
CHARACTERIZING STUDENT PROFICIENCY IN SOFTWARE

MODELING IN TERMS OF FUNCTIONS, STRUCTURES, AND

BEHAVIORS

by

Paul Josekutty Thomas

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Technology

West Lafayette, Indiana

May 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Alejandra J. Magana, Chair

Department of Computer and Information Technology

Dr. James L. Mohler

Department of Computer Graphics Technology

Dr. Marisa Exter

Department of Learning Design and Technology

Dr. Ida B. Ngambeki

Department of Computer and Information Technology

Dr. Paul Parsons

Department of Computer Graphics Technology

Approved by:

Dr. Kathryne A. Newton

3

To my friends, family, mentors, and most importantly to God:

Thank you for your love and support through everything.

4

ACKNOWLEDGMENTS

Throughout my journey of graduate school at Purdue University, I have been fortunate to

meet people who have supported and encouraged me. Firstly, I would like to thank my advisor,

Dr. Alejandra Magana for taking me under her wing and mentoring me. This dissertation would

simply not exist if not for her guidance. I would also like to express my gratitude to Professor

Victor Barlow for bringing me to Purdue University and offering me the opportunity to work as

his teaching assistant. My experiences as a teaching assistant were instrumental in leading me to

pursue this PhD. Dr. James Mohler, Dr. Ida Ngambeki, Dr. Marisa Exter, and Dr. Paul Parsons, I

thank you for your patience and constructive criticism that helped me develop the competencies

required to complete this PhD and develop the transferable skills that will serve me well

following graduate school as well. I want to thank my committee for all their feedback and

encourage throughout this research journey.

Thank you to my colleagues from the RocketEd research group. I enjoyed working with

all of you and learning from all of you. I would like to thank Ying Ying Seah and Devang Patel

for all their help. I especially want to thank Horane Holgate for being an ally, friend, and

confidant from my very first year of graduate school. Special thanks to Carrie Sloma, Dee

Bernhardt, Lancia Raja, Brandon Coventry, Thomas Sherringham, and all my friends at Purdue

University and my church family at St. Thomas Aquinas who made graduate student life so

much more enjoyable. Thank you for walking with me and supporting me through everything.

Thank you to my family for the love and for instilling in me the values I still hold dear.

Finally, I thank God for the gift of faith and every blessing in my life.

5

TABLE OF CONTENTS

LIST OF TABLES .. 8

LIST OF FIGURES .. 9

ABSTRACT .. 10

CHAPTER 1. INTRODUCTION .. 12

1.1 Background ... 12

1.2 Significance... 14

1.3 Statement of Purpose .. 14

1.4 Research Questions ... 14

1.5 Assumptions .. 15

1.6 Dissertation Structure.. 15

1.7 Summary ... 15

CHAPTER 2. REVIEW OF LITERATURE ... 17

2.1 Software Modeling.. 17

2.2 Abstract Thinking ... 18

2.2.1 Abstract Thinking in Systems Analysis and Design.. 19

2.2.2 Characterizing and Measuring Abstraction ... 20

2.2.3 Summary .. 23

2.3 Systems Thinking.. 23

2.4 Characteristics of Object-Oriented Systems Analysis and Design 26

2.5 Unified Modeling Language ... 27

2.5.1 Activity Diagram ... 28

2.5.2 Class diagram ... 32

2.5.3 Sequence diagram .. 34

2.6 Agile Approaches to Project Management and Scrum ... 36

CHAPTER 3. THEORETICAL FRAMEWORK .. 38

3.1 Complex Systems Reasoning .. 38

3.2 Epistemic Forms and Games .. 38

3.3 SBF Framework .. 41

3.4 Implications... 43

6

CHAPTER 4. METHODOLOGY.. 45

4.1 Research Paradigm.. 45

4.2 Research Design.. 46

4.3 Learning Design .. 48

4.4 Quantitative Strand ... 50

4.4.1 Research Questions .. 51

4.4.2 Participants .. 51

4.4.3 Procedures and Data Collection Methods .. 51

4.4.4 Rubric Development .. 52

4.4.5 Data Scoring and Data Analysis Methods ... 54

4.4.6 Reliability and Validity Considerations ... 55

4.4.7 Cluster Analysis ... 56

4.4.8 Cluster Identification ... 57

4.4.9 Clustering Method ... 57

4.4.10 Correlational Analysis ... 58

4.4.11 Regression Analysis and Logistic Regression .. 59

4.5 Qualitative Strand ... 60

4.5.1 Research Question ... 60

4.5.2 Participants .. 60

4.5.3 Procedures and Data Collection Methods .. 61

4.5.4 Data Coding and Analysis ... 62

4.5.5 Trustworthiness Considerations ... 64

4.6 Integration of Qualitative and Quantitative Strands ... 64

CHAPTER 5. MODELING PERFORMANCE ... 66

5.1 Overview of Data Analysis Procedures .. 66

5.2 Data Scoring Approach ... 66

5.3 Modeling Functions .. 69

5.4 Modeling Structures .. 71

5.5 Modeling Behaviors .. 72

5.6 Cluster analysis results .. 73

7

5.6.1 Relationships between modeling performance of functions, structures, and behaviors

 75

5.7 Logistic regression results... 79

5.8 Summary – Modeling Performance .. 81

CHAPTER 6. MODELING APPROACHES .. 84

6.1 Summary of Data Analysis Procedures .. 84

6.2 Chronological Visualization ... 87

6.3 Summary – Modeling Approaches ... 95

CHAPTER 7. DISCUSSION AND IMPLICATIONS .. 97

7.1 Characterizing Abstract Thinking ... 97

7.2 Characterizing Systems Thinking ... 99

7.3 Implications... 102

7.3.1 Theoretical and methodological implications .. 102

7.3.2 Implications for teaching and learning .. 104

CHAPTER 8. CONCLUSION ... 107

8.1 Limitations .. 107

8.2 Conclusion and Future Work .. 107

APPENDIX A - MODELING EXAM ... 110

APPENDIX B - USE CASE NARRATIVE TEMPLATE ... 111

APPENDIX C - USE CASE NARRATIVE RUBRIC ... 112

APPENDIX D - ACTIVITY DIAGRAM RUBRIC ... 113

APPENDIX E - CLASS DIAGRAM RUBRIC.. 114

APPENDIX F - SEQUENCE DIAGRAM RUBRIC ... 115

APPENDIX G – STAFF MANAGEMENT CASE .. 116

APPENDIX H – STEP-WISE LOGISTIC REGRESSION RESULTS 117

REFERENCES ... 118

8

LIST OF TABLES

Table 2.1: Activity diagram symbols .. 29

Table 2.2: Class diagram symbols .. 32

Table 2.3: Sequence diagram symbols.. 35

Table 3.1: Alignment between Epistemic Games, UML Models, and SBF Constructs 44

Table 4.1: Interrater Agreement .. 56

Table 4.2: Silhouette scores .. 57

Table 5.1: Clustering t-Test results – Abstract thinking and Systems thinking............................ 75

Table 5.2: Spearman coefficient – Entire dataset ... 76

Table 5.3: Spearman coefficient – Moderate performing students ... 77

Table 5.4: Spearman coefficient – High performing students .. 78

Table 5.5: Hosmer and Lemeshow Test Results ... 80

Table 5.6: Logistic regression results – Reduced Model .. 80

Table 6.1: Themes and Codes ... 85

Table 6.2: Participant scores – Functional Modeling Proficiency .. 92

Table 6.3: Participant scores – Structural and Behavioral Modeling Proficiency 94

Table 6.4: Time spent on models by participants ... 95

9

LIST OF FIGURES

Figure 2.1. Illustration of abstraction .. 20

Figure 2.2. Algorithm abstraction levels... 22

Figure 2.3. Activity diagram example .. 31

Figure 2.4. Class diagram example. .. 34

Figure 2.5. Sequence diagram example. ... 36

Figure 4.1: Flow chart for research design ... 47

Figure 4.2: Learning design conjecture map... 49

Figure 5.1: Model examples ... 68

Figure 5.2: Descriptive Statistics - Use Case Narratives .. 70

Figure 5.3: Descriptive Statistics - Activity Diagram ... 70

Figure 5.4: Descriptive Statistics – Class Diagrams ... 71

Figure 5.5: Descriptive Statistics – Sequence Diagram .. 72

Figure 5.6: Cluster analysis results ... 74

Figure 6.1: Gantt chart visualization – structures before behaviors ... 89

Figure 6.2: Gantt chart visualization – behaviors before structures ... 90

Figure 7.1: Software modeling process .. 103

https://d.docs.live.net/4f3578482c132040/Purdue/PhD/Dissertation%20Work/Defense/Dissertation%20-%20Characterizing%20Functions%5eJ%20Structures%5eJ%20and%20Behaviors%20-%20Paul%20Thomas.docx#_Toc70447511
https://d.docs.live.net/4f3578482c132040/Purdue/PhD/Dissertation%20Work/Defense/Dissertation%20-%20Characterizing%20Functions%5eJ%20Structures%5eJ%20and%20Behaviors%20-%20Paul%20Thomas.docx#_Toc70447514

10

ABSTRACT

Software modeling is an integral practice for software engineers especially as the

complexity of software solutions increase. There is precedent in industry to model information

systems in terms of functions, structures, and behaviors. While constructing these models,

abstraction and systems thinking are employed to determine elements essential to the solution

and how they are connected. However, both abstraction and systems thinking are difficult to put

in practice and difficult to teach due to the, often, ill-structured nature of real-world IT problems.

Unified Modeling Language (UML) is the industry standard for software modeling but

unfortunately it is often used incorrectly and misunderstood by novices. This has also been

observed in educational contexts where students encounter difficulty in employing the

appropriate level of abstraction in modeling and programming contexts and not necessarily being

able to view or treat software systems as being interconnected.

The researcher detailed a multi-methods approach, through the lens of pragmatism,

towards understanding patterns of student proficiency with abstraction and software modeling in

terms capturing the functional, structural, and behavioral aspects of an information system, as

given by the Structures-Behaviors-Function framework. The quantitative strand involved the

development of rubrics to analyze functional, structural, and behavioral models given by UML

activity diagrams, class diagrams, and sequence diagrams, respectively. The subjects of this

study were students enrolled in a sophomore-level systems analysis and design class. Descriptive

analysis revealed patterns of modeling proficiency. Students were generally proficient in

modeling the system in terms of functions but there was an overall drop-off in proficiency when

modeling the system in terms of structures and behaviors. The results of the clustering analysis

revealed underlying profiles of students based on abstract thinking and systems thinking ability.

Two distinct clusters – high performing students and moderate performing students – were

revealed with statistically significant differences between the groups in terms of abstract thinking

and systems thinking ability. Further correlational analysis was performed on each cluster. The

results of the correlational analyses pointed to significant positive associations between software

modeling proficiency and the constructs of abstract thinking and systems thinking. Logistic

regression analysis was then performed, and it could be inferred from the regression model that

11

abstract thinking in terms of behaviors and systems thinking in terms of aligning sequence

diagrams with activity diagrams were the most important predictors of high performance.

The qualitative strand of this study involved a case study approach using the think-aloud

protocol centered around exploring how students utilized abstract thinking and systems thinking

while constructing software models. The participants of this study were students who had

completed the sophomore-level systems analysis and design course. Thematic analysis was

utilized to identify themes of abstract thinking and systems thinking within the epistemic games

of structural, functional, and process analyses. Two different approaches towards modeling

information systems were identified and chronological visualizations for each approach were

presented. Overall, it could be inferred from the results and findings of the study that the learning

design of the sophomore-level course was successful in equipping students with the skills to

proficiently model information systems in terms of functions. However, the students were not as

proficient in modeling information systems in terms of structures and behaviors. The theoretical

contribution of this study was centered around the application of the SBF framework and

epistemic forms and games in the context of information systems. The methodological

contributions pertain to the rubrics that were developed which can be used to evaluate software

modeling proficiency as well as abstract thinking and systems thinking. Abstract thinking and

systems thinking were successfully characterized in the context of information systems

modeling. The results of this study have implications in computing education. The suggested

instructional approaches and scaffolds can be utilized to improve outcomes in terms of structural

and behavioral modeling proficiency.

12

CHAPTER 1. INTRODUCTION

This chapter provided an overview to this research study and to this manuscript. This

chapter established significance within the existing literature about software modeling and

software systems development. The significance of the research, the research questions,

assumptions, limitations, and delimitations were discussed.

1.1 Background

Software modeling is prevalent in Information Technology (IT) industry and is widely

used by software engineers and business analysts (Cernosek & Naiburg, 2004; Ho-Quang et al.,

2017). Modeling enables IT professionals to better assess the requirements of complex software

systems while simultaneously facilitating communication of these requirements in addition to

technical and financial details to different stakeholders. Modeling can thus be utilized for to

visualize software systems at different levels of detail (Cernosek & Naiburg, 2004). Moreover,

software modeling is an important part of the software engineering discipline (ABET, 2016;

Cernosek & Naiburg, 2004; Magana, Seah, & Thomas, 2017; Tamai, 2005). Therefore, it is

necessary for those involved in the disciplines of software engineering or IT to have a working

knowledge of how to create software models conforming to a standard and how to interpret these

models (Boustedt, 2012). The process of constructing accurate software models requires the

identification of details that are important to the system while ignoring those elements that are

unnecessary or irrelevant (Kramer, 2007), this process is called abstraction or abstract thinking.

It must also be recognized that software modules or components of a system do not exist in

isolation and that the different software models constructed must also possess some degree of

alignment between them since they are all based on the same requirements (Burgueño,

Vallecillo, & Gogolla, 2018). The approach is called systems thinking as it forces a review of the

relationship of various subsystems in a project (Brewer & Dittman, 2018). Therefore, designing

information systems involves identifying essential details of the solution while omitting

irrelevant details (Zehetmeier et al., 2019) and recognizing the connections between different

aspects of the system. To represent these different interconnected aspects of an information

system, modeling languages are used.

13

Unified Modeling Language (UML) was developed to serve as a standard of for

representing software models (Engels and Groenewegen, 2000). UML can be and is often used to

represent software systems in terms of functions, structures, and behaviors which provides a

visual representation of its overall functionality and the inner workings that facilitate said

functionality (Dennis, Wixom, & Tegarden, 2020; Robal, Viies, & Kruus, 2002). Unfortunately,

UML is not used correctly in industry (Burgueño, Vallecillo, & Gogolla, 2018; Dobing &

Parsons, 2006; Peneva, Ivanov & Tuparov, 2006) which has significant repercussions on the

entire process of software development because software is often coded or programmed based on

these models. Errors made during the construction of these models are the most expensive to

correct at a later point in the development or maintenance process (Fernández-Sáez, Chaudron,

& Genero, 2018; Queralt & Teniente, 2012).

In light of the challenges faced in industry, the Accreditation Board for Engineering and

Technology (ABET) requires graduates of accredited programs to possess or exhibit “an ability

to design, implement, and evaluate a computer-based system, process, component, or program to

meet desired needs” (p.3). Previous studies have been conducted regarding the use of UML

(Hadar & Hadar, 2006) and abstraction levels employed by students in programming classes

(Bucci, Long, & Weide, 2001), however the proficiency of abstraction displayed by students

during modeling, or the quality of the models produced were never formally evaluated.

The educational problem examined in this study was informed by what is observed in

industry and across literature. The researcher took quantitative and qualitative approaches to

evaluate student proficiency in modeling software systems in terms of functions, structures, and

behaviors using UML diagrams. The quantitative approach involved the development rubrics to

evaluate student proficiency at software modeling, especially abstraction and systems thinking

ability. The qualitative approach examined the software modeling process exhibited by

participants in terms of how they employ abstract thinking and systems thinking while

constructing these models. The study was guided by the following research questions: i) To what

extent to did students demonstrate proficiency in abstract thinking while analyzing software

systems in terms of functions, structures, behaviors?; ii) To what extent to did students

demonstrate proficiency in systems thinking while analyzing software systems in functional,

structural, and behavioral representations?; iii) What were the characteristics or profiles of

students in terms of abstraction and systems thinking ability?; iv) How did students use

14

abstraction and systems thinking modeling software systems in terms of functions, structures,

and behaviors?

1.2 Significance

The literature in the areas of systems developments, software modeling, and UML, did not

delve into how abstract thinking and systems thinking play a role in the development of software

models, especially in an educational context. I believed that by taking a multi-methods approach

to this research, I could gain a formal understanding as to the areas of software modeling where

students exhibit proficiency or, on the contrary, lack proficiency, while also gaining an insight

into how students employ abstract thinking and systems thinking while constructing software

models. The insights gained from this study can impact the learning interventions and assessment

mechanisms that are employed in collegiate systems development courses.

1.3 Statement of Purpose

The purpose of this research was to identify and describe student proficiency in the various

aspects of software modeling and to gain insights into how abstraction and systems thinking

ability influenced proficiency. Furthermore, this research aimed to identify and describe how

students employed abstract thinking and systems thinking while constructing software models.

Understanding the patterns of proficiency and how students employed abstract thinking and

systems thinking would provide insights into their strengths or weaknesses in software modeling.

This could have further instructional and pedagogical implications in systems analysis courses.

1.4 Research Questions

The research study was centered around the following questions:

1. To what extent to did students demonstrate proficiency in abstract thinking while

analyzing software systems in terms of functions, structures, and behaviors?

2. To what extent to did students demonstrate proficiency in systems thinking while

analyzing software systems in functional, structural, and behavioral representations?

3. What were the characteristics or profiles of students in terms of abstraction and

systems thinking ability as evidenced by their system representations?

15

4. How did students use abstract thinking and systems thinking when modeling software

systems in terms of functions, structures, and behaviors?

1.5 Assumptions

The following assumptions informed this research study:

1. There was a need to take quantitative and qualitative approaches to gain insights into

the software modeling proficiency and behaviors of students.

2. Participants responded to the best of their ability in the qualitative study.

1.6 Dissertation Structure

This dissertation was divided into eight chapters:

1. Chapter 1 provided the background, significance, and introduced the research

questions.

2. Chapter 2 covered the review of literature pertaining to abstract thinking, systems

analysis and design, systems thinking, and UML along with their importance.

3. Chapter 3 provided a detailed over of the theoretical framework used as part of this

research study.

4. Chapter 4 discussed the methodology employed in this study. This chapter contained a

detailed discussion of the mixed methods approach taken for this study.

5. Chapters 5 detailed the results of the quantitative strand of this research study.

6. Chapter 6 detailed the results of the qualitative strand of this research study.

7. Chapter 7 discussed the results of both strands in the context of literature and details

the implications.

8. Chapter 8 contained the conclusions of the study, the limitations, and recommendations

for future research.

1.7 Summary

This chapter introduced the research study, including background, significance, and research

questions. This chapter also provided an outline of the organization of the document. The next

16

chapter covered the review of literature and explored the areas of abstract thinking, systems

analysis and design, systems thinking, and UML.

17

CHAPTER 2. REVIEW OF LITERATURE

This chapter provided an overview of the literature pertaining to software modeling,

abstract thinking, systems thinking, and unified modeling language (UML). The chapter

discussed the importance of each term and existing work done in the area.

2.1 Software Modeling

System models can be used to describe the requirements of the software system. Models

can also be used to remove or abstract irrelevant details that are not integral to the

implementation of a potential solution (Engels & Groenewegen, 2000). A software architecture

consists of interrelated components that are organized to focus on different views of the system,

in effect serving as blueprints during the software development process (Eriksson, Börstler, &

Borg, 2005; Mattsson, Fitzgerald, Lundell, & Lings, 2012; Robal, Viies, & Kruus, 2002).

Software architecture has non-trivial effects on the understanding and maintenance of a software

system (Bass et al., 2003).

In the context of software development, abstract systems modeling has its roots in the

1970s. They have been employed to ensure internal consistency of data and behaviors, as well as

to bring about better alignment between the software solution and the real-world domain (Engels

& Groenewegen, 2000). While models have been used primarily to describe software

architecture, they can also describe business processes and other frameworks. (Larsen, 1999).

The quality of an information system is often determined early in the software development

process specifically during conceptual modeling and requirements specification (Queralt &

Teniente, 2012). Furthermore, errors made during requirements specification and conceptual

modeling permeate through the system as it is developed, thus making them more difficult and

expensive to fix compared to those errors made during implementation. Software development

often employs an approach referred to as model-driven engineering where models are often

“combined, refined, translated, and integrated” (Balaban & Maraee, 2013, p.24).

An example of software modeling is use-case modeling. Use-case modeling is an approach

towards requirements engineering that involves describing the functional requirements of a

system through either narrative or graphical means (Whitten & Bentley, 2007). Use case

18

narratives (Appendix B - Use Case Narrative Template) are used to detail the typical course of

events that the system takes and then the alternate course of events that the system follows based

on some predefined criteria. The alternate courses of events detail the system response for

specific inputs that are not handled by the typical course of events. For example, in the use-case

of handling user logins, a typical event is to validate the username and password of a user. An

alternate course for this scenario will detail the steps for the system to follow if the user enters an

invalid username or password. A system developed based on detailed use case narratives will be

capable of handling diverse inputs with a degree of coherency and reliability.

In education, software modeling is viewed as an essential skill and as being necessary to

provide a balanced education in the discipline of software engineering (Tamai, 2005). Software

modeling allows students to be reflexive in their learning as they design and develop software

solutions to solve a problem (Boustedt, 2012). It has been shown that the software modeling

through modeling tools directly influence how students develop and utilize models (Burgueño,

Vallecillo, & Gogolla, 2018). It must be noted that while students, in general, are able to

construct and understand different views of an information system, they often do not understand

the relationships between them (Burgueño, Vallecillo, & Gogolla, 2018). Teaching modeling is

essentially the same as teaching abstraction because modeling requires learners to ignore

irrelevant details while capturing properties and structure that are crucial to the design of the

solution (Tamai, 2005). The literature ties software modeling to the construct of abstract thinking

or abstraction.

2.2 Abstract Thinking

Abstract thinking or abstraction is often used interchangeably and has many different

operational definitions across literature depending on the context in which it is viewed

(Zehetmeier et al., 2019). Abstract thinking in general involves determining what details need to

be focused on and what details can be ignored, and it can be applied at multiple levels (Hadar &

Hadar, 2006; Kramer, 2007; Zehetmeier et al., 2019). Abstraction plays a key role in solving

computing-related problems (Devlin, 2003; Kramer, 2007) and abstraction ability has been

identified as integral to the software engineering process (Ghezzi, Jazayeri, & Mandrioli, 2002).

Abstraction can involve drawing generalizations after removing unnecessary details (Kramer,

2007; Hill, Houle, Merritt, & Stix, 2008). Proficiency in abstract modeling is essential to all

19

engineering disciplines as engineers are often required to “design, build, and reason about formal

abstractions” (Devlin, 2003, p. 38). Abstraction skills also involve the ability to modify existing

abstractions and create new abstractions (Bennedsen & Caspersen, 2008). Abstract thinking is

especially important in the realm of systems analysis and design because it allows for

constructing models that map to real-world constructs (Devlin, 2003).

2.2.1 Abstract Thinking in Systems Analysis and Design

Systems Analysis and Design refers to the methodologies used to describe existing real-

world systems or those systems that have not been implemented yet (Wand and Weber, 1993).

The analysis phase focuses on identifying the high-level functionality of a system and potential

users of the system. The design phase determines how the system will operate and provides

detailed specifications for the system architecture, user interfaces, database etc. (Dennis, Wixom,

& Tegarden, 2020). This is often accomplished through models that are not only used for

describing the requirements of the software system, but to also strip away or abstract irrelevant

details that are not necessary for the potential implementation of the solution while highlighting

those important to it (Engels & Groenewegen, 2000; Rijke, Bollen, Eysink, & Tolboom, 2018).

In this manner, abstraction is responsible for converting something the real-world and concrete

domain into a model that can then be mapped to a program in a specific programming language

(Kramer, 2007). Systems analysis and design requires that various aspects of an information

system be modeled such as the structural, behavioral, and functional aspects (Siau & Rossi,

2011; Dennis, Wixom, & Tegarden, 2020). Abstraction skills are essential in the construction of

not just these models, but the designs, and implementations that are fit for the specific purpose at

hand. Abstract thinking is also necessary for reasoning about abstractions in formal models or

programs (Kramer, 2007) and it can be used for decomposing problems (Nguyen & Wong,

2001). Any kind of visualization that represents programming code is an abstraction (Engels &

Groenewegen, 2000) and abstract models can be used to verify code (Clarke, Grumberg, &

Long, 1994).

Figure 2.1 illustrates how abstraction is used to translate details from the problem space to

the solution space while removing details that irrelevant to the solution.

