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ABSTRACT 

Software modeling is an integral practice for software engineers especially as the 

complexity of software solutions increase. There is precedent in industry to model information 

systems in terms of functions, structures, and behaviors. While constructing these models, 

abstraction and systems thinking are employed to determine elements essential to the solution 

and how they are connected. However, both abstraction and systems thinking are difficult to put 

in practice and difficult to teach due to the, often, ill-structured nature of real-world IT problems. 

Unified Modeling Language (UML) is the industry standard for software modeling but 

unfortunately it is often used incorrectly and misunderstood by novices. This has also been 

observed in educational contexts where students encounter difficulty in employing the 

appropriate level of abstraction in modeling and programming contexts and not necessarily being 

able to view or treat software systems as being interconnected.  

The researcher detailed a multi-methods approach, through the lens of pragmatism, 

towards understanding patterns of student proficiency with abstraction and software modeling in 

terms capturing the functional, structural, and behavioral aspects of an information system, as 

given by the Structures-Behaviors-Function framework. The quantitative strand involved the 

development of rubrics to analyze functional, structural, and behavioral models given by UML 

activity diagrams, class diagrams, and sequence diagrams, respectively. The subjects of this 

study were students enrolled in a sophomore-level systems analysis and design class. Descriptive 

analysis revealed patterns of modeling proficiency. Students were generally proficient in 

modeling the system in terms of functions but there was an overall drop-off in proficiency when 

modeling the system in terms of structures and behaviors. The results of the clustering analysis 

revealed underlying profiles of students based on abstract thinking and systems thinking ability. 

Two distinct clusters – high performing students and moderate performing students – were 

revealed with statistically significant differences between the groups in terms of abstract thinking 

and systems thinking ability. Further correlational analysis was performed on each cluster. The 

results of the correlational analyses pointed to significant positive associations between software 

modeling proficiency and the constructs of abstract thinking and systems thinking. Logistic 

regression analysis was then performed, and it could be inferred from the regression model that 
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abstract thinking in terms of behaviors and systems thinking in terms of aligning sequence 

diagrams with activity diagrams were the most important predictors of high performance.  

The qualitative strand of this study involved a case study approach using the think-aloud 

protocol centered around exploring how students utilized abstract thinking and systems thinking 

while constructing software models. The participants of this study were students who had 

completed the sophomore-level systems analysis and design course. Thematic analysis was 

utilized to identify themes of abstract thinking and systems thinking within the epistemic games 

of structural, functional, and process analyses. Two different approaches towards modeling 

information systems were identified and chronological visualizations for each approach were 

presented. Overall, it could be inferred from the results and findings of the study that the learning 

design of the sophomore-level course was successful in equipping students with the skills to 

proficiently model information systems in terms of functions. However, the students were not as 

proficient in modeling information systems in terms of structures and behaviors. The theoretical 

contribution of this study was centered around the application of the SBF framework and 

epistemic forms and games in the context of information systems. The methodological 

contributions pertain to the rubrics that were developed which can be used to evaluate software 

modeling proficiency as well as abstract thinking and systems thinking. Abstract thinking and 

systems thinking were successfully characterized in the context of information systems 

modeling. The results of this study have implications in computing education. The suggested 

instructional approaches and scaffolds can be utilized to improve outcomes in terms of structural 

and behavioral modeling proficiency. 
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CHAPTER 1. INTRODUCTION 

This chapter provided an overview to this research study and to this manuscript. This 

chapter established significance within the existing literature about software modeling and 

software systems development. The significance of the research, the research questions, 

assumptions, limitations, and delimitations were discussed. 

1.1 Background 

Software modeling is prevalent in Information Technology (IT) industry and is widely 

used by software engineers and business analysts (Cernosek & Naiburg, 2004; Ho-Quang et al., 

2017). Modeling enables IT professionals to better assess the requirements of complex software 

systems while simultaneously facilitating communication of these requirements in addition to 

technical and financial details to different stakeholders. Modeling can thus be utilized for to 

visualize software systems at different levels of detail (Cernosek & Naiburg, 2004). Moreover, 

software modeling is an important part of the software engineering discipline (ABET, 2016; 

Cernosek & Naiburg, 2004; Magana, Seah, & Thomas, 2017; Tamai, 2005). Therefore, it is 

necessary for those involved in the disciplines of software engineering or IT to have a working 

knowledge of how to create software models conforming to a standard and how to interpret these 

models (Boustedt, 2012). The process of constructing accurate software models requires the 

identification of details that are important to the system while ignoring those elements that are 

unnecessary or irrelevant (Kramer, 2007), this process is called abstraction or abstract thinking. 

It must also be recognized that software modules or components of a system do not exist in 

isolation and that the different software models constructed must also possess some degree of 

alignment between them since they are all based on the same requirements (Burgueño, 

Vallecillo, & Gogolla, 2018). The approach is called systems thinking as it forces a review of the 

relationship of various subsystems in a project (Brewer & Dittman, 2018). Therefore, designing 

information systems involves identifying essential details of the solution while omitting 

irrelevant details (Zehetmeier et al., 2019) and recognizing the connections between different 

aspects of the system. To represent these different interconnected aspects of an information 

system, modeling languages are used. 
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Unified Modeling Language (UML) was developed to serve as a standard of for 

representing software models (Engels and Groenewegen, 2000). UML can be and is often used to 

represent software systems in terms of functions, structures, and behaviors which provides a 

visual representation of its overall functionality and the inner workings that facilitate said 

functionality (Dennis, Wixom, & Tegarden, 2020; Robal, Viies, & Kruus, 2002). Unfortunately, 

UML is not used correctly in industry (Burgueño, Vallecillo, & Gogolla, 2018; Dobing & 

Parsons, 2006; Peneva, Ivanov & Tuparov, 2006) which has significant repercussions on the 

entire process of software development because software is often coded or programmed based on 

these models. Errors made during the construction of these models are the most expensive to 

correct at a later point in the development or maintenance process (Fernández-Sáez, Chaudron, 

& Genero, 2018; Queralt & Teniente, 2012). 

In light of the challenges faced in industry, the Accreditation Board for Engineering and 

Technology (ABET) requires graduates of accredited programs to possess or exhibit “an ability 

to design, implement, and evaluate a computer-based system, process, component, or program to 

meet desired needs” (p.3). Previous studies have been conducted regarding the use of UML 

(Hadar & Hadar, 2006) and abstraction levels employed by students in programming classes 

(Bucci, Long, & Weide, 2001), however the proficiency of abstraction displayed by students 

during modeling, or the quality of the models produced were never formally evaluated. 

The educational problem examined in this study was informed by what is observed in 

industry and across literature. The researcher took quantitative and qualitative approaches to 

evaluate student proficiency in modeling software systems in terms of functions, structures, and 

behaviors using UML diagrams. The quantitative approach involved the development rubrics to 

evaluate student proficiency at software modeling, especially abstraction and systems thinking 

ability. The qualitative approach examined the software modeling process exhibited by 

participants in terms of how they employ abstract thinking and systems thinking while 

constructing these models. The study was guided by the following research questions: i) To what 

extent to did students demonstrate proficiency in abstract thinking while analyzing software 

systems in terms of functions, structures, behaviors?; ii) To what extent to did students 

demonstrate proficiency in systems thinking while analyzing software systems in functional, 

structural, and behavioral representations?; iii) What were the characteristics or profiles of 

students in terms of abstraction and systems thinking ability?; iv) How did students use 
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abstraction and systems thinking modeling software systems in terms of functions, structures, 

and behaviors? 

1.2 Significance 

The literature in the areas of systems developments, software modeling, and UML, did not 

delve into how abstract thinking and systems thinking play a role in the development of software 

models, especially in an educational context. I believed that by taking a multi-methods approach 

to this research, I could gain a formal understanding as to the areas of software modeling where 

students exhibit proficiency or, on the contrary, lack proficiency, while also gaining an insight 

into how students employ abstract thinking and systems thinking while constructing software 

models. The insights gained from this study can impact the learning interventions and assessment 

mechanisms that are employed in collegiate systems development courses. 

1.3 Statement of Purpose 

The purpose of this research was to identify and describe student proficiency in the various 

aspects of software modeling and to gain insights into how abstraction and systems thinking 

ability influenced proficiency. Furthermore, this research aimed to identify and describe how 

students employed abstract thinking and systems thinking while constructing software models. 

Understanding the patterns of proficiency and how students employed abstract thinking and 

systems thinking would provide insights into their strengths or weaknesses in software modeling. 

This could have further instructional and pedagogical implications in systems analysis courses. 

1.4 Research Questions 

The research study was centered around the following questions: 

1. To what extent to did students demonstrate proficiency in abstract thinking while 

analyzing software systems in terms of functions, structures, and behaviors? 

2. To what extent to did students demonstrate proficiency in systems thinking while 

analyzing software systems in functional, structural, and behavioral representations? 

3. What were the characteristics or profiles of students in terms of abstraction and 

systems thinking ability as evidenced by their system representations? 
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4. How did students use abstract thinking and systems thinking when modeling software 

systems in terms of functions, structures, and behaviors? 

1.5 Assumptions 

The following assumptions informed this research study: 

1. There was a need to take quantitative and qualitative approaches to gain insights into 

the software modeling proficiency and behaviors of students. 

2. Participants responded to the best of their ability in the qualitative study. 

1.6 Dissertation Structure 

This dissertation was divided into eight chapters:  

1. Chapter 1 provided the background, significance, and introduced the research 

questions.  

2. Chapter 2 covered the review of literature pertaining to abstract thinking, systems 

analysis and design, systems thinking, and UML along with their importance.  

3. Chapter 3 provided a detailed over of the theoretical framework used as part of this 

research study.  

4. Chapter 4 discussed the methodology employed in this study. This chapter contained a 

detailed discussion of the mixed methods approach taken for this study. 

5. Chapters 5 detailed the results of the quantitative strand of this research study. 

6. Chapter 6 detailed the results of the qualitative strand of this research study. 

7. Chapter 7 discussed the results of both strands in the context of literature and details 

the implications. 

8. Chapter 8 contained the conclusions of the study, the limitations, and recommendations 

for future research. 

1.7 Summary 

This chapter introduced the research study, including background, significance, and research 

questions. This chapter also provided an outline of the organization of the document. The next 
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chapter covered the review of literature and explored the areas of abstract thinking, systems 

analysis and design, systems thinking, and UML.   
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CHAPTER 2. REVIEW OF LITERATURE 

This chapter provided an overview of the literature pertaining to software modeling, 

abstract thinking, systems thinking, and unified modeling language (UML). The chapter 

discussed the importance of each term and existing work done in the area. 

2.1 Software Modeling 

System models can be used to describe the requirements of the software system. Models 

can also be used to remove or abstract irrelevant details that are not integral to the 

implementation of a potential solution (Engels & Groenewegen, 2000). A software architecture 

consists of interrelated components that are organized to focus on different views of the system, 

in effect serving as blueprints during the software development process (Eriksson, Börstler, & 

Borg, 2005; Mattsson, Fitzgerald, Lundell, & Lings, 2012; Robal, Viies, & Kruus, 2002). 

Software architecture has non-trivial effects on the understanding and maintenance of a software 

system (Bass et al., 2003). 

In the context of software development, abstract systems modeling has its roots in the 

1970s. They have been employed to ensure internal consistency of data and behaviors, as well as 

to bring about better alignment between the software solution and the real-world domain (Engels 

& Groenewegen, 2000). While models have been used primarily to describe software 

architecture, they can also describe business processes and other frameworks. (Larsen, 1999).  

The quality of an information system is often determined early in the software development 

process specifically during conceptual modeling and requirements specification (Queralt & 

Teniente, 2012). Furthermore, errors made during requirements specification and conceptual 

modeling permeate through the system as it is developed, thus making them more difficult and 

expensive to fix compared to those errors made during implementation. Software development 

often employs an approach referred to as model-driven engineering where models are often 

“combined, refined, translated, and integrated” (Balaban & Maraee, 2013, p.24).  

An example of software modeling is use-case modeling. Use-case modeling is an approach 

towards requirements engineering that involves describing the functional requirements of a 

system through either narrative or graphical means (Whitten & Bentley, 2007). Use case 



 

18 

narratives (Appendix B - Use Case Narrative Template) are used to detail the typical course of 

events that the system takes and then the alternate course of events that the system follows based 

on some predefined criteria. The alternate courses of events detail the system response for 

specific inputs that are not handled by the typical course of events. For example, in the use-case 

of handling user logins, a typical event is to validate the username and password of a user. An 

alternate course for this scenario will detail the steps for the system to follow if the user enters an 

invalid username or password. A system developed based on detailed use case narratives will be 

capable of handling diverse inputs with a degree of coherency and reliability. 

In education, software modeling is viewed as an essential skill and as being necessary to 

provide a balanced education in the discipline of software engineering (Tamai, 2005). Software 

modeling allows students to be reflexive in their learning as they design and develop software 

solutions to solve a problem (Boustedt, 2012). It has been shown that the software modeling 

through modeling tools directly influence how students develop and utilize models (Burgueño, 

Vallecillo, & Gogolla, 2018). It must be noted that while students, in general, are able to 

construct and understand different views of an information system, they often do not understand 

the relationships between them (Burgueño, Vallecillo, & Gogolla, 2018). Teaching modeling is 

essentially the same as teaching abstraction because modeling requires learners to ignore 

irrelevant details while capturing properties and structure that are crucial to the design of the 

solution (Tamai, 2005). The literature ties software modeling to the construct of abstract thinking 

or abstraction. 

2.2 Abstract Thinking 

Abstract thinking or abstraction is often used interchangeably and has many different 

operational definitions across literature depending on the context in which it is viewed 

(Zehetmeier et al., 2019). Abstract thinking in general involves determining what details need to 

be focused on and what details can be ignored, and it can be applied at multiple levels (Hadar & 

Hadar, 2006; Kramer, 2007; Zehetmeier et al., 2019). Abstraction plays a key role in solving 

computing-related problems (Devlin, 2003; Kramer, 2007) and abstraction ability has been 

identified as integral to the software engineering process (Ghezzi, Jazayeri, & Mandrioli, 2002). 

Abstraction can involve drawing generalizations after removing unnecessary details (Kramer, 

2007; Hill, Houle, Merritt, & Stix, 2008). Proficiency in abstract modeling is essential to all 
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engineering disciplines as engineers are often required to “design, build, and reason about formal 

abstractions” (Devlin, 2003, p. 38). Abstraction skills also involve the ability to modify existing 

abstractions and create new abstractions (Bennedsen & Caspersen, 2008).  Abstract thinking is 

especially important in the realm of systems analysis and design because it allows for 

constructing models that map to real-world constructs (Devlin, 2003).  

2.2.1 Abstract Thinking in Systems Analysis and Design 

Systems Analysis and Design refers to the methodologies used to describe existing real-

world systems or those systems that have not been implemented yet (Wand and Weber, 1993). 

The analysis phase focuses on identifying the high-level functionality of a system and potential 

users of the system. The design phase determines how the system will operate and provides 

detailed specifications for the system architecture, user interfaces, database etc. (Dennis, Wixom, 

& Tegarden, 2020). This is often accomplished through models that are not only used for 

describing the requirements of the software system, but to also strip away or abstract irrelevant 

details that are not necessary for the potential implementation of the solution while highlighting 

those important to it (Engels & Groenewegen, 2000; Rijke, Bollen, Eysink, & Tolboom, 2018). 

In this manner, abstraction is responsible for converting something the real-world and concrete 

domain into a model that can then be mapped to a program in a specific programming language 

(Kramer, 2007). Systems analysis and design requires that various aspects of an information 

system be modeled such as the structural, behavioral, and functional aspects (Siau & Rossi, 

2011; Dennis, Wixom, & Tegarden, 2020). Abstraction skills are essential in the construction of 

not just these models, but the designs, and implementations that are fit for the specific purpose at 

hand. Abstract thinking is also necessary for reasoning about abstractions in formal models or 

programs (Kramer, 2007) and it can be used for decomposing problems (Nguyen & Wong, 

2001). Any kind of visualization that represents programming code is an abstraction (Engels & 

Groenewegen, 2000) and abstract models can be used to verify code (Clarke, Grumberg, & 

Long, 1994).  

Figure 2.1 illustrates how abstraction is used to translate details from the problem space to 

the solution space while removing details that irrelevant to the solution.  
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Figure 2.1. Illustration of abstraction 

2.2.2 Characterizing and Measuring Abstraction 

While literature generally comes to the consensus that there is value in not just teaching 

abstract thinking (Böttcher, Schlierkamp, Thurner, & Zehetmeier, 2016; Hill, Houle, Merritt, & 

Stix, 2008; Koppleman & van Dijk, 2010) but also in testing and measuring the abstraction 

ability possessed by learners (Hill et al., 2008; Kramer, 2007). The reality is that there are limited 

ways to test or measure abstract thinking reliably especially in the realm of information 

technology or modeling information systems (Kramer, 2007). This is exacerbated by the “general 

lack of explicit characterization and addressing of abstraction not to mention development of 

abstraction as a competence, the teaching and learning of abstraction ability” (Bennedsen & 

Caspersen, 2008, pg. 23). However, exploration of the literature revealed a few studies that 

characterized and operationalized abstract thinking. 

In the realm of mathematics education, abstraction level is characterized as being 

dependent upon the complexity of the concept and the notion of process-object duality. Process-

object duality refers to how relationships between objects or operations performed on objects are 

considered to be objects at a higher level of abstraction (Tall & Thomas, 2002). The field of 

computer science characterizes abstraction in two different ways: i) data abstraction – separating 

the implementation details from the logical properties of the data; and ii) procedural abstraction – 

separating the implementation details from the logical properties of a procedure (Walker, 1996).  
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Data abstraction involves the separation of behavior from implementation which allows easier 

modification and maintenance of code (Liskov, 1988). Once data abstraction is implemented, a 

set of objects can only be modified by or manipulated by fixed operations. Procedural abstraction 

refers to how programs can call or invoke a specific procedure to complete a task without having 

to care about the implementation of the function or procedure (Liskov, 1988). Procedural 

abstraction and data abstraction allow for the implementation of APIs which aid a programmer in 

developing software without necessarily being aware of specific implementation details of the 

data or procedure (Wing, 2008). The use of procedural or data abstraction allows for the 

programmer to remove oneself from the implementation details of objects or functions and focus 

on problem-solving. Perrenet (2010) offered a four-level view of describing algorithm 

abstraction, illustrated in Figure 2.2. The problem level is the highest level of abstraction where 

the algorithm is viewed as a black box, which takes an input and provides an output. This level 

of abstraction is best used for algorithm selection. At the object level, an algorithm is not 

associated with a specific programming language. Data abstraction is performed at this level and 

this allows for data structures and other representations of data to be changed without the 

affecting programs that use the data (Liskov, 1988). At the program level, an algorithm is viewed 

as a process and is associated with a specific programming language. Procedural abstraction is 

performed at this level where in a procedure or function call is used to accomplish a task. 

Effectively, the lines of code that performs the procedure call will be replaced by the procedure 

body (Morgan, 1988). The execution level is the lowest level of abstraction and provides the 

most specific implementation details. The study indicated that abstract thinking skills can be 

developed, and feedback is essential to the process. Higher levels of abstraction ability are 

usually associated with those who have attained an expertise in the area. Software models also 

serve the purpose of raising the level of abstraction involved in software development taking it 

from the lower levels such as execution to the program, object, or problem level (Mattsson, 

Fitzgerald, Lundell, & Lings, 2012). Object-oriented programming also necessitates a higher 

level of abstraction compared to procedural programming because of the data abstraction 

involved (Liskov, 1988; Sprague, & Schahczenski, 2002). 
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Figure 2.2. Algorithm abstraction levels 

Studies conducted in the areas of computer science and object-oriented programming 

characterized abstraction ability as a general skill that is associated with the cognitive 

development of a person (Or-Bach & Lavy, 2004; Bennedsen & Caspersen, 2008). A theory of 

cognitive development (Adey & Shayer, 2006) defines eight stages of cognitive development 

ranging from Pre-Operational at the earliest stages to Formal generalization at the most advanced 

stages. There is a positive correlation between abstraction ability and age (Rijke, Bollen, Eysink, 

& Tolboom, 2018) indicating that one’s abstraction ability is linked to their cognitive 

development which in turn is linked to one’s age. Most undergraduate learners are at the Early 

Formal or Mature Formal levels of cognitive development with the implication being that they 

are capable of handling multiple variables and the relationships between them. It is also worth 

noting that studies have connected bilingualism to improved abstraction ability in the context of 

symbol mathematics (Mielicki, Kacinik, & Wiley, 2017). The study by Bennedsen and 

Caspersen (2008) sought to identify the relationship between abstraction ability - as 

operationalized by Adey and Shayer’s theory of cognitive development, and performance in 

computer science. The computer science course in question focused on introducing learners to 

object-oriented programming. The data from 263 Computer Science students did not support the 

hypothesis that abstraction ability predicted performance in terms of academic achievement. The 

results were, in part, explained by the course placing an emphasis on coding as opposed to 

design. Coding or programming requires individuals to traverse from higher levels of abstraction 

1 • Execution level

2 • Program level

3 • Object level

4 • Problem level
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to lower levels to implement the solution in a chosen programming language, often having to 

think at the execution, program, or object level (Perrenet, 2010). The introductory programming 

course in question may have also placed limited cognitive demands on the students since the 

goals of the course revolves around exposing students to programming concepts and conceptual 

modeling in object-oriented programming. 

