [a, b]

Gamma(α, β) ∼ f(ξ) = βα

Γ(α)(ξ − a)α−1 exp(−β (ξ − a)) on Ξ = [a,∞), and

Normal(µ, σ2) ∼ f(ξ) = 1
σ
√

2π
exp

−1
2

(
ξ − µ
σ

)2
 on Ξ = R.

Numerical integration The numerical integration of an inner product can be carried

out at least in two different ways: using grid-based integration [25–27] or Monte Carlo-based

integration [28]. The difference between the two lies in how the quadrature points are chosen

from the domain of the integral. In the latter, the quadrature points are randomly sampled

from the domain to seek an approximate evaluation of the integral, whereas in the former

the quadrature points are selected to be the intersecting points of some predefined regular

grid. It is well-known that when this grid is the Gaussian grid associated with the measure,

the grid-based integration method produces the most accurate approximation of the integral.

In grid-based integration, we can either use full grids or sparse grids to perform the

numerical evaluation of the integral. Using one or the other will depend on the level of

accuracy we want to achieve and the computational cost we are willing to pay to estimate the

numerical value of the integral. Popular sparse grids based on the work by S.A. Smolyak [91]

deal with the curse of dimensionality well. However, in situations where the dimensionality of

the integral domain is high, Monte Carlo is usually the preferred integration technique since

the convergence rate to the sought integral is dimension independent.

For the numerical examples presented in Section 3.7, we use the Gaussian quadrature rule

based on full grids to approximate the inner products. The reason behind this choice is that

in those numerical examples, the dimensionality of the random space is at most 2. For this

low-dimensional random space, we can heedlessly define a full grid in the random domain to
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estimate the integrals with high accuracy. Consequently, the aforementioned inner products

are computed with the following expression:

〈f, g〉 :=
∫
fg dµ ≈ Q[Q][fg] :=

Q∑
i=1

f(ξi) g(ξi)wi,

where wi ∈ R+ is the quadrature weight associated with the Gaussian quadrature point

ξi ∈ Ξ, and Q ∈ N1 denotes the number of quadrature points involved in approximating the

evaluation of the inner product. Here the quadrature points are selected from the Gaussian

grid associated with the measure µ.

Remark 3.8. We note that when fg is a sufficiently smooth integrand, we have:

Q[Q][fg]→
∫
fg dµ as Q→∞,

and if fg is a polynomial, then there exists a Q ∈ N1 such that Q[Q+j][fg] evaluates the

integral exactly for all j ∈ N0.

Moreover, we use Monte Carlo integration to approximate the inner products that emerge

from solving the parametric, high-dimensional stochastic problem described in Section 3.9. In

this case we choose Monte Carlo integration because the dimensionality of the random space

is up to 10.

3.3. The Gram-Schmidt process for random function spaces

Suppose that we have a non-orthogonal basis in Z given by {Φj}∞j=0. The objective of the

Gram-Schmidt process is to use this basis to construct an orthogonal basis in the same space

with the recursive formula:

Ψj := Φj −
j−1∑
k=0

〈Φj,Ψk〉
〈Ψk,Ψk〉

Ψk ∀j ∈ N0. (3.11)

Recall that in Section 3.2 we prescribed the condition that the first basis vector is

identically equal to one. This condition gives rise to the following theorem which is valid for

any square-integrable function space defined on a probability space. We point out that the

benefit of using this theorem is that if both the expectation vector and the covariance matrix

of the non-orthogonal basis are known beforehand, the orthogonalization process can (in
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general) be performed faster than the traditional Gram-Schmidt process.1 This is, for example,

a typical situation in the area of stochastic modeling where the probability information of the

stochastic input is—as often as not—known beforehand, and thence one might be interested

in constructing a stochastic-input space based on the available information. This need is

fulfilled by Theorem 3.1.

Theorem 3.1. Let Z be a random function space, and let {Φj}∞j=1 be an ordered set of

linearly independent functions in Z such that the constant functions are not in the set. Then,

{Ψj}∞j=0 is an orthogonal basis in Z given by:

Ψj := Φj − E[Φj] Ψ0 −
j−1∑
k=1

det4k(j)
det�k

Ψk with Ψ0 ≡ 1, (3.12)

where �k ∈M(k × k,R) is the covariance matrix for the first k elements of {Φj}∞j=1:

�k =


Cov[Φ1,Φ1] · · · Cov[Φ1,Φk]

... . . . ...

Cov[Φk,Φ1] · · · Cov[Φk,Φk]

 ,

and 4k : {k + 1, k + 2, . . .} →M(k × k,R) is a map defined by

4k(j) =



Cov[Φ1,Φ1] · · · Cov[Φ1,Φk]
... . . . ...

Cov[Φk−1,Φ1] · · · Cov[Φk−1,Φk]

Cov[Φj,Φ1] · · · Cov[Φj,Φk]


with 41(j) = Cov[Φj,Φ1] and

42(j) =

 Cov[Φ1,Φ1] Cov[Φ1,Φ2]

Cov[Φj,Φ1] Cov[Φj,Φ2]

 .
In these expressions k ∈ N1.

Proof sketch. The proof of this theorem follows from the Gram-Schmidt process applied to

the set {Φj}∞j=1. To begin with, let us consider first the cases when j ∈ {0, 1, 2, 3}. Expression

1Please see Appendix 3.C for a time-complexity analysis for Theorem 3.1 and the traditional Gram-Schmidt
process.
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(3.12) already tells us that for j = 0, Ψ0 ≡ 1. It is for this reason that all constant functions

are excluded from {Φj}∞j=1. For j ∈ {1, 2, 3}, we proceed as follows.

o When j = 1. It is easy to see that (3.11) yields

Ψ1 = Φ1 −
〈Φ1,Ψ0〉
〈Ψ0,Ψ0〉

Ψ0 = Φ1 − E[Φ1] Ψ0, (3.13)

because 〈Φ1,Ψ0〉 = E[Φ1] and 〈Ψ0,Ψ0〉 = 1.

o When j = 2. From (3.11) we get

Ψ2 = Φ2 −
〈Φ2,Ψ0〉
〈Ψ0,Ψ0〉

Ψ0 −
〈Φ2,Ψ1〉
〈Ψ1,Ψ1〉

Ψ1. (3.14)

Replacing (3.13) into (3.14) gives

Ψ2 = Φ2 − E[Φ2] Ψ0 −
Cov[Φ1,Φ2]
Cov[Φ1,Φ1]Ψ1 = Φ2 − E[Φ2] Ψ0 −

det41(2)
det�1

Ψ1,

after noting that 〈Φ2,Φ1 − E[Φ1] Ψ0〉 simplifies to Cov[Φ1,Φ2], and 〈Φ1 − E[Φ1] Ψ0,Φ1 −

E[Φ1] Ψ0〉 is nothing but Cov[Φ1,Φ1].

o When j = 3. In a similar fashion, (3.11) yields

Ψ3 = Φ3 − E[Φ3] Ψ0 −
Cov[Φ1,Φ3]
Cov[Φ1,Φ1]Ψ1

− Cov[Φ1,Φ1] Cov[Φ3,Φ2]− Cov[Φ1,Φ2] Cov[Φ3,Φ1]
Cov[Φ1,Φ1] Cov[Φ2,Φ2]− Cov[Φ1,Φ2] Cov[Φ2,Φ1]Ψ2

= Φ3 − E[Φ3] Ψ0 −
det41(3)

det�1
Ψ1 −

det42(3)
det�2

Ψ2.

The following formulas can be derived algebraically using mathematical induction. For

brevity, we only provide an insight into how this can be done.

o Formula for 〈Ψk,Ψk〉. Consider, for example, the case when k = 2:

〈Ψ2,Ψ2〉 = E[(Ψ2)2] = E

(Φ2 − E[Φ2] Ψ0 −
Cov[Φ1,Φ2]
Cov[Φ1,Φ1]Ψ1

)2
 . (3.15)
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Substituting (3.13) into (3.15) yields

〈Ψ2,Ψ2〉 = Cov[Φ1,Φ1] Cov[Φ2,Φ2]− Cov[Φ1,Φ2] Cov[Φ2,Φ1]
Cov[Φ1,Φ1] = det�2

det�1
.

In general, it is possible to show that the formula for 〈Ψk,Ψk〉 is given by:

〈Ψk,Ψk〉 = det�k

det�k−1
∀k ∈ N1, (3.16)

where we have set: det�0 = 1.

o Formula for 〈Φj,Ψk〉. As before, let us consider the case when k = 2 for the sake of

illustration:

〈Φj,Ψ2〉 =
〈

Φj,Φ2 − E[Φ2] Ψ0 −
Cov[Φ1,Φ2]
Cov[Φ1,Φ1]Ψ1

〉
. (3.17)

Replacing (3.13) into (3.17) gives

〈Φj,Ψ2〉 = Cov[Φ1,Φ1] Cov[Φj,Φ2]− Cov[Φ1,Φ2] Cov[Φj,Φ1]
Cov[Φ1,Φ1] = det42(j)

det�1
.

In general, the formula for 〈Φj,Ψk〉 is given by:

〈Φj,Ψk〉 = det4k(j)
det�k−1

∀k ∈ N1, (3.18)

where once again we have set: det�0 = 1. Here, j ∈ {k + 1, k + 2, . . .} by definition of 4k.

Therefore, substituting (3.16) and (3.18) into (3.11) yields expression (3.12).

This theorem will be implemented in Section 3.6 to transfer the probability information

exactly at the current time of the simulation.

Example 3.1. Let us consider a one-dimensional random space with domain Ξ = [−1, 1]

and measure µ given by dµ(ξ) = 3
2ξ

2 dξ, and suppose that we are interested in finding an

orthogonal basis in one of the infinitely many Z[5] spaces that we can construct by applying

Theorem 3.1 over a set of 5 monomials in the variable ξ.
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To this end, let {Φj(ξ) = ξj}5
j=1 be this set. Then, its expectation vector and covariance

matrix are:

[
E[Φj]

]
=



0

3
5

0

3
7

0


,

and

[
Cov[Φi,Φj]

]
=


Cov[Φ1,Φ1] · · · Cov[Φ1,Φ5]

... . . . ...

Cov[Φ5,Φ1] · · · Cov[Φ5,Φ5]

 =



3
5 0 3

7 0 1
3

0 12
175 0 8

105 0

3
7 0 1

3 0 3
11

0 8
105 0 48

539 0

1
3 0 3

11 0 3
13


.

From (3.12) it follows that an orthogonal basis in the chosen Z[5] space is given by:

Ψ0(ξ) = 1, Ψ1(ξ) = ξ, Ψ2(ξ) = ξ2 − 3
5 , Ψ3(ξ) = ξ3 − 5

7ξ,

Ψ4(ξ) = ξ4 − 10
9 ξ

2 + 5
21 , Ψ5(ξ) = ξ5 − 14

11ξ
3 + 35

99ξ.

By way of illustration, the determinant ratios that appear in (3.12) were computed with

expressions such as this:

det42(4)
det�2

=

∣∣∣∣∣∣∣
Cov[Φ1,Φ1] Cov[Φ1,Φ2]

Cov[Φ4,Φ1] Cov[Φ4,Φ2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Cov[Φ1,Φ1] Cov[Φ1,Φ2]

Cov[Φ2,Φ1] Cov[Φ2,Φ2]

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
3
5 0

0 8
105

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3
5 0

0 12
175

∣∣∣∣∣∣∣∣
= 10

9 .
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3.4. Stochastic flow map

Provided sufficient regularity, a stochastic system governed by (3.1) can be expressed in

explicit form as

∂nt u(t, ξ) = f(t, ξ, s(t, ξ)) on T× Ξ (3.19a){
∂k−1
t u(0, ξ) = ck(ξ)

}n
k=1

on {0} × Ξ, (3.19b)

where s = (u, ∂tu, . . . , ∂n−1
t u) ∈ ∏n

j=1 T(n− j + 1) ⊗ Z is the configuration state of the

system over T× Ξ, f : T× Ξ×Rn → R is a noisy, non-autonomous function (which can also

be regarded as a function in V) concordant with (3.1a), and ck : Ξ→ R is a function in Z

concordant with (3.1b).

If the solution is analytic on T for all ξ ∈ Ξ, then it can be represented by the Taylor

series:

u(ti + h, ξ) =
∞∑
j=0

hj

j! ∂
j
tu(ti, ξ),

where h := t− ti is the time-step size used for the simulation around ti (once t is fixed), and

ti ∈ T is the time instant of the simulation. Below we use this representation to define a local

stochastic flow map for the state of the system under consideration. We notice, however, that

to do so, we need to assume that u ∈ T(n+M − 1)⊗Z⊂ U, where M ∈ N1 denotes the

order of the flow map we want to implement. For most problems encountered in physics and

engineering, this requirement does not represent a major drawback if M is taken relatively

small.

First-order ODE Specializing (3.19) for a first-order ODE (n = 1) yields

∂tu(t, ξ) = f(t, ξ, u(t, ξ)) on T× Ξ (3.20a)

u(0, ξ) = c(ξ) on {0} × Ξ. (3.20b)
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Differentiating (3.20a) with respect to time three times gives:

∂2
t u := Dtf= ∂tf+ ∂uf∂tu (3.21a)

∂3
t u := D2

tf= ∂2
tf+ 2 ∂2

tuf∂tu+ ∂uf∂
2
t u+ g3 (3.21b)

∂4
t u := D3

tf= ∂3
tf+ 3 ∂3

ttuf∂tu+ 3 ∂2
tuf∂

2
t u+ ∂uf∂

3
t u+ g4, (3.21c)

where g3 = ∂2
uf
(
∂tu

)2
, and g4 = 3 ∂3

tuuf
(
∂tu

)2
+ ∂3

uf
(
∂tu

)3
+ 3 ∂2

uf∂
2
t u ∂tu.

A stochastic flow map of order 4, ϕ(4) : R×Z→ Z, can then be given by:

ϕ(4)(h, s(ti, · )) := u(ti + h, · )−O(h5) =
4∑
j=0

hj

j! ∂
j
tu(ti, · ),

where the time derivatives of u at t = ti are computed with (3.20a) and (3.21).

Second-order ODE Likewise, specializing (3.19) for a second-order ODE (n = 2) yields

∂2
t u(t, ξ) = f(t, ξ, u(t, ξ), u̇(t, ξ)) on T× Ξ (3.22a){
u(0, ξ) = c1(ξ), u̇(0, ξ) = c2(ξ)

}
on {0} × Ξ, (3.22b)

where u̇ := ∂tu. Differentiating (3.22a) with respect to time three times gives:

∂3
t u := Dtf= ∂tf+ ∂uf∂tu+ ∂u̇f∂

2
t u (3.23a)

∂4
t u := D2

tf= ∂2
tf+ 2 ∂2

tuf∂tu+
(
2 ∂2

tu̇f+ ∂uf
)
∂2
t u+ ∂u̇f∂

3
t u+ h4 (3.23b)

∂5
t u := D3

tf= ∂3
tf+ 3 ∂3

ttuf∂tu+ 3
(
∂3
ttu̇f+ ∂2

tuf
)
∂2
t u

+
(
3 ∂2

tu̇f+ ∂uf
)
∂3
t u+ ∂u̇f∂

4
t u+ h5, (3.23c)

where h4 = ∂2
uf
(
∂tu

)2
+ 2 ∂2

uu̇f∂tu ∂
2
t u+ ∂2

u̇f
(
∂2
t u
)2

, and

h5 = 3 ∂3
tuuf

(
∂tu

)2
+ 3

(
∂3
tu̇u̇f+ ∂2

uu̇f
)(
∂2
t u
)2

+ ∂3
uf
(
∂tu

)3
+ ∂3

u̇f
(
∂2
t u
)3

+ 3
(
2 ∂3

tuu̇f+ ∂2
uf
)
∂tu ∂

2
t u+ 3 ∂2

uu̇f∂tu ∂
3
t u+ 3 ∂2

u̇f∂
2
t u ∂

3
t u

+ 3 ∂3
uuu̇f

(
∂tu

)2
∂2
t u+ 3 ∂3

uu̇u̇f∂tu
(
∂2
t u
)2
.
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A stochastic flow map of order 4, ϕ(4) : R×Z2 → Z2, can then be defined as:

ϕ(4)(h, s(ti, · )) :=
(
u(ti + h, · ), u̇(ti + h, · )

)
−O(h5)

=
( 4∑
j=0

hj

j! ∂
j
tu(ti, · ),

4∑
j=0

hj

j! ∂
j+1
t u(ti, · )

)
, (3.24)

where the second and higher time derivatives of u at t = ti are computed with (3.22a)

and (3.23).

Remark 3.9. In these expressions we observe that if (3.19) is a linear ODE, then g3 =

g4 = h4 = h5 ≡ 0. If in addition it is autonomous, expressions (3.21) and (3.23) reduce,

respectively, to:

∂2
t u = ∂uf∂tu, ∂3

t u = ∂uf∂
2
t u and ∂4

t u = ∂uf∂
3
t u. (3.21*)

∂3
t u = ∂uf∂tu+ ∂u̇f∂

2
t u, ∂4

t u = ∂uf∂
2
t u+ ∂u̇f∂

3
t u

and ∂5
t u = ∂uf∂

3
t u+ ∂u̇f∂

4
t u. (3.23*)

High-order ODE In general, a stochastic flow map of order M , ϕ(M) : R×Zn → Zn,

can be taken as:

ϕ(M)(h, s(ti, · )) :=
(
u(ti + h, · ), . . . , ∂k−1

t u(ti + h, · ), . . . , ∂n−1
t u(ti + h, · )

)
−O(hM+1), (3.25)

where its k-th component, ϕk(M) : R×Zn → Z, is given by:

ϕk(M)(h, s(ti, · )) := ∂k−1
t u(ti + h, · )−O(hM+1) =

M∑
j=0

hj

j! ∂
j+k−1
t u(ti, · )

with k ∈ {1, 2, . . . , n}.

In expression (3.25), the n-th time derivative of u at t = ti is computed with (3.19a),

and if M = 4, then the next time derivatives of u are given by:

∂n+1
t u := df

dt = ∂f

∂t
+ ∂f

∂sk
∂kt u, (3.26a)

∂n+2
t u := d2f

dt2 = ∂2f

∂t2
+ 2 ∂2f

∂t∂sk
∂kt u+ ∂f

∂sk
∂k+1
t u+ ∂2f

∂sk∂sl
∂kt u ∂

l
tu, (3.26b)
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and

∂n+3
t u := d3f

dt3 = ∂3f

∂t3
+ 3 ∂3f

∂t2∂sk
∂kt u+ 3 ∂2f

∂t∂sk
∂k+1
t u+ ∂f

∂sk
∂k+2
t u

+ 3 ∂3f

∂t∂sk∂sl
∂kt u ∂

l
tu+ 3 ∂2f

∂sk∂sl
∂k+1
t u ∂ltu+ ∂3f

∂sk∂sl∂sm
∂kt u ∂

l
tu ∂

m
t u, (3.26c)

where sk = ∂k−1
t u is the k-th component of s, and a summation sign is implied over

every repeated index k, l,m ∈ {1, 2, . . . , n}.

For an autonomous, n-th-order linear ODE, the first M − 1 time derivatives of (3.19a)

reduce to:

∂n+m
t u =

n∑
k=1

∂f

∂sk
∂m+k−1
t u ∀m ∈ {1, 2, . . . ,M − 1}.

It is worth noting that the goal of a (local) stochastic flow map is to push the state of the

system one-time step forward in Zn (i.e. in the random phase space of the system2), provided

that the time-step size used is greater than zero. For example, Fig. 3.1 depicts the case of a

system governed by a second-order ODE whose state motion in Z2 starts at t = 0 and ends

at t = T ; pretty much in the same way a two-dimensional, time-dependent stochastic input

would evolve in Z2 if its map were known beforehand.

Remark 3.10. In practice, it is easier to compute the time derivatives of f approximately, by

using any of the standard numerical methods available in the literature, such as the central

difference method. When the central difference method is, say, used to compute approximately

the first time derivative of f at t = ti, we get:

df
dt (ti, · , s(ti, · )) ≈

f(ti + h, · , s(ti + h, · ))−f(ti − h, · , s(ti − h, · ))
2h

for some small h ∈ R \ {0}. Therefore, the condition that we made earlier that u ∈ T(n +

M − 1)⊗Z now drops to its natural condition that u ∈ U.

2Note that Zn is the n-fold cartesian product of Z, where n denotes the order of the system’s governing
ODE with respect to time.
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Figure 3.1. Evolution of a second-order dynamical system via a stochastic flow map of
order M (with hi > 0)
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Example 3.2. Consider a specialization of the stochastic system given by (3.1) for the case

when n = 2, and without loss of generality, suppose that L, B1 and B2 are linear operators.

Then, under this setting, one obtains:

a2(t, ξ) ü(t, ξ) + a1(t, ξ) u̇(t, ξ) + a0(t, ξ)u(t, ξ) = f(t, ξ) on T× Ξ (3.27a)b11(ξ) u̇(0, ξ) + b10(ξ)u(0, ξ) = b1(ξ)

b21(ξ) u̇(0, ξ) + b20(ξ)u(0, ξ) = b2(ξ)

 on {0} × Ξ, (3.27b)

where the dimensionality of the random space, d, can be assumed to be any natural number.

