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ABSTRACT

Last decades have witnessed a surge of interest in developing distributed algorithms for

solving large-scale optimization problems with multi-agent systems. The development of a

standard distributed optimization algorithm can be typically summarized as two fundamental

stages – communication and computation. Whereas the communication stage enables agents

to collect the desired information from the entire network, the computation stage updates

each agent’s local state towards the optimizer of the objective function. This dissertation

focuses on the two key aspects of distributed optimization, develops a suite of new provable

distributed algorithms for solving both deterministic and stochastic optimization problems,

and further explores the opportunities of applying the distributed optimization techniques

into real-world applications especially with multi-UAV systems. First, starting from the

perspective of communication, a DGDx algorithm is proposed by incorporating multiple

communication iterations into the consensus step. Second, observing that the standard

DGD algorithm is a special case where the linear approximation is applied for the local

objective functions, we develop a NetProx algorithm which generalizes the choice of approx-

imation function for each agent and thus provides flexibility in the aspect of computation.

The two proposed algorithms both offer great potential to balance the communication and

computation in distributed optimization. In addition, we consider the issue of network

communication attacks and devise a resilient algorithm for solving the specific distributed

min-max problem. Two-stage stochastic programs are also studied and a DistPH algorithm

is developed by adapting the classical PH method under a peer-to-peer multi-agent network.

At last, two real-wold applications – distributed data fusion and distributed source tracking,

both involved with the multi-UAV system, are investigated to demonstrate the superiority

of the distributed optimization techniques. Theoretical analysis and numerical results are

provided to validate the effectiveness of all proposed algorithms.

12



1. INTRODUCTION

1.1 Background and Motivations

The recent and still ongoing explosion in the size and complexity of datasets, as well as

the increasing demand of computational resources, have driven us to what is oftentimes called

the big-data era. Meanwhile, the present computational performance of one single machine

is, however, far from sufficient to meet such stringent computational requirements. As a

direct consequence, there is an undoubted necessity of developing new tools and paradigms

to enhance the computing capabilities of the current machines. To this end, a natural idea

is, instead of focusing on the individual machines, but to construct a cooperative networked

architecture which is oftentimes referred to as the multi-agent system in the literature. It is

expected that, through the cooperation among the multiple agents, the overall computational

workload is spread over the entire networked system and thus is reduced for each single

agent within the network. In fact, such an idea has already given rise to a remarkable shift

in focus of solving large-scale problems in the control and optimization community over

the last few decades. Much effort has been devoted to the design of distributed algorithms,

rather than the conventional centralized ones, which are more favorable to exploit the special

structure of the multi-agent computing environment. At the same time, these distributed

algorithms have also been widely adopted in various real-world applications, including but

not limited to, wireless sensor network [1 ]–[3 ], transportation systems [4 ]–[6 ], distributed

machine learning [7 ]–[9 ], power system control [10 ]–[12 ], etc.

It can be seen from the above introduction that two key aspects of the distributed pro-

cessing can be attributed to communication and computation. Whereas the communication

inherently enables each individual agent to take advantage of the computing capability of the

entire network, the computation drives all agents to approach the states where they desire.

Corresponding to these two aspects, the development of distributed algorithms can be also

summarized as two stages: i) a communication stage, i.e., to determine what kind of infor-

mation the agents should communicate with each other; and ii) a computation stage, i.e., to

devise how to update each agent’s local state based on the information maintained by itself

and also received from its immediate neighbors. Indeed, the majority of existing algorithms

13



in the literature are designed according to these two stages. Nevertheless, when it comes to

the evaluation of the distributed algorithms, it seems that researchers are overly interested

in the computation side, but neglect the efficiency involved with the communication part.

One good example here is that the convergence rate of algorithm is typically characterized

with respect to the number of iterations, and in fact, each iteration is corresponding to one

step of computation that is simultaneously performed by all agents within the network. In

other words, in such a way of evaluation, the amount of communication cost is overlooked

or simply counted equally with the computation cost at each iteration. However, those two

types of cost can be significantly different from each other in some specific scenarios. For

instance, the recent study [13 ] suggests that CPUs we are using nowadays can read and

write the memory at over 10 – 100GB per second, whereas the speed of communication over

TCP/IP is about 100MB per second. This implies that the gap between the cost of intra-

node computation and inter-node communication can be at worst three orders of magnitude.

On this account, we will have to rethink the evaluation and even the development of dis-

tributed algorithms. In short, a promising distributed algorithmic framework should take

into account both communication and computation aspects, and further have the flexibility

to balance the two types of cost for different applications.

In addition, another underlying assumption that is made by most of the existing dis-

tributed algorithms is the perfection of communication. That is, all individual agents within

the network are able to instantaneously transmit their local information without any error

to the targets. In reality, however, one can barely assume that the information transmis-

sions are always perfect, due to many factors such as communication delay [14 ], [15 ], data

quantization [16 ], [17 ], packet loss [18 ], [19 ] and communication attack [20 ], [21 ]. Among

those various imperfections, the communication attack is often regarded as the most chal-

lenging one and has attracted a significant amount of research attention, since the attacked

communication channel may not only lose its functionality, but also be able to inject ma-

licious information into the whole system. In this case, it is of great importance that the

distributed algorithms are devised in such a way that they can tolerate the adversarial be-

haviors to some extent and still ensure the effectiveness of the system with a guaranteed
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performance. Therefore, an appealing distributed algorithm should be also resilient against

the potential network communication attacks.

Motivated by the aforementioned issues, this dissertation focuses on the two key aspects

of the distributed optimization – communication and computation, develops a suite of new

provable distributed algorithms for solving both deterministic and stochastic optimization

problems, and further explores the opportunities of applying the idea of distributed opti-

mization into real-world applications especially with multi-UAV systems.

1.2 Literature Review

Indeed, the distributed optimization problem has gained increasingly significant atten-

tion over the last few decades, and it has found a large variety of applications in diverse

areas, including networked system control [22 ], [23 ], large-scale signal processing [24 ], [25 ],

machine learning [7 ], [8 ], [26 ], just to name a few. In order to solve the optimization problem

over multi-agent networks, there have been a significant amount research in the context of

distributed algorithms.

For the distributed deterministic optimization, the pioneering work can be traced back to

Bertsekas and Tsitsiklis [27 ], [28 ] in 1980s. After that, with the advance of communication

technology as well as the emergence of big-data research, more and more effort has been

devoted into the development of distributed algorithms. A seminal work [16 ], published

in 2009, proposed the famous distributed (sub-)gradient descent (DGD) algorithm which

integrates the basic idea of consensus with the gradient descent method in the conventional

centralized optimization. Although it makes great progress in the study of distributed op-

timization, a notable convergence result [16 ], [29 ] of the DGD algorithm is that, when the

constant step-size α is adopted, it cannot converge to the exact optimal solution, but only

gives an inexact one which is in the optimal solution’s O(α)-neighborhood. Moreover, the

authors in [29 ] proved that the rate of convergence to the O(α)-neighborhood is in the order

of O(1/k) (k is the iteration index) when the objective function is convex, and the conver-

gence rate will be upgraded to exponential when the objective function is strongly convex.

In addition, further extensions of the DGD algorithm are also investigated in the subsequent
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works; for example, the projected DGD algorithm is proposed in [30 ] which deals with the

constrained distributed optimization problems, and Nesterov’s acceleration is adopted in [31 ]

to develop the so-called fast DGD algorithm.

Note that a typical setting of the distributed optimization assumes that each agent pri-

vately has access to its own local objective function and thus only local gradient is available

when performing the gradient descent steps. On this account, many works attributed the

inexact convergence of the DGD algorithm to the lack of global gradients for the individual

agents; see a detailed explanation in Section 2.1 in Chapter 2 . This observation has mo-

tivated two main paths to further improve the convergence result of the DGD algorithm.

First, the authors in [31 ]–[33 ] show that the exact convergence can be obtained by adopting

a diminishing step-size rule with the standard DGD algorithm. The guideline is to diminish

the error caused by the using of local gradients. However, the convergence rate is significantly

compromised compared with the centralized gradient descent method due to the diminishing

step-size. The second line of works focuses on the adjustment of local gradients. An idea of

gradient tracking is applied in [34 ]–[36 ] to substitute the local gradients with a tracked value

of the global gradient. The methods, proposed in [37 ]–[39 ], introduce a correction of the

local gradient by combining the gradient information obtained from the last two consecutive

iterations. As a result, a linear convergence rate, which is comparable to the centralized case,

can be achieved when the objective function is smooth and strongly convex. In addition,

the analysis in [40 ] further points out that the aforementioned two types of methods can

be unified from a primal-dual perspective. It is also worth mentioning that there are other

distributed algorithms which achieve the linear convergence rate; see e.g., [41 ]–[45 ]. The

authors in [41 ]–[43 ] proved the linear convergence rate of distributed alternating direction

method of multipliers (ADMM). The second-order methods are also proposed in [44 ], [45 ],

which also obtained the linear convergence rate.

Whereas deterministic optimization problems are formulated with all known parame-

ters, real-world problems almost invariably include parameters which are subject to some

unknown uncertainties. Under such circumstances, stochastic optimization, as an powerful

approach for modeling and further solving the problems involved with uncertainties, has
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found great potential of applications in the area of data analytics [13 ], [46 ]–[49 ], especially

in the statistical learning theory [50 ]–[52 ] recently.

In order solve the stochastic optimization problems, dominant approaches are based

on the idea of stochastic approximation, also known as stochastic gradient descent (SGD)

method, which was initially proposed in [53 ] in 1950s. The classic SGD method mimics the

conventional centralized gradient descent by replacing the full gradient with its unbiased

estimation. Since then, the SGD method has attracted much interest [54 ]–[58 ]. To solve the

problems with a networked architecture, the mini-batch SGD method [59 ], [60 ] provides a

straightforward way to parallelize the procedure of SGD. Even though the standard SGD

method can achieve the optimality by using the estimation of gradient, due to the variance of

estimator, yet it usually obtains slow convergence and poor performance [61 ]. Recently, with

the help of the so-called variance reduction technique, various stochastic variance reduced

methods [61 ]–[64 ] and their proximal variants [65 ]–[67 ] are proposed in the literature. The

parallel versions of these methods are also investigated in [68 ]–[70 ]. All of these variance

reduction based methods achieve remarkable linear convergence rate which is comparable

to the conventional full gradient descent method. However, it should be noted that most of

the parallel methods can only be implemented with a master-worker network architecture

in which a mater node is always present to provide central coordinations for all worker. In

contrast to such a master-worker architecture, the peer-to-peer multi-agent network is often

preferred due to the following reasons: i) communication burden for the master node could

be extremely heavy or even prohibited, as it is required to provide the direct communication

channel for each of the workers; ii) the cyber-security concern may arise, since failure of the

master node can lead to the collapse of whole system; and iii) the privacy of node information

cannot be preserved in the master node, as it collects all information in the entire network.

Furthermore, it is worthy noting that the master-worker architecture could be a special case

of the peer-to-peer multi-agent network, since the central node can serve as a master when

the considered network has a special star topology.

In this dissertation, we focus on a famous and widely-studied special instance of the

stochastic optimization problem – two-stage stochastic programs. In fact, such two-stage

stochastic programs have found numerous applications in energy planning [71 ], manufactur-
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ing [72 ], logistic [73 ], etc. To deal with this stochastic program, a classical methodology

builds on the idea of representing the uncertainty with a finite number of scenarios, and

then various decomposition-based methods are proposed, including the Bender’s decomposi-

tion [74 ]–[76 ] (also known as the L-shaped method [77 ]), dual decomposition [78 ], [79 ], among

others [80 ]–[82 ]. The Bender’s decomposition basically separates the original problem into

a master problem and a group of subproblems for each scenario, and then solves these two

types of problems iteratively. The solutions of subproblems help to further shape constraints

of the master problem by adding optimality or feasibility cuts. In the dual decomposition,

the original problem is decomposed directly into a set of scenario-based subproblem. Sub-

sequently, a well-known progressive hedging (PH) method [78 ] is developed to solve for the

solutions. It turns out that both two decomposition methods can be applied to efficiently

solve the two-stage stochastic program, especially when the second-stage problem has a

large number of scenarios. Another benefit of them is attributed to their straightforward

parallelization [83 ], [84 ]. However, as emphasized previously, the parallel architecture always

assumes a master node, and the communication cost could be extremely heavy or even pro-

hibited. Moreover, the master problem derived by Bender’s decomposition often has much

larger size than the subproblems. Thus, the computation cost for the master node is also an

issue in this case.

1.3 Dissertation Overview and Contributions

As indicated previously, this dissertation aims to develop a suite of new distributed

algorithms by focusing on the two key aspects of the distributed optimization, i.e., com-

munication and computation. Both deterministic and stochastic optimization problems are

studied in this work. Particularly, we are interested in devising the algorithmic frameworks

which are capable of providing flexibilitiy to balance the communication and computation

cost, and also being resilient against the potential network communication attacks. In addi-

tion, we also explore the opportunities of applying the idea of distributed optimization into

real-world applications especially with multi-UAV systems. The detailed contributions of

each chapter is summarized as follows.

18



In Chapter 2 , a novel DGDx algorithm is proposed, focusing on the communication

aspect and aiming at improving the inexact convergence of the standard DGD algorithm.

It is proved that the exact convergence can be achieved when the introduced sequence of

consensus error bounds decays to zero; furthermore, it converges at a linear rate when

the sequence decays to zero linearly. Provided the flexibility of choices of both consensus

error bounds and consensus schemes, our DGDx algorithm offers the potential to balance

the communication and computation cost for solving the distributed optimization problem.

Furthermore, a novel average consensus scheme is also presented which only involves the row-

stochastic weight matrices, as distinct from the classical weighted averaging scheme which

requires the weight matrix to be doubly-stochastic. Such an average consensus scheme

provides an important building block for the implementation of algorithms developed in the

subsequent chapters.

Chapter 3 alternatively starts from the computation aspect of the distributed optimiza-

tion and develops the generalized NetProx framework. It is shown that the standard DGD

algorithm can be viewed as a special case of our NetProx framework by adopting the linear

approximation of the local objective functions. Such approximation functions are then gen-

eralized into any form as long as the given conditions are satisfied. In addition, we prove

that, with the higher order approximation functions, the convergence of the NetProx algo-

rithm will be accelerated to some extent, but meanwhile at the price of more computational

cost for each agent at each iteration. In this sense, the flexibility of choices of the approxi-

mation functions also helps to balance the computation and communication in distributed

optimization.

In Chapter 4 , we further consider the issue of network communication attacks. A promis-

ing resilient algorithm is proposed to solve the distributed min-max optimization, which is a

special instance of the general distributed optimization problem. One major contribution of

our resilient algorithm is that we aim to obtain the exact global optimal solution, which takes

into account the local objective functions from all agents no matter whose communication

channels are attacked or non-attacked. Such a goal is quite challenging or even impossible

for the existing resilient distributed algorithms. We prove that this goal can be achieved un-
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der some reasonable and arguably necessary assumptions, e.g., the attacked communication

channels can be recovered within a certain time-window.

Chapter 5 studies the stochastic optimization problems. More specifically, we adapt the

classical PH method under the peer-to-peer multi-agent network and propose the DistPH

algorithm for solving two-stage stochastic programs. Theoretical convergence guarantee for

the DistPH algorithm is proved when the first- and second-stage decision variables are both

continuous and subject to convex constraints. In addition, the initialization and termina-

tion verification mechanisms are designed in the distributed setting. We further adapt the

DistPH algorithm to the Lagrangian dual lower-bound computation for two-stage stochastic

programs with mixed-integer variables. The benefits of the proposed distributed algorithm

in both aspects of communication and computation are verified through comprehensive sim-

ulation studies on benchmark stochastic programming instances.

In Chapter 6 , two real-world applications involved with the multi-UAV systems are inves-

tigated to confirm the superiority of the distributed optimization in terms of communication

and computation against the centralized one. The first application concerns a health-care

scenario where the health status of a certain target in rural environment needs to be moni-

tored by the multi-UAV system through sensing some vital on-scene biological signals. The

second one studies a real-world methane leaking source tracking mission by the multi-UAV

system operating in an unknown and dynamical environment. Applying the average/sum

consensus scheme developed in the previous chapters, a distributed data fusion algorithm

and a distributed on-line source tracking algorithm are developed to solve the two prob-

lems, respectively. Theoretical findings are all validated via the numerical results on both

applications.

At last, conclusions and future directions that could extend the work in this dissertation

are provided in Chapter 7 .
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1.4 Preliminaries and Assumptions

1.4.1 Problem Formulation

This dissertation generally focuses on solving the following minimization problem, in-

volving a network of I agents,

min
x∈X

F (x) :=
I∑

i=1
fi (x), (P)

over the common global decision variable x ∈ Rp subject to the feasible set X ⊆ Rp. In this

Problem (P ), each agent i ∈ I := {1, 2, · · · , I} is assumed to privately own a local objective

function fi(·) : Rp → R and be capable of exchanging information with its immediate

neighbors. Throughout this dissertation, we assume that the set of minimizers of the global

objective function F (·) : Rp → R is not empty, and study Problem (P ) under the following

underlying assumptions.

• On the feasible set X

Assumption 1.4.1. The feasible set X 6= ∅ is assumed to be closed and convex.

In some special cases, we incorporate the boundedness into the set X , i.e.,

Assumption 1.4.2. The feasible set X 6= ∅ is assumed to be compact and convex.

• On the objective function F (·)

Assumption 1.4.3. Each local objective function fi(·) is assumed to be differentiable and

its gradient ∇fi is Lf
i -Lipschitz continuous on the feasible set X , i.e., there exists a constant

Lf
i > 0 such that,

‖∇fi(x)−∇fi(y)‖ ≤ Lf
i ‖x− y‖, ∀x, y ∈ X . (1.1)

Note that, under Assumption 1.4.2 , the gradient ∇fi on each point x ∈ X must be bounded

due to the compactness of the feasible set X , i.e., there exists a constant κ > 0 such that

‖∇fi(x)‖ ≤ κ, ∀x ∈ X , ∀i ∈ I. (1.2)
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Assumption 1.4.4. Each local objective function fi(·) is assumed to be convex on the feasible

set X , i.e.,

fi(y) ≥ fi(x) +∇fi(x)>(y− x), ∀x, y ∈ X . (1.3)

In some special cases, we will also need the strong-convexity of the the global objective

function F (·), which is stated as follows.

Assumption 1.4.5. The global objective function F (·) is assumed to be µ-strongly convex

on the feasible set X , i.e., there exists a constant µ > 0 such that

‖∇F (x)−∇F (y)‖ ≥ µ‖x− y‖, ∀x, y ∈ X . (1.4)

• On the topology of multi-agent network

We consider a generic time-varying directed graph for the multi-agent network, denoted

as Gk := (I, Ek) at each discrete time-step k, where I = {1, 2, · · · , I} represents the set of

I nodes and Ek ⊆ I × I represents the set of directed edges. In particular, we denote an

edge as (i, j) ∈ Ek if the node i can receive information from the node j at the time-step k;

by convention, we consider each node’s self-loop as an edge, i.e., (i, i) ∈ Ek, ∀i ∈ I, k ∈ N+.

Note that the graph Gk can be also described by the adjacency matrix Ak = [ak
ij]Ii,j=1 ∈ RI×I ,

where ak
ij = 1 if (i, j) ∈ Ek and ak

ij = 0 otherwise. In addition, we use a set N k
i,in to denote

the in-neighborhood of the node i at the time-step k, i.e., N k
i,in := {j | (i, j) ∈ Ek}, and

similarly, use N k
i,out to denote its out-neighborhood, i.e., N k

i,out := {j | (j, i) ∈ Ek}. As

a consequence, dk
i,in := |N k

i,in| and dk
i,out := |N k

i,out| are used to denoted the in-degree and

out-degree, i.e., the number of in- and out-neighbors, respectively. All the in- and out-

degrees are combined as the degree matrices, i.e., Dk
in := diag{dk

1,in, dk
2,in, ·, dk

I,in} ∈ RI×I and

Dk
out := diag{dk

1,out, dk
2,out, ·, dk

I,out} ∈ RI×I . Note that, in some special cases where we consider

the graph Gk to be undirected, it holds that N k
i,in = N k

i,out and thus dk
i,in = dk

i,out. In these

cases, we will simply use N k
i and dk

i to denote the neighborhood and degree, respectively;

as a result, the degree matrix will become Dk := diag{dk
1,, dk

2,, ·, dk
I,} ∈ RI×I Moreover, if the
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considered multi-agent network is time-invariant, we will further omit the superscript k, i.e.,

using G := (I, E) to denote the underlying graph.

The following assumptions regarding the topology of the multi-agent network will be

needed.

Assumption 1.4.6. For the generic time-varying directed graph Gk = (I, Ek), it is assumed

to be B-strongly connected, i.e., there exists a positive integer B > 0 such that the joint graph

∪B+k−1
t=k Gt = (I,∪B+k−1

t=k E t), ∀k ∈ N+ is strongly-connected.

In particular, when the considered network is directed but time-invariant, we have the fol-

lowing assumption.

Assumption 1.4.7. For the time-invariant directed graph G = (I, E), it is assumed to be

strongly connected, i.e., there must exist an unidirectional path from every node i to every

other node j within the graph.

Further, we also consider the special case when the network is time-invariant and undirected.

Assumption 1.4.8. For the time-invariant undirected graph G = (I, E), it is assumed to be

connected, i.e., there must exist a bidirectional path from every node i to every other node j

within the graph.

Compliant with the underlying multi-agent network Gk, we next introduce the weight

matrix W k = [wk
ij]Ii,j=1 ∈ RI×I at each time-step k, satisfying the following conditions.

Assumption 1.4.9. Given the generic time-varying directed graphs Gk = (I, Ek), there

exists a constant ω > 0 such that the weight matrices W k has i) wk
ij ≥ ω if (i, j) ∈ Ek; and

ii) wk
ij = 0 otherwise.

There are also three scenarios in terms of the stochasticity of the weight matrix W k.

Assumption 1.4.10. Each of the weight matrices W k is row-stochastic, i.e., W k1I = 1I .

Assumption 1.4.11. Each of the weight matrices W k is column-stochastic, i.e., 1>
I W k = 1>

I .

Assumption 1.4.12. Each of the weight matrices W k is doubly-stochastic, i.e., W k1I = 1I

and 1>
I W k = 1>

I .

23



1.4.2 Distributed Gradient Descent Algorithm

As we have reviewed in the last section, a seminal work [16 ] proposes the well-known

DGD algorithm for solving Problem (P ). In order to facilitate our discussion in the following

chapters, let us here introduce the DGD algorithm in a relatively detailed manner. The DGD

algorithm, which integrates the weighted averaging consensus scheme and the conventional

gradient descent method, performs the following iterations,

xk+1
i =

∑
j∈Ni

wijxk
j − αk∇fi(xk

i ), ∀i = I, (1.5)

where xk
i ∈ Rp is the state maintained by the i-th agent locally at the time-step k; {αk}k∈N+

is a sequence of step-sizes. Note that here some underlying assumptions are incorporated:

i) the multi-agent network follows a time-invariant undirected graph G and is assumed to

be connected (see Assumption 1.4.8 ); ii) the weight matrix W = [wij]ni,j=1 is compliant with

graph G (see Assumption 1.4.9 ) and assumed to be doubly-stochastic 1.4.12 ; and iii) the

feasible set is assumed to be X = Rp, otherwise a projection operation will be needed.

In order to represent the DGD algorithm in a compact form, let us denote xk ∈ RIp as

the aggregates of local states xk
i ’s, i.e.,

xk :=
[
(xk

1)>, (xk
2)>, · · · , (xk

I )>
]>

. (1.6)

Similarly, we denote ∇f(xk) ∈ RIp as the aggregates of local gradients ∇fi(xk
i )’s, i.e.,

∇f(xk) :=
[
∇f1(xk

1)>,∇f2(xk
2)>, · · · ,∇fI(xk

I )>
]>

. (1.7)

Thus, the DGD algorithm (1.5 ) can be equivalently expressed as

xk+1 = Wxk − αk∇f(xk), (1.8)

where the matrix W is defined as W := W ⊗ Ip ∈ RIp×Ip with Ip being the p × p identity

matrix.
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1.4.3 Technical Lemmas

In this subsection, we introduce some technical lemmas that will be frequently used for

establishing the convergence and analyzing the properties of our algorithms proposed in the

following chapters. Note that here the detailed proofs will be omitted and the interested

readers will be referred to the corresponding papers.

The first lemma establishes the crucial consensus result when the underlying graph is

(strongly-)connected and the compliant weight matrix W is row-stochastic.

Lemma 1.4.1 (Proposition 1 in [85 ]). Suppose that the weight matrix W satisfies Assump-

tions 1.4.9 and 1.4.10 and the underlying graph satisfies Assumption 1.4.8 or 1.4.7 , then there

must exist two constants c0 > 0 and 0 < ρ0 < 1 such that1
 

‖(W )k − 1Iπ>‖ ≤ c0 · (ρ0)k, (1.9)

where π ∈ RI is the normalized left eigenvector of the matrix W which corresponds to the

eigenvalue 1, i.e., 1>
I π = 1 and π>W = π>.

We shall remark that the above Lemma 1.4.1 inherently guarantees the asymptotic con-

sensus for the following famous weighted averaging consensus scheme as k goes to infinity,

xk+1 = Wxk. (1.10)

In particular, if the weight matrix is further doubly-stochastic; see Assumption 1.4.12 , then

the convergence result will be the average consensus, i.e., limk→∞ ‖(W )k− (1/I) ·1I1>
I ‖ = 0.

The subsequent two supporting lemmas state the convergence of the convolution of two

positive scalar sequences.

Lemma 1.4.2 (Lemma 7 in [30 ]). Given a constant 0 < λ < 1 and a positive scalar sequence

{βk}k∈N+ which has limk→∞ βk = 0, then it holds that,

lim
k→∞

k∑
t=0

(λ)k−tβt = 0. (1.11)

1↑ Throughout this dissertation, we use (·)k to denote the k-th power of the input scalar/matrix.
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Lemma 1.4.3 (Lemma 7 in [30 ]). Given a constant 0 < λ < 1 and a positive scalar sequence

{βk}k∈N+ which is assumed to be summable, i.e., ∑∞
k=0 βk <∞, then it holds that,

lim
k→∞

k∑
t=0

t∑
s=0

(λ)t−sβs <∞. (1.12)

The last lemma, stating the super-martingale convergence result, will also play a crucial

role in the proofs of our own lemmas and theorems.

Lemma 1.4.4 (Lemma 1 in [86 ]). Let {ak}k∈N+, {bk}k∈N+ and {ck}k∈N+ be three non-negative

scalar sequences such that ∑∞
k=0 ck <∞ and

ak+1 ≤ ak − bk + ck, (1.13)

then, the sequence {ak}k∈N+ must convergence to some constant δ ≥ 0, i.e., limk→∞ ak = δ,

and the sequence {bk}k∈N+ must be summable, i.e., ∑∞
k=0 bk <∞.
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2. IMPROVING THE CONVERGENCE OF DISTRIBUTED

GRADIENT DESCENT VIA INEXACT AVERAGE

CONSENSUS

A novel DGDx framework [87 ] is presented in this chapter, which improves the inexact con-

vergence of the standard DGD algorithm. Starting from a new perspective to understand

the cause of inexact convergence, i.e., inaccuracy of consensus results, we incorporate mul-

tiple communication iterations into the consensus steps. Instead of explicitly specifying the

number of iterations according to the time-step k, we introduce a consensus error bound to

directly control the consensus accuracy at each time-step. It is proved that an exact con-

vergence can be achieved by the proposed algorithm when the sequence of consensus error

bounds decays to zero; furthermore, it converges at a linear rate when the sequence decays

to zero linearly. Due to the flexibility of the choice of both consensus error bound sequences

and consensus schemes, the proposed framework offers potential opportunities to balance

the communication and computation in distributed optimization.

2.1 Problem Statement – Inexact Convergence of the DGD Algorithm

As mentioned in the previous chapter, the well-accepted understanding of the inexact

convergence of the DGD algorithm is the lack of global gradient information, and it goes

as follows. It should be noted that the following analysis first appears in [37 ] and here we

provide a brief review for the sake of completeness. Recall that the standard DGD algorithm

with a non-zero constant step-size αk = α carries out the iteration,

xk+1 = Wxk − α∇f(xk). (2.1)

Let us now assume that the iteration (2.1 ) has already converged and denote x∞ as the limit

of the generated sequence {xk}k∈N+ . Taking the limit over k on both sides of (2.1 ) yields

x∞ = Wx∞−α∇f(x∞). Moreover, suppose that a consensus result will be finally obtained

at x∞, it immediately implies that x∞ = Wx∞ since the weight matrix W is assumed to be

doubly-stochastic; see Assumption 1.4.12 . Given that α is the nonzero constant, it yields the
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optimality condition ∇f(x∞) = 0. Recall that ∇f is the aggregate of local gradients ∇fi’s;

see definition (1.7 ), and each agent can only access its own ∇fi, the optimality condition

requires ∇fi(x∞
i ) = 0 to be satisfied for every agent i. This implies the existence of a

common minimizer among all fi(·)’s, which does not hold in a general setting of Problem (P ).

Therefore, the DGD algorithm with constant step-sizes cannot have the exact convergence.

Based on such understanding, many algorithms have been proposed by focusing on the

adjustment of local gradients; see a detailed literature review in Section 1.2 in Chapter 1 .

However, a natural question here is whether the inexact convergence is necessarily due to

the lack of global gradient, and furthermore whether the convergence of the DGD algorithm

can be improved from other understanding. Next, we explicitly show another perspective to

understand the inexact convergence, i.e., the inaccuracy of consensus results.

We shall remark that the general goal for solving Problem (P ) in the distributed manner

can be separated into two parts: i) to obtain a consensual solution, i.e., xk
i = x?, ∀i ∈ I; and

ii) to let x? minimize the global objective function F (·). Keep this in mind, the standard

DGD algorithm (2.1 ) can be also separated into two steps, corresponding to such two goals,

Gradient Step: xk+1/2 = xk − α∇f(xk); (2.2a)

Consensus Step: xk+1 = Wxk+1/2. (2.2b)

The gradient step (2.2a ) is adopted to achieve the desired minimizer, whereas the consensus

step (2.2b ) aims to meanwhile enforce a consensual solution among agents. It is worth point-

ing out that the separated steps (2.2a ) – (2.2b ) are essentially different from the standard

DGD algorithm (2.1 ), as the combination of (2.2a ) and (2.2b ) is written in the following

form (termed as NEAR-DGD in [88 ]),

xk+1/2 = Wxk−1/2 − α∇f(Wxk−1/2). (2.3)

While it is confirmed that the better convergence can be expected for the NEAR-DGD

iteration (2.3 ); see details in [88 ], the evaluation of gradients ∇f(xk) in (1.8 ) does not rely

on the consensus result and thus can be performed in parallel with the consensus step.
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Considering that the consensual result is expected by the consensus step, but a single

iteration as shown in (2.2b ) is far from sufficient to give an accurate result. Subsequently,

our question becomes whether one can obtain the better convergence by improving the

consensus result in (2.2b ). Next, we answer this question by assuming an ideal average

consensus procedure. Suppose that we have an ideal average consensus operator, denoted as

C∞(·) : RIp → RIp with the dynamic defined as,

xc = C∞(x), (2.4)

where the input x = [x>
1 , x>

2 , · · ·,x>
I ]> ∈ RIp and output xc = [(xc

1)>, (xc
2)>, · · ·,(xc

I)>]> ∈ RIp

satisfy xc
i := (1/I) ·∑I

i=1 xi. We replace the step (2.2b ) with the defined ideal average con-

sensus operator, and then combining it with step (2.2a ) gives,

xk+1 = C∞
(
xk − α∇f(xk)

)
. (2.5)

Let C∞
i (·) take the i-th component of the output of C∞(·), i.e., xk+1

i = C∞
i (xk − α∇f(xk)).

According to the property of ideal average consensus operator, it holds that

xk+1
i = 1

I
·

I∑
i=1

xk
i −

α

I
·

I∑
i=1
∇fi(xk

i ). (2.6)

Note that the previous xk
i ’s are also the outputs of the ideal operator C∞(·). Thus, we can

have xk
i = xk

j , ∀i, j ∈ I, and furthermore

xk+1
i = xk

i −
α

I
·

I∑
i=1
∇fi(xk

i ) = xk
i − α∇F (xk

i ). (2.7)

It can be seen from (2.7 ) that adopting an ideal consensus computation reduces the stan-

dard DGD algorithm to a centralized gradient descent method for each agent. Given the fact

that the centralized gradient descent method achieves the exact convergence with constant

step-sizes, it has been shown that the exact convergence can be also obtained by the DGD

algorithm with ideal average consensus. Therefore, apart from owing to the lack of global

gradient information, the inaccuracy of consensus results caused by (2.2b ) can be another
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explanation for the inexact convergence of the DGD algorithm. Motivated by such under-

standing, we are now ready to fix the inexact convergence issue by improving the accuracy

of consensus results at step (2.2b ).

2.2 The DGDx Algorithm

In this section, we develop the framework of the DGDx algorithm. Based on the new

perspective to understand the inexact convergence of the DGD algorithm, a natural idea

to cope with the issue is incorporating multiple iterations into the consensus step (2.2b ) to

improve the accuracy. In fact, a recent paper [88 ], which agrees with such idea, proposes an

algorithm, termed as NEAR-DGD+. Instead of performing just one single iteration as (2.2b ),

the NEAR-DGD+ algorithm incorporates t iterations into the consensus step at the time-

step k, i.e., xk+1 = (W)txk where (W)t represent the t-th power of the matrix W. By letting

t increase at a rate of O(k), the NEAR-DGD+ algorithm achieves a linear convergence rate.

