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ABSTRACT 

Unmanned aerial vehicles (UAVs) equipped with imaging systems and integrated global 

navigation satellite system/inertial navigation system (GNSS/INS) are used for a variety of 

applications. Disaster relief, infrastructure monitoring, precision agriculture, and ecological 

forestry growth monitoring are among some of the applications that utilize UAV imaging systems. 

For most applications, accurate 3D spatial information from the UAV imaging system is required. 

Deriving reliable 3D coordinates is conditioned on accurate geometric calibration. Geometric 

calibration entails both spatial and temporal calibration. Spatial calibration consists of obtaining 

accurate internal characteristics of the imaging sensor as well as estimating the mounting 

parameters between the imaging and the GNSS/INS units. Temporal calibration ensures that there 

is little to no time delay between the image timestamps and corresponding GNSS/INS position and 

orientation timestamps. Manual and automated spatial calibration have been successfully 

accomplished on a variety of platforms and sensors including UAVs equipped with frame and 

push-broom line cameras. However, manual and automated temporal calibration has not been 

demonstrated on both frame and line camera systems without the use of ground control points 

(GCPs). This research focuses on manual and automated spatial and temporal system calibration 

for UAVs equipped with GNSS/INS frame and line camera systems. For frame cameras, the 

research introduces two approaches (direct and indirect) to correct for time delay between 

GNSS/INS recorded event markers and actual time of image exposures. To ensure the best 

estimates of system parameters without the use of ground control points, an optimal flight 

configuration for system calibration while estimating time delay is rigorously derived. For line 

camera systems, this research presents the direct approach to estimate system calibration 

parameters including time delay during the bundle block adjustment. The optimal flight 

configuration is also rigorously derived for line camera systems and the bias impact analysis is 

concluded. This shows that the indirect approach is not a feasible solution for push-broom line 

cameras onboard UAVs due to the limited ability of line cameras to decouple system parameters 

and is confirmed with experimental results. Lastly, this research demonstrates that for frame and 

line camera systems, the direct approach can be fully-automated by incorporating structure from 

motion (SfM) based tie point features. Methods for feature detection and matching for frame and 

line camera systems are presented. This research also presents the necessary changes in the bundle 



 

 

17 

 

adjustment with self-calibration to successfully incorporate a large amount of automatically-

derived tie points. For frame cameras, the results show that the direct and indirect approach is 

capable of estimating and correcting this time delay. When a time delay exists and the direct or 

indirect approach is applied, horizontal accuracy of 1–3 times the ground sampling distance (GSD) 

can be achieved without the use of any ground control points (GCPs).  For line camera systems, 

the direct results show that when a time delay exists and spatial and temporal calibration is 

performed, vertical and horizontal accuracy are approximately that of the ground sample distance 

(GSD) of the sensor. Furthermore, when a large artificial time delay is introduced for line camera 

systems, the direct approach still achieves accuracy less than the GSD of the system and performs 

2.5-8 times better in the horizontal components and up to 18 times better in the vertical component 

than when temporal calibration is not performed. Lastly, the results show that automated tie points 

can be successfully extracted for frame and line camera systems and that those tie point features 

can be incorporated into a fully-automated bundle adjustment with self-calibration including time 

delay estimation. The results show that this fully-automated calibration accurately estimates 

system parameters and demonstrates absolute accuracy similar to that of manually-measured 

tie/checkpoints without the use of GCPs. 
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 PROBLEM STATEMENT 

1.1 Background 

Advances in technologies, paired with inexpensive hardware options, have increased the use 

of imaging platforms. A variety of imaging platforms are used to obtain 3D information such as 

static and wheel-based ground systems, manned and unmanned aerial systems, and small and large 

spaceborne systems. In addition to a variety of imaging platforms, there is also a wide range of 

imaging sensors onboard the system. Imaging platforms can include frame cameras, line cameras, 

LiDAR (Light Detection and Ranging), and radar sensors. Imaging platforms are designed for a 

diverse range of applications. Infrastructure monitoring, precision agriculture, disaster relief, 

emergency management, and defense are among some of the leading industries taking advantage 

of accurate 3D spatial information from imaging platforms. There are a wide range of platforms, 

sensors, and applications all with a common goal of obtaining useful spatial information and 

achieving it as quickly, inexpensively, and accurately as possible. Unmanned Aerial Vehicles 

(UAVs) equipped with Global Navigation Satellite System/Inertial Navigation System 

(GNSS/INS) and imaging sensors accomplish these goals. UAV-based GNSS/INS-assisted 

imaging systems are relatively low-cost compared to alternative methods such as wheel-based 

mobile mapping and manned aerial mapping. Many applications rely on UAV imaging systems 

not only because of their high accuracy but also for their relatively low-cost and timeliness. A 

UAV-based GNSS/INS-assisted imaging system is comprised of the UAV, an imaging sensor, and 

a GNSS/INS unit. For UAV-based imaging systems to have accurate geopositioning capability, 

special attention must be paid to calibration. Geometric system calibration focuses on the 

integration of the system as a whole. This includes estimating internal characteristics and system 

mounting parameters as well as time delay in the system, known as spatial and temporal calibration, 

respectively. In recent years, spatial system calibration has become a focus of study. Describing 

the differences between the position and orientation of the GNSS/INS body and camera frame via 

the lever arm components and boresight angles is key to system calibration. However, even with 

accurate mounting parameters, precise time tagging and temporal calibration is essential for 

accurate derivation of 3D spatial information. Accurate time synchronization between the imaging 

sensor and GNSS/INS unit is an important part of this integration. For consumer-grade systems, a 
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time delay between image mid-exposure and the corresponding GNSS/INS event recording often 

exists and 3D spatial accuracy will be greatly degraded if this time delay is not taken into account. 

In this dissertation, ‘consumer-grade’ refers to cameras that require system calibration by the user 

instead of by the manufacturer or other high-end laboratory settings and UAV systems that are 

equipped with relatively low-cost GNSS/INS units. Some research has been completed on 

temporal calibration. However, past research has yet to address temporal calibration that can be 

implemented as a one-step procedure achieving acceptable absolute accuracy without the use of 

ground control points (GCPs) with options for both with or without bundle adjustment software 

modifications. In addition, past research has yet to apply temporal calibration for UAV line camera 

systems. Furthermore, research has not been conducted on a fully-automated spatial and temporal 

system calibration for UAV frame and line camera systems.  

1.2 Challenges in System Calibration of Consumer-Grade Sensors 

Geometric system calibration is crucial for obtaining accurate 3D spatial information from 

remote sensing imaging platforms. Many current applications of remote sensing rely on consumer-

grade imaging platforms for their needs. In addition to classical spatial system calibration, many 

consumer-grade sensors also need temporal calibration for accurate 3D reconstruction. When time 

synchronization is not addressed and a time delay between the mid-exposure and GNSS/INS event 

marker exists, inaccuracy occurs. As an example, an orthophoto generated using estimated system 

calibration parameters which did not include any time delay compensation and the same 

orthophoto generated when the time delay was accounted for is shown in Figure 1.1a and 1.1b, 

respectively. This system was found to have a time delay between the GNSS/INS event markers 

and corresponding mid-exposure times and not estimating the time delay resulted in extreme 

misalignments in the orthophoto generated. Although some research has focused on temporal 

calibration, there has yet to be an approach that can be applied to both frame and line camera 

systems while also being platform and sensor agnostic. Furthermore, there is also a need for spatial 

and temporal calibration that does not require expensive and time-consuming GCPs. Lastly, 

manually measuring tie points for system calibration is extremely time consuming and requires 

expertise in image interpretation. There has yet to be an approach that can incorporate 

automatically-derived tie points and still accurately estimate system parameters including time 

delay for frame and line camera systems without the use of GCPs.  
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(a) 

 

(b) 

Figure 1.1 (a) Orthophoto generated without (a) and with (b) considering time delay 

 

1.3 Research Objectives 

The following research objectives are meant to address the current challenges and gaps in 

geometric system calibration for frame and line camera systems. The objectives include the 

development of two new system calibration approaches – direct and indirect – that will accurately 

estimate time delay during system calibration. Furthermore, this research aims to derive optimal 

flight configurations for frame and line camera systems such that system parameters can be 

accurately and simultaneously estimated without the use of GCPs. Lastly, the research objectives 
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include the development of a fully-automated system calibration with time delay estimation for 

frame and line camera systems. More specifically, research objectives include: 

 

1. Frame Cameras – Develop new strategies for time delay estimation during system calibration 

for UAV-based, GNSS/INS-assisted imaging systems  

• Incorporates a modified mathematical model to include time delay as an unknown 

system parameter during the bundle block adjustment procedure for frame camera 

systems 

• Establishes the optimal flight configuration for frame camera systems such that system 

parameters can be estimated as accurately as possible without the use of GCPs 

• For users without capability of updating software, provides an alternative for accurately 

estimating time delay for system calibration in frame camera systems 

 

2. Line Cameras – Introduce spatial and temporal calibration for UAV-based, GNSS/INS-

assisted line camera imaging systems  

• Incorporates a modified mathematical model to include time delay as an unknown 

system parameter during the bundle block adjustment procedure for line camera 

systems 

• For users without capability of updating software, provides an alternative for accurately 

estimating time delay for system calibration in line camera systems 

• Establishes the optimal flight configuration for line camera systems such that system 

parameters can be estimated as accurately as possible without the use of GCPs 

 

3. Develop a fully automated spatial and temporal calibration for frame and line camera systems  

• Successfully extracts tie point features automatically for both frame and line camera 

systems 

• Incorporates a large amount of automatically-derived tie points into the bundle 

adjustment with self-calibration 
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1.4 Dissertation Outline 

Chapter 2 contains a comprehensive literature review of related work. First, an overview of 

the different type of system calibration is presented. This section is followed by a discussion of 

previous work in system calibration. Next, past research dealing with time delay issues with 

hardware solutions are presented. Lastly, mitigating time delay issues with software solutions are 

discussed. Chapter 3 introduces two new strategies for time delay estimation during system 

calibration for UAV-based GNSS/INS assisted frame camera imaging systems. Chapter 4 presents 

system calibration while estimating time delay for UAV-based GNSS/INS assisted line camera 

systems. Chapter 5 introduces a fully-automated approach for system calibration while estimating 

time delay for line camera systems. Note that this dissertation is constructed as an article-based 

dissertation, which is a collection of published (or will be published) research articles. Chapters 3, 

4, and 5 have their own abstract, introduction, related work, methodology, dataset description, 

experimental results, and conclusions. As chapters 3, 4, and 5 are meant to be stand alone, they 

have overlap in some of the sections, particularly in the literature review/related work and dataset 

descriptions sections. Chapter 6 includes the conclusions and recommendations for future work.  
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 LITERATURE REVIEW 

2.1 Overview 

Imaging systems used to obtain accurate 3D spatial information require geometric 

calibration. There has been a wide variety of calibration research over the years. Geometric system 

calibration can be categorized into two primary areas of research: spatial and temporal. Spatial 

calibration accurately estimates both internal characteristics and mounting parameters of the 

system. Temporal calibration eliminates time delay between the timestamps of the image exposure 

epoch and the corresponding GNSS/INS position and orientation timestamps. Some spatial 

calibration research focuses specifically on internal sensor calibration, such as interior orientation 

parameters, while others focus on system calibration which can include internal orientation 

parameters as well as mounting parameters and time delay between the imaging sensor and 

GNSS/INS system. Hardware and software solutions have been introduced in an effort towards 

time synchronization issues. This literature review first presents previous research on spatial 

system calibration. A review of time synchronization with hardware implementations are then 

discussed. Lastly, spatial and temporal system calibration with software solutions are reviewed.  

2.2 Spatial System Calibration 

Spatial system calibration has been thoroughly researched over the years. Much of the 

system calibration research has been focusing on spatial system parameters and neglects the 

temporal complexity of the systems. The focus of this dissertation is on both spatial and temporal 

calibration. However, it is important review past work on spatial only system calibration to 

highlight current gaps. The methodology behind camera calibration, either completed by 

manufactures in a laboratory setting or through a bundle adjustment with self-calibration, is well-

known [1]. For example, Furukawa and Ponce [2] presented camera calibration from multi-view 

stereo using bundle adjustment. Weng et al. [3] focused on camera calibration specifically for 

distortion models which include radial, decentering, and thin prism distortions. Others researched 

bundle adjustments with self-calibration using detected features. Rathnayaka et al. [4] presented 

calibration field-of-view stereo camera system using embedded checkerboard patterns. Habib et 

al. focused on camera and LiDAR self-calibration using straight lines and planar patches, 
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respectively [5, 6]. In recent years, system calibration has become a focus of study. Describing the 

differences between the position and orientation of the GNSS/INS body frame and camera frames 

is key to system calibration. Ravi et al. [7] focused on simultaneous system calibration of a multi-

LiDAR multicamera mobile mapping platform. Also, boresight calibration of push-broom 

hyperspectral cameras and LiDAR UAV platforms has been researched [8, 9]. Both the interior 

camera calibration and system mounting parameter calibration has been thoroughly researched. 

Both manual and automated system calibration has been achieved on a variety of systems and 

sensors. However, none of the research described above has also incorporated a robust temporal 

calibration in their solution.  

2.3 Hardware Time Synchronization Solutions 

For GNSS/INS-assisted imaging systems, the GNSS/INS information gives prior 

information about the position and orientation of the unit at the time of exposure. It is assumed 

that the recorded timestamp of the image exposure corresponds to the recorded event marker of 

the GNSS/INS unit. Using the recorded event marker of the GNSS/INS unit, the position and 

orientation is derived and assumed to be the position and orientation of the platform at the moment 

of exposure. However, this assumption does not always hold true. Hardware solutions have been 

researched for time synchronization as a way to mitigate time delay in imaging systems.  Hardware 

solutions consist of modifications and additions to the imaging sensor and/or GNSS/INS system. 

One particular time synchronization issues that arises is the assumption made that when a camera 

receives a triggering signal to capture an image, that the camera captures the image instantaneously. 

However, a delay can exist from when the camera receives the signal to capture an image and 

when the camera actually captures the image, known camera response time. Rehak and Skaloud 

[10] used an optical clock to determine the camera response time delay using LED bar-graphs. The 

optical clock sends a triggering signal to the camera to capture and image at an optional interval 

and begins counting with a graphical clock. The camera then receives that signal and takes images 

of the optical clock counter. The camera response time delay can then be estimated based on the 

count of the optical clock of when it sent the triggering signal to the camera and when the camera 

actually took the image. The camera lag delay is then known. This approach assumes the time 

delay to be constant for future uses. Elbahnasawy and Habib [11] introduced two hardware 

solutions to establish synchronization among different sensors, such as the recorded exposure time 
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and the actual mid-exposure time. The authors discussed the simulated feedback approach, which 

uses a triggering system (Raspberry Pi Module) to send a signal to both the camera and the 

GNSS/INS unit simultaneously. A diagram of the simulated feedback approach is shown in Figure 

2.1. The hypothesis of the simulated feedback approach is that the camera would capture the image 

at the same time the triggering signal is received. However, a camera does not capture an image 

instantaneously once the triggering signal is received. Therefore, the simulated feedback approach 

ignores the camera response time delay. The simulated feedback approach, where a triggering 

signal is sent to both the camera and an optical clock, and the optical clock counting method can 

be combined to estimate the camera response time delay. A diagram of the simulated feedback 

approach combined with the optical clock method is shown in Figure 2.2.  

 

 

Figure 2.1 Illustration of Simulated Feedback Approach Diagram 

 

 
Figure 2.2 Illustration of Simulated Feedback Approach Combined with the Optical Clock 

Method 
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Elbahnasawy and Habib [11] second approach, direct feedback, attempted to mitigate this 

camera response time delay further. The direct feedback approach utilizes the camera flash hot-

shoe to generate a signal at the time the image is captured. This camera feedback signal is then 

sent to the GNSS/INS unit onboard, and a corresponding event time is recorded. An illustration of 

the direct feedback approach is presented in Figure 2.3. One limitation to the direct feedback 

approach is that it assumes the hot-shoe flash signal corresponds exactly to the mid-exposure time. 

This cannot be assumed, and therefore a camera response time delay would still exist. Hardware 

can reduce the effects of time delay, however is has shown to be difficult to record the actual mid-

exposure time of the image. Hardware solutions also require technical knowledge and expertise to 

implement which may not be an option for all users and applications.  

 

 

Figure 2.3. Illustration of Direct Feedback Approach 

 

2.4 Spatial and Temporal System Calibration: Software Time Delay 

Solutions 

Software solutions for temporal calibration can be faster and less expensive than hardware 

modification solutions. Recent software solutions for time delay estimation in imaging systems 

can be characterized into two categories. The first is one-step procedures that require a 

modification to bundle adjustment code. The second is two-step procedures that do not need 

modification to existing bundle adjustment code, but require two different independent 

adjustments. 
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Chiang et al. [12] proposed a calibration method to estimate the magnitude of exposure time 

delay for a UAV-based imaging system. The authors introduced a two-step approach for estimating 

time delay. The interior orientation parameters (IOPs) are initially estimated through a camera 

calibration process. In the first step, the exterior orientation parameters (EOPs) are estimated 

through indirect geo-referencing using GCPs. The differences in position and orientation between 

the EOPs and the interpolated trajectory from the on-board position and orientation system (POS) 

are derived. In the second step, the differences are then used in their calibration algorithm to solve 

for lever arm components, boresight angles, and time delay. Finally, the authors used the 

calibration parameters to perform direct geo-referencing applications without the need for GCPs. 

The results showed that by implementing the proposed calibration algorithm, a direct geo-

positioning horizontal accuracy of 8 m at a flying height of 600 m and a 3D accuracy of 12 m can 

be achieved. The GSD while at 600 m flying height was 20 cm, and the camera had a pixel size of 

0.0064 mm. Furthermore, the authors showed that the proposed calibration algorithm improved 

results by about 10% compared to traditional calibration. One limitation of the proposed algorithm 

is that a two-step process is needed to produce results. EOPs are first derived through indirect geo-

referencing with the help of GCPs, and the difference in position and rotation between the EOPs 

and the interpolated GNSS/INS solutions is calculated. Next, the calibration is completed by 

solving for mounting parameters and time delay. The algorithm also assumes that the rotation of 

the vehicle does not change during this time discrepancy. In their study, the measured time delay 

was between –0.107 and –0.227 s and the inertial measurement unit (IMU) rotation matrix was 

assumed to be constant during the delay. This assumption may not be valid, specifically when 

using lightweight UAV systems. Another disadvantage of this study is that it was sensitive to 

imaging/GCP/tie point configuration within the indirect geo-referencing step. Lastly, this study 

neglected the consideration of a suitable flight configuration for estimating time delay and ignored 

potential correlation among the EOPs and other unknowns. 

Gabrlik et al. [13] proposed a similar two-step approach to that of Chiang et al. [12] for system 

calibration for estimating offset in lever arm, offset in GNSS/INS base station, and time delay for 

a UAV-based imaging system. In the first step of their approach, EOPs are estimated through 

indirect geo-referencing using Agisoft Photoscan Professional software [14]. The positional 

components of the EOPs are then considered the true positions of the images. Finally, the 

difference between the derived position from the GNSS receiver and the true position of an image 
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is considered as a function of the system parameters mentioned above. Similar to Chiang et al., 

this approach depends on the availability of GCPs to estimate ground truth for camera positions. 

However, compared to Chiang et al. [12] even when taking into consideration the differences in 

platform, sensor, and flying height, this approach did produce more accurate results, with RMSE 

in the XY component of 3.3 cm and 2.5 cm in the Z component.  

Blazaquez, M. [15] introduced a new approach for one-step ‘spatio-temporal’ calibration of 

multi-sensor systems. This approach focused on modifying the sensor model to include a time 

synchronization parameter. The approach uses the GNSS/INS-based linear and angular velocities 

to compute the displacement and orientation differences in estimating the time delay. Instead of 

solving for boresight angles, the author included a relative model that used the fact that if the 

sensor and IMU are rigidly attached, the relative rotation between two epochs is the same for both 

the sensor and the IMU. The author discussed the importance of varying linear velocity throughout 

the flight configuration for estimating the time delay parameter. However, because this 

specification was not met in their data collection, the data was manipulated to simulate strips being 

flown at different velocities. The absolute ‘spatio-temporal’ model produced RMS accuracy for 

checkpoints in the 25–35 mm range. The approach also estimated the time synchronization 

parameter at the tenth of a millisecond precision level. The experiments relied on GCPs for 

accurate estimates of system calibration parameters, including time delay.  

Rehak and Skaloud [10] worked on time synchronization of consumer cameras on micro aerial 

vehicles (MAVs). The author’s MAV system consisted of a Sony sensor that was initially modified 

to compensate for time synchronization issues between the camera and GNSS by using the direct 

feedback approach. The authors investigated two different methods for determining time delay 

within their system. The first method was an analysis of residuals between the observed camera 

positions and those estimated by indirect geo-referencing, which is a two-step process. The second 

method was a one-step approach to modify the mathematical model to include time delay as a 

parameter in the bundle adjustment. The second method used in their absolute spatio-temporal 

model, with position, rotation, linear velocity, and angular velocity as observations. Both of these 

methods assume access to the position and velocity data from the GNSS/INS unit. A heuristic 

optimal flight configuration for estimating time delay was recommended. First, as part of the 

optimal configuration for system calibration while considering time delay, it was suggested that 

the lever arm be determined in a laboratory calibration, due to the correlation with the time delay. 
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The overall optimal flight configuration then suggested that there must be a strong block 

configuration with both GNSS/INS in-flight data and ground control, high forward and side lap, 

variations in flying height and linear and angular velocities, and obliquity in the imagery. The 

authors tested the validity of the methods through the evaluation of checkpoints. During the 

evaluation experiment, nine checkpoints were used in an integrated sensor orientation (ISO) with 

absolute aerial position observations. The results of this configuration showed an RMS of 56, 26, 

54 mm in the X, Y, Z components, respectively, when the time events were corrected for a time 

delay of –6.2 ms. The interior orientation parameters and lever arm components were estimated in 

a separate calibration. The estimated time delay parameter ranged from –9.2 to –1.9 ms for the 

different methods. 

2.5 Summary 

Traditional spatial system calibration has been thoroughly covered by past research. There has 

been focus on calibration for the internal characteristic of the sensor as well as the system mounting 

parameters. There has also been focus on self-calibration using automatically-derived tie points. 

However, for consumer-grade systems, only focusing on the spatial system calibration neglects 

the time synchronization of the platform that is essential for accurate 3D reconstruction.  Hardware 

time synchronization solutions have been researched to address this gap. However, hardware 

solutions require additions or modifications to the imaging platform. These additions or 

modifications require technical expertise and knowledge to implement. Furthermore, previous 

time synchronization hardware solutions were not capable of estimating or removing the entire 

camera response time delay without assuming this delay to be constant. Software solutions have 

also been implemented in efforts to mitigate time delay in consumer-grade imaging systems. 

However, previous software solutions required two-step processes, neglected to consider that the 

orientation of the platform may change during the time delay, and did not present suitable flight 

configurations for estimating time delay, which then ignore correlations between EOPs and other 

unknowns. Furthermore, all of the previous software solutions used GCPs in their system 

calibration to estimate time delay. In addition, temporal calibration has not been performed on 

consumer-grade line camera imaging platforms. Lastly, all previous temporal calibration work is 

performed with time consuming manually-measured tie points. This dissertation is intended to 

address these gaps and challenges. This research aims to develop two new system calibration 
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approaches – direct and indirect – that will accurately estimate time delay during system calibration. 

The direct approach is developed for both frame and line camera systems without the need for 

GCPs. The indirect approach is developed to allow flexibility for users to perform system 

calibration with time delay estimation without the capability of modifying existing bundle 

adjustment software. Optimal flight configurations are derived for frame and line camera systems 

such that system parameters can be accurately and simultaneously estimated without the use of 

GCPs. Lastly, a fully-automated system calibration with time delay estimation is developed for 

frame and line camera systems and intended to accurately estimate system parameters without the 

use of GCPs.  
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 FRAME CAMERAS – NEW STRATEGIES FOR TIME DELAY 

ESTIMATION DURING SYSTEM CALIBRATION FOR UAV-BASED 

GNSS/INS-ASSISTED IMAGING SYSTEM 

The research article, “New Strategies for Time Delay Estimation during System 

Calibration for UAV-Based GNSS/INS-Assisted Imaging Systems”, was published in the 2019 

Remote Sensing journal. 

 

LaForest, L.; Hasheminasab, S.M.; Zhou, T.; Flatt, J.E.; Habib, A. New Strategies for Time Delay 

 Estimation during System Calibration for UAV-Based GNSS/INS-Assisted Imaging 

 Systems. Remote Sens. 2019, 11, 1811. 

 

 

Abstract: The need for accurate 3-D spatial information is growing rapidly in many of 

today’s key industries such as precision agriculture, emergency management, infrastructure 

monitoring, and defense. Unmanned Aerial Vehicles (UAVs) equipped with Global Navigation 

Satellite System/Inertial Navigation System (GNSS/INS) and consumer-grade digital imaging 

sensors are capable of providing accurate 3-D spatial information at a relatively low-cost. However, 

with the use of consumer-grade sensors, system calibration is critical for accurate 3-D 

reconstruction. In this study, ‘consumer-grade’ refers to cameras that require system calibration 

by the user instead of by the manufacturer or other high-end laboratory settings as well as relatively 

low-cost GNSS/INS units. In addition to classical spatial system calibration, many consumer-grade 

sensors also need temporal calibration for accurate 3-D reconstruction. This study examines the 

accuracy impact of time delay in the synchronization between the GNSS/INS unit and cameras on-

board UAV-based mapping systems. After reviewing existing strategies, this study presents two 

approaches (direct and indirect) to correct for time delay between GNSS/INS recorded event 

markers and actual time of image exposure. Our results show that both approaches are capable of 

handling and correcting this time delay, with the direct approach being more rigorous. When a 

time delay exists and the direct or indirect approach is applied, horizontal accuracy of 1-3 times 

the ground sampling distance (GSD) can be achieved both without the use of any ground control 

points (GCPs) or adjusting the original GNSS/INS trajectory information. 
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3.1 Introduction 

There is an increasing use of UAV-based GNSS/INS-assisted imaging systems among 

industries such as precision agriculture, infrastructure monitoring, emergency management, and 

defense. In particular, UAV imaging systems used in precision agriculture have a variety of 

applications such as monitoring crops, estimating crop yield and best crop placement, and 

improving land cover classification. Use of UAVs in agricultural applications has expanded 

rapidly in recent years due to their relatively low cost and improved spatial and temporal resolution 

when compared to traditional satellite and manned aircraft imagery [16]. In addition, it is possible 

to equip UAVs with a variety of imaging sensors. These factors have increased the effectiveness 

of UAVs as a tool for precision agriculture and crop monitoring [17-23]. Additionally, RGB frame 

imagery can be useful for automating hyperspectral data orthorectification process, allowing 

prediction of biomass and other phenotypic factors [24]. Thermal imagery has been used to 

estimate soil moisture, monitor evapotranspiration, and improve land cover classification [25-29]. 

Remotely sensed imagery has proven its usefulness in a wide-range of agricultural environments. 

For many of these applications, remotely sensed imagery must be geo-referenced accurately. 

Proper system calibration is vital to providing accurate and actionable data for those applications.  

System calibration of a UAV-based GNSS/INS-assisted imaging system deals with both 

spatial and temporal aspects. Spatial system calibration aims at estimating both internal 

characteristics of the camera, known as camera calibration, as well as system mounting parameters. 

Such parameters include principal point coordinates, principal distance, and distortion parameters 

for the internal camera characteristics and lever arm components and boresight angles for the 

integration between GNSS/INS and multiple imaging sensors. The methodology behind camera 

calibration, either completed by manufactures in a laboratory setting or in a bundle adjustment 

with self-calibration, is well-known [1, 4-5, 30].  In recent years, system calibration has become a 

focus of study. Describing the differences between the position and orientation of the GNSS/INS 

body frame and camera frames, lever arm components and boresight angles, is key to system 

calibration. Lever arm and boresight calibration processes have also been well-established by 

several research groups. Li et al. [8] worked on boresight calibration of both a mobile and UAV 

LiDAR system using strip adjustment. While Habib et al. [9] completed rigorous boresight 

calibration for a UAV platform with a hyperspectral camera equipped with GNSS/INS. Costa and 

Mitishita [31] focused on integrating photogrammetric and LiDAR datasets to improve sensor 
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orientation information. However, even with accurate mounting parameters, precise time tagging 

between the imaging sensor and GNSS/INS unit is essential for accurate derivation of 3D spatial 

information. For consumer-grade systems, a time delay between image exposure and the 

corresponding GNSS/INS event recording might exist and 3D spatial accuracy will be greatly 

degraded if this time delay is not taken into account. Throughout this manuscript, we will refer to 

the term “event marker”, which is used to indicate the time of exposure based on feedback signals 

received by the GNSS/INS unit from the camera. When time synchronization is not addressed and 

a time delay between the mid-exposure and GNSS/INS event marker exists, inaccuracy occurs. As 

an example, an orthophoto generated using estimated system calibration parameters which did not 

include any time delay compensation, shown in Figure 3.1a., and the same orthophoto generated 

when the time delay was accounted for using the direct approach, which will be presented later in 

this paper is shown in Figure 3.1b. In the highlighted area in Figure 3.1a, there are significant 

misalignments in the generated orthophoto. However, after time delay was compensated for within 

the bundle adjustment process, shown in Figure 3.1b, the generated orthophoto in the same 

highlighted area as Figure 3.1a. shows a smooth alignment. 

 

 
(a) 

 
(b) 

Figure 3.1 (a) Orthophoto generated while ignoring the time delay during calibration. (b) 

Orthophoto generated with time delay accounted for during calibration. 
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In addition to proper system calibration, the geo-referencing technique used in system 

parameters estimation process are also important for providing accurate 3-D information. There 

are a variety of techniques used for geo-referencing which depend greatly on the application 

purpose, availability of resources, and accuracy requirements of the project. Direct and indirect 

geo-referencing are two main techniques used. Indirect geo-referencing uses aerial triangulation 

with the help of ground control points (GCPs) to accurately estimate system parameters. Indirect 

geo-referencing produces high accuracy but is costly and time consuming because of the need for 

GCPs in the triangulation [32-33]. On the other hand, direct geo-referencing uses a simple 

intersection adjustment and eliminates the need for GCPs but can also degrade the overall accuracy 

of the system calibration. Several recent studies focus on direct geo-referencing and the reduction 

or elimination of GCPs [34-36]. The accuracy of direct geo-referencing depends greatly on the 

onboard GNSS/INS unit and its integration within the rest of the imaging system and without 

GCPs, degradation of geopositioning is a concern. However, the reduction or elimination of GCPs 

while ensuring improved accuracy is a valuable prospect, considering it reduces cost, time, and 

equipment requirements when collecting data. 

This study focuses on system calibration of UAV-based GNSS/INS-assisted imaging systems, 

specifically studying calibration strategies capable of estimating time delay between GNSS/INS 

event markers and the image mid-exposure time. After review of existing strategies, we detail two 

approaches – direct and indirect – to solve for and correct this time delay. The direct approach uses 

a modified mathematical model to solve directly for the time delay in a bundle block adjustment. 