20

Figure 2.1. Illustration of abstraction

2.2.2 Characterizing and Measuring Abstraction

While literature generally comes to the consensus that there is value in not just teaching

abstract thinking (Böttcher, Schlierkamp, Thurner, & Zehetmeier, 2016; Hill, Houle, Merritt, &

Stix, 2008; Koppleman & van Dijk, 2010) but also in testing and measuring the abstraction

ability possessed by learners (Hill et al., 2008; Kramer, 2007). The reality is that there are limited

ways to test or measure abstract thinking reliably especially in the realm of information

technology or modeling information systems (Kramer, 2007). This is exacerbated by the “general

lack of explicit characterization and addressing of abstraction not to mention development of

abstraction as a competence, the teaching and learning of abstraction ability” (Bennedsen &

Caspersen, 2008, pg. 23). However, exploration of the literature revealed a few studies that

characterized and operationalized abstract thinking.

In the realm of mathematics education, abstraction level is characterized as being

dependent upon the complexity of the concept and the notion of process-object duality. Process-

object duality refers to how relationships between objects or operations performed on objects are

considered to be objects at a higher level of abstraction (Tall & Thomas, 2002). The field of

computer science characterizes abstraction in two different ways: i) data abstraction – separating

the implementation details from the logical properties of the data; and ii) procedural abstraction –

separating the implementation details from the logical properties of a procedure (Walker, 1996).

21

Data abstraction involves the separation of behavior from implementation which allows easier

modification and maintenance of code (Liskov, 1988). Once data abstraction is implemented, a

set of objects can only be modified by or manipulated by fixed operations. Procedural abstraction

refers to how programs can call or invoke a specific procedure to complete a task without having

to care about the implementation of the function or procedure (Liskov, 1988). Procedural

abstraction and data abstraction allow for the implementation of APIs which aid a programmer in

developing software without necessarily being aware of specific implementation details of the

data or procedure (Wing, 2008). The use of procedural or data abstraction allows for the

programmer to remove oneself from the implementation details of objects or functions and focus

on problem-solving. Perrenet (2010) offered a four-level view of describing algorithm

abstraction, illustrated in Figure 2.2. The problem level is the highest level of abstraction where

the algorithm is viewed as a black box, which takes an input and provides an output. This level

of abstraction is best used for algorithm selection. At the object level, an algorithm is not

associated with a specific programming language. Data abstraction is performed at this level and

this allows for data structures and other representations of data to be changed without the

affecting programs that use the data (Liskov, 1988). At the program level, an algorithm is viewed

as a process and is associated with a specific programming language. Procedural abstraction is

performed at this level where in a procedure or function call is used to accomplish a task.

Effectively, the lines of code that performs the procedure call will be replaced by the procedure

body (Morgan, 1988). The execution level is the lowest level of abstraction and provides the

most specific implementation details. The study indicated that abstract thinking skills can be

developed, and feedback is essential to the process. Higher levels of abstraction ability are

usually associated with those who have attained an expertise in the area. Software models also

serve the purpose of raising the level of abstraction involved in software development taking it

from the lower levels such as execution to the program, object, or problem level (Mattsson,

Fitzgerald, Lundell, & Lings, 2012). Object-oriented programming also necessitates a higher

level of abstraction compared to procedural programming because of the data abstraction

involved (Liskov, 1988; Sprague, & Schahczenski, 2002).

22

Figure 2.2. Algorithm abstraction levels

Studies conducted in the areas of computer science and object-oriented programming

characterized abstraction ability as a general skill that is associated with the cognitive

development of a person (Or-Bach & Lavy, 2004; Bennedsen & Caspersen, 2008). A theory of

cognitive development (Adey & Shayer, 2006) defines eight stages of cognitive development

ranging from Pre-Operational at the earliest stages to Formal generalization at the most advanced

stages. There is a positive correlation between abstraction ability and age (Rijke, Bollen, Eysink,

& Tolboom, 2018) indicating that one’s abstraction ability is linked to their cognitive

development which in turn is linked to one’s age. Most undergraduate learners are at the Early

Formal or Mature Formal levels of cognitive development with the implication being that they

are capable of handling multiple variables and the relationships between them. It is also worth

noting that studies have connected bilingualism to improved abstraction ability in the context of

symbol mathematics (Mielicki, Kacinik, & Wiley, 2017). The study by Bennedsen and

Caspersen (2008) sought to identify the relationship between abstraction ability - as

operationalized by Adey and Shayer’s theory of cognitive development, and performance in

computer science. The computer science course in question focused on introducing learners to

object-oriented programming. The data from 263 Computer Science students did not support the

hypothesis that abstraction ability predicted performance in terms of academic achievement. The

results were, in part, explained by the course placing an emphasis on coding as opposed to

design. Coding or programming requires individuals to traverse from higher levels of abstraction

1 • Execution level

2 • Program level

3 • Object level

4 • Problem level

Increasing

levels of

Abstraction

23

to lower levels to implement the solution in a chosen programming language, often having to

think at the execution, program, or object level (Perrenet, 2010). The introductory programming

course in question may have also placed limited cognitive demands on the students since the

goals of the course revolves around exposing students to programming concepts and conceptual

modeling in object-oriented programming.

2.2.3 Summary

While the literature is vast about the importance of abstract thinking or abstraction, there is

little work done regarding the formal testing of abstract thinking or abstraction skills specifically

in the context of software modeling (Kramer, 2007). There are no pre-existing rubrics that can be

used to measure abstract thinking in the context of software modeling. This has theoretical and

methodological implications on the proposed study which focuses on characterizing student

proficiency in software modeling in terms of functions, structures, and behaviors. The theoretical

implications are centered around the two complimentary aspects of abstraction which involves

stripping away irrelevant details as well as drawing generalizations (Hill, Houle, Merritt, & Stix,

2008; Kramer, 2007; Wing, 2008). There is no standard approach for characterizing or

measuring either component of abstraction. The details that are to be stripped away or deemed

irrelevant will differ from one view to another and this necessitates the development of rubrics to

assess abstraction. The methodological implications on the study center around determining how

to measure abstraction proficiency in the context of software modeling.

2.3 Systems Thinking

While abstract thinking is generally characterized as the process of removing unnecessary

details, it is not focused on recognizing connections between different components. Systems

thinking is broadly defined as the ability to see the interrelationships of components in a complex

system (Senge, 1990; Stearman, 2000). Systems thinking or the systems approach forces a

review of the relationship of various subsystems in a project (Brewer & Dittman, 2018). Systems

thinking has also been defined as an approach towards integrating “…people, purpose, process

and performance because it is a framework for seeing and working with the whole(s), rather than

only the individual part, and for seeing the inter-relationships between parts…” (Godfrey,

24

Deakin Crick, & Huang, 2014, p.113). This also allows practitioners of systems thinking to

perceive possible consequences of changes made to one part of a system in terms of how it can

affect other parts of the system or the broader environment (Wolstenholme, 2003).

Systems thinking has its origins in systems theory (Von Bertanlanffy, 1972) which stated

that individual parts and processes cannot completely explain a specific phenomenon within a

complex system (Von Bertanlanffy, 1972). System theory further stated that systems generally

have a defined boundary and can be composed of components that interact with one-another

achieve certain functions. These statements were made with respect to biological systems where

it takes a coordination of individual parts and processes to enable certain phenomena. Since the

1960s, systems approaches derived from systems theory have been employed in numerous

disciplines. Systems thinking has been identified as an essential skill necessary to solve complex

and interdependent problems (Grohs et al., 2018), especially in disciplines like engineering

(Lammi, 2011) and biology (Boersma, Waarlo, & Klaassen, 2011). The Scientific Thinking and

Integrative Reasoning Skills (STIRS) framework, developed by the Association of American

Colleges and Universities (AAC&U), advocates for systems analysis and systems approaches to

be included as part of curriculum to equip learners with the skills to analyze complex systems

and the interactions between them (Riegelman, 2016). Systems thinking approaches also help

students, in the context of engineering, to discover the functions or purposes of a system and

explain how these functions are achieved through different behaviors (Lammi, 2011). However,

it must be noted that the skillset required to develop a systems architecture “…can not be

achieved through rote learning or the cognitive application of pre-defined knowledge…”

(Godfrey, Deakin Crick, & Huang, 2014, p.112). Learners must think critically to uncover

knowledge that can be applied to a specific system. Therefore, the purpose of teaching systems

thinking “…is to achieve competence rather than to acquire specialized subject knowledge…”

(Godfrey, Deakin Crick, & Huang, 2014, p.112).

Systems thinking is also considered important in the space of design where designers are

expected to have “…a special holistic overview spanning from technical, via socio-cultural

aspects to economic aspects” (Sevaldson, 2011, p.3). Systems thinking enables designers to

tackle complexity and deal with “wicked problems”. Practicing systems thinking also allows

designers to respond to changes while also increasing their understanding of frameworks specific

to each user or client and the technology involved. Unfortunately, despite its importance systems

25

thinking is not widely spread in the space of design and there is no uniform practice of systems

thinking that has been developed (Sevaldson, 2011). System thinking also plays an important

role in making management decisions as it forces decisions to be made while considering often

conflicting interests and values (Ulrich, 1994) with the assertion being that design improvement

is difficult if not impossible without holistic understanding of the system.

While there are a few ways to define systems thinking and its importance is clear, research

into systems thinking, especially in the context of information systems, is sparse and this can be

at least partially attributed to how the construct does not fit well with the typical positivist

research done in the field (Alter, 2004). Checkland (1988) argues that the field of information

systems has largely ignored the concept of systems thinking even through its various iterations as

systematic thinking and systemic thinking. This can be explained by a preference for tool-

focused thinking and the difficulty of defining systems thinking in practical terms (Alter, 2004).

Systems thinking is also difficult to apply in real-world projects due to the often ill-structured

nature of problems faced during their execution (Grohs et al., 2018; Yeo, 1993).

The use of systems thinking has also been associated with more positive outcomes in IT

implementations, especially in healthcare (Rothschild et al., 2005). The definitions of systems

thinking also suggest that it is essential for developing software systems by taking into

consideration how different modules interact with another. Therefore, it is important that models

are consistent and align with one-another, which is effectively systems thinking in practice.

These relationships between these modules are also often captured in software models using

UML (Boustedt, 2012; Dobing & Parsons, 2006; Eriksson, Börstler, & Borg, 2005; Hadar &

Hadar, 2006; Robal, Viies, & Kruus, 2002). However, it must be noted that students do

encounter a degree of difficulty in making connections between different UML diagrams

(Burgueño, Vallecillo, & Gogolla, 2018). Unfortunately, literature pertaining to the measurement

of systems thinking in the context of information systems education is sparse. This has

theoretical and methodological implications on the proposed study which focuses on

characterizing student proficiency in software modeling in terms of functions, structures, and

behaviors. The theoretical implications pertain to how systems thinking should be

operationalized in the context of software modeling and the methodological implications are

centered around how systems thinking can be measured.

26

2.4 Characteristics of Object-Oriented Systems Analysis and Design

When developing software systems, two commonly used paradigms are that of structured

development – centered around function and data – and object-oriented development (de

Champeaux et al., 1990). The structured approach treats data as containers of information that

are accessed and manipulated by functions. However, the object-oriented approach involves

mapping real-world entities to objects where each object contains information and exhibit

behaviors. Object-oriented analysis involves defining objects along with their attributes and

behaviors based on applying abstraction to real-world entities. This requires both static and

dynamic requirements to be captured (Hausmann, Heckel, & Taentzer, 2002).

The unified process is an object-oriented analysis methodology that possesses two major

characteristics when designing systems and formally documenting requirements: (i) Use-case

driven, and (ii) Architecture-centric (Dennis, Wixom, & Teagarden, 2020). The use-case driven

analysis approach (UCDA), as the name implies, is centered around use cases where each use

case is defined as “…a system usage scenario characteristic of a specific actor” (Regnell,

Kimbler, & Wesslen, 1995, p.1). An actor refers to a group of users that interact with the system

in a similar manner. The focus of UCDA is on the analysis and identification of use cases which

helps reduce the complexity of requirement analysis. However, one main drawback of UCDA is

that use cases are often simple in nature and only focus on one activity at a time. The generation

of a loose collection of use cases that does not necessarily capture the holistic requirements of

the system (Regnell, Kimbler, & Wesslen, 1995). There is also ambiguity in terms of how user

cases should be described or what kind of events – internal vs external – should be focused on.

By also focusing on the architecture-centric approach, the analysis and design process also takes

into consideration overall system functionality as well as non-functional requirements, referred

to as quality attributes, such as performance, scalability, and maintainability (Sangwan et al.,

2008). The architecture centric approach first identifies the most important systemic properties

and how they are linked to business goals by proposing three primary views a given system: the

functional view, the structural view, and the behavioral view. The software architecture drives

the specification, development, and documentation of the system. An integrated approach would

combine the analysis and modeling activities associated with the use-case driven approach

alongside the architecture-centric approach of determining quality attributes of the system

(Sangwan et al., 2008). The Rational Unified Process (RUP) is an iterative object-oriented

27

development framework that encompasses architecture creation as well as elaborate design,

implementation, and testing (Kazman et al., 2004). Though RUP is often described as being use-

case driven, it advocates for describing software systems using multiple interconnected views

(Eriksson, Börstler, & Borg, 2005; Kazman et al., 2004; Robal, Viies, & Kruus, 2002). RUP also

involves continuous refinement and testing in an iterative and incremental manner. Specifically,

RUP involves the creation of a logical view that is focused on describing end-user functionality

and a process view that describes how the functionality is implemented. This in turn necessitates

the use of models to describe: (i) the functionality of the information system as viewed by the

end user – functional view; (ii) the objects along with their corresponding attributes, behaviors,

and relationships that implement the functionality – structural view; and iii) how the different

objects interact with one-another, through messages and responses, to achieve the required

functionality – behavioral view. Unified Modeling Language (UML) provides a common

vocabulary and a set of diagrams to describe and analyze systems.

2.5 Unified Modeling Language

Unified Modeling Language (UML) was initiated and promoted by the industry to

standardize the process of object-oriented conceptual modeling during software development

(Aljumaily, Caudra, & Laefer, 2019; Engels and Groenewegen, 2000). UML, as its name

implies, is a “general purpose modeling language” (Peneva, Ivanov, & Tuparov, 2006) that is not

limited to modeling information systems but can be extended to visualize business processes as

well. UML has its origins in the unification of Object Modeling Technique (OMT) pioneered by

Grady Booch and Jim Rumbaugh with the Object-Oriented Software Engineering approach

pioneered by Ivar Jacobson (Booch, 1999). UML as it is known today was direct successor to

these methods and it underwent a standardization process under the supervision of the Object

Management Group (Fowler, 2004).

UML is used in software engineering education (Unkelos-Shpigel, Sheidin, & Kupfer,

2019) and has different diagrams that are used to be model different aspects of the information

system, thereby providing different views of the information system (Balaban & Maraee, 2013;

Boustedt, 2012; Dobing & Parsons, 2006). Therefore, UML can also be described as a visual

language consisting of graphical symbols (Moody & van Hillegersberg, 2008). These graphical

symbols are governed by a set of rules that are different for each diagram and the rules determine

28

how these symbols can be combined. Through these different diagrams, UML also facilitates

effective planning and visual communication (Ho-Quang et al., 2017). Using UML also allows to

developers and analysts to create barriers of abstraction so that they can operate at the most

appropriate level of abstraction for the specific stage of development that they are in. This in turn

facilitates easier implementation of abstraction during software development (Hendrix et al.,

2000).

UML in total provides 14 diagrams that can be used model information systems. However,

some diagrams are used more than others (Ciccozzi, Malavolta, & Selic, 2019). Among the 14

diagrams offered by UML, activity diagrams, class diagrams and sequence diagrams are the most

used widely in industry. Unfortunately, they are either poorly understood or are often incorrectly

used (Dobing & Parsons, 2006; Peneva, Ivanov, & Tuparov, 2006). The use of these diagrams is

driven by existing precedent for capturing functional, structural, and behavioral details of an

information system using models (Dennis, Wixom, & Tegarden, 2020). The UML diagrams

under consideration for this study is discussed below.

2.5.1 Activity Diagram

An activity diagram is a directed graph consisting of nodes and edges, and it can be used to

represent the flow of control in an information system for a specific high-level function

performed by the system. They are inspired by flowcharts can be used to specify the behavior of

use cases in information systems (Eshuis, 2006). Table 2.1 details the different symbols typically

used in an activity diagram (Dennis, Wixom, & Tegarden, 2020).

29

Table 2.1: Activity diagram symbols

Symbol Symbol Name Description

Start node A solid circle represents the start

point for an activity diagram

Activity An activity or action refers to any

step performed by the user or

system and is represented by a

rectangle with rounded corners

Action flow Action flows connect one activity

to another and is represented by an

arrow

Decision A decision is represented by a

diamond and has one incoming

action flow. The diamond is also

labeled. A decision results in

branching action flows that are

labeled. with alternate paths.

Synchronization

bars

Synchronization bars consist of a

fork node and a join node. A fork

node splits one action flow into

multiple concurrent flows. A join

node follows a fork node to join

multiple concurrent flows into a

single action flow.

Merge A merge node brings together

multiple control flows that are not

concurrent.

Final node A solid circle nested inside another

circle represents the end point of

an activity diagram.

Swimlanes Swimlanes are used to group

related activities.

30

The different symbols can be used together to depict the overall flow of a specific

functionality offered by an information system. Figure 2.3 illustrates an activity diagram that

models the functionality of a ticket reservation system. Swimlanes allow for the modeling of

specific actions performed by the user and system. Activities are typically labeled in the format

“verb-object” with each activity consisting of only one verb. Decision nodes are used to

implement error-handling or unexpected scenarios such as the user selecting a travel date in the

past or flights being unavailable. Merge nodes appear identical to decision nodes in that they are

also represented by diamonds, but it differs from a decision node in terms of number of incoming

action flows. Decision nodes have a single incoming action flow with two outgoing branches

whereas merge nodes have multiple incoming actions flows and a single outgoing action flow.

31

Figure 2.3. Activity diagram example

32

2.5.2 Class diagram

Class diagrams represent the objects involved in implementing a specific functionality

offered by the information system. A class diagram consists of classes, associations, and a set of

integrity constraints defining the cardinality of the associations between classes (Queralt &

Teniente, 2012). It captures the various attributes and behaviors of each object and how they are

related to one-another. Class diagrams are described as the most important of all UML diagrams

(Moody & van Hillegersberg, 2008). Table 2.2 details the different symbols typically used in a

class diagram (Dennis, Wixom, & Tegarden, 2020).

Table 2.2: Class diagram symbols

Symbol Symbol Name Description

Class Represents objects consisting of

attributes and behaviors. Attributes are

listed in the second partition below the

name and methods are listed in the

third partition. Attributes and behaviors

have a visibility associated with them

which determines how they can be

accessed. The minus sign denotes that

an attribute or behavior is private, and

it can only be accessed within the class.

The plus sign denotes that an attribute

or behavior is public, and it can be

accessed outside the class. A class can

also show the specific data types of

each attribute and the return type of

each behavior.

Inheritance A relationship between two classes

where a sub-class or child-class tends

to derive attributes and behaviors from

a super-class or parent-class.

Association Associations represent static

relationships between classes and are

represented by solid lines. Associations

have a multiplicity denoting the

number of instances of each class on

either side of a relationship (one-to-

one, one-to-many etc.)

33

Table 2.2 continued

Aggregation An aggregation denotes a relationship

between two classes where one class is

a part of the other class, but the two

classes are not dependent on each

other. A hollow diamond is used to

represent this.

Composition A composition relationship is a special

type of aggregation where the part

class is destroyed when the whole class

is destroyed. It is represented using a

solid diamond.

The different symbols can be used together to depict the static structure of an information

system. Figure 2.4 illustrates the static structure of an airline ticket reservation system. This class

diagram depicts the objects along with their corresponding attributes, behaviors, and the

relationships between the objects. This static structure enables the information system to offer

the different functionalities that it has.

34

Figure 2.4. Class diagram example.

2.5.3 Sequence diagram

Sequence diagrams are used to capture the interactions between the different objects

involved in implementing a certain functionality offered by the information system (Dennis,

Wixom, & Tegarden, 2020). Sequence diagrams allow for capturing interactions between the

user and system as well as the interactions between the various sub-systems that exist within the

system. While activity diagrams capture the overall flow of control in an information system –

including branching flows of control, sequence diagrams typically only detail the interactions

between active objects for a specific function and outcome with an option to include the

interactions for alternate scenarios. Sequence diagrams also contain a time-component that

represented by the vertical axis. Table 2.3 details the symbols typically used in a sequence

diagram.

35

Table 2.3: Sequence diagram symbols

Symbol Symbol

Name

Description

Actor An actor refers to any entity – a

human user or another

information system, that

interactions with the

information system being

modeled.

Lifeline A lifeline depicts the lifetime of

an object or actor. It is

represented by rectangle

connected to a dashed vertical

line.

Execution

Occurrence

Execution occurrences are

represented by thin rectangles

drawn on lifelines. The top and

bottom of this rectangle depict

the initiation and completion of

a specific operation.

Message A message defines a specific

communication between two

lifelines. It is represented using

a solid arrow.

Response Like a message, a response also

defines a specific

communication between two

lifelines. However, a response

is produced to pass information

back to the origin lifeline of a

message.

The different symbols can be used together to model the various interactions that takes

place between the structures of an information system to achieve a certain functionality. Figure

2.5 illustrates the interactions between objects that take place for a successful airline ticket

reservation system.

36

Figure 2.5. Sequence diagram example.

2.6 Agile Approaches to Project Management and Scrum

UML found widespread use in the more traditional approaches to software development

(Santos et al., 2016). In these approaches, requirements are modeled at the start of the

development process before implementation begins. Examples of these models include the

waterfall model or the V-model. These approaches require that all implementation details be

incorporated in the planning stage right at the beginning. Unfortunately, these approaches have a

drawback in that any misunderstandings or mistakes in the plan are compounded primarily due to

human error (Sutherland & Schwaber, 2007). Contrary to this, rapid application software

development processes, or agile processes, involve the execution of development tasks in an

iterative fashion. These agile processes are adaptive in nature because it allows developers to

incorporate “late changes in the specifications” (Abrahamsson et al., 2017, p. 12). Agile

methodologies place an emphasis on iterative and incremental development while eliciting

customer input continuously (Sutherland & Schwaber, 2007). However, there are certain agile

development methodologies that incorporate elements of traditional structured software

development approaches. Methodologies such as Scrum involve the documentation of

requirements initially instead of directly beginning with the implementation. UML can be used to

37

document, describe, and model these requirements which will allow project teams to be better

prepared to implement the requirements in code (Santos et al., 2016). Scrum is described as an

“…iterative and incremental approach to delivering object-oriented software” (Schwaber, 1997,

p.2). Scrum has its origins in manufacturing, originally introduced with goal of creating usable

results in a timeframe of weeks (Takeuchi & Nonaka, 1986). Scrum is a software development

process that is best suited for smaller teams (Rising & Janoff, 2000). It involves planning phase

where the team develops a preliminary architecture and during development, the architecture is

modified as required. Development is done incrementally and iteratively in a series of phases

called sprints where each sprint lasts anywhere from one to four weeks. Each sprint implements a

tangible and usable product that implements at least one user interaction with the system,

referred to as user story (Rising & Janoff, 2000). The team keeps track of all identified tasks in a

list referred to as the backlog. A set of tasks from the backlog as selected based on priority for

each sprint and following each sprint, the backlog is updated, and the remaining tasks are

reprioritized. During each sprint, short daily meetings are held involving all team members to

discuss progress made, any obstacles that were faced during development, and planned progress.

The team is led by a Scrum master who is responsible for selecting user stories to be completed

in a sprint, recording decisions made at Scrum meetings, facilitating communication, and

tracking action items (Rising & Janoff, 2000). Scrum has been widely used in industry with

many companies reporting improvements in productivity and morale following its adoption

(Sutherland & Schwaber, 2007).

Agile methodologies have also been used in educational settings with an accompanying

improvement in student project success (Umphress, Hendrix, & Cross, 2002). In addition, agile

software development using Scrum resulted in improved course perceptions in the context of an

undergraduate software engineering capstone course (Mahnic, 2012). Further studies have

recommended the use of agile methodologies in educational contexts citing the benefits of

improved collaboration, equipping students with practical experience, increased productivity,

and improved learning outcomes (Coupal & Boechler, 2005; Kamthan, 2016; Rico & Sayani,

2009; Shukla & Williams, 2002). The relevance of agile approaches to project management and

Scrum lies in the learning design of the course that this study is centered around and it is further

explained in Chapter 4.