Here, we will not fix the number of iterations t specifically. On the contrary, at each time-step

k, we adopt a consensus error bound εk ∈ R+ to guarantee the sufficiently accurate consensus

result. Furthermore, considering that the ultimate goal of a consensus step is to ensure an

accurate output, we do not specify our consensus scheme either. Instead, we extract the

consensus step by an abstract average consensus procedure, denoted as an ε-inexact average

consensus operator Cε(·) : RIp → RIp. The dynamic of Cε(·) follows xin = Cε(x), where

xin = [(xin
1 )>, (xin

2 )>, · · · , (xin
I )>]> ∈ RIp has xin

i = Cε
i (x), and ε represents the consensus

error bound satisfied with

∥∥∥xin
i −

1
I
·

I∑
i=1

xi

∥∥∥ ≤ ε, ∀i ∈ I. (2.8)

With the ε-inexact average consensus defined as above, we are now in the position to give

our framework of the DGDx algorithm. It performs the following update at each time-step k,

with a given consensus error bound εk,

xk+1 = Cεk
(
xk − α∇f(xk)

)
. (2.9)
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The detailed steps of the DGDx framework are outlined as Algorithm 1 .

Algorithm 1: DGDx Algorithm
Data: Given a constant step-size α and a sequence of consensus error bounds

{εk}k∈N+ , each agent i initializes its state x0
i . Let k = 0.

while a termination criterion is NOT satisfied do
Each agent i ∈ I simultaneously does
(S.1) Perform a local gradient step,

xk+1/2
i = xk

i − α∇fi(xk
i ); (2.10)

(S.2) Carry out the ε-inexact average consensus operator Cεk(·) with error
bound εk,

xk+1
i = Cεk

i (xk+1/2); (2.11)

(S.3) Let k ← k + 1 and continue.
end

Before proceeding to convergence analysis, it is worthy making a few remarks on the

DGDx algorithm. First, for a given consensus scheme, the slower decaying sequence {εk}k∈N+

may result in more gradient steps to reach the desired optimality, but fewer communication

iterations are required for one consensus step. This offers the potential to balance the com-

munication and computation in the implementation of distributed algorithm. Second, it is

emphasized that we do not specify any consensus scheme inside the black-box operator Cε(·).

The flexibility of choices of consensus schemes provides the opportunity to further accelerate

the convergence of the DGDx algorithm. For instance, if a finite-time convergent consensus

scheme can be applied inside Cε(·), it is expected that the convergence rate of distributed

algorithm will be as fast as the centralized gradient descent method, as shown in Section 2.1 .

Moreover, such a flexible framework has reduced the distributed optimization problem into

an average consensus problem; one only needs to focus on the implementation of Cε(·). In this

sense, it provides underlying guidelines for further developments on distributed algorithms,

such as those considering communication issues (quantization/delay), cyber security issues

(link failure/node attack), and asynchrony issues. In particular, we introduce a new average

consensus scheme in the following Section 2.4 , which only requires the row-stochastic weight
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matrix W in contrast to the doubly-stochastic one as demanded by the standard weighted

averaging scheme; see the iteration (2.2b ). Third, we also remark that the convergence re-

sult of the DGDx algorithm; see Theorem 2.3.1 in the next section, is consistent with the

one of NEAR-DGD+ algorithm presented in [88 ]. In fact, the NEAR-DGD+ algorithm uses

weighted averaging scheme and increases the number of iterations as O(k) in the consensus

step, in order to achieve linearly decaying consensus errors. Therefore, the linear convergence

rate of the NEAR-DGD+ algorithm can be viewed as an instance of convergence result of

our DGDx algorithm; see statement 2) in Theorem 2.3.1 . In addition, we argue that the

theoretical results obtained here are more general than the one presented in [88 ], given the

following reasons: i) the case with a generally decaying error bound sequence (not necessarily

linearly) is discussed; ii) the balance of computation and communication can be realized by

the choice of both error bound sequences and consensus schemes; and iii) the same conver-

gence rate with less communication cost can be expected by faster consensus schemes, such

as the ones which can achieve finite-time convergence [89 ], [90 ].

2.3 Convergence Analysis

We begin the convergence analysis by introducing the following additional notations.

Recall that xk+1/2 represents the intermediate result obtained by a pure gradient step, as

shown in (2.2a ), we denote the exact average of xk and xk+1/2 as x̄k ∈ Rp and x̄k+1/2 ∈ Rp,

respectively, i.e.,

x̄k := 1
I
·

I∑
i=1

xk
i and x̄k+1/2 := 1

I
·

I∑
i=1

xk+1/2
i . (2.12)

Moreover, we use ḡk ∈ Rp to denote the global gradient at the x̄k, and use gk ∈ Rp to denote

the average of local gradient at xk, i.e.,

ḡk := 1
I
·

I∑
i=1
∇fi(x̄k) and gk := 1

I
·

I∑
i=1
∇fi(xk

i ). (2.13)

Next, we show by the following Lemma 2.3.1 that, once the ε-inexact average consensus is

guaranteed by Cεk(·), the distance ‖xk+1
i − x̄k+1‖ can be bounded with the error εk.
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Lemma 2.3.1. Given that xk+1 is the output of Cεk(xk+1/2) and thus ‖xk+1
i − x̄k+1/2‖ ≤ εk

is guaranteed for ∀i ∈ I, then one can have,

‖xk+1
i − x̄k+1‖ ≤ 2εk, ∀i ∈ I. (2.14)

Proof. By the definition of x̄k+1, it holds that

‖x̄k+1 − x̄k+1/2‖ =
∥∥∥1

I
·
( I∑

i=1
xk+1

i − x̄k+1/2
)∥∥∥

≤ 1
I
·

I∑
i=1
‖xk+1

i − x̄k+1/2‖ ≤ εk.

(2.15)

Therefore, for ∀i ∈ I, one can have

‖xk+1
i − x̄k+1‖ ≤ ‖xk+1

i − x̄k+1/2‖+ ‖x̄k+1/2 − x̄k+1‖ ≤ 2εk, (2.16)

With the help of Lemma 2.3.1 , we next bound the distance between x̄k and the opti-

mizer x?. Before proceeding to that, we will need a few supporting lemmas.

Lemma 2.3.2. Suppose that Assumption 1.4.3 holds and let L := (1/I) ·∑I
i=1 Lf

i , then one

can have

‖gk − ḡk‖ ≤ 2Lεk−1. (2.17)

Proof. By the definitions of gk and ḡk, as shown in (2.13 ), it holds that

‖gk − ḡk‖ ≤ (1/I) ·
I∑

i=1
‖∇fi(xk

i )−∇fi(x̄k)‖

(2.1.a)
≤ (1/I) ·

I∑
i=1

Lf
i ‖xk

i − x̄k‖

(2.1.b)
≤ 2Lεk−1,

(2.18)

where (2.1.a) is due to Assumption 1.4.3 and (2.1.b) follows from Lemma 2.3.1 .
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Lemma 2.3.3. Suppose that Assumption 1.4.3 and 1.4.5 hold, then for ∀x, y ∈ Rp, then one

can have

(
∇F (x)−∇F (y)

)>
(x− y) ≥ 1

µ + L
‖∇F (x)−∇F (y)‖2 + µL

µ + L
‖x− y‖2, (2.19)

where L is defined in Lemma 2.3.2 .

Proof. The proof can be found in Theorem 2.1.11 in [91 ], and thus omitted.

Now, we bound the distance ‖x̄k+1 − x?‖ by the following lemma.

Lemma 2.3.4. Suppose that Assumptions 1.4.3 and 1.4.5 hold, let the constant step-size

satisfy α ≤ 2/(µ + L) and the sequence {εk}k∈N+ satisfy εk−1 ≥ εk, then one can have

‖x̄k+1 − x?‖ ≤ c1‖x̄k − x?‖+ c2ε
k−1, (2.20)

where c1 =
√

1− 2αµL/(µ + L) < 1 and c2 = 2Lα + 1.

Proof. Notice that

‖x̄k − x? − αḡk‖2 = ‖x̄k − x?‖2 + α2‖ḡk‖2 − 2α(x̄k − x?)>ḡk

(2.2.a)
≤ ‖x̄k − x?‖2 + α2‖ḡk‖2 − 2α

( 1
µ + L

‖ḡk‖2 + µL

µ + L
‖x̄k − x?‖2

)
= (1− 2αµL

µ + L
)‖x̄k − x?‖2 + α(α− 2

µ + L
)‖ḡk‖2

(2.2.b)
≤ c2

1‖x̄k − x?‖2,

(2.21)

where (2.2.a) follows from Lemma 2.3.3 and (2.2.b) is due to the assumption α ≤ 2/(µ + L).

Therefore, it holds that

‖x̄k+1 − x?‖
(2.3.a)
≤ ‖x̄k+1 − x̄k+1/2‖+ ‖x̄k − x? − αgk‖

(2.3.b)
≤ εk + ‖x̄k − x? − αḡk‖+ α‖gk − ḡk‖

(2.3.c)
≤ εk + c1‖x̄k − x?‖+ 2Lαεk−1

(2.3.d)
≤ c2ε

k−1 + c1‖x̄k − x?‖,

(2.22)
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where (2.3.a) is due to the fact that x̄k+1/2 = x̄k − αgk, (2.3.b) follows from Lemma 2.3.1 ,

(2.3.c) is due to (2.21 ) and Lemma 2.3.2 , and (2.3.d) is due to the assumption εk−1 ≥ εk.

With the help of all the above lemmas, we are now ready to state the main theorem on

the convergence of our DGDx algorithm.

Theorem 2.3.1. Suppose that Assumptions 1.4.3 and 1.4.5 hold, let the step-size satisfy

α < 2/(µ + L), the sequence {xk}k∈N+ generated by Algorithm 1 has:

i) if the sequence {εk}k∈N+ has limk→∞ εk = 0 and εk−1 ≥ εk, then one can have the

convergence limk→∞ ‖xk
i − x?‖ = 0, ∀i ∈ I;

ii) if, in particular, the sequence {εk}k∈N+ decays to zero linearly, i.e., there exist ce > 0

and 0 < ρe < 1 such that εk ≤ ce(ρe)k, then there exist c > 0 and 0 < ρ < 1 such that

‖xk
i − x?‖ ≤ c(ρ)k, ∀i ∈ I.

Proof. By the result obtained from Lemma 2.3.4 , it holds that

‖x̄k+1 − x?‖ ≤ c2ε
k−1 + c1‖x̄k − x?‖

≤ c2ε
k−1 + c1

(
c2ε

k−2 + c1‖x̄k−1 − x?‖
)

≤ (c1)k‖x̄1 − x?‖+ c2

k−1∑
t=0

(c1)k−1−tεt.

(2.23)

According to Lemma 2.3.4 , we can have that c1 < 1 and thus

lim
k→∞
‖xk+1

i − x?‖ ≤ lim
k→∞
‖xk+1

i − x̄k+1‖+ lim
k→∞
‖x̄k+1 − x?‖

(2.4.a)
≤ lim

k→∞
2εk + lim

k→∞
(c1)k‖x̄1 − x?‖+ lim

k→∞
c2

k−1∑
t=0

(c1)k−1−tεt

(2.4.b)= 0,

(2.24)

where (2.4.a) is due to (2.23 ) and Lemma 2.3.1 , and (2.4.b) follows from the fact c1 < 1 and

Lemma 1.4.2 in Chapter 1 . Therefore, the statement i) in Theorem 2.3.1 is proved.

Now, we consider statement ii) where the sequence of consensus error bounds decays

linearly. Following the same path that we proved the statement i), let us first show that the
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distance ‖x̄k+1 − x?‖ converges to zero at a linear rate, i.e., there exist constants c′ > 0 and

0 < ρ′ = max{ρe, c1 + c2ce/(c′ρe)} < 1 such that

‖x̄k+1 − x?‖ ≤ c′(ρ′)k+1. (2.25)

Recall the inequality (2.20 ) obtained by Lemma 2.3.4 , we prove the statement by in-

duction. First, (2.25 ) apparently holds when k = 0. Suppose that (2.25 ) holds at the k-th

iteration, we now consider the (k + 1)-th iteration and have,

‖x̄k+1 − x?‖ ≤ c2ε
k−1 + c1‖x̄k − x?‖

≤ c2ce · (ρe)k−1 + c1c
′ · (ρ′)k

= c′(ρ′)k
(

c1 + c2ce

c′ρe
(ρe

ρ′ )
k
)

(2.5.a)
≤ c′(ρ′)k+1,

(2.26)

where (2.5.a) is due to the fact ρ′ = max{ρe, c1 + c2ce/(c′ρe)}. Now, following the same path

as shown in (2.24 ), there exist constants c = max{2ce/ρe, c′} and ρ = max{ρe, ρ′} such that

‖xk+1
i − x?‖ ≤ ‖xk+1

i − x̄k+1‖+ ‖x̄k+1 − x?‖
(2.6.a)
≤ 2ce · (ρe)k + c′ · (ρ′)k+1 ≤ c · (ρ)k+1,

(2.27)

where (2.6.a) follows from Lemma 2.3.1 . Therefore, the proof is completed.

2.4 Average Consensus with Row-Stochastic Weight Matrices

In this section, we study a novel average consensus scheme which only involves the row-

stochastic weight matrices, as distinct from the classical weighted averaging scheme (2.2b )

which requires the weight matrix to be doubly-stochastic. It should be highlighted that, in

general, the doubly-stochastic weight matrix is difficult or even impossible to be obtained in

the distributed way, especially when the underlying multi-agent network follows a directed

graph. On the contrary, the row-stochastic weight matrix can be simply realized by each

agent locally and simultaneously. For instance, assuming that each agent i knows its in-

degree di,+ (this knowledge can be readily obtained by counting the number of pieces of
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received information), one of the simplest to assign the row-stochastic matrix is to let the

corresponding weight be wij = 1/di,+. Although some push-sum based protocols [92 ], [93 ] are

proposed to be compliant with the directed graphs, they usually assume the weight matrix

to be column-stochastic, and we remark that a scheme which requires only row-stochastic

weight matrices is arguably more applicable than the one requiring the column-stochastic

ones. A good example is when we consider the underlying multi-agent network is under

attack; more details on this issue can be found in Chapter 4 .

Recall that a general average consensus scheme expects all agents within the network to

identically achieve the average of their initial states, i.e.,

lim
k→∞
‖xk

i −
1
I
·

I∑
i=1

x0
i ‖ = 0, ∀i ∈ I, (2.28)

where x0
i denotes each agent’s initial state. To this end, we introduce two auxiliary variables

φk
i ∈ RI and ξk

i ∈ Rp (with initialization φ0
i = ei and ξ0

i = x0
i ) for each agent i, and let all

agents simultaneously perform the following update of their local variables,

φk+1
i =

∑
j∈Ni,in

wijφ
k
j ;

ξk+1
i =

∑
j∈Ni,in

wijξ
k
j +

 1
Ii

(
φk+1

i

) − 1
Ii

(
φk

i

)
 · x0

i .

(2.29)

and output the states xk+1
i = (1/I)·ξk+1

i at each iteration k. Note that, in (2.29 ), the operator

Ii(·) : RI → R selects the i-th component of the input vector. Let us emphasize again that we

here consider the underlying multi-agent network to follow the strongly-connected directed

graph; see Assumption 1.4.7 and assume the compliant weight matrix W = [wij]Ii,j=1 to be

row-stochastic; see Assumptions 1.4.9 and 1.4.10 .

To perform the convergence analysis of our new average consensus scheme, let us rewrite

the iteration (2.29 ) into the compact form, as we did for the DGD algorithm. Note that, due

to the specific initialization φ0
i = ei, each φk

i is essentially the i-th column of the matrix (W )k.
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Consequently, the update of the aggregated variable ξk = [(ξk
1)>, (ξk

2)>, · · · , (ξk
I )>]> ∈ RIp

is equivalent to

ξk+1 = Wξk +
((
D−1

(W )k+1 −D−1
(W )k

)
⊗ Ip

)
· x0, (2.30)

and thus xk+1 = (1/I) · ξk+1, where the matrix D−1
(W )k ∈ RI×I first takes the diagonal

entries of the (W )k and then generates the inverse of the obtained diagonal matrix, i.e.,

D−1
(W )k = diag{1/w11, 1/w22, · · · , 1/wII}.

With the above compact form of the average consensus scheme, we now provide its

convergence result as the following theorem.

Theorem 2.4.1. Under Assumptions 1.4.7 , 1.4.9 and 1.4.10 , the sequence {xk}k∈N+ gener-

ated by iteration (2.30 ) or equivalently (2.29 ) has the convergence

lim
k→∞

xk
i = 1

I
· (1>

I ⊗ Ip) · x0, ∀i ∈ I. (2.31)

Proof. By the iteration (2.30 ), we can have

ξk+1 = (W)k+1ξ0 +
k∑

t=0
(W)k−t

((
D−1

(W )t+1 −D−1
(W )t

)
⊗ Ip

)
· x0

=
(

(W )k+1 +
k∑

t=0
(W )k−t

(
D−1

(W )t+1 −D−1
(W )t

))
⊗ Ip · x0.

(2.32)

Note that the last equality is due to the fact W = W ⊗ Ip and the initialization ξ0 = x0.

Next, to facilitate the proof, let us define a new matrix P k+1 ∈ RI×I as

P k+1 = (W )k+1 +
k∑

t=0
(W )k−t

(
D−1

(W )t+1 −D−1
(W )t

)
. (2.33)

Then, the dynamics of the state xk+1 can be simplified as xk+1 = (1/I) · (P k+1 ⊗ Ip) · x0.

Now, in order to prove the theorem, it suffices to show the following convergence

lim
k→∞

‖P k − 1I1>
I ‖ = 0. (2.34)
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According to Lemma 1.4.1 in Chapter 1 , it has been already known that, under Assump-

tions 1.4.7 , 1.4.9 and 1.4.10 , we can have limk→∞ ‖(W )k − 1Iπ>‖ = 0. Next, let us suppose

that there exists an index k̄ > 0 such that the difference D−1
(W )k+1 − D−1

(W )k is small enough

for all k > k̄, and we denote,

P k, k̄ = (W )k+1 +
k̄∑

t=0
(W )k−t

(
D−1

(W )t+1 −D−1
(W )t

)
. (2.35)

Applying the above Lemma 1.4.1 again, we can have that limk→∞ P k, k̄ exists and it only

depends on the index k̄. Thus, let us denote the limit as another matrix Qk̄ ∈ RI×I where

Qk̄ = lim
k→∞

P k, k̄ = 1Iπ> + 1Iπ> ·
(
D−1

(W )k̄+1 −D−1
(W )0

)
. (2.36)

Now, we re-change the index of the sequence {Qk̄}k∈N+ from k̄ to k and further have,

lim
k→∞

Qk = 1Iπ> · lim
k→∞
D−1

(W )k+1 = 1I1>
I . (2.37)

Therefore, it holds that

‖P k − 1I1>
I ‖ ≤ ‖P k −Qk‖+ ‖Qk − 1I1>

I ‖

≤ ‖(W )k+1 − 1Iπ>‖+
∥∥∥∥ k∑

t=0

(
(W )k−t − 1Iπ>

)(
D−1

(W )t+1 −D−1
(W )t

)∥∥∥∥+ ‖Qk − 1I1>
I ‖

≤ ‖(W )k+1 − 1Iπ>‖+
k∑

t=0
c0ρ

k−t
0 ‖D−1

(W )t+1 −D−1
(W )t‖+ ‖Qk − 1I1T

I ‖.

(2.38)

Note that the first two inequalities are due to the definitions of matrices P k and Qk, as

well as the triangle inequality; the last one is by Lemma 1.4.1 in Chapter 1 . Now, based

on the facts that limk→∞ ‖(W )k − 1Iπ>‖ = 0 and limk→∞ ‖(Q)k − 1I1>
I ‖ = 0, as well as

Lemma 1.4.2 in Chapter 1 , it is straightforward to verify that limk→∞ ‖(P )k − 1Iπ>‖ = 0.

Therefore, the proof is complete.
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2.5 ε-Inexact Average Consensus

Although our framework of the DGDx algorithm is well-developed and its convergence

has also been proved by Theorem 2.3.1 , yet the implementation of the ε-inexact average

consensus operator Cε(·) remains unclear especially in the distributed environment. The

main challenge here is the lack of global awareness of the timing when all agents reach the

desired consensus error bound; see the definition in (2.8 ). In this section, we aim to fix this

issue and inspired by the protocol in [94 ], we leverage the idea of maximum and minimum

consensus to design our own scheme.

Since the principles behind both maximum and minimum consensus schemes follow the

same path, here we only introduce the maximum consensus scheme and it can be easily

extended into the minimum consensus with slight changes. A maximum consensus scheme

for a scalar system aims at enforcing every agent to reach a consensual state z̄max = maxi∈I z̄0
i ,

where z̄0
i is the scalar initial state maintained by agent i. For a vector system where the

initial states are represented as p-dimensional vectors z̄0
i = [z̄0

i (1), z̄0
i (2), · · · , z̄0

i (p)]> ∈ Rp,

we set the goal as achieving the element-wise maximum state, i.e.,

z̄max = [ max
i∈I

z̄0
i (1), max

i∈I
z̄0

i (2), · · · , max
i∈I

z̄0
i (p)]> ∈ Rp. (2.39)

Keep this in mind, our maximum consensus scheme for a vector system is

z̄k+1
i (t) = max

j∈Ni

z̄k
j (t), ∀t ∈ {1, 2, · · · , p}, i ∈ I, (2.40)

where z̄k
i (t) is the t-th element of the p-dimensional vector z̄k

i at time-step k. Its convergence

is stated as follows.

Proposition 2.5.1. For any given z̄0 = [(z̄0
1)>, (z̄0

2)>, · · · , (z̄0
I)>]> ∈ RIp, under Assump-

tion 1.4.7 , the sequence {z̄k}k∈N+ generated by (2.40 ) converges to the maximum consensual

state in finite D time-steps, where D is the diameter of the time-invariant graph.

Proof. The proof can be completed by a simple extension of Proposition 2.3 in [94 ]
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Following the same path, the minimum consensus scheme performs

zk+1
i (t) = min

j∈Ni

zk
j (t), ∀t ∈ {1, 2, · · · , p}, i ∈ I, (2.41)

and its the convergence result is provided as follows.

Proposition 2.5.2. For any given z0 = [(z0
1)>, (z0

2)>, · · · , (z0
I)>]> ∈ RIp, under Assump-

tionAssumption 1.4.7 , the sequence {zk}k∈N+ generated by (2.41 ) converges to the minimum

consensual state in finite D time-steps, which is defined as

zmin = [ min
i∈I

z0
i (1), min

i∈I
z0

i (2), · · · , min
i∈I

z0
i (p)]> ∈ Rp. (2.42)

With the maximum and minimum consensus schemes developed as above, we are now

ready to present the ε-inexact average consensus scheme. Considering that both maximum

and minimum consensual states can be exactly achieved in the finite D time-steps, the guide-

line here is to check the stopping criteria for every D steps by measuring the discrepancy

between the results obtained by maximum and minimum consensus. We show by the fol-

lowing lemma that the states of agents yi ∈ Rp must reach the ε-inexact average consensus,

if the discrepancy satisfies ‖ȳmax − ymin‖ ≤ ε.

Lemma 2.5.1. Given the states yi = [yi(1), yi(2), · · · , yi(p)]> ∈ Rp and outputs of maximum

and minimum consensus (ȳmax, ymin) whose t-th elements has ȳmax(t) = maxi∈I yi(t) and

ymin(t) = mini∈I yi(t), respectively, if there exists a constant ε > 0 such that

‖ȳmax − ymin‖ ≤ ε, (2.43)

it implies ‖yi − ȳ‖ ≤ ε where ȳ = (1/I) ·∑I
i=1 yi denotes the average of yi’s.

Proof. By the definitions of maximum and minimum consensus, it holds that

ymin(t) ≤ yi(t) ≤ ȳmax(t), ∀i ∈ I, t ∈ {1, 2, · · · , p}, (2.44)
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and furthermore,

|yi(t)− yj(t)| ≤ |ȳmax(t)− ymin(t)|, ∀i, j ∈ I, t ∈ {1, 2, · · · , p}. (2.45)

Consequently, we have ‖yi − yj‖ ≤ ‖ȳmax − ymin‖ ≤ ε, and thus for ∀i ∈ I,

∥∥∥yi − (1/I) ·
I∑

j=1
yj

∥∥∥ =
∥∥∥(1/I) ·

I∑
j=1

(yi − yj)
∥∥∥ ≤ (1/I) ·

I∑
j=1
‖yi − yj‖ ≤ ε. (2.46)

The above Lemma 2.5.1 guarantees the ε-inexact average consensus (2.8 ) by ensuring the

stopping criteria (2.43 ). Now, we present the detailed implementation of the operator Cε(·),

which is outlined as Algorithm 2 .

Algorithm 2: ε-Inexact Average Consensus Operator
Data: Given each agent’s current state xi and the consensus error bound ε, let

y0
i = xi, ȳ0

i = ε1 and y0
i

= 0. Set k = 0 and stop_flag = 0.

while stop_flag is NOT true do
Each agent i ∈ I simultaneously does
if (k mod D) = 0 then

if ‖ȳk
i − yk

i
‖ ≤ ε then

Set stop_flag = 1;
else

Reinitialize ȳk
i = yk

i and yk
i

= yk
i ;

end
end

(S.1) Perform the one-iteration consensus step, i.e., yk+1
i = Aone

i (yk);
(S.2) Perform the maximum and minimum consensus steps as shown in (2.40 );
(S.3) Let k ← k + 1 and continue.

end

Note that, in Algorithm 2 , we use ȳk
i and yk

i
to track the maximum and minimum

consensus respectively, and use yk
i to obtain the ε-inexact average consensus result. As

remarked in Section 2.2 , we do not specify the consensus scheme to iterate yk
i . Instead,
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we adopt an abstract one-iteration consensus step Aone(·) : RIp → RIp with Aone
i (·) being

the i-th component of the output, to denote one iteration in a general consensus scheme.

Such a step can be implemented by the widely-used weighted averaging as shown in (2.2b ),

as well as our new average consensus scheme introduced in Section 2.4 . Certainly, one can

implement it by many other options.

We shall also remark that the stopping criteria checking is D time-steps delayed, com-

pared with the one-iteration consensus step (S.1) in Algorithm 2 , since the maximum and

minimum consensus always take a finite-time period D to reach the desired result. In fact,

for many specific consensus schemes such as the weighted averaging, the consensus error can

be preserved in each time-step, i.e., if ‖xk − x̄‖ ≤ ε then ‖xk+1 − x̄‖ ≤ ε. To show this, let

us assume that the weighted averaging runs xk+1 = Wxk with aim to achieve the average x̄,

and it has reached the ε-inexact average consensus at iteration k, i.e., ‖xk
i − x̄‖ ≤ ε, ∀i ∈ I.

Then, it holds that

‖xk+1
i − x̄‖ =

∥∥∥ I∑
j=1

wijxk
j (t)− x̄(t)

∥∥∥ =
∥∥∥ I∑

j=1
wij

(
xk

j (t)− x̄(t)
)∥∥∥ ≤ I∑

j=1
wij‖xk

j (t)− x̄(t)‖ ≤ ε.

(2.47)

where the second equality follows from the stochasticity of weight matrix W, the first in-

equality is due to the triangle inequality, and the second inequality follows from the condition

that ‖xk
i (t)− x̄(t)‖ ≤ ε, ∀i ∈ I. Thus, we claim that Algorithm 2 is valid for such consen-

sus schemes. Moreover, if the adopted consensus scheme does not have such a preservation

property, an extra buffer will be needed for agents to store the previous states.

2.6 Simulation Result

In this section, we evaluate the proposed DGDx framework on the following distributed

Least Squares problem,

minimize
x∈Rp

F (x) =
I∑

i=1
‖Aix− bi‖2. (2.48)
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Here, each agent i is assumed to own a pair of measurements {Ai, bi}. The goal is to minimize

the global objective function F (x) in a distributed manner. In the following, we compare four

algorithms: the DGDx algorithm with both linearly decaying error bound sequence (termed

as L-DGDx) and sub-linearly decaying sequence (termed as Sub-DGDx), the NEAR-DGD+

algorithm, and also the DGD algorithm with diminishing step-sizes (termed as DGD-dim).

(a) The general undirected graph (b) The undirected tree graph

Figure 2.1. Topology of the multi-agent network

In this simulation, we consider a network composed of n = 20 agents, and assume that

each agent takes 20 measurements, i.e., bi ∈ R20. The network topology follows a randomly

generated undirected graph, as shown in Fig. 1(a ), which is guaranteed to be connected.

Note that the algebraic connectivity of the network has σ = 0.686 and its diameter is D = 4.

The weight matrix W is generated through the Metropolis-Hasting rule so that W is doubly

stochastic. We first evaluate our DGDx algorithm with two different choices of consensus

error bound sequence {εk}k∈N+ : i) a linearly decaying case, i.e., εk = (0.9)k; and ii) a sub-

linearly decaying case, i.e., εk = 0.1/k. The weighted averaging scheme is utilized for the

consensus steps in the DGDx algorithm. Since the same local descent step is adopted in both

NEAR-DGD+ algorithm and our DGDx algorithm, for a fair comparison, we use the same

constant step-size α = 0.4 in both two algorithms. The diminishing step-sizes {αk}k∈N+ for

standard DGD algorithm is set as αk+1 = αk(1 − δαk) with α0 = 0.6 and δ = 0.2. The

performance of algorithms is evaluated as follows.
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Figure 2.2. Comparison of the convergence results

Fig. 2.2 demonstrates the convergence results of all four algorithms by plotting the

optimality gap (see Fig. 2.2 (a )) and disagreement among agents (see Fig. 2.2 (b )) versus

the number of iterations. The optimality gap is measured by Sk = ‖∇F (x̄k)‖2 at each

time-step k, where x̄k = (1/I) ·∑I
i=1 xk

i represents the average of all agents’ states; the dis-

agreement among agents is computed by Dk = (1/I) ·∑I
i=1 ‖xk

i − x̄k‖2. It can be seen from

Fig. 2.2 that our DGDx algorithm (both L-DGDx and Sub-DGDx) achieves the exact con-

vergence, while the L-DGDx shows the faster convergence rate than Sub-DGDx. Although

it is observed that the NEAR-DGD+ algorithm can reach the same level of optimality gap by

fewer iterations than the DGDx algorithm, we next show that the NEAR-DGD+ algorithm

actually consumes more communication resources. The comparison of computation and com-

munication cost is illustrated in Fig. 2.3 . While the communication cost at each time-step

is counted as the number of iterations involved in the consensus step (see Fig. 2.3 (a )), the

computation cost is defined as the number of gradient steps (see Fig. 2.3 (b )). It is shown

that the L-DGDx requires the least amount of communication cost to achieve the same

optimality gaps. Therefore, we conclude that our DGDx algorithm offers extra flexibility

in the algorithm implementation to reduce the total cost, compared to the NEAR-DGD+

algorithm.
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Optimality Gap
1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

×10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

NEAR-DGD
+

F-DGDx

(a) Communication cost

Optimality Gap
1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

C
o

m
p

u
ta

ti
o

n
 C

o
s
t

80

100

120

140

160

180

200

220

240

260

280

NEAR-DGD
+

F-DGDx

(b) Computation cost

Figure 2.4. Comparison of the computation and communication cost (tree graph)

In addition, to further demonstrate the superiority of our DGDx algorithm when applying

finite-time consensus schemes, we carry out the following additional simulation where the

finite-time consensus scheme presented in [90 ] is adopted. Given that such finite-time scheme

can be only valid when considering a tree graph, here we simulate a network of n = 20 agents

which has the topology as shown in Fig. 2.1 (b ). The other simulation settings are the same

as before. We also compare the DGDx algorithm with finite-time consensus (termed as

F-DGDx) to the NEAR-DGD+ algorithm. For a fair comparison, the same constant step-
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size α = 0.1 is specified for both algorithms. Here, we only investigate the communication

and computation cost of the algorithms. As shown in Fig. 2.4 , the F-DGDx algorithm

requires much less communication cost than the NEAR-DGD+ algorithm. That is because

only D = 4 iterations are needed to reach the pure average at each consensus step of our

algorithm, while the number of iterations in NEAR-DGD+ grows up exponentially as the

time-step k increases.
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3. A GENERALIZED NETWORKED PROXIMAL

ALGORITHM FOR DISTRIBUTED OPTIMIZATION

This chapter presents a generalized networked proximal algorithm, termed as NetProx, for

solving the distributed optimization problem (P ). This new algorithm discards the conven-

tional consensus procedure which appears in majority of the existing distributed algorithms,

but takes advantage of the classical proximal point method in the context of centralized

optimization to ensure the consensual solutions. Observing that the standard DGD algo-

rithm is just a special case of our NetProx framework when the local objective functions are

approximated by the first order Taylor expansions, we then generalize the choice of local ap-

proximation functions. It is shown that, with the higher order approximation functions, the

convergence of the NetProx algorithm will be accelerated to some extent, but meanwhile, it

will cost more computational resources for each agent at each iteration. On this account, the

flexibility of choices of the approximation functions further helps to balance the computation

and communication in distributed optimization.

3.1 Problem Statement – A Revisit to the DGD Algorithm

As we have reviewed in Section 1.2 of Chapter 1 , the majority of the existing first-order

primal-based distributed algorithms, including the well-studied DGD algorithm, follows the

same path – a consensus step together with a gradient step, where the consensus step is

designed to enforce the consensual solution among all agents and the gradient step is adopted

to meanwhile achieve the optimizer. Now, in order to develop our new algorithmic framework,

we present another perspective to study the DGD algorithm by reformulating its iterations.