The direct approach modifies the bundle adjustment code for implementation. The indirect 

approach, on the other hand, exploits the correlation between the lever arm along the flying 

direction and the time delay – which follows from a less-than optimal flight configuration – as 

well the speed/time/distance relation to indirectly estimate time delay. The indirect approach 

exploits existing bundle adjustment code to estimate time delay. Section 2 focuses on related work 

while section 3 describes the methodology of the bundle block adjustment procedure, direct and 

indirect approaches, as well as optimal flight configuration for reliable estimation of the system 

calibration parameters. Section 4 focuses on the description of the UAV-based imaging systems 

and data used in this study in addition to experimental results and analysis. Lastly, section 5 

provides conclusions and recommendations for future research.  
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3.2 Related Work 

Imaging systems used for obtaining accurate 3D spatial information need calibration both 

within the sensor and between the sensor and remining system units. There has been a wide variety 

of calibration research over the years. Some research focuses on the sensor calibration itself and 

does not include the system parameters such as in [3]. Whereas some research system calibration 

focuses not only the internal characteristics of a sensor but also the external and mounting 

parameters of the system as a whole [4, 5]. Identifying features in imagery is also essential for 

calibration [37]. Many works have used distinct points while others have used linear or planar 

features [5, 6]. The type of control data used in previous calibration ranges from ground-based 

surveyed points, on-board GNSS/INS sensors, and superior sensor sources such as LiDAR. The 

accuracy associated with these type of control data used in calibration is approximately 3mm for 

ground-based surveyed points, 8mm planimetric accuracy for on-board GNSS/INS points, and 25 

cm planimetric accuracy for LiDAR derived control data [12, 13, 38]. Among this work, a variety 

of calibration parameters are of interest. As stated before, some are interested only in internal 

characteristics of a sensor while others are interested in full system calibration. Some of this 

research is strictly focused on the spatial calibration aspects of an imaging system and neglects to 

address the temporal calibration.  

As consumer-grade sensors integrated with GNSS/INS units on-board UAVs become more 

popular options for geospatial applications, the need to accurately estimate any time delay between 

GNSS/INS event marker and mid-exposure time during system calibration becomes increasingly 

important. Both hardware and software solutions have been introduced in an attempt to mitigate 

this problem. Elbahnasawy and Habib [11] introduce two hardware solutions to establish the 

synchronization among different sensors such as the recorded exposure time and the actual mid-

exposure time. The authors discuss the simulated feedback approach which uses a triggering 

system to send a signal to both the camera and the GNSS/INS unit simultaneously. The hypothesis 

of the simulated feedback approach is that the camera would capture the image at the same time 

the triggering signal is received. However, a camera does not capture an image instantaneously 

once the triggering signal is received. Therefore, the simulated feedback approach ignores the 

camera response time delay. Another hardware solution consists of using both a triggering signal, 

as described in the simulated feedback approach, and an optical clock to measure the camera 

response time [10]. The triggering signal is sent to the camera, GNSS/INS unit, and the optical 
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clock. The function of the signal from the optical clock also sends a signal to the camera at an 

optional interval and begins counting with a graphical clock. The camera takes images of the 

optical clock counter and image processing then determines the value displayed on the counter. 

The camera lag delay is then known. This approach assumes the time delay to be constant for 

future uses. Elbahnasawy and Habib’s [11] second approach, the direct feedback, attempts to 

mitigate this camera response time delay further. The direct feedback approach utilizes the camera 

flash hot-shoe to generate a signal at the time the image is captured. This camera feedback signal 

is then sent to the GNSS/INS unit on-board and a corresponding event time is recorded. One 

limitation to the direct feedback approach is that it assumes the hot-shoe flash signal corresponds 

exactly to the mid-exposure time. This cannot be assumed and therefore a camera response time 

delay would still exist. Although hardware approaches can reduce the effects of time delay, it is 

shown to be difficult to record the actual mid-exposure. Furthermore, hardware modifications 

require both more time and monetary investment to implement. This may not be an option for all 

systems and applications. Therefore, others have investigated methods to measure time delay with 

software solutions. Recent software solutions for time delay estimation in imaging systems can be 

characterized in two categories. The first being one-step procedures that require a modification to 

bundle adjustment code. The second being two-step procedures that do not need modification to 

existing bundle adjustment code but require two different independent adjustments. 

Chiang et al. [12] proposed a calibration method to compensate for and estimate the magnitude 

of exposure time delay for a UAV-based imaging system. The authors introduce a two-step 

approach for estimating time delay. The interior orientation parameters (IOPs) are initially 

estimated through a camera calibration process. Then in the first step, the exterior orientation 

parameters (EOPs) are estimated through indirect geo-referencing using GCPs. The differences in 

position and orientation between the EOPs and the interpolated trajectory from the on-board 

Position and Orientation System (POS) are derived. In the second step, the differences are then 

used in their calibration algorithm to solve for lever arm components, boresight angles, and time 

delay. Finally, the authors use the calibration parameters to perform direct geo-referencing 

applications without the need for GCPs. The results show that by implementing the proposed 

calibration algorithm, a direct geo-positioning horizontal accuracy of 8 m at a flying height of 600 

m and a 3D accuracy of 12 m can be achieved. The GSD while at 600 m flying height was 20 cm 

and the camera had a pixel size of 0.0064 mm. Furthermore, the authors show that the proposed 



 

 

37 

 

calibration algorithm improved results by about 10% compared to traditional calibration. One 

limitation of the proposed algorithm is that a two-step process is needed – requiring two different 

independent adjustments – to produce results. EOPs are first derived through indirect geo-

referencing with the help of GCPs and the difference in position and the rotation between the EOPs 

and the interpolated GNSS/INS solutions are calculated. Next, the calibration is completed by 

solving for mounting parameters and time delay. The algorithm also assumes that the rotation of 

the vehicle does not change during this time discrepancy. In their study, the measured time delay 

was between -0.107 and -0.227 s and the IMU rotation matrix was assumed to be constant during 

the delay. This assumption may not be valid, specifically when using light-weight UAV systems. 

Another disadvantage of this study is that it is sensitive to imaging/GCP/tie point configuration 

within the indirect geo-referencing step. Lastly, this study neglects the consideration of a suitable 

flight configuration for estimating time delay and ignores potential correlation among the EOPs 

and other unknowns.  

Gabrlik et al. [13] proposed a similar two-step approach to that of Chiang et al. [12] for system 

calibration for estimating offset in lever arm, offset in GNSS/INS base station, and time delay for 

a UAV-based imaging system. In the first step of their approach, EOPs are estimated through 

indirect geo-referencing using Agisoft Photoscan Professional software [14]. Then, the positional 

component of the EOPs are considered as true position of the images. Finally, difference between 

the derived position from the GNSS receiver and the true position of an image is considered as a 

function of the system parameters mentioned above. Similar to Chiang et al. [12], this approach 

depends on the availability of GCPs to estimate ground truth for camera positions. However, 

compared to [12], even when taking into consideration the differences in platform, sensor, flying 

height this approach did produce more accurate results with RMSE in the XY-component of 3.3 

cm and 2.5 cm in Z-component. In addition, the proposed strategy does not consider any rotation 

variation information when estimating time delay.   

Blazaquez, M. [15] introduces a new approach for one-step ‘spatio-temporal’ calibration of 

multi-sensor systems. This approach focuses on modifying the sensor model to include a time 

synchronization parameter. The approach uses the GNSS/INS-based linear and angular velocities 

to compute the displacement and orientation differences in estimating the time delay. Instead of 

solving for boresight angles, the author includes a relative model that used the fact that if the sensor 

and IMU are rigidly attached, the relative rotation between two epochs is the same for both the 
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sensor and IMU. The author discusses the importance of varying linear velocity throughout the 

flight configuration for estimating the time delay parameter. However, because this specification 

was not met in their data collection, the data was manipulated to simulate strips being flown at 

different velocities. The absolute ‘spatio-temporal’ model produced RMS accuracy for 

checkpoints in the 25-35 mm range. The approach also estimated time synchronization parameter 

at the tenth of a millisecond precision level. The experiments rely on GCPs for accurate estimates 

of system calibration parameters including time delay.  

 Rehak and Skaloud [10] worked on time synchronization of consumer cameras on Micro 

Aerial Vehicles (MAVs). The author’s MAV system consisted of a Sony sensor that was initially 

modified to compensate for time synchronization issues between the camera and GNSS by using 

the direct feedback approach. The authors investigated two different methods for determining time 

delay within their system. The first method was an analysis of residuals between the observed 

camera positions and those estimated by indirect geo-referencing, which is a two-step process. The 

second method was a one-step approach to modify the mathematical model to include time delay 

as a parameter in the bundle adjustment. The second method uses their absolute spatio-temporal 

model with position, rotation, linear velocity, and angular velocity as observations. Both of these 

methods assume access to the position and velocity data from the GNSS/INS unit. A heuristic 

optimal flight configuration for estimating time delay was recommended. First, as part of the 

optimal configuration for system calibration while considering time delay, it was suggested to 

determine the lever arm in a laboratory calibration due to the correlation with the time delay. Then, 

the overall optimal flight configuration suggested that there must be a strong block configuration 

with both GNSS/INS in-flight data and ground control, high forward and side lap, variations in 

flying height and linear and angular velocities, and some obliquity in the imagery. The authors 

tested the validity of the methods through evaluation of checkpoints. During the evaluation 

experiment, 9 checkpoints were used in an integrated sensor orientation (ISO) with absolute aerial 

position observations. The results of this configuration showed an RMS of 56, 26, 54 mm in the 

X, Y, Z components, respectively when the time events were corrected for a time delay of -6.2 ms. 

The interior orientation parameters and lever arm components were estimated in a separate 

calibration. The estimated time delay parameter ranged from -9.2 to -1.9 ms for the different 

methods.  



 

 

39 

 

3.3 Methodology 

The presented approach in this study proposes two one-step algorithms – direct and indirect. 

The direct approach computes the linear and angular velocities directly and does not rely on raw 

data from the IMU. Also, to ensure the highest possible accuracy, the direct approach does not 

assume that the platform rotation to be constant during the time delay period. The approaches are 

tested on systems with sensors both that are modified to incorporate the flash hot-shoe time 

synchronization – which significantly reduces the time delay – and also a sensor that only makes 

use of the manufactured internal “frame sync” option. Furthermore, the approaches presented are 

tested and evaluated in an integrated sensor orientation (ISO) and direct geo-referencing 

adjustments, without the need for GCPs. Lastly, an optimal flight configuration is derived so that 

one can estimate the system parameters, including the lever arm components, boresight angles, 

and time delay simultaneously. The optimal flight configuration presented maximizes the impact 

of biases or any possible errors in the system parameters while also decoupling those parameters.  

3.3.1 Conceptual Basis of Bundle Block Adjustment 

For many photogrammetric applications, the goal is to gain accuracy while decreasing 

required resources. The bundle block adjustment theory is a well-known method for improving 

geospatial precision and accuracy derivation from imagery by improving geometric configuration 

and increasing redundancy while reducing the quantity of GCPs [1]. The bundle adjustment aims 

to ensure best accuracy and precision of the reconstructed object space using minimal control. A 

graphical illustration of the bundle adjustment target function is introduced in Figure 3.2. It 

promotes flexibility among solvable unknown parameters to suit individual user needs, and in 

more recent years, it has been shown to be platform agnostic and capable of simultaneously 

combining a variety of sensors. Ravi et al. [7] used bundle adjustment theory to simultaneously 

perform system calibration of a multi-LiDAR/multi-camera mobile mapping platform. Habib et 

al. [5] demonstrated the use of bundle adjustment for self-calibration of line cameras using linear 

features detected in multiple datasets. Whether using frame or line cameras, or combining multiple 

sensors on a single/multiple platform(s), the mathematical model and overall least squares 

adjustment implementation of bundle adjustment is the same.  
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.  

Figure 3.2. Conceptual basis of bundle block adjustment 

 

A UAV-based GNSS/INS-assisted imaging system involves three coordinate systems – a 

mapping frame, an IMU body frame, and a camera frame. The mathematical model of the 

collinearity principle – which describes the collinearity of the camera perspective center, image 

point, and corresponding object point – is graphically illustrated and mathematically introduced in 

Figure 3.3 and Equation (3.1), respectively. The following notations are used throughout this 

study: a vector connecting point ‘b’ to point ‘a’ relative to a coordinate system associated with 

point ‘b’ is represented as 𝑟𝑎
𝑏 and a rotation matrix transforming from coordinate system ‘a’ to 

coordinate system ‘b’ is represented as 𝑅𝑎
𝑏.  

                                 𝑟𝐼
𝑚 = 𝑟𝑏(𝑡)

𝑚 + 𝑅𝑏(𝑡)
𝑚 𝑟𝑐

𝑏  +  𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡)
𝑚 𝑅𝑐

𝑏 𝑟𝑖
𝑐(𝑡)

 (3.1) 

 

Where: 

𝑟𝐼
𝑚: ground coordinates of the object point 𝐼 

𝑟𝑖
𝑐(𝑡)

= [ 
𝑥𝑖

 − 𝑥𝑝
 − 𝑑𝑖𝑠𝑡𝑥𝑖

𝑦𝑖
 − 𝑦𝑝

 − 𝑑𝑖𝑠𝑡𝑦𝑖

−𝑐

]: vector connecting perspective center to the image point 

𝑥𝑝
 , 𝑦𝑝

 : principal point coordinates 
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𝑐: principal distance 

𝑑𝑖𝑠𝑡𝑥𝑖
, 𝑑𝑖𝑠𝑡𝑦𝑖

: distortion in x and y directions for image point 𝑖 

𝑡: time of exposure 

𝑟𝑏(𝑡)
𝑚 : position of IMU body frame relative to the mapping reference frame at time 𝑡 derived from 

the GNSS/INS integration process 

𝑅𝑏(𝑡)
𝑚 : rotation matrix from the IMU body frame to the mapping reference frame at time 𝑡 derived 

from GNSS/INS integration process 

𝑟𝑐
𝑏: lever arm from camera to IMU body frame  

𝑅𝑐
𝑏 : rotation (boresight) matrix from camera to IMU body frame 

𝜆(𝑖, 𝑐, 𝑡): scale factor for point 𝑖 captured by camera 𝑐 at time t 

 

 

Figure 3.3 Illustration of collinearity equations 

 

Reformulating Equation (3.1), one can represent image coordinates as a function of the 

GNSS/INS position and orientation, ground coordinates of GCPs/tie points, lever arm components, 

and the boresight matrix as shown in Equation (3.2). 
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𝑟𝑖
𝑐(𝑡)

  =
1

𝜆(𝑖, 𝑐, 𝑡)
𝑅𝑏

𝑐  [𝑅𝑚
𝑏(𝑡)[𝑟𝐼

𝑚 −  𝑟𝑏(𝑡)
𝑚 ] −  𝑟𝑐

𝑏] =
1

𝜆(𝑖, 𝑐, 𝑡)
[
𝑁𝑥

 

𝑁𝑦
 

𝐷

] (3.2) 

Where: 

[
𝑁𝑥

 

𝑁𝑦
 

𝐷

] = 𝑅𝑏
𝑐  [𝑅𝑚

𝑏(𝑡)[𝑟𝐼
𝑚 −  𝑟𝑏(𝑡)

𝑚 ] −  𝑟𝑐
𝑏] 

 

To eliminate the unknown scale factor 𝜆(𝑖, 𝑐, 𝑡) from Equation (3.2), the first and second rows 

can be divided by the third one to produce equations (3.3a) and (3.3b) [1], which are nonlinear 

forms in the unknowns, including system calibration.  

𝑥𝑖
 −  𝑥𝑝

 − 𝑑𝑖𝑠𝑡𝑥𝑖
= −𝑐

𝑁𝑥

𝐷
 (3.3a) 

 𝑦𝑖
 −  𝑦𝑝

 − 𝑑𝑖𝑠𝑡𝑦𝑖
= −𝑐

𝑁𝑦

𝐷
 (3.3b) 

3.3.2 Direct Approach for Time Delay Estimation  

The first strategy for time delay estimation introduced in this study is the direct approach 

where the time delay is directly estimated in a bundle adjustment with system self-calibration 

process. The previously discussed mathematical model is modified to incorporate the time delay 

parameter and is derived as explained below.  

 Given the position and orientation at 𝑡0
 , initial event marker time, the objective is to find 

the correct position and orientation at the actual mid-exposure time, 𝑡, by taking into account the 

time (delay), 𝛥𝑡, between actual exposure time and initial event marker time. It follows that the 

actual time of exposure equals to the initial event marker time plus the time delay, 𝑡 = 𝑡0
 + 𝛥𝑡.  

Based on the collinearity equations (3.1), it is clear that a time delay between the mid-exposure 

and the recorded event marker by the GNSS/INS unit will directly affect the position 𝑟𝑏(𝑡)
𝑚  and 

orientation 𝑅𝑏(𝑡)
𝑚  of the body frame. Therefore, one must estimate the changes in position and 

orientation caused by the time delay.  The position at the correct time, 𝑟𝑏(𝑡)
𝑚 , can then be expressed 

by using the position at the initial event marker time tag and adding the displacement caused by 

the time delay, expressed in equation (3.4). The instantaneous linear velocity, �̇� 𝑏(t0)
𝑚 , at the initial 
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event marker time is needed to calculate the displacement. The instantaneous linear velocity is 

expressed in equation (3.5). It should be noted that the GNSS and IMU units typically have data 

rates of 10 and 200 Hz, respectively.  The GNSS/INS integration process produces the position 

and orientation of the IMU body frame at a given time interval which is usually interpolated to 

that of the data rate of the IMU, which is 200 Hz in this study. Given this trajectory, we specify a 

time interval, 𝑑𝑡, which we use to compute the instantaneous linear and later the angular velocity. 

The interpolation frequency chosen is controlled by the data rate of the IMU unit and the expected 

noise level in the derived trajectory. Choosing a very high frequency for the interpolation will 

magnify the impact of noise. The frequency of the interpolation process is balanced to consider 

both the data rate of the data acquisition system as well as reducing the impact of the noise in the 

derived trajectory. 

𝑟𝑏(𝑡)
𝑚 = 𝑟𝑏(𝑡0)

𝑚 +  𝛥𝑡 �̇� 𝑏(𝑡0)
𝑚  (3.4) 

                                    �̇� 𝑏(t0)
𝑚 = 

1

𝑑𝑡
[𝑟𝑏(𝑡0+𝑑𝑡)

𝑚 − 𝑟𝑏(𝑡0 )
𝑚 ]                                               (3.5) 

 

Next, an expression for the orientation of the IMU body frame, 𝑅𝑏(𝑡),
𝑚  at the correct mid-

exposure time can be derived. Deriving an expression for the orientation of the IMU body frame 

at the correct mid-exposure time enables the direct approach to handle rotation variation during 

the time delay. Here, we examine the changes in the rotation of the IMU body frame at different 

times. With the help of Figure 3.4, we can see that the rotation matrix at the correct exposure time, 

𝑅𝑏(𝑡)
𝑚 , can be derived from the rotation of the body frame at time 𝑡0 as well as the angular velocity 

and time delay. The angular velocity is derived based on the rotation at time  𝑡0  and rotation at 

time 𝑡0 + 𝑑𝑡 as shown in equation (3.6). More specifically, we can use the rotation at time  𝑡0  and 

the rotation at time 𝑡0 + 𝑑𝑡  to derive the changes in the rotation angles denoted by 𝑑𝜔𝑏(𝑡0), 

𝑑𝜑𝑏(𝑡0), and , 𝑑𝜅𝑏(𝑡0). These rotation changes along with the user-defined time interval, 𝑑𝑡, can 

then be used to derive the angular velocity as per equation (3.7a-3.7c). Using the angular velocities 

and the time delay, the change in rotation caused by the existing time delay can be derived, shown 

in equation (3.8). It should be noted that an expression for the incremental rotation matrix is used 

in equation (3.8) since the angular change caused by the time delay are relatively small. Finally, 

using the IMU body orientation at the initial event marker time, expressed as 𝑅𝑏(𝑡0)
𝑚 , along with 

the rotation changes during the time delay, expressed as  𝑅𝑏(𝑡0 +𝛥𝑡)
𝑏(𝑡0)

, the IMU body orientation at 
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the actual exposure time, 𝑅𝑏(𝑡)
𝑚 , can be derived as per equation (3.9). Substituting equations (3.4) 

and (3.9) in equation (3.1), the collinearity equations can be rewritten as in equation (3.10).  

 

 

Figure 3.4 Establishing an expression for the correct IMU body frame orientation in the presence 

of time delay 

 

 

                                           𝑅𝑏(𝑡0+𝑑𝑡)
𝑏(𝑡0)

= 𝑅𝑚
𝑏(𝑡0)

 𝑅𝑏(𝑡0+𝑑𝑡)
𝑚 =

                                              𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑑ω𝑏(𝑡0), 𝑑𝜑𝑏(𝑡0), 𝑑κ𝑏(𝑡0))                                             
(3.6) 

 

ω̇ 𝑏
 (𝑡0) =  

𝑑ω𝑏(𝑡0)

𝑑𝑡
 (3.7a) 

φ̇ 𝑏
 (𝑡0) =  

𝑑𝜑𝑏(𝑡0)

𝑑𝑡
 (3.7b) 

κ̇ 𝑏
 (𝑡0) =  

𝑑κ𝑏(𝑡0)

𝑑𝑡
 (3.7c) 

 𝑅𝑏(𝑡0+𝛥𝑡)
𝑏(𝑡0)

= 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(ω̇ 𝑏(𝑡0)
 𝛥𝑡, φ̇ 𝑏(𝑡0)

 𝛥𝑡, κ̇ 𝑏(𝑡0)
 𝛥𝑡) ≅

[

1 −κ̇ 𝑏
 (𝑡0)𝛥𝑡 φ̇ 𝑏

 (𝑡0)𝛥𝑡

κ̇ 𝑏
 (𝑡0)𝛥𝑡 1 −ω̇ 𝑏

 (𝑡0)𝛥𝑡

−φ̇ 𝑏
 (𝑡0)𝛥𝑡 ω̇ 𝑏

 (𝑡0)𝛥𝑡 1

 ]              

(3.8) 
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                                      𝑅𝑏(𝑡)
𝑚 =   𝑅𝑏(𝑡0)

𝑚  𝑅𝑏(𝑡0 +𝛥𝑡)
𝑏(𝑡0)

                                            (3.9) 

 

             𝑟𝑖
𝑐(𝑡)

  =
1

𝜆(𝑖,𝑐,𝑡)
𝑅𝑏

𝑐  [𝑅𝑏(𝑡0)
𝑏(𝑡0+𝛥𝑡)

 𝑅𝑚
𝑏(𝑡0)

(𝑟𝐼
𝑚 −  𝑟𝑏(𝑡0)

𝑚 − �̇� 𝑏(𝑡0)
𝑚 𝛥𝑡) −  𝑟𝑐

𝑏]                          (3.10) 

  

The mathematical model is now modified so that the image coordinate measurements are a 

function of the trajectory information, IOPs, lever arm components, boresight angles, ground 

coordinates, and time delay. More specifically, during the least squares adjustment, time delay is 

treated as an unknown parameter. The initial value of time delay is set to zero. The first iteration 

is performed and the lever arm components, boresight angles, ground coordinates of tie points, and 

time delay are solved for. The time delay is applied to adjust the IMU body frame position and 

orientation for the next iteration, and the time delay is set back to zero before the next iteration. 

The iterations continue until the time delay estimate is approximately zero and the corrections to 

the other unknown parameters are sufficiently small, as illustrated by Figure 3.5.   

 

 

Figure 3.5 Illustration of the direct approach for time delay estimation within the bundle block 

adjustment with system self-calibration 

 

3.3.3 Optimal Flight Configuration for System Calibration while Considering Time Delay 

The objective of this section is to determine an optimal flight configuration which results in 

an accurate estimation of the system parameters, including the lever arm components, boresight 

angles, and time delay. The optimal flight configuration is the one that maximizes the impact of 
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biases or any possible errors in the system parameters while also decoupling those parameters. A 

rigorous approach of doing this is to derive the impact of biases in the system parameters on the 

derived ground coordinates. Bias impact analysis can be done by deriving the partial derivatives 

of the point positioning equation with respect to the system parameters. Equation (3.11) 

reformulates equation (3.10) to express the ground coordinates as a function of the measurements 

and system parameters. Partial derivatives are derived from equation (3.11).  

For system calibration, the unknown parameters, denoted henceforth by x, consist of the lever 

arm components, 𝛥𝑋, 𝛥𝑌, 𝛥𝑍,  boresight angles, 𝛥𝜔, 𝛥𝜑, 𝛥𝜅 , and time delay, 𝛥𝑡. Generalizing 

equation (3.11) to equation (3.12), we can see that the ground coordinate, 𝑟𝐼
𝑚,  is a function of the 

system parameters, x. Taking the partial derivatives of the collinearity equations with respect to 

each system parameter and multiplying by the discrepancy in the system parameters, 𝛿𝑥, show 

which flight configuration produce a change in the ground coordinates, 𝛿𝑟𝐼
𝑚 , as expressed in 

equation (3.13). 

  

𝑟𝐼
𝑚 = 𝑟𝑏(𝑡0)

𝑚 + �̇� 𝑏(t0)
𝑚 𝛥𝑡 + 𝑅𝑏(𝑡0)

𝑚 𝑅𝑏(𝑡0+𝛥𝑡)
𝑏(𝑡0)

𝑟𝑐
𝑏  +  𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡0)

𝑚 𝑅𝑏(𝑡0+𝛥𝑡)
𝑏(𝑡0)

𝑅𝑐
𝑏 𝑟𝑖

𝑐(𝑡)
 (3.11) 

 

𝑟𝐼
𝑚 = 𝑓(𝑥) 

 

(3.12) 

𝛿𝑟𝐼
𝑚 = 

𝜕𝑟𝐼
𝑚

𝜕𝑥
𝛿𝑥 

Where:  

𝛿𝑥 = (𝛿𝛥𝑋, 𝛿𝛥𝑌, 𝛿𝛥𝑍, 𝛿𝛥𝜔, 𝛿𝛥𝜑, 𝛿𝛥𝜅, 𝛿𝛥𝑡)  

(3.13) 

 

To simplify this analysis, we make a few assumptions. These assumptions are specifically 

made to simplify the derivation and the analysis of the bias impact is not affected if such 

assumptions are not met. It should be noted that deviations from these assumptions would have a 

more favorable effect on our ability to decouple the impact of various system parameters. We 

assume that the sensor is travelling with a constant attitude in the south-to-north and north-to-south 

directions. Throughout this manuscript we use double signs, ± and ∓,  to refer to the direction of 

the flight. The top sign pertains to the south-to-north flight and the bottom sign refers to the north-

to-south flight. Also, we assume that the sensor and IMU body frame coordinate systems are 
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vertical. Therefore, we also assume that the sensor and IMU body frame coordinate systems are 

almost parallel. Lastly, we assume that we are flying over a flat horizontal terrain, where the scale 

is equal to the flying height over the principal distance, 𝜆 =
𝐻

𝑐
 .  

Now that these assumptions are established, we compute the partial derivatives with respect 

to each system parameter. Examining equation (3.11), we can see that there are three terms that 

are comprised of system parameters and needed to compute the partial derivatives for, namely 

�̇� 𝑏(t0)
𝑚 𝛥𝑡, 𝑅𝑏(𝑡)

𝑚 𝑟𝑐
𝑏 and 𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡)

𝑚 𝑅𝑐
𝑏 𝑟𝑖

𝑐(𝑡)
. The first term, �̇� 𝑏(t0)

𝑚 𝛥𝑡, only includes the time delay 

system parameter and its partial derivative will simply be the instantaneous linear velocity.  Based 

on the sensor flight direction assumption and the incremental rotation resulting from the time 

delay, shown in equation (3.8), we can expand 𝑅𝑏(𝑡)
𝑚  to the form in equation (3.14).  Using the 

assumption that the sensor to IMU-body frame lever arm is small, second order incremental terms 

in 𝑅𝑏(𝑡)
𝑚 𝑟𝑐

𝑏  are ignored; and using equation (3.14), 𝑅𝑏(𝑡)
𝑚 𝑟𝑐

𝑏 can then be expressed as in equation 

(3.15). Next, after multiplication of the image coordinate vector, boresight matrix, IMU body 

frame rotation matrix, and scale factor, the third term, 𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡)
𝑚 𝑅𝑐

𝑏 𝑟𝑖
𝑐(𝑡)

,  is expressed in 

equation (3.16)  where second order incremental terms are again ignored. From equations (3.15) 

and (3.16), we explicitly have the terms needed for the partial derivatives. 

 

𝑅𝑏(𝑡)
𝑚 = [

±1 0 0
0 ±1 0
0 0 1

 ] [

1 −κ̇ 𝑏
 (𝑡0)𝛥𝑡 φ̇ 𝑏

 (𝑡0)𝛥𝑡

κ̇ 𝑏
 (𝑡0)𝛥𝑡 1 −ω̇ 𝑏

 (𝑡0)𝛥𝑡

−φ̇ 𝑏
 (𝑡0)𝛥𝑡 ω̇ 𝑏

 (𝑡0)𝛥𝑡 1

 ]

=     [

±1 ∓κ̇ 𝑏
 (𝑡0)𝛥𝑡 ±φ̇ 𝑏

 (𝑡0)𝛥𝑡

±κ̇ 𝑏
 (𝑡0)𝛥𝑡 ±1 ∓ω̇ 𝑏

 (𝑡0)𝛥𝑡

−φ̇ 𝑏
 (𝑡0)𝛥𝑡 ω̇ 𝑏

 (𝑡0)𝛥𝑡 1

 ] 

                     

(3.14) 

𝑅𝑏(𝑡)
𝑚 𝑟𝑐

𝑏 = [
±𝛥𝑋
±𝛥𝑌
𝛥𝑍

]  (3.15) 

  

𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡)
𝑚 𝑅𝑐

𝑏 𝑟𝑖
𝑐(𝑡)

=   𝜆(𝑖, 𝑐, 𝑡)  [

±𝑥𝑖
 ∓ 𝑦𝑖

 𝛥𝜅 ∓ κ̇ 𝑏
 (𝑡0)𝑦𝑖

 𝛥𝑡 ∓ 𝑐𝛥𝜑 ∓ φ̇ 𝑏
 (𝑡0)𝑐𝛥𝑡

±κ̇ 𝑏
 (𝑡0)𝑥𝑖

 𝛥𝑡 ± 𝑥𝑖
 𝛥𝜅 ± 𝑦𝑖

 ± 𝑐𝛥𝜔 ∓ �̇� 𝑏
 (𝑡0)𝑐𝛥𝑡

−φ̇ 𝑏
 (𝑡0)𝑥𝑖

 𝛥𝑡 − 𝑥𝑖
 𝛥𝜑 + �̇� 𝑏

 (𝑡0)𝑦𝑖
 𝛥𝑡 + 𝑦𝑖

 𝛥𝜔 − 𝑐

 ] 
(3.16) 
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The partial derivatives needed for the bias impact analysis are those relative to the lever arm 

components, boresight angles, and time delay. These partial derivatives, derived from equations 

(3.15) and (3.16), are expressed in equations (3.17a-3.17c) (see Appendix for expanded details). 