38

CHAPTER 3. THEORETICAL FRAMEWORK

3.1 Complex Systems Reasoning

Complex interconnected systems have become increasingly pervasive and reasoning about

these complex systems is difficult due to the requirement of having to employ abstract thinking

(Hmelo-Silver & Pfeffer, 2004). This difficulty in understanding complex systems can be

explained by virtue of complex systems involving local interactions across several levels of

organization (Ferrari & Chi, 1998). The relationships existing across these different levels in a

complex system are not necessarily immediately obvious or intuitive (Wilenksy & Resnick,

1999). Reasoning about complex systems faces additional barriers in the form of often invisible

dynamic phenomena existing around more readily visible or available structures (Feltovich et al.,

1992; Hmelo, Holton, & Kolodner, 2000). A significant load is placed on working memory to

simultaneously process all the interactions that are happening across multiple levels of a complex

system. This can be attributed to the specifics of the mental simulation process and the inferences

required to build a comprehensive mental model (Narayanan & Hegarty, 1998). Complex

systems may also exhibit emergent properties or behavior that may not be fully attributed to any

individual component or structure in the system (Wilensky & Resnick, 1999). Causality is also

difficult to establish in the context of complex system due to the presence of numerous

intermediate steps between the actual cause and the observed effect (Perkins & Grotzer, 2000).

Prior knowledge can also impede reasoning about complex systems due to prevalent individual

preferences towards centralized thinking and single causality (Wilensky & Resnick, 1999;

Jacobson, 2001) whereas experts reasoning about complex systems often display

“…decentralized thinking, multiple causes, and the use of stochastic and equilibration processes”

(Hmelo-Silver & Pfeffer, 2004, p.129).

3.2 Epistemic Forms and Games

Literature posits several different approaches to reasoning about complex systems. One

approach is that of epistemic forms and games (Collins & Ferguson, 1993; Sherry & Trigg,

1996; Morrison & Collins, 1995; Shimoda & Borge, 2016). Epistemic forms refer to target

structures that can guide inquiry often from a systems-dynamics modeling perspective (Hmelo-

39

Silver & Pfeffer, 2004). Epistemic forms can be used to organize knowledge while illustrating

the relationships between different concepts (Sherry & Trigg, 1996). Epistemic games refer to

strategies used to analyze phenomena with the goal of filling out a specific epistemic form

(Collins & Ferguson, 1993). They are referred to as epistemic games because the combination of

rules, strategies, and moves associated with a specific representation is used to construct new

knowledge. Epistemic games are reflective in nature and result in the generation of knowledge.

They include often complex rules, constraints, and entry conditions that guide the construction of

the epistemic form (Sherry & Trigg, 1996).

Epistemic games can be categorized as follows: (i) Structural analysis games; (ii)

Functional analysis games; (iii) Process analysis games (Collins & Ferguson, 1993; Sherry &

Trigg, 1996). Structure analysis games are often described as the simplest or easiest of the three

categories of games to implement and examples include but are not limited to primitive-elements

analysis or spatial decomposition (Collins & Ferguson, 1993; Sherry & Trigg, 1996). Spatial

decomposition for instance involves breaking down an entity into non-overlapping components

while specifying the relationships between these parts. Constraints for this game includes

specifying the connections between components and the nature of these connections. The goal of

primitive-elements analysis is to describe large phenomena as being composed of primitive

elements combining to achieve it (Collins & Ferguson, 1993).

 Functional analysis games are used to determine “…causal or functional structures that

relate elements in a system” (Collins & Ferguson, 1993, p. 33). Examples of functional analysis

games include:

• Critical-event analysis: Focuses on the series of events that led to a specific critical

event or the consequences the follow a critical event once it has occurred.

• Cause-and-effect analysis: It is a variant of critical-event analysis that draws a

distinction between triggers (also referred to as causes) and preconditions – some

condition that must be true for an effect to occur. An effect can also serve as a

trigger for one or more new effects.

• Problem-centered analysis: Breaks down an event stream into problems and actions

required to solve those specific problems. These solutions result in primary and

secondary effects with secondary effects often being new problems that require

solutions.

40

• Form and function analysis: Distinguishes between the form of an object and its

functionality or purpose.

Process analysis games are used to describe the internal behavior of a system (Sherry &

Trings, 1996). These games, and the forms associated with it, are used to analyze dynamic

phenomena (Collins & Ferguson, 1993). Process analysis games are described as being the most

complex and difficult. Systems-dynamics models consist of basic elements that are connected by

positive or negative links occasionally with feedback loops existing within the system. Situation-

action models are characterized by rules that model action to be taken based on conditions being

satisfied. Situations are influenced by environmental changes as well as by actions taken by

individual agents.

These three categories align with elaboration theory which advocates for structuring

knowledge in terms of concepts, procedures, and theories (Reigeluth & Stein, 1983; Reigeluth,

2018). These three knowledge structures – conceptual, procedural, and theoretical – answer the

questions of what a system is, how a system works, and why a system works the way it does

(Sherry & Trings, 1996). Epistemic forms and games guide inquiry by providing the inquirer

with constraints and context. Mastering epistemic games provides one with the ability use

various epistemic forms to make sense of various phenomena (Collins & Ferguson, 1993). This

introduces the concept of epistemic fluency that is defined as “…the ability to identify and use

different ways of knowing, to understand their different forms of expression and evaluation, and

to take the perspective of others who are operating within a different epistemic framework”

(Morrison & Collins, 1995, p. 40). Epistemic fluency is the ability to organize knowledge into

different patterns while making sense of a problem in different ways (Sherry & Trigg, 1996).

Epistemic fluency develops through “…social interactions with other members of a community

of practice, including those who are at least slightly more expert at playing these game”

(Morrison & Collins, 1995, p. 43). Those who exhibit epistemic fluency will be able to use

different epistemic games to determine the function of system, the structure of the system in

terms of its interrelated components, and the behaviors or processes of the system in terms of

how the structures accomplish the function (Collins & Ferguson, 1993; Morrison & Collins,

1995).

Literature widely demonstrates that experts in various domains organize their knowledge

based on deep principles of their discipline (Chi, Feltovich, & Glaser, 1981). One approach

41

towards organizing knowledge is in terms of visible structures of the system, however this has

the drawback of not describing or modeling underlying functions (Perkins & Grotzer, 2000).

Reasoning about complex systems requires individuals to create a network of concepts pertaining

to the domain in question which can then be used to represent the micro and macro level

interrelationships among its various structures (Hmelo-Silver & Pfeffer, 2004). The inquiry into

epistemic forms and games provided precedent for employing structural analysis, functional

analysis, and process analysis to describe and understand complex systems (Collins & Ferguson,

1993; Sherry & Trigg, 1996; Morrison & Collins, 1995; Shimoda & Borge, 2016). The

Structure-Behavior-Function theory accounts for the dynamic nature of the numerous

interconnected levels that exist in complex systems (Hmelo-Silver & Pfeffer, 2004) and align

well with the structural, functional, and process analyses detailed earlier. The SBF framework

and its application in software modeling has been discussed below.

3.3 SBF Framework

The SBF framework, sometimes denoted as Functions-Behaviors-Structures (FBS), has its

roots in cognitive science and has been successfully applied to many diverse domains (Gero,

1990; Gero & McNeill, 1998; Gero & Kannengiesser, 2004; Hmelo-Silver & Pfeffer, 2004;

Lammi, 2011). The SBF framework aligns well with the epistemic games of structural, process,

and behavioral analyses (Collins & Ferguson, 1993) as well as with existing approaches for

modeling information systems using functional, structural, and behavioral views (Dennis,

Wixom, & Tegarden, 2020). The use of multiple interconnected views to describe software

systems was popularized by the Rational Unified Process (RUP). RUP advocates for the use of a

logical view that is focused on describing end-user functionality and a process view that

describes how the functionality is implemented (Eriksson, Börstler, & Borg, 2005; Robal, Viies,

& Kruus, 2002), which necessitates the use of models to describe: i) the functionality of the

information system as viewed by the end user – functional view; ii) the objects along with their

corresponding attributes and behaviors that implement the functionality – structural view; and iii)

how the different objects interact with one-another to achieve the required functionality.

This approach to information systems development aligns well with the SBF framework

and the SBF framework can be used to reason about the functional roles of structural elements in

complex systems (Hmelo-Silver & Pfeffer, 2004). This can be done by describing the purpose of

42

individual subcomponents of a system and how they work together to bring about a certain

functionality. Structures can refer to the artefacts or objects themselves and the relationships

between them (Krutchen, 2005) or to individual elements of a system (Hmelo-Silver & Pfeffer,

2004). Functions can refer to the purpose of a design artefact or the exact reason for why specific

components exist. Behaviors describe the actions or processes of an artefact or object and how

the structures of the system interact to implement a certain function. The SBF framework has

been used successfully in interactive learning environments to create knowledge representations

of complex systems (Vattam et al., 2001). It must be noted that learners tended to struggle with

differentiating between behaviors and functions of a system because the functional aspects focus

on often tangible outcomes while behavioral aspects typically include intrinsic mechanisms that

are often difficult to represent (Hmelo-Silver & Pfeffer, 2004; Lammi, 2011; Vattam et al.,

2011). Also noteworthy was how functional aspects of a system are often implicit and difficult

for novices to infer (Chi, De Leeuw, Chiu, & Lavancher, 1994). Structures of complex systems

are most readily observed by novices or beginners. However, experts typically use behaviors and

functions to organize their knowledge pertaining to a specific system. This could be explained by

how the overall functionality of a system is accomplished by combining the different behaviors

and structures. This discrepancy between experts and novices could also be attributed to how

novices may encounter difficult in connecting phenomena observed at microlevel to those

observed at a macrolevel or vice-versa (Penner, 2000).

 The SBF framework has been successfully used in physics, medicine, engineering and

history (Hmelo-Silver & Pfeffer, 2004; Lammi, 2011) but it has not been applied in information

systems context. Given that the SBF framework has been used for complex systems and

information systems are modeled in terms of functions, structures, and behaviors, there is reason

to believe that the SBF framework can be applied successfully in the context of software

modeling and information systems. It can be posited that the UML serves as the epistemic form

and the SBF framework serves as the epistemic game for performing structural, process, and

functional analysis of information systems. Information systems can be complex and require

those developing them to understand the various relationships and connections between the

micro and macro elements of the system. Similar to biological systems, the functionality of

information systems tends to be implicit and there are interactions between the different

components of the system. Thus, understanding the structures, behaviors, and functions of an

43

information system becomes an integral part of software modeling and indirectly an important

part of the software development process.

3.4 Implications

For this study, the UML diagrams were the epistemic forms that guide the inquiry and

description of an information system. Use-case narratives and UML activity diagrams can be

used to capture the interactions between the user and the information system. This aligns with the

epistemic game of functional analysis. The use-case narratives and activity diagrams serve as the

epistemic form to capture the functional aspects of the information system. Learners had to

employ the epistemic games of critical-event analysis, cause-and-effect analysis, and problem-

centered analysis to determine the triggers and preconditions for specific use cases while

delineating how the system and user will interact in various scenarios. UML class diagrams can

be used to represent the objects of the system which aligns with the epistemic game of structural

analysis. Class diagrams serve as the epistemic form to capture the structural aspects of the

information system. Learners had to employ spatial decomposition and primitive-element

analysis to determine what the objects are and the nature of the relationships between them for

the system given in the specific problem statement. UML sequence diagrams can be used to

capture the interactions between objects of an information system which aligns with the

epistemic game of process analysis. Sequence diagrams serve as the epistemic form to capture

the behavioral aspects of the information system. The internal behavior of the information

system can be described by capturing the messages and responses between objects. To

proficiently model functional, structural, and behavioral aspects of an information system,

learners will have to display a high degree of epistemic fluency. This UML diagrams were

evaluated quantitatively, and the details were discussed in Section 4.4.5. The epistemic games of

functional analysis, structural analysis, and process analysis were analyzed qualitatively to

determine how participants employed these games.

The implications of the theoretical framework influenced how functions, structures and

behaviors were operationalized in the context of information systems and how UML models

were utilized to capture these details. Table 3.1 illustrates how the UML diagrams aligned with

each of the elements of the SBF framework and the different epistemic games (Collins &

Ferguson, 1993; Dennis, Wixom, & Tegarden, 2020; Hmelo-Silver & Pfeffer, 2004).

44

Table 3.1: Alignment between Epistemic Games, UML Models, and SBF Constructs

Epistemic

Game

SBF

Construct

Construct

Definition

UML Model

(Epistemic

Form)

Study Definition

Functional

analysis

Functions Specific purpose

or services that the

system must

provide

Use-Case

Narratives and

Activity

Diagrams

Flow of control between

the user and system, and

within the system as it

executes a specific

functionality.

Structural

analysis

Structures Specific

components of a

system

Class Diagrams Attributes and behaviors

of each object and how

the objects relate to one-

another.

Process

analysis

Behaviors How the

components of a

system work

together to achieve

a specific purpose

or functionality

Sequence

Diagrams

The interactions between

the different objects, in

the form of messages and

responses, involved in

implementing a certain

functionality.

45

CHAPTER 4. METHODOLOGY

This chapter described the research design and the various procedures that were employed

for data collection and analysis. The rationale behind the selection of the research paradigm and

research methods were discussed. This chapter further detailed research context and participant

details. This study was approved by institutional review board with protocol numbers

1709019656 and IRB-2019-393.

4.1 Research Paradigm

Literature points to various research paradigms associated with educational research such

as: (i) Postpositivism; (ii) Constructivism; (iii) Critical Theory; and (iv) Pragmatism. While this

is in no way meant to be an exhaustive list, each paradigm is distinct regarding the following

parameters (Creswell & Plano Clarke, 2018; Jones, Torres, & Arminio, 2014):

• Ontology – the nature of reality

• Epistemology – the relationship between the researcher and what is being researched

• Axiology – the role of values

• Methodology – the research process

• Rhetoric – the language of research

The primary consideration was the alignment of the research paradigm with the research

area being examined – namely that of systems analysis, software modeling, abstraction, and

systems thinking; and which paradigm would serve as the most useful lens for exploring the

research questions of this study. Constructivism and critical theory were quickly excluded

because of the apparent lack of alignment with the research area of information systems

modeling. Following this, the approaches of postpositivism and pragmatism were considered due

to alignment with the research area in terms of epistemology, axiology, and methodology.

Ultimately, pragmatism was chosen as the most suitable lens for this study as it allows for

adopting the approaches that work best to answer the research questions at hand. In the realm of

systems analysis there are often multiple correct answers or solutions while not precluding the

existence of wrong answers which aligns well the philosophical assumptions of pragmatism

which point to the existence of a singular reality or multiple realities (Jones, Torres, & Arminio,

46

2014). Pragmatism also emphasizes the use and interpretation of data collected through multiple

methods in manner that works best to answer the research questions that are being explored

(Creswell & Plano Clark, 2018).

4.2 Research Design

Mixed methods research that combines quantitative and qualitative data has been used to

great effect in the recent past various fields including those of education and social sciences

(Creswell, 2014). When employing a mixed-methods design, the following four factors must be

considered: (i) theoretical perspective; (ii) strategy priority; (iii) implementation sequence; and

(iv) point of data integration (Terrell, 2012). Theoretical perspective refers to whether the study

is directly or indirectly based on a theory. Priority of strategy refers to which data is considered

to be more important in the overall context of the study or if they are to be given equal

importance. The implementation sequence refers to the order of data collection – whether

quantitative or qualitative data is collected first. The point of data integration refers to the exact

point of the study where the data from the two phases are integrated and discussed. This can be

done at collection, analysis, or interpretation (Ivankova, Creswell, & Stick, 2006; Terrell, 2012).

At first glance, an explanatory mixed-methods approach would be best suited to accomplish the

goals of this research (Creswell & Plano Clark, 2018). The explanatory sequential design first

involves the collection of quantitative data. The results from the analysis of this data provides a

general or high-level picture of the problem. The qualitative follow-up provides explanations for

the general picture. However, this approach requires that both phases of the study be performed

on the same sample so as to facilitate integration and this encounters pragmatic concerns related

to subject recruitment. The same limitation applies to a triangulation design (Ivankova &

Creswell, 2009). Adhering to any of the traditional mixed methods research designs would not be

suitable for the goals of this study.

An alternative to this would be adopt a multimethod or multiple methods approach that

incorporates multiple forms of data collection with the goal of addressing the research questions

(Anguera et al., 2018). The differences between mixed methods and multimethod research

designs are subtle yet significant even though the terms are sometimes used interchangeably in

literature (Stange, Crabtree, & Miller, 2006). Mixed methods approaches mandate the integration

of quantitative and qualitative components to mix the often complementary information that they

47

carry while multimethod studies are driven by an overall research goal which is achieved by the

use of complimentary methodologies (Anguera et al., 2018).

 Like mixed methods studies, multimethods studies can have varying degrees of emphasis

placed on the quantitative and qualitative aspects of the study (Anguera et al., 2018). The

notation QUANT + QUAL indicates that both methods have equal emphasis (Creswell & Plano

Clark, 2018). QUANT + qual indicates that the emphasis is unequal with more emphasis being

placed on the quantitative methods whereas quant + QUAL indicates unequal emphasis with

more emphasis being placed on qualitative methods. A triangulation design was adopted for this

study that comprised of two distinct strands– a quantitative strand that was followed by a

qualitative study denoted by QUANT + qual. Figure 4.1 illustrates the overall structure and

format of the study while providing details about each step.

The quantitative strand was centered around a sophomore level course in systems analysis

and design methods. This approach aimed to identify the different patterns of software modeling

proficiency displayed by learners. Details about the course were explained in Section 4.3. The

quantitative strand involved the collection and analysis of exam-responses from the second mid-

Collection of exam

responses consisting of UML

models (n=97)

Modeling case study using

think-aloud protocol (n=6)

Video and audio recordings

of case study

Summary of results from

quantitative and qualitative

strands

Results discussion in relation

to goals of the study

Codes and themes

Chronological visualization

Time on task analysis

Transcription of audio

Theoretically driven

inductive coding

Thematic analysis

Rubric development

Scoring of exam responses

Clustering analysis

Correlational analysis

Regression analysis

Descriptive statistics

Clusters

Correlations between rubric

elements (Spearman

coefficient)

Logistic regression model

Figure 4.1: Flow chart for research design

48

term of this course. The qualitative strand involved participants who had completed the

aforementioned course and were of junior or senior standing. This strand explored how learners

utilized abstract thinking and systems thinking while constructing software models. A case study

approach using the think-aloud protocol was utilized for the qualitative strand. Each participant

in the qualitative strand, following the completion of all activities, was awarded an Amazon gift

card valued at $25 as compensation for their time and inconvenience. Further details of the

quantitative strand and qualitative strand were elaborated on in Section 4.5. Both studies

leveraged the Structures-Behaviors-Functions (SBF) framework detailed below.

4.3 Learning Design

This section details the learning context of the course that the study was centered around.

The course was designed to integrate Scrum methodology and cooperative learning. Scrum is an

approach to product development where teams achieve goals in an iterative fashion with each

iteration incrementally building upon the previous one. Cooperative learning was incorporated in

this course with the goal of promoting the skills of teamwork, communication, and problem

solving while learning the different techniques and approaches involved in conducting system

analysis and design (Magana, Seah, & Thomas, 2017). As students analyze and design the

system as part of their term project, they are required to create UML software models that

capture functions, structures, and behaviors of the system. Students work in teams making using

of the Scrum approach to iteratively develop functional prototypes. The project comprises of four

milestones and one final deliverable for which students are to submit documentation. Each of

these milestones were completed in increments called sprints and each sprint was delivered in a

week. Student teams were provided feedback at the end of each sprint. The goal of the project is

to create a functional prototype and a detailed design document as part of their team project that

captures the “functional, structural and behavioral views of the system” (Magana, Seah and

Thomas, 2017). While defining system requirements and developing the functional prototype,

students will have to employ abstract thinking to identify relevant systems requirements (Ghezzi

et al., 2002; Kramer, 2007), and use systems thinking to account for how the different

components of the information system are connected (Brewer & Dittman, 2018) and how making

modifications to one component will impact the others. The learners in this course are also

provided instructional scaffolds in the form of in-class active learning activities such as

49

walkthroughs of software modeling which allows them to hone their abstract thinking and

systems thinking skills. This is illustrated in the conjecture map shown in Figure 4.2, where

students by engaging in the Scrum-based team project and the in-class modeling activities would

produce UML software models that capture functions, structures, and behaviors of the system.,

which in turn should improve abstract thinking, systems thinking, and overall software modeling

proficiency. Figure 4.2 shows the conjecture map of the different elements involved in this study.

The conjecture map is a high-level graphical representation of how the desired learning

outcomes were promoted.

Figure 4.2: Learning design conjecture map

The learning theory that guided the design of the learning environment was social

constructivism. Social constructivism posits that knowledge and understanding are developed

through coordination with others (Amineh & Asl, 2015). Scholars of social constructivism

suggest that individuals learn through collaboration and interaction with others (Kim, 2001).

Under social constructivism, learners actively pursue knowledge through the discovery of

concepts and facts. Emphasis is placed on learner interactions with those who are considered

knowledgeable or experts in specific subjects (Amineh & Asl, 2015). Social constructivism

highlights the importance of collaboration among learners as well as instructors taking on the

50

role of facilitators that provide guidelines and foster an environment where learners can arrive at

their own solutions.

The embodiment detailed characteristics and features of the learning environment which in

this case involves in-class modeling activities where the students are walked through

diagramming exercises by the instructor alongside cooperative learning implemented via a

Scrum-based team project. The mediating processes referred to those salient performances or

products expected to result from the embodied elements. Learners engaged with the various tasks

of the course, and employ the epistemic games of functional analysis, structural analysis, and

process analysis to produce UML software models as artifacts. These models were the epistemic

forms that captured details about the functions, structures, and behaviors about information

systems. The outcomes were the result of the mediating processes and these are the elements

that are ultimately measured (Sandoval, 2014). The goals of this course were to improve

software modeling proficiency exhibited by students alongside their abstract thinking and

systems thinking skills.

In summary, the design conjecture was that if learners engage in project-based cooperative

learning via in-class modeling activities and the Scrum-based team project, then UML software

models – detailing functions, structures, and behaviors; would emerge as a mediating process.

The theoretical conjecture was that the development of UML software models would lead to

learning outcomes of increased software modeling proficiency, abstract thinking skills and

systems thinking skills. The learning environment was social constructivist in nature with

students actively involved in the learning process through interaction and collaboration with their

peers and the instructor.

4.4 Quantitative Strand

This section discussed the details of the quantitative study. The quantitative strand was

centered around a sophomore level systems analysis and design course. The course explored

systems development techniques and approaches used by IT professionals such as developers

and analysts to model the requirements of an information system, and then construct an

acceptable design which is then implemented as a solution (Magana, Seah, & Thomas, 2017).

https://docs.google.com/document/d/15lhG7luqhLqPRXyAJFwmmnkHNMtb95b3vM_6kizfl7c/edit#heading=h.2et92p0

51

4.4.1 Research Questions

The quantitative strand aimed to answer the following research questions:

1. To what extent to did students demonstrate proficiency in abstract thinking while

analyzing software systems in terms of functions, structures, and behaviors?

2. To what extent to did students demonstrate proficiency in systems thinking while

analyzing software systems in functional, structural, and behavioral representations?

3. What were the characteristics or profiles of students in terms of abstract thinking and

systems thinking ability as evidenced by their system representations?

4.4.2 Participants

This study included 97 students, majority of whom were second-year computer and

information technology students. Students in this course have had prior exposure to at least one

introductory systems development course and have knowledge of programming either from

coursework or practical experience via internships.

4.4.3 Procedures and Data Collection Methods

This course included several forms of assessment including but not limited to class

participation, quizzes, documentation of a semester-long project, final presentation of the term

project, and three written examinations. The examinations are meant to evaluate conceptual

knowledge alongside modeling ability. The modeling aspects of the second exam of this course

served as the data for this study. The second exam (Appendix A. Modeling Exam) was held in

the 11th week of the semester. The students had participated in multiple guided in-class modeling

activities where they followed the instructor in capturing functions, structures, and behaviors of

information systems of example case studies. Also, the students had participated in multiple

milestones of the Scrum-based team project that requires teams to develop a functional prototype

and detailed system specifications – which include functional, structural, and behavioral

representations of the system.

 The exam consisted of two distinct parts. The first part involved the learners answering

multiple-choice questions that tested their conceptual knowledge and the second part consisting

of a case study for which the students were requested to model the system in terms of functions,

52

structures, and behaviors using the appropriate UML models. The case study primarily presented

details of an online seat reservation system and that is the functionality for which students were

expected to construct the models. The case also provided details of other functionality offered by

the system such as reservation cancelation and payment which would additionally test the

students’ abstraction ability in terms of whether they included these details or not. Due to

logistical and time-related constraints, the exam was conducted across two class sessions. In the

first class-session, the students completed the multiple-choice questions, use-case narrative, and

activity diagram. In the second class-session, the students completed the class diagram and

sequence diagram.