Provided sufficient regularity, an explicit form of (3.27) can be established by:

∂2
t u(t, ξ) := f(t, ξ, u(t, ξ), u̇(t, ξ))

= f̄(t, ξ) + ā0(t, ξ)u(t, ξ) + ā1(t, ξ) u̇(t, ξ) on T× Ξ (3.28a){
u(0, ξ) = b̄1(ξ), u̇(0, ξ) = b̄2(ξ)

}
on {0} × Ξ, (3.28b)

where f̄ = f/a2, ā0 = −a0/a2 and ā1 = −a1/a2 are elements of V, and b̄1 = (b1b21 −

b2b11)/(b10b21 − b11b20) and b̄2 = (b2b10 − b1b20)/(b10b21 − b11b20) are elements of Z.

This is, of course, a non-autonomous stochastic system because f depends explicitly

on the time variable t, and what is more, it features a time-dependent stochastic input

x = (x1, x2, x3) ∈ V3 given by:

x1(t, ξ) = f̄(t, ξ), x2(t, ξ) = ā0(t, ξ), x3(t, ξ) = ā1(t, ξ).

A stochastic flow map, ϕ(4) = (ϕ1(4), ϕ2(4)), for the system in hand can then be specified

with (3.24) to produce:

ϕ1(4)(h, s(ti, · )) = u(ti, · ) + h u̇(ti, · ) + 1
2h

2 ∂2
t u(ti, · )

+ 1
6h

3 ∂3
t u(ti, · ) + 1

24h
4 ∂4

t u(ti, · ) (3.29a)

ϕ2(4)(h, s(ti, · )) = u̇(ti, · ) + h ∂2
t u(ti, · ) + 1

2h
2 ∂3

t u(ti, · )

+ 1
6h

3 ∂4
t u(ti, · ) + 1

24h
4 ∂5

t u(ti, · ), (3.29b)
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where the second time derivative ∂2
t u(ti, · ) is computed with (3.28a), and the next time

derivatives {∂jtu(ti, · )}5
j=3 with (3.23) from where one obtains: h4 = h5 ≡ 0 and

∂tf= ∂tf̄ + ∂tā0 u+ ∂tā1 u̇, ∂2
tf= ∂2

t f̄ + ∂2
t ā0 u+ ∂2

t ā1 u̇,

∂3
tf= ∂3

t f̄ + ∂3
t ā0 u+ ∂3

t ā1 u̇, (3.30a)

∂uf= ā0, ∂2
tuf= ∂tā0, ∂3

ttuf= ∂2
t ā0, (3.30b)

∂u̇f= ā1, ∂2
tu̇f= ∂tā1, ∂3

ttu̇f= ∂2
t ā1. (3.30c)

3.5. Enriched stochastic flow map

In the enriched version of the stochastic flow map we are not only concerned with pushing

the state of the system one-time step forward in Zn, but also f (as displayed in Eq. (3.19a))

and its first M − 1 time derivatives. Because of this, we define the enriched stochastic flow

map of order M , ϕ̂(M) : R×Zn+M → Zn+M , such that its k-th component is given by:

ϕ̂k(M)(h, ŝ(ti, · )) =: ŝk(ti + h, · ) =


ϕk(M)(h, s(ti, · )) for k ∈ {1, 2, . . . , n}

Dk−n−1
t f(ti + h, · , s(ti + h, · )) otherwise

with k ∈ {1, 2, . . . , n + M}. Here ŝ = (u, ∂tu, . . . , ∂n+M−1
t u) ∈ ∏n+M

j=1 T(n + M − j) ⊗Z is

called the enriched configuration state of the system over T×Ξ. Observe that ŝn+1 := ∂nt u = f

is defined by (3.19a), and that if M = 4, then {ŝk := ∂k−1
t u = Dk−n−1

t f}n+4
k=n+2 is given by the

expressions prescribed in (3.26).

Example 3.3. Consider the stochastic system presented in Example 3.2. The associated

enriched stochastic flow map for that system, ϕ̂(4), is found to be:

ϕ̂1(4)(h, s(ti, · )) := ϕ1(4)(h, s(ti, · )) = s1(ti + h, · ) = u(ti + h, · )−O(h5), (3.31a)

ϕ̂2(4)(h, s(ti, · )) := ϕ2(4)(h, s(ti, · )) = s2(ti + h, · ) = u̇(ti + h, · )−O(h5), (3.31b)

ϕ̂3(4) := f= ∂2
t u, ϕ̂4(4) := Dtf= ∂3

t u, ϕ̂5(4) := D2
tf= ∂4

t u

and ϕ̂6(4) := D3
tf= ∂5

t u, (3.31c)
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where ϕ̂1(4) and ϕ̂2(4) are computed with (3.29), ϕ̂3(4) with (3.28a), and {ϕ̂k(4)}6
k=4 with

(3.23). In Example 3.2 we found that from (3.23) one obtains h4 = h5 ≡ 0 and (3.30).

3.6. Flow-driven spectral chaos (FSC) method

As already mentioned in the introduction, the FSC method uses the concept of enriched

stochastic flow maps to track the evolution of the stochastic part of the solution space

efficiently in time. In Section 3.4, we assumed that the solution of the system governed

by (3.19) was analytic on the temporal domain. This assumption implies that u can be

represented by a Taylor series centered at t = ti ∈ T for all ξ ∈ Ξ:

u(t, ξ) =
∞∑
j=0

(t− ti)j
j! ∂jtu(ti, ξ), (3.32)

where (t− ti)j/j! is nothing but a temporal function in T, and ∂jtu(ti, ξ) is a random function

in Z. From this it follows that if {∂jtu(ti, ξ)}∞j=0 is orthogonalized with respect to the measure

in Z, one can write expression (3.32) in the following way:

u(t, ξ) =
∞∑
j=0

uj(t) Ψj(ξ). (3.2)

For a system driven by a stochastic flow map of order M , it is apparent that the infinitely

many basis vectors in {∂jtu(ti, · )}∞j=0 do not all need to be orthogonalized, but only the n+M

components of the enriched stochastic flow map: {ϕ̂k(M)(0, ŝ(ti, · )) ≡ ∂k−1
t u(ti, · )}n+M

k=1 . In

this sense, the order of the stochastic flow map determines the maximum number of basis

vectors to use in the simulation. This explains why the FSC method does not suffer from the

curse of dimensionality at the random-function-space level, even when the probability space

is high-dimensional.

However, to reduce the numerical cost associated with the orthogonalization of n+M

basis vectors as indicated above, one can choose to start the FSC analysis by considering first

the lowest value for M , i.e. M = 1. Then, if more accurate results are needed, the M -value can

be incremented progressively, provided that it does not exceed the order of the stochastic flow

map we are targeting. Hence, in the FSC method the discretization of the random function
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space Z[P ] is bounded by n + 1 ≤ P ≤ n + M as long as we presume that the system is

driven by a stochastic flow map of order M .

Remark 3.11. We note that once this M is fixed to solve the problem in hand numerically, the

probability information of the system’s state can be pushed exactly in time if the discretization

level of Z is such that P = n+M . However, as we will see in Section 3.8, accurate results

are also achievable for a lower discretization level of Z, and thus, we do not always need to

run our simulations with a relatively high value of P .

FSC scheme Let us consider the stochastic system given by (3.1). Let {Ti}N−1
i=0 be a

partition of the temporal domain, where Ti 6= ∅ represents the i-th interval of the partition,

and define s.i = s|cl(Ti)×Ξ to be the restriction of s to Ri := cl(Ti)× Ξ. (Please see Fig. 3.2,

and recall that s represents the configuration state of the system over T× Ξ.) Then, if the

system is driven by a stochastic flow map of order M , proceed as below.

1. Loop across the temporal domain from i = 0 to i = N − 1.

(a) Define a solution representation for the configuration state s.i in the following way.

• Take Φ0.i ≡ 1 and {Φj.i := ϕ̂j(M)(0, ŝ(ti, · ))}Pj=1 to be an ordered set of lin-

early independent functions in Z with n + 1 ≤ P ≤ n + M . Observe that

ϕ̂(M)(0, ŝ(ti, · )) ≡ ŝ.i(ti, · ) = ŝ.i−1(ti, · ) for i ≥ 1. However, if i = 0, then

ϕ̂(M)(0, ŝ(t0, · )) ≡ ŝ(0, · ). (Note: When the initial conditions over Ri are linearly

dependent, please see Remark 3.12.) It is worth mentioning that, for computa-

tional efficiency, we have chosen hi = 0 for the definition of {Φj.i}Pj=1, but in

principle hi is any number between 0 and the length of Ti. For higher accuracy,

hi is recommended to be taken as the distance between ti and the midpoint in Ti.

This recommendation is especially important when the length of Ti is relatively

large, such as in multi-time-step simulations.

• Orthogonalize the set {Φj.i}Pj=0 using the Gram-Schmidt process [61], so that the

resulting set {Ψj.i}Pj=0 is an orthogonal basis in Z. That is, for j ∈ {0, 1, . . . , P}:

Ψj.i := Φj.i −
j−1∑
k=0

〈Φj.i,Ψk.i〉
〈Ψk.i,Ψk.i〉

Ψk.i.
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Figure 3.2. Evolution of a dynamical system via a stochastic flow map of order M (with
hi > 0)
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(Equivalently, Theorem 3.1 can be employed in this step.)

• Define Z
[P ]
i = span{Ψj.i}Pj=0 to be a p-discretization of Z over the region Ri.

Since Z
[P ]
i is an evolving function space, expansion (3.3) is now to be read as:

u.i(t, ξ) ≈ u
[P ]
.i (t, ξ) =

P∑
j=0

uj.i(t) Ψj.i(ξ) ≡ uj.i(t) Ψj.i(ξ). (3.3*)

From this it follows that the l-th component of the configuration state, sl.i, can

be computed by taking the (l− 1)-th time derivative of this representation. Here

l ∈ {1, 2, . . . , n}.

(b) Transfer the random modes of

s.i−1 = (u.i−1, ∂tu.i−1, . . . , ∂
n−1
t u.i−1) to s.i = (u.i, ∂tu.i, . . . , ∂n−1

t u.i)

at t = ti, given that i ≥ 1. To this end, any of the following two approaches can be

adopted.

FSC-1. This approach transfers the probability information in the mean-square

sense, by ensuring that the equalities shown below hold in the mean-square sense

for each of the components of s.i and s.i−1 at t = ti (summation sign implied only

over repeated index k):

sl.i(ti, ξ) = sl.i−1(ti, ξ) ⇐⇒ (sl)k.i(ti) Ψk.i(ξ) = (sl)k.i−1(ti) Ψk.i−1(ξ).

(3.33)

Projecting (3.33) onto Z
[P ]
i gives the random modes of each of the components

of s.i at t = ti:

(sl)j.i(ti) =
P∑
k=0

〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

(sl)k.i−1(ti), (3.8b*)

where l ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , P}. This approach was first introduced

by Heuveline and Schick in [35].
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FSC-2. This approach transfers the probability information exactly. In order to

do so, Theorem 3.1 is implemented to obtain the random modes of each of the

components of s.i at t = ti. Thus, from (3.12) it follows that:

Φl.i = E[Φl.i] Ψ0.i +
l−1∑
j=1

det4j(l)
det�j

Ψj.i + Ψl.i with Ψ0.i ≡ 1,

which after taking {Φl.i := ϕl(M)(0, s(ti, · )) ≡ sl.i(ti, · ) = sl.i−1(ti, · )}nl=1 yields

(sl)j.i(ti) =



E[sl.i−1(ti, · )] for j = 0

det4j(l)
det�j

for 0 < j < l

1 for j = l

0 otherwise,

(3.8b*)

where l ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , P}. This approach was first introduced

by Gerritsma et al. in [34], but it had not been generalized for high-order stochastic

ODEs until now.

If i = 0, the initial conditions are computed with (3.8b) directly.

(c) Substitute (3.3*) into (3.1) to obtain (3.7).

(d) Project (3.7a) onto Z
[P ]
i to obtain (3.8a) subject to (3.8b*). Note that if i = 0, (3.8a)

is subject to (3.8b).

(e) Integrate (3.8) over time, as long as a suitable time integration method has been

selected for solving the resulting system of equations. This step requires to find the

random modes of each of the components of the configuration state s.i at t = ti+1;

that is, {(sl)j .i(ti+1)}n,Pl=1,j=0.

(f) Compute both the mean and the variance of each of the components of output

y = M[u][x] over Ri, by recurring to the formulas prescribed by (3.9) and (3.10).

2. Post-process results.

Remark 3.12. When the initial conditions are linearly dependent over the region Ri, any of

the following two approaches can be used:
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• If at the start of the simulation the initial conditions over R1 are deterministic, the

first n vectors in {Φj.0 := ϕ̂j(M)(0, ŝ(t0, · ))}Pj=1 are required to be removed from the

set, for they are linearly dependent to Φ0.0 ≡ 1. However, if more generally the initial

conditions are linearly dependent over Ri, one can find a linear map A such that its

image produces a set of linearly independent vectors for use in the definition of Φj.i.

That is, if the rank of A is r + 1, then A : Zn+1 → Zr+1 is a linear map given by:

(
1, ϕ(M)(0, s(ti, · ))

)
7→ (b0 ≡ 1, b1, . . . , br) = A

(
1, ϕ(M)(0, s(ti, · ))

)
.

For example, if n = 4 and r = 2, the map A : Z5 → Z3 can be given in matrix form

by:


b0

b1

b2

 =


1 0 0 0 0

0 A1
1 A1

2 A1
3 A1

4

0 A2
1 A2

2 A2
3 A2

4





1

ϕ1(M)(0, s(ti, · ))

ϕ2(M)(0, s(ti, · ))

ϕ3(M)(0, s(ti, · ))

ϕ4(M)(0, s(ti, · ))


with Ajk ∈ R and such that rank(A) = r+1 = 3. In general, this means that the ordered

set needed in step 1(a) reduces to:

{Φj.i}P−n+r
j=0 ≡ {bk}rk=0 ∪ {ϕ̂k(M)(0, ŝ(ti, · ))}Pk=n+1.

• As an alternative, the gPC method can be employed to advance the state of the system

one-time step forward in the simulation, and then switch over FSC once this is done. The

disadvantage of this alternative is that it only works at early times of the simulation.

Remark 3.13. A stopping condition can be defined within the FSC scheme to help reduce

the computational cost associated with the creation of a new random function space in the

simulation. However, a major drawback of incorporating a stopping condition within the

scheme is that, if not chosen well, it can lead to significant degradation of the solution over

time. Stopping conditions such as those addressed by Gerritsma et al. [34] were implemented

in this work, but led to high errors in the response at the end of the simulations. This is the

primary reason why we did not provide one within the FSC scheme.
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Example 3.4. Consider Example 3.2 one more time. If FSC-1 is used to transfer the

probability information of the system’s state at t = ti, we get the following expressions for

the random modes of s.i = (u.i, u̇.i):

uj.i(ti) =
P∑
k=0

〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

uk.i−1(ti) and u̇j.i(ti) =
P∑
k=0

〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

u̇k.i−1(ti)

with j ∈ {0, 1, . . . , P}. However, if FSC-2 is employed instead, the probability information is

transferred with the following expressions. For the random modes of u.i, the expressions are:

uj.i(ti) =



E[u.i−1(ti, · )] for j = 0

1 for j = 1

0 for 2 ≤ j ≤ P ,

and those corresponding to the random modes of u̇.i are:

u̇j.i(ti) =



E[u̇.i−1(ti, · )] for j = 0

Cov[u.i−1(ti, · ), u̇.i−1(ti, · )]
Cov[u.i−1(ti, · ), u.i−1(ti, · )]

for j = 1

1 for j = 2

0 for 3 ≤ j ≤ P .

From this example, it is easy to see why the probability information is transferred faster if

FSC-2 is used.

3.7. Numerical examples

To better investigate the performance of the FSC method in the resolution of problems

involving stochastic input data, six problems are selected and described in this section.

3.7.1. Problem 1: A linear system governed by a 1st-order stochastic ODE

We consider the problem of a falling body under stochastic air resistance as follows.
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Find the velocity of the falling body v : T× Ξ→ R in U, such that (µ-a.e.):

mv̇ + kv = mg on T× Ξ

v(0, · ) = v on {0} × Ξ,

where m = 4 kg is the mass of the falling body, k : Ξ → R+ is the air resistance given by

k(ξ) = ξ, g = 9.81 m/s2 is the gravity acceleration, v = 50 m/s is the initial condition of the

falling body, and T = [0, 150] s. Here v̇ := ∂tv denotes the acceleration of the falling body.

Two probability distributions are considered for this system. The first distribution is

a uniform distribution, Uniform ∼ ξ ∈ Ξ = [a, b], and the second distribution is a beta

distribution, Beta(α, β) ∼ ξ ∈ Ξ = [a, b]. The parameters for both distributions are: (a, b) =

(1, 2) kg/s and (α, β) = (2, 5).

3.7.2. Problem 2: A linear system governed by a 2nd-order stochastic ODE

with one random variable

We consider the problem of a single-degree-of-freedom system with stochastic stiffness

under free vibration.

Find the displacement of the system u : T× Ξ→ R in U, such that (µ-a.e.):

mü+ ku = 0 on T× Ξ{
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ,

where m = 100 kg is the mass of the system, k : Ξ→ R+ is the stiffness of the system given

by k(ξ) = ξ, u = 0.05 m and v = 0.20 m/s are the initial conditions of the system, and

T = [0, 150] s. Note that u̇ := ∂tu and ü := ∂2
t u denote the velocity and acceleration of the

system, respectively.

Three probability distributions are considered for this system. The first distribution

is a uniform distribution, Uniform ∼ ξ ∈ Ξ = [a, b], the second distribution is a beta

distribution, Beta(α1, β1) ∼ ξ ∈ Ξ = [a, b], and the third distribution is a gamma distribution,

Gamma(α2, β2) ∼ ξ ∈ Ξ = [a,∞). The parameters for these three distributions are selected

to be: (a, b) = (340, 460) N/m and (α1, β1, α2, β2) = (2, 5, 10, 0.1).
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3.7.3. Problem 3: A linear system governed by a 2nd-order stochastic ODE

with two random variables

In this section we consider the single-degree-of-freedom system previously defined, but in

addition to having a stochastic stiffness for the system we also have a stochastic mass. In this

setting, the mass of the system, m : Ξ→ R+, and the stiffness of the system, k : Ξ→ R+, are

given by m(ξ) = ξ1 and k(ξ) = ξ2, respectively, with 1 and 2 not denoting an exponentiation.

We note that ξ = (ξ1, ξ2) is a 2-tuple random variable, and thus, Ξ is a two-dimensional

random domain.

For this system, two probability distributions are explored. The first distribution is a

uniform-uniform distribution, Uniform⊗Uniform ∼ ξ ∈ Ξ = [a1, b1]× [a2, b2], and the second

distribution is a uniform-beta distribution, Uniform⊗ Beta(α, β) ∼ ξ ∈ Ξ = [a1, b1]× [a2, b2].

The parameters for both distributions are taken as: (a1, b1) = (85, 115) kg, (a2, b2) = (340, 460)

N/m and (α, β) = (2, 5).

3.7.4. Problem 4: A linear system governed by a 3rd-order stochastic ODE

Here we consider the problem of a linear mechanical system governed by a 3rd-order

stochastic ODE.

Find the displacement of the system u : T× Ξ→ R in U, such that (µ-a.e.):

∂3
t u+ 1

2 ∂
2
t u+ k ∂tu+ u = 0 on T× Ξ{

u(0, · ) = u, ∂tu(0, · ) = v, ∂2
t u(0, · ) = a

}
on {0} × Ξ,

where k : Ξ→ R is a mechanical parameter given by k(ξ) = ξ; u = 1 m, v = −1 m/s and

a = 2 m/s2 are the initial conditions of the system; and T = [0, 150] s.

Three probability distributions are investigated for this system. The first distribution

is a uniform distribution, Uniform ∼ ξ ∈ Ξ = [a, b], the second distribution is a beta

distribution, Beta(α, β) ∼ ξ ∈ Ξ = [a, b], and the third distribution is a normal distribution,

Normal(µ, σ2) ∼ ξ ∈ Ξ = R. The parameters for these three distributions are: (a, b) = (2, 3)

N/m, (µ, σ) = (2.5, 0.125) N/m and (α, β) = (2, 5).
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3.7.5. Problem 5: A linear system governed by a 4th-order stochastic ODE

Next, we consider the problem of a linear mechanical system governed by a 4th-order

stochastic ODE.

Find the displacement of the system u : T× Ξ→ R in U, such that (µ-a.e.):

∂4
t u+ k ∂2

t u+ u = 0 on T× Ξ{
u(0, · ) = u, ∂tu(0, · ) = v, ∂2

t u(0, · ) = a, ∂3
t u(0, · ) = j

}
on {0} × Ξ,

where k : Ξ→ R is a mechanical parameter given by k(ξ) = ξ; u = 1 m, v = −1 m/s, a = 2

m/s2 and j= −3 m/s3 are the initial conditions of the system; and T = [0, 150] s.

The same three probability distributions mentioned in Problem 4 are considered here,

but the parameters of the distributions now take the following values: (a, b) = (3, 5) kg,

(µ, σ) = (4, 0.2) kg and (α, β) = (2, 5).