Let us first recall that the DGD algorithm performs the following update at each agent

i ∈ I simultaneously and locally,

xk+1
i =

∑
j∈Ni

wijxk
j − αk∇fi(xk

i ). (3.1)

Note that some underlying assumptions are incorporated by the DGD algorithm; see details

in Section 1.4.2 in Chapter 1 .
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We shall highlight that the right-hand side of (3.1 ) can be viewed as an analytic solution

of minimizing the following objective function f̃i(·) : Rp → R,

f̃i(x) := ∇fi(xk
i )>(x− xk

i ) + 1
2αk
·

I∑
j=1

wij‖x− xk
j ‖2. (3.2)

Therefore, the iteration of the DGD algorithm can be also expressed as the following form,

xk+1
i = arg min

x∈Rp

{
fi(xk

i ) +∇fi(xk
i )>(x− xk

i )︸ ︷︷ ︸
linear approximation of fi

+ 1
2αk
·

I∑
j=1

wij‖x− xk
j ‖2

︸ ︷︷ ︸
proximal term

}
, i ∈ I.

(3.3)

We can now interpret the above iteration (3.3 ) as follows: each agent attempts to mini-

mize the objective function by considering the linear approximation of each fi(·) and mean-

while tries to stay close to the states of its neighbors by adding the proximal term. Here,

the sequence of step-sizes {αk}k∈N+ is diminishing, meaning that more and more weights will

be assigned to the proximal term. As the iteration index k goes to infinite, the consensual

solutions must be achieved since αk → 0. Once we explain the iteration (3.3 ) from this new

perspective, two questions will naturally arise and remain to be answered:

i) Given that the proximal term aims at enforcing the obtained solution to stay close

to the points of neighbors, how can one motivate the using of those weights wij’s? In

particular, how can one justify the necessity of double-stochasticity of the weight matrix

W = [wij]Ii,j=1 that is typically required by the DGD algorithm?

ii) Aside from the linear approximation of fi(·), can one adopt some other forms of the

approximation function, such as the higher order approximation or even the original

function fi(·) directly?

Here, we first try to answer the question i) by eliminating the weights in (3.3 ), and thus

obtain the following iteration,

xk+1
i = arg min

x∈Rp

{
fi(xk

i ) +∇fi(xk
i )>(x− xk

i ) + 1
2αk
·
∑

j∈Ni

‖x− xk
j ‖2

}
, i ∈ I. (3.4)
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At the iteration (3.4 ), each agent basically treats the information received from its neighbors

with an equal weight. To see whether such a weight matrix free scheme works or not, we

rewrite it back into the DGD-like form and have,

xk+1
i = 1

di

·
∑

j∈Ni

xk
j −

αk

di

· ∇fi(xk
i ). (3.5)

Note that here di denotes the degree of node i, i.e., di = |Ni|. It can be observed from (3.5 )

that each agent i basically assigns the same weight 1/di to all the received information from

its neighbors, and correspondingly, the local gradient is also scaled by 1/di at each time-

step k. In order to proceed our further analysis, let us express the iteration (3.5 ) into the

compact form. Recall that xk ∈ RIp and ∇f(xk) ∈ RIp denote the aggregates of local states

xk
i ’s and local gradients ∇fi(xk

i )’s, respectively, then (3.5 ) is equivalent to

xk+1 = Mxk + αkD−1∇f(xk). (3.6)

Note that, in (3.6 ), the hidden weight matrix M ∈ RIp×Ip is defined as M := (D−1A)⊗Ip and

D := D ⊗ Ip ∈ RIp×Ip; recall that the degree matrix D := diag{d1, d2, · · · , dI} ∈ RI×I and

the adjacency A = [aij]Ii,j=1 ∈ RI×I have been defined in Chapter 1 . It is straightforward to

verify that this new weight matrix M is row-stochastic but not necessarily doubly-stochastic.

However, according to the theory of the DGD algorithm, its convergence can only be guar-

anteed when the weight matrix is doubly-stochastic, see e.g., [29 ], [32 ]. We note here that

the iteration (3.6 ) can still drive the generated sequence {xk}k∈N+ to the optimal solution

under some necessary conditions. This is primarily due to the scaling of the local gradient,

i.e., D−1∇f(xk), and we elaborate on it as follows.

Let us first give a brief review on the result presented in [95 ] which studies the con-

vergence of the standard DGD algorithm (3.1 ) when the original weight matrix W is only

row-stochastic, rather than doubly-stochastic. Denote the vector v = [vi]Ii=1 ∈ RI as the

left eigenvector of W corresponding to the eigenvalue 1, i.e., v>W = v> and 1>v = 1, and
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define the weighted average of local states as x̂k := ∑I
i=1 vixk

i . Then, it is straightforward to

verify that the dynamics of x̂k can be written as,

x̂k+1 = x̂k − αk
I∑

i=1
vi∇fi(xk

i ). (3.7)

Consider that the consensus result will be achieved by (1.5 ) due to the row-stochasticity of

the weight matrix W ;see the Lemma 1.4.1 in Chapter 1 , i.e., limk→∞ ‖xk
i − x̂k‖ = 0, it can be

understood that the multiple agents are cooperatively minimizing a new objective function

F̂ (x) := ∑I
i=1 vifi(x), instead of the original one F (x) = ∑I

i=1 fi(x). Indeed, this motivates

a new scheme proposed in [96 ] which introduces an auxiliary variable yk
i ∈ RI to rescale the

bias of local objective function vifi(x) and performs

yk+1
i =

I∑
j=1

wijyk
j , (3.8a)

xk+1
i =

I∑
j=1

wijxk
j − αk∇fi(xk

i )
Ii(yk

i ) , (3.8b)

where Ii(·) : RI → R takes the i-th element of the input vector. Provided that the variable

yk
i can track the left eigenvector v by initialized as y0

i = ei where ei denotes the unit vector,

it is easy to see that Ii(yk
i ) will converge to the scaling weight vi and thus (3.8b ) is gradually

equivalent to the standard DGD algorithm.

Now, let us look back into our derived DGD-like iteration (3.5 ) or equivalently (3.6 ), and

compare it with (3.8b ). Since we assume that the underlying time-invariant network G is

undirected, it can be verified that the vector d = [di]Ii=1 ∈ RI is exactly the left eigenvector of

the hidden weight matrix M = D−1A corresponding to the eigenvalue 1, i.e., d>D−1A = d>.

Therefore, instead of adopting the tracking left eigenvector yk
i to rescale the bias of local

gradient as in (3.8b ), the iteration (3.5 ) actually obtains the left eigenvector d as a prior

knowledge due to the special assignment of M . It can be seen that (3.5 ) essentially performs

the same updates as (3.8a )–(3.8b ), and its convergence can be straightforwardly confirmed

by applying Theorem 2 in [96 ].
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Based on the analysis presented above, we have inherently answered the first question.

That is, once the DGD algorithm is considered from the new perspective as (3.3 ), the weight

matrix can be actually eliminated and a weight matrix free scheme is thus obtained as (3.4 ).

Next, we attempt to approach the second one by developing our new algorithmic framework

– the NetProx algorithm.

3.2 The NetProx Algorithm

To answer the second question, we now consider a general case, in which a generic function

gi(· | ·) : Rp×Rp → R is adopted to approximate the local objective function fi(·). To ensure

that gi(· | ·) is a valid approximation of fi(·), we require it to satisfy the following conditions.

Assumption 3.2.1. Each of the local approximation functions gi(· | ·) is assumed to be

i) gi(· |x) is convex on the set X , ∀x ∈ X ;

ii) the gradient ∇gi(· |x) is Lg
i -Lipschitz continuous on the set X , ∀x ∈ X ;

iii) ∇gi(x |x) = ∇fi(x), ∀x ∈ X .

Note that, from now on, we consider the distributed optimization problem (P ) under the

compact feasible set X ; see Assumption 1.4.2 in Chapter 1 . As a result, the gradient ∇fi on

each point x ∈ X must be bounded, i.e., there exists a constant κ > 0 such that

‖∇fi(x)‖ ≤ κ, ∀x ∈ X , ∀i ∈ I. (3.9)

It should be highlighted that, aside from the previous linear approximation function, i.e.,

gi(x |y) = fi(y) +∇fi(y)>(x− y), there are also a few other choices of the function gi(· | ·);

for example, the second-order Taylor expansion, i.e.,

gi(x |y) = fi(y) +∇fi(y)>(x− y) + 1
2 · (x− y)>∇2fi(y)(x− y), (3.10)

where ∇2fi(·) ∈ Rp×p denotes the Hessian matrix, and also the original function, i.e.,

gi(x |y) = f(x). It is easy to verify that all the conditions in the above Assumption 3.2.1 

are satisfied with these three choices.
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Next, by taking advantage of the proximal operator in the context of centralized opti-

mization, we define the networked proximal operator nProxX ,hi
(·) : Rdip → Rp as,

nProxX ,hi
(xj∈Ni

) := arg min
x∈X

{
hi(x) + 1

2 ·
∑

j∈Ni

‖x− xj‖2
}

. (3.11)

With the help of the defined networked proximal operator, as well as the generic ap-

proximation function gi(· | ·), we now present our NetProx algorithm as below, for ∀i ∈ I,

xk+1
i = nProxX ,αkgi

(xk
j∈Ni

)

= arg min
x∈X

{
gi(x |xk

i ) + 1
2αk
·
∑

j∈Ni

‖x− xk
j ‖2

}
.

(3.12)

The detailed steps of the algorithm are outlined as Algorithm 3 .

Algorithm 3: NetProx Algorithm
Data: Given a sequence of the diminishing step-sizes {αk}k∈N+ , each agent i locally

initializes its own state x0
i . Let k = 0.

while a termination criterion is NOT satisfied do
Each agent i ∈ I simultaneously does
(S.1) Receive the information xk

j from the neighbors j ∈ Ni;
(S.2) Determine the local approximation function gi(· |xk

i ), perform the
networked proximal operator nProxX ,αkgi

(·), and let

xk+1
i = nProxX ,αkgi

(xk
j∈Ni

); (3.13)

(S.3) Broadcast the updated state xk+1
j to the neighbors;

(S.4) Let k ← k + 1 and continue.
end

Before proceeding to the convergence analysis, a few remarks should be made here re-

garding the proposed NetProx algorithm. First, the algorithm can be implemented in the

fully distributed fashion, since each agent only relies on the information received from its

neighbors. Second, due to the proximal term and also the fact that the approximation func-

tion gi(· | ·) is assumed to be convex; see Assumption 3.2.1 , the minimization problem defined

by each nProxX ,αkgi
(·) is guaranteed to be strongly-convex and thus has the unique solu-
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tion. Third, as mentioned before, one can choose among a few approximation functions to

implement the NetProx algorithm. However, different choices will result in different compu-

tational cost at each iteration, as well as different overall convergence rate of the algorithm;

see the detailed convergence analysis in the next section. We shall highlight here that such

flexibility offers the great potential to further balance the computation and communication

for solving the distributed optimization problem. This is also why we claimed that our

NetProx algorithm provides the generalized algorithmic framework.

3.3 Convergence Analysis

In this section, we provide the convergence analysis of the NetProx algorithm. To fa-

cilitate the following analysis, let us first introduce some additional notations. Recall that,

in Section 3.1 , we have defined the new weight matrix M = D−1A ∈ RI×I where D is the

diagonal degree matrix and A is the adjacency matrix. It is known that the matrix M is

row-stochastic, i.e., M1I = 1I . More specifically, let us use a>
i ∈ RI and m>

i ∈ RI to repre-

sent the i-th row of the matrices A and M , respectively, and by the definition of the diagonal

matrix D = diag{d1, d2, · · · , dI}, it follows that mi = ai/di. In addition, we introduce a new

vector εk ∈ RIp, defined as

εk := xk+1 −Mxk (3.14)

where xk corresponds to the agents’ aggregated states at the iteration k, and M = M ⊗ Ip

as defined before. Next, we show, by the following lemma, that the norm of this new vector

εk is bounded by the step-size αk.

Lemma 3.3.1. Under Assumptions 1.4.2 , 1.4.4 and 3.2.1 , let {xk}k∈N+ be the sequence

generated by the algorithm (3.12 ) and {εk}k∈N+ be defined as (3.14 ), then there exists a

constant c1 > 0 such that

‖εk‖ ≤ c1α
k, ∀k ∈ N+. (3.15)
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Proof. Similar to the state variable xk, let us denote εk as the aggregate of local εk
i ’s, i.e.,

εk = [(εk
1)>, (εk

2)>, · · · , (εk
I )>]>. By the definition of εk, it is straightforward to verify that

εk
i = xk+1

i −M>
i xk, (3.16)

where M>
i = m>

i ⊗ Ip ∈ Rp×Ip.

According to the iteration (3.12 ) of the NetProx algorithm, the first order optimality

condition guarantees that, for ∀x ∈ X ,

(
∇gi(xk+1

i |xk
i ) + 1

αk
·
∑

j∈Ni

(xk+1
i − xk

j )
)>

(x− xk+1
i ) ≥ 0. (3.17)

Notice that M>
i xk = ∑

j∈Ni
xk

j /di, and thus the variable M>
i xk, as the convex combination

of xk
j ’s, must be in the set X . Subsequently, we let x = M>

i xk and rearrange the above

inequality (3.17 ), it yields,

‖εk
i ‖2 = ‖xk+1

i −M>
i xk‖2

≤ αk

di

· ∇gi(xk+1
i |xk

i )>(M>
i xk − xk+1

i )

≤ αk

di

· ‖∇gi(xk+1
i |xk

i )‖ · ‖xk+1
i −M>

i xk‖

= αk

di

· ‖∇gi(xk+1
i |xk

i )‖ · ‖εk
i ‖.

(3.18)

Next, we note that ‖∇gi(xk+1
i |xk

i )‖ is always bounded, since

‖∇gi(xk+1
i |xk

i )‖
(3.1.a)
≤ ‖∇gi(xk+1

i |xk
i )−∇gi(xk

i |xk
i )‖+ ‖∇gi(xk

i |xk
i )‖

(3.1.b)
≤ Lg

i ‖xk+1
i − xk

i ‖+ ‖∇fi(xk
i )‖

(3.1.c)
< ∞,

(3.19)

where the inequality (3.1.a) is due to the triangle inequality; (3.1.b) follows from Assump-

tion 3.2.1 ; and (3.1.c) is due to the compactness of the set X and the boundedness of the

gradient; see Assumption 1.4.2 and inequality (3.9 ).
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As a result of the inequality (3.18 ) and the boundedness of the term ‖∇gi(xk+1
i |xk

i )‖,

there must exist a constant c′
1 > 0 such that

‖εk
i ‖ ≤ c′

1α
k. (3.20)

By the definition of εk and letting c1 = c′
1
√

I, the proof of Lemma 3.3.1 is completed.

With the help of the above Lemma 3.3.1 , we are now ready to bound the consensus error

by the following lemma. Note that the consensus error at each iteration k is defined by the

quantity ‖xk−Πxk‖, where Π = (1Iπ>)⊗ Ip ∈ RIp×Ip and π ∈ RI is the left eigenvector of

the weight matrix M corresponding to the eigenvalue 1.

Lemma 3.3.2. Under Assumptions 1.4.2 , 1.4.4 , 1.4.8 and 3.2.1 , let {xk}k∈N+ be the sequence

generated by the algorithm (3.12 ), then the following inequality holds,

‖xk −Πxk‖ ≤ c0(ρ0)k · ‖x0‖+
k−1∑
t=0

c0c1(ρ0)k−1−tαt, (3.21)

where the constants c0 and 0 < ρ0 < 1 are defined in Lemma 1.4.1 .

Proof. It follows by the definition (3.14 ) of εk that

xk+1 = Mxk + εk. (3.22)

Let us apply the above equation recursively, it holds that

xk = (M)kx0 +
k−1∑
t=0

(M)k−1−tεt. (3.23)

Now, based on the facts that π is the left-eigenvector of M , i.e., π>M = π> and the

definitions of the matrices Π and M, it holds that ΠM = Π and thus

Πxk = Πx0 +
k−1∑
t=0

Πεt. (3.24)
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Therefore, it follows that

‖xk −Πxk‖ =
∥∥∥∥((M)k −Π

)
x0 +

k−1∑
t=0

(
(M)k−1−t −Π

)
εt

∥∥∥∥
≤ ‖(M)k −Π‖ · ‖x0‖+

k−1∑
t=0
‖(M)k−1−t −Π‖ · ‖εt‖

(3.2.a)
≤ c0(ρ0)k · ‖x0‖+

k−1∑
t=0

c0(ρ0)k−1−t · ‖εt‖

(3.2.b)
≤ c0(ρ0)k · ‖x0‖+

k−1∑
t=0

c0c1(ρ0)k−1−tαt,

(3.25)

where the inequality (3.2.a) follows from Lemma 1.4.1 in Chapter 1 and (3.2.b) is due to the

above Lemma 3.3.1 .

Subsequently, let us prove the following supporting lemma, which characterizes the key

term ‖∇fi(xk
i )−∇gi(xk

i |xk−1
i )‖.

Lemma 3.3.3. Under Assumptions 1.4.2 , 1.4.3 , 1.4.4 , 1.4.8 and 3.2.1 , let {xk}k∈N+ be the

sequence generated by the algorithm (3.12 ), then the following inequality holds,

I∑
i=1
‖∇fi(xk

i )−∇gi(xk
i |xk−1

i )‖

≤ (Lf
max + Lg

max)
√

I ·
(

2c0(ρ0)k−1 · ‖x0‖+
k−2∑
t=0

2c0c1(ρ0)k−2−tαt + c1α
k−1

)
,

(3.26)

where Lf
max := max1≤i≤I Lf

i and Lg
max := max1≤i≤I Lg

i .

Proof. Notice that

‖∇fi(xk
i )−∇gi(xk

i |xk−1
i )‖

≤ ‖∇fi(xk
i )−∇fi(xk−1

i )‖+ ‖∇fi(xk−1
i )−∇gi(xk

i |xk−1
i )‖

≤ (Lf
i + Lg

i ) · ‖xk
i − xk−1

i ‖,

(3.27)
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where the last inequality follows from Assumptions 1.4.3 and 3.2.1 . As a consequence, it

holds that

I∑
i=1
‖∇fi(xk

i )−∇gi(xk
i |xk−1

i )‖

≤
I∑

i=1
(Lf

i + Lg
i ) · ‖xk

i − xk−1
i ‖

(3.3.a)
≤ (Lf

max + Lg
max)
√

I · ‖xk − xk−1‖

(3.3.b)= (Lf
max + Lg

max)
√

I ·
∥∥∥∥((M)k − (M)k−1

)
x0 +

k−2∑
t=0

Mk−2−t(M− IIp)εt + εk−1
∥∥∥∥

(3.3.c)
≤ (Lf

max + Lg
max)
√

I ·
(

2c0(ρ0)k−1 · ‖x0‖+
k−2∑
t=0

2c0(ρ0)k−2−t · ‖εt‖+ ‖εk−1‖
)

(3.3.d)
≤ (Lf

max + Lg
max)
√

I ·
(

2c0(ρ0)k−1 · ‖x0‖+
k−2∑
t=0

2c0c1(ρ0)k−2−tαt + c1α
k−1

)
,

(3.28)

where (3.3.a) is due to the Cauchy-Schwartz inequality; (3.3.b) follows from the dynam-

ics (3.23 ) of the state xk; (3.3.c) follows from Lemma 1.4.1 in Chapter 1 ; and (3.3.d) is based

on the diminishing step-sizes and Lemma 3.3.1 .

With the help of the above supporting lemmas, we are now ready to study the convergence

of our NetProx algorithm. Before proceeding to the main theorem, let us again introduce

some additional notations. We define a real-valued function f(·) : RIp → R as,

f(xk) =
I∑

i=1
fi(xk

i ), (3.29)

and thus its gradient ∇f(xk) ∈ RIp should aggregate all the local gradients as we have

defined before. In addition, we use x̄k ∈ Rp to represent the (weighted) average of the local

xk
i ’s, i.e.,

x̄k = (π> ⊗ Ip) · xk =
I∑

i=1
πixk

i . (3.30)

Note that, by the definition of the matrix Π, it follows that Πxk = (1I ⊗ Ip) · x̄k.

Now, we are in the position to state the main theorem.
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Theorem 3.3.1. Under Assumptions 1.4.2 , 1.4.3 , 1.4.4 , 1.4.8 and 3.2.1 , let {xk}k∈N+ be the

sequence generated by the algorithm (3.12 ) and step-size αk be satisfied with i) ∑∞
k=0 αk =∞;

and ii) ∑∞
k=0(αk)2 <∞, then the following convergence result holds,

lim
k→∞

‖xk
i − x?‖ = 0, ∀i ∈ I, (3.31)

where x? denotes the optimal solution of Problem (P ).

Proof. By noticing that

F (x̄k)− F (x?) =
(
F (x̄k)− f(xk)

)
+
(
f(xk)− F (x?)

)
, (3.32)

let us next the two terms on the right-hand-side of the above (3.32 ) separately.

First, by the definitions of the vector x̄k and the function g(·), it holds that

F (x̄k)− f(xk) =
I∑

i=1

(
fi(x̄k)− fi(xk

i )
)

(3.4.a)
≤

I∑
i=1
∇fi(x̄k)>(x̄k − xk

i )

(3.4.b)
≤ κ ·

I∑
i=1
‖x̄k − xk

i ‖

(3.4.c)
≤ κ

√
I · ‖Πxk − xk‖,

(3.33)

where (3.4.a) is due to the convexity of the functions fi’; see Assumption 1.4.4 , (3.4.b) is

due to the boundedness of the gradient; see the inequality (3.9 ), and (3.4.c) follows from the

Cauchy-Schwartz inequality. Further, based on Lemma 3.3.2 , it follows that

k∑
t=1

αt‖Πxt − xt‖ ≤
( k∑

t=1
c0α

t(ρ0)t · ‖x0‖+
k∑

t=1

t−1∑
s=0

c0c1(ρ0)t−1−s(αs)2
)

<∞. (3.34)

Note that the second inequality follows from Lemma 1.4.2 and 1.4.3 in Chapter 1 and the

fact that the diminishing step-size αk satisfies i) ∑∞
k=0 αk =∞; and ii) ∑∞

k=0(αk)2 <∞.

Next, invoking again the convexity of the objective function fi(·) yields,

59



fi(xk
i )− fi(x?) ≤ ∇fi(xk

i )>(xk
i − x?)

= ∇gi(xk
i |xk−1

i )>(xk
i − x?) +

(
∇fi(xk

i )−∇gi(xk
i |xk−1

i )
)>

(xk
i − x?)

(3.5.a)
≤ − di

αk
(xk

i − x̂k−1
i )>(xk

i − x?) +
∥∥∥∇fi(xk

i )−∇gi(xk
i |xk−1

i )
∥∥∥ · ∥∥∥xk

i − x?
∥∥∥

= − di

2αk

(
‖xk

i − x?‖2 + ‖xk
i − x̂k−1

i ‖2 − ‖x̂k−1
i − x?‖2

)
+
∥∥∥∇fi(xk

i )−∇gi(xk
i |xk−1

i )
∥∥∥ · ∥∥∥xk

i − x?
∥∥∥

≤ di

2αk

(
‖x̂k−1

i − x?‖2 − ‖xk
i − x?‖2

)
+
∥∥∥∇fi(xk

i )−∇gi(xk
i |xk−1

i )
∥∥∥ · ∥∥∥xk

i − x?
∥∥∥

(3.5.b)
≤ 1

2αk

∑
j∈Ni

(
‖xk−1

j − x?‖2 − ‖xk
i − x?‖2

)
+
∥∥∥∇fi(xk

i )−∇gi(xk
i |xk−1

i )
∥∥∥ · ∥∥∥xk

i − x?
∥∥∥.

(3.35)

Note that in (3.5.a), we take advantage of the the inequality (3.17 ) by letting x = x?

and denote x̂k−1
i = M>

i xk−1 = ∑
j∈Ni

xk−1
j /di; in addition, (3.5.b) is due to the facts that∑

j∈Ni
1/di = 1,∀i ∈ I and the convexity of the function of squared norm, i.e.,

‖x̂k−1
i − x?‖2 =

∥∥∥∥ ∑
j∈Ni

1
di

(xk−1
j − x?)

∥∥∥∥2
≤ 1

di

·
∑

j∈Ni

‖xk−1
j − x?‖2. (3.36)

Now, let us sum the inequality (3.35 ) for ∀i ∈ I, it holds that

f(xk)− F (x?) ≤ 1
2αk

(
‖xk−1 − (1I ⊗ Ip) · x?‖2

D − ‖xk − (1I ⊗ Ip) · x?‖2
D

)

+
I∑

i=1

∥∥∥∇fi(xk
i )−∇gi(xk

i |xk−1
i )

∥∥∥ · ∥∥∥xk
i − x?

∥∥∥, (3.37)

where the norm ‖ · ‖2
D is defined as ‖x‖2

D = x>Dx. Further, by Lemma 3.3.3 , one can have

k∑
t=1

αt
I∑

i=1

∥∥∥∇fi(xt
i)−∇gi(xt

i |xt−1
i )

∥∥∥ · ∥∥∥xt
i − x?

∥∥∥
≤ (Lf

max + Lg
max)
√

I ·
∥∥∥xt

i − x?
∥∥∥

·
( k∑

t=1
2c1(ρ0)t−1αt · ‖x̃0‖+

k∑
t=1

t−2∑
s=0

2c1c1(ρ0)t−2−s(αs)2 +
k∑

t=1
c1(αt−1)2

)
<∞.

(3.38)
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Note that the last inequality is due to the fact ‖xt
i − x?‖ <∞ owing to the compactness of

the feasible set X , as well as Lemmas 1.4.2 and 1.4.3 in Chapter 1 .

Consequently, summing up the above inequalities (3.33 ) and (3.37 ) and rearranging it

gives,

‖xk − (1I ⊗ Ip) · x?‖2
D

≤ ‖xk−1 − (1I ⊗ Ip) · x?‖2
D − 2αk ·

(
F (x̄k)− F (x?)

)
+ 2αk ·

( I∑
i=1

∥∥∥∇fi(xk
i )−∇gi(xk

i |xk−1
i )

∥∥∥ · ∥∥∥xk
i − x?

∥∥∥+ κ
√

I · ‖Πxk − xk‖
)

︸ ︷︷ ︸
Ξk

.

(3.39)

Let us denote the last term on the right side as Ξk, according to the inequalities (3.34 )

and (3.38 ), we can have that the sequence {Ξk}k∈N+ must be summable, i.e., ∑∞
k=1 Ξt <∞,

when the step-size αk satisfies the two conditions. Therefore, based on Lemma 1.4.4 in

Chapter 1 and the fact that F (x̄k)− F (x?) ≥ 0, it holds that,

k∑
t=1

αt
(

F (x̄t)− F (x?)
)

<∞, (3.40)

and there must exist a constant δ ≥ 0 such that,

lim
k→∞
‖xk − (1I ⊗ Ip) · x?‖2

D = δ. (3.41)

Now, recall again that the step size has ∑∞
t=1 αt = ∞, thus it follows from (3.40 ) that

lim infk→∞ F (x̄k) = F (x?) and further implies that there exists a subsequence {x̄kn}n∈N+

such that

lim
n→∞

F (x̄kn) = F (x?). (3.42)

As a consequence of the compactness of the feasible set X , there must exist a subsequence

{x̄kl}l∈N+ ⊆ {x̄kn}n∈N+ such that liml→∞ x̄kl = x?.
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Then, in order to prove the statement in the theorem, it only remains to show that δ = 0

in (3.41 ). Notice that

δ = lim inf
k→∞

‖xk − (1I ⊗ Ip) · x?‖2
D

= lim inf
k→∞

I∑
i=1

di · ‖xk
i − x?‖2

≤ lim inf
k→∞

I∑
i=1

2di ·
(
‖xk

i − x̄k‖2 + ‖x̄k − x?‖2
)

= lim inf
k→∞

I∑
i=1

2di · ‖x̄k − x?‖2 = 0.

(3.43)

Note that the second last equality is due to the the super-additivity property of the limit

inferior and the fact that limk→∞ ‖xk
i − x̄k‖ = 0 based on Lemma 3.3.2 and Lemma 1.4.1 in

Chapter 1 . Therefore, the positive constant δ must be zero and the proof is complete.

We shall remark that the above Theorem 3.3.1 states the convergence of the generalized

NetProx framework, i.e., regardless of the choice of the approximation function gi(· | ·) as

long as it satisfies Assumption 3.2.1 . In addition, under the condition of the step-sizes, i.e.,∑∞
k=0 αk =∞ and∑∞

k=0(αk)2 <∞, the convergence of algorithm is characterized by xk
i → x?,

which also implies the consensus of the solutions. Next, in order to provide the convergence

rate of the NetProx algorithm, we study three different choices of the approximation functions

separately: i) the original function; ii) the second order approximation; and iii) the linear

approximation. Note that here the convergence of algorithm is described in the ergodic sense

with respect to the weighted averaged state of all agents; see details in Theorem 3.3.2 , and

the step-size is specified as αk = 1/
√

k in the following analysis.

Theorem 3.3.2. Under Assumptions 1.4.2 , 1.4.3 , 1.4.4 , 1.4.8 and 3.2.1 , let {xk}k∈N+ be

the sequence generated by the algorithm (3.12 ) with step-size specified as αk = 1/
√

k, then

convergence rate can be given as F (x̃k) − F (x?) = O
(

1/
√

k
)

, where x̃k ∈ Rp is defined

as x̃k = (1/k) · ∑k
t=1 x̄t and x̄t is given by (3.30 ). In particular, considering the three

specific choices of the approximation function gi(· | ·), one can have that i) F (x̃k)−F (x?) ∼

O
(
γ0/
√

k
)

for the original function, i.e., gi(x |xk
i ) = fi(x); ii) F (x̃k)−F (x?) ∼ O

(
γ0/
√

k +
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γ1/
√

k
)

for the linear approximation; and iii) F (x̃k)−F (x?) ∼ O
(
γ0/
√

k + ln(k)/k
)

for the

second order approximation.

Proof. Let us recall the two inequalities (3.33 ) and (3.37 ), summing them together yields,

(
F (x̄k)− F (x?)

)
≤ 1

2αk

(
‖xk−1 − (1I ⊗ Ip) · x?‖2

D − ‖xk − (1I ⊗ Ip) · x?‖2
D

)
︸ ︷︷ ︸

T k
1

+ κ
√

I · ‖Πxk − xk‖︸ ︷︷ ︸
T k

2

+
I∑

i=1

∥∥∥∇fi(xk
i )−∇gi(xk

i |xk−1
i )

∥∥∥ · ∥∥∥xk
i − x?

∥∥∥︸ ︷︷ ︸
T k

3

.
(3.44)

Now, let us investigate the three terms on the right hand side of (3.44 ) separately. First

of all, the summation of T k
1 ’s is given by

k∑
t=1
T t

1 =
k∑

t=1

1
2αt

(
‖xt−1 − (1I ⊗ Ip) · x?‖2

D − ‖xt − (1I ⊗ Ip) · x?‖2
D

)

= 1
2 ·

k−1∑
t=1

( 1
αt+1 −

1
αt

)
· ‖xt − (1I ⊗ Ip) · x?‖2

D

+ 1
2α1 · ‖x

0 − (1I ⊗ Ip) · x?‖2
D −

1
2αk
· ‖xk − (1I ⊗ Ip) · x?‖2

D

≤ β

2 ·
( 1

α1 +
k−1∑
t=1

( 1
αt+1 −

1
αt

))
= β

2αk
= c3
√

k.

(3.45)

Note that, in the first inequality of (3.45 ), we apply the fact that there must exist some

constant β > 0 such that ‖xk − (1I ⊗ Ip) · x?‖2
D ≤ β, ∀k ∈ N+ due to the compactness of

the feasible set X ; and in the last equality, we let c3 = β/2 and use the fact αk = 1/
√

k.

Second, according to Lemma 3.3.2 , it holds that

k∑
t=1
T t

2 ≤ κ
√

I ·
k∑

t=1

(
c0(ρ0)t · ‖x0‖+ c0c1 ·

t−1∑
s=0

(ρ0)t−1−sαs
)

≤ κc0
√

I · ρ0

1− ρ0
· ‖x0‖+ c0c1κ

√
I ·

k∑
t=1

c′
4α

bt/2c

≤ c4 ·
k∑

t=1

1√
t
.

(3.46)
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Note that the second inequality is due to the following fact; see the same argument in the

proof of Lemma 1 in [97 ],

t−1∑
s=0

(ρ0)t−1−sαs = O(αbt/2c), (3.47)

and thus there must have some constant c′
4 > 0 such that ∑t−1

s=0(ρ0)t−1−sαs ≤ c′
4α

bt/2c; and in

the last inequality of (3.46 ), the existence of the constant c4 > 0 is guaranteed by αk = 1/
√

k.

Lastly, for the term T k
3 , we need to take into account the three different types of the

approximation functions. First, when the original fi(·) is adopted as the approximation

function, it is easy to verify that T k
3 = 0, ∀k ∈ N+ since ∇fi(xk

i ) = ∇gi(xk
i |xk−1

i ). Second,

when the linear approximation function is applied, i.e., ∇gi(xk
i |xk−1

i ) = ∇fi(xk−1
i ), then it

holds that
k∑

t=1
T t

3,L =
k∑

t=1

I∑
i=1

∥∥∥∇fi(xt
i)−∇fi(xt−1

i )
∥∥∥ · ∥∥∥xt

i − x?
∥∥∥

≤ β ·
k∑

t=1

I∑
i=1

∥∥∥∇fi(xt
i)−∇fi(xt−1

i )
∥∥∥

≤ βLf
max

√
I ·

k∑
t=1
‖xt − xt−1‖

≤ c5

k∑
t=1

1√
t
.