2.2.3 Summary 

While the literature is vast about the importance of abstract thinking or abstraction, there is 

little work done regarding the formal testing of abstract thinking or abstraction skills specifically 

in the context of software modeling (Kramer, 2007). There are no pre-existing rubrics that can be 

used to measure abstract thinking in the context of software modeling. This has theoretical and 

methodological implications on the proposed study which focuses on characterizing student 

proficiency in software modeling in terms of functions, structures, and behaviors. The theoretical 

implications are centered around the two complimentary aspects of abstraction which involves 

stripping away irrelevant details as well as drawing generalizations (Hill, Houle, Merritt, & Stix, 

2008; Kramer, 2007; Wing, 2008). There is no standard approach for characterizing or 

measuring either component of abstraction. The details that are to be stripped away or deemed 

irrelevant will differ from one view to another and this necessitates the development of rubrics to 

assess abstraction. The methodological implications on the study center around determining how 

to measure abstraction proficiency in the context of software modeling. 

2.3 Systems Thinking 

While abstract thinking is generally characterized as the process of removing unnecessary 

details, it is not focused on recognizing connections between different components. Systems 

thinking is broadly defined as the ability to see the interrelationships of components in a complex 

system (Senge, 1990; Stearman, 2000). Systems thinking or the systems approach forces a 

review of the relationship of various subsystems in a project (Brewer & Dittman, 2018). Systems 

thinking has also been defined as an approach towards integrating “…people, purpose, process 

and performance because it is a framework for seeing and working with the whole(s), rather than 

only the individual part, and for seeing the inter-relationships between parts…” (Godfrey, 
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Deakin Crick, & Huang, 2014, p.113). This also allows practitioners of systems thinking to 

perceive possible consequences of changes made to one part of a system in terms of how it can 

affect other parts of the system or the broader environment (Wolstenholme, 2003).  

Systems thinking has its origins in systems theory (Von Bertanlanffy, 1972) which stated 

that individual parts and processes cannot completely explain a specific phenomenon within a 

complex system (Von Bertanlanffy, 1972). System theory further stated that systems generally 

have a defined boundary and can be composed of components that interact with one-another 

achieve certain functions. These statements were made with respect to biological systems where 

it takes a coordination of individual parts and processes to enable certain phenomena. Since the 

1960s, systems approaches derived from systems theory have been employed in numerous 

disciplines. Systems thinking has been identified as an essential skill necessary to solve complex 

and interdependent problems (Grohs et al., 2018), especially in disciplines like engineering 

(Lammi, 2011) and biology (Boersma, Waarlo, & Klaassen, 2011). The Scientific Thinking and 

Integrative Reasoning Skills (STIRS) framework, developed by the Association of American 

Colleges and Universities (AAC&U), advocates for systems analysis and systems approaches to 

be included as part of curriculum to equip learners with the skills to analyze complex systems 

and the interactions between them (Riegelman, 2016). Systems thinking approaches also help 

students, in the context of engineering, to discover the functions or purposes of a system and 

explain how these functions are achieved through different behaviors (Lammi, 2011). However, 

it must be noted that the skillset required to develop a systems architecture “…can not be 

achieved through rote learning or the cognitive application of pre-defined knowledge…” 

(Godfrey, Deakin Crick, & Huang, 2014, p.112). Learners must think critically to uncover 

knowledge that can be applied to a specific system. Therefore, the purpose of teaching systems 

thinking “…is to achieve competence rather than to acquire specialized subject knowledge…” 

(Godfrey, Deakin Crick, & Huang, 2014, p.112). 

Systems thinking is also considered important in the space of design where designers are 

expected to have “…a special holistic overview spanning from technical, via socio-cultural 

aspects to economic aspects” (Sevaldson, 2011, p.3). Systems thinking enables designers to 

tackle complexity and deal with “wicked problems”. Practicing systems thinking also allows 

designers to respond to changes while also increasing their understanding of frameworks specific 

to each user or client and the technology involved. Unfortunately, despite its importance systems 
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thinking is not widely spread in the space of design and there is no uniform practice of systems 

thinking that has been developed (Sevaldson, 2011). System thinking also plays an important 

role in making management decisions as it forces decisions to be made while considering often 

conflicting interests and values (Ulrich, 1994) with the assertion being that design improvement 

is difficult if not impossible without holistic understanding of the system. 

While there are a few ways to define systems thinking and its importance is clear, research 

into systems thinking, especially in the context of information systems, is sparse and this can be 

at least partially attributed to how the construct does not fit well with the typical positivist 

research done in the field (Alter, 2004). Checkland (1988) argues that the field of information 

systems has largely ignored the concept of systems thinking even through its various iterations as 

systematic thinking and systemic thinking. This can be explained by a preference for tool-

focused thinking and the difficulty of defining systems thinking in practical terms (Alter, 2004). 

Systems thinking is also difficult to apply in real-world projects due to the often ill-structured 

nature of problems faced during their execution (Grohs et al., 2018; Yeo, 1993).  

The use of systems thinking has also been associated with more positive outcomes in IT 

implementations, especially in healthcare (Rothschild et al., 2005). The definitions of systems 

thinking also suggest that it is essential for developing software systems by taking into 

consideration how different modules interact with another. Therefore, it is important that models 

are consistent and align with one-another, which is effectively systems thinking in practice. 

These relationships between these modules are also often captured in software models using 

UML (Boustedt, 2012; Dobing & Parsons, 2006; Eriksson, Börstler, & Borg, 2005; Hadar & 

Hadar, 2006; Robal, Viies, & Kruus, 2002). However, it must be noted that students do 

encounter a degree of difficulty in making connections between different UML diagrams 

(Burgueño, Vallecillo, & Gogolla, 2018). Unfortunately, literature pertaining to the measurement 

of systems thinking in the context of information systems education is sparse. This has 

theoretical and methodological implications on the proposed study which focuses on 

characterizing student proficiency in software modeling in terms of functions, structures, and 

behaviors. The theoretical implications pertain to how systems thinking should be 

operationalized in the context of software modeling and the methodological implications are 

centered around how systems thinking can be measured. 
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2.4 Characteristics of Object-Oriented Systems Analysis and Design 

When developing software systems, two commonly used paradigms are that of structured 

development – centered around function and data – and object-oriented development (de 

Champeaux et al., 1990). The structured approach treats data as containers of information that 

are accessed and manipulated by functions. However, the object-oriented approach involves 

mapping real-world entities to objects where each object contains information and exhibit 

behaviors. Object-oriented analysis involves defining objects along with their attributes and 

behaviors based on applying abstraction to real-world entities. This requires both static and 

dynamic requirements to be captured (Hausmann, Heckel, & Taentzer, 2002). 

The unified process is an object-oriented analysis methodology that possesses two major 

characteristics when designing systems and formally documenting requirements: (i) Use-case 

driven, and (ii) Architecture-centric (Dennis, Wixom, & Teagarden, 2020). The use-case driven 

analysis approach (UCDA), as the name implies, is centered around use cases where each use 

case is defined as “…a system usage scenario characteristic of a specific actor” (Regnell, 

Kimbler, & Wesslen, 1995, p.1). An actor refers to a group of users that interact with the system 

in a similar manner. The focus of UCDA is on the analysis and identification of use cases which 

helps reduce the complexity of requirement analysis. However, one main drawback of UCDA is 

that use cases are often simple in nature and only focus on one activity at a time. The generation 

of a loose collection of use cases that does not necessarily capture the holistic requirements of 

the system (Regnell, Kimbler, & Wesslen, 1995). There is also ambiguity in terms of how user 

cases should be described or what kind of events – internal vs external – should be focused on. 

By also focusing on the architecture-centric approach, the analysis and design process also takes 

into consideration overall system functionality as well as non-functional requirements, referred 

to as quality attributes, such as performance, scalability, and maintainability (Sangwan et al., 

2008). The architecture centric approach first identifies the most important systemic properties 

and how they are linked to business goals by proposing three primary views a given system: the 

functional view, the structural view, and the behavioral view. The software architecture drives 

the specification, development, and documentation of the system. An integrated approach would 

combine the analysis and modeling activities associated with the use-case driven approach 

alongside the architecture-centric approach of determining quality attributes of the system 

(Sangwan et al., 2008). The Rational Unified Process (RUP) is an iterative object-oriented 
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development framework that encompasses architecture creation as well as elaborate design, 

implementation, and testing (Kazman et al., 2004). Though RUP is often described as being use-

case driven, it advocates for describing software systems using multiple interconnected views 

(Eriksson, Börstler, & Borg, 2005; Kazman et al., 2004; Robal, Viies, & Kruus, 2002). RUP also 

involves continuous refinement and testing in an iterative and incremental manner. Specifically, 

RUP involves the creation of a logical view that is focused on describing end-user functionality 

and a process view that describes how the functionality is implemented. This in turn necessitates 

the use of models to describe: (i) the functionality of the information system as viewed by the 

end user – functional view; (ii) the objects along with their corresponding attributes, behaviors, 

and relationships that implement the functionality – structural view; and iii) how the different 

objects interact with one-another, through messages and responses, to achieve the required 

functionality – behavioral view. Unified Modeling Language (UML) provides a common 

vocabulary and a set of diagrams to describe and analyze systems. 

2.5 Unified Modeling Language 

Unified Modeling Language (UML) was initiated and promoted by the industry to 

standardize the process of object-oriented conceptual modeling during software development 

(Aljumaily, Caudra, & Laefer, 2019; Engels and Groenewegen, 2000). UML, as its name 

implies, is a “general purpose modeling language” (Peneva, Ivanov, & Tuparov, 2006) that is not 

limited to modeling information systems but can be extended to visualize business processes as 

well. UML has its origins in the unification of Object Modeling Technique (OMT) pioneered by 

Grady Booch and Jim Rumbaugh with the Object-Oriented Software Engineering approach 

pioneered by Ivar Jacobson (Booch, 1999). UML as it is known today was direct successor to 

these methods and it underwent a standardization process under the supervision of the Object 

Management Group (Fowler, 2004). 

UML is used in software engineering education (Unkelos-Shpigel, Sheidin, & Kupfer, 

2019) and has different diagrams that are used to be model different aspects of the information 

system, thereby providing different views of the information system (Balaban & Maraee, 2013; 

Boustedt, 2012; Dobing & Parsons, 2006). Therefore, UML can also be described as a visual 

language consisting of graphical symbols (Moody & van Hillegersberg, 2008). These graphical 

symbols are governed by a set of rules that are different for each diagram and the rules determine 
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how these symbols can be combined.  Through these different diagrams, UML also facilitates 

effective planning and visual communication (Ho-Quang et al., 2017). Using UML also allows to 

developers and analysts to create barriers of abstraction so that they can operate at the most 

appropriate level of abstraction for the specific stage of development that they are in. This in turn 

facilitates easier implementation of abstraction during software development (Hendrix et al., 

2000). 

UML in total provides 14 diagrams that can be used model information systems. However, 

some diagrams are used more than others (Ciccozzi, Malavolta, & Selic, 2019). Among the 14 

diagrams offered by UML, activity diagrams, class diagrams and sequence diagrams are the most 

used widely in industry. Unfortunately, they are either poorly understood or are often incorrectly 

used (Dobing & Parsons, 2006; Peneva, Ivanov, & Tuparov, 2006). The use of these diagrams is 

driven by existing precedent for capturing functional, structural, and behavioral details of an 

information system using models (Dennis, Wixom, & Tegarden, 2020). The UML diagrams 

under consideration for this study is discussed below. 

2.5.1 Activity Diagram 

An activity diagram is a directed graph consisting of nodes and edges, and it can be used to 

represent the flow of control in an information system for a specific high-level function 

performed by the system. They are inspired by flowcharts can be used to specify the behavior of 

use cases in information systems (Eshuis, 2006). Table 2.1 details the different symbols typically 

used in an activity diagram (Dennis, Wixom, & Tegarden, 2020). 
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Table 2.1: Activity diagram symbols 

Symbol Symbol Name Description 

 

Start node A solid circle represents the start 

point for an activity diagram 

 

Activity An activity or action refers to any 

step performed by the user or 

system and is represented by a 

rectangle with rounded corners 

 

Action flow Action flows connect one activity 

to another and is represented by an 

arrow 

 

Decision A decision is represented by a 

diamond and has one incoming 

action flow. The diamond is also 

labeled. A decision results in 

branching action flows that are 

labeled. with alternate paths.  

 

Synchronization 

bars 

Synchronization bars consist of a 

fork node and a join node. A fork 

node splits one action flow into 

multiple concurrent flows. A join 

node follows a fork node to join 

multiple concurrent flows into a 

single action flow. 

 

Merge A merge node brings together 

multiple control flows that are not 

concurrent.  

 

Final node A solid circle nested inside another 

circle represents the end point of 

an activity diagram. 

 

Swimlanes Swimlanes are used to group 

related activities. 
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The different symbols can be used together to depict the overall flow of a specific 

functionality offered by an information system. Figure 2.3 illustrates an activity diagram that 

models the functionality of a ticket reservation system. Swimlanes allow for the modeling of 

specific actions performed by the user and system. Activities are typically labeled in the format 

“verb-object” with each activity consisting of only one verb. Decision nodes are used to 

implement error-handling or unexpected scenarios such as the user selecting a travel date in the 

past or flights being unavailable. Merge nodes appear identical to decision nodes in that they are 

also represented by diamonds, but it differs from a decision node in terms of number of incoming 

action flows. Decision nodes have a single incoming action flow with two outgoing branches 

whereas merge nodes have multiple incoming actions flows and a single outgoing action flow. 
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Figure 2.3. Activity diagram example 
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2.5.2 Class diagram 

Class diagrams represent the objects involved in implementing a specific functionality 

offered by the information system. A class diagram consists of classes, associations, and a set of 

integrity constraints defining the cardinality of the associations between classes (Queralt & 

Teniente, 2012). It captures the various attributes and behaviors of each object and how they are 

related to one-another. Class diagrams are described as the most important of all UML diagrams 

(Moody & van Hillegersberg, 2008). Table 2.2 details the different symbols typically used in a 

class diagram (Dennis, Wixom, & Tegarden, 2020). 

Table 2.2: Class diagram symbols 

Symbol Symbol Name Description 

 

Class Represents objects consisting of 

attributes and behaviors. Attributes are 

listed in the second partition below the 

name and methods are listed in the 

third partition. Attributes and behaviors 

have a visibility associated with them 

which determines how they can be 

accessed. The minus sign denotes that 

an attribute or behavior is private, and 

it can only be accessed within the class. 

The plus sign denotes that an attribute 

or behavior is public, and it can be 

accessed outside the class. A class can 

also show the specific data types of 

each attribute and the return type of 

each behavior. 

 

 

Inheritance A relationship between two classes 

where a sub-class or child-class tends 

to derive attributes and behaviors from 

a super-class or parent-class. 

 

 

Association Associations represent static 

relationships between classes and are 

represented by solid lines. Associations 

have a multiplicity denoting the 

number of instances of each class on 

either side of a relationship (one-to-

one, one-to-many etc.) 
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Table 2.2 continued 

 

Aggregation An aggregation denotes a relationship 

between two classes where one class is 

a part of the other class, but the two 

classes are not dependent on each 

other. A hollow diamond is used to 

represent this. 

 

Composition A composition relationship is a special 

type of aggregation where the part 

class is destroyed when the whole class 

is destroyed. It is represented using a 

solid diamond. 

 

The different symbols can be used together to depict the static structure of an information 

system. Figure 2.4 illustrates the static structure of an airline ticket reservation system. This class 

diagram depicts the objects along with their corresponding attributes, behaviors, and the 

relationships between the objects. This static structure enables the information system to offer 

the different functionalities that it has.  
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Figure 2.4. Class diagram example. 

2.5.3 Sequence diagram 

Sequence diagrams are used to capture the interactions between the different objects 

involved in implementing a certain functionality offered by the information system (Dennis, 

Wixom, & Tegarden, 2020). Sequence diagrams allow for capturing interactions between the 

user and system as well as the interactions between the various sub-systems that exist within the 

system. While activity diagrams capture the overall flow of control in an information system – 

including branching flows of control, sequence diagrams typically only detail the interactions 

between active objects for a specific function and outcome with an option to include the 

interactions for alternate scenarios. Sequence diagrams also contain a time-component that 

represented by the vertical axis. Table 2.3 details the symbols typically used in a sequence 

diagram. 
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Table 2.3: Sequence diagram symbols 

Symbol Symbol 

Name 

Description 

 

Actor An actor refers to any entity – a 

human user or another 

information system, that 

interactions with the 

information system being 

modeled. 

 

Lifeline A lifeline depicts the lifetime of 

an object or actor. It is 

represented by rectangle 

connected to a dashed vertical 

line. 

 

Execution 

Occurrence 

Execution occurrences are 

represented by thin rectangles 

drawn on lifelines. The top and 

bottom of this rectangle depict 

the initiation and completion of 

a specific operation. 

 
Message A message defines a specific 

communication between two 

lifelines. It is represented using 

a solid arrow. 

 
Response Like a message, a response also 

defines a specific 

communication between two 

lifelines. However, a response 

is produced to pass information 

back to the origin lifeline of a 

message. 

 

The different symbols can be used together to model the various interactions that takes 

place between the structures of an information system to achieve a certain functionality. Figure 

2.5 illustrates the interactions between objects that take place for a successful airline ticket 

reservation system.  
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Figure 2.5. Sequence diagram example. 

2.6 Agile Approaches to Project Management and Scrum 

UML found widespread use in the more traditional approaches to software development 

(Santos et al., 2016). In these approaches, requirements are modeled at the start of the 

development process before implementation begins. Examples of these models include the 

waterfall model or the V-model. These approaches require that all implementation details be 

incorporated in the planning stage right at the beginning. Unfortunately, these approaches have a 

drawback in that any misunderstandings or mistakes in the plan are compounded primarily due to 

human error (Sutherland & Schwaber, 2007). Contrary to this, rapid application software 

development processes, or agile processes, involve the execution of development tasks in an 

iterative fashion. These agile processes are adaptive in nature because it allows developers to 

incorporate “late changes in the specifications” (Abrahamsson et al., 2017, p. 12). Agile 

methodologies place an emphasis on iterative and incremental development while eliciting 

customer input continuously (Sutherland & Schwaber, 2007). However, there are certain agile 

development methodologies that incorporate elements of traditional structured software 

development approaches. Methodologies such as Scrum involve the documentation of 

requirements initially instead of directly beginning with the implementation. UML can be used to 
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document, describe, and model these requirements which will allow project teams to be better 

prepared to implement the requirements in code (Santos et al., 2016). Scrum is described as an 

“…iterative and incremental approach to delivering object-oriented software” (Schwaber, 1997, 

p.2). Scrum has its origins in manufacturing, originally introduced with goal of creating usable 

results in a timeframe of weeks (Takeuchi & Nonaka, 1986). Scrum is a software development 

process that is best suited for smaller teams (Rising & Janoff, 2000). It involves planning phase 

where the team develops a preliminary architecture and during development, the architecture is 

modified as required. Development is done incrementally and iteratively in a series of phases 

called sprints where each sprint lasts anywhere from one to four weeks. Each sprint implements a 

tangible and usable product that implements at least one user interaction with the system, 

referred to as user story (Rising & Janoff, 2000). The team keeps track of all identified tasks in a 

list referred to as the backlog. A set of tasks from the backlog as selected based on priority for 

each sprint and following each sprint, the backlog is updated, and the remaining tasks are 

reprioritized. During each sprint, short daily meetings are held involving all team members to 

discuss progress made, any obstacles that were faced during development, and planned progress. 

The team is led by a Scrum master who is responsible for selecting user stories to be completed 

in a sprint, recording decisions made at Scrum meetings, facilitating communication, and 

tracking action items (Rising & Janoff, 2000). Scrum has been widely used in industry with 

many companies reporting improvements in productivity and morale following its adoption 

(Sutherland & Schwaber, 2007). 

Agile methodologies have also been used in educational settings with an accompanying 

improvement in student project success (Umphress, Hendrix, & Cross, 2002). In addition, agile 

software development using Scrum resulted in improved course perceptions in the context of an 

undergraduate software engineering capstone course (Mahnic, 2012). Further studies have 

recommended the use of agile methodologies in educational contexts citing the benefits of 

improved collaboration, equipping students with practical experience, increased productivity, 

and improved learning outcomes (Coupal & Boechler, 2005; Kamthan, 2016; Rico & Sayani, 

2009; Shukla & Williams, 2002). The relevance of agile approaches to project management and 

Scrum lies in the learning design of the course that this study is centered around and it is further 

explained in Chapter 4. 
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CHAPTER 3. THEORETICAL FRAMEWORK 

3.1 Complex Systems Reasoning 

Complex interconnected systems have become increasingly pervasive and reasoning about 

these complex systems is difficult due to the requirement of having to employ abstract thinking 

(Hmelo-Silver & Pfeffer, 2004). This difficulty in understanding complex systems can be 

explained by virtue of complex systems involving local interactions across several levels of 

organization (Ferrari & Chi, 1998). The relationships existing across these different levels in a 

complex system are not necessarily immediately obvious or intuitive (Wilenksy & Resnick, 

1999). Reasoning about complex systems faces additional barriers in the form of often invisible 

dynamic phenomena existing around more readily visible or available structures (Feltovich et al., 

1992; Hmelo, Holton, & Kolodner, 2000). A significant load is placed on working memory to 

simultaneously process all the interactions that are happening across multiple levels of a complex 

system. This can be attributed to the specifics of the mental simulation process and the inferences 

required to build a comprehensive mental model (Narayanan & Hegarty, 1998). Complex 

systems may also exhibit emergent properties or behavior that may not be fully attributed to any 

individual component or structure in the system (Wilensky & Resnick, 1999). Causality is also 

difficult to establish in the context of complex system due to the presence of numerous 

intermediate steps between the actual cause and the observed effect (Perkins & Grotzer, 2000). 