Examining these partial derivatives, one can see which dependencies these system parameters 

exhibit. The impact of the lever arm component changes depends on the flying direction. The 

impact of the boresight angles on the ground coordinates is a function of the flying height, flying 

direction, and the ratio of the image point coordinates and the principal distance, 
𝑥𝑖

 

𝑐
 and 

𝑦𝑖
 

𝑐
.  Lastly, 

the impact of the time delay is a function of the linear and angular velocities, scale, image point 

coordinates, principal distance, and flying direction. The dependency of the bias impact for the 

system calibration parameters on image point location, flying direction, flying height, and linear 

and angular velocity are summarized in Table 3.1.  

 

𝛿𝑟𝐼
𝑚 ∣𝛿𝑟𝑐

𝑏= [
±𝛿𝛥𝑋
±𝛿𝛥𝑌
𝛿𝛥𝑍

]  

 

(3.17a) 

𝛿𝑟𝐼
𝑚 ∣𝛿𝛥𝜔,𝛿𝛥𝜑,𝛿𝛥𝜅= 𝐻

[
 
 
 
 ±

𝑥𝑖
 𝑦𝑖

 

𝑐2
𝛿𝛥𝜔 ∓ (1 +

𝑥𝑖
 2

𝑐2
)𝛿𝛥𝜑 ∓

𝑦𝑖
 

𝑐
𝛿𝛥𝜅

±(1 +
𝑦𝑖

 2

𝑐2
)𝛿𝛥𝜔 ∓

𝑥𝑖
 𝑦𝑖

 

𝑐2
 𝛿𝛥𝜑 ±

𝑥𝑖
 

𝑐
𝛿𝛥𝜅

0 ]
 
 
 
 

 

 

 

(3.17b) 

𝛿𝑟𝐼
𝑚 ∣𝛿𝛥𝑡= �̇� 𝑏(t0)

𝑚 𝛿𝛥𝑡 +  𝜆(𝑖, 𝑐, 𝑡)  [

±κ̇ 𝑏
 (𝑡0)𝑦𝑖

 𝛿𝛥𝑡 ∓ φ̇ 𝑏
 (𝑡0)𝑐𝛿𝛥𝑡

±κ̇ 𝑏
 (𝑡0)𝑥𝑖

 𝛿𝛥𝑡 ∓ �̇� 𝑏
 (𝑡0)𝑐𝛿𝛥𝑡

−φ̇ 𝑏
 (𝑡0)𝑥𝑖

 𝛿𝛥𝑡 + �̇� 𝑏
 (𝑡0)𝑦𝑖

 𝛿𝛥𝑡

 ]                            (3.17c) 
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Table 3.1 Dependency of the bias impact for the system calibration parameters on flight 

configuration & image point location 

System 

Parameter 

Image Point 

Location 

Flying 

Direction 
Flying Height 

Linear 

Velocity 

Angular 

Velocity 

Lever Arm 
NO YES (except 

ΔZ) 
NO NO NO 

Boresight YES YES YES NO NO 

Time Delay 

YES 

(only in the 

presence of 

angular 

velocities) 

YES 

YES 

(only in the 

presence of 

angular 

velocities) 

YES YES 

 

Now that we know which system parameters produce a change in ground coordinates, and 

whether that change depends on the image point location, flying direction, flying height, and/or 

linear/angular velocity, we then design the optimal flight configuration for system calibration 

while considering time delay. As a result of this analysis we can conclude that the horizontal 

components of the lever arm can be estimated using different flying directions, while its vertical 

component is independent of flight configuration. On the other hand, to estimate boresight angles 

while decoupling them from lever arm components, different flying directions and flying heights 

are needed, as well as a good distribution of image points. Finally, to derive the time delay and 

decouple this parameter from the lever arm components and boresight angles, variation in 

linear/angular velocity and a good distribution of image points are required. In summary, it is 

recommended to derive the system parameters using opposite flying directions at different flying 

heights, as well as having a variation in the linear and angular velocities and good distribution of 

the image points. It should be emphasized that the assumptions imposed while deriving the 

minimal optimal flight configurations were only made to simplify the derivations and are not 

requirements for the presented approaches or experiments. If these assumptions are not met, the 

analysis of bias impact is not affected. Furthermore, any deviations from the abovementioned 

assumptions will lead to a more favorable impact on the ability to decouple system parameters. It 

should be noted that variation in the angular velocity might be difficult to control. However, for 

small, multi-rotor UAVs, angular velocity variation might be present. Using the optimal flight 

configuration, systematic errors can be easily detected, estimated, and removed, therefore resulting 

in more accurate 3D reconstruction. 
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3.3.4 Indirect Approach for Time Delay Estimation 

The next approach we propose to evaluate time delay is the indirect approach. This 

approach uses the above bias impact analysis by exploiting the fact that the lever arm component 

in the flying direction is correlated with the time delay, given a single linear velocity and 

insignificant angular velocity. In other words, if flights in opposite directions and constant linear 

velocity are used, then the lever arm component in the flying direction will be correlated with the 

time delay. As a result, by estimating the lever arm component in the flying direction, while not 

considering the time delay, and then comparing it with the nominal value which can be directly 

measured from the GNSS/INS unit to the imaging sensor, one can discern the existence of a 

possible time delay in system synchronization. An illustration of where measurements are taken 

to acquire the nominal lever arm values is shown in Figure 3.6. This approach is meant as a special 

case in which one chooses to use an existing bundle adjustment with system self-calibration 

mechanism to estimate time delay, instead of incorporating the time delay as a parameter and 

implementing the direct approach. 

 

 

Figure 3.6. Illustration of where measurements are taken to acquire the nominal lever arm values. 

 

The indirect approach consists of a single bundle adjustment, with the system self-calibration 

operation completed twice. In the first operation, an initial GNSS/INS-assisted bundle adjustment 

is performed to solve for the lever arm components (only lever arm in the flying direction) and 

boresight angles. If a significant time delay exists, the computed lever arm in the flying direction 
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will be quite different from the nominal value. This will be the first hint that the system may have 

a time delay issue. After the initial bundle adjustment is performed, the difference between the 

computed lever arm and the nominal/measured lever arm in the flying direction is derived. In the 

second operation, this difference in distance is now known and the time delay can be computed 

using the speed/time/distance relation. The computed time delay is then applied to derive the new 

position and orientation of IMU body frame at the actual exposure time. Finally, another bundle 

adjustment is performed to solve for the mounting parameters. Figure 3.7 presents the processing 

workflow of this approach.  

 

 

Figure 3.7 Processing workflow of the indirect approach process for time delay estimation. 

 

In summary, the bundle block adjustment and mathematical model does not change from the 

traditional GNSS/INS-assisted bundle adjustment with system self-calibration procedure, 

expressed in Equation (3.3). The image coordinates are still a function of the trajectory 

information, IOPs, lever arm components, boresight angles, and ground coordinates. The time 

delay is not directly derived, but indirectly estimated using the lever arm deviation in the along 

flight direction and the speed/time/distance relation. However, one limitation of this approach is 

that because we are making the assumption that the time delay impact is absorbed by the lever arm 

in the flying direction, we have to fly at a single linear velocity. Additionally, because this 

approach only considers the impact of time delay on the lever arm component, it ignores the 

possibility of rotation changes during the time delay (i.e., angular velocity). Therefore, the 

calibration results may be less accurate than using the direct approach and an optimal flight 

configuration. However, the key advantage for the indirect approach is that it is capable of using 

existing bundle adjustment software to estimate the time delay in the system.  
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3.4 Experimental Results 

In this section, data acquisition is discussed first, which includes information about the 

platforms and imaging systems used in this study. Next, the dataset description is presented. This 

description includes information on the flight configuration and ground control points collected. 

Finally, the experimental results and analysis are discussed. Each experiment and its results are 

presented in detail, along with an analysis discussion. 

3.4.1 Date Acquisition 

Data for validating the comparative performance of the proposed approaches in this study 

were acquired using two UAV systems, a Dà-Jiāng Innovations (DJI) Matrice 200 (M200) and a 

DJI Matrice 600 Pro (M600P) [39, 40]. Co-aligned thermal and RGB data were acquired with the 

DJI M200, and the DJI M600 was used as a second, RGB-only platform. Both systems included 

an on-board Applanix APX-15 UAV v2 GNSS/INS unit for direct geo-referencing, with a 

predicted positional accuracy of 2–5 cm and heading and roll/pitch of 0.080 and 0.025°, 

respectively [41]. Both imaging systems also had the means to send event marker signals to the 

GNSS/INS unit.  

The DJI M200-based imaging system employed a FLIR Duo Pro R 640 combined thermal 

and RGB image sensor. The Uncooled VOx Microbolometer thermal sensor array was 640 × 512 

with a pixel size of 17 μm and had a nominal focal length of 19mm. The RGB visible sensor array 

size was 4000 × 3000, with a pixel size of 1.85 μm and a nominal focal length of 8 mm [42]. The 

Duo Pro R has an internal GNSS/INS unit for in-camera geo-tagging, but that unit was not used 

for this study. Figure 3.8 shows the FLIR Duo Pro R and APX-15 configuration on the M200 

UAV, and illustrates the coordinate systems for the IMU body, camera, and vehicle frames. The 

FLIR Duo Pro R utilized a mobile-phone based app to set camera parameters via Bluetooth. The 

mobile-phone based app includes the ability to set the capture interval for the camera and to start 

and stop triggering. Event feedback to the APX was provided directly by the FLIR Duo Pro R 

using the “Frame Sync” option. This option output a low voltage transistor to transistor logic 

(3.3V) pulse that was wired directly to the event input of the APX-15. It is important to note that 

only one triggering interval and frame sync output can be set on the FLIR Duo Pro R, despite the 

fact that there are two sensors housed in the single unit. Therefore, one might assume that both 
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sensors are capturing images simultaneously. However, during the experiments, the FLIR thermal 

and RGB sensors were treated independently as separate sensors. The system calibration 

parameters, including the time delay, were estimated for each senor so the results were not affected 

by having only one triggering interval. 

 

 

Figure 3.8 M200-based thermal/RGB system configuration. 

 

The second imaging system, flown onboard the DJI M600P, incorporated a Sony Alpha 7R 

RGB camera and a Velodyne VLP-32C LiDAR sensor, although the LiDAR sensor was not used 

for this study. The Sony Alpha 7R (ILCE-7R) camera on the DJI M600P had a 7360 × 4912 CMOS 

array with a 4.9 μm pixel size, and a lens with a nominal focal length of 35 mm [43]. The M600-

based RGB-only system used a direct feedback synchronization approach, utilizing the camera 

flash hot-shoe to generate a signal at the time the image was captured. This camera feedback signal 

was then sent to the APX-15 and a corresponding event time was recorded. This method also 

adjusted the event markers during post-processing to account for the constant time delay between 

the flash operation and the true mid-exposure time [11]. Figure 3.9 shows the Sony Alpha 7R and 

APX-15 configuration on the M600. Table 3.3 outlines the nominal boresight and lever arm values, 

as well as the angular field of view (FOV) for both the FLIR and Sony systems. 
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Figure 3.9 DJI M600-based Sony Alpha 7R system configuration. 

 

Table 3.2 FLIR and Sony nominal boresight angles, lever arm components, and angular field of 

view. 

Sensor Δω (Degree) 
Δφ 

(Degree) 

Δκ 

(Degree) 
Δx (m) Δy (m) Δz (m) 

Angular 

FOV  

(Degrees) 

FLIR—Thermal 
180 0 –90 

0.045 –0.015 0.045 32 × 26 

FLIR—RGB 0.045 0.025 0.050 57 × 42 

Sony—RGB 180 0 –90 0.260 0.026 –0.010 54 × 38 

3.4.2 Dataset Description  

Five datasets were collected for this time-delay estimation study. Four datasets were collected 

across two dates, July 25th and September 14th, with the FLIR Duo Pro R. For both collection dates, 

the FLIR Duo Pro R captured both thermal and RGB images. One RGB dataset from the Sony 

Alpha 7R camera was also captured and was evaluated alongside the FLIR datasets. Table 3.4 

outlines the flight and data collection parameters for the FLIR Duo Pro R and the Sony Alpha 7R. 
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All datasets were collected at a research farm. Figure 3.10 outlines the flight trajectory for both 

the FLIR and Sony datasets. Figure 3.11a, b shows the linear and angular velocity variations over 

the flight time for the July 25th thermal dataset, respectively. Analyzing Figure 3.11, the change 

in the linear velocity in the 𝑋 direction can be explained by the variation in both the flying direction 

and linear velocity at different flying altitudes. Furthermore, significant changes in the linear and 

angular velocity were observed in the remaining linear and angular velocity components. This 

significant change was caused by the small size of the UAV, the impact of the wind, and the 

attempt of the autopilot to maintain a constant heading. The linear and angular velocities for this 

data demonstrate that the direct approach uses such variability for reliable estimation of the 

parameters. The indirect approach, on the other hand, has the capability to tolerate variations which 

would create decoupling between time delay and lever arm in the along flying direction. All other 

collection dates had similar linear and angular velocity variations over the flight time. 
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Table 3.3 FLIR and Sony flight parameters for the different data acquisition dates. 

Date Sensor 

Altitude 

Above 

Ground 

Ground 

Speed  

GSD 

Thermal 
GSD RGB 

Overlap  

Thermal/R

GB 

Side lap 

Thermal/R

GB  

Number 

of Flight 

Lines 

Number 

of 

Images 

July 25 2018 
FLIR 

Duo 

Pro R 

20 m 2.7 m/s 1.8 cm 0.7 cm 70/80% 70/80% 6 284 

40 m 5.4 m/s 3.6 cm 1.4 cm 70/80% 70/80% 6 164 

Sept. 14 2018 
20 m 2.7 m/s 1.8 cm 0.7 cm 70/80% 70/80% 6 294 

40 m 5.4m/s 3.6 cm 1.4 cm 70/80% 70/80% 6 168 

May 05 2019 

 

Sony 

A7R 

20 m 2.7 m/s - 0.28 cm 70% 82% 6 198 

40 m 5.4 m/s - 0.56 cm 70% 82% 6 116 
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Figure 3.10 Trajectory and target locations for FLIR Duo Pro R and Sony Alpha 7R. 

 

(a) (b) 

Figure 3.11 (a) 𝑋𝑌𝑍 component linear velocity over flight time for the July 25th thermal dataset. 

(b) ω,φ, κ component angular velocity over flight time for the July 25th thermal dataset. 
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Five checkerboard targets, used as checkpoints, were deployed in the calibration field for the 

FLIR and Sony cameras. The ground coordinates of all the checkerboard targets were surveyed by 

a Topcon GR-5 GNSS receiver with an accuracy of 2–3cm. The checkerboard targets were 

identified in raw and orthorectified images to either solve for the unknowns in the GNSS/INS-

assisted bundle adjustment with system self-calibration process or check orthorectification 

accuracy, depending on the method implemented, respectively. Figure 3.12 shows full-size thermal 

and RGB imagery captured by the FLIR Duo Pro R camera. Here, it is clear that the angular field 

of view of the RGB is much larger than that of the thermal. Figure 3.13 shows the data collection 

area with enhanced representations of checkerboard targets and a zoomed region of the targets in 

the thermal and RGB images of the FLIR camera. Figure 3.14 shows sample RGB imagery 

captured by the Sony Alpha 7R. Figure 3.15 shows the flight area of the Sony Alpha 7R calibration 

field with the five checkerboard targets.  

 

Figure 3.12 Sample corresponding thermal and RGB images from the FLIR Duo Pro R. 
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Figure 3.13 Flight area with enhanced representations of checkerboard targets and sample 

thermal and RGB images of the FLIR camera around the target location. 

  

(a) (b) 

Figure 3.14 Sample images captured by the Sony RBG sensor over the calibration test field. (a) 

20m flying height and (b) 40m flying height. 

 

Figure 3.15 Sony A7R calibration field. 
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3.4.3 Experimental Results and Analysis 

In this section, the proposed direct and indirect approaches were applied to each dataset, and 

the experiments tested the validity of the two approaches to successfully estimate time delay in an 

imaging system. In addition to the direct and indirect approach results, bundle adjustments that 

ignored the time delay are also presented for further comparison. As described in Section 3.2, the 

direct approach modifies the mathematical model to include the time delay as a system calibration 

parameter. This approach was simultaneously applied to both the 20 and 40 m flying height 

datasets for the DJI M200 and M600 platforms. The indirect approach makes use of existing bundle 

adjustment software and was applied only to a single flying height: 40 m for the FLIR and Sony 

cameras. In addition to the direct and indirect approach, bundle adjustment experiments were also 

conducted while ignoring the time delay, which was also only applied to the 40 m flying height 

for the FLIR and Sony cameras. The goal of these experiments was to test three main hypotheses. 

First, that the approaches can be applied to a variety of imaging platforms and maintain the ability 

to accurately estimate the time delay. Second, that the direct and indirect approaches are 

comparable. Finally, that the direct and indirect approaches produce consistently accurate results 

using the original GNSS/INS trajectory file. 

Throughout this study, we referred to three different types of point classifications: control, tie, 

and checkpoints. Control points have known ground points, tie points are interest points used to 

tie overlapping imagery, and checkpoints are used for numerically evaluating results. Tie points in 

the indirect approach and in the bundle adjustments that ignored the time delay were established 

among stereo images (among the same sensor) using detected features from the Scale Invariant 

Feature Transform (SIFT) algorithm [44] within a Structure from Motion (SfM) strategy. The SfM 

algorithm starts with estimating initial relative orientation parameters (ROPs) between overlapping 

neighboring images while using the position and orientation information provided by the on-board 

GNSS/INS unit and considering the nominal mounting parameters relating the camera to the 

GNSS/INS unit. In the next step, SIFT detectors and descriptors are applied to the stereo pairs in 

question, and potential matches are then identified through a similarity evaluation of the Euclidian 

distances between SIFT descriptors for the detected features in both images. SIFT-based matches 

and initial ROPs are used to identify matching outliers based on point-to-epipolar distance of each 

corresponding point pair. Once all tie points are established among all possible stereo pairs, their 

ground coordinates are estimated using a simple intersection, and are used later as initial values in 



 

 

61 

the bundle adjustment procedure. These SIFT generated tie points were not used in the direct 

approach because it can sometimes be difficult to identify automatically-derived tie points in 

thermal imagery when dealing with data from multiple flying heights. To ensure we could apply 

the direct approach whether or not automatically-derived tie point detection was used, we used 

manually-measured points that corresponded to signalized targets. Because the direct approach 

does not use any other tie points except the checkpoints, the direct approach’s results were 

considered to come from what will be referred to as a mini bundle adjustment. The indirect 

approach results, as well as the results ignoring the time delay, were considered as a full bundle 

adjustment. 

For all direct approach experiments, the unknown system parameters included lever arm 

components in the along and across flying directions, boresight angles, time delay, and ground 

coordinates of checkpoints. It should be noted that the vertical lever arm component was not 

estimated in any experiments because it would require control points during the adjustments, and 

these experiments tested the approaches without the use of ground control. In the indirect approach 

experiments, lever arm components in the along and across flying directions, boresight angles, and 

ground coordinates of tie points, including checkpoints, were estimated. Once the initial bundle 

adjustment was performed in the indirect approach, the difference between the nominal and 

estimated lever arm along the flying direction was computed. Existing time delay was estimated 

by dividing this difference by the linear velocity, and was then considered to determine the actual 

time of exposure for each image. Next, IMU body frame position 𝑟𝑏(𝑡)
𝑚 and orientation 𝑅𝑏(𝑡)

𝑚  was 

estimated using linear and spherical linear interpolation of available GNSS/INS trajectory data 

(with 200HZ data rate), respectively. Lastly, a second bundle adjustment was performed with the 

updated (based the estimated time delay) IMU body frame position and orientation to derive the 

proper lever arm components in the along and across flying directions and boresight angles, as the 

unknown parameters. The experiments, while ignoring the time delay, used the same IOPs as other 

experiments, the same checkpoints, and the same SIFT-based tie points. The unknowns consisted 

of the ground coordinates of the five checkpoints, the ground coordinates of the SIFT-based tie 

points, and the boresight angles. It should be noted that the lever arm components were 

intentionally not solved for in the bundle adjustment that ignored time delay, because the time 

delay error would be absorbed by the lever arm in the along flying direction. For all cameras, IOPs 

were obtained prior to the experiments. An initial integrated sensor orientation (ISO) bundle 
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adjustment was performed on the FLIR thermal and RBG cameras to obtain the principal distance, 

principal point coordinates, and distortion parameters. The ISO bundle adjustment used SIFT-

based tie points, five GCPs, and GNSS/INS assistance to obtain the IOPs. The IOPs for the Sony 

RGB camera were estimated through a combination of ISO and an indoor calibration lab 

procedure. The estimated IOPs were then used throughout all experiments and are presented in 

Table 3.5.  

Table 3.4 Interior orientation parameters (IOPs) for the FLIR and Sony cameras. 

Estimate

d c 

(Pixel) 

Estimate

d 𝒙𝒑 

(Pixel) 

Estimate

d 𝒚𝒑 

(Pixel) 

Estimated 

k1 

(Pixel-2) 

Estimated 

k2 

(Pixel-4) 

Estimated 

p1 

(Pixel-1) 

Estimated 

p2 

(Pixel-2) 

Thermal- FLIR 

1131.96 −5.238 3.2 3.015e–007 9.998e–014 –1.992e–006 2.302e–006 

 

RGB- FLIR 

4122.26 35.07 −39.96 –2.429e-008 –1.250e–015  1.576e–007 –2.693e–007 

 

RGB- Sony 

7436.44 −10.51 11.72 7.771e–010 –6.557e–017  1.906e–007 2.702e–007 

 

Qualitative and quantitative analyses are presented for all experiments. The five signalized 

points were used as checkpoints to numerically evaluate results. The bundle adjustment derived 

3D ground coordinates were numerically compared to ground truth data for quantitative analysis. 

Qualitative analyses were constructed by generating orthophotos with the original trajectory data 

and visually inspecting for good alignment for both the direct and indirect approaches. 

Additionally, orthophotos were generated from bundle adjustments while ignoring time delay, both 

with the original and refined trajectory data, and results were analyzed. The orthophotos were also 

quantitatively evaluated by measuring checkpoints and numerically comparing them to surveyed 

ground truth data.  

 



 

 

63 

3.4.3.1 DJI M200 integrated with FLIR Duo Pro R – FLIR Thermal 

A summary of the FLIR thermal sensor results for the direct and indirect approaches while 

ignoring the time delay is presented in Table 3.6. In Table 3.6, the boresight angles and the square 

root of the a-posteriori variance factors are reported for all experiments. The estimated time delay 

and lever arm components in the across and along flying directions are presented for the direct and 

indirect approaches. Table 3.6 shows the estimated boresight Δ𝜔 and Δ𝜑 to be around 180˚ and –

90˚, respectively. In the bias impact analysis, we made the assumption that the boresight angles 

were small. This assumption was only made to simplify the bias impact derivation, and is not a 

requirement for conducting the estimation process. The time delay was estimated to be –268 and 

–261 ms for the direct approach on the two collection dates. For the indirect approach, the time 

delay is estimated to be –279 and –275 ms for the two collection dates. This consistency across 

the dates allowed estimation of the time delay in an initial system calibration, then use of that 

estimate for subsequent missions and applications. The square root of the a-posterior variance 

factor was less than 1 pixel for all experiments except the direct approach. The direct approach 

had a higher a-posterior variance factor, at 2–4 pixels, because far less tie points were used in the 

direct approach, leading to less redundancy. The correlation matrix of estimated system parameters 

for the July 25th direct approach results are reported in Table 3.6. The correlation values were 

similar in all experiments, therefore only one matrix is displayed in this study. All correlations 

were low except between the boresight angle Δ𝜑 and lever arm component 𝛥𝑋, as well as between 

the Δ𝜔  and ΔY which had correlation values of 0.885 and –0.945, respectively, which are 

highlighted in red in Table 3.7. Even though this correlation was high, it would be even higher 

without using the optimal flight configurations. Tests show that when only one flying height was 

used for the direct approach, the correlation between the boresight angle  Δ𝜑  and lever arm 

component 𝛥𝑋, as well as between the Δ𝜔 and 𝛥𝑌, increased to 0.99. Therefore, using the optimal 

flight configuration presented in this study decoupled the parameters so that they could be 

estimated accurately.  
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Table 3.5 Estimated parameter results for the DJI M200 thermal platform, including the standard 

deviation for direct results. 

 

Estimated 

Time 

Delay Δt 

(ms) 

Estimated 

Lever 

Arm ΔX 

(m) 

Estimated 

Lever Arm 

ΔY (m) 

Estimated 

Boresight 

Δ𝝎  (˚) 

Estimated 

Boresight  
𝚫𝝋  (˚) 

Estimated 

Boresight  
Δ𝜿  (˚) 

Square Root of 

A-Posteriori 

Variance 

Factor 

(Pixel) 

�̂�𝒐 

Ignoring Time Delay (bundle adjustment) 

July 25th NA NA NA 179.12 1.26 –90.63 0.67 

Sept 14th NA NA NA 179.05 1.23 –90.54 0.84 

 

Direct Approach (mini bundle adjustment) 

July 25th 
-268 

± 2.6 

0.114 

± 0.024 

–0.032 

± 0.024 

179.03 

± 0.055 

–0.395 

± 0.052 

–90.82 

± 0.093 
4.63 

Sept 14th 
–261 

± 1.41 

0.100 

± 0.015 

–0.038 

± 0.014 

178.99 

± 0.030 

–0.508 

± 0.028 

–90.50 

± 0.060 
2.19 

 

Indirect Approach (bundle adjustment) 

July 25th: 

Operation 

1 

N/A –1.46 
–0.015 

(constant) 
179.11 –0.56 –90.62 0.48 

July 25th: 

Operation 

2 

–279* 0.066 –0.29 178.68 –0.56 –90.72 0.47 

Sept 14th: 

Operation 

1 

N/A –1.44 
-0.015 

(constant) 
179.05 –0.58 –90.55 0.75 

Sept 14th: 

Operation 

2 

–275* 0.142 –0.27 178.68 –0.50 –90.91 0.72 

* Time delay was estimated using the difference between the estimated lever arm in flying direction in Operation 1, 

and its nominal value while considering speed/time/distance relation. 
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Table 3.6 Correlation matrix of system parameters for July 25th thermal direct approach results. 

 ΔX ΔY 
ΔZ 

(Not Estimated) 
Δ𝝎 𝜟𝝋 Δ𝜿 Δ𝐭 

ΔX 1       

ΔY –0.001 1      

ΔZ 

(not estimated) 
0 0 1     

Δ𝝎 0.015 -0.945 0 1    

Δ𝝋 0.885 –0.013 0 0.009 1   

Δ𝜿 0.011 –0.026 0 0.024 –0.011 1  

Δ𝐭 –0.023 –0.067 0 0.022 0.326 –0.025 1 

 

Five checkpoints’ 3D coordinates were estimated in all of the experiments. Table 3.8 presents 

the 𝑋𝑌𝑍  components, mean, standard deviation, and RMSE of the differences between 

checkpoints and surveyed coordinates of the five checkpoints from estimated object point 

coordinates. As displayed in Table 3.4, the GSD of the FLIR thermal sensor was in the range of 

1.8 to 3.6 cm for the different flying heights. For the direct approach results, the RMSE in the 

horizontal direction was approximately that of the GSD at 1–3 cm, and the indirect approach results 

showed no more than two times that of the GSD. Overall, the direct approach produced the best 

results for the 𝑋𝑌 components when compared to both the results of the indirect approach, and 

while ignoring the time delay. The vertical accuracy was much worse than the horizontal one. This 

was expected and can be explained by the geometric configuration. Using the base height ratio 

along with the variance in x-parallax, the estimated vertical accuracy was expected to be between 

0.09–0.18 m. Therefore, estimated 0.07 and 0.08 m standard deviations in the vertical direction 

are within reason. Additionally, because of the small test area and the limited number of 

checkpoints, the Z-component showed a bias, reflected in the mean. For the RMSE 𝑍-component, 

the indirect approach showed an approximate 26 to 63% decrease from the direct approach. This 

can be explained by the difference in tie points used. Since the indirect approach used the SIFT-

based tie points, there were many more, with better distribution, compared to the few tie points 

used in the direct approach. That being said, the improvement in the 𝑋- and 𝑌-components of the 
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direct approach over the indirect approach and the approach ignoring the time delay shows the 

superiority of the direct approach. More specifically, even though the direct approach did not use 

the SIFT-based tie points, which improved point distribution and geometry significantly, the direct 

approach was still capable of improving the results. The distribution of tie points for the direct and 

indirect approaches for the Sept 14th FLIR thermal dataset is shown in Figure 3.16. The distribution 

of tie points was similar for the other collection dates and sensors in these experiments. 

Furthermore, the mean standard deviations of the checkpoints are only presented for the direct 

results, because the bundle adjustments using the large number of SIFT-based tie points did not 

produce a final dispersion matrix, due to the large size of the unknowns. The mean standard 

deviation of the five checkpoints derived from the direct approach mini bundle adjustment is 

displayed in Table 3.9. Again, the horizontal components had better accuracy than the vertical.  

 

Table 3.7 Components and mean/standard deviation/RMSE of the differences between 

checkpoints and surveyed coordinates for the five checkpoints for the DJI M200 thermal 

platform. 

𝑾𝒊𝒕𝒉𝒐𝒖𝒕 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓𝒊𝒏𝒈 𝑻𝒊𝒎𝒆 𝑫𝒆𝒍𝒂𝒚 

Thermal—July 

𝑾𝒊𝒕𝒉𝒐𝒖𝒕 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓𝒊𝒏𝒈 𝑻𝒊𝒎𝒆 𝑫𝒆𝒍𝒂𝒚 

Thermal—Sept 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 0.03 0.03 –0.18 0.01 –0.05 –0.06 

N2 0.05 0.06 –0.29 –0.06 –0.06 –0.12 

N3 0.03 0.08 –0.51 –0.03 –0.01 –0.03 

N4 –0.04 0.12 –0.12 –0.02 –0.01 0.02 

N5 0.04 0.19 0.08 0.070 0.02 0.00 

Mean  0.02 0.10 –0.20 –0.01 –0.02 –0.04 

Standard Deviation 0.04 0.06 0.22 0.05 0.03 0.05 

RMSE 0.04 0.11 0.28 0.05 0.04 0.06 
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Table 3.7 continued 

𝑫𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

Thermal—July 

𝑫𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

Thermal—Sept 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 –0.02 0.05 0.14 –0.01 –0.02 0.24 

N2 0.01 0.03 0.25 0.01 0.00 0.31 

N3 0.01 0.03 0.12 0.00 –0.00 0.27 

N4 –0.00 0.03 0.28 0.00 0.01 0.15 

N5 –0.04 0.02 0.12 –0.003 0.01 0.16 

Mean  –0.01 0.03 0.18 0.00 0.00 0.22 

Standard Deviation 0.02 0.01 0.08 0.01 0.01 0.07 

RMSE 0.02 0.03 0.19 0.01 0.01 0.23 

 

𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

Thermal—July 

𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

Thermal—Sept 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 0.01 0.05 –0.11 –0.061 –0.02 0.14 

N2 –0.01 0.05 –0.06 –0.078 –0.03 0.12 

N3 0.01 0.05 –0.03 –0.03 0.01 0.21 

N4 0.00 0.05 0.04 –0.0 –0.00 0.16 

N5 0.04 0.07 0.10 0.07 0.01 0.20 

Mean  0.01 0.05 –0.01 –0.02 –0.01 0.17 

Standard Deviation 0.02 0.01 0.08 0.06 0.02 0.04 

RMSE 0.02 0.06 0.07 0.06 0.02 0.17 
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Table 3.8 Mean standard deviation of five checkpoints from direct approach for the DJI M200 

thermal platform from mini bundle adjustment. 