(3.48)

Note that here we add the subscript L to denote the term T k
3,L which corresponds to the

linear approximation function, and the last inequality can be obtained by following the proofs

of Lemma 3.3.3 ; see inequality (3.28 ), as well as the inequality (3.46 ). Likewise, when the

second-order approximation function is applied, we use the subscript Q to denote the term

T k
3,Q. Notice that, in this case, the gradient of the approximation function is given by

∇gi(xk
i |xk−1

i ) = ∇fi(xk−1
i ) +∇2fi(xk−1

i )(xk
i − xk−1

i ), (3.49)

and according to the Taylor’s Theorem, there must exist a constant c′
6 > 0 such that

∥∥∥∇fi(xk
i )−∇gi(xk

i |xk−1
i )

∥∥∥ ≤ c′
6 · ‖xk

i − xk−1
i ‖2, ∀i ∈ I. (3.50)
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Therefore, following the same path as the inequality (3.48 ), it holds that there exists a

constant c6 > 0 such that

k∑
t=1
T t

3,Q ≤ c′
6β ·

k∑
t=1
‖xt − xt−1‖2 ≤ c6

k∑
t=1

1
t
. (3.51)

Now, we are ready to prove the statement in the theorem. Due to the definition of the

state x̃k and also the convexity of the function F (·), it follows that

F (x̃k)− F (x?) ≤ 1
k
·

k∑
t=1

(
F (x̄t)− F (x?)

)

≤ 1
k
·

k∑
t=1

(
T t

1 + T t
2 + T t

3

)

≤ c3√
k

+ c4 ·
∑k

t=1 1/
√

t

k
+
∑k

t=1 T t
3

k

= O
(

γ0√
k

)
+
∑k

t=1 T t
3

k
,

(3.52)

where the last inequality is due to the fact that ∑k
t=1 1/

√
t = O(

√
k). Furthermore, when

the original function is considered, one can have that (1/k) ·∑k
t=1 T t

3 = 0; when the linear

approximation function is considered, T t
3 will be replaced by T t

3,L, and one can have that

(1/k) · ∑k
t=1 T t

3,L = O
(
γ1/
√

k
)
; at last, when the second order approximation function is

considered, T t
3 is replaced by T t

3,Q, and one can have that (1/k) ·∑k
t=1 T t

3,Q = O
(

ln(k)/k
)
.

Therefore, the proof is complete.

Based on the above Theorem 3.3.2 , it can be concluded that, although the overall con-

vergence of the NetProx algorithm is at the rate of O(1/
√

k) when the step-size is specified

as αk = 1/
√

k. yet different choices of the approximation functions will also result in slightly

difference with respect to the performance of the algorithm. In general, high order approx-

imation functions can help to accelerate the convergence. but at the price of more compu-

tational cost at each iteration. This is also why we claimed in Section 3.2 that our NetProx

algorithm offers flexibility to balance the computation and communication for solving the

distributed optimization problem.
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4. RESILIENT DISTRIBUTED MIN-MAX OPTIMIZATION

UNDER NETWORK COMMUNICATION ATTACKS

This chapter studies a special instance of the distributed optimization problem (P ) – the

distributed min-max optimization; in particular, we focus on the resilience of algorithm

against network communication attacks. More precisely, our algorithm builds on two crucial

components: i) a resilient convex combination scheme which helps eliminate the malicious

information injected by the unidentifiable communication attacks; and ii) a consensus-based

distributed algorithm which solves the min-max optimization over time-varying unbalanced

directed graphs. We show that, under reasonable assumptions, e.g., the attacked communi-

cation channels can be recovered within a certain time-window, the proposed algorithm con-

verges to the exact global optimal solution which involves every attacked/non-attacked agent

within the network. This result is primarily different from the existing relevant works whose

the objective only includes the local cost functions at the non-attacked agents.

4.1 Problem Statement

As distinct from the general distributed optimization Problem (P ) which has been con-

sidered in the previous chapters, in this chapter we focus on a special instance, i.e., the

distributed min-max optimization formulated as follows,

min
x∈X

G (x) := max
1≤i≤I

fi(x). (4.1)

Here, each fi(·) is also the local objective function which is assumed to satisfy the general

assumptions in Chapter 1 and supposed to be privately maintained by the corresponding

agent i ∈ I. However, the overall objective now is not to solve for the minimizer of the

summation of the local fi(·)’s, but to consider the maximum one among all agents. In fact,

such a min-max problem is closely related to the robust optimization [98 ]–[100 ], in which

the potential uncertainties are sampled via a set of scenarios and the worst case among

them is optimized to guaranteed a robust solution. More specifically, in order facilitate the

computational tasks, the distributed min-max optimization spreads all the sampled scenarios
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into a network of computing facilities, so that each node only needs to deal with a few

scenarios and thus the computational cost is significantly reduced compared to the centralized

frameworks. It is noteworthy that such distributed min-max problem has also attracted a

great amount of attention among researchers; see e.g., [101 ]–[104 ] and the references herein.

Despite of the great success of the distributed algorithms reviewed in Chapter 1 , we

shall emphasize that almost all of the existing methods require a reliable underlying network

which always maintains the perfect communication among different agents. Motivated by

the emerging studies of cyber-security issues in many real-world applications, see e.g., [105 ]–

[107 ], it would be a natural question to ask if the existing algorithms could be resilient

against the potential network attacks. Unfortunately, two recent papers [20 ], [21 ] essentially

provided the negative answers to this open question. While it is theoretically proved in [21 ]

that the distributed optimization in general is not solvable (see Theorem 1) if the network

attack is present, the authors in [20 ] show, by a simple counter-example, that any existing

distributed algorithm can be easily disrupted by a single attack. In the following, we adapt

the simple example in [20 ] under our distributed min-max problem setting.

Example 1: Without loss of any generality, let us suppose that the first agent (i = 1) is

under attack. Consider that the attacked agent is allowed to behave however it wishes, and

thus is capable of arbitrarily choosing a fake local function f̄1(·) : Rp → R such that, at the

specific point x̄ ∈ X , it has x̄ = arg minx∈X f̄1(x) and f̄1(x̄) ≥ max2≤i≤I minx∈X fi(x). Now,

one can easily verify that the specific point x̄ would be the global optimal solution when

the network is attacked. Furthermore, due to the arbitrariness of the fake function f̄1(·), it

can be concluded that the attack of this agent can manipulate the global minimizer to any

point x̄ in the set X and thus fake any existing distributed algorithm.

One should notice that an assumption was implicitly made to valid the example; that

is, once some agent i is attacked, it will never be recovered during the whole optimization

process. As a consequence of this assumption, it is clear that the global optimality has no

way to be obtained due to the disappearance of the indispensable local information fi(·).

Nevertheless, starting from a practical perspective, it is reasonable to believe that the real

information can be sent out during some time-slot even if the attacks are present within

the network. Motivated by this, in order to cope with the vulnerability resulted from the
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loss of local cost functions, we consider the following network attack scenario: the targets

of attack are changing with time, but every attacked agent can be recovered at least once

during some certain time-window. More precisely, let us denote the set of attacked agents

as Ak ⊂ I at each discrete time-step k ∈ N+, and thus the set Āk := I \ Ak contains

all non-attacked agents. It is assumed that each agent i has no knowledge about which

neighbors are under attack, but can access an integer ak
i ∈ N+ at each time-step k which

upper bounds the number of the attacked neighbors, i.e., |Ak
i | ≤ ak

i where Ak
i := Ni ∩ Ak.

Note that, in this chapter, we exclude the self-loop in the set of neighborhood Ni. To ensure

the recovery of each attacked agent within some time-window, we also need the following

condition regarding the set Āk.

Assumption 4.1.1. There must exist a positive integer T ∈ N+ such that

T +k−1⋃
t=k

Āt = I, ∀k ∈ N+. (4.2)

Furthermore, we shall remark that the convergence of any distributed algorithm can be

easily destroyed by a direct manipulation of the agents’ local states. For instance, even if the

algorithm has already driven all agents to the desired optimal solution at some certain time-

step k, i.e., xk
i = x?, ∀i ∈ I, then a simple change of any single agent’s local state xk

i would

immediately disrupt the convergence. On this basis, to prevent the direct manipulation of

agents’ local states, we will need the following additional assumption.

Assumption 4.1.2. It is assumed that the network attacks occur only in the communication

channels. That is, if the agent is attacked, then only the send-out information will be

manipulated, but the local information for itself is still reliable.

Note that the above Assumption 4.1.2 is not against the notion of byzantine attack;

it is only used to ensure that each agent can always trust the information maintained by

itself. In the following, we show, by another example, that the problem (P ) does not become

immediately trivial, even with both Assumptions 4.1.1 and 4.1.2 satisfied.

Example 2: Without loss of any generality, let us suppose that the first two agents are

under attack periodically, i.e., the agent i = 1 is attacked at every odd time-step and the
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agent i = 2 is attacked at every even time-step. It is easy to verify that Assumption 4.1.1 is

satisfied (with T = 2) under such an attack scenario. Consider that these two agents, when

attacked, choose their fake local functions f̄1(·) and f̄2(·) such that, at the specific point

x̄ ∈ X , it has i) x̄ = arg minx∈X f̄i(x) for i = 1, 2; ii) f̄1(x̄) ≥ maxi 6=1,i∈I minx∈X fi(x); and

iii) f̄2(x̄) ≥ maxi 6=2,i∈I minx∈X fi(x). Under these three conditions, it can be concluded that

any existing distributed algorithm will drive all the non-attacked agents to converge to the

fake optimal solution x̄ and thus is disabled by the periodical attacks.

Provided the vulnerability of the existing distributed algorithms as shown in the preceding

Example 1 and 2, both [21 ] and [20 ] compromise the global objective to some extent while

designing their solution methods. In particular, they completely give up the agents once

attacked and only take into account the cost functions of non-attacked agents. Moreover, the

optimization problems considered in both [21 ] and [20 ] merely focus on the scalar objective

functions. It is still unknown how to extend their results into the more general local cost

functions. On the contrary, the resilient algorithm presented in this chapter considers the

generic objective function as shown in the problem (4.1 ), and importantly, we care about

every single agent within the network no matter attacked or non-attacked. We show that,

under some reasonable (arguably necessary) assumptions; see details in the following sections,

our algorithm can converge to the exact global optimal solution x? ∈ arg minx∈X G(x) which

counts all local cost functions. This makes our work significantly different from the existing

ones.

4.2 Resilient Convex Combination

Let us denote each agent’s local state as xk
i ∈ Rp, and assume that all the local states

xk
i ’s are in general positions1

 , at each time-step k. The problem of interest in this section is

to design an appropriate mechanism which helps each agent i to achieve a resilient convex

combination of the information received from only the non-attacked neighbors. Note that

here the main challenge comes from the fact that each agent communicates with all the
1↑ A set of points in the space Rp is said to be in the general position if no hyperplane of dimension p− 1 or
less contains more than p points. Note that, as stated in [108 ], any randomly drawn set of p points will be
in general position with probability one.
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attacked and non-attacked neighbors and is usually unable to distinguish the malicious ones

from all the received information. Next, we present the scheme proposed in [109 ], which is

able to achieve the resilient convex combination without the need to identify the attacked

neighbors.

Suppose that each agent i knows the number of its neighbors di = |Ni|, as well as the

upper bound ak
i for the number of the attacked ones. It is straightforward to see that ak

i ≤ di,

for ∀i ∈ I and k ∈ N+. Then, the resilient convex combination scheme performs the following

three steps at each time k:

Step 1) Construct the following set Sk
i with each element being a subset of the information

received from the neighbors,

Sk
i :=

{
X | X ⊆ {xk

j , j ∈ Ni}, |X | = di − ak
i

}
. (4.3)

Note that there are totally
(

di

di−ak
i

)
possibilities of the subset X , i.e., |Sk

i | =
(

di

di−ak
i

)
, as a

consequence, we also denote the set as Sk
i =

{
X k

i (s), s = 1, 2, · · · , Sk
i

}
where Sk

i =
(

di

di−ak
i

)
.

Step 2) Generate the convex hull of the set X k
i (s) ∪ xk

i , denoted as H
(
X k

i (s) ∪ xk
i

)
, for

each s = 1, 2, · · · , Sk
i , and obtain their intersection Ck

i ⊂ Rp, i.e.,

Ck
i :=

Sk
i⋂

s=1
H
(
X k

i (s) ∪ xk
i

)
. (4.4)

Step 3) Choose an arbitrary point zk
i ∈ Ck

i as the resilient convex combination of the

information received from only the non-attacked neighbors.

It should be highlighted that the intersection set Ck
i must be non-empty, since it is always

true by definition that xk
i ∈ Ck

i ; in addition, the point xk
i also constitutes a trivial resilient

convex combination, since each agent i can always trust its local state (see Assumption 4.1.2 ).

Nevertheless, in the more general case, besides the trivial point xk
i , the set Ck

i should also

contain other points, as shown in Fig. 4.1 . In this example, the first agent (i = 1) receives

information from all its neighbors, and knows that there is at most one of them being under

attack. The intersection C1 of all generated convex hulls is shown as the red line. An arbitrary

point in C1 can be always viewed as a convex combination of the information received from

70



x2

<latexit sha1_base64="2FhPvcfM8xbw8Kb/oWKmaKxlcR0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSlogsXBTcuK9hWaEKZTCft0MkkzEMsob/hxoUibv0Zd/6NkzYLbT0wcDjnXu6ZE6acKe26305pbX1jc6u8XdnZ3ds/qB4edVViJKEdkvBEPoRYUc4E7WimOX1IJcVxyGkvnNzkfu+RSsUSca+nKQ1iPBIsYgRrK/l+jPU4jLKn2aAxqNbcujsHWiVeQWpQoD2ofvnDhJiYCk04VqrvuakOMiw1I5zOKr5RNMVkgke0b6nAMVVBNs88Q2dWGaIokfYJjebq740Mx0pN49BO5hnVspeL/3l9o6OrIGMiNZoKsjgUGY50gvIC0JBJSjSfWoKJZDYrImMsMdG2pootwVv+8irpNupes35x16y1ros6ynACp3AOHlxCC26hDR0gkMIzvMKbY5wX5935WIyWnGLnGP7A+fwBLK6Rww==</latexit>

x3

<latexit sha1_base64="mcEXVdofGkHu7eZqrkeDjbokvRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQrunBRcOOygn1AE8pkOmmHTiZhHmIJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cMOVMadf9dlZW19Y3Nktb5e2d3b39ysFhWyVGEtoiCU9kN8SKciZoSzPNaTeVFMchp51wfJv7nUcqFUvEg56kNIjxULCIEayt5Psx1qMwyp6m/Yt+perW3BnQMvEKUoUCzX7lyx8kxMRUaMKxUj3PTXWQYakZ4XRa9o2iKSZjPKQ9SwWOqQqyWeYpOrXKAEWJtE9oNFN/b2Q4VmoSh3Yyz6gWvVz8z+sZHV0HGROp0VSQ+aHIcKQTlBeABkxSovnEEkwks1kRGWGJibY1lW0J3uKXl0n7vObVa5f39WrjpqijBMdwAmfgwRU04A6a0AICKTzDK7w5xnlx3p2P+eiKU+wcwR84nz8uMpHE</latexit>

x4

<latexit sha1_base64="RzZZCvL/WqdPYnUChUY0hycdKSs=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakogsXBTcuK9gHdIaSSTNtaCYzJBmxDP0NNy4UcevPuPNvzLSz0NYDgcM593JPTpAIro3jfKPS2vrG5lZ5u7Kzu7d/UD086ug4VZS1aSxi1QuIZoJL1jbcCNZLFCNRIFg3mNzmfveRKc1j+WCmCfMjMpI85JQYK3leRMw4CLOn2aAxqNacujMHXiVuQWpQoDWofnnDmKYRk4YKonXfdRLjZ0QZTgWbVbxUs4TQCRmxvqWSREz72TzzDJ9ZZYjDWNknDZ6rvzcyEmk9jQI7mWfUy14u/uf1UxNe+xmXSWqYpItDYSqwiXFeAB5yxagRU0sIVdxmxXRMFKHG1lSxJbjLX14lnYu626hf3jdqzZuijjKcwCmcgwtX0IQ7aEEbKCTwDK/whlL0gt7Rx2K0hIqdY/gD9PkDL7aRxQ==</latexit>

x1

<latexit sha1_base64="aKh/JPQKPgC5b3CwCueo9tiG/N0=">AAACB3icbVC7SgNBFJ2Nrxhfq5aCLAbBKuxKRAuLgI1lBPOAZAmzk7vJkNkHM3clYdnOxl+xsVDE1l+w82+cTVJo4oGBwzn3NceLBVdo299GYWV1bX2juFna2t7Z3TP3D5oqSiSDBotEJNseVSB4CA3kKKAdS6CBJ6DljW5yv/UAUvEovMdJDG5AByH3OaOopZ553EUY43RO6okEsrQbUBx6fjrOek7WM8t2xZ7CWibOnJTJHPWe+dXtRywJIEQmqFIdx47RTalEzgRkpW6iIKZsRAfQ0TSkASg3ne7PrFOt9C0/kvqFaE3V3x0pDZSaBJ6uzI9Ui14u/ud1EvSv3JSHcYIQstkiPxEWRlYeitXnEhiKiSaUSa5vtdiQSspQR1fSITiLX14mzfOKU61c3FXLtet5HEVyRE7IGXHIJamRW1InDcLII3kmr+TNeDJejHfjY1ZaMOY9h+QPjM8fwdmafw==</latexit>

C1

<latexit sha1_base64="mAkPBT0j7BCvb8oS+PKm2/nBuQM=">AAACB3icbVC7SgNBFJ2NrxhfUUtBFoNgFXYlooVFII1lBPOAJITZ2bvJkNkHM3fFsGxn46/YWChi6y/Y+TdONlto4oGBwzn3NceJBFdoWd9GYWV1bX2juFna2t7Z3SvvH7RVGEsGLRaKUHYdqkDwAFrIUUA3kkB9R0DHmTRmfucepOJhcIfTCAY+HQXc44yilobl4z7CA2ZzEglumvR9imNGRdJIh3Y6LFesqpXBXCZ2TiokR3NY/uq7IYt9CJAJqlTPtiIcJFQiZwLSUj9WEFE2oSPoaRpQH9Qgyfan5qlWXNMLpX4Bmpn6uyOhvlJT39GVsyvVojcT//N6MXpXg4QHUYwQsPkiLxYmhuYsFNPlEhiKqSaUSa5vNdmYSspQR1fSIdiLX14m7fOqXate3NYq9es8jiI5IifkjNjkktTJDWmSFmHkkTyTV/JmPBkvxrvxMS8tGHnPIfkD4/MHaP6aRQ==</latexit>

Intersection

Figure 4.1. Illustration of the resilient convex combination

only the non-attacked agents, no matter which one is under attack. More details will be

discussed in Remark 4.2.2 and also in the next section.

Now, based on the above Steps 1) – 3) as well as the results in [109 ] (see Lemmas 1 – 3),

it is known that an arbitrary point zk
i from the set Ck

i is a valid resilient convex combination,

i.e., combining the information received from only the non-attacked neighbors. Therefore,

let us express the point zk
i in the following convex combination form,

zk
i =

∑
j∈N +

i \Ak
i

βk
ijxk

j (4.5)

where N+
i := Ni ∪ {i} and the coefficients βk

ij’s have βk
ij ≥ 0 and ∑

j∈N +
i \Ak

i
βk

ij = 1. In

this sense, the selection of the specific point zk
i from the set Ck

i is equivalent to deciding

the convex combination coefficients βk
ij’s. In fact, such a group of coefficients βk

ij’s can be

implicitly determined by solving the following linear programming problem,

max
z, β(s), κ

κ (4.6a)

s. t. β(s)>x̂k
i (s) = z, (4.6b)

1>β(s) = 1, (4.6c)

β(s)− κ · 1 ≥ 0, ∀s = 1, 2, · · · , Sk
i . (4.6d)

Note that here β(s) ∈ Rdi−ak
i +1 is a column vector and the corresponding x̂k

i (s) ∈ Rp(di−ak
i +1)

concatenates all states in the set X k
i (s) ∪ xk

i . By convention, we let xk
i always be the first
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component in each x̂k
i (s). A few remarks should be added regarding the linear programming

problem (4.6 ).

Remark 4.2.1. Due to the fact that xk
i is always in the set Ck

i , it is straightforward to see

that the optimization problem (4.6 ) must be feasible, as a trivial feasible solution is z = xk
i ,

κ = 0 and β(s) = e1, ∀s = 1, 2, · · · , Sk
i where e1 ∈ Rdi−ak

i +1 is the first column of the

identity matrix. In addition, consider that the number of attacked neighbors of the i-th agent

is upper bounded by the integer ak
i , thus there exists at least one subset X k

i (s?) ∈ Sk
i or

equivalently x̂k
i (s?), which contains only the states from the non-attacked neighbors. As a

consequence, the corresponding group of coefficients β(s?) can be used to express the resilient

convex combination in the form of (4.5 ).

Remark 4.2.2. In the more desired cases, it is expected that the resilient convex combination

coefficients β(s?) should contain as many non-zero components as possible, so that the agent

can receive more information from the non-attacked neighbors. This is also the reason why

we would like to maximize the minimum component of β(s) for all s = 1, 2, · · · , Sk
i in the

optimization problem (4.6 ). Most ideally, the obtained optimal solution κ? should be strictly

greater than zero. As such, it is guaranteed that β(s?) > 0 and thus the i-th agent truly

integrates the information from di−ak
i non-attacked neighbors. We postpone the discussion of

the conditions which ensures κ? > 0 to the next section; see Proposition 4.3.1 in Section 4.3.2 .

To sum up, let us represent the resilient convex combination scheme for each individual

agent i as an abstract operator Ri(·) : ∏j∈Ni
Rp → Rp, and outline the operations as the

following Algorithm 4 .

Algorithm 4: Resilient Convex Combination Ri(·)

Data: Require the number of the neighbors di and upper bound of the number of
attacked neighbors ak

i .
(S.1) Receive the states xk

j from all attacked and non-attacked neighbors j ∈ Ni;
(S.2) Generate the subset X k

i (s) ⊆ {xk
j , j ∈ Ni} such that |X k

i (s)| = di − ak
i ;

(S.3) Solve the linear program (4.6 ) and output the obtained solution zk
i .
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4.3 Resilient Distributed Optimization

Equipped with the resilient convex combination operatorRi(·), in this section, we develop

our distributed solution method to solve the original problem (4.1 ). Before that, let us first

introduce our second building block which is originally proposed in [110 ] – consensus-based

distributed optimization algorithm.

4.3.1 Distributed Optimization over Time-Varying Digraphs

Let us first reformulate the original distributed min-max optimization problem (4.1 ).

By introducing an auxiliary scalar variable t ∈ R, it is straightforward to see that the

problem (4.1 ) is equivalent to the following epigraph form,

min
x, t

t (4.7a)

s. t. fi(x) ≤ t, ∀i ∈ I, (4.7b)

x ∈ X . (4.7c)

Note that the name “epigraph form” comes from the fact that the feasible set defined

by (4.7b ) is essentially the epigraph of the local cost function fi(·). Particularly, let us

denote the epigraph as the set Fi ⊆ Rp+1 where

Fi :=
{
(x, t) | fi(x) ≤ t

}
. (4.8)

In addition, we bundle the two decision variables x and t as a new one θ = [x>, t]> ∈ Rp+1.

On this basis, the epigraph form (4.7 ) of the min-max problem can be further reformulated

as the following compact form

min
θ

e>
p+1θ (4.9a)

s. t. θ ∈ (∩i∈IFi) ∩ (X × R), (4.9b)
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where ep+1 ∈ Rp+1 is the (p + 1)-th column of the identity matrix. Now, in order to solve

the problem (4.9 ), we let each agent i maintain a local state θk
i ∈ Rp+1 at each time-step

k ∈ N+ and update it according to the following iterations,

φk+1
i =

∑
j∈N +

i

wk
ijθ

k
j ; (4.10a)

ζk+1
i = φk+1

i − αk · ep+1; (4.10b)

θk+1
i = ΠX ×R

(
ζk+1

i − γk

[
hi(ζk+1

i )
]

+

‖∇hi(ζk+1
i )‖2∇hi(ζk+1

i )
)

. (4.10c)

In the above iteration, the function hi(·) : Rp+1 → R is defined as hi(θ) := fi(x) − t; wk
ij’s

correspond to the non-negative weights when combining the information from the neighbors;

αk > 0 and γk > 0 are two types of step-sizes; the operator [ · ]+ : R → R+ is defined as

[x]+ := max{x, 0}; and ΠX ×R(·) : Rp+1 → X × R denotes the Euclidean projection on the

set X × R. Note that the gradient ∇hi always has ‖∇hi(θ)‖ ≥ 1, ∀θ ∈ Rp+1, therefore the

division in step (4.10b ) is well-defined.

Remark 4.3.1. The above iteration (4.10 ) can be also interpreted from the perspective of the

classical distributed projected gradient descent. In fact, while noting that ep+1 is the gradient

of the objective function in (4.9a ), the step (4.10a ) together with (4.10b ) exactly perform the

distributed gradient descent. In addition, to further cope with the constraints in (4.9b ), the

step (4.10c ) takes two phases of projections: i) use the Polyak’s projection to move the point

ζk+1
i towards the epigraph Fi; and ii) use the Euclidean projection ΠX ×R(·) to ensure that the

obtained point θk+1
i is in the set X × R. As already highlighted by the authors in [101 ] (see

Remark 2 in [101 ]), one can also adopt the Euclidean projection to deal with the constraint

induced by the epigraph Fi, and thus reduce the iteration (4.10 ) into the standard distributed

projected gradient descent algorithm. However, compared to the Euclidean projection, the

Polyak’s projection involves less computational cost at each iteration of the algorithm.

Under some of the assumptions introduced in Chapter 1 , the convergence result of the

algorithm (4.10 ) is stated as the following theorem.
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Theorem 4.3.1. Under Assumptions 1.4.2 , 1.4.3 and 1.4.4 , suppose that the step-sizes αk

and γk are satisfied with i) ∑∞
k αk =∞; ii) ∑∞

k (αk)2 <∞; and iii) 0 < γk < 2, and let the

time-varying weight matrix W k = [wk
ij]Ii,j=1 be row-stochastic; see Assumption 1.4.10 and the

underlying time-varying directed graph satisfy Assumption 1.4.6 , then the sequence {θk
i }k∈N+

generated by (4.10 ) converges to the exact optimal solution θ? = [x?>, t?]> ∈ Rp+1 where

x? ∈ arg minx∈X G(x) and t? = maxi∈I fi(x?), i.e.,

lim
k→∞

‖θk
i − θ?‖ = 0, ∀i ∈ I. (4.11)

Proof. The proof can be completed by following the similar path to that of Theorem 1

in [101 ], while ignoring the stochasticity in the considered problem. Therefore, we here omit

the details.

We shall highlight that, besides the above Assumptions stated in Theorem 4.3.1 , another

implicit condition is also crucial to ensure the convergence result; that is the perfection of

the communications among all agents within the network. However, as shown in the two

previous examples, the desired convergence can be easily disrupted by the potential network

attacks. In order to fix such an issue, we next further enhance the algorithm (4.10 ) by

integrating the resilient convex combination operator R(·).

4.3.2 Integration with the Resilient Convex Combination

Let us recall that, during the iteration (4.10 ), the only process involved with communi-

cations is at the step (4.10a ), in which each agent needs to combine (via weighted averaging)

the information received from all neighbors. Therefore, to deal with the potential communi-

cation disruptions, a natural idea here is to replace the pure weighted averaging in (4.10a )

by the resilient convex combination operator R(·) introduced in Section 4.2 . As such, we

present our resilient solution method as the following Algorithm 5 for solving the distributed

min-max optimization problem.

To ensure the convergence of Algorithm 5 , a crucial part here is to guarantee that the

conditions stated in Theorem 4.3.1 still hold while the weighted averaging has been re-
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placed by the resilient convex combination. More precisely, one needs to make sure that

the underlying time-varying directed graphs induced by R(·) are satisfied with the B-strong

connectivity condition; see Assumption 1.4.6 . Towards this end, we will need the following

result regarding the operator R(·).

Algorithm 5: Resilient Distributed Min-Max Optimization Algorithm

Data: Each agent requires the number of the neighbors di and the upper bound of
the number of attacked neighbors ak

i . Set the step-sizes αk and γk, and let
k = 0.

while the termination criteria is NOT satisfied do
Each agent i ∈ I simultaneously does
(S.1) Receive the states θk

j from all attacked and non-attacked neighbors,
perform the resilient convex combination, and obtain

φk+1
i = Ri(θk

j∈N +
i

); (4.12)

(S.2) Carry out the gradient descent step (4.10b ), and obtain the intermediate
result ζk+1

i ;
(S.3) Update the state θk+1

i via (4.10c ), based on the obtained ζk+1
i ;

(S.4) Let k → k + 1, and continue.
end

Proposition 4.3.1. Suppose that the upper bound of the number of attacked neighbors has

ak
i ≤ b(di + 1)/(p + 2)c − 1 where b·c is the floor function, then the optimal solution of the

linear program (4.6 ) within the operator R(·) must have κ? > 0.

Proof. This proof is primarily based on the Reay’s relaxed Tverberg conjecture [111 ], which

is stated as follows: a set of m points in general position in the Euclidean space Rn is (r, k)-

divisible if m ≥ (n + 1)(r − 1) + k + 1. Note that the (r, k)-divisibility here means the set

of points can be partitioned into r disjoint subsets such that the intersection of the convex

hulls of these r subsets is at least k-dimension. In this proof, we focus on the special case

where k = n, and in this case, the Reay’s relaxed Tverberg conjecture has been successfully

proved when 2 ≤ n ≤ 8 [112 ].
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Now, let us denote m = di + 1, n = p + 1 and r = ak
i + 1. Based on the above Reay’s

conjecture, if the condition in Proposition 4.3.1 , i.e., di + 1 ≥ (p + 2)(ak
i + 1), is satisfied,

then the set of di + 1 points {θk
j }j∈N +

i
in the space Rp+1 is (ak

i + 1, p + 1)-divisible. In other

words, there exists a partition of ak
i + 1 subsets, denoted as Pr, r = 1, 2, · · · , ak

i + 1 where

∪ak
i +1

r=1 Pr = {θk
j }j∈N +

i
and Pr ∩ Pr′ = ∅ when r 6= r′, such that the intersection set T of the

corresponding convex hulls is (p + 1)-dimensional, i.e.,

T :=
ak

i +1⋂
r=1
H(Pr). (4.13)

Next, we show that another intersection of convex hulls Ck
i which is generated by our

resilient convex combination operator R(·) satisfies with the condition T ⊆ Ck
i , and thus

is also (p + 1)-dimensional when di + 1 ≥ (p + 2)(ak
i + 1). Let us recall that the set Ck

i is

expressed as

Ck
i =

Sk
i⋂

s=1
H
(
Qk

i (s) ∪ θk
i

)
, (4.14)

where each Qk
i (s) is a subset of {θk

j }j∈Ni
satisfying that |Qk

i (s)| = di − ak
i with s =

1, 2, · · · ,Sk
i . To prove T ⊆ Ck

i , let us first show that, for each of the subsets Qk
i (s), one of

Pr’s in the partition must be its subset, i.e., for ∀s = 1, 2, · · · , Sk
i there exists 1 ≤ rs ≤ ak

i +1

such that Prs ⊆ Qk
i (s). Now, we prove it by contradiction. Suppose that one can have an

index 1 ≤ s̄ ≤ Sk
i such that Pr * Qk

i (s̄) for ∀r = 1, 2, · · · , ak
i + 1. Then, there exists at least

one element in each subset Pr which is not contained in the set Qk
i (s̄). Further, consider

that all Pr’s constitute the partition of {θk
j }j∈Ni

, thus there are at least ak
i + 1 elements in

the set {θk
j }j∈Ni

which are not contained in Qk
i (s̄). Consequently, the number of elements

in Qk
i (s̄) must have |Qk

i (s̄)| ≤ di − ak
i − 1, which contradicts the definition of the set Qk

i (s̄).

Taking advantages of the above conclusion, it follows that ∀s = 1, 2, · · · , Sk
i ,

ak
i +1⋂
r=1
H(Pr) ⊆ H(Prs) ⊆ H

(
Qk

i (s) ∪ θk
i

)
. (4.15)
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Therefore, we can have

T =
ak

i +1⋂
r=1
H(Pr) ⊆

Sk
i⋂

s=1
H
(
Qk

i (s) ∪ θk
i

)
= Ck

i . (4.16)

Now, based on the fact that Ck
i is (p + 1)-dimensional, it can be shown that any point θ̃

in the interior part of Ck
i , i.e., θ̃ ∈ int(Ck

i ), can be expressed as

θ̃ =
∑

j∈Ik
i (s)

βk
ij(s)θk

j , (4.17)

where the index set Ik
i (s) must have i ∈ Ik

i (s) ⊂ N+
i and |Ik

i (s)| = di − ak
i + 1; and the

weights βk
ij(s)’s must have ∑j∈Ik

i (s) βk
ij(s) = 1 and βk

ij(s) > 0,∀s = 1, 2, · · · , Sk
i . In fact, for

each s = 1, 2, · · · , Sk
i , let us denote the pure average of the points in Qk

i (s) ∪ θk
i as

θ := 1
|Ik

i (s)| ·
∑

j∈Ik
i (s)

θk
j . (4.18)

Consider that the point θ̃ is in the interior part of Ck
i and thus is also in the interior part of

the set H
(
Qk

i (s) ∪ θk
i

)
, then there must exist a small constant ε > 0 such that

θ̂ := (1 + ε) · θ̃ − ε · θ ∈ int
(
H
(
Qk

i (s) ∪ θk
i

))
. (4.19)

On this basis, we can represent the interior point θ̃ as

θ̃ = 1
1 + ε

· θ̂ + ε

1 + ε
· θ

= 1
1 + ε

· θ̂ + ε

|Ik
i (s)|(1 + ε) ·

∑
j∈Ik

i (s)
θk

j .
(4.20)

Note that θ̂ can be also expressed as the convex combination of the points in Qk
i (s) ∪ θk

i ,

therefore (4.17 ) must be true with ∑j∈Ik
i (s) βk

ij(s) = 1 and βk
ij(s) > 0, ∀s = 1, 2, · · · , Sk

i .

