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ABSTRACT

The Boltzmann equation, an integro-differential equation for the molecular distribution func-

tion in the physical and velocity phase space, governs the fluid flow behavior at a wide range

of physical conditions, including compressible, turbulent, as well as flows involving further

physics such as non-equilibrium internal energy exchange and chemical reactions. Despite its

wide applicability, deterministic solutions of the Boltzmann equation present a huge compu-

tational challenge, and often the collision operator is simplified for practical reasons, hereby,

referred to as linear kinetic models. These models utilize the moment of the underlying

probability distribution to mimic some properties of the original collision operator. But,

just because we know the moments of a distribution, doesn’t mean we know the actual dis-

tribution. The approximation of reality can never supersede the reality itself. Because, all

the facts (moments) about the world (distribution) cannot explain the world. The premise

lies not in the fact that a certain flow behavior can be correctly predicted; but rather that

the Boltzmann equation can reveal and explain previously unsuspected aspects of reality.

Therefore, in this work, we introduce accurate, efficient, and robust numerical schemes for

solving the multi-species Boltzmann equation which can model general repulsive interac-

tions. These schemes are high order spatially and temporally accurate, spectrally accurate

in molecular velocity space, exhibit nearly linear parallel efficiency on the current generation

of processors; and can model a wide-range of rarefied flows including flows involving momen-

tum, heat, and diffusive transport. The single-species variant formed the basis of author’s

Masters’ thesis.

While the first part of the dissertation is targeted towards multi-species flows that exhibit

rich non-equilibrium phenomenon; the second part focuses on single-species flows that do not

depart significantly from equilibrium. This is the case, for example, in micro-nozzles, where

a portion of flow can be highly rarefied, whereas others can be in near-continuum regime.

However, when the flow is in near-continuum regime, the traditional deterministic numeri-

cal schemes for kinetic equations encounter two difficulties: a) since the near-continuum is

essentially an effect of large number of particles in an infinitesimal volume, the average time
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between successive collisions decrease, and therefore the discrete simulation timestep has

to be made smaller; b) since the number of molecular collisions increase, the flow acquires

steady state slowly, and therefore one needs to carry out time integration for large number of

time steps. Numerically, the underlying issue stems from stiffness of the discretized ordinary

differential equation system. This situation is analogous to low Reynolds number scenario

in traditional compressible Navier-Stokes simulations. To circumvent these issues, we in-

troduce a class of high order spatially and temporally accurate implicit-explicit schemes for

single-species Boltzmann equation and related kinetic models with the following properties:

a) since the Navier-Stokes can be derived from the asymptotics of the Boltzmann equation

(using Chapman-Enskog expansion [1 ]) in the limit of vanishing rarefaction, these schemes

preserve the transition from Boltzmann to Navier-Stokes; b) the timestep is independent

of the rarefaction and therefore the scheme can handle both rarefied and near-continuum

flows or combinations thereof; c) these schemes do not require iterations and therefore are

easy to scale to large problem sizes beyond thousands of processors (because parallel effi-

ciency of Krylov space iterative solvers deteriorate rapidly with increase in processor count);

d) with use of high order multi-stage time-splitting, the time integration over sufficiently

long number of timesteps can be carried out more accurately. The extension of the present

methodology to the multi-species case can be considered in the future.

A series of numerical tests are performed to illustrate the efficiency and accuracy of the

proposed methods. Various benchmarks highlighting different scattering models, different

mass ratios, momentum transport, heat transfer, and diffusive transport have been studied.

The results are directly compared with the direct simulation Monte Carlo (DSMC) method.

As an engineering use-case, the developed methodology is applied for the study of thermal

processes in micro-systems, such as heat transfer in electronic-chips; and primarily, the in-

geniously Purdue-developed, Microscale In-Plane Knudsen Radiometric Actuator (MIKRA)

sensor, which can be used for flow actuation and measurement.
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1. INTRODUCTION

Boltzmann equation describes how a distribution of molecules change when they collide with

each other. Boltzmann statistics is a general framework. Applications include, the conven-

tional Boltzmann equation for gaseous transport [2 ], phonon Boltzmann for phonon trans-

port [3 ], Vlasov-Maxwell-Boltzmann/Fokker-Planck-Landau for ionic transport in charged

plasmas [4 ], quantum Boltzmann for transport processes in Fermi/Bose gases [5 ], semi-

conductor Boltzmann for electronic transport in semi-conductor devices [6 ], relativistic Boltz-

mann for astrophysical evolution of the galaxy [7 ], generalized (active particles) Boltzmann

for epidemics and virus mutations [8 ], etc. Specifically, the Boltzmann equation for gaseous

transport is an integro-differential equation for the molecular distribution function in the

physical and velocity phase space which governs the fluid flow behavior for a wide range

of physical conditions, including compressible, turbulent, as well as flows involving further

physics such as non-equilibrium internal energy exchange and chemical reactions.

More precisely, suppose we consider a gas mixture of s species (s ≥ 2), each represented by

a distribution function f (i)(t, x, v), where t ≥ 0 is the time, x ∈ Ω ⊂ R3 is the position, and

v ∈ R3 is the particle velocity; such that f (i) dx dv gives the number of particles of species i

to be found in an infinitesimal volume dx dv centered at the point (x, v) of the phase space.

The time evolution of f (i) is described by the multi-species Boltzmann equation written as

[2 ], [9 ]

∂tf
(i) + v · ∇xf (i) =

s∑
j=1

Q(ij)(f (i), f (j)), i = 1, . . . , s. (1.1)

Here Q(ij) is the collision operator that models the binary collisions between species i and

j, and acts only in the velocity space:

Q(ij)(f (i), f (j))(v) =
∫
R3

∫
S2

Bij(v − v∗, σ)
[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
dσ dv∗, (1.2)
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where (v, v∗) and (v′, v′∗) denote the pre- and post- collision velocity pairs. During collisions,

the momentum and energy are conserved:

miv + mjv∗ = miv
′ + mjv

′
∗,

mi|v|2 + mj|v∗|2 = mi|v′|2 + mj|v′∗|2, (1.3)

where mi, mj denote the mass of particles of species i and j respectively. Hence one can

parameterize v′ and v′∗ as follows

v′ = v + v∗
2 + (mi − mj)

2(mi + mj)
(v − v∗) + mj

(mi + mj)
|v − v∗|σ,

v′∗ = v + v∗
2 + (mi − mj)

2(mi + mj)
(v − v∗) − mi

(mi + mj)
|v − v∗|σ, (1.4)

with σ being a vector varying on the unit sphere S2. Bij = Bji(≥ 0) is the collision kernel

characterizing the interaction mechanism between particles. It can be shown that

Bij = Bij(|v − v∗|, cos χ), cos χ = σ · (v − v∗)
|v − v∗|

, (1.5)

where χ is the deviation angle between v − v∗ and v′ − v′∗.

Given the interaction potential between particles, the specific form of Bij can be determined

using the classical scattering theory:

Bij(|v − v∗|, cos χ) = |v − v∗| Σij(|v − v∗|, χ), (1.6)

where Σij is the differential cross-section given by

Σij(|v − v∗|, χ) = bij

sin χ

∣∣∣∣∣dbij

dχ

∣∣∣∣∣ , (1.7)

with bij being the impact parameter.
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Given the distribution function f (i), the physical observables, i.e., the number density, mass

density, velocity, and temperature of species i are defined as

n(i) =
∫
R3

f (i) dv, ρ(i) = min
(i), u(i) = 1

n(i)

∫
R3

vf (i) dv, T (i) = mi

3n(i)kB

∫
R3

(v − u(i))2f (i) dv.

(1.8)

The total number density, mass density, and velocity are given by

n =
s∑

i=1
n(i), ρ =

s∑
i=1

ρ(i), u = 1
ρ

s∑
i=1

ρ(i)u(i). (1.9)

Further, the diffusion velocity, stress tensor, and heat flux vector of species i are defined as

v
(i)
D = 1

n(i)

∫
R3

cf (i) dv = u(i) − u, P(i) =
∫
R3

mic ⊗ cf (i) dv, q(i) =
∫
R3

1
2mic|c|2f (i) dv,

(1.10)

where c = v − u is the peculiar velocity. Finally, the total stress, heat flux, pressure, and

temperature are given by

P =
s∑

i=1
P(i), q =

s∑
i=1

q(i), p = nkBT = 1
3tr(P). (1.11)

1.1 Numerical methods

The approaches for numerical solution of the Boltzmann equation date back to as early as

1940s [10 ] using, for example, the now widely used direct simulation Monte Carlo (DSMC)

method [11 ], [12 ]. Over sufficient small intervals, by decoupling the molecular motion and

interaction processes, DSMC first advects the particles deterministically according to their

velocities, also termed as free transport, and then describes the collisions by statistical models

with a specified interaction potential. Under the assumption that molecular interactions are

Markov processes, in the limit of infinite number of particles N → ∞, Wagner established

the convergence of Bird’s DSMC method to the Boltzmann equation [13 ]. DSMC is widely

used for simulating high-speed phenomena, whereas low-speed and unsteady flows are less
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tractable by stochastic simulations due to the inherent statistical noise. It is this stochastic

nature of the method that introduces high statistical noise in low-speed flows, and imposes

strict constraints on cell-size and time-step. Moreover, the formal accuracy of particle time-

stepping is linear. The stiffness properties of the Boltzmann equation further aggravates the

time-step constraints. To overcome these limitations, improved particle-based approaches

have been proposed [14 ], including hybrid continuum/particle solvers [15 ], [16 ], variance

reduction methods [17 ], and simplified Bernoulli trials [18 ]; but these ideas have been rarely

used beyond the academic research setting even in the new generation of DSMC solvers [19 ].

The other approaches are the deterministic methods based on discretization of governing

differential equations on representative grids. These deterministic methods are free of sta-

tistical noise, and are suitable for studying low speed flows. However, the multi-dimensional

nature of the Boltzmann equation and the collision integral becomes a bottleneck resulting

in excessive use of time and computing resources. The main difficulty lies in its quadratic

collision term since quadratic algorithmic complexity is difficult to apply to large problem

sizes. Not surprisingly, over the past years, the deterministic methods that approximate

the Boltzmann collision operator/equation have undergone considerable development. A

comprehensive review can be found in [20 ], [21 ]. Of all these, the fastest known, based on

Fourier transforms, are referred to as fast Fourier spectral method [22 ]. The complexity for

a single evaluation of the collision operator is reduced from O(N2) (quadratic complexity

/ direct calculation) to O(N log N), where N is a measure of the discrete velocity space,

N = dim v, v ∈ R3. But the approach in [22 ] is valid for single-species hard-sphere (HS) in-

teractions (HS model deviates from experimental observations [23 ]); and is, therefore, rather,

a technology demonstrator; and difficult to apply for problems of engineering significance.

This leads to the following objective:

Objective 1. Construct a deterministic, accurate, robust, and efficient method for solving

the multi-species Boltzmann equation of some engineering value.
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1.2 Collisions and scattering

The choice of interaction potential substantially affects the simulation fidelity and compu-

tational complexity. There has been a significant development in this regard in the DSMC

community. DSMC has a rich development history, and we want to leverage and build a

future upon the shoulders of the past. Early implementations of the DSMC method relied

on purely repulsive HS interaction model [11 ]. The HS model, however, deviates from ex-

perimental observations for common gases [23 ] due to a square-root viscosity variation with

temperature. The variable hard sphere (VHS) model proposed by Bird [24 ] results in a

more general power-law viscosity variation with temperature; and has been widely used for

DSMC simulations of single-species gas flows due to its computational efficiency and ease

of implementation. The VHS model, however, deviates from experimental observations for

common multi-species flows [25 ], [26 ] involving diffusive transport. Later, several variations

of the VHS model were proposed, including, the variable soft sphere (VSS) [26 ], M-1 [27 ],

generalized soft sphere (GSS) [28 ], all of which belong to a class of repulsive interactions. The

VSS model modifies the scattering law of the VHS model by using a scattering parameter

(α) that allows reproduction of measured diffusion coefficients in addition to the viscosity

coefficient. M-1 model is a modification of VHS model to have a linear distribution of scat-

tering angles in terms of the impact parameter. This modification allows M-1 to reproduce

correct viscosity and diffusivity without the need of an additional parameter (α)[29 ]. The

GSS model, although general, needs additional parameters for reproducing the viscosity and

diffusion coefficients (see Ref. [24 ], [30 ] for additional details/equations for these models).

A deterministic method for general repulsive interactions with O(N4/3 log N) complexity was

devised for spatially homogeneous single-species Boltzmann equation in [31 ]; and extended

to spatially non-homogeneous case with high-order spatial/temporal accuracy in author’s

Masters’ thesis [32 ].

This leads to the following objective:
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Objective 2. Construct a deterministic method for multi-species Boltzmann equation that

can handle general repulsive interactions: the special cases of these are the aforementioned,

which are widely used in DSMC simulations. The formulation should be consistent with

kinetic theory and DSMC. This ensures that the results from deterministic method can be

verified easily; which in turn helps with easy adaptation of the method.

1.3 Stiffness issues (Kn → 0)

The efficiency of a conventional kinetic simulation, deterministic or stochastic, is directly

correlated to the degree of rarefaction. A widely-used indicator of rarefaction is Knudsen

number, Kn, defined as the ratio of the gas mean free path λ, i.e., on average the distance

travelled by a molecule before it collides with another; and the characteristic length H0 of

the system. When the Knudsen number, Kn, of flow is decreased, the explicit deterministic

numerical schemes for Boltzmann equation encounters two difficulties: a) since the mean

collision time (average time elapsed between successive collisions) decreases, the timestep

has to be made smaller, b) since the number of collisions per unit volume increase, the

entropy generation process is slowed down (implications of Cercignani’s conjecture, Villani

et al. [33 ]), the flow acquires steady state slowly, and therefore one needs to carry out time

integration for large number of time steps.

The stiffness issues are not limited to the kinetic equations. For example, an explicit scheme

for Large eddy simulations at low Mach numbers is too slow; whereas an implicit scheme

is too computationally expensive for problems of practical interest. Moreover, the implicit

schemes require iterations, and hence are difficult to scale on large problem sizes beyond ten

thousand processors. This realization has been a driving force behind the use of implicit-

explicit (IMEX) schemes in CFD, for example, large eddy simulations [34 ], [35 ]. An IMEX

scheme integrates stiff parts of an ordinary differential equation (ODE) implicitly and the

non-stiff parts explicitly in time. These schemes help avoid iterations as much as possible,

and can be computationally efficient than both fully-implicit and fully-explicit schemes.
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Objective 3. Construct an implicit-explicit scheme for the stiff Boltzmann equation for

single-species case (s = 1) to begin with. Such a scheme should have the following properties:

1) the timestep should be independent of the Knudsen number

2) the collision kernel should be evaluated explictly without use of any iteration

3) it should utilize high order time-stepping so that the time integration over sufficiently

long number of timesteps, needed for modelling near-continuum flows, can be carried

out more accurately

4) it should be high order accurate in physical space for minimum dispersion

5) it should be applicable for modelling both rarefied and near-continuum compressible

flows.

6) When Kn is small, O(10−3), Navier-Stokes can be recovered from the asymptotics of the

Boltzmann equation. Hence, the results from the implicit-explicit Boltzmann equation

should be consistent with that recovered from Navier-Stokes.

1.4 Verification and validation

The developed schemes should be verified and validated on a number of benchmark problems.

Proper validation and verification (V&V) insures reproducibility. Reproducibility develops

an implicit trust with the end-user, and hence helps with the wider adoption of the developed

methods.

Objective 4. Construct a large set of validation and verification problems that can assess

the capabiliity of the developed numerical scheme and the associated implementation:

• validation and verification problems should cover problems involving mass, momentum,

energy, and diffusive transport.

• the scheme should run in 2-D, 3-D.
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• the scheme should be handle general boundary conditions: periodic, Dirichlet, time-

evolving.

• the scheme should stable for different initial/boundary conditions.

• the scheme should be high order accurate.

• the scheme should be able to deal with stiff problems.

1.5 Applications

The deterministic methods can accurately describe a wide range of non-continuum flow

phenomena such as shocks, expansions into vacuum [36 ] as well as velocity and thermal

slip at gas-solid interfaces [37 ], [38 ], and thermally-induced slow flows at microscale. As an

application of the developed methodology, we will apply the developed scheme for the latter

case, i.e., study of low-speed flows in micro-electro mechanical systems.

Under sufficiently rarefied flow conditions, an application of temperature gradient, say, be-

tween two parallel plates separated by few mean free paths, induces a low velocity gas flow

commonly identified as thermo-stress convection effects [39 ] which, for example, gives rise

to well-known Crooke’s [40 ] radiometric phenomenon. This thermo-stress convection —

which is essentially a form of force, hereby, referred as Knudsen force — can be applied for

micro-structure actuation. In slightly more complex scenarios, one can stack an array of

parallel-plates to significantly enhance the Knudsen force output [41 ]–[43 ]. Strongrich [42 ]

demonstrated the possibility of amplifying the Knudsen forces as well as reversing its di-

rection by combining thermal gradients between several solid bodies. The idea was further

explored, resulting in development of a Microscale In-Plane Knudsen Radiometric Actuator

(MIKRA) sensor for flow actuation and measurement [43 ]–[45 ]. As a practical test case of

the developed idea, we will study the flow in MIKRA sensor.

Objective 5. Apply the developed deterministic method for the study of the low-speed

thermally-driven flows in micro-electro mechanical systems.
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Results for the 1D simulations in this thesis were obtained using 1D code located at https://github.com/-

jaisw7/dgfs1D_gpu , whereas the results for the 2D/3D simulations were obtained using

2D/3D code located at https://github.com/jaisw7/frfs .
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2. THE EXPLICIT SCHEME FOR BOLTZMANN EQUATION

In this section, we detail the details of the deterministic method for multi-species Boltzmann.

The single-species is simply recovered by setting the number of species, s, to one.

2.1 Accurate modelling of diffusion

An appropriate modelling of binary interaction of molecular species is crucial for reproducing

the flow transport properties, and consequently the flow physics.

With a few exceptions, e.g. Hard Sphere (HS) model, the explicit form of Σij can be hard

to obtain since bij is related to χ implicitly. To avoid this complexity, phenomenological

collision kernels are often used in practice with the aim to reproduce the correct transport

coefficients. Koura et al. [26 ] introduced the so-called Variable Soft Sphere (VSS) model by

assuming

χ = 2 cos−1{(bij/dij)1/αij }, (2.1)

where αij is the scattering parameter, and dij is the diameter borrowed from Bird’s Variable

Hard Sphere (VHS) model (cf. eqn. (4.79) in [24 ]):

dij = dref,ij

 2kBTref,ij

µij|v − v∗|2

ωij−0.5
1

Γ(2.5 − ωij)

1/2

, (2.2)

with Γ being the Gamma function, µij = mimj

mi+mj
the reduced mass, dref,ij, Tref,ij, and ωij,

respectively, the reference diameter, reference temperature, and viscosity index. Substituting

the eqns. (1.7 )-(2.2 ) into (1.6 ), one can obtain Bij as

Bij = bωij , αij
|v − v∗|2(1−ωij) (1 + cos χ)αij−1, (2.3)
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where bωij , αij
is a constant given by

bωij , αij
=

d2
ref,ij

4

2kBTref,ij

µij

ωij−0.5
1

Γ(2.5 − ωij)
αij

2αij−1 . (2.4)

In particular, the VHS kernel is obtained when αij = 1 and 0.5 ≤ ωij ≤ 1 (ωij = 1:

Maxwell molecules; ωij = 0.5: HS); and the VSS kernel is obtained when 1 < αij ≤ 2 and

0.5 ≤ ωij ≤ 1.

2.2 Properties of the collision operator

It can be shown that the collision operator Q(ij) satisfies the following weak forms:

∫
R3

Q(ij)(f (i), f (j))(v)ϕ(v) dv =
∫
R3

∫
R3

∫
S2

Bij(v − v∗, σ)
[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
· ϕ(v) + ϕ(v∗) − ϕ(v′) − ϕ(v′∗)

4 dσ dv dv∗,∫
R3

Q(ij)(f (i), f (j))(v)ϕ(v) dv +
∫
R3

Q(ji)(f (j), f (i))(v)φ(v) dv

=
∫
R3

∫
R3

∫
S2

Bij(v − v∗, σ)
[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

] ϕ(v) + φ(v∗) − ϕ(v′) − φ(v′∗)
2 dσ dv dv∗.

(2.5)

Using these weak forms, it is easy to derive

∫
R3

Q(ij)(f (i), f (j)) dv = 0,∫
R3

Q(ij)(f (i), f (j))miv dv +
∫
R3

Q(ji)(f (j), f (i))mjv dv = 0,∫
R3

Q(ij)(f (i), f (j))mi|v|2 dv +
∫
R3

Q(ji)(f (j), f (i))mj|v|2 dv = 0,

(2.6)

and the well-known Boltzmann’s H-theorem

s∑
i,j=1

∫
R3

Q(ij)(f (i), f (j)) ln f (i) dv ≤ 0. (2.7)
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(2.7 ) implies that the total entropy of the system decays with time:

s∑
i=1

{
∂t

∫
R3

f (i) ln f (i) dv + ∇x ·
∫
R3

vf (i) ln f (i) dv
}

≤ 0, (2.8)

and the equality holds if and only if f (i) attains the local equilibrium

f (i) = n(i)

(2πRiT )3/2 exp
(

−(v − u)2

2RiT

)
:= M(i), (2.9)

where Ri = kB/mi is the specific gas constant.

2.3 Macroscopic law

One can take the moments of eqn. (1.1 ) to obtain the following local conservation laws:

∂t

∫
R3

f (i)dv + ∇x ·
∫
R3

vf (i)dv = 0,

s∑
i=1

{
∂t

∫
R3

mivf (i)dv + ∇x ·
∫
R3

miv ⊗ vf (i)dv
}

= 0,

s∑
i=1

{
∂t

∫
R3

1
2mi|v|2f (i)dv + ∇x ·

∫
R3

1
2miv|v|2f (i)dv

}
= 0,

(2.10)

which, using the previously defined macroscopic quantities, can be recast as

∂tn
(i) + ∇x ·

(
n(i)u(i)

)
= 0 =⇒ ∂tρ + ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu ⊗ u + P) = 0,

∂tE + ∇x · (Eu + Pu + q) = 0,

(2.11)

where E = 3nkBT/2 + ρu2/2 is the total energy. Note that this system is not closed.

However, replacing f (i) by M(i) in (2.11 ) yields a closed system, i.e., the compressible Euler

equations. With more involved calculations (so-called Chapman-Enskog expansion), one can

derive the Navier-Stokes equations. We omit the detail but mention that the heat flux term

will contain the diffusion velocity v
(i)
D , a property unique to the mixtures (see for instance

[9 ]).
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2.4 Non-dimensionalization

For easier manipulation, we perform a nondimensionalization of the eqn. (1.1 ). We first

choose the characteristic length H0, temperature T0, number density n0, and mass m0, and

then define the characteristic velocity u0 =
√

2kBT0/m0 and time t0 = H0/u0. We rescale t,

x, v, mi, and f (i) as follows:

t̂ = t

t0
, x̂ = x

H0
, v̂ = v

u0
, m̂i = mi

m0
, f̂ (i) = f (i)

n0/u3
0
, (2.12)

and rescale the collision kernel as

B̂ij = Bij

B0,ij

, (2.13)

where

B0,ij = u0

√
1 + mi/mj π d2

ref,ij (Tref,ij/T0)ωij−0.5. (2.14)

Then the eqn. (1.1 ) becomes (dropping ˆ for simplicity)

∂tf
(i) + v · ∇xf (i) =

s∑
j=1

n0H0

u0
B0,ij

∫
R3

∫
S2

Bij

[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
dσ dv∗.

(2.15)

The factor
u0

n0 H0 B0,ij

=
u0

n0B0,ij

H0
= Knij (2.16)

is the Knudsen number defined as the ratio of the mean free path and characteristic length

scale, hence

Knij = 1√
1 + mi/mj π n0 d2

ref,ij (Tref,ij/T0)ωij−0.5 H0
. (2.17)

One can also define the “average” Knudsen number for each species i as

Kni =
 s∑

j=1

1
Knij

−1

. (2.18)
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This is consistent with eqn. (4.76) in [24 ].

Therefore, the dimensionless Boltzmann equation for the VSS kernel (2.3 ) reads as

∂tf
(i) + v · ∇xf (i) =

s∑
j=1

1
Knij

Q(ij)(f (i), f (j))(v), (2.19)

with

Q(ij)(f (i), f (j))(v) =
∫
R3

∫
S2

Bij(|v − v∗|, cos χ)
[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
dσ dv∗,

(2.20)

Bij = αij√
1 + mi/mj µ

ωij−0.5
ij 21+αij Γ(2.5 − ωij)π

|v − v∗|2(1−ωij) (1 + cos χ)αij−1. (2.21)

Remark 2.4.1. We adopt the VSS kernel in this work for easy comparison with DSMC

solutions. The fast algorithm for the collision operator does not rely on the specific form

(2.21 ) (see Section 2.5 ).