Direct Approach  

 X(m) Y(m) Z(m) 

July 25th 0.018 0.018 0.096 

Sept 14th 0.011 0.011 0.072 

 

 

Figure 3.16 Distribution of the tie points used for the FLIR thermal sensor in the Sept. 14th 

collection date for the direct (right) and indirect* (left) approaches (*only 10% of total tie points 

are plotted). 

 

The above M200 platform—thermal calibration results were used to create 1 cm orthophotos 

using the estimated system parameters from the results while ignoring the time delay, both using 

the original and refined trajectory data, as well as the direct and indirect approach results and for 

all collection dates, using only the original trajectory data. The orthorectification process was 

carried out by an in-house developed code. An orthophoto resolution of 1 cm was chosen as 

suitable for the agricultural application requirements. The 40 m flying height images were used 

for the orthophoto generation. Coordinates of the check targets were then measured on the 

generated orthophotos. Generating these orthophotos allowed for both a qualitative and 

quantitative evaluation of the system parameters used for each dataset. Figure 3.17 shows the 

orthophoto generated using the system parameters estimated while ignoring the time delay and 
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using the original trajectory data. Figure 3.18 shows the orthophoto generated using the system 

parameters estimated while ignoring the time delay, but with the refined trajectory data obtained 

using the bundle adjustment results. Visually, the orthophoto generated using the refined trajectory 

data, Figure 3.18, is much better than that of the one using the original trajectory data, Figure 3.17. 

This is because the refined trajectory was obtained from the bundle adjustment results where the 

exterior orientation parameters (EOPs) absorbed the impact of the time delay i.e., the pitch of the 

trajectory was modified to absorb the impact of the time delay. Figures 3.19 and 3.20 show the 

orthophotos generated using the direct approach’s calibration results for the July 25th and 

September 14th collection dates, respectively. The indirect approach’s orthophotos are visually 

similar to those of the corresponding direct approach results. Table 3.10 shows the statistics of 

horizontal/planimetric coordinate differences for the five check targets derived from the 

orthophotos. The results while ignoring time delay but refining the trajectory data prior to 

generating the orthophoto show comparable results to those of the direct and indirect approaches, 

which used the original trajectory data, with well-aligned orthophotos and a horizontal accuracy 

approximately 1–5 times the GSD of the original image. However, refining the trajectory data 

involves running the bundle adjustment then adjusting the original trajectory data based on the 

bundle adjustment results for each dataset. The results while ignoring the time delay and using the 

original trajectory data for generating the orthophoto show accuracy as low as 6–7 times that of 

the GSD of the original images. The qualitative and quantitative results from the generated 

orthophotos show that the direct and indirect approach produced accurate results while using the 

original trajectory data.  
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Table 3.9 Derived statistics of horizontal/planimetric coordinate differences for the five checkpoints 

derived from the orthophoto from the DJI M200 thermal platform. 

Ignoring Time Delay—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

July 25th –0.12/–0.07 0.24/0.11 0.25/0.12 

Sept 14th –0.05/–0.12 0.21/0.24 0.23/0.27 

Ignoring Time Delay—Refined Trajectory Data 

July 25th –0.02/–0.10 0.03/0.08 0.03/0.13 

Sept 14th 0.02/0.02 0.04/0.03 0.05/0.03 

 

Direct Approach—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

July 25th –0.04/–0.07 0.09/0.03 0.10/0.07 

Sept 14th –0.09/0.03 0.14/0.03 0.15/0.03 

 

Indirect Approach—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

July 25th –0.04/–0.07 0.08/0.03 0.08/0.08 

Sept 14th –0.06/–0.06 0.14/0.08 0.14/0.09 

 

 

Figure 3.17 Orthophoto result while ignoring the time delay using the original trajectory data for 

FLIR thermal July 25th data collection (red boxes show the location of the checkpoints, 

𝑂𝑟𝑖𝑔𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.03𝑚). 
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Figure 3.18 Orthophoto result while ignoring the time delay using the refined trajectory data for 

FLIR thermal July 25th data collection (red boxes show the location of the checkpoints, 

𝑂𝑟𝑖𝑔𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.03𝑚). 

 

Figure 3.19 Orthophoto result from direct approach for FLIR thermal July 25th data collection 

(red boxes show the location of the checkpoints, 𝑂𝑟𝑖𝑔𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.03𝑚). 

 

Figure 3.20 Orthophoto result from direct approach for FLIR thermal September 14th data 

collection (red boxes show the location of the checkpoints, 𝑂𝑟𝑖𝑔𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.03𝑚). 
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3.4.3.2 DJI M200 integrated with FLIR Duo Pro R – FLIR RGB  

A summary of the FLIR RGB sensor results for both collection dates, while ignoring the time 

delay, and for the direct and indirect approaches is presented in Table 3.11. Table 3.11 shows the 

applicable estimated parameters as well as the square root of the a-posterior variance factor for all 

experiments. Similar to the thermal results, time delay estimated through the two approaches was 

comparable. Moreover, the two collection dates showed relatively consistent time delay, with time 

delays estimated to be in the range of –205 and –188 ms for both approaches. Based on the flying 

speed, the difference in the estimated time delay between –205 and –188 ms equates to 

approximately 4–9 cm on the ground. Given the APX predicted positional accuracy of 2–5 cm, 

and heading and roll/pitch of 0.080 and 0.025°̊, respectively, a difference in results of 4–9 cm on 

the ground would still be considered consistent results. Having a consistent time delay over 

multiple collection dates shows the potential to estimate the time delay in a calibration mission 

and then use that estimate for subsequent missions. However, the time delay estimates from the 

thermal sensor on the FLIR compared to the RBG sensor showed approximately 60–90 ms 

difference. This difference shows that the RGB and thermal sensor triggering were not 

simultaneous, and therefore would need independent calibration adjustments to estimate each 

sensor’s time delay. The square root of the a-posteriori variance factor was approximately 2.5 

pixels for all experiments except the direct approach. The direct approach’s square root of the a-

posteriori variance factor was approximately 4.7 pixels. Again, this difference in the a-posterior 

variance factor was because far fewer tie points were used in the direct approach. The components 

and the mean/standard deviation/RMSE of the differences between checkpoints and surveyed 

coordinates for the five checkpoints while ignoring the time delay, as well as for the direct and 

indirect approaches are presented in Table 3.12. Again, the horizontal component results for the 

direct approach were overall improved compared to both the indirect approach and while ignoring 

the time delay results. The RMSE in the horizontal direction for the direct approach was 

approximately 1–2 times the GSD of the 40 m flying height imagery. The RMSE in the horizontal 

direction for the indirect approach and ignoring the time delay was approximately 1–7 times the 

GSD of the 40 m flying height imagery. The vertical RMSE showed an improvement compared to 

the thermal sensor at approximately 8–11 cm. This improvement can be explained by the fact that 

the FLIR RGB has a larger angular FOV, presented in Table 3.3, which results in a better 

intersection geometry. Lastly, Table 3.13 shows the mean standard deviation of the five 
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checkpoints for the direct approach obtained in the mini bundle adjustment, with the reported 

values for the horizontal components being much less than that of the vertical. Again, the mean 

standard deviations of the checkpoints are only presented for the direct results because the bundle 

adjustments using the SIFT-based tie points do not produce a final dispersion matrix. 

 

Table 3.10 Estimated parameter results for the DJI M200 RGB platform including the standard 

deviation for direct results. 

 

Estimated 

Time Delay 

Δt (ms) 

Estimated 

Lever Arm 

ΔX (m) 

Estimated 

Lever Arm 

ΔY (m) 

Estimated 

Boresight 

Δ𝝎  (˚) 

Estimated 

Boresight  
𝚫𝝋  (˚) 

Estimated 

Boresight  
Δ𝜿  (˚) 

Square Root of 

A-Posteriori 

Variance Factor 

(Pixel) 

�̂�𝒐 

Ignoring Time Delay (bundle adjustment) 

July 25th NA NA NA 178.55 0.26 –90.84 2.46 

Sept 14th NA NA NA 178.61 0.50 –90.67 2.54 

 

Direct Approach (mini bundle adjustment) 

July 25th 
–205 ± 

0.433 

0.068 ± 

0.005 

0.005 ± 

0.005 

178.57 ± 

0.011 

0.072 ± 

0.011 

–90.92 ± 

0.014 
4.78 

Sept 14th 
–203 ± 

0.457 

0.073 ± 

0.005 

0.0083 ± 

0.005 

178.58 ± 

0.012 

0.119 ± 

0.011 

–90.83 ± 

0.015 
4.76 

 

Indirect Approach (bundle adjustment) 

July 25th: 

Operation 

1 

N/A –0.97 
0.025 

(constant) 
178.56 0.23 –90.87 2.46 

July 25th: 

Operation 

2 

–188 0.06 –0.02 178.55 0.23 –90.86 2.45 

Sept 14th: 

Operation 

1 

N/A –1.03 
0.025 

(constant) 
178.59 0.26 –90.68 2.53 

Sept 14th: 

Operation 

2 

–199 0.11 –0.03 178.53 0.22 –90.83 2.51 
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Table 3.11 Components and mean/standard deviation/RMSE of the differences between checkpoint and 

surveyed coordinates for the five checkpoints for the DJI M200 RGB platform. 

𝑾𝒊𝒕𝒉𝒐𝒖𝒕 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓𝒊𝒏𝒈 𝑻𝒊𝒎𝒆 𝑫𝒆𝒍𝒂𝒚 

RGB—July 

𝑾𝒊𝒕𝒉𝒐𝒖𝒕 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓𝒊𝒏𝒈 𝑻𝒊𝒎𝒆 𝑫𝒆𝒍𝒂𝒚 

RGB—September 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 –0.07 –0.05 0.11 0.06 –0.03 0.07 

N2 –0.03 0.01 0.10 0.01 –0.00 0.01 

N3 0.01 0.08 0.08 –0.01 –0.03 –0.00 

N4 0.04 0.13 0.06 –0.02 0.00 0.08 

N5 0.09 0.20 0.01 0.07 0.06 0.14 

Mean 0.01 0.07 0.07 0.02 0.00 0.06 

Standard Deviation 0.06 0.10 0.04 0.04 0.04 0.06 

RMSE 0.06 0.11 0.08 0.04 0.03 0.08 

 

𝑫𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

RGB—July 

𝑫𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

RGB—September 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 0.00 0.04 0.07 –0.00 -0.02 0.10 

N2 –0.01 0.03 0.10 –0.01 –0.01 0.11 

N3 0.00 0.03 0.12 –0.00 –0.00 0.13 

N4 –0.01 0.02 0.12 –0.02 –0.00 0.04 

N5 –0.00 0.01 0.09 –0.02 0.00 0.05 

Mean  0.00 0.02 0.10 –0.01 –0.01 0.09 

Standard Deviation 0.01 0.01 0.02 0.01 0.01 0.04 

RMSE 0.01 0.03 0.10 0.01 0.01 0.09 
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Table 3.11 continued 

𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

RGB—July 

𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 

RGB—September 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 0.06 0.00 –0.05 –0.05 –0.03 0.05 

N2 0.04 0.04 –0.07 –0.05 –0.00 0.01 

N3 0.03 0.09 –0.10 –0.03 –0.03 0.08 

N4 0.00 0.13 –0.11 –0.04 –0.01 0.14 

N5 –0.01 0.17 –0.15 –0.01 0.03 0.18 

Mean  0.02 0.04 –0.04 –0.04 –0.01 0.09 

Standard Deviation 0.04 0.05 0.03 0.02 0.02 0.07 

RMSE 0.04 0.07 0.05 0.04 0.02 0.11 

Table 3.12 Mean standard deviation of five checkpoints from 

direct approach for the DJI M200 RGB platform from mini bundle 

adjustment. 

Direct Approach 

 X(m) Y(m) Z(m) 

July 25th 0.004 0.004 0.015 

Sept 14th 0.004 0.004 0.016 

 

Again, once the calibration was completed the results were then used to generate 1 cm 

orthophotos while ignoring the time delay, both using the original and adjusted trajectory data, and 

for the direct and indirect, using the original trajectory data, and using the 40 m flying height data 

for all collection dates. Figure 3.21 and Figure 3.22 show the generated orthophotos for the results 

while ignoring the time delay. The direct results of the FLIR RGB sensor for both collection dates 

are shown in Figure 3.23 and Figure 3.24. The indirect orthophotos show similar visual results. 

The results while ignoring the time delay and using the refined trajectory data, as well as the results 

for the direct and indirect approaches, using the original trajectory data, show well-aligned 

orthophotos. Using the generated orthophotos, the five check targets were measured and the 
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statistics of the horizontal coordinate differences are shown in Table 3.14. These results showed 

horizontal accuracy ranging from 1–7 times the GSD of the original image. Table 3.14 shows the 

direct approach having slightly better results for the evaluation of orthophoto derived points 

compared to the control data than that of the indirect approach, and ignoring the time delay using 

the adjusted trajectory data. The results ignoring the time delay and using the original trajectory 

data were extremely poor and only two of the five checkpoints were visible for measurement.  

Table 3.13 Derived statistics of horizontal/planimetric coordinate differences for the five check 

targets derived from the orthophoto for DJI M200 RGB platform. 

Ignoring Time Delay—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

July 25th –1.11/0.06 0.02/0.06 1.12/0.07 

Sept 14th –0.38/–0.05 0.77/0.03 0.78/0.06 

Ignoring Time Delay—Refined Trajectory Data 

July 25th –0.01/–0.10 0.07/0.09 0.08/0.13 

Sept 14th –0.01/–0.01 0.05/0.04 0.05/0.04 

 

Direct Approach—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

July 25th –0.04/–0.07 0.06/0.02 0.06/0.07 

Sept 14th 0.01/0.01 0.01/0.03 0.01/0.03 

 

Indirect Approach—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

July 25th –0.03/0.07 0.04/0.03 0.05/0.08 

Sept 14th –0.01/0.01 0.03/0.03 0.03/0.03 
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Figure 3.21 Orthophoto result ignoring the time delay using the original trajectory data for FLIR 

RGB July 25th data collection (red boxes show the location of the checkpoints—only two visible, 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.01𝑚). 

 

Figure 3.22 Orthophoto result ignoring the time delay using the refined trajectory data for FLIR 

RGB July 25th data collection (red boxes show the location of the checkpoints, 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.01𝑚). 

 

Figure 3.23 Orthophoto result from direct approach for FLIR RGB July 25th data collection (red 

boxes show the location of the checkpoints, 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.01𝑚). 
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Figure 3.24 Orthophoto result from direct approach for FLIR RGB Sept. 14th  data collection (red 

boxes show the location of the checkpoints, 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝐺𝑆𝐷 ≈ 0.01𝑚). 

3.4.3.3 DJI M600 integrated with Sony Alpha 7R (ILCE-7R) 

The results while ignoring the time delay as well as the direct and indirect estimated parameter 

results for the DJI M600 platform are presented in Table 3.15. It should be noted that this Sony 

camera was modified prior to collection to incorporate the hardware direct feedback approach [32]. 

This hardware modification drastically reduced the time delay in the system. As we can see in 

Table 3.15, the estimated time delay for the Sony camera was in the range of –1.25 and –0.5 ms 

for the direct and indirect approaches, respectively. The components, mean, standard deviation, 

and RMSE of the differences between the checkpoints and surveyed coordinates of the five 

checkpoints from the bundle adjustment are illustrated in Table 3.16. All results were comparable. 

This was expected, since the time delay found for this platform was minimal. However, the Δω 

estimated boresight angle for the direct approach was slightly different than that of the other 

results. This is because the direct approach did not refine the GNSS/INS data in the adjustment 

whereas the other bundle adjustments did. Additionally, the a-posterior variance factor was higher 

for the direct approach. This is because the direct approach only used the checkpoints as tie points 

in the mini bundle adjustment, compared to the bundle adjustments that used both checkpoints and 

SIFT-based tie points. The checkpoints had an approximate RMSE of 1–4 and 9 times the GSD 

for the 40 m flying height, in the horizontal and vertical direction, respectively. Table 3.17 shows 

the mean standard deviation of the checkpoints from the direct approach mini bundle adjustment. 

The mean standard deviation for the 𝑋, 𝑌, and 𝑍 components were very low. The direct approach 

generated orthophoto from DJI M600 dataset is illustrated in Figure 3.25, while statistical 
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evaluations of checkpoint targets are presented in Table 3.18. All other orthophotos generated were 

visually similar to that of the direct approach, and therefore are not presented. The orthophoto 

derived coordinates of the check targets showed horizontal RMSE of approximately 2–5 times the 

GSD in both 𝑋 and 𝑌 directions for the 40 m flying height.  

Table 3.14 Estimated parameter results for the DJI M600 platform, including the standard 

deviations for the direct results. 

 

Estimated 

Time 

Delay Δt 

(ms) 

Estimated 

Lever 

Arm ΔX 

(m) 

Estimated 

Lever 

Arm ΔY 

(m) 

Estimated 

Boresight 

Δ𝝎  (˚) 

Estimated 

Boresight  
𝚫𝝋  (˚) 

Estimated 

Boresight  
Δ𝜿  (˚) 

Square Root 

of A-

Posteriori 

Variance 

Factor 

(Pixel) 

�̂�𝒐 

Ignoring Time Delay (bundle adjustment) 

May 06th  NA NA NA 178.29 –0.09 –91.12 1.56 

 

Direct Approach (mini bundle adjustment) 

May 06th  
–1.25 ± 

0.48 

0.267 ± 

0.004 

0.019 ± 

0.004 

179.32 ± 

0.011 

–0.097 ± 

0.010 

–91.08 ± 

0.013 
5.61  

 

Indirect Approach (bundle adjustment) 

May 06th: 

Operation 

1 

N/A 0.268 
0.026 

(constant) 
179.29 –0.09 –91.12 1.56 

May 06th: 

Operation 

2 

–0.5 0.27 0.002 179.29 –0.09 –91.12 1.56 
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Table 3.15 Components and mean/standard deviation/RMSE of the differences between checkpoint and 

surveyed coordinates for the five checkpoints for the DJI M600 platform—Sony RGB. 

Ignoring Time Delay  Direct Approach   Indirect Approach 

 𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

 

𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

 

𝑿𝒅𝒊𝒇 (𝒎)  𝒀𝒅𝒊𝒇(𝒎) 𝒁𝒅𝒊𝒇 (𝒎) 

N1 –0.04 0.02 –0.00 –0.01 0.02 –0.03 –0.04 0.02 –0.00 

N2 –0.03 0.00 –0.05 –0.01 0.01 –0.03 –0.03 0.01 –0.05 

N3 –0.03 0.02 –0.06 –0.02 0.02 –0.02 –0.03 0.02 –0.06 

N4 –0.01 0.02 –0.07 –0.01 0.01 –0.03 –0.01 0.02 –0.07 

N5 0.02 0.01 –0.01 –0.01 –0.00 –0.00 0.02 0.01 –0.01 

Mean  –0.02 0.02 –0.04 –0.01 0.01 –0.02 –0.02 0.02 –0.04 

Standard 

Deviation 
0.02 0.01 0.03 0.00 0.01 0.01 0.02 0.01 0.03 

RMSE 0.03 0.02 0.05 0.01 0.01 0.03 0.03 0.02 0.05 

 

 

Table 3.16 Mean standard deviation of five checkpoints from direct 

approach for the DJI M600 platform from bundle adjustment. 

Direct Approach 

 X(m) Y(m) Z(m) 

May 06th  0.003 0.003 0.013 
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Table 3.17 Derived statistics of horizontal/planimetric coordinates for five check targets derived from 

orthophoto—DJI M600 platform. 

Ignoring Time Delay—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

May 06th  0.03/–0.02 0.02/0.02 0.04/0.03 

Ignoring Time Delay—Adjusted Trajectory Data 

May 06th 0.02/–0.02 0.02/0.01 0.03/0.02 

Direct Approach—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

May 06th  0.03/–0.02 0.01/0.02 0.03/0.03 

 

Indirect Approach—Original Trajectory Data 

 Mean—X/Y (m) Standard Deviation—X/Y (m)  RMSE—X/Y (m) 

May 06th  0.03/–0.02 0.02/0.02 0.03/0.03 

 

 

Figure 3.25 Orthophoto result from direct approach for Sony—May 06th data collection (red 

boxes show the location of the checkpoints, 𝐺𝑆𝐷 ≈ 0.0056𝑚). 

3.5 Conclusions and Recommendations for Future Work 

UAV-based GNSS/INS-assisted imaging systems need proper system calibration for accurate 

3-D spatial reconstruction. With consumer-grade systems, a time delay between the GNSS/INS 

event markers and the actual exposure time may exist. This time delay needs to be modeled and 

estimated for accurate geospatial products.  In this study, two approaches – direct and indirect – 
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for estimating this time delay were introduced. Optimal flight configuration for system calibration 

while considering time delay was also derived through bias impact analysis. A modified 

mathematical model was derived for the direct approach so that the time delay can be directly 

estimated in a one-step bundle adjustment process. Whereas the indirect approach leveraged the 

traditional mathematical model and bundle adjustment procedure to estimate the time delay 

indirectly using the nominal lever arm, speed/time/distance relationship, and bias impact analysis 

findings. Experimental results were presented for two UAV systems with different imaging sensors 

and multiple collection dates.  

 In summary, both the direct and indirect approaches accurately estimate the time delay 

between the GNSS/INS event marker time and the actual image mid-exposure time. The results 

show that these approaches are capable of producing reliable estimates of the time delay across 

multiple platforms and with a variety of sensors. The results show that the direct approach is 

capable of producing accuracy at approximately the same level as the GSD of the system. This 

accuracy is achieved using direct geo-referencing, without the use of ground control data and while 

using the original trajectory data. In addition, the results showed consistency across the dates 

which allows one to estimate time delay in an initial system calibration then use that estimate for 

subsequent missions and applications. The results show that attempting a calibration while 

ignoring the time delay and using the original trajectory data, for a system with time delay, 

produces poor orthophoto results both visually and absolute accuracy evaluation. Ignoring the time 

delay but adjusting the trajectory did improve results over ignoring the time delay and using the 

original trajectory.  However, adjusting the trajectory information is time consuming and require 

an additional bundle adjustment for each dataset. The direct and indirect approaches not only 

estimate the time delay but are capable of using the original trajectory data for generating 

orthophotos. The results also show that the direct and indirect approaches increase the horizontal 

accuracy compared with the bundle adjustment while ignoring the time delay. Overall, the direct 

approach is recommended over the indirect because it directly estimates the time delay by 

modifying the bundle adjustment mathematical model, is capable of incorporating the optimal 

configuration, and improves absolute accuracy. It also is capable of incorporating multiple flying 

heights and linear/angular velocity which allows users to implement the optimal configuration and 

therefore estimate and decouple system parameters with the highest accuracy. However, both 
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direct and indirect approaches covered in this study can be implemented in system calibration to 

account for a time delay and used without the need for ground control. 

 In previous works, there have been both software and hardware solutions for estimating 

and correcting for time delay in an imaging system. Previous software solutions included either a 

1-step procedure that required modification to bundle adjustment code or a 2-step procedure that 

did not require code modification but required two different independent adjustments. All previous 

software solution studies discussed in this article require ground control points for estimation of 

the time delay. Furthermore, none of the previous studies presented in this article provide a 

rigorous derivation of optimal flight configurations. Below is a list of the contributions this study 

presents: 

• Two approaches, direct and indirect, were shown to accurately estimate time delay to 

accommodate users with and without capability of modifying bundle adjustment software 

code.  

• The indirect approach does not require modification to the bundle adjustment code and it 

also only needs a single bundle adjustment process.   

• Rigorously derived optimal flight configurations were presented. 

• The two approaches were shown to be reliable across a variety of platforms and sensors. 

• The direct approach is capable of producing accuracy at approximately the same level as 

the GSD of the system.  

• The accuracy achieved were without the use of ground control points. 

• The direct and indirect approaches are capable of using the original trajectory data for 

generating accurate orthophotos. 

• Both approaches were shown to handle sensors with relatively large time delay 

appropriately, therefore no prior hardware modification is necessary. 

 

 Future work will focus on incorporating the direct approach into a comprehensive bundle 

adjustment where one could also use SIFT tie points. Automated extraction of targets will also be 
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an avenue of future work. Also, an investigation of the internal GNSS/IMU of the FLIR-

thermal/RGB sensor will be included to determine whether it also has a time delay. Lastly, using 

quaternions instead of rotation matrices within the bundle adjustment would allow for better 

interpolation of platform orientation while considering time delay and will also be investigated. 
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 SYSTEM CALIBRATION INCLUDING TIME DELAY ESTIMATION 

FOR GNSS/INS-ASSISTED LINE CAMERAS ONBOARD UAV 

PLATFORMS 

This research article is in the final stages of formatting and is planned for submission to 

the Photogrammetric Engineering & Remote Sensing (PE&RS) journal. 

 

 

Abstract: Unmanned aerial vehicles (UAVs) equipped with imaging systems and integrated 

global navigation satellite system/inertial navigation system (GNSS/INS) are used for a variety of 

applications. Disaster relief, infrastructure monitoring, precision agriculture, and ecological 

forestry growth monitoring are among some of the applications that utilize UAV imaging systems. 

For most applications, accurate 3D spatial information from the UAV imaging system is required. 

Deriving reliable 3D coordinates is conditioned on accurate geometric calibration. Geometric 

calibration entails both spatial and temporal calibration. Spatial calibration consists of obtaining 

accurate internal characteristics of the imaging sensor as well as estimating the mounting 

parameters between the imaging and the GNSS/INS units. Temporal calibration ensures that there 

is little to no time delay between the image timestamps and corresponding GNSS/INS position and 

orientation timestamps. Spatial calibration has been successfully accomplished on a variety of 

platforms and sensors including UAVs equipped with frame and push-broom line cameras. 

However, temporal calibration has only been demonstrated with frame camera systems. This paper 

performs spatial and temporal system calibration for a UAV with a GNSS/INS-assisted 

hyperspectral push-broom line camera. Two approaches, direct and indirect, are applied to 

hyperspectral line cameras for system calibration while considering time delay. The direct results 

show that when a time delay exists and spatial and temporal calibration is performed, vertical and 

horizontal accuracy are approximately that of the ground sample distance (GSD) of the sensor. 

Also, even when there is a small time delay in the system but an unfavorable tie point distribution, 

the direct approach shows a huge improvement in vertical accuracy compared to ignoring the time 

delay.  Furthermore, when a large artificial time delay is introduced, the direct approach still 

achieves accuracy less than the GSD of the system and performs 2.5-8 times better in the horizontal 

components and up to 18 times better in the vertical component than not performing the temporal 

calibration. This paper also shows that the indirect approach is not a feasible solution for push-
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broom line cameras onboard UAVs due to the limited ability of line cameras to decouple system 

parameters. This finding provides further support that the direct approach is recommended for 

temporal calibration on UAV line camera systems. The results in this paper were obtained with 

UAV line camera imaging systems, however, these findings are general enough to extend to other 

line camera systems such as satellite push broom and airborne systems.  

4.1 Introduction and Related Work 

Remote sensing is a highly effective technique for gathering information without needing to 

make physical contact with the object being mapped and is used for a variety of applications. One 

major application is in agriculture. Specifically, remote sensing is used for biomass prediction and 

defining plant locations from UAV-based remote platforms [18, 20, 45]. The ability to predict 

biomass and define plant locations via a UAV-based imaging system can save substantial time and 

money. Because of its wide range of spectral bands, hyperspectral imagery is often used for soil 

content estimation and mineralogy [46-47].  Many times, multiple sensors are combined on one 

platform to improve the synergy between the collected data. Others have used LiDAR and 

hyperspectral sensors for modelling vascular plant species richness and mapping coastal 

environments [48-49]. For all remote sensing applications, geometric system calibration is vital 

for determining accurate positioning. Geometric calibration includes spatial and temporal 

calibration. Spatial calibration accurately estimates both internal characteristics and mounting 

parameters of the system. Previous work has been completed on spatial calibration for frame and 

hyperspectral line camera systems [9, 50]. In addition to the spatial calibration, one important 

aspect of geometric calibration for remote sensing systems is the temporal calibration, which is 

the focus of this study. Image exposure epochs have to be precisely time stamped with the 

corresponding GNSS time. Temporal calibration eliminates time delay between the timestamps of 

the image exposure epoch and the corresponding GNSS/INS position and orientation epoch. There 

have been a few groups that have focused on temporal calibration. Elbahnasawy and Habib [11] 

focused on two hardware solutions to perform temporal calibration. The authors introduced a 

simulated feedback approach where a signal is sent to both the GNSS/INS system and the imaging 

sensor simultaneously. However, this approach does not account for the camera response delay in 

which a time delay exists between the camera receiving the signal and the camera capturing the 

image. The authors second approach, the direct feedback, utilized the camera flash hotshoe to 



 

 

87 

generate a signal at the time the image is captured. This camera feedback signal is then sent to the 

on-board GNSS/INS and a corresponding event time is recorded thus accounting for the camera 

response delay between receiving the triggering signal and the actual imaging exposure. While 

some researchers focus on hardware solutions for temporal calibration, others emphasize software 

modifications. Gabrlik et al. [13] and Chiang et al. [12] both use a two-step approach for estimating 

and removing time delay in their systems. First, exterior orientation parameters (EOPs) are 

estimated using indirect geo-referencing with the help of ground control points (GCPs). Next, the 

difference in estimated EOPs and GNSS/INS trajectory at the time of exposure is computed where 

they then solve for the lever arm components, boresight angles, and time delay. Lastly, the 

calibration parameters can be used in direct geo-referencing. Both Gabrlik et al. [13] and Chiang 

et al. [12] depend on GCPs and a two-step approach to estimate time delay in their systems. 

Blazaquez, M. [15] presents a one-step approach for temporal calibration. This approach focuses 

on adjusting the sensor model to include time delay as a system parameter. Blazaquez, M. [15] 

uses the GNSS/INS-based linear and angular velocities to consider the impact of time delay on the 

position and orientation. This approach also depends on the availability of GCPs for accurate time 

delay estimation. Rehak and Skaloud [10] have also addressed temporal calibration. First, they 

used the direct feedback hardware approach to reduce time delay in their system to a minimum. 