4.4.4 Rubric Development

As discussed in the literature review, there were no standard approaches for measuring

abstract thinking in the context of software modeling. Therefore, rubrics were developed to

evaluate each UML model based on accuracy and conformance to the UML standard. The

rubrics were designed with inputs from faculty in the department of computer and information

technology with cumulative decades of experience teaching systems development courses. Each

rubric was designed to account for 5 levels of student performance. The rubrics were designed to

account for five levels of student performance. They performance levels, in general, are detailed

below:

• Absent - A rubric element was graded as absent and scored 0 if a student did not attempt

to address it at all.

• Deficient - An element was graded as deficient and scored 1 if a student attempted to

address the criterion but only captured between 10 and 50% of the expected details.

• Developing - A rubric element was graded as developing and scored 2 if the student has

addressed the criterion but only captured 51 and 70% of the expected details.

• Emerging - An element was graded as emerging and scored 3 if a student addressed the

criterion but only captured between 71 and 90% of the expected details.

• Proficient - A rubric element was graded as proficient and scored 4 if the student

addressed the requirement and captured 91% or more of the expected details.

The rubric for evaluating use case narratives (Appendix C - Use Case Narrative Rubric)

consists of three elements. The element “Typical course of events” refers to steps that a system

53

would normally follow and is used to evaluate what percentage of these steps have been captured

by the learner. The element “Alternate courses” refers to steps taken by the system if certain

specific criteria or conditions are satisfied and is used to evaluate what percentage of these steps

have been captured by the learner. The element “Narrative completeness” refers to the degree to

which the learner has completed the different components of the use-case narrative template

(Appendix B – Use Case Narrative Template) outside of the typical and alternate courses.

The rubric for evaluating activity diagrams (Appendix D – Activity Diagram Rubric) is

informed in part by the UML standards discussed in Section 2.5.1. The rubric was used to

evaluate functional modeling proficiency in terms of conformity to UML standards alongside

proficiency of abstraction and alignment with respect to the use-case narratives. The first four

components of the rubric – Start/Stop nodes, Swimlanes, Activities, and Decisions/Merges

address UML conformity. The component titled “Abstraction” refers to the percentage of

relevant details from the problem statement that were included in the diagram. “Alignment with

use case narrative” refers to the percentage of actions and decisions in the activity diagram that

can be mapped to steps in the typical course of events and/or alternate courses in the use-case

narratives.

The rubric for evaluating class diagrams (Appendix E – Class Diagram Rubric) is informed

in part by the UML standards discussed in Section 2.5.2. The rubric was used to evaluate

structural modeling proficiency in terms of conformity to UML standards alongside proficiency

of abstraction. The first four components of the rubric – Objects, Attributes, Behaviors, and

Relationships address UML conformity. “Abstraction” refers to percentage of relevant details

included in the class diagram.

The rubric for evaluating sequence diagrams (Appendix F – Sequence Diagram Rubric) is

informed in part by the UML standards discussed in Section 2.5.3. The rubric was used to

evaluate behavioral modeling proficiency in terms of conformity to UML standards alongside

proficiency of abstraction, and alignment with respect to class and sequence diagrams.

“Abstraction” refers to the percentage of relevant details included in the sequence diagram.

“Alignment with class diagram” refers to the percentage of objects of objects and messages in

the sequence diagram that can be mapped to the objects and functions in the class diagram.

“Alignment with activity diagram” refers to the percentage of messages and responses in the

sequence diagram that can be mapped to actions in the activity diagram. This component only

54

checked for the presence of these messages or responses that can be mapped to the activity

diagram and did not evaluate whether the messages and responses originate from or go to the

appropriate objects.

4.4.5 Data Scoring and Data Analysis Methods

The analysis of the exam responses allowed for an overall assessment of the learners’

software modeling proficiency in terms of capturing the functional, structural, and behavioral

aspects of information systems. Software modeling proficiency was categorized by proficiency

exhibited by learners in terms of modeling: i) functions of an information system by using use

case narratives and activity diagrams; ii) structures of an information system by using class

diagrams; and iii) behaviors of an information system by sequence diagrams respectively.

The use case narratives, the activity diagrams, class diagrams, and sequence diagrams were

evaluated for completeness and accuracy. In accordance with considerations of the Institutional

Review Board (IRB) pertaining to maintaining confidentiality and anonymity, all student names

were replaced with a pseudonym. Use-case narratives were evaluated for overall completeness

as well as completeness of typical and alternate courses of events. Overall scoring of use-case

narratives can be illustrated with an example. For instance, if a use case narrative was scored as

proficient (4) for typical courses of events, emerging (3) for alternate course of events, and

developing (2) for narrative completeness, it would have a total score of 9 out of a possible 12.

The details of scoring each criterion was given in Appendix B – Use Case Narrative rubric. The

activity diagrams were assessed for conformity to UML standards as established in the course,

how much relevant detail, pertaining to functionality of the system, was incorporated; and how

well students mapped to the use case narrative which was listed as the alignment component on

the rubric. Overall scoring of activity diagrams can be illustrated with an example. For instance,

if an activity diagram was scored as developing (2) for start/stop nodes, proficient (4) for

swimlanes, proficient (4) for activities, emerging (3) for decisions/merges, emerging (3) for

abstraction, and proficient (4) alignment with use case narrative, it would have a total score of 13

out of a possible 22. The last two criteria were excluded from calculating the total score for

activity diagrams to evaluate the relationships between abstract thinking, systems thinking, and

functional modeling proficiency. The details of scoring each criterion were given in Appendix D

– Activity Diagram rubric.

55

 The class diagram was evaluated for conformity to the UML standards as established in

the course and whether it captured the overall structural representation of the system in terms of

the objects and their respective attributes and behaviors. Overall scoring of class diagrams can be

illustrated with an example. For instance, if a class diagram was scored as proficient (4) for

objects, emerging (3) for attributes and behaviors, proficient (4) for relationships, and emerging

(3) for abstraction, it would have a total score of 14 out of a possible 16. Abstract thinking was

excluded from the total score to evaluate the relationship between abstraction and structural

modeling proficiency. The details of scoring each criterion were given in Appendix D – Class

Diagram rubric. The sequence diagrams were assessed for conformity to UML standards as

established in the course and for how well they mapped to the class diagrams and activity. For

example, how many of the classes drawn in the sequence diagram were listed as objects in the

class diagram or whether the overall flow of the activity diagram was captured in the sequence

diagram. Overall scoring of sequence diagrams can be illustrated with an example. For instance,

if a sequence diagram was scored as proficient (4) for objects, lifelines, and processes; emerging

(3) for messages, responses, and abstraction; and proficient (4) for alignment with class diagram

and alignment with activity diagram, it would have a total score of 18 out of 20. The last three

criteria were excluded from the total score calculation evaluate the relationships between

abstraction, systems thinking, and behavioral modeling proficiency. The details of scoring each

criterion were given in Appendix C – Sequence Diagram rubric. Once the data had been scored,

patterns of student performance was illustrated through a descriptive analysis. The descriptive

analysis revealed percentage distributions of students for each performance level per rubric

element in a specific rubric.

4.4.6 Reliability and Validity Considerations

Face validation (Creswell & Poth, 2016) of the rubrics was performed by a professor in the

department of computer and information technology who has several years of experience

teaching systems development courses. There is precedent in literature to ensure reliability for

larger data sets by having an independent coder or rater score a subset of the available data to

then compute interrater reliability (Hammer & Berland, 2014). To ensure reliability of the data

scoring process, 20% of the student responses were scored by a second rater who had previously

served as teaching assistant for the course and possesses an expertise in systems analysis and

56

design. Interrater reliability was evaluated on the total scores – as scored by the individual raters

using the rubrics - for use case narratives, activity diagrams, class diagrams, and sequence

diagrams using Cronbach’s Alpha. Interrater agreement for each component of the exam as given

by Cronbach’s alpha is shown below in Table 4.1.

Table 4.1: Interrater Agreement

Exam Component Cronbach’s alpha

Use Case Narratives .650

Activity Diagrams .931

Class Diagrams .900

Sequence Diagrams .982

4.4.7 Cluster Analysis

 While the descriptive analysis illustrated broad patterns of proficiency in terms of the

different rubric, they did not reveal any information about underlying groups within the dataset.

To investigate the data further, and to determine whether there were any characteristics of

students that were not revealed in the descriptive analysis, clustering analysis was employed.

Clustering is the process of grouping data and clustering algorithms forms groups based on

similarities between the objects under consideration (Ordonez, 2003; Thinsungnoena et al., 2015;

Yuan & Yang, 2019). These groups are referred to as clusters and are disjoint subsets of the

given dataset (Likas, Vlassis, & Verbeek, 2003). The clusters are characterized by external

separation and internal homogeneity which means that patterns in different clusters should be

dissimilar while patterns within a cluster should be similar and comparable (Abbas, 2008; Xu &

Wunsch, 2005). Clustering is an example of unsupervised classification and does not require any

kind of prior training (Chaovalit & Zhou, 2005). It should not be confused with supervised

classification which uses a collection of labeled or pre-classified patterns to label new data points

(Abbas, 2008). There are several algorithms for data clustering, however, the challenge for most

clustering algorithms lies in determining the number of clusters existing in a dataset beforehand.

The data for cluster analysis was the scored exam responses as per the rubrics discussed in

Section 4.4.5. The data was ordinal in nature with each subject having scores of 22 rubric

elements associated with them.

57

4.4.8 Cluster Identification

 To perform clustering analysis, the number of underlying clusters was first identified.

The silhouette technique or silhouette coefficient algorithm was used to estimate the optimal

number of clusters in a given dataset. It also serves as a tool examine the validity and quality of

clustering (Aranganayagi & Thangavel, 2007; Yuan & Yang, 2019; Zhu, Ma, & Zhao, 2010).

The silhouette technique groups objects based on tightness or cohesion and separation (Yuan &

Yang, 2019). The technique is constructed to select the optimal number of clusters

(Thinsungnoena et al., 2015). The silhouette coefficient algorithm involves the calculation of the

contour coefficient which is defined based on intra-cluster dissimilarity and inter-cluster

dissimilarity and takes on a value between -1 and 1 (Yuan & Yang, 2019). Higher silhouette

values for each object indicates a close relationship between the object and the cluster while

lower values indicate that it may have been assigned to the wrong cluster (Anitha & Patil, 2019).

Higher average values of the contour coefficient or silhouette scores indicate a more effective

cluster number. Silhouette coefficients are broadly accepted as a standard measure of cluster

validation (Wang et al., 2010). Table 4.2 detailed the silhouette scores for the collected data:

Table 4.2: Silhouette scores

Number of Clusters Silhouette Scores

2 0.303

3 0.189

4 0.188

5 0.188

6 0.191

7

8

0.195

0.141

4.4.9 Clustering Method

The silhouette scores indicated the cluster number of two was most optimal for the

collected data. Therefore, a binary clustering algorithm is most appropriate. Thresholding After

Random Projection (n-TARP), a binary clustering machine learning algorithm based in Python,

was used to analyze the scored data. n-TARP was chosen due to it being “…computationally

inexpensive, scalable to high dimensions, and can be easily modified to handle both very small

and large datasets” (Yellamraju & Boutin, 2018, p.4). The n-TARP software projects the dataset

58

n number of times into a random single-line plane. Then the algorithm thresholds the projected

data at a point and identifies any clustering of data before or after the threshold. Finally, it

chooses the two best clusters of the projection (Yellamraju & Boutin, 2018). The dataset was

projected 100 times with a threshold of .3 for clustering. To implement this program, each rubric

element was treated as a data point for each student while each of the diagrams was considered

as an individual test scenario. Following this process, the data was analyzed in graphical form

using grouped bar-graphs. The emergent clusters were examined for differences in abstract

thinking and systems thinking ability using a t-test (Cohen, 2001).

4.4.10 Correlational Analysis

A correlational analysis is appropriate when a researcher aims to answer questions about a

sample without manipulating variables or executing random assignment (Devlin, 2018) and it

can be used to “…investigate an area of interest to get some idea of the strength of naturally

occurring relationships” (Devlin, 2018, p.20). Therefore, a correlational analysis can be

employed to characterize the relationship between student abstract thinking ability, systems

thinking ability, and software modeling proficiency in terms of functions, structures, and

behaviors. Spearman correlation coefficient was computed to explore the nature of the

relationship between the various rubric elements. Spearman correlation coefficient is widely

utilized in research where a non-parametric equivalent to Pearson’s correlation coefficient is

required either due to the non-normal distribution of data or its ordinal nature (Artusi, Verderop,

& Marubini, 2002; Bonett & Wright, 2000; de Winter, Gosling, & Potter, 2016).

To characterize the relationship between student systems thinking ability and software

modeling proficiency in terms of functions, structures, and behaviors, Spearman correlation

coefficient was first computed for the entire dataset to explore: i) the relationship between

student proficiency with the use case narratives and student proficiency in activity diagrams; ii)

the relationship between student proficiency with class diagrams and student proficiency in

sequence diagrams; iii) the nature of the relationship between software modeling proficiency in

terms of functions, structures, and behaviors, and systems thinking ability. Correlational analysis

was performed using IBM SPSS statistical software. As part of this analysis, a correlation table –

containing rubric elements pertaining to abstract thinking, systems thinking, and software

modeling proficiency was computed for the entire dataset. Following this, the correlational

59

analysis was performed for each cluster revealed by the clustering analysis to investigate whether

there are any differences in relationships between these elements across the clusters.

4.4.11 Regression Analysis and Logistic Regression

While a correlational analysis could be used to understand the strength of relationships, it

did not provide an equation that connected the dependent variable with the explanatory variables.

A regression analysis could be used to explore functional relationships between variables and

these relationships could be expressed in the form of model (Chatterjee & Hadi, 2015). The

regression model could be used to predict the degree to which abstract thinking and systems

thinking proficiency influenced software modeling proficiency in terms of functions, structures,

and behaviors in the context of the identified clusters. Given the ordinal nature of the data and

the existence of two clusters, binary logistic regression was most appropriate.

Logistic regression can be utilized when the dependent variables are categorical in nature

(Field, 2009). Logistic regression can be used to predict the increase or decrease in the

probability of possessing a characteristic based on a unit increase in a specific independent

variable while the other independent variables are held constant. A higher predicted value

indicates that it is “...more likely that any individual with particular scores on the independent

variables will have a characteristic…” (Field, 2009, p. 1). For the purposes of this study, the

dependent variable was the cluster to which the student was assigned and can have the values

“high performing” or “moderate performing” corresponding to each cluster. The independent

variables were the rubric elements corresponding to abstract thinking and systems thinking in

terms of functions, structures, and behaviors.

To test the goodness-of-fit of the proposed regression model, the Hosmer and Lemeshow

test was used (Archer and Lemeshow, 2006). The Hosmer and Lemeshow test is based on the

null hypothesis that the regression model is correctly specified and fits the data well. A

statistically significant result for the Hosmer and Lemeshow test would lead to the null

hypothesis being rejected and indicates that the proposed model is not a good fit for the given

data. A result that is not statistically significant indicates that the proposed model is a good fit for

the given data.

 A possible regression model is given in (1):

60

log (
𝑝𝑟𝑜𝑏ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑚𝑜𝑑
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 (1)

The response variable was given by log (
𝑝𝑟𝑜𝑏ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑚𝑜𝑑
) and it referred to the odds of a student

being high performing versus the odds of a student being moderate performing. X1, X2,…, Xn

were the predictor variables which in this case refers to individual rubric elements corresponding

to abstract thinking and systems thinking in terms of functions, structures, and behaviors

(Chatterjee & Hadi, 2015). The initial model contained all relevant predictor variables. A

backward step-wise approach was taken to eliminate predictor variables and to arrive at the

reduced model containing only the most relevant variables (Wang et al., 2007).

4.5 Qualitative Strand

While the quantitative approach yielded insights into what the patterns of the software

modeling proficiency were among students and the relationship between software modeling

proficiency and the constructs of abstract thinking and systems thinking, it does not provide any

indication as to how abstract thinking or systems thinking was used while constructing software

models. The qualitative strand was centered around exploring how students utilize abstract

thinking and systems thinking while constructing software models based on a given problem

statement or case.

4.5.1 Research Question

The qualitative strand was guided by the research question - How do students use abstract

thinking and systems thinking when modeling software systems in terms of functions, structures,

and behaviors?

4.5.2 Participants

 There were six participants recruited for this study, all of whom have completed the

sophomore level systems analysis and design course (Magana, Seah, & Thomas, 2017) detailed

in the quantitative study. These participants were part of the computer and information

technology department and were either of junior or senior standing. In total, these students had

completed a minimum of two systems development courses and two programming courses.

61

4.5.3 Procedures and Data Collection Methods

For the qualitative phase of this study, a case study approach was used. A case study is an

exploration of a case over time involving data collection from multiple sources of context-rich

information (Merriam, 1998). A case study can involve the exploration of a single bounded

system or multiple bounded systems through qualitative approaches such as observations,

interviews etc. (Baxter & Jack, 2008; Creswell et al., 2007). Research designs involving the use

of case studies have been widely used in fields such as business, education, medicine,

psychology, and many more (Gerring, 2006). A case refers to an entity that includes but is not

limited to educational institutions or programs and departments within educational institutions

(Stake, 2006). A bounded system or multiple bounded systems defines the extent of what will be

explored as part of the study as well as what will not be explored (Baxter & Jack, 2008). For the

qualitative strand of this study, a single case study approach was employed. The case was

bounded by the requirement that the participants, who are the units of analysis, have completed

the sophomore level systems analysis and design course detailed in Chapter 4. Prior to

recruitment, prospective participants were briefed about the activities involved as part of the case

study and the compensation they would receive for their participation.

Each participant was provided a case centered around staff management (Appendix G –

Staff Management Case) and they were to model the “Staffing Request” functionality in terms of

functions, structures, and behaviors. The case itself details numerous functionalities associated

with a staff management system and it provides steps and conditional actions associated with

these functionalities as well as the different actors who are involved with the functioning of the

system. This specific case was chosen because of the sufficient complexity it offered that

requires participants to employ abstract thinking to include relevant details while excluding those

details that are not pertinent to the solution. Participants also had to employ systems thinking to

align their different models. The participants were given three hours to construct a use case

narrative, activity diagram, class diagram, and sequence diagram. While constructing the models,

the participants were asked to think-aloud to justify their design decisions and rationale. The

think-aloud protocol is a data-elicitation method where participants are asked to verbalize what is

on their mind as they perform a certain task (Jääskeläinen, 2010; Tirkkonen-Condit, 1990).

Studies that employ the think-aloud protocol provide “…rich verbal data about reasoning during

a problem-solving task.” (Fonteyn, Kuipers, & Grobe, 1993, p. 430). Furthermore, analysis of

62

transcripts of the think-aloud protocol can reveal how information was structured or how it was

used to solve the problem.

 During the study, the researcher may also ask probing questions asking the participants

why they performed certain steps, what the design rationale was or to explain their thought

process as they construct the models. Researcher notes made during each case study also served

as a source of information for this qualitative phase. Audio and video recordings were made of

the participants as they complete the modeling tasks to have a record of the modeling process as

it happens and their rationale or justifications for their design choices while creating the models.

The UML models, researcher notes, audio recordings & transcripts, and video recordings were

collected for all six participants thus providing multiple data sources for each unit of analysis.

4.5.4 Data Coding and Analysis

Qualitative data analysis followed the collection of the quantitative data. In accordance

with considerations of the Institutional Review Board (IRB) pertaining to maintaining

confidentiality and anonymity, all participants names were replaced with a pseudonym. The

design artefacts – the functional, structural, and behavioral models - created by the participants

were first scored using the rubrics given in Appendix C - Use Case Narrative Rubric, Appendix

D – Activity Diagram Rubric, Appendix E – Class Diagram Rubric, and Appendix F – Sequence

Diagram Rubric. Following the scoring, the participants were categorized based on their overall

proficiency. This provided context for how participants of differing proficiency employed

abstract thinking and systems thinking while creating software models. The audio recordings of

the think-aloud protocol were transcribed.

Thematic analysis was used identify themes present in the transcriptions and themes were

coded using deductive coding scheme. Thematic analysis provided insights into patterns in a data

set by focusing on its meaning (Braun & Clark, 2012). Qualitative data analysis is a recursive

process that involves noticing concepts of importance and breaking down the data into distinct

ideas or themes while describing properties of each code alongside representative examples

(Kendall, 1999; Khandkar, 2009). The data was analyzed using NVivo version 12. NVivo

allowed for effective organization and coding of qualitative data. The annotations function

present in NVivo allowed for the creation of reflective and analytical memos pertaining to each

transcript, video, or design artefact. The video recordings were not expressly coded but were

63

reviewed for the purposes of verifying student actions. The videos also provided additional

information and context to the corresponding transcripts.

A prominent approach for performing thematic analysis is the six-phase model proposed

by Braun and Clark (2006). For the purposes of this study, the six-phase model was adapted to

work with a theoretically driven inductive approach towards coding and analysis. This hybrid

approach towards analysis involves integrating both data-driven and theory-driven approaches to

coding (Fereday & Muir-Cochrane, 2006). Analysis included the broad a priori themes

(Castleberry & Nolen, 2018), i.e., themes identified in advance that are relevant to the research

area, as well emergent themes that arose through the coding process. First, the researcher

familiarized himself with the data by performing multiple readings of the transcripts and making

notes of initial ideas. Following this, interesting features from the data were captured and

organized systematically to produce codes. The researcher worked through the entire data set

coding extracts for all relevant themes and patterns pertaining to abstract thinking or systems

thinking. For the purposes of this study, the researcher performed coding and analysis based on

instances of: i) abstract thinking - episodes where students vocalized whether a detail should be

included in the models or not; and ii) systems thinking - episodes where students made

connections between different design elements which includes making connections between

elements drawn in one diagram to elements drawn in another diagram or students making

changes in one diagram based on elements drawn in another diagram. The researcher coded for

instances of abstract thinking or systems thinking, as described in literature, while being open to

identifying other emergent themes. Furthermore, the coder looked for specific ways in which the

participants employed abstraction or systems thinking while constructing their models. The next

step involved collating the different codes under the appropriate themes of abstract thinking or

systems thinking. Other emergent themes were classified under the theme “miscellaneous”.

Following this, the themes were reviewed to ensure that the data within each theme was coherent

and identifiably distinct from other themes. The process of reviewing themes was done at two

levels – i) at the level of coded extracts to ensure that all instances fit the theme and moving

them to other themes if necessary; ii) at the level of the entire data set where the themes were

checked for whether it accurately reflects the data set as a whole. This phase also involved some

amount of re-coding to ensure accuracy. Re-coding continued until the refinements added

nothing substantial to the themes. After this, a detailed analysis was written for each theme to

64

detail its internal consistency and to delineate the lack of overlap compared to the other themes.

Finally, a detailed report of results was produced providing the narrative of the data alongside

supporting examples. A chronological visualization of the codes and themes will also be

provided.

4.5.5 Trustworthiness Considerations

Trustworthiness or credibility in qualitative research is a nuanced topic with different

approaches being taken for presenting qualitative data and analyses (Chi, 1997; Cutcliffe &

McKenna, 1999; Hammer & Berland, 2014; Miles & Huberman, 1994). Establishing

trustworthiness has the effect of increasing reader confidence in the findings (Curtin & Fossey,

2007). One of the approaches towards establishing trustworthiness in qualitative research is for

the researcher to be completely transparent when describing the research strategies that were

employed (Krefting, 1991). To this end, the specific steps taken as part of the qualitative data

collection, coding, and analysis were discussed in detail. A detailed description of the context of

the qualitative strand was also provided. Coding errors were minimized by reading through the

transcripts several times, which also ensured that codes were correctly organized.

In addition, the primary research received peer feedback to ensure that coding was done

consistently throughout. This approach of peer examination involves the research process and

results being discussed with impartial peers that provoke the researcher into a deeper level of

reflexivity (Krefting, 1991).

4.6 Integration of Qualitative and Quantitative Strands

The quantitative strand allowed the evaluation of student proficiency in modeling

information systems in terms of functions, structures, and behaviors. This strand focused on the

outcomes, i.e., the UML models that were constructed by the students. This yielded distinct

patterns of software modeling proficiency and provided insights into characteristics or profiles of

students. In addition, the relationships between software modeling proficiency and the constructs

of abstract thinking and systems thinking were also explored. While the quantitative strand was

effective in terms of evaluating outcomes, it did not yield any information about the processes or

procedures employed by the students while modeling information systems in terms of functions,

65

structures, and behaviors. The next logical step was to explore the differences in processes

adopted by the high-performing students and moderate-performing students. These patterns of

proficiency were explored further in the qualitative strand with a focus on how participants

applied abstract thinking and systems thinking while modeling an information system in terms of

functions, structures, and behaviors. The think-aloud protocol was utilized to gain insights into

the rationale behind the different design decisions made by participants. The rubrics developed

as part of the quantitative strand were used to score the models developed by the participants.

These scores served to contextualize the findings from the qualitative strand. The results from

both strands – quantitative and qualitative - were both taken into consideration to provide a

holistic understanding of overall software modeling proficiency. Furthermore, considering both

quantitative and qualitative data sheds light on how students of varying degrees of proficiency in

software modeling employed abstract thinking and systems thinking while designing their

solutions.