As a result of the above result, it is straightforward to verify that any interior point

of the generated set Ck
i be expressed as the non-zero convex combination of the points in
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Qk
i (s) ∪ θk

i , ∀s = 1, 2, · · · , Sk
i . Therefore, to maximize the minimum weight βk

ij(s) as shown

in the linear program (4.6 ), the optimal solution must have κ? > 0. The proof is completed.

Based on the above Proposition 4.3.1 , a direct corollary can be stated as follows.

Corollary 4.3.1. Suppose that ak
i ≤ b(di + 1)/(p + 2)c − 1 is satisfied with each agent i

at each time-step k, then the output of the resilient convex combination can be equivalently

expressed as

φk+1
i =

∑
j∈N +

i \Ak
i

µk
ijθ

k
j , (4.21)

where the weights µk
ij’s must have ∑j∈N +

i \Ak
i

µk
ij = 1 and µk

ij > 0, ∀j ∈ N+
i \ Ak

i .

Proof. According to the procedure of the operator R(·); see Algorithm 4 , its output can be

expressed as

φk+1
i =

∑
j∈Ik

i (s)
βk

ij(s)θk
j , (4.22)

where the index set Ik
i (s) must have i ∈ Ik

i (s) ⊂ N+
i and |Ik

i (s)| = di − ak
i + 1. Clearly,

there are totally Sk
i =

(
di

di−ak
i

)
possibilities of the set Ik

i (s), therefore we let s = 1, 2, · · · , Sk
i

to cover all the possibilities. Based on the result in Proposition 4.3.1 , the optimal solution

κ? > 0 simply implies that

βk
ij(s) > 0, ∀j ∈ Ik

i (s) and s = 1, 2, · · · , Sk
i . (4.23)

Further, we consider some special cases of the possibility s in which the set Ik
i (s) only

contains the indices of non-attacked neighbors, i.e., Ik
i (s) ∩ Ak

i = ∅. Note that, since the

number of attacked neighbors is upper bounded by ak
i , such special cases of s must exist. In

addition, let us denote the set of all special cases as χk
i ⊂ {1, 2, · · ·Sk

i }, then it holds that

⋃
s∈χk

i

Ik
i (s) = N+

i \ Ak
i . (4.24)
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Notice that the expression (4.22 ) holds for ∀s = 1, 2, · · · , Sk
i and thus for ∀s ∈ χk

i . Therefore,

the output of the operator R(·) can be further represented as

φk+1
i = 1

|χk
i |
·
∑

s∈χk
i

∑
j∈Ik

i (s)
βk

ij(s)θk
j =

∑
j∈N +

i \Ak
i

µk
ijθ

k
j , (4.25)

where µk
ij = 1/|χk

i | ·
∑

s∈χk
i,j

βk
ij(s) with the set χk

i,j being

χk
i,j := {s | s ∈ χk

i , j ∈ Ik
i (s)}. (4.26)

Now, by (4.24 ), it is easy to see that ∀j ∈ N+
i \ Ak

i , χk
i,j 6= ∅, and thus µk

ij > 0. The proof is

completed.

We shall emphasize that the above Corollary 4.3.1 essentially ensures three key properties

of the step (S.2) in Algorithm 5 : i) without identifying the attacked neighbors, each agent i

can achieve the result φk+1
i which integrates the information from only the non-attacked

neighbors; ii) by ensuring µk
ij > 0, it is guaranteed that the agent truly integrates the

information from the neighbors; and iii) the row-stochasticity condition of the underlying

weight matrices is also satisfied by ∑j∈N +
i \Ak

i
µk

ij = 1. Taking advantages of Corollary 4.3.1 

together with the previous assumptions, we are now ready to present the convergence of our

resilient distributed min-max algorithm.

Theorem 4.3.2. Under Assumptions 1.4.2 , 1.4.3 and 1.4.4 as well as the conditions in

Corollary 4.3.1 , suppose that the step-sizes αk and γk have i) ∑∞
k αk =∞; ii) ∑∞

k (αk)2 <∞;

and iii) 0 < γk < 2, and let the original time-invariant directed graph G be satisfied with

Assumption 1.4.7 , then the sequence {θk
i }k∈N+ generated by Algorithm 5 converges to the

exact optimal solution θ?, i.e.,

lim
k→∞

‖θk
i − θ?‖ = 0, ∀i ∈ I. (4.27)

Proof. Let us represent the underlying weight matrices as Mk := [µk
ij]Ni,j=1, which is induced

by the resilient convex combination operator R(·); see (4.21 ). Note that we set µk
ij = 0 if

j /∈ N+
i \Ak

i . Then, according to Corollary 4.3.1 , it is ensured that Mk is row-stochastic for
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∀k ∈ N+. In addition, if we denote Ḡk = (N , Ēk) the time-varying digraph which is defined

by the weight matrix Mk, then the set of directed edges Ēk can be represented as

Ēk =
{
(i, j) | (i, j) ∈ E , j /∈ Ak, i, j ∈ I

}
, (4.28)

where E is the set of edges of the original time-invariant, directed graph G.

Now, based on Assumption 4.1.1 , there exists an integer T > 0 such that ∩T +k−1
t=k At = ∅,

therefore, it is straightforward to see that ∪T +k−1
t=k E t = E . Since it is assumed in Assump-

tion 1.4.7 that the original digraph G is strongly-connected, hence the time-varying digraphs

Ḡk must be T -strongly connected, i.e., the joint digraph ∪T +k−1
t=k Ḡt = (N ,∪T +k−1

t=k Ē t) is

strongly-connected.

As a consequence, we can conclude that the assumption in Theorem 4.3.1 holds with re-

spect to the underlying time-varying digraphs Ḡk’s. Based on Theorem 4.3.1 , the convergence

result of Algorithm 5 is proved.
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5. A DISTRIBUTED PROGRESSIVE HEDGING METHOD

FOR SOLVING TWO-STAGE STOCHASTIC PROGRAMS

This chapter adapts the well-known PH method under a peer-to-peer multi-agent network for

solving two-stage stochastic programs efficiently. Similar to the existing parallel PH method,

our distributed PH (DistPH) algorithm assigns each agent to take charge of the computing

tasks covering one or few scenarios, and thus it distributes the overall computational burden

of solving the stochastic program over the entire network. However, unlike the parallel PH

method, the DistPH algorithm no longer needs a master node to realize central coordination,

and thus it distributes its communications workload over the network as well. In this chapter,

we prove the exact convergence of the DistPH algorithm for two-stage stochastic programs

with continuous variables subject to convex constraints. In addition, we investigate several

computational issues for the mixed-integer cases to improve the adaptation efficiency.

5.1 Problem Statement

Two-stage (or multi-stage) stochastic programming provides a promising framework for

solving real-world planning problems where decisions are made in stages under uncertainty.

A standard formulation of two-stage stochastic program reads

min
x∈X

c>x + Q(x), (5.1)

where the function Q(x) is typically defined as the following expectation form,

Q(x) := Eξ

[
min

y∈Yξ(x)
{q>

ξ y}
]
. (5.2)

In the formulation, x ∈ Rp1 and y ∈ Rp2 denote the first-stage and second-stage decision

variables respectively, and c ∈ Rp1 is a fixed and known parameter vector corresponding to

the first stage. The uncertainty, coming into the second stage, is represented by a random

variable ξ. The vector qξ ∈ Rp2 is an uncertain parameter vector dependent on ξ, and

function Q(·) : Rp2 → R computes the expectation of the second-stage minimizer with respect
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to ξ. In the formulation, the constraints, defined by feasible sets X ⊆ Rp1 and Yξ(x) ⊆ Rp2 ,

are typically composed of a group of linear equalities and/or inequalities, possibly with some

integer or binary restrictions. Note that the problem is known as stochastic mixed-integer

program (SMIP), when integerality restriction appears in the first and/or second stage.

To deal with the two-stage stochastic program (5.1 )–(5.2 ), a widely used approach builds

on the idea of representing the uncertainty with a finite number of scenarios. That is, the

random variable ξ is assumed to be taken from a discrete distribution with finite support, i.e.,

{ξ1, ξ2, · · · , ξI}, where associated with each ξi, i ∈ I = {1, 2, · · · , I}, is the scenario-based

parameter qi ∈ Rp2 , feasible set Yi(x) ⊆ Rp2 , and corresponding probability pi satisfying with∑I
i=1 pi = 1. By doing so, the original problem (5.1 )–(5.2 ) can be equivalently reformulated

as the following extensive form,

min
x, yi

c>x +
I∑

i=1
piq>

i yi,

s. t. (x, yi) ∈ Ki, ∀i ∈ I,

(5.3)

where we combine the feasible sets X and Yi for the two stages, and denote it with a compact

form Ki, i.e. Ki :=
{
(x, yi)|x ∈ X , yi ∈ Yi(x)

}
.

For scenario-based reformulation (5.3 ), the PH method is commonly considered as an ef-

ficient solution method. It is proved to achieve exact convergence when the first- and second-

stage decision variables in (3) are both continuous and subject to convex constraints [78 ].

Although there is no theoretical guarantee for the convergence when it comes to the mixed-

integer cases, yet the PH method has been successfully applied as a heuristic approach which

can find high-quality solutions for solving SMIPs [113 ]. Several key issues, such as the choice

of penalty parameter and termination criterion, are investigated in [114 ] when applying the

PH method to the mixed-integer cases. Moreover, it is shown in [115 ] that a lower bound

can be computed in any iteration of the PH method, which allows to assess the quality of

iterative solutions to a SMIP.

Another benefit of the PH method is often attributed to its straightforward paralleliza-

tion [83 ], [84 ]. That is, the PH method allows to deal with mutually independent scenario-

specific subproblems separately; see details in Section 5.2 , and a number of processors can
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be utilized to execute the algorithm in parallel. As a result, the computational cost is spread

over all processors and thus reduced for each single processor. Further, to realize such par-

allelization, a master node is typically designated to provide such coordination, and a group

of worker nodes are assigned to solve separate subproblems. According to this configura-

tion, the PySP package [116 ], as a robust off-the-shelf solver, has implemented the parallel

execution of the PH method. Significant parallel efficiency can be achieved, especially when

the scenario-specific subproblems are difficult to solve [117 ]. Parallel computing has been

broadly investigated for many other approaches to solving stochastic programs. For exam-

ple, a parallel sub-gradient method for computing Lagrangian duals is presented in [118 ],

together with its asynchronous variant. Another parallel sub-gradient based method is pro-

posed in [119 ], particularly for solving a stochastic unit commitment problem. A parallel

cutting-plane method is studied in [120 ], which utilizes the sub-gradient information to build

cutting planes at each iteration.

It is worthy noting that all these methods are developed by assuming a master-worker

architecture. To address the computational challenges arising in a master-worker architecture

and follow the recent attraction to peer computing algorithm design, we adapt the parallel

PH method under a peer-to-peer multi-agent computing network, where there is no presence

of a master node. Our motivations are two-fold. First, under a master-worker architecture,

since the master node is expected to provide coordination among all worker nodes, the

communication burden on it, e.g., communication bandwidth required, could be extremely

heavy. It is even prohibitive in many practical applications to build such a powerful master

node that can maintain communication channels with all other nodes within the network.

Second, with the existence of the master node, cyber-security issue may also arise as any

failure on it can lead to the collapse of entire master-worker architecture. Therefore, we

aim to develop our distributed solution method under a peer-to-peer network, which solely

consists of peer computing agents (nodes) and each of them is directly connected with a

subset of nodes as its neighbors.

By enabling each agent to solve the corresponding scenario-specific subproblem and ex-

changing information with its neighbors, we introduce a distributed update scheme for the

PH method which merely relies on peer communications between neighboring agents. It is
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emphasized that, in such a distributed framework, no agent serves as the master node but

each one plays an equal role in contributing to the computation. As a consequence, we expect

that aforementioned communication burden for the master node is spread over the network

and separate communications can be executed simultaneously among multiple peer agents.

Furthermore, considering that the distributed framework is more compatible with general

connected networks, it would be more flexible and applicable in real-world applications. We

should also highlight that the distributed framework exhibits more robustness against the

potential security attacks, as it can be still functional even if one or few agents fail. Note

that such a peer-to-peer computing network has been widely adopted in solving determinis-

tic optimization problems; see the detailed literature review in Chapter 1 . However, to the

best of our knowledge, we are not aware of any work in the existing literature that utilizes a

peer-to-peer network to solve (two-stage) stochastic programs. Finally, we remark that the

master-worker architecture can be regarded as a special case of the peer-to-peer network,

since the central node can serve as a master when the considered network has a star topology.

5.2 The Basic PH Method

In this section, we introduce the basic PH method [78 ], and see how far it is from

being adapted under a peer-to-peer computing network. Recall that our goal is to solve the

scenario-based formulation (5.3 ). Such a formulation has a special structure that can be

exploited algorithmically by decomposition methods [79 ], [120 ]. Suppose that there are I

scenarios in total. To leverage the decomposable structure, the first-stage decision variable x

is split into I scenario-dependent copies, i.e., xi ∈ Rp1 , i ∈ I. As a result, formulation (5.3 )

can be further rewritten as

min
xi,yi,z

I∑
i=1

pi(c>xi + q>
i yi),

s. t. xi = z, (xi, yi) ∈ Ki, ∀i ∈ I.

(5.4)
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Note that the newly introduced variable z ∈ Rp1 and constraints xi = z are intended to

ensure the so-called non-anticipativity. That is, to require xi for each individual scenario i

to achieve an agreement on z eventually.

For an optimization problem with such non-anticipativity constraints, the basic PH

method is commonly regarded as a viable solution method, which can be represented by

the following three main steps:

primal-update-step:

(xk+1
i , yk+1

i ) = arg min
(xi,yi)∈Ki

Lρ
i (xi, yi, zk, ωk

i ); (5.5)

aggregation-step:

zk+1 =
I∑

s=1
pixk+1

i ; (5.6)

dual-update-step:

ωk+1
i = ωk

i + ρ(xk+1
i − zk+1). (5.7)

Here, each ωi ∈ Rp1 serves as a dual variable, ρ is a penalty parameter, and each function

Lρ
i : Rp1 × Rp2 × Rp1 × Rp1 → R is defined as

Lρ
i (xi, yi, z, ωi) := c>xi + q>

i yi + ω>
i (xi − z) + ρ

2‖xi − z‖2. (5.8)

It has been shown in [78 ] that, when decision variables for both stages are continuous and

subject to convex constraints, performing the above three basic PH steps (5.5 )–(5.7 ) itera-

tively can lead each xk
i to an agreement on a common first-stage optimal solution x?, i.e.,

xk
i → x?, ∀i ∈ I, and also drive yk

i to the second-stage optimal solution y?
i for each scenario i,

i.e., yk
i → y?

i , ∀i ∈ I.

Next, to adapt steps (5.5 )–(5.7 ) under a general peer-to-peer computing network, we

suppose that each agent is corresponding to one single scenario i and only takes charge of

its own primal and dual variables, i.e., (xk
i , yk

i ) and ωk
i . It is still expected that the same

convergence, i.e., xk
i → x? and yk

i → y?
i , ∀i ∈ I, can be achieved, while subject to peer-to-

peer network topology. Considering that only peer communications are allowed in the desired
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distributed framework, thus each agent can merely access the information from itself and

its immediate neighbors. Keeping this in mind, it is worth noting that the primal and dual

update steps (5.5 ) and (5.7 ) are readily implementable under the peer-to-peer network, as

they simply involve the information maintained by each agent itself. However, implementing

the aggregation step (5.6 ) requires each agent to access the information from all other agents

within the network. Thus, it is the aggregation step that prevents the basic PH method from

being adapted under a distributed framework. This is also the reason why a master-worker

architecture is typically assumed for running the parallel PH method at present. In the next

section, we will address the issue of the aggregation step, and further design the distributed

variant of the PH method.

5.3 The DistPH Method

5.3.1 Basic Algorithm Design

As just pointed out in the preceding analysis, the barrier that prevents the basic PH

method from being implementable in a distributed manner is the aggregation step. In details,

we remark that variable z in (5.4 ) serves as a commonly shared variable, requesting all agents

to achieve an agreement on the first-stage decisions, i.e., non-anticipativity constraint. With

non-anticipativity constraint, updating z requires information from all agents, as shown in

the aggregation step (5.6 ). In response, we next eliminate this requirement by establishing

a relationship only between neighboring agents.

Instead of using a commonly shared z variable for all agents, we use its multiple copies

zij’s with each zij ∈ Rp1 corresponding to a neighboring agents pair (i, j) ∈ E . Consequently,

updating the new variable zij will only involve the communication between agents i and j.

Thus, formulation (5.4 ) is further rewritten as the following equivalent form,

min
xi,yi,zij

I∑
i=1

pi(c>xi + q>
i yi),

s. t. xi = zij, xj = zij, ∀(i, j) ∈ E ,

(xi, yi) ∈ Ki, ∀i ∈ I.

(5.9)
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Note that the equivalence between (5.9 ) and (5.4 ) relies the connectedness of the underlying

time-invariant undirected graph; see Assumption 1.4.8 in Chapter 1 

Let us further rewrite formulation (5.9 ) with a more compact form. Recall that x ∈ RIp1

denotes the concatenated variable which stack individual xi’s as defined in the previous

chapters, and similarly, we let y := [y>
1 , y>

2 , · · · , y>
I ]> ∈ RIp2 . Subsequently, the overall

objective function is expressed as

F (x, y) :=
I∑

i=1
pi(c>xi + q>

i yi), (5.10)

and formulation (5.9 ) is equivalent to,

min
x, y

F (x, y),

s. t. (x, y) ∈ K, Lx = 0,

(5.11)

where L := L ⊗ Ip1 and L denotes the Laplacian matrix of the time-invariant undirected

graph. We note that independent constraints (xi, yi) ∈ Ki, ∀i ∈ I in (5.9 ) have been

combined as (x, y) ∈ K in (5.11 ), with K := {(x, y) | (xi, yi) ∈ Ki)}. In addition, given the

connectedness of the graph G by Assumption 1.4.8 , the null space of the Laplacian matrix L

is spanned by the one vector 1I and thus the constraint Lx = 0 ensures the non-anticipativity

solutions.

Now that formulation (5.11 ) is in a form consistent with the one investigated in [78 ], we

update the compact variables with the following steps,

primal-update-step:

(xk+1, yk+1) = arg min
(x, y)∈K

F (x, y) + x>νk + ρ

2‖x− ẑk‖2; (5.12)

aggregation-step:

ẑk+1 = Jxk+1; (5.13)

dual-update-step:

νk+1 = νk + ρKxk+1. (5.14)
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Similarly, the dual variable νk ∈ RIp1 stacks all the individual νk
i ’s, i.e., ν = [ν>

1 , ν>
2 , · · · , ν>

I ]>,

and the two key operators J : RIp1 → RIp1 and K : RIp1 → RIp1 are defined as

J := II + D−1A

2 ⊗ Ip1 and K := (II − J)⊗ Ip1 = II −D−1A

2 ⊗ Ip1 . (5.15)

Inherited from the convergence properties of the original PH method in [78 ], the above

iterative updating scheme (5.12 )–(5.14 ) achieves the same convergence result, as we state

with the following proposition.

Proposition 5.3.1. Suppose that the underlying time-invariant undirected graph G satisfies

Assumption 1.4.8 and the feasible set Ki is closed and convex for all i ∈ I, then the sequences

{xk}∞
k=1 and {yk}∞

k=1 generated by the iterative procedure (5.12 ) – (5.14 ) with arbitrary

initialization, have the following convergence,

xk
i → x? and yk

i → y?
i , ∀i ∈ I, (5.16)

if the first-stage optimal solution x? and the second-stage optimal solutions y?
i exist for solving

problem (5.11 ), or equivalently problem (5.4 ).

Proof. The proof of Proposition 5.3.1 follows that for Theorem 5.1 in [78 ], while the operator

K needs to be adapted into the one defined in (5.15 ). Note that K reflects the network

topology. Furthermore, it plays the same role as in [78 ], since the null space of K (identical

to the null space of Laplacian matrix L) contains all the solutions that satisfy the non-

anticipativity constraints.

Proposition 5.3.1 above provides a theoretical guarantee for convergence of the updating

scheme (5.12 )–(5.14 ) when considering a convex case, i.e., only continuous decision variables

are involved and subject to convex constraints. However, since the scheme is designed from

a global perspective, it remains unknown if one can implement it in the desired distributed

framework. Hence, we next verify, from the standpoint of each individual agent, that steps

(5.12 )–(5.14 ) are implementable in a distributed manner.
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As earlier, we first specify that the variable ẑk is defined as in the compact form, i.e.,

ẑk = [(ẑk
1)>, (ẑk

2)>, · · · , (ẑk
I )>]>. Then, by the aggregation step (5.13 ) and the definition of

the operator J , updating each ẑk
i can be done by

ẑk
i = 1

2xk
i + 1

2di

∑
j∈Ni

xk
j . (5.17)

Note that the primal variable xk
i is privately maintained by agent i and Ni denotes the set of

its neighbors, thus step (5.17 ) is naturally implementable under a peer-to-peer multi-agent

network. Now with the help of the aggregation variable ẑk
i , the DistPH method performs

the following steps,

primal-update-step:

(xk+1
i , yk+1

i ) = arg min
(xi,yi)∈Ki

{
pi(c>xi + q>

i yi) + (νk
i )>xi + ρ

2‖xi − ẑk
i ‖2

}
; (5.18)

aggregation-step:
ẑk+1

i = 1
2xk+1

i + 1
2di

∑
j∈Ni

xk+1
j ; (5.19)

dual-update-step:

νk+1
i = νk

i + ρ
(
xk+1

i − ẑk+1
i

)
. (5.20)

Algorithm 6: DistPH Method

Data: Each agent i specifies the penalty parameter ρ and initializes x0
i , y0

i and ν0
i .

Let k = 0.
while a termination criterion is NOT satisfied do

Each agent i ∈ I simultaneously does
(S.1) Updates the primal variables (xk+1

i , yk+1
i ) by step (5.18 ), and broadcasts

the updated xk+1
i to its neighbors;

(S.2) Receives xk+1
j from its neighbors, and performs the step (5.19 );

(S.3) Updates the dual variable νk+1
i by step (5.20 );

(S.4) Let k ← k + 1, and continue.
end
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We note that, with the above updating scheme, each agent can simply receive information

of previous iteration from all its neighbors, perform the steps (5.18 )–(5.20 ) for itself, and

broadcast the updated variables to its neighbors. By doing this, we have eliminated the

requirement of the master node and adapted the PH method under a general peer-to-peer

network. To summarize, we outline all steps of the DistPH method as Algorithm 6 , and

provide its convergence result as a corollary of the above Proposition 5.3.1 .

Corollary 5.3.1. Suppose that the conditions in Theorem 5.3.1 hold, then the sequences

{xk
i }∞

k=1 and {yk
i }∞

k=1 generated by Algorithm 6 with arbitrary initialization, have the following

convergence,

xk
i → x? and yk

i → y?
i , ∀i ∈ I. (5.21)

Remark 5.3.1. Unlike the standard parallel PH method in which the master node per-

forms the aggregation step by simply computing the weighted average zk = ∑I
i=1 pixk

i , our

distributed algorithm let each agent maintain its own aggregation variable ẑk
i and update it

by itself according to (5.17 ). This updating scheme helps eliminate the requirement of the

master node, thus enabling the adaptation of the PH method under a peer-to-peer comput-

ing network. It increases the overall communication cost within the entire network at each

iteration of the algorithm, depending on the underlying topology. The denser the network

is, the more communication resources are required to perform the distributed computing.

However, we shall remark that, like the computation side, the overall communication cost

is spread over network agents, and each agent can simultaneously execute its own portion

of the communication tasks. In addition, knowing that the core of the PH method is to

deal with the non-anticipativity constraints, in principle, when the underlying network has a

denser topology, a smaller number of iterations would be demanded for our distributed method

to produce non-anticipativity solutions. Subsequently, it can be seen that the investigation

of communication cost should not only involve the network topology, but also consider the

algorithm convergence rate, which complicates a comprehensive complexity analysis.

91



Remark 5.3.2. When the DistPH method is setup over a fully-connected network (i.e.,

with all-to-all communications), it works algorithmically in a nearly identical way with its

parallel counterpart. However, one should note that there are slight differences in the choice

of penalty parameter ρ and the computation of aggregation variables. That is, the DistPH

method i) scales the parameter ρ by the probability pi associated with each scenario i; and

ii) computes the aggregation variable ẑk
i = xk

i /2 + 1/2 ·∑I
j 6=i xk

j /(I − 1) by assigning more

weight to the local variable xk
i , instead of taking the weighted average ∑I

i=1 pi · xk
i relying

on the probabilities pi. Despite these differences, we note that both parallel and distributed

PH methods work on the same principle, i.e., solving scenario-specific subproblems while

taking non-anticipativity constraints into account. It seems that the DistPH method is more

conservative when performing the aggregation step, as it assigns more weight to the local

variable xk
i . As a result, the update xk+1

i tends to be not far away from the incumbent.

However, we still remark that it is unknown whether such conservatism will theoretically

slow down or speed up the convergence.

Remark 5.3.3. It is well-known that the basic PH method has a close connection with the

alternating direction method of multipliers (ADMM) [121 ]. Indeed, the DistPH method also

follows a pattern identical to the distributed ADMM (D-ADMM) [122 ]–[124 ]. However, we

shall note that while the D-ADMM-like algorithms are often developed for solving uncon-

strained consensus optimization problems and primarily based on the Lagrangian method, the

DistPH method starts from two-stage stochastic programs which typically involve continuous

or even mixed-integer constraints.

5.3.2 Additional Considerations on Algorithm Initialization and Termination

Even though asymptotic convergence of the DistPH method with arbitrary initialization

has been theoretically guaranteed by Proposition 5.3.1 and Corollary 5.3.1 (for the convex

case). For real-world applications, however, appropriate choice of the algorithm initialization

and termination criteria can greatly improve solution efficiency. Thus, in this subsection, we

consider these two computational issues when implementing the DistPH method. Note that
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the techniques introduced in this subsection can be applied to stochastic programs involving

both continuous and/or mixed-integer decision variables.

As suggested in the literature [114 ], [115 ], including the one proposing the original PH

method [78 ], an effective initialization scheme is to set the primal variables by solving the

following subproblems,

(x0
i , y0

i ) ∈ arg min
(x,y)∈Ki

pi(c>x + q>
i y), (5.22)

and simply setting the dual variables as ν0
i = 0. It can be immediately verified that,

since no coordination or variable sharing is needed, such an initialization scheme is readily

implementable under a distributed framework.

For the termination criterion, unfortunately, a well-accepted approach which measures the

following primal residual γk ≤ ε cannot be directly applied under a distributed framework,

γk :=
I∑

i=1
pi‖xk

i − x̄k‖. (5.23)

Note that x̄k := ∑I
i=1 pixk

i denotes the desired non-anticipativity solution and γk character-

izes the overall distance between all xk
i ’s and x̄k at each iteration k. Computing this primal

residual in distributed settings mainly faces two challenges: i) x̄k is unknown for each agent

i since it needs all the information over the entire network; and ii) calculating γk needs all

the information as well, even though each agent can obtain its own x̄k. Inherently, the two

challenges can be attributed to the lack of global awareness by individual agents. To address

the challenges, we build on the distributed sum-tracking technique [34 ]. The key idea is

to assign each agent a new variable πk
i , aiming at tracking the desired global information

iteratively.

Suppose that a general time-varying in-stream data {ξk
i }k∈N+ is received by each agent i,

we assign each agent a tracking variable πk
i initialized by π0

i = Iξ0
i , and let it be updated as

πk+1
i =

∑
j∈Ni

wijπ
k
j + I(ξk+1

i − ξk
i ). (5.24)
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Since the update of πk+1
i only requires information from node i itself and its neighbors, the

iterative updating step (5.24 ) obeys the underlying graph G, and thus can be implemented

under a distributed framework. In addition, we require that the coefficients wij’s in (5.24 )

satisfy the double-stochasticity condition; see Assumption 1.4.12 . As a consequence, the

convergence of the distributed sum-tracking (5.24 ) can be established as follows.

Theorem 5.3.1. Suppose that the time-invariant undirected graph G satisfies Assump-

tion 1.4.8 and the prefixed weight matrix W satisfies Assumption 1.4.12 . If the received

in-stream data {ξk
i }k∈N+ for each agent is stable, i.e.,

lim
k→∞
‖ξk+1

i − ξk
i ‖ = 0, ∀i ∈ I, (5.25)

then the sequence of tracking variables {πk
i }k∈N+, generated by scheme (5.24 ), has the fol-

lowing convergence

‖πk
i −

I∑
i=1

ξk
i ‖ → 0, ∀i ∈ I. (5.26)

Proof. The proof follows a similar manner as the one for Theorem 1 in [36 ], and is thus

omitted.

With the help of the distributed sum-tracking technique as introduced above, we are

now ready to compute the primal residual γk as follows. Let {pixk
i }k∈N+ be the sequence of

in-stream data received by each agent i, i.e., ξk
i = pixk

i . Given that the stability requirement

(5.25 ) of received data has already been guaranteed by the convergence of xk
i (see Corol-

lary 5.3.1 ), we know that the tracking variable πk
i maintained by each agent i must have

the convergence πk
i → x̄k. Therefore, each agent i will be able to gradually obtain x̄k by

iteratively updating the tracking variable πk
i . Moreover, to compute the primal residual γk,

we perform another distributed sum-tracking procedure by viewing the in-stream data as

{pi‖xk
i − πk

i ‖}k∈N+ . Note that the stability of this set of data is guaranteed by the non-

anticipativity constraints, i.e., xk
i → x̄k, ∀i ∈ I. Thus, we introduce a new tracking variable

π̂k
i ∈ R performing an outer-tracking procedure, then the convergence, described in (5.26 ),
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ensures π̂k
i → γk, ∀i ∈ I. We summarize the distributed computing scheme for termination

verification in Algorithm 7 .

Algorithm 7: Distributed Computing for Termination Verification

Data: Given a tolerance ε, weight matrix W and x0
i . Let π0

i = x0
i and π̂0

i = 0. Set
initial iteration index k = 0.

while the criterion |π̂k
i | < ε is NOT satisfied for k > 0 do

Each agent i ∈ I simultaneously does
(S.1) Updates its variable xk+1

i by Algorithm 6 .
(S.2) Receives πk

j from the neighbors, then updates πk+1
i by

πk+1
i =

∑
j∈Ni

wijπ
k
j + Ipi(xk+1

i − xk
i ),

and broadcasts πk+1
i .

(S.3) Receives π̂k
j from the neighbors, then updates π̂k+1

i by

π̂k+1
i =

∑
j∈Ni

wijπ̂
k
j + Ipi(‖xk+1

i − πk+1
i ‖ − ‖xk

i − πk
i ‖),

and broadcasts π̂k+1
i .

(S.4) Let k ← k + 1, and continue.
end

5.4 Mixed-Integer Case: Computation of the Lower Bound

In this section, we explore the extended applicability of the proposed DistPH method

to two-stage stochastic programs with mixed-integer decision variables, i.e., SMIPs. In par-

ticular, we investigate the distributed technique for computing the Lagrangian-dual lower

bounds.

While proposed originally in [78 ] for solving stochastic programs with only continuous

decision variables, the basic PH method has already been practically adopted as a heuristic

to deal with many SMIPs. Considering that there is no theoretical guarantee for convergence

when applying the basic PH method to SMIPs, an effective way to evaluate the quality of the

obtained solution is fairly important under such circumstances. Recently, a lower-bounding
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technique is proposed in [115 ] for dealing with the SMIPs, which allows to assess the solution

generated at each iteration of the basic PH method. Furthermore, it is shown that a sequence

of lower bounds calculated by such technique converges to the best lower bound which is as

tight as the one obtained by dual decomposition methods [79 ], [125 ], [126 ]. Here, we aim

at developing a distributed technique for computing the low bounds under the peer-to-peer

computing network.

Before presenting our distributed lower-bounding technique, i.e., distributed Lagrangian

dual computation, we first introduce the centralized lower-bounding technique proposed in

[115 ]. Considering an SMIP formulation (5.4 ), its Lagrangian dual function by applying

Lagrangian relaxation to the non-anticipativity constraints reads

D(ω) = min
(xi,yi)∈Ki

z∈Rp1

{ I∑
i=1

pi

(
c>xi + q>

i yi + ω>
i (xi − z)

)}
, (5.27)

where the dual variable ω ∈ RIp1 stacks all individual ωi’s. To decompose the minimization

problem (5.27 ) into independent components for each scenario, the restriction on dual vari-

ables ωi with ∑I
i=1 piωi = 0 is incorporated. Thus, variable z in (5.27 ) is eliminated and the

Lagrangian dual function can be rewritten as

D(ω) =
I∑

i=1
piDi(ωi), (5.28)

where each Di(ωi) has

Di(ωi) = min
(xi,yi)∈Ki

{
c>xi + q>

i yi + ω>
i xi

}
. (5.29)

It is well-known that the best lower bound for problem (5.4 ) can be achieved by solving the

following maximization problem

ζ? = max
ω
D(ω) subject to

I∑
i=1

piωi = 0. (5.30)
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Many approaches are developed in the literature for solving (5.30 ). One of them, devel-

oped under the framework of the PH method [115 ], considers the following convexified form

of (5.4 ),

min
xi,yi,z

I∑
i=1

pi(c>xi + q>
i yi),

s. t. xi = z,

(xi, yi) ∈ Ci, ∀i ∈ I,

(5.31)

where Ci = Conv(Ki) denotes the convex hull of the feasible set Ki. As a result, the best

lower bound ζ? can be obtained by iteratively performing the following computation,

ζk =
I∑

i=1
piDc

i (ωk
i ), (5.32)

where Dc
i is defined as

Dc
i (ωk

i ) := min
(xi,yi)∈Ci

{
c>xi + q>

i yi + (ωk
i )>xi

}
, (5.33)

and ωk
i is the dual variable obtained by the dual update step of the PH method.