Prior knowledge can also impede reasoning about complex systems due to prevalent individual 

preferences towards centralized thinking and single causality (Wilensky & Resnick, 1999; 

Jacobson, 2001) whereas experts reasoning about complex systems often display 

“…decentralized thinking, multiple causes, and the use of stochastic and equilibration processes” 

(Hmelo-Silver & Pfeffer, 2004, p.129). 

3.2 Epistemic Forms and Games 

Literature posits several different approaches to reasoning about complex systems. One 

approach is that of epistemic forms and games (Collins & Ferguson, 1993; Sherry & Trigg, 

1996; Morrison & Collins, 1995; Shimoda & Borge, 2016). Epistemic forms refer to target 

structures that can guide inquiry often from a systems-dynamics modeling perspective (Hmelo-
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Silver & Pfeffer, 2004). Epistemic forms can be used to organize knowledge while illustrating 

the relationships between different concepts (Sherry & Trigg, 1996). Epistemic games refer to 

strategies used to analyze phenomena with the goal of filling out a specific epistemic form 

(Collins & Ferguson, 1993). They are referred to as epistemic games because the combination of 

rules, strategies, and moves associated with a specific representation is used to construct new 

knowledge. Epistemic games are reflective in nature and result in the generation of knowledge. 

They include often complex rules, constraints, and entry conditions that guide the construction of 

the epistemic form (Sherry & Trigg, 1996).  

Epistemic games can be categorized as follows: (i) Structural analysis games; (ii) 

Functional analysis games; (iii) Process analysis games (Collins & Ferguson, 1993; Sherry & 

Trigg, 1996). Structure analysis games are often described as the simplest or easiest of the three 

categories of games to implement and examples include but are not limited to primitive-elements 

analysis or spatial decomposition (Collins & Ferguson, 1993; Sherry & Trigg, 1996). Spatial 

decomposition for instance involves breaking down an entity into non-overlapping components 

while specifying the relationships between these parts. Constraints for this game includes 

specifying the connections between components and the nature of these connections. The goal of 

primitive-elements analysis is to describe large phenomena as being composed of primitive 

elements combining to achieve it (Collins & Ferguson, 1993). 

 Functional analysis games are used to determine “…causal or functional structures that 

relate elements in a system” (Collins & Ferguson, 1993, p. 33). Examples of functional analysis 

games include: 

• Critical-event analysis: Focuses on the series of events that led to a specific critical 

event or the consequences the follow a critical event once it has occurred. 

• Cause-and-effect analysis: It is a variant of critical-event analysis that draws a 

distinction between triggers (also referred to as causes) and preconditions – some 

condition that must be true for an effect to occur. An effect can also serve as a 

trigger for one or more new effects. 

• Problem-centered analysis: Breaks down an event stream into problems and actions 

required to solve those specific problems. These solutions result in primary and 

secondary effects with secondary effects often being new problems that require 

solutions. 
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• Form and function analysis: Distinguishes between the form of an object and its 

functionality or purpose. 

Process analysis games are used to describe the internal behavior of a system (Sherry & 

Trings, 1996). These games, and the forms associated with it, are used to analyze dynamic 

phenomena (Collins & Ferguson, 1993). Process analysis games are described as being the most 

complex and difficult. Systems-dynamics models consist of basic elements that are connected by 

positive or negative links occasionally with feedback loops existing within the system. Situation-

action models are characterized by rules that model action to be taken based on conditions being 

satisfied. Situations are influenced by environmental changes as well as by actions taken by 

individual agents. 

These three categories align with elaboration theory which advocates for structuring 

knowledge in terms of concepts, procedures, and theories (Reigeluth & Stein, 1983; Reigeluth, 

2018). These three knowledge structures – conceptual, procedural, and theoretical – answer the 

questions of what a system is, how a system works, and why a system works the way it does 

(Sherry & Trings, 1996). Epistemic forms and games guide inquiry by providing the inquirer 

with constraints and context. Mastering epistemic games provides one with the ability use 

various epistemic forms to make sense of various phenomena (Collins & Ferguson, 1993). This 

introduces the concept of epistemic fluency that is defined as “…the ability to identify and use 

different ways of knowing, to understand their different forms of expression and evaluation, and 

to take the perspective of others who are operating within a different epistemic framework” 

(Morrison & Collins, 1995, p. 40). Epistemic fluency is the ability to organize knowledge into 

different patterns while making sense of a problem in different ways (Sherry & Trigg, 1996). 

Epistemic fluency develops through “…social interactions with other members of a community 

of practice, including those who are at least slightly more expert at playing these game” 

(Morrison & Collins, 1995, p. 43). Those who exhibit epistemic fluency will be able to use 

different epistemic games to determine the function of system, the structure of the system in 

terms of its interrelated components, and the behaviors or processes of the system in terms of 

how the structures accomplish the function (Collins & Ferguson, 1993; Morrison & Collins, 

1995). 

Literature widely demonstrates that experts in various domains organize their knowledge 

based on deep principles of their discipline (Chi, Feltovich, & Glaser, 1981). One approach 
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towards organizing knowledge is in terms of visible structures of the system, however this has 

the drawback of not describing or modeling underlying functions (Perkins & Grotzer, 2000). 

Reasoning about complex systems requires individuals to create a network of concepts pertaining 

to the domain in question which can then be used to represent the micro and macro level 

interrelationships among its various structures (Hmelo-Silver & Pfeffer, 2004). The inquiry into 

epistemic forms and games provided precedent for employing structural analysis, functional 

analysis, and process analysis to describe and understand complex systems (Collins & Ferguson, 

1993; Sherry & Trigg, 1996; Morrison & Collins, 1995; Shimoda & Borge, 2016). The 

Structure-Behavior-Function theory accounts for the dynamic nature of the numerous 

interconnected levels that exist in complex systems (Hmelo-Silver & Pfeffer, 2004) and align 

well with the structural, functional, and process analyses detailed earlier. The SBF framework 

and its application in software modeling has been discussed below. 

3.3 SBF Framework 

The SBF framework, sometimes denoted as Functions-Behaviors-Structures (FBS), has its 

roots in cognitive science and has been successfully applied to many diverse domains (Gero, 

1990; Gero & McNeill, 1998; Gero & Kannengiesser, 2004; Hmelo-Silver & Pfeffer, 2004; 

Lammi, 2011). The SBF framework aligns well with the epistemic games of structural, process, 

and behavioral analyses (Collins & Ferguson, 1993) as well as with existing approaches for 

modeling information systems using functional, structural, and behavioral views (Dennis, 

Wixom, & Tegarden, 2020). The use of multiple interconnected views to describe software 

systems was popularized by the Rational Unified Process (RUP). RUP advocates for the use of a 

logical view that is focused on describing end-user functionality and a process view that 

describes how the functionality is implemented (Eriksson, Börstler, & Borg, 2005; Robal, Viies, 

& Kruus, 2002), which necessitates the use of models to describe: i) the functionality of the 

information system as viewed by the end user – functional view; ii) the objects along with their 

corresponding attributes and behaviors that implement the functionality – structural view; and iii) 

how the different objects interact with one-another to achieve the required functionality. 

This approach to information systems development aligns well with the SBF framework 

and the SBF framework can be used to reason about the functional roles of structural elements in 

complex systems (Hmelo-Silver & Pfeffer, 2004). This can be done by describing the purpose of 
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individual subcomponents of a system and how they work together to bring about a certain 

functionality. Structures can refer to the artefacts or objects themselves and the relationships 

between them (Krutchen, 2005) or to individual elements of a system (Hmelo-Silver & Pfeffer, 

2004). Functions can refer to the purpose of a design artefact or the exact reason for why specific 

components exist. Behaviors describe the actions or processes of an artefact or object and how 

the structures of the system interact to implement a certain function. The SBF framework has 

been used successfully in interactive learning environments to create knowledge representations 

of complex systems (Vattam et al., 2001). It must be noted that learners tended to struggle with 

differentiating between behaviors and functions of a system because the functional aspects focus 

on often tangible outcomes while behavioral aspects typically include intrinsic mechanisms that 

are often difficult to represent (Hmelo-Silver & Pfeffer, 2004; Lammi, 2011; Vattam et al., 

2011). Also noteworthy was how functional aspects of a system are often implicit and difficult 

for novices to infer (Chi, De Leeuw, Chiu, & Lavancher, 1994). Structures of complex systems 

are most readily observed by novices or beginners. However, experts typically use behaviors and 

functions to organize their knowledge pertaining to a specific system. This could be explained by 

how the overall functionality of a system is accomplished by combining the different behaviors 

and structures. This discrepancy between experts and novices could also be attributed to how 

novices may encounter difficult in connecting phenomena observed at microlevel to those 

observed at a macrolevel or vice-versa (Penner, 2000). 

 The SBF framework has been successfully used in physics, medicine, engineering and 

history (Hmelo-Silver & Pfeffer, 2004; Lammi, 2011) but it has not been applied in information 

systems context. Given that the SBF framework has been used for complex systems and 

information systems are modeled in terms of functions, structures, and behaviors, there is reason 

to believe that the SBF framework can be applied successfully in the context of software 

modeling and information systems. It can be posited that the UML serves as the epistemic form 

and the SBF framework serves as the epistemic game for performing structural, process, and 

functional analysis of information systems. Information systems can be complex and require 

those developing them to understand the various relationships and connections between the 

micro and macro elements of the system. Similar to biological systems, the functionality of 

information systems tends to be implicit and there are interactions between the different 

components of the system. Thus, understanding the structures, behaviors, and functions of an 
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information system becomes an integral part of software modeling and indirectly an important 

part of the software development process. 

3.4 Implications 

For this study, the UML diagrams were the epistemic forms that guide the inquiry and 

description of an information system. Use-case narratives and UML activity diagrams can be 

used to capture the interactions between the user and the information system. This aligns with the 

epistemic game of functional analysis. The use-case narratives and activity diagrams serve as the 

epistemic form to capture the functional aspects of the information system. Learners had to 

employ the epistemic games of critical-event analysis, cause-and-effect analysis, and problem-

centered analysis to determine the triggers and preconditions for specific use cases while 

delineating how the system and user will interact in various scenarios. UML class diagrams can 

be used to represent the objects of the system which aligns with the epistemic game of structural 

analysis. Class diagrams serve as the epistemic form to capture the structural aspects of the 

information system. Learners had to employ spatial decomposition and primitive-element 

analysis to determine what the objects are and the nature of the relationships between them for 

the system given in the specific problem statement. UML sequence diagrams can be used to 

capture the interactions between objects of an information system which aligns with the 

epistemic game of process analysis. Sequence diagrams serve as the epistemic form to capture 

the behavioral aspects of the information system. The internal behavior of the information 

system can be described by capturing the messages and responses between objects. To 

proficiently model functional, structural, and behavioral aspects of an information system, 

learners will have to display a high degree of epistemic fluency. This UML diagrams were 

evaluated quantitatively, and the details were discussed in Section 4.4.5. The epistemic games of 

functional analysis, structural analysis, and process analysis were analyzed qualitatively to 

determine how participants employed these games. 

The implications of the theoretical framework influenced how functions, structures and 

behaviors were operationalized in the context of information systems and how UML models 

were utilized to capture these details. Table 3.1 illustrates how the UML diagrams aligned with 

each of the elements of the SBF framework and the different epistemic games (Collins & 

Ferguson, 1993; Dennis, Wixom, & Tegarden, 2020; Hmelo-Silver & Pfeffer, 2004).  
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Table 3.1: Alignment between Epistemic Games, UML Models, and SBF Constructs 

Epistemic 

Game 

SBF 

Construct 

Construct 

Definition 

UML Model 

(Epistemic 

Form) 

Study Definition 

Functional 

analysis 

Functions Specific purpose 

or services that the 

system must 

provide 

Use-Case 

Narratives and 

Activity 

Diagrams 

Flow of control between 

the user and system, and 

within the system as it 

executes a specific 

functionality. 

Structural 

analysis 

Structures Specific 

components of a 

system 

Class Diagrams Attributes and behaviors 

of each object and how 

the objects relate to one-

another. 

Process 

analysis 

Behaviors How the 

components of a 

system work 

together to achieve 

a specific purpose 

or functionality 

Sequence 

Diagrams 

The interactions between 

the different objects, in 

the form of messages and 

responses, involved in 

implementing a certain 

functionality. 
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CHAPTER 4. METHODOLOGY 

This chapter described the research design and the various procedures that were employed 

for data collection and analysis. The rationale behind the selection of the research paradigm and 

research methods were discussed. This chapter further detailed research context and participant 

details. This study was approved by institutional review board with protocol numbers 

1709019656 and IRB-2019-393. 

4.1 Research Paradigm 

Literature points to various research paradigms associated with educational research such 

as: (i) Postpositivism; (ii) Constructivism; (iii) Critical Theory; and (iv) Pragmatism. While this 

is in no way meant to be an exhaustive list, each paradigm is distinct regarding the following 

parameters (Creswell & Plano Clarke, 2018; Jones, Torres, & Arminio, 2014): 

• Ontology – the nature of reality 

• Epistemology – the relationship between the researcher and what is being researched 

• Axiology – the role of values 

• Methodology – the research process 

• Rhetoric – the language of research 

The primary consideration was the alignment of the research paradigm with the research 

area being examined – namely that of systems analysis, software modeling, abstraction, and 

systems thinking; and which paradigm would serve as the most useful lens for exploring the 

research questions of this study. Constructivism and critical theory were quickly excluded 

because of the apparent lack of alignment with the research area of information systems 

modeling. Following this, the approaches of postpositivism and pragmatism were considered due 

to alignment with the research area in terms of epistemology, axiology, and methodology. 

Ultimately, pragmatism was chosen as the most suitable lens for this study as it allows for 

adopting the approaches that work best to answer the research questions at hand. In the realm of 

systems analysis there are often multiple correct answers or solutions while not precluding the 

existence of wrong answers which aligns well the philosophical assumptions of pragmatism 

which point to the existence of a singular reality or multiple realities (Jones, Torres, & Arminio, 
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2014). Pragmatism also emphasizes the use and interpretation of data collected through multiple 

methods in manner that works best to answer the research questions that are being explored 

(Creswell & Plano Clark, 2018). 

4.2 Research Design 

Mixed methods research that combines quantitative and qualitative data has been used to 

great effect in the recent past various fields including those of education and social sciences 

(Creswell, 2014). When employing a mixed-methods design, the following four factors must be 

considered: (i) theoretical perspective; (ii) strategy priority; (iii) implementation sequence; and 

(iv) point of data integration (Terrell, 2012). Theoretical perspective refers to whether the study 

is directly or indirectly based on a theory. Priority of strategy refers to which data is considered 

to be more important in the overall context of the study or if they are to be given equal 

importance. The implementation sequence refers to the order of data collection – whether 

quantitative or qualitative data is collected first. The point of data integration refers to the exact 

point of the study where the data from the two phases are integrated and discussed. This can be 

done at collection, analysis, or interpretation (Ivankova, Creswell, & Stick, 2006; Terrell, 2012). 

At first glance, an explanatory mixed-methods approach would be best suited to accomplish the 

goals of this research (Creswell & Plano Clark, 2018). The explanatory sequential design first 

involves the collection of quantitative data. The results from the analysis of this data provides a 

general or high-level picture of the problem. The qualitative follow-up provides explanations for 

the general picture. However, this approach requires that both phases of the study be performed 

on the same sample so as to facilitate integration and this encounters pragmatic concerns related 

to subject recruitment. The same limitation applies to a triangulation design (Ivankova & 

Creswell, 2009). Adhering to any of the traditional mixed methods research designs would not be 

suitable for the goals of this study.  

An alternative to this would be adopt a multimethod or multiple methods approach that 

incorporates multiple forms of data collection with the goal of addressing the research questions 

(Anguera et al., 2018). The differences between mixed methods and multimethod research 

designs are subtle yet significant even though the terms are sometimes used interchangeably in 

literature (Stange, Crabtree, & Miller, 2006). Mixed methods approaches mandate the integration 

of quantitative and qualitative components to mix the often complementary information that they 



 

47 

carry while multimethod studies are driven by an overall research goal which is achieved by the 

use of complimentary methodologies (Anguera et al., 2018). 

 Like mixed methods studies, multimethods studies can have varying degrees of emphasis 

placed on the quantitative and qualitative aspects of the study (Anguera et al., 2018). The 

notation QUANT + QUAL indicates that both methods have equal emphasis (Creswell & Plano 

Clark, 2018). QUANT + qual indicates that the emphasis is unequal with more emphasis being 

placed on the quantitative methods whereas quant + QUAL indicates unequal emphasis with 

more emphasis being placed on qualitative methods. A triangulation design was adopted for this 

study that comprised of two distinct strands– a quantitative strand that was followed by a 

qualitative study denoted by QUANT + qual. Figure 4.1 illustrates the overall structure and 

format of the study while providing details about each step. 

 

 

 

 

The quantitative strand was centered around a sophomore level course in systems analysis 

and design methods. This approach aimed to identify the different patterns of software modeling 

proficiency displayed by learners. Details about the course were explained in Section 4.3. The 

quantitative strand involved the collection and analysis of exam-responses from the second mid-

Collection of exam 

responses consisting of UML 

models (n=97) 

Modeling case study using 

think-aloud protocol (n=6) 

Video and audio recordings 

of case study 

Summary of results from 

quantitative and qualitative 

strands 

Results discussion in relation 

to goals of the study 

 

Codes and themes 

Chronological visualization 

Time on task analysis 

Transcription of audio 

Theoretically driven 

inductive coding 

Thematic analysis 

 

Rubric development 

Scoring of exam responses  

Clustering analysis 

Correlational analysis 

Regression analysis 

Descriptive statistics 

Clusters 

Correlations between rubric 

elements (Spearman 

coefficient) 

Logistic regression model 

Figure 4.1: Flow chart for research design 
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term of this course. The qualitative strand involved participants who had completed the 

aforementioned course and were of junior or senior standing. This strand explored how learners 

utilized abstract thinking and systems thinking while constructing software models. A case study 

approach using the think-aloud protocol was utilized for the qualitative strand. Each participant 

in the qualitative strand, following the completion of all activities, was awarded an Amazon gift 

card valued at $25 as compensation for their time and inconvenience. Further details of the 

quantitative strand and qualitative strand were elaborated on in Section 4.5. Both studies 

leveraged the Structures-Behaviors-Functions (SBF) framework detailed below. 

4.3 Learning Design 

This section details the learning context of the course that the study was centered around.  

The course was designed to integrate Scrum methodology and cooperative learning. Scrum is an 

approach to product development where teams achieve goals in an iterative fashion with each 

iteration incrementally building upon the previous one. Cooperative learning was incorporated in 

this course with the goal of promoting the skills of teamwork, communication, and problem 

solving while learning the different techniques and approaches involved in conducting system 

analysis and design (Magana, Seah, & Thomas, 2017). As students analyze and design the 

system as part of their term project, they are required to create UML software models that 

capture functions, structures, and behaviors of the system. Students work in teams making using 

of the Scrum approach to iteratively develop functional prototypes. The project comprises of four 

milestones and one final deliverable for which students are to submit documentation. Each of 

these milestones were completed in increments called sprints and each sprint was delivered in a 

week. Student teams were provided feedback at the end of each sprint. The goal of the project is 

to create a functional prototype and a detailed design document as part of their team project that 

captures the “functional, structural and behavioral views of the system” (Magana, Seah and 

Thomas, 2017). While defining system requirements and developing the functional prototype, 

students will have to employ abstract thinking to identify relevant systems requirements (Ghezzi 

et al., 2002; Kramer, 2007), and use systems thinking to account for how the different 

components of the information system are connected (Brewer & Dittman, 2018) and how making 

modifications to one component will impact the others. The learners in this course are also 

provided instructional scaffolds in the form of in-class active learning activities such as 
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walkthroughs of software modeling which allows them to hone their abstract thinking and 

systems thinking skills. This is illustrated in the conjecture map shown in Figure 4.2, where 

students by engaging in the Scrum-based team project and the in-class modeling activities would 

produce UML software models that capture functions, structures, and behaviors of the system., 

which in turn should improve abstract thinking, systems thinking, and overall software modeling 

proficiency. Figure 4.2 shows the conjecture map of the different elements involved in this study. 

The conjecture map is a high-level graphical representation of how the desired learning 

outcomes were promoted. 

 

 

Figure 4.2: Learning design conjecture map 

The learning theory that guided the design of the learning environment was social 

constructivism. Social constructivism posits that knowledge and understanding are developed 

through coordination with others (Amineh & Asl, 2015). Scholars of social constructivism 

suggest that individuals learn through collaboration and interaction with others (Kim, 2001). 

Under social constructivism, learners actively pursue knowledge through the discovery of 

concepts and facts. Emphasis is placed on learner interactions with those who are considered 

knowledgeable or experts in specific subjects (Amineh & Asl, 2015). Social constructivism 

highlights the importance of collaboration among learners as well as instructors taking on the 
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role of facilitators that provide guidelines and foster an environment where learners can arrive at 

their own solutions. 