In addition, we rescale the macroscopic quantities as

n̂(i) = n(i)

n0
, ρ̂(i) = ρ(i)

m0n0
, û(i) = u(i)

u0
, T̂ (i) = T (i)

T0
, P̂(i) = P(i)

1
2m0n0u2

0
, q̂(i) = q(i)

1
2m0n0u3

0
,

(2.22)

then in rescaled variables (again dropping ˆ for simplicity)

n(i) =
∫
R3

f (i) dv, ρ(i) = min
(i), u(i) = 1

n(i)

∫
R3

vf (i) dv, T (i) = 2mi

3n(i)

∫
R3

(v − u(i))2f (i) dv,

P(i) = 2 mi

∫
R3

(v − u) ⊗ (v − u)f (i) dv, q(i) = mi

∫
R3

(v − u)|v − u|2f (i) dv, (2.23)

and the Maxwellian (2.9 ) becomes

M(i) = n(i)
(

mi

πT

)3/2
exp

(
−mi|v − u|2

T

)
. (2.24)
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Remark 2.4.2. It is often convenient to define the so-called parallel (T (i)
‖ ) and perpendicular

(T (i)
⊥ ) components of temperature as

T
(i)
‖ = 2mi

n(i)

∫
R3

(vx − u(i)
x )2f (i) dv, T

(i)
⊥ = 2mi

n(i)

∫
R3

(vy − u(i)
y )2f (i) dv, (2.25)

where subscripts x and y denote the first and second components of respective vector fields.

2.5 The fast Fourier spectral method for Boltzmann collision operator

The main difficulty of numerically solving the multi-species Boltzmann equation (2.19 ) lies in

the collision operator (2.20 ). In this section, we introduce a fast Fourier spectral method (in

the velocity space) to approximate this operator. Discussion for the spatially inhomogeneous

equation will be given in the next section.

We first perform a change of variables v∗ to g = v − v∗ in (2.20 ) to obtain

Q(ij)(f (i), f (j))(v) =
∫
R3

∫
S2

Bij(|g|, σ · ĝ)
[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
dσ dg, (2.26)

where ĝ is the unit vector along g and

v′ = v − mj

mi + mj

g + mj

mi + mj

|g|σ, v′∗ = v − mj

mi + mj

g − mi

mi + mj

|g|σ. (2.27)

Next we need to choose a finite computational domain DL = [−L, L]3. This is based on the

following criterion (similar discussion for the single-species case can be found in [46 ]).

Assume the support of functions f (i), f (j) can be approximated by a ball with radius S:

Supp(f (i)(v), f (j)(v)) ⊂ BS, then one has

• Supp(Q(ij)(f (i), f (j))(v)) ⊂ B√1+mj/miS
.
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This is because if |v| >
√

1 + mj/miS, then f (i)(v) = 0; also mi|v′|2 + mj|v′∗|2 ≥

mi|v|2 > (mi + mj)S2, then either |v′| > S or |v′∗| > S, so f (i)(v′) = 0 or f (j)(v′∗) = 0;

either way Q(ij)(f (i), f (j))(v) = 0.

• It is enough to truncate g to a ball BR with R = 2S:

Q(ij)(f (i), f (j))(v) =
∫
BR

∫
S2

Bij(|g|, σ · ĝ)
[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
dσ dg.

(2.28)

This is because if 2S < |g| = |v−v∗| ≤ |v|+|v∗|, then |v| > S or |v∗| > S, so f (i)(v) = 0

or f (j)(v∗) = 0; also 2S < |g| = |v−v∗| = |v′−v′∗| ≤ |v′|+|v′∗|, then |v′| > S or |v′∗| > S,

so f (i)(v′) = 0 or f (j)(v′∗) = 0; either way Q(ij)(f (i), f (j))(v) = 0.

• Since |v| ≤
√

1 + mj/miS and |g| ≤ 2S in Q(ij)(f (i), f (j))(v), we have

|v∗| = |v − g| ≤ |v| + |g| ≤ (2 +
√

1 + mj/mi)S;

|v′| =
∣∣∣v − mj

mi+mj
g + mj

mi+mj
|g|σ

∣∣∣ ≤ |v| + 2mj

mi+mj
|g| ≤ (4mj/(mi + mj) +

√
1 + mj/mi)S;

|v′∗| =
∣∣∣v − mj

mi+mj
g − mi

mi+mj
|g|σ

∣∣∣ ≤ |v| + |g| ≤ (2 +
√

1 + mj/mi)S.

• To avoid aliasing, need

2L ≥
(

max(4mj/(mi + mj), 2) +
√

1 + mj/mi

)
S + S. (2.29)

Remark 2.5.1. From (2.29 ), it can be seen that the computational domain needs to be

very large for large mass ratios mj/mi � 1. This is a common issue appearing in multi-

species problems. Possible remedies include adaptive mesh in velocity space (cf. [47 ]),

using an asymptotic model valid for large mass ratios (cf. [48 ]), or introducing independent

velocity grid for each species wherein different collision types for every (i, j) pair are treated

independently (cf. [49 ], [50 ]). In this work, we only consider moderate mass ratios and

postpone these studies to a future work.
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Now we approximate f (i) (similarly for f (j)) by a truncated Fourier series on DL:

f (i)(v) ≈
N
2 −1∑

k=−N
2

f̂
(i)
k ei π

L
k·v, f̂

(i)
k = 1

(2L)3

∫
DL

f (i)(v)e−i π
L

k·v dv, (2.30)

note here an abuse of notation: the summation over the 3D index k means −N/2 ≤ ki ≤

N/2 − 1, where ki is each component of k. Upon substitution of f (i), f (j) into Q(ij)(f (i), f (j))

and a Galerkin projection to the same Fourier space, we obtain the k-th Fourier mode of the

collision operator as

Q̂(ij)
k =

N
2 −1∑

l,m=−N
2

l+m=k

G(ij)(l, m)f̂ (i)
l f̂ (j)

m , (2.31)

with the weight

G(ij)(l, m) =
∫
BR

∫
S2

Bij(|g|, σ · ĝ)
[
e
−i π

L

mj
mi+mj

(l+m)·g+i π
L
|g|
(

mj
mi+mj

l− mi
mi+mj

m

)
·σ

− e−i π
L

m·g
]

dσ dg.

Without special treatment, the summation (2.31 ) has to be evaluated directly, resulting in a

computational cost of O(N6). Furthermore, the weight G(ij)(l, m) needs to be precomputed

and the storage requirement is O(N6). This can quickly become a bottleneck even for

moderate N . Motivated by our previous work for the single-species Boltzmann equation

[31 ], [32 ], we propose the following strategy to accelerate the direct summation as well as

alleviate its memory bottleneck.

For the gain term (positive part) of G(ij)(l, m), we decompose it as

G(ij)+(l, m) =
∫ R

0

∫
S2

F (ij)(l + m, ρ, σ)ei π
L

ρ

(
mj

mi+mj
l− mi

mi+mj
m

)
·σdσ dρ, (2.32)

where ρ = |g| is the radial of g and

F (ij)(l + m, ρ, σ) = ρ2
∫

S2
Bij(ρ, σ · ĝ)e−i π

L
ρ

mj
mi+mj

(l+m)·ĝ dĝ, (2.33)
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while for the loss term (negative part) of G(ij)(l, m),

G(ij)−(m) =
∫ R

0

∫
S2

∫
S2

ρ2Bij(ρ, σ · ĝ)e−i π
L

ρ m·ĝdσ dĝ dρ. (2.34)

The idea is to precompute F (ij)(l + m, ρ, σ) and G(ij)−(m) up to a high accuracy, and ap-

proximate the integral in (2.32 ) on the fly using a quadrature rule:

G(ij)+(l, m) ≈
∑
ρ,σ

wρwσF (ij)(l + m, ρ, σ)ei π
L

ρ

(
mj

mi+mj
l− mi

mi+mj
m

)
·σ

, (2.35)

where for the radial direction, we use the Gauss-Legendre quadrature with Nρ = O(N)

points (since the integral oscillates roughly on O(N)); for the integral over the sphere, we

use the M -point spherical design quadrature [51 ], [52 ] (usually M � N2).

Therefore, the gain term of the collision operator can be approximated as

Q̂(ij)+
k ≈

∑
ρ,σ

wρwσF (ij)(k, ρ, σ)
N
2 −1∑

l,m=−N
2

l+m=k

(
e

i π
L

ρ
mj

mi+mj
l·σ

f̂
(i)
l

)(
e
−i π

L
ρ

mi
mi+mj

m·σ
f̂ (j)

m

)
. (2.36)

Written in the above form, we see that the inner sum is a convolution of two functions so

that it can be evaluated efficiently in O(N3 log N) operations via the fast Fourier transform

(FFT). Together with the outer sum, the total complexity of evaluating Q̂(ij)+
k (for all k) is

O(MN4 log N) (recall the total number of quadrature points needed for ρ and σ is O(MN)).

On the other hand, the loss term of the collision operator can be written as

Q̂(ij)−
k =

N
2 −1∑

l,m=−N
2

l+m=k

f̂
(i)
l

(
G(ij)−(m)f̂ (j)

m

)
, (2.37)

which is readily a convolution, hence can be evaluated in O(N3 log N).
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Putting both pieces together, we have obtained a fast algorithm of complexity O(MN4 log N)

for evaluating the collision operator Q(ij)(f (i), f (j)), where M � N2. In addition, the memory

requirement to store the weight F (ij)(l + m, ρ, σ) and G(ij)−(m) is O(MN4).

2.6 The discontinuous Galerkin method for the spatial discretization

The previously introduced fast spectral method allows us to compute the collision opera-

tor efficiently. To solve the full spatially inhomogeneous equation (2.19 ), we also need an

accurate and efficient spatial and time discretization. Here we adopt the RKDG (Runge-

Kutta discontinuous Galerkin) method [53 ] widely used for hyperbolic type equations. Since

the transport term is linear in the Boltzmann equation, the application of DG method is

straightforward. We give a brief description below for completeness.

We first decompose the physical domain Ω into Ne variable-sized disjoint elements De
x:

Ω ≈
Ne⋃
e=1

De
x, De

x ∩ De′

x = ∅, ∀ e 6= e′, 1 ≤ e, e′ ≤ Ne. (2.38)

In each element De
x, we approximate the distribution function f (i)(t, x, v) for each species

by a polynomial of order Np:

x ∈ De
x : f (i)

e (t, x, v) =
K∑

l=1
F (i)

e, l(t, v) φe
l (x), 1 ≤ i ≤ s, (2.39)

where φe
l (x) is the basis function supported in De

x, K is the total number of terms in the

local expansion, and F (i)
e,l (t, v) is the elemental degree of freedom.

We form the residual by substituting the expansion (2.39 ) into the eqn. (2.19 ):

R(i)
e =

K∑
l=1

φe
l ∂tF (i)

e, l +
K∑

l=1
F (i)

e, l v · ∇xφe
l −

s∑
j=1

1
Knij

K∑
l1,l2=1

Q(ij)
(
F (i)

e, l1 , F (j)
e, l2

)
φe

l1φe
l2 , 1 ≤ i ≤ s,

(2.40)
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where we used the quadratic property of the collision operator. We then require that the

residual is orthogonal to all test functions. In the Galerkin formulation, the test function is

the same as the basis function, thus

∫
De

x

R(i)
e φe

m dx = 0, 1 ≤ m ≤ K, 1 ≤ i ≤ s. (2.41)

Substituting (2.40 ) into (2.41 ) and applying the divergence theorem, we obtain

K∑
l=1

(∫
De

x

φe
m φe

l dx

)
∂tF (i)

e, l −
K∑

l=1
F (i)

e, l v ·
∫

De
x

φe
l ∇xφe

m dx

= −
∫

∂De
x

φe
m

(
F (i)
∗ · n̂e

)
dx +

s∑
j=1

1
Knij

K∑
l1,l2=1

Q(ij)(F (i)
e, l1 , F (j)

e,l2)
(∫

De
x

φe
m φe

l1 φe
l2 dx

)
, (2.42)

where n̂e is the local outward pointing normal and F
(i)
∗ denotes the numerical flux. Specifi-

cally, the surface integral in the above equation is defined as follows

∫
∂De

x

φe
m

(
F (i)
∗ · n̂e

)
dx =

∑
E ∈ ∂De

x

∫
E

φe
m

(
F

(i)
∗, E · n̂e

E

)
dx, (2.43)

with n̂e
E and F

(i)
∗, E being the outward normal and numerical flux along the face E. In our

implementation, we choose the upwind flux:

F
(i)
∗, E =


v f (i)

e (t, xE, int(De
x), v), v · n̂e

E ≥ 0

v f (i)
e (t, xE, ext(De

x), v), v · n̂e
E < 0

(2.44)

where int and ext denote interior and exterior of the face e respectively.

Finally, define the mass matrix Mml, stiffness matrix Sml, and the tensor Hml1l2 as

Me
ml =

∫
De

x

φe
m(x) φe

l (x) dx, Se
ml =

∫
De

x

φe
l (x) ∇xφe

m(x) dx,

He
m l1l2 =

∫
De

x

φe
m(x) φe

l1(x) φe
l2(x) dx,

(2.45)
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then (2.42 ) can be written as

K∑
l=1

Me
ml ∂tF (i)

e, l −
K∑

l=1
v · Se

ml F (i)
e, l = −

∫
∂De

x

φe
m

(
F (i)
∗ · n̂e

)
dx +

s∑
j=1

1
Knij

K∑
l1, l2=1

He
m l1l2Q(ij)

(
F (i)

e, l1 , F (j)
e, l2

)
,

(2.46)

for 1 ≤ m ≤ K, 1 ≤ i ≤ s.

(2.46 ) is the DG system we are going to solve in each element De
x of the physical domain.

The fast spectral method introduced in the previous section is used to evaluate the term

Q(ij)
(
F (i)

e, l1 , F (j)
e, l2

)
.

2.7 Discretization in the velocity space

To further discretize the system (2.46 ) in the velocity space, we employ a finite difference

(or discrete velocity) discretization. Each velocity component ci (i ∈ {1, 2, 3}) is discretized

uniformly with N points in the interval [−L, L]. The grid points are chosen as −L + (j −

1/2)∆v, with j = 1, . . . , N and ∆v = 2L/N (the choice of L is given below). For brevity we

will use vj to denote the 3D velocity grid point.

The reason of using the uniform velocity grid is because the fast algorithm for the collision

operator is based on Fourier transform, which is naturally done on a uniform mesh. Sim-

ply speaking, it takes the function values at the grid points as input, does the calculation

(including forward and backward FFTs) in a black box solver, and outputs the values of

the collision operator at the same grid points. As such, the method can achieve spectral

accuracy (subject to domain truncation error which is usually very small); furthermore, the

simple mid-point rule would also allow one to construct the moments with spectral accuracy.

With the above setup, we just need to solve the system (2.46 ) at each velocity grid vj and in

each spatial element De
x. The macroscopic quantities defined in (2.23 ): for example, number

41



density in the spatial element Di
x can be recovered using numerical integration (mid-point

rule) of the distribution function over the entire velocity grid,

n(i)
e (t, x) =

∑
j

f (i)
e (t, x, vj) ∆v3. (2.47)

Note that ni, the number density of species i, is polynomials defined in each element since

f i(t, x, vj) is polynomial.

2.8 The collision operator algorithm

In multi-species implementation, with the high amount of involved computation, our motive

is to avoid spurious computation for every timestep. We first outline the procedure for

pre-computing variables that can be stored and reused during the course of the simulation.

• First, we precompute (π/L ρ l · σ). We use Gauss-Legendre-Quadrature (GLQ) for

integration. So ρ, the GLQ zeros, is an array of size Nρ (since the integrand oscillates

on the scale of O(N), the total number of quadrature points needed should be ∼ O(N)).

Additionally, we use spherical design [51 ] quadrature on sphere. So, σ, the spherical-

quadrature zeros, is an array of size M . l as previously defined is the 3-D velocity-

space index, and is therefore an array of size N3. Based upon these (π/L ρ l · σ) is

precomputed and stored as a Nρ × M × N3 flattened row-major array axyz. This is

described in steps 1–9 of Algo. (1 ).

• Second, we compute F (l + m, ρ, σ) as per Eq. (2.33 ). Note that k = l + m is velocity-

space index of size N3. Since l + m, ρ, and σ do not change with time, the term

F (l + m, ρ, σ) is precomputed and stored as a Nρ × M × N3 flattened row-major array

b(ij)
xyz for every collision pair (i, j). This is described in step 13 of Algo. (1 ).

• Third, we perform precomputation needed for loss-term G(ij)−(m) as per Eq. (2.34 ).

The output is stored as a N3 flattened row-major array c(ij)
z for every collision pair

(i, j). This is described in step 14 of Algo. (1 ).
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Algorithm 1: Pre-computation for Collision-Algorithm
Input: Number of points in each-direction of velocity mesh N , number of quadrature points for low-rank decomposition Nρ,

number of points on half-sphere M , number of points on pre-computation sphere M(pre), spherical quadrature weight wσ ,
spherical quadrature-points σ (vector-field size: M), pre-computation spherical quadrature weight w

(pre)
σ , pre-computation

spherical quadrature-points σ(pre) (vector-field size: M(pre)), Gauss quadrature-weights wρ (size: Nρ), Gauss
quadrature-points ρ (size: Nρ), first collision parameter γij = 2(ωij − 1), second collision parameter ηij = (αij − 1), size of
velocity mesh L, normalized mass mi, mj of species-pair (i, j)

Output: a,b,c
Declare:

a (size: MNρN3), b(ij) (size: MNρN3), c(ij) (size: N3)
l (vector-field size: N3), v (size: N)

1: for x = 0 to N − 1 do
2: vx = x - (x ≥ N/2) × N
3: end for

// See octave function: [lx,ly,lz]=ndgrid(v)
4: l ← ndgrid(v)

// Subscript x,y,z on symbols denote array-index
5: for x = 1 to Nρ do
6: for y = 1 to M do
7: for z = 1 to N3 do
8: axyz ← π/L × ρx × (lz · σy)

// ( · ) denotes vector dot-product
9: end for
10: for ŷ = 1 to M(pre) do
11: Bij ←

(
1 + σy · σ(pre)

ŷ

)ηij

12: for z = 1 to N3 do
13: b(ij)

xyz ← b(ij)
xyz + Bij × w

(pre)
σ × ρ

γij +2
x × exp(-1i × mj/(mi + mj) × π/L × ρx × (lz · σ(pre)

ŷ ))

14: c(ij)
z ← c(ij)

z + (wρ)x × wσ × Bij × w
(pre)
σ × ρ

γij +2
x × exp(-1i × π/L × ρx × (lz · σ(pre)

ŷ ))

// The variables b(ij)
xyz, c(ij)

z needs to be computed for every (i, j) collision pair
15: end for
16: end for
17: end for
18: end for
19: return a,b(ij),c(ij)
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Next we outline the procedure for computing Q(ij).

• First, we compute the forward Fourier transform of F (i)
i, l1 , and F (j)

i, l2 to obtain f̂
(i)
l and

f̂ (j)
m respectively. This is described in step 1 of Algo. (2 ).

• Second, we compute G(ij)+(l, m) as per Eq. (2.32 ). Recall that (π/L ρ l · σ) has been

already precomputed and stored as axyz. Also recall that F (l + m, ρ, σ) has been

precomputed and stored as b(ij)
xyz. These can be reused to compute G(l, m). This is

described in step 2–8 of Algo. (2 ). In our implementation, we explicitly unroll the

nested loops so that variables t1, t2 in steps 4 and 5 are computed in a single kernel

call (thereby requiring a space of MNρN3 each), and the FFT transforms in the step

6 are rather MNρ batched FFT transforms, each of size N3.

• Third, in order to perform convolution for the loss-term G(ij)−(l, m), we prepare the

variable QG in step 7 of Algo. (2 ).

• Fourth, we perform convolutions to compute Q̂(ij)
k as in Eq. (2.31 ). Recall that

G(ij)−(m) has now been precomputed and stored as QG, and can be reused here. An

inverse Fourier transform is then performed to obtain final Q(ij). This is described in

step 10 of Algo. (2 ).

In summary, this chapter meets the following objectives:

• Construct a deterministic, accurate, robust, and efficient method for solving the multi-

species Boltzmann equation of some engineering value.

• Construct a deterministic method for multi-species Boltzmann equation that can han-

dle general repulsive interactions: the special cases of these are the aforementioned,

which are widely used in DSMC simulations. The formulation should be consistent

with kinetic theory and DSMC. This ensures that the results from deterministic method

can be verified easily; which in turn helps with easy adaptation of the method.
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Algorithm 2: Collision-Algorithm Pseudo-code
Input: Number of points in each-direction of velocity mesh N , Distribution-functions F(i)

i, l1
and F(j)

i, l2
(size: N3), number of

points on half-sphere M , spherical quadrature weight wσ , Gauss quadrature-weights wρ (size: Nρ), precomputed
variable a (size: MNρ ×N3), precomputed variable b(ij) (size: MNρ ×N3), precomputed variable c(ij) (size: N3), the
kernel prefactor β(ij), normalized mass mi, mj of species-pair (i, j)

Output: Q
Declare:

{t1,. . . ,t3} (each size: N3); Q, QG (each size: N3)
1: Compute forward FFT:

FTf ← fft(F(i)
i, l1

)

FTg ← fft(F(j)
i, l2

)
// Subscript x,y on symbols denote array-index
// Inner-most loop r ∈ {1, . . . , N3} has been ignored

2: for x = 1 to Nρ do
3: for y = 1 to M do
4: t1 ← exp(1i × mj/(mi + mj) × axy) × FTf

// Note: These are array-operations over N3 (z index)
// 1i denotes the complex number

√
−1

5: t2 ← exp(-1i × mi/(mj + mi) × axy) × FTg
// ifft denotes inverse FFT

6: t3 ← fft(ifft(t1)× ifft(t2))
7: QG ← QG + (wρ)x × wσ × b(ij)

xy × t3
8: end for
9: end for

// real returns real part of complex number
10: Q = β(ij)× real( ifft(QGs) - F(i)

i, l1
× ifft(c(ij) × FTg) )

11: return Q
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3. THE IMPLICIT-EXPLICIT SCHEMES FOR BOLTZMANN

EQUATION AND RELATED KINETIC MODELS

3.1 Background and motivation

As we noted in the introduction, the explicit deterministic methods suffer from time-stepping

restrictions. In conventional deterministic schemes, the timestep should be smaller than

mean collision timescale, which naturally decreases with decrease in mean free path. Simply

speaking, the time-step is dependent on the Knudsen number, Kn. Even if the timestep can

be, magically, kept fixed as the Knudsen number is decreased, the total number of timesteps

required for the low Knudsen number flow to relax to equilibrium is generally high. Noting

that time-stepping is inherently linear in traditional stochastic schemes such as DSMC, the

time integration errors gradually accumulate.

To circumvent the aforementioned issues, the so called asymptotic-preserving (AP) schemes

for stiff kinetic equations have been recently proposed. These AP schemes preserve the

asymptotic transition from the microscopic kinetic regime to the macroscopic fluid regime,

thereby removing the dependence of timestep on the Knudsen number. These schemes,

generally, decompose the kinetic equation into a stiff and non-stiff part, wherein the stiff

part is treated implicitly, and the non-stiff part is treated explicitly. For general non-linear

collision operators, this is achieved by penalizing the collision operator, Q(f, f), by a penalty

function P(f) i.e.,

L(f)︸ ︷︷ ︸
non stiff part

+ Q(f, f)
Kn︸ ︷︷ ︸

stiff part

= L(f) + Q(f, f) − P(f)
Kn︸ ︷︷ ︸

non-stiff part

+ P(f)
Kn︸ ︷︷ ︸

stiff part

. (3.1)

From a historical perspective of asymptotic schemes, Pareschi introduced a hybrid Monte

Carlo method in [54 ] wherein the solution was represented as a convex combination of a non-

equilibrium distribution function and a Maxwellian, obtained using implicit time-differencing

of solution via a generalized Wild expansion. A time-relaxed Monte Carlo was introduced

in [55 ] by setting P (f) = βf , where β ≥ 0, and applied to engineering problems in [56 ].
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A Bhatnagar-Gross-Krook (BGK) penalization based asymptotic scheme was introduced by

Filbet in [57 ] by setting P (f) = β(M − f), where M refers to the Maxwellian. Based on

the so-called successive penalty, the idea was later extended in [58 ] to devise a scheme with

stronger1
 AP property in addition to a positivity-preserving (PP) property. It was later

implemented in [59 ] within a direct simulation Monte Carlo framework.

Recently, the so-called asymptotic-preserving Implicit-Explicit (IMEX) Runge-Kutta schemes

[60 ] have been (re)introduced for the stiff kinetic equations in [61 ]. Dimarco [62 ] introduced

it within the explicit Runge-Kutta (ExpRK) framework for BGK and non-linear Boltzmann

equation. The scheme was subsequently coupled with the high-order Weighted Essentially

Non Oscillatory (WENO) spatial discretization scheme in [63 ], and applied to several non-

homogeneous cases of engineering interest. The idea was further explored in [64 ] for quantum

Boltzmann equation. More recently, Hu [65 ] proposed a second order asymptotic-preserving

and positivity-preserving ExpRK scheme, applicable for BGK, Fokker-Plank, and nonlinear

Boltzmann equation. Notably, the scheme was coupled with a high-order spatially-accurate

WENO scheme, and tested on 1D BGK and Fokker-Planck equation systems. In general,

the asymptotic schemes capture the Euler limit in the limit of vanishing Knudsen number.