66

CHAPTER 5. MODELING PERFORMANCE

5.1 Overview of Data Analysis Procedures

To facilitate the analysis of the exam responses, rubrics detailed in Appendix B – Use Case

Narrative Rubric, Appendix D – Activity Diagram Rubric, Appendix E – Class Diagram Rubric,

and Appendix F – Sequence Diagram Rubric were developed and validated. The exam responses

of the students were scored using these rubrics and the results were presented using bar charts.

The bar charts yielded insights into patterns of proficiency among students as they modeled

information systems in terms of functions, structures, and behaviors. The results presented in the

bar charts addressed the first two research questions RQ1 - To what extent to did students

demonstrate proficiency in abstract thinking while analyzing software systems in terms of

functions, structures, and behaviors? and RQ2 - To what extent to did students demonstrate

proficiency in systems thinking while analyzing software systems in functional, structural, and

behavioral representations? Following this, the silhouette technique was applied to identify the

optimal number of clusters in the data set. Clustering analysis was then performed using the n-

Tarp binary clustering algorithm. A correlational analysis was performed on the emerging

clusters to identify the nature of relationships between the different rubric elements. Logistic

regression was then applied to determine how unit increases in rubric elements pertaining to

abstract thinking and systems thinking affected the odds of a student being classified as a high-

performing student compared to a moderate-performing student. The goodness-of-fit of the

proposed regression model was tested using the Hosmer and Lemeshow test. The reduced

regression model was then computed using a backward step-wise approach to eliminate predictor

variables. These results addressed RQ3 – What were the characteristics or profiles of students in

terms of abstract thinking and systems thinking?

5.2 Data Scoring Approach

Exam responses from the 97 students were scored using detailed in Appendix B – Use

Case Narrative Rubric, Appendix D – Activity Diagram Rubric, Appendix E – Class Diagram

Rubric, and Appendix F – Sequence Diagram Rubric. Figure 8 provides illustrative examples of

functional, structural, and behavioral models constructed by students that were scored as

67

proficient as well as illustrative examples for models that were emerging or deficient due to

lacking requisite details.

Figure 5.1a contains examples of proficient functional, structural, and behavioral models.

The functional model given by the activity diagram conforms to UML specifications with one

exactly one start and stop node drawn. There are swimlanes corresponding to the system and

each actor. Only the appropriate details relevant to the reservation functionality has been

captured. The structural model given by the class diagram incorporated all relevant classes of the

information system. Each class had attributes and behaviors identified. Relevant relationships

between classes were identified and labeled appropriately. The behavioral model given by the

sequence diagram incorporated relevant classes that aligned with classes specified in the class

diagram. All relevant messages and responses were drawn, and they aligned with the overall

flow of control specified in the activity diagram. The sequence diagram also conformed to UML

standards in terms of visual representations of messages, responses, lifelines, and execution

occurrences.

6
8

a

b

Figure 5.1: Model examples

69

Figure 5.1b contains examples of functional, structural, and behavioral models that were

not scored as proficient. The functional model given by the activity diagram used incorrect

symbols for the start node and final node. The activity diagram did not have any swimlanes

corresponding to the system or actor. The model did not contain any decision nodes, omitted

relevant details, and did not model the overall flow of control in the system.

The structural model given by the class diagram in Figure 5.1b did not include all relevant

objects of the information system. As a result of this, several important relationships were also

not modeled. Some of the relationships were incorrectly modeled. While the classes included

attributes, they classes did not include any behaviors.

The behavioral model given by the sequence diagram in Figure 5.1b incorrectly identified

several objects and the objects did not align with the class diagram. The lifelines and responses

did not conform to UML standards – dotted lines were not used. The sequence diagram was

missing some key messages and corresponding responses. The overall flow may or may not align

with the flow of control specified in the activity diagram.

The student scores for the functional, structural, and behavioral models given by the

activity diagrams, class diagrams, and sequence diagrams were used to perform the quantitative

analysis.

5.3 Modeling Functions

Figure 5.2 presented the performance distribution of students while capturing functions

using use case narratives.

70

Majority of students performed proficiently in capturing the typical course of events

followed by the system in the given case (Appendix A – Modeling Exam). In contrast, only 69%

of students captured the alternate courses of events proficiently. The alternate courses of events

refer to the steps taken by the system in response to whether certain were satisfied or not. At a

minimum, all learners made an attempt at completing the different elements present in the

narrative template.

The performance distribution of students while capturing functions using activity diagrams

was presented in Figure 5.3Error! Reference source not found..

 Proficient (4) Emerging (3) Developing (2) Deficient (1) Absent (0)

Figure 5.3: Descriptive Statistics - Activity Diagram

 Proficient (4) Emerging (3) Developing (2) Deficient (1) Absent (0)

Figure 5.2: Descriptive Statistics - Use Case Narratives

71

 Overall, students were proficient in capturing functions of the information system in the

given case using activity diagrams with the exception of modeling decision and merge nodes

where only 8% of students utilized decision nodes appropriately and connected diverging flows

of control using merge nodes accurately. Conformity to UML standards was also evaluated as

part of this study. Only 5% of students failed to include swimlanes corresponding to actors in

their diagrams and 58% of the students correctly drew exactly one start and stop node outside of

the swimlanes.

In terms of systems thinking, 79% of students proficiently aligned their activity diagrams

with the previously constructed use case narrative. Overall, majority of students were proficient

in the application of systems thinking by mapping their activities and decisions or merges to the

typical and alternate courses of events that they detailed in their narratives.

5.4 Modeling Structures

The performance distribution of students while capturing structures using class diagrams

was presented in Figure 5.4.

 Proficient (4) Emerging (3) Developing (2) Deficient (1) Absent (0)

Figure 5.4: Descriptive Statistics – Class Diagrams

Overall, majority of students were at the performance level of emerging in terms of

modeling information systems in terms of structures. Furthermore, the results also suggest that

72

learners did not apply abstraction proficiently. This can be, in part, attributed to students

incorporating irrelevant objects that were not essential to the prescribed functionality or the

system in general. Only 28% of students were able to draw all appropriate relationships between

objects. Only a quarter of all students proficiently identified all relevant behaviors for the

functionality prescribed in the case while 5% of students identified no behaviors.

5.5 Modeling Behaviors

The performance distribution of students while capturing behaviors using sequence

diagrams was presented in Figure 5.5.

.

 Proficient (4) Emerging (3) Developing (2) Deficient (1) Absent (0)

Figure 5.5: Descriptive Statistics – Sequence Diagram

Only 47% of students identified the relevant objects for the functionality prescribed in the

case. This had further implications in their diagrams where corresponding lifelines, and messages

or responses associated with those objects were not included. In terms of abstract thinking

ability, only 25% of all students included all relevant details with minimal irrelevant details. In

terms of systems thinking ability, there two distinct aspects to consider in the context of

modeling information systems in terms of behaviors. 82% of students were proficient in aligning

their sequence diagrams with their activity diagrams – the messages and responses in the

sequence diagrams were mapped to actions in the activity diagram. However, only 41% of all

73

students proficiently aligned their sequence diagrams with their class diagrams. Proficient

alignment in this case is characterized by most objects and messages in the sequence diagram

being mapped to corresponding objects and behaviors in the class diagram. It must be noted that

several students featured objects in their sequence diagrams that were not present in their class

diagram. Similarly, several students also drew messages in their sequence diagrams that did not

have any corresponding behaviors in their class diagrams.

5.6 Cluster analysis results

 The silhouette technique detailed in Section 4.4.8 determined that the optimal number of

clusters for the given data was two. The clustering algorithm took into consideration the scores

for all rubric elements to compute the two clusters The n-Tarp clustering algorithm (Yellamraju

& Boutin, 2018) identified two clusters that were referred to as: i) moderate performing students

(n=40); and ii) high performing students (n=57). The first cluster was referred to as moderate

performing students due to total scores of students ranging from 20 to 44 out of a maximum of

60. The second cluster was referred to as high performing students due to total scores ranging

from 39 to 52 out of a maximum of 60. The result of the n-Tarp clustering algorithm is visually

represented using a bar chart in Figure 5.6.

74

Figure 5.6: Cluster analysis results

Each bar represents the average score for a specific rubric element in a cluster. Overall, the

cluster of high performing students had a higher average score across all rubric elements except

that of start/stop nodes in the activity diagrams. Notably, students belonging to the high

performing clusters exhibited higher scores in abstract thinking and system thinking in terms of

functions, structures, and behaviors. Once the data points in each cluster was identified, the mean

and standard deviation were computed for each cluster for the rubric elements corresponding to

abstract thinking and systems thinking. Furthermore, to test for statistically significant

differences between the two clusters, a t-test was conducted at a 95% confidence interval. The

results of the t-test are presented in Table 5.1.

75

Table 5.1: Clustering t-Test results – Abstract thinking and Systems thinking

 Cluster 1 (n=40) Cluster 2 (n=57)

Rubric element Mean SD Mean SD p

Activity Diagram

Abstraction

3.125 .7574 3.5439 .6288 .0038

Alignment with Use-

Case Narrative

3.625 .7048 3.8421 .3679 .051

Class Diagram

Abstraction

2.900 .5454 3.4737 .5037 <0.00001

Sequence Diagram

Abstraction

2.475 .5986 3.4211 .4981 <0.00001

Alignment with Class

Diagram

2.750 .9268 3.5263 .5380 <0.00001

Alignment with

Activity Diagram

3.525 .8469 3.8421 .4547 .0192

The t-test revealed statistically significant differences in abstract thinking in terms of

functions, structures, and behaviors between the two clusters. The largest disparity in scores

between the two clusters was for abstract thinking in terms of behaviors given by sequence

diagrams. Statistically significant differences were also found in systems thinking in terms of

structures and behaviors between the two clusters, whereas the proficiency of systems thinking in

terms of functions between the two clusters were comparable.

5.6.1 Relationships between modeling performance of functions, structures, and

behaviors

A correlational table was computed for the entirety of the data collected. The details of

data scoring were discussed in Section 4.4.5. Activity diagram total was computed by adding the

scores of the individual rubric elements except for abstract thinking and alignment. Similarly,

class diagram and sequence diagram totals were computed by adding the scores of the respective

rubric elements except for abstract thinking and alignment. The analysis was focused on selected

rubric elements pertaining to abstract thinking, systems thinking, and software modeling

proficiency. The results of the analysis were presented in terms of spearman coefficient. The

results of the correlational analyses for the entire dataset were presented in Table 5.2.

76

Table 5.2: Spearman coefficient – Entire dataset

 1 2 3 4 5 6 7 8 9 10

1 -

2 .62** -

3 .39** .44** -

4 .45** .51** .44** -

5 .21* .32** .22* .23* -

6 .36** .27** .29** .30** .79** -

7 .25* .22* .14 .18 .54** .55** -

8 .08 .12 .13 .18 .32** .33** .63** -

9 .07 .09 .19 .22* .21* .18 .27** .25* -

10 .26** .17 .21* .19 .44** .47** .84** .61** .17 -

Note. *p<0.05. **p<.001

1 – Use-Case Narrative Total, 2 – Activity Diagram Abstraction, 3 – Alignment with

Use-Case Narrative, 4 – Activity Diagram Total, 5 – Class Diagram Abstraction, 6 –

Class Diagram Total, 7 – Sequence Diagram Abstraction, 8 – Sequence Diagram

Alignment with Class Diagram, 9 – Sequence Diagram Alignment with Activity

Diagram, 10 – Sequence Diagram Total

Statistically significant correlations were found between use case narrative total, functional

abstract thinking ability (given by the rubric element activity diagram abstraction), functional

systems thinking ability (given by the rubric element alignment with the use-case narrative), and

proficiency of functional modeling (given by the rubric element activity diagram totals). It can

be inferred from the results that students exhibiting greater proficiency of abstract thinking and

system thinking were also, overall, more proficient with functional modeling. The proficiency of

functional modeling was evidenced by constructing activity diagrams that included more

relevant details and exhibited better alignment with the use case narratives.

A statistically significant correlation was also found between structural abstract thinking

(given by the rubric element class diagram abstraction) and the overall structural modeling

proficiency (given by the rubric element class diagram total). It can be inferred from the results

that students exhibiting greater proficiency of abstract thinking were also, overall, more

proficient with structural modeling (given by the rubric element – class diagram total). The

proficiency of structural modeling was evidenced by constructing class diagrams with more

relevant details included.

Statistically significant correlations were found between behavioral abstract thinking

(given by the rubric element sequence diagram abstraction), alignment with class diagrams, and

overall behavioral modeling proficiency (given by sequence diagram total). It can be inferred

77

from these results that students exhibiting greater proficiency of abstract thinking and systems

thinking were also, overall, more proficient with behavioral modeling. The proficiency of

behavioral modeling was evidenced by constructing sequence diagrams that included more

relevant details and were better aligned with the class diagrams.

Given the differing performance patterns observed in the two clusters, separate

correlational analyses were then performed for each cluster to investigate whether there were any

differences in these relationships in the two clusters. The results of the correlational analyses for

the moderate performing students and high-performing students were presented in Table 5.3 and

Table 5.4, respectively.

Table 5.3: Spearman coefficient – Moderate performing students

 1 2 3 4 5 6 7 8 9 10

1 -

2 .67** -

3 .55** .45** -

4 .58** .58** .51** -

5 .18 .35* .23 .23 -

6 .35* .32* .41** .46** .76** -

7 .004 .06 .25 .32* .05 .10 -

8 -.17 -.12 .11 .09 -.35* -.22 .62** -

9 .13 .12 .29 .32* -.01 -.09 .41** .16 -

10 .02 -.07 .29 .18 -.13 -.03 .80** .59** .26 -

Note. *p<0.05. **p<.001

1 – Use-Case Narrative Total, 2 – Activity Diagram Abstraction, 3 – Alignment with

Use-Case Narrative, 4 – Activity Diagram Total, 5 – Class Diagram Abstraction, 6 –

Class Diagram Total, 7 – Sequence Diagram Abstraction, 8 – Sequence Diagram

Alignment with Class Diagram, 9 – Sequence Diagram Alignment with Activity

Diagram, 10 – Sequence Diagram Total

78

Table 5.4: Spearman coefficient – High performing students

 1 2 3 4 5 6 7 8 9 10

1 -

2 .48** -

3 .17 .41** -

4 .34** .45** .35** -

5 -.14 .12 .12 .17 -

6 .04 .02 .14 .19 .67** -

7 -.12 .05 -.12 -.03 .47** .39** -

8 -.14 .06 -.02 .14 .52** .34** .43** -

9 -.18 -.04 -.003 .07 .25 .21 -.02 0.19 -

10 -.17 -.08 .003 .14 .33* .13 .66** .48** -.09 -

Note. *p<0.05. **p<.001

1 – Use-Case Narrative Total, 2 – Activity Diagram Abstraction, 3 – Alignment with

Use-Case Narrative, 4 – Activity Diagram Total, 5 – Class Diagram Abstraction, 6 –

Class Diagram Total, 7 – Sequence Diagram Abstraction, 8 – Sequence Diagram

Alignment with Class Diagram, 9 – Sequence Diagram Alignment with Activity

Diagram, 10 – Sequence Diagram Total

Across both moderate performing students and high performing students, statistically

significant correlations were found between use case narrative total, functional abstract thinking

ability (given by the rubric element activity diagram abstraction), functional systems thinking

ability (given by the rubric element alignment with the use-case narrative), and proficiency of

functional modeling (given by the rubric element activity diagram totals). It can be inferred from

the results that students exhibiting greater proficiency of abstract thinking and system thinking

were also, overall, more proficient with functional modeling. The proficiency of functional

modeling was evidenced by constructing activity diagrams that included more relevant details

and exhibited better alignment with the use case narratives.

In both clusters, statistically significant correlations were found between structural abstract

thinking (given by the rubric element class diagram abstraction) and the overall structural

modeling proficiency (given by the rubric element class diagram total). It can be inferred from

the results that students exhibiting greater proficiency of abstract thinking were also, overall,

more proficient with structural modeling (given by the rubric element – class diagram total). The

proficiency of structural modeling was evidenced by constructing class diagrams with more

relevant details included.

Similarly, across both moderate performing students and high performing students,

statistically significant correlations were found between behavioral abstract thinking (given by

79

the rubric element sequence diagram abstraction), alignment with class diagrams, and overall

behavioral modeling proficiency (given by sequence diagram total). It can be inferred from these

results that students exhibiting greater proficiency of abstract thinking and systems thinking were

also, overall, more proficient with behavioral modeling. The proficiency of behavioral modeling

was evidenced by constructing sequence diagrams that included more relevant details and were

better aligned with the class diagrams. Notably, there were no statistically significant correlations

in either cluster between overall behavioral modeling proficiency and the alignment of sequence

diagrams with activity diagrams. Also, in the cluster of high performing students, there was no

statistically significant correlation between behavioral abstract thinking and alignment of

sequence diagrams with activity diagrams. There was a statistically significant correlation

present between these two elements in the cluster of moderate performing students. Interestingly,

in both clusters, statistically significant correlations were found between functional abstract

thinking (given by the rubric element activity diagram abstraction) and functional systems

thinking (given by the rubric element alignment with use case narrative). It could be inferred

from these results that those students who were more proficient with abstract thinking also tend

to be more proficient with systems thinking. Overall, the relationships between the various rubric

elements remained broadly consistent across the two clusters.

5.7 Logistic regression results

Logistic regression was used to compute the probability of student being classified as high

performing or moderate performing based on unit changes in their abstract thinking and systems

thinking ability in terms of functions, structures, and behaviors. The Hosmer and Lemeshow test

was used to test whether the proposed regression model was a good fit for the given data. The

null hypothesis for this test was that the regression model is correctly specified and fits the data

well. A statistically significant result would lead to the null hypothesis being rejected and this

result would indicate that the proposed model is not a good fit for the given data. The test was

run in steps where all independent variables were present in the first step and a variable was

removed at each step. The results of the Hosmer and Lemeshow test are presented in Table 5.5.

80

Table 5.5: Hosmer and Lemeshow Test Results

Step Chi-square Df p

1 4.333 8 0.826

2 4.232 8 0.836

3 3.734 6 0.713

4 5.685 6 0.459

5 3.277 3 0.351

6 5.857 1 0.016

The Hosmer and Lemeshow test did not return significant results until there was only a

single independent variable left in the model. This result indicates that a reduced model

containing only two independent variables (step five) was a good fit for the given data. This also

implies that not every component of abstract thinking and systems thinking played a substantial

role in whether a student was classified as high performing or moderate performing.

Given the results of the Hosmer and Lemeshow test, logistic regression was computed for

a reduced model containing only two independent variables. SPSS utilized a backward step-wise

approach to eliminate predictor variables at each step. The results of the backward step-wise

process was presented in Appendix – H. The process began with the following rubric elements

included in the model: activity diagram abstraction, alignment with use case narrative, class

diagram abstraction, sequence diagram abstraction, sequence diagram alignment with class

diagram, and sequence diagram alignment with activity diagram. At each step, an independent

variable was removed, and the regression was computed. The results of the logistic regression

corresponding to step five of the Hosmer and Lemeshow test were presented in Table 5.6.

Table 5.6: Logistic regression results – Reduced Model

Variables in

the Equation B S.E. Wald Df Sig. Exp(B)
Sequence

Diagram

Abstraction 0.383 0.319 1.443 1 0.23 1.467
Sequence

Diagram

Alignment

with

Activity

Diagram 0.66 0.36 3.35 1 0.067 1.934
Constant -3.252 1.505 4.67 1 0.031 0.039

81

The final reduced regression model was presented below in (2):

log (
𝑝𝑟𝑜𝑏ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑚𝑜𝑑
) = −3.252 + 0.383 ∗ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑎𝑔𝑟𝑎𝑚 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0.66 ∗

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑜𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑎𝑔𝑟𝑎𝑚 𝑤𝑖𝑡ℎ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐷𝑖𝑎𝑔𝑟𝑎𝑚 (2)

The following conclusions can be inferred from the logistic regression model:

i) A unit increase in alignment of sequence diagram with activity diagrams while sequence

diagram abstraction is held constant, increases the odd of high performance by a factor of

1.934.

ii) A unit increase in sequence diagram abstraction while alignment of sequence diagram with

activity diagrams is held constant, increases the odds of high performance by a factor of

1.467.

5.8 Summary – Modeling Performance

The first research question investigated as part of this analysis was - To what extent to did

students demonstrate proficiency in abstract thinking while analyzing software systems in terms

of functions, structures, and behaviors? Overall, students were proficient in modeling the given

information system in terms of functions using use case narratives and UML activity diagrams.

Students were able to proficiently employ abstract thinking to incorporate relevant details in their

solution models and capture the interactions between the user and information system. However,

it must be noted that students were in general less proficient in identifying the alternate course of

events using use case narratives. In contrast, the overall performance of students dropped to the

level of emerging when modeling the given information system in terms of structures and

behaviors using UML class diagrams and UML sequence diagrams respectively. This was

accompanied by a drop in abstract thinking scores as well. Students often failed to include

important details in both diagrams. Class diagrams were missing key objects and their associated

attributes, behaviors, and relationships. Sequence diagrams were missing key objects and their

associated messages and responses.

The second research question investigated was - To what extent to did students

demonstrate proficiency in systems thinking while analyzing software systems in terms of

functions, structures, and behaviors? Overall, students were proficient in applying systems

thinking while modeling information systems in terms of functions. Most students were able to

82

accurately map actions in the activity diagrams to individual steps in the use case narratives.

Similarly, most students were able to map the alternate course of events from their use case

narratives to decisions and merges in their activity diagrams. While constructing sequence

diagrams, students were proficient with aligning their sequence diagrams with their activity

diagrams. Students were able align the overall flow of control within the system based on their

activity diagrams even if some students had made errors in drawing messages being sent from

and to incorrect objects. In comparison, students were substantially less proficient in aligning

their sequence diagrams with their class diagrams. Only 41% of learners had included objects in

their sequence diagrams that were present in their class diagram and mapped messages in their

sequence diagrams to behaviors in their class diagrams. Many learners featured objects in their

sequence diagram that did not exist in the class diagram and messages that did not map to any

specific behavior.

The third research question that was investigated was - What were the characteristics or

profiles of students in terms of abstract thinking and systems thinking as evidenced by their

system representations? The silhouette technique was applied to the dataset and it indicated that

the optimal number of clusters was two. The n-Tarp binary clustering algorithm revealed the

existence of two distinct clusters – moderate-performing students (n=40) and high-performing

students (n=57). High performing students demonstrated significantly higher abstract thinking

ability in terms of functions, structures, and behaviors compared to the students compared to the

moderate performing students. High performing students were also significantly more proficient

in systems thinking in terms of structures and behaviors. However, the two clusters exhibited

comparable systems thinking ability in terms of functions. It must be noted that the differences

between these clusters in terms of systems thinking given by alignment of the sequence diagram

with the class diagram and alignment of the sequence diagram with the activity diagram were

also statistically significant. The results of the correlational analysis indicated the following

relationships:

i) Proficiency of abstract thinking and system thinking were positively associated

with overall functional modeling proficiency.

ii) Proficiency of abstract thinking was positively associated with overall structural

modeling proficiency.

83

iii) Proficiency of abstract thinking and systems thinking were positively associated

with overall behavioral modeling proficiency.

Finally, logistic regression was performed to identify the effect of unit-increases of rubric

elements on the odds of a student being high-performing. In addition, the regression model

determined the most important factors by adopting a backwards step-wise approach towards

eliminating predictor variables. The Hosmer and Lemeshow test confirmed that the reduced

model was a good fit for the data set. It could be confirmed from the regression model that the

two most important elements that positively affect the odds of a student being high performing

were the abstract thinking ability exhibited while modeling the information system in terms of

behaviors, and systems thinking ability given by the alignment of the sequence diagrams with the

activity diagrams.

84

CHAPTER 6. MODELING APPROACHES

6.1 Summary of Data Analysis Procedures

A single case study approach was employed in the qualitative strand of this study. A

thematic analysis approach was employed to analyze the transcripts of the audio recordings of

each participant. The researcher familiarized himself with the data by reading through each

transcript multiple times while making notes of initial ideas or patterns. Following this the

researcher captured and organized interesting features from the data to produce codes. The

researcher was specifically looking for ways the participants employed abstract thinking and

systems thinking while modeling the information system, given in the case, in terms of functions,

structures, and behaviors. Following this, the codes were collated under the broad themes of

abstract thinking and systems thinking. The operational definition for abstract thinking referred

to episodes where students vocalized whether a detail should be included in the models. The

operational definition for systems thinking referred to episodes where students made connections

between different design elements which included making connections between elements drawn

in one diagram to elements drawn in another diagram or students making changes in one diagram

based on elements drawn in another diagram. Codes that did not fit under either theme were

collated under the theme “miscellaneous”. The only example of this code was that of “UML

conformity” where participants explicitly vocalized content pertaining to the use of specific

symbols or design choices as prescribed by the UML standards.