Then, they tested two separate methods for temporal calibration. First, they conducted a two-step 

approach which analyzed the residuals between the observed camera position and orientation and 

those estimated through indirect geo-referencing. Their second method consisted of a one-step 

approach that modified the mathematical model to include the GNSS/INS position, rotation, and 

linear and angular velocity as observations. Optimal flight configurations were presented which 

included the use of GCPs. Furthermore, the study suggested that the lever arm components be 

estimated in a laboratory setting instead of during an in-situ system calibration. LaForest et al. [50] 

presented two separate one-step approaches. The first, the direct approach, modified the existing 

mathematical model to include time delay as a system parameter, which can then be estimated. An 

optimal flight configuration was rigorously derived to suggest the most ideal collection for 

simultaneously estimating system parameters. The second approach, the indirect, exploited the 

optimal flight configuration and corresponding system parameter correlations to estimate the time 

delay indirectly from the flying speed and estimated lever arm component in the flying direction. 
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Both approaches successfully estimated time delay and mounting system parameters without the 

use of control points.   

In this paper, the direct and indirect approaches are used for geometric system calibration 

including time delay estimation. Compared to all other previous work that only focused on frame 

camera systems, this paper introduces and performs spatial and temporal calibration for line 

camera systems. First, the modified mathematical model for line camera systems is presented in 

the methodology section. Then the direct approach is introduced for line camera systems. The 

optimal flight configuration is derived for line camera systems and compared to that for frame 

camera systems. Using the optimal flight configuration conclusions, a discussion of the indirect 

approach’s ability to estimate time delay for line camera systems is also presented.  Next, a 

description of the imaging platforms and data collection is presented. The results and analysis are 

then presented for each system and experiment. The paper concludes with a summary and future 

work section.  

4.2 Methodology 

This section begins with a review and discussion of the collinearity equations and bundle 

block adjustment for both frame and line camera systems. Next, the direct approach and the 

modified mathematical model will be covered specifically for line camera systems. A detailed 

discussion of optimal configurations for both frame and line cameras will follow along with a 

comparison of the two. Finally, details of the indirect approach method for line camera systems 

conclude this section.   

4.2.1 Collinearity Equations for Frame and Line Camera Systems 

For remote sensing imaging platforms, photogrammetric models are used to derive 3D 

coordinates from the system’s 2D imagery. The collinearity constraint equations are a well-known 

mathematical model that represents the relationship between the 2D image coordinates and the 3D 

ground coordinates. To express these equations, it should first be stated that the following notations 

are used throughout this paper: a vector connecting point ‘b’ to point ‘a’ relative to a coordinate 

system associated with point ‘b’ is represented as 𝑟𝑎
𝑏  and a rotation matrix transforming from 

coordinate system ‘a’ to coordinate system ‘b’ is represented as 𝑅𝑎
𝑏. The collinearity equations 
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expressing the relationship between 3D ground coordinates and the 2D image coordinates are 

shown in Equation (4.1).  

𝑟𝐼
𝑚 = 𝑟𝑏(𝑡)

𝑚 + 𝑅𝑏(𝑡)
𝑚 𝑟𝑐

𝑏  +  𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡)
𝑚 𝑅𝑐

𝑏 𝑟𝑖
𝑐(𝑡)

 (4.1) 

Where: 

𝑟𝐼
𝑚: ground coordinates of the object point 𝐼 

𝑟𝑖
𝑐(𝑡)

: vector connecting perspective center to the image point i captured by the camera at the actual 

time t 

𝑡: actual time of exposure 

𝑟𝑏(𝑡)
𝑚 : position of IMU body frame relative to the mapping reference frame at time 𝑡 derived from 

the GNSS/INS integration process 

𝑅𝑏(𝑡)
𝑚 : rotation matrix from the IMU body frame to the mapping reference frame at the actual time 𝑡 

derived from GNSS/INS integration process 

𝑟𝑐
𝑏: lever arm from IMU body frame to camera frame  

𝑅𝑐
𝑏 : rotation (boresight) matrix from camera to IMU body frame 

𝜆(𝑖, 𝑐, 𝑡): scale factor for point 𝑖 captured by camera 𝑐 at the actual time t 

Equation (4.1) is a generic form of the collinearity equations and can be used for frame and 

push-broom line camera imaging systems. An illustration of the collinearity equations is shown in 

Figure (4.1), with frame camera in Figure (4.1a) and line camera in Figure (4.1b). The main 

difference between frame camera and line camera is that the frame camera’s scene is captured in 

one instance by a single image whereas the line camera’s scene is built by multiple images captured 

sequentially. A scene is considered a 2D coverage area of the ground. Given this geometry, frame 

camera’s image coordinates, 𝑟𝑖
𝑐(𝑡)

, will consist of both 𝑥 and 𝑦 values that are variable depending 

on image point location which is bounded by the sensor’s angular field of view (AFOV). However, 

line camera’s 𝑥  image coordinates will have variable values but 𝑦  will always be constant 

depending on the camera alignment on the sensor’s focal plane. 
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(a) 

 

(b) 

Figure 4.1 Illustration of collinearity equations for (a) frame camera and (b) push-broom line 

camera. 

 

4.2.2 Direct Approach for Time Delay Estimation in Line Camera Systems 

The direct approach was first presented by LaForest et al. [50] where the mathematical 

model was modified to incorporate time delay as a system parameter for frame camera systems. 

This section introduces the modified mathematical model for line camera systems.  Examining 

Equation (4.1), there are three terms that are affected by time delay – position 𝑟𝑏(𝑡)
𝑚  of the platform, 

orientation 𝑅𝑏(𝑡)
𝑚  of the platform, and scale, 𝜆(𝑖, 𝑐, 𝑡) . However, the scale factor is routinely 

eliminated by dividing the first and second equations by the third, therefore leaving only the 

position and orientation as the components directly affected by the time delay.   The goal is to 

modify the mathematical model in Equation (4.1) to account for the potential time delay affecting 
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the position and orientation components. First, definitions of the different times involved are 

provided. Throughout this manuscript, we will refer to the term “event marker”, which is used to 

indicate the time of exposure based on feedback signals received by the GNSS/INS unit from the 

camera. The initial GNSS/INS event marker time is denoted by 𝑡0
 . The time delay is denoted by 𝛥𝑡. 

Lastly, combining those terms, the actual sensor exposure time is 𝑡 = 𝑡0
 + 𝛥𝑡. Using those time 

definitions, the position that accounts for time delay, 𝑟𝑏(𝑡 )
𝑚 , can be expressed by the position at the 

initial event marker, 𝑟𝑏(𝑡0)
𝑚  and adding the displacement cause by the time delay, 𝛥𝑡 �̇� 𝑏(𝑡0)

𝑚 , where 

�̇� 𝑏(𝑡0)
𝑚  is the instantaneous linear velocity and comprised of three components 

�̇� 𝑏(t0)
𝑚 (x),  �̇� 𝑏(t0)

𝑚 (y), and �̇� 𝑏(t0)
𝑚 (z) in the x, y, and z directions, respectively. The instantaneous 

linear velocity is expressed in Equation (4.2), where dt is a user specified time interval based on 

the specifications of the GNSS and INS date rates. The final form of the position equation that 

accounts for time delay is expressed in Equation (4.3).   

�̇� 𝑏(t0)
𝑚 = 

1

𝑑𝑡
[𝑟𝑏(𝑡0+𝑑𝑡)

𝑚 − 𝑟𝑏(𝑡0 )
𝑚 ] (4.2) 

𝑟𝑏(𝑡)
𝑚 = 𝑟𝑏(𝑡0)

𝑚 +  𝛥𝑡 �̇� 𝑏(𝑡0)
𝑚  (4.3) 

  The second term affected by a time delay in the system is the orientation of the IMU body 

frame, 𝑅𝑏(𝑡)
𝑚 .  The changes in the attitude (i.e., angular velocity) of the IMU body frame at different 

times is needed for establishing an expression for the correct IMU body frame orientation in the 

presence of time delay. The user defined time orientation change within the dt time interval is 

denoted by    𝑅𝑏(𝑡0+𝑑𝑡)
𝑏(𝑡0)

 and is used to compute the angular velocity. The angular velocity is derived 

by using the rotation at the initial GNSS/INS event time and the incremental orientation change, 

and is shown in Equation (4.4) where 𝑑ω𝑏(𝑡0), 𝑑𝜑𝑏(𝑡0), and 𝑑κ𝑏(𝑡0) are the changes in the attitude 

angles over the user-defined time interval. From there, the changes in the orientation are expressed 

with an incremental rotation matrix since the angular changes caused by time delay are relatively 

small, and are expressed in Equation (4.5) where ω̇ 𝑏(𝑡0)
 , φ̇ 𝑏(𝑡0)

 , and κ̇ 𝑏(𝑡0)
  are the 

instantaneous angular velocities at 𝑡0. Lastly, using the IMU body frame at the initial event marker 

along with the attitude changes caused by the time delay, the IMU body orientation at the actual 

exposure time is derived in Equation (4.6).  
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 𝑅𝑏(𝑡0+𝑑𝑡)
𝑏(𝑡0)

= 𝑅𝑚
𝑏(𝑡0)

 𝑅𝑏(𝑡0+𝑑𝑡)
𝑚 = 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑑ω𝑏(𝑡0), 𝑑𝜑𝑏(𝑡0), 𝑑κ𝑏(𝑡0)) (4.4) 

 

 𝑅𝑏(𝑡0+𝛥𝑡)
𝑏(𝑡0)

= 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(ω̇ 𝑏(𝑡0)
 𝛥𝑡, φ̇ 𝑏(𝑡0)

 𝛥𝑡, κ̇ 𝑏(𝑡0)
 𝛥𝑡)  

≅               [

1 −κ̇ 𝑏(𝑡0)
 𝛥𝑡 φ̇ 𝑏(𝑡0)

 𝛥𝑡

κ̇ 𝑏(𝑡0)
 𝛥𝑡 1 −ω̇ 𝑏(𝑡0)

 𝛥𝑡

−φ̇ 𝑏(𝑡0)
 𝛥𝑡 ω̇ 𝑏(𝑡0)

 𝛥𝑡 1

 ]  

 (4.5) 

𝑅𝑏(𝑡)
𝑚 =   𝑅𝑏(𝑡0)

𝑚  𝑅𝑏(𝑡0 +𝛥𝑡)
𝑏(𝑡0)

 (4.6) 

 The collinearity equations expressed in Equation (4.1) can now be modified to include the 

time delay as a system parameter and are expressed in Equation (4.7). The image coordinate 

measurements are now a function of the trajectory information, IOPs, lever arm components, 

boresight angles, ground coordinates, and time delay and can all be estimated during a bundle 

block adjustment procedure. A bundle block adjustment procedure enforces intersection of the 

light rays connecting the perspective centers of the images encompassing corresponding image 

points of the tie feature and the respective conjugate image points. The target function is to ensure 

the best intersection of conjugate light rays from images along the same or different flight lines. 

In this study, the unknowns consist of the lever arm in the 𝑋 and 𝑌 components, boresight angles, 

time delay, and 𝑋𝑌𝑍 ground coordinates of tie and checkpoints where checkpoints are used to 

assess the quality. The lever arm in the 𝑍 component will not cause discrepancies in the light ray 

intersections (i.e., will not affect the precision of the reconstruction process) and therefore cannot 

be estimated [51]. The linear and angular velocities as well as the position and orientation are 

considered as prior information available from the GNSS/INS system. The image coordinates are 

the observations which are manually-measured. For each observation or image point measurement, 

the collinearity equations will produce two equations. In general, for an object point that is visible 

in n-images, there will be 2n collinearity equations after eliminating the scale factors.  

𝑟𝑖
𝑐  =

1

𝜆(𝑖, 𝑐, 𝑡)
𝑅𝑏

𝑐  [𝑅𝑏(𝑡0)
𝑏(𝑡0+𝛥𝑡)

 𝑅𝑚
𝑏(𝑡0)

(𝑟𝐼
𝑚 −  𝑟𝑏(𝑡0)

𝑚 − �̇� 𝑏(𝑡0)
𝑚 𝛥𝑡) −  𝑟𝑐

𝑏] (4.7) 
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4.2.3 Optimal Flight Configuration for Line Camera System Calibration while 

Considering Time Delay 

In order to determine the calibration parameters, an optimal flight configuration that 

maximizes the impacts of deviations from the true values for the system parameters, denoted as 

systematic error or biases, must be derived. Determining the optimal flight configuration allows 

for the systematic errors to be more easily detected and removed, resulting in a more accurate 

estimation of system parameters. To obtain the best flight configuration, a bias impact analysis of 

system parameters is analyzed. A systematic shift in ground coordinates will be produced by 

changes in the system parameters. The bias impact is derived by examining the partial derivatives 

of the collinearity equations with respect to each system parameter. A few assumptions are made 

for deriving the partial derivations. These assumptions are to simplify the derivations and 

deviations from these assumptions would have a more favorable effect on the ability to decouple 

the impact of various system parameters. The assumptions are: i) the sensor and IMU body frame 

coordinate systems are almost parallel – i.e., small boresight angles; ii) the sensor and IMU body 

frame coordinate systems are vertical; iii) the sensor is travelling with a constant attitude in the 

south-to-north and north-to-south directions; iv) the terrain is flat horizontal; and v) the lever arm 

components are relatively small.   

To begin deriving the partial derivatives, the modified collinearity equations expressed in 

Equation (4.7) are rewritten and shown in Equation (4.8) so that the ground coordinates are a 

function of system parameters and image measurements. From Equation (4.8), the three terms 

comprised of system parameters needed for partial derivatives for bias impact analysis are 

�̇� 𝑏(t0)
𝑚 𝛥𝑡, 𝑅𝑏(𝑡)

𝑚 𝑟𝑐
𝑏, and 𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡)

𝑚 𝑅𝑐
𝑏 𝑟𝑖

𝑐 . The partial derivatives are then derived following the 

assumptions made above and are expressed in Table 4.1 for both frame and line camera systems. 

The main difference between frame cameras and line cameras is that for line cameras the 𝑦 image 

measurements, 𝑦𝑖
 , equal 0, where the camera is vertically below the perspective center. This affects 

several system parameter’s impact on ground coordinates which in turn affects decoupling the 

terms. 

 

                   𝑟𝐼
𝑚 = 𝑟𝑏(𝑡0)

𝑚 + �̇� 𝑏(t0)
𝑚 𝛥𝑡 + 𝑅𝑏(𝑡0)

𝑚 𝑅𝑏(𝑡0+𝛥𝑡)
𝑏(𝑡0)

𝑟𝑐
𝑏  +  𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡0)

𝑚 𝑅𝑏(𝑡0+𝛥𝑡)
𝑏(𝑡0)

𝑅𝑐
𝑏 𝑟𝑖

𝑐         (4.8) 



 

 

 

9
4
 

 

 

Table 4.1 Impact of bias in system parameters on 3D point coordinates for frame and line camera systems 

Bias in 

System 

Parameters 

Impact on Ground Coordinates 

𝜹𝑿 𝜹𝒀 𝜹𝒁 

Frame Line Camera Frame Line Camera Frame 
Line 

Camera 

𝜹𝜟𝑿 ±𝛿𝛥𝑋 0 0 

𝜹𝜟𝒀 0 ±𝛿𝛥𝑌 0 

𝜹𝜟𝒁 0 0 𝛿𝛥𝑍 

𝜹𝜟𝝎 

±
𝑥𝑖

 𝑦𝑖
 

𝑐2
𝐻𝛿𝛥𝜔 0 ±(1 +

𝑦𝑖
 2

𝑐2
)H𝛿𝛥𝜔 ±H𝛿𝛥𝜔 0 

𝜹𝜟𝝋 
∓𝐻 (1 +

𝑥𝑖
 2

𝑐2
)𝛿𝛥𝜑 ∓

𝑥𝑖
 𝑦𝑖

 

𝑐2
 𝐻𝛿𝛥𝜑 0 0 

𝜹𝜟𝜿 
∓

𝑦𝑖
 

𝑐
𝐻𝛿𝛥𝜅 0 ±

𝑥𝑖
 

𝑐
𝐻𝛿𝛥𝜅 0 

𝜹𝜟𝒕 

 �̇� 𝑏(t0)
𝑚 (x)𝛿𝛥𝑡

+  𝜆(𝑖, 𝑐, 𝑡)[±
𝐻

𝑐
�̇� 𝑏(𝑡0)

 𝑥𝑖
 𝑦𝑖

 ∓ 𝑐(1

+
𝑥𝑖

 2

𝑐2
)φ̇ 𝑏(𝑡0)

 ∓ 𝑦𝑖
 κ̇ 𝑏(𝑡0)

 ]𝛿𝛥𝑡 

 

�̇� 𝑏(𝑡0)
𝑚 (x)𝛿𝛥𝑡 

∓𝜆(𝑖, 𝑐, 𝑡)𝑐(1

+
𝑥𝑖

 2

𝑐2
)φ̇ 𝑏(𝑡0)

 )𝛿𝛥𝑡 

�̇� 𝑏(t0)
𝑚 (y)𝛿𝛥𝑡

+ 𝜆(𝑖, 𝑐, 𝑡)[±𝑐(1

+
y𝑖

 2

𝑐2
)�̇� 𝑏(𝑡0)

 

∓
1

𝑐
φ̇ 𝑏(𝑡0)

 𝑥𝑖
 𝑦𝑖

 

± 𝑥𝑖
 κ̇ 𝑏(𝑡0)

 ]𝛿𝛥𝑡 

�̇� 𝑏(𝑡0)
𝑚 (y)𝛿𝛥𝑡 

±𝜆(𝑖, 𝑐, 𝑡)[c�̇� 𝑏(𝑡0)
 

± 𝑥𝑖
 κ̇ 𝑏(𝑡0)

 ]𝛿𝛥𝑡 

 

�̇� 𝑏(𝑡0)
𝑚 (z)𝛿𝛥𝑡 
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The partial derivatives are now used to assess the impact of each system parameter. The 

focus will be on the system parameters that have the possibility of being highly correlated or more 

difficult to decouple. Analyzing rows 1 and 5 of Table 4.1, for frame cameras, the lever arm 𝛥𝑋 

affects the 𝑋 direction only and the boresight roll 𝛥𝜑, affects both the 𝑋 and 𝑌 directions. Because 

of these effects on both the X and Y directions, the 𝛿𝛥𝑋 and 𝛿𝛥𝜑 can be decoupled. However, for 

line cameras, the lever arm 𝛥𝑋 and the boresight angle roll 𝛥𝜑 affects only the X direction. 

Therefore, this creates an increased probability of 𝛿𝛥𝑋 and 𝛿𝛥𝜑 being highly correlated or harder 

to decouple. This is especially true when there is a single flying height and when the angular field 

of view, defined by 
𝑥𝑖

 

𝑐
, is small. Examining rows 2 and 4 of Table 4.1, a similar difference for 

frame cameras and line cameras can also be observed in the Y direction. For frame cameras, the 

lever arm 𝛥Y affects the 𝑌 direction only. The boresight roll angle 𝛥𝜔, affects both the 𝑋 and 𝑌 

directions. Therefore, 𝛿𝛥𝑌 and 𝛿𝛥𝜔 can easily be decoupled. However, for line cameras, the lever 

arm 𝛥Y and boresight angle roll 𝛥𝜔 affects the only Y direction. Therefore, this creates high 

probability of 𝛿𝛥Y and 𝛿𝛥𝜔 being highly correlated or harder to decouple. This is especially true 

when there is a single flying height. There is also an expected correlation among 𝛿𝛥𝜅, 𝛿𝛥𝑌, and 

𝛿𝛥𝜔 specifically for line camera systems since all the impact on ground coordinates will only be 

seen in the 𝛿𝑌 direction. This will be true when there is a single flying height and when the angular 

field of view is small. Frame cameras will not have as much correlation among 𝛿𝛥𝜅, 𝛿𝛥𝑌, and 

𝛿𝛥𝜔 because 𝛿𝛥𝜅  and 𝛿𝛥𝜔 effect both the 𝑋 and 𝑌 directions and can rely on larger AFOV to 

help decoupling such parameters. Analyzing row 7 of Table 4.1, both for frame camera and line 

camera systems, it is important to have a variability of the linear and angular velocity components 

to ensure that the time delay can be decoupled effectively. For frame camera systems, having 

variability in the linear velocity or any of the angular velocity components, �̇� 𝑏(𝑡0)
 ,  φ̇ 𝑏(𝑡0)

 , κ̇ 𝑏(𝑡0)
 , 

will ensure that the time delay is decoupled from other system parameters. However, for line 

camera systems, since the y image coordinates, 𝑦𝑖
 , equal 0, 𝛿𝛥𝑡′s impact on the 𝑋 direction – i.e., 

𝛿𝑋 ∣𝛿𝛥𝑡 – is only affected by the �̇� 𝑏(t0)
𝑚 (x) linear velocity component and the  φ̇ 𝑏

  angular velocity 

component. The 𝛿𝛥𝑡′s impact on the 𝑌 direction – i.e., 𝛿𝑌 ∣𝛿𝛥𝑡 –  is only affected by the �̇� 𝑏(t0)
𝑚 (𝑦) 

linear velocity component and the �̇� 𝑏
  and  κ̇ 𝑏

  angular velocity components. Therefore, linear 

camera systems rely more on the variability of the angular velocity in each component than that of 

frame cameras. Moreover, if the line camera system has a small AFOV, 
𝑥𝑖

 

𝑐
 variability is limited 
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which further restricts the possibility of decoupling system parameters. Using this bias impact 

analysis, it can be concluded that the optimal flying configuration for line camera systems are 

opposite flying directions at different flying heights as well as having a variation in linear and 

angular velocities with good point distribution of the image points across the scan line.  

The bias impact analysis will now be analyzed for the use of the indirect approach for line 

camera systems. The indirect approach uses the bias impact analysis by exploiting the fact that the 

time delay is correlated with the lever arm, 𝛥𝑌, along the flying direction given a single ground 

speed and minor changes in angular velocities, shown in Table 4.1. The time delay is not directly 

derived, but indirectly estimated using the lever arm deviation in the along flying direction and 

speed/time/distance relation. As presented for frame cameras, the indirect approach is meant for 

special cases in which an existing bundle adjustment cannot be modified to incorporate the 

modified mathematical model that accounts for time delay [50]. To exploit the correlation between 

the time delay and lever arm in the flying direction, a single flying speed, constant attitude, and a 

single flying height is needed. However, as discussed in the impact analysis for line camera 

systems, if there is a single flying height, the lever arm component 𝛥𝑋 will be highly correlated 

with the boresight angle 𝛥𝜑 and therefore produce inaccurate estimates of the system parameters. 

Also, with a single flying height, the lever arm component 𝛥𝑌 and boresight angle 𝛥𝜔 will also 

be highly correlated. Furthermore, the field of view for line camera systems is much less than that 

of frame camera systems and cannot assist as much to decouple the system parameters. More 

specifically, for line cameras the 𝑦 image measurements, 𝑦𝑖
 , equal 0, this imposes more reliance 

on the AFOV to decouple parameters. For a small AFOV, 
𝑥𝑖

 

𝑐
 is small, and therefore 

𝑥𝑖
 2

𝑐2   is even 

smaller which will then impose more challenges in decoupling system parameters. Therefore, 

using the impact bias analysis, it is concluded that the indirect approach should not be used for line 

camera systems. The experimental results show an example of the indirect approach for line 

camera systems to emphasize this conclusion.  

4.3 Experimental Results 

First, a description of the platforms and imaging systems used in this study is discussed. 

Next, the dataset description, including checkpoints, is provided. Lastly, the experimental results 

and analysis are discussed.  
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4.3.1 Data Acquisition 

In this study, several remote sensing imaging platforms were used and equipped with a 

GNSS/INS system and imaging sensor. The DJI Matrice 600 Pro (M600P) was the UAV platform 

used [40]. This system included the Applanix APX-15 UAV v2 GNSS/INS unit for direct geo-

referencing with a predicted positional accuracy of 2-5 cm and heading and roll/pitch accuracy of 

0.080 and 0.025 ̊, respectively [41].  

The DJI M600P platforms were equipped with three different line camera sensors. Two of 

the line cameras used were Headwall’s Nano-hyperspectral sensors operating at the visible and 

near-infrared. In this study, the Nano-hyperspectral sensors will be referred to as ‘nHS’, along with 

their corresponding ending serial number – nHS-70 and nHS-199. These Nano-hyperspectral 

sensors cover 270-273 spectral bands ranging between 398 – 1000 nm with a band width of 2.2 

nm. The scan line consist of 640 pixels and has a detector pitch of 7.5 μm [52]. The sensor has a 

focal length of 8.2 mm resulting in a field of view of approximately 31˚ (horizontal). The 

approximate GSD values of the sensors are 1.79 and 3.58 cm when flying at 20 and 40 m flying 

height, respectively. The third line camera aboard the DJI M600P was the shortwave infrared 

(SWIR) sensor, referred to as uVS-307 in this study.  The uVS-307 covers 166 spectral bands 

ranging between 900 and 2500 nm with a band width of 9.6 nm. The uVS-307 consists of 384 

pixels along the scan line and has a pixel pitch of 24 μm [53]. The focal length of the uVS-307 is 

24.6 mm resulting in a field of view of 21˚ (horizontal). The approximate GSD values at a flying 

height of 20 and 40 m are 1.95 and 3.89 cm, respectively. It should be noted that the nHS-70 and 

the uVS-307 were installed simultaneously on the DJI M600P during the flight collections. For 

the nHS-199, the DJIM600P was also equipped with both a LiDAR and RGB imaging sensor on-

board. However, for this study the nHS-199 Nano and the APX unit were the only systems used 

during collections. An image of the DJI M600P equipped with the nHS-70 and uVS-307, along 

with the sensor and vehicle coordinate system orientation is shown in Figure 4.2. An image of the 

DJI M600P equipped with the nHS-199 along with the sensor and vehicle coordinate system 

alignment is shown in Figure 4.3. Table 4.2 outlines the nominal boresight and lever arm values 

for the systems. All three push-broom line cameras flown on the DJI M600P were equipped with 

the APX. The system records a pulse per second (PPS), frame index count per line, and position 

and orientation along with the UTC (at 100 Hz), and Nano/SWIR clock count. The link between 

the pulse per second from the APX, frame index count, and UTC time is used to acquire the 
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timestamp for each scan line needed to find the corresponding position and orientation. However, 

a time delay can still exist between these signals and the recorded times.  

 

 

Figure 4.2 DJI M600P equipped with nHS-70 and uVS-307 system configuration 

 

Figure 4.3 DJI M600P equipped with nHS-199 system configuration 
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Table 4.2 Headwall nominal boresight angles and lever arm components 

Sensor 
Δω 

(degree) 

Δφ 

(degree) 

Δκ 

(degree) 
Δx (mm) Δy (mm) Δz (mm) 

nHS-70 0 0 180 -20 60 80 

uVS-307 0 0 0 -110 60 110 

nHS-199 0 0 0 73 39 90 

4.3.2 Dataset Description 

There is a total of three push-broom line cameras and four flight collection dates used in this 

study. Table 4.3 shows the collection date, sensor, and corresponding flight parameters for each 

collection. For all the collection dates, there are between 4 and 5 ground control points, which are 

used as checkpoints for accuracy assessment in the experimental results. Figure 4.4 shows an 

example of the configuration of ground control points with the flight lines for the July 09th, 2019 

nHS-70/uVS-307 data collection. The configuration of ground control points and trajectory are 

similar for all other collection dates. The five ground control targets are highly reflective 

checkerboard targets and were surveyed by a Topcon GR-5 GNSS receiver with an accuracy of 2-

3cm. A sample of the raw uVS-307 SWIR and nHS-70 VNIR imagery over the calibration field 

with the reflective ground control targets is shown in Figure 4.5a and 4.5b respectively.  
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Table 4.3 Flight parameters for the different systems and collection dates 

Date Sensor 

Altitude 

Above 

Ground 

Ground 

Speed 
GSD Side lap 

Number of 

Flight Lines 

July 09 2019 

nHS-70 

20 m 3 m/s 1.79 cm 60% 8 

40 m 6 m/s 3.58 cm 80% 10 

Aug. 14 2019 
20 m 3 m/s 1.79 cm 60% 6 

40 m 6 m/s 3.58 cm 80% 6 

July 09 2019 

uVS-307 

20 m 3 m/s 1.95 cm 60% 8 

40 m 6 m/s 3.89 cm 80% 10 

Aug. 14 2019 
20 m 3 m/s 1.79 cm 60% 6 

40 m 6 m/s 3.58 cm 80% 6 

May 29 2019 

nHS-199 

20 m 3 m/s 1.79 cm 60% 6 

40 m 6 m/s 3.58 cm 80% 6 

July 11 2019 
20 m 3 m/s 1.79 cm 60% 10 

40 m 6 m/s 3.58 cm 80% 8 

 

 

Figure 4.4 Ground control point locations and trajectory for the July 09th nHS-70/uVS-307 

platform 
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(a)                                                                        (b) 

Figure 4.5 (a) Sample of the raw (a) uVS-307 SWIR and (b) nHS-70 VNIR imagery in the 

calibration field with enhanced representation of the targets. 

 

4.3.3 Experimental Results and Analysis 

In this section, the experimental objectives and results are discussed. The first objective of 

the experimental results is to evaluate the direct approach’s ability to accurately estimate system 

calibration parameters and ground coordinates of checkpoints. The system parameters estimated 

include the 𝑋 and 𝑌 components of the lever arm, boresight angles, and time delay. All imaging 

sensors, nHS-70, UVS-307, and nHS-199, along with all the collection dates are included in testing 

this objective. The next objective of the experimental results is evaluating the feasibility of the 

direct approach to handle a larger time delay while accurately estimating system parameters and 

ground coordinates of checkpoints. To test this objective, an artificial time delay of 200 ms is 

introduced to the nHS-70 and nHS-199 datasets. A 200 ms time delay was chosen because previous 

work indicated this was the amount found in other consumer-grade remote sensing platforms [50]. 

For the first two objectives, a comparison while considering/ignoring time delay is assessed. 

Relative accuracy is evaluated by examining the standard deviations of the checkpoints from the 

bundle adjustment. The absolute accuracy is evaluated by comparing the checkpoint 𝑋𝑌𝑍 ground 

coordinates to the survey reported 𝑋𝑌𝑍 ground coordinates. The last objective tests the feasibility 

of the indirect approach to accurately estimate system parameters and ground coordinates of 

checkpoints for line camera systems and is evaluated using the nHS-70 dataset. 
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4.3.3.1 Objective 1 – Feasibility of using the Direct Approach to Estimate Time Delay for 

Line Camera Systems 

The results for the direct approach for the nHS-70, uVS-307, and nHS-199 are presented 

below. The results include experiments while considering/ignoring time delay. The estimated 

parameters while considering/ignoring time delay results for the nHS-70, uVS-307, and nHS-199 

are shown in Table 4.4. The time delay estimated for each system and collection date ranges 

between and 4.1 and 10.4 ms. Although this does affect results, a time delay of this magnitude is 

considered relatively small. The lever arm components, 𝛥𝑋 and 𝛥𝑌, and the boresight angles are 

also estimated during these calibrations and the nominal values are shown for comparison. Table 

4.5 shows the correlation matrix produced from the direct approach bundle adjustment for the 

nHS-70 July 09th dataset. The correlations highlighted in red are above a chosen ±0.85 threshold 

and are flagged as high. The lever arm Δ𝑋 and the boresight angle Δ𝜑  as well as the lever arm 𝛥𝑌 

and boresight angle Δ𝜔 have the highest correlation. This is expected based on the bias impact 

analysis. Furthermore, the time delay, 𝛥𝑡, is not correlated with any of the parameters which is an 

indication of sufficient variability in the angular and linear velocities. The correlation matrices for 

the remaining datasets as well as the scenarios for ignoring time delay have similar results.  