However, in general for engineering flows, Kn is small but not zero. Consequently a family

of IMEX schemes capturing the Navier-Stokes asymptotics has been recently developed in

[66 ] for BGK and ESBGK kinetic systems. We want to emphasize that both Euler and

Navier-Stokes can be derived from asymptotics of the collision operator – this is different

from the Chapman-Enskog theory [5 ] 2
 . Finally, we mention the nodal-DG scheme, based

1↑ In the work [57 ], the authors devised a scheme with relaxed AP property i.e., f −M → O(Kn), after some
initial transient time t ≥ t0, t0 > 0. The later scheme in [58 ] has a strong AP property in the sense that
f − M → O(Kn) for t ≥ 0.
2↑ With regard to the Chapman-Enskog theory, we mention that these are formal procedures for solving the
Boltzmann equation in terms of a series expansion in terms of the small parameter Kn, which we know
as Hilbert and Chapman-Enskog expansions [1 ], [2 ], [5 ], [67 ]–[69 ]. These procedures have never received a
satisfactory mathematical justification in general, but have become very popular tools for deriving hydrody-
namical equations [70 ]. It should be pointed out that equations obtained by keeping “many” terms of the
Hilbert or Chapman- Enskog series, like the so-called Burnett or super-Burnett equations, seem to be irrel-
evant (an ad-hoc recipe to fix this problem can be found in [71 ]). These expansions are not expected to be
convergent, but only “asymptotic”. In fact, a solution of the Boltzmann equation which could be represented
as the sum of such a series would be a very particular one: it would be entirely determined by the fields
of “macroscopic” local density, mean velocity and pressure associated with it – an idea essentially on the
lines of Grad’s method of moments [72 ] and/or Wild expansions [54 ]. Just because we know moments of a
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on micro-macro decomposition, was applied to BGK equation in [73 ] for 1-D problems. All

of these schemes were largely applied within deterministic framework, and were extremely

limited in the complexity of the space non-homogeneous cases addressed: A major portion

of these works test the schemes for initial value problems.

In what follows, we devise and implement asymptotic-preserving (AP) deterministic scheme

along the lines of [66 ], [74 ] with the properties noted in objective (3 ). In particular, we

implement a new family of high order IMEX-BDF time integration schemes which require

”only one” collision kernel evaluation per time-step, thereby making it computationally opti-

mal. These AP schemes unnecessite the use of so called hybrid Navier-Stokes + Boltzmann

coupling techniques for simulating flows which involve large change in rarefaction levels in

subportions of the flow, for example, in micronozzles.

Remark 3.1.1. In (3.1 ), we noted a penalty function. This penalty function is usually the

simplified collision operators such as BGK [57 ] or ESBGK [66 ]. However, these operators are

valid for single-species. Many simplified multi-species generalizations of these operators have

been proposed and this is a very active research direction in the mathematical and engineering

communities, see for instance some early works [75 ]–[77 ], and more recently [78 ]–[81 ], and

references therein. These simplified models perform better at low Knudsen numbers; yet, they

often fail to capture the physics at high Knudsen numbers and diffusion dominated flows at

low Knudsen numbers (see [19 ], [82 ]). Consequently, in this work, rather than searching for

a multi-species BGK/ESBGK type penalty functions, we propose to establish the ideas for

single-species Boltzmann. A future work may focus on multi-species generalization.

probability distribution, doesn’t mean we know the probability distribution (here’s an analogy from physics:
measurement of, say, particle position doesn’t say much about the particle’s wave function. Measurements
are observables (say position, velocity, etc): the ideas of classical physics. Classical physics alone doesn’t
answer everything about the physical world that is inherently quantum. What classical description is to
quantum, Navier-Stokes (or method of moments) is to Boltzmann. From the theory of logic, Wittgenstein
put it as, all facts (moments) about world cannot explain the world (distribution)). Infact, in [70 ], authors
argue that the Hilbert and Chapman-Enskog methods rely on very sloppy grounds. Rather violent attacks on
the convenient illusion of these principles can be found in [68 ]. In spite of this, these methods are still widely
used, and numerical schemes are still being “synthesized” for solving rarefied gas flow problems. Rather
harmful is the extension and application of these ideas to non-trivial scenarios, which include, development
of Kn-perturbed high-order boundary conditions, the so-called “extended” Navier-Stokes models, effective
transport models, etc.; and their purported use to solve mission critical problems.
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3.2 A class of single-species kinetic equations

First, we present the simplification of (1.1 ) with s = 1.

We will consider the following prototype kinetic equation

∂f

∂t
+ v · ∇xf = Q(f), t > 0, x ∈ Ωx ∈ R3, v ∈ R3. (3.2)

Here f = f(t, x, v) is the one-particle distribution function of time t, position x, and velocity

v. f dx dv gives the number of particles to be found in an infinitesimal volume dx dv centered

at the point (x, v) of the phase space. Given f , the macroscopic quantities can be obtained

via its moments:

n =
∫
R3

f dv, u = 1
n

∫
R3

f v dv, T = m

3kBn

∫
R3

f |v − u|2 dv,

P = m
∫
R3

f (v − u) ⊗ (v − u) dv, q = 1
2 m

∫
R3

f (v − u) |v − u|2 dv,

(3.3)

where n, u, T , P, and q are, respectively, the number density, bulk velocity, temperature,

stress, and heat-flux. m is the molecular mass and kB is the Boltzmann’s constant. Q(f)

is the collision operator describing the interactions between particles. In this paper, we will

consider the full Boltzmann collision operator and three linear penalty functions viz. BGK,

ESBGK and Shakov models.

- Boltzmann collision operator [2 ]:

QBoltz(f, f) =
∫
R3

∫
S2

B(|v − v∗|, cos χ) [f(v′)f(v′∗) − f(v)f(v∗)] dσ dv∗, (3.4)

where (v, v∗) and (v′, v′∗) denote the pre- and post- collision velocity pairs, which are

related through momentum and energy conservation as

v′ = v + v∗
2 + |v − v∗|

2 σ, v′∗ = v + v∗
2 − |v − v∗|

2 σ, (3.5)
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with the vector σ varying over the unit sphere S2. B (≥ 0) is the collision kernel

depending only on |v − v∗| and the scattering angle χ (cos χ = σ · (v − v∗)/|v − v∗|).

In this paper, we consider the Bird’s Variable/Soft Sphere model [24 ] given by

B(|v − v∗|, cos χ) = bω,α|v − v∗|2(1−ω)(1 + cos χ)α−1, (3.6)

where

bω,α = d2
ref
4

(
4kBTref

m

)ω−0.5 1
Γ(2.5 − ω)

α

2α−1 , (3.7)

with

d2
ref = C0

√
mkBTref/π

µref
, C0 = 5(α + 1)(α + 2)

4α(5 − 2ω)(7 − 2ω) , (3.8)

where dref, µref, Tref are the reference diameter, viscosity, temperature, and ω, α are

the viscosity coefficient and scattering parameter.

- BGK model [83 ]:

QBGK(f) = ν(M[f ] − f), (3.9)

where M[f ] is the Maxwellian defined by

M[f ] = n

(2πkBT/m)3/2 exp
(

− m|v − u|2

2kBT

)
, (3.10)

and ν is the collision frequency given by

ν = p

µ
, with p = nkBT, µ = µref

(
T

Tref

)ω

. (3.11)

Here p is the pressure and µ is the dynamic viscosity.

- ESBGK model [84 ]:

QESBGK(f) = Pr ν(G[f ] − f), (3.12)
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where G[f ] is a generalized Gaussian given by

G[f ] = n√
det(2πkBT/m)

exp
(

− m

2kB

(v − u)T T−1 (v − u)
)

, (3.13)

with

T = 1
PrT Id +

(
1 − 1

Pr

) P
kBn

. (3.14)

Here Pr is the Prandtl number.

- Shakov model [85 ]:

QShakov(f) = ν(S[f ] − f), (3.15)

where

S[f ] = M[f ]
1 + 1 − Pr

5
q · (v − u)

n(kBT )2/m

( |v − u|2

kBT/m
− 5

). (3.16)

3.3 Non-dimensional form

We follow the non-dimensionalization convention as defined in [32 ]. We first choose the

characteristic length H0, characteristic temperature T0, and characteristic number density

n0, and then define the characteristic velocity u0 =
√

2kBT0/m and characteristic time

t0 = H0/u0.

We rescale t, x, v, and f as follows

t̃ = t

t0
, x̃ = x

H0
, ṽ = v

u0
, f̃ = f

n0/u3
0
, (3.17)

the macroscopic quantities as

ñ = n

n0
, ũ = u

u0
, T̃ = T

T0
, P̃ = P

n0kBT0
, q̃ = q

n0kBT0u0
. (3.18)
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In the Boltzmann equation, we rescale the collision kernel as

B̃ = B

B0
, B0 =

√
2π u0 d2

ref (Tref/T0)ω−0.5. (3.19)

In the relaxation-type kinetic models, we rescale the collision frequency as

ν̃ = ν

ν0
, ν0 = n0B0 = 2C0

√
π

n0kBT0

µref(T0/Tref)ω
. (3.20)

Hence all equations will have the same Knudsen number defined as

Kn = u0

n0B0H0
= u0

ν0H0
= 1√

2π n0 d2
ref (Tref/T0)ω−0.5 H0

. (3.21)

First of all, the definition in (3.3 ) is changed to (we drop the ∼ in the following for simplicity):

n =
∫
R3

f dv, u = 1
n

∫
R3

f v dv, T = 2
3n

∫
R3

f |v − u|2 dv,

P = 2
∫
R3

f (v − u) ⊗ (v − u) dv, q =
∫
R3

f (v − u) |v − u|2 dv.
(3.22)

The equation (3.2 ) after non-dimensionalization becomes

∂f

∂t
+ v · ∇xf = 1

ε
Q(f), ε := Kn, (3.23)

with the non-dimensionalized collision operator given by

- Boltzmann:

QBoltz(f, f) =
∫
R3

∫
S2

B(|v − v∗|, cos χ)[f(v′)f(v′∗) − f(v)f(v∗)] dσ dv∗, (3.24)

with

B(|v − v∗|, cos χ) = α

22−ω+αΓ(2.5 − ω)π |v − v∗|2(1−ω) (1 + cos χ)α−1. (3.25)
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- BGK:

QBGK(f) = ν(M[f ] − f), (3.26)

with

M[f ] = n

(πT )3/2 exp
(

− |v − u|2

T

)
, ν = 1

2C0
√

π
nT 1−ω. (3.27)

- ESBGK:

QESBGK(f) = Pr ν(G[f ] − f), (3.28)

with

G[f ] = n√
det(πT)

exp
(

− (v − u)T T−1 (v − u)
)

, T = 1
PrT Id +

(
1 − 1

Pr

)P
n

. (3.29)

- Shakov:

QShakov(f) = ν(S[f ] − f), (3.30)

with

S[f ] = M[f ]
1 + 2(1 − Pr)

5
q · (v − u)

nT 2

(2|v − u|2

T
− 5

). (3.31)

For all the collision operators listed above, they satisfy the following common properties:

- Mass/momentum/energy conservation:

∫
R3

Q(f) dv =
∫
R3

Q(f) v dv =
∫
R3

Q(f) |v|2 dv = 0. (3.32)
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- Equilibrium state is the Maxwellian:

Q(f) = 0 ⇐⇒ f = M[f ]. (3.33)

- H-theorem (not for Shakov model):

−
∫
R3

Q(f) ln(f) dv ≥ 0. (3.34)

- Some additional properties for M[f ], G[f ], and S[f ]:

∫
R3

M[f ] (v − u) ⊗ (v − u) dv = 1
2nT Id,

∫
R3

G[f ] (v − u) ⊗ (v − u) dv = 1
2nT,∫

R3
S[f ](v − u)|v − u|2 dv = (1 − Pr)q.

(3.35)

Using (3.32 ), if we take the moments

∫
R3

· (1, v, |v|2)T dv (3.36)

on both sides of (3.23 ), we obtain



∂tn + ∇x · (nu) = 0,

∂t(nu) + ∇x · (nu ⊗ u + P/2) = 0,

∂tE + ∇x · (Eu + Pu + q) = 0,

(3.37)
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where E := 3
2nT + nu2 is the total energy. This is the local conservation law which is not

closed. Using the Chapman-Enskog expansion, one can close the system and derive the

following Navier-Stokes equations by dropping O(ε2) terms:



∂tn + ∇x · (nu) = 0,

∂t(nu) + ∇x · (nu ⊗ u + nT Id/2) = ε∇x · (µ(T )σ(u)),

∂tE + ∇x · ((E + nT )u) = ε∇x · (2µ(T )σ(u)u + κ(T )∇xT ),

(3.38)

where µ(T ) := C0
√

πT ω, and κ(T ) = 5
2µ(T ) in the BGK model, and κ(T ) = 5

2 Prµ(T ) in the

ESBGK and Shakov models.

Transforming back to the dimensional form, we get



∂tρ + ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu ⊗ u + nkBT Id) = ∇x · (µ(T )σ(u)),

∂t(ρu2/2 + 3nkBT/2) + ∇x · ((ρu2/2 + 5nkBT/2)u) = ∇x · (µ(T )σ(u)u + κ(T )∇xT ),

(3.39)

where ρ = mn, σ(u) = ∇xu + (∇xu)T − 2
3∇x · uId, µ(T ) = µref(T/Tref)ω, κ(T ) = 5

2
kB

m
µ(T ) in

the BGK model, and κ(T ) = 5
2 Pr

kB

m
µ(T ) in the ESBGK and Shakov models.

3.4 Implicit-explicit schemes for linear models

Before, we begin, we would like to recall the closely related family of IMEX-RK schemes

for relaxation-type kinetic models: IMEX RK applied to BGK equation [61 ], first order

IMEX RK applied to the ES-BGK equation [86 ], high order IMEX RK applied to ESBGK

equation [66 ], and IMEX RK applied to Shakov equation [87 ]. In what follows, we will

assume reader’s familiarity with the aforementioned references.
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We first briefly describe the general IMEX-BDF schemes applied to the relaxation-type

kinetic equations (3.1 ).

f (0) = f l−q+1,

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b
[
Q(f (q))

]
,

f l+1 = f (q). (3.40)

where −T is the convection operator; Q is the collision operator; ãj are the vector of co-

efficients for the IMEX-BDF scheme. These coefficients, up to third order, are provided in

Table 3.1 . Note that IMEX-BDF1 is same as the ARS (1,1,1) scheme [61 ], [66 ]. To initiate

Table 3.1. Coefficients of IMEX-BDF schemes up to third order.
q a ã b

1 (−1, 1) 1 1

2
(

1
3 , −4

3 , 1
) (

−2
3 , 4

3

)
2
3

3
(
− 2

11 , 9
11 , −18

11 , 1
) (

6
11 , −18

11 , 18
11

)
6
11

the scheme (3.40 ), one needs 2q starting values: f (0), . . . , f (q−1); T (f (0)), . . . , T (f (q−1)). In

practice, they can be obtained using IMEX-RK type schemes. With proper starting values,

the scheme, nonetheless, may appear nonlinearly implicit since Q(f (q)) depends on f (q). To

circumvent this, we use the moment computation strategy. To this end, we begin by defining

the moment operator MΦ : Rd 7→ 1

MΦ [ · ] =
∫
R3

Φ(v) · dv (3.41)

where Φ(v) are some real valued functions. In general, for our purpose, M is a bounded

operator, admits the properties of inner product in finite dimensional Sobolev spaces.
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3.4.1 IMEX-BDF-BGK scheme

We start by setting Q = M in (3.40 ). The simplified scheme reads as:

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b
[
ν(q)(M[f (j)] − f (j))

]
. (3.42)

To compute f (q), one needs ν(q) and M[f (q)]. These quantities can be constructed from

the moments of f (q). To this end, let ΦB(v) = {1, v, |v|2} in (3.41 ) and apply the moment

operator to both sides of scheme (3.42 ):

q∑
i=0

aiMΦB

[
f (i)

]
= ∆t

q−1∑
i=0

ãiMΦB

[
T (f (i))

]
. (3.43)

where MΦB

[
M[f (q)] − f (q)

]
= 0 owing to (3.32 ). From (3.43 ), MΦB

[
f (q)

]
can be evaluated

explicitly. One can rewrite (3.43 ) using (3.22 ) as

n(q) = a−1
q

[
−

q−1∑
i=0

ain
(i) + ∆t

q−1∑
i=0

ãi

∫
R3

T (f (i)) dv
]

n(q)u(q) = a−1
q

[
−

q−1∑
i=0

ain
(i)u(i) + ∆t

q−1∑
i=0

ãi

∫
R3

T (f (i)) v dv
]

E(q) = a−1
q

[
−

q−1∑
i=0

aiE
(i) + ∆t

q−1∑
i=1

ãi

∫
R3

T (f (i)) |v|2 dv
]
. (3.44)

Given these bulk properties, one can directly compute ν(q) and construct M[f (q)]. The final

scheme (3.42 ) then reads:

f (q) = ξ(q)
[

−
q−1∑
i=0

aif
(i) + ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b ν(q)M[f (q)]

]
,

with ξ(q) =
aq + ∆t

ε
b ν(q)

−1

. (3.45)

57



3.4.2 IMEX-BDF-ESBGK scheme

We start by setting Q = G in (3.40 ). The simplified scheme reads as:

q∑
i=0

aif
(i) =

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b
[

Pr ν(q)(G[f (j)] − f (j))
]
. (3.46)

To compute f (q), one needs Pr ν(q) and G[f (q)]. To this end, let ΦE(v) = {1, v, |v|2, v ⊗ v}

in (3.41 ). Applying this operator to both sides of scheme (3.46 ) results in 14 equations. The

first five equations are same as (3.44 ). The last nine equations are

Σ(q) = ζ(q)

−
q−1∑
i=0

aiΣ(i) + ∆t
q−1∑
i=0

ãi

∫
R3

T (f (i)) v ⊗ v dv + ∆t

ε
b ν(q)

[
n(q)

(1
2T (q)Id + u(q) ⊗ u(q)

)],

with ζ(q) =
aq + ∆t

ε
b ν(j)

−1

. (3.47)

Given the bulk properties, one can directly compute G[f (q)] and Pr ν(q). The final scheme

(3.46 ) then reads:

f (q) = ξ(q)
[

−
q−1∑
i=0

aif
(i) + ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b Pr ν(q)G[f (q)]

]
,

with ξ(q) =
aq + ∆t

ε
b Pr ν(q)

−1

. (3.48)

3.4.3 IMEX-BDF-Shakov scheme

We start by setting Q = S in (3.40 ). The simplified scheme reads as:

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b
[
ν(q)(S[f (j)] − f (j))

]
. (3.49)
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To compute f (q), one needs ν(q) and S[f (q)]. To this end, let ΦS(v) = {1, v, |v|2, v ⊗v, v|v|2}

in (3.41 ). Apply this operator to both sides of scheme (3.49 ) results in 17 equations. The

first five equations are same as (3.44 ). The last twelve equations are

Σ(q) = ζ(q)

−
q−1∑
i=0

aiΣ(i) + ∆t
q−1∑
i=0

ãi

∫
R3

T (f (i)) v ⊗ v dv + ∆t

ε
b ν(q)

[
n(q)

(1
2T (q)Id + u(q) ⊗ u(q)

)],

Λ(q)
p = ζ(q)

−
q−1∑
i=0

aiΛ(i)
p + ∆t

q−1∑
i=0

ãi

∫
R3

T (f (i)) vp|v|2 dv

+ ∆t

ε
bν(q)

[
(1 − Pr)

(
− 2Σ(q)

pr u(q)
r + nu(q)

p |u(q)|2 − 3
2 n(q) u(q)

p T (q)
)

+ n(q)u(q)
p

(5
2T (q) + |u(q)|2

)]
with ζ(q) =

aq + Pr ∆t

ε
b ν(q)

−1

. (3.50)

Given the bulk properties, one can directly compute S[f (q)] and ν(q). The final scheme (3.49 )

then reads:

f (q) = ξ(q)
[

−
q−1∑
i=0

aif
(i) + ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b ν(q)S[f (q)]

]
,

with ξ(q) =
aq + ∆t

ε
b ν(q)

−1

. (3.51)

Remark 3.4.1. If we look closely at three schemes, we will find a pattern common to these

relaxation-type kinetic models. First, we recall that while devising kinetic models for single

species system, the collision term Q := (M, G, S) is expected to have the following four

properties [2 ]:

• It guarantees the conservation of mass, momentum, and energy, i.e.,

∫
R3
Q dv =

∫
R3

vQ dv =
∫
R3

v2Q dv = 0. (3.52)
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• The entropy production is always positive, i.e.,

−
∫
R3

ln(f)Q dv ≥ 0

• Due to specific form of Q, the phase density in equilibrium is a Maxwellian i.e.,

Q = 0 ⇔
∫
R3

ln(f)Q dv = 0 ⇔ f = M

• The Prandtl number is close to 2/3 for monoatomic gases, i.e.,

Pr = 5
2

kB

m

µ

κ
,

where µ and κ, respectively, refer to dynamic viscosity and thermal conductivity.

Of these four, for devising an IMEX AP “numerical” scheme, the first and third property

(3.52 ) are only relevant: the first one is utilized for implicit evaluation, whereas third ensures

asymptotic-preserving property.

Kinetic models of relaxation type (Q−f) are, generally, devised to match the first k moments

of Q and f . For example, ESBGK model matches the first 10 moments (∑2
l=0 dl, d = 3),

whereas Shakov matches the 13 moments (3 additional from higher rank tensor i.e., heat

flux). Now consider a relaxation type fictitious collision model Q which we have devised to

match the first k = ∑r
l=0 dl, for some natural number r ≥ 1, moments i.e.,

∫
(Q[f ] − f) v ⊗ · · · ⊗ v︸ ︷︷ ︸

l times

dv = F
( ∫

f dv,
∫

f v dv, · · · ,
∫

f v ⊗ · · · ⊗ v︸ ︷︷ ︸
l times

dv
)

, l = {0, 1, 2, . . . , r},

(3.53)
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where F is some implicit function of moments. Now, an IMEX-BDF scheme for our fictitious

kernel Q with relaxation parameter ν should read

q∑
i=0

aif
(i) = ∆t

i−1∑
j=1

ãiT (f (i)) + ∆t

ε

i∑
j=1

aij ν(j)(Q[f (j)] − f (j)), i = 1, . . . , s. (3.54)

Now we compute the first k moments of (3.54 ), and use (3.53 ) to construct a “linear” matrix

system of size k × k with rank at most k. By solving the matrix system, one can obtain the

first k moments, and use it to construct the distribution Q. Once Q is known, f (i) can be

obtained directly from (3.54 ).

Of course, the caveat is that higher k implies a finer velocity mesh for enforcing discrete

conservation. Moreover, moment matching can go only so far. Entropy is a further concern

(Shakov model includes higher moments, but does not strictly satisfy the H-theorem [85 ]).

3.5 Implicit-explicit schemes for Boltzmann equation

In this section, we extend the approach described in the previous section to the case of

non-linear stiff full Boltzmann equation.

The general IMEX-BDF schemes applied to the non-linear stiff Boltzmann equation (3.23 )

reads

f (0) = f l−q+1,

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε
b
[
Q(f (q)) − P(f (q)) + P(f (q))

]
,

f l+1 = f (q). (3.55)
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where ai; ãj; b are the usual coefficients for the IMEX-BDF scheme. Now we use the property∑q−1
i=0 ãi = b in the last term to perform an implicit-explicit splitting:

f (0) = f l−q+1,

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε

q−1∑
i=0

ãi

[
Q(f (i)) − P(f (i))

]
+ ∆t

ε
b
[
P(f (q))

]
,

f l+1 = f (q). (3.56)

In this form, [Q(f (i)) − P(f (i))] is evaluated explicitly; and P [f (q)] is evaluated implicitly.

The ideas from the previous section follow in a straightforward manner.

3.5.1 IMEX-BDF Boltzmann-BGK scheme

AP Boltzmann-BGK scheme is constructed by setting Q = QBoltz and P = M in (3.56 ).

The simplified scheme reads as:

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε

q−1∑
i=0

ãi

[
QBoltz − ν(i)(M[f (i)] − f (i))

]
+ ∆t

ε
b ν(q)(M[f (q)] − f (q)).

(3.57)

Remark 3.5.1. As per [61 ], ν is selected so that it is a valid estimate for the largest value

of the negative term in the Boltzmann operator i.e.,

ν ≥
∫
R3

∫
S2

B(|v − v∗|, cos χ) f(v∗) dω dv∗.

For the Variable Hard sphere scattering model considered, assuming that velocity space is

truncated [22 ], [31 ] in an interval [−η
√

T , η
√

T ]3 so that |v − v∗| ≤ |2v| ≤ 2η
√

T ; and

utilizing the bounds ω ∈ [0.5, 1] and α ∈ (1, 2]; one can show that

ν ∝ nT 1−ω =⇒ ν = s̄ nT 1−ω, (3.58)
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where s̄ is some safety factor. There is no precise rule for selecting ν: (3.58 ) works well for

the numerical problems that we have studied in the present work. However, we do not claim

that (3.58 ) are optimal.

To compute f (i), one needs ν(i) and M[f (i)]. To this end, apply the moment operator, MφB
,

to both sides of scheme (3.57 ):

q∑
i=0

aiMφB

[
f (i)

]
= ∆t

q−1∑
i=0

ãi MφB

[
T (f (i))

]
(3.59)

where MφB

[
M[f (i)] − f (i)

]
= MφB

[
QBoltz

]
= 0 owing to (3.32 ). From (3.59 ), MφB

[
f (i)

]
can

be evaluated explicitly, and therefore M(q) can be constructed.