The embodiment detailed characteristics and features of the learning environment which in 

this case involves in-class modeling activities where the students are walked through 

diagramming exercises by the instructor alongside cooperative learning implemented via a 

Scrum-based team project. The mediating processes referred to those salient performances or 

products expected to result from the embodied elements. Learners engaged with the various tasks 

of the course, and employ the epistemic games of functional analysis, structural analysis, and 

process analysis to produce UML software models as artifacts. These models were the epistemic 

forms that captured details about the functions, structures, and behaviors about information 

systems.  The outcomes were the result of the mediating processes and these are the elements 

that are ultimately measured (Sandoval, 2014). The goals of this course were to improve 

software modeling proficiency exhibited by students alongside their abstract thinking and 

systems thinking skills.  

In summary, the design conjecture was that if learners engage in project-based cooperative 

learning via in-class modeling activities and the Scrum-based team project, then UML software 

models – detailing functions, structures, and behaviors; would emerge as a mediating process. 

The theoretical conjecture was that the development of UML software models would lead to 

learning outcomes of increased software modeling proficiency, abstract thinking skills and 

systems thinking skills. The learning environment was social constructivist in nature with 

students actively involved in the learning process through interaction and collaboration with their 

peers and the instructor. 

4.4 Quantitative Strand 

This section discussed the details of the quantitative study. The quantitative strand was 

centered around a sophomore level systems analysis and design course. The course explored 

systems development techniques and approaches used by IT professionals such as developers 

and analysts to model the requirements of an information system, and then construct an 

acceptable design which is then implemented as a solution (Magana, Seah, & Thomas, 2017). 

https://docs.google.com/document/d/15lhG7luqhLqPRXyAJFwmmnkHNMtb95b3vM_6kizfl7c/edit#heading=h.2et92p0
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4.4.1 Research Questions 

The quantitative strand aimed to answer the following research questions: 

1. To what extent to did students demonstrate proficiency in abstract thinking while 

analyzing software systems in terms of functions, structures, and behaviors? 

2. To what extent to did students demonstrate proficiency in systems thinking while 

analyzing software systems in functional, structural, and behavioral representations? 

3. What were the characteristics or profiles of students in terms of abstract thinking and 

systems thinking ability as evidenced by their system representations? 

4.4.2 Participants 

This study included 97 students, majority of whom were second-year computer and 

information technology students. Students in this course have had prior exposure to at least one 

introductory systems development course and have knowledge of programming either from 

coursework or practical experience via internships. 

4.4.3 Procedures and Data Collection Methods 

This course included several forms of assessment including but not limited to class 

participation, quizzes, documentation of a semester-long project, final presentation of the term 

project, and three written examinations. The examinations are meant to evaluate conceptual 

knowledge alongside modeling ability. The modeling aspects of the second exam of this course 

served as the data for this study. The second exam (Appendix A. Modeling Exam) was held in 

the 11th week of the semester. The students had participated in multiple guided in-class modeling 

activities where they followed the instructor in capturing functions, structures, and behaviors of 

information systems of example case studies. Also, the students had participated in multiple 

milestones of the Scrum-based team project that requires teams to develop a functional prototype 

and detailed system specifications – which include functional, structural, and behavioral 

representations of the system. 

 The exam consisted of two distinct parts. The first part involved the learners answering 

multiple-choice questions that tested their conceptual knowledge and the second part consisting 

of a case study for which the students were requested to model the system in terms of functions, 
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structures, and behaviors using the appropriate UML models. The case study primarily presented 

details of an online seat reservation system and that is the functionality for which students were 

expected to construct the models. The case also provided details of other functionality offered by 

the system such as reservation cancelation and payment which would additionally test the 

students’ abstraction ability in terms of whether they included these details or not. Due to 

logistical and time-related constraints, the exam was conducted across two class sessions. In the 

first class-session, the students completed the multiple-choice questions, use-case narrative, and 

activity diagram. In the second class-session, the students completed the class diagram and 

sequence diagram. 

4.4.4 Rubric Development 

As discussed in the literature review, there were no standard approaches for measuring 

abstract thinking in the context of software modeling. Therefore, rubrics were developed to 

evaluate each UML model based on accuracy and conformance to the UML standard. The 

rubrics were designed with inputs from faculty in the department of computer and information 

technology with cumulative decades of experience teaching systems development courses. Each 

rubric was designed to account for 5 levels of student performance. The rubrics were designed to 

account for five levels of student performance. They performance levels, in general, are detailed 

below: 

• Absent - A rubric element was graded as absent and scored 0 if a student did not attempt 

to address it at all.  

• Deficient - An element was graded as deficient and scored 1 if a student attempted to 

address the criterion but only captured between 10 and 50% of the expected details. 

• Developing - A rubric element was graded as developing and scored 2 if the student has 

addressed the criterion but only captured 51 and 70% of the expected details. 

• Emerging - An element was graded as emerging and scored 3 if a student addressed the 

criterion but only captured between 71 and 90% of the expected details. 

• Proficient - A rubric element was graded as proficient and scored 4 if the student 

addressed the requirement and captured 91% or more of the expected details.  

The rubric for evaluating use case narratives (Appendix C - Use Case Narrative Rubric) 

consists of three elements. The element “Typical course of events” refers to steps that a system 
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would normally follow and is used to evaluate what percentage of these steps have been captured 

by the learner. The element “Alternate courses” refers to steps taken by the system if certain 

specific criteria or conditions are satisfied and is used to evaluate what percentage of these steps 

have been captured by the learner. The element “Narrative completeness” refers to the degree to 

which the learner has completed the different components of the use-case narrative template 

(Appendix B – Use Case Narrative Template) outside of the typical and alternate courses. 

The rubric for evaluating activity diagrams (Appendix D – Activity Diagram Rubric) is 

informed in part by the UML standards discussed in Section 2.5.1. The rubric was used to 

evaluate functional modeling proficiency in terms of conformity to UML standards alongside 

proficiency of abstraction and alignment with respect to the use-case narratives. The first four 

components of the rubric – Start/Stop nodes, Swimlanes, Activities, and Decisions/Merges 

address UML conformity. The component titled “Abstraction” refers to the percentage of 

relevant details from the problem statement that were included in the diagram. “Alignment with 

use case narrative” refers to the percentage of actions and decisions in the activity diagram that 

can be mapped to steps in the typical course of events and/or alternate courses in the use-case 

narratives.  

The rubric for evaluating class diagrams (Appendix E – Class Diagram Rubric) is informed 

in part by the UML standards discussed in Section 2.5.2. The rubric was used to evaluate 

structural modeling proficiency in terms of conformity to UML standards alongside proficiency 

of abstraction. The first four components of the rubric – Objects, Attributes, Behaviors, and 

Relationships address UML conformity. “Abstraction” refers to percentage of relevant details 

included in the class diagram. 

The rubric for evaluating sequence diagrams (Appendix F – Sequence Diagram Rubric) is 

informed in part by the UML standards discussed in Section 2.5.3. The rubric was used to 

evaluate behavioral modeling proficiency in terms of conformity to UML standards alongside 

proficiency of abstraction, and alignment with respect to class and sequence diagrams. 

“Abstraction” refers to the percentage of relevant details included in the sequence diagram. 

“Alignment with class diagram” refers to the percentage of objects of objects and messages in 

the sequence diagram that can be mapped to the objects and functions in the class diagram. 

“Alignment with activity diagram” refers to the percentage of messages and responses in the 

sequence diagram that can be mapped to actions in the activity diagram. This component only 
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checked for the presence of these messages or responses that can be mapped to the activity 

diagram and did not evaluate whether the messages and responses originate from or go to the 

appropriate objects. 

4.4.5 Data Scoring and Data Analysis Methods 

The analysis of the exam responses allowed for an overall assessment of the learners’ 

software modeling proficiency in terms of capturing the functional, structural, and behavioral 

aspects of information systems. Software modeling proficiency was categorized by proficiency 

exhibited by learners in terms of modeling: i) functions of an information system by using use 

case narratives and activity diagrams; ii) structures of an information system by using class 

diagrams; and iii) behaviors of an information system by sequence diagrams respectively. 

The use case narratives, the activity diagrams, class diagrams, and sequence diagrams were 

evaluated for completeness and accuracy. In accordance with considerations of the Institutional 

Review Board (IRB) pertaining to maintaining confidentiality and anonymity, all student names 

were replaced with a pseudonym.  Use-case narratives were evaluated for overall completeness 

as well as completeness of typical and alternate courses of events. Overall scoring of use-case 

narratives can be illustrated with an example. For instance, if a use case narrative was scored as 

proficient (4) for typical courses of events, emerging (3) for alternate course of events, and 

developing (2) for narrative completeness, it would have a total score of 9 out of a possible 12. 

The details of scoring each criterion was given in Appendix B – Use Case Narrative rubric. The 

activity diagrams were assessed for conformity to UML standards as established in the course, 

how much relevant detail, pertaining to functionality of the system, was incorporated; and how 

well students mapped to the use case narrative which was listed as the alignment component on 

the rubric. Overall scoring of activity diagrams can be illustrated with an example. For instance, 

if an activity diagram was scored as developing (2) for start/stop nodes, proficient (4) for 

swimlanes, proficient (4) for activities, emerging (3) for decisions/merges, emerging (3) for 

abstraction, and proficient (4) alignment with use case narrative, it would have a total score of 13 

out of a possible 22. The last two criteria were excluded from calculating the total score for 

activity diagrams to evaluate the relationships between abstract thinking, systems thinking, and 

functional modeling proficiency. The details of scoring each criterion were given in Appendix D 

– Activity Diagram rubric. 
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 The class diagram was evaluated for conformity to the UML standards as established in 

the course and whether it captured the overall structural representation of the system in terms of 

the objects and their respective attributes and behaviors. Overall scoring of class diagrams can be 

illustrated with an example. For instance, if a class diagram was scored as proficient (4) for 

objects, emerging (3) for attributes and behaviors, proficient (4) for relationships, and emerging 

(3) for abstraction, it would have a total score of 14 out of a possible 16. Abstract thinking was 

excluded from the total score to evaluate the relationship between abstraction and structural 

modeling proficiency. The details of scoring each criterion were given in Appendix D – Class 

Diagram rubric. The sequence diagrams were assessed for conformity to UML standards as 

established in the course and for how well they mapped to the class diagrams and activity. For 

example, how many of the classes drawn in the sequence diagram were listed as objects in the 

class diagram or whether the overall flow of the activity diagram was captured in the sequence 

diagram. Overall scoring of sequence diagrams can be illustrated with an example. For instance, 

if a sequence diagram was scored as proficient (4) for objects, lifelines, and processes; emerging 

(3) for messages, responses, and abstraction; and proficient (4) for alignment with class diagram 

and alignment with activity diagram, it would have a total score of 18 out of 20. The last three 

criteria were excluded from the total score calculation evaluate the relationships between 

abstraction, systems thinking, and behavioral modeling proficiency. The details of scoring each 

criterion were given in Appendix C – Sequence Diagram rubric. Once the data had been scored, 

patterns of student performance was illustrated through a descriptive analysis. The descriptive 

analysis revealed percentage distributions of students for each performance level per rubric 

element in a specific rubric. 

4.4.6 Reliability and Validity Considerations 

Face validation (Creswell & Poth, 2016) of the rubrics was performed by a professor in the 

department of computer and information technology who has several years of experience 

teaching systems development courses. There is precedent in literature to ensure reliability for 

larger data sets by having an independent coder or rater score a subset of the available data to 

then compute interrater reliability (Hammer & Berland, 2014). To ensure reliability of the data 

scoring process, 20% of the student responses were scored by a second rater who had previously 

served as teaching assistant for the course and possesses an expertise in systems analysis and 
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design. Interrater reliability was evaluated on the total scores – as scored by the individual raters 

using the rubrics - for use case narratives, activity diagrams, class diagrams, and sequence 

diagrams using Cronbach’s Alpha. Interrater agreement for each component of the exam as given 

by Cronbach’s alpha is shown below in Table 4.1. 

Table 4.1: Interrater Agreement 

Exam Component Cronbach’s alpha 

Use Case Narratives .650 

Activity Diagrams .931 

Class Diagrams .900 

Sequence Diagrams .982 

4.4.7 Cluster Analysis 

 While the descriptive analysis illustrated broad patterns of proficiency in terms of the 

different rubric, they did not reveal any information about underlying groups within the dataset. 

To investigate the data further, and to determine whether there were any characteristics of 

students that were not revealed in the descriptive analysis, clustering analysis was employed. 

Clustering is the process of grouping data and clustering algorithms forms groups based on 

similarities between the objects under consideration (Ordonez, 2003; Thinsungnoena et al., 2015; 

Yuan & Yang, 2019). These groups are referred to as clusters and are disjoint subsets of the 

given dataset (Likas, Vlassis, & Verbeek, 2003). The clusters are characterized by external 

separation and internal homogeneity which means that patterns in different clusters should be 

dissimilar while patterns within a cluster should be similar and comparable (Abbas, 2008; Xu & 

Wunsch, 2005). Clustering is an example of unsupervised classification and does not require any 

kind of prior training (Chaovalit & Zhou, 2005). It should not be confused with supervised 

classification which uses a collection of labeled or pre-classified patterns to label new data points 

(Abbas, 2008). There are several algorithms for data clustering, however, the challenge for most 

clustering algorithms lies in determining the number of clusters existing in a dataset beforehand. 

The data for cluster analysis was the scored exam responses as per the rubrics discussed in 

Section 4.4.5. The data was ordinal in nature with each subject having scores of 22 rubric 

elements associated with them. 
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4.4.8 Cluster Identification 

 To perform clustering analysis, the number of underlying clusters was first identified. 

The silhouette technique or silhouette coefficient algorithm was used to estimate the optimal 

number of clusters in a given dataset. It also serves as a tool examine the validity and quality of 

clustering (Aranganayagi & Thangavel, 2007; Yuan & Yang, 2019; Zhu, Ma, & Zhao, 2010). 

The silhouette technique groups objects based on tightness or cohesion and separation (Yuan & 

Yang, 2019). The technique is constructed to select the optimal number of clusters 

(Thinsungnoena et al., 2015). The silhouette coefficient algorithm involves the calculation of the 

contour coefficient which is defined based on intra-cluster dissimilarity and inter-cluster 

dissimilarity and takes on a value between -1 and 1 (Yuan & Yang, 2019). Higher silhouette 

values for each object indicates a close relationship between the object and the cluster while 

lower values indicate that it may have been assigned to the wrong cluster (Anitha & Patil, 2019). 

Higher average values of the contour coefficient or silhouette scores indicate a more effective 

cluster number. Silhouette coefficients are broadly accepted as a standard measure of cluster 

validation (Wang et al., 2010).  Table 4.2 detailed the silhouette scores for the collected data: 

Table 4.2: Silhouette scores 

Number of Clusters Silhouette Scores 

2 0.303 

3 0.189 

4 0.188 

5 0.188 

6 0.191 

7 

8 

0.195 

0.141 

4.4.9 Clustering Method 

The silhouette scores indicated the cluster number of two was most optimal for the 

collected data. Therefore, a binary clustering algorithm is most appropriate. Thresholding After 

Random Projection (n-TARP), a binary clustering machine learning algorithm based in Python, 

was used to analyze the scored data. n-TARP was chosen due to it being “…computationally 

inexpensive, scalable to high dimensions, and can be easily modified to handle both very small 

and large datasets” (Yellamraju & Boutin, 2018, p.4). The n-TARP software projects the dataset 
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n number of times into a random single-line plane. Then the algorithm thresholds the projected 

data at a point and identifies any clustering of data before or after the threshold. Finally, it 

chooses the two best clusters of the projection (Yellamraju & Boutin, 2018). The dataset was 

projected 100 times with a threshold of .3 for clustering. To implement this program, each rubric 

element was treated as a data point for each student while each of the diagrams was considered 

as an individual test scenario. Following this process, the data was analyzed in graphical form 

using grouped bar-graphs. The emergent clusters were examined for differences in abstract 

thinking and systems thinking ability using a t-test (Cohen, 2001).  

4.4.10 Correlational Analysis 

A correlational analysis is appropriate when a researcher aims to answer questions about a 

sample without manipulating variables or executing random assignment (Devlin, 2018) and it 

can be used to “…investigate an area of interest to get some idea of the strength of naturally 

occurring relationships” (Devlin, 2018, p.20). Therefore, a correlational analysis can be 

employed to characterize the relationship between student abstract thinking ability, systems 

thinking ability, and software modeling proficiency in terms of functions, structures, and 

behaviors. Spearman correlation coefficient was computed to explore the nature of the 

relationship between the various rubric elements. Spearman correlation coefficient is widely 

utilized in research where a non-parametric equivalent to Pearson’s correlation coefficient is 

required either due to the non-normal distribution of data or its ordinal nature (Artusi, Verderop, 

& Marubini, 2002; Bonett & Wright, 2000; de Winter, Gosling, & Potter, 2016). 

To characterize the relationship between student systems thinking ability and software 

modeling proficiency in terms of functions, structures, and behaviors, Spearman correlation 

coefficient was first computed for the entire dataset to explore: i) the relationship between 

student proficiency with the use case narratives and student proficiency in activity diagrams; ii) 

the relationship between student proficiency with class diagrams and student proficiency in 

sequence diagrams; iii) the nature of the relationship between software modeling proficiency in 

terms of functions, structures, and behaviors, and systems thinking ability. Correlational analysis 

was performed using IBM SPSS statistical software. As part of this analysis, a correlation table – 

containing rubric elements pertaining to abstract thinking, systems thinking, and software 

modeling proficiency was computed for the entire dataset. Following this, the correlational 
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analysis was performed for each cluster revealed by the clustering analysis to investigate whether 

there are any differences in relationships between these elements across the clusters. 

4.4.11 Regression Analysis and Logistic Regression 

While a correlational analysis could be used to understand the strength of relationships, it 

did not provide an equation that connected the dependent variable with the explanatory variables. 

A regression analysis could be used to explore functional relationships between variables and 

these relationships could be expressed in the form of model (Chatterjee & Hadi, 2015). The 

regression model could be used to predict the degree to which abstract thinking and systems 

thinking proficiency influenced software modeling proficiency in terms of functions, structures, 

and behaviors in the context of the identified clusters. Given the ordinal nature of the data and 

the existence of two clusters, binary logistic regression was most appropriate. 

Logistic regression can be utilized when the dependent variables are categorical in nature 

(Field, 2009). Logistic regression can be used to predict the increase or decrease in the 

probability of possessing a characteristic based on a unit increase in a specific independent 

variable while the other independent variables are held constant. A higher predicted value 

indicates that it is “...more likely that any individual with particular scores on the independent 

variables will have a characteristic…” (Field, 2009, p. 1). For the purposes of this study, the 

dependent variable was the cluster to which the student was assigned and can have the values 

“high performing” or “moderate performing” corresponding to each cluster. The independent 

variables were the rubric elements corresponding to abstract thinking and systems thinking in 

terms of functions, structures, and behaviors.  

To test the goodness-of-fit of the proposed regression model, the Hosmer and Lemeshow 

test was used (Archer and Lemeshow, 2006). The Hosmer and Lemeshow test is based on the 

null hypothesis that the regression model is correctly specified and fits the data well. A 

statistically significant result for the Hosmer and Lemeshow test would lead to the null 

hypothesis being rejected and indicates that the proposed model is not a good fit for the given 

data. A result that is not statistically significant indicates that the proposed model is a good fit for 

the given data. 

 A possible regression model is given in (1): 
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log (
𝑝𝑟𝑜𝑏ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑚𝑜𝑑
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛                              (1) 

The response variable was given by log (
𝑝𝑟𝑜𝑏ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑚𝑜𝑑
) and it referred to the odds of a student 

being high performing versus the odds of a student being moderate performing. X1, X2,…, Xn 

were the predictor variables which in this case refers to individual rubric elements corresponding 

to abstract thinking and systems thinking in terms of functions, structures, and behaviors  

(Chatterjee & Hadi, 2015). The initial model contained all relevant predictor variables. A 

backward step-wise approach was taken to eliminate predictor variables and to arrive at the 

reduced model containing only the most relevant variables (Wang et al., 2007). 

4.5 Qualitative Strand 

While the quantitative approach yielded insights into what the patterns of the software 

modeling proficiency were among students and the relationship between software modeling 

proficiency and the constructs of abstract thinking and systems thinking, it does not provide any 

indication as to how abstract thinking or systems thinking was used while constructing software 

models. The qualitative strand was centered around exploring how students utilize abstract 

thinking and systems thinking while constructing software models based on a given problem 

statement or case. 

4.5.1 Research Question 

The qualitative strand was guided by the research question - How do students use abstract 

thinking and systems thinking when modeling software systems in terms of functions, structures, 

and behaviors? 

4.5.2 Participants 

 There were six participants recruited for this study, all of whom have completed the 

sophomore level systems analysis and design course (Magana, Seah, & Thomas, 2017) detailed 

in the quantitative study. These participants were part of the computer and information 

technology department and were either of junior or senior standing.  In total, these students had 

completed a minimum of two systems development courses and two programming courses.  
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4.5.3 Procedures and Data Collection Methods 

For the qualitative phase of this study, a case study approach was used. A case study is an 

exploration of a case over time involving data collection from multiple sources of context-rich 

information (Merriam, 1998). A case study can involve the exploration of a single bounded 

system or multiple bounded systems through qualitative approaches such as observations, 

interviews etc. (Baxter & Jack, 2008; Creswell et al., 2007). Research designs involving the use 

of case studies have been widely used in fields such as business, education, medicine, 

psychology, and many more (Gerring, 2006). A case refers to an entity that includes but is not 

limited to educational institutions or programs and departments within educational institutions 

(Stake, 2006). A bounded system or multiple bounded systems defines the extent of what will be 

explored as part of the study as well as what will not be explored (Baxter & Jack, 2008). For the 

qualitative strand of this study, a single case study approach was employed. The case was 

bounded by the requirement that the participants, who are the units of analysis, have completed 

the sophomore level systems analysis and design course detailed in Chapter 4. Prior to 

recruitment, prospective participants were briefed about the activities involved as part of the case 

study and the compensation they would receive for their participation.  