Table 4.4 Estimated system parameter including the standard deviation and a-posteriori variance 

factor 

 

Time 

delay Δt 

(ms) 

Lever arm 

ΔX (m) 

Lever arm 

ΔY (m) 

Boresight 

Δ𝝎  (˚) 

Boresight  
𝚫𝝋  (˚) 

Boresight  
Δ𝜿  (˚) 

Square root of 

a-posteriori 

variance factor 

(pixel) 

�̂�𝒐 

Nominal Values 

nHS-70 0 -0.02 0.06 0 0 180 NA 

uVS-307 0 -0.14 0.06 0 0 0 NA 

nHS-199 0 0.07 0.04 0 0 0 NA 

 

Estimated System Parameters while Ignoring Time Delay 

nHS-70 

July 09th 
NA 

0.011 ± 

0.008 

0.067 ± 

0.008 

0.211 ± 

0.016 

0.013± 

0.017 

179.959 ± 

0.030 
0.820 

nHS-70 

Aug 14th 
NA 

-0.002 ± 

0.009 

0.057 ± 

0.009 

0.175 ± 

0.021 

0.026± 

0.023 

-179.904 ± 

0.041 
0.897 
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Table 4.4 continued 

 

uVS-307 

July 09th 
NA 

-0.108 ± 

0.01 

0.060 ± 

0.010 

0.293 ± 

0.020 

0.419 ± 

0.026 

0.389 ± 

0.701 
0.604 

uVS-307 

Aug 14th 
NA 

-0.097 ± 

0.013 

0.040 ± 

0.013 

0.236 ± 

0.034 

0.371 ± 

0.033 

0.031 ± 

0.109 
0.777 

 

nHS-199 

May 29th 
NA 

0.062 ± 

0.011 

0.040 ± 

0.011 

0.289 ± 

0.023 

-1.232 ± 

0.023 

-0.450 ± 

0.043 
0.772 

nHS-199 

July 11th 
NA 

0.086 ± 

0.013 

0.035 ± 

0.013 

0.460 ± 

0.029 

-1.126 ± 

0.030 

-0.460 ± 

0.064 
1.245 

 

Estimated System Parameters while Considering Time Delay (Direct Approach) 

nHS-70 

July 09th 

5.912 ± 

0.340 

0.030 ± 

0.006 

0.066 ± 

0.006 

0.210 ± 

0.012 

-0.094± 

0.015 

179.977 ± 

0.023 
0.624 

nHS-70 

Aug 14th 

10.464 ± 

0.851 

0.007 ± 

0.008 

0.050 ± 

0.008 

0.163 ± 

0.017 

-0.098± 

0.021 

-179.938 ± 

0.035 
0.727 

 

uVS-307 

July 09th 

4.146 ± 

0.383 

-0.097 ± 

0.008 

0.060 ± 

0.007 

0.295 ± 

0.015 

0.309 ± 

0.028 

0.0309 ± 

0.549 
0.473 

uVS-307 

Aug 14th 

9.876 ± 

0.903 

-0.097 ± 

0.009 

0.037 ± 

0.009 

0.242 ± 

0.022 

0.273 ± 

0.024 

-0.021 ± 

0.072 
0.514 

 

nHS-199 

May 29th 

9.824 ± 

0.788 

0.0787 ± 

0.011 

0.050 ± 

0.011 

0.316 ± 

0.022 

-1.351 ± 

0.024 

-0.480 ± 

0.040 
0.729 

nHS-199 

July 11th 

10.328 ± 

0.530 

0.109 ± 

0.010 

0.029 ± 

0.009 

0.451 ± 

0.021 

-1.315 ± 

0.027 

-0.471 ± 

0.046 
0.890 

 

 

 

 

 

 

 

 

 

 



 

 

104 

Table 4.5 Correlation matrix of system parameters for July 09th nHs-70 direct approach results 
 

ΔX ΔY 
 

ΔZ 

(not estimated) 
Δ𝝎 𝜟𝝋 Δ𝜿 Δ𝐭 

ΔX 1       

ΔY 
 -0.025 1      

ΔZ 

(not estimated) 0 0 1 
    

Δ𝝎 -0.019 0.945 0 1    

Δ𝝋 -0.880 0.075 0 0.042 1   

Δ𝜿 -0.021 -0.041 0 -0.017 -0.071 1  

Δ𝐭 0.121 -0.158 0 -0.091 -0.480 0.271 1 

 

A summary of the mean standard deviation of the checkpoints derived from the bundle 

adjustment as well as the mean, standard deviation, RMSE for the checkpoints when compared to 

surveyed ground coordinates for the nHS-70, uVS-307, and nHS199 are shown in Table 4.6. The 

relative accuracy while considering/ignoring time delay for the horizontal components shows 

minimal differences. The vertical relative accuracy shows a slight improvement while considering 

time delay. The overall horizontal components of the RMSE differences while 

considering/ignoring time delay are no more than 2 cm. The overall vertical component of the 

RMSE difference while considering and ignoring time delay is 1.2 cm for the nHS-70 August 14th 

dataset. Considering time delay showed only a slight improvement for the nHS-70 August 14th 

dataset in the vertical component. Overall, the horizontal and vertical component of the RMSE 

comparison while considering and ignoring time delay are minimal and can be expected in systems 

with relatively a small time delay. However, the vertical component for the uVS-307 July 09th 

dataset shows a 28.1 cm improvement while considering time delay compared to ignoring time 

delay. Even though there is minimal time delay in the uVS-307 system, there is still a huge 

improvement in the vertical direction for July 09th because of the tie point distribution of the dataset. 
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Figure 4.6a and 4.6b show the tie point distribution of the uVS-307 July 09th and August 14th 

dataset, respectively. The uVS- 307 July 09th dataset has an unfavorable tie point distribution for 

system calibration which leads to poor results while not considering time delay.
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Table 4.6 Relative accuracy evaluated through the mean standard deviation of checkpoints derived from the bundle adjustment and the 

absolute accuracy measured through the Mean/Standard Deviation/RMSE of the differences between checkpoint and surveyed 

coordinates of the five checkpoints from direct approach 

 Relative Accuracy  Absolute Accuracy  

 Mean STD X/Y/Z (m) Mean X/Y/Z (m) STD X/Y/Z (m) RMSE X/Y/Z (m) 

nHS-70  

July 09
th

 

(Δt estimated) 

0.004 0.004 0.022 -0.018 0.011 -0.006 0.006 0.008 0.029 0.019 0.013 0.026 

nHS-70  

July 09
th

 

(Ignoring Δt) 

0.005 0.006 0.030 -0.017 0.010 0.004 0.007 0.010 0.029 0.018 0.013 0.026 

RMSE Difference (time delay estimated – ignoring) 0.001 0 0 

nHS-70 

 August 14
th

 

(Δt estimated) 

0.005 0.005 0.030 -0.007 0.007 -0.036 0.005 0.007 0.035 0.008 0.008 0.048 

nHS-70  

August 14
th

 

(Ignoring Δt) 

0.006 0.006 0.037 -0.005 0.007 -0.048 0.007 0.008 0.040 0.008 0.010 0.060 

RMSE Difference (time delay estimated – ignoring) 0 -0.002 -0.012 

uVS-307  

July 09
th

 

(Δt estimated) 0.006 0.007 0.190 -0.020 0.010 -0.093 0.005 0.008 0.114 0.020 0.012 0.138 

uVS-307   

July 09
th

 

(Ignoring Δt) 0.007 0.009 0.209 -0.018 0.003 0.365 0.006 0.011 0.231 0.019 0.010 0.419 

RMSE Difference (time delay estimated – ignoring) 0.001 0.002 -0.281 
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 Table 4.6 continued 

uVS-307 

 August 14
th

 

(Δt estimated) 0.005 0.005 0.043 -0.006 0.006 -0.051 0.005 0.004 0.060 0.008 0.007 0.074 

uVS-307  

August 14
th

 

(Ignoring Δt) 0.008 0.007 0.065 -0.006 0.006 -0.035 0.004 0.006 0.057 0.007 0.008 0.062 

RMSE Difference (time delay estimated – ignoring) 0.001 -0.001 0.012 

nHS-199 

May 29th 

(Δt estimated) 

0.007 0.007 0.041 -0.003 0.032 0.024 0.004 0.009 0.029 0.005 0.033 0.036 

nHS-199 

May 29th 

(Ignoring Δt) 

0.008 0.008 0.043 0.001 0.031 0.034 0.004 0.009 0.042 0.004 0.032 0.051 

RMSE Difference (time delay estimated – ignoring) 0.001 0.001 -0.015 

nHS-199 

July 11th 

(Δt estimated) 

0.008 0.007 0.041 0.017 0.006 -0.036 0.013 0.008 0.059 0.021 0.009 0.064 

nHS-199 

July 11th 

(Ignoring Δt) 

0.011 0.009 0.057 0.014 0.008 -0.023 0.009 0.010 0.036 0.017 0.012 0.040 

RMSE Difference (time delay estimated – ignoring) 0.004 -0.003 0.024 
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(a) 

 

(b) 

Figure 4.6 Tie point distribution for (a) uVS-307 July 09th dataset and (b) uVS-August 14th 

dataset. 

4.3.3.2 Objective 2 – Feasibility of using the Direct Approach with Larger Artificial Time 

Delay for Line Camera Systems 

The next section presents results for the direct approach while introducing a 200 ms 

artificial time delay for the nHS-70 and nHS-199 systems. The purpose of introducing this artificial 

time delay is to analyze the direct approach’s performance when having a larger time delay in line 

camera systems. The estimated parameters while considering/ignoring time delay for the nHS-70 
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and nHS-199 are displayed in Table 4.7. The time delay estimated for July 09th and August 14th 

datasets without the artificial time delay introduced was 5.912 and 10.464 ms, respectively. The 

time delay estimated for the July 09th and August 14th with a 200 ms artificial time delay introduced 

are -194.088 and -189.535 ms, respectively. The time delay estimated for May 29th and July 11th 

datasets without the artificial time delay introduced was 9.824 and 10.328 ms, respectively. The 

time delay estimates for the July 09th and August 14th with a 200 ms artificial time delay introduced 

are -190.160 and -189.672 ms, respectively. These results show that the direct approach is 

accurately estimating the time delay in the system. Furthermore, for all datasets while ignoring 

time delay after introducing the 200 ms artificial time delay show a very large increase (and further 

from the nominal values) in the estimated lever arm in the flying direction (lever arm 𝑋) with the 

remaining system parameters very close to the values produced before introducing the artificial 

time delay.  
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Table 4.7 Estimated system parameter including the standard deviation and a-posteriori variance 

factor with 200 ms artificial time delay introduced 

 

Time 

delay Δt 

(ms) 

Lever arm 

ΔX (m) 

Lever 

arm ΔY 

(m) 

Boresight 

Δ𝝎  (˚) 

Boresight  
𝚫𝝋  (˚) 

Boresight  
Δ𝜿  (˚) 

Square root of 

a-posteriori 

variance factor 

(pixel) 

�̂�𝒐 

Previously Estimated Parameters using the Direct Approach (without artificial time delay) 

nHS-70 

July 09th 

5.912 ± 

0.340 

0.030 ± 

0.006 

0.066 ± 

0.006 

0.210 ± 

0.012 

-0.094± 

0.015 

179.977 ± 

0.023 
0.624 

nHS-70 

Aug 14th 

10.464 ± 

0.851 

0.007 ± 

0.008 

0.050 ± 

0.008 

0.163 ± 

0.017 

-0.098± 

0.021 

-179.938 ± 

0.035 
0.727 

nHS-199 

May 29th 

9.824 ± 

0.788 

0.0787 ± 

0.011 

0.050 ± 

0.011 

0.316 ± 

0.022 

-1.351 ± 

0.024 

-0.480 ± 

0.040 
0.729 

nHS-199 

July 11th 

10.328 ± 

0.530 

0.109 ± 

0.010 

0.029 ± 

0.009 

0.451 ± 

0.021 

-1.315 ± 

0.027 

-0.471 ± 

0.046 
0.890 

 

Estimated System Parameters while Ignoring Time Delay (Artificial time delay of 200 ms introduced) 

nHS-70 

July 09th 
NA 

0.516 ± 

0.158 

-0.060 ± 

0.158 

0.060 ± 

0.334 

-3.215 ± 

0.343 

179.751 ± 

0.620 
17.094 

nHS-70 

Aug 14th 
NA 

0.091 ± 

0.103 

-0.059 ± 

0.099 

0.138 ± 

0.230 

-1.965 ± 

0.245 

179.416 ± 

0.440 
9.569 

nHS-199 

May 29th 
NA 

0.411 ± 

0.160 

0.112 ± 

0.164 

0.617 ± 

0.340 

-3.587 ± 

0.334 

-0.839 ± 

0.616 
11.200 

nHS-199 

July 11th 
NA 

0.720 ± 

0.201 

-0.005 ± 

0.196 

0.412 ± 

0.443 

-5.046 ± 

0.451 

-0.408 ± 

0.960 
18.754 

 

Estimated System Parameters while Considering Time Delay (Direct Approach) 

 (Artificial time delay of 200 ms introduced) 

nHS-70 

July 09th 

-194.088 ± 

0.340 

0.030 ± 

0.006 

0.066 ± 

0.006 

0.210 ± 

0.012 

-0.094 ± 

0.015 

179.977 ± 

0.023 
0.624 

nHS-70 

Aug 14th 

-189.535 ± 

0.851 

0.006 ± 

0.007 

0.050 ± 

0.007 

0.163 ± 

0.017 

-0.097 ± 

0.021 

-179.938 ± 

0.034 
0.727 

nHS-199 

May 29th 

-190.160 ± 

0.785 

0.080 ± 

0.0105 

0.050 ± 

0.011 

0.316 ± 

0.022 

-1.351 ± 

0.024 

-0.480± 

0.040 
0.727 

nHS-199 

July 11th 

-189.672 ± 

0.530 

0.109 ± 

0.010 

0.029 ± 

0.009 

0.451 ± 

0.021 

-1.315 ± 

0.027 

-0.471 ± 

0.046 
0.890 

 

 The relative accuracy is evaluated by the standard deviations reported from the bundle 

adjustment and the absolute accuracy is evaluated by comparing the ground coordinates of the 
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checkpoints to the surveyed ground coordinates and both are shown in Table 4.8. The differences 

in the RMSE values while considering/ignoring time delay are much larger now. When the 

artificial time delay of 200 ms was introduced, there is an overall horizontal and vertical 

improvement while considering time delay compared to ignoring time delay. The RMSE 

horizontal component improvement from using the direct approach to estimate time delay is 

approximately 2.9 and 9.6 cm for the July 09th and August 14th dataset, respectively. These 

differences are approximately 2-5 times that of the GSD of the system at the 20 m flying height. 

The vertical component shows an even larger improvement by using the direct approach for 

estimating time delay, with as much as 43.2 cm difference. The horizontal components of the 

RMSE differences range from 3.9 to 14 cm for the May 29th and July 11th datasets. The vertical 

component of the RMSE differences are 49.2 and 105 cm for the May 29th and July 11th datasets, 

respectively. This shows a very large improvement for the direct approach over ignoring time 

delay when a system has an approximate 200 ms time delay. Furthermore, even though there was 

a large time delay to estimate in the system, the overall mean, standard deviation, and RMSE of 

the direct approach with the artificial 200 ms time delay was almost the same as the direct approach 

without an artificial time delay. For example, the RMSE 𝑋𝑌𝑍 components while considering time 

delay for the nHA-199 July 11th without the artificial time delay, shown in Table 4.6, are identical 

to the RMSE 𝑋𝑌𝑍  components while considering time delay with the artificial time delay 

introduced. This shows that the direct approach accurately estimates the time delay and achieves 

similar absolute accuracy whether the time delay in the system is minimal or significant.  
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Table 4.8 Relative accuracy evaluated through the mean standard deviation of checkpoints derived from the bundle adjustment and the 

absolute accuracy measured through the Mean/Standard Deviation/RMSE of the differences between checkpoint and surveyed 

coordinates of the five checkpoints from direct approach 

 Relative Accuracy Absolute Accuracy 

 Mean STD X/Y/Z (m) Mean X/Y/Z (m) STD X/Y/Z (m) RMSE X/Y/Z (m) 

nHS-70 

July 09
th

 

(Δt estimated) 

0.004 0.004 0.022 -0.018 0.011 -0.006 0.006 0.008 0.029 0.019 0.013 0.026 

nHS-70 

July 09
th

 

(Ignoring Δt) 

0.114 0.115 0.568 -0.013 0.048 -0.169 0.051 0.109 0.476 0.048 0.109 0.458 

RMSE Difference (time delay estimated – ignoring) -0.029 -0.096 -0.432 

nHS-70 

August 14
th

 

(Δt estimated) 

0.005 0.005 0.030 -0.007 0.007 -0.036 0.005 0.007 0.035 0.008 0.009 0.048 

nHS-70 

August 14
th

 

(Ignoring Δt) 

0.064 0.065 0.380 -0.027 -0.011 0.146 0.035 0.081 0.165 0.041 0.073 0.207 

RMSE Difference (time delay estimated – ignoring) -0.033 -0.064 -0.159 

nHS-199 

May 29th 

(Δt estimated) 

0.007 0.007 0.040 -0.003 0.032 0.024 0.004 0.009 0.030 0.005 0.033 0.036 

nHS-199 

May 29th 

(Ignoring Δt) 

0.111 0.111 0.581 -0.021 0.058 0.067 0.043 0.057 0.573 0.044 0.078 0.528 

RMSE Difference (time delay estimated – ignoring)    -0.039 -0.045 -0.492 

nHS-199 

July 11th 

(Δt estimated) 

0.017 0.006 -0.036 0.017 0.006 -0.036 0.013 0.008 0.059 0.021 0.009 0.064 

nHS-199 

July 11th 

(Ignoring Δt) 

0.062 0.013 0.194 0.062 0.013 0.194 0.097 0.166 1.227 0.107 0.149 1.114 

RMSE Difference (time delay estimated – ignoring) -0.086 -0.140 -1.050 
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4.3.3.3 Objective 3 – Feasibility of using the Indirect Approach to Estimate Time Delay for 

Line Camera Systems 

The feasibility of the indirect approach to estimate time delay for line camera systems is 

discussed in this section. The objective was tested on the nHS-70. Recall from the bias impact 

analysis, that the indirect approach requires a single flying height so that the correlation between 

the lever arm in the flying direction and the time delay is exploited. The estimated parameters for 

the indirect approach for the nHS-70 July 09th and August 14th 40 m flight lines are presented in 

Table 4.9. The estimated lever arm in the flying direction are extremely large compared to the 

nominal values. This is expected since the time delay is being absorbed. The correlation matrix of 

system parameters for the July 09th dataset is shown in Table 4.10. Here, a problem was identified 

with Δ𝑋 and Δ𝜑 being 100% correlated. With this extreme correlation, system parameters cannot 

accurately be estimated and step 2 of the indirect approach was not performed. Even though there 

is variation in 𝑥𝑖
 , which helps to decouple lever arm Δ𝑋  and 𝛥𝜑 ,  the variation in ground 

coordinates from changes in 
𝑥𝑖

 2

𝑐2  are minimal compared to the changes in ground coordinates 

produced by changes in the flying height. The range in 
𝑥𝑖

  

𝑐   directly relates to the AFOV of the 

system. For line cameras, the AFOV is relatively small. The bias impact analysis reveals that this 

correlation was expected and changes in flying height are needed to decouple the lever arm and 

boresight angles. Therefore, the indirect approach should not be used for line camera system since 

a single flying height is needed and the AFOV is too small. The direct approach is recommended 

for estimating time delay during system calibration for line camera systems. 
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Table 4.9 Estimated system parameter including the standard deviation and a-posteriori variance 

factor 

 

Time 

delay Δt 

(ms) 

Lever 

arm ΔX 

(m) 

Lever 

arm ΔY 

(m) 

Boresight 

Δ𝝎  (˚) 

Boresight  
𝚫𝝋  (˚) 

Boresight  
Δ𝜿  (˚) 

Square root of a-

posteriori 

variance factor 

(pixel) 

�̂�𝒐 

Nominal Values 

nHS-70 0 -0.02 0.06 0 0 180 NA 

 

Indirect Approach 

July 09th 

40 m flight 

line  

Operation 

1 

NA 
1.667 ± 

0.845 

0.06 

(fixed) 

-0.050 ± 

0.283 

-2.297 ± 

1.189 

179.934 ± 

0.0401 
0.789 

Aug. 14th 

40 m flight 

line  

Operation 

1 

NA 
-1.612 ± 

1.025 

0.06 

(fixed) 

1.049 ± 

0.609 

2.291 ± 

1.438 

-179.953 

± 0.054 
0.881 

 

Table 4.10 Correlation matrix of system parameters for July 09th nHs-70 indirect approach 

results 
 

ΔX 
ΔY 

(not estimated) 

ΔZ 

(not estimated) 
Δ𝝎 𝜟𝝋 Δ𝜿 Δ𝐭 

ΔX 1       

ΔY 

(not estimated) 0 1 
     

ΔZ 

(not estimated) 0 0 1 
    

Δ𝝎 0.316 0 0 1    

Δ𝝋 -1.000 0 0 -0.316 1   

Δ𝜿 0.055 0 0 0.232 -0.055 1  

Δ𝐭 0 0 0 0 0 0 1 
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4.4 Conclusions and Recommendations for Future Research  

UAVs equipped with GNSS/INS-assisted imaging systems are often used for accurate 3D 

reconstruction. Spatial and temporal system calibration is crucial for deriving accurate 3D spatial 

information. In this paper, the direct and indirect approaches were presented and analyzed for line 

camera systems. Optimal flight configurations were derived through a thorough bias impact 

analysis for line camera systems. It was determined through the bias impact analysis that the 

indirect approach was not appropriate due to the small AFOV of line camera systems and single 

flying height requirement. This hypothesis was then confirmed through the experimental results. 

The direct approach results for all systems used in this study showed that the time delay can be 

accurately estimated both for small and larger delays. The results show that even when there is a 

relatively small time delay in the system, and the time delay is ignored and there is not favorable 

tie point distribution, then the accuracy of the results will suffer. Therefore, it is suggested that 

even when a small time delay in the system is suspected that the direct approach is used and time 

delay is considered and estimated. The results also show that when a larger time delay is present 

in line camera systems, (which was shown through introducing an artificial time delay in the 

systems used), ignoring time delay will result in poor system calibration parameter estimates and 

degrade absolute and relative accuracy significantly. In conclusion, the direct approach is capable 

of accurately estimating the time delay in line camera systems as well as improving absolute 

accuracy both when small and large time delays are present in the system. Additionally, all of these 

results were conducted without the use of ground control points. Hence, the direct approach can 

produce highly accurate system calibration parameters for line camera systems without the use of 

GCP. 

Future work will focus on automating the tie point measurement process. In this study, the 

results show that tie point distribution is extremely important for accurate estimates of system 

parameters. It can be difficult to ensure both a large number and good distribution while using 

manually-identified tie points. Therefore, future work will concentrate on both extracting 

automated tie point from frame and line camera imagery as well as incorporating those tie points 

into the direct approach bundle adjustments. Also, future work will focus on verifying the direct 

approach for line camera sensors onboard a variety of platforms such as satellite and airborne.  
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 SYSTEM CALIBRATION WITH TIME DELAY ESTIMATION FOR 

UAV-BASED FRAME AND LINE CAMERAS USING 

AUTOMATICALLY-DERIVED TIE POINTS 

This research article is in the internal review stages and is planned for submission to the 

International Society for Photogrammetry and Remote Sensing journal. 
Authors: LaForest, L.; Hasheminasab, S.M.; Zhou, T.; Habib, A. 
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Adjustment- L.L and A.H.; Software, L.L., S.M.H. and T.Z.; Writing – original draft, L.L. and S.M.H.; Writing – 

review & editing, A.H. 

 

Abstract: Unmanned aerial vehicles (UAVs) equipped with global navigation satellite 

systems/inertial navigation systems (GNSS/INS) and imaging systems are used for a variety of 

applications requiring accurate 3D reconstruction of object space. Geometric system calibration is 

crucial for producing accurate 3D data from UAV imaging systems. Geometric system calibration 

is comprised of two objectives – spatial and temporal calibration – and has been conducted with 

and without the need for ground control points (GCPs) and with and without automatically-derived 

tie points. However, research has yet to focus on automated spatial and temporal calibration for 

frame and line camera systems without the need for GCPs. This paper presents an automated 

spatial and temporal calibration approach that produces highly accurate system calibration 

parameters without the need for GCPs or manually-measured tie points for both frame and line 

camera systems. The matching strategy used in this study to establish conjugate features among 

overlapping frame camera images, is based on a traditional Structure from Motion (SfM) technique. 

On the other hand, a new strategy which takes advantages of ortho-rectified images generated for 

each flight line is introduced for automated feature matching for line cameras. The automatically-

extracted tie points are used in a bundle adjustment with self-calibration (while considering spatial 

and temporal system parameters) to produce highly accurate system parameters. The results show 

that the bundle adjustment with self-calibration and matching approach presented in this research 

was capable of producing the same level of absolute accuracy compared to using manually-

measured tie points for both frame camera and line camera systems. However, relative accuracy 

was worse for the automatically-derived tie points. The also results show that the automated system 

calibration approach presented in this paper can be applied to systems with either significant or 
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minimal time delay and still achieve accurately reconstructed 3D object space and produce reliable 

estimates of system parameters. 

5.1 Introduction 

Unmanned aerial vehicles (UAVs) equipped with global navigation satellite systems/inertial 

navigation systems (GNSS/INS) and imaging systems are used in a variety of industries for 

accurate 3D reconstruction. UAVs provide ease of deployment and variety of choices for imaging 

and GNSS/INS sensors while collecting high temporal and spatial resolution data [24]. The use of 

UAVs in agricultural applications has expanded rapidly in recent years due to their relatively low 

cost and improved spatial and temporal resolution [16]. In addition, it is possible to equip UAVs 

with a variety of imaging sensors. These factors have increased the effectiveness of UAVs as a 

tool for precision agriculture and crop monitoring [18-21]. However, to produce highly accurate 

3D data, system calibration is needed for consumer-grade UAV imaging systems. In this paper, 

‘consumer-grade’ refers to cameras that require system calibration by the user instead of by the 

manufacturer or other high-end laboratory settings and UAV systems that are equipped with 

relatively low-cost GNSS/INS units.  

Geometric system calibration includes estimating internal characteristics of the sensor and 

system mounting parameters as well as time delay in the system, known as spatial and temporal 

calibration, respectively. Due to the fact that geometric system calibration is vital to achieving 

higher levels of accuracy by a given system, it has been a major focus in existing research. Spatial 

and temporal system calibration has been performed on a variety of frame camera imaging sensors 

with many requiring ground control points (GCPs) to achieve the level of desired accuracy [10, 

15]. Establishing such ground targets is expensive and labor intensive, and more importantly, the 

distribution and number of GCPs are usually less than optimal to provide adequate control for 

determining system calibration parameters. To overcome this limitation, there has also been recent 

research focusing on spatial and temporal calibration for frame cameras without the need for GCPs 

[50]. Yet, even without the need for GCPs, many techniques have only been applied with 

manually-measured tie points in overlapping images. Manual tie point measurements is known to 

be accurate but is also very time consuming and labor intensive. Consequently, recent research has 

focused on producing high quality, automatically-derived tie points from frame camera systems 

[32, 45]. Furthermore, when incorporating a large amount of automatically-derived tie points, 
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close attention must be given to the least squares adjustment implemented in the bundle adjustment 

process. There are several methods of least squares adjustments that will lead to the same solution.  

However, depending on the application or implementation, one method may have advantages over 

another. Therefore, a variety of least squares adjustment solutions with large numbers of 

observations and/or unknowns have been described in previous literature [1, 54, 55]. However, 

even with previous work in system calibration, automated tie point generation, and adjustment 

implementation, there is still a gap in research that focuses on a fully-automated spatial and 

temporal bundle adjustment with self-calibration without the need for GCPs for both frame and 

line camera systems.  

Frame and line camera systems capture imagery with different procedures. The difference 

in how frame and line cameras capture imagery greatly affects the image matching process. The 

data acquisition mechanisms and sample imagery for frame and line cameras are depicted in Figure 

5.1. As shown in Figure 5.1a-b, the main difference between frame and line camera is that the 

frame camera’s scene is captured in one instance by a single image whereas the line camera’s 

scene is built by multiple scan lines captured sequentially. Here, a scene is considered as a 2D 

coverage area of the ground. Given this geometry, frame camera’s image coordinates will consist 

of both 𝑥 and 𝑦 values that are variable depending on image point location which is bounded by 

the sensor’s angular field of view (AFOV). However, line camera’s 𝑦 image coordinates will have 

variable values but 𝑥 will always be constant depending on the camera alignment to the sensor’s 

focal plane. These differences cause the system calibration and automated tie point generation 

process to differ for frame and line camera systems. Due to the turbulence in the UAV’s trajectory, 

concatenating sequential scan lines in line cameras results in wavy pattern in raw scenes compared 

to frame camera systems whose scene is captured in one instance. Figures 5.1c and 5.1d show a 

sample overlapping images/scenes for frame/line cameras. From Figures 5.1c and 5.1d, one can 

observe that unlike frame cameras images, in line camera scenes, corresponding features look 

different among raw scenes, impeding the process of automatically finding conjugate features in 

overlapping scenes. 
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(a)                                                                         (b) 

 
 

(c) 

 
 

                                                                        (d)  

 

Figure 5.1 Illustration of (a) frame camera and (b) line camera sensor data aquistion and 

overlapping sample scenes for frame (c) and line (d) camera imagery 
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For a robust estimation of system calibration parameters with minimum possible correlation 

between such parameters, specific flight missions are required. As discussed in [50], to conduct 

spatial and temporal calibration, it is recommended to derive the system parameters using opposite 

flying directions at different flying heights, as well as having a variation in the linear and angular 

velocities. Data acquisition at multiple flying heights results in imagery with differing scales, 

which in turn adversely affects the automatic feature extraction and matching in both frame and 

line cameras. Figure 5.2 illustrates raw imagery acquired from two different flying heights, i.e., 20 

m and 40 m, for both frame and line cameras. As shown in this figure, conjugate features look 

different in overlapping images/scenes with significant scale difference. 

 

 

(a) 

 

(b) 

Figure 5.2 Scale difference in sample overlapping imagery captured from 40 m and 20 m flying 

heights, (a) frame images, and (b) line scenes. 
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Most of the existing body of literature uses GCPs with the help of manually-measured tie 

points for conducting bundle adjustment with self-calibration. In recent years, several automated 

feature extraction and matching algorithms have been developed for both frame [44, 54] and line 

cameras [55, 56]. However, the majority of these techniques show poor performance when dealing 

with frame camera images with significant scale difference, or UAV-based line camera scenes 

where the wavy pattern in raw imagery is pronounced. 