The final scheme reads:

f (q) = ζ(q)
[

−
q−1∑
i=0

aif
(i) + ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε

q−1∑
i=0

ãiQB(f (i))

− ∆t

ε

q−1∑
i=0

ãi ν(i)(M[f (i)] − f (i)) + ∆t

ε
b ν(q)M[f (q)]

]
,

with ζ(q) =
aq + ∆t

ε
b ν

(q)
B

−1

.

(3.60)

3.5.2 IMEX-BDF Boltzmann-ESBGK scheme

AP Boltzmann-ESBGK scheme is constructed by setting Q = QBoltz and P = G in (3.56 ).

The simplified scheme reads as:

q∑
i=0

aif
(i) = ∆t

q−1∑
i=0

ãiT (f (j)) + ∆t

ε

q−1∑
i=0

ãi

[
QBoltz − Pr ν(i)(G[f (i)] − f (i))

]
+ ∆t

ε
b Pr ν(q)(G[f (q)] − f (q)).

(3.61)
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To compute f (i), one needs ν(i) and G[f (i)]. To this end, apply the moment operator, MφE
,

to both sides of scheme (3.61 ):

q∑
i=0

aiMφE

[
f (i)

]
= ∆t

q−1∑
i=0

ãi MφE

[
T (f (i))

]
+ ∆t

ε
b Pr ν(q) MφE

[
G[f (q)] − f (q)

]

+ ∆t

ε

q−1∑
i=0

ãi MφE

[
QBoltz − Pr ν(i)(G[f (i)] − f (i))

]
(3.62)

Using MφB

[
G[f (q)] − f (q)

]
= MφB

[
QBoltz

]
= 0 owing to (3.32 ), one can rewrite first 5 terms

of (3.62 ) as

q∑
i=0
MφB

[
f (i)

]
= ∆t

q−1∑
i=0

ãi MφB

[
T (f (i))

]
, (3.63)

which is essentially (3.43 ).

We now need to define last 9 terms of (3.62 ) to fully construct G. Let Σ(i) = Mv⊗v[f (i)].

Using (3.29 ) and (3.35 ), we get

q∑
i=0

aiΣ(i) = ∆t
q−1∑
i=0

ãi

∫
R3

T (f (i)) v ⊗ v dv

+ ∆t

ε

q−1∑
i=0

ãi


∫
R3

QBoltz(f (i)) v ⊗ v dv − ν(i)
[
n(i)

(1
2T (i) Id + (u(i) ⊗ u(i))

)
− Σ(i)

]
+ ∆t

ε
b ν(q)

[
n(q)

(1
2T (q) Id + (u(q) ⊗ u(q))

)
− Σ(q)

]

which can be rearranged to evaluate Σ(i). Using this, and (3.62 ), G(q) can be now constructed.
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The final scheme reads:

f (q) = ξ(q)
[

−
q−1∑
i=0

aif
(i) + ∆t

q−1∑
i=0

ãijT (f (i)) + ∆t

ε

q−1∑
i=0

ãijQBoltz(f (i))

− ∆t

ε

q−1∑
i=0

ãi Pr ν(i)(G[f (i)] − f (i)) + ∆t

ε
b Pr ν(q)G[f (q)]

]
,

with ξ(q) =
aq + ∆t

ε
b Pr ν(q)

−1

.

(3.64)

3.5.3 IMEX-BDF Boltzmann-Shakov scheme

AP Boltzmann-Shakov scheme is constructed by setting Q = QBoltz and P = S in (3.56 ).

The simplified scheme reads as:

q∑
i=0

f (i) = ∆t
q−1∑
i=0

ãiT (f (i)) + ∆t

ε

q−1∑
i=0

ãi

[
QBoltz − ν(i)(S[f (i)] − f (i))

]
+ ∆t

ε
b ν(q)(S[f (q)] − f (q)).

(3.65)

To compute f (i), one needs ν(i) and S[f (i)]. Again these quantities can be constructed from

the moments of f (i). To this end, first apply the moment operator, MφB
, to both sides of

scheme (3.65 ):

q∑
i=0

aiMφB

[
f (i)

]
= ∆t

q−1∑
i=0

ãi MφB

[
T (f (i))

]
, (3.66)

where we used MφB

[
S[f (i)] − f (i)

]
= MφB

[
QBoltz

]
= 0 owing to (3.32 ).
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To define heat flux q(i), so as to fully construct S, apply the moment operatorM(v−u(i))|v−u(i)|2

to both sides of scheme (3.65 ):

q∑
i=0

aiq
(i) =∆t

q−1∑
i=0

ãi

∫
R3

T (f (i)) (v − u(i))|v − u(i)|2 dv

+ ∆t

ε

q−1∑
i=0

ãi


∫
R3

QBoltz(f (i)) (v − u(i))|v − u(i)|2 dv − ν(i)
[
q(i)(1 − Pr) − q(i)

]
+ ∆t

ε
b ν(q)

[
q(q)(1 − Pr) − q(q)

]

which can be rearranged as

q(q) = ζ(q)

−
q−1∑
i=0

aiq
(i) + ∆t

q−1∑
i=0

ãi

∫
R3

T (f (i)) (v − u(i))|v − u(i)|2 dv

+ ∆t

ε

q−1∑
i=0

ãi


∫
R3

QBoltz(f (i)) (v − u(i))|v − u(i)|2 dv − ν(i)
[
q(i)(1 − Pr) − q(i)

]
with ζ(q) =

1 + Pr ∆t

ε
b ν(q)

−1

. (3.67)

From (3.66 , 3.67 ), all the bulk properties can be evaluated explicitly, and S[f (q)] can be

constructed. The final scheme reads:

f (q) = ξ(q)
[

−
q−1∑
i=0

aif
(i) + ∆t

q−1∑
i=0

ãiT (f (i)) + ∆t

ε

q−1∑
i=0

ãiQBoltz(f (i))

− ∆t

ε

q−1∑
i=0

ãi ν(i)(S[f (i)] − f (i)) + ∆t

ε
b ν(q)S[f (q)]

]
,

with ξ(q) =
aq + ∆t

ε
b ν(q)

−1

.

(3.68)
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4. VERIFICATION PROBLEMS

Verification tests are required to assess the developed method. A diverse set of verification

problems for single/multi-species problems have been developed.

4.1 Multi-species: Spatially homogeneous Krook-Wu exact solution

For constant collision kernel, an exact solution to the spatially homogeneous multi-species

Boltzmann equation can be constructed (see [88 ]). We use this solution to verify the accuracy

of the proposed fast spectral method for approximating the collision operator. Considering

a binary mixture, the equation simplifies to

∂tf
(i) =

2∑
j=1

∫
R3

∫
S2

Bij

[
f (i)(v′)f (j)(v′∗) − f (i)(v)f (j)(v∗)

]
dσ dv∗, (4.1)

where Bij = Bji := λji

4πn(j) and λij is some positive constant. The exact solution is given by

f (i)(t, v) = n(i)

 mi

2πK

3/2

exp
− miv

2

2K

(1 − 3Qi) + mi

K
Qiv

2

, i = 1, 2, (4.2)

where

µ = 4m1m2

(m1 + m2)2 , p1 = λ22 − λ21µ(3 − 2µ), p2 = λ11 − λ12µ(3 − 2µ),

A = 1
6

λ11 + λ21µ

(
3 − 2µ

p2

p1

), B = 1
3

λ11p1 + λ21µ(3 − 2µ)p2

,

Q(t) = A

A exp(At) − B
, Qi(t) = piQ(t),

K(t) = n(1) + n(2)

(n(1) + n(2)) + 2(n(1)p1 + n(2)p2)Q(t) . (4.3)

Furthermore, the following condition needs to be satisfied

(p1 − p2)
(

2µ2
(

λ21

p1
− λ12

p2

)
− 1

)
= 0. (4.4)
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For simplicity, we choose n(1) = n(2) = 1, λ11 = λ22 = 1, λ12 = λ21 = 1/2 but vary the mass

ratio m1/m2 in the following tests.

It is also helpful to take the derivative of eqn. (4.2 ), which yields

∂tf
(i) = f (i)

− 3
2K

K ′ + mi v2

2K2 K ′


+ n(i)

 mi

2πK

3/2

exp
− miv

2

2K

− 3Q′i + mi

K
Q′iv

2 − mi

K2 K ′Qiv
2


:=

2∑
j=1

Q(ij)(f (i), f (j)), (4.5)

where

Q′(t) = − A3 exp(At)
(A exp(At) − B)2 , Q′i(t) = piQ

′(t),

K ′(t) = − 2(n(1) + n(2))(n(1)p1 + n(2)p2)
[(n(1) + n(2)) + 2(n(1)p1 + n(2)p2)Q(t)]2 Q′(t). (4.6)

This allows us to check the accuracy of the collision solver without introducing time dis-

cretization error.

Figure 4.1 depicts the convergence behavior of the proposed fast algorithm with respect to

N for different mass ratios. Due to the isotropic nature of the solution, we observe that the

errors remain relatively unaffected for different M (number of quadrature points used on the

sphere). On the other hand, the method exhibits a spectral convergence as N (number of

discretization points in each velocity dimension) increases. It is also clear that the accuracy

deteriorates for large mass ratios (to keep the same level of accuracy, larger N is needed).

To understand the influence of Nρ (number of quadrature points in the radial direction), we

list in Table 4.1 the errors of the method with respect to different Nρ. It can be observed

that the error is relatively unaffected upon reducing Nρ from N to N/2.

Next we evolve the solution using the SSP-RK2 with time step ∆t = 0.01. Figure 4.2 

illustrates the time evolution of the distribution function sliced along the velocity domain
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Figure 4.1. Spatially homogeneous Krook-Wu solution. L∞ error E (i) =
‖∂tf

(i)
exact − ∂tf

(i)
numerical‖L∞ , i = {1, 2} at t = 4 for different mass ratios. N is

the number of discretization points in each velocity dimension and M is the
number of spherical design quadrature points used on the sphere. Number of
Gauss-Legendre quadrature points Nρ in the radial direction is fixed to N . A
fixed velocity domain [−12, 12]3 has been used for all cases.
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centerline, i.e., f (i)(:, N/2, N/2). It is observed that: a) the distribution function of the

heavy particles becomes more skewed as the mass ratio increases; b) as time goes by, the

distribution function tends toward the Maxwellian.

4.2 Multi-species: Couette flow

The aforementioned fast spectral methodology allows us to compute the collision operator

efficiently. To solve the fully spatial in-homogeneous equation (2.19 ), we also need an ac-

curate and efficient spatial and time discretization. We mention that evaluation of collision

operator consumes > 98% of computation time, and hence, in the present case, we focus on

the collision operator behavior.

4.2.1 Verification

For general Boltzmann equation (2.19 ), analytical solutions do not exist. Therefore, we com-

pare our results with widely accepted direct simulation Monte Carlo (DSMC) [24 ] method.

We want to reemphasize that DSMC is a stochastic method for solution of the N-particle

master kinetic equation which converges to the Boltzmann equation in the limit of infinite

number of particles [13 ]. In the current test case, we consider the effect of velocity gradient

on the solution. The coordinates are chosen such that the walls are parallel to the y direc-

tion and x is the direction perpendicular to the walls. The geometry as well as boundary

conditions are shown in Figure 4.3 .

4.2.1.1 Bulk properties

Figure 4.4 illustrates the velocity and temperature along the domain length for both species,

wherein we observe an excellent agreement between DGFS and DSMC. The small discrep-

ancies, however, are primarily due to: a) statistical fluctuations inherent to the Monte Carlo

methods, b) practical limitations on number of particles used in DSMC simulations. From

a computational viewpoint, the present DGFS simulations on a single GPU took 138 sec-
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Figure 4.2. Spatially homogeneous Krook-Wu solution. Evolution of f (i), i =
{1, 2} sliced along the velocity domain centerline, i.e., f (i)(:, N/2, N/2) for
different mass ratios. The exact solutions (solid lines) are plotted using N =
64. The numerical solutions (symbols) are evaluated using N = 64, M = 6,
Nρ = 64. A fixed velocity domain [−12, 12]3 has been used for all cases.
SSP-RK2 with ∆t = 0.01 is used for time stepping. Note that the x-axis has
been zoomed to [−4, 4] for better visibility.
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onds to acquire the steady state, in contrast to 26086.45 sec on 24 processors for DSMC

simulations as reported in [89 ], for achieving comparable accuracy.

ul, Tl ur, Tr
x

y

Figure 4.3. Numerical setup for 1D Couette flow.
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Figure 4.4. Variation of normalized y-velocity, and temperature along the
domain for Couette flow (Case C-01) obtained with DSMC and DGFS us-
ing VSS collision kernel for Argon-Krypton mixture. Symbols denote DSMC
solutions, and lines denote DGFS solutions.

4.2.1.2 Transport property: Viscosity

The viscosity µ(i) can be recovered from the 1-D Couette flow simulations using the relation

between shear-stress and velocity-gradient [90 ], [91 ]:

µ(i) = −
P(i)

xy

∂u
(i)
y /∂x

. (4.7)
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Table 4.2. Numerical parameters for Couette flow [89 ]. Based upon our
observations from Table 4.1 , we have used Nρ = 8, in contrast to Nρ = 32
used in [89 ]. This does not affect the recovered bulk properties as illustrated
in Fig. 4.3 , however, it speeds up the computation by a factor of 4.

Parameter Case C-01

Molecular mass: {m1, m2} (×1027 kg) {66.3, 139.1}
Non-dim physical space [0, 1]
Non-dim velocity space [−7, 7]3
{N3, Nρ, M} {323, 8, 12}
Spatial elements 4
DG order 3
Time stepping Euler
Viscosity index: ω{11, 12, 21, 22} {0.81, 0.805, 0.805, 0.8}
Scattering parameter: α{11, 12, 21, 22} {1.4, 1.36, 1.36, 1.32}
Ref. diameter: dref,ij (×1010m) {4.11, 4.405, 4.405, 4.7}
Ref. temperature: Tref,ij (K) {273}
Characteristic mass: m0 (×1027 kg) 66.3
Characteristic length: H0 (mm) 1
Characteristic velocity: u0 (m/s) 337.2
Characteristic temperature: T0 (K) 273
Characteristic number density: n0 (m−3) 1.680 × 1021

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 273
Number density: n(1) (m−3) 1.680 × 1021

Number density: n(2) (m−3) 8.009 × 1020

Knudsen number: (Kn11, Kn22) (0.793, 0.606)
Knudsen number: (Kn12, Kn21) (0.803, 0.555)
Left wall (purely diffuse) boundary conditions (subscript l)

Velocity: ul (m/s) (0, −50, 0)
Temperature: Tl (K) 273

Right wall (purely diffuse) boundary conditions (subscript r)
Velocity: ur (m/s) (0, +50, 0)
Temperature: Tr (K) 273
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For consistency, we use eqn. (4.7 ) for both DSMC and DGFS. For computing the derivative in

(4.7 ), we use centered finite difference for DSMC, and the polynomial derivative for DGFS.

Figure 4.5 illustrates the variation of viscosity along the domain for both species. It is

observed that: (a) the viscosity is lower for the heavier (Kr) species since the mixture contains

∼ 32% Kr, and ∼ 68% Ar; and (b) both DSMC and DGFS match well within the expected

statistical scatter inherent to DSMC simulations. Note that, in the present simulation, we

use DG scheme with K = 3 which implies that the underlying polynomial is quadratic.

Hence all the bulk properties including velocity should be a quadratic polynomial. Since

the viscosity (4.7 ) contains the derivative of the velocity, the overall reconstructed viscosity

should be linear, as we observe in Figure 4.5a . Upon increasing K, we recover the smooth

high order polynomial for viscosity as illustrated in Figure 4.5b .
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(a) viscosity, 4 elements and K = 3
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Figure 4.5. Variation of viscosity along the domain for Couette flow (Case
C-01) obtained with DSMC and DGFS using VSS collision model for Argon-
Krypton mixture. The physical space is discretized using 4 elements: a) K = 3,
b) K = 4. Symbols denote DSMC solutions, and lines denote DGFS solutions.

4.2.2 Scaling Behavior

The simulations are carried out for different test-cases by varying element-count (Ne), poly-

nomial approximation order (Np = K−1), and velocity-space sizes (N). The spatial elements

75



T
ab

le
4.

3.
Pe

rfo
rm

an
ce

of
th
e
so
lv
er

fo
r
C
ou

et
te

flo
w

te
st

ca
se
s.

T
he

ph
as
e-
sp
ac
e
is

de
fin

ed
us
in
g
a
co
nv

e-
ni
en
t
tr
ip
le
t
no

ta
tio

n
N

e
/K

/N
3 ,

w
hi
ch

co
rr
es
po

nd
s
to

N
e
el
em

en
ts

in
ph

ys
ic
al

sp
ac
e,

K
or
de
r
D
G

(e
qu

iv
a-

le
nt
ly

N
p

=
K

−
1
or
de
r
po

ly
no

m
ia
lf
or

1-
D

do
m
ai
n)
,a

nd
N

3
po

in
ts

in
ve
lo
ci
ty

sp
ac
e.

n
G

(n
>

1)
de
no

te
s

G
PU

/C
U
D
A
/M

PI
/p

ar
al
le
le

xe
cu
tio

n
on

n
G
PU

s
sh
ar
ed

eq
ua

lly
ac
ro
ss

(n
/3

)
no

de
s.

W
or
k
un

its
re
pr
es
en
t
th
e

to
ta
ls

im
ul
at
io
n
tim

e
fo
r
fir
st

52
tim

es
te
ps
.
Effi

ci
en
cy

is
de
fin

ed
as

ra
tio

(1
G
/n

G
)/
n,

w
he
re

1G
an

d
n

G
ar
e

ex
ec
ut
io
n-
tim

es
on

on
e
G
PU

an
d

n
G
PU

re
sp
ec
tiv

el
y.

M
=

12
an

d
N

ρ
=

8
is

us
ed

fo
r
al
lc

as
es
.

Ph
as

e
sp

ac
e

W
or

k
U

ni
ts

(s
)

Effi
ci

en
cy

1G
3G

6G
9G

12
G

24
G

36
G

1G
/3

G
1G

/6
G

1G
/9

G
1G

/1
2G

1G
/2

4G
1G

/3
6G

72
/
3/

20
3

47
.5

80
16

.1
55

8.
33

9
5.

69
8

4.
39

2
2.

42
3

1.
77

4
0.

98
0.

95
0.

93
0.

90
0.

82
0.

84
72

/
3/

32
3

12
6.

60
1

42
.6

16
21

.5
51

14
.5

63
11

.0
38

5.
78

4
4.

03
0

0.
99

0.
98

0.
97

0.
96

0.
91

0.
98

72
/
3/

48
3

39
1.

94
3

13
1.

08
1

65
.9

13
44

.2
18

33
.5

13
17

.2
24

11
.6

21
1.

00
0.

99
0.

98
0.

97
0.

95
1.

05
72

/
6/

20
3

94
.6

82
31

.9
57

16
.1

97
10

.9
44

8.
33

1
4.

39
2

3.
07

9
0.

99
0.

97
0.

96
0.

95
0.

90
0.

96
72

/
6/

32
3

25
3.

01
6

84
.8

34
42

.7
41

28
.6

97
21

.7
03

11
.1

58
7.

69
3

0.
99

0.
99

0.
98

0.
97

0.
94

1.
03

72
/
6/

48
3

78
2.

34
3

26
1.

60
1

13
1.

21
7

87
.7

55
66

.0
09

33
.5

20
22

.5
09

1.
00

0.
99

0.
99

0.
99

0.
97

1.
09

21
6/

3/
20

3
14

1.
75

4
47

.6
41

24
.0

33
16

.1
82

12
.3

26
6.

35
6

4.
38

8
0.

99
0.

98
0.

97
0.

96
0.

93
1.

01
21

6/
3/

32
3

37
8.

95
6

12
6.

85
3

63
.6

76
42

.6
36

32
.0

66
16

.2
95

11
.0

41
1.

00
0.

99
0.

99
0.

98
0.

97
1.

07
21

6/
3/

48
3

11
72

.9
07

39
1.

91
6

19
6.

43
9

13
1.

15
3

98
.5

38
49

.6
52

33
.4

71
1.

00
1.

00
0.

99
0.

99
0.

98
1.

10
21

6/
6/

20
3

28
3.

09
1

94
.7

37
47

.6
79

31
.9

03
24

.0
60

12
.2

62
8.

32
0

1.
00

0.
99

0.
99

0.
98

0.
96

1.
06

21
6/

6/
32

3
75

9.
14

9
25

3.
49

8
12

7.
00

4
84

.9
32

63
.7

80
32

.2
12

21
.6

72
1.

00
1.

00
0.

99
0.

99
0.

98
1.

09
21

6/
6/

48
3

23
47

.0
99

78
3.

64
2

39
2.

47
0

26
1.

81
7

19
6.

55
2

98
.6

80
66

.0
18

1.
00

1.
00

1.
00

1.
00

0.
99

1.
11

76



are distributed to p processors using the well-known linear domain-decomposition strategy

requiring sharing of O(pN3) floating-point during MPI communication phase. Speed up

obtained with multi-GPU solver is presented in Table (4.3 ). As evident from the table, the

acceleration due to GPU parallelization increases with increase in the size of computational

grid. More specifically, the increase in Ne and K have small-effect on overall speedup which

suggests that DG-operators (for instance derivative, time-evolution) are rather computa-

tionally inexpensive operations. On the other hand, increase in velocity-grid improves the

observed speedup. The weak/strong scaling behavior is also evident from the table.

4.2.3 Flat profile

Recall that the fast Fourier spectral collision operator algorithm 2 is split into multiple

parts. It is therefore interesting to see what performance level is attained by each part of

the operator. Fig (4.6 ) presents the percentage of time spent in various parts of Algo. 2 vs.

order of DG scheme (K). First, we note that the DG operators denoted in yellow, requires

1% of the total simulation time. The collision operator, however, consumes nearly > 98% of

the total time for both N3 = 203 and N3 = 323.

4.3 Multi-species: Fourier heat transfer

In the current test case, we consider the effect of temperature gradient on the solution. The

coordinates are chosen such that the walls are parallel to the y direction and x is the direction

perpendicular to the walls. The geometry as well as boundary conditions are shown in Figure

4.3 . We consider six cases for a range of temperature gradients and rarefaction levels. The

numerical parameters for these six cases are given in Table 4.4 .

Figure 4.7 shows the variation of normalized temperature along the domain length for dif-

ferent initial mixture densities: a–b) ∆T = 20 (Case F-01, F-02, F-03), and c–d) ∆T = 100

(Case F-05, F-06, F-07). The results are compared against DSMC. We note minor (1 − 2%)

discrepancy between DGFS and DSMC for Krypton in the bulk-region away from the walls.
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Figure 4.6. Percentage of time spent in various parts of Algo. 2 vs. order
of DG scheme (K). For both N3 = 203 and N3 = 323, the collision operator
consumes > 98% of the simulation time.
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Table 4.4. Numerical parameters for Fourier heat transfer. The molecular
collision parameters for Ar-Kr system are provided in Table 4.7 .

Parameter Case F-01 Case F-02 Case F-03 Case F-04 Case F-05 Case F-06

Mixture Ar-Kr Ar-Kr Ar-Kr Ar-Kr Ar-Kr Ar-Kr
Collision kernel VHS VHS VHS VHS VHS VHS
Non-dim physical space [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
Non-dim velocity space [−5, 5]3 [−5, 5]3 [−5, 5]3 [−9, 9]3 [−9, 9]3 [−9, 9]3
N3 323 323 323 643 643 643

Nρ 32 32 32 64 64 64
M 12 12 12 12 12 12
Spatial elements 4 4 4 4 4 4
DG order 3 3 3 3 3 3
Time step (s) 2 × 10−8 2 × 10−8 2 × 10−8 2 × 10−8 2 × 10−8 2 × 10−8

Mass: m0 mAr = m1 mAr = m1 mAr = m1 mAr = m1 mAr = m1 mAr = m1
Length: H0 (mm) 1 1 1 1 1 1
Velocity: u0 (m/s) 337.2 337.2 337.2 337.2 337.2 337.2
Temperature: T0 (K) 273 273 273 273 273 273
Number density: n0 (m−3) 1.680 × 1021 8.401 × 1020 1.680 × 1020 1.680 × 1021 8.401 × 1020 1.680 × 1020

Left wall (purely diffuse) boundary conditions (subscript l)
Velocity: ul (m/s) 0 0 0 0 0 0
Temperature: Tl (K) 263 263 263 223 223 223

Right wall (purely diffuse) boundary conditions (subscript r)
Velocity: ur (m/s) 0 0 0 0 0 0
Temperature: Tr (K) 283 283 283 323 323 323

Initial conditions
Velocity: u (m/s) 0 0 0 0 0 0
Temperature: T (K) 273 273 273 273 273 273
Number density: n(1) (m−3) 1.680 × 1021 8.401 × 1020 1.680 × 1020 1.680 × 1021 8.401 × 1020 1.680 × 1020

Number density: n(2) (m−3) 8.009 × 1020 4.004 × 1020 8.009 × 1019 8.009 × 1020 4.004 × 1020 8.009 × 1019

Knudsen: (Kn11, Kn22) (0.770, 0.591) (1.541, 1.182) (7.703, 5.912) (0.770, 0.591) (1.541, 1.182) (7.703, 5.912)
Knudsen: (Kn12, Kn21) (0.782, 0.540) (1.564, 1.080) (7.820, 5.399) (0.782, 0.540) (1.564, 1.080) (7.820, 5.399)
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Note however that the amount of predicted temperature jump is consistent between DSMC

and DGFS for both species.
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Figure 4.7. Variation of normalized temperature (T (i) − Tl)/(Tr − Tl), i =
{1, 2} along the domain length for Fourier heat transfer obtained with DSMC
and DGFS using VHS collision kernel for Argon-Krypton mixture. Symbols
denote DSMC solutions, and lines denote DGFS solutions. Numerical param-
eters are provided in Table 4.4 .
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4.4 Multi-species: Oscillatory Couette flow

In the current test case, we consider the effect of transient momentum transport for ver-

ifying the temporal accuracy of the DGFS. The schematic remains the same as in the

previous test case. The left wall is at rest, and the right wall moves with a velocity of

u = (0, va sin (ζt), 0) m/s, where va is the amplitude of oscillation. The simulation param-

eters are given in Table 4.5 . The present case is run for two different wall velocities: a)

va = 50 m/s, and b) va = 500 m/s. Argon-Krypton mixture with VHS collision model is

taken as the working gas. Specifically for DSMC simulations, the domain is discretized into

50 cells with 100000 particles per cell (PPC). For va = 50 m/s case, a time step of 2 × 10−10

sec is employed. For va = 500 m/s case, a time step of 2 × 10−11 sec is employed. The

results are averaged for every 1000 (Navg) time steps. These DSMC simulation parameters

have been taken from [32 ]. Note that such low DSMC time steps are particularly needed

for obtaining time accurate results since the time stepping is inherently linear in traditional

DSMC method [24 ].