3.7.6. Problem 6: A nonlinear system governed by a 2nd-order stochastic ODE

In this last section, we study the stochastic behavior of a Van-der-Pol oscillator. Because

this oscillator is highly nonlinear over the temporal-random space, we use it herein as a toy

problem to test the performance of the FSC method more thoroughly. For reference, the

spectral discretization of this problem is derived in detail in Appendix 3.A. The problem can

be stated as follows.

Find the displacement of the oscillator u : T× Ξ→ R in U, such that (µ-a.e.):

mü− (1− ρu2) cu̇+ ku = 0 on T× Ξ (3.34a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ, (3.34b)

where m = 100 kg is the mass of the oscillator, c is a uniformly-distributed random variable

representing the strength of the damping and defined in [150, 450] kg/s, ρ = 150 m−2 is

the contributing factor to the nonlinearity of the oscillator, k = 400 N/m is the stiffness of

the oscillator, u∼ Beta(2, 5) is a beta-distributed random variable defined in [0.05, 0.25] m,

v = 2u− 0.10 is another beta-distributed random variable expressed in m/s, and T = [0, 150]
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s. Observe that u̇ := ∂tu and ü := ∂2
t u denote the velocity and acceleration of the oscillator,

respectively.

3.8. Discussion on numerical results

In this section, we demonstrate and compare the performance of the FSC scheme using

the two approaches developed in Section 3.6 for the transfer of the probability information,

namely FSC-1 and FSC-2. We do this for each of the problems described in Section 3.7,

followed by a computational-cost comparison between FSC and mTD-gPC [35] for Problem 2

of Section 3.7.2.

The local error, ε : T→ T, and the global error, εG : T→ R, are defined with these

expressions:

ε[f ](t) = |f(t)− fexact(t)|

εG[f ] = 1
T

∫
T
|f(t)− fexact(t)| dt ≈

∆t
T

N∑
i=0
|f(ti)− fexact(ti)|,

where ∆t is the time-step size used for the simulation, ti ∈ T is the time instant of the

simulation, and N denotes the number of time steps employed in the simulation (with t0 = 0

and tN = N ∆t = T ).

In this work we use the Runge-Kutta method [29] of fourth-order (aka RK4 method) to

push the state of the system forward in time. The time-step size used is ∆t = 0.001 s (unless

indicated otherwise), which means that N = 150 000 time steps are used in the simulations3.

The time-step size is taken this small to attenuate as much as possible the errors coming

from the discretization of T(n). As pointed out in Remark 3.13, we update the stochastic

part of the solution space at every time step in an attempt to curtail the degradation of the

solution over time. Finally, the gPC method (with P = 6) is implemented for the first second

of the simulation to ensure that the stochasticity of the system’s state is well developed for

the analysis with FSC or mTD-gPC.

3For numerical reasons, if in the plots an asterisk is displayed next to a probability distribution, it means
that the simulation was conducted for the first 100 seconds only. In such cases, N = 100 000 for a time-step
size of 0.001 seconds.
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To evaluate the inner products numerically, we use the following quadrature rules on each

random axis:

Uniform ∼ Gauss-Legendre(100 points), Beta ∼ Gauss-Jacobi(80 points),

Gamma ∼ Gauss-Laguerre(140 points) and Normal ∼ Gauss-Hermite(110 points).

All problems are run in MATLAB R2016b [62] on a 2017 MacBook Pro with quad-core

3.1 GHz Intel Core i7 processor (hyper-threading technology enabled), 16 GB 2133 MHz

LPDDR3 memory and 1 TB PCI-Express SSD storage (APFS-formatted), running macOS

Mojave (version 10.14.6).

3.8.1. Numerical results for the five linear systems

Figs. 3.3 to 3.7 show the evolution of the mean and the variance of one of the system’s

responses using FSC-2 and the exact solution4 for sake of comparison. In particular, Fig. 3.3

shows the evolution of the system’s velocity for Problem 1, Figs. 3.4 to 3.6 the evolution of

the system’s displacement for Problems 2 to 4, and Fig. 3.7 the evolution of the system’s jerk

for Problem 5. As observed, responses obtained with both the FSC-1 and FSC-2 methods

approach the exact solution with high fidelity. We emphasize that these responses are obtained

by using only a few number of basis vectors with P set equal to 4 + n after the first second of

the simulation. (Recall that n denotes the order of the governing ODE with respect to time.)

Figs. 3.8 to 3.16 present the local errors in mean and variance of each of the responses

mentioned above but only for Problems 1 and 2 for sake of brevity. The errors are depicted for

both FSC-1 and FSC-2. To compare, we also include the case when P = n even though the

FSC scheme requires that P is taken at least equal to n+ 1. We do so to test the implications

of spanning the RFS with the state variables of the system only. The cases when P = n+ 2

and P = n+ 4 are also provided for the sake of comparison. From these figures, it is apparent

4To obtain both the ‘exact’ mean and the ‘exact’ variance, MATLAB’s Symbolic Math Toolbox [62] is
first used to find the response of interest analytically (e.g. the solution of the stochastic ODE). Then, the
vpaintegral is called with RelTol set equal to 10−16 to compute the mean and the variance of the response
numerically at every time instant of the simulation.
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Figure 3.3. Problem 1 — Evolution of E[v] and Var[v] for the case when the p-discretization
level of RFS is Z[5] and µ ∼ Uniform
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Figure 3.4. Problem 2 — Evolution of E[u] and Var[u] for the case when the p-discretization
level of RFS is Z[6] and µ ∼ Uniform
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Figure 3.5. Problem 3 — Evolution of E[u] and Var[u] for the case when the p-discretization
level of RFS is Z[6] and µ ∼ Uniform⊗ Uniform
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Figure 3.6. Problem 4 — Evolution of E[u] and Var[u] for the case when the p-discretization
level of RFS is Z[7] and µ ∼ Uniform
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Figure 3.7. Problem 5 — Evolution of E[∂3
t u] and Var[∂3

t u] for the case when the p-
discretization level of RFS is Z[8] and µ ∼ Uniform
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that as the number of basis vectors increases, so does the accuracy of the results. In particular,

when the FSC-1 approach is used, the following observation can be made. By increasing the

number of basis vectors from n+ 1 to n+ 3, the accuracy of the results improves significantly

by 6 orders of magnitude. However, when the number of basis vectors is increased from n+ 3

to n+ 5, the results either do not improve noticeably or worsen a bit (as in Figs. 3.14 to 3.16).

This is in contrast to the FSC-2 approach. When FSC-2 is used, the accuracy of the results

improves not only significantly but also consistently as the number of basis vectors increases.

The figures also indicate that FSC-2 can achieve in general a higher level of accuracy than

FSC-1 as time progresses in the simulation. However, we do notice that whenever P = n, no

difference between the two approaches can be discerned.

Figs. 3.17 to 3.21 present the convergence of global errors as a function of the number

of basis vectors. Included in these figures are the cases when the random parameters take

different probability distributions as specified in Sections 3.7.1 to 3.7.5. In general, exponential

convergence to the solution is achieved when n+ 1, n+ 2 and n+ 3 basis vectors are used.

However, in the case of using n+ 4 basis vectors, the accuracy of the results does not improve

noticeably for FSC-1 but it does for FSC-2. In fact, a significant difference between the two

approaches can be discerned after using n+ 4 basis vectors. Moreover, as it can be deduced

from the results, that there is no gain in employing n + 5 basis vectors in the simulations

because it does not lead to an increase in the accuracy of the solution. It is interesting to point

out that in all figures, the results from FSC-1 and FSC-2 happen to be indistinguishable from

each other whenever n+1 or n+2 basis vectors are used in the simulations. This is in contrast

to Fig. 3.17 which shows that exponential convergence to the solution cannot be attained if

the number of basis vectors is increased from n+ 2 to n+ 3 (i.e. from 3 to 4). This peculiar

result can be explained by noting that the system’s response is non-oscillatory, which makes

the track of the RFS deviate continuously as the simulation proceeds. Figs. 3.18 and 3.19

further show that when the probability space is one-dimensional (Problem 2), better results

are obtained than when it is two-dimensional (Problem 3). This is because more quadrature

points are needed in Problem 3 to achieve the same level of accuracy. We also note from

Fig. 3.19 that albeit the probability space is two-dimensional, a few numbers of basis vectors

are needed to obtain accurate results. Remarkably, using only 5 or 6 basis vectors for FSC-2

143



0 50 100 150

10-10

10-5

100

(a) Mean error for Z[1]

0 50 100 150
10-15

10-10

10-5

100

(b) Variance error for Z[1]

Figure 3.8. Problem 1 — Local error evolution of E[v] and Var[v] for different p-
discretization levels of RFS and for µ ∼ Uniform (Set 1/3)

144



0 50 100 150
10-15

10-10

10-5

100

(a) Mean error for Z[3]

0 50 100 150
10-15

10-10

10-5

100

(b) Variance error for Z[3]

Figure 3.9. Problem 1 — Local error evolution of E[v] and Var[v] for different p-
discretization levels of RFS and for µ ∼ Uniform (Set 2/3)

145



0 50 100 150
10-15

10-10

10-5

100

(a) Mean error for Z[5]

0 50 100 150
10-15

10-10

10-5

100

(b) Variance error for Z[5]

Figure 3.10. Problem 1 — Local error evolution of E[v] and Var[v] for different p-
discretization levels of RFS and for µ ∼ Uniform (Set 3/3)
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Figure 3.11. Problem 2 — Local error evolution of E[u] and Var[u] for different p-
discretization levels of RFS and for µ ∼ Uniform (Set 1/3)
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Figure 3.12. Problem 2 — Local error evolution of E[u] and Var[u] for different p-
discretization levels of RFS and for µ ∼ Uniform (Set 2/3)
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Figure 3.13. Problem 2 — Local error evolution of E[u] and Var[u] for different p-
discretization levels of RFS and for µ ∼ Uniform (Set 3/3)
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Figure 3.14. Problem 3 — Local error evolution of E[u] and Var[u] for different p-
discretization levels of RFS and for µ ∼ Uniform⊗ Uniform (Set 1/3)
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Figure 3.15. Problem 3 — Local error evolution of E[u] and Var[u] for different p-
discretization levels of RFS and for µ ∼ Uniform⊗ Uniform (Set 2/3)
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Figure 3.16. Problem 3 — Local error evolution of E[u] and Var[u] for different p-
discretization levels of RFS and for µ ∼ Uniform⊗ Uniform (Set 3/3)
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already produces a global error of approximately 10−10. Finally, Fig. 3.21 indicates that when

the response is unbounded (e.g. when ξ is assumed normally distributed), FSC-2 has the

ability to control better the error propagation of the solution as the simulation proceeds.

Fig. 3.22 presents the convergence of global errors for Problem 2 as a function of the

number of basis vectors and for different time-step sizes. The goal of this figure is to show

the implications of increasing the time-step size used by default (∆t = 0.001 s) in regard

to the accuracy of the results. Though here we only depict the case when ξ is uniformly

distributed, similar trends are obtained when other distributions are used. In particular, this

figure shows that the discretization of the temporal function space plays an important role

when it comes to the FSC-2 approach but not when it comes to the FSC-1 approach. The

reason for this is that in FSC-1 the errors coming from the RFS discretization are substantially

larger than those coming from the discretization of the temporal function space. This leads

to the perception that decreasing the time-step size in FSC-1 does not have a direct effect on

improving the accuracy of the results derived from the RFS discretization. Furthermore, we

observe that more accurate results are obtained with FSC-2 if the time-step size used for the

simulation is progressively decreased.

Fig. 3.23 depicts the convergence of global errors for Problem 2 as a function of the

number of quadrature points utilized to estimate the inner products that appear when using

the spectral approach. We see that when 6 basis vectors are used to perform the simulation,

FSC-2 produces a more accurate result than FSC-1 if the number of quadrature points is

sufficiently large. However, no discernible differences between the two FSC approaches are

observed if 4 basis vectors are used. In fact, when 10 quadrature points (or even 20 quadrature

points for the case of the variance) are utilized, the global error does not improve as a function

of the number of basis vectors used or the FSC approach chosen. This is because the global

error is in this case dominated by the error coming from the Gaussian quadrature rule rather

than by the errors coming from the discretization of the random function space and the

transfer of the probability information.

Finally, Fig. 3.24 plots the global errors as a function of the computational cost associated

with FSC-1, FSC-2 and mTD-gPC. This cost is expressed here in terms of the wall-clock time

taken to complete the simulation. Labels P2Q0, P2Q1 and P2Q2 are defined in Ref. [35]
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Figure 3.17. Problem 1 — Global error of E[v] and Var[v] for different p-discretization
levels of RFS
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Figure 3.18. Problem 2 — Global error of E[u] and Var[u] for different p-discretization
levels of RFS
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Figure 3.19. Problem 3 — Global error of E[u] and Var[u] for different p-discretization
levels of RFS
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Figure 3.20. Problem 4 — Global error of E[u] and Var[u] for different p-discretization
levels of RFS

157



10-15

10-10

10-5

100

5 6 7 8 9

(a) Mean error

10-15

10-10

10-5

100

5 6 7 8 9

(b) Variance error

Figure 3.21. Problem 5 — Global error of E[∂3
t u] and Var[∂3

t u] for different p-discretization
levels of RFS
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Figure 3.22. Problem 2 — Global error of E[u] and Var[u] for different p-discretization
levels of RFS and time-step sizes (µ ∼ Uniform)
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Figure 3.23. Problem 2 — Global error of E[u] and Var[u] as a function of the number of
quadrature points employed to estimate the inner products (µ ∼ Uniform)
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(Pg. 45), and they correspond to the cases when 6, 12 and 18 basis vectors are employed

in the simulations, respectively. Some conclusions can be deduced from this figure. First,

with respect to achieving a similar level of error, both FSC approaches run much faster than

mTD-gPC. In particular, if a global error of approximately 10−8 is desired for the simulation,

FSC runs about 6 times faster than mTD-gPC. This outcome can be explained by noticing

that mTD-gPC requires more than twice the number of basis vectors than FSC. Second, for

the same number of basis vectors, the FSC method is able to produce results that are at least

6 orders of magnitude more accurate than mTD-gPC. For example, if the FSC-2 approach is

employed with 6 basis vectors, the results are 11 orders of magnitude more accurate than

the mTD-gPC counterpart. Therefore, the FSC methods are not only superior in terms

of computational efficiency than mTD-gPC, but they also have the ability to encode the

probability information a lot better as the simulation proceeds. However, it is important to

note that by increasing the number of basis vectors from 5 to 7 for FSC-1 and 12 to 18 for

mTD-gPC, the results worsen noticeably by an order of magnitude or so. This is primarily

due to the limited precision of the machine and the fact that the probability information is

being transferred in the mean-square sense. Moreover, Fig. 3.24 also reveals that in general

FSC-2 runs slightly faster than FSC-1. In fact, the more basis vectors we use, the higher this

difference in speed is. Finally, we also observe that when 7 basis vectors are used, FSC-2 is 5

orders of magnitude more accurate than FSC-1.

3.8.2. Numerical results for the nonlinear system

For this section we use the RK4 method with ∆t = 0.005 s to speed up the simulations.

Fig. 3.25 depicts the evolution of the mean and variance of the oscillator’s displacement using

FSC-2 and a Monte Carlo simulation with one million realizations. This figure shows that by

using only 5 basis vectors, FSC-2 has the ability to reproduce the Monte Carlo response with

high fidelity. This is quite a remarkable result, since not only the problem is highly nonlinear

over the temporal-random space but it also features a two-dimensional probability space.

Fig. 3.26 plots the local errors in mean and variance of the oscillator’s displacement. We

observe that by using 4 basis vectors, an error of 10−2 and 10−3 can be achieved for the
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Figure 3.24. Problem 2 — Global error of E[u] and Var[u] versus computational cost for
different p-discretization levels of RFS and for µ ∼ Uniform
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Figure 3.25. Problem 6 (the Van-der-Pol oscillator) — Evolution of E[u] and Var[u] for
the case when the p-discretization level of RFS is Z[4] and µ ∼ Uniform⊗ Beta
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Figure 3.26. Problem 6 (the Van-der-Pol oscillator) — Local error evolution of E[u] and
Var[u] for different p-discretization levels of RFS with respect to the 1-million Monte Carlo
simulation (µ ∼ Uniform⊗ Beta)
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mean and variance, respectively. If more basis vectors are used, say 5 or 6, the corresponding

errors cut down two orders of magnitude. This suggests that 5 basis vectors are sufficient to

reproduce a Monte Carlo simulation with one million realizations to a comparable level of

accuracy.

3.9. A parametric, high-dimensional stochastic problem

In this section, we show that the FSC method does not suffer from the curse of dimension-

ality at the random-function-space level by solving a parametric, high-dimensional problem.

Further, we show that by using the FSC method in conjunction with Monte Carlo integration

to compute the inner products, one can overcome the curse of dimensionality at the random-

space level as well—effectively eliminating the curse of dimensionality altogether. For this,

we investigate the following problem.

3.9.1. Problem statement

Find the displacement of the system u : T× Ξ→ R in U, such that (µ-a.e.):

ü+ ku = f on T× Ξ (3.35a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ, (3.35b)

where k, f : T× Ξ→ R and u, v : Ξ→ R are random variables given by:

k(t, ξ) = 1
2400

(
ξ1 + 40

)(
ξ6 + ξ7 + 40

)(
3− exp(− 1

77(ξ2 + 7)t)
)
,

f(t, ξ) = 1
1200

(
ξ3 + 7

)(
ξ8 + 40

)(
(ξ9 + ξ10) sin(1

7πt) + 3
)
,

u(ξ) = 1
7(ξ4 + 8) and v(ξ) = 1

8(ξ5 + 7).

In this problem we assume the following probability distribution: Beta⊗3⊗Uniform⊗d−3 ∼

ξ ∈ Ξ = [−1, 1]d. For the beta distribution, we take (α, β) = (2, 5) as the parameters of the

distribution. Since the random space is a parametric d-dimensional space, here we study

specifically the cases when d = 5, 7, 10. In particular, when d = 5, we take ξ6 = ξ7 = ξ8 =

ξ9 = ξ10 = 0, and when d = 7, we put ξ8 = ξ9 = ξ10 = 0. We recall that ξ = (ξ1, . . . , ξd)

165



for a d-dimensional space. The spectral discretization of this problem is derived in detail in

Appendix 3.B.

3.9.2. Discussion on numerical results

To run all the simulations, we employ the RK4 method with a time-step size of 0.01 s.

In Table 3.2 we have provided the non-orthogonalized version of the random basis for use

within the FSC scheme. Because the random space is in this case high-dimensional, the inner

products are computed with a Monte Carlo integration using 105 quadrature points sampled

from the random domain. For reference, each FSC simulation is compared below against a

Monte Carlo simulation with one million realizations to determine if convergence was achieved

for the FSC-2 scheme.

In Figs. 3.27 to 3.29 we plot the evolution of the mean and variance of the system’s

displacement for the three stochastic problems considered in this section. Two observations

are in order. First, for the smallest RFS that one can construct using the FSC method

(i.e. Z[3] for this problem), the FSC solution is capable of reproducing reasonably well the

Monte Carlo solution. Second, as the dimensionality of the random space is increased, we see

that there is no need to increase the dimensionality of the RFS to achieve good results. This

is different from other spectral methods such as gPC or TD-gPC, which would have required

a lot more basis vectors to span the RFS. For example, if a total-order tensor product were

utilized to solve the 10-dimensional problem, expression (3.4) would have indicated the need

of using 66 basis vectors to enrich the random basis with quadratic functions. However, as

we see in Figs. 3.27 to 3.29, only 4 basis vectors are needed in the simulations with FSC to

achieve solutions that are nearly indistinguishable from the Monte Carlo counterpart. This

proves—at least from a numerical standpoint—our assertion that the FSC method does not

suffer from the curse of dimensionality at the random-function-space level.

To study now how the number of quadrature points affects the estimation of the inner

products with a Monte Carlo integration—and consequently, the FSC results—, we run the

FSC-2 simulations using five realizations of 102, 103, 104 and 105 quadrature points. The

resulting solutions are then compared against a reference solution obtained from performing
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Figure 3.27. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[3] and µ ∼ Beta⊗3 ⊗ Uniform⊗d−3 (Set 1/3)
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Figure 3.28. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[3] and µ ∼ Beta⊗3 ⊗ Uniform⊗d−3 (Set 2/3)

168



0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

1.5

(a) Mean for d = 10

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Variance for d = 10

Figure 3.29. Evolution of E[u] and Var[u] for the case when the p-discretization level of
RFS is Z[3] and µ ∼ Beta⊗3 ⊗ Uniform⊗d−3 (Set 3/3)
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a Monte Carlo simulation with one million realizations. In Fig. 3.30 we present this study

for the three stochastic problems considered in this section by computing the global errors

obtained from the mean and variance of the system’s displacement. The first observation

that we can make is that the variability of the five realizations is in general higher when

using fewer quadrature points. This is not surprising since in Monte Carlo integration is well

recognized that the fewer the number of quadrature points, the more variation in the results

is expected from different realizations of quadrature points. A second observation is that the

accuracy of the results improves as the number of quadrature points increases. This is once

again expected for it is a direct consequence of the law of large numbers in probability theory.

This parametric, high-dimensional stochastic problem has therefore shown that when the

dimensionality of the probability space is high, the inner products can be computed with a

Monte Carlo integration technique without producing adverse effects, such as non-convergence

issues, in the FSC scheme.