 After this step, the themes and codes were reviewed to ensure that the data within each

theme and code were coherent and identifiably distinct from other themes and codes,

respectively. The two-level review process was conducted. The first was at the level of coded

extracts to ensure that all instances fit the theme and moving them to other themes if necessary.

This proved to be especially challenging in the context of codes pertaining to systems thinking

because participants adopted proactive and reactive approaches to systems thinking. The code

“mapping between models” refers to the proactive approach where participants actively

referenced previously constructed models and “alignment” refers to the reactive approach where

changes were made retroactively. The video corresponding to these segments were used to verify

the approach taken by the participant and the code was attributed accordingly. The second level

85

of review was done at the level of entire data set where the themes were checked for whether

they accurately reflect the data set as a whole. This review process led to a degree of re-coding.

Re-coding continued until no further refinements could be or there no substantial additions to the

codes. The extracts did not have to fit exclusively into any single code. There were several

instances where the extracts could be attributed to two or more codes. This is an expected

outcome as participants would, for instance, be employing abstract thinking and systems thinking

simultaneously while modeling information systems in terms of functions, structures, and

behaviors.

The themes and codes, based on the thematic analysis of six transcripts, were detailed in

Table 6.1. Operational definitions and sample quotes were provided for each code.

Table 6.1: Themes and Codes

Theme Code Definition Sample Quote

Abstract

Thinking

Aggregation Instances of grouping

together different

details from the

problem statement

“I'm going to combine some of these methods

for this…I'm probably going to combine the

like- send information to client and then like

send request bill and memo to the manager,

like send information to the manager”

 Decompositi

on

Instances of breaking

down details in the

problem statement into

smaller components

“…like here where I wrote, like type

experience and qualifications all into one …

I’m going to split this up again because it

makes sense to have them as different data

members for the actual- because they're

actually checking against the database”

 Action and

response

identificatio

n

Instances of identifying

interactions between

the system and the user

to achieve a specific

functionality

“I'll just do a top decision. it terminates but

then..so if it's no.. so technically this should

be part of... if there's an a Staffing request this

month... So it has to do with expiration and

the request for you falls... Staffing request is

not valid. It sends back the letter. Okay, so

technically it's invalid. It goes go back to the

Client, I'm using now the original. Document.

so receive letter of rejection. So technically

that ends the process here and just connect

back to the end node.

86

Table 6.1 continued

 Actor

identificatio

n

Instances of identifying

the different users that

interact with the system

“yeah so I add a two other actors inside a

system because in the placement department

there are some employee checking the

qualification of the the the worker the

employee there's something for you inside the

department checking it and they mark it as

reserved in the staff database, so uhmm, there

that also actors inside of system and what

arrangement department they also mark…

and they do some action inside a system and

send it back to the contract manager so they

should also be a actor instead of system itself

processing”

 Object

identificatio

n

Instances of identifying

objects integral to the

structure of the

information systems

“Now I'm trying to visualize the class

diagram because I guess- I mean since I'm

already here I might as well draw it from ...

Just trying to figure out how to draw it which

I mean obviously will be PSSM and then the

Department's client would be separate,

employee would be separate. Contract would

go under client, and I think that that's an

entity ... probably also create the request and

then attach it with Bill in them.”

 Relationship

identificatio

n

Instances of identifying

the relationships

between the objects of

the information system

“So I’m sticking with general relationships

except for like the requests in the contracts …

or aggregation and composition is the name

of that one. Okay, because these can't exist

without these existing; where these all exist

independently of each other, you need a- you

need a client to have a contract. I have a

request”

 Message

and

response

identificatio

n

Instances of identifying

interactions between

the objects of the

information system

“I will have to return to staffing request

database, but I can represent that towards the

lower end of the line when it's needed again.

again, mostly this is just not looking ahead

towards where I had those two actors that

kind of threw this off a little bit, but I should

have like realized from activity diagram, but

for some reason. I just find it much easier to

follow the actual use case than the diagrams

that I have … which Again part of it is also

because I don't really feel confident about

everything that happened after the

arrangements Department … all of the

different activities that happened there.

anyway moving on …”

87

Table 6.1 continued

Miscellan

eous

UML

conformity

Instances where the

participant identified

UML standards for

different the diagrams

or made changes to

their diagrams to

conform to UML

standards

“I always forget what the symbol you put

before the data member of a entity in a class

diagram is …. I think its a plus or minus ..

hmmm…”

Systems

Thinking

Alignment Instances where the

participant made

changes to a diagram

based on details

observed in another

diagram

“So these should have been checking against

what I erased here. So this should actually be

over here.”

 Mapping

between

models

Instances where the

participant actively

referenced an already

constructed diagram

while constructing

another diagram

“first just to get like all the different- I think

I'm probably going to go with the different

entities being the same as the swim lanes. So

just to get those all down- make sure I have

them large enough”

 Model

Coherence

Instances where the

participant made

changes to a diagram in

response to new details

that were incorporated

“Most of these I can translate into this fairly

easily but… I'm going to need … contract

database … request database … staff

database … so I am going to need …. I’m

going ot squeeze another one in here actually

…”

6.2 Chronological Visualization

Through the process of thematic analysis, the researcher observed that participants chose

to go about modeling systems in terms of functions, structures, and behaviors in different orders.

All participants modeled the system given in the case in terms of functions first using the use

case narrative and activity diagram. However, following this, some participants modeled the

systems in terms of behaviors first before moving onto structures while others chose to model the

system in terms of structures first before moving onto behaviors. Gantt charts were used to

visualize how participants employed abstract thinking and systems thinking while modeling an

information system in terms of functions, structures, and behaviors. Figure 6.1 presents the codes

- identified as part of thematic analysis - on a Gantt chart for participants who first modeled

functions, then structures, and finally behaviors of the information system. Figure 6.2 presents

the codes - identified as part of thematic analysis - on a Gantt chart for participants who first

88

modeled functions, then behaviors, and finally structures of the information system. The figures

present the codes on a timeline alongside the information of what artefact was being used for

each instance of the code.

8
9

a

b

c

Figure 6.1: Gantt chart visualization – structures before behaviors

9
0

a

b

c

Figure 6.2: Gantt chart visualization – behaviors before structures

91

Figure 6.1 presents the Gantt chart of codes pertaining to the participants who constructed

the structural models before the behavioral models – they were referred to as FSB1, FSB2, and

FSB3. Figure 6.2 presents the Gantt chart of codes pertaining to the other three participants who

constructed the behavioral models before the structural models – they were referred to as FBS1,

FBS2, and FBS3. Participants took between one hour and thirty minutes to two hours and

twenty-five minutes to model the information system in terms of functions, structures, and

behaviors.

In both approaches, participants modeled the system in terms of functions using the use

case narratives and constructing activity diagrams. Abstract thinking this phase was broadly

characterized by the codes - actor identification and action and response identification.

Participants would identify the different users that interact with the system and capture the flow

of control between users and the system to achieve a specific functionality. Participant FSB1

took the additional step of combining certain attributes given in the case to ease the process of

functional modeling. This corresponds to the code of aggregation. The participants exhibited

systems thinking by proactively referencing the problem statement while completing the use case

narratives and then proceeded to reference the narrative while constructing the activity diagram.

It must be noted that participant FBS3 referenced the problem statement in addition to the use

case narrative while constructing the activity diagram. Participants FBS2 and FSB3 also made

changes to their use case narratives based on details included in their activity diagrams. This

corresponds to the codes of “alignment” in Figure 6.1a and Figure 6.2b, respectively. This also

represents a more reactive approach to systems thinking. At around the 45-minute mark,

participant FSB1 reorganized the activity diagram to ensure that the model was still coherent

after the new details that were incorporated. Table 6.2 presents the scores of the participants in

terms of modeling the given the case in terms of functions for selected rubric elements. The

artefacts produced by the participants i.e., the functional models – given by the use case

narratives and activity diagrams were scored using Appendix C – Use Case Narrative Rubric and

Appendix D – Activity Diagram Rubric, respectively. There were no substantial differences in

functional modeling proficiency between the participants. The differences in overall scores for

the activity diagrams could be attributed to lack of UML conformity – namely the number of

start and stop nodes, the absence of swimlanes, and the absence of merge nodes to combine

control flows following decisions. All participants were proficient in abstract thinking and

92

systems thinking in terms of functions. Participants included relevant details in their functional

models and aligned their activity diagrams proficiently with their use case narratives.

Table 6.2: Participant scores – Functional Modeling Proficiency

Participant Use Case

Narrative Total

(12)

Activity

Diagram

Abstraction (4)

Alignment with

Use-Case

Narrative (4)

Activity

Diagram Total

(16)

FSB1 10 4 4 14

FSB2 12 3 4 13

FSB3 12 4 4 15

FBS1 12 4 4 14

FBS2 12 4 4 16

FBS3 11 4 4 12

Following the construction of the functional models, the participants moved on to

modeling the given system in terms of structures or behaviors. Participants FSB1, FSB2, and

FSB3 modeled the system in terms of structures first. Abstract thinking in this phase was broadly

characterized by the codes - object identification and relationship identification. All three

participants identified objects and the relationships between them. All three participants took

different approaches to systems thinking. Participant FSB1 primarily referenced the activity

diagram while performing object and relationship identification. It must be noted that participant

FSB1 also decomposed the attributes - that was aggregated prior - into its component parts.

Participant FSB1 also vocalized explicitly the correct symbols to be used to model relationships

in class diagrams corresponding to code of UML conformity. Participant FSB2 identified the

objects in the sequence diagram first before deciding to complete the class diagram. As such, the

partially constructed sequence diagram was also referenced in addition to the problem statement

and the use case narrative. Participant FSB3 solely referenced the problem statement while

modeling the given system in terms of structures.

 Once the structural models were completed, participants FSB1, FSB2, and FSB3 modeled

the system in terms of behaviors using UML sequence diagrams. Abstract thinking in this phase

was broadly characterized by the codes – object identification, and message and response

identification. Participants FSB1 and FSB3 identified the relevant objects alongside the pertinent

messages and responses. Participant FSB2 had already identified the objects earlier. Participant

FSB1 employed aggregation to consolidate some attributes as part of messages. In terms of

93

systems thinking, the participants all actively referenced other models while modeling the system

in terms of behaviors corresponding to the code mapping between models. Participants FSB1 and

FSB3 referenced the activity diagram and class diagram while constructing the sequence

diagram. Participant FSB2 exclusively referenced the class diagrams. Participants FSB1 and

FSB2 reworked their diagrams to ensure that the models were coherent in response to the new

details incorporated.

Participants FBS1, FBS2, and FBS3 modeled the system in terms of behaviors first.

Abstract thinking in this phase was broadly characterized by the codes – object identification,

and message and response identification. All three participants identified the relevant objects

alongside the pertinent messages and responses. However, it must be noted that participant FBS2

did not vocalize object identification. Participant FBS2 consolidated the different employee

objects into a single object called staff corresponding to the code - aggregation. In terms of

systems thinking, the participants all actively referenced other models while modeling the system

in terms of behaviors corresponding to the code mapping between models. Participant FBS1

exclusively referenced the use case narrative while participant FBS2 exclusively referenced the

activity diagram. In contrast, participant FBS3 referenced the problem statement, the use case

narrative, and activity diagram while constructing the sequence diagram.

Once the behavioral models were completed, participants FBS1, FBS2, and FBS3 modeled

the system in terms of structures using UML class diagrams. Abstract thinking in this phase was

broadly characterized by the codes - object identification and relationship identification. All

three participants identified objects and the relationships between them. Participant FBS2

vocalized the earlier aggregation of employee objects and decomposed them into the component

objects – corresponding to the code decomposition. Participant FBS3 vocalized aggregation in

terms of introducing super-classes to house common attributes. Participants FBS1 and FBS3

focused on conforming to UML standards in terms of attribute visibility in addition to

relationship symbols and multiplicity corresponding to the code – UML conformity. In terms of

systems thinking, the participants all actively referenced other models while modeling the system

in terms of structures corresponding to the code mapping between models. Participant FBS1

exclusively referenced the problem statement. Participant FBS2 referenced the previously

constructed sequence diagram in addition to the problem statement whereas participant FBS3

referenced the activity diagram, problem statement, and sequence diagram.

94

Table 6.3 presents the scores of the participants in terms of modeling the given the case in

terms of structures and behaviors for selected rubric elements. The artefacts produced by the

participants i.e., the structural models given by the class diagrams and the behavioral models

given by the sequence diagrams were scored using Appendix E – Class Diagram Rubric, and

Appendix F – Sequence Diagram Rubric, respectively.

Table 6.3: Participant scores – Structural and Behavioral Modeling Proficiency

Participant Class

Diagram

Abstraction

(4)

Class

Diagram

Total (16)

Sequence

Diagram

Abstraction

(4)

SD -

Alignment

with Class

Diagram

(4)

SD -

Alignment

with

Activity

Diagram

(4)

Sequence

Diagram

Total (20)

FSB1 2 9 3 2 4 14

FSB2 4 15 4 4 4 20

FSB3 3 11 3 3 4 17

FBS1 3 13 3 4 4 18

FBS2 4 16 3 3 4 15

FBS3 3 13 3 2 3 15

In general, the scores indicate a marked reduction in proficiency of abstract thinking in

terms of structures and behaviors compared to the proficiency of abstract thinking in terms of

functions. With the exception of participant FSB1, neither approach – modeling behaviors before

structures, nor modeling structures before behaviors – yielded dramatically different results in

terms of overall software modeling proficiency. Participants across both approaches displayed

varying degrees of systems thinking ability in terms of aligning their sequence diagrams with

class diagrams, however, participants in both approaches were generally proficient in aligning

their sequence diagrams with their activity diagrams in terms of overall flow. It is also worth

noting that participants FSB3 and FBS2 referenced other models the least among all participants

but their proficiency of systems thinking was not negatively impacted.

Table 6.4 presents the proportion of time spent by each participant on each model. The

results are presented in terms of percentage of total time spent on the problem statement, use

case narratives, activity diagrams, class diagrams, and sequence diagrams. Idle time refers to

periods of time where the participant did not think aloud pertaining to design decisions or the

rationale for including specific details. Idle time also included breaks taken by the participants.

95

Table 6.4: Time spent on models by participants

Participant Total

Time

(minutes)

% - Idle

time

% on

Problem

statement

% of time

on

Functions

% of time

on

Structures

% of time

on

behaviors

 UCN AD

FSB1 135 27 2 20 16 15 20

FSB2 103 23 5 19 10 23 19

FSB3 93 10 0 31 28 10 20

FBS1 143 5 4 16 31 24 19

FBS2 93 21 0 21 16 16 26

FBS3 145 2 2 15 20 31 29

Note. UCN – Use Case Narratives. AD – Activity Diagrams.

Overall, the participants in either approach spent comparable amounts of time on

constructing each model. There also does not seem to be any direct relationship between time

spent on modeling and the proficiency exhibited by the participants. Functional modeling, on the

whole, takes longer because of participants constructing both use case narratives and activity

diagrams to model functions. It must be noted that while participants FSB3 and FBS2 took the

least amount of time to construct the functional, structural, and behavioral models of the given

system there were no substantial differences in modeling proficiency between them nor were

there any substantial differences compared to participants who took longer. These participants

also spent no time on the problem statement exclusively and proceeded to functional modeling

almost immediately.

6.3 Summary – Modeling Approaches

The research question investigated through this analysis was - How did students use

abstract thinking and systems thinking when modeling software systems in terms of functions,

structures, and behaviors? The theme of abstract thinking was characterized in terms of

functions, structures, and behaviors. Abstract thinking in terms of functions were broadly

characterized by the codes - actor identification, and action and response identification.

Participants identified the users that interact with the system and modeled the nature of these

interactions. Abstract thinking in terms of structures were broadly characterized by the codes –

object identification and relationship identification. Participants identified the objects relevant to

the solution and the relationships between them. Abstract thinking in terms of behaviors were

96

broadly characterized by the codes – object identification and message and response mapping.

Participants identified the objects relevant to the solution and modeled the messages and

responses that are passed between them to achieve the functionality of the system. Systems

thinking was broadly characterized in terms of the codes – alignment, mapping between models,

and model coherence. While modeling the system in terms of functions, the participants

exhibited systems thinking, corresponding to the code mapping between models, by actively

referencing their use case narratives or problem statement while constructing the activity

diagrams. Participants also occasionally returned to the previously constructed use case

narratives to make updates based on details that they included in their activity diagrams. This

corresponds to the systems thinking code of alignment. There were also instances of participants

reworking the diagrams that were currently constructing based on newly observed details and

this corresponds to the systems thinking code of model coherence. The participants were overall

proficient in terms of applying abstract thinking and systems thinking while modeling the system

in terms of functions.

To explore systems thinking further, it is important to recognize that participants took two

different approaches towards modeling the information system in terms of structures and

behaviors. Half of the participants modeled the information system in terms of structures first

while the rest of the participants modeled the information system in terms of behaviors. As such,

the participants who modeled the information system in terms of structures first exhibited

systems thinking by referencing the problem statement, use case narratives, and activity

diagrams while constructing the class diagrams. These participants would then reference the

class diagrams while constructing the sequence diagrams. The participants who modeled the

information system in terms of behaviors first exhibited systems thinking by referencing problem

statement, use case narratives, and activity diagrams while constructing the class diagrams.

These participants would then reference the sequence diagrams while constructing the class

diagrams. It must be noted that with the exception of one participant, there were no substantial

differences in terms of overall software modeling proficiency between the two approaches.

97

CHAPTER 7. DISCUSSION AND IMPLICATIONS

This section summarized the results and findings from the quantitative and qualitative

strands of the study in the context of literature. Following this, the theoretical and

methodological implications of this research were presented as well as how these results and

findings could be utilized to inform instructional practices in higher education settings.

7.1 Characterizing Abstract Thinking

The results of the quantitative strand point to students being proficient in terms of applying

abstract thinking while modeling the information system in terms of functions. However, there

was an overall reduction in proficiency of abstract thinking while modeling the system in terms

of structures and behaviors. This aligns with the notion that abstract thinking can be applied at

multiple levels (Hadar & Hadar, 2006; Kramer, 2007; Zehetmeier et al., 2019). The differences

in proficiency of modeling information systems in terms of functions, structures, and behaviors

also runs contrary to studies conducted in other fields such as physics, engineering, biology, and

medicine (Chi, De Leeuw, Chiu, & Lavancher, 1994; Hmelo-Silver & Pfeffer, 2004; Lammi,

2011; Vattam et al., 2011). An explanation for this discrepancy in information systems compared

to other fields could be how physical systems readily present their structural and behavioral

elements. This contrasts with how information systems are primarily perceived in terms of the

functionality offered by them with users of these systems not necessarily pausing to consider the

structural and behavioral elements that implement these functions.

This study specifically deals with problem, object, and program levels of abstraction as

portrayed by Perrenet (2010). Modeling the information system in terms of functions aligns with

the problem level of abstraction. The problem level of abstraction was defined as the highest

level of abstract thinking and the students were generally proficient at it. Modeling the

information system in terms of structures and behaviors aligns with the object and program

levels of abstract thinking which are considered to be lower levels of abstract thinking and

interestingly the students were less proficient at these levels. The students experienced some

difficulty in accurately implementing data abstraction – defining data structures and

relationships; and procedural abstraction – defining functional calls (Liskov 1988; Morgan,

98

1988). While the patterns of proficiency remained similar across both strands of this study, it

must be noted that the participants in the qualitative strand generally received better scores for

their models. This could be, at least in part, attributed to how participants of the qualitative

strand of this study were of junior or senior standing and had completed programming courses

centered around different programming languages such as C++ and Java. This provided them

with more opportunities to practice the cognitive work involved in moving between various

levels of abstraction. In comparison, students involved in the quantitative strand who had only

completed one introductory course centered around object-oriented programming.

The clustering analysis revealed the existence of two distinct groups of students – high

performing students who were more proficient in applying abstract thinking in terms of

functions, structures, and behaviors compared to the moderate performing students. The

correlational analysis of these clusters revealed statistically significant positive correlations

between abstract thinking ability and software modeling proficiency. This further substantiates

claims made in literature that abstract thinking is essential in the process of constructing models

(Devlin, 2003; Kramer, 2007; Nguyen & Wong, 2001). The logistic regression model pointed to

abstract thinking ability in terms of behaviors as being one of two key components to overall

high performance in terms of software modeling proficiency.

The qualitative strand of this study provided an insight into how the participants employed

abstract thinking while modeling systems in terms of functions, structures, and behaviors. The

codes identified as part of the thematic analysis process adds to the literature in terms of how

abstract thinking can be employed in the context of systems analysis and design. Across the

different models, participants employed aggregation to consolidate related elements and

decomposition to break down elements with multiple components. While constructing the use

case narratives and activity diagrams, the participants focused on identifying actors and the flow

of control between the users and the system through actions and responses. These codes

correspond with some of the functional analysis games such as critical event analysis, cause-and-

effect analysis, and problem-centered analysis (Collins & Ferguson, 1993; Sherry & Trigg,

1996). The participants were overall proficient in modeling the system in terms of functions

although some participants did fail to conform to UML standards in terms of modeling

swimlanes, use of decision and merge nodes, and the number and location of start/stop nodes.

99

When constructing class diagrams, the participants vocalized identifying the various

relevant objects and the relationships between them. However, it must be noted that the

participants were less successful in identifying all relevant objects and relationships. This could

be attributed to the participants not always correctly identifying objects relevant to the solution

and missing associated relationships as a direct result of this. These codes correspond to structure

analysis games such as primitive-elements analysis and spatial decomposition which the

participants employed to identify the relevant objects and relationships between them (Collins &

Ferguson, 1993; Sherry & Trigg, 1996).

Overall proficiency in terms of modeling structures using class diagrams was negatively

affected by failing to list relevant attributes and behaviors associated with every object and

failing to appropriately label relationships. When constructing sequence diagrams, the

participants vocalized identifying the relevant objects as well as identifying the flow of messages

and responses between them. These codes correspond to the process analysis games of

identifying systems-dynamics models and situation-action models to capture the objects and the

interactions between them (Collins & Ferguson, 1993; Sherry & Trigg, 1996). It must be noted

that the participants often did not identify all relevant objects or failed to identify correct

messages and responses that go between these objects which had a negative impact on overall

proficiency.

Through identifying actors, objects, relationships, messages and responses etc. abstract

thinking was used across the functional, structural, and behavioral models to create models that

map to real-world constructs (Devlin, 2003; Kramer, 2007) and capture details that are essential

to the solution (Hadar & Hadar, 2006; Kramer, 2007; Zehetmeier et al., 2019).

7.2 Characterizing Systems Thinking

Systems thinking was broadly defined in literature as the ability of an individual to capture

different views of a system and think of a system as involving inter-related components instead

of as independent parts (Godfrey, Deakin Crick, & Huang, 2014). This aligns with the concept of

epistemic fluency, which was defined as the ability to organize knowledge into different patterns

while making sense of a problem in different ways (Sherry & Trigg, 1996). For the purposes of

this study, students and participants employed the epistemic games of functional analysis,

structural analysis, and process analysis to model the system in terms of functions, structures,

100

and behaviors. They accomplished this by using the epistemic forms of use case narratives and

activity diagrams, class diagrams, and sequence diagrams.

The results of the quantitative strand point to students being proficient in terms of applying

systems thinking while modeling the information system in terms of functions where 79% of the

students successfully aligned their actions and decisions in their activity diagrams with the

typical and alternate courses of events in the use case narrative. In comparison, there was a

substantial drop in overall proficiency of aligning the sequence diagrams with the class diagrams

with only 41% of being successful at doing so. This could be attributed to including objects in

the sequence diagram that were not identified in the class diagram or labeling messages with

function calls that were not identified in the class diagram. However, 82% of the students

successfully aligned their sequence diagrams with their activity diagrams in terms of overall

flow. Even if there were objects missing or messages and responses were mapped to incorrect

objects, the overall flow of control of the system was still captured. These results corroborate the

findings from a prior study where students encountered difficulty in making connections between

different UML diagrams (Burgueño, Vallecillo, & Gogolla, 2018).

The clustering analysis revealed the existence of two distinct groups of students – high

performing students who were more proficient in applying systems thinking in terms of

functions, structures, and behaviors compared to the moderate performing students. The

correlational analyses of these clusters revealed statistically significant positive correlations

systems thinking ability - given by alignment of activity diagrams with use case narratives and

alignment of sequence diagrams with class diagrams – overall software modeling proficiency.

Interestingly, there were no statistically significant correlations found between sequence diagram

totals and alignment of sequence diagrams with activity diagrams which could be because vast

majority of students were proficient at it. However, the logistic regression model pointed to

systems thinking ability in terms of aligning sequence diagrams with activity diagrams as being

one of two key components to overall high performance in terms of software modeling

proficiency.