Figure 4.8 illustrates the results for the oscillatory Couette flow along the domain length

for different va. Ignoring the statistical noise, we observe a good agreement between DGFS

and DSMC. Note in particular that for both species, the amount of slip at the left wall are

different – which is in accordance with the conservation principles. Moreover, the amount of

slip is consistent between DSMC and DGFS.

4.5 Multi-species: Normal shock

We consider the normal shock wave and compare our results with the finite difference solu-

tions reported in [92 ]. Four cases are considered here whose numerical parameters are de-

scribed in Table 4.6 . The boundary conditions at upstream and downstream are the in-flow

equilibrium boundary. We solve the Boltzmann equation until the solution reaches a steady

state. A convergence criterion of (‖fn+1 − fn‖L2/‖fn‖L2) /(‖f 2 − f 1‖L2/‖f 1‖L2) < 2 × 10−5

has been used, where fn denotes the distribution function at nth time step.
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Table 4.5. Numerical parameters for oscillatory Couette flow. The molecular
collision parameters for Ar-Kr system are provided in Table 4.7 .

Parameter Case OC-01 Case OC-02

Mixture Ar-Kr Ar-Kr
Collision kernel VHS VHS
Non-dim physical space [0, 1] [0, 1]
Non-dim velocity space [−5, 5]3 [−9, 9]3
N3 243 483

Nρ 24 48
M 6 6
Spatial elements 4 4
DG order 3 3
Time step (s) 2 × 10−8 2 × 10−8

Characteristic mass: m0 mAr = m1 mAr = m1
Characteristic length: H0 (mm) 1 1
Characteristic velocity: u0 (m/s) 337.2 337.2
Characteristic temperature: T0 (K) 273 273
Characteristic number density: n0 (m−3) 8.401 × 1020 8.401 × 1020

Initial conditions
Velocity: u (m/s) 0 0
Temperature: T (K) 273 273
Number density: n(1) (m−3) 8.401 × 1020 8.401 × 1020

Number density: n(2) (m−3) 4.004 × 1020 4.004 × 1020

Knudsen number: (Kn11, Kn22) (1.541, 1.182) (1.541, 1.182)
Knudsen number: (Kn12, Kn21) (1.564, 1.080) (1.564, 1.080)
Left wall (purely diffuse) boundary conditions (subscript l)

Velocity: ul (m/s) (0, 0, 0) (0, 0, 0)
Temperature: Tl (K) 273 273

Right wall (purely diffuse) boundary conditions (subscript r)
Velocity: ur (m/s) (0, 50sin(ζt), 0) (0, 500sin(ζt), 0)
Temperature: Tr (K) 273 273
Period of oscillation: ζ (s−1) 2π/(5 × 10−5) 2π/(5 × 10−5)
Velocity amplitude: va (m/s) 50 500
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Figure 4.8. Variation of normalized velocity u(i)
y /va, i = {1, 2} along the

domain length for oscillatory Couette flow obtained with DSMC and DGFS
using VHS collision model for Argon-Krypton mixture. Symbols denote DSMC
solutions, and lines denote DGFS solutions.
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Table 4.6. Numerical parameters for normal shock wave [92 ].
Parameter Case NS-01 Case NS-02 Case NS-03 Case NS-04

Molecular mass: m1 (×1027 kg) 6.63 6.63 6.63 6.63
Molecular mass: m2 (×1027 kg) 3.315 1.6575 3.315 3.315
Mass Ratio: m2/m1 0.5 0.25 0.5 0.5
Mach number 1.5 1.5 1.5 3.0
Concentration: n

(2)
− /n− = n

(2)
+ /n+ 0.5 0.5 0.1 0.1

Non-dim physical space [−0.5, 0.5] [−0.5, 0.5] [−0.5, 0.5] [−0.5, 0.5]
Non-dim velocity space [−9, 9]3 [−15, 15]3 [−9, 9]3 [−15, 15]3
N3 323 643 323 483

Nρ 32 16 32 48
M 12 12 12 12
Spatial elements 8, 16 16 16 16
DG order 3 3 3 3
Time step (s × 108) 5.57, 2.77 1.64 2.77 1.64
Viscosity index: ωij 0.5 0.5 0.5 0.5
Scattering parameter: αij 1 1 1 1
Ref. diameter: dref,ij (×1010m) 2.17 2.17 2.17 2.17
Ref. temperature: Tref,ij (K) 273 273 273 273
Characteristic mass: m0 (×1027 kg) 6.63 6.63 6.63 6.63
Characteristic length: H0 (mm) 30 30 30 30
Characteristic velocity: u0 (m/s) 963.7 963.7 963.7 963.7
Characteristic temperature: T0 (K) 223 223 223 223
Characteristic number density: n0 (m−3) 2.889 × 1021 2.889 × 1021 2.889 × 1021 2.889 × 1021

Upstream conditions (subscript -)
Velocity: u− (m/s) 1523.737 1669.171 1353.876 2707.753
Temperature: T− (K) 223 223 223 223
Mean free path: λ− = (

√
2 π (n(1)

− + n
(2)
− ) d2

ref,ij)−1 (m) 0.000827 0.000827 0.00148 0.00148
Number density: n

(1)
− (m−3) 2.889 × 1021 2.889 × 1021 2.889 × 1021 2.889 × 1021

Number density: n
(2)
− (m−3) 2.889 × 1021 2.889 × 1021 3.209 × 1020 3.209 × 1020

Downstream conditions (subscript +)
Velocity: u+ (m/s) 888.847 973.683 789.761 902.584
Temperature: T+ (K) 333.338 333.338 333.338 817.667
Number density: n

(1)
+ (m−3) 4.953 × 1021 4.953 × 1021 4.953 × 1021 8.669 × 1021

Number density: n
(2)
+ (m−3) 4.953 × 1021 4.953 × 1021 5.502 × 1020 9.633 × 1020

Initial conditions
Velocity: u (m/s) u− + (u+ − u−) x/H0
Temperature: T (K) T− + (T+ − T−) x/H0

Number density: n(1) (m−3) n
(1)
− + (n(1)

+ − n
(1)
− ) x/H0

Number density: n(2) (m−3) n
(2)
− + (n(2)

+ − n
(2)
− ) x/H0
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Figure 4.9 shows the bulk properties (number density, temperature, velocity, parallel/perpen-

dicular temperature components) for Mach 1.5 normal shock with mass ratios m2/m1 = 0.5

and m2/m1 = 0.25. The normalized quantities are defined using: n∗(i) = (n(i) − n
(i)
− )/(n(i)

+ −

n
(i)
− ), T ∗(i) = (T (i)−T−)/(T+−T−), u∗(i) = (u(i)−u+)/(u−−u+), T

∗(i)
‖ = (T (i)

‖ −T−)/(T+−T−),

and T
∗(i)
⊥ = (T (i)

⊥ − T−)/(T+ − T−). Based on these results, one can infer that DGFS recovers

the normal shock reasonably well. In particular, from Figures 4.9a , 4.9b , we observe that

a Mach 1.5 shock can be captured with just 8 elements within engineering ±5% accuracy.

Note that the discontinuity in the flow profile is the characteristic of the DG method. The

discontinuity expectedly vanishes upon refining the grid as in Figures 4.9c , 4.9d .

Figure 4.10 shows the bulk properties (number density, temperature, and velocity, paral-

lel/perpendicular temperature components) for Mach 1.5 and Mach 3 normal shock for mass

ratio m2/m1 = 0.5 at low concentration n
(2)
− /n− = 0.1. Again, we observe a fair agreement

with the reference solutions.

4.6 Multi-species: Self diffusion of Argon-Argon mixture

In the current test case, we consider the effect of diffusive transport. The schematic remains

the same as in the previous test case. Argon-Argon mixture with VSS collision kernel is

taken as the working gas. To differentiate between two types of Argon, we tag the molecules

as Ar1 and Ar2. At the left boundary, Ar1 enters and exits at the right boundary. At the

right boundary, Ar2 enters and exits at the left boundary. The molecules enter the domain

with zero mean velocity. The simulation parameters are provided in Table 4.8 .

Figure 4.11a shows the variation of concentration n(i)/n along the domain. Since the species-1

enters from the left boundary and exits at right, we observe a drop in species-1 concentration

as we move towards the right boundary. Conversely for species-2, since the species-2 enters

from the right boundary and exits at left, we observe a drop in species-2 concentration as

we move towards the left boundary. The non-linearity of the concentration profile and the

associated slip at the boundaries can be explained through the low mixture density, and the

fact that the flow is in slip regime. It is also worth noting that throughout the domain at
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Figure 4.9. Variation of normalized flow properties along the domain for
Mach 1.5 normal shock with n

(2)
− /n− = 0.5: (a–b) m2/m1 = 0.5 (Case NS-

01) with 8 elements, (c–d) m2/m1 = 0.5 (Case NS-01) with 16 elements, and
(e–f) m2/m1 = 0.25 (Case NS-02) with 16 elements. Symbols denote results
from [92 ], and lines denote DGFS solutions. Note that the position of the
shock wave has been adjusted to the location with the average number density
(n− + n+)/2 as per [92 ].
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Figure 4.10. Variation of normalized flow properties along the domain for
normal shock with m2/m1 = 0.5, n

(2)
− /n− = 0.1: (a–b) Mach 1.5 (Case NS-03),

and (c–d) Mach 3 (Case NS-04). Symbols denote results from [92 ], and lines
denote DGFS solutions. Note that the position of the shock wave has been
adjusted to the location with the average number density (n− + n+)/2 as per
[92 ].
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Table 4.7. VHS and VSS model parameters for different mixture systems [24 ].
Mixture Ar-Kr Ar-Kr
Collision kernel VHS VSS
Molecular mass: m1 (×1027 kg) 66.3 66.3
Molecular mass: m2 (×1027 kg) 139.1 139.1
Reference viscosity: µref,1 (×105 Pa · s) 2.117 2.117
Reference viscosity: µref,2 (×105 Pa · s) 2.328 2.328
Viscosity index: (ω11, ω22) (0.81, 0.8) (0.81, 0.8)
Viscosity index: (ω12, ω21) (0.805, 0.805) (0.805, 0.805)
Scattering parameter: (α11, α22) (1, 1) (1.4, 1.32)
Scattering parameter: (α12, α21) (1, 1) (1.36, 1.36)
Ref. diameter: (dref,11, dref,22) (×1010m) (4.17, 4.76) (4.11, 4.7)
Ref. diameter: (dref,11, dref,22) (×1010m) (4.465, 4.465) (4.405, 4.405)
Ref. temperature: (Tref,11, Tref,22) (K) (273, 273) (273, 273)
Ref. temperature: (Tref,12, Tref,21) (K) (273, 273) (273, 273)
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Table 4.8. Numerical parameters for Ar-Ar self diffusion. The molecular
collision parameters for Ar are provided in Table 4.7 .
Parameter Case SD-01 Case SD-02

Mixture Ar-Ar Ar-Ar
Collision kernel VSS VSS
Non-dim physical space [0, 1] [0, 1]
Non-dim velocity space [−5.09, 5.09]3 [−5.09, 5.09]3
N3 323 323

Nρ 32 32
M 12 12
Spatial elements 4 4
DG order 3 3
Time step (s) 2 × 10−8 2 × 10−8

Viscosity index: (ωij) 0.81 0.81
Scattering index: (αij) 1.4 1.4
Characteristic mass: m0 mAr = m1 mAr = m1
Characteristic length: H0 (mm) 1 1
Characteristic velocity: u0 (m/s) 337.2 337.2
Characteristic temperature: T0 (K) 273 273
Characteristic number density: n0 (m−3) 1.680 × 1021 8.401 × 1021

Initial conditions
Velocity: u (m/s) 0 0
Temperature: T (K) 273 273
Number density: n(1) (m−3) 1.680 × 1021 8.401 × 1021

Number density: n(2) (m−3) 1.680 × 1021 8.401 × 1021

Knudsen number: (Kn11, Kn22) (0.793, 0.793) (0.159, 0.159)
Knudsen number: (Kn12, Kn21) (0.793, 0.793) (0.159, 0.159)
Left boundary conditions (subscript l)
Ar1 enters: inlet boundary condition for Ar1

Velocity: ul (m/s) (0, 0, 0) (0, 0, 0)
Temperature: Tl (K) 273 273
Number density: n(1) (m−3) 1.680 × 1021 8.401 × 1021

Ar2 freely exits

Right boundary conditions (subscript r)
Ar2 enters: inlet boundary condition for Ar2

Velocity: ur (m/s) (0, 0, 0) (0, 0, 0)
Temperature: Tr (K) 273 273
Number density: n(2) (m−3) 1.680 × 1021 8.401 × 1021

Ar1 freely exits
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any given x location, the sum of the concentrations of two species is unity which asserts that

the numerical formulation is conservative.

Figure 4.11b shows the variation of diffusion velocity along the domain. Since the species-

1 enters from the left boundary and exits at right, we observe a low net diffusion speed

(magnitude of the diffusion velocity) for the first species and a high diffusion speed for the

second species. Conversely at the right boundary, since the species-2 enters from the right

boundary and exits at left, we observe a low diffusion speed for the second species and high

diffusion speed for the second species.

Figure 4.12 illustrates the temperature profile along the domain, where we observe a drop

in temperatures of the two species. Based upon these results, it can be inferred that DGFS

can resolve the strong gradients in temperature and diffusion velocity with just 4 elements

and K = 3 within engineering accuracy.
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Figure 4.11. Variation of number density and diffusion velocity along the
domain for self-diffusion cases obtained with DSMC and DGFS using VSS
collision kernel for Argon-Argon mixture. Symbols denote DSMC results, and
lines denote DGFS results.
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Figure 4.12. Variation of temperature along the domain for self-diffusion
cases obtained with DSMC and DGFS using VSS collision kernel for Argon-
Argon mixture (αij = 1.4). The physical space is discretized using: a) 4
elements and K = 3, b) 8 elements and K = 4. Symbols denote DSMC
results, and lines denote DGFS results.
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For this test case, the self-diffusion coefficient is given as (cf. eqn. (12.18) in [24 ])

D(11) = D(12) = −(u(1)
x − u(2)

x ) n(1) n(2)

n2
∆x

∆(n(1)/n) . (4.8)

While writing this equation, it is also assumed that the coefficient of thermal diffusion is low

[93 ], and therefore the effect of temperature gradient is negligible (see eqn. (8.4.7) in [5 ]).

Note that this equation is an approximation to the diffusion equation, derived from leading

order Chapman expansion (see section 8.4 in [5 ]), and therefore, strictly speaking, the values

computed from this equation might not be fully accurate especially for the rarefied flows,

since the higher order terms have not been accounted for. For consistency, we use (4.8 )

for both DSMC and DGFS. For computing the derivatives in (4.8 ), we use centered finite

difference for DSMC, and the polynomial derivative for DGFS. In particular, for DSMC

simulations, we used 500 cells, 2000 particles per cell, a time step of 1 × 10−8 sec, and

averaged the results for 1 million time steps to minimize the statistical scatter in diffusion

coefficients.

Figure 4.13 illustrates the variation of self-diffusion coefficient along the domain as a function

of scattering parameter αij. It is observed that: (a) the diffusion coefficient increases with

increase in αij in accordance with the VSS model (cf. eqn. (3.75) in [24 ]), (b) both DSMC and

DGFS match well within the expected statistical scatter inherent to DSMC simulations, and

(c) with increase in number density from Case 01 to Case 02, the diffusion coefficient decreases

in accordance with (4.8 ). Note that, in the present simulation, we use DG scheme with K = 3

which implies that the underlying polynomial is quadratic. Hence all the bulk properties

including number density should be a quadratic polynomial. Recall that the diffusion (4.8 )

contains the derivative of the number density, and hence the overall reconstructed diffusion

coefficient should be linear, which is what we observe in Figures 4.13a ,4.13b . Upon increasing

K, we recover the smooth high-order polynomial for diffusion coefficient.
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Figure 4.13. Variation of diffusion coefficient along the domain for self-
diffusion cases obtained with DSMC and DGFS using VSS collision model
for Argon-Argon mixture. Note that only αij is varied by keeping all other
parameters fixed as in Table 4.8 . Symbols denote DSMC results, and lines
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4.7 Multi-species: Mass diffusion of Argon-Krypton mixture

In the current test case, we consider the effect of mass diffusion. The conditions remain the

same as in previous case, except that Argon-Krypton mixture with VSS collision model is

taken as the working gas. More specifically, Argon enters the left boundary and exits at the

right boundary; and Krypton enters through the right and exits at left. The molecules enter

the domain with zero mean velocity. We consider two cases with different initial number

density. The numerical parameters for both the cases are given in Table 4.9 .

Figure 4.14a shows the variation of concentration profile for the two species. We observe

that the concentration of Argon remains greater than Krypton throughout the domain,

except for a small portion near the right boundary. This can be directly inferred from the

mass/momentum conservation principle i.e., the heavier species diffuses slower and the lighter

species diffuses faster. Therefore, after a sufficiently long time, the concentration of lighter

species will be greater than that of heavier species in the major part of the domain. As in

the self-diffusion case, the sum of the concentrations of both species is unity throughout the

domain at any given x location. The effect of the momentum conservation is more apparent

in Figure 4.14b wherein we observe a higher diffusion speed for the lighter species and a

lower diffusion speed for the heavier species.

4.8 Single species: Spatial and temporal accuracy for a range of Knudsen num-
bers

In this section, we test the spatial and temporal accuracy of the schemes of various orders. We

consider an initially consistent distribution for testing IMEX BDF-2 and ARS-222 schemes

with BGK model (only),

f(0, x, v) = M(ρ, u, T ) (4.9)
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Table 4.9. Numerical parameters for Ar-Kr mass diffusion. The molecular
collision parameters for Ar-Kr system are provided in Table 4.7 .
Parameter Case MD-01 Case MD-02

Mixture Ar-Kr Ar-Kr
Collision kernel VSS VSS
Non-dim physical space [0, 1] [0, 1]
Non-dim velocity space [−5.09, 5.09]3 [−5.09, 5.09]3
N3 323 323

Nρ 32 32
M 12 12
Spatial elements 4 4
DG order 3 3
Time step (s) 2 × 10−8 2 × 10−8

Characteristic mass: m0 mAr = m1 mAr = m1
Characteristic length: H0 (mm) 1 1
Characteristic velocity: u0 (m/s) 337.2 337.2
Characteristic temperature: T0 (K) 273 273
Characteristic number density: n0 (m−3) 1.680 × 1021 8.401 × 1021

Initial conditions
Velocity: u (m/s) 0 0
Temperature: T (K) 273 273
Number density: n(1) (m−3) 1.680 × 1021 8.401 × 1021

Number density: n(2) (m−3) 8.009 × 1020 4.004 × 1021

Knudsen number: (Kn11, Kn22) (0.793, 0.606) (0.159, 0.121)
Knudsen number: (Kn12, Kn21) (0.803, 0.555) (0.161, 0.111)
Left boundary conditions (subscript l)
Ar enters: inlet boundary condition for Ar

Velocity: ul (m/s) (0, 0, 0) (0, 0, 0)
Temperature: Tl (K) 273 273
Number density: n(1) (m−3) 1.680 × 1021 8.401 × 1021

Kr freely exits

Right wall (purely diffuse) boundary conditions (subscript r)
Kr enters: inlet boundary condition for Kr

Velocity: ur (m/s) (0, 0, 0) (0, 0, 0)
Temperature: Tr (K) 273 273
Number density: n(2) (m−3) 8.009 × 1020 4.004 × 1021

Ar freely exits
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and an initially prepared distribution for testing IMEX BDF-3 (as per the uniform accuracy

requirements put forward in [74 ]),

f(0, x, v) = M(ρ, u, T ) − ε

ν
(I − ΠM)(v · ∇xM) (4.10)

where ν = {ν, Pr ν, ν} for IMEX-BGK, IMEX-ESBGK, and IMEX-Shakov models respec-

tively, with

ρ = 1 + 0.2 sin(πx), u = (1, 0, 0), T = 1
1 + 0.2 sin(πx) .

We use (4.10 ) for testing ESBGK and Shakov models using IMEX BDF-2, and IMEX BDF-3

schemes.

The spatial domain is taken as x ∈ [0, 2] with periodic boundary condition along with

a third order DG scheme. The velocity domain is truncated into [−|v|max, |v|max]3 with

|v|max = 10 and discretized by a finite difference scheme using N3 = 483 grid points. We

choose ∆x = 2/Ne and set ∆t = 0.1 ∆x/|v|max. ∆t is kept fixed for all time-integration

schemes and all kinetic models; it changes if and only only if we increase/decrease the number

of elements in the spatial domain. The solution is computed for a range of ε. To compute

the “starting” values for IMEX BDF-k scheme, we use the kth order ARS scheme with very

small time-step (∆t)(0) = ∆t/100.

Since the exact solution is not available, the numerical solution on a finer mesh ∆x/2 is used

as a reference solution to compute the error for the solution on the mesh size ∆x i.e.,

E∆t, ∆x := ‖f∆t, ∆x − f∆t/2, ∆xr/2‖L1
x,v

= 1
(2|v|max)3

∫ 1
2

∫
|f∆t, ∆x − f∆t/2, ∆x/2| dx dv. (4.11)

Since, this is an initial value problem with periodic boundaries, we ask ourselves a simple

question: starting with a 3rd order DG scheme, wherein the initial solution is approximated

by a second order orthonormal polynomial [94 ], can IMEX BDF-3 schemes maintain the

third order solution accuracy over a sufficiently long time evolution? Such a test should
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give us an insight into both the spatial and temporal accuracy of the scheme, as well as the

conservation properties of the “discrete” schemes.

In Tabs. (4.10 , 4.11 , 4.12 ), we present the error, (4.11 ), at t = 5 (this results in 256,000

time-steps for Ne = 1024 element mesh). Observe that a third order DG scheme with

IMEX BDF-3 scheme maintains a 3rd order accuracy. If we use IMEX BDF-2 scheme

instead, keeping everything else fixed, the accuracy, expectantly, degenerates to a second

order overall.

The key point to note here is that IMEX BDF schemes require one kernel evaluation per

time-step, and therefore is more efficient. This fact is reiterated in Tab. (4.13 ), wherein we

present the “computational times per time-step per degree of freedom (CPTPD)” for all the

schemes at different ε and Ne. These cases are run for 100 time-steps, each. For the third

order DG scheme that we use, total degree of freedoms are 3NeN
3 with N = 48. Three

observations are to be made: a) CPTPD is independent of ε; b) for a given time-integration

scheme, CPTPD for all the three kinetic models are approximately same, hence there is no

reason to prefer BGK model over ESBGK model; c) CPTPD of IMEX BDF-k schemes are

approximately the same.

We mention that the magnitude of the error norms at ε = O(1) and ε = O(10−2) are different

since flows closer to equilibrium relax much slower than the flows closer to free molecular

regime: an observation that we iterated in the introduction. So, after a sufficiently long

time, at a fixed time t = 5, while the flow with ε = O(1) has relaxed to equilibrium, the flow

at ε = O(10−2) hasn’t. In the former case, the flow physics is dominated by convection, and

in the latter by collisions.

From these results, the schemes meet the following objectives:

1) the timestep is independent of the Knudsen number

2) the collision kernel is evaluated explictly without use of any iteration
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Figure 4.15. Error decay for linear kinetic schemes. Figure is obtained by
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∆t.
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Table 4.10. Accuracy test for 1D-3V IMEX-BGK equation with α = 0.49.