From this section it follows that if we combine the FSC method with a Monte Carlo

integration technique, the curse of dimensionality can be fully annihilated at both random

levels, namely: at the random-space level and at the random-function-space level. This makes

the FSC method more suitable for solving higher-dimensional stochastic problems with the

spectral approach.

3.10. Conclusion

A novel numerical method called the flow-driven spectral chaos (FSC) is proposed in this

paper to quantify uncertainties in the long-time response of stochastic dynamical systems. In

the FSC method, we use the concept of enriched stochastic flow maps to track the evolution of

the stochastic part of the solution space efficiently in time. This track is motivated by the fact

that the solution of a stochastic ODE and its probability distribution change significantly as

a function of time. (It is well-known that when the state of a system is pushed one-time step

forward in the simulation, the random basis loses unavoidably its optimality.) Thus, to resolve

this long-time integration issue, we span the stochastic part of the solution space via the time

derivatives of the solution at the current time for use within the time step of the simulation.
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Figure 3.30. Global error of E[u] and Var[u] as a function of the number of quadrature
points employed to estimate the inner products with a Monte Carlo integration (µ ∼
Beta⊗3 ⊗ Uniform⊗d−3)
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This new way of approaching the problem follows upon noting that a Taylor-series expansion

can decompose a stochastic process into an infinite series of functions in the form of a product

of a temporal function and a random function (this is of course provided that the process

is assumed analytic on the temporal domain). The random functions thus generated are

subsequently orthogonalized to serve as a random basis for the solution space. To transfer the

probability information at any instant of time, two approaches are developed herein, FSC-1

and FSC-2. The first approach (FSC-1) enforces the probability information to be transferred

in the mean-square sense, whereas the second approach (FSC-2) ensures that the probability

information is transferred exactly. As discussed in Section 3.8, the FSC-2 approach has not

only the ability to produce results that are more accurate than FSC-1, but also the ability to

transfer the probability information faster than FSC-1. This is especially true if the order of

the ODE is low (provided we keep the dimensionality of the random function space fixed).

Therefore, we suggest using the FSC-2 approach when referring to the FSC method.

We have shown that the FSC method is insensitive to the curse of dimensionality at the

random-function-space level. This is because in practice the stochastic flow map of a system

is chosen to be finite-accurate, which allows the aforementioned Taylor-series expansion to

be truncated up to a specific order. This is in contrast to other methods such as gPC [33]

and TD-gPC [34], which use the concept of polynomial chaos and tensor products to find

a suitable random basis for the solution space, and which are known to suffer from the

curse of dimensionality to some extent. This curse of dimensionality has been regarded

as a fundamental issue in methods based on the spectral approach since the introduction

of the PC method back in 1938. This paper has addressed this fundamental issue at the

random-function-space level.

The FSC method has been applied to six representative problems in this paper. The

first five deal with systems governed by a linear stochastic ODE, while the last one is a

system governed by a nonlinear stochastic ODE (the Van-der-Pol oscillator). These ODEs

were selected to range from first to fourth order so that the performance of the FSC method

could be investigated more thoroughly. Based on our findings, we can conclude that FSC

outperforms TD-gPC in both accuracy and computational efficiency for solving stochastic

dynamical systems with complex physics. Furthermore, in Section 3.9 we solved three high-
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dimensional stochastic problems to demonstrate that the curse of dimensionality can be

overcome at both, the random-function-space level and the random-space level, by using the

FSC method together with Monte Carlo integration to compute the inner products.
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3.A. The Van-der-Pol oscillator

3.A.1. Discretization of the random function space

The random function space for the Van-der-Pol oscillator described in Section 3.7.6 is

discretized here for sake of reference. Let Z[P ] be a finite subspace of Z. Then, it is clear

that the oscillator’s displacement can be represented in Z[P ] with:

u(t, ξ) ≈ u[P ](t, ξ) =
P∑
j=0

uj(t) Ψj(ξ) ≡ uj(t) Ψj(ξ). (3.36)

Similarly, let Z̃ be a finite subspace of Z to represent the stochastic-input space of the

system exactly. This subspace is defined as Z̃= span{Ψ̃m}2
m=0, where Ψ̃0 ≡ 1, Ψ̃1 = c−E[c]

and Ψ̃2 = u− E[u]. Hence, we have:

c(ξ) =
2∑

m=0
cm Ψ̃m(ξ) ≡ cm Ψ̃m(ξ) and u(ξ) =

2∑
m=0

um Ψ̃m(ξ) ≡ um Ψ̃m(ξ), (3.37)

whence c0 = E[c], c1 = 1, c2 = 0, u0 = E[u], u1 = 0 and u2 = 1 are the coefficients of the

finite series.

Remark 3.14. In this problem, dim Z̃= 3 because c and u are the only independent random

variables in the model’s input. In a more general setting, dim Z̃= Ñ + 1, where Ñ represents

the number of independent random variables specified in input x of mathematical model

M[u].

Replacing (3.36) and (3.37) into (3.34), and then projecting onto Z[P ], yields a system of

P + 1 second-order ordinary differential equations in the variable t (with initial conditions):

mMi
j000ü

j −Mi
j00mu̇

jcm + ρMi
jklmu̇

jukulcm + kMi
j000u

j = 0 on T (3.38a){
Mi

j000 u
j(0) = Mi

000mu
m, Mi

j000 u̇
j(0) = 2Mi

000mu
m − 0.10Mi

0000

}
on {0}, (3.38b)
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where M = Mi
jklmΨi ⊗ Ψj ⊗ Ψk ⊗ Ψl ⊗ Ψ̃m : Z[P ]′ ×Z[P ] ×Z[P ] ×Z[P ] × Z̃→ R is the

discretized random tensor5 for the whole dynamical system (assumed to exist) given by (a

summation sign is implied over every repeated index)

M[α,w, x, y, z] = Mi
jklm αiw

j xk yl zm,

whence i, j, k, l ∈ {0, 1, . . . , P}, m ∈ {0, 1, 2}, and

Mi
jklm = 〈Ψi,ΨjΨkΨlΨ̃m〉

〈Ψi,Ψi〉
.

This M is a tensor of type (1, 4) and symmetric in the indices j, k and l.

However, since Mi
j000 is nothing but δij (the Kronecker delta), system (3.38) can be

restated as follows:

müi −Mi
j00mu̇

jcm + ρMi
jklmu̇

jukulcm + kui = 0 on T{
ui(0) = Mi

000mu
m, u̇i(0) = 2Mi

000mu
m − 0.10 δi0

}
on {0}.

3.A.2. Random basis for use in the FSC scheme

Table 3.1 presents the non-orthogonalized version of the random basis that we use in the

simulations with FSC over the region Ri = cl(Ti)× Ξ.

3.B. A parametric, high-dimensional stochastic problem

3.B.1. Discretization of the random function space

The random function space for the parametric, high-dimensional problem described in

Section 3.9 is discretized here. This time, however, because there is at least one random

variable enclosed in the argument of exp( · ), deriving a single random tensor (as we did in

Appendix 3.A) to represent the entire stochasticity of the system at hand is not feasible.

5This tensor is also known as multiplication tensor in the literature, see e.g. [14, 15].
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Table 3.1. Non-orthogonalized version of the random basis used for the Van-der-Pol oscillator
(Section 3.7.6)

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = 1

m

(
(1− ρ u2

.i(ti, ξ)) c(ξ) u̇.i(ti, ξ)− k u.i(ti, ξ)
)

Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3
t u.i(ti, ξ) =

1
m

(
−2ρ c(ξ)u.i(ti, ξ) u̇2

.i(ti, ξ) + (1− ρ u2
.i(ti, ξ)) c(ξ) ∂2

t u.i(ti, ξ)− k u̇.i(ti, ξ)
)

Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4
t u.i(ti, ξ) = 1

m

(
−2ρ c(ξ) u̇3

.i(ti, ξ)

− 6ρ c(ξ)u.i(ti, ξ) u̇.i(ti, ξ) ∂2
t u.i(ti, ξ) + (1− ρ u2

.i(ti, ξ)) c(ξ) ∂3
t u.i(ti, ξ)− k ∂2

t u.i(ti, ξ)
)
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Instead, we derive below a collection of random tensors for each of the random variables that

appear in (3.35) separately, namely: k(t), f(t), u and v.

As in Appendix 3.A, we take Z[P ] to be a finite subspace of Z, and the solution repre-

sentation for (3.35) as that stipulated by (3.36). Therefore, replacing (3.36) into (3.35), and

then projecting onto Z[P ] gives

üi + kiju
j = f i on T (3.39a){

ui(0) = ui, u̇i(0) = vi
}

on {0}, (3.39b)

where i, j ∈ {0, . . . , P} (summation sign implied over repeated index j), and

kij(t) = 〈Ψi, k(t, · ) Ψj〉/〈Ψi,Ψi〉, f i(t) = 〈Ψi, f(t, · )〉/〈Ψi,Ψi〉,

ui = 〈Ψi, u〉/〈Ψi,Ψi〉 and vi = 〈Ψi, v〉/〈Ψi,Ψi〉.

Remark 3.15. Note that the discretized random tensor associated with k is of type (1, 1),

i.e. k(t) = kij(t) Ψi ⊗ Ψj : Z[P ]′ ×Z[P ] → R (assumed to exist), whereas those associated

with f , u and v are of type (1, 0), i.e. f(t) = f i(t) Ψi, u = ui Ψi, v = vi Ψi : Z[P ]′ → R.

Because of this, the last three random tensors can also be regarded as random vectors in

Z[P ], and so we have the following identification: f(t) 7→ f(t, · ), u 7→ u and v 7→ v.

3.B.2. Random basis for use in the FSC scheme

Table 3.2 presents the non-orthogonalized version of the random basis that we use in the

simulations with FSC over the region Ri = cl(Ti)× Ξ.

3.C. Time-complexity analysis for Theorem 3.1 and the traditional Gram-Schmidt

process

In this last section we derive the number of elementary operations6 that we need to

perform in order to obtain an orthogonal basis from a set of linearly independent random

6By elementary operations we mean: addition, subtraction, multiplication and division on the real numbers.
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Table 3.2. Non-orthogonalized version of the random basis used for the d-dimensional
stochastic problem (Section 3.9)

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = f(ξ)− k(ti, ξ)u.i(ti, ξ)

Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3
t u.i(ti, ξ) = ∂tf(ti, ξ)− ∂tk(ti, ξ)u.i(ti, ξ)− k(ti, ξ) u̇.i(ti, ξ)

Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4
t u.i(ti, ξ) = ∂2

t f(ti, ξ)− ∂2
t k(ti, ξ)u.i(ti, ξ)

− 2 ∂tk(ti, ξ) u̇.i(ti, ξ)− k(ti, ξ) ∂2
t u.i(ti, ξ)
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functions. We do this for Theorem 3.1 and the traditional Gram-Schmidt process for sake

of comparison. For both analyses, we assume right away that Ψ0 ≡ 1 and 〈Ψ0,Ψ0〉 = 1.

Therefore, for the purpose of this section, the basis to orthogonalize takes the form: {Φj}Pj=1,

and the resulting orthogonalized basis the form: {Ψj}Pj=0 with Ψ0 ≡ 1.

Below, Q denotes the number of quadrature points used to estimate the inner products

with a quadrature rule such as the Gaussian quadrature rule.

Theorem 3.1 In Table 3.3 we have disaggregated the number of elementary operations

into the different steps involved in Theorem 3.1. If we assume that both the expectation

vector and the covariance matrix are known beforehand, the number of operations needed in

Theorem 3.1 is

Nop =
5∑
i=3

Nop,i =


0 for P = 0

P (P + 1)Q+ 1
30P

5 + 1
6P

4 − 1
3P

3 + 1
3P

2 − 6
5P + 1 for P ≥ 1.

(3.40)

Otherwise, the number of operations needed is

Nop =
5∑
i=1

Nop,i =


0 for P = 0

7
2P (P + 11

7 )Q+ 1
30P

5 + 1
6P

4 − 1
3P

3 − 1
6P

2 − 27
10P + 1 for P ≥ 1.

(3.41)

Traditional Gram-Schmidt process As with Theorem 3.1, in Table 3.4 we have disaggre-

gated into steps the number of elementary operations needed in the traditional Gram-Schmidt

process (from (3.11)), yielding

N ′op =
3∑
i=1

N ′op,i =


0 for P = 0

5
2(P 2 + 9

5P −
6
5)Q− 2P + 1 for P ≥ 1.

(3.42)

Performance comparison Combining the result obtained in (3.40) with that in (3.42)

produces the plot depicted in Fig. 3.31. From this figure we can see that as the number of

quadrature points increases, the time complexity of Theorem 3.1 decreases relative to that of

the traditional Gram-Schmidt process. In other words, when the number of quadrature points

179



Table 3.3. Number of elementary operations involved in each step of Theorem 3.1 to get
{Φj}Pj=1 7→ {Ψj}Pj=0
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Table 3.4. Number of elementary operations involved in each step of the traditional Gram-
Schmidt process to get {Φj}Pj=1 7→ {Ψj}Pj=0
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is sufficiently large, Theorem 3.1 surpasses in efficiency the traditional Gram-Schmidt process.

In particular, if P = 3, 4, Theorem 3.1 is up to 2.75 times faster. However, if the expectation

vector or the covariance matrix are not known beforehand, Theorem 3.1 is slower than the

traditional Gram-Schmidt process, because the Q-coefficient in (3.41) is always larger than

that in (3.42) for all values of P .
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Figure 3.31. Time-complexity analysis for Theorem 3.1 and the traditional Gram-Schmidt
process
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4. MULTI-ELEMENT FLOW-DRIVEN SPECTRAL CHAOS
(ME-FSC) METHOD FOR UNCERTAINTY

QUANTIFICATION OF DYNAMICAL SYSTEMS

4.1. Introduction

In the past few decades, the spectral approach has gained increasing popularity among

researchers as a powerful tool to solve stochastic problems at low computational cost. This

assertion is especially true when it comes to solving problems where the dimensionality of

the probability space is relatively low. However, for problems where the dimensionality of

the probability space is relatively high, such an assertion may not always hold, especially

in cases where the curse of dimensionality at the random-function-space (RFS) level cannot

be alleviated notably within the numerical scheme of the method. This is, for instance, the

case of gPC-based methods (e.g. [33–37,43]) where the curse of dimensionality at the RFS

level appears to arise naturally within the numerical scheme of the method. That is, when

the random input consists of mutually independent random variables, the stochastic part of

the solution space (aka random function space or RFS) is spanned via a tensor product of

vector spaces with each of these vector spaces representing a space spanned by a finite set

of univariate orthogonal polynomials1. However, such a construction of the RFS can only

ensure exponential convergence to the solution at early times of the simulation if the RFS is

not kept updated frequently during the simulation.

To further illustrate the curse of dimensionality in gPC-based methods, let us consider

the gPC method [33] and the solution of a stochastic dynamical system featuring a random

input with d mutually independent random variables. In gPC, the RFS is constructed via a

tensor product of vector spaces. Each vector space is spanned using a finite set of univariate

orthogonal polynomials which are taken from the Askey family and are concordant with the

probability measure. The cardinality of each of these random bases is determined by the

highest polynomial degree p in the set, giving thereby p+ 1 basis vectors in each vector space.

1These polynomials are made orthogonal with respect to the measure defined in the probability space for
computational efficiency.
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In this sense, if a full tensor product were to be adopted in the gPC scheme, (p+ 1)d basis

vectors would be needed, and thus, in a numerial scheme based on full tensor products the

cardinality of the random basis grows exponentially fast as a function of d and p. Moreover, if

a total-order tensor product were to be adopted,
(
d+p
p

)
basis vectors would be needed instead.

In this case, the cardinality of the random basis grows combinatorially fast as a function of d

and p, alleviating the curse of dimensionality at the RFS level but not solving it completely.

The flow-driven spectral chaos (FSC) method [92] is a new numerical technique recently

developed by the authors with the goal of tackling the long-time integration issue found

in the gPC method using the spectral approach. The method uses the concept of enriched

stochastic flow maps to track the evolution of a finite dimensional RFS efficiently in time. In

FSC, the dimensionality of the random phase space is deliberately increased to allow both

the system’s state and its first few time derivatives to be pushed forward over time. Then,

the enriched state of the system is used as a germ to construct a suitable RFS for use within

the current time step of the simulation. It is worth mentioning that for dynamical systems

with an n-tuple state and driven by a stochastic flow map of order M , the cardinality of

the random basis is bounded from above by n + M + 1. This boundedness from above is

what makes the FSC method be curse-of-dimensionality free at the RFS level, even when the

probability space is high-dimensional.

In this paper, we present a multi-element version of the FSC method to deal with stochastic

discontinuities and long-time integration of stochastic dynamical systems more efficiently.

This new technique is called the multi-element flow-driven spectral chaos (ME-FSC) method.

In ME-FSC, the random domain is partitioned into several elements, and then the problem

is solved separately on each random element using the FSC method. Then, the results are

aggregated to compute the mean and variance of the response with the law of total probability.

This approach is similar to the multi-element gPC (ME-gPC) method [43], with the only

difference being that here the gPC method is not employed on each random element in order

to annihilate completely the curse of dimensionality at the RFS level. The benefit of using

ME-FSC is threefold. First, the simulation can be run simultaneously on machines with

multiple CPU cores (or if needed on separate machines) to reduce the excessive computational

burden associated with the simulation. Second, if the random input is discontinuous over the
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probability space, the random domain can be partitioned into several elements to assure that

at most the discontinuity will only appear on regions of measure zero. Third, if an adaptive

criterium is introduced within the ME-FSC scheme (so as to allow the elements to get smaller

on-the-fly whenever a threshold value is exceeded), the errors can be kept to a minimum

during the simulation.

This paper has been structured in the following way. The setting and notation used in

this manuscript is formally introduced in Section 4.2, and then the problem statement we

are interested in is presented in Section 4.3. A quick overview of the concept associated

with ‘enriched stochastic flow maps’ is provided in Section 4.4 to allow the construction of

an optimal, low-dimensional RFS during the simulation. Subsequently, in Section 4.5 the

ME-FSC method is presented in great detail along with an outline of the numerical scheme

used in this work. Finally, in Section 4.6 four numerical examples are explored to test the

performance of the ME-FSC method and document the findings.

4.2. Setting and notation

4.2.1. Basic spaces needed in the ME-FSC method

In this paper, we consider Definitions 1 to 5 presented in a previous work by the authors [92].

Because of their importance in the development of the ME-FSC method, they are also presented

here.

Definition 4.1 (Temporal space). Let (T,O) be a topological space, where T = [0, T ] is a

closed interval representing the temporal domain of the system, O = OR ∩ T is the topology

on T with OR denoting the standard topology associated with R, and T ∈ R+ symbolizes the

duration of the simulation. In this paper, such a space is called temporal space of the system.

Definition 4.2 (Random space). Let (Ω,Ω, λ) be a (complete) probability space, where Ω

is the sample space, Ω ⊂ 2Ω is the σ-algebra on Ω, and λ : Ω → [0, 1] is the probability

measure on Ω. Let ξ = (ξ1, . . . , ξd) : (Ω,Ω)→ (Rd,BRd) be a measurable function given by

ξ = ξ(ω), with BRd standing for the Borel σ-algebra associated with Rd. In this work, the

measure space (Ξ,Ξ, µ) is termed random space, where Ξ = ξ(Ω) ⊂ Rd is a set representing
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the random domain of the system, Ξ = BRd ∩ Ξ is the σ-algebra on Ξ, µ : Ξ→ [0, 1] is the

probability measure on Ξ given by µ = ξ∗(λ) := λ ◦ ξ−1 (i.e. the pushforward of λ by ξ), and

d symbolizes the dimensionality of the random space.

Fig. 4.1 depicts the relationship between probability space and random space for d = 2,

and a case scenario in which the random space has been partitioned into 9 random elements for

sake of illustration. As shown, we will always assume that the components of ξ = (ξ1, . . . , ξd)

are mutually independent and that the random domain Ξ is a hypercube of d dimensions

obtained by performing a d-fold Cartesian product of intervals Ξ̄i := ξi(Ω).

Definition 4.3 (Temporal function space). Let T(n) = Cn(T;R) be a continuous n-

differentiable function space. This is the space of all function f : (T,O)→ (R,OR) that have

continuous first n derivatives on (T,O). In this paper, such a space is called temporal function

space.

Definition 4.4 (Random function space). Let Z = (L2(Ξ,Ξ, µ;R), 〈 · , · 〉) be a Lebesgue

square-integrable space equipped with its standard inner product

〈 · , · 〉 : L2(Ξ,Ξ, µ;R)× L2(Ξ,Ξ, µ;R)→ R :⇔ 〈f, g〉 =
∫
fg dµ.

This is the space of all (equivalence classes of) measurable functions f : (Ξ,Ξ) → (R,BR)

that are square µ-integrable on Ξ. In this paper, such a space receives the name of random

function space or RFS for short. Also, we define {Ψj : (Ξ,Ξ)→ (R,BR)}∞j=0 to be a complete

orthogonal basis in Z, such that Ψ0(ξ) = 1 for all ξ ∈ Ξ.

Remark 4.1. The following are four remarks regarding Definition 4.4.

1. It is well-known that Z forms a Hilbert space because it is complete under the metric

induced by 〈 · , · 〉.