The qualitative strand of this study provided an insight into how the participants employed

systems thinking while modeling systems in terms of functions, structures, and behaviors. Given

the uniform practice of systems thinking that has been developed (Sevaldson, 2011), the codes

identified as part of the thematic analysis process adds to the literature in terms of how systems

101

thinking can be employed in the context of systems analysis and design. The thematic analysis

process revealed that participants employed systems thinking by actively referencing previously

constructed models – corresponding to the code, mapping between models – or by retroactively

make changes to previously constructed models based on new details that were observed –

corresponding to the code, alignment. In addition to this, participants also actively modified their

models in response to new details that they incorporated – corresponding to the code, model

coherence. These characterizations of systems thinking align with literature definitions that

portray it as an approach for seeing the relationships between different parts of the system

(Godfrey, Deakin Crick, & Huang, 2014) and recognizing that changes made in part of the

system can affect other parts (Wolstenholme, 2003).

The qualitative strand also revealed that participants took two distinct approaches towards

modeling the given system in terms of functions, structures, and behaviors. All participants

modeled the systems in terms of functions first. Participants referenced the problem statement

while constructing the use case narratives. They would then reference the use case narrative, and

at times the problem statement also, while constructing the activity diagrams. Following this,

half of the participants modeled the system in terms of behaviors using sequence diagrams then

structures using class diagrams, and the others modeled the system in terms of structures using

class diagrams then behaviors using sequence diagrams. In the first approach, the participants

constructed the sequence diagrams while primarily referencing the use case narrative and activity

diagram. Some participants also referenced the problem statement. The class diagram was then

constructed primarily referencing the sequence diagram although some participants did reference

the problem statement, use case narrative, and activity diagram as well. In the latter approach,

participants constructed the class diagrams first. They identified objects and the relationships

between them by referencing the problem statement and activity diagram. Following this they

constructed the sequence diagram by referencing the class diagram. This group could have been

conditioned to model structures before behaviors based on It must be noted that in the case of

either approach, there were no substantial differences in terms of exhibited systems thinking

ability. Participants were generally proficient in aligning their activity diagrams with their use

case narratives and aligning their sequence diagrams with their activity diagrams. However,

participants were generally less proficient in aligning their class diagrams and sequence

diagrams. It must be noted that the participants tended to apply systems thinking proactively by

102

referencing previously constructed models. Participants also retroactively made changes to

already constructed models based on new details, albeit less frequently.

7.3 Implications

7.3.1 Theoretical and methodological implications

The theoretical implications of this study were two-fold. The review of literature

conducted as part of this study revealed that abstract thinking has been defined and

operationalized in different ways depending on the context (Zehetmeier et al., 2019). Systems

thinking also has been defined in numerous context-dependent ways (Brewer & Dittman, 2018;

Godfrey, Deakin Crick, & Huang, 2014; Senge, 1990; Stearman, 2000). However, in the context

of modeling information systems, there has been limited research conducted regarding abstract

thinking or systems thinking. Therefore, there were no pre-existing operational definitions that

could be directly utilized. The first theoretical contribution of this study includes the

operationalization of abstract thinking and systems thinking in the context of information

systems modeling. Abstract thinking was operationalized in terms of percentage of relevant

details included in the functional, structural, and behavioral models, and systems thinking was

operationalized in terms of alignment between the different models. The second theoretical

implication was related to epistemic forms, epistemic games, and the SBF framework. Literature

generally points to structural analysis games being the simplest and process analysis games being

the most complex with functional analysis games being right between (Collins & Ferguson,

1993; Sherry & Trigg, 1996). In numerous studies across different domains that utilized the SBF

framework, subjects were typically most proficient at identifying structural elements of given

system while encountering some difficulty in identifying functions and behaviors (Chi, De

Leeuw, Chiu, & Lavancher, 1994; Hmelo-Silver & Pfeffer, 2004; Lammi, 2011; Vattam et al.,

2011). Most of these studies supported the notion that experts rather than novices tended to

organize systems by functions and behaviors. However, this study revealed that in the context of

information systems, students were most proficient at the epistemic game of functional analysis,

and least proficient at behavioral analysis. These results also corresponded to the abstract

thinking ability displayed by students while modeling the given information systems in terms of

functions, structures, and behaviors. Figure 7.1 illustrates how abstract thinking and systems

103

thinking are essential to the process of translating a problem statement into software models. The

figure also demonstrates how the concepts of epistemic forms and games are utilized in the

context of information systems modeling.

Figure 7.1: Software modeling process

104

Epistemic games are employed to model an information system in terms of functions,

structures, and behaviors. The epistemic games of functional analysis, structural analysis, and

behavioral analysis all utilize abstract thinking to extract relevant details from the problem

statement to construct the models. Systems thinking is utilized either proactively or reactively to

bring about alignment and coherence between elements of the different models. Ultimately, the

outcomes of this are the functional, structural, and behavioral models i.e. the epistemic forms.

The methodological implications of this study pertain to the rubrics that were developed to

evaluate the functional, structural, and behavioral models in terms of abstract thinking and

systems thinking as well as conformity to UML standards. The validity and reliability of these

rubrics were established through a combination of face validity and interrater reliability. These

rubrics can be utilized in systems development courses to score or grade UML activity diagrams,

class diagrams, and sequence diagrams while also evaluating the abstract thinking and systems

thinking ability of students.

7.3.2 Implications for teaching and learning

The quantitative results and qualitative findings from the study indicate that students were

generally proficient in applying abstract thinking and systems thinking while modeling

information systems in terms of functions through use case narratives and UML activity

diagrams. However, they were generally less proficient at applying abstract thinking and systems

thinking while modeling information systems in terms of structures and behaviors. The results of

the clustering analysis revealed the existence of a cluster of high-performing students (n=57)

who were significantly more proficient at applying abstract thinking and systems thinking. It

could be inferred that the design conjectures and theoretical conjectures of the sophomore-level

systems analysis and design course – detailed in Chapter 4 - were successful in equipping more

than half of the students with the abstract thinking and systems thinking skills required to

proficiently model information systems in terms of functions, structures, and behaviors. The

learners enrolled in this course engaged in project-based cooperative learning through the in-

class modeling activities and the Scrum-based team project – the design conjectures - to produce

UML models that described the system in terms of functions, structures, and behaviors. The

theoretical conjecture that the development of these UML software models would lead to

105

increased software modeling proficiency, abstract thinking skills and systems thinking skills was

substantiated by the cluster of high-performing students. However, the relative lack of

proficiency of abstract thinking and systems thinking while modeling systems in terms of

structures and behaviors of the moderate performing students (n=40) need to be addressed.

The discrepancy in modeling proficiency could be addressed by structured exercises

walking students through the process of constructing structural and behavioral models. These

exercises can cover the mechanical aspects of constructing structural and behavioral models such

as adhering to UML standards in terms of symbols and notations used. However, the focus of

these exercises should explicitly be on how to apply abstract thinking and systems thinking while

modeling a system in terms of structures and behaviors. This approach would involve integrating

the tenets of cognitive apprenticeship.

Cognitive apprenticeship aims to assist learners in understanding when a skill can or

cannot be used, and when to generalize a skill so that it can be applied in novel situations

(Collins, Brown, & Holum, 1991). Cognitive apprenticeship methods include modeling,

coaching, scaffolding, articulation, reflection, and exploration (García-Cabrero et al., 2018).

Modeling involves the instructor performing a task while the students observe. The instructor can

guide learners through the process of developing software models when given a problem

statement. Through this guided exercise, learners can gain insights into how can abstract thinking

be applied to extract the details relevant to the solution. The instructor should elaborate on the

rationale behind each design decision, such as why some elements were included in the model –

in terms of objects, relationships, messages, and responses – while others were not. The

instructors should also illustrate systems thinking by actively referencing previously constructed

models and explaining the connections between the different models of the system. Examples of

this can include how objects in the sequence diagram must exist in the class diagram and how the

messages in the sequence diagram should be labeled with function calls corresponding to

behaviors listed in the class diagram. Systems thinking can also be illustrated by adopting both

approaches taken by participants in the qualitative strand of this study in terms of modeling

structures before behaviors and modeling behaviors before structures. Following the modeling

exercises, coaching can be employed where learners are given cases to construct models for

while the instructor provides hints or feedback. Scaffolding can be implemented by providing

students with partially complete models for example cases with the expectation that they

106

complete the models. The partially completed portions should ideally illustrate UML conformity

and highlight the correct symbols to be used when modeling different systems. Articulation and

reflection could be implemented together in the form of small group activities where learners can

verbalize their different approaches towards constructing the UML models and they can receive

feedback from their peers. The exploration aspect of cognitive apprenticeship can be facilitated

by providing students with a complex case with expectation that they are to identify different

functionalities offered by the system. Following this, the students can be asked to model the

system in terms of functions, structures, and behaviors for each functionality. It must be noted

that the sophomore-level systems development course detailed in Chapter 4 already implements

elements of cognitive apprenticeship, specifically that of modeling, articulation, reflection, and

exploration - through the in-class modeling activities as well as the term project (Magana, Seah,

& Thomas, 2018). However, incorporating coaching and scaffolding with an explicit focus on

structural and behavioral modeling could help improve student proficiency in modeling

structural and behavioral aspects of information systems. The tenets of cognitive apprenticeship

align strongly with the principles of social constructivism by promoting interaction and

collaboration between learners as well as between the instructor and learners.

Another approach that could address the relative lack of structural and behavioral modeling

proficiency among students is an exercise that provides students with complete functional code

and the problem statement that they must use to construct UML models. The code would provide

learners with insights into how the problem statement was implemented in terms of structures

and behaviors – corresponding to classes and their respective attributes and behaviors. This

exercise could also serve to improve the abstract thinking and systems thinking ability of

students by being forced to determine what details included in the problem statement are relevant

to the solution and how the different elements are connected.

107

CHAPTER 8. CONCLUSION

8.1 Limitations

The results and findings from this study were subject to the following limitations. The data

for the quantitative strand was collected from students who were enrolled in a sophomore-level

systems analysis and design course at a large midwestern university while the data for the

qualitative strand was collected from students of junior senior standing who were part of the

department of computer and information technology and had already completed the sophomore-

level systems analysis and design course at the same university. Therefore, there were two

distinct samples. Both samples were not necessarily representative of the student population of

the university. As such, the results may not be generalizable to other universities. The data of the

quantitative strand was limited by the preparation done by the students for their second mid-term

exam. Due to logistical constraints, the exam was conducted in two parts so there was potential

for interaction between the students prior to the second part. The qualitative strand was limited to

the number of volunteer participants who had completed the sophomore-level course. For each

participant in the qualitative strand, the data was collected in a single three-hour session. As a

result, participants did experience fatigue. This was mitigated in part by allowing the participants

to take breaks as required. The qualitative strand was also subject to limitations associated with

the think-aloud process where codes were only identified based on instances where participants

vocalized design decisions or explained their rationale upon being prompted by the researcher.

Neither strand explored student motivation or its relationship with proficiency of abstract

thinking or systems thinking. The study also did not explore the effect of prior knowledge of

programming on abstract thinking or systems thinking ability exhibited while modeling

information systems.

8.2 Conclusion and Future Work

The goal of this study was to characterize abstract thinking and systems thinking

proficiency exhibited by students while modeling information systems in terms of functions,

structures, and behaviors using UML models. This was accomplished by employing a multi-

methods approach towards measuring and characterizing abstract thinking and systems thinking

108

in the context of information systems modeling. The study was successful in employing the SBF

framework in the context of information systems modeling and the patterns of proficiency

exhibited by the participants was found to be dramatically different from that of other studies

conducted in other domains - specifically that the students exhibited greater proficiency of

modeling systems in terms of functions compared to that of modeling structures and behaviors.

The study provided valuable additions to the literature pertaining to abstract thinking and

systems thinking in the area of systems analysis and design. The study also tied together how

epistemic forms and games can be applied in information systems modeling. The results of

quantitative strand revealed patterns of proficiency among students. Abstract thinking and

systems thinking generally correlated positively with software modeling proficiency. A logistic

regression model was computed that identified the key elements that predicted software

modeling proficiency. The rubrics developed as part of this strand can be utilized in systems

analysis and design courses to evaluate software models developed by students as well as their

level of abstract thinking and systems thinking. The findings from the qualitative strand revealed

the different approaches taken by participants in applying abstract thinking and systems thinking

while constructing the functional, structural, and behavioral models. These findings extend

existing literature definitions and operationalizations of abstract thinking and systems thinking

but specifically characterize these constructs in context of information systems modeling. This

study makes a case for the development of learning interventions and evaluation mechanisms

that can aid students in being more proficient at applying abstract thinking and systems thinking

while modeling information systems in terms of structures and behaviors. This in turn would

lead to more complete and accurate models being produced. Implementing cognitive

apprenticeship in the classroom through guided exercises that utilize instructional scaffolds could

help students better apply abstract thinking and systems thinking which in turn would improve

overall software modeling proficiency.

Given the state of literature and the limitations of this study, further research pertaining to

abstract thinking and systems thinking in context of modeling information systems would be

useful in expanding the collective understanding of these constructs. Future work could explore

the effect of each of the suggested instructional interventions on software modeling proficiency

exhibited by students. A true mixed-methods approach would also help ground the findings in a

specific sample. It would also be interesting to assess the effectiveness of these suggested

109

interventions in an online instructional setting. These proposed studies could yield vital

information in understanding the nature of instructional support required to bolster abstract

thinking and systems thinking ability among students in the context of information systems

modeling. In addition, an inquiry could be conducted into the nature of the relationship between

academic achievement and constructs of abstract thinking and systems thinking. Some research

questions that could guide directions for future research are as follows:

• How can cognitive apprenticeship be implemented in the classroom to improve

student abstract thinking and systems thinking while modeling information

systems?

• How do differences in students’ prior knowledge of programming affect their

software modeling proficiency?

• What is the relationship between students’ abstract thinking ability and their

academic achievement in a systems analysis and design course?

• How does student motivation affect their proficiency of abstract thinking and

system thinking?

• What are the differences in abstract thinking and systems thinking ability exhibited

by students in a fully online instructional setting compared to an in-person setting?

110

APPENDIX A - MODELING EXAM

111

APPENDIX B - USE CASE NARRATIVE TEMPLATE

112

APPENDIX C - USE CASE NARRATIVE RUBRIC

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4)

Typical Course

of Events

Typical

course of

events absent

10-50% of

typical course

of events

51-70% of

typical course

of events

71-90% of

typical course

of events

91-100% of

typical course

of events

Alternate

Courses

Alternate

courses

absent

10-50% of

alternate

courses

51-70% of

alternate

courses

71-90% of

alternate

courses

91-100% of

alternate

courses

Narrative

Completeness

Narrative

details absent

10-50% of

narrative

details

complete

51-70% of

narrative

details

complete

71-90% of

narrative

details

complete

91-100% of

narrative

details

complete

113

APPENDIX D - ACTIVITY DIAGRAM RUBRIC

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4)

Start/Stop Nodes Start and Stop

nodes absent

Missing either

start or stop

node or used

incorrect

symbols

Multiple

start/stop nodes

or missing

either node or

used incorrect

symbols

Start and/or

stop nodes

drawn within

swimlanes

Exactly one

start and one

stop node

shown outside

the swimlanes

Swimlanes/Actors No swimlanes

shown

Showed 10-

50% swimlanes

and/or did not

label swimlanes

Showed 51-

70% swimlanes

and/or did not

label swimlanes

Showed and

labeled 71-90%

swimlanes

Showed and

labeled 91-

100%

swimlanes

Activities No activities

shown

10-50%

appropriate

activities

shown, some

with verb, some

include object,

MANY

compound

activities

51-70%

appropriate

activities

shown, some

with verb, some

include object,

MANY

compound

activities

71-90%

appropriate

activities

shown, begin

with verb,

include object,

FEW

compound

activities

91-100% of

appropriate

activities

shown, begin

with verb,

include object,

NO compound

activities

Decisions/Merges No decisions

or merges

shown

10-50%

decisions and

branches

labeled. Did not

use merge

nodes to

connect

multiple control

flows entering

the same node

51-70%

decisions and

branches

labeled. Did not

use merge

nodes to

connect

multiple control

flows entering

the same node

71-90%

decisions and

branches

labeled. Used

merge nodes

sometimes to

connect

multiple control

flows entering

the same node

91-100%

decisions and

branches

labeled. Used

merge nodes

ALWAYS to

connect

multiple control

flows entering

the same node

Abstraction No relevant

details from

problem

statement

included in

diagram

10-50% of

relevant details

from problem

statement

included in

diagram

51-70% of

relevant details

from problem

statement

included in

diagram

71-90% of

relevant details

from problem

statement

included in

diagram

91-100% of

relevant details

from problem

statement

included in

diagram

Alignment with

Use Case Narrative

None of the

actions in the

activity

diagram

mapped to

steps in the use

case narrative

10-50% of the

actions in the

activity

diagram

mapped to steps

in the use case

narrative

51-70% of the

actions in the

activity

diagram

mapped to steps

in the use case

narrative

71-90% of the

actions in the

activity

diagram

mapped to steps

in the use case

narrative

91-100% of the

actions in the

activity

diagram

mapped to steps

in the use case

narrative

114

APPENDIX E - CLASS DIAGRAM RUBRIC

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4)

Objects No objects

shown

10-50%

objects

correctly

identified and

named

51-70%

objects

correctly

identified and

named

71-90%

objects

correctly

identified and

named

91-100%

objects

correctly

identified and

named

Attributes No attributes

shown

10-50%

attributes listed

51-70%

attributes listed

71-90%

attributes listed

91-100%

attributes listed

Behaviors No behaviors

shown

10-50% of

behaviors

listed

51-70% of

behaviors

listed

71-90% of

behaviors

listed

91-100% of

behaviors

listed

Relationships No

relationships

shown

10-50% of

relationships

named bi-

directionally

with correct

multiplicity

51-70% of

relationships

named bi-

directionally

with correct

multiplicity

71-90% of

relationships

named bi-

directionally

with correct

multiplicity

91-100% of

relationships

named bi-

directionally

with correct

multiplicity

Abstraction No relevant

details from

problem

statement

included in

diagram

10-50% of

relevant details

from problem

statement

included in

diagram

51-70% of

relevant details

from problem

statement

included in

diagram

71-90% of

relevant details

from problem

statement

included in

diagram

91-100% of

relevant details

from problem

statement

included in

diagram

115

APPENDIX F - SEQUENCE DIAGRAM RUBRIC

 Absent (0) Deficient (1) Developing (2) Emerging (3) Proficient (4)

Objects No objects

shown

10-50% of

objects

correctly

identified

51-70% of

objects

correctly

identified

71-90% of objects

correctly identified

91-100% of objects

correctly identified

Lifelines No lifelines

shown

10-50% of

lifelines shown

51-70% of

lifelines shown

71-90% of lifelines

shown

91-100% lifelines

shown

Processes /

Execution

Occurrences

No processes

shown

10-50% of

processes

shown

51-70% of

processes

shown

71-90% of

processes shown

91-100% processes

shown

Messages No messages

shown

10-50% of

messages

shown and/or

correctly

labeled with

appropriate

parameters

51-70% of

messages

shown and/or

correctly

labeled with

appropriate

parameters

71-90% of

messages shown

and/or correctly

labeled with

appropriate

parameters

91-100% of

messages shown

and correctly

labeled with

appropriate

parameters

Responses No responses

shown

10-50% of

responses

shown and/or

correctly

labeled

51-70% of

responses

shown and/or

correctly

labeled

71-90% of

responses shown

and correctly

labeled

91-100% of

responses shown

and correctly

labeled

Abstraction No relevant

details from

problem

statement

included in

diagram

10-50% of

relevant details

from problem

statement

included in

diagram

51-70% of

relevant details

from problem

statement

included in

diagram

71-90% of relevant

details from

problem statement

included in

diagram

91-100% of

relevant details

from problem

statement included

in diagram

Alignment with

Class Diagram

None of the

objects and

messages in

the sequence

diagram map

to classes and

functions in

the class

diagram

10-50% of the

objects and

messages in

the sequence

diagram map

to classes and

functions in

the class

diagram

51-70% of the

objects and

messages in

the sequence

diagram map

to classes and

functions in

the class

diagram

71-90% of the

objects and

messages in the

sequence diagram

map to classes and

functions in the

class diagram

91-100% of the

objects and

messages in the

sequence diagram

map to classes and

functions in the

class diagram

Alignment with

Activity

Diagram

None of the

messages and

responses

map to actions

in the activity

diagram

10-50% of the

messages and

responses map

to actions in

the activity

diagram

51-70% of the

messages and

responses map

to actions in

the activity

diagram

71-90% of the

messages and

responses map to

actions in the

activity diagram

91-100% of the

messages and

responses map to

actions in the

activity diagram

116

APPENDIX G – STAFF MANAGEMENT CASE

117

APPENDIX H – STEP-WISE LOGISTIC REGRESSION RESULTS

Variables in the Equation B S.E. Wald df Sig. Exp(B)

Step 1a Proficiency of Abstraction - Activity

Diagram

-0.311 0.382 0.664 1 0.415 0.733

Alignment with Use Case Narratives 0.006 0.504 0 1 0.991 1.006

Proficiency of Abstraction - Class

Diagram

-0.139 0.445 0.097 1 0.755 0.87

Proficiency of Abstraction - Sequence

Diagram

0.44 0.467 0.886 1 0.346 1.552

Alignment with Class Diagrams - SD 0.086 0.356 0.059 1 0.808 1.09

Alignment with Activity Diagram - SD 0.721 0.379 3.619 1 0.057 2.057

Constant -2.451 1.945 1.589 1 0.208 0.086

Step 2a Proficiency of Abstraction - Activity

Diagram

-0.309 0.335 0.852 1 0.356 0.734

Proficiency of Abstraction - Class

Diagram

-0.138 0.444 0.097 1 0.755 0.871

Proficiency of Abstraction - Sequence

Diagram

0.44 0.467 0.888 1 0.346 1.552

Alignment with Class Diagrams - SD 0.087 0.356 0.059 1 0.808 1.091

Alignment with Activity Diagram - SD 0.722 0.371 3.787 1 0.052 2.059

Constant -2.442 1.775 1.893 1 0.169 0.087

Step 3a Proficiency of Abstraction - Activity

Diagram

-0.312 0.335 0.868 1 0.351 0.732

Proficiency of Abstraction - Class

Diagram

-0.152 0.44 0.12 1 0.729 0.859

Proficiency of Abstraction - Sequence

Diagram

0.51 0.367 1.936 1 0.164 1.666

Alignment with Activity Diagram - SD 0.729 0.37 3.885 1 0.049 2.073

Constant -2.347 1.732 1.836 1 0.175 0.096

Step 4a Proficiency of Abstraction - Activity

Diagram

-0.342 0.325 1.105 1 0.293 0.711

Proficiency of Abstraction - Sequence

Diagram

0.455 0.329 1.907 1 0.167 1.576

Alignment with Activity Diagram - SD 0.719 0.367 3.836 1 0.05 2.052

Constant -2.533 1.643 2.377 1 0.123 0.079

Step 5a Proficiency of Abstraction - Sequence

Diagram

0.383 0.319 1.443 1 0.23 1.467

Alignment with Activity Diagram - SD 0.66 0.36 3.35 1 0.067 1.934

Constant -3.252 1.505 4.67 1 0.031 0.039

Step 6a Alignment with Activity Diagram - SD 0.762 0.347 4.817 1 0.028 2.143

Constant -2.474 1.315 3.541 1 0.06 0.084

118

REFERENCES

[ABET]. (2016). Criteria for Accrediting Engineering Programs Effective for Reviews during the

 2017-2018 Accreditation Cycle. Retrieved November 15, 2019 from

 http://www.abet.org/wp-content/uploads/2016/12/E001-17-18-EAC-Criteria-10-29-16-

 1.pdf

Abbas, O. A. (2008). Comparisons between data clustering algorithms. International Arab

 Journal of Information Technology (IAJIT), 5(3).

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development

 methods: Review and analysis.

Adey, P., & Shayer, M. (2006). Really raising standards: Cognitive intervention and academic

 achievement. Routledge.

Aljumaily, H., Cuadra, D., & Laefer, D. F. (2019). An empirical study to evaluate students’

 conceptual modeling skills using UML. Computer Science Education, 29(4), 407-427.

Alter, S. (2004). Desperately seeking systems thinking in the information systems

 discipline. ICIS 2004 proceedings, 61.

Amineh, R. J., & Asl, H. D. (2015). Review of constructivism and social constructivism. Journal

 of Social Sciences, Literature and Languages, 1(1), 9-16.

Anguera, M. T., Blanco-Villaseñor, A., Losada, J. L., Sánchez-Algarra, P., & Onwuegbuzie, A.