ε → α × 1 α × 10−2 α × 10−4 α × 10−6

↓ Ne E∆t, ∆x O E∆t, ∆x O E∆t, ∆x O E∆t, ∆x O

IMEX BDF-2, t=5
16 5.57 × 10−11 - 1.85 × 10−8 - 2.04 × 10−8 - 2.05 × 10−8 -
32 4.68 × 10−12 3.57 1.48 × 10−9 3.64 1.67 × 10−9 3.61 1.69 × 10−9 3.60
64 8.44 × 10−13 2.47 1.71 × 10−10 3.11 2.12 × 10−10 2.98 2.26 × 10−10 2.90
128 2.05 × 10−13 2.04 3.65 × 10−11 2.23 4.18 × 10−11 2.34 4.73 × 10−11 2.26
256 5.13 × 10−14 2.00 9.18 × 10−12 1.99 1.03 × 10−11 2.02 1.12 × 10−11 2.08
512 1.29 × 10−14 1.99 2.32 × 10−12 1.98 2.60 × 10−12 1.99 2.69 × 10−12 2.06

IMEX BDF-3, t=5
16 7.69 × 10−11 - 1.99 × 10−8 - 2.25 × 10−8 - 2.26 × 10−8 -
32 6.07 × 10−12 3.66 1.78 × 10−9 3.48 2.07 × 10−9 3.44 2.09 × 10−9 3.43
64 5.18 × 10−13 3.55 1.77 × 10−10 3.33 2.27 × 10−10 3.19 2.39 × 10−10 3.13
128 5.02 × 10−14 3.37 1.91 × 10−11 3.21 2.57 × 10−11 3.14 3.10 × 10−11 2.95
256 5.61 × 10−15 3.16 2.20 × 10−12 3.12 3.03 × 10−12 3.08 4.11 × 10−12 2.92
512 1.80 × 10−15 1.64 2.67 × 10−13 3.04 3.67 × 10−13 3.05 5.33 × 10−13 2.95

Table 4.11. Accuracy test for 1D-3V IMEX-ESBGK equation with α = 0.49 × 1.5.

ε → α × 1 α × 10−2 α × 10−4 α × 10−6

↓ Ne E∆t, ∆x O E∆t, ∆x O E∆t, ∆x O E∆t, ∆x O

IMEX BDF-2, t=5
16 8.59 × 10−10 - 1.80 × 10−8 - 2.04 × 10−8 - 2.05 × 10−8 -
32 5.50 × 10−11 3.97 1.42 × 10−9 3.66 1.67 × 10−9 3.61 1.69 × 10−9 3.60
64 6.88 × 10−12 3.00 1.60 × 10−10 3.15 2.10 × 10−10 2.99 2.26 × 10−10 2.90
128 1.85 × 10−12 1.89 3.42 × 10−11 2.23 4.14 × 10−11 2.34 4.72 × 10−11 2.26
256 4.76 × 10−13 1.96 8.66 × 10−12 1.98 1.03 × 10−11 2.01 1.12 × 10−11 2.08
512 1.20 × 10−13 1.99 2.19 × 10−12 1.98 2.60 × 10−12 1.99 2.69 × 10−12 2.06

IMEX BDF-3, t=5
16 9.33 × 10−10 - 1.93 × 10−8 - 2.24 × 10−8 - 2.26 × 10−8 -
32 6.90 × 10−11 3.76 1.70 × 10−9 3.50 2.07 × 10−9 3.44 2.09 × 10−9 3.43
64 5.19 × 10−12 3.73 1.66 × 10−10 3.36 2.25 × 10−10 3.20 2.39 × 10−10 3.13
128 4.42 × 10−13 3.55 1.77 × 10−11 3.23 2.54 × 10−11 3.15 3.10 × 10−11 2.95
256 4.30 × 10−14 3.36 2.04 × 10−12 3.12 3.00 × 10−12 3.08 4.10 × 10−12 2.92
512 5.26 × 10−15 3.03 2.50 × 10−13 3.03 3.65 × 10−13 3.04 5.27 × 10−13 2.96
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Table 4.12. Accuracy test for 1D-3V IMEX-Shakov equation with α = 0.49.

ε → α × 1 α × 10−2 α × 10−4 α × 10−6

↓ Ne E∆t, ∆x O E∆t, ∆x O E∆t, ∆x O E∆t, ∆x O

IMEX BDF-2, t=5
16 7.07 × 10−11 - 1.80 × 10−8 - 2.04 × 10−8 - 2.05 × 10−8 -
32 4.81 × 10−12 3.88 1.44 × 10−9 3.64 1.67 × 10−9 3.61 1.69 × 10−9 3.60
64 7.25 × 10−13 2.73 1.63 × 10−10 3.14 2.10 × 10−10 2.99 2.26 × 10−10 2.90
128 1.89 × 10−13 1.94 3.45 × 10−11 2.24 4.14 × 10−11 2.34 4.72 × 10−11 2.26
256 4.83 × 10−14 1.97 8.69 × 10−12 1.99 1.03 × 10−11 2.01 1.12 × 10−11 2.08
512 1.23 × 10−14 1.97 2.20 × 10−12 1.98 2.60 × 10−12 1.99 2.69 × 10−12 2.06

IMEX BDF-3, t=5
16 7.64 × 10−11 - 1.94 × 10−8 - 2.24 × 10−8 - 2.26 × 10−8 -
32 5.70 × 10−12 3.74 1.72 × 10−9 3.50 2.07 × 10−9 3.44 2.09 × 10−9 3.43
64 4.54 × 10−13 3.65 1.69 × 10−10 3.35 2.25 × 10−10 3.20 2.39 × 10−10 3.13
128 4.14 × 10−14 3.45 1.81 × 10−11 3.22 2.54 × 10−11 3.15 3.10 × 10−11 2.95
256 4.42 × 10−15 3.23 2.07 × 10−12 3.13 3.01 × 10−12 3.08 4.10 × 10−12 2.92
512 1.72 × 10−15 1.36 2.51 × 10−13 3.04 3.67 × 10−13 3.04 5.28 × 10−13 2.96

Table 4.13. Computational cost per time-step per degree of freedom
(CPTPD) for 1D-3V IMEX-BGK (α = 0.49), IMEX-ESBGK (α = 0.49×1.5),
and IMEX-Shakov (α = 0.49). These cases are run for 100 time-steps, each.
For the third order DG scheme that we use, degree of freedom is 3NeN

3 with
N = 48.

ε → α × 1 α × 10−2 α × 10−4 α × 10−6 α × 10−8 α × 10−10

↓ Ne CPTPD CPTPD CPTPD CPTPD CPTPD CPTPD

BGK
IMEX BDF-2

128 5.10 × 10−10 5.11 × 10−10 5.12 × 10−10 5.13 × 10−10 5.11 × 10−10 5.12 × 10−10

256 4.87 × 10−10 4.90 × 10−10 4.88 × 10−10 4.87 × 10−10 4.86 × 10−10 4.87 × 10−10

IMEX BDF-3
128 6.03 × 10−10 6.01 × 10−10 6.02 × 10−10 6.04 × 10−10 6.02 × 10−10 6.02 × 10−10

256 5.79 × 10−10 5.81 × 10−10 5.80 × 10−10 5.79 × 10−10 5.77 × 10−10 5.79 × 10−10

ESBGK
IMEX BDF-2

128 4.89 × 10−10 4.88 × 10−10 4.87 × 10−10 4.88 × 10−10 4.88 × 10−10 4.90 × 10−10

256 4.65 × 10−10 4.67 × 10−10 4.66 × 10−10 4.66 × 10−10 4.66 × 10−10 4.66 × 10−10

IMEX BDF-3
128 5.79 × 10−10 5.78 × 10−10 5.79 × 10−10 5.80 × 10−10 5.81 × 10−10 5.80 × 10−10

256 5.57 × 10−10 5.55 × 10−10 5.57 × 10−10 5.55 × 10−10 5.56 × 10−10 5.55 × 10−10

Shakov
IMEX BDF-2

128 5.19 × 10−10 5.15 × 10−10 5.18 × 10−10 5.16 × 10−10 5.15 × 10−10 5.19 × 10−10

256 4.93 × 10−10 4.92 × 10−10 4.92 × 10−10 4.92 × 10−10 4.92 × 10−10 4.92 × 10−10

IMEX BDF-3
128 6.07 × 10−10 6.10 × 10−10 6.07 × 10−10 6.08 × 10−10 6.09 × 10−10 6.08 × 10−10

256 5.85 × 10−10 5.83 × 10−10 5.84 × 10−10 5.86 × 10−10 5.83 × 10−10 5.83 × 10−10
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3) the scheme utilizes high order time-stepping so that the time integration over suffi-

ciently long number of timesteps, needed for modelling near-continuum flows, can be

carried out more accurately

4) the scheme is high order accurate in physical space for minimum dispersion

5) the scheme is applicable for modelling both rarefied and near-continuum compressible

flows.

4.9 Single-species: Couette flow for a range of Knudsen numbers

In the current test case, we consider the effect of velocity gradient on the solution. The

coordinates are chosen such that the walls are parallel to the y direction and x is the direction

perpendicular to the walls. The geometry as well as boundary conditions are shown in

Figure 4.3 . Specific case details have been provided in Tabs. 4.14 and 4.15 .

Figures (4.16 , 4.18 ) illustrate the velocity and temperature along the domain length, wherein

we note an excellent agreement between DGFS and DSMC. The velocity profiles from

BGK/ESBGK/Shakov are in good agreement with DGFS and DSMC, whereas the tem-

perature profiles from ESBGK/Shakov are in good agreement with DGFS and DSMC. The

deviation in BGK temperature profiles is due to its Prandtl number defect. Notably, all the

schemes resolve the continuum cases at a fixed time-step ∆t which is solely decided by CFL

condition and not the Knudsen number.

In Table 4.16 , we explicitly illustrate the performance of the explicit-DG [32 ] and the pro-

posed IMEX-BDF scheme for the BGK and ESBGK models. Here, expectantly, we note

that the computational cost of explicit schemes increases with decrease in Knudsen number.

From this test case, the schemes meet the following primary objectives:

1) the timestep is independent of the Knudsen number

2) the collision kernel is evaluated explictly without use of any iteration
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Table 4.14. Common numerical parameters for Couette flow cases.
Common Parameters

Molecular mass: m (kg) 66.3 × 10−27

Non-dim physical space [0, 1]
Non-dim velocity space1 [−5, 5]3
{N3} {243}
Spatial elements 2
DG order 3
Time step: ∆t (s) 3 × 10−8

Viscosity index: ω 0.81
Scattering parameter: α 1.0
Ref. diameter: dref (m) 4.17 × 10−10

Ref. temperature: Tref (K) 273
Ref. viscosity: µref (Pa · s) 2.117 × 10−5

Characteristic length: H0 (mm) 1
Characteristic velocity: u0 (m/s) 337.2
Characteristic temperature: T0 (K) 273
Characteristic no. density: n0 (m−3) 3.469 × 1022

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 273

Left wall conditions
Velocity: u (m/s) (0, −250, 0)
Right wall conditions

Velocity: u (m/s) (0, 250, 0)

Table 4.15. Numerical parameters for Couette flow cases.
Parameter Case C-01 Case C-02 Case C-03

Initial conditions
Number density: n (m−3) 3.469 × 1022 3.469 × 1024 3.469 × 1026

Knudsen number1: (Kn) 0.037 0.00037 0.0000037
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Figure 4.16. Variation of y-velocity along the domain for Couette flow cases
at different Knudsen numbers using IMEX-BDF scheme for linear kinetic mod-
els. Lines denote the results from DSMC and symbols denote the results from
IMEX-BDF scheme.
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Figure 4.17. Variation of y-velocity along the domain for Couette flow cases
at different Knudsen numbers using IMEX-BDF scheme for Boltzmann equa-
tion. Lines denote the results from DSMC and symbols denote the results from
IMEX-BDF scheme. Boltzmann-BGK refers to Boltzmann equation penalized
with BGK operator; Boltzmann-ESBGK refers to Boltzmann equation penal-
ized with ESBGK operator; Boltzmann-Shakov refers to Boltzmann equation
penalized with Shakov operator.
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Figure 4.18. Variation of temperature along the domain for Couette flow
cases at different Knudsen numbers using IMEX-BDF scheme for linear kinetic
models. Lines denote the results from DSMC and symbols denote the results
from IMEX-BDF scheme.

IMEXBDF BDF1 BoltzmannBGK

x (mm)

T
 (

K
)

0 0.2 0.4 0.6 0.8 1
260

270

280

290

300

310

320

330

340

350

Kn=3.7e2

Kn=3.7e4

IMEXBDF BDF1 BoltzmannESBGK

x (mm)

T
 (

K
)

0 0.2 0.4 0.6 0.8 1
260

270

280

290

300

310

320

330

340

350

Kn=3.7e2

Kn=3.7e4

IMEXBDF BDF1 BoltzmannShakov

x (mm)

T
 (

K
)

0 0.2 0.4 0.6 0.8 1
260

270

280

290

300

310

320

330

340

350

Kn=3.7e2

Kn=3.7e4

Figure 4.19. Variation of temperature along the domain for Couette flow
cases at different Knudsen numbers using IMEX-BDF scheme for Boltzmann
equation. Lines denote the results from DSMC and symbols denote the results
from IMEX-BDF scheme. Boltzmann-BGK refers to Boltzmann equation pe-
nalized with BGK operator; Boltzmann-ESBGK refers to Boltzmann equa-
tion penalized with ESBGK operator; Boltzmann-Shakov refers to Boltzmann
equation penalized with Shakov operator.
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Table 4.16. Performance of the asymptotic and explicit schemes for Couette flow
case. Each test-case is conveniently defined by 4 numbers: (Ne, K, N3); [−L, L]3,
which corresponds to Ne elements in physical space, K order DG, N3 points in
velocity space, and L denotes the extent of the isotropic velocity-mesh. The residual
is defined as (‖f l+1 − fn‖L2/‖fn‖L2)/(‖f2 − f1‖L2/‖f1‖L2)), where fn denotes the
distribution function at nth timestep.

Model Case
Temporal
scheme Kn

timestep
∆t (s)

Time steps
(Total) Residual Computational

time (s)

BGK
C-01

(2/3/243)
[−5, 5]3

Explicit
Forward-Euler 0.037 3 × 10−8 3, 000 8.49 × 10−7 7.65

IMEX
BDF-1 0.037 3 × 10−8 3, 000 8.93 × 10−7 2.73

C-02
(2/3/243)
[−5, 5]3

Explicit*
Forward-Euler 0.00037 3 × 10−10 15, 000, 000 6.02 × 10−7 29318.16

IMEX
BDF-1 0.00037 3 × 10−8 150, 000 6.12 × 10−7 103.68

ESBGK
C-01

(2/3/243)
[−5, 5]3

Explicit
Forward-Euler 0.037 3 × 10−8 3, 000 3.97 × 10−8 9.87

IMEX
BDF-1 0.037 3 × 10−8 3, 000 4.14 × 10−8 2.81

C-02
(2/3/243)
[−5, 5]3

Explicit*
Forward-Euler 0.00037 3 × 10−10 15, 000, 000 1.17 × 10−7 39006.82

IMEX
BDF-1 0.00037 3 × 10−8 150, 000 4.94 × 10−8 109.06

* Unstable at ∆t = {3 × 10−8, 3 × 10−9}
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3) the scheme utilizes high order time-stepping so that the time integration over suffi-

ciently long number of timesteps, needed for modelling near-continuum flows, can be

carried out more accurately.

4.10 Single-species: Sod shock tube problem

In the current test case, we consider the classical Sod shock tube problem [95 ]. The full set

of simulation parameters have been reiterated in Tab. (4.17 ). In summary, we utilize three

different (upstream, downstream) densities [kg/m3]: a) (1×10−5, 0.125×10−5); b) (1×10−4,

0.125 × 10−4); c) (1 × 10−3, 0.125 × 10−3). These upstream densities correspond to Knudsen

number [32 ] of a) 4.96×10−2; b) 4.96×10−3; c) 4.96×10−4. We use a 256 element 3rd order

DG scheme with a time step of ≈ 4 × 10−6 s for all cases. The velocity domain [−6.14, 6.14]3

is discretized using 323 points.

The results from asymptotic ESBGK model and asymptotic Boltzmann-BGK model have

been shown in Figs. (4.20 ) and (4.21 ) respectively, wherein we show the variation of conserved

flow properties, viz. density, mass-flux, and energy for the Sod shock tube problem using

asymptotic (A) ESBGK model. The reference compressible Navier-Stokes (C-NS) and Euler

(C-Euler) solutions were obtained using a 10000 cell, 2nd order finite volume central scheme

based density solver, rhoCentralFoam, available with OpenFOAM-2.3.1. The primary intent,

here, is to show conservation properties of the scheme, as well as its capability to capture

the Navier-Stokes limit.

From this test case, the schemes meet the following primary objectives:

1) the timestep is independent of the Knudsen number

5) the scheme is applicable for modelling both rarefied and near-continuum compressible

flows.
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Table 4.17. Numerical parameters for the Sod shock tube problem. The
molecular parameters for “Air” are as indicated in Appendix-A of [24 ].

Parameter SOD-01 SOD-02 SOD-03

Working Gas Air
Physical space (m) [−5, 5]
Characteristic length: H0 (m) 1
Char. velocity: u0 (m/s) 400.05
Char. temperature: T0 (K) 278.746
Char. no. density: n0 (m−3) 2.599 × 1019 2.599 × 1020 2.599 × 1021

Velocity space [−6.14u0, 6.14u0]3
Points in velocity mesh: Nv 323

Number of elements: Ne 256
Polynomial degree: p 2
Time step: ∆t (s): 4 × 10−6

Upstream region: [−5, 0]:
Kn: 4.96 × 10−2 4.96 × 10−3 4.96 × 10−4

Density: n/n0 8
Velocity: u/u0 0
Temperature: T/T0 1.25

Downstream region: (0, 5]:
Density: n/n0 1
Velocity: u/u0 0
Temperature: T/T0 1
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Figure 4.20. Variation of conserved flow properties, viz. density, mass-flux,
and energy for the Sod shock tube problem using asymptotic (A) ESBGK
model. The reference compressible Navier-Stokes (C-NS) and Euler (C-Euler)
solutions were obtained using a 10000 cell, 2nd order finite volume central
scheme based density solver, rhoCentralFoam, available with OpenFOAM-
2.3.1. The primary intent, here, is to show conservation properties of the
scheme, as well as its capability to capture the Navier-Stokes limit.
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Figure 4.21. Variation of conserved flow properties, viz. density, mass-flux,
and energy for the Sod shock tube problem using asymptotic Boltzmann-BGK
model. Boltzmann-BGK refers to Boltzmann equation penalized with BGK
operator.
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6) When Kn is small, O(10−3), Navier-Stokes can be recovered from the asymptotics

of the Boltzmann equation. Hence, the results from the implicit-explicit Boltzmann

equation should be consistent with that recovered from Navier-Stokes.

4.11 Single-species: Flow around a micro-electronic chip

In the current test case, we consider the effect of temperature gradients on a solid substrate

placed in a rarefied environment. The problem schematic, geometry, as well as boundary

conditions are shown in Figure 4.22 . Case details have been provided in Tab. 4.19 . We

mention that, to the best of our knowledge, an analysis of such a low-temperature flow

hasn’t been carried out previously within a deterministic full Boltzmann framework.

symmetry
7 µm

symmetry 3 µm

symmetry
30 µm

diffuse wall at Th = 296.5 K
13 µm

diffuse wall at Tc = 295.5 K
13 µm

substrate, Ts = 296K

3 µm

x

y

(a) Schematic

(b) Mesh for DGFS simulations. For DSMC sim-
ulations, we subdivide each cell of the mesh above
into 5 × 5 sub-cells.

Figure 4.22. Numerical setup for the flow around a micro-electronic chip.
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4.11.1 Numerical details

We employ DSMC and DGFS to carry out simulation of flow around a micro-electronic

chip. The simulation specific numerical parameters as well as differences between stochastic

(DSMC) and deterministic (DGFS) modelling is described next.

• DSMC: SPARTA[19 ] has been employed for carrying out DSMC simulations in the

present work. It implements the DSMC method as proposed by Bird [24 ]. The solver

takes into account the translational/rotational/vibrational kinetic energies associated

with the molecular motion. The solver has been benchmarked [19 ] and widely used for

studying hypersonic, subsonic and thermal [29 ], [32 ], [89 ], [96 ]–[100 ] gas flow problems.

In this work, cell size less than λ/3 has been ensured in all the test cases. The no-time

collision (NTC) algorithm is used in conjunction with Bird’s VHS scattering model.

The simulations are first run for 200,000 unsteady steps wherein the particles move,

collide, and allowed to equilibrate. No sampling is performed at this stage. Next,

the simulation is run for another 4,000,000 steady steps wherein the samples of flow

properties namely number density, flow velocity, temperature, stress, and heat-flux, are

taken for sufficiently long time so as to produce a meaningful bulk properties as well

as minimize the statistical noise therein. In the present case, the DSMC domain is dis-

cretized with a uniform cell size of 0.2 µm, with 300 particles per cell on average during

initialization. A time step of 10−9 sec is used during move step of DSMC algorithm

throughout the course of simulation. N2 is used as the working gas in simulations.

The properties of the working gas is given in Tab. 4.18 . We want to emphasize that

for DSMC simulations, we take rotational/vibrational degrees of freedom into account

i.e., N2 is treated as a diaotomic species. DSMC simulations on 30 cores of Intel(R)

Xeon(R) CPU E5-2670 v2 2.50GHz, took ∼ 73 hours.

• DGFS: We use the DGFS implementation described in Ref. [32 ]. The spatial domain

consists of 281 uniform square cells of 1 µm each. Since we are seeking a steady state

solution, the time-step is selected based on the CFL constraints of the forward Euler

scheme. Other case specific DGFS parameters have been provided in Tab. 4.19 . Note
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that, we employ N2 as the working gas in simulations, since MIKRA experiments[43 ]

were performed in N2 medium. N2 is diatomic, however, DGFS, as of now, is applicable

for monoatomic gases only. Since the working temperature range is low, we anticipate

the effects of vibrational degrees of freedom to be negligible. DGFS simulations on 2

Nvidia-P100 GPUs took ∼ 9 hours.

Table 4.18. N2 gas VHS parameters used in 2-D single-species DSMC and
DGFS simulations. Note that DGFS, being in very early stage of research,
treats N2 as a monoatomic species.

Mass: m (kg) 46.5 × 10−27

Viscosity index: ω (−) 0.74
Scattering index: α (−) 1.0
Ref. diameter: dref (m) 4.17 × 10−10

Ref. temperature: Tref (K) 273
Ref. viscosity: µref (Pa · s) 1.656 × 10−5

DSMC specific parameters
Rotational degrees of freedom: ζR (−) 2
Rotational relaxation: ZR (−) 1/2
Vibrational degrees of freedom: ζV (−) 2
Vibrational relaxation ZV (−) (1.90114 × 10−5)−1

Vibrational temperature TV (K) 3371

4.11.2 Results and discussion

Figures 4.23 illustrate the contours of various flow properties for the flow around the solid

chip/substrate. Ignoring the statistical noise, we observe excellent agreement between DSMC

and DGFS. In particular, DGFS reproduces noise-free smooth results.

Next we compute the force acting on the substrate as a result of the temperature gradients

initially present in the flow. In general, the pressure force on a surface is given by

F = −
∫

dA
p n dA (4.12)

where n is the unit surface normal, p is the pressure on the surface, and A is the area of the

surface.
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Table 4.19. Numerical parameters for flow around micro-electronic chip.
Parameters MEC-01

Spatial elements 190 quadrilaterals
DG order 3
Time stepping Euler
Points in velocity mesh: N3 243

Points in radial direction2: Nρ 6
Points on half sphere2: M 6
Size of velocity mesh3 [−5, 5]3
Characteristic length: H0 (µm) 3
Characteristic velocity: u0 (m/s) 402.54
Characteristic temperature: T0 (K) 273
Characteristic no. density: n0 (m−3) 4.894 × 1023

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 273
Number density: n (m−3) 4.894 × 1023

Knudsen number1: (Kn) 0.88158

Table 4.20. x-component of force on the substrate for MEC-01 case, obtained
using DSMC and DGFS simulations.

Pressure (Pa) Kn Force (µN/µm)
DSMC DGFS

2000 0.88158 -0.040008843 -0.040010413
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Table 4.20 presents the x-component of force on the substrate for the micro-electronic chip

verification case. Again, we note reasonable agreement between the values recovered from

DSMC and DGFS simulations.

4.12 Single-species: Flow in short microchannels

The present test case closely follows case-I(a) from Ref. [101 ]. In the current test case, two

reservoirs filled with N2 gas, at different temperatures, are connected by a two-dimensional

capillary tube, both with a finite length L and height H/2, are considered. The problem

schematic, geometry, as well as boundary conditions are shown in Figure 4.24 . Case details

have been provided in Tab. 4.21 . Note in particular, we introduce a linearly decreasing

temperature profile at the top wall. Previous studies for flow in short microchannels have

been restricted to model kinetic equations [101 ]–[103 ] or moment methods [104 ]. To the

best of our knowledge, an analysis of such a low-temperature flow hasn’t been carried out

previously within a deterministic full Boltzmann framework.