2. If f ∈ Z, then it can be represented by the Fourier series:

f =
∞∑
j=0

f jΨj,

where f j denotes the j-th coefficient of the series with the superscript not symbolizing an

exponentiation.
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3. The orthogonality property of the basis in Z means that

〈Ψi,Ψj〉 :=
∫

ΨiΨj dµ = 〈Ψi,Ψi〉 δij,

where δij is the Kronecker delta.

4. The dual space of Z, which we denote by Z′ herein, is the space spanned by the continuous

linear functionals {Ψi : Z→ R}∞i=0 defined by

Ψi[f ] = 〈Ψi, f〉
〈Ψi,Ψi〉

≡ f i.

Definition 4.5 (Solution space and root space). Let U = T(n) ⊗Z and V= T(0) ⊗Z

denote the solution space and the root space, respectively. In this sense, U and V are two

spaces constructed via a tensor product of vector spaces.

4.2.2. Additional spaces needed in the ME-FSC method

We now present some extra definitions needed in the development of the ME-FSC method.

Definition 4.6 (Partitioned random space). Let {Ξe}Ee=1 be a partition of the random domain,

where Ξe 6= ∅ represents the e-th element of the partition, and E ∈ N2 is the number of

random elements employed in the partition. Then, we define Ξe = Ξ∩Ξe to be the σ-algebra

on Ξe, and µe = µ|Ξe to be the restriction of µ to Ξe. Also, we define µ̂e : Ξe → [0, 1] to be

the probability measure on Ξe given by

µ̂e = µe
µ(Ξe)

, or equivalently, dµ̂e = dµe
µ(Ξe)

.

Therefore, in this work the partitioned random space is defined as a finite sequence of disjoint

random spaces {(Ξe,Ξe, µ̂e)}Ee=1. In Fig. 4.1 we show a prototype depiction of such a partition.

Definition 4.7 (Partitioned random function space). If {(Ξe,Ξe, µ̂e)}Ee=1 is a partition of the

random space, then let {Ze}Ee=1 be its associated partitioned random function space, where Ze
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represents the e-th RFS for the random element Ξe. That is, Ze = (L2(Ξe,Ξe, µ̂e;R); 〈 · , · 〉e),

where

〈 · , · 〉e : L2(Ξe,Ξe, µ̂e;R)× L2(Ξe,Ξe, µ̂e;R)→ R :⇔ 〈f, g〉e =
∫
fg dµ̂e.

This is the space of all (equivalence classes of) measurable functions f : (Ξe,Ξe)→ (R,BR)

that are square µ̂e-integrable on Ξe. As with Definition 4.4, the complete orthogonal basis in

Ze, {Ψj.e : (Ξe,Ξe)→ (R,BR)}∞j=0, is defined such that Ψ0.e(ξ) = 1 for all ξ ∈ Ξe.

Remark 4.2. Note that Remark 4.1 is also applicable for each of the Ze’s mentioned above,

provided that the following changes are made:

Z 7→ Ze, µ 7→ µ̂e, 〈 · , · 〉 7→ 〈 · , · 〉e, f 7→ f.e, fk 7→ fk.e,

Ψk 7→ Ψk.e and Ψk 7→ Ψk
.e

with k symbolizing i or j.

4.3. Problem statement

In this work, we consider the same stochastic problem described in [92]. Namely:

Find the real-valued stochastic process u : T× Ξ→ R in U, such that (µ-a.e.):

L[u] = f on T× Ξ (4.1a){
Bk[u](0, · ) = bk

}n
k=1

on {0} × Ξ, (4.1b)

where L : U→ V is a partial differential operator of order (n, 0), Bk[ · ](0, · ) : U→ Z is a

partial differential operator of order (n−1, 0) that upon differentiation evaluates the resulting

function at t = 0, f : T× Ξ→ R is a function in V given by f = f(t, ξ), and bk : Ξ→ R is a

function in Z given by bk = bk(ξ).
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However, for illustration purposes, we very often consider the much simpler case2 when

the mathematical model of the system can be represented (µ-a.e.) by an undamped oscillator

under the action of an external force:

L[u] = f :⇔ mü+ ku = p (4.1a*){
Bk[u](0, · ) = bk

}n=2

k=1
:⇔

{
u(0, · ) = u, u̇(0, · ) = v

}
, (4.1b*)

where m : Ξ → R+ is the mass of the system, k : Ξ → R+ is the stiffness of the system,

p : T×Ξ→ R is the external force applied to the system, and u, v : Ξ→ R are the prescribed

initial conditions of the system. Observe here that u̇ := ∂tu and ü := ∂2
t u are the first and

second partial derivatives of u with respect to time. We assume that m, k, u, v ∈ Z, p ∈ V

and of course that u ∈ U.

4.4. (Enriched) stochastic flow map

We now turn our attention to the two flow maps considered in this manuscript. For a

generalization of these two flow maps, please refer to [92].

4.4.1. Stochastic flow map

If we assume that the stochastic system given by (4.1*) is sufficiently regular over T× Ξ,

we get:

∂2
t u(t, ξ) := f(t, ξ, s(t, ξ)) = p̄(t, ξ)− k̄(ξ)u(t, ξ) on T× Ξ (4.2a){

u(0, ξ) = u(ξ), u̇(0, ξ) = v(ξ)
}

on {0} × Ξ, (4.2b)

where s = (u, u̇) ∈ ∏2
j=1 T(3− j)⊗Z is the configuration state of the system over T× Ξ,

f : T× Ξ× R2 → R is a noisy, non-autonomous function (which can also be regarded as a

function in V) defining the response ü = ∂2
t u, p̄ = p/m : T × Ξ → R is the external force

applied to the system per unit mass, and k̄ = k/m : Ξ→ R+ is the stiffness of the system per

2Nonetheless, we emphasize that this work has been generalized to deal with problems as complicated as
(4.1) in Section 4.5.
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unit mass. In the context of (4.1*), by ‘sufficiently regular over T× Ξ’ we mean that p̄ ∈ V

and k̄ ∈ Z (and thus, f∈ V).

If we further assume that the solution is analytic on T for all ξ ∈ Ξ, then one can write u

using the Taylor series:

u(ti + h, ξ) =
∞∑
j=0

hj

j! ∂
j
tu(ti, ξ) =

M∑
j=0

hj

j! ∂
j
tu(ti, ξ) +O(hM+1)(ξ),

where h := t− ti is the time-step size used for the simulation around ti (once t is fixed), and

ti ∈ T is the time instant of the simulation.

Hence, if each of the assumptions mentioned above holds, a (local) stochastic flow map of

order M , ϕ(M) : R×Z2 → Z2, can be provided for (4.2) to be:

ϕ(M)(h, s(ti, · )) :=
(
u(ti + h, · ), u̇(ti + h, · )

)
−O(hM+1), (4.3)

where ϕ1(M), ϕ2(M) : R×Z2 → Z are given by:

ϕ1(M)(h, s(ti, · )) := u(ti, · ) + h u̇(ti, · ) + 1
2h

2 ∂2
t u(ti, · ) + · · ·+ 1

M !h
M ∂Mt u(ti, · )

ϕ2(M)(h, s(ti, · )) := u̇(ti, · ) + h ∂2
t u(ti, · ) + 1

2h
2 ∂3

t u(ti, · ) + · · ·+ 1
M !h

M ∂M+1
t u(ti, · ).

It is worth mentioning that the second time derivative ∂2
t u(ti, · ) is computed using

(4.2a), and that the next time derivatives {∂j+2
t u(ti, · )}M−1

j=1 are computed using the recursive

expression:

∂j+2
t u(t, ξ) := Dj

tf(t, ξ, s(t, ξ)) = ∂jt p̄(t, ξ)− k̄(ξ) ∂jtu(t, ξ) ∀j ∈ {1, 2, . . . ,M − 1}. (4.4)

In simple terms, the goal of ϕ(M) is to push the system’s state s(ti, · ) = (u(ti, · ), u̇(ti, · ))

over time. Note that the push is forward if h > 0, it is backward if h < 0, and it is still if

h = 0.

4.4.2. Enriched stochastic flow map

The goal of the associated enriched flow map, ϕ̂(M) : R×ZM+2 → ZM+2, is to push not

only the system’s state s(ti, · ) = (u(ti, · ), u̇(ti, · )) over time, but also f(ti, · , s(ti, · )) and its
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first M − 1 time derivatives at t = ti. This is the reason why the k-th component of ϕ̂(M) is

given by:

ϕ̂k(M)(h, ŝ(ti, · )) =: ŝk(ti +h, · ) =


ϕk(M)(h, s(ti, · )) for k ∈ {1, 2}

Dk−3
t f(ti + h, · , s(ti + h, · )) for k ∈ {3, 4, . . . ,M + 2}

where ŝ = (u, ∂tu, . . . , ∂M+1
t u) ∈ ∏M+2

j=1 T(M − j + 2)⊗Z is the enriched configuration state

of the system over T×Ξ. Note here that D0
tf := f is nothing but the function given by (4.2a),

and that {Dk−3
t f}M+2

k=4 is the set of functions given by (4.4) with j = k − 3.

4.5. Multi-element flow-driven spectral chaos (ME-FSC) method

This section is devoted to presenting the multi-element version of the FSC method in detail.

As mentioned in the introduction, the procedure is similar to the ME-gPC method [43], but

with the only difference being that here we do not use the gPC method on each random element

but the FSC method for computational efficiency. We first begin by briefly reviewing the

multi-element concept behind the ME-FSC method, and then we explain how the probability

moments can be computed using the local information available on each random element.

The section is then concluded with an outline of the ME-FSC scheme used in this work.

4.5.1. Overview of the ME-FSC method

Because u ∈ U by assumption, we can represent such a function using the Fourier series:

u(t, ξ) =
∞∑
j=0

uj(t) Ψj(ξ) on T× Ξ, (4.5)

where uj is a temporal function in T(2) symbolizing the j-th random mode of u.

Now, let {(Ξe,Ξe, µ̂e)}Ee=1 be a partitioned random space, and let {Ze}Ee=1 be its associated

partitioned RFS. Then, a p-discretization for each of these Ze’s can be stipulated by letting

Z[Pe]
e = span{Ψj.e}Pe

j=0 be a finite subspace of Ze with Pe+1 ∈ N1 denoting the dimensionality

of Z[Pe]
e .
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Moreover, if we define u.e(t, · ) = u(t, · )|Ξe to be the restriction of u(t, · ) to Ξe for all t ∈ T,

then an approximation u[Pe]
.e (t, · ) of u.e(t, · ) can be represented in Z[Pe]

e by

u.e(t, ξ) ≈ u[Pe]
.e (t, ξ) =

Pe∑
j=0

uj.e(t) Ψj.e(ξ) ≡ uj.e(t) Ψj.e(ξ) on T× Ξe, (4.6)

where we have omitted the summation sign in the last equality for notational simplicity,

and the summation index is always taken as j ∈ {0, 1, . . . , Pe} unless indicated otherwise.

Similarly as before, uj.e represents a temporal function in T(2) symbolizing the j-th random

mode of u.e.

Remark 4.3. In writing expression (4.6), we assumed that {Ψj.e}∞j=0 was a well-graded or-

thogonal basis so that the approximation of u.e could be carried out the way shown. In the

scheme provided in Section 4.5.3, such an assumption does not represent an issue at all since

all the random bases utilized in the ME-FSC scheme are well-graded by construction.

The problem now reduces to find E independent solutions to (4.1) by looping across the

random domain from e = 1 to e = E and using the following procedure.

Substituting (4.6) into (4.1) gives

L[uj.eΨj.e] = f on T× Ξe (4.7a){
Bk[uj.eΨj.e](0, · ) = bk

}n
k=1

on {0} × Ξe. (4.7b)

Projecting (4.7) onto Z[Pe]
e yields a system of Pe + 1 ordinary differential equations of

second order in the variable t, where the unknowns are the random modes uj.e = uj.e(t) and

their first n− 1 time derivatives:

Ψi
.e

[
L[uj.eΨj.e]

]
= Ψi

.e[f ] on T (4.8a){
Ψi

.e

[
Bk[uj.eΨj.e](0, · )

]
= Ψi

.e[bk]
}n
k=1

on {0} (4.8b)

with i, j ∈ {0, 1, . . . , Pe}. Notice that this projection is done here by applying on both sides

of each equation the linear functionals {Ψi
.e ∈ Z′e}Pe

i=0 one by one.
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For the specific case of a system given by (4.1*), it is clear that (4.8) would reduce to

mi
j.eü

j
.e + kij.eu

j
.e = pi.e on T (4.8a*){

ui.e(0) = ui
.e , u̇

i
.e(0) = vi.e

}
on {0}, (4.8b*)

where i, j ∈ {0, 1, . . . , Pe} (summation sign implied only over repeated index j), and:

mi
j.e = 〈Ψi.e,mΨj.e〉e/〈Ψi.e,Ψi.e〉e, kij.e = 〈Ψi.e, kΨj.e〉e/〈Ψi.e,Ψi.e〉e,

pi.e(t) = 〈Ψi.e, p(t, · )〉e/〈Ψi.e,Ψi.e〉e,

ui.e = 〈Ψi.e, u〉e/〈Ψi.e,Ψi.e〉e and vi.e = 〈Ψi.e, v〉e/〈Ψi.e,Ψi.e〉e.

4.5.2. Computation of probability moments

As a means to simplify the notation henceforth, we note that a system such as (4.1) can

also be rewritten using modeling notation:

y = M[u][x] subject to initial condition I[u],

where M[u] : Vr → Vs is the mathematical model of the system defined by (4.1a), x =

(x1, . . . , xr) : T× Ξ→ Rr is the r-tuple input of M[u], y = (y1, . . . , ys) : T× Ξ→ Rs is the

s-tuple output of M[u] (aka the s-tuple observable in physics or the s-tuple response in

engineering), and I[u] is the initial condition of the system defined by (4.1b).

Now, let z = yk be the k-th component of output y = M[u][x]. If z ∈ V, then it is clear

that such a function can be represented approximately over the e-th random element using

the following expansion:

z.e(t, ξ) ≈ z[Pe]
.e (t, ξ) =

Pe∑
j=0

zj.e(t) Ψj.e(ξ) ≡ zj.e(t) Ψj.e(ξ) on T× Ξe,

where z.e(t, · ) = z(t, · )|Ξe denotes the restriction of z(t, · ) to Ξe for all t ∈ T.

In this section, we are interested in computing the mean and variance of z over T× Ξ

using the local information available on each random element. To do so, we first make the

following observation regarding the (local) mean and (local) variance of z given that ξ ∈ Ξe.
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As it should be easy to verify, the (local) mean of z given that ξ ∈ Ξe, Ee[z] : T → R, is

nothing but

Ee[z](t) ≡ E[z | Ξe](t) :=
∫
z(t, · ) dµ̂e =

∫
z.e(t, · ) dµ̂e = z0

.e(t), (4.10)

and that the (local) variance of z given that ξ ∈ Ξe, Vare[z] : T→ R+
0 , is

Vare[z](t) ≡ Var[z | Ξe](t) :=
∫ (

z(t, · )− Ee[z](t)
)2

dµ̂e =
∫
z2(t, · ) dµ̂e − Ee[z]2(t)

=
∫
z.e

2(t, · ) dµ̂e − Ee[z]2(t) =
P∑
j=1
〈Ψj.e,Ψj.e〉e zj.e(t) zj.e(t). (4.11)

Therefore, the (global) mean of z, E[z] : T→ R, which is given by

E[z](t) :=
∫
z(t, · ) dµ =

E∑
e=1

∫
Ξe

z(t, · ) dµ =
E∑
e=1

∫
z(t, · ) dµe,

can be further simplified to:

E[z](t) =
E∑
e=1

µ(Ξe)
∫
z(t, · ) dµ̂e =

E∑
e=1

µ(Ξe) Ee[z](t). (4.12)

This final form of E[z] is also known as the law of total expectation.

Moreover, we note that the (global) variance of z, Var[z] : T→ R+
0 , which is given by

Var[z](t) :=
∫ (

z(t, · )− E[z](t)
)2

dµ =
∫
z2(t, · ) dµ− E[z]2(t)

=
E∑
e=1

∫
Ξe

z2(t, · ) dµ− E[z]2(t), (4.13)

can be further simplified if we recognize that first:

∫
Ξe

z2(t, · ) dµ = µ(Ξe)
∫
z2(t, · ) dµ̂e = µ(Ξe)

∫
z.e

2(t, · ) dµ̂e

= µ(Ξe)
(
Vare[z](t) + Ee[z]2(t)

)
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and that second:

E[z]2(t) =
E∑

e1=1

E∑
e2=1

µ(Ξe1)µ(Ξe2) Ee1 [z](t) Ee2 [z](t)

=
E∑
e=1

µ(Ξe)2 Ee[z]2(t) + 2
E∑

e1=2

e1−1∑
e2=1

µ(Ξe1)µ(Ξe2) Ee1 [z](t) Ee2 [z](t).

Hence, replacing these two expressions into (4.13) and simplifying, one gets

Var[z](t) =
E∑
e=1

µ(Ξe) Vare[z](t) +
E∑
e=1

µ(Ξe) (1− µ(Ξe)) Ee[z]2(t)

− 2
E∑

e1=2

e1−1∑
e2=1

µ(Ξe1)µ(Ξe2) Ee1 [z](t) Ee2 [z](t). (4.14)

This final form of Var[z] is also known as the law of total variance.

4.5.3. ME-FSC scheme

Consider the stochastic dynamical system given by (4.1). Let {Ti×Ξe}N−1,E
i=0,e=1 be a partition

of the temporal-random domain T×Ξ (aka system’s domain), where Ti 6= ∅ is the i-th element

of the temporal domain, Ξe 6= ∅ is the e-th element of the random domain, and Ti×Ξe is the

(i, e)-th element of the system’s domain. It is worth mentioning that this partition gives rise

to the partitioned random space {(Ξe,Ξe, µ̂e)}Ee=1 and associated partitioned RFS {Ze}Ee=1,

as defined in Section 4.2. Moreover, for notational convenience, we define s.ie = s|cl(Ti)×Ξe to

be the restriction of s to Rie := cl(Ti) × Ξe, and s..e = s|T×Ξe to be the restriction of s to

T× Ξe. For illustration purposes, Fig. 4.2 depicts the evolution of a dynamical system by

applying successively a stochastic flow map of order M over a partitioned random domain

with E elements.

In this sense, if we assume that the system is driven by a stochastic flow map of order

M , we can proceed as follows. (Recall that n denotes the order of the governing ODE with

respect to time, as displayed in (4.1).)

1. Loop across the temporal domain from i = 0 to i = N − 1.
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Figure 4.2. Evolution of a dynamical system via a stochastic flow map of order M (with
hi > 0) over a partitioned random domain
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i. Loop across the random domain from e = 1 to e = E. Note that this loop can be

parallelized from a computational standpoint since each iteration is independent of

the others.

(a) Define a solution representation for the configuration state s.ie in the following

way.

• Take Φ0.ie ≡ 1 and {Φj.ie := ϕ̂j(M)(0, ŝ..e(ti, · ))}Pe
j=1 to be an ordered set of

linearly independent functions in Ze with n + 1 ≤ P ≤ n + M . Note that

ϕ̂(M)(0, ŝ..e(ti, · )) ≡ ŝ.ie(ti, · ) = ŝ.(i−1)e(ti, · ) for i ≥ 1. However, if i = 0,

then ϕ̂(M)(0, ŝ..e(t0, · )) ≡ ŝ..e(0, · ).

• Orthogonalize the set {Φj.ie}Pe
j=0 using the Gram-Schmidt process [61], so

that the resulting set {Ψj.ie}Pe
j=0 is an orthogonal basis in Ze. Specifically, for

j ∈ {0, 1, . . . , Pe}:

Ψj.ie := Φj.ie −
j−1∑
k=0

〈Φj.ie,Ψk.ie〉e
〈Ψk.ie,Ψk.ie〉e

Ψk.ie.

• Define Z
[Pe]
ie = span{Ψj.ie}Pe

j=0 to be an (h, p)-discretization of Z over the re-

gion Rie. Then, because Z[Pe]
ie is an evolving function space over Ξe, expansion

(4.6) is now to be read as:

u.ie(t, ξ) ≈ u
[Pe]
.ie (t, ξ) =

Pe∑
j=0

uj.ie(t) Ψj.ie(ξ) ≡ uj.ie(t) Ψj.ie(ξ). (4.6’)

Thus, to compute the l-th component of the configuration state, sl.ie, we simply

need to take the (l − 1)-th time derivative of (4.6’). Here l ∈ {1, 2, . . . , n}.

(b) Transfer at t = ti the random modes from the old definition of system’s configu-

ration state

s.(i−1)e(ti, · ) = (u.(i−1)e(ti, · ), ∂tu.(i−1)e(ti, · ), . . . , ∂n−1
t u.(i−1)e(ti, · ))

to the new definition of system’s configuration state

s.ie(ti, · ) = (u.ie(ti, · ), ∂tu.ie(ti, · ), . . . , ∂n−1
t u.ie(ti, · )),
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given that i ≥ 1. To do so, we implement the FSC-2 approach presented in [92]

to obtain the random modes of each of the components of s.ie at t = ti. The

reason why we choose FSC-2 over FSC-1 is that the former has the ability to

transfer the probability information exactly at any instant of time. Thus, by

resorting to Theorem 1 of [92], one can show that the j-th random mode of the

l-th component of s.ie(ti, · ) is given by:

(sl)j.ie(ti) =



E[Φl.ie] for j = 0

det4j(l)
det�j

for 0 < j < l

1 for j = l

0 otherwise,

(4.8b’)

from where we have taken {Φl.ie := ϕl(M)(0, s..e(ti, · )) ≡ sl.ie(ti, · ) = sl.(i−1)e(ti, · )}nl=1,

and

�j =


Cov[Φ1.ie,Φ1.ie] · · · Cov[Φ1.ie,Φj.ie]

... . . . ...