Each participant was provided a case centered around staff management (Appendix G – 

Staff Management Case) and they were to model the “Staffing Request” functionality in terms of 

functions, structures, and behaviors. The case itself details numerous functionalities associated 

with a staff management system and it provides steps and conditional actions associated with 

these functionalities as well as the different actors who are involved with the functioning of the 

system. This specific case was chosen because of the sufficient complexity it offered that 

requires participants to employ abstract thinking to include relevant details while excluding those 

details that are not pertinent to the solution. Participants also had to employ systems thinking to 

align their different models. The participants were given three hours to construct a use case 

narrative, activity diagram, class diagram, and sequence diagram. While constructing the models, 

the participants were asked to think-aloud to justify their design decisions and rationale. The 

think-aloud protocol is a data-elicitation method where participants are asked to verbalize what is 

on their mind as they perform a certain task (Jääskeläinen, 2010; Tirkkonen-Condit, 1990). 

Studies that employ the think-aloud protocol provide “…rich verbal data about reasoning during 

a problem-solving task.” (Fonteyn, Kuipers, & Grobe, 1993, p. 430). Furthermore, analysis of 
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transcripts of the think-aloud protocol can reveal how information was structured or how it was 

used to solve the problem. 

 During the study, the researcher may also ask probing questions asking the participants 

why they performed certain steps, what the design rationale was or to explain their thought 

process as they construct the models. Researcher notes made during each case study also served 

as a source of information for this qualitative phase. Audio and video recordings were made of 

the participants as they complete the modeling tasks to have a record of the modeling process as 

it happens and their rationale or justifications for their design choices while creating the models. 

The UML models, researcher notes, audio recordings & transcripts, and video recordings were 

collected for all six participants thus providing multiple data sources for each unit of analysis. 

4.5.4 Data Coding and Analysis 

Qualitative data analysis followed the collection of the quantitative data. In accordance 

with considerations of the Institutional Review Board (IRB) pertaining to maintaining 

confidentiality and anonymity, all participants names were replaced with a pseudonym. The 

design artefacts – the functional, structural, and behavioral models - created by the participants 

were first scored using the rubrics given in Appendix C - Use Case Narrative Rubric, Appendix 

D – Activity Diagram Rubric, Appendix E – Class Diagram Rubric, and Appendix F – Sequence 

Diagram Rubric. Following the scoring, the participants were categorized based on their overall 

proficiency. This provided context for how participants of differing proficiency employed 

abstract thinking and systems thinking while creating software models. The audio recordings of 

the think-aloud protocol were transcribed. 

Thematic analysis was used identify themes present in the transcriptions and themes were 

coded using deductive coding scheme. Thematic analysis provided insights into patterns in a data 

set by focusing on its meaning (Braun & Clark, 2012). Qualitative data analysis is a recursive 

process that involves noticing concepts of importance and breaking down the data into distinct 

ideas or themes while describing properties of each code alongside representative examples 

(Kendall, 1999; Khandkar, 2009). The data was analyzed using NVivo version 12. NVivo 

allowed for effective organization and coding of qualitative data. The annotations function 

present in NVivo allowed for the creation of reflective and analytical memos pertaining to each 

transcript, video, or design artefact. The video recordings were not expressly coded but were 
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reviewed for the purposes of verifying student actions. The videos also provided additional 

information and context to the corresponding transcripts.  

A prominent approach for performing thematic analysis is the six-phase model proposed 

by Braun and Clark (2006). For the purposes of this study, the six-phase model was adapted to 

work with a theoretically driven inductive approach towards coding and analysis. This hybrid 

approach towards analysis involves integrating both data-driven and theory-driven approaches to 

coding (Fereday & Muir-Cochrane, 2006). Analysis included the broad a priori themes 

(Castleberry & Nolen, 2018), i.e., themes identified in advance that are relevant to the research 

area, as well emergent themes that arose through the coding process. First, the researcher 

familiarized himself with the data by performing multiple readings of the transcripts and making 

notes of initial ideas. Following this, interesting features from the data were captured and 

organized systematically to produce codes. The researcher worked through the entire data set 

coding extracts for all relevant themes and patterns pertaining to abstract thinking or systems 

thinking. For the purposes of this study, the researcher performed coding and analysis based on 

instances of: i) abstract thinking - episodes where students vocalized whether a detail should be 

included in the models or not; and ii) systems thinking - episodes where students made 

connections between different design elements which includes making connections between 

elements drawn in one diagram to elements drawn in another diagram or students making 

changes in one diagram based on elements drawn in another diagram. The researcher coded for 

instances of abstract thinking or systems thinking, as described in literature, while being open to 

identifying other emergent themes. Furthermore, the coder looked for specific ways in which the 

participants employed abstraction or systems thinking while constructing their models. The next 

step involved collating the different codes under the appropriate themes of abstract thinking or 

systems thinking. Other emergent themes were classified under the theme “miscellaneous”. 

Following this, the themes were reviewed to ensure that the data within each theme was coherent 

and identifiably distinct from other themes. The process of reviewing themes was done at two 

levels – i) at the level of coded extracts to ensure that all instances fit the theme and moving 

them to other themes if necessary; ii) at the level of the entire data set where the themes were 

checked for whether it accurately reflects the data set as a whole. This phase also involved some 

amount of re-coding to ensure accuracy. Re-coding continued until the refinements added 

nothing substantial to the themes. After this, a detailed analysis was written for each theme to 



 

64 

detail its internal consistency and to delineate the lack of overlap compared to the other themes. 

Finally, a detailed report of results was produced providing the narrative of the data alongside 

supporting examples. A chronological visualization of the codes and themes will also be 

provided. 

4.5.5 Trustworthiness Considerations 

Trustworthiness or credibility in qualitative research is a nuanced topic with different 

approaches being taken for presenting qualitative data and analyses (Chi, 1997; Cutcliffe & 

McKenna, 1999; Hammer & Berland, 2014; Miles & Huberman, 1994). Establishing 

trustworthiness has the effect of increasing reader confidence in the findings (Curtin & Fossey, 

2007). One of the approaches towards establishing trustworthiness in qualitative research is for 

the researcher to be completely transparent when describing the research strategies that were 

employed (Krefting, 1991). To this end, the specific steps taken as part of the qualitative data 

collection, coding, and analysis were discussed in detail. A detailed description of the context of 

the qualitative strand was also provided. Coding errors were minimized by reading through the 

transcripts several times, which also ensured that codes were correctly organized. 

In addition, the primary research received peer feedback to ensure that coding was done 

consistently throughout. This approach of peer examination involves the research process and 

results being discussed with impartial peers that provoke the researcher into a deeper level of 

reflexivity (Krefting, 1991). 

4.6 Integration of Qualitative and Quantitative Strands 

The quantitative strand allowed the evaluation of student proficiency in modeling 

information systems in terms of functions, structures, and behaviors. This strand focused on the 

outcomes, i.e., the UML models that were constructed by the students. This yielded distinct 

patterns of software modeling proficiency and provided insights into characteristics or profiles of 

students. In addition, the relationships between software modeling proficiency and the constructs 

of abstract thinking and systems thinking were also explored. While the quantitative strand was 

effective in terms of evaluating outcomes, it did not yield any information about the processes or 

procedures employed by the students while modeling information systems in terms of functions, 
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structures, and behaviors. The next logical step was to explore the differences in processes 

adopted by the high-performing students and moderate-performing students. These patterns of 

proficiency were explored further in the qualitative strand with a focus on how participants 

applied abstract thinking and systems thinking while modeling an information system in terms of 

functions, structures, and behaviors. The think-aloud protocol was utilized to gain insights into 

the rationale behind the different design decisions made by participants. The rubrics developed 

as part of the quantitative strand were used to score the models developed by the participants. 

These scores served to contextualize the findings from the qualitative strand. The results from 

both strands – quantitative and qualitative - were both taken into consideration to provide a 

holistic understanding of overall software modeling proficiency. Furthermore, considering both 

quantitative and qualitative data sheds light on how students of varying degrees of proficiency in 

software modeling employed abstract thinking and systems thinking while designing their 

solutions.  
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CHAPTER 5. MODELING PERFORMANCE 

5.1 Overview of Data Analysis Procedures 

To facilitate the analysis of the exam responses, rubrics detailed in Appendix B – Use Case 

Narrative Rubric, Appendix D – Activity Diagram Rubric, Appendix E – Class Diagram Rubric, 

and Appendix F – Sequence Diagram Rubric were developed and validated. The exam responses 

of the students were scored using these rubrics and the results were presented using bar charts. 

The bar charts yielded insights into patterns of proficiency among students as they modeled 

information systems in terms of functions, structures, and behaviors. The results presented in the 

bar charts addressed the first two research questions RQ1 - To what extent to did students 

demonstrate proficiency in abstract thinking while analyzing software systems in terms of 

functions, structures, and behaviors? and RQ2 - To what extent to did students demonstrate 

proficiency in systems thinking while analyzing software systems in functional, structural, and 

behavioral representations?  Following this, the silhouette technique was applied to identify the 

optimal number of clusters in the data set. Clustering analysis was then performed using the n-

Tarp binary clustering algorithm. A correlational analysis was performed on the emerging 

clusters to identify the nature of relationships between the different rubric elements. Logistic 

regression was then applied to determine how unit increases in rubric elements pertaining to 

abstract thinking and systems thinking affected the odds of a student being classified as a high-

performing student compared to a moderate-performing student. The goodness-of-fit of the 

proposed regression model was tested using the Hosmer and Lemeshow test. The reduced 

regression model was then computed using a backward step-wise approach to eliminate predictor 

variables. These results addressed RQ3 – What were the characteristics or profiles of students in 

terms of abstract thinking and systems thinking? 

5.2 Data Scoring Approach 

Exam responses from the 97 students were scored using detailed in Appendix B – Use 

Case Narrative Rubric, Appendix D – Activity Diagram Rubric, Appendix E – Class Diagram 

Rubric, and Appendix F – Sequence Diagram Rubric. Figure 8 provides illustrative examples of 

functional, structural, and behavioral models constructed by students that were scored as 
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proficient as well as illustrative examples for models that were emerging or deficient due to 

lacking requisite details.  

Figure 5.1a contains examples of proficient functional, structural, and behavioral models. 

The functional model given by the activity diagram conforms to UML specifications with one 

exactly one start and stop node drawn. There are swimlanes corresponding to the system and 

each actor. Only the appropriate details relevant to the reservation functionality has been 

captured. The structural model given by the class diagram incorporated all relevant classes of the 

information system. Each class had attributes and behaviors identified. Relevant relationships 

between classes were identified and labeled appropriately. The behavioral model given by the 

sequence diagram incorporated relevant classes that aligned with classes specified in the class 

diagram. All relevant messages and responses were drawn, and they aligned with the overall 

flow of control specified in the activity diagram. The sequence diagram also conformed to UML 

standards in terms of visual representations of messages, responses, lifelines, and execution 

occurrences. 

 

  



 

 

6
8
 

a   

 

b  

  

Figure 5.1: Model examples
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Figure 5.1b contains examples of functional, structural, and behavioral models that were 

not scored as proficient. The functional model given by the activity diagram used incorrect 

symbols for the start node and final node. The activity diagram did not have any swimlanes 

corresponding to the system or actor. The model did not contain any decision nodes, omitted 

relevant details, and did not model the overall flow of control in the system.  

The structural model given by the class diagram in Figure 5.1b did not include all relevant 

objects of the information system. As a result of this, several important relationships were also 

not modeled. Some of the relationships were incorrectly modeled. While the classes included 

attributes, they classes did not include any behaviors.  

The behavioral model given by the sequence diagram in Figure 5.1b incorrectly identified 

several objects and the objects did not align with the class diagram. The lifelines and responses 

did not conform to UML standards – dotted lines were not used. The sequence diagram was 

missing some key messages and corresponding responses. The overall flow may or may not align 

with the flow of control specified in the activity diagram. 

The student scores for the functional, structural, and behavioral models given by the 

activity diagrams, class diagrams, and sequence diagrams were used to perform the quantitative 

analysis.  

5.3 Modeling Functions 

Figure 5.2 presented the performance distribution of students while capturing functions 

using use case narratives. 
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Majority of students performed proficiently in capturing the typical course of events 

followed by the system in the given case (Appendix A – Modeling Exam). In contrast, only 69% 

of students captured the alternate courses of events proficiently. The alternate courses of events 

refer to the steps taken by the system in response to whether certain were satisfied or not. At a 

minimum, all learners made an attempt at completing the different elements present in the 

narrative template. 

The performance distribution of students while capturing functions using activity diagrams 

was presented in Figure 5.3Error! Reference source not found.. 

 

 Proficient (4)  Emerging (3)  Developing (2)  Deficient (1)  Absent (0) 

Figure 5.3: Descriptive Statistics - Activity Diagram 

 Proficient (4)  Emerging (3)  Developing (2)  Deficient (1)  Absent (0) 

Figure 5.2: Descriptive Statistics - Use Case Narratives 
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 Overall, students were proficient in capturing functions of the information system in the 

given case using activity diagrams with the exception of modeling decision and merge nodes 

where only 8% of students utilized decision nodes appropriately and connected diverging flows 

of control using merge nodes accurately. Conformity to UML standards was also evaluated as 

part of this study. Only 5% of students failed to include swimlanes corresponding to actors in 

their diagrams and 58% of the students correctly drew exactly one start and stop node outside of 

the swimlanes. 

In terms of systems thinking, 79% of students proficiently aligned their activity diagrams 

with the previously constructed use case narrative. Overall, majority of students were proficient 

in the application of systems thinking by mapping their activities and decisions or merges to the 

typical and alternate courses of events that they detailed in their narratives. 

5.4 Modeling Structures  

The performance distribution of students while capturing structures using class diagrams 

was presented in Figure 5.4. 

 

 

 Proficient (4)  Emerging (3)  Developing (2)  Deficient (1)  Absent (0) 

Figure 5.4: Descriptive Statistics – Class Diagrams 

 

Overall, majority of students were at the performance level of emerging in terms of 

modeling information systems in terms of structures. Furthermore, the results also suggest that 
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learners did not apply abstraction proficiently. This can be, in part, attributed to students 

incorporating irrelevant objects that were not essential to the prescribed functionality or the 

system in general. Only 28% of students were able to draw all appropriate relationships between 

objects. Only a quarter of all students proficiently identified all relevant behaviors for the 

functionality prescribed in the case while 5% of students identified no behaviors. 

5.5 Modeling Behaviors  

The performance distribution of students while capturing behaviors using sequence 

diagrams was presented in Figure 5.5. 

. 

 

 Proficient (4)  Emerging (3)  Developing (2)  Deficient (1)  Absent (0) 

Figure 5.5: Descriptive Statistics – Sequence Diagram 

Only 47% of students identified the relevant objects for the functionality prescribed in the 

case. This had further implications in their diagrams where corresponding lifelines, and messages 

or responses associated with those objects were not included. In terms of abstract thinking 

ability, only 25% of all students included all relevant details with minimal irrelevant details. In 

terms of systems thinking ability, there two distinct aspects to consider in the context of 

modeling information systems in terms of behaviors. 82% of students were proficient in aligning 

their sequence diagrams with their activity diagrams – the messages and responses in the 

sequence diagrams were mapped to actions in the activity diagram. However, only 41% of all 
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students proficiently aligned their sequence diagrams with their class diagrams. Proficient 

alignment in this case is characterized by most objects and messages in the sequence diagram 

being mapped to corresponding objects and behaviors in the class diagram. It must be noted that 

several students featured objects in their sequence diagrams that were not present in their class 

diagram. Similarly, several students also drew messages in their sequence diagrams that did not 

have any corresponding behaviors in their class diagrams. 

5.6 Cluster analysis results 

 The silhouette technique detailed in Section 4.4.8 determined that the optimal number of 

clusters for the given data was two. The clustering algorithm took into consideration the scores 

for all rubric elements to compute the two clusters The n-Tarp clustering algorithm (Yellamraju 

& Boutin, 2018) identified two clusters that were referred to as: i) moderate performing students 

(n=40); and ii) high performing students (n=57). The first cluster was referred to as moderate 

performing students due to total scores of students ranging from 20 to 44 out of a maximum of 

60. The second cluster was referred to as high performing students due to total scores ranging 

from 39 to 52 out of a maximum of 60. The result of the n-Tarp clustering algorithm is visually 

represented using a bar chart in Figure 5.6. 
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Figure 5.6: Cluster analysis results 

Each bar represents the average score for a specific rubric element in a cluster. Overall, the 

cluster of high performing students had a higher average score across all rubric elements except 

that of start/stop nodes in the activity diagrams. Notably, students belonging to the high 

performing clusters exhibited higher scores in abstract thinking and system thinking in terms of 

functions, structures, and behaviors. Once the data points in each cluster was identified, the mean 

and standard deviation were computed for each cluster for the rubric elements corresponding to 

abstract thinking and systems thinking. Furthermore, to test for statistically significant 

differences between the two clusters, a t-test was conducted at a 95% confidence interval. The 

results of the t-test are presented in Table 5.1. 
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Table 5.1: Clustering t-Test results – Abstract thinking and Systems thinking 

 Cluster 1 (n=40) Cluster 2 (n=57)  

Rubric element Mean SD Mean SD p 

Activity Diagram 

Abstraction 

3.125 .7574 3.5439 .6288 .0038 

Alignment with Use-

Case Narrative 

3.625 .7048 3.8421 .3679 .051 

Class Diagram 

Abstraction 

2.900 .5454 3.4737 .5037 <0.00001 

Sequence Diagram 

Abstraction 

2.475 .5986 3.4211 .4981 <0.00001 

Alignment with Class 

Diagram 

2.750 .9268 3.5263 .5380 <0.00001 

Alignment with 

Activity Diagram 

3.525 .8469 3.8421 .4547 .0192 

 

The t-test revealed statistically significant differences in abstract thinking in terms of 

functions, structures, and behaviors between the two clusters. The largest disparity in scores 

between the two clusters was for abstract thinking in terms of behaviors given by sequence 

diagrams. Statistically significant differences were also found in systems thinking in terms of 

structures and behaviors between the two clusters, whereas the proficiency of systems thinking in 

terms of functions between the two clusters were comparable. 

5.6.1 Relationships between modeling performance of functions, structures, and 

behaviors  

A correlational table was computed for the entirety of the data collected. The details of 

data scoring were discussed in Section 4.4.5.  Activity diagram total was computed by adding the 

scores of the individual rubric elements except for abstract thinking and alignment. Similarly, 

class diagram and sequence diagram totals were computed by adding the scores of the respective 

rubric elements except for abstract thinking and alignment. The analysis was focused on selected 

rubric elements pertaining to abstract thinking, systems thinking, and software modeling 

proficiency. The results of the analysis were presented in terms of spearman coefficient. The 

results of the correlational analyses for the entire dataset were presented in Table 5.2. 
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Table 5.2: Spearman coefficient – Entire dataset 

 1 2 3 4 5 6 7 8 9 10 

1 -          

2 .62** -         

3 .39** .44** -        

4 .45** .51** .44** -       

5 .21* .32** .22* .23* -      

6 .36** .27** .29** .30** .79** -     

7 .25* .22* .14 .18 .54** .55** -    

8  .08 .12 .13 .18 .32** .33** .63** -   

9 .07 .09 .19 .22* .21* .18 .27** .25* -  

10 .26** .17 .21* .19 .44** .47** .84** .61** .17 - 

Note. *p<0.05. **p<.001 

1 – Use-Case Narrative Total, 2 – Activity Diagram Abstraction, 3 – Alignment with 

Use-Case Narrative, 4 – Activity Diagram Total, 5 – Class Diagram Abstraction, 6 – 

Class Diagram Total, 7 – Sequence Diagram Abstraction, 8 – Sequence Diagram 

Alignment with Class Diagram, 9 – Sequence Diagram Alignment with Activity 

Diagram, 10 – Sequence Diagram Total 

 

Statistically significant correlations were found between use case narrative total, functional 

abstract thinking ability (given by the rubric element activity diagram abstraction), functional 

systems thinking ability (given by the rubric element alignment with the use-case narrative), and 

proficiency of functional modeling (given by the rubric element activity diagram totals). It can 

be inferred from the results that students exhibiting greater proficiency of abstract thinking and 

system thinking were also, overall, more proficient with functional modeling. The proficiency of 

functional modeling was evidenced by constructing activity diagrams that included more 

relevant details and exhibited better alignment with the use case narratives.  

A statistically significant correlation was also found between structural abstract thinking 

(given by the rubric element class diagram abstraction) and the overall structural modeling 

proficiency (given by the rubric element class diagram total). It can be inferred from the results 

that students exhibiting greater proficiency of abstract thinking were also, overall, more 

proficient with structural modeling (given by the rubric element – class diagram total). The 

proficiency of structural modeling was evidenced by constructing class diagrams with more 

relevant details included. 

Statistically significant correlations were found between behavioral abstract thinking 

(given by the rubric element sequence diagram abstraction), alignment with class diagrams, and 

overall behavioral modeling proficiency (given by sequence diagram total). It can be inferred 
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from these results that students exhibiting greater proficiency of abstract thinking and systems 

thinking were also, overall, more proficient with behavioral modeling. The proficiency of 

behavioral modeling was evidenced by constructing sequence diagrams that included more 

relevant details and were better aligned with the class diagrams. 

