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ABSTRACT

A majority of foodborne illnesses result from inappropriate food handling practices.

One proven practice to reduce pathogens is to perform effective hand-hygiene before all

stages of food handling. In food handling, there exist steps to achieve good manufactur-

ing practices (GMPs). Traditionally, the assessment of food handling quality would require

hiring a food expert to conduct an audit, which is expensive in cost. Recently, recognizing

activities in videos becomes rapidly growing field with wide-ranging applications. In this the-

sis, we propose to approach the assessment of food handling quality, especially hand-hygiene

quality, with the video analytic methods of action recognition and action detection. Our

approaches focus on hand-hygiene assessment with different requirements, which includes

camera view and scenario variance.

For hand-hygiene with egocentric video data, we create a two-stage system to localize and

recognize all the hand-hygiene actions in each untrimmed video. In the first stage, we apply a

low-cost hand mask and motion histogram features to localize the temporal regions of hand-

hygiene actions. In the second stage, we use the two-stream network model combined with a

search algorithm to recognize all types of hand-hygiene actions that happen in the untrimmed

video. For hand-hygiene with multi-camera view video data, we design a two-stage system

that processes untrimmed video from both egocentric and third-person cameras. In the first

stage, a low-cost coarse classifier efficiently localizes the hand-hygiene period; in the second

stage, more complex refinement classifiers recognize seven specific actions within the hand-

hygiene period. For hand-hygiene across different scenarios, we propose a multi-modalities

frame work to recognize hand-hygiene actions in untrimmed video sequences. We explore

the capability of each modality (RGB, optical flow, hand segmentation mask, and human

skeleton joints) at recognizing certain subset of hand-hygiene actions. Then, we construct an

individual CNN for each of these modalities and apply a hierarchical method to coordinate

all the modalities to recognize each hand-hygiene action in the input untrimmed video.
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1. INTRODUCTION

In this thesis, we introduce applications in food handling, which is mainly related the task of

hand-hygiene recognition. This chapter introduces the general background of food handling,

the importance of applying video monitoring to assist industrial food handling and the

potential computer vision tasks. In Section  1.1 , we introduce the general concepts of food

handling and its connection with video-analytic tasks. In Section  1.2 and  1.3 , we introduce

the hand-hygiene and produce washing tasks in food handling. In Section  1.4 , we list our

contributions.

For the remainder of this thesis: Chapter  2 discusses all the relevant topics and works in

action recognition research area. In Chapter  3 , we introduce our collections of food handling

data, for both hand-hygiene and produce washing tasks, with details about camera settings

and data pre-processing. In Chapter  4 ,  5 , and  6 , we explain in detail our explorations

for hand-hygiene action recognition task in three perspectives: ”hand-hygiene in egocentric

video”, ”hand-hygiene with multi-camera views”, and ”hand-hygiene in cross-scenarios”. In

Chapter  7 , we show an additional exploration about the influence of video quality on the

general action recognition task. In the last chapter, we summarize the content presented in

this thesis.

1.1 General food handling concept

Food safety is a discipline that describes scientific methods to prevent contamination

and foodborne illness at different stages of food production. The stages include, but are

not limited to: food handling, food storage, equipment cleaning, and staff hygiene. In

recent years, where the burden of foodborne illnesses is increasing, evidence indicates that

the majority of food contamination is caused by inappropriate food manufacturing practices,

involving workers with poor food handling skills [  1 ]. Therefore, we consider video monitoring

combined with video-analytic methods for food handling evaluation to be a fast and cost-

efficient way to do self-assessment for food growers, processors, and/or handlers.

Figure  1.1 shows some of the general scenes in food handling industries. The events

included in daily food handling contains but not limited to: produce packaging, produce
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washing, and hand-hygiene. Following the standard food handling policy, each of these

events requires the food staff to obey restricted processing steps to handle the produce and

their personal hygiene. From the perspective of video analytics, assessing the quality of food

handling is similar to the task of action recognition or action detection. Each step in food

handling can be considered to be an individual action class. And checking a sequence of food

handling steps is equivalent to recognizing if a sequence of actions happens in the correct

temporal order as well as if it lasts sufficiently long. This fact creates a connection between

food handling assessment and video-analytic tasks.

In this thesis, the majority of explorations focus on the food handling event of ”hand-

hygiene”, which connects to video-analytic tasks of action recognition and detection. More-

over, we also collected the video data of the food handling event ”produce washing” from a

student farm.

Figure 1.1. Industrial food handling scenes
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1.2 Hand hygiene in food handling

In food handling, there are many steps to achieve good manufacturing practices (GMPs).

Hand-hygiene is one of the most critical steps. Effective hand-hygiene can reduce food

contamination by human pathogens, since this step reduces the likelihood that food handlers

harbor pathogenic microorganisms on their hands and transfer them to food products [ 2 ].