 J. (2018). Revisiting the difference between mixed methods and multimethods: Is it all in

 the name?. Quality & Quantity, 52(6), 2757-2770.

Anitha, P., & Patil, M. M. (2019). RFM model for customer purchase behavior using K-Means

 algorithm. Journal of King Saud University-Computer and Information Sciences.

Aranganayagi, S., & Thangavel, K. (2007, December). Clustering categorical data using

 silhouette coefficient as a relocating measure. In International conference on

 computational intelligence and multimedia applications (ICCIMA 2007) (Vol. 2, pp. 13-

 17). IEEE.

Archer, K. J., & Lemeshow, S. (2006). Goodness-of-fit test for a logistic regression model fitted

 using survey sample data. The Stata Journal, 6(1), 97-105.

Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-Pearson and Spearman correlation

 coefficients: meaning, test of hypothesis and confidence interval. The International

 journal of biological markers, 17(2), 148-151.

Balaban, M., & Maraee, A. (2013). Finite satisfiability of UML class diagrams with constrained

 class hierarchy. ACM Transactions on Software Engineering and Methodology

 (TOSEM), 22(3), 24.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Addison-Wesley

 Professional.

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and

 implementation for novice researchers. The qualitative report, 13(4), 544-559.

119

Bennedssen, J., & Caspersen, M. E. (2008). Abstraction ability as an indicator of success for

 learning computing science?. In Proceedings of the Fourth international Workshop on

 Computing Education Research (pp. 15-26). ACM.

Berry, K. J., & Mielke Jr, P. W. (1988). A generalization of Cohen's kappa agreement measure to

 interval measurement and multiple raters. Educational and Psychological

 Measurement, 48(4), 921-933.

Boersma, K., Waarlo, A. J., & Klaassen, K. (2011). The feasibility of systems thinking in

 biology education. Journal of Biological Education, 45(4), 190-197.

Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating Pearson, Kendall

 and Spearman correlations. Psychometrika, 65(1), 23-28.

Booch, G. (1999). UML in action. Communications of the ACM, 42(10), 26-28.

Böttcher, A., Schlierkamp, K., Thurner, V., & Zehetmeier, D. (2016, October). Teaching

 abstraction. In 2nd. International conference on higher education advances

 (HEAD'16) (pp. 357-364). Editorial Universitat Politècnica de València.

Boustedt, J. (2012). Students' different understandings of class diagrams. Computer Science

 Education, 22(1), 29-62.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in

 psychology, 3(2), 77-101.

Braun, V., & Clarke, V. (2012). Thematic analysis.

Brewer, J. L., & Dittman, K. C. (2018). Methods of IT project management. Purdue University

 Press.

Bucci, P., Long, T. J., & Weide, B. W. (2001). Do we really teach abstraction?. ACM SIGCSE

 Bulletin, 33(1), 26-30.

Burgueño, L., Vallecillo, A., & Gogolla, M. (2018). Teaching UML and OCL models and their

 validation to software engineering students: an experience report. Computer Science

 Education, 28(1), 23-41.

Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research data: Is it as easy

 as it sounds?. Currents in Pharmacy Teaching and Learning, 10(6), 807-815.

Cernosek, G., & Naiburg, E. (2004). The value of modeling. IBM developerWorks.

Chatterjee, S., & Hadi, A. S. (2015). Regression analysis by example. John Wiley & Sons.

Chaovalit, P., & Zhou, L. (2005, January). Movie review mining: A comparison between

 supervised and unsupervised classification approaches. In Proceedings of the 38th annual

 Hawaii international conference on system sciences (pp. 112c-112c). IEEE.

Checkland, P. B. (1988). Information systems and systems thinking: time to unite?. International

 Journal of Information Management, 8(4), 239-248.

Chi, M. T. (1997). Quantifying qualitative analyses of verbal data: A practical guide. The journal

 of the learning sciences, 6(3), 271-315.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations

 improves understanding. Cognitive science, 18(3), 439-477.

120

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics

 problems by experts and novices. Cognitive science, 5(2), 121-152.

Ciccozzi, F., Malavolta, I., & Selic, B. (2019). Execution of UML models: a systematic review

 of research and practice. Software & Systems Modeling, 18(3), 2313-2360.

Clarke, E. M., Grumberg, O., & Long, D. E. (1994). Model checking and abstraction. ACM

 transactions on Programming Languages and Systems (TOPLAS), 16(5), 1512-1542.

Cohen, M. E. (2001). Consive review: analysis of ordinal dental data: evaluation of conflicting

 recommendations. Journal of dental research, 80(1), 309-313.

Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and

 strategies to guide inquiry. Educational psychologist, 28(1), 25-42.

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking

 visible. American educator, 15(3), 6-11.

Coupal, C. & Boechler, K. (2005). Introducing Agile into a Software Development Capstone

 Project. Proceedings from the Agile Conference, 2005, Denver, CO.

Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research

 designs: Selection and implementation. The counseling psychologist, 35(2), 236-264.

Creswell, J. W. (2014). A concise introduction to mixed methods research. SAGE publications.

Creswell, J., & Plano Clark, V. (2018). Designing and conducting mixed methods research (2nd

 ed.). Los Angeles: SAGE Publications.

Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among

 five approaches. Sage publications.

Curtin, M., & Fossey, E. (2007). Appraising the trustworthiness of qualitative studies: Guidelines

 for occupational therapists. Australian occupational therapy journal, 54(2), 88-94.

Cutcliffe, J. R., & McKenna, H. P. (1999). Establishing the credibility of qualitative research

 findings: the plot thickens. Journal of advanced nursing, 30(2), 374-380.

de Champeaux, D., Constantine, L., Jacobson, I., Mellor, S., Ward, P., & Yourdon, E. (1990).

 Structured analysis and object oriented analysis. ACM SIGPLAN Notices, 25(10), 135-

 139.

Dennis, A., Wixom, B. H., & Tegarden, D. (2020). Systems analysis and design: An object-

 oriented approach with UML. John Wiley & sons.

de Winter, J. C., Gosling, S. D., & Potter, J. (2016). Comparing the Pearson and Spearman

 correlation coefficients across distributions and sample sizes: A tutorial using simulations

 and empirical data. Psychological methods, 21(3), 273.

Devlin, K. (2003). Why universities require computer science students to take

 math. Communications of the ACM, 46(9), 37.

Devlin, A. S. (2018). Environmental Psychology and Human Well-being: Effects of Built and

 Natural Settings. Academic Press.

Dobing, B., & Parsons, J. (2006). How UML is used. Communications of the ACM, 49(5), 109-

 113.

121

Engels, G., & Groenewegen, L. (2000). Object-oriented modeling: a roadmap.

 In Proceedings of the Conference on the Future of Software Engineering (pp. 103-116).

 ACM.

Eriksson, M., Börstler, J., & Borg, K. (2005). The PLUSS approach–domain modeling with

 features, use cases and use case realizations. In International Conference on Software

 Product Lines (pp. 33-44). Springer, Berlin, Heidelberg.

Eshuis, R. (2006). Symbolic model checking of UML activity diagrams. ACM Transactions on

 Software Engineering and Methodology (TOSEM), 15(1), 1-38.

Feltovich, P. J., Coulson, R. L., Spiro, R. J., & Dawson-Saunders, B. K. (1992). Knowledge

 application and transfer for complex tasks in ill-structured domains: Implications for

 instruction and testing in biomedicine. In Advanced models of cognition for medical

 training and practice (pp. 213-244). Springer, Berlin, Heidelberg.

Ferrari, M., & Chi, M. T. (1998). The nature of naive explanations of natural

 selection. International journal of science education, 20(10), 1231-1256.

Fernández-Sáez, A. M., Chaudron, M. R., & Genero, M. (2018). An industrial case study on the

 use of UML in software maintenance and its perceived benefits and hurdles. Empirical

 Software Engineering, 23(6), 3281-3345.

Field, A. (2009). Logistic regression. Discovering statistics using SPSS, 264, 315.

Fonteyn, M. E., Kuipers, B., & Grobe, S. J. (1993). A description of think aloud method and

 protocol analysis. Qualitative health research, 3(4), 430-441.

Fowler, M. (2004). UML distilled: a brief guide to the standard object modeling language.

 Addison-Wesley Professional.

García-Cabrero, B., Hoover, M. L., Lajoie, S. P., Andrade-Santoyo, N. L., Quevedo-Rodríguez,

 L. M., & Wong, J. (2018). Design of a learning-centered online environment: a cognitive

 apprenticeship approach. Educational Technology Research and Development, 66(3),

 813-835.

Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI

 magazine, 11(4), 26-26.

Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure

 framework. Design studies, 25(4), 373-391.

Gero, J. S., & McNeill, T. (1998). An approach to the analysis of design protocols. Design

 studies, 19(1), 21-61.

Gerring, J. (2006). Case study research: Principles and practices. Cambridge university press.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2002). Fundamentals of software engineering.

 Prentice Hall PTR.

Godfrey, P., Crick, R. D., & Huang, S. (2014). Systems thinking, systems design and learning

 power in engineering education. International Journal of Engineering Education.

Grohs, J. R., Kirk, G. R., Soledad, M. M., & Knight, D. B. (2018). Assessing systems thinking:

 A tool to measure complex reasoning through ill-structured problems. Thinking Skills

 and Creativity, 28, 110-130.

122

Hadar, I., & Hadar, E. (2006). Iterative cycle for teaching object oriented concepts: from

 abstract thinking to specific language implementation. In Tenth Workshop on Pedagogies

 and Tools for the Teaching and Learning of Object Oriented Concepts, ECOOP.

Hammer, D., & Berland, L. K. (2014). Confusing claims for data: A critique of common

 practices for presenting qualitative research on learning. Journal of the Learning

 Sciences, 23(1), 37-46.

Hausmann, J. H., Heckel, R., & Taentzer, G. (2002). Detection of conflicting functional

 requirements in a use case-driven approach. In Proceedings of the 24th International

 Conference on Software Engineering. ICSE 2002 (pp. 105-115). IEEE.

Hendrix, T. D., Cross, J. H., Maghsoodloo, S., & McKinney, M. L. (2000). Do visualizations

 improve program comprehensibility? Experiments with control structure diagrams for

 Java. In Proceedings of the thirty-first SIGCSE technical symposium on Computer

 science education (pp. 382-386).

Hill, J. H., Houle, B. J., Merritt, S. M., & Stix, A. (2008). Applying abstraction to master

 complexity. In Proceedings of the 2nd international workshop on the role of abstraction

 in software engineering (pp. 15-21). ACM.

Hmelo, C. E., Holton, D. L., & Kolodner, J. L. (2000). Designing to learn about complex

 systems. The journal of the learning sciences, 9(3), 247-298.

Hmelo‐Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a

 complex system from the perspective of structures, behaviors, and functions. Cognitive

 science, 28(1), 127-138.

Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M. R., & Fernandez, M. A. (2017, May).

 Practices and perceptions of UML use in open source projects. In 2017 IEEE/ACM 39th

 International Conference on Software Engineering: Software Engineering in Practice

 Track (ICSE-SEIP) (pp. 203-212). IEEE.

Ivankova, N. V., Creswell, J. W., & Stick, S. L. (2006). Using mixed-methods sequential

 explanatory design: From theory to practice. Field methods, 18(1), 3-20.

Ivankova, N. V., & Creswell, J. W. (2009). Mixed methods. Qualitative research in applied

 linguistics: A practical introduction, 23, 135-161.

Jääskeläinen, R. (2010). Think-aloud protocol. Handbook of translation studies, 1, 371-374.

Jones, S.R., Torres, V. & Arminio, J. (2014). Negotiating the complexities of qualitative research

 in higher education (2nd ed.). New York, NY: Routledge.

Jacobson, M. J. (2001). Problem solving, cognition, and complex systems: Differences between

 experts and novices. Complexity, 6(3), 41-49.

Kamthan, P. (2016). On the Nature of Collaborations in Agile Software Engineering Course

 Projects. International Journal of Quality Assurance in Engineering and Technology

 Education (IJQAETE), 5(2), 42-59.

Kazman, R., Kruchten, P., Nord, R. L., & Tomayko, J. E. (2004). Integrating software-

 architecture-centric methods into the Rational Unified Process. CARNEGIE-MELLON

 UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.

123

Kendall, J. (1999). Axial coding and the grounded theory controversy. Western journal of

 nursing research, 21(6), 743-757.

Khandkar, S. H. (2009). Open coding. University of Calgary, 23, 2009.

Kim, B. (2001). Social constructivism. Emerging perspectives on learning, teaching, and

 technology, 1(1), 16.

Koppelman, H., & van Dijk, B. (2010). Teaching abstraction in introductory courses.

 In Proceedings of the fifteenth annual conference on Innovation and technology in

 computer science education (pp. 174-178). ACM.

Kramer, J. (2007). Is abstraction the key to computing?. Communications of the ACM, 50(4), 36-

 42.

Krefting, L. (1991). Rigor in qualitative research: The assessment of trustworthiness. American

 journal of occupational therapy, 45(3), 214-222.

Kruchten, P. (2005). Casting software design in the function-behavior-structure

 framework. IEEE software, 22(2), 52-58.

Lammi, M. D. (2011). Characterizing high school students' systems thinking in engineering

 design through the function-behavior-structure (FBS) framework.

Larsen, G. (1999). Designing component-based frameworks using patterns in the

 UML. Communications of the ACM, 42(10), 38-45.

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern

 recognition, 36(2), 451-461.

Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN notices, 23(5), 17-34.

Magana, A. J., Seah, Y. Y., & Thomas, P. (2018). Fostering cooperative learning with Scrum in

 a semi-capstone systems analysis and design course. Journal of Information System

 Education.

Mahnic, V. (2012). A Capstone Course on Agile Software Development Using Scrum. IEEE

 Transactions on Education, 55(1), 99-106.

Marton, F. (1986). Phenomenography—a research approach to investigating different

 understandings of reality. Journal of thought, 28-49.

Marques, J. F., & McCall, C. (2005). The application of interrater reliability as a solidification

 instrument in a phenomenological study. The Qualitative Report, 10(3), 439-462.

Mattsson, A., Fitzgerald, B., Lundell, B., & Lings, B. (2012). An approach for modeling

 architectural design rules in UML and its application to embedded software. ACM

 Transactions on Software Engineering and Methodology (TOSEM), 21(2), 10.

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Revised

 and Expanded from" Case Study Research in Education.". Jossey-Bass Publishers, 350

 Sansome St, San Francisco, CA 94104.

Mielicki, M. K., Kacinik, N. A., & Wiley, J. (2017). Bilingualism and symbolic abstraction:

 Implications for algebra learning. Learning and Instruction, 49, 242-250.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook.

 sage.

124

Moody, D., & van Hillegersberg, J. (2008, September). Evaluating the visual syntax of UML: An

 analysis of the cognitive effectiveness of the UML family of diagrams. In International

 Conference on Software Language Engineering (pp. 16-34). Springer, Berlin,

 Heidelberg.

Morgan, C. (1988). Procedures, parameters, and abstraction: Separate concerns. In On the

 Refinement Calculus (pp. 47-58). Springer, London.

Morrison, D., & Collins, A. (1995). Epistemic fluency and constructivist learning

 environments. Educational Technology, 35(5), 39-45.

Morse, J. M. (1994). Designing funded qualitative research.

Narayanan, N. H., & Hegarty, M. (1998). On designing comprehensible interactive hypermedia

 manuals. International journal of human-computer studies, 48(2), 267-301.

Nguyen, D., & Wong, S. (2001). OOP in introductory CS: Better students through abstraction.

 In Proceedings of the Fifth Workshop on Pedagogies and Tools for Assimilating Object-

 Oriented Concepts.

Or-Bach, R., & Lavy, I. (2004). Cognitive activities of abstraction in object orientation: an

 empirical study. ACM SIGCSE Bulletin, 36(2), 82-86.

Ordonez, C. (2003, June). Clustering binary data streams with k-means. In Proceedings of the

 8th ACM SIGMOD workshop on Research issues in data mining and knowledge

 discovery (pp. 12-19).

Peneva, J., Ivanov, S., & Tuparov, G. (2006). Utilization of UML in Bulgarian SME–possible

 training strategies. In Int. Conf. on Computer Systems and Technologies–CompSysTech

Penner, D. E. (2000). Explaining systems: Investigating middle school students' understanding of

 emergent phenomena. Journal of Research in Science Teaching: The Official Journal of

 the National Association for Research in Science Teaching, 37(8), 784-806.

Perkins, D. N., & Grotzer, T. A. (2000). Models and Moves: Focusing on Dimensions of Causal

 Complexity To Achieve Deeper Scientific Understanding.

Perrenet, J. C. (2010). Levels of thinking in computer science: Development in bachelor

 students’ conceptualization of algorithm. Education and Information

 technologies, 15(2), 87-107.

Queralt, A., & Teniente, E. (2012). Verification and validation of UML conceptual schemas with

 OCL constraints. ACM Transactions on Software Engineering and Methodology

 (TOSEM), 21(2), 13.

Reigeluth, C., & Stein, R. (1983). Elaboration theory. Instructional-design theories and models:

 An overview of their current status (1983), 335-381.

Reigeluth, C. M. (Ed.). (2018). Instructional theories in action: Lessons illustrating selected

 theories and models. Routledge.

Regnell, B., Kimbler, K., & Wesslen, A. (1995, March). Improving the use case driven approach

 to requirements engineering. In Proceedings of 1995 IEEE International Symposium on

 Requirements Engineering (RE'95) (pp. 40-47). IEEE.

125

Rico, D. F. & Sayani, H. H. (2009). Use of Agile Methods in Software Engineering Education.

 Agile Conference, 2009. AGILE’09, 174-179.

Riegelman, R. K. (2016). The STIRS framework and integrative liberal education. Peer

 Review, 18(4), 8.

Rijke, W. J., Bollen, L., Eysink, T. H., & Tolboom, J. L. (2018). Computational Thinking in

 Primary School: An Examination of Abstraction and Decomposition in Different Age

 Groups. Informatics in education, 17(1), 77.

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small

 teams. IEEE software, 17(4), 26-32.

Robal, T., Viies, V., & Kruus, M. (2002). The Rational Unified Process with the" 4+ 1" View

 Model of Software Architecture-a Way for Modeling Web Applications.

 In BalticDB&IS (pp. 119-132).

Rothschild, A. S., Dietrich, L., Ball, M. J., Wurtz, H., Farish-Hunt, H., & Cortes-Comerer, N.

 (2005). Leveraging systems thinking to design patient-centered clinical documentation

 systems. International Journal of Medical Informatics, 74(5), 395-398.

Sandoval, W. (2014). Conjecture mapping: An approach to systematic educational design

 research. Journal of the learning sciences, 23(1), 18-36.

Sangwan, R., Neill, C., Bass, M., & El Houda, Z. (2008). Integrating a software architecture-

 centric method into object-oriented analysis and design. Journal of Systems and

 Software, 81(5), 727-746.

Santos, N., Fernandes, J. M., Carvalho, M. S., Silva, P. V., Fernandes, F. A., Rebelo, M. P.,

 Barbosa, D., Maia, P., Couto, M., & Machado, R. J. (2016, July). Using Scrum together

 with UML models: a collaborative university-industry R&D software project.

 In International Conference on Computational Science and its Applications (pp. 480-

 495). Springer, Cham.

Schwaber, K. (1997). Scrum development process. In Business object design and

 implementation (pp. 117-134). Springer, London.

Senge, P. M. (1990). The art and practice of the learning organization.

Sevaldson, B. (2011). GIGA-Mapping: Visualisation for complexity and systems thinking in

 design. Nordes, (4).

Sherry, L., & Trigg, M. (1996). Epistemic forms and epistemic games. Educational technology,

 38-44.

Shimoda, T. A., & Borge, M. (2016). The Web of Inquiry: Computer support for playing

 epistemic games. International Journal of Information and Education Technology, 6(8),

 607.

Shukla, A. & Williams, L. (2002). Adapting Extreme Programming for a Core Software

 Engineering Course. Proceedings from the 15th Conference on Software Engineering

 Education and Training (CSEE&T 2002), Covington, KY.

126

Siau, K., & Rossi, M. (2011). Evaluation techniques for systems analysis and design modelling

 methods – a review and comparative analysis. Information Systems Journal, 3(21), 249-

 268.

Sprague, P., & Schahczenski, C. (2002). Abstraction the key to CS1. Journal of Computing

 Sciences in Colleges, 17(3), 211-218.

Stake, R.E. (2006). Multiple case study analysis. The Guilford Press, NY: Guilford Publications

 Inc.

Stange, K. C., Crabtree, B. F., & Miller, W. L. (2006). Publishing multimethod research.

Stearman, J. (2000). Systems thinking and modeling for a complex world. Irwin McGraw-Hill,

 Boston.

Sutherland, J., & Schwaber, K. (2007). The Scrum Papers. Nuts, Bolts and Origins of an Agile

 Process.

Tall, D., & Thomas, M. O. J. (Eds.). (2002). Intelligence, learning and understanding in

 mathematics: A tribute to Richard Skemp. Post Pressed.

Tamai, T. (2005). How to teach software modeling. In Proceedings. 27th International

 Conference on Software Engineering, 2005. ICSE 2005. (pp. 609-610). IEEE.

Terrell, S. R. (2012). Mixed-methods research methodologies. The qualitative report, 17(1), 254-

 280.

Thinsungnoena, T., Kaoungkub, N., Durongdumronchaib, P., Kerdprasopb, K., & Kerdprasopb,

 N. (2015). The clustering validity with silhouette and sum of squared

 errors. learning, 3(7).

Tirkkonen-Condit, S. (1990). A Think-Aloud Protocol Study. In Learning, Keeping, and Using

 Language: Selected Papers from the 8th World Congress of Applied Linguistics, Sydney,

 16-21 August 1987 (Vol. 1, p. 381). John Benjamins Publishing Company.

Ulrich, W. (1994). Can we secure future-responsive management through systems thinking and

 design?. Interfaces, 24(4), 26-37.

Umphress, D. A., Hendrix, T. D., & Cross, J. H. (2002). Software Process in the Classroom: The

 Capstone Project Experience. IEEE Software, 19(5), 78-81.

Unkelos-Shpigel, N., Sheidin, J., & Kupfer, M. (2019). Climb Your Way to the Model: Teaching

 UML to Software Engineering Students. In International Conference on Advanced

 Information Systems Engineering (pp. 40-46). Springer, Cham.

Vattam, S. S., Goel, A. K., Rugaber, S., Hmelo-Silver, C. E., Jordan, R., Gray, S., & Sinha, S.

 (2011). Understanding complex natural systems by articulating structure-behavior-

 function models. Journal of Educational Technology & Society, 14(1), 66-81.

Vidich, A. J., & Lyman, S. M. (2000). Qualitative methods: Their history in sociology and

 anthropology. Handbook of qualitative research, 2, 37-84.

Von Bertalanffy, L. (1972). The history and status of general systems theory. Academy of

 management journal, 15(4), 407-426.

Walker, H. M. (1996). Abstract data types: specifications, implementations, and applications.

 Jones & Bartlett Learning.

127

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems

 analysis and design grammars. Information Systems Journal, 3(4), 217-237.

Wang, Q., Koval, J. J., Mills, C. A., & Lee, K. I. D. (2007). Determination of the selection

 statistics and best significance level in backward stepwise logistic

 regression. Communications in Statistics-Simulation and Computation, 37(1), 62-72.

Wang, H., Huo, D., Huang, J., Xu, Y., Yan, L., Sun, W., & Li, X. (2010, July). An approach for

 improving K-means algorithm on market segmentation. In 2010 International Conference

 on System Science and Engineering (pp. 368-372). IEEE.

Whitten, Jeffrey L & Bentley, Lonnie D (2007). Systems analysis and design methods (7th ed).

 McGraw-Hill/Irwin, Boston

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making

 sense of the world. Journal of Science Education and technology, 8(1), 3-19.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

 Transactions of the Royal Society A: Mathematical, Physical and Engineering

 Sciences, 366(1881), 3717-3725.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural

 networks, 16(3), 645-678.

Yellamraju, T., & Boutin, M. (2018). Pattern dependence detection using n-TARP

 clustering. arXiv preprint arXiv:1806.05297.

Yeo, K. T. (1993). Systems thinking and project management—time to reunite. International

 journal of project management, 11(2), 111-117.

Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering

 algorithm. J—Multidisciplinary Scientific Journal, 2(2), 226-235.

Zehetmeier, D., Böttcher, A., Brüggemann-Klein, A., & Thurner, V. (2019). Defining the

 Competence of Abstract Thinking and Evaluating CS-Students' Level of Abstraction.

 In Proceedings of the 52nd Hawaii International Conference on System Sciences.

Zhu, L., Ma, B., & Zhao, X. (2010). Clustering validity analysis based on silhouette coefficient

 [J]. Journal of Computer Applications, 30(2), 139-141.