Cov[Φj.ie,Φ1.ie] · · · Cov[Φj.ie,Φj.ie]

 ∈M(j × j,R),

4j(l) =



Cov[Φ1.ie,Φ1.ie] · · · Cov[Φ1.ie,Φj.ie]
... . . . ...

Cov[Φ(j−1).ie,Φ1] · · · Cov[Φ(j−1).ie,Φj.ie]

Cov[Φl.ie,Φ1.ie] · · · Cov[Φl.ie,Φj.ie]


∈M(j × j,R)

with 41(l) = Cov[Φl.ie,Φ1.ie] ∈ R and

42(l) =

 Cov[Φ1.ie,Φ1.ie] Cov[Φ1.ie,Φ2.ie]

Cov[Φl.ie,Φ1.ie] Cov[Φl.ie,Φ2.ie]

 ∈M(2× 2,R)

as special cases of 4j by definition.

(c) Substitute (4.6’) into (4.1) to obtain (4.7).

(d) Project (4.7a) onto Z
[Pe]
ie to obtain (4.8a) subject to (4.8b’). Note that if i = 0,

(4.8a) is subject to (4.8b).
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(e) Integrate (4.8) over time provided that a suitable time integration method has

been chosen for the system of equations in hand. This step requires finding

the random modes of each of the components of the configuration state s.ie at

t = ti+1; that is, {(sl)j .ie(ti+1)}n,Pe

l=1,j=0

(f) Compute both the (local) mean and the (local) variance of each of the components

of output y = M[x][u] over Rie, by resorting to the formulas prescribed by

(4.10) and (4.11).

ii. Aggregate results to compute over Ri := Ti × Ξ the (global) mean and (global)

variance of y = M[x][u] using the formulas stipulated by (4.12) and (4.14).

2. Post-process results.

4.6. Numerical results

As in [92], we define the local and global errors, ε : T→ T and εG : T→ R, using the

following expressions:

ε[f ](t) = |f(t)− fexact(t)|

εG[f ] = 1
T

∫
T
|f(t)− fexact(t)| dt ≈

∆t
T

N∑
i=0
|f(ti)− fexact(ti)|,

where ∆t is the time-step size used for the simulation, ti ∈ T is the time instant of the

simulation, and N is the number of time steps employed in the simulation (with t0 = 0 and

tN = N ∆t = T ).

In an effort to reduce as much as possible the source of errors coming from the discretization

of T, the time-step size used for the simulations is taken as ∆t = 0.001 s in Problems 1 and 2

and ∆t = 0.005 s in Problems 3 and 4. To integrate (4.8) over time, we use the RK4 method

over each random element, and in order to obtain accurate results, the random function space

is updated at every time step. For simplicity, the partition of the random domain is such

that all elements are the same size. The temporal domain employed in Problems 1, 2 and

3 is T = [0, 150] s, and in Problem 4 is T = [0, 50] s. To ensure that the stochasticity of

the system’s state is well developed for the analysis with ME-FSC, we sometimes use the
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gPC method for the first second of the simulation. This is to prevent that ill-conditioned

matrices arise at earlier times of the simulation whenever we have a situation where the

initial conditions of the system are deterministic (as is the case with the first three problems).

Specifically, in Problems 1 and 2 we employ the gPC method with P = 7, and in Problem 3

we employ the gPC method with P = 9.

The inner products are computed using a set of Legendre quadrature rules on each random

axis defined by

Uniform ∼ Gauss-Legendre(10 points/element).

This means that for distributions other than uniform the probability distribution function

must be included in the integrand in order to obtain the numerical value of the inner product.

All problems are run using Apple’s Foundation and Accelerate frameworks [93] on a

2020 MacBook Air with Apple M1 chip (8-Core CPU at 3.20 GHz, 8-Core GPU, 16-Core

Neural Engine, and 16 GB unified memory) and 1 TB Apple-Fabric SSD storage (APFS-

formatted), running macOS Big Sur (version 11.2). The code is written entirely in the Swift

5.3 language [94].

4.6.1. Problem 1: A linear system governed by a 2nd-order stochastic ODE

We first consider the problem of an undamped single-degree-of-freedom system under free

vibration. The law of motion for this system is defined by

mü+ ku = 0,

where the mass of the system is m = 100 kg, and the stiffness of the system, k : Ξ→ R+, is

stochastic and given by k(ξ) = ξ. The system has an initial displacement of u(0, · ) = u≡ 0.05

m, and an initial velocity of u̇(0, · ) = v ≡ 0.20 m/s. Formally, one can express this problem

in the following way:
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Find the displacement of the system u : T× Ξ→ R in U, such that (µ-a.e.):

mü+ ku = 0 on T× Ξ (4.15a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ. (4.15b)

This problem statement is similar to (4.1*), with the only difference being that p ≡ 0 and

m, u, v are real numbers.

Two different probability distributions are considered for ξ. The first distribution is

a uniform distribution, Uniform ∼ ξ ∈ Ξ = [a, b], and the second distribution is a beta

distribution, Beta(α, β) ∼ ξ ∈ Ξ = [a, b]. The parameters for both these distributions are

taken as: (a, b) = (340, 460) N/m and (α, β) = (2, 5).

In Fig. 4.3 we show the evolution of the mean and variance of the system’s displacement.

These results are obtained using 8 elements in the random domain and 7 basis vectors per

element. We see that when this particular discretization is used, the ME-FSC method is

able to reproduce the exact response with high fidelity, explaining why the two plots look

indistinguishable from each other.

Figs. 4.4 to 4.6 present the local errors in mean and variance of the system’s displacement

using different numbers of elements and basis vectors. For brevity, we only present the

case when the probability measure is uniform, although similar convergence trends are also

achievable when the probability measure is beta. For sake of comparison, we also include the

case when P = 2, even though this is not allowed by the FSC method. This is because in

FSC the lower bound for P is always n+ 1, where n is the order of the governing ODE with

respect to time. (To keep the uniformity in the presentation, the same is done in Problems 2

and 3.) These plots show that the results get better if the number of elements is increased.

However, this is not always the case whenever we increase the number of basis vectors. For

instance, when the number of basis vectors is increased from 3 to 5, we observe that the

results improve noticeably, but when the number of basis vectors is increased from 5 to 7 they

do not. This is chiefly because the quadrature rule employed in this work is not optimal—note

that the quadrature points are not those that ensure exponential convergence to the sought

integral, as in Gaussian-based quadrature rules, the quadrature points are demanded to be

the roots of an orthogonal polynomial that is concordant with the measure defined on the
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Figure 4.3. Problem 1 — Evolution of E[u] and Var[u] for the case when the (h, p)-
discretization level of RFS is (P,E) = (6, 8) and µ ∼ Uniform
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integral’s domain (which is clearly not the case here). The above assertion even holds for the

case when 1 element is used in the simulations (i.e. when there is no partition in the random

domain), since distributing only 10 Legendre quadrature points in the random domain is not

sufficiently enough to allow the higher basis vectors to play a role in the global response of

the system. However, if more quadrature points were to be employed in the simulations, an

improvement between the plots with P = 4 and P = 6 could have been discerned for the case

of using 1 element, but virtually no improvement for the case of using more than 1 element.

It is worth pointing out that the accuracy of these results is limited by machine precision,

and that as a result of this, better results than those depicted in Figs. 4.4 to 4.6 are difficult

to obtain for other values of P and E.

Figs. 4.7 and 4.8 depict the convergence of global errors as a function of the number of

elements and the number of basis vectors used. Included in this figure are the cases where the

probability measure is uniform or beta. On average, exponential convergence can be attained

if the number of elements is exponentially incremented. In particular, when the number of

basis vectors is 5, we see that the exponential convergence is much steeper than when it is,

say, 3 or 4. However, when the number of basis vectors is greater than 5, no improvement

in the accuracy of the results can be achieved. This same outcome occurs consistently in

both distributions, which means that when a Legendre quadrature rule with 10 points per

element and 5 basis vectors are used in the simulations, the maximum accuracy allowed by

the machine and the ME-FSC method is finally reached.

4.6.2. Problem 2: A linear system governed by a 3rd-order stochastic ODE

We next consider the problem of a linear mechanical system governed by a third-order

stochastic ODE. The governing differential equation for this system is defined by

∂3
t u+ 1

2∂
2
t u+ k ∂tu+ u = 0,

where k : Ξ→ R is a stochastic mechanical parameter given by k(ξ) = ξ, and u : T× Ξ→ R

denotes the displacement of the system with ∂tu, ∂2
t u, ∂

3
t u representing the velocity, acceleration
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Figure 4.4. Problem 1 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform (Set 1/3)
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Figure 4.5. Problem 1 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform (Set 2/3)
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Figure 4.6. Problem 1 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform (Set 3/3)
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Figure 4.7. Problem 1 — Global error of E[u] and Var[u] for different (h, p)-discretization
levels of RFS (µ ∼ Uniform)
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Figure 4.8. Problem 1 — Global error of E[u] and Var[u] for different (h, p)-discretization
levels of RFS (µ ∼ Beta)
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and jerk of the system, respectively. The initial conditions of the system are deterministic

and given by: u(0, · ) ≡ 1 m, ∂tu(0, · ) ≡ −1 m/s, and ∂2
t u(0, · ) ≡ 2 m/s2.

As with Problem 1, two different probability distributions are explored for ξ. Namely, a

uniform distribution defined by Uniform ∼ ξ ∈ Ξ = [a, b], and a beta distribution defined by

Beta(α, β) ∼ ξ ∈ Ξ = [a, b], whence (a, b) = (2, 3) N/m and (α, β) = (2, 5).

Fig. 4.9 shows the evolution of the mean and variance of the system’s displacement for

the particular case where the probability measure is uniform and 8 elements and 8 basis

vectors are used. As in the previous problem, the results obtained with ME-FSC are again

indistinguishable from the exact response.

In Figs. 4.10 to 4.12 we present the local errors in mean and variance of the system’s

displacement using different numbers of elements and basis vectors. For brevity, the results

are only presented for µ ∼ Uniform. Once again, it is observed that the accuracy of the results

improves as the number of elements increases, but it necessarily does not as the number of

basis vectors increases. This is exemplified in Figs. 4.11 and 4.12 from where it is deduced

that the results do not improve if the number of basis vectors is increased from 6 to 8. This

once again is due to the quadrature rule used to compute the inner products (i.e. 10 Legendre

quadrature points per element) and the limited precision of the machine.

Finally, Figs. 4.13 and 4.14 depict the global errors in mean and variance of the system’s

displacement. The results are presented as a function of the number of elements and the

number of basis vectors used, and for each of the probability distributions explored for ξ. Again,

exponential convergence is on average attainable if the number of elements is exponentially

incremented. However, as observed, using more than 4 basis vectors in the simulations does

not help improve the overall accuracy of the results, except of course when 4 elements and 5

basis vectors are used to obtain the mean response. This figure therefore suggests that in

some situations it might be better to refine the partition of the random domain (instead of

making the random function space bigger) to obtain more accurate results.
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Figure 4.9. Problem 2 — Evolution of E[u] and Var[u] for the case when the (h, p)-
discretization level of RFS is (P,E) = (7, 8) and µ ∼ Uniform
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Figure 4.10. Problem 2 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform (Set 1/3)
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Figure 4.11. Problem 2 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform (Set 2/3)
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Figure 4.12. Problem 2 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform (Set 3/3)
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Figure 4.13. Problem 2 — Global error of E[u] and Var[u] for different (h, p)-discretization
levels of RFS (µ ∼ Uniform)
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Figure 4.14. Problem 2 — Global error of E[u] and Var[u] for different (h, p)-discretization
levels of RFS (µ ∼ Beta)
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4.6.3. Problem 3: A nonlinear system governed by a 2nd-order stochastic ODE

(the Van-der-Pol oscillator)

In this section, we investigate the nonlinear behavior of a single-degree-of-freedom system

with Van-der-Pol damping. The governing differential equation for this system is given by

mü− (1− ρu2)cu̇+ ku = 0,

where m = 100 kg is the mass of the system, ρ = 150 m−2 is the contributing factor to

the nonlinearity of the system, c : Ξ→ R+ is a coefficient representing the strength of the

damping in the system, and k : Ξ→ R+ is the stiffness of the system. The functions c and

k are assumed to be given by c(ξ) = ξ1 and k(ξ) = ξ2. The initial conditions of the system

are: u(0, · ) ≡ 0.20 m and u̇(0, · ) ≡ 0.30 m/s. Notice here that u : T × Ξ → R denotes the

displacement of the system, and that u̇ := ∂tu and ü := ∂2
t u represent, respectively, the

velocity and acceleration of the system.

For concreteness, we take ξ1 to be uniformly distributed in Ξ̄1 = [150, 450] kg/s, and ξ2

to be beta distributed with parameters (α, β) = (2, 5) in Ξ̄2 = [340, 460] N/m. Hence, the

random space is two-dimensional and defined by Ξ = Ξ̄1 × Ξ̄2 with µ ∼ Uniform⊗ Beta.

Fig. 4.15 depicts the evolution of the mean and variance of the system’s displacement

using ME-FSC and a Monte Carlo simulation with one million realizations. The reason why

this time we use a Monte Carlo simulation as the reference solution is that a closed-form

solution for u is not available. However, it is worth pointing out that one drawback of using

Monte Carlo as the reference solution is that it will not allow us to compare the degree of

accuracy obtained with ME-FSC adequately, since the solution obtained with ME-FSC may

be far more accurate than the one given by Monte Carlo. Nonetheless, from this figure we

learn that when 64 elements and 5 basis vectors are employed to run the simulation, the

ME-FSC method is capable of reproducing the Monte Carlo solution quite well. To compare

the level of accuracy of ME-FSC with respect to Monte Carlo, Figs. 4.16 to 4.18 present the

local errors in mean and variance of the system’s displacement. In general, good convergence

can be observed when the number of elements and number of basis vectors are both increased.

This observation can be better verified using Fig. 4.19 which plots the global errors in mean
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and variance of the system’s displacement. As expected, the results only improves if the

number of basis vectors is increased up to a certain number, which in this case happens to be

5. However, contrary to what we observed in Problems 1 and 2, increasing the number of

elements does not necessarily improve the accuracy of the results, as can be confirmed when

P + 1 is set to 4. This suggests that due to the nonlinear nature of the system’s ODE, higher

basis vectors can play a major role in the description of the system’s state over time.

4.6.4. Problem 4: A nonlinear system governed by a system of 1st-order stochas-

tic ODEs (the Kraichnan-Orszag three-mode problem)

In this last problem, we explore the so-called Kraichnan-Orszag three-mode problem [95]

in order to test the performance of the ME-FSC method more throughly. This problem is

particularly challenging for methods based on the spectral approach because the solution

is known to be discontinuous over the random domain. It has been used as a benchmark

problem in various works (e.g. [34, 35, 43]), and so here we also opt to study it using the

ME-FSC method. The three-mode problem considered in this work is the same as the one

presented in [43] (Pag. 635, Section 4.3.4).

After performing a thoughtful 45◦ rotation of the random domain (specifically, about

the u3-axis), the solution becomes discontinuous on u1 = 0 and u2 = 0, and the system’s

governing differential equation reads

u̇1 = u1u3,

u̇2 = −u2u3,

u̇3 = −u2
1 + u2

2,

where u1, u2, u3 : T× Ξ→ R represent the three modes of the system, and u̇1 := ∂tu1, u̇2 :=

∂tu2, u̇3 := ∂tu3 are the corresponding velocities. In this problem, we take the initial conditions

of the system to be stochastic and given by: u1(0, ξ) = ξ1, u2(0, ξ) = ξ2, and u3(0, ξ) = ξ3.

Two probability distributions are investigated for ξ = (ξ1, ξ2, ξ3). The first one is a uniform

distribution defined by Uniform⊗3 ∼ ξ ∈ Ξ = [a, b]3, and the second one is a beta distribution
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Figure 4.15. Problem 3 — Evolution of E[u] and Var[u] for the case when the (h, p)-
discretization level of RFS is (P,E) = (4, 64) and µ ∼ Uniform⊗ Beta
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Figure 4.16. Problem 3 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform⊗ Beta (Set 1/3)
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Figure 4.17. Problem 3 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform⊗ Beta (Set 2/3)
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Figure 4.18. Problem 3 — Local error evolution of E[u] and Var[u] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform⊗ Beta (Set 3/3)
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Figure 4.19. Problem 3 — Global error of E[u] and Var[u] for different (h, p)-discretization
levels of RFS and for µ ∼ Uniform⊗ Beta
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defined by Beta(α, β)⊗3 ∼ ξ ∈ Ξ = [a, b]3, from where (a, b) = (−1, 1) and (α, β) = (2, 5).

The random space is thus three-dimensional.

In Figs. 4.20 to 4.23 we depict the evolution of the mean and variance of u1 and u3 for the

two distributions chosen for ξ. The results are obtained for the case of using 512 elements and

7 basis vectors per element, and then compared against a Monte Carlo simulation with one

million realizations. As observed, the ME-FSC solution is in good agreement with the Monte

Carlo solution. However, from Figs. 4.20a and 4.21a we notice that the ME-FSC solution is

much more accurate than Monte Carlo, since the exact mean of u1, u2 and u3 are known to

be identically equal to zero when the probability measure is uniform. As a result, the Monte

Carlo solution is demonstrated to be only 3 to 4 orders of magnitude accurate with respect

to the exact solution.

Moreover, Figs. 4.24 to 4.29 present the local and global errors in mean and variance of

u1 and u3 for the two distributions chosen for ξ. From these plots we see that increasing

the number of elements help improve the accuracy of the ME-FSC results with respect to

Monte Carlo. However, because the Monte Carlo solution is not exact, the errors have the

tendency to stagnate around 10−3 and 10−4 when the ME-FSC results are compared against

Monte Carlo. This is the reason why, in the case of the mean, the accuracy of the ME-FSC

results does not improve as the number of elements increases from 8 to 512; but, in the case

of the variance, they do improve because the errors obtained with ME-FSC are above 10−4.

Therefore, to achieve comparable solution accuracy to Monte Carlo, around 512 elements are

needed to solve this problem reasonably well with ME-FSC.

For this particular problem, the computational cost associated with a simulation with 512

elements and 7 basis vectors per element was 82 seconds, whereas the computational cost

associated with a Monte Carlo simulation with one million realizations was 97 seconds. This

outcome indicates that simulations conducted with ME-FSC were at least 15% faster than

those conducted with Monte Carlo. For higher-dimensional probability spaces, it would be

necessary to implement a different quadrature rule that does not suffer from the curse of

dimensionality to help speed up the computation of the inner products (which is where the

bottleneck of the ME-FSC method actually is), and thus make the computational cost of

ME-FSC an order of magnitude lower than Monte Carlo for comparable solution accuracy.
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Figure 4.20. Problem 4 — Evolution of E[u1] and Var[u1] for the case when the (h, p)-
discretization level of RFS is (P,E) = (6, 512) and µ ∼ Uniform⊗3
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Figure 4.21. Problem 4 — Evolution of E[u3] and Var[u3] for the case when the (h, p)-
discretization level of RFS is (P,E) = (6, 512) and µ ∼ Uniform⊗3
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Figure 4.22. Problem 4 — Evolution of E[u1] and Var[u1] for the case when the (h, p)-
discretization level of RFS is (P,E) = (6, 512) and µ ∼ Beta⊗3
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Figure 4.23. Problem 4 — Evolution of E[u3] and Var[u3] for the case when the (h, p)-
discretization level of RFS is (P,E) = (6, 512) and µ ∼ Beta⊗3
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Figure 4.24. Problem 4 — Local error evolution of E[u1] and Var[u1] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform⊗3
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Figure 4.25. Problem 4 — Local error evolution of E[u3] and Var[u3] for different (h, p)-
discretization levels of RFS and for µ ∼ Uniform⊗3
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Figure 4.26. Problem 4 — Local error evolution of E[u1] and Var[u1] for different (h, p)-
discretization levels of RFS and for µ ∼ Beta⊗3
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Figure 4.27. Problem 4 — Local error evolution of E[u3] and Var[u3] for different (h, p)-
discretization levels of RFS and for µ ∼ Beta⊗3
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Figure 4.28. Problem 4 — Global error of E[u1] and Var[u1] for different (h, p)-discretization
levels of RFS
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Figure 4.29. Problem 4 — Global error of E[u3] and Var[u3] for different (h, p)-discretization
levels of RFS
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4.7. Conclusion

In this paper we have presented an extension of the FSC method [92], called the multi-

element flow-driven spectral chaos (ME-FSC) method, to deal with stochastic discontinuities

and long-time integration of stochastic dynamical systems more efficiently. The method is

also particularly useful when it comes to dealing with large stochastic dynamical systems,

since it allows the analyst to decompose the problem into several small subproblems and

thus the possibility to solve each of them separately. Furthermore, if each subproblem were

to be solved simultaneously on machines with multiple CPU cores or on separate machines,

the solution could be obtained in a more reasonable amount of time, making therefore the

multi-element approach more appealing than FSC in many other instances.