This study focuses on fully-automated spatial and temporal calibration of frame and line 

cameras onboard UAV-based imaging systems without the need for GCPs. First, a review of 

previous work dealing with spatial and temporal calibration for frame and line camera systems, 

automated tie point generation, and adjustment implementation are presented. Next, the system 

specifications and dataset description are provided. The methodology starts by presenting the 

Structure from Motion (SfM) approach used for automated feature extraction and matching for 

frame cameras. Next, a new automated feature extraction and matching strategy for line camera 

systems is presented which applies SIFT algorithm on partially ortho-rectified images instead of 

raw images. Here, the term “partially”, refers to the fact that only nominal system calibration 

parameters, e.g. lever-arm components, boresight angles, and time delay between the camera and 

GNSS/INS unit, are used in this procedure. Then, the mathematical model used for spatial and 

temporal calibration as well as the implemented bundle adjustment to incorporate a large number 

of tie points is presented. The experimental results for frame and line camera UAV systems is then 

presented. Lastly, conclusions and recommendations for future work are discussed.   

5.2 Related Work 

Spatial and temporal system calibration is essential for accurate 3D reconstruction of 

consumer-grade UAV imaging systems leading to much research over the years. Spatial calibration 

has been extensively covered in past research [1, 30, 4, 5, 7]. However, temporal calibration has 

been addressed to a lesser extent. Chiang et al. [12] proposed a calibration method to estimate the 

magnitude of exposure time delay for a UAV-based imaging system. The authors introduced a 

two-step approach for estimating time delay. First, exterior orientation parameters (EOPs) were 

obtained through indirect geo-referencing with the help of GCPs. Then, the differences between 

such EOPs and the interpolated GNSS/INS position and orientation of the inertial measurement 

unit (IMU) body frame were derived. Those differences were then used in a calibration algorithm 



 

 

122 

to solve for lever arm components, boresight angles, and time delay. Blazaquez, M. [15] introduced 

a one-step approach for ‘spatio-temporal’ calibration of multi-sensor systems. This approach 

focused on modifying the sensor model to include a time synchronization parameter. Rehak and 

Skaloud [10] worked on time synchronization of consumer-grade cameras on micro aerial vehicles 

(MAVs). The authors also introduced a one-step approach to modify the mathematical model to 

include time delay as a parameter in the bundle adjustment. Yet, for the above temporal calibration 

research, all required GCPs for acceptable absolute accuracy and focused on frame camera systems. 

LaForest et al. [50] presented two one-step approaches – direct and indirect – for estimating time 

delay during system calibration for frame camera systems without the need for GCPs. The direct 

approach modified existing collinearity equations to incorporate time delay as a system parameter. 

The indirect approach exploited the impact of bias analysis for system parameters and their 

correlations to solve for time delay indirectly using existing bundle block adjustment software. 

Even though frame camera systems have been researched for spatial and temporal calibration, line 

camera system calibration has primarily focused on spatial calibration. Kocaman et al. [57] focused 

on modifying the adjustable parameters for self-calibration triangulation of airborne linear array 

cameras. Habib et al. [9] performed rigorous boresight calibration for a hyperspectral line camera 

equipped with a GNSS/INS unit onboard a UAV. Current research in system calibration for line 

camera consumer-grade systems have neglected temporal calibration.  

System calibration using a bundle block adjustment requires image coordinates 

measurements of tie points, among other potential observations and unknowns. Manual tie points 

are known to be accurate but very time consuming. To address this challenge, some research has 

focused on self-calibration so that manual measurements can be decreased or eliminated. Habib et 

al. [5, 6] focused on camera and LiDAR self-calibration using straight lines and planar patches. 

Recent research has focused on image matching to address this challenge. He et al. [32] focused 

on using SfM for automated aerial triangulation for frame UAV- based systems. Hasheminasab et 

al. incorporated GNSS/INS information to aid the SfM process for images captured over 

agricultural fields consisting of repetitive texture patterns. Yet, there is still a gap for fully-

automated spatial and temporal calibration for line camera systems without the need for GCPs.  

Special attention must be given to the least squares adjustment implemented in the bundle 

block adjustment when incorporating a large amount of automatically-derived tie points. Different 

least squares adjustments can lead to the same solution but depending on the application and 
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implementation, one may have advantages over another. Two methods of least squares solutions 

considered for bundle block adjustments are the Gauss-Markov model and the mixed least squares 

model, sometimes referred to as Gauss-Helmert or condition equations with parameters [58]. The 

main difference in these adjustment solutions are how the observations, unknowns, and prior 

uncertainties are treated. For the Gauss-Markov model, any unknown parameter with prior 

information adds corresponding pseudo observations. In the case of system calibration, this may 

be parameters such as GNSS/INS-based trajectory information or GCPs. It should be noted that 

using this model increases the size of the normal equations dramatically since all parameters with 

prior information are considered as unknowns. The Gauss-Helmert model does not consider 

parameters with prior information as unknowns but instead they are treated as weighted 

observations. This drastically decreases the size of the normal equations. This decrease in the size 

of the normal equations is important when incorporating large amount of tie points. Lastly, as 

discussed by Mikhail [59], if the adjustment is dealing with block diagonal matrices then the 

normal equations may be sequentially formed. This is essential when incorporating a large amount 

of automatically-derived tie points.  

Spatial calibration has been investigated for both frame and line camera systems. However, 

temporal calibration has not been demonstrated for consumer-grade line camera systems. 

Furthermore, past research requires the use of GCPs to achieve an acceptable absolute accuracy. 

Past research has focused on automated spatial system calibration but only for frame camera 

systems and neglected temporal calibration. This research focuses on a fully-automated bundle 

adjustment with self-calibration including spatial and temporal system parameters for frame and 

line camera systems without the use of GCPs.  

5.3 System Specifications and Dataset Description 

This study implemented an RGB frame camera and hyperspectral line camera equipped 

with GNSS/INS units onboard UAV platforms. Both systems relied on the Applanix APX-15 UAV 

v2 GNSS/INS unit for direct geo-referencing with a predicted positional accuracy of 2-5 cm and 

heading and roll/pitch accuracy of 0.080 and 0.025 ̊, respectively [41]. The Dà-Jiāng Innovations 

(DJI) M200 [39] frame camera imaging system employed a FLIR Duo Pro R 640 combined 

thermal and RGB image sensor. The Uncooled VOx Microbolometer thermal sensor array was 

640 × 512 with a pixel size of 17 μm and had a nominal focal length of 19mm. The RGB visible 
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sensor array size was 4000 × 3000, with a pixel size of 1.85 μm and a nominal focal length of 8 

mm and has a field of view of 56˚ [42]. Figure 5.3 shows the FLIR Duo Pro R and APX-15 

configuration onboard the M200 UAV, and illustrates the coordinate systems for the IMU and 

camera and body frames. The FLIR Duo Pro R utilized a mobile-phone based app to set camera 

parameters via Bluetooth. The mobile-phone based app provides the ability to set the capture 

interval for the camera and to start and stop triggering. Event feedback to the APX was provided 

directly by the FLIR Duo Pro R using the “Frame Sync” option. This option output a low voltage 

transistor to transistor logic (3.3V) pulse that was wired directly to the event input of the APX-15.  

The Matrice 600 Pro (M600P) was the hyperspectral line camera UAV platform used [40]. 

The DJI M600P platform was equipped with two different line camera sensors. The Headwall’s 

Nano-hyperspectral and shortwave infrared sensors. The shortwave infrared sensor was not used 

in this study. The Nano-hyperspectral sensor will be referred is at ‘nHS’ along with the serial 

number ‘70’ – nHS-70. The nHS-70 line camera sensor operates at the visible and near-infrared. 

The nHS-70 sensor covers 270-273 spectral bands ranging between 398 – 1000 nm with a band 

width of 2.2 nm. The scan line consist of 640 pixels and has a detector pitch of 7.5 μm [52]. The 

sensor has a focal length of 8.2 mm resulting in a field of view of approximately 31˚ along the scan 

line. The approximate ground sampling distance (GSD) values of the nHS-70 sensor are 1.79 and 

3.58 cm when flying at 20 and 40 m flying height, respectively. An image of the DJI M600P 

equipped with the nHS-70, along with the orientation of the sensor and body coordinate system of 

the platform is shown in Figure 5.4. The system records a pulse per second (PPS), frame index 

count per line, and position and orientation along with the UTC (at 100 Hz), and Nano clock count.  

The link between the pulse per second from the APX, frame index count, and UTC time is used to 

evaluate the timestamp for each scan line. However, a time delay can still exist between the 

GNSS/INS timestamp and the image exposure time. Table 5.1 outlines the nominal boresight and 

lever arm values for the FLIR RGB frame camera and nHS-70 line camera systems. The FLIR 

RGB frame camera system and the nHS-70 hyperspectral line camera system each had one 

collection date used in this study. Table 5.2 shows the flight parameters and dataset description for 

each imaging system. For both the collection dates, there are 5 ground control points, which are 

used as checkpoints for accuracy assessment in the experimental results. The five ground control 

targets are checkerboard targets and were surveyed by a Topcon GR-5 GNSS receiver with an 
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accuracy of 2-3cm. It should be noted that the image coordinate measurements for checkpoints 

were manually-measured.  

 

 

Figure 5.3 System configuration for the DJI M200 equipped with the FLIR RGB frame sensor 

 

 

 

Figure 5.4 System configuration for the DJI M600P equipped with the nHS-70 line sensor 

 

Table 5.1 FLIR RGB and Headwall nHS-70 platform’s nominal boresight angles and lever arm 

components 

Sensor 
Δω 

(degree) 

Δφ 

(degree) 

Δκ 

(degree) 
Δx (mm) Δy (mm) Δz (mm) 

FLIR- RGB 180 0 -90 45 25 50 

nHS-70 0 0 180 -20 60 80 
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Table 5.2 Flight parameters and dataset description for the imaging systems 

Date Sensor 

Altitude 

Above 

Ground 

Ground 

Speed 
GSD 

Overlap & 

Side lap 

# of 

Flight 

Lines 

July 25
th

 

2018 

FLIR Duo 

Pro R 

(RGB) 

20 m 2.7 m/s 0.7 cm 80% 6 

40 m 5.4 m/s 1.4 cm 80% 6 

July 09th 2019 nHS-70 
20 m 3 m/s 1.79 60% 8 

40 m 6 m/s 3.58 60% 10 

5.4 Methodology for Automated Feature Extraction and System Calibration 

In this section, the proposed strategies for automated image feature extraction and matching 

for frame and line cameras onboard UAV remote sensing systems are introduced. The matching 

strategy used in this study to establish conjugate features among overlapping frame camera images, 

is based on a traditional Structure from Motion (SfM) technique. On the other hand, a new strategy 

for line cameras, which takes advantages of ortho-rectified images generated for each flight line, 

is introduced for automated feature matching. Lastly, the bundle block adjustment methodology 

for system calibration for frame and line camera systems using automatically-derived tie points is 

presented.  

5.4.1 Automated Feature Extraction and Matching for Frame Camera Systems 

In this study a graphic processing unit (GPU)-based implementation of the SIFT algorithm, 

known as SiftGPU [62], is used to efficiently conduct image matching among a large set of frame 

camera images. Although the SIFT algorithm is designed to be invariant against scaling, in practice 

this algorithm results in a high percentage of outliers when dealing with images with repetitive 

patterns or significant scale differences. Repetitive patterns – due to crop nature and mechanized 

planting – as well as scale difference – due to collecting images from two different flying heights, 

i.e., 20 m and 40 m – are the two common characteristics of the frame camera dataset used in this 

study.  
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In order to increase the reliability of the established conjugate features when dealing with 

images with challenging conditions – i.e., repetitive patterns and scale difference – this study uses 

a Structure from Motion (SfM) framework where the SIFT image matching step is followed by 

four layers of matching outlier removal. The first layer consists of a forward/backward consistency 

check for removing obvious matching outliers. Then, relative orientation parameters (ROPs) 

estimation is conducted while removing potential matching outliers. In the third layer, exterior 

orientation parameters (EOPs) recovery is carried out wherein more matching outliers are detected 

and removed. Finally, a bundle adjustment process is conducted for parameters refinement and 

further matching outlier removal. 

More specifically, in the forward/backward consistency check, considering two 

overlapping images, hereafter denoted as left image and right image, first left-to-right (forward) 

matching is conducted and an initial set of conjugate features are established. Then, a given pair 

(𝑝1, 𝑝2) is considered to be valid if the same pair is established in the right-to-left (backward) 

matching. This step helps with initial removal of obvious matching outliers. 

In the next step, the Nister five-point algorithm [63] is augmented with a RANdom SAmple 

Consensus (RANSAC) [64] framework to simultaneously estimate ROPs and remove potential 

matching outliers while using epipolar geometry constraints. Figure 5.5 illustrates remaining 

established matches after forward/backward consistency check, denoted as initial matches, (Figure 

5.5a) and after Nister/RANSAC step (Figure 5.5b) for overlapping images in different flying 

heights. As can be seen in this figure, applying SIFT on images with different scales results in 

smaller set of initial matches when compared with matching results of overlapping images with 

same scale. Also, considering Figure 5.5b one can note that when overlapping images are from 

different flying heights, a higher percentage of outliers are detected and removed through the 

Nister/RANSAC approach. 
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(a1) 40 m/40 m, 3063 initial matches 

 
(b1) 40 m/40 m, 2629 (86%) remaining matches after applying Nister/RANSAC 

approach 

 
(a2) 20 m/20 m, 1873 initial matches 

 
(b2) 20 m/20 m, 1465 (78%) remaining matches after applying Nister/RANSAC 

approach 

 
(a3) 40 m/20 m, 973 initial matches  
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(b3) 40 m/20 m, 612 (63%) remaining matches after applying Nister/RANSAC 

approach 

 

Figure 5.5 Sample SIFT matching results, (a) initial matches, and (b) remaining matches after 

Nister/RANSAC step* (*for a better visualization, only 10% of total matched features are 

plotted) 

 

In order to remove more matching outliers arising from the repetitive patterns and scale 

differences in the imagery, next step of the proposed SfM technique implements an incremental 

EOP recovery process based on the work presented by He et al. [32]. This EOP recovery step starts 

with establishing a local coordinate system by selecting a stereo-pair, and then sequentially 

augmenting the remaining images into the final image block while considering geometric 

compatibility among overlapping images. Image augmentation is achieved using the linear rotation 

averaging and translation averaging techniques introduced by He et al [32]. Another matching 

outlier removal step is conducted within the translation averaging process where conjugate points 

that exhibit large back-projection residuals are detected and removed. Interested readers can refer 

to [32] for more detailed information about the employed incremental EOP recovery strategy. 

In the last step of the SfM framework employed in this study, a bundle adjustment process 

is incorporated within an iterative procedure for detecting and removing more matching outliers. 

Prior to conducting the bundle adjustment process, first all remaining SIFT features are tracked 

among all the involved imagery, and their approximate object coordinates are derived using a multi 

light-ray intersection procedure. Next, using the SIFT features, their corresponding object 

coordinates, and the camera EOPs, a BA process is conducted to minimize the back-projection 

residuals for all image tie points. Then, these image points are sorted in descending order according 

to their residuals and points with residual larger than a predefined threshold 𝑡 are detected and 

removed as matching outliers. After removing these outliers, BA will be executed again to refine 
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image EOPs as well as reconstructed object points. This procedure is repeated until no points with 

residuals above the threshold 𝑡 remain. 

5.4.2 Automated Feature Extraction and Matching for Line Camera Systems 

As mentioned earlier, line cameras operating through push-broom mechanism use a line of 

detectors arranged perpendicular to the flight direction. As the platform flies, the scene is collected 

one line at a time (depending on camera frame rate), with simultaneously sampling of all pixels in 

a line [9]. A scene is formed by successive exposures along the flight trajectory and concatenating 

the acquired scan lines. Figure 5.6, shows two samples of raw line camera scenes generated from 

two different flight lines along with a corresponding zoomed-in region on the two scenes. As can 

be seen in Figure 5.6, raw scenes exhibit a wavy pattern due to the turbulence in UAV’s trajectory 

between successive scan lines. Consequently, corresponding features look different in overlapping 

raw scenes, impeding the process of automatically established conjugate features for line camera 

imagery (see Figure 5.6c and 5.6d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 5.6 Samples of raw scenes for nHS-70 VNIR 20190709 dataset, (a) and (b) raw scenes 

and (c) and (d) zoomed-in regions. 

 

The proposed strategy for automated generation of tie features among line camera scenes 

is presented in Figure 5.7. In order to overcome the feature extraction and matching problem on 

raw scenes with wavy patterns – caused by instability of the trajectory – the proposed framework 

establishes the feature correspondences on partially ortho-rectified scenes of each flight line. An 

ortho-rectified scene is obtained by correcting the raw scenes for non-smooth trajectory as well as 

perspective and camera distortions such that the generated scene is true to scale and corresponds 

to a map projection throughout the scene. Generation of partially ortho-rectified scenes is shown 

in the first procedure in Figure 5.7. This step aims at removing the wavy pattern of the raw scenes, 

so that corresponding features in different flight lines show similar appearance. Also, in this step, 

a look-up table, which establishes the mapping function between raw and rectified coordinates, is 

generated. The second procedure deals with applying SIFT matching on all pairs of partially ortho-
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rectified scenes. In this step, geo-location information of each partially ortho-rectified scene is 

used to reduce the search space and consequently the matching ambiguity caused by repetitive 

patterns in the imagery. Next, similar to what was explained in the previous section, a feature 

tracking procedure is conducted to track all SIFT matches among all scenes. One should note that 

coordinates of the established conjugate features have been determined with respect to coordinate 

systems associated with the ortho-rectified scenes. Hence, in the next step of the proposed strategy 

the generated look-up table in the first step is used to convert the rectified coordinates to raw 

coordinates. 

 

  

Figure 5.7 Flowchart of the proposed approach for automatically establishment of conjugate 

features in line cameras 

  
In order to appropriately map intensities observed by the camera to their location in the 

ortho-rectified scene, an elevation model (DSM) of the scene in question is required. In this study, 

the DSM is generated using the available LiDAR data of the scene. Then, using GNSS/INS 
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trajectory information, for each DSM cell, its closest scan line (in 2D) is determined and denoted 

as initial scan line. In the next step, scan line EOPs and camera IOPs are used to project each DSM 

cell onto the initial scan line using collinearity equations. One should note that as the scan line is 

vertically below the perspective center of the utilized camera, for a DSM cell to be visible in a 

scan line, the projected point has to have the image coordinate component along flight direction – 

e.g., 𝑥 coordinate – as close as possible to 0. The correct scan line corresponding to a given DSM 

cell is derived iteratively, where in each iteration, the projected point coordinate along flight 

direction is used to determine the scan line for the next iteration. Once the correct scan line is 

determined, RGB values of the raw scene at the projected point are assigned to the corresponding 

cell in the orthro-rectified scene. Also, raw scene information – i.e., the derived coordinate across 

flight direction and the scan line index – for each cell of the ortho-rectified scene is stored in a 

look-up table and will be used later in the last step of the proposed matching strategy. This ortho-

rectification process is depicted in Figure 5.8. Also, Figure 5.9, shows the partially-rectified scenes 

corresponding to the raw scenes illustrated in Figure 5.6. As shown in Figure 5.9, the wavy pattern 

of the raw scenes depicted in Figure 5.5, is removed in the ortho-rectified scenes. This can 

significantly help the image matching algorithm in identifying conjugate points among 

overlapping scenes of different flight lines. 
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(a)                                                                     (b) 

            

(c)                                                                      (d) 

Figure 5.8 Schematic illustration of the iterative ortho-rectification process for line camera 

scenes, (a) projection of a given DSM cell onto the initial scan line, (b) iterating the projection 

process using an updated scan line, (c) final projection, and (d) assigning RGB values from the 

projected point to the ortho-rectified cell.  
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(a) 

 
(b) 

 
© 

 
(d) 

Figure 5.9 Samples of partially ortho-rectified scenes for the nHS-70 VNIR 20190709 dataset, 

(a) and (b) partially ortho-rectified scenes and (c) and (d) zoomed-in regions. 

 

In the next step of the proposed framework, the SIFT detector and descriptor algorithm is 

applied on the all partially ortho-rectified scenes. As mentioned earlier, the traditional matching 

strategy establishes conjugate features between two overlapping images by comparing each feature 

descriptor in one image with all feature descriptors in the other image. In some applications such 

as digital agriculture, due to repetitive image patterns, traditional feature matching algorithms 

often result in insufficient number of matched features and/or matches with high percentage of 

outliers [45]. To mitigate some of the matching ambiguity problems caused by repetitive patterns, 

rather than conducting exhaustive search among the feature descriptors, this study exploits the geo-

location information of the partially ortho-rectified scenes to reduce the matching search space and 

consequently the matching ambiguity. More specifically, considering two overlapping ortho-

rectified scenes, given a SIFT feature in the first scene, its corresponding planimetric (𝑋 and 𝑌) 
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coordinates in the mapping reference frame are derived, and then used to predict an approximate 

location of its conjugate feature in the second scene. Next, the predicted point in the second ortho-

rectified scene is used to define a search window with a user defined size. The search window size 

can be determined according to the accuracy of the trajectory information and nominal system 

calibration parameters. Consequently, among all SIFT features in the second scene, only those 

which are located inside the search window are considered as candidate conjugate features. Finally, 

feature matching between the two ortho-rectified scenes is conducted by evaluating the similarity 

between the feature descriptor in the first scene and its potential conjugate feature descriptors in 

the second ortho-rectified scene. Figure 5.10 illustrates a sample result of the above-mentioned 

process for two overlapping partially ortho-rectified scenes. 
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(a) 

 
(b) 

 
(c) 

 
(d)  

 
(e) 

Figure 5.10 Illustration of the propoposed feature matching strategy using the nHS-70 VNIR 

20190709 dataset, (a) detected SIFT features (red dots) on partially ortho-rectified scene, 

denoted as first scene, (b) detected SIFT features (red dots) on partially ortho-rectified scene, 

denoted as second scene, (c) selected feature in first scene (left image) and its corresponding 

search window and established conjugate feature in second scene (right image), (d) zoomed-in 

views of the established conjugate features, and (e) final 558 matched features between the two 

ortho-rectified scenes. 
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Now that conjugate features are established among all overlapping pairs of ortho-rectified 

scenes, similar to what was described in the previous section, using a graph-based structure all 

SIFT matches are tracked among all involved flight lines. In the last step of the proposed matching 

framework for push-broom cameras, using the look-up table generated in the ortho-rectification 

stage, for each tracked SIFT feature, its corresponding scanner index and raw scene coordinate 

across flight direction are derived. Figure 5.11 shows a sample tracked SIFT feature on ortho-

rectified scenes as well as corresponding raw scenes. 

 
(a) 

 
(b) 
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Figure 5.11 A sample tracked SIFT feature, (a) trackd feature (in red) is shown on three differnet 

partially-orthorectified scenes, and (b) illustration of the tracked feature on the corresponding 

raw scenes. 
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5.4.3 System Calibration for Frame and Line Camera using Automatically-Derived Tie 

Points 

This section presents the bundle adjustment with self-calibration methodology for frame and 

line camera systems using automatically-derived tie points. LaForest et al. [50] first introduced 

two approaches for estimating time delay during system calibration for frame camera systems – 

direct and indirect. The direct approach modifies the mathematical model to incorporate time delay 

as a system parameter for frame camera systems. The indirect approach uses existing bundle block 

adjustment software and exploits the correlation among the time delay and lever arm mounting 

parameter in the flying direction to indirectly solve for time delay. The indirect approach was 

meant as a special case for those without the capability of modifying bundle adjustment software. 

This study implements the direct approach for frame and line camera systems to estimate time 

delay during system calibration.  

The mathematical model of the collinearity principle describes the collinearity of the 

camera perspective center, image point, and corresponding object point. Time delay in a system 

between the mid-exposure and the recorded event marker by the GNSS/INS unit will affect the 

position and orientation of the body frame. Therefore, the mathematical model is modified to 

compensate for changes in position and orientation caused by the time delay [50]. The modified 

mathematical model is shown in Equation (5.1). The following notations are used throughout this 

study: a vector connecting point ‘b’ to point ‘a’ relative to a coordinate system associated with 

point ‘b’ is represented as 𝑟𝑎
𝑏, and a rotation matrix transforming from coordinate system ‘a’ to 

coordinate system ‘b’ is represented as  𝑅𝑎
𝑏 . LaForest et al. [50] presented the modified 

mathematical model for the direct approach for frame camera systems. This research focuses on 

both frame and line camera systems. As mentioned in the introduction, there are important 

differences in frame and line camera systems. Frame camera’s image coordinates, 𝑟𝑖
𝑐(𝑡)

, will have 

variable 𝑥, 𝑦  coordinates depending on image point location However, line camera’s 𝑦  image 

coordinates will have variable values but 𝑥 will always be constant, depending on the camera 

alignment to the sensor’s focal plane. This causes differences in the image coordinates, 𝑟𝑖
𝑐(𝑡)

, for 

frame and line camera systems but the overall collinearity equations shown in Equation (5.1) 

remain unchanged. An illustration of the collinearity equations is presented in Figure 5.12 for 

frame (a) and line (b) camera systems. 
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             𝑟𝑖
𝑐(𝑡)

  =
1

𝜆(𝑖,𝑐,𝑡)
𝑅𝑏

𝑐  [𝑅𝑏(𝑡0)
𝑏(𝑡0+𝛥𝑡)

 𝑅𝑚
𝑏(𝑡0)

(𝑟𝐼
𝑚 −  𝑟𝑏(𝑡0)

𝑚 − �̇� 𝑏(𝑡0)
𝑚 𝛥𝑡) −  𝑟𝑐

𝑏]                     (5.1) 

Where:  

𝑟𝐼
𝑚: ground coordinates of the object point 𝐼 

𝑡0: initial event marker time  

𝛥𝑡: time delay 

𝑟𝑖
𝑐(𝑡)

: vector connecting perspective center to the image point i captured by the camera at the actual 

exposure time t, where 𝑡 =  𝑡0 + 𝛥𝑡 

�̇� 𝑏(𝑡0)
𝑚 : instantons linear velocity at the initial event marker 

𝑟𝑏(𝑡0)
𝑚 : position of IMU body frame relative to the mapping reference frame at time 𝑡0 derived from 

the GNSS/INS integration process 

 𝑅𝑚
𝑏(𝑡0)

: rotation matrix from the mapping reference frame to the IMU body frame at time 𝑡0 

derived from GNSS/INS integration process 

𝑅𝑏(𝑡0)
𝑏(𝑡0+𝛥𝑡)

: rotation matrix from the IMU body frame at time 𝑡0  to the IMU body frame at time 

𝑡0 +  𝛥𝑡  

𝑟𝑐
𝑏: lever arm from IMU body frame to camera frame  

𝑅𝑏
𝑐  : rotation (boresight) matrix from IMU body frame to camera  

𝜆(𝑖, 𝑐, 𝑡): scale factor for point 𝑖 captured by camera 𝑐 at the actual exposure time t 
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(a) 

 

(b) 

Figure 5.12 Illustration of collinearity equations for (a) frame and (b) line camera. 

 

 The bundle block adjustment procedure is used to estimate the unknown parameters in the 

modified collinearity equations. The target function is to ensure the best intersection of conjugate 

light rays from images along the same or different flight lines, i.e., ensuring precision. For tie 

points that correspond to GCPs, the goal is so that the tie points intersect as close as possible to 

the GCP location, i.e., ensuring accuracy. The bundle adjustment implements a least squares 

solution to determine the best estimates of unknown parameters. The objective is to estimate the 

system calibration parameters as accurately as possible with the least amount of ground control 

points, and preferably without GCPs. In order to estimate the system parameters with the least 
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amount of control, previous research has been completed on deriving the optimal/minimal flight 

configuration which considers any small changes in the system parameters that would impact the 

target function of the bundle adjustment. If for some of the system parameters, changes in the 

lateral distance between flight lines, flying height, or image point location do not impact the 

precision, i.e., the light ray intersection of the bundle adjustment, they cannot be estimated in the 

absence of control. All of the system parameter with the exception of the lever arm 𝑍 component 

will impact the precision of the bundle adjustment [51]. Therefore, in this study, the unknown 

parameters are the lever arm components in the 𝑋 and 𝑌 directions, boresight angles, time delay, 

and 𝑋𝑌𝑍 ground coordinates of the check and/or tie points. For this study, the observations include 

the image coordinate measurements of the check and tie points as well as the position and 

orientation of the GNSS/INS unit event markers. The image coordinate measurements for 

checkpoints were manually-measured whereas the image coordinate measurements for the tie 

points were automatically-derived, as explained in the previous section.  

Two primary methods of least squares solutions that were considered for this study was the 

Gauss Markov model and the mixed least squares model, sometimes referred to as Gauss-Helmert 

or condition equations with parameters [58]. In the Gauss Markov model, any parameter with prior 

information adds corresponding pseudo observations [65]. In the case of system calibration, this 

may be parameters such as the GNSS/INS-based position and orientation for scan lines or GCPs. 

However, it should be noted that in this model, all parameters with prior information are considered 

as unknowns. This model increases the size of the normal equation matrix dramatically. Therefore, 

the mixed least squares model is implemented. First, the implemented non-linear function is 

expressed in Equation (5.2). Here, Y are the observations, X are the unknowns, e are the random 

errors containing the observations, and P is the weight matrix of observations. The corresponding 

least squares adjustment model is expressed in Equation (5.3). Here, y is the estimated values of 

the function evaluated using the approximate values of unknowns and the observations,  A is the 

partial derivative matrix with respect to the unknowns, x are the corrections to the approximate 

values of unknowns, B is the partial derivatives matrix with respect to the observations, and 𝑒 is 

the associated error vector for the observations. The equation for deriving the corrections to the 

approximate values of the unknowns for each iteration, �̂� , is shown in Equation (5.4). The 

corrections to the approximate unknowns are applied for each iteration until the corrections are 

sufficiently small for the given convergence criteria. Lastly, the a-posteriori variance factor used 
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to scale the resulting dispersion matrix is expressed in Equation (5.5). The a-posteriori variance 

factor, �̂�𝑜
2, is used to assess both the bundle adjustment performance and the accuracy of the a-

priori weighting of the observations. In the case of mixed observations when the weights are the 

inverse of the variance/covariance matrix, the a-posteriori variance factor would be expected to be 

approximately 1. The mixed model does not consider parameters with prior information as 

unknowns but instead as weighted observations. In the case of system calibration, this allows 

GNSS/INS-based position and orientation for scan lines and GCPs with prior information to be 

treated as weighted observations instead of unknowns. This reduces the size of the normal matrix 

substantially. However, in this case, the bundle adjustment will have a set of mixed observations 

and weighting the set of mixed observations correctly becomes crucial. For each type of 

observation, an a-priori weight is assigned based on the uncertainty. For example, for the image 

measurements a weight, 𝜎𝑥𝑦, is assigned based on the confidence of the image measurement. For 

the case of manually-measured image coordinates, this weight may be higher (more confidence) 

than in the case of automatically-derived image coordinates. Other observations, such as GCPs or 

trajectory information, are also given a weighting based on the uncertainty. The weighting for the 

GCPs, 𝜎𝑋𝑌𝑍𝐺𝐶𝑃
, will depend on the GNSS-RTK accuracy and the weighting for the trajectory 

information, 𝜎𝑋𝑌𝑍𝑇𝑟𝑎𝑗
 and 𝜎𝜔𝜑𝜅𝑇𝑟𝑎𝑗

 will depend on the GNSS/INS unit accuracy. It is essential to 

correctly assigned realistic weighting for all observations in the model.  