Given the differing performance patterns observed in the two clusters, separate 

correlational analyses were then performed for each cluster to investigate whether there were any 

differences in these relationships in the two clusters. The results of the correlational analyses for 

the moderate performing students and high-performing students were presented in Table 5.3 and 

Table 5.4, respectively.  

Table 5.3: Spearman coefficient – Moderate performing students 

 1 2 3 4 5 6 7 8 9 10 

1 -          

2 .67** -         

3 .55** .45** -        

4 .58** .58** .51** -       

5 .18 .35* .23 .23 -      

6 .35* .32* .41** .46** .76** -     

7 .004 .06 .25 .32* .05 .10 -    

8  -.17 -.12 .11 .09 -.35* -.22 .62** -   

9 .13 .12 .29 .32* -.01 -.09 .41** .16 -  

10 .02 -.07 .29 .18 -.13 -.03 .80** .59** .26 - 

Note. *p<0.05. **p<.001 

1 – Use-Case Narrative Total, 2 – Activity Diagram Abstraction, 3 – Alignment with 

Use-Case Narrative, 4 – Activity Diagram Total, 5 – Class Diagram Abstraction, 6 – 

Class Diagram Total, 7 – Sequence Diagram Abstraction, 8 – Sequence Diagram 

Alignment with Class Diagram, 9 – Sequence Diagram Alignment with Activity 

Diagram, 10 – Sequence Diagram Total 
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Table 5.4: Spearman coefficient – High performing students 

 1 2 3 4 5 6 7 8 9 10 

1 -          

2 .48** -         

3 .17 .41** -        

4 .34** .45** .35** -       

5 -.14 .12 .12 .17 -      

6 .04 .02 .14 .19 .67** -     

7 -.12 .05 -.12 -.03 .47** .39** -    

8  -.14 .06 -.02 .14 .52** .34** .43** -   

9 -.18 -.04 -.003 .07 .25 .21 -.02 0.19 -  

10 -.17 -.08 .003 .14 .33* .13 .66** .48** -.09 - 

Note. *p<0.05. **p<.001 

1 – Use-Case Narrative Total, 2 – Activity Diagram Abstraction, 3 – Alignment with 

Use-Case Narrative, 4 – Activity Diagram Total, 5 – Class Diagram Abstraction, 6 – 

Class Diagram Total, 7 – Sequence Diagram Abstraction, 8 – Sequence Diagram 

Alignment with Class Diagram, 9 – Sequence Diagram Alignment with Activity 

Diagram, 10 – Sequence Diagram Total 

 

Across both moderate performing students and high performing students, statistically 

significant correlations were found between use case narrative total, functional abstract thinking 

ability (given by the rubric element activity diagram abstraction), functional systems thinking 

ability (given by the rubric element alignment with the use-case narrative), and proficiency of 

functional modeling (given by the rubric element activity diagram totals). It can be inferred from 

the results that students exhibiting greater proficiency of abstract thinking and system thinking 

were also, overall, more proficient with functional modeling. The proficiency of functional 

modeling was evidenced by constructing activity diagrams that included more relevant details 

and exhibited better alignment with the use case narratives. 

In both clusters, statistically significant correlations were found between structural abstract 

thinking (given by the rubric element class diagram abstraction) and the overall structural 

modeling proficiency (given by the rubric element class diagram total). It can be inferred from 

the results that students exhibiting greater proficiency of abstract thinking were also, overall, 

more proficient with structural modeling (given by the rubric element – class diagram total). The 

proficiency of structural modeling was evidenced by constructing class diagrams with more 

relevant details included. 

Similarly, across both moderate performing students and high performing students, 

statistically significant correlations were found between behavioral abstract thinking (given by 
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the rubric element sequence diagram abstraction), alignment with class diagrams, and overall 

behavioral modeling proficiency (given by sequence diagram total). It can be inferred from these 

results that students exhibiting greater proficiency of abstract thinking and systems thinking were 

also, overall, more proficient with behavioral modeling. The proficiency of behavioral modeling 

was evidenced by constructing sequence diagrams that included more relevant details and were 

better aligned with the class diagrams. Notably, there were no statistically significant correlations 

in either cluster between overall behavioral modeling proficiency and the alignment of sequence 

diagrams with activity diagrams. Also, in the cluster of high performing students, there was no 

statistically significant correlation between behavioral abstract thinking and alignment of 

sequence diagrams with activity diagrams. There was a statistically significant correlation 

present between these two elements in the cluster of moderate performing students. Interestingly, 

in both clusters, statistically significant correlations were found between functional abstract 

thinking (given by the rubric element activity diagram abstraction) and functional systems 

thinking (given by the rubric element alignment with use case narrative). It could be inferred 

from these results that those students who were more proficient with abstract thinking also tend 

to be more proficient with systems thinking. Overall, the relationships between the various rubric 

elements remained broadly consistent across the two clusters. 

5.7 Logistic regression results 

Logistic regression was used to compute the probability of student being classified as high 

performing or moderate performing based on unit changes in their abstract thinking and systems 

thinking ability in terms of functions, structures, and behaviors. The Hosmer and Lemeshow test 

was used to test whether the proposed regression model was a good fit for the given data. The 

null hypothesis for this test was that the regression model is correctly specified and fits the data 

well. A statistically significant result would lead to the null hypothesis being rejected and this 

result would indicate that the proposed model is not a good fit for the given data. The test was 

run in steps where all independent variables were present in the first step and a variable was 

removed at each step. The results of the Hosmer and Lemeshow test are presented in Table 5.5. 
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Table 5.5: Hosmer and Lemeshow Test Results 

Step Chi-square Df p 

1 4.333 8 0.826 

2 4.232 8 0.836 

3 3.734 6 0.713 

4 5.685 6 0.459 

5 3.277 3 0.351 

6 5.857 1 0.016 

 

The Hosmer and Lemeshow test did not return significant results until there was only a 

single independent variable left in the model. This result indicates that a reduced model 

containing only two independent variables (step five) was a good fit for the given data. This also 

implies that not every component of abstract thinking and systems thinking played a substantial 

role in whether a student was classified as high performing or moderate performing. 

Given the results of the Hosmer and Lemeshow test, logistic regression was computed for 

a reduced model containing only two independent variables. SPSS utilized a backward step-wise 

approach to eliminate predictor variables at each step. The results of the backward step-wise 

process was presented in Appendix – H. The process began with the following rubric elements 

included in the model: activity diagram abstraction, alignment with use case narrative, class 

diagram abstraction, sequence diagram abstraction, sequence diagram alignment with class 

diagram, and sequence diagram alignment with activity diagram. At each step, an independent 

variable was removed, and the regression was computed. The results of the logistic regression 

corresponding to step five of the Hosmer and Lemeshow test were presented in Table 5.6. 

Table 5.6: Logistic regression results – Reduced Model 

Variables in 

the Equation B S.E. Wald Df Sig. Exp(B) 
Sequence 

Diagram 

Abstraction 0.383 0.319 1.443 1 0.23 1.467 
Sequence 

Diagram 

Alignment 

with 

Activity 

Diagram 0.66 0.36 3.35 1 0.067 1.934 
Constant -3.252 1.505 4.67 1 0.031 0.039 
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The final reduced regression model was presented below in (2): 

log (
𝑝𝑟𝑜𝑏ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑚𝑜𝑑
) = −3.252 + 0.383 ∗ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑎𝑔𝑟𝑎𝑚 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0.66 ∗

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑜𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑎𝑔𝑟𝑎𝑚 𝑤𝑖𝑡ℎ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐷𝑖𝑎𝑔𝑟𝑎𝑚  (2) 

The following conclusions can be inferred from the logistic regression model: 

i) A unit increase in alignment of sequence diagram with activity diagrams while sequence 

diagram abstraction is held constant, increases the odd of high performance by a factor of 

1.934. 

ii) A unit increase in sequence diagram abstraction while alignment of sequence diagram with 

activity diagrams is held constant, increases the odds of high performance by a factor of 

1.467. 

5.8 Summary – Modeling Performance 

The first research question investigated as part of this analysis was - To what extent to did 

students demonstrate proficiency in abstract thinking while analyzing software systems in terms 

of functions, structures, and behaviors? Overall, students were proficient in modeling the given 

information system in terms of functions using use case narratives and UML activity diagrams. 

Students were able to proficiently employ abstract thinking to incorporate relevant details in their 

solution models and capture the interactions between the user and information system. However, 

it must be noted that students were in general less proficient in identifying the alternate course of 

events using use case narratives. In contrast, the overall performance of students dropped to the 

level of emerging when modeling the given information system in terms of structures and 

behaviors using UML class diagrams and UML sequence diagrams respectively. This was 

accompanied by a drop in abstract thinking scores as well. Students often failed to include 

important details in both diagrams. Class diagrams were missing key objects and their associated 

attributes, behaviors, and relationships. Sequence diagrams were missing key objects and their 

associated messages and responses.  

The second research question investigated was - To what extent to did students 

demonstrate proficiency in systems thinking while analyzing software systems in terms of 

functions, structures, and behaviors? Overall, students were proficient in applying systems 

thinking while modeling information systems in terms of functions. Most students were able to 
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accurately map actions in the activity diagrams to individual steps in the use case narratives. 

Similarly, most students were able to map the alternate course of events from their use case 

narratives to decisions and merges in their activity diagrams. While constructing sequence 

diagrams, students were proficient with aligning their sequence diagrams with their activity 

diagrams. Students were able align the overall flow of control within the system based on their 

activity diagrams even if some students had made errors in drawing messages being sent from 

and to incorrect objects. In comparison, students were substantially less proficient in aligning 

their sequence diagrams with their class diagrams. Only 41% of learners had included objects in 

their sequence diagrams that were present in their class diagram and mapped messages in their 

sequence diagrams to behaviors in their class diagrams. Many learners featured objects in their 

sequence diagram that did not exist in the class diagram and messages that did not map to any 

specific behavior. 

The third research question that was investigated was - What were the characteristics or 

profiles of students in terms of abstract thinking and systems thinking as evidenced by their 

system representations? The silhouette technique was applied to the dataset and it indicated that 

the optimal number of clusters was two. The n-Tarp binary clustering algorithm revealed the 

existence of two distinct clusters – moderate-performing students (n=40) and high-performing 

students (n=57). High performing students demonstrated significantly higher abstract thinking 

ability in terms of functions, structures, and behaviors compared to the students compared to the 

moderate performing students. High performing students were also significantly more proficient 

in systems thinking in terms of structures and behaviors. However, the two clusters exhibited 

comparable systems thinking ability in terms of functions. It must be noted that the differences 

between these clusters in terms of systems thinking given by alignment of the sequence diagram 

with the class diagram and alignment of the sequence diagram with the activity diagram were 

also statistically significant. The results of the correlational analysis indicated the following 

relationships: 

i) Proficiency of abstract thinking and system thinking were positively associated 

with overall functional modeling proficiency. 

ii) Proficiency of abstract thinking was positively associated with overall structural 

modeling proficiency. 



 

83 

iii) Proficiency of abstract thinking and systems thinking were positively associated 

with overall behavioral modeling proficiency. 

Finally, logistic regression was performed to identify the effect of unit-increases of rubric 

elements on the odds of a student being high-performing. In addition, the regression model 

determined the most important factors by adopting a backwards step-wise approach towards 

eliminating predictor variables. The Hosmer and Lemeshow test confirmed that the reduced 

model was a good fit for the data set. It could be confirmed from the regression model that the 

two most important elements that positively affect the odds of a student being high performing 

were the abstract thinking ability exhibited while modeling the information system in terms of 

behaviors, and systems thinking ability given by the alignment of the sequence diagrams with the 

activity diagrams. 
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CHAPTER 6. MODELING APPROACHES 

6.1 Summary of Data Analysis Procedures 

A single case study approach was employed in the qualitative strand of this study. A 

thematic analysis approach was employed to analyze the transcripts of the audio recordings of 

each participant. The researcher familiarized himself with the data by reading through each 

transcript multiple times while making notes of initial ideas or patterns. Following this the 

researcher captured and organized interesting features from the data to produce codes. The 

researcher was specifically looking for ways the participants employed abstract thinking and 

systems thinking while modeling the information system, given in the case, in terms of functions, 

structures, and behaviors. Following this, the codes were collated under the broad themes of 

abstract thinking and systems thinking. The operational definition for abstract thinking referred 

to episodes where students vocalized whether a detail should be included in the models. The 

operational definition for systems thinking referred to episodes where students made connections 

between different design elements which included making connections between elements drawn 

in one diagram to elements drawn in another diagram or students making changes in one diagram 

based on elements drawn in another diagram.  Codes that did not fit under either theme were 

collated under the theme “miscellaneous”. The only example of this code was that of “UML 

conformity” where participants explicitly vocalized content pertaining to the use of specific 

symbols or design choices as prescribed by the UML standards. 

 After this step, the themes and codes were reviewed to ensure that the data within each 

theme and code were coherent and identifiably distinct from other themes and codes, 

respectively. The two-level review process was conducted. The first was at the level of coded 

extracts to ensure that all instances fit the theme and moving them to other themes if necessary. 

This proved to be especially challenging in the context of codes pertaining to systems thinking 

because participants adopted proactive and reactive approaches to systems thinking. The code 

“mapping between models” refers to the proactive approach where participants actively 

referenced previously constructed models and “alignment” refers to the reactive approach where 

changes were made retroactively. The video corresponding to these segments were used to verify 

the approach taken by the participant and the code was attributed accordingly. The second level 
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of review was done at the level of entire data set where the themes were checked for whether 

they accurately reflect the data set as a whole. This review process led to a degree of re-coding. 

Re-coding continued until no further refinements could be or there no substantial additions to the 

codes. The extracts did not have to fit exclusively into any single code. There were several 

instances where the extracts could be attributed to two or more codes. This is an expected 

outcome as participants would, for instance, be employing abstract thinking and systems thinking 

simultaneously while modeling information systems in terms of functions, structures, and 

behaviors. 

The themes and codes, based on the thematic analysis of six transcripts, were detailed in 

Table 6.1. Operational definitions and sample quotes were provided for each code.  

Table 6.1: Themes and Codes 

Theme Code Definition Sample Quote 

Abstract 

Thinking 

Aggregation Instances of grouping 

together different 

details from the 

problem statement  

“I'm going to combine some of these methods 

for this…I'm probably going to combine the 

like- send information to client and then like 

send request bill and memo to the manager, 

like send information to the manager” 

 Decompositi

on 

Instances of breaking 

down details in the 

problem statement into 

smaller components 

“…like here where I wrote, like type 

experience and qualifications all into one … 

I’m going to split this up again because it 

makes sense to have them as different data 

members for the actual- because they're 

actually checking against the database” 

 Action and 

response 

identificatio

n 

Instances of identifying 

interactions between 

the system and the user 

to achieve a specific 

functionality 

“I'll just do a top decision. it terminates but 

then..so if it's no.. so technically this should 

be part of... if there's an a Staffing request this 

month... So it has to do with expiration and 

the request for you falls... Staffing request is 

not valid. It sends back the letter. Okay, so 

technically it's invalid. It goes go back to the 

Client, I'm using now the original. Document. 

so receive letter of rejection. So technically 

that ends the process here and just connect 

back to the end node. 
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Table 6.1 continued 

 Actor 

identificatio

n 

Instances of identifying 

the different users that 

interact with the system 

“yeah so I add a two other actors inside a 

system because in the placement department 

there are some employee checking the 

qualification of the the the worker the 

employee there's something for you inside the 

department checking it and they mark it as 

reserved in the staff database, so uhmm, there 

that also actors inside of system and what 

arrangement department they also mark… 

and they do some action inside a system and 

send it back to the contract manager so they 

should also be a actor instead of system itself 

processing” 

 Object 

identificatio

n 

Instances of identifying 

objects integral to the 

structure of the 

information systems 

“Now I'm trying to visualize the class 

diagram because I guess- I mean since I'm 

already here I might as well draw it from ... 

Just trying to figure out how to draw it which 

I mean obviously will be PSSM and then the 

Department's client would be separate, 

employee would be separate. Contract would 

go under client, and I think that that's an 

entity ... probably also create the request and 

then attach it with Bill in them.” 

 Relationship 

identificatio

n 

Instances of identifying 

the relationships 

between the objects of 

the information system 

“So I’m sticking with general relationships 

except for like the requests in the contracts … 

or aggregation and composition is the name 

of that one. Okay, because these can't exist 

without these existing; where these all exist 

independently of each other, you need a- you 

need a client to have a contract. I have a 

request” 

 Message 

and 

response 

identificatio

n 

Instances of identifying 

interactions between 

the objects of the 

information system 

“I will have to return to staffing request 

database, but I can represent that towards the 

lower end of the line when it's needed again. 

again, mostly this is just not looking ahead 

towards where I had those two actors that 

kind of threw this off a little bit, but I should 

have like realized from activity diagram, but 

for some reason. I just find it much easier to 

follow the actual use case than the diagrams 

that I have … which Again part of it is also 

because I don't really feel confident about 

everything that happened after the 

arrangements Department … all of the 

different activities that happened there. 

anyway moving on …” 
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Table 6.1 continued 

Miscellan

eous 

UML 

conformity 

Instances where the 

participant identified 

UML standards for 

different the diagrams 

or made changes to 

their diagrams to 

conform to UML 

standards 

“I always forget what the symbol you put 

before the data member of a entity in a class 

diagram is …. I think its a plus or minus .. 

hmmm…” 

Systems 

Thinking 

Alignment Instances where the 

participant made 

changes to a diagram 

based on details 

observed in another 

diagram 

“So these should have been checking against 

what I erased here. So this should actually be 

over here.” 

 Mapping 

between 

models 

Instances where the 

participant actively 

referenced an already 

constructed diagram 

while constructing 

another diagram 

“first just to get like all the different- I think 

I'm probably going to go with the different 

entities being the same as the swim lanes. So 

just to get those all down- make sure I have 

them large enough” 

 Model 

Coherence 

Instances where the 

participant made 

changes to a diagram in 

response to new details 

that were incorporated 

“Most of these I can translate into this fairly 

easily but…  I'm going to need …  contract 

database … request database … staff 

database … so I am going to need …. I’m 

going ot squeeze another one in here actually 

…” 

6.2 Chronological Visualization 

Through the process of thematic analysis, the researcher observed that participants chose 

to go about modeling systems in terms of functions, structures, and behaviors in different orders. 

All participants modeled the system given in the case in terms of functions first using the use 

case narrative and activity diagram. However, following this, some participants modeled the 

systems in terms of behaviors first before moving onto structures while others chose to model the 

system in terms of structures first before moving onto behaviors. Gantt charts were used to 

visualize how participants employed abstract thinking and systems thinking while modeling an 

information system in terms of functions, structures, and behaviors. Figure 6.1 presents the codes 

- identified as part of thematic analysis - on a Gantt chart for participants who first modeled 

functions, then structures, and finally behaviors of the information system. Figure 6.2 presents 

the codes - identified as part of thematic analysis - on a Gantt chart for participants who first 
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modeled functions, then behaviors, and finally structures of the information system. The figures 

present the codes on a timeline alongside the information of what artefact was being used for 

each instance of the code. 
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Figure 6.1: Gantt chart visualization – structures before behaviors



 

 

9
0
 

a 

  
b 

  
c 

  

Figure 6.2: Gantt chart visualization – behaviors before structures



 

91 

Figure 6.1 presents the Gantt chart of codes pertaining to the participants who constructed 

the structural models before the behavioral models – they were referred to as FSB1, FSB2, and 

FSB3. Figure 6.2 presents the Gantt chart of codes pertaining to the other three participants who 

constructed the behavioral models before the structural models – they were referred to as FBS1, 

FBS2, and FBS3. Participants took between one hour and thirty minutes to two hours and 

twenty-five minutes to model the information system in terms of functions, structures, and 

behaviors.  

In both approaches, participants modeled the system in terms of functions using the use 

case narratives and constructing activity diagrams. Abstract thinking this phase was broadly 

characterized by the codes - actor identification and action and response identification. 

Participants would identify the different users that interact with the system and capture the flow 

of control between users and the system to achieve a specific functionality. Participant FSB1 

took the additional step of combining certain attributes given in the case to ease the process of 

functional modeling. This corresponds to the code of aggregation. The participants exhibited 

systems thinking by proactively referencing the problem statement while completing the use case 

narratives and then proceeded to reference the narrative while constructing the activity diagram. 

It must be noted that participant FBS3 referenced the problem statement in addition to the use 

case narrative while constructing the activity diagram. Participants FBS2 and FSB3 also made 

changes to their use case narratives based on details included in their activity diagrams. This 

corresponds to the codes of “alignment” in Figure 6.1a and Figure 6.2b, respectively.  This also 

represents a more reactive approach to systems thinking. At around the 45-minute mark, 

participant FSB1 reorganized the activity diagram to ensure that the model was still coherent 

after the new details that were incorporated. Table 6.2 presents the scores of the participants in 

terms of modeling the given the case in terms of functions for selected rubric elements. The 

artefacts produced by the participants i.e., the functional models – given by the use case 

narratives and activity diagrams were scored using Appendix C – Use Case Narrative Rubric and 

Appendix D – Activity Diagram Rubric, respectively. There were no substantial differences in 

functional modeling proficiency between the participants. The differences in overall scores for 

the activity diagrams could be attributed to lack of UML conformity – namely the number of 

start and stop nodes, the absence of swimlanes, and the absence of merge nodes to combine 

control flows following decisions. All participants were proficient in abstract thinking and 
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systems thinking in terms of functions. Participants included relevant details in their functional 

models and aligned their activity diagrams proficiently with their use case narratives.  