The key idea behind the ME-FSC method is no different than the ME-gPC method [43].

In ME-FSC, the random domain is partitioned into several elements, and then the FSC

method is implemented on each element. In a subsequent step, the results are aggregated

and the probability moments of interest are computed using the law of total probability. To

ensure that the probability information is transferred exactly from one random function space

to another, the FSC-2 approach is implemented on each random element. The significance of

implementing the FSC-2 approach into the ME-FSC scheme is that it helps reduce by several

orders of magnitude the error propagation over time.

Four representative problems were investigated in this paper. The first two problems

dealt with systems governed by a linear stochastic ODE to enable us to obtain an exact

solution with which to compare the ME-FSC results against. The third problem dealt with

a system governed by a nonlinear stochastic ODE (the Van-der-Pol oscillator) to study

the effectiveness of the ME-FSC method in the resolution of nonlinear problems. The last

fourth problem dealt with a system governed by a nonlinear system of stochastic ODEs

(the Kraichnan-Orszag three-mode problem) so that the performance of ME-FSC could be

investigated more throughly. Based on our findings, we can conclude that the ME-FSC method

is capable of reproducing the exact solution with high fidelity, and for those problems with

no closed-form solutions, the ME-FSC method is capable of resembling reasonably well a
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Monte Carlo simulation with one million realizations using a fraction of the computational

cost required to do so.
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5. MODAL FLOW-DRIVEN SPECTRAL CHAOS (MFSC)
METHOD FOR LONG-TIME INTEGRATION OF

STOCHASTIC DYNAMICS OF STRUCTURES

5.1. Introduction

The objective of this chapter is to demonstrate that the excessive computational burden

of a stochastic simulation can be greatly alleviated if the spatial random function space

is discretized using the first few vibration modes of the system. For efficiency reasons, we

continue discretizing the random function space with the FSC method. This new technique,

called the modal flow-driven spectral chaos (MFSC) method, is the author’s second attempt

to further reduce the dimensionality of the random function space whenever we have systems

with several degrees of freedom. The demonstration is conducted herein by studying the

dynamic response of a stochastic, linear structural system using the spectral approach. The

mathematical spaces employed in this chapter can be readily found in Section 3.2 (Definitions

1 to 5).

5.2. Problem statement

A system of non-autonomous, second-order linear ODEs in the context of stochastic

dynamics of structures is considered herein. The problem can be stated formally as follows.

Find the displacement of the system u : T× Ξ→ RR, such that each entry of u is in U

and (µ-a.e.):

Mü + Cu̇ + Ku = p on T× Ξ (5.1a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ, (5.1b)

where M,C,K : Ξ → L(RR,RR) are (respectively) the mass matrix, the damping matrix

and the stiffness matrix of the system, p : T× Ξ→ RR is the external force acting on the

system, R ∈ N1 symbolizes the number of degrees of freedom that the system possesses,

and u, v : Ξ → RR are (respectively) the initial displacement and the initial velocity of
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the system. Observe that u̇ := ∂tu denotes the velocity of the system, and ü := ∂2
t u the

acceleration of the system.

In the discussion that follows, M(ξ) 6= 0 represents a symmetric matrix for all ξ ∈ Ξ.

5.3. An overview of the eigenproblem in structural dynamics

In structural dynamics, the generalized eigenproblem discussed below is of special interest

since its solution gives the natural frequencies and modes of an undamped structural system.

This section is devoted to revise the eigenproblem encountered in structural dynamics using

the spectral approach. In Section 5.4, we use the modes of the system to reduce considerably

the number of degrees of freedom involved in the mathematical model of the system.

5.3.1. Eigenproblem statement

Find the eigenpair (λm,φm) : Ξ → RR+1, such that λm and each entry of φm are in Z

and (µ-a.e.):

Kφm = λmMφm on Ξ (5.2a)

φTmMφm = ρ on Ξ, (5.2b)

where M and K are the mass and stiffness matrices as defined in Section 5.2, λ : Ξ → R

is the m-th eigenvalue of the system, φm : Ξ → RR is the corresponding eigenvector, and

ρ ∈ R+ is a prescribed positive real number (typically taken as 1 in the literature). Here the

superscript T stands for the transpose operation found in linear algebra.

5.3.2. Spectral solution of eigenproblem

The eigenproblem is solved below using the spectral approach. The solution is similar to

that presented by Ghanem and Ghosh in [96] with the only difference being that here there

is an explicit mass matrix defined in the problem statement. This is the reason why in this

work we orthogonalize the eigenvectors with respect to the mass matrix (via (5.2b)) and not

with respect to the identity matrix (as in [96]).
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In tensor notation, system (5.2) can be rewritten as:

K[ · ,φm] = λm M[ · ,φm] ⇔ Ku
vφ

v
m = λmM

u
vφ

v
m (5.3a)

δ[φm,M[ · ,φm]] = ρ ⇔ δuwφ
u
mM

w
vφ

v
m = ρ, (5.3b)

where M = Mu
v eu ⊗ ev, K = Ku

v eu ⊗ ev : RR′ × RR → Z are (respectively) the spatial

mass tensor field and the spatial stiffness tensor field of the system on Ξ, eu ∈ RR is the

standard unit vector associated with the u-th dimension, ev : RR → R is the standard

covector associated with the v-th dimension, RR′ is the dual space of RR with ev[eu] = δvu,

and δ = δuv eu ⊗ ev : RR × RR → R is the standard metric tensor endowed on RR. In these

expressions, δvu and δuv are two Kronecker deltas, φm = φvmev is a spatial vector field on Ξ,

and Mu
v , K

u
v , φ

v
m, λm : Ξ→ R are random functions in Z given by

Mu
v = Mu

v (ξ), Ku
v = Ku

v (ξ), φvm = φvm(ξ) and λm = λm(ξ)

for all u, v ∈ {1, 2, . . . , R}.

Since it is already presumed that λm, φvm ∈ Z, these functions can be represented in

Z= span{Ψ̃j}∞j=0 by the Fourier series:

λm(ξ) =
∞∑
j=0

λ j
m Ψ̃j(ξ) ≡ λ j

m Ψ̃j(ξ) (5.4a)

φvm(ξ) =
∞∑
j=0

φv j
m Ψ̃j(ξ) ≡ φv j

m Ψ̃j(ξ). (5.4b)

Substituting (5.4) into (5.3) gives

Ku
vφ

v j
m Ψ̃j = λ k

m Ψ̃kM
u
vφ

v j
m Ψ̃j (5.5a)

δuwφ
u j
m Ψ̃jM

w
vφ

v k
m Ψ̃k = ρ. (5.5b)

Projecting (5.5) onto Z implies

Ψ̃i[Ku
vφ

v j
m Ψ̃j] = Ψ̃i[λ k

m Ψ̃kM
u
vφ

v j
m Ψ̃j] (5.6a)

Ψ̃i[δuwφu j
m Ψ̃jM

w
vφ

v k
m Ψ̃k] = Ψ̃i[ρ], (5.6b)
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which after simplification yields the following system of (infinitely many) nonlinear equations:

K̃u i
v jφ

v j
m = M̃u i

v jkφ
v j
m λ k

m (5.7a)

δuwM̃
w i
v jkφ

u j
m φv k

m = ρ δ̃i0, (5.7b)

where M̃u i
v jk , K̃

u i
v j , δ̃

i
0 ∈ R are real numbers given by

M̃u i
v jk = 〈Ψ̃i,M

u
v Ψ̃jΨ̃k〉

〈Ψ̃i, Ψ̃i〉
, K̃u i

v j = 〈Ψ̃i, K
u
v Ψ̃j〉

〈Ψ̃i, Ψ̃i〉
and δ̃i0 = 〈Ψ̃i, 1〉

〈Ψ̃i, Ψ̃i〉
.

Remark 5.1. The real numbers M̃u i
v jk and K̃u i

v j represent the components of the random-

spatial tensors:

M̃ = M̃u i
v jk eu ⊗ ev ⊗ Ψ̃i ⊗ Ψ̃j ⊗ Ψ̃k : RR′ × RR ×Z′ ×Z2 → R

K̃ = K̃u i
v j eu ⊗ ev ⊗ Ψ̃i ⊗ Ψ̃j : RR′ × RR ×Z′ ×Z→ R,

where M̃ is symmetric in the indices j and k. Furthermore, the associated tensor:

M̃ [1 = M̃ i
uv jk eu ⊗ ev ⊗ Ψ̃i ⊗ Ψ̃j ⊗ Ψ̃k : RR × RR ×Z′ ×Z2 → R

is symmetric not only in the indices j and k but also in the indices u and v, since M is

a symmetric matrix. Here [1 symbolizes the flat of M̃ with respect to its first slot, giving

thereby an expression for the components of M̃ [1 :

M̃ i
uv jk = δuwM̃

w i
v jk ,

where δuw denotes the components of the metric tensor endowed on RR.

Remark 5.2. If Z is represented with Z̃[P ] = span{Ψ̃j}Pj=0, then (5.7) is a system of (R +

1)(P + 1) nonlinear equations with (R + 1)(P + 1) unknowns. The unknowns being the two

points1: λm = (λ 0
m , . . . , λ P

m ) ∈ RP+1 and φm := (φ1 0
m , . . . , φR P

m ) ∈ RR(P+1).

1To avoid unnecessary complexity in notation, the symbol λm has two meanings in this work, namely:
the random function λm and the (P + 1)-dimensional point λm. However, the actual meaning of this symbol
should be clear from the context it is used.
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5.3.3. Iterative solution for system of nonlinear equations

This section is started under the assumption that Z has been discretized with Z̃[P ], and

that the system of nonlinear equations can be solved numerically using the Newton-Raphson

method for all m ∈ {1, 2, . . . , R} (as in [96]).

For this, we take gui, hi : R(R+1)(P+1) → R to be functions identically-equal-to-zero given

by (from (5.7))

gui(xm) = K̃u i
v jφ

v j
m − M̃u i

v jkφ
v j
m λ k

m ≡ 0 (5.8a)

hi(xm) = δuwM̃
w i
v jkφ

u j
m φv k

m − ρ δ̃i0 ≡ 0, (5.8b)

where xm = (λm, φm) = (λ 0
m , . . . , λ P

m , φ1 0
m , . . . , φR P

m ) ∈ R(R+1)(P+1).

In addition, for notational convenience we take

f = (g, h) : R(R+1)(P+1) → R(R+1)(P+1) :⇔ f = f(xm),

where

g = (g10, . . . , gui, . . . , gRP ) : R(R+1)(P+1) → RR(P+1) :⇔ g = g(xm)

h = (h0, . . . , hi, . . . , hP ) : R(R+1)(P+1) → RP+1 :⇔ h = h(xm).

Linearizing (5.8) about xm = x̄m and evaluating the resulting functions at xm = x̂m

produces

fµ(x̄m) +
(R+1)(P+1)∑

ν=1

∂fµ

∂xmν
(x̄m) (x̂mν − x̄mν) = 0, (5.9)

where µ ∈ {1, 2, . . . , (R + 1)(P + 1)}.

However, in matrix form, system (5.9) can also be expressed as

f(x̄m) + F(x̄m) (x̂m − x̄m) = 0, (5.10)
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where x̄m, x̂m, f(x̄m) ∈ R(R+1)(P+1) and F(x̄m) ∈ L(R(R+1)(P+1),R(R+1)(P+1)) are defined by2

x̄m =
{
x̄m

ν
}
, x̂m =

{
x̂m

ν
}
,

f(x̄m) =
{
fµ(x̄m)

}
≡


gui(x̄m)

hi(x̄m)

 =


K̃u i

v j φ̄
v j
m − M̃u i

v jk φ̄
v j
m λ̄ k

m

δuwM̃
w i
v jk φ̄

u j
m φ̄v k

m − ρ δ̃i0


and

F(x̄m) =
[
∂fµ

∂xmν
(x̄m)

]
≡


∂gui

∂λ β
m

(x̄m) ∂gui

∂φα β
m

(x̄m)

∂hi

∂λ β
m

(x̄m) ∂hi

∂φα β
m

(x̄m)



=

 −M̃
u i
v βk φ̄

v k
m K̃u i

α β − M̃u i
α βk λ̄

k
m

0 2 δαwM̃w i
v βk φ̄

v k
m

 ,
whence α ∈ {1, 2, . . . , R} and β ∈ {0, 1, . . . , P}.

However, by using matrix notation, the components of f(x̄m) and F(x̄m) can be written

more compactly as:

f(x̄m) =


K̃i

jφ̄
j

m − λ̄ k
m M̃i

jkφ̄
j

m

(φ̄ j
m )TM̃i

jkφ̄
k

m − ρ δ̃i0

 and F(x̄m) =

 −M̃i
jkφ̄

k
m K̃i

j − λ̄ k
m M̃i

jk

2 (φ̄ k
m )TM̃i

jk

 ,

where M̃i
jk =

[
M̃u i

v jk

]
, K̃i

j =
[
K̃u i

v j

]
∈ L(RR,RR), and φ̄ j

m =
{
φ̄u j

m

}
∈ RR. From a

computational standpoint these two matrix representations of f and F are very useful, since

they allow vectorization of the operations in a numerical computing environment such as

BLAS (Basic Linear Algebra Subprograms) [97], and thus, improve the performance of the

code considerably.

Thus, after solving for x̂m using (5.10) yields the next trial solution for (5.7):

x̂m = x̄m − F−1(x̄m) f(x̄m), (5.11)

2The formal derivation for the components of F can be found in Appendix 5.A.
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where F−1(x̄m) represents the matrix inverse of F(x̄m), and x̄m (or x̄m) denotes the initial

trial solution.

5.4. Modal decomposition and spatial discretization of structural system

In structural dynamics, the displacement of a system can be written as:

u = φ[ · ,q] ⇔ uv = φvm q
m, (5.12)

where φ = φvm ev ⊗ em : RR′ × RR → Z is the modal spatial tensor field of the system on Ξ,

and q = qm em is a displacement vector field on T× Ξ. In these expressions, φvm : Ξ→ R is

a random function in Z given by φvm = φvm(ξ) (as in Section 5.3.2), qm : T× Ξ→ R is a

random-temporal function in U given by qm = qm(t, ξ), and v,m ∈ {1, 2, . . . , R}.

Now, we define S = RR and let S[S] be a subspace of S such that S[S] = span{ev}Sv=1

and S < R. Then, a spatial discretization for the structural system in hand can be carried

out by considering the first S eigenvectors of the system, so as to produce an approximate

representation of u in S[S] as follows:

u(t, ξ) ≈ u[S](t, ξ) =
S∑

m=1
φvm(ξ) qm(t, ξ) ev. (5.13)

This approximation is performed here provided that the eigenvectors are ordered such that

the corresponding eigenvalues satisfy: λ1 < λ2 < · · · < λR.

To simplify notation, expansion (5.13) is written hereafter as

u(t, ξ) = φvm(ξ) qm(t, ξ) ev ⇔ uv(t, ξ) = φvm(ξ) qm(t, ξ), (5.14)

where a summation sign is implied over the repeated index m ∈ {1, 2, . . . , S} unless indicated

otherwise, and v ∈ {1, 2, . . . , R}. We note that the superscript [S] was dropped in (5.14) to

avoid notational complexity.
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As it will become apparent shortly, system (5.1) is best described using tensor notation,

and so we write from now on the system’s governing differential equation (and its initial

conditions) in the following way:

Mu
v ü

v + Cu
v u̇

v +Ku
vu

v = pu on T× Ξ (5.15a){
uu(0, · ) = uu, u̇u(0, · ) = vu

}
on {0} × Ξ, (5.15b)

where Mu
v , C

u
v , K

u
v , u

u, vu : Ξ → R are random functions in Z, pu : T × Ξ → R is a

random-temporal function in V, uv : T× Ξ→ R is a random-temporal function in U, and

u, v ∈ {1, 2, . . . , R}. Furthermore, since u̇v := ∂tu
v and üv := ∂2

t u
v, then u̇v ∈ T(1)⊗Z and

üv ∈ T(0)⊗Z≡ V.

Therefore, substituting (5.14) into (5.15) gives

Mu
vφ

v
m q̈

m + Cu
vφ

v
m q̇

m +Ku
vφ

v
m q

m = pu on T× Ξ (5.16a){
φum q

m(0, · ) = uu, φum q̇
m(0, · ) = vu

}
on {0} × Ξ. (5.16b)

To project (5.16) onto S[S], we apply the spatial tensor field:

φT = (φT )nu en ⊗ eu : RS ′ × RR → Z

on both sides of each equation to get:

φ n
u M

u
vφ

v
m q̈

m + φ n
u C

u
vφ

v
m q̇

m + φ n
u K

u
vφ

v
m q

m = φ n
u p

u on T× Ξ (5.17a){
φ n
u φ

u
m q

m(0, · ) = φ n
u uu, φ n

u φ
u
m q̇

m(0, · ) = φ n
u vu} on {0} × Ξ, (5.17b)

where n ∈ {1, 2, . . . , S}, (φT )nu := φ n
u = δuvδ

mnφvm, and δuv and δmn are two Kronecker

deltas representing the components of the metric tensor endowed on RR and RS ′, respectively.

5.5. Solution based on the spectral approach

5.5.1. Discretization of random function space

To simplify the presentation, in this section we consider a p-discretization of Z. Let

Z[P ] = span{Ψj}Pj=0 be a finite subspace of Z with P + 1 ∈ N1 denoting the dimensionality
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of the subspace. Then, if we let qm[P ](t, · ) be an element of Z[P ], it is apparent that the

following approximation can be made, provided that {Ψj}∞j=0 is well graded:

qm(t, ξ) ≈ qm[P ](t, ξ) =
P∑
j=0

qmj(t) Ψj(ξ) ≡ qmj(t) Ψj(ξ). (5.18)

For the last equality, we need to keep in mind that j ∈ {0, 1, . . . , P}.

Substituting (5.18) and (5.4b) into (5.17) gives

δuwδ
xnφw k

x Ψ̃kM
u
vφ

v l
m Ψ̃lq̈

mjΨj + · · · = δuwδ
xnφw k

x Ψ̃kp
u on T× Ξ (5.19a){

δuwδ
xnφw k

x Ψ̃kφ
u l
m Ψ̃l q

mj(0) Ψj = δuwδ
xnφw k

x Ψ̃ku
u, . . .

}
on {0} × Ξ. (5.19b)

Projecting (5.19) onto Z[P ] yields a system of (P + 1)S ordinary differential equations of

second order in the variable t, where the unknowns are the random modes qmj = qmj(t) and

q̇mj = q̇mj(t):

Mn i
m j q̈

mj + Cn i
m j q̇

mj +Kn i
m j q

mj = pni on T (5.20a){
qmj(0) = qmj, q̇mj(0) = rmj

}
on {0}, (5.20b)

where Mn i
m j , C

n i
m j , K

n i
m j ,q

mj, rmj ∈ R and pni : T→ R are given by

Mn i
m j = δuwδ

xn φw k
x φ

v l
m 〈Ψi,M

u
vΨjΨ̃kΨ̃l〉/〈Ψi,Ψi〉

Cn i
m j = δuwδ

xn φw k
x φ

v l
m 〈Ψi, C

u
vΨjΨ̃kΨ̃l〉/〈Ψi,Ψi〉

Kn i
m j = δuwδ

xn φw k
x φ

v l
m 〈Ψi, K

u
vΨjΨ̃kΨ̃l〉/〈Ψi,Ψi〉

qmj = (A−1) m j
n i δuwδ

xnφw k
x 〈Ψi, u

uΨ̃k〉/〈Ψi,Ψi〉

rmj = (A−1) m j
n i δuwδ

xnφw k
x 〈Ψi, v

uΨ̃k〉/〈Ψi,Ψi〉

pni(t) = δuwδ
xnφw k

x 〈Ψi, p
u(t, · ) Ψ̃k〉/〈Ψi,Ψi〉,

where (A−1) m j
n i represents the entries of the matrix inverse of

A =
[
A
%(n,i)

%(m,j)

]
∈ L(RS(P+1),RS(P+1)),

% : {1, 2, . . . , S} × {0, 1, . . . , P} → N1 is given by %(α, β) = Sβ + α, and

A
%(n,i)

%(m,j) := An i
m j = δuwδ

xnφw k
x φ

u l
m 〈Ψi,ΨjΨ̃kΨ̃l〉/〈Ψi,Ψi〉.
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Using matrix notation, system (5.20) can be rewritten more compactly as

Mi
jq̈j + Ci

jq̇j + Ki
jqj = pi on T (5.21a){

qj(0) = qj, q̇j(0) = rj
}

on {0}, (5.21b)

where

Mi
j =

[
Mn i

m j

]
, Ci

j =
[
Cn i

m j

]
, Ki

j =
[
Kn i

m j

]
∈ L(RS,RS)

pi =
{
pni
}
, qj =

{
qmj

}
, rj =

{
rmj

}
∈ RS.

(Recall that i, j ∈ {0, 1, . . . , P} and m,n ∈ {1, 2, . . . , S}.)