 

                                   𝑓(𝑌 − 𝑒, 𝑋) = 0                        𝑒 ~ (0, 𝜎𝑜
2𝑃−1)                                           (5.2)       

   

                       𝑦 = 𝐴𝑥 + 𝐵𝑒 = 𝐴𝑥 + �̅�                        �̅� ~ (0, 𝜎𝑜
2𝐵𝑃−1𝐵𝑇)                                    (5.3)  

 

                               �̂� = (𝐴𝑇(𝐵𝑃−1𝐵𝑇)−1𝐴)−1 (𝐴𝑇(𝐵𝑃−1𝐵𝑇)−1𝑦                                       (5.4) 
 
 

                                                   �̂�𝑜
2 

=  
�̃̅�𝑇 (𝐵𝑃−1𝐵𝑇)−1�̃̅�  

𝑛−𝑚
                                                              (5.5) 

   

where: 𝑛 is number of equations and 𝑚 is the of unknowns                     

  

Incorporating large numbers of automatically-derived tie points made it essential to include 

the position and orientation prior GNSS/INS information as weighted observations instead of 
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unknown values. Implementing the mixed model decreased the normal matrix to only the size of 

the remaining unknowns which were the system parameters mentioned above and the 𝑋𝑌𝑍 ground 

coordinates of the check/tie points. Furthermore, because of the large number of automatically-

derived tie points, the bundle adjustment least squares solution is implemented such that the normal 

matrix is sequentially built on a per-point basis. This not only increased the speed of the 

implementation dramatically but is also computationally less expensive. The normal matrix is 

broken up into sub-blocks to incorporate the sequential building. The first sub-block, 𝑁11𝑖,𝑗 
, 

consists of contributions towards the system parameters from the image coordinates and is of size 

𝑚 𝑥 𝑚 , where 𝑚  is the number of unknown system parameters, 𝑖  is total number of image 

observations, and 𝑗 is the total number of images. The second sub-block, 𝑁12𝑗𝑖
, is the interaction 

between system parameters and ground coordinates of tie points where 𝑗𝑖 is the total number of 

images where point 𝑖 is visible. The size of 𝑁12𝑗𝑖
 is 𝑚 𝑥 3. The sub-block consisting of ground 

coordinates of tie points is 𝑁22𝑗𝑖

  and is of size 3 𝑥 3 for each object point. These sub-blocks are 

filled by a sequential summation from each contributing image measurement. The total summation 

for the normal matrix is shown in Equation (5.6). Incorporating the mixed model as well as 

sequentially building the normal matrix was essential for implementing the fully-automated spatial 

and temporal system calibration using a large number of SIFT-based tie points. 

 

                                            N = [
∑ 𝑁11𝑖,𝑗 

𝑖,𝑗
 

∑ 𝑁12𝑗𝑖

 
𝑗𝑖

∑ 𝑁12𝑗𝑖

𝑇 
𝑗𝑖

∑ 𝑁22𝑗𝑖

  
𝑗𝑖

]                                                                (5.6) 

where: 𝑖 is total number of image observations, 𝑗 is the total number of images, and 𝑗𝑖 is the total 

number of images where point 𝑖 is visible                      

5.5 Experimental Results 

In this section, the experimental results for the FLIR RGB frame camera and the nHS-70 

hyperspectral line camera are presented. The objective of this section is to compare the system 

calibration results while using manually-measured checkpoints versus that of using automatically-

derived tie points. The results are first evaluated by comparing values of the estimated system 

parameters. The relative accuracy of the points are also compared by examining the standard 

deviation of the 𝑋𝑌𝑍 ground coordinates produced from the variance-covariance matrix resulting 
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from the bundle adjustment with self-calibration. Lastly, the absolute accuracy are compared by 

computing the difference between the derived 𝑋𝑌𝑍 ground coordinates of checkpoints to the RTK 

GNSS measurements. It should be noted that for the checkpoint case, the 𝑋𝑌𝑍 ground coordinates 

are derived by the bundle adjustment with self-calibration and directly compared to the RTK 

GNSS measurements. Whereas, for the SIFT point case, the estimated system parameters from the 

bundle adjustment are used in a multi-ray intersection solution to derive the 𝑋𝑌𝑍  ground 

coordinates of the checkpoints and then compared to the RTK GNSS measurements.   

5.5.1 DJI M200 integrated with FLIR Duo Pro R – FLIR RGB Frame Sensor 

The DJI M200 integrated with the FLIR RGB frame camera sensor results are presented in 

this section. The checkpoint case had 5 object tie points that correspond to 329 manually-measured 

image measurements. The SIFT point case had 2,722 object tie points that correspond to 16,095 

automatically-derived image measurements. The nominal values, estimated system parameters, 

and a-posteriori variance factor for the system calibration using checkpoints and using SIFT points 

are presented in Table 5.3. The a-posteriori variance factor is lower for the SIFT system calibration 

due to the extremely high redundancy produced by the large number of automatically-derived tie 

points. The system parameters are very similar in the case of using checkpoints compared to using 

SIFT points with the only difference seen in the a-posteriori variance factor. The correlation matrix 

for system parameters for the checkpoint and the SIFT point results are shown in Table 5.4. The 

correlations highlighted in red are above the chosen ±0.85 threshold and are flagged as high. The 

lever arm 𝛥𝑋 and the boresight angle 𝛥𝜑 as well as the lever arm 𝛥𝑌 and boresight angle 𝛥𝜔 have 

the highest correlations. This is expected based on the bias impact analysis presented in section 

4.2.3. The correlation matrix values are relatively the same for the check and SIFT point case. The 

relative accuracy is also compared. The mean standard deviations of check and SIFT points derived 

from the bundle adjustment are presented in Table 5.5. There is an increase in the 𝑋𝑌𝑍 component 

standard deviation for the SIFT case. The relative accuracy, i.e., precision, of ground coordinates 

derived in a bundle adjustment is determined by the number of intersecting light rays and 

intersection angle. The estimated precision of the 𝑋 and 𝑌 ground coordinates can be determined 

from the flying height, 𝐻  and the precision of the image coordinate measurement, 𝜎𝑥𝑦 . The 

estimated precision of the 𝑍 ground coordinates can be determined from the flying height, 𝐻 and 
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the precision of the image coordinate measurement, 𝜎𝑥𝑦, as well as the magnitude of the baseline 

between image exposure stations. The larger the magnitude of the base-to-height ratio, the better 

the intersection geometry will be. The estimated precision of a bundle adjustment based on 

intersection geometry is illustrated in Figure 5.13. Here, the estimated precision error ellipse is 

shown for both an example where the base-to-height produces an intersection geometry of 45̊ and 

for a base-to-height ratio that produces an intersection geometry of 15̊. As shown in the Figure 

5.13 illustration, the potential error ellipse associated with a smaller intersection geometry leads 

to an increase of uncertainty, i.e., degradation in relative accuracy. The intersection geometry for 

the FLIR RGB check and SIFT object points is calculated for each object point. The check points 

had a mean intersection geometry of approximately 47˚ whereas the SIFT points had a mean 

intersection geometry of approximately 15̊. The maximum intersection geometry of the FLIR RGB 

SIFT object points as well as the mean intersection geometry for the check and SIFT points are 

shown in Figure 5.14. For the SIFT points, having a significant decrease in geometric intersection 

compared to the check points geometric intersection is the cause of the increase in mean standard 

deviation. Absolute accuracy measured through the mean, standard deviation, and RMSE of the 

differences between checkpoint and surveyed coordinates are reported in Table 5.6. For the 

checkpoint case, the differences are derived from the ground coordinates derived from the bundle 

adjustment are compared to the surveyed coordinates. For the SIFT case, the system parameters 

derived from the bundle adjustment are used in a multi-ray light intersection to derive the ground 

coordinates of the checkpoints and then compared to the surveyed coordinates. The absolute 

accuracy from the check and SIFT points case are very similar. However, the 𝑋𝑌𝑍 RMSE for the 

SIFT point case did show a relatively small improvement. Table 5.6 results show that similar 

absolute accuracy is achieved for the small number of manually-measured check points with ideal 

geometry and the large number of less precise automatically-derived SIFT points with weaker 

intersection geometry.  
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Table 5.3 Estimated system parameters including the standard deviation and a-posteriori variance factor 

for FLIR RGB system 

 
Time delay 

𝜟𝒕 (ms) 

Lever 

arm 𝜟𝑿 

(m) 

Lever 

arm 𝜟𝒀 

(m) 

Boresight 

Δ𝝎  (˚) 

Boresight  
𝚫𝝋  (˚) 

Boresight  
Δ𝜿  (˚) 

Square 

root of a-

posteriori 

variance 

factor 

(pixel) 

�̂�𝒐 

Nominal Values 

FLIR RGB 0 0.045 0.025 180 0 -90 NA 

 

Checkpoints  
-205.712 ± 

1.291 

0.110 ± 

0.019 

0.015 ± 

0.019 

178.598 ± 

0.035 

0.168 ± 

0.035 

-91.068 ± 

0.048 
3.591 

SIFT Points  
-202.007 ± 

0.168 

0.062 ± 

0.001 

0.001 ± 

0.001 

178.542 ± 

0.003 

0.088 ± 

0.003 

-90.962 ± 

0.009 
1.210 

Table 5.4 Correlation matrix for system parameters of the checkpoint and the SIFT point results for FLIR 

RGB system 

 

𝜟𝑿 𝜟𝒀 Δ𝝎 𝜟𝝋 𝜟𝜿 𝜟𝒕 

Chec

k 
SIFT Check SIFT Check SIFT Check SIFT Check SIFT  

 

ΔX 1 1          
 

ΔY 0.011 0.033 1 1        

 

Δ𝝎 0.908 0.893 0.014 0.026 1 1      
 

Δ𝝋 0.008 -0.019 -0.942 -0.930 0.002 -0.012 1 1    
 

Δ𝜿 0.002 0.006 0.004 0.129 -0.003 -0.02 -0.021 -0.28 1 1  
 

Δ𝐭 -0.005 -0.075 -0.038 -0.041 0.254 0.234 0.028 0.022 0.068 .080 1 1 
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Table 5.5 Mean standard deviation of check/SIFT points derived from the bundle adjustment for the FLIR 

RGB system 

Mean Standard Deviations 

 𝑿 (m) 𝒀 (m) 𝒁 (m) 

Checkpoints Only 0.015 0.015 0.061 

SIFT Points Only 0.106 0.119 0.431 

 

Table 5.6 Statistics of the differences between the RTK/GNSS measurements of the checkpoints and 

those derived either by the bundle adjustment when using only check points or by multi-light ray 

intersection using the derived system parameters from the SIFT-based bundle adjustment for the FLIR 

RGB system  

 Mean 𝑿/𝒀/𝒁 (m) STD 𝑿/𝒀/𝒁 (m) RMSE 𝑿/𝒀/𝒁 (m) 

Checkpoints  -0.003 0.033 0.115 0.016 0.01 0.086 0.014 0.034 0.139 

SIFT Points -0.003 0.025 0.116 0.007 0.010 0.045 0.007 0.027 0.123 

 

 

Figure 5.13 Illustration of estimated precision of a bundle adjustment based on intersection 

geometry 
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Figure 5.14 Mean intersection geometry for the check points and mean and maximum 

intersection geometry of the FLIR RGB SIFT object points 

5.5.2 DJI M600 integrated with nHS-70 Hyperspectral Line Camera Sensor 

The DJI M600 integrated with the nHS-70 hyperspectral line camera sensor results are 

presented in this section. The checkpoint case had 5 object tie points that correspond to 64 

manually-measured image measurements. The SIFT point case had had 3,889 object tie points that 

correspond to a total of 15,165 automatically-derived image measurements. The nominal values, 

estimated system parameters, and a-posteriori variance factor for the nHS-70 system calibration 

using checkpoints and using SIFT points are presented in Table 5.7. The system parameters are 

very similar in the case of using checkpoints only compared to using SIFT points. The time delay 

was estimated to be 5.9 and 7.3 ms for the checkpoint and SIFT point case, respectively. This is 

considered a relatively minimal time delay compared to the approximately -205 ms significant 

time delay found in the frame FLIR RGB sensor. The a-posteriori variance factor is lower for the 

SIFT system calibration due to the extremely high redundancy of using automatically-derived tie 

points over the smaller number of manually-measured checkpoints. The correlation matrix of 

system parameters for the checkpoint and the SIFT point results are shown in Table 5.8. The 

correlations highlighted in red are above a chosen ±0.85 threshold and are flagged as high. The 
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lever arm 𝛥𝑋 and the boresight angle 𝛥𝜑 as well as the lever arm 𝛥𝑌 and boresight angle Δω have 

the highest correlations. Again, this is expected based on the bias impact analysis presented in 

section 4.2.3. The correlation matrix values are relatively the same for checkpoints and SIFT 

points. The relative accuracy is also compared. The mean standard deviations of check and SIFT 

points derived from the bundle adjustment are presented in Table 5.9 Although, the 𝑋  and 𝑌 

components comparison between the check and SIFT tie points are on a similar magnitude there 

is an increase in the 𝑍 component standard deviation for the SIFT case. This again is due to the 

geometry of the SIFT tie points compared to the checkpoints. Similarly to the frame FLIR RGB 

sensor the check points had a much better mean intersection geometry than the SIFT points. The 

mean intersection geometry of the check points was approximately 99˚ whereas the SIFT points 

had a mean intersection geometry of 15̊.  Having such a significant decrease in geometric 

intersection compared to the check points geometric intersection is the cause of the increase in 

mean standard deviation. Lastly, the absolute accuracy is presented. Absolute accuracy measured 

through the mean, standard deviation, and RMSE of the differences between checkpoint and 

surveyed coordinates are reported in Table 5.10. The absolute accuracy from the check and SIFT 

points case are very similar. The RMSE values show a minimal difference of 0.05 cm or less for 

the check and SIFT points.  

 

Table 5.7 Estimated system parameters including the standard deviation and a-posteriori variance factor 

for nHS-70 line camera system 

 
Time delay 

𝜟𝒕 (ms) 

Lever 

arm 𝜟𝑿 

(m) 

Lever 

arm 𝜟𝒀 

(m) 

Estimated 

boresight 

Δ𝝎  (˚) 

Boresight  
𝚫𝝋  (˚) 

Boresight  
Δ𝜿  (˚) 

Square 

root of a-

posteriori 

variance 

factor 

(pixel) 

�̂�𝒐 

Nominal Values 

nHS-70 0 -0.02 0.06 0 0 180 NA 

 

Checkpoints  
5.901 ± 

0.292 

0.030 ± 

0.006 

0.065 ± 

0.006 

0.210 ± 

0.011 

-0.094 ± 

0.013 

179.967 ± 

0.021 
0.473 

SIFT Points  
7.2637 ± 

0.049 

0.013 ± 

0.001 

0.055 ± 

0.001 

0.181 ± 

0.002 

-0.084 ± 

0.002 

-179.947 ± 

0.005 
0.208 
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Table 5.8 Correlation matrix of system parameters for the checkpoint and the SIFT point results 

for nHs-70 

 

 
𝜟𝑿 𝜟𝒀 Δ𝝎 𝜟𝝋 𝜟𝜿 𝜟𝒕 

Check SIFT Check SIFT Check SIFT Check SIFT Check SIFT Check SIFT 

ΔX 1 1         
 

 

ΔY -0.011 0.014 1 1       

 

 

Δ𝝎 -0.007 0.017 0.946 0.943 1 1     
 

 

Δ𝝋 -0.900 -0.896 0.022 -0.023 0.012 -0.038 1 1   
 

 

Δ𝜿 -0.017 -0.062 -0.010 -0.023 -0.014 0.013 0.024 0.107 1 1 
 

 

Δ𝐭 0.222 0.114 -0.041 0.013 -0.024 0.032 -0.515 -0.376 -0.003 0.002 1 1 

 

Table 5.9 Mean standard deviations of check/SIFT points derived from the bundle adjustment for the 

nHS-70 system 

Mean Standard Deviations 

 𝑿 (m) 𝒀 (m) 𝒁 (m) 

Checkpoints Only 0.005 0.005 0.026 

SIFT Points Only 0.033 0.025 0.219 

 

Table 5.10 Statistics of the differences between the RTK/GNSS measurements of the checkpoints and 

those derived either by the bundle adjustment when using only check points or by multi-light ray 

intersection using the derived system parameters from the SIFT-based bundle adjustment for the nHS-70 

system  

 Mean 𝑿/𝒀/𝒁 (m) STD 𝑿/𝒀/𝒁 (m) RMSE 𝑿/𝒀/𝒁 (m) 

Checkpoints  -0.019 0.008 -0.004 0.006 0.008 0.026 0.020 0.011 0.024 

SIFT Points -0.018 0.011 -0.014 0.006 0.008 0.028 0.019 0.013 0.029 
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5.6 Conclusions and Recommendations for Future Work 

Unmanned aerial vehicles (UAVs) equipped with global navigation satellite systems/inertial 

navigation systems (GNSS/INS) and imaging systems provide accurate 3D reconstruction for a 

variety of applications. Geometric system calibration – which consists of spatial and temporal 

calibration – is crucial for producing accurate 3D data from UAV imaging systems. This research 

presented a methodology for reliable automated feature extraction and matching for both frame 

and line camera systems. The automatically-derived tie points were then used in a bundle 

adjustment with self-calibration – capable of estimating spatial and temporal system parameters – 

to produce highly accurate system calibration parameters. The results showed that the matching 

approach paired with the automated system calibration presented in this research was capable of 

producing the same level of absolute accuracy compared to using manually-measured tie points 

for both frame and line camera systems. However, relative accuracy was worse for the 

automatically-derived tie points. This was found to be due to the intersection geometry of the 

generated SIFT points. Additionally, the results showed that the automated system calibration 

approach presented in this paper can be applied to systems with significant and minimal time delay 

discrepancies and still achieve reliable estimates of system parameters and absolute accuracy. In 

conclusion, this paper presented an automated spatial and temporal calibration approach that 

produce highly accurate system calibration parameters without the need for GCPs or manually-

measured tie points for both frame and line camera systems. Future work will focus on 

simultaneously integrating frame and line camera sensors in the bundle adjustment and matching 

procedure. Also, other algorithms such as speeded up robust features (SURF) will be explored as 

matching alternatives. Future work will also include testing a larger variety of sensors and datasets.  
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 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Research Conclusions 

This research focused on spatial and temporal system calibration for frame and line camera 

systems equipped with GNSS/INS units onboard UAVs. This research specifically studied 

calibration strategies capable of estimating time delay between timestamps of GNSS/INS event 

markers and the image mid-exposure timestamps while simultaneously estimating system 

mounting parameters.  

For frame camera systems, two one-step algorithms – direct and indirect – were presented. 

Contrary to previous research, the direct approach evaluated the linear and angular velocities 

directly and did not rely on raw data from the GNSS/INS. Also, the direct approach did not assume 

that the platform rotation to be constant during the time delay period. An optimal flight 

configuration was then derived so that one can estimate the system parameters, including the lever 

arm components, boresight angles, and time delay simultaneously. The optimal flight 

configuration presented maximizes the impact of biases or any possible errors in the system 

parameters while also decoupling those parameters. Using the bias impact analysis, the indirect 

approach was introduced as an alternative for those without the capability of modifying bundle 

adjustment software. The indirect approach exploits the correlation between the time delay in the 

system and the lever arm component in the flying direction to estimate time delay. The approaches 

were tested on systems with sensors that were modified to both incorporate the flash hot-shoe time 

synchronization – which significantly reduces the time delay – and also a sensor that only makes 

use of the manufactured internal “frame sync” option, which had more significant time delay. 

Furthermore, the approaches presented were tested and evaluated in an integrated sensor 

orientation (ISO) and direct geo-referencing adjustments, without the need for GCPs. The results 

showed that the direct and indirect approaches were capable of handling and correcting time delay 

in frame camera systems. Furthermore, horizontal accuracy of 1–3 times the GSD were achieved 

without the use of any GCPs or adjusting the original GNSS/INS trajectory information. 

Spatial and temporal calibration was then investigated for UAV line camera systems, which 

was not covered in previous research. The direct approach was used for geometric system 

calibration including time delay estimation. First, the modified mathematical model for line 
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camera systems was presented in the methodology section. Then, the direct approach was 

introduced for line camera systems. This research rigorously derived the optimal flight 

configuration for system calibration while estimating time delay for line camera systems and 

compared it to that for frame camera systems. The optimal flight configuration and bias impact 

analysis for line camera systems differed from frame cameras due to the difference in imaging 

geometry (i.e., frame cameras capture 2D images at one time whereas line cameras capture a 1D 

image). Therefore, the ability to decouple system parameters will be limited for line cameras 

compared to frame cameras. The bias impact analysis for line camera systems showed that the 

indirect approach is not a feasible solution for push-broom line cameras onboard UAVs due to the 

limited ability of line cameras to decouple system parameters and was confirmed with 

experimental results. The direct results showed that when a time delay exists and spatial and 

temporal calibration was performed, vertical and horizontal accuracy are approximately that of the 

GSD of the sensor. Furthermore, when a large artificial time delay was introduced for line camera 

systems, the direct approach still achieved accuracy less than the GSD of the system and performs 

2.5-8 times better in the horizontal components and up to 18 times better in the vertical component 

than not performing the temporal calibration.  

 Lastly, this research demonstrated fully-automated spatial and temporal calibration for 

frame and line camera systems. In past research, spatial and temporal calibration has been 

conducted with and without the need for GCPs and with and without automatically-derived tie 

points for frame camera. However, research has yet to focus on automated spatial and temporal 

calibration without the need for GCPs for both frame and line camera systems. This research 

presented a methodology for reliable automated feature extraction and matching for both frame 

and line camera systems. First, the automated feature extraction and matching for frame cameras 

was presented and implements a SfM technique. Then, a new automated feature extraction and 

matching strategy for line camera systems was presented which applies SIFT algorithm on partially 

ortho-rectified scenes instead of raw scenes. Lastly, the mathematical model used for spatial and 

temporal calibration, as well as the implemented bundle adjustment to incorporate a large number 

of tie points, was presented. The results showed that the automated system calibration and 

matching approach presented in this research was capable of producing the same level of absolute 

accuracy compared to using manually-measured tie points for both frame and line camera systems. 

However, relative accuracy was worse for the automatically-derived tie points. This was found to 
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be due to the intersection geometry of the generated SIFT points. Furthermore, the results showed 

that the automated system calibration approach presented in this research can be applied to systems 

with significant and minimal time delay discrepancies and still achieve reliable estimates of system 

parameters and absolute accuracy.  

 

In summary, below is the list of contributions this dissertation presented:  

 

1. Frame Cameras – New strategies for time delay estimation during system calibration for 

UAV-based, GNSS/INS-assisted imaging systems were developed 

• A modified mathematical model that included time delay as an unknown system 

parameter during the bundle block adjustment procedure for frame camera systems was 

developed and incorporated 

• The optimal flight configuration was established for frame camera systems such that 

system parameters can be simultaneously estimated as accurately as possible without 

the use of GCPs  

• An alternative approach was established for users without capability of updating 

software to accurately estimating time delay for system calibration in frame camera 

systems 

 

2. Line Cameras – Spatial and temporal calibration for UAV-based, GNSS/INS-assisted line 

camera imaging systems was developed  

• A modified mathematical model that included time delay as an unknown system 

parameter during the bundle block adjustment procedure for line camera systems 

developed and incorporated 

• The optimal flight configuration for line camera systems was established to accurately 

estimate spatial and temporal system parameters  

• The bias impact analysis for line camera systems showed that the indirect approach is 

not a feasible solution for line cameras onboard UAVs due to the limited ability of line 

cameras to decouple system parameters 
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3. Developed a fully-automated bundle adjustment with self-calibration capable of estimating 

spatial and temporal system parameters for frame and line camera systems 

• Automatically-derived tie point features from both frame and line camera systems 

• Modified the bundle adjustment system calibration to successfully incorporate a large 

amount of automatically-derived tie points for frame and line camera systems 

6.2 Recommendations for Future Work 

Recommendations for future work relating to spatial and temporal calibration and the specific 

research completed here are as follows:  

 

• Focus on a implementing a combined bundle adjustment with self-calibration for frame 

and line camera systems that apply the modified mathematical model to incorporate time 

delay as an optional system parameter. Combining frame and line cameras in a bundle 

adjustment exploit the geometric and radiometric benefits of both imaging systems and 

could therefore lead to more accurate system calibration.  

 

• Apply the modified mathematical model to commercial-grade satellite frame and line 

camera systems (i.e. small satellites). Contrary to more robust spaceborne satellites, the 

commercial-grade small satellites may need even more system calibration, including time 

delay estimation, after launch.  

 

• Perform stability analysis on the time delay system parameter over the course of time and 

storage changes. A time delay stability analysis for UAV systems would be particularly 

important since lightweight UAVs system parameters may not be as stable after transport 

or storage. 

 

• Investigate further blunder detection techniques for the automatically-derived tie points. 

When time delay exists in the system, and is unknown, blunder detection conducted prior 

to the system calibration may not be effective at removing all necessary blunders. An 

additional blunder detection, potentially within the system calibration bundle adjustment, 

could improve calibration results from automatically-derived tie points. 
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• Focus on generating automatically-derived tie points with intersection geometry similar 

to that of manually-measured check/tie points. The system calibration results may then 

improve even further when using a large number of tie points with ideal intersection 

geometry.  

 

• Investigate incorporating ‘folding’ the normal equations into the bundle adjustment 

software – invert sub-blocks of normal matrix. Inverting sub-blocks of the normal matrix 

would further improve the implementation of a bundle adjustment with self-calibration 

using a large amount of automatically-derived tie points.  
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APPENDIX 

This Appendix is meant to further expand details of the derived equations in section 3.3.3 

Optimal Flight Configuration for System Calibration while Considering Time Delay. More 

specifically, this Appendix is meant to address details leading to the derivation of Equation 3.17b.  

 The goal is to derive the partial derivatives of the collinearity equations with respect to the 

system parameters to evaluate their impact on the change in ground coordinates,  𝛥𝑋, 𝛥𝑌, and 𝛥𝑍. 

Equation 3.17b is the partial derivatives of the modified collinearity equations with respect to the 

boresight angles, 𝛥𝜔, 𝛥𝜑, 𝛥𝜅. The first step in deriving these partial derivates is examining the 

collinearity equations in Equation 3.11 for terms comprised of the boresight angles. The term 

𝜆(𝑖, 𝑐, 𝑡)𝑅𝑏(𝑡0)
𝑚 𝑅𝑏(𝑡0+𝛥𝑡)

𝑏(𝑡0)
𝑅𝑐

𝑏 𝑟𝑖
𝑐(𝑡)

 is comprised of boresight angles and is needed to derive the partial 

derivatives. An evaluation of the change in the scale as a result of the angular sensor tilt which can 

be caused either by changes in boresight angles or time delay must be addressed. An illustration 

of the change in scale as a results of an angular sensor tilt is displayed in Figure A.1. Here, 𝑃 

denotes the perspective center of the imaging system, 𝐻 is the flying height, 𝑐 is principal distance, 

𝑖  is the image point, and 𝐼 and 𝐼’ are the corresponding object points, depending on angular sensor 

tilt. The scale can be defined as 𝜆 =  
𝑃𝐼

𝑃𝑖
 and 

𝑃𝐼’

𝑃𝑖
 and with an angular sensor tilt 

𝑃𝐼

𝑃𝑖
 ≠  

𝑃𝐼’

𝑃𝑖
. The change 

in scale is represented by 𝛥𝜆. Assuming a vertical sensor and incorporating the change in scale, 

the term comprised of boresight angles needed for partial derivatives can be expressed in Equation 

(A.1). Now, assuming that variations in the angular parameters would not change the elevation 

and after ignoring second order terms, then the change in ground coordinate 𝛥𝑍 will be zero and 

can be expressed as Equation (A.2). Reordering Equation (A.2), an expression for the change in 

scale, 𝛥𝜆, can be shown in Equation (A.3). Lastly, Equation (A.3) can be substituted back into 

Equation (A.1) and is expressed in Equation (A.4) which is then used to derive Equation 3.17b.  
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Figure A.1 Illustration of the change in the scale as a result of angular sensor tilt 

 

(𝜆 + 𝛥𝜆)𝑅𝑏(𝑡0)
𝑚 𝑅𝑏(𝑡0+𝛥𝑡)

𝑏(𝑡0)
𝑅𝑐

𝑏 𝑟𝑖
𝑐(𝑡)

= 

(𝜆 + 𝛥𝜆) [

±1 ∓(𝛥𝜅 + 𝛥𝑡κ̇ 𝑏
 (𝑡0)) ±(𝛥𝜑 + 𝛥𝑡φ̇ 𝑏

 (𝑡0))

±(𝛥𝜅 + 𝛥𝑡κ̇ 𝑏
 (𝑡0)) ±1 ∓(𝛥𝜔 + 𝛥𝑡ω̇ 𝑏

 (𝑡0))

−(𝛥𝜑 + 𝛥𝑡φ̇ 𝑏
 (𝑡0)) (𝛥𝜔 + 𝛥𝑡ω̇ 𝑏

 (𝑡0)) 1

] [
𝑥𝑖

 

𝑦𝑖
 

−𝑐

 ]   (A.1) 

∗ 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑛 𝑠𝑐𝑎𝑙𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑛𝑜:  𝜆(𝑖, 𝑐, 𝑡) = 𝜆  

 

                          𝛥𝑍 = 𝜆[(𝛥𝜔 + 𝛥𝑡ω̇ 𝑏
 (𝑡0))𝑦𝑖

  − (𝛥𝜑 + 𝛥𝑡φ̇ 𝑏
 (𝑡0))𝑥𝑖

 ] − 𝛥𝜆𝑐 =   0                   (A.2) 

 

                                       𝛥𝜆 =  
𝜆

𝑐
[(𝛥𝜔 + 𝛥𝑡ω̇ 𝑏

 (𝑡0)) 𝑦𝑖
  − (𝛥𝜑 + 𝛥𝑡φ̇ 𝑏

 (𝑡0))𝑥𝑖
 ]                          (A.3) 

 

(𝜆 +
𝜆

𝑐
[(𝛥𝜔 + 𝛥𝑡ω̇ 𝑏

 (𝑡0)) 𝑦𝑖
  − (𝛥𝜑 + 𝛥𝑡φ̇ 𝑏

 (𝑡0)) 𝑥𝑖
 ]) 

                   [

±1 ∓(𝛥𝜅 + 𝛥𝑡κ̇ 𝑏
 (𝑡0)) ±(𝛥𝜑 + 𝛥𝑡φ̇ 𝑏

 (𝑡0))

±(𝛥𝜅 + 𝛥𝑡κ̇ 𝑏
 (𝑡0)) ±1 ∓(𝛥𝜔 + 𝛥𝑡ω̇ 𝑏

 (𝑡0))

−(𝛥𝜑 + 𝛥𝑡φ̇ 𝑏
 (𝑡0)) (𝛥𝜔 + 𝛥𝑡ω̇ 𝑏

 (𝑡0)) 1

] [
𝑥𝑖

 

𝑦𝑖
 

−𝑐

 ]              (A.4) 
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