Table 6.2: Participant scores – Functional Modeling Proficiency 

Participant Use Case 

Narrative Total 

(12) 

Activity 

Diagram 

Abstraction (4) 

Alignment with 

Use-Case 

Narrative (4) 

Activity 

Diagram Total 

(16) 

FSB1 10 4 4 14 

FSB2 12 3 4 13 

FSB3 12 4 4 15 

FBS1 12 4 4 14 

FBS2 12 4 4 16 

FBS3 11 4 4 12 

 

Following the construction of the functional models, the participants moved on to 

modeling the given system in terms of structures or behaviors. Participants FSB1, FSB2, and 

FSB3 modeled the system in terms of structures first. Abstract thinking in this phase was broadly 

characterized by the codes - object identification and relationship identification. All three 

participants identified objects and the relationships between them. All three participants took 

different approaches to systems thinking. Participant FSB1 primarily referenced the activity 

diagram while performing object and relationship identification. It must be noted that participant 

FSB1 also decomposed the attributes - that was aggregated prior - into its component parts. 

Participant FSB1 also vocalized explicitly the correct symbols to be used to model relationships 

in class diagrams corresponding to code of UML conformity. Participant FSB2 identified the 

objects in the sequence diagram first before deciding to complete the class diagram. As such, the 

partially constructed sequence diagram was also referenced in addition to the problem statement 

and the use case narrative. Participant FSB3 solely referenced the problem statement while 

modeling the given system in terms of structures. 

 Once the structural models were completed, participants FSB1, FSB2, and FSB3 modeled 

the system in terms of behaviors using UML sequence diagrams. Abstract thinking in this phase 

was broadly characterized by the codes – object identification, and message and response 

identification. Participants FSB1 and FSB3 identified the relevant objects alongside the pertinent 

messages and responses. Participant FSB2 had already identified the objects earlier. Participant 

FSB1 employed aggregation to consolidate some attributes as part of messages. In terms of 
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systems thinking, the participants all actively referenced other models while modeling the system 

in terms of behaviors corresponding to the code mapping between models. Participants FSB1 and 

FSB3 referenced the activity diagram and class diagram while constructing the sequence 

diagram. Participant FSB2 exclusively referenced the class diagrams. Participants FSB1 and 

FSB2 reworked their diagrams to ensure that the models were coherent in response to the new 

details incorporated. 

Participants FBS1, FBS2, and FBS3 modeled the system in terms of behaviors first. 

Abstract thinking in this phase was broadly characterized by the codes – object identification, 

and message and response identification. All three participants identified the relevant objects 

alongside the pertinent messages and responses. However, it must be noted that participant FBS2 

did not vocalize object identification. Participant FBS2 consolidated the different employee 

objects into a single object called staff corresponding to the code - aggregation. In terms of 

systems thinking, the participants all actively referenced other models while modeling the system 

in terms of behaviors corresponding to the code mapping between models. Participant FBS1 

exclusively referenced the use case narrative while participant FBS2 exclusively referenced the 

activity diagram. In contrast, participant FBS3 referenced the problem statement, the use case 

narrative, and activity diagram while constructing the sequence diagram.  

Once the behavioral models were completed, participants FBS1, FBS2, and FBS3 modeled 

the system in terms of structures using UML class diagrams. Abstract thinking in this phase was 

broadly characterized by the codes - object identification and relationship identification. All 

three participants identified objects and the relationships between them. Participant FBS2 

vocalized the earlier aggregation of employee objects and decomposed them into the component 

objects – corresponding to the code decomposition. Participant FBS3 vocalized aggregation in 

terms of introducing super-classes to house common attributes. Participants FBS1 and FBS3 

focused on conforming to UML standards in terms of attribute visibility in addition to 

relationship symbols and multiplicity corresponding to the code – UML conformity. In terms of 

systems thinking, the participants all actively referenced other models while modeling the system 

in terms of structures corresponding to the code mapping between models. Participant FBS1 

exclusively referenced the problem statement. Participant FBS2 referenced the previously 

constructed sequence diagram in addition to the problem statement whereas participant FBS3 

referenced the activity diagram, problem statement, and sequence diagram. 
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Table 6.3 presents the scores of the participants in terms of modeling the given the case in 

terms of structures and behaviors for selected rubric elements. The artefacts produced by the 

participants i.e., the structural models given by the class diagrams and the behavioral models 

given by the sequence diagrams were scored using Appendix E – Class Diagram Rubric, and 

Appendix F – Sequence Diagram Rubric, respectively. 

Table 6.3: Participant scores – Structural and Behavioral Modeling Proficiency 

Participant Class 

Diagram 

Abstraction 

(4) 

Class 

Diagram 

Total (16) 

Sequence 

Diagram 

Abstraction 

(4) 

SD -

Alignment 

with Class 

Diagram 

(4) 

SD -

Alignment 

with 

Activity 

Diagram 

(4) 

Sequence 

Diagram 

Total (20) 

FSB1 2 9 3 2 4 14 

FSB2 4 15 4 4 4 20 

FSB3 3 11 3 3 4 17 

FBS1 3 13 3 4 4 18 

FBS2 4 16 3 3 4 15 

FBS3 3 13 3 2 3 15 

 

In general, the scores indicate a marked reduction in proficiency of abstract thinking in 

terms of structures and behaviors compared to the proficiency of abstract thinking in terms of 

functions. With the exception of participant FSB1, neither approach – modeling behaviors before 

structures, nor modeling structures before behaviors – yielded dramatically different results in 

terms of overall software modeling proficiency. Participants across both approaches displayed 

varying degrees of systems thinking ability in terms of aligning their sequence diagrams with 

class diagrams, however, participants in both approaches were generally proficient in aligning 

their sequence diagrams with their activity diagrams in terms of overall flow. It is also worth 

noting that participants FSB3 and FBS2 referenced other models the least among all participants 

but their proficiency of systems thinking was not negatively impacted. 

Table 6.4 presents the proportion of time spent by each participant on each model. The 

results are presented in terms of percentage of total time spent on the problem statement, use 

case narratives, activity diagrams, class diagrams, and sequence diagrams. Idle time refers to 

periods of time where the participant did not think aloud pertaining to design decisions or the 

rationale for including specific details. Idle time also included breaks taken by the participants. 
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Table 6.4: Time spent on models by participants 

Participant Total 

Time 

(minutes) 

% - Idle 

time 

% on 

Problem 

statement 

% of time 

on 

Functions 

% of time 

on 

Structures 

% of time 

on 

behaviors 

    UCN AD   

FSB1 135 27 2 20 16 15 20 

FSB2 103 23 5 19 10 23 19 

FSB3 93 10 0 31 28 10 20 

FBS1 143 5 4 16 31 24 19 

FBS2 93 21 0 21 16 16 26 

FBS3 145 2 2 15 20 31 29 

Note. UCN – Use Case Narratives. AD – Activity Diagrams. 

 

Overall, the participants in either approach spent comparable amounts of time on 

constructing each model. There also does not seem to be any direct relationship between time 

spent on modeling and the proficiency exhibited by the participants. Functional modeling, on the 

whole, takes longer because of participants constructing both use case narratives and activity 

diagrams to model functions. It must be noted that while participants FSB3 and FBS2 took the 

least amount of time to construct the functional, structural, and behavioral models of the given 

system there were no substantial differences in modeling proficiency between them nor were 

there any substantial differences compared to participants who took longer. These participants 

also spent no time on the problem statement exclusively and proceeded to functional modeling 

almost immediately. 

6.3 Summary – Modeling Approaches 

The research question investigated through this analysis was - How did students use 

abstract thinking and systems thinking when modeling software systems in terms of functions, 

structures, and behaviors? The theme of abstract thinking was characterized in terms of 

functions, structures, and behaviors. Abstract thinking in terms of functions were broadly 

characterized by the codes - actor identification, and action and response identification. 

Participants identified the users that interact with the system and modeled the nature of these 

interactions. Abstract thinking in terms of structures were broadly characterized by the codes – 

object identification and relationship identification. Participants identified the objects relevant to 

the solution and the relationships between them. Abstract thinking in terms of behaviors were 
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broadly characterized by the codes – object identification and message and response mapping. 

Participants identified the objects relevant to the solution and modeled the messages and 

responses that are passed between them to achieve the functionality of the system. Systems 

thinking was broadly characterized in terms of the codes – alignment, mapping between models, 

and model coherence. While modeling the system in terms of functions, the participants 

exhibited systems thinking, corresponding to the code mapping between models, by actively 

referencing their use case narratives or problem statement while constructing the activity 

diagrams. Participants also occasionally returned to the previously constructed use case 

narratives to make updates based on details that they included in their activity diagrams. This 

corresponds to the systems thinking code of alignment. There were also instances of participants 

reworking the diagrams that were currently constructing based on newly observed details and 

this corresponds to the systems thinking code of model coherence. The participants were overall 

proficient in terms of applying abstract thinking and systems thinking while modeling the system 

in terms of functions. 

To explore systems thinking further, it is important to recognize that participants took two 

different approaches towards modeling the information system in terms of structures and 

behaviors. Half of the participants modeled the information system in terms of structures first 

while the rest of the participants modeled the information system in terms of behaviors. As such, 

the participants who modeled the information system in terms of structures first exhibited 

systems thinking by referencing the problem statement, use case narratives, and activity 

diagrams while constructing the class diagrams. These participants would then reference the 

class diagrams while constructing the sequence diagrams. The participants who modeled the 

information system in terms of behaviors first exhibited systems thinking by referencing problem 

statement, use case narratives, and activity diagrams while constructing the class diagrams. 

These participants would then reference the sequence diagrams while constructing the class 

diagrams. It must be noted that with the exception of one participant, there were no substantial 

differences in terms of overall software modeling proficiency between the two approaches. 
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CHAPTER 7. DISCUSSION AND IMPLICATIONS 

This section summarized the results and findings from the quantitative and qualitative 

strands of the study in the context of literature. Following this, the theoretical and 

methodological implications of this research were presented as well as how these results and 

findings could be utilized to inform instructional practices in higher education settings. 

7.1 Characterizing Abstract Thinking 

The results of the quantitative strand point to students being proficient in terms of applying 

abstract thinking while modeling the information system in terms of functions. However, there 

was an overall reduction in proficiency of abstract thinking while modeling the system in terms 

of structures and behaviors. This aligns with the notion that abstract thinking can be applied at 

multiple levels (Hadar & Hadar, 2006; Kramer, 2007; Zehetmeier et al., 2019). The differences 

in proficiency of modeling information systems in terms of functions, structures, and behaviors 

also runs contrary to studies conducted in other fields such as physics, engineering, biology, and 

medicine (Chi, De Leeuw, Chiu, & Lavancher, 1994; Hmelo-Silver & Pfeffer, 2004; Lammi, 

2011; Vattam et al., 2011). An explanation for this discrepancy in information systems compared 

to other fields could be how physical systems readily present their structural and behavioral 

elements. This contrasts with how information systems are primarily perceived in terms of the 

functionality offered by them with users of these systems not necessarily pausing to consider the 

structural and behavioral elements that implement these functions.  

This study specifically deals with problem, object, and program levels of abstraction as 

portrayed by Perrenet (2010). Modeling the information system in terms of functions aligns with 

the problem level of abstraction. The problem level of abstraction was defined as the highest 

level of abstract thinking and the students were generally proficient at it. Modeling the 

information system in terms of structures and behaviors aligns with the object and program 

levels of abstract thinking which are considered to be lower levels of abstract thinking and 

interestingly the students were less proficient at these levels. The students experienced some 

difficulty in accurately implementing data abstraction – defining data structures and 

relationships; and procedural abstraction – defining functional calls (Liskov 1988; Morgan, 
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1988). While the patterns of proficiency remained similar across both strands of this study, it 

must be noted that the participants in the qualitative strand generally received better scores for 

their models. This could be, at least in part, attributed to how participants of the qualitative 

strand of this study were of junior or senior standing and had completed programming courses 

centered around different programming languages such as C++ and Java. This provided them 

with more opportunities to practice the cognitive work involved in moving between various 

levels of abstraction. In comparison, students involved in the quantitative strand who had only 

completed one introductory course centered around object-oriented programming. 

The clustering analysis revealed the existence of two distinct groups of students – high 

performing students who were more proficient in applying abstract thinking in terms of 

functions, structures, and behaviors compared to the moderate performing students. The 

correlational analysis of these clusters revealed statistically significant positive correlations 

between abstract thinking ability and software modeling proficiency. This further substantiates 

claims made in literature that abstract thinking is essential in the process of constructing models 

(Devlin, 2003; Kramer, 2007; Nguyen & Wong, 2001). The logistic regression model pointed to 

abstract thinking ability in terms of behaviors as being one of two key components to overall 

high performance in terms of software modeling proficiency. 

The qualitative strand of this study provided an insight into how the participants employed 

abstract thinking while modeling systems in terms of functions, structures, and behaviors. The 

codes identified as part of the thematic analysis process adds to the literature in terms of how 

abstract thinking can be employed in the context of systems analysis and design. Across the 

different models, participants employed aggregation to consolidate related elements and 

decomposition to break down elements with multiple components. While constructing the use 

case narratives and activity diagrams, the participants focused on identifying actors and the flow 

of control between the users and the system through actions and responses. These codes 

correspond with some of the functional analysis games such as critical event analysis, cause-and-

effect analysis, and problem-centered analysis (Collins & Ferguson, 1993; Sherry & Trigg, 

1996). The participants were overall proficient in modeling the system in terms of functions 

although some participants did fail to conform to UML standards in terms of modeling 

swimlanes, use of decision and merge nodes, and the number and location of start/stop nodes. 
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When constructing class diagrams, the participants vocalized identifying the various 

relevant objects and the relationships between them. However, it must be noted that the 

participants were less successful in identifying all relevant objects and relationships. This could 

be attributed to the participants not always correctly identifying objects relevant to the solution 

and missing associated relationships as a direct result of this. These codes correspond to structure 

analysis games such as primitive-elements analysis and spatial decomposition which the 

participants employed to identify the relevant objects and relationships between them (Collins & 

Ferguson, 1993; Sherry & Trigg, 1996).  

Overall proficiency in terms of modeling structures using class diagrams was negatively 

affected by failing to list relevant attributes and behaviors associated with every object and 

failing to appropriately label relationships. When constructing sequence diagrams, the 

participants vocalized identifying the relevant objects as well as identifying the flow of messages 

and responses between them. These codes correspond to the process analysis games of 

identifying systems-dynamics models and situation-action models to capture the objects and the 

interactions between them (Collins & Ferguson, 1993; Sherry & Trigg, 1996). It must be noted 

that the participants often did not identify all relevant objects or failed to identify correct 

messages and responses that go between these objects which had a negative impact on overall 

proficiency. 

Through identifying actors, objects, relationships, messages and responses etc. abstract 

thinking was used across the functional, structural, and behavioral models to create models that 

map to real-world constructs (Devlin, 2003; Kramer, 2007) and capture details that are essential 

to the solution (Hadar & Hadar, 2006; Kramer, 2007; Zehetmeier et al., 2019).  

7.2 Characterizing Systems Thinking 

Systems thinking was broadly defined in literature as the ability of an individual to capture 

different views of a system and think of a system as involving inter-related components instead 

of as independent parts (Godfrey, Deakin Crick, & Huang, 2014). This aligns with the concept of 

epistemic fluency, which was defined as the ability to organize knowledge into different patterns 

while making sense of a problem in different ways (Sherry & Trigg, 1996). For the purposes of 

this study, students and participants employed the epistemic games of functional analysis, 

structural analysis, and process analysis to model the system in terms of functions, structures, 
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and behaviors. They accomplished this by using the epistemic forms of use case narratives and 

activity diagrams, class diagrams, and sequence diagrams.  

The results of the quantitative strand point to students being proficient in terms of applying 

systems thinking while modeling the information system in terms of functions where 79% of the 

students successfully aligned their actions and decisions in their activity diagrams with the 

typical and alternate courses of events in the use case narrative. In comparison, there was a 

substantial drop in overall proficiency of aligning the sequence diagrams with the class diagrams 

with only 41% of being successful at doing so. This could be attributed to including objects in 

the sequence diagram that were not identified in the class diagram or labeling messages with 

function calls that were not identified in the class diagram. However, 82% of the students 

successfully aligned their sequence diagrams with their activity diagrams in terms of overall 

flow. Even if there were objects missing or messages and responses were mapped to incorrect 

objects, the overall flow of control of the system was still captured. These results corroborate the 

findings from a prior study where students encountered difficulty in making connections between 

different UML diagrams (Burgueño, Vallecillo, & Gogolla, 2018). 

The clustering analysis revealed the existence of two distinct groups of students – high 

performing students who were more proficient in applying systems thinking in terms of 

functions, structures, and behaviors compared to the moderate performing students. The 

correlational analyses of these clusters revealed statistically significant positive correlations 

systems thinking ability - given by alignment of activity diagrams with use case narratives and 

alignment of sequence diagrams with class diagrams – overall software modeling proficiency. 

Interestingly, there were no statistically significant correlations found between sequence diagram 

totals and alignment of sequence diagrams with activity diagrams which could be because vast 

majority of students were proficient at it. However, the logistic regression model pointed to 

systems thinking ability in terms of aligning sequence diagrams with activity diagrams as being 

one of two key components to overall high performance in terms of software modeling 

proficiency.  

The qualitative strand of this study provided an insight into how the participants employed 

systems thinking while modeling systems in terms of functions, structures, and behaviors. Given 

the uniform practice of systems thinking that has been developed (Sevaldson, 2011), the codes 

identified as part of the thematic analysis process adds to the literature in terms of how systems 
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thinking can be employed in the context of systems analysis and design. The thematic analysis 

process revealed that participants employed systems thinking by actively referencing previously 

constructed models – corresponding to the code, mapping between models – or by retroactively 

make changes to previously constructed models based on new details that were observed – 

corresponding to the code, alignment. In addition to this, participants also actively modified their 

models in response to new details that they incorporated – corresponding to the code, model 

coherence. These characterizations of systems thinking align with literature definitions that 

portray it as an approach for seeing the relationships between different parts of the system 

(Godfrey, Deakin Crick, & Huang, 2014) and recognizing that changes made in part of the 

system can affect other parts (Wolstenholme, 2003). 

The qualitative strand also revealed that participants took two distinct approaches towards 

modeling the given system in terms of functions, structures, and behaviors. All participants 

modeled the systems in terms of functions first. Participants referenced the problem statement 

while constructing the use case narratives. They would then reference the use case narrative, and 

at times the problem statement also, while constructing the activity diagrams. Following this, 

half of the participants modeled the system in terms of behaviors using sequence diagrams then 

structures using class diagrams, and the others modeled the system in terms of structures using 

class diagrams then behaviors using sequence diagrams. In the first approach, the participants 

constructed the sequence diagrams while primarily referencing the use case narrative and activity 

diagram. Some participants also referenced the problem statement. The class diagram was then 

constructed primarily referencing the sequence diagram although some participants did reference 

the problem statement, use case narrative, and activity diagram as well. In the latter approach, 

participants constructed the class diagrams first. They identified objects and the relationships 

between them by referencing the problem statement and activity diagram. Following this they 

constructed the sequence diagram by referencing the class diagram. This group could have been 

conditioned to model structures before behaviors based on It must be noted that in the case of 

either approach, there were no substantial differences in terms of exhibited systems thinking 

ability. Participants were generally proficient in aligning their activity diagrams with their use 

case narratives and aligning their sequence diagrams with their activity diagrams. However, 

participants were generally less proficient in aligning their class diagrams and sequence 

diagrams. It must be noted that the participants tended to apply systems thinking proactively by 
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referencing previously constructed models. Participants also retroactively made changes to 

already constructed models based on new details, albeit less frequently. 

7.3 Implications 

7.3.1 Theoretical and methodological implications 

The theoretical implications of this study were two-fold. The review of literature 

conducted as part of this study revealed that abstract thinking has been defined and 

operationalized in different ways depending on the context (Zehetmeier et al., 2019). Systems 

thinking also has been defined in numerous context-dependent ways (Brewer & Dittman, 2018; 

Godfrey, Deakin Crick, & Huang, 2014; Senge, 1990; Stearman, 2000). However, in the context 

of modeling information systems, there has been limited research conducted regarding abstract 

thinking or systems thinking. Therefore, there were no pre-existing operational definitions that 

could be directly utilized. The first theoretical contribution of this study includes the 

operationalization of abstract thinking and systems thinking in the context of information 

systems modeling. Abstract thinking was operationalized in terms of percentage of relevant 

details included in the functional, structural, and behavioral models, and systems thinking was 

operationalized in terms of alignment between the different models. The second theoretical 

implication was related to epistemic forms, epistemic games, and the SBF framework. Literature 

generally points to structural analysis games being the simplest and process analysis games being 

the most complex with functional analysis games being right between (Collins & Ferguson, 

1993; Sherry & Trigg, 1996). In numerous studies across different domains that utilized the SBF 

framework, subjects were typically most proficient at identifying structural elements of given 

system while encountering some difficulty in identifying functions and behaviors (Chi, De 

Leeuw, Chiu, & Lavancher, 1994; Hmelo-Silver & Pfeffer, 2004; Lammi, 2011; Vattam et al., 

2011). Most of these studies supported the notion that experts rather than novices tended to 

organize systems by functions and behaviors. However, this study revealed that in the context of 

information systems, students were most proficient at the epistemic game of functional analysis, 

and least proficient at behavioral analysis. These results also corresponded to the abstract 

thinking ability displayed by students while modeling the given information systems in terms of 

functions, structures, and behaviors. Figure 7.1 illustrates how abstract thinking and systems 
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thinking are essential to the process of translating a problem statement into software models. The 

figure also demonstrates how the concepts of epistemic forms and games are utilized in the 

context of information systems modeling. 