Remark 5.3. Note that in order to compute u, we can always go back to (5.13) and (5.18) to

obtain:

u(t, ξ) = φvm(ξ) qm(t, ξ) ev

= φvm(ξ) qmj(t) Ψj(ξ) ev.

5.5.2. Discretization of temporal function space

As usual, the temporal function space T can be discretized using any suitable time

integration method, such as the Newmark-β method [30,31] or the Runge-Kutta method [29]

of fourth order (aka RK4 method). In this work we use the latter to push the state of the

system forward in time with high accuracy.

5.5.3. Computation of probability moments

In order to demonstrate how the probability moments can be computed using the spectral

approach, suppose that z(t, · ) ∈ Z is a square-integrable random variable materialized at

some time t ∈ T. This random variable may be interpreted as one of the infinitely many
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responses that one can obtain from solving (5.1) at a given time. Therefore, an approximate

representation of z(t, · ) in Z[P ] = span{Ψj}Pj=0 can be taken as:

z(t, ξ) ≈ z[P ](t, ξ) =
P∑
j=0

zj(t) Ψj(ξ) ≡ zj(t) Ψj(ξ),

where the j-th random mode of z is given by

zj(t) = 〈Ψj, z(t, · )〉
〈Ψj,Ψj〉

.

Consequently, if we were interested in computing the expectation of z, E[z] : T→ R, or

the variance of z, Var[z] : T → R+
0 , as a function of time, the corresponding formulas for

these moments would be given by:

E[z](t) :=
∫
z(t, · ) dµ = z0(t) (5.22a)

Var[z](t) :=
∫

(z(t, · )− E[z](t))2 dµ =
P∑
j=1
〈Ψj,Ψj〉 zj(t) zj(t). (5.22b)

The derivation of these two formulas can be found, for instance, in [92].

5.6. Numerical results

The structure considered in this work is a hypothetical, high-rise residential building

located in northwestern Colombia. The 25-story building is 77-m tall and has a typical

inter-story height of 3 m. Typical plan dimensions of a floor in the building are 25 m by 30

m. Typical spans range from 5 to 7 m. The lateral load resistance of the building is chiefly

provided by a reinforced-concrete core wall which is connected to perimeter reinforced-concrete

moment frames using post-tensioned concrete flat slabs. Table 5.1 provides further information

about the characteristics of this building. The building was designed using performance-based

design criteria [40, 41] in order to make the structural design code-compliant. The building’s

fundamental period of vibration is 1.78 s.

Once the mathematical model of the structural system has been abstracted and constructed,

the model is further simplified to get only one degree of freedom per story as shown in Fig. 5.1.

This is possible to do since in a one-direction, lateral-load analysis (like the one we are
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Table 5.1. Additional characteristics of selected 25-story building

Slabs (25) Columns (20) Core wall (1)

Compressive strength of concrete f ′c = 35 MPa f ′c = 45 MPa f ′c = 45 MPa

1st-7th story t = 20 cm s = 55× 55 cm t = 50 cm

8th-18th story t = 20 cm s = 50× 50 cm t = 45 cm

19th-25th story t = 20 cm s = 45× 45 cm t = 40 cm
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about to undertake) the contribution of the rotational mass to the total response is negligible

compared to the translational mass.

Assuming free vibration and no damping forces acting in the system, the governing

differential equation of motion for the 25-story-building model becomes

Mü + Ku = 0.

Although this is an unrealistic governing equation for a building, we use it herein to investigate

the performance of the MFSC method more thoroughly. This is because the addition of

damping forces in the governing equation contributes at making the system memoryless over

time, which in turn weakens any nonlinear dependency that may exist over the probability

space as the simulation proceeds. Thus, to make the problem more difficult to solve, the

damping forces are removed from the standard governing equation of the building.

The mass matrix, M ∈ L(R25,R25), is deterministic and given by:

M =



m

m
. . .

m

m


25×25

,

whereas the stiffness matrix, K : Ξ→ L(R25,R25), is stochastic and given by:

K(ξ) =



2 k1(ξ) −k1(ξ)

−k1(ξ) 2 k1(ξ)
. . .

2 k3(ξ) −k3(ξ)

−k3(ξ) k3(ξ)


25×25

.

As one would expect, u : T×Ξ→ R25 represents the displacement of the system, and u̇ := ∂tu

and ü := ∂2
t u are the velocity and acceleration of the system, respectively. Observe that the

problem we are trying to solve is that given by (5.1), from where we have taken: C ≡ 0 and
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Figure 5.1. Surrogate model of a 25-story building for lateral-load analysis in one direction
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p ≡ 0. The initial conditions of the system are u(0, · ) = u and u̇(0, · ) = v ≡ 0, where

u≡
[
u1, u2, . . . , uj, . . . , u25

]T
and uj = 0.03j.

In the above expressions, ξ = (ξ1, ξ2), m = 750 Mg represents the amount of mass per

story, k1(ξ) = ξ1 is the effective lateral stiffness of the 1st-7th story, k2(ξ) = ξ2 is the effective

lateral stiffness of the 8th-18th story, and k3(ξ) = ξ2 is the effective lateral stiffness of the

19th-25th story (as depicted in Fig. 5.1).

Two different probability distributions are considered for ξ. The first distribution is a

uniform distribution, Uniform ⊗ Uniform ∼ ξ ∈ Ξ, and the second distribution is a beta

distribution, Beta(α, β)⊗Beta(α, β) ∼ ξ ∈ Ξ. The parameters for both these distributions are

taken as follows: Ξ = [a1, b1]×[a2, b2] and (α, β) = (2, 5), where (a1, b1) = (2.21×106, 4.16×106)

kN/m and (a2, b2) = (1.99× 106, 3.74× 106) kN/m.

To reduce the computational burden of the simulation, we run the simulations with up to

S = 3 modes of vibration. Using the expected values for k1, k2 and k3, the combined modal

mass participations turn out to be about: 82% if S = 1, 91% if S = 2 and 95% if S = 3. The

resulting system of equations, as displayed in (5.21), is integrated over time using the RK4

method. The time-step size used is ∆t = 0.005 s. For illustrative purposes, the simulation is

set to last T = 50 s, which means that the temporal domain of the system is T = [0, 50] s.

Further, because the initial conditions are deterministic, the gPC method (with P = 8) is

implemented for the first 2 seconds of the simulation to make sure that the stochasticity of

the system’s state is well developed for the analysis with MFSC.

To minimize the error propagation over time, the probability information is transferred

exactly from one random function space to another using the FSC-2 approach presented in [92].

However, in order to implement the FSC-2 approach correctly, the following modifications

are required to be made in the FSC scheme of [92]:

• The boundedness of P is this time given by:

(n+ 1)S ≤ P ≤ (n+M)S,

which means that the dimensionality of the random function space, dim Z[P ], is bounded

from below by (n+ 1)S + 1 and from above by (n+M)S + 1. We recall that n denotes

the order of the system’s governing ODE with respect to time, and that M denotes
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the order of the stochastic flow map we want to implement. Notice that if S = 1, the

boundedness of P in [92] is fully recovered. However, because in this work n = 2 and

M = 1 is always assumed for computational efficiency, the above expression reduces to

P = 3S.

• The system’s state involved in the calculations is no longer (u, u̇) but (q, q̇) as shown in

(5.17). Therefore, the stochastic flow map, ϕ(1) : R×Z2S → Z2S, takes the following

form in this work:

ϕ(1)(h, s(ti, · )) =: s(ti + h, · ) =
(
q(ti + h, · ), q̇(ti + h, · )

)
−O(h2)

=
(
q(ti, · ) + h q̇(ti, · ), q̇(ti, · ) + h q̈(ti, · )

)
,

where q(t, ξ) = qm(t, ξ) em with m ∈ {1, 2, . . . , S} (see (5.12)), and

s = (q, q̇) ≡



(q1, q̇1) for S = 1

(q1, q2, q̇1, q̇2) for S = 2

(q1, q2, q3, q̇1, q̇2, q̇3) for S = 3.

Likewise, the enriched stochastic flow map, ϕ̂(1) : R×Z3S → Z3S, takes the form:

ϕ̂(1)(h, ŝ(ti, · )) =: ŝ(ti + h, · ) = (q(ti + h, · ), q̇(ti + h, · ), q̈(ti + h, · )),

where

ŝ = (q, q̇, q̈) ≡



(q1, q̇1, q̈1) for S = 1

(q1, q2, q̇1, q̇2, q̈1, q̈2) for S = 2

(q1, q2, q3, q̇1, q̇2, q̇3, q̈1, q̈2, q̈3) for S = 3.

Note that the O(h2) term was dropped in the definition of ϕ̂(1) for notational conve-

nience.

• The set of linearly independent functions is therefore taken in this work as: {Φj.i :=

ϕ̂j(1)(0, ŝ(ti, · ))}3S
j=1.
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The inner products are evaluated numerically using the following quadrature rules on

each random axis:

Uniform ∼ Gauss-Legendre(100 points) and Beta ∼ Gauss-Jacobi(80 points).

Moreover, as in [92], the local and global errors, ε : T→ T and εG : T→ R, are defined

with:

ε[f ](t) = |f(t)− fexact(t)|

εG[f ] = 1
T

∫
T
|f(t)− fexact(t)| dt ≈

∆t
T

N∑
i=0
|f(ti)− fexact(ti)|,

where ∆t is the time-step size used for the simulation, ti ∈ T is the time instant of the

simulation, and N is the number of time steps employed in the simulation (with t0 = 0 and

tN = N ∆t = T ).

All problems are run in MATLAB R2020b [98] on a 2020 MacBook Air with Apple M1

chip (8-Core CPU at 3.20 GHz, 8-Core GPU, 16-Core Neural Engine, and 16 GB unified

memory) and 1 TB Apple-Fabric SSD storage (APFS-formatted), running macOS Big Sur

(version 11.2).

In Figs. 5.2 to 5.4 we depict the evolution of the mean and variance for some of the

story displacements using MFSC with S = 3 and a Monte Carlo simulation with one million

realizations. The results depicted correspond to the case when the probability measure is

assumed uniform. The dimensionality of the random function space, dim Z[P ], is in this case

10 because P = 3S in this work. The responses shown are those obtained for u8, u17 and u25

(as displayed in Fig. 5.1). As observed, the MFSC solution is capable of reproducing the Monte

Carlo solution reasonably well, for the results only happen to be slightly distinguishable from

each other after the 30th second of the simulation. This difference in the results is attributable

to the fact that higher modes can influence the total response by about 5% at early times

of the simulation. (Recall that the combined modal mass participation for S = 3 is 95%.)

Although this error has the potential to worsen the results significantly over time, here we

see that this is not the case for the problem in hand, since the MFSC results are in good

agreement with Monte Carlo for the entire simulation.
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Figure 5.2. Evolution of E[u8] and Var[u8] for the case when the p-discretization level of
RFS is (P, S) = (3, 3) and µ ∼ Uniform⊗ Uniform
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Figure 5.3. Evolution of E[u17] and Var[u17] for the case when the p-discretization level of
RFS is (P, S) = (3, 3) and µ ∼ Uniform⊗ Uniform
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Figure 5.4. Evolution of E[u25] and Var[u25] for the case when the p-discretization level of
RFS is (P, S) = (3, 3) and µ ∼ Uniform⊗ Uniform
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Figs. 5.5 to 5.7 present the local errors in mean and variance of u8, u17 and u25 as a

function of the number of vibration modes employed in the simulations with MFSC and

for the case when the probability measure is uniform. This figure shows that for the first 5

seconds of the simulation, the total response is largely commanded by the higher vibration

modes of the building. This is the reason why choosing S = 1 or S = 2 in the simulations with

MFSC does not produce accurate results at early times of the simulation. However, as time

progresses, the total response becomes more and more commanded by the first two vibration

modes of the building. This indicates that 2 vibration modes are sufficient to capture the

overall response of the building with MFSC, but 3 vibrations modes are still required to

capture local phenomena such as those identified in the first 5 seconds of the simulation.

Finally, Figs. 5.8 to 5.10 depict the global errors in mean and variance for u8, u17 and u25

as a function of the number of vibration modes and the two distributions chosen for ξ. As

shown, the global errors can drop up to 10−3 if 2 vibration modes are used in the simulations

with MFSC. However, due to the inexactness of the Monte Carlo solution, increasing the

number of vibration modes does not have a direct impact at reducing the global errors beyond

10−4. Therefore, comparable results to Monte Carlo are achievable for this problem if only

two or three vibration modes are included in the simulations with MFSC.

5.7. Conclusion

This chapter has presented a new technique called the modal flow-driven spectral chaos

(MFSC) method to deal with large-scale structural dynamical systems subjected to uncer-

tainties more effectively using the spectral approach. Because the aim of this work was to

reduce considerably the dimensionality of the random function space, it was necessary to find

first the first few vibration modes of the system. To do so, an iterative process based on the

Newton-Raphson method was proposed to resolve a nonlinear system of eigen-equations over

the spatial-random space (as in [96]). Then, the first few vibration modes of the system were

utilized to project the system’s governing differential equation of motion, and this way reduce

substantially the number of degrees of freedom involved in the initial mathematical model
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Figure 5.5. Local error evolution of E[u8] and Var[u8] for different p-discretization levels of
RFS and for µ ∼ Uniform⊗ Uniform
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Figure 5.6. Local error evolution of E[u17] and Var[u17] for different p-discretization levels
of RFS and for µ ∼ Uniform⊗ Uniform
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Figure 5.7. Local error evolution of E[u25] and Var[u25] for different p-discretization levels
of RFS and for µ ∼ Uniform⊗ Uniform
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Figure 5.8. Global error of E[u8] and Var[u8] for different p-discretization levels of RFS
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Figure 5.9. Global error of E[u17] and Var[u17] for different p-discretization levels of RFS
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Figure 5.10. Global error of E[u25] and Var[u25] for different p-discretization levels of RFS
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of the system. The spectral approach was then employed to solve the new resulting set of

stochastic equations as a means to find the sought solution afterwards.

To test the effectiveness of the MFSC method, a 25-story building was adapted to comprise

at most one degree of freedom per story. Then, a modal analysis was carried out to obtain the

first three vibration modes of the building. From this analysis it was learnt that the building

had a combined modal mass participation of about 95% for the first three vibration modes,

which helped bound the number of vibration modes to use in the MFSC scheme.

Based on our findings, the MFSC method is capable of approximating reasonably well the

solution of a 25-story building with stochastic stiffness and subject to free vibration. However,

it is important to note here that the success of these results is a consequence of the fact that

the total response of the building is chiefly commanded by the first three vibration modes.

For systems whose total response is not commanded by the first few vibration modes, the

MFSC approach may not be the best technique out there to implement since the number of

operations can certainly exceed the number of operations needed in a regular scheme such

as FSC. Therefore, a better conceptualization of the modal idea may still be necessitated

before considering it a good candidate for handling, at low computational cost, large-scale

stochastic dynamical systems with the spectral approach.
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5.A. Formal derivation for the components of Jacobian matrix F

From (5.8) it follows that the expressions for the components of F are as follows (recall

that m ∈ {1, 2, . . . , R} is fixed):

∂gui

∂λ β
m

= −M̃u i
v jkφ

v j
m

∂λ k
m

∂λ β
m

= −M̃u i
v jkφ

v j
m δkβ

= −M̃u i
v jβ φ

v j
m = −M̃u i

v kβ φ
v k
m = −M̃u i

v βkφ
v k
m .

∂gui

∂φα β
m

= K̃u i
v j

∂φv j
m

∂φα β
m

− M̃u i
v jk

∂φv j
m

∂φα β
m

λ k
m

= K̃u i
v j δ

v
αδ

j
β − M̃u i

v jk δ
v
αδ

j
βλ

k
m = K̃u i

α β − M̃u i
α βkλ

k
m .

∂hi

∂λ β
m

= 0.

∂hi

∂φα β
m

= δuwM̃
w i
v jk

∂φu j
m

∂φα β
m

φv k
m + δuwM̃

w i
v jkφ

u j
m

∂φv k
m

∂φα β
m

= δuwM̃
w i
v jk δ

u
αδ

j
βφ

v k
m + δuwM̃

w i
v jkφ

u j
m δvαδ

k
β

= δαwM̃
w i
v βkφ

v k
m + δuwM̃

w i
α jβ φ

u j
m

= M̃ i
αv βkφ

v k
m + M̃ i

uα jβ φ
u j
m

= M̃ i
αv βkφ

v k
m + M̃ i

vα kβ φ
v k
m

= M̃ i
αv βkφ

v k
m + M̃ i

αv βkφ
v k
m

= 2 M̃ i
αv βkφ

v k
m = 2 δαwM̃w i

v βkφ
v k
m .

To simplify the last partial derivative, we took into account the symmetry of M̃ [1 with respect

to its first and second slots and fourth and fifth slots.
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6. CONCLUSION

This dissertation has presented a novel numerical method called the flow-driven spectral

chaos (FSC) for the quantification of uncertainties in long-time response of dynamical systems

using the spectral approach. To simplify the FSC presentation, the work was divided into

three levels of abstraction.

In Chapter 2, a specialized version of the FSC method was presented to deal with structural

dynamical systems subjected to uncertainties. In this chapter, the FSC method was introduced

for the first time using a specific second-order stochastic ODE to study the computational

efficiency of the method in detail. As presented, the FSC method revolves around a newly

developed concept called ‘enriched stochastic flow maps’, which is implemented within the FSC

scheme to help track the evolution of a finite-dimensional random function space efficiently in

time. It was shown that the computational cost of the FSC method is an order of magnitude

lower than TD-gPC for comparable solution accuracy. This gain in computational cost was

realized because, unlike most existing methods, the number of basis vectors required to

track the stochastic part of the solution space, and consequently the computational cost

associated with the solution of the resulting system of equations, does not depend upon

the dimensionality of the probability space. Four representative numerical examples were

presented to demonstrate the performance of the FSC method for long-time integration of

second-order stochastic dynamical systems in the context of stochastic dynamics of structures.

In Chapter 3, a generalized version of the FSC method was developed to deal with

dynamical systems governed by (nonlinear) stochastic ODEs of arbitrary order. The FSC

method was not only found to be computationally more efficient than TD-gPC but also far

more accurate. To transfer the probability information from one random function space to

another, two approaches were developed and studied in this chapter. In the first approach,

the probability information is transferred in the mean-square sense, whereas in the second

approach the transfer is done exactly using a new theorem that was developed for this purpose.

It was then concluded that the FSC method is capable of quantifying uncertainties with

high fidelity, especially for the long-time response of stochastic dynamical systems governed

by (nonlinear) ODEs of arbitrary order. Six representative numerical examples, including a
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nonlinear problem (the Van-der-Pol oscillator), were presented to demonstrate the performance

of the FSC method and corroborate the claims of its superior numerical properties. Finally,

a parametric, high-dimensional stochastic problem was used to demonstrate that when the

FSC method is used in conjunction with Monte Carlo integration, the curse of dimensionality

can be overcome altogether.

In Chapter 4, a multi-element version of the FSC method was formulated to deal with

dynamical systems that exhibit discontinuities over the probability space. The key idea of

the multi-element FSC (ME-FSC) method is to partition the random domain into several

elements so that the FSC method can be implemented on each random element separately.

Then, to compute the probability moments of interest over the entire random domain, the law

of total probability is used. The benefit of the ME-gPC method is threefold. First, thanks to

this technique, the simulation can be run simultaneously on machines with multiple CPU cores

(or if needed on separate machines) to reduce the excessive computational burden associated

with the simulation. Second, if the random input is discontinuous over the probability space,

the random domain can be partitioned into several elements to assure that at most the

discontinuity will only appear on regions of measure zero. Third, if an adaptive criterium is

introduced within the ME-FSC scheme (so as to allow the elements to get smaller on-the-

fly whenever a threshold value is exceeded), the errors can be kept to a minimum during

the simulation. In this chapter, four representative numerical examples were presented to

demonstrate the effectiveness of the ME-FSC method in dealing with stochastic discontinuities

and long-time integration of stochastic dynamical systems.

In Chapter 5, a modal decomposition of the spatial function space was proposed to deal

with the dynamics of large-scale structural systems subjected to uncertainties more effectively.

The modal FSC (MFSC) method was developed herein as a workaround to reduce significantly

the dimensionality of the random function space. It was shown that when the MFSC method

is employed to quantify the uncertainties of a 25-story building under free vibration, it is

possible to obtain good results out of the simulation. However, a better conceptualization of

the modal idea may still be necessitated to address more effectively other types of large-scale

stochastic dynamical systems.
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In conclusion, through the three levels of abstraction, the FSC method was shown to be

effective for capturing uncertainties in a wide variety of (nonlinear) stochastic dynamical

systems. This is because the FSC method leverages the finite nature of Taylor-based stochastic

flow maps commonly used in practice to construct a relatively small random function space

via the system’s enriched state. Its strength compared to other spectral methods lies in the

fact that the FSC method is both curse-of-dimensionality free at the RFS level and capable

of quantifying long-time response of stochastic dynamical systems more reliably and at a

lower computational cost. Future research may be aimed at developing an adaptive version of

the ME-FSC method to reduce the computational cost associated with standard ME-FSC at

early times of the simulation, and at developing a more compelling stochastic flow map to

address dynamical systems whose flow maps are not analytic on the temporal domain. All

this is in order to continue extending the range of applications of the FSC method in the

area of uncertainty quantification.
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