Recall that the problem of interest here is to perform the computation of (5.32 ) in a

distributed manner. There are two key issues need to be resolved: i) computing ζk by (5.32 )

requires information from all agents; and ii) the dual variable ωk
i is not accessible during

the procedure of our DistPH method. Here, we first investigate the second issue, and show

that the accessible νk
i is also able to provide a viable way to compute lower bounds. The

computation of ζk from a centralized perspective, involving νk
i , can be performed as

ζk =
m∑

s=1
piD+

i (νk
i ), (5.34)

where

D+
i (νk

i ) := min
(xi,yi)∈Ci

{
c>xi + q>

i yi + (di/pi)(νk
i )>xi

}
. (5.35)

We validate the computation (5.34 ) and (5.35 ) by the following theorem.
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Theorem 5.4.1. Suppose that the sequence {ζk}k∈N+ is generated by the computation

in (5.34 ) and (5.35 ), with {νk
i }k∈N+ generated by applying Algorithm 6 to problem (5.31 ).

As a result, each ζk is a lower bound of the optimal objective value of the problem (5.4 ), and

the convergence of sequence {ζk}k∈N+ has

ζk → ζ?. (5.36)

Proof. We first show that, if νi is initialized as ν0
i = 0, ∀i ∈ I, then the updating

scheme (5.20 ) of νk
i implies the following result,

I∑
i=1

diν
k
i = 0, ∀k ∈ N+. (5.37)

In fact, by (5.19 ) and (5.20 ), it can be seen that

I∑
i=1

diν
k+1
i =

I∑
i=1

diν
k
i + ρ

I∑
i=1

(xk+1
i − ẑk+1

i )

=
I∑

i=1
diν

k
i + ρ

2

( I∑
i=1

xk+1
i −

I∑
i=1

1
di

∑
j∈Ni

xk+1
j

) (5.38)

It can be immediately verified that the second term in the last equation must be zero, and

thus (5.37 ) is true when the initialization is zero.

Now, we prove that each ζk is a valid lower bound, i.e., ζk ≤ χ?, ∀k ∈ N+ where χ? is

the optimal function value for the SMIP formulation (5.4 ). Let us denote (x?
i , y?

i ) and z? as

the optimal solution to (5.4 ), then we have

χ? =
I∑

i=1
pi(c>x?

i + q>
i y?

i ), (5.39)

and

z? = x?
i , ∀i ∈ I. (5.40)
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Given that the feasible set restricted by Ki is always a subset of its convex hull Ci, i.e.,

(x?
i , y?

i ) ∈ Ci, we have,

ζk =
m∑

s=1
piD+

i (νk
i )

(5.1.a)
≤

I∑
i=1

pi

(
c>x?

i + q>
i y?

i + (di/pi)(νk
i )>x?

i

)
(5.1.b)=

I∑
i=1

pi(c>x?
i + q>

i y?
i ) + (

I∑
i=1

diν
k
i )>z?

(5.1.c)=
I∑

i=1
pi(c>x?

i + q>
i y?

i )

= χ?.

(5.41)

Note that inequality (5.1.a) is by the definition (5.35 ) of function D+
i (νk

i ); equality (5.1.b)

follows from (5.40 ); and equality (5.1.c) follows from (5.37 ).

To show the convergence of ζk, we leverage the proved convergence result of Algorithm 6 .

Given that the DistPH method is applied to problem (5.31 ) which is guaranteed to be convex,

based on the proof of Theorem 5.1 in [78 ], we know that variable νk
i converges to an optimal

dual v?. In addition, it can be verified that the primal optimal w? and the dual optimal v?

compose a saddle point of the following function

κ(w, v) := F (w) + v>w, (5.42)

subject to the minimization with respect to w and the maximization with respect to v. By

definition of the overall objective function F (w) (see equation (5.10 )), the convergence of

ζk → ζ? straightforwardly follows the convergence of dual variable νk
i to v?.

By Theorem 5.4.1 , we have already found a viable way to compute the lower bounds

from a centralized perspective. That is, each agent solves a minimization problem (5.35 ) by

using the updated dual variable νk
i , then the computation of weighted average, as shown

in (5.34 ), gives a lower bound ζk at the current iteration k. Now, the problem becomes

how to compute the weighted average under the distributed framework. Here, we recall the
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distributed sum-tracking technique as introduced in the previous Section 5.3.2 , and perform

the following tracking step,

πk+1
i =

∑
j∈Ni

wijπ
k
j + Ipi

(
D+

i (νk+1
i )−D+

i (νk
i )
)

. (5.43)

Note that the stability of sequence {D+
i (νk

i )}k∈N+ can be guaranteed by the convergence

of Algorithm 6 . According to both Theorems 5.4.1 and Corollary 5.3.1 , we conclude that

sequence {πk
i }k∈N+ has the following convergence

πk
i → ζ?, ∀i ∈ I. (5.44)

5.5 Numerical Results

5.5.1 Simulation Study Setup

We test our DistPH method with two benchmark stochastic programming instances, i.e.,

the SIZES and SSLP problems, both of which are publicly available in SIPLIB [127 ]. We

implement the DistPH method by using Python programming language under the frame-

work of PySP [116 ], which is an open-source software package and enables the stochastic

programming extension of Pyomo (Python Optimization Modeling Objects) [117 ] for mod-

eling and solving stochastic programs. Specifically, PySP includes an implementation of

the basic (serial) PH method and its parallel variant by using a Pyro (Python Remote Ob-

jects) package to manage communications between different threads or nodes. We use PySP

for stochastic programming model implementation and adopt Pyro for the communications

management. It should be noted that we make our own implementation of the DistPH

method and its extension for SMIP. A primary difference between our implementation and

existing parallel implementations is that we do not assume a master node that computes the

weighted-average and passes the information onto all workers. Instead, we only rely on peer

communications under a peer-to-peer multi-agent network. The subproblems at each itera-

tion are solved with Gurobi 9.1 via the inherent quadratic solver engine. All computations

in our work are performed on a computing server with two Intel Xeon E5-2690 (32 cores)
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running at 2.90GHz with 256GB of RAM. Notice that while the parallel and distributed PH

methods are implemented on multiple cores according to the number of scenarios, the basic

PH procedure is performed on a single core of the server.

5.5.2 The SIZES Instances

The SIZES problem refers to a multi-stage (multi-period) stochastic lot-sizing prob-

lem [128 ]. In this simulation, we consider three instances of the SIZES problem, i.e., SIZES3

(with 3 scenarios), SIZES5 (with 5 scenarios), and SIZES10 (with 10 scenarios). Note that

mixed-integer decision variables appear in both stages of the instances. The characteristics

of their extensive forms are summarized in Table 5.1 .

Table 5.1. Extensive form characteristics of the SIZES instances

instance # of scenarios # of binaries # of variables # of constraints

SIZES3 3 40 300 124

SIZES5 5 60 450 186

SIZES10 10 110 825 341

We first evaluate the solution performance of three variants of the PH method, namely

the basic PH method (B-PH), the parallel PH method (P-PH) and our DistPH method

(D-PH). For the P-PH method, the underlying network follows the specific master-worker

architecture. For the D-PH method, we consider different degrees of connectivity of the

underlying peer-to-peer network, and use the algebraic connectivity to quantify the degree

of connectivity. The algebraic connectivity, denoted by σ, is calculated by the second smallest

eigenvalue of the graph Laplacian matrix L, and its magnitude is known to reflect how well-

connected the underlying graph is, i.e., a sparser network has a smaller σ. This metric has

been widely used in the study of distributed algorithms and analysis of network properties;

see e.g. [129 ], [130 ]. In addition to a fully-connected network (each node has access to any

other ones), we assess the D-PH method on networks with lower algebraic connectivity, as

shown in Fig. 5.1 . To objectively compare the solution performance of the three methods,
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(a) network for SIZES3
σ = 1.0
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(b) network for SIZES5
σ = 2.0
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(c) network for SIZES10
σ = 0.415
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(d) network for SIZES10
σ = 2.255

Figure 5.1. Communication topology of multi-agent computing networks

we disable the termination threshold by setting ε = 0 in Algorithm 7 and run each method

for the same number of 200 iterations.

The results for all the methods after 200 iterations are presented in Table 5.2 . Note that

we term the D-PH method with a fully-connected network as D-PH (F-Conn) in the table.

The reference objective values for all three instances are provided in SIPLIB. It is observed

from Table 5.2 that, while the objective value obtained via our D-PH method is comparable

to the B-PH method, yet the execution time is significantly reduced since multiple computing

nodes are utilized. More precisely, the scalability of the D-PH method is shown in Fig. 5.2 .

It is observed that considerable speed-up can be achieved by the distributed framework.

Moreover, compared to the P-PH method provided in PySP, the D-PH method also obtains

a similar performance in terms of both execution time and final objective value. In fact, we

have to remark here that the P-PH method and our D-PH method are not quite comparable

for the following reasons. First, owing to central coordination provided by the master node,
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Table 5.2. Solution performance of the SIZES instances (with 200 iterations)

Instance Method Exec Time Objective Ref Objective

SIZE3

B-PH 155.74s 225180.0280 (0.33%)

224434.32P-PH 66.99s 225180.0280 (0.33%)
D-PH (F-Conn) 69.42s 225139.3112 (0.31%)
D-PH (σ = 1.0) 68.28s 225263.9379 (0.37%)

SIZES5

B-PH 259.87s 226483.5898 (0.89%)

224486.00P-PH 74.21s 226483.5898 (0.89%)
D-PH (F-Conn) 80.85s 226687.2803 (0.98%)
D-PH (σ = 2.0) 75.12s 226535.7782 (0.91%)

SIZES10

B-PH 582.35s 226513.0279 (0.87%)

224564.30P-PH 98.57s 226513.0279 (0.87%)
D-PH (F-Conn) 118.21s 226660.3938 (0.93%)
D-PH (σ = 2.255) 109.17s 226698.7066 (0.95%)
D-PH (σ = 0.415) 102.80s 226452.6490 (0.84%)

the master-worker architecture indeed offers an ideal architecture to realize parallelization.

If the communication cost is measured by the number of communication channels, the P-PH

method also incurs lower communication cost compared to the D-PH method. However,

one should note that, under a master-worker architecture, all the communication burden

goes to the master node, and thus it easily becomes a communicating bottleneck for the

entire network. In contrast, since the distributed method builds on a peer-to-peer network

and each agent only needs to communicate with its neighbors, the communication burden is

thus spread over the network and each individual agent only contributes to a portion of the

communication cost. In addition, for many real-world in-network computing tasks, due to

insufficient communication bandwidth and storage capacity, it is highly likely that no single

node can take on such a heavy coordination task. In conclusion, we argue that our D-PH

method is more flexible and applicable in real-world applications, as it can be applied with

the general connected computing network.

Apart from the comparison between the different variants of the PH methods, we further

evaluate the performance of the D-PH method with different degrees of algebraic connectivity

of the network. In this simulation study, we enable the termination criterion by setting the
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Figure 5.2. Scalability of the D-PH method in solving SIZES problems

Table 5.3. Solution performance of the SIZES instances (by termination criterion)

Instance Method # of Iters Objective Ref Objective

SIZE3

P-PH 77 225474.9947 (0.46%)

224434.32
D-PH (F-Conn) 20 226085.2030 (0.74%)

D-PH (σ = 1.0) 140 225622.5662 (0.53%)

SIZE5

P-PH 200 226483.5898 (0.89%)

224486.00
D-PH (F-Conn) 65 227110.3133 (1.17%)

D-PH (σ = 2.0) 200 226535.7782 (0.91%)

SIZE10

P-PH 200 226513.0279 (0.87%)

224564.30
D-PH (F-Conn) 72 226770.7423 (0.98%)

D-PH (σ = 2.255) 200 226698.7066 (0.95%)

D-PH (σ = 0.415) 200 226452.6490 (0.84%)

threshold ε = 10−4, and the algorithm will terminate once the primal residual is less than

the threshold. It is suggested by Tables 5.3 that a larger number of iterations are required

to reach the same termination threshold under a network with smaller algebraic connec-
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tivity. Interestingly, it is also observed from the table that the D-PH method under the

fully-connected network reaches the termination condition with a fewer number of iterations

compared to the P-PH method. This is due to the differences between the two methods as

noted in Remark 1.

5.5.3 The SSLP Instances

For the SSLP, a two-stage stochastic server location problem [131 ], we consider two in-

stances, i.e., sslp_5_25_50 with 50 scenarios and sslp_5_25_100 with 100 scenarios. The

characteristics of these two instances are listed in Table 5.4 . We again investigate the solu-

tion performance of three variants of the PH method. In this simulation study, since these

SSLP instances involve a larger number of scenarios than the SIZES instances studied, we

create a network consisting of 25 computing nodes, and thus two or four scenarios are bun-

dled together at the each node. Same as before, the computing networks are specified with

different degrees of algebraic connectivity σ.

Table 5.4. Extensive form characteristics of the SSLP instances

instance # of scenarios # of binaries # of variables # of constraints

sslp_5_25_50 50 6255 250 1501

sslp_5_25_100 100 12505 500 3001

The numerical results for all three variants of the PH methods are presented in Table 5.5 ,

when we set the threshold as ε = 0 and terminate the execution after the 200-th iteration.

The similar observations can be obtained as for the SIZES instances. However, as distinct

from the previous example, it can be seen from Table 5.5 that almost all methods (except D-

PH over the sparsest network) can obtain the solution with 100% accuracy. More importantly,

the D-PH method (and also P-PH method) achieves a nearly linear speed-up of the execution

time. In addition, to further examine the influence of network topology on our D-PH method,

we set the termination threshold as ε = 10−4, and the numerical results obtained are shown

in Table 5.6 . It can be verified that a larger number of iterations are demanded by the D-PH
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method when the underlying network has a sparser topology. Nevertheless, in some cases,

e.g., the instance sslp_5_25_50, the D-PH method over a non-fully-connected network still

exhibits faster convergence than the P-PH method.

Table 5.5. Solution performance of the SSLP instances (with 200 iterations)

Instance Method Exec Time Objective Ref Objective

sslp_5_25_50

B-PH 1567.2s -121.60

-121.60
P-PH 84.0s -121.60

D-PH (F-Conn) 93.4s -121.60

D-PH (σ = 22.786) 89.8s -121.60

D-PH (σ = 1.686) 87.2s -121.60

sslp_5_25_100

B-PH 3683.4s -127.37

-127.37
P-PH 166.2s -127.37

D-PH (F-Conn) 175.2s -127.37

D-PH (σ = 24.882) 171.6s -127.37

D-PH (σ = 3.162) 168.3s -125.59 (1.4%)

Table 5.6. Solution performance of the SSLP instances (by termination criterion)

Instance Method # of Iters Exec Time Objective

sslp_5_25_50

P-PH 68 30.82s -121.60

D-PH (F-Conn) 31 14.31s -121.60

D-PH (σ = 22.786) 67 29.96s -121.60

D-PH (σ = 1.686) 135 59.94s -121.60

sslp_5_25_100

P-PH 77 63.75s -127.37

D-PH (F-Conn) 49 44.54s -127.37

D-PH (σ = 24.882) 119 105.76s -127.37

D-PH (σ = 3.162) 200 176.19s -125.59
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6. APPLICATIONS WITH MULTI-UAV SYSTEMS

Recently, unmanned aerial vehicles (UAVs) have been widely adopted in various applica-

tions, including environment/health monitoring [132 ], [133 ], package delivery [134 ], [135 ],

surveillance [136 ]–[138 ], etc. The popularity of UAVs can be attributed to their remarkable

features, such as mobility, flexibility, and accessibility. In particular, it is often beneficial

when a team of coordinated UAVs is employed for some mission, rather than one single UAV.

For instance, by utilizing the cooperation among multiple UAVs, such a coordinated team

has the potential to accomplish missions whose total computational workload goes beyond

the capability of each single UAV. On the other hand, the task allocation and cooperation

protocol are supposed to be specifically devised under such circumstances. This also leads

to the popularity of paradigm of distributed processing over the last decades. Motivated by

this, in this chapter we investigate two real-world applications involved with the multi-UAV

systems: i) distributed data fusion for on-scene signal sensing; and ii) distributed source

tracking in unknown environments.

6.1 Application I: Distributed Data Fusion for On-Scene Signal Sensing

In the first application, we consider a healthcare scenario where the health status of

certain target in rural environment needs to be monitored through sensing some on-scene

biological signals, during or after an incident [139 ]. In particular, we focus on a distributed

data fusion problem, i.e., integrating information from various measurements of individual

UAVs. It is assumed that each UAV is capable of sensing signals, performing computational

tasks, and exchanging information with its immediate neighbors. Based on the limited

local measurement and exchanged information only from neighbors, we aim to develop a dis-

tributed algorithmic framework to fuse the information gathered by the entire UAV network.

It is expected that such a multi-UAV system benefits from the accuracy of data gained from

multiple sensors, while keeping computational load favorable for each single UAV since it

only needs to process a relatively small set of data. The ultimate goal is to enforce the UAVs

to reach consensus at which each UAV individually provides a more reliable fused sensing

result with higher accuracy, compared to the local measurement collected by the UAV itself.
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6.1.1 Sensor Fusion Model

Suppose that the target signal is represented by a time-series s0(t), we formulate the

continuous-time ill-polluted measurement mi(t) by each individual UAV i ∈ I = {1, 2, · · · , I}

as follows,

mi(t) := γi(t)s0(t) + bi(t) + ni(t). (6.1)

Here, γi(t) and bi(t) are the scaling factor and offset bias, respectively; and ni(t) denotes

the white Gaussian measurement noise. We remark that such a measurement model (6.1 )

has been widely adopted in the existing literature, such as the studies of multi-sensor multi-

target tracking[140 ], [141 ], sensor calibration for mobile sensing [142 ], [143 ], and data fusion

for body sensors [144 ]. In particular, the influence of scaling factor γi(t) and offset bias

bi(t) in sensor measurement is intensively investigated in [143 ]. While the offset bias could

be caused by sensor misalignment, the scaling factor usually occurs in some UAV-related

sensor measurement such as accelerometer and gyroscope [145 ]. It is also emphasized that

such an ill-polluted measurement model can be hardly handled by the standard least-square

estimation or maximum-likelihood estimation, due to the existence of the unknown offset

bias bi(t). To deal with this issue, we apply the criterion of maximizing signal-to-noise ratio

(MSNR), inspired by[144 ]. In addition, the method developed here is more applicable, as it

does not require the statistics of white Gaussian noise ni(t) to be known.

An alternative discrete-time model of measurement (6.1 ) can be obtained by discretizing

the data into a d-dimensional vector mi := [mi(1), mi(2), · · · , mi(t), · · · , mi(d)]> ∈ Rd with

mi := Γis0 + bi + ni, (6.2)

where Γi ∈ Rd×d and bi ∈ Rd are the discretized scaling factor and offset bias, respectively;

ni ∈ Rd is the measurement noise; and s0 ∈ Rd represents the discretized true signal. Note

that, while we here use t to denote the index for both continuous time-step and discrete

time-step, we will only focus on the discrete-time case in the following analysis.
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Keep in mind that our objective is to distributively recover the true signal s0 from a set of

I ill-polluted measurements M := [m1, m2, · · · , mI ]> ∈ RI×d. Since the measurement noise

ni is assumed to have the nature of white Gaussian and it will be later eliminated by an

MSNR procedure, let us first focus on the scaling factor Γi and offset bias bi. In order to cope

with the effects caused by Γi and bi, a natural idea is to globally seek a group of re-scaling co-

efficients α := [α1, α2, · · · , αI ]> ∈ RI and anti-offset coefficients β := [β1, β2, · · · , βI ]> ∈ RI ,

such that the filtered signals

si := αi(mi − βi1d), i ∈ I, (6.3)

will provide better estimates of the true signal s0. The underlying intuition for estimating si

is using αi and βi to compensate the measurement error caused by Γi and bi. We remark that

developing a scheme to seek α and β in a distributed manner faces two main challenges: i)

rather than using the limited local mi to independently estimate αi and βi, we are expected

to use global information M to cooperatively obtain the better estimates; and ii) the lack

of global information for each individual UAV is a key issue on the other hand, since it can

only access the local mi and a limited number of neighbors.

To tackle these two difficulties, we develop a framework with two stages correspondingly:

i) we stand in a global view to introduce a centralized algorithm for solving the optimal α

and β by leveraging the idea of MSNR, see Section 6.1.2 ; and 2) by leveraging the average

consensus scheme developed in Section 2.4 in Chapter 2 , we design a distributed protocol to

locally force each UAV to reach the consensus at the optimality of α and β, see Section 6.1.3 .

6.1.2 Centralized Optimal Averaging

Recall that our first issue is to obtain the optimal α and β, such that the filtered signals

si defined in (6.3 ) will be able to provide the best estimates. To this end, we introduce an

optimal averaging method [146 ] by maximizing signal-to-noise ratio (SNR),

max
α, β

SNR, (6.4)
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and define the value of SNR as follows,

SNR := Es

En

. (6.5)

In (6.5 ), Es denotes the total energy of average signal estimate, i.e., s̄ := (1/I) ·∑I
i=1 si, and

Es is computed as,

Es := ‖s̄− (1/d) · 1d1>
d s̄‖2. (6.6)

En represents the total energy of residue noise,

En :=
I∑

i=1

∥∥∥si − s̄
∥∥∥2

. (6.7)

It can be proved that the optimal solutions α? and β? to the maximization problem (6.4 )

can be derived independently and analytically, given in the following two propositions.

Proposition 6.1.1. For any set of the re-scaling coefficients α, the optimal anti-offset

coefficients β? := [β?
1 , β?

2 , · · · , β?
I ]> that maximize the SNR defined in (6.5 ), are given by,

β?
i = m̄i := 1

d
·

d∑
t=1

mi(t), i ∈ I. (6.8)

Proof. The proof can be found in Theorem 1 in [146 ].

Proposition 6.1.2. For any set of the anti-offset coefficients β, the optimal re-scaling

coefficients α? := [α?
1, α?

2, · · · , α?
I ]> that maximize the SNR defined in (6.5 ), are given by the

first generalized eigenvector of the characteristic equation,

Rα? = λDα?, (6.9)

where R = [rij]Ii,j=1 ∈ RI×I is the centered inner product matrix with rij := m>
i mj−d ·m̄im̄j,

and D is the diagonal matrix of R, i.e., D := diag{r11, r22, · · · , rII} ∈ RI×I .

Proof. The proof can be found in Theorem 2 in [146 ].
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By Propositions 6.1.1 and 6.1.2 , we have obtained an effective way to compute the optimal

α? and β? from a global perspective. Before continuing, let us make a few remarks here.

First, as mentioned before, α acts as a group of re-scaling weights as shown in (6.3 ), and thus

scaling α with any constant δ > 0 will not change the value of SNR. This observation can

be also verified by Proposition 6.1.2 . In fact, α? is computed as the generalized eigenvector

of matrix pair (R, D), and a scaled δα? with any δ > 0 is still a valid eigenvector. Here, we

require δ to be positive since δα? serves as a group of weights. Second, given that each α?
i

can be viewed as a weight for the local measurement mi, it is expected to obtain a relatively

small α?
i when the measurement is far from the true signal s0. Based on these two reasons

above, with restricting 1>
I α? = 1, we can finally obtain a global optimal recovery s? of the

true signal as a summation of each si, i.e.,

s? :=
I∑

i=1
si =

I∑
i=1

α?
i (mi − β?

i 1d). (6.10)

6.1.3 Distributed Sensor Fusion

We now consider a distributed algorithm to implement the above optimal averaging

method. Recall that the desired distributed algorithm requires each individual UAV to

reach a consensus point which is expected to be the same as s?, given only the local mea-

surement and exchanged information from neighbors. It is clear that the optimal anti-offset

coefficients β? can be automatically computed in a distributed way, since each β?
i only relies

on the local measurement mi, as shown in (6.8 ). Moreover, suppose that α?
i and β?

i have

already been locally obtained by each individual UAV i, the final step which takes the sum-

mation as shown in (6.10 ) can also be simply implemented via a standard sum (or average)

consensus procedure. Next, we present the distributed sum consensus scheme by leveraging

the average consensus introduced in Chapter 2 , and then develop the distributed algorithm

to compute the optimal re-scaling coefficient α? via the sum consensus scheme. Note that

here we focus on the sum consensus scheme, instead of average consensus. By doing so, each

UAV does not need to know the number of UAV I as a prior knowledge. This also make our

algorithm more applicable in real-world applications.
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Let us recall that the average consensus scheme developed in Chapter 2 enables each

agent to asymptotically reach the average of their initial states, i.e.,

lim
k→∞
‖xk

i −
1
I
·

I∑
i=1

x0
i ‖ = 0, ∀i ∈ I, (6.11)

where we denote x0
i the initial state of each agent i. Here, consider that the recovered signal

s? is calculated by the summation of si’s as shown in (6.10 ), rather than the average, therefore

we are alternatively interested in a sum consensus scheme which requires the consensus point

to be the summation of the initial states, i.e.,

lim
k→∞
‖xk

i −
I∑

i=1
x0

i ‖ = 0, ∀i ∈ I. (6.12)

Following the same path as introduced in Section 2.4 Chapter 2 , we present the sum

consensus scheme as below. At the k-th iteration, each UAV i performs the following update

of its local states xk
i ∈ Rd and φk

i ∈ RI ,

φk+1
i =

∑
j∈Ni,in

wijφ
k
j ,

xk+1
i =

∑
j∈Ni,in

wijxk
j +

 1
Ii

(
φk+1

i

) − 1
Ii

(
φk

i

)
x0

i ,

(6.13)

where the operator Ii(·) : RI → R selects the i-th component of the input vector and the

initialization of φk
i is specified as φ0

i = ei. Note that we here consider the multi-UAV

network to follow a time-invariant directed graph, and the set Ni,in denotes the i-th agent’s

in-neighborhood. In addition, the compliant weight matrix W = [wij]Ii,j=1 is assumed to

be row-stochastic; see Assumptions 1.4.9 and 1.4.10 in Chapter 1 , and thus the benefits

as stated at the beginning of Section 2.4 can be also achieved by the multi-UAV network

considered in this application.

As an important building block for the complete distributed data fusion framework, we

abstract the above sum consensus scheme as an operator Cτ
sum(·) : RI×d → RI×d with a fixed

iteration number τ , and outline its detailed steps as the following Algorithm 8 .
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Algorithm 8: Sum Consensus – Cτ
sum(·)

Data: Each UAV receives data ui ∈ Rd, specifies the row-stochastic weights wij’s,
and initializes x0

i = ui, φ0
i = ei. Set the maximum iteration number τ , let

k = 0.
while the iteration index k ≤ τ do

Each UAV i ∈ I simultaneously does
(S.1) Collect the information xk

j and φk
j from the in-neighbors j ∈ Ni,+;

(S.2) Update the local states xk+1
i and φk+1

i as (6.13 );
(S.3) Send the updated states to the out-neighbors;
(S.4) Let k ← k + 1 and continue.

end

Inherited from the convergence result as shown in Theorem 2.4.1 in Section 2.4 , we state

the convergence of the sum consensus operator Cτ
sum(·) as follows.

Theorem 6.1.1. Suppose that the time-invariant directed graph of the multi-UAV network

satisfies Assumption 1.4.7 and the compliant weight matrix W satisfies Assumptions 1.4.9 

and 1.4.10 , for any given set of initial states X0 := [x0
1, x0

2, · · · , x0
I ]> ∈ RI×d, one can have

lim
τ→∞
Cτ

sum(X0) = 1I1>
I X0. (6.14)

With the help of the sum consensus operator as well as its convergence as shown in the

above Theorem 6.1.1 , we are now ready to develop the complete distributed data fusion algo-

rithm to seek the first generalized eigenvector α? for the matrix pair (R, D) as shown in (6.9 ).

Inspired by the well-known Power Method [147 ] (also known as Power Iteration) which is

designed to solve a standard eigenvector/eigenvalue problem, we compute the generalized

eigenvector by the following distributed scheme.

Let us first give a review on the centralized Power Method. Consider a diagonalizable

matrix A ∈ RI×I , starting with an initial v0 ∈ RI , then the sequence {vk}∞
k=0 generated by

vk+1 = Avk, (6.15)
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will converge to a eigenvector associated with the eigenvalue of the largest magnitude.

Remark 6.1.1. Note that the power iteration as defined in (6.15 ) does not normalize at

each iteration. As an estimate of the eigenvector, we are only interested in the direction,

rather than the magnitude of each vk, and thus there is no need to normalize it in theory.

In practice, however, vk may either underflow when ‖A‖ < 1 or overflow when ‖A‖ > 1. In

our distributed algorithm, we will introduce an additional normalization step.

We recall that the generalized eigenvector problem to be solved follows Rv = λDv, and

the matrix pair (R, D) in a compact form reads,

R = M(Id −
1
d
· 1d1>

d )M> and D = D(R), (6.16)

where D(·) : RI×I → RI×I takes the diagonal matrix. Applying the standard power

method (6.15 ) to the generalized eigenvector problem leads to an iterative procedure,

Dvk+1 = Rvk. (6.17)

Note that the above procedure will require a solution to the system of linear equations.

Owing to the specific structure of matrices R and D, we can further rewrite (6.17 ) as

vk+1 = D−1Rvk = D−1M(Id −
1
d
· 1d1>

d )M>vk, (6.18)

and it can be validated by the following lemma.

Lemma 6.1.1. Suppose that the matrix pair (R, D) is defined as (6.16 ) and the matrix M

is defined in Section 6.1.1 , then the following statements hold,

i) R is positive semi-definite;

ii) D is positive definite with probability one;

iii) D−1R is positive semi-definite.
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Proof. i) Given that R = M
(
Id−(1/d)·1d1>

d

)
M>, it is sufficient to prove that Id−(1/d)·1d1>

d

is positive semi-definite. In fact, for ∀ζ ∈ Rd, we can have

ζ>(Id −
1
d
· 1d1>

d )ζ = ‖ζ‖2 − 1
d
· (1>

d ζ)2 ≥ 0. (6.19)

Note that the last inequality is due to the Cauchy-Schwartz inequality. Therefore, R is

positive semi-definite.

ii) Since the matrix R = [rij]Ii,j=1 is positive semi-definite, its diagonal element has

rii ≥ 0, i ∈ I. (6.20)

Recall that D is the diagonal matrix of R, i.e., D = D(R), we can have that D is also positive

semi-definite. Moreover, note that rii = ‖mi‖2−dm̄2
i and mi = Γis0 +bi +ni with ni follows

Gaussian distribution, then rii 6= 0 holds with probability one. Hence, D is positive definite

with probability one.

iii) Since D is positive definite, let us denote D−1/2 = diag{1/
√

r11, 1/
√

r22, · · · , 1/
√

rII}.

Then, one can have that D−1R is similar to D−1/2RD−1/2 by

D−1R = D−1/2(D−1/2RD−1/2)D1/2. (6.21)

Since D−1/2RD−1/2 is positive semi-definite, so is D−1R.

Leveraging the idea presented in [148 ], we now present our distributed scheme to perform

the iteration (6.17 ). Suppose that each component vk
i in vk = [vk

1 , vk
2 , · · · , vk

I ]> is updated

by the i-th UAV, we can have the local update as

vk+1
i = 1

rii

m>
i (Id −

1
d
· 1d1>

d ) ·
I∑

i=1
vk

i mi. (6.22)

Since mi represents the local measurement of the i-th UAV, we remark that in (6.22 ) every

piece of information except the summation term can be locally obtained. Subsequently, the

summation term can be viewed as one component of the output from a sum consensus op-
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erator Cτ
sum(·) defined in Algorithm 8 . Thus, we obtain the fully distributed implementation

of (6.22 ), as outlined in Algorithm 9 .

Algorithm 9: Distributed Data Fusion
Data: Each UAV i obtains mi ∈ Rd and initializes v0

i = 1. Let k = 0.
while the termination criterion is NOT satisfied do

Each UAV i ∈ I simultaneously does
(S.1) Locally compute vk

i mi and apply Ck
sum(·) with the input vk

i mi, obtaining
the output, denoted as ξk

i ;
(S.2) Update the local state by

vk+1
i ← 1

rii

m>
i (Id −

1
d
· 1d1>

d )ξk
i ; (6.23)

(S.3) Apply Ck
sum(·) with the input vk+1

i , obtaining the output ηk+1
i ;

(S.4) Update the local states by

vk+1
i ← vk+1

i

ηk+1
i

; (6.24)

(S.5) Let k ← k + 1 and continue.
end

(S.6) Let β?
i = m̄i and α?

i = vk+1
i , and compute si = α?

i (mi − β?
i 1d);

(S.7) Apply Ck
sum(·) with the input si, obtaining the output s?.