 

Figure 7.1: Software modeling process 
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Epistemic games are employed to model an information system in terms of functions, 

structures, and behaviors. The epistemic games of functional analysis, structural analysis, and 

behavioral analysis all utilize abstract thinking to extract relevant details from the problem 

statement to construct the models. Systems thinking is utilized either proactively or reactively to 

bring about alignment and coherence between elements of the different models. Ultimately, the 

outcomes of this are the functional, structural, and behavioral models i.e. the epistemic forms. 

The methodological implications of this study pertain to the rubrics that were developed to 

evaluate the functional, structural, and behavioral models in terms of abstract thinking and 

systems thinking as well as conformity to UML standards. The validity and reliability of these 

rubrics were established through a combination of face validity and interrater reliability. These 

rubrics can be utilized in systems development courses to score or grade UML activity diagrams, 

class diagrams, and sequence diagrams while also evaluating the abstract thinking and systems 

thinking ability of students. 

7.3.2 Implications for teaching and learning 

The quantitative results and qualitative findings from the study indicate that students were 

generally proficient in applying abstract thinking and systems thinking while modeling 

information systems in terms of functions through use case narratives and UML activity 

diagrams. However, they were generally less proficient at applying abstract thinking and systems 

thinking while modeling information systems in terms of structures and behaviors. The results of 

the clustering analysis revealed the existence of a cluster of high-performing students (n=57) 

who were significantly more proficient at applying abstract thinking and systems thinking. It 

could be inferred that the design conjectures and theoretical conjectures of the sophomore-level 

systems analysis and design course – detailed in Chapter 4 - were successful in equipping more 

than half of the students with the abstract thinking and systems thinking skills required to 

proficiently model information systems in terms of functions, structures, and behaviors. The 

learners enrolled in this course engaged in project-based cooperative learning through the in-

class modeling activities and the Scrum-based team project – the design conjectures - to produce 

UML models that described the system in terms of functions, structures, and behaviors. The 

theoretical conjecture that the development of these UML software models would lead to 
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increased software modeling proficiency, abstract thinking skills and systems thinking skills was 

substantiated by the cluster of high-performing students. However, the relative lack of 

proficiency of abstract thinking and systems thinking while modeling systems in terms of 

structures and behaviors of the moderate performing students (n=40) need to be addressed. 

The discrepancy in modeling proficiency could be addressed by structured exercises 

walking students through the process of constructing structural and behavioral models. These 

exercises can cover the mechanical aspects of constructing structural and behavioral models such 

as adhering to UML standards in terms of symbols and notations used. However, the focus of 

these exercises should explicitly be on how to apply abstract thinking and systems thinking while 

modeling a system in terms of structures and behaviors. This approach would involve integrating 

the tenets of cognitive apprenticeship.  

Cognitive apprenticeship aims to assist learners in understanding when a skill can or 

cannot be used, and when to generalize a skill so that it can be applied in novel situations 

(Collins, Brown, & Holum, 1991). Cognitive apprenticeship methods include modeling, 

coaching, scaffolding, articulation, reflection, and exploration (García-Cabrero et al., 2018). 

Modeling involves the instructor performing a task while the students observe. The instructor can 

guide learners through the process of developing software models when given a problem 

statement. Through this guided exercise, learners can gain insights into how can abstract thinking 

be applied to extract the details relevant to the solution. The instructor should elaborate on the 

rationale behind each design decision, such as why some elements were included in the model – 

in terms of objects, relationships, messages, and responses – while others were not. The 

instructors should also illustrate systems thinking by actively referencing previously constructed 

models and explaining the connections between the different models of the system. Examples of 

this can include how objects in the sequence diagram must exist in the class diagram and how the 

messages in the sequence diagram should be labeled with function calls corresponding to 

behaviors listed in the class diagram. Systems thinking can also be illustrated by adopting both 

approaches taken by participants in the qualitative strand of this study in terms of modeling 

structures before behaviors and modeling behaviors before structures. Following the modeling 

exercises, coaching can be employed where learners are given cases to construct models for 

while the instructor provides hints or feedback. Scaffolding can be implemented by providing 

students with partially complete models for example cases with the expectation that they 
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complete the models. The partially completed portions should ideally illustrate UML conformity 

and highlight the correct symbols to be used when modeling different systems. Articulation and 

reflection could be implemented together in the form of small group activities where learners can 

verbalize their different approaches towards constructing the UML models and they can receive 

feedback from their peers. The exploration aspect of cognitive apprenticeship can be facilitated 

by providing students with a complex case with expectation that they are to identify different 

functionalities offered by the system. Following this, the students can be asked to model the 

system in terms of functions, structures, and behaviors for each functionality. It must be noted 

that the sophomore-level systems development course detailed in Chapter 4 already implements 

elements of cognitive apprenticeship, specifically that of modeling, articulation, reflection, and 

exploration - through the in-class modeling activities as well as the term project (Magana, Seah, 

& Thomas, 2018). However, incorporating coaching and scaffolding with an explicit focus on 

structural and behavioral modeling could help improve student proficiency in modeling 

structural and behavioral aspects of information systems. The tenets of cognitive apprenticeship 

align strongly with the principles of social constructivism by promoting interaction and 

collaboration between learners as well as between the instructor and learners. 

Another approach that could address the relative lack of structural and behavioral modeling 

proficiency among students is an exercise that provides students with complete functional code 

and the problem statement that they must use to construct UML models. The code would provide 

learners with insights into how the problem statement was implemented in terms of structures 

and behaviors – corresponding to classes and their respective attributes and behaviors. This 

exercise could also serve to improve the abstract thinking and systems thinking ability of 

students by being forced to determine what details included in the problem statement are relevant 

to the solution and how the different elements are connected. 
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CHAPTER 8. CONCLUSION 

8.1 Limitations 

The results and findings from this study were subject to the following limitations. The data 

for the quantitative strand was collected from students who were enrolled in a sophomore-level 

systems analysis and design course at a large midwestern university while the data for the 

qualitative strand was collected from students of junior senior standing who were part of the 

department of computer and information technology and had already completed the sophomore-

level systems analysis and design course at the same university. Therefore, there were two 

distinct samples. Both samples were not necessarily representative of the student population of 

the university. As such, the results may not be generalizable to other universities. The data of the 

quantitative strand was limited by the preparation done by the students for their second mid-term 

exam. Due to logistical constraints, the exam was conducted in two parts so there was potential 

for interaction between the students prior to the second part. The qualitative strand was limited to 

the number of volunteer participants who had completed the sophomore-level course. For each 

participant in the qualitative strand, the data was collected in a single three-hour session. As a 

result, participants did experience fatigue. This was mitigated in part by allowing the participants 

to take breaks as required. The qualitative strand was also subject to limitations associated with 

the think-aloud process where codes were only identified based on instances where participants 

vocalized design decisions or explained their rationale upon being prompted by the researcher. 

Neither strand explored student motivation or its relationship with proficiency of abstract 

thinking or systems thinking. The study also did not explore the effect of prior knowledge of 

programming on abstract thinking or systems thinking ability exhibited while modeling 

information systems. 

8.2 Conclusion and Future Work 

The goal of this study was to characterize abstract thinking and systems thinking 

proficiency exhibited by students while modeling information systems in terms of functions, 

structures, and behaviors using UML models. This was accomplished by employing a multi-

methods approach towards measuring and characterizing abstract thinking and systems thinking 
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in the context of information systems modeling. The study was successful in employing the SBF 

framework in the context of information systems modeling and the patterns of proficiency 

exhibited by the participants was found to be dramatically different from that of other studies 

conducted in other domains - specifically that the students exhibited greater proficiency of 

modeling systems in terms of functions compared to that of modeling structures and behaviors. 

The study provided valuable additions to the literature pertaining to abstract thinking and 

systems thinking in the area of systems analysis and design. The study also tied together how 

epistemic forms and games can be applied in information systems modeling. The results of 

quantitative strand revealed patterns of proficiency among students. Abstract thinking and 

systems thinking generally correlated positively with software modeling proficiency. A logistic 

regression model was computed that identified the key elements that predicted software 

modeling proficiency. The rubrics developed as part of this strand can be utilized in systems 

analysis and design courses to evaluate software models developed by students as well as their 

level of abstract thinking and systems thinking. The findings from the qualitative strand revealed 

the different approaches taken by participants in applying abstract thinking and systems thinking 

while constructing the functional, structural, and behavioral models. These findings extend 

existing literature definitions and operationalizations of abstract thinking and systems thinking 

but specifically characterize these constructs in context of information systems modeling. This 

study makes a case for the development of learning interventions and evaluation mechanisms 

that can aid students in being more proficient at applying abstract thinking and systems thinking 

while modeling information systems in terms of structures and behaviors. This in turn would 

lead to more complete and accurate models being produced. Implementing cognitive 

apprenticeship in the classroom through guided exercises that utilize instructional scaffolds could 

help students better apply abstract thinking and systems thinking which in turn would improve 

overall software modeling proficiency.  

Given the state of literature and the limitations of this study, further research pertaining to 

abstract thinking and systems thinking in context of modeling information systems would be 

useful in expanding the collective understanding of these constructs. Future work could explore 

the effect of each of the suggested instructional interventions on software modeling proficiency 

exhibited by students. A true mixed-methods approach would also help ground the findings in a 

specific sample. It would also be interesting to assess the effectiveness of these suggested 



 

109 

interventions in an online instructional setting. These proposed studies could yield vital 

information in understanding the nature of instructional support required to bolster abstract 

thinking and systems thinking ability among students in the context of information systems 

modeling. In addition, an inquiry could be conducted into the nature of the relationship between 

academic achievement and constructs of abstract thinking and systems thinking. Some research 

questions that could guide directions for future research are as follows: 

• How can cognitive apprenticeship be implemented in the classroom to improve 

student abstract thinking and systems thinking while modeling information 

systems? 

• How do differences in students’ prior knowledge of programming affect their 

software modeling proficiency? 

• What is the relationship between students’ abstract thinking ability and their 

academic achievement in a systems analysis and design course? 

• How does student motivation affect their proficiency of abstract thinking and 

system thinking? 

• What are the differences in abstract thinking and systems thinking ability exhibited 

by students in a fully online instructional setting compared to an in-person setting? 
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APPENDIX A - MODELING EXAM 
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APPENDIX B - USE CASE NARRATIVE TEMPLATE 
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APPENDIX C - USE CASE NARRATIVE RUBRIC 

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4) 

Typical Course 

of Events 

Typical 

course of 

events absent 

10-50% of 

typical course 

of events 

51-70% of 

typical course 

of events 

71-90% of 

typical course 

of events 

91-100% of 

typical course 

of events 

Alternate 

Courses 

Alternate 

courses 

absent 

10-50% of 

alternate 

courses 

51-70% of 

alternate 

courses 

71-90% of 

alternate 

courses 

91-100% of 

alternate 

courses 

Narrative 

Completeness 

Narrative 

details absent 

10-50% of 

narrative 

details 

complete 

51-70% of 

narrative 

details 

complete 

71-90% of 

narrative 

details 

complete 

91-100% of 

narrative 

details 

complete 
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APPENDIX D - ACTIVITY DIAGRAM RUBRIC 

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4) 

Start/Stop Nodes Start and Stop 

nodes absent 

Missing either 

start or stop 

node or used 

incorrect 

symbols 

Multiple 

start/stop nodes 

or missing 

either node or 

used incorrect 

symbols 

Start and/or 

stop nodes 

drawn within 

swimlanes 

Exactly one 

start and one 

stop node 

shown outside 

the swimlanes 

Swimlanes/Actors No swimlanes 

shown 

Showed 10-

50% swimlanes 

and/or did not 

label swimlanes 

Showed 51-

70% swimlanes 

and/or did not 

label swimlanes 

Showed and 

labeled 71-90% 

swimlanes 

Showed and 

labeled 91-

100% 

swimlanes 

Activities No activities 

shown 

10-50% 

appropriate 

activities 

shown, some 

with verb, some 

include object, 

MANY 

compound 

activities 

51-70% 

appropriate 

activities 

shown, some 

with verb, some 

include object, 

MANY 

compound 

activities 

71-90% 

appropriate 

activities 

shown, begin 

with verb, 

include object, 

FEW 

compound 

activities 

91-100% of 

appropriate 

activities 

shown, begin 

with verb, 

include object, 

NO compound 

activities 

Decisions/Merges No decisions 

or merges 

shown 

10-50% 

decisions and 

branches 

labeled. Did not 

use merge 

nodes to 

connect 

multiple control 

flows entering 

the same node 

51-70% 

decisions and 

branches 

labeled. Did not 

use merge 

nodes to 

connect 

multiple control 

flows entering 

the same node 

71-90% 

decisions and 

branches 

labeled. Used 

merge nodes 

sometimes to 

connect 

multiple control 

flows entering 

the same node 

91-100% 

decisions and 

branches 

labeled. Used 

merge nodes 

ALWAYS to 

connect 

multiple control 

flows entering 

the same node 

Abstraction No relevant 

details from 

problem 

statement 

included in 

diagram 

10-50% of 

relevant details 

from problem 

statement 

included in 

diagram 

51-70% of 

relevant details 

from problem 

statement 

included in 

diagram 

71-90% of 

relevant details 

from problem 

statement 

included in 

diagram 

91-100% of 

relevant details 

from problem 

statement 

included in 

diagram 

Alignment with 

Use Case Narrative 

None of the 

actions in the 

activity 

diagram 

mapped to 

steps in the use 

case narrative 

10-50% of the 

actions in the 

activity 

diagram 

mapped to steps 

in the use case 

narrative 

51-70% of the 

actions in the 

activity 

diagram 

mapped to steps 

in the use case 

narrative 

71-90% of the 

actions in the 

activity 

diagram 

mapped to steps 

in the use case 

narrative 

91-100% of the 

actions in the 

activity 

diagram 

mapped to steps 

in the use case 

narrative 
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APPENDIX E - CLASS DIAGRAM RUBRIC 

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4) 

Objects No objects 

shown 

10-50% 

objects 

correctly 

identified and 

named 

51-70% 

objects 

correctly 

identified and 

named 

71-90% 

objects 

correctly 

identified and 

named 

91-100% 

objects 

correctly 

identified and 

named 

Attributes No attributes 

shown 

10-50% 

attributes listed 

51-70% 

attributes listed 

71-90% 

attributes listed 

91-100% 

attributes listed 

Behaviors No behaviors 

shown 

10-50% of 

behaviors 

listed 

51-70% of 

behaviors 

listed 

71-90% of 

behaviors 

listed 

91-100% of 

behaviors 

listed 

Relationships No 

relationships 

shown 

10-50% of 

relationships 

named bi-

directionally 

with correct 

multiplicity 

51-70% of 

relationships 

named bi-

directionally 

with correct 

multiplicity 

71-90% of 

relationships 

named bi-

directionally 

with correct 

multiplicity 

91-100% of 

relationships 

named bi-

directionally 

with correct 

multiplicity 

Abstraction No relevant 

details from 

problem 

statement 

included in 

diagram 

10-50% of 

relevant details 

from problem 

statement 

included in 

diagram 

51-70% of 

relevant details 

from problem 

statement 

included in 

diagram 

71-90% of 

relevant details 

from problem 

statement 

included in 

diagram 

91-100% of 

relevant details 

from problem 

statement 

included in 

diagram 
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APPENDIX F - SEQUENCE DIAGRAM RUBRIC  

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4) 

Objects No objects 

shown 

10-50% of 

objects 

correctly 

identified 

51-70% of 

objects 

correctly 

identified 

71-90% of objects 

correctly identified 

91-100% of objects 

correctly identified 

Lifelines No lifelines 

shown 

10-50% of 

lifelines shown 

51-70% of 

lifelines shown 

71-90% of lifelines 

shown 

91-100% lifelines 

shown 

Processes / 

Execution 

Occurrences 

No processes 

shown 

10-50% of 

processes 

shown 

51-70% of 

processes 

shown 

71-90% of 

processes shown 

91-100% processes 

shown 

Messages No messages 

shown 

10-50% of 

messages 

shown and/or 

correctly 

labeled with 

appropriate 

parameters 

51-70% of 

messages 

shown and/or 

correctly 

labeled with 

appropriate 

parameters 

71-90% of 

messages shown 

and/or correctly 

labeled with 

appropriate 

parameters 

91-100% of 

messages shown 

and correctly 

labeled with 

appropriate 

parameters 

Responses No responses 

shown 

10-50% of 

responses 

shown and/or 

correctly 

labeled 

51-70% of 

responses 

shown and/or 

correctly 

labeled 

71-90% of 

responses shown 

and correctly 

labeled 

91-100% of 

responses shown 

and correctly 

labeled 

Abstraction No relevant 

details from 

problem 

statement 

included in 

diagram 

10-50% of 

relevant details 

from problem 

statement 

included in 

diagram 

51-70% of 

relevant details 

from problem 

statement 

included in 

diagram 

71-90% of relevant 

details from 

problem statement 

included in 

diagram 

91-100% of 

relevant details 

from problem 

statement included 

in diagram 

Alignment with 

Class Diagram 

None of the 

objects and 

messages in 

the sequence 

diagram map 

to classes and 

functions in 

the class 

diagram 

10-50% of the 

objects and 

messages in 

the sequence 

diagram map 

to classes and 

functions in 

the class 

diagram 

51-70% of the 

objects and 

messages in 

the sequence 

diagram map 

to classes and 

functions in 

the class 

diagram 

71-90% of the 

objects and 

messages in the 

sequence diagram 

map to classes and 

functions in the 

class diagram 

91-100% of the 

objects and 

messages in the 

sequence diagram 

map to classes and 

functions in the 

class diagram 

Alignment with 

Activity 

Diagram 

None of the 

messages and 

responses 

map to actions 

in the activity 

diagram 

10-50% of the 

messages and 

responses map 

to actions in 

the activity 

diagram 

51-70% of the 

messages and 

responses map 

to actions in 

the activity 

diagram 

71-90% of the 

messages and 

responses map to 

actions in the 

activity diagram 

91-100% of the 

messages and 

responses map to 

actions in the 

activity diagram 
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APPENDIX G – STAFF MANAGEMENT CASE 
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APPENDIX H – STEP-WISE LOGISTIC REGRESSION RESULTS 

 
Variables in the Equation B S.E. Wald df Sig. Exp(B) 

Step 1a Proficiency of Abstraction - Activity 

Diagram 

-0.311 0.382 0.664 1 0.415 0.733 

 
Alignment with Use Case Narratives 0.006 0.504 0 1 0.991 1.006 

 
Proficiency of Abstraction - Class 

Diagram 

-0.139 0.445 0.097 1 0.755 0.87 

 
Proficiency of Abstraction - Sequence 

Diagram 

0.44 0.467 0.886 1 0.346 1.552 

 
Alignment with Class Diagrams - SD 0.086 0.356 0.059 1 0.808 1.09 

 
Alignment with Activity Diagram - SD 0.721 0.379 3.619 1 0.057 2.057 

 
Constant -2.451 1.945 1.589 1 0.208 0.086 

Step 2a Proficiency of Abstraction - Activity 

Diagram 

-0.309 0.335 0.852 1 0.356 0.734 

 
Proficiency of Abstraction - Class 

Diagram 

-0.138 0.444 0.097 1 0.755 0.871 

 
Proficiency of Abstraction - Sequence 

Diagram 

0.44 0.467 0.888 1 0.346 1.552 

 
Alignment with Class Diagrams - SD 0.087 0.356 0.059 1 0.808 1.091 

 
Alignment with Activity Diagram - SD 0.722 0.371 3.787 1 0.052 2.059 

 
Constant -2.442 1.775 1.893 1 0.169 0.087 

Step 3a Proficiency of Abstraction - Activity 

Diagram 

-0.312 0.335 0.868 1 0.351 0.732 

 
Proficiency of Abstraction - Class 

Diagram 

-0.152 0.44 0.12 1 0.729 0.859 

 
Proficiency of Abstraction - Sequence 

Diagram 

0.51 0.367 1.936 1 0.164 1.666 

 
Alignment with Activity Diagram - SD 0.729 0.37 3.885 1 0.049 2.073 

 
Constant -2.347 1.732 1.836 1 0.175 0.096 

Step 4a Proficiency of Abstraction - Activity 

Diagram 

-0.342 0.325 1.105 1 0.293 0.711 

 
Proficiency of Abstraction - Sequence 

Diagram 

0.455 0.329 1.907 1 0.167 1.576 

 
Alignment with Activity Diagram - SD 0.719 0.367 3.836 1 0.05 2.052 

 
Constant -2.533 1.643 2.377 1 0.123 0.079 

Step 5a Proficiency of Abstraction - Sequence 

Diagram 

0.383 0.319 1.443 1 0.23 1.467 

 
Alignment with Activity Diagram - SD 0.66 0.36 3.35 1 0.067 1.934 

 
Constant -3.252 1.505 4.67 1 0.031 0.039 

Step 6a Alignment with Activity Diagram - SD 0.762 0.347 4.817 1 0.028 2.143 
 

Constant -2.474 1.315 3.541 1 0.06 0.084 
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