4.12.1 Numerical details

• DSMC: The no-time collision (NTC) algorithm is used in conjunction with Bird’s VHS

scattering model. The simulations are first run for 500,000 unsteady steps wherein the

particles move, collide, and allowed to equilibrate. Next, the simulation is run for

another 100,000 steady steps wherein the samples of flow properties are taken. In the

present case, the DSMC domain is discretized with a uniform cell size of 0.01 µm, with

30 particles per cell on average during initialization (Note that SPARTA uses hierarchi-

cal Cartesian grid over the simulation domain: used to track particles and to co-locate

particles in the same grid cell for performing collision and chemistry operations. At

the junction, where the walls join the inlet and outlet regions, one can identify two

boundary cells. We further refine, specifically, these two boundary cells into 10 × 10

sub-cells. These two cells are unique i.e., for each of these cells, the top face is marked

as inlet, and the left face is marked as solid wall. The cell-size has been made smaller
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(a) Number density (m−3) (b) Temperature (K)

(c) Speed (m/s) (d) xy-component of stress (N/m2)

(e) x-component of heat-flux (W/m2) (f) y-component of heat-flux (W/m2)

Figure 4.23. Flow properties at steady state for micro-electronic chip ob-
tained from DSMC and DGFS using VHS collision model. For each of these
figures, DSMC results (mirrored along y-axis) have been shown in the second
quadrant (−17 µm ≤ x < 0 µm), whereas DGFS results have been illustrated
in the first quadrant (0 µm ≤ x < 17 µm). Observe the legend for number-
density.
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inlet at 600K

Hin = 2 µm

symmetry

Lin = 2 µm L = 5 µm Lout = 2 µm

outlet at 300K

Hout = 2 µm
walls

H/2 = 0.5 µm

linearly decreasing temperature along the

600K

300K

x

y

(a) Schematic

(b) Mesh for DGFS simulations.

Figure 4.24. Numerical setup for the flow in short microchannels. On the
horizontal channel walls, we impose a linearly decreasing temperature profile
similar to case I(a) in Ref. [101 ].
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to avoid any potential leakage). A time step of 10−10 sec is used. N2 is (Tab. 4.18 )

used as the working gas in simulations. DSMC simulations on 32 cores of Intel(R)

Xeon(R) CPU E5-2670 v2 2.50GHz, took ∼74.67 hours..

• DGFS: The spatial domain consists of 127 non-uniform quadrilateral elements as

shown in Fig. (4.24b ). Case specific DGFS parameters have been provided in Tab. 4.21 .

DGFS simulations on 2 Nvidia-P100 GPUs took ∼8 hour 31 minutes.

Table 4.21. Numerical parameters for flow in short microchannels.
Parameters SM-01

Spatial elements 127 quadrilaterals
DG order 3
Time stepping Euler
Points in velocity mesh: N3 323

Points in radial direction2: Nρ 8
Points on half sphere2: M 6
Size of velocity mesh3 [−5.72, 5.72]3
Characteristic length: H0 (µm) 1
Characteristic velocity: u0 (m/s) 421.98
Characteristic temperature: T0 (K) 300
Characteristic no. density: n0 (m−3) 6.62 × 1024

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 300
Number density: n (m−3) 6.62 × 1024

Knudsen number1: (Kn) 0.2
Inlet condition

Velocity: uin (m/s) 0
Temperature: Tin (K) 600
Number density: nin (m−3) 3.31 × 1024

Pressure: pin (N/m) 27420
Outlet condition

Velocity: uout (m/s) 0
Temperature: Tout (K) 300
Number density: nout (m−3) 6.62 × 1024

Pressure: pout (N/m) 27420

118



4.12.2 Results and discussion

Figures 4.26 illustrate the contours of various flow properties for the flow around the solid

chip/substrate. Ignoring the statistical noise, we gain note excellent agreement between

DSMC and DGFS. In particular, minor differences in x-component of heat-flux i.e., Qx can

be attributed to the fact that DSMC simulations consider rotational degrees-of-freedom of

N2 into account, whereas DGFS doesn’t.

Figures 4.25 shows the variation of flow properties over the vertical centerline, wherein we

again observe an excellent agreement.
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Figure 4.25. Flow properties on the horizontal centerline (y = 0 µm) for short
microchannel test-case obtained from DSMC and DGFS using VHS collision
model.

4.13 Single-species: Lid-driven cavity flow

As a 3D example, we consider the standard lid driven cavity flow. Consider a cube of

length H = 1 × 10−3 meters. All the walls are kept at temperature of T = 273K. At the

top wall xy-plane, a velocity of u = (50, 0, 0) m/s is introduced. The Knudsen number

is fixed at Kn = 0.1 and Kn = 1. Forward euler scheme is used for time evolution. The

velocity space [−6, 6]3 is discretized using N3 = 323 points, Nr = 6 points in the radial
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(a) Number density (m−3) (b) Temperature (K)

(c) Speed (m/s) (d) xy-component of stress (N/m2)

(e) x-component of heat-flux (W/m2) (f) y-component of heat-flux (W/m2)

Figure 4.26. Flow properties for short microchannel test-case obtained from
DSMC and DGFS using VHS collision model. For each of these figures, DSMC
results have been shown in the first quadrant (0 µm ≤ y < 2 µm), whereas
DGFS results (mirrored along x-axis) have been illustrated in the fourth quad-
rant (−2 µm ≤ y < 0 µm). Differences in Qx can be attributed to the fact that
DSMC simulations consider rotational degrees-of-freedom of N2 into account,
whereas DGFS doesn’t.
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direction and M = 6 points on half sphere. A convergence criterion of (‖fn+1 −fn‖/‖fn‖L2)

/(‖f 2 − f 1‖/‖f 1‖L2) < 1 × 10−5 has been used.

1 mm

1 mm

1 mm

Moving wall
U = (50, 0, 0) m/s

Fixed walls

y

x

z

Figure 4.27. Numerical setup for 3-D lid driven cavity flow.

Figures 4.28 shows the comparison of residual for different mesh sizes in physical and velocity

spaces at Kn = 0.1 and Kn = 1. This shows that all the cases have converged.

Figures 4.29 illustrate the comparison of flow properties between DSMC and DGFS on body

diagonal of the cube for different mesh sizes at Kn = 0.1. Figures 4.31 show the analogous

result for Kn = 1. From these results, the combination 43, 323 appears suitable.

Fig (4.30 ) depicts the flow properties on the 3-D volume. DGFS results are recovered using

83 elements in physical space and 323 points in the velocity space. Figures 4.32 show the
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Figure 4.28. Residual history: ‖fn+1 − fn‖/‖fn‖L2 for different mesh sizes
in physical and velocity spaces: (top) Kn = 0.1, (bottom) Kn = 1. The plot
legend is defined using notation N3

e , N3, where Ne refers to number of elements
in each direction of physical space, and N refers to number of points in each
direction of velocity space.
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analogous result for Kn = 1. From these results, ignoring the statistical fluctuations, one

can infer that DGFS results match well with DSMC.

At Kn = 0.1, DSMC simulations on 32 cores of Intel Xeon Silver 4114 CPU 2.20GHz, for

550000 steps took 24 hours. DGFS simulations were run on 2 Nvidia-P100 GPUs. For

133,000 steps, the simulation with 43 spatial grid and 243 velocity grid took 15 hours; 43

spatial grid and 323 velocity grid took 191 hours; 83 spatial grid and 243 velocity grid took

91 hours; 83 spatial grid and 323 velocity grid took 206 hours.

At Kn = 1, DSMC simulations on 32 cores of Intel Xeon Silver 4114 CPU 2.20GHz, took 24

hours. DGFS simulations were run on 2 Nvidia-P100 GPUs. For 40,000 steps, the simulation

with 43 spatial grid and 243 velocity grid took 5.8 hours; 43 spatial grid and 323 velocity grid

took 27.4 hours; 83 spatial grid and 243 velocity grid took 57.2 hours; 83 spatial grid and 323

velocity grid took 85.6 hours.
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(b) xy-component of stress
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(c) yy-component of stress
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(d) zz-component of stress
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(e) xz-component of stress
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(f) yz-component of stress

Figure 4.29. Variation of shear-stresses on body-diagonals for lid-driven
cavity flow at Kn = 0.1. Symbols denote DSMC results, dashed lines denote
DGFS solutions on diagonal (10−3, 10−3, 0) − (0, 0, 10−3).
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(a) DGFS: Density (kg/m3) (b) DSMC: Density (kg/m3)

(c) DGFS: xy-component of stress (N/m2) (d) DSMC: xy-component of stress (N/m2)

(e) DGFS: yz-component of stress (N/m2) (f) DSMC: yz-component of stress (N/m2)

Figure 4.30. Variation of flow properties for lid-driven cavity flow at Kn = 0.1
from DGFS.
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(b) xy-component of stress
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(c) yy-component of stress
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(d) zz-component of stress
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(e) xz-component of stress
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(f) yz-component of stress

Figure 4.31. Variation of shear-stresses on body-diagonals for lid-driven
cavity flow at Kn = 1. Symbols denote DSMC results, dashed lines denote
DGFS solutions on diagonal (10−3, 10−3, 0) − (0, 0, 10−3).
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(a) DGFS: Density (kg/m3) (b) DSMC: Density (kg/m3)

(c) DGFS: xy-component of stress (N/m2) (d) DSMC: xy-component of stress (N/m2)

(e) DGFS: yz-component of stress (N/m2) (f) DSMC: yz-component of stress (N/m2)

Figure 4.32. Variation of flow properties for lid-driven cavity flow at Kn = 1 from DGFS.

127



5. APPLICATION: QUANTIFICATION OF THERMALLY

DRIVEN FLOWS IN MICROSYSTEMS

Feynman [105 ], on 29th December 1960 at the Annual meeting of the American Physi-

cal Society, in his talk titled There’s plenty of room at the bottom, envisioned a future of

micro-devices wherein the miniaturization would be potentially achieved via evaporation and

itching process. Almost 60 years later, the idea forms an essential element for manufacturing

of MEMS devices. How do study the flows in microsystems, wherein the flow is too slow

for DSMC to be effective, and the Navier-Stokes too inaccurate to predict the rich structure

within?

5.1 Background and motivation

In microscale flows, the length scale dictates the type of forces governing the physical phe-

nomena. The surface to the volume ratio is high and hence the surface forces dominate.

The Reynolds number is low and the viscous shear stresses are significantly increased [106 ].

Under sufficiently rarefied flow conditions, an application of temperature gradient, say, be-

tween two parallel plates separated by few mean free paths, induces a low velocity gas flow

commonly identified as thermo-stress convection effects [39 ]. A necessary condition to induce

a sufficiently useful gaseous velocity requires the characteristic length scale of the thermal

gradients T/|∇xT | to be comparable to the molecular mean free path λ. At macroscale, such

magnitudes are prohibitive, necessitating thermal gradients on the order of 106 K/m. How-

ever, at microscale, such conditions are readily achieved allowing the thermo-stress effects

to overcome the classically dominant viscous forces [43 ].

From a historical and experimental viewpoint, Knudsen, in 1910, explored the possibility

of gas actuation under the influence of temperature gradients using evacuated glass bulbs

separated by a long narrow tube, wherein heating one of the bulbs resulted in a pumping

action creating a high pressure at the hot end and low pressure at the cold end [107 ], [108 ].

In 1950’s [109 ], Knudsen carried out various experiments using Crooke’s radiometer [40 ],
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wherein a device consisting of a long thin and narrow platinum band with dark (hot) and

bright (cold) sides, in a rarefied environment, exhibits a net force due to momentum imbal-

ance of particles reflecting from the dark and bright sides. Without being exhaustive, we

refer to (Ref. [110 ]) for a comprehensive review of the radiometric phenomenon. From a theo-

retical viewpoint, Maxwell hypothesized that one of the possible causes of radiometric effects

are temperature stresses. However, based on linearized kinetic theory and corresponding re-

duced macroscopic equations of motion (see section 15 in Ref. [111 ]), the author concluded

that no motion can be produced by temperature stresses [39 ], [111 ], which, in general, is

incorrect. Later, Kogan, in 1976, introduced the theory of thermo-stress convection, wherein

the bulk velocity is attributed to presence of higher order terms of temperature stresses (see

eq. 2.6 in Ref. [39 ]), arrived in part by the second order Chapman-Enskog expansion com-

monly identified as the Burnett approximations. In the multi-species context, however, the

phenomenon and the effect of thermo-stress convection on the flow concentration (and the

subsequent induced velocity) is more apparent.

Chapman [5 ], as early as 1953, developed the theory of diffusion processes (see eq. (8.4,

7) in Ref. [5 ] again derived using Chapman-Enskog expansion) wherein the difference in

concentrations of two species is proportional to the thermal gradient term kT ∇ ln T , where

kT is thermal diffusion factor. At normal conditions, this coefficient is very low, and is

therefore not accounted in practice. For instance, as a classical example, Bird [24 ] devised

a self-diffusion test case (see section 12.6) where the diffusion coefficient was measured by

ignoring the thermal gradient term kT ∇ ln T of eq. (8.4, 7) in Ref. [5 ]. Note however that

there is considerable thermal gradient in self-diffusion cases, see for instance Ref. [89 ], where

we presented the results for temperature variation for self diffusion cases. Although the

temperature gradient is unaccounted for, the diffusion coefficient, which is measured by a self

diffusion simulation, matches well with the experimentally [5 ] observed diffusion coefficient.

This suggests that kT is potentially low — which is indeed the case, for instance, see Ref [93 ],

wherein the authors noted thermal diffusion coefficient on order of 10−3. In microscale flows

where the per unit temperature drop can easily reach 106K/m, as noted earlier, kT ∇ ln T

can have appreciable contributions. This type of process has been interpreted in terms of
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thermo-stress convection due to concentration inhomogeneities by Kogan [39 ]. The overall

thermo-stress convection phenomenon/effect is highly coupled and exhibits highly rich flow

structures (as will be shown in the following section), and an in-depth understanding can

prove to be very useful for development of next generation of microsystems.

To summarize, Sone [112 ] identified three broad groups of the temperature driven flow based

on its application in microsystems: a) thermal creep flow [113 ]–[115 ] which is an induced flow

around a body with non uniform temperature; b) thermal stress slip flow, which is induced

by nonuniform temperature gradient over the boundary [39 ], [116 ]–[121 ]; c) and nonlinear

thermal stress flow [39 ], which is important only when the temperature gradient in the gas

is high, and nonlinear terms of temperature variations in stress tensor should be taken into

account. The present study is delegated to the third i.e., nonlinear thermal stress flow.

From a practical engineering viewpoint, thermo-stress convection has been applied for micro-

structure actuation. Passian [122 ], [123 ], in 2003, demonstrated a micro-cantilever suspended

over a substrate, which when heated via a pulsed laser generated deflections at the cantilever

tip as a consequence of the Knudsen forces in the gap between the substrate and micro-

cantilever. Foroutan [124 ], in 2014, demonstrated untethered levitation in concave micro-

flying robots relying on Knudsen force. The phenomenon has been further explored in small

satellite and spacecraft attitude control devices [125 ] and high-altitude propulsion systems

[126 ].

In the present work, we assess the thermo-stress convection process using the fundamen-

tal microscopic full Boltzmann equation. Due to the stochastic nature of the DSMC that

introduces high statistical noise in low-speed flows. Therefore, we study the thermo-stress

convection process using the proposed deterministic discontinuous Galerkin fast spectral

(DGFS) method [32 ], [89 ] as well as DSMC: the primary tool for rarefied flow simulations.

DGFS allows arbitrary unstructured geometries; high order accuracy in physical space time,

and velocity space; arbitrary collision kernels, including, the well known VSS model [89 ];

and provides excellent nearly-linear scaling characteristics on massively parallel architec-
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tures [100 ], [127 ]. DGFS produces noise-free solutions and can simulate low-speed flows

encountered in thermo-stress convection dominated devices.

From a flow modelling viewpoint, Loyalka [128 ], using a linearized Boltzmann equation,

calculated the longitudinal and transversal Knudsen forces on the cylindrical surfaces of a

hanging wire of a vacuum micro-balance. The authors noted Knudsen force maximum in

the transitional regime for Helium–an observation attributed to the bimodal nature of radio-

metric forces [129 ]. Fierro [130 ] studied the problem using a Bhatnagar-Gross-Krook (BGK)

model for range of Knudsen numbers and different molecular species noting an inverted

parabolic profile for variation of Knudsen force with pressure (which can be reinterpreted

in terms of Knudsen number since a fixed size geometry was used for all cases). The au-

thors observed a peak Knudsen force in 10 − 100 N/m2 pressure range for Helium, Krypton,

Hydrogen, Oxygen, and Carbon dioxide. Alexeenko [131 ] carried out numerical simulations

around heated micro-beams using the conventional Navier-Stokes incorporating first order

Maxwell slip and Smoluchowski temperature jump boundary conditions, DSMC, and pri-

marily using a deterministic kinetic ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK)

model employing a finite-difference-discrete-velocity scheme. The gas-damping coefficients

on a moving micro-beam for quasi-static isothermal conditions were estimated by the three

numerical methods for Knudsen numbers from 0.1 to 1.0. It was concluded that the Navier-

stokes simulations overestimate the gas-damping force for Knudsen numbers larger than 0.1,

while the ESBGK and DSMC methods are in good agreement for the slip and transitional

flow regimes. Moreover, the Knudsen force peaks in the transitional regime at Kn ≈ 2, and

the numerically predicted variation of the force is consistent with experimental observations

of the displacement of a heated micro-beam. Zhu [132 ] analyzed the problem specifically

using DSMC in the slip, transition, and free molecular regimes noting qualitative agreements

between DSMC and experimental results of Passian [122 ], [123 ]. Nabeth [133 ] analyzed

the problem using the ESBGK model within a finite volume framework. Notably, the au-

thors devised a semi-empirical relation between the force and the Knudsen number based

on dynamic similarity. Anikin [134 ] studied the radiometric forces via a direct solution of

Boltzmann equation on 2-D velocity grids via a discrete ordinate projection method [135 ].
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More recently, Lotfian [136 ] analyzed the various arrangements for radiometric pumps fea-

turing vane and ratchet structures, including, zigzag triangular fins, using DSMC and finite

volume based BGK-Shakhov model.

In more complex scenarios, one can stack an array of micro-heaters to significantly enhance

the Knudsen force output [41 ]–[43 ]. Strongrich [42 ] demonstrated the possibility of ampli-

fying the Knudsen forces as well as reversing its direction by combining thermal gradients

between several solid bodies. The idea was further explored, resulting in development of a

Microscale In-Plane Knudsen Radiometric Actuator (MIKRA) sensor for flow actuation and

measurement [43 ]–[45 ]. MIKRA consists of array of hot and cold micro-beams termed as

heater and shuttle arm. When the heater arm is heated under the application of electric

current, the Knudsen force is generated in the gap between the shuttle and heater arm. The

displacement of shuttle arm is then measured using a capacitor (specific details to follow in

next section). MIKRA presents an interesting problem for analyzing thermostress convection

due to temperature gradients as well as concentration inhomogeneties, see Ref. [137 ] where

authors observed species separation in MIKRA which might be, in part, due to be the effect

of kT ∇ ln T term. We believe it’s too early to make a definite conclusion on the topic.

A key question, and a subject of ongoing research is the following: How well can the kinetic

equations/models, for instance, McCormack model [77 ], Lattice Boltzmann method (LBM)

[138 ], Bhatnagar-Gross-Krook (BGK) [76 ], [78 ], [83 ], [139 ], [140 ], Ellipsoidal statistical

Bhatnagar-Gross-Krook (ESBGK) [84 ], [141 ], BGK-Shakhov (S-model) [85 ], Unified Gas

Kinetic Scheme (UGKS) [142 ], [143 ], Discontinuous Galerkin Fast Spectral (DGFS) [32 ], and

direct simulation Monte Carlo (DSMC) [24 ], describe the thermo-stress convection process,

including, their applicability regimes at wide range of rarefaction levels and temperature

gradients, and required computational cost for reproducing the correct induced low speed

velocity profile on a common standard benchmark problems such as MIKRA where the

experimental results are readily available. As noted by Kogan [39 ], the overall thermo-stress

convection process is complicated function of concentration, of mass-ratio, molecule-collision

cross section, etc. An in-depth understanding of the overall thermo-stress convection process

at the microscale may potentially prove useful for development of a series of new MEMS
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devices without any moving parts (see, for instance, Refs. [44 ], [144 ]). This part of the

thesis, in part, focuses on quantifying the fidelity of results recovered from BGK, ESBGK,

S-model, DGFS and DSMC for the Knudsen radiometric actuator MIKRA. To the best of

our knowledge, analysis of single/multi-species complex flows such as MIKRA hasn’t been

carried out using deterministic full Boltzmann.

Finally, we mention that there is another class of low-speed gas flow problems which ap-

pears within the context of gas damping [145 ], [146 ]: an effect generally observed in radio

frequency (RF) switches [147 ] which are used in radar systems, wireless communication

systems, and other instrumentation fields. Gas damping sharply influences the dynamic be-

havior of MEMS devices, including, mechanical quality factors of microfabricated resonators,

switching time, impact velocity, and bounceback of contacting MEMS [148 ]. A commonly

identified trade-off in gas damping is as follows: the gas damping must be minimized to

achieve high sensitivity of MEMS, such as resonators; and it must be maximized to mitigate

the shock response and transient performance of MEMS. This is yet another class of prob-

lems where the fidelity of different modelling approaches, in particular, the deterministic

ones, can be tested.
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Suspension
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Figure 5.1. The CAD model for Gen1 Micro In-Plane Knudsen Radiometric
Actuator (MIKRA) [43 ].

5.2 MIKRA: Micro In-Plane Knudsen Radiometric Actuator

MIKRA, acronym for Micro In-Plane Knudsen Radiometric Actuator, is a microscale com-

pact low-power pressure sensor. A CAD representation of the device has been illustrated in

Fig. 5.1 . Simply speaking, the device consists of an array of (tweleve) microbeams labelled

as Shuttle Arm and Heater Arm in Fig. 5.1 . The heater arm is heated, and a thermal mo-

tion is induced in the gap between the heater and the shuttle. Subsequently, the shuttle

arm experiences forces on order of few micro-newtons. This force is commonly identified as

Knudsen force. Depending on the temperature of the heater, the shuttle gets displaced, and

this displacement is measured capacitively. The magnitude of displacement is then used to

estimate the ambient pressure. Specific details on MIKRA can be found in Refs. [43 ], [44 ],

[137 ].

134



TC50 µm

50 µm

TH 50 µm

50 µmsymmetry

300 µm

symmetry

300 µm

freestream (U∞, T∞, p∞)

600 µm

substrate, Ts = 296K

600 µm

20 µm240 µm

4 µmx

y

Figure 5.2. Schematic for numerical simulation of thermo-stress convection
in MIKRA Gen1[43 ]. The interior dashed thin black lines indicate the blocks
used for structured mesh generation. Specifically for deterministic DGFS sim-
ulations, a linear gradient is applied within blocks such that the cells are finer
in the near-vane region.

5.2.1 Problem Statement

The flow configuration is shown in Fig. 5.2 . Consider the 2D uniform flow of N2 with

freestream velocity U∞, freestream temperature T∞, and freestream pressure p∞ over two

two-dimensional square vanes, each with side lengths of 50 µm, separated by a gap of 20 µm

(also used as the nondimensionalizing length scale). The vanes are modeled as purely diffuse

solid walls. The left vane, indicated in blue, is kept at a lower/cold temperature which we

denote by TC . The right vane, indicated in red, is kept at a higher/hot temperature which we

denote by TH . The substrate, indicated in green, forms the lower boundary of the domain,

and is modelled as a purely diffuse solid wall. The end goal is to simulate the motion of gas

flows in the gap between the two vanes, subject to different initial pressures p∞, hot (TH) and

cold (TC) vane temperatures as listed in Tab. 5.1 , in order to identify the correct circulation,

induced low velocity, temperature gradient, and Knudsen forces from the vanes. The results

are to be obtained from both stochastic (DSMC) and deterministic (DGFS) simulations.
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Table 5.1. Numerical parameters for thermo-stress convection in MIKRA
Gen1 simulations for DSMC and DGFS using VHS collision model for N2
molecules.

Parameter Cases
M-01 M-02 M-03

Pressure: p (Torr) 1.163 2.903 7.246
Number density: n (×1021 m−3) 37.8609 94.5058 235.8901
Knudsen number1: Kn 1.85 0.74 0.30
Cold vane temperature: TC (K) 306 306 304
Hot vane temperature: TH (K) 363 356 331
DGFS parameters

Points in velocity mesh: N3 243 243 243

Points in radial direction2: Nρ 6 6 6
Points on half sphere2: M 6 6 6
Size of velocity mesh3 [−5, 5]3 [−5, 5]3 [−5, 5]3

BGK/ESBGK/S-model parameters
Points in velocity mesh: N3 483 243 243

Size of velocity mesh3 [−7, 7]3 [−5, 5]3 [−5, 5]3

5.2.2 Numerical details

The simulation is carried out at wide range of Knudsen number for flows in early slip to early

free molecular regime. The simulation specific numerical parameters as well as differences

between stochastic (DSMC) and deterministic (DGFS) modelling is described next.

• DSMC: SPARTA[19 ] has been employed for carrying out DSMC simulations in the

present work. The simulations are first run for 200,000 unsteady steps wherein the

particles move, collide, and allowed to equilibrate. No sampling is performed at this

stage. Next, the simulation is run for another 5,000,000 steady steps wherein the

samples of flow properties namely number density, flow velocity, temperature, stress,

and heat-flux, are taken for sufficiently long time so as to produce a meaningful bulk

properties as well as minimize the statistical noise therein. In the present case, the

DSMC domain is discretized into 300 × 150 cells, resulting in a uniform cell size of

2 µm, with 50 particles per cell on average during initialization. A time step of 10−9

sec is used during move step of DSMC algorithm throughout the course of simula-
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tion. Note that these DSMC parameters have been taken from Ref. [43 ] wherein the

authors performed multiple verification cases with different time-steps, grid-size, do-

main length, particles per cell, etc. N2 is used as the working gas in simulations, since

MIKRA experiments[43 ] were performed in N2 medium. The properties of the working

gas is given in Tab. 4.18 . DSMC simulations treat N2 as diatomic species, and takes

rotational degrees of freedom into account.