Note that steps (S.3) and (S.4) in Algorithm 9 accomplish the normalization of vk

at each iteration. Recall that, in Section 6.1.2 , to recover the true signal by the summa-

tion (6.10 ), we restrict the re-scaling coefficients to satisfy 1>
I α = 1. This is ensured by

vk
i ←

vk
i∑I

i=1 vk
i

, i = 1, 2, · · · , I, (6.25)

and the summation term in (6.25 ) can be also distributively obtained by another sum con-

sensus operator Cτ
sum(·) : R→ R.

Finally, we state the convergence result of Algorithm 9 as follows.
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Theorem 6.1.2. Suppose that the time-invariant directed graph of the multi-UAV network

satisfies Assumption 1.4.7 and the measurements are defined in (6.2 ), then the sequence

{vk}k∈N+ generated by Algorithm 9 satisfies,

lim
k→∞

dist
(
span{vk}, span{u1}

)
= 0, (6.26)

where u1 ∈ RI is the first generalized eigenvector of the matrix pair (R, D). Thus, s? is an

optimal recovery of the measurement, in the sense of MSNR.

Proof. To prove the theorem, let us first show the following statement: the largest generalized

eigenvalue λ1 of the matrix pair (R, D) must have λ1 ≥ 1. In fact, the largest generalized

eigenvalue of the matrix pair (R, D) can be calculated by maximizing the following Rayleigh

Quotient,

λ1 = max
ζ

ζ>Rζ

ζ>Dζ
. (6.27)

By Lemma 6.1.1 , we have proved that R is positive semi-definite and D is positive definite

with probability one, i.e., for ∀ζ 6= 0, ζ>Rζ ≥ 0 and ζ>Dζ > 0. Thus, to prove λ1 ≥ 1, it

is sufficient to show that there exists some ζ such that

ζ>Rζ − ζ>Dζ ≥ 0. (6.28)

Since the matrix D takes the diagonal matrix of R, we can have that the diagonal elements

of R−D are all zeros. Suppose that the eigenvalues of R−D are {γ1, γ2, · · · , γI}, then

I∑
i=1

γi = trace(R−D) = 0, (6.29)

where trace(·) : RI×I → R denotes the trace of the matrix. Therefore, as long as R −D is

not a zero matrix, these must exist a strictly positive eigenvalue γ+, and let us denote the

corresponding eigenvector as ζ+. Now, since ζ>
+(R −D)ζ+ = γ+‖ζ+‖2 ≥ 0, then the above

statement is proved.
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According to the sum consensus operator Cτ
sum(·) defined by the iteration (6.13 ), let us

define a transfer matrix Cτ ∈ RI×I to represent the operator, i.e.,

Xτ = Cτ
sum(X0) = Cτ X0, (6.30)

where

Cτ = (W )τ +
τ−1∑
t=0

(W )τ−t
(
D−1

(
(W )t+1

)
−D−1

(
(W )t

))
. (6.31)

By Theorem 6.1.1 , we know that limτ→∞ ‖Cτ − 1I1>
I ‖ = 0.

Now, based on the step (S.2) in Algorithm 9 , each local update can be rewritten as

vk+1
i = 1

rii

m>
i (Id −

1
d
· 1d1>

d ) · [CkDm(vk)M ]>i , (6.32)

where Dm(·) : RI → RI×I maps the vector into a diagonal matrix and [ · ]i : RI×I → RI takes

the i-th row of the matrix. Alternatively, in a compact form, we can have

vk+1 = Dv

(
D−1M(Id −

1
d
· 1d1>

d )
(
CkDm(vk)M

)>
)

, (6.33)

with Dv(·) : RI×I → RI maps the diagonal entries of the matrix into a vector. Moreover,

let us denote A = D−1R and recall that Dm(vk) is symmetric, the update can be further

written as

vk+1 = Dv
(
ADm(vk)C>

k

)
. (6.34)

Given that the matrix Ck has limk→∞ ‖Ck − 1I1>
I ‖ = 0, we can next explore the consensus

error by rewriting (6.34 ) as follows

vk+1 = Dv
(
ADm(vk)(C>

k − 1I1>
I + 1I1>

I )
)

= Avk +Dv
(
ADm(vk)(C>

k − 1I1>
I )
)

(6.35)

= (A)k+1v0 +
k∑

t=0
(A)k−tDv

(
ADm(vt)(C>

t − 1I1>
I )
)

.
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Note that here we expect the vector sequence {vk}k∈N+ generated by (6.35 ) converges to

the first eigenvector of A, i.e., the first generalized eigenvector of (R, D). According to the

convergence result of centralized power method [147 ], the term (A)k+1v0 converges to the

expected eigenvector. Now we will only need to show the summation term also converges to

the eigenvector.

Notice that A = D−1R can be diagonalized into U−1AU = diag{λ1, λ2, · · · , λI} with

λ1 > λ2 ≥ · · · ≥ λI and U := [u1, u2, · · · , uI ] ∈ RI×I . Furthermore, the group of eigenvectors

{u1, u2, · · · , uI} forms a basis of RI . Next, let us define

εk =
k∑

t=0
(A)k−tDv

(
ADm(vt)(C>

t − 1I1>
I )
)

, (6.36)

and represent the consensus error term in (6.36 ) by the basis, i.e.,

Dv
(
ADm(vt)(C>

t − 1I1>
I )
)

=
I∑

i=1
at

iui. (6.37)

Due to the fact that limk→∞ ‖Ck−1I1>
I ‖ = 0 andDm(vt) is always bounded, the the sequence

{at
i}t∈N+ satisfies limt→∞ at

i = 0. Therefore, we plug (6.37 ) into (6.36 ), yielding

εk =
I∑

i=1

k∑
t=0

at
i(λi)k−tui

= (λ1)k
I∑

i=1

k∑
t=0

at
i(λ1)−t(λi/λ1)k−tui (6.38)

= (λ1)k

(
k∑

t=0
at

1(λ1)−tu1 +
I∑

i=2

k∑
t=0

at
i(λ1)−t(λi/λ1)k−tui

)
.

Since λ1 ≥ 1, we have limt→∞ at
i(λ1)−t = 0. Recall the crucial Lemma 1.4.2 in Chapter 1 ,

together with the fact λi/λ1 < 1 for ∀i = 2, 3, · · · , I, we can have

lim
k→∞

k∑
t=0

at
i(λ1)−t(λi/λ1)k−t = 0, i = 2, 3, · · · , I. (6.39)

Hence, it holds that limk→∞ dist(span{εk}, span{u1}) = 0, and thus Theorem 6.1.2 is proved.
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6.1.4 Numerical Experiment

In this subsection, we evaluate our distributed data fusion framework via a set of simu-

lations by considering the potential rural health monitoring application. In our simulation,

we adopt the noisy measurement model in Section 6.1.1 . A simulated biological electrocar-

diogram (ECG) signal is assumed to be sensed by the multi-UAV network. The target ECG

signal is generated via a simulator provided in [149 ]. The heart rate is assumed to be 105

beats per minute (bpm) and the desired peak voltage is 1.2 millivolts (mV). Fig. 6.1 shows

the simulated ECG signal within a 10-second time interval.
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Figure 6.1. Artificial ECG signal
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Figure 6.2. Topology of a 5-UAV network

We first consider a small-size multi-UAV network, composed of 5 UAVs, for such rural

health monitoring mission. The communication channels among the multi-UAV network are

specified as a connected time-invariant directed graph as shown in Fig. 6.2 . The received
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noisy measurement mi by each UAV is randomly generated by the measurement model as

shown in (6.2 ). Fig. 6.3 plots those noisy measurements; while the red lines represent the

true signal s0, the black lines are measurements by each UAV. As demonstrated in Fig. 6.3 ,

every sensed signal is ill-polluted to some extent. While the first three are possibly imperfect

with being differently scaled and biased, the last two could be completely useless as they lose

the main features of the signal. Therefore, it is reasonable to believe that each sensed signal

is not reliable and thus should be fused to obtain a more accurate result. We demonstrate

the performance of the distributed data fusion algorithm in the next subsection.

Figure 6.3. Measurements of the signal within the network

In Fig. 6.4 , we show the results obtained by both a pure averaging scheme (the top

plot) and a centralized optimal averaging scheme (the bottom plot). It can be seen that the

result from pure averaging is heavily biased, due to the dominating magnitude of the worst

measurement from the fifth UAV. On the contrary, the centralized optimal averaging scheme

offers the much better estimates. In fact, as reflected in the computed optimal re-scaling

coefficients, i.e., α? = [0.2972, 0.2966, 0.2991, 0.1025, 0.0047]>, the optimal averaging gives

smaller weights to more ill-polluted measurements.
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Figure 6.4. Comparison between pure averaging and optimal averaging

Figure 6.5. Performance of the distributed data fusion (5 UAVs)
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We now test the proposed distributed approach (Algorithm 9 ) equipped with the sum

consensus scheme (Algorithm 8 ). Fig. 6.5 illustrates the results obtained after the 23-rd

iteration and provides a comparison between the estimates locally obtained by each UAV

and the one obtained by pure averaging. As shown in Fig. 6.5 , each UAV can obtain an

estimate with high accuracy. In this sense, any UAV is able to send a reliable measurement

back to the medical center. Given that only a few but not all of the UAVs are capable of

sending information back, our framework offers flexibility and efficiency.

Figure 6.6. Topology of an 100-UAV network

Figure 6.7. Performance of the distributed data fusion (100 UAVs)
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We further evaluate the proposed algorithm by simulating a large-size UAV network

composed of 100 UAVs. The network topology is shown as Fig. 6.6 . Suppose that the

true signal recovery generated by each individual UAV i is denoted as s?
i , we evaluate the

distributed sensor fusion algorithm in two aspects. First, we take the average of all estimates,

i.e., s̄? = (1/I) · ∑I
i=1 s?

i , and use the average s̄? to demonstrate a fused result. Second,

we measure the disagreement among all UAVs within the network by the consensus error

J = (1/I) ·∑I
i=1 |s?

i − s̄?|, where | · | : Rd → Rd takes the absolute values element-wise. In

Fig. 6.7 , the figure on the top plots the average of estimates s̄?. It can be seen that s̄? recovers

the true signal with high accuracy. Meanwhile, the figure on the bottom demonstrates the

consensus error. By combining these two figures together, it is verified that the network of

UAVs can reach a consensus at which each UAV provides a fused result with high accuracy.

6.2 Application II: Distributed Source Tracking in Unknown Environments

In the second application, we are interested in the distributed source tracking prob-

lem [150 ], [151 ], i.e., locating one or several positions of the sources, associated with mea-

surements maxima, in a possibly unknown and noisy environment. More specifically, we

employ a multi-UAV system and expect them to cooperatively locate as many local maxima

sources as possible, by leveraging the communications among different UAVs. In addition,

we consider that the environment is not only unknown but also changing dynamically as the

multiple UAVs acquire knowledge from it. In this situation, the team of UAVs needs to track

the moving sources in real-time. We remark that these two settings, i.e., the multi-UAV

system and dynamical environment, make our problem challenging to solve.

6.2.1 Source Tracking with the Multi-UAV System

Let us consider a bounded and obstacle-free environment, in which sources of interest

are present. In particular, we specify the considered environment by a set of points S

with each element s ∈ S representing the position of the point. Since the environment

has been assumed to be bounded, it is easy to see that the set S is finite. We denote N

the number of points in the set, i.e., N = |S|. For each point s in S, there exists a real-
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valued function φk(·) : S → R+ that maps the point’s positional information s to a positive

quantity φk(s) indicating the level of the source at the time-step k. Naturally, in order to

locate the sources, our objective is to deploy the multiple UAVs to the points with the highest

quantities φk(s). More specifically, let us employ a team of I UAVs which are capable of

moving among S and communicating with other connected UAVs, and expect them to track

as many sources as possible. That is, at each time-step k, the multiple UAVs aims at seeking

their best positions p?
k[i] ∈ S, i ∈ I = {1, 2, · · · , I} by cooperatively solving the following

maximization problem,

max
p[i]∈S, i∈I

Fk(p[1], p[2], · · · , p[I]) =
∑

s∈∪I
i=1p[i]

φk(s). (6.40)

Note that the objective function Fk(·) : SI → R+ maps the UAVs’ positions p[i]’s to a positive

scalar that sums all distinct measured quantities. Here, let us assume that the maximizer(
p?

k[1], p?
k[2], · · · , p?

k[I]
)

of problem (6.40 ) is unique at each time-step k and express it as a

compact form p?
k =

[
p?

k[i]
]

i∈I
∈ SI .

It should be remarked that, since the set S is finite, the above maximization problem

can be naively solved by assigning the i-th UAV to the point p[i] which has the i-th largest

quantity φk

(
p[i]

)
. However, such a naive scheme inherently assumes each UAV to be aware

of its exclusive global ID which is a restrictive requirement in the distributed setting [152 ].

As an alternative way to solve the optimization problem (6.40 ), we shall remark that the

problem can be viewed as a special case of the monotone submodular maximization, and thus

can be solved by the distributed algorithm proposed in our previous work [153 ]. The key idea

of this algorithm is to find the equilibrium solution, and interestingly, it can be verified that

the problem (6.40 ) has a unique equilibrium which is coincident with the optimal solution.

Notice that the problem (6.40 ) considered in the above context is somewhat trivial,

since it implicitly assumes that each UAV perfectly knows the state φk(s) of the entire

environment at each time-step k. This is unrealistic for the real-world applications. To

respond, we next let the team of UAVs cooperatively estimate the environment based on

the local noisy measurements, and in the following, we first introduce the dynamics of the

environment states as well as the measurement model of the UAVs.
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Suppose that the vector φk ∈ RN
+ stacks each individual state φk(s) for all points s

in the environment S. We consider the following linear time-varying (LTV) model for the

environment state, i.e.,

φk+1 = Ak+1φk, (6.41)

where Ak ∈ RN×N denotes the state transition matrix. In order to ensure that the above

maximization problem (6.40 ) is well-defined, it is required to guarantee that the state φk is

always bounded and also will not vanish to zero as the time-step k increases. More precisely,

we use the following assumption to constrain the behavior of the state dynamics.

Assumption 6.2.1. For the LTV model (6.41 ), there exist uniform lower and upper bounds

0 <
¯
α ≤ ᾱ <∞ such that, for ∀k ≥ t > 0,

¯
α · IN ≤ A[k : t]>A[k : t] ≤ ᾱ · IN , (6.42)

where the state propagation matrix A[k : t] ∈ RN×N is written as

A[k : t] = AkAk−1 · · ·At. (6.43)

Remark 6.2.1. Note that the above Assumption 6.2.1 is reasonably required to ensure that

the maximum components of φk are always recognizable for the multi-UAV system. Moreover,

this assumption also implies the invertibility of the matrices Ak’s. In fact, in the sampled-

data system (one of the mostly studied discrete-time systems), the matrix Ak is naturally

invertible since it is often obtained by discretization of the continuous-time system [154 ]. Such

an assumption has been commonly made in various research studying the state estimation

problems, see e.g., [154 ]–[157 ].

In addition, we consider the following linear stochastic measurement model for each

UAV i,

zi
k = H i

(
pk[i]

)
φk + ni

k. (6.44)
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where zi
k ∈ Rm represents the measurement obtained by the UAV at the time-step k1

 ;

H i
(
pk[i]

)
∈ Rm×N denotes the measurement matrix depending on the UAV’s position pk[i];

and ni
k ∈ Rm is corresponding to the measurement noise satisfying the following assumption.

Assumption 6.2.2. It is assumed that the measurement noise ni
k follows the independent

and identically distributed (i.i.d.) Gaussian for each individual UAV, with zero-mean and co-

variance matrix V i = vi · Im. In addition, there exist lower and upper bounds 0 <
¯
v ≤ v̄ <∞

such that

¯
v ≤ vi ≤ v̄, ∀i ∈ I. (6.45)

Remark 6.2.2. We shall remark that the measurement matrix H i
(
pk[i]

)
is not specified

in the above model (6.44 ). In fact, it can be defined by various means based on the UAV’s

position. One of the simplest way is to let H i
(
pk[i]

)
= e>

l where el ∈ RN is the unit vector

and l ∈ {1, 2, · · · , N} denotes the index of the position pk[i] in the environment S. This

means that the UAV only measures the quantity at the point where it currently is. Such a

choice of H i
(
pk[i]

)
is actually adopted in [158 ] as the so-called point-wise sensing model.

Besides, some other specifications of the measurement matrix are also used in the existing

works. For instance, a circular sensing area with radius ri is applied in [159 ], which implies

that,

H i
(
pk[i]

)
= [el]>l∈Ci

k
, (6.46)

where the set Ci
k := {l | ‖sl − pk[i]‖ ≤ ri} includes the indices of all points sl that fall into

the disk which is centered at pk[i] and has radius ri.

Based on the measurement model (6.44 ), one should notice that the true value of φk

can be estimated by many techniques, such as the least-square, the classical Kalman fil-

ter, to name a few, when some mild conditions on the measurement matrices are satisfied.

Therefore, the problem of distributed source tracking with an unknown environment can be
1↑ For simplicity, we assume that each UAV’s measurement has the same dimension m; this can be easily
relaxed to a general case.
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addressed by a simple approach which contains the following two phases separately: i) let

the team of UAVs move around the environment and obtain an accurate enough estimation

of the state; and ii) specify the UAVs’ target positions by solving the maximization prob-

lem (6.40 ) based on the estimated states. However, this is essentially an off-line approach,

since the UAVs do not have specific targets when estimating the environment in the phase i)

and the phase ii) cannot be started until an accurate enough estimate is obtained. Motivated

by this, in the next section, we aim to integrate the above two phases together and propose

an adaptive on-line framework. That is, the UAVs recursively update their target positions;

meanwhile, measure and estimate the unknown environment, until the steady state is reached

in which the team of I UAVs manages to tracking the top I moving sources.

6.2.2 An Adaptive On-line Framework

Let us begin by rewriting the measurement model (6.44 ) into the following compact form,

zk = Hkφk + nk. (6.47)

Here, zk = [(z1
k)>, (z2

k)>, · · · , (zI
k)>]> ∈ RM is the measurement obtained by all UAVs with

dimension M = mI; Hk =
[
H1(pk[1])>, H2(pk[2])>,· · ·, HI(pk[I])>

]>
∈RM×N stacks all local

measurement matrices as a collective global one2
 ; and nk = [(n1

k)>, (n2
k)>, · · · , (nI

k)>]> ∈ RM

denotes the Gaussian noise with zero-mean and covariance expressed as

V := diag{V 1, V 2, · · · , V I} ∈ RM×M . (6.48)

Subsequently, the centralized Kalman filter for estimating the mean φ̂k ∈ RN and covariance

Σk ∈ RN×N performs the following recursions,

Σk+1 = Ak+1
(
Σ−1

k + Yk

)−1
A>

k+1; (6.49a)

φ̂k+1 = Ak+1

(
φ̂k + (Σ−1

k + Yk)−1(yk − Ykφ̂k)
)

, (6.49b)

2↑ When writing Hk, with slight abuse of notation, we have absorbed the dependency on the UAVs’ positions
pk[i]’s into the index k.
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where the two variables Yk := (Hk)>V −1Hk ∈ RN×N and yk := (Hk)>V −1zk ∈ RN , often

referred to as the new information, incorporate the measurements into the updates.

It is also worth mentioning that the Kalman filter (6.49 ) readily estimates the unknown

environment in an on-line manner, i.e., the team of I UAVs moves to new positions, obtains

the new measurements, and updates their estimations. However, we should note that the

two following issues may arise: i) the statistical property of the classical Kalman filter may

no longer hold due to the sequential decision process; and ii) such an on-line procedure is

performed in a centralized way, since the new information Yk and yk are involved with the

data obtained/maintained by all UAVs. In order to devise a distributed scheme to run the

Kalman filter (6.49 ), many existing works, e.g., [160 ]–[162 ], leverage the special structure

of the noise covariance V . Considering the diagonal structure of the matrix V , as shown

in (6.48 ), the new information can be further expressed as

Yk =
I∑

i=1
H i(pi

k)(V i)−1H i(pi
k)>; (6.50a)

yk =
I∑

i=1
H i(pi

k)(V i)−1zi
k, (6.50b)

which means that Yk and yk can be computed by simply summing all the local information

together. This motivates the development of Kalman consensus filter, in which each UAV first

carries out an sum consensus procedure as introduced in Chapter 2 and also in Section 6.1.3 ,

to fuse local information, and then performs the standard Kalman update (6.49 ).

Given that the distributed estimation of the unknown environment can be accomplished

by the above Kalman consensus filter, our question now becomes how to integrate the esti-

mation together with the UAVs’ decision-making process. A naive idea would be using the

estimated mean value φ̂k at each iteration k, and then solving the following maximization,

pk ∈ arg max
p[i]∈S, i∈I

∑
s∈∪I

i=1p[i]
φ̂k(s). (6.51)

Here, we use φ̂k(s) ∈ R to denote one component of the vector φ̂k which corresponds to the

point s in the environment. It should be emphasized that such a scheme cannot guarantee
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the team of UAVs to locate the sources with the highest true φk(s)’s. To elaborate on this,

let us consider a special case in which the environment is static, i.e., φk(s) = φ0(s), ∀k ∈ N+.

Then, an undesired but possible scenario is that the UAVs significantly underestimate the

maximum value φ0(s?) at the initial stage, i.e., φ̂0(s?) � φ0(s?), and as a result, the UAVs

will never have another chance to visit the key point s?. On this account, it can been seen

that merely utilizing the estimated mean is insufficient to drive the team of UAVs to the

desired positions. To address this, we next take advantage of both the estimated mean φ̂k

and covariance Σk to develop our distributed on-line source tracking algorithm.

Based on φ̂k and Σk, let us introduce an additional variable µk ∈ RN , which we refer to

as the dummy upper confidence bound (D-UCB),

µk := φ̂k + βk(δ) · diag1/2(Σk). (6.52)

Note that the operator diag1/2(·) : RN×N → RN maps the square root of the matrix diagonal

elements to a vector, and the parameter βk(δ) > 0 depending on the critical confidence

level δ will be specified later on. In fact, the intuition behind this notion of D-UCB is

straightforward: each µk provides a probabilistic upper bound of the true value φk by

utilizing the current mean and covariance. Next, we formalize, with the following proposition,

how the true value φk is upper bounded by the D-UCB µk with the probability related to δ.

We postpone the proof to the next subsection.

Proposition 6.2.1. Under Assumption 6.2.1 and 6.2.2 , suppose that φ̂k and Σk are generated

by the Kalman filter (6.49 ) with φ̂0 and
¯
σ · IN ≤ Σ0 ≤ σ̄ · IN , then it holds that,

P
(∣∣∣φ̂k − φ0

∣∣∣ ≤ βk(δ) · diag1/2(Σk)
)
≥ 1− δ, (6.53)

where the sequence {βk(δ)}k∈N+ is non-decreasing satisfying

βk(δ) ≥ N3/2c1 + N2c2 ·
√

log
(

σ̄/
¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

)
, (6.54)

with c1 = ‖φ̂0 − φ0‖/
√

¯
σ and c2 = v̄2

√
max{2, 2/

¯
v}.
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The above Proposition 6.2.1 inherently constructs a polytope centered at the state esti-

mate φ̂k such that the true state φk falls into it with probability at least 1− δ. Based on the

polytope, it can be seen that the D-UCB µk takes the upper bounds marginally and each

element µk(s) is guaranteed to have µk(s) ≥ φk(s) with probability at least 1− δ. Now, we

can use the defined D-UCB µk to update the UAVs target positions in the on-line manner,

by solving the following maximization problem:

pk ∈ arg max
p[i]∈S, i∈I

∑
s∈∪I

i=1p[i]
µk(s). (6.55)

We summarize our complete distributed on-line source tracking scheme as Algorithm 10 

and establish its performance with the following theorem. Likewise, the proof is postponed

to the next subsection.

Algorithm 10: Distributed On-line Source Tracking

Data: Each UAV i initializes its own estimates φ̂0 and Σ0, and computes the target
position pi

1. Set the confidence level δ and parameters {βk(δ)}k∈N+ , let k = 1.
while the termination criteria is NOT satisfied do

Each agent i ∈ I simultaneously does
(S.1) Obtain the measurement zi

k based on the measurement matrix H i(pi
k);

(S.2) Collect information from neighbors, obtain mean φ̂k and covariance Σk by
Kalman consensus filter (6.49 );

(S.3) Compute via (6.52 ) the updated D-UCB µk based on φ̂k and Σk;
(S.4) Assign the new target position pi

k+1 by solving (6.55 ).
(S.5) Let k ← k + 1, and continue.

end

Theorem 6.2.3. Suppose that {pk}k∈N+ is the sequence generated by Algorithm 10 , under

the conditions in Proposition 6.2.1 , then it holds that, with probability 1− δ, for ∀K ∈ N+,

K∑
k=1

(
Fk(p?

k)− Fk(pk)
)
≤ O

(√
K log(K)

)
. (6.56)
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6.2.3 Convergence Analysis

In this subsection, we prove the convergence result of our distributed on-line source

tracking algorithm, stated in both Proposition 6.2.1 and Theorem 6.2.3 . In order to facilitate

the following proofs, let us start with introducing several vector norms. First, associated

with an arbitrary positive definite matrix M = [mij]Ni,j=1 ∈ RN×N , we define the L2-based

vector norm ‖ · ‖M : RN → R+ as

‖x‖M :=
√

x>Mx, (6.57)

where x = [x1, x2, · · ·xN ]> ∈ RN . Further, let us define the L∞-based norm ‖ · ‖DM ,∞ :

RN → R+ associated with the diagonal matrix of the arbitrary positive definite M , i.e.,

DM = diag{m11, m22, · · · , mNN} ∈ RN×N , as

‖x‖DM ,∞ := max
1≤i≤N

mii · |xi|. (6.58)

Note that the above norm ‖·‖DM ,∞ is well-defined since the positive definiteness of M ensures

that mii > 0. Similarly, we define the L1-based norm ‖ · ‖DM ,1 : RN → R+ as

‖x‖DM ,1 :=
N∑

i=1
mii · |xi|. (6.59)

With the vector norms introduced above, it can be immediately verified that the L1-

based norm ‖ ·‖DM ,1 is the dual norm of the L∞-based ‖ ·‖D−1
M ,∞ where D−1

M takes the inverse

of the matrix DM , and in addition, for ∀x ∈ RN ,

‖x‖DM ,∞ ≤ ‖x‖DM ,1 ≤
√

N · ‖x‖D2
M

. (6.60)

Furthermore, we show, by the following lemma, the relationship between ‖x‖M and ‖x‖DM
.

Lemma 6.2.1. For arbitrary positive definite M ∈ RN×N , it holds that ∀x ∈ RN ,

‖x‖M ≤ N · ‖x‖DM
. (6.61)
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Proof. According to the above definitions, one can have

‖x‖2
M =

N∑
i=1

N∑
j=1

mij · xixj

≤
N∑

i=1
mii · x2

i +
N∑

i=1

∑
j 6=i

|mij| · |xixj|

≤
N∑

i=1
mii · x2

i +
N∑

i=1

∑
j 6=i

√
miimjj · |xixj|

≤
N∑

i=1
mii · x2

i +
N∑

i=1

∑
j 6=i

1
2(mii · x2

i + mjj · x2
j)

= N ·
N∑

i=1
mii · x2

i

= N · ‖x‖DM
.

(6.62)

Note that the second inequality is due to the positive definiteness of M , i.e., |mij| ≤
√

miimjj.

Therefore, the proof is completed.

• Proof of Proposition 6.2.1 

By taking advantages of the defined norm ‖·‖DM ,∞, the inequality (6.53 ) in Proposition 6.2.1 

is equivalent to state that, with probability at least 1− δ,

∥∥∥φ̂k − φk

∥∥∥
D−1/2

Σk
,∞
≤ βk(δ). (6.63)

Therefore, we next prove the inequality (6.63 ) where βk(δ) is defined in (6.54 ). Note that the

Kalman consensus filter generates the state estimate φ̂k and covariance Σk as shown in (6.49 ),

we first show, by the following lemma, an equivalent form of the Kalman consensus filter.

Lemma 6.2.2. Suppose that φ̂k and covariance Σk are generated by (6.49 ), then at each

iteration k, it is equivalent to write

Σk = A[k : 1]Υ−1
k A[k : 1]>; (6.64a)

φ̂k = A[k : 1]Υ−1
k

(
Σ−1

0 φ̂0 +
k−1∑
t=0

A[t : 1]>H>
t V −1zt

)
, (6.64b)
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where the matrix Υk ∈ RN×N is defined as

Υk = Σ−1
0 +

k−1∑
t=0

A[t : 1]>H>
t V −1HtA[t : 1]. (6.65)

Proof. Let us prove the above lemma by mathematical induction. First, it is straightforward

to confirm that the above (6.64 ) is identical to the original recursion (6.49 ) when k = 1. Then,

let us assume that (6.64 ) produces the same results as (6.49 ) up to the time-step k. Next,

we prove the consistency for the time-step k + 1.

Before proceeding, let us first notice the following identity with the definition of Υk,

Υ−1
k+1 = (IN −Υ−1

k+1A[k : 1]>H>
k V −1HkA[k : 1])Υ−1

k . (6.66)

Note that the above equality can be easily verified by multiplying Υk+1 on the both sides.

Based on the recursion (6.49a ), we plug in the previously obtained Σk in the form

of (6.64a ) and have that

Σk+1 = Ak+1

(
Σ−1

k + H>
k V −1Hk

)−1
A>

k+1

= Ak+1

(
A[k : 1]−>ΥkA[k : 1]−1 + H>

k V −1Hk

)−1
A>

k+1

= A[k + 1 : 1]
(

Υk + A[k : 1]>H>
k V −1HkA[k : 1]

)−1
A[k + 1 : 1]>

= A[k + 1 : 1]Υ−1
k+1A[k + 1 : 1]>.

(6.67)

Similarly, we plug φ̂k in the form of (6.64b ) into the recursion (6.49b ) and obtain

φ̂k+1 = Ak+1

(
φ̂k + (Σ−1

k + Yk)−1(yk − Ykφ̂k)
)

= Ak+1

(
IN − (Σ−1

k + Yk)−1Yk

)
φ̂k + Ak+1(Σ−1

k + Yk)−1H>
k V −1zk

= A[k+1 : 1]
(

IN −Υ−1
k+1A[k : 1]>H>

k V −1HkA[k : 1]
)

Υ−1
k

·
(

Σ−1
0 φ̂0 +

k−1∑
t=0

A[t : 1]>H>
t V −1zt

)
+ A[k+1 : 1]Υ−1

k+1A[k : 1]>H>
k V −1zk

= A[k+1 : 1]Υ−1
k+1

(
Σ−1

0 φ̂0 +
k∑

t=0
A[t : 1]>H>

t V −1zt

)
.

(6.68)
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Note that the above identity (6.66 ) is applied in the last equality. Based on (6.67 ) and (6.68 ),

the proof is completed.

Next, given that the state dynamics has φk = A[k : 1]φ0 and thus zk = HkA[k : 1]φ0+nk,

the state estimate φ̂k can be further expressed as

φ̂k = A[k : 1]Υ−1
k

(
Σ−1

0 φ̂0 +
k−1∑
t=0

A[t : 1]>H>
t V −1nt + Υkφ0 − Σ−1

0 φ0

)

= φk + A[k : 1]Υ−1
k

k−1∑
t=0

A[t : 1]>H>
t V −1nt + A[k : 1]Υ−1

k Σ−1
0 (φ̂0 − φ0).

(6.69)

Therefore, it holds that ∀x ∈ RN ,

x>(φ̂k − φk) = x>A[k : 1]Υ−1
k

k−1∑
t=0

A[t : 1]>H>
t V −1nt + x>A[k : 1]Υ−1

k Σ−1
0 (φ̂0 − φ0)

(6.1.a)
≤

∥∥∥A[k : 1]>x
∥∥∥

Υ−1
k

·
∥∥∥∥ k−1∑

t=0
A[t : 1]>H>

t V −1nt

∥∥∥∥
Υ−1

k

+
∥∥∥A[k : 1]>x

∥∥∥
Υ−1

k

·
∥∥∥Σ−1

0 (φ̂0 − φ0)
∥∥∥

Υ−1
k

(6.1.b)=
∥∥∥x∥∥∥

Σk

·
(∥∥∥∥ k−1∑

t=0
A[t : 1]>H>

t V −1nt

∥∥∥∥
Υ−1

k

+
∥∥∥Σ−1

0 (φ̂0 − φ0)
∥∥∥

Υ−1
k

)
(6.1.c)
≤ N ·

∥∥∥x∥∥∥
DΣk

·
(∥∥∥∥ k−1∑

t=0
A[t : 1]>H>

t V −1nt

∥∥∥∥
Υ−1

k

+
∥∥∥Σ−1

0 (φ̂0 − φ0)
∥∥∥

Υ−1
k

)
.

(6.70)

where (6.1.a) is due to the Cauchy-Schwartz inequality; (6.1.b) is due to (6.64a ); and (6.1.c)

is based on Lemma 6.2.1 .

Now, let x = D−1
Σk

(φ̂k − φk), it follows that

∥∥∥φ̂k − φk

∥∥∥
D−1

Σk

≤ N ·
(∥∥∥∥ k−1∑

t=0
A[t : 1]>H>

t V −1nt

∥∥∥∥
Υ−1

k

+
∥∥∥Σ−1

0 (φ̂0 − φ0)
∥∥∥

Υ−1
k

)
. (6.71)

According to the inequality in (6.60 ), we can have that

∥∥∥φ̂k − φk

∥∥∥
D−1/2

Σk
,∞
≤
√

N ·
∥∥∥φ̂k − φk

∥∥∥
D−1

Σk

≤ N3/2 ·
(∥∥∥∥ k−1∑

t=0
A[t : 1]>H>

t V −1nt

∥∥∥∥
Υ−1

k

+
∥∥∥Σ−1

0 (φ̂0 − φ0)
∥∥∥

Υ−1
k

)
.

(6.72)
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In order to prove the inequality (6.63 ), we now need to upper bound the two terms on

the right hand side of (6.72 ); see the following two lemmas.

Lemma 6.2.3. Let the conditions in Proposition 6.2.1 hold and the matrix Υk be defined

as (6.65 ), then there exists a constant c1 = ‖φ̂0 − φ0‖/
√

¯
σ such that for ∀k > 0,

∥∥∥Σ−1
0 (φ̂0 − φ0)

∥∥∥
Υ−1

k

≤ c1. (6.73)

Proof. By the definition (6.65 ) of the matrix Υk, it is straightforward to see that Υ−1
k ≤ Σ0,

and therefore,

∥∥∥Σ−1
0 (φ̂0 − φ0)

∥∥∥2

Υ−1
k

= (φ̂0 − φ0)>Σ−1
0 Υ−1

k Σ−1
0 (φ̂0 − φ0)

≤ (φ̂0 − φ0)>Σ−1
0 (φ̂0 − φ0)

≤ 1/
¯
σ · ‖φ̂0 − φ0‖2,

(6.74)

where the last inequality is due to the condition Σ0 ≥ ¯
σ·IN . Thus, the proof is completed.

Lemma 6.2.4. Let the conditions in Proposition 6.2.1 hold and the matrix Υk be defined

as (6.65 ), then there exists a constant c′
2 = v̄2

√
2N ·max{1, 1/

¯
v} such that with probability

at least 1− δ, for ∀k > 0,

∥∥∥∥ k−1∑
t=0

A[t : 1]>H>
t V −1nt

∥∥∥∥
Υ−1

k

≤ c′
2 ·
√

log
(

σ̄/
¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

)
. (6.75)

Proof. This proof is primarily based on the results presented in [163 ] (see Lemmas 8 – 10

and Theorem 1). For the notational simplicity, let us define

Xt := A[t : 1]>H>
t V −1 ∈ RN×M . (6.76)

Then, according to Theorem 1 in [163 ], it holds with probability at least 1− δ that,

∥∥∥∥ k−1∑
t=0

Xtnt

∥∥∥∥
Ω−1

k

≤ 2v̄2 ·
√

log
(det(Ωk)1/2 det(Σ0)1/2

δ

)
, (6.77)

136



where Ωk := Σ−1
0 +∑k−1

t=0 XtX
>
t ∈ RN×N . Let us recall the definition (6.65 ) of the matrix Υk

and notice that there is a slight difference between Ωk and Υk. Next, we show that there

exists a constant c′
3 = max{1, 1/

¯
v} such that Ωk ≤ c′

3 ·Υk,∀k > 0. In fact, it holds that

Ωk = Σ−1
0 +

k−1∑
t=0

A[t : 1]>H>
t V −2HtA[t : 1]

≤ Σ−1
0 + 1/

¯
v ·

k−1∑
t=0

A[t : 1]>H>
t V −1HtA[t : 1]

≤ max{1, 1/
¯
v} ·Υk.

(6.78)

Note that the first inequality is due to the fact that
¯
v is the smallest entry of the diagonal

matrix V ; see Assumption 6.2.2 . Therefore, the previous statement can be immediately

proved by letting c′
3 = max{1, 1/

¯
v}, and based on this statement, it holds that Υ−1

k ≤ c′
3 ·Ω−1

k .

Together with the inequality (6.77 ), one can have that

∥∥∥∥ k−1∑
t=0

Xtnt

∥∥∥∥
Υ−1

k

≤
√

c′
3 ·
∥∥∥∥ k−1∑

t=0
Xtnt

∥∥∥∥
Ω−1

k

≤ 2v̄2
√

max{1, 1/
¯
v} ·

√
log

(det(Ωk)1/2 det(Σ0)1/2

δ

)
.

(6.79)

Moreover, according to the inequality of arithmetic and geometric means and the defini-

tion of Ωk, it holds that

det(Ωk) ≤
(

1/N · trace
(
Σ−1

0

)
+ 1/N ·

k−1∑
t=0

trace(XtX
>
t )
)N

, (6.80)

where the trace of the matrix XtX
>
t further has

trace(XtX
>
t ) = trace

(
A[t : 1]>H>

t V −2HtA[t : 1]
)

(6.2.a)
≤ 1/

¯
v2 ·

N∑
n=1

e>
n A[t : 1]>H>

t HtA[t : 1]en

(6.2.b)
≤ 1/

¯
v2 ·

N∑
n=1

e>
n A[t : 1]>A[t : 1]en

(6.2.c)
≤ N · ᾱ/

¯
v2.

(6.81)
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Note that (6.2.a) is due to
¯
v = mini∈I vi and en ∈ RN denotes the unit vector; (6.2.b)

follows from the special form of the measurement matrix Ht, i.e., each row has only one

element equal to one and all others equal to zero; and (6.2.c) is based on Assumption 6.2.1 .

In addition, given that the initialization Σ0 ensures
¯
σ · IN ≤ Σ0 ≤ σ̄ · IN , it follows that

trace(Σ−1
0 ) ≤ N/

¯
σ and det(Σ0) ≤ σ̄N . As a result, we can eventually arrive at

√
log

(
det(Ωk)1/2 det(Σ0)1/2/δ

)
=
√

1/2 · log
(

det(Ωk)
)

+ 1/2 · log
(

det(Σ0)
)
− log(δ)

≤
√

N/2 ·
√

log
(

σ̄/
¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

)
.

(6.82)

Together with the inequality (6.77 ), the proof of Lemma 6.2.4 is completed.

Now, based on Lemmas 6.2.3 – 6.2.4 and inequality (6.72 ), it has been shown that, with

probability 1− δ

∥∥∥φ̂k − φk

∥∥∥
D−1/2

Σk
,∞
≤ N3/2 ·

c1 + c′
2 ·
√

log
(

σ̄/
¯
σ + ᾱσ̄ · k/

¯
v2

δ2/N

), (6.83)

with c1 = ‖φ̂0 − φ0‖/
√

¯
σ and c′

2 = v̄2
√

2N ·max{1, 1/
¯
v}. Therefore, Proposition 6.2.1 is

proved.

• Proof of Theorem 6.2.3 

Let us start the proof by introducing additional notations. Recall that p?
k, as defined

in (6.40 ), denotes the positions of the moving sources at time-step k, and similarly, pk

denotes the target positions for the multiple UAVs generated by our algorithm. To better

characterize the positional information, let us define a mapping a(·) : SI → RN which maps

the position p to the N -dimensional vector,

a(p) =
I∑

i=1
esi

, (6.84)
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where each si corresponds to the index of the position p[i]. More precisely, since the posi-

tions pk and p?
k are solved by the maximization problems; see (6.55 ) and (6.40 ), it can be

immediately verified that the vectors a(pk) and a(p?
k) must have I elements equal to one

and all others equal to zero. Therefore, we denote the set of all possibilities of these vectors

as

A := {a | a ∈ {0, 1}N , 1>
Na = I}. (6.85)

Furthermore, for the notational simplicity, we abbreviate the above a(pk) and a(p?
k) to

ak ∈ A and a?
k ∈ A, respectively. With the help of these notations, the loss of function

values can be expressed as,

rk := Fk(p?
k)− Fk(pk) = 〈a?

k − ak, φk〉. (6.86)

Next, we show, by the following lemma, that there exists an uniform upper bound for

the loss of function values.

Lemma 6.2.5. Suppose that Assumption 6.2.1 holds and the loss of function rk is defined

as (6.86 ), then there is an upper bound γ̄ = 2
√

Iᾱ · ‖φ0‖2 such that for rk ≤ γ̄, ∀k > 0.

Proof. Recall that the linear dynamics of the state φk ensures φk = A[k : 1]φ0, thus based

on (6.86 ), it follows that

rk

(6.3.a)
≤ ‖a?

k − ak‖ · ‖φk‖
(6.3.b)
≤

(
‖a?

k‖+ ‖ak‖
)
·
∥∥∥φ>

0 A[k : 1]>A[k : 1]φ0

∥∥∥
(6.3.c)
≤ 2

√
Iᾱ · ‖φ0‖2

(6.87)

where (6.3.a) is due to the Cauchy-Schwartz inequality; (6.3.b) follows from the triangle

inequality and the state dynamics; and (6.3.c) is based on the fact that both a?
k and ak are

from the set A as well as Assumption 6.2.1 .
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Let us define another set χk ∈ RN which is characterized by Proposition 6.2.1 ,

χk :=
{
φ
∣∣∣ ‖φ̂k − φ‖D−1/2

Σk
,∞ ≤ βk(δ)

}
. (6.88)

It is guaranteed by Proposition 6.2.1 that φk ∈ χk with probability at least 1 − δ at each

iteration k.

With the help of the defined set χk, we now present a supporting lemma which measures

the update of the target positions pk (or ak) at each time-step k.

Lemma 6.2.6. Under the conditions in Proposition 6.2.1 , suppose that the positional in-

formation ak is generated by solving the maximization problem (6.55 ) with the D-UCB µk

computed by (6.52 ), then the optimal function value 〈ak, µk〉 of (6.55 ) can be obtained by

solving the following constrained bi-linear program,

max
a∈A, φ∈χk

〈a, φ〉. (6.89)

In addition, it holds with probability 1− δ that,

〈ak, µk〉 ≥ 〈a?
k, φk〉. (6.90)

Proof. Notice that the program (6.89 ) can be written as the following equivalent form,

max
a∈A

Q(a), (6.91)

where the objective function Q(·) : A → R is defined by another maximization problem,

Q(a) := max
φ∈χk

〈a, φ〉. (6.92)

Based on the KKT conditions and the definition of the feasible set χk, the optimal

solution φ? of the problem (6.92 ) can be analytically expressed as

φ? = φ̂k + βk(δ) · diag1/2(Σk), (6.93)
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which is exactly the same as the definition of D-UCB in (6.52 ). Therefore, it holds that

〈ak, µk〉 = max
a∈A, φ∈χk

〈a, φ〉. (6.94)

Furthermore, since Proposition 6.2.1 guarantees that φk ∈ χk with probability 1− δ and

a? = arg maxa∈A〈a, φk〉, it is easy to verify that (6.90 ) holds with probability 1− δ.

Now, we are ready to prove the statement in Theorem 6.2.3 , i.e., ∑K
k=1 rk ≤ O(

√
K log K).

Before proceeding, let us first recall that the vector norm ‖ · ‖DM ,1 as defined in (6.59 ) is the

dual norm of ‖ · ‖D−1
M ,∞ as defined in (6.58 ). Therefore, the loss of function value rk has

rk = 〈a?
k, φk〉 − 〈ak, φk〉

(46..a)
≤ 〈ak, µk〉 − 〈ak, φk〉

(6.4.b)
≤ ‖ak‖D1/2

Σk
,1 · ‖µk − φk‖D−1/2

Σk
,∞

(6.4.c)
≤ 2βk(δ) · ‖ak‖D1/2

Σk
,1

(6.4.d)
≤ 2

√
Nβk(δ) · ‖ak‖DΣk

,

(6.95)

where the inequality (6.4.a) is due to the above Lemma 6.2.6 ; (6.4.b) follows from the Hölder’s

inequality; (6.4.c) is due to the triangle inequality and the fact that both µk and φk are in

the set χk; and (6.4.d) comes from the inequality (6.60 ). Next, to further investigate the key

term ‖ak‖DΣk−1
, we show an upper bound for the cumulative ‖ak‖DΣk−1

’s.

Lemma 6.2.7. Suppose that the conditions in Proposition 6.2.1 hold and the positional

information ak’s are generated by Algorithm 10 , then it holds that for ∀K > 0,

K−1∑
k=0

min{1, 1/v̄ · ‖ak‖2
DΣk
} ≤ 2N · log

(
det(Σ0)1/N · ᾱ ·

(
(
¯
α

¯
σ)−1 + K · (

¯
α

¯
v)−1

))
. (6.96)

Proof. Recall that the matrix Σk is generated by the following recursion,

Σk+1 = Ak+1

(
Σ−1

k + H>
k V −1Hk

)−1
A>

k+1. (6.97)
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For the sake of presentation, let us first focus on the inverse of Σk, i.e., Θk = Σ−1
k ∈ RN×N ,

and thus it holds that,

Θk+1 = A−>
k+1

(
Θk + H>

k V −1Hk

)
A−1

k+1. (6.98)

Consider the determinant of the matrices Θk’s, one can have that

det(Θk+1) = 1/ det(A>
k+1Ak+1) · det

(
Θk + H>

k V −1Hk

)
= 1/ det(A>

k+1Ak+1) · det
(

Θ1/2
k

(
IN + Θ−1/2

k H>
k V −1HkΘ−1/2

k

)
Θ1/2

k

)
= det(Θk)/ det(A>

k+1Ak+1) det
(

IN + Θ−1/2
k H>

k V −1HkΘ−1/2
k

)
.

(6.99)

For simplicity, we here use Yk to substitute H>
k V −1Hk again. Consider that the noise covari-

ance matrix V is diagonal and Hk takes the specific form of Hk = [el]>l∈∪I
i=1Ci , where each set

Ci contains the indices of the positions covered by the i-th UAV’s sensing area. Therefore,

the matrix Yk is also diagonal and can be expressed as

Yk =
I∑

i=1

∑
l∈Ci

1/vi · ele>
l . (6.100)

Further, let us denote Θ−1/2
k YkΘ−1/2

k by Ξk ∈ RN×N . Suppose that λn(Ξk) represents the

n-th eigenvalue and ξk
nn is the n-th diagonal entry of Ξk, then the trace of the matrix has

trace(Ξk) =
N∑

n=1
λn(Ξk) =

N∑
n=1

ξk
nn. (6.101)

In addition, we denote θk
n ∈ RN the n-th column of the matrix Θ−1/2

k ; note that (θk
n)> is also

the n-th row since Θ−1/2
k is symmetric. As a result of the specific structure of the matrix Yk,

the diagonal entries ξk
nn of Ξk has

ξk
nn

(6.5.a)=
( I∑

i=1
δi

k(n)/vi
)
· (θk

n)>θk
n

(6.5.b)=
( I∑

i=1
δi

k(n)/vi
)

σk
nn

(6.5.c)
≥ 1/v̄ ·

I∑
i=1

δi
k(n)σk

nn,

(6.102)
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where in (6.5.a), we let δi
k(n) = 1 if the position indexed by n is in the sensing area Ci at the

time-step k, and δi
n = 0 otherwise; (6.5.b) is due to the definition of θk

n and the fact that σk
nn

denotes the n-th diagonal entry of Σk; and (6.5.c) comes from the fact that v̄ = maxi∈I vi.

Now, based on (6.102 ), one can further have

N∑
n=1

ξk
nn ≥ 1/v̄ ·

N∑
n=1

I∑
i=1

δi
k(n)σk

nn

(6.6.a)
≥ 1/v̄ ·

I∑
i=1

e>
si

k
Σkesi

k

(6.6.b)= 1/v̄ · a>
k DΣk

ak
(6.6.c)= 1/v̄ · ‖ak‖2

DΣk
,

(6.103)

where si
k denotes the index of the i-th UAV’s position at the time-step k in (6.6.a) and δi

k(si
k)

must be one; (6.6.b) is by the definition (6.84 ) of ak and (6.6.c) is by the definition of ‖·‖DΣk
.

Now, the previous equalities in (6.99 ) can be continued as

det(Θk+1) = det(Θk)/ det(A>
k+1Ak+1) · det(IN + Ξk)

(7.a)= det(Θk)/ det(A>
k+1Ak+1) ·

N∏
n=1

(
1 + λn(Ξk)

)
(7.b)
≥ det(Θk)/ det(A>

k+1Ak+1) ·
(

1 +
N∑

n=1
λn(Ξk)

)
(7.c)= det(Θk)/ det(A>

k+1Ak+1) ·
(

1 +
N∑

n=1
ξk

nn

)
(7.d)
≥ det(Θk)/ det(A>

k+1Ak+1) ·
(

1 + 1/v̄ · ‖ak‖2
DΣk

)
,

(6.104)

where (7.a) is due to the fact that the determinant of a matrix equals the product of eigen-

values; (7.b) follows from the inequality of arithmetic and geometric means and the positive

definiteness of the matrix Ξk; (7.c) is based on the equality (6.101 ); and (7.d) is due to the

inequality (6.103 ). Subsequently, applying (6.104 ) recursively yields

det(Θk+1) ≥ det(Θ0)/ det
(
A[k + 1 : 1]>A[k + 1 : 1]

)
·

k∏
t=0

(
1 + 1/v̄ · ‖at‖2

DΣt

)

≥ ᾱ−N det(Θ0) ·
k∏

t=0

(
1 + 1/v̄ · ‖at‖2

DΣt

)
.

(6.105)
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Note that the last inequality relies on Assumption 6.2.1 .

Next, notice that min{1, x} ≤ 2 log(1 + x) is always true for any scalar x ≥ 0, therefore,

k∑
t=0

min{1, 1/v̄ · ‖at‖2
DΣt
} ≤

k∑
t=0

2 log
(
1 + 1/v̄ · ‖at‖2

DΣt

)
≤ 2 log

(
ᾱN · det(Θk+1)/ det(Θ0)

)
.

(6.106)

Furthermore, based on the recursion (6.98 ) of Θk, it follows that

Θk+1 = A[k + 1 : 1]−>Θ0A[k + 1 : 1]−1 +
k∑

t=0
A[k + 1 : t + 1]−>HtV

−1HtA[k + 1 : t + 1]−1,

(6.107)

Thus, one can have that

det(Θk+1) ≤
(

1/N · trace(Θk+1)
)N

=
(

1/N ·
N∑

i=1
e>

n Θk+1en

)N

=
1/N ·

N∑
i=1

(
e>

n A[k + 1 : 1]−>Θ0A[k + 1 : 1]−1en

+
k∑

t=0
e>

n A[k+1: t+1]−>HtV
−1HtA[k+1: t+1]−1en

)N

≤

1/N ·
N∑

i=1

(
(
¯
α

¯
σ)−1 +

k∑
t=0

(
¯
α

¯
v)−1

)N

=
(

(
¯
α

¯
σ)−1 + (k + 1) · (

¯
α

¯
v)−1

)N

.

(6.108)

Note that the last inequality comes from i) Σ0 ≤ ¯
σ ·IN ; ii) A[k : t]−>A[k : t]−1 ≤

¯
α−1 ·IN (see

Assumption 6.2.1 ); and iii) H>
t V −1Ht ≤ ¯

v−1 · IN since the specific form of Ht and
¯
v =

mini∈I vi. As a consequence, it holds that

log
(

ᾱN · det(Θk+1)/ det(Θ0)
)
≤ N · log

(
det(Σ0)1/N · ᾱ

(
(
¯
α

¯
σ)−1 + (k + 1) · (

¯
α

¯
v)−1

))
.

(6.109)

Together with the inequality (6.106 ), the proof is completed.
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With the help of the above Lemma 6.2.7 , we can now continue our proof for the theorem.

Since Lemma 6.2.5 has guaranteed that the loss of function rk ≤ γ̄ = 2
√

Iᾱ · ‖φ0‖2,∀k > 0

Based on the inequality (6.95 ), it follows that

rk ≤ min
{

γ̄, 2
√

Nβk(δ) · ‖ak‖DΣk

}
≤ κ ·min

{
1, 2
√

Nβk(δ)/
√

v̄ · ‖ak‖DΣk

}
≤ κβk(δ) ·min

{
1, 1/

√
v̄ · ‖ak‖DΣk

}
.

(6.110)

In the last two inequalities, we let κ = max{γ̄,
√

v̄} and βk(δ) = max{1, 2
√

2βk(δ)}. Accord-

ing to the definition (6.54 ) of the non-decreasing sequence {βk(δ)}k∈N+ , it can be confirmed

that the sequence {βk(δ)}k∈N+ is non-decreasing, i.e., βk(δ) ≤ βk+1(δ). Then, one can have

K−1∑
k=0

rk ≤

√√√√K ·
K−1∑
k=0

r2
k

(8.a)
≤ κβK(δ) ·

√√√√K ·
K−1∑
k=0

min
{

1, 1/v̄ · ‖ak‖2
DΣk

}
(8.b)
≤ κβK(δ) ·

√
2KN ·

√
log

(
det(Σ0)1/N · ᾱ

(
(
¯
α

¯
σ)−1 + K · (

¯
α

¯
v)−1

))
,

(6.111)

where (8.a) follows from the inequality (6.110 ) and (8.b) is due to Lemma 6.2.7 . Given that

βK(δ) = max{1, 2
√

2βK(δ)} and βK(δ) = O(
√

log K) in Proposition 6.2.1 , it can be obtained

either βK(δ) = 1 or βK(δ) = O(
√

log K). Therefore, together with the inequality (6.111 ),

the statement in Theorem 6.2.3 is proved, i.e., ∑K
k=0 rk ≤ O(

√
K log K).

Remark 6.2.3. A significant difference between the classical linear upper confidence bound

(UCB) algorithm [164 ] and the present one is that we construct the D-UCB, rather than the

standard UCB, to drive the update of pk’s. Due to this difference, one cannot immediately

prove the above Theorem 6.2.3 by following exactly the steps in [164 ]. A remarkable idea of

our proof is to define a specific vector norm which interplays with the form of D-UCB and

then establish the regret analysis with respect to the specific norm. This makes our theoretical

results non-trivial. In addition, we should also emphasize that the introduction of D-UCB

helps reducing the computational complexity of our algorithm significantly, when solving the
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problem in the multi-UAV setting. Since the standard UCB is defined in a joint sense, when

solving the multi-UAV maximization problem (6.55 ) with the standard UCB, it is inherently

a combinatorial optimization and can be extremely complicated to find the exact solution. In

contrast, due to the fact that the D-UCB takes the upper bounds marginally as mentioned

before, the maximization (6.55 ) can be essentially decomposed and becomes much easier to

solve for exact solutions. We remark this as one of the most important contributions of the

proposed algorithm.

Remark 6.2.4. It is stated in Theorem 6.2.3 that our algorithm can generate a sequence of

the target positions pk’s such that the cumulative regret, i.e., the cumulative loss of function

values Fk(p?
k)−Fk(pk), is upper bounded sub-linearly. Given the fact that the function Fk(·)

is defined on a finite set SI ; see definition in Section 6.2.1 , together with the loss of function

value must be positive, one can immediately conclude that the sequence of pk converges to the

optimal solution p?
k. This also implies that the steady state is reached in which the multi-UAV

system manages to tracking the top I moving sources.

6.2.4 Numerical Experiment

We demonstrate the effectiveness of our distributed algorithm, by considering a real-

world methane leaking source seeking problem using the multi-UAV system. In fact, such a

problem has been broadly studied in the area of robotics; see e.g., [165 ], [166 ]. Compared

to these existing works, a primary difference here is that we deploy multiple UAVs, rather

than a single one, to the target methane field. As a result, we expect that the individual

UAV will be able to track the distinct and possibly moving leaking sources by leveraging the

cooperations among the entire team of UAVs.

Let us suppose that the target methane field is described by a D ×D lattice, as shown

in the background of Fig. 6.8 . Each cell l ∈ {1, 2, · · · , D2} in the lattice is represented by its

position sl and also the quantity φt(sl) which indicates the level of methane concentration

at the time-step t. Overall, the N -dimensional vector φt = [φt(s1), φt(s2), · · · , φt(sN)]> with

N = D2 characterizes the state of the entire methane field of interest. More specifically, in

this simulation, we set the size of the methane field as D = 50. The initialized methane
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(a) Snapshot at iteration k = 100 (b) Snapshot at iteration k = 250

(c) Snapshot at iteration k = 450 (d) Snapshot at iteration k = 600

Figure 6.8. Demonstration of three UAVs’ tracking of the moving leaking
sources in an unknown methane field

state φ0 is generated through Gaussian kernels with leaking sources having largest concen-

trations among the field, and then we let leaking sources move within the field so that the

time-varying φt is generated. In order to explore the unknown target methane field and fur-

thermore track the moving leaking sources, we employ a team of three UAVs, each of them

equipped with a sensor that is capable of measuring a circular area with radius r = 3; see

the detailed measurement model (6.44 ) and the description of measurement matrix (6.46 ) in

Remark 6.2.2 . In particular, we assume that the sensing noise of each UAV is independent

and identically distributed Gaussians with zero-mean and covariance V i = I, where I de-

notes the identity matrix with appropriate dimension. Note that, since the maximum value

of the state φt is set around 5, the noise covariance is reasonably large so that the overall

problem is not trivial to solve. Besides, it is also assumed that the three UAVs can exchange

information with their immediate neighbors, and the communication channels, shown as the

red dot lines in Fig. 6.8 , follow a simple undirected connected graph.
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Figure 6.9. Regret analysis

To demonstrate the result of tracking of the moving leaking sources, four snapshots are

taken and shown in Fig. 6.8 at the iterations k = 100, 250, 450, 600, respectively. It can be

observed that the team of UAVs is able to locate all three moving leaking sources at the 600-

th iteration. In addition, in order to show the simulation result quantitatively, Fig. 6.9 plots

both the regret rk = Fk

(
p?(k)

)
−Fk

(
pk

)
at each iteration as a blue line, and the cumulative

regret ∑k
t=1 rt as a black line. Note that each line is obtained by the data averaged from 20

Monte-Carlo trials; the standard deviation is also reported in the figure. It can be concluded

from Fig. 6.9 that the regret rk decreases to zero as the number of iterations grows, which

confirms that the team of UAVs will be able to track the moving leaking sources. Besides, the

cumulative regret shows a sub-linear increase, which is also consistent with the theoretical

result of Theorem 6.2.3 .

In order to validate the effectiveness of the proposed algorithm, we further compare

the performance of our algorithm, termed as DoSS, with two benchmark schemes: i) the

AdaSearch algorithm [158 ]; and ii) a naive approach, termed as NaiveSearch, in which

the UAVs scan the whole unknown field repeatedly and determine the position of leaking
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(a) Cumulative regret (b) Regret at each iteration

Figure 6.10. Comparison of the regret with three different schemes

sources by the current estimation of the field. Note that, to evaluate these three scheme

fairly, we here only consider a static target methane field. As previously, we run each of

the three schemes for 20 Monte-Carlo trials, and Fig. 6.10 shows the simulation results.

It can be observed from this figure that our DoSS algorithm outperforms both AdaSearch

and NaiveSearch algorithms in terms of the regret descent rate, which means that the our

algorithm can locate the leaking sources more efficiently in an unknown methane field than

the two others.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

Focusing on the two key aspects of the distributed processing, i.e., communication and

computation, this dissertation develops a suite of new algorithms for solving the distributed

deterministic/stochastic optimization problems, studies convergence properties of the pro-

posed algorithms, and explores the opportunities of applying the idea of distributed opti-

mization into real-world applications especially with multi-UAV systems.

• Generalized Algorithmic Frameworks for Solving Distributed Deterministic

Optimization. Starting from the perspectives of communication and computation

respectively, Chapters 2 and 3 propose two generalized algorithms, namely the DGDx

algorithm and the NetProx algorithm. Motivated by improving the inexact convergence

of the standard DGD iteration, the DGDx algorithm incorporates multiple communi-

cation rounds into each consensus step and ensures the sufficiently accurate result via

a general inexact consensus operator. Instead of explicitly specifying the number of

communication rounds according to the iteration index k, we directly control the con-

sensus accuracy through the introduced consensus error bound. It is shown that the

exact convergence can be achieved with a constant step-size when the sequence of error

bounds decays to zero. In addition, the NetProx algorithm generalizes the choice of

local approximation functions for each agent, observing that the standard DGD algo-

rithm is just a special case when the linear approximation is adopted. More precisely,

it is shown that, with the higher order approximation functions, the convergence of the

NetProx algorithm will be accelerated, but meanwhile, it will cost more computational

resources for each agent at each iteration. It can be concluded that both of the two

algorithms offer the great potential to balance the communication and computation in

distributed optimization.

• Resilient Distributed Min-Max Optimization under Network Communica-

tion Attacks. Chapter 4 investigates the resilience of distributed algorithms when

communication attacks are potentially present within the multi-agent network. In par-
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ticular, a special instance of the distributed optimization problem – distributed min-max

optimization, is studied in this chapter. Building on the idea of resilient convex combi-

nation which helps to eliminate the malicious information injected by the unidentifiable

communication attacks, a consensus-based distributed algorithm is proposed for solv-

ing the min-max problem. As distinct from the majority of existing works which often

compromise the global objective to some extent while designing their resilient solution

methods, the proposed algorithm takes into account all the agents within the network

no matter whose communication channels are attacked or non-attacked. It is shown

that, under some reasonable assumptions, e.g., the attacked communication channels

can be recovered within a certain time-window, the proposed algorithm converges to the

exact global optimal solution which is quite challenging or even impossible to achieve

for the existing resilient distributed algorithms.

• Adapting the PH Method under the Distributed Framework for Solving

Two-Stage Stochastic Programs. Chapter 5 further explores the potential of using

distributed computing techniques to the solve notoriously hard stochastic optimization

problems. A DistPH algorithm is developed to solve the two-stage stochastic programs

under a peer-to-peer multi-agent network. Similar to existing parallel frameworks, since

individual agents only need to take charge of the subproblems corresponding to a single

or a few sampled scenarios, the computational burden of the distributed algorithm is

spread over the entire network and thus reduced for each agent. However, unlike the

parallel frameworks for which a master node is always required to provide central coor-

dination for workers, the DistPH algorithm eliminates such requirement and only builds

on peer communications over a more general connected network. Consequently, the pro-

posed distributed algorithm is expected to be more advantageous against the parallel

PH method, since the communication burden for the master node is also spread over

the entire network. It is proved that exact convergence can be theoretically guaranteed

when the considered stochastic problem has only continuous decision variables subject

to convex constraints. Moreover, several computational issues are also investigated for

the mixed-integer cases to further improve the algorithm efficiency.
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• Application I: Distributed Data Fusion for On-Scene Signal Sensing with

Multi-UAV Systems.

Real-world applications with multi-UAV systems are also explored in Chapter 6 by

applying the developed distributed optimization techniques. The first application con-

cerns a health-care scenario where the health status of a certain target in rural environ-

ment needs to be monitored by sensing some vital on-scene biological signals, during

or after an incident. Consider that, due to the complexity of biological signals and the

limitation of UAVs such as stabilization requirements and payloads, the sensory data

from each individual UAV might not be accurate enough to conduct a further diagnosis.

Thus, a distributed data fusion framework is proposed to integrate the various mea-

surements from multiple UAVs. As an important building block of the proposed data

fusion algorithm, the average/sum consensus scheme developed in the previous chap-

ters is adopted. Both theoretical analysis and numerical simulations show that our

algorithm has great potential to be applied in the multi-UAV rural health monitoring

applications.

• Application II: Distributed Source Tracking in Unknown Environments with

Multi-UAV Systems.

The second application considers a multi-UAV source tracking mission in an unknown

and dynamical environment, in which a group of UAVs is deployed and expect to

dynamically locate as many as local sources as possible. By applying the previous

average/sum consensus scheme again, we develop an adaptive on-line framework which

combines both estimation of the unknown environment and task planning for the multi-

UAV system simultaneously. Additionally, a novel notion of dummy confidence upper

bound is introduced to significantly reduce the computational complexity in solving the

subproblems of multi-UAV task planning in the distributed manner. The performance

of the proposed algorithm is theoretically guaranteed by showing a sub-linear upper

bound of the cumulative regret. Numerical results on a real-world methane emission

tracking problem also demonstrate the effectiveness of the proposed algorithm.
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7.2 Future Directions

Future directions that can primarily extend the work in this dissertation are summarized

as follows.

• Design of Optimal Distributed Algorithms with Communication and Com-

putation Budget. The proposed DGDx and NetProx algorithms inherently generalize

the standard DGD algorithm from the perspectives of communication and computa-

tion, respectively, and thus offer the flexibility to balance the two types of cost in

solving specific optimization problems. For instance, with a distributed system whose

communication resources are more affordable than computation, then the DGDx algo-

rithm would be a more promising choice since multiple communication rounds can be

incorporated into the implementation of algorithm. Conversely, the NetProx would be

preferred since the higher order approximation function can be adopted to accelerate

the convergence. Based on such an idea, a natural question to ask is how to design an

optimal distributed algorithm by given the communication and computation budget?

The major challenge here might be how to define the convergence rate in a broader

notion which should be quantified by both two types of cost.

• Resilient Distributed Algorithm for Solving General Optimization Prob-

lems. Chapter 4 presents the resilient algorithm for solving the specific distributed

min-max optimization problem. The main contribution of the proposed algorithm is

its convergence to the exact optimal solution which takes into account all agents’ local

objective functions. Nevertheless, how to achieve such a goal in solving the general

distributed optimization is still an open research problem. The existing works [18 ],

[19 ] compromise the global objective to some extent while designing their approaches.

One can first try to enhance the resilient convex combination scheme in Section 4.2 

to guarantee a pure average consensus, and then many distributed algorithm can be

applied to solve the general optimization problem.

• Integrating Network Sampling Techniques with the Distributed PH Method.

Chapter 5 studies the two-stage stochastic program in which the uncertainty is readily
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represented by a finite number of scenarios. When the uncertainty follows a continuous

distribution, one may need to take the sampling of random variables into consideration,

and the distributed optimization will be expanded into three dimensions, i.e. commu-

nication, computation, and sampling. Leveraging the idea of network sampling, one

might be able to greatly enhance the proposed DistPH algorithm by further reduc-

ing the communication and computation workload. In this case, both first-order and

second-order moment properties need to be investigated. It is expected to achieve the

linear convergence rate in expectation and also the variance reduction for the random-

ized solution.
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