• DGFS: We use the DGFS implementation described in Ref. [32 ]. The spatial domain

consists of 849 elements (39×23 (total) - 2×6×4 (remove the vane regions)). We use a

linearly refined structured grid as illustrated in Fig. 5.3 . While structured grids might

seem inflexible compared to unstructured grids, they are known to produce more stable

scheme with superior convergence rates[149 ], [150 ], are amenable to highly efficient

adaptive h/p mesh refinement via recursive element splitting [151 ] (Nevertheless, DGFS

is more general, and test cases on general grids will be reported in future works). Since

we are seeking a steady state solution, the time-step is selected based on the CFL

constraints of the forward Euler scheme. Other case specific DGFS parameters have

been provided in Tab. 5.1 .

It is worth noting that both the methods have different cell size requirements. In DSMC

method, the contribution of particle collision to the transport properties is affected by strict

spatial cell size requirements. In DGFS, however, the transport properties are strongly

affected by local 3-D velocity space resolution rather than spatial resolution. As we show

later, one can resolve the flow properties with fewer cells using DGFS.

5.2.3 Results and Discussion

Figures 5.4 and 5.5 illustrate the contour plot of various flow properties for the highest

pressure case Kn = 0.3 (left column) and Kn = 1.85 (right column). For each of these

plots, the DSMC and DGFS contours have been overlaid, wherein DSMC results have been

indicated by thin black lines, and DGFS results have been indicated with thick red lines.

Since the flow is strictly driven by temperature gradients, we expect very small deviation
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Figure 5.3. Spatial mesh used for carrying out DGFS simulations for MIKRA
Gen1 device. A linear gradient is applied within blocks such that the cells are
finer in the near-vane region. A 3rd order nodal/sem DG scheme has been
used.
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Figure 5.4. Variation of flow properties along the domain for MIKRA Gen1
cases (M-01: Kn = 1.85, and M-03: Kn = 0.3) obtained from DSMC (thin
black lines), and DGFS (thick red lines).

in the number density from the equilibrium value of 235.8901 × 1021 m−3, as is also evident

from Fig. 5.4a . In terms of temperature, in Fig. 5.4c , we observe a rather familiar flow

expansion, in the sense that, the hot vane dissipates heat to the surrounding acting as a

source, thereby giving rise to a spiral with spiral’s origin at the hot vane. Observe the

interaction of contour lines (isotherms at 305K and 310K) with the cold vane in the region

(250µm ≤ X ≤ 300µm, 25µm ≤ Y ≤ 60µm). We notice sharply curved isotherms near
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Figure 5.5. Continuation of Fig. 5.4 .

the top and right sides of the cold vane (see Fig. 5.6 ). Taking into account the Knudsen

number of 0.3 and the characteristic length scale of system of 20µm, the Knudsen layer

should extend few mean free paths from the solid surfaces i.e., O(λ) ≈ O(6µm). Therefore,

one should expect some temperature jump, and therefore non-linearity in the temperature

in the near-wall region. More interestingly, we note an inflection in the isotherms at the top

surface of the cold vane. This is essentially because the cold vane surface temperature is

304K, while the free-stream is at 296K. Hence, near to the heating source, say top-right
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end of the cold vane, the surface temperature is lower than the temperature of a layer of

molecules just above the surface; and far away from the heating source, say top-left end of

the cold vane, the surface temperature is higher than the temperature of a layer of molecules

just above the surface. Therefore, an inflection in isotherms is expected somewhere between

the top-left and top-right corner of the cold vane.

The origin of Knudsen force can be appreciated as follows. Consider a differential area

dS over the cold vane as shown Fig. 5.6 . The molecules impinging on the area dS can be

thought as made up of two types of molecules: molecules coming from colder point A and

molecules coming from hotter point B, both separated by few mean free paths. Near to the

top right end of the cold vane, nearer to the hot vane, one should expect larger concentration

of molecules of type B, and smaller concentration of molecules of type A. Conversely, near

to the top left end of the cold vane, which is (relatively) far away from the hot vane, one

should expect a smaller concentration of molecules of type B, and larger concentration of

molecules of type A. Specifically, at the top left end of the cold vane, due to this imbalance

of particles hitting the surface area, the momentum transferred to the surface element dS

is in the opposite direction to the temperature gradient; however the gas flow is induced in

the direction of the temperature gradient [112 ], [121 ]. This overall momentum imbalance

contributes to the Knudsen force.

Figure 5.4e illustrates the variation of off-diagonal (xy) component of stress tensor at Kn =

0.3. First, we note the development of four ovals/ellipses originating at the four corners/edges

of the hot vane. The effect is more pronounced at the right end (top-right and bottom-right

corners) of the hot vane i.e., the length of the semi-major axis is larger for the ellipses on the

right. At the top-left corner of the hot vane, in particular, we observe interaction of ovals

with the top-right edge of the cold vane (note the distorted shape of the oval/ellipse at the

top-left boundaries of the hot vane). Since the Knudsen number is in the slip/early-transition
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Figure 5.6. Sharp curvature in isotherms near the surface of cold vane at
Kn = 0.3. This can be interpreted in terms of imbalance of molecules of type
A (cold) and type B (hot) at the top-left/top-right ends of the cold vane.

regime (Kn = 0.3), consider the expression for the stress-tensor, arrived in part by second

order Chapman-Enskog expansion[39 ]:

Pij = pδij + τ
(1)
ij + τ

(2)
ij + . . .

τ
(1)
ij = −2µ

[
∂ui

∂xj

]

τ
(2)
ij = K2

µ2

ρT

[
∂2T

∂xi∂xj

]
+ K3

µ2

ρT 2

[
∂T

∂xi

∂T

∂xj

]
︸ ︷︷ ︸

τT
ij : Thermal stress tensor

+ K1
µ2

ρ

∂uk

∂xk

[
∂ui

∂xj

]
, i, j, k ∈ {1, 2} (5.1)

where Pij, p, u, µ, ρ are stress tensor, pressure, velocity, dynamic viscosity, and density

respectively. δij is the Kronecker delta function, τij is the off-diagonal term of the stress
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tensor, and Ki ≈ 1, i = {1, 2, 3} are species/molecular-interaction specific constants[39 ].

This yields

P12 = τ
(1)
12 + τ

(2)
12 + . . . = Pxy

τT
12 = K2

µ2

ρT

[
∂2T

∂x1∂x2

]
+ K3

µ2

ρT 2

[
∂T

∂x1

∂T

∂x2

]

= K2
µ2

ρT

[
∂2T

∂x∂y

]
+ K3

µ2

ρT 2

[
∂T

∂x

∂T

∂y

]
(5.2)
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Figure 5.7. xy component of stress tensor at Kn = 0.3: origin of oval/ellipses
at the edges of the vanes. Note the distorted shape of the ellipse between
the top-right corner of cold vane and top-left corner of hot vane. Since the
temperature gradient is stronger between point A and B, compared to point C
and D, we expect the semi-major axis of the ellipse to be larger than the semi-
minor axis, and hence the distorted ellipse/oval – an observation consistent
with Eqs. (5.1 , 5.2 ) since ∂T/∂x � ∂T/∂y.

Let us consider four points in the flow: A (top-right corner of cold vane), B (top-left corner

of hot vane), C (third vertex of equilateral triangle ∆ABC s.t.
−−→
BC ×

−→
CA/‖

−−→
BC ×

−→
CA‖ = k̂),

and D (mid point of A and B) as shown in Fig. 5.7 . Based on isotherms in Fig. 5.6 , it

can be inferred that the temperature difference between points A and B is ≈ 10K, whereas

the temperature difference between points C and D is ≈ 5K. Consistent with the Eq. 5.2 ,

theoretically, we expect the thermal stresses (and therefore Pxy) to be larger between points
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A and B since ∂T/∂x|AB � ∂T/∂y|CD (more formally: ‖∇T‖AB � ‖∇T‖CD, ‖∇2T‖AB �

‖∇2T‖CD). Hence, the distorted ellipse. A more subtle observation is as follows: Why,

precisely, should an isocontour line of xy component of stress, start from top-left corner of

the hot-vane (i.e., point B) and end at the top-right corner of cold-vane (i.e., point A). What

happens to the entire flow field if we introduce roughness on the walls, or smooth the vane

corners–few questions that we delegate to a future study.

Next, Figs. 5.5a , and 5.5c depict the variation of x and y components of heat flux. We want

to reemphasize that DSMC simulations consider the rotational degrees of freedom of N2 into

account, whereas DGFS, being in very early stages of research, doesn’t. Nevertheless, we

observe a fair agreement between DSMC and DGFS. In Fig. 5.5a , in the region (250µm ≤

X ≤ 320µm, 50µm ≤ Y ≤ 90µm), we again note presence of iso-contour lines between

the top-left and top-right corners of the cold and hot vanes. A more subtle observation

is as follows: Multiple iso-contours, for instance −2000 W/m2, −4000 W/m2, −6000 W/m2

(the unlabeled contour just below −4000 W/m2 iso-contour), differing by large magnitudes,

start at approximately the top-left corner of the hot vane, and end at the top-right corner of

the cold vane, resulting in sharply curved isocontours. A partial explanation of such effects

appears in Ref. [118 ], wherein the author attributed the observation to simply edge effects,

basing the argument on the imbalance of particles of type A (cold) and type B (hot) near to

the edges, as was mentioned earlier in the discussion.

Figure 5.5e illustrates the flow speed in the domain. We notice significant statistical fluctu-

ations in DSMC (thin black lines), to an extent that removing DGFS contour lines in red,

would make it difficult, if not impossible, to decipher the overall flow structure. A more

complete picture of the flow is presented through transient DGFS streamlines in Figs. 5.8 .

First, we note the streamlines pointing in the upward direction. This is essentially due to

the heating of the molecules (and therefore the thermal energy imparted to them) in the

lower portions of the domain. In the process, four characteristic vortexes appear at the four

corners of the heated vane, relatively early during the course of the simulation, for instance,

see Fig. 5.8a at 1.25 ms. Over the time, secondary vortexes appear in the flow, most notably,

144



a larger vortex at the top of the cold vane, and a smaller vortex near the top-right corner of

hot vane.

(a) Kn = 0.3, Flow streamlines, t = 1.25 ×
10−3 sec

(b) Kn = 0.3, Flow streamlines, t = 2.5×10−3 sec

(c) Kn = 0.3, Flow streamlines, t = 3.75 ×
10−3 sec

(d) Kn = 0.3, Flow streamlines, t = 4.375 ×
10−3 sec

Figure 5.8. Instantaneous streamlines near the vanes of MIKRA Gen1 device
at Kn = 0.30 obtained from DGFS using VHS collision model. Observe the
vortex formation above the cold vane, and top right corner of hot vane.

Figure 5.9 shows the steady state speed contours at different Knudsen numbers with the

corresponding flow streamlines overlaid. With increase in Knudsen number from Kn = 0.3

to Kn = 0.74, we note sharp increase in flow velocity, approximately by a factor of two.

Consequently, the vortexes grow in size. The change in flow speed, however, from Kn = 0.74

to Kn = 1.85, although appreciable, is relatively mild.
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Finally, we compare the variation of flow properties along the vertical centerline (x = 300µm,

0 ≤ y ≤ 300µm) in Figs. 5.10 for various models. We observe a fair agreement between

DSMC and DGFS results ignoring the statistical noise (see Figs. 5.4 , 5.5 ). In particular,

in Fig. 5.10b , we observe peak temperatures near the edges of hot and cold vanes i.e., in

the region x = 300µm, 30 ≤ y ≤ 60µm. Through Figs. 5.10c and 5.10d , we infer that

the thermal gradients are stronger in the x-direction. More notably, we observe the highest

thermal-stress in the edge region (note the valley in the region x = 300µm, 40 ≤ y ≤ 60µm).

We conjecture the trough of the valley to be shallower if the vane edges ought to be made

smoother. A slightly peculiar observation is as follows: the trough of the valley is deeper at

Kn = 0.74 compared to Kn = 0.30, and shallower at Kn = 1.85 compared to Kn = 0.74. This

could be explained as follows: at Kn = 0.30 the temperature difference, TH − TC , is lower

than the one correspoding to the Kn = 0.74 case and therefore the thermal stress increases in

the latter case. For the Kn = 1.85 and Kn = 0.74 cases, wherein the temperature difference

is approximately same, the peak thermal-stress decreases owing to the bimodal nature of the

Knudsen forces.
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(a) Speed (m/s), Kn = 0.30, DSMC (b) Speed (m/s), Kn = 0.30, DGFS

(c) Speed (m/s), Kn = 0.74, DSMC (d) Speed (m/s), Kn = 0.74, DGFS

(e) Speed (m/s), Kn = 1.85, DSMC (f) Speed (m/s), Kn = 1.85, DGFS

Figure 5.9. Variation of flow speed at steady state for MIKRA Gen1 cases
obtained from DSMC and DGFS using VHS collision model.
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5.3 Multi-species MIKRA

In the present section, we carry out the MIKRA simulations for binary mixture consisting

of N2 and H2O using the variable soft sphere model.

5.3.1 Problem Statement

The flow configuration remains the same as shown in Fig. 5.2 . We consider the 2D uniform

flow of binary mixture of N2 and H2O. The end goal is to simulate the motion of gas flows

in the gap between the two vanes, subject to initial pressure p∞, hot (TH) and cold (TC)

vane temperature as listed in Tab. 5.2 , in order to identify the correct circulation, induced

low velocity, temperature gradient, Knudsen forces, and heat transfer rate from the vanes.

The results are to be obtained from both stochastic (DSMC) and deterministic (DGFS)

simulations.

Table 5.2. Numerical parameters for thermo-stress convection in MIKRA
Gen1 simulations for DSMC and DGFS using VSS collision model for N2/H2O
binary mixture.

Parameter Cases
MSM-01

Pressure: p (Torr) 1.163
Total number density: n (×1021 m−3) 37.86091
Concentration: (n(N2)/n, n(H2O)/n) (0.05, 0.95)
Knudsen number1: Kn 1.85
Cold vane temperature: TC (K) 306
Hot vane temperature: TH (K) 363
DGFS parameters

Points in velocity mesh: N3 323

Points in radial direction2: Nρ 8
Points on full sphere2: M 12
Size of velocity mesh3 [−6, 6]3

149



Table 5.3. N2 and H2O gas VSS parameters used in MIKRA Gen1 DSMC
and DGFS simulations.

N2 H2O

Mass: m (kg) 46.5 × 10−27 29.9 × 10−27

Viscosity index1: ωi, (−) 0.74 1.00
Scattering index: αi, (−) 1.36 1.00
Ref. diameter: dref,i (m) 4.07 × 10−10 5.78 × 10−10

Ref. temperature: Tref,i (K) 273 273

5.3.2 Numerical details

The multi-species simulations are carried out for flows in transition regime. The specific

differences between stochastic (DSMC) and deterministic (DGFS) modelling is described

next.

• DSMC: SPARTA[19 ] has been employed for carrying out DSMC simulations in the

present work. The geometric parameters remain the same as described in section 5.2.2 .

A minimum of 300 DSMC simulator particles per cell is used in conjunction with the

no-time collision (NTC) algorithm and VSS scattering model. The simulations are

first run for 200,000 unsteady steps, and subsequently another 5,000,000 steady steps

wherein the flow sampling is performed. Similar to the previous single-species MIKRA

case, the DSMC domain is discretized into 300 × 150 cells, resulting in a uniform cell

size of 2 µm, with 285 particles of H2O and 15 particles of N2, per cell on average during

initialization. A time step of 10−9 sec is used during move step of DSMC algorithm

throughout the course of simulation. N2 and H2O are used as the working gases in

simulations. The properties of the working gas is given in Tab. 5.3 . Note that for

N2, we consider ζR = 2 rotational degrees of freedom, rotational relaxation ZR = 0.2,

ζV = 2 vibrational degrees of freedom, vibrational relaxation ZV = 1.90114 × 10−5,

and vibrational temperature Tv = 3371 K; and for H2O, we consider ζR = 3 rotational

degrees of freedom, rotational relaxation ZR = 0.2, ζV = 3 vibrational degrees of

freedom, vibrational relaxation ZV = 1.90114 × 10−5, and vibrational temperature

Tv = 5261 K.
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• DGFS: We use the DGFS implementation described in Ref. [89 ]. The geometrical

parameters remain the same as described in section 5.2.2 . Multi-species case specific

DGFS parameters have been provided in Tab. 5.2 . Note that, we employ N2 and H2O

as the working gas in simulations. N2 is diatomic, and H2O is triatomic, however,

DGFS, as of now, is applicable for monoatomic gases only. Since the working tem-

perature range is low, we anticipate the effects of vibrational degrees of freedom to be

negligible.

5.3.3 Results and Discussion

Figure 5.11 illustrates the contour plot of various flow properties for the MSM-01 case in

transition regime, wherein the N2 and H2O are in 0.05 : 0.95 concentration ratio. Similar

to the single species case, for each of these plots, the DSMC and DGFS contours have been

overlaid, wherein DSMC results have been indicated by thin black lines, and DGFS results

have been indicated with thick red lines. Since the flow is strictly driven by temperature

gradients, we expect very small deviation in the number density from the equilibrium values

of 35.9678645 × 1021 m−3 for H2O and 1.8930455 × 1021 m−3 for N2, as is also evident from

Figs. 5.11a and 5.11b . In terms of temperature, in Figs. 5.11c and 5.11d , we again observe

a rather familiar flow expansion, in the sense that, the hot vane dissipates heat to the

surrounding acting as a source, thereby giving rise to a spiral with spiral’s origin at the hot

vane. From the fundamental mass/momentum conservation principles, one can infer that,

in the presence of temperature gradients, the heavier species, here N2, moves slower and the

lighter species, here H2O, moves faster giving rise to the well-known thermal diffusion. This

explain why the isotherms for H2O spread farther apart compared to the those of N2.

Figures 5.11g and 5.11h illustrate the variation of off-diagonal (xy) component of stress

tensor. Again, we observe the development of four ovals/ellipses originating at the four

corners/edges of the hot vane, wherein the effects are more pronounced at the right end

(top-right and bottom-right corners) of the hot vane. The stress is higher for H2O compared

to N2. Figures 5.11e and 5.11f illustrate the flow speed in the domain. We notice significant
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statistical fluctuations in DSMC (thin black lines) contour lines for N2 due to lower number

of DSMC simulator particles. In particular, we observe that DGFS results/contours are

insusceptible to the concentration of the individual species, thereby opening the possibility

of its application for simulating flows involving species in trace concentrations.

From these results, the scheme meets the following objective: “Apply the developed de-

terministic method for the study of the low-speed thermally-driven flows in micro-electro

mechanical systems”.
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Figure 5.11. Variation of flow properties along the domain for multi-species
MIKRA Gen1 case (MSM-01: Kn = 1.85) obtained with DSMC (thin black
lines) and DGFS (thick red lines) using VSS collision model. We want to
reemphasize that DSMC simulations consider the rotational degrees of freedom
of N2 and H2O into account, whereas DGFS, being in very early stages of
research, doesn’t; and therefore we expect some differences between DSMC
and DGFS results.
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6. SUMMARY

This thesis is concerned with construction of highly accurate method for the solution of the

full Boltzmann equation and related kinetic models.

In the chapter two of the thesis, a deterministic numerical method for the multi-species full

Boltzmann equation has been presented. To achieve this, first, a fast spectral algorithm

for solving the multi-species homogeneous collision operator is constructed. The procedure

has been shown to exhibit spectral convergence in velocity space. Second, a high order

spatial discretization is introduced in the physical space to discretize the full inhomogeneous

multi-species Boltzmann system. The resulting method combines the discontinuous Galerkin

discretization in the physical space and the fast Fourier spectral method in the velocity

space to yield highly accurate numerical solutions. The DG-type formulation employed in

the present work has advantage of having arbitrary order accuracy at the element-level,

and its element-local compact nature (and that of our collision algorithm) enables effective

parallelization on massively parallel architectures. The fast spectral method for evaluating

the Boltzmann collision operator does not rely on any ad hoc adjustment or parameter fitting

of the collision kernel in contrast to the previously proposed methods in literature. Third, the

developed procedure is implemented on multi-GPU/multi-CPU massively parallel systems.

The resulting implementation achieved a parallel efficiency of 99% on 36 GPUs.

When the Knudsen number, Kn, of flow is decreased, the traditional deterministic numerical

schemes for kinetic equations encounter two difficulties: a) since the mean collision time

decreases, the timestep has to be made smaller, b) the flow acquires steady state slowly,

and therefore one needs to carry out time integration for large number of time steps. To

circumvent these issues, in the chapter three of the thesis, a class of high order spatially and

temporally accurate deterministic numerical method for the stiff kinetic equations has been

presented. These methods have the following key properties: a) they preserve the asymptotic

transition to the Euler equation; b) the timestep is independent of the Knudsen number; c)

the collision kernel is evaluated implictly utilizing their conservative properties without use

of any iteration; d) with use of high order multi-stage time-splitting, the time integration
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over sufficiently long number of timesteps, needed for modelling near-continuum flows, can

be carried out more accurately; e) robust high order accurate scheme in physical space with

nearly-linear parallel efficiency; f) applicability for both, general, rarefied and near-continuum

compressible flows. In particular, the new family of high order Implicit-Explicit (IMEX)

Backward difference (BDF) time integration schemes require “only one” evaluation of implicit

and explicit parts per time-step, thereby making them computationally optimal. The Navier-

Stokes asymptotic limit is recovered directly from “standard” linear models without need of

building Navier-Stokes fluxes or any such adhoc modifications whatsoever.

The chapter three of the thesis is concerned with verification of the proposed schemes.

A series of numerical tests is performed to illustrate the efficiency and accuracy of the

proposed method. Various benchmarks highlighting different collision kernels, different mass

ratios, momentum transfer, heat transfer, and in particular the diffusive transport have

been studied. The results are directly compared with the direct simulation Monte Carlo

(DSMC) method. The results obtained with the developed deterministic solver and DSMC

are inextricable ignoring the statistical noise and the errors therein. Notably, some of the

accuracy tests involved ∼0.4 billion unknowns, resulting in O(0.9) quadrillion calculations.

The deterministic solution of the Boltzmann equation by the DGFS method, in particular,

is suitable for studying low-speed and unsteady flows.

In chapter four of the thesis, the proposed methodology has been utilized for studying low-

speed and unsteady flows in Microscale In-Plane Knudsen Radiometric Actuator (MIKRA)

sensor. A good agreement between experiments and DSMC simulations is observed.
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7. RECOMMENDATIONS

The proposed fast spectral algorithm for solving the multi-species collision operator requires

very large velocity-domain for large mass ratios mj/mi � 1. This is a common issue ap-

pearing in multi-species problems. Possible remedies include adaptive mesh in velocity space

(cf. [47 ]), using an asymptotic model valid for large mass ratios (cf. [48 ]), or introducing

independent velocity grid for each species wherein different collision types for every (i, j)

pair are treated independently (cf. [49 ], [50 ]). In this work, moderate mass ratios have been

considered. Future work may address construction of algorithms for high mass ratios.

The proposed implicit-explicit method for the Boltzmann equation and related kinetic models

is currently limited to single-species systems. For multi-species systems, a common issue is

the selection of an appropriate penalization function. This is important to ensure that, in

the limit of vanishing Knudsen number, the system may preserve the asymptotic transition

to multi-species Euler system.

In the current era of petaflop-computing and near-future quantum computing, with little-

bar on computation power, I believe that this work is a first step towards migration from

conventional continuum, near-continuum, and stochastic solvers to deterministic Boltzmann.

Future directions of work include the following, but not limited to:

a) application to general three-dimensional rarefied hypersonic flow problems.

b) implementation of different interaction models such as Lennard-Jones

c) implementation of reaction models
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- Experience with writing performance portable codes, profiling

- Proficient working in a Linux/UNIX environment; git/subversion, automated build/test

systems, testing and release processes

Open source codes (as sole developer)

dgfs1D: Discontinuous Galerkin fast spectral

(https://github.com/jaisw7/dgfs1D_gpu )

A multi-CPU/multi-GPU code for solving single/multi-species 1D-3V full

Boltzmann equation. This code achieved a parallel efficiency of 99% on 36 GPUs.

frfs: Flux-reconstructed fast spectral

(https://github.com/jaisw7/frfs )

A multi-CPU/multi-GPU code for solving single/multi-species full 3D-3V

Boltzmann equation.

Distinctions

Awarded ACM SIGHPC Travel Grant for PASC’19 (1/4 awardees internationally,

1/2 awardees outside EU), 2019.

At 22, I co-wrote the first National Science Foundation (NSF CDS&E #1854829  )

proposal for ∼ $0.35 million based on my Masters research work, 2018. Purdue Univer-

sity, West Lafayette.
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Awarded Undergraduate Research Excellence (among ∼ 1% of the batch), 2016.

Indian Institute of Technology, Hyderabad.

All India Rank 1335 among ∼ 1.3 million examinees (top ∼ 0.1%), in All India

Engineering Entrance Examination (AIEEE ), 2012.
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