According to the World Health Organization, there are 12 steps [  3 ] a person should follow

to perform effective hand-hygiene. As illustrated in Figure  3.8 , the basic steps include:

rinse hands, apply soap, rub hands with a variety of different motions, and dry hands. Our

goal here was to use cameras to monitor hand-hygiene activities, to automatically identify

both positive activities (like those in the figure) and mistakes that either prevent complete

decontamination or lead to re-contamination. These mistakes include not rubbing the hands

for the required amount of time, touching the faucet with the hands after washing, and not

drying the hands.

There has recently been significant progress in automated methods for analyzing video

content, a process called video analytics. Stationary cameras placed in a so-called third-

person perspective have been used for surveillance, person and vehicle detection and re-

identification, activity recognition, and anomaly detection. When recognizing activities of

a person, third-person cameras have the advantage of viewing actions from the side. First-

person, or egocentric cameras are mounted on the person performing the activity, often on

their head or chest [  4 ]. These cameras have the advantage of viewing the person’s hands and

any objects being manipulated, and are particularly useful to observe subtle hand motions

and small objects. However, because they are mounted on a person, these cameras often move

chaotically as the person moves. As a result, they may not capture the desired activities,

and video processing methods like background subtraction and camera calibration become

more difficult [ 4 ].

Recognizing activities in videos is a rapidly growing field with wide-ranging applica-

tions. Activity recognition techniques have been developed for both trimmed, and untrimmed

videos. For trimmed videos, the task is to identify which isolated activity happens in a video

clip that has been trimmed to contain only a single activity. For untrimmed videos, the
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task, which is often termed action detection, is not only to recognize the target action, but

also to localize it temporally within the clip that may contain unrelated background actions.

This process is termed temporal action localization and is often addressed by identifying

temporal action proposals [ 5 ]–[ 7 ].

In this thesis, we discuss hand-hygiene action recognition in food industry environment

with different situations. To simulate the food industry environment, we collect our hand-

hygiene dataset in a college bathroom (Chapter  3.5 ) and a cooking class in Purdue University

(Chapter  3.6 ). For hand-hygiene recognition methods, we start with a simple situation which

uses only one egocentric camera to recognize hand-hygiene actions in fixed room scenario

(Chapter  4 ). Then we discuss the advantage of different camera views in hand-hygiene

actions, and further extend our method to collaborate multiple cameras for hand-hygiene

recognition (Chapter  5 ). Moreover, we investigate hand-hygiene actions recognition in cross

scenarios, and design a multi-modality based system to address this situation (Chapter  6 ).

1.3 Produce washing in food handling

Beside hand-hygiene actions, produce washing is also one of the most crucial steps for

good manufacturing practices (GMPs). In general, produce washing includes but is not

limited to the following actions: washing produce, washing containers, storing produce, and

hand-hygiene. As a combination of multiple food handling steps, the complete produce

washing procedures often last longer than half an hour.

In this thesis, we gathered the data collection of produce washing video in a student

farm of Purdue University (Chapter  3.7 ), which involves multiple food staffs’ daily produce

washing recorded continuous as high resolution video. However, this thesis does not consider

action detection or recognition applied to this dataset.

1.4 Contributions

This section summarizes the contributions of this thesis. There are three hand-hygiene

recognition methods we proposed to address hand-hygiene with different situations and a

collection of video data with produce washing actions. The contributions are listed as follows:
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1. To support the exploration of our video analytic method on industrial food handling, we

collect multiple datasets which cover the topic of hand-hygiene and produce washing.

For hand-hygiene, our data collection includes college restrooms (Chapter  3.5 ) and

cooking class (Chapter  3.6 ) environment. For produce washing, our data involves

more than 10 hours of collection in a student farm (Chapter  3.7 ).

2. In the hand-hygiene recognition with egocentric video (Chapter  4 ), we design a two-

stage system to localize the temporal regions of hand-hygiene actions and recognize

them in untrimmed hand-hygiene egocentric videos. In the first stage, we extract a

low-cost hand mask and motion histogram feature, and process the entire video to

localize temporal regions which contain potential hand-hygiene actions. In the second

stage, we use the temporal regions detected from the first stage as input. In this

stage, we apply a two-stream network model combined with our searching algorithm

to recognize all hand-hygiene actions that happen in the input untrimmed video.

3. In the hand-hygiene recognition with multiple camera views (Chapter  5 ), we first define

different levels of tasks for hand-hygiene action recognition, according to their detection

difficulty. To explore the influence of camera in hand-hygiene, we compare and evaluate

the performance of deep-learning models on three different camera views to recognize

trimmed hand-hygiene action video clips. We select the best two camera views for

our final system design. As the final system, we propose a two-stage framework to

recognize hand-hygiene actions from untrimmed video sequences. We combine two

camera views to localize and recognize hand-hygiene actions. Taking advantage of

the static third-person view camera, we use a low-complexity CNN model to localize

the hand-hygiene period within an untrimmed video. Then we apply more complex

CNN models to recognize the actual hand-hygiene action types within these candidate

locations.

4. In the hand-hygiene recognition with multiple camera views (Chapter  5 ), we first

evaluate the performance of multiple spatial-temporal action recognition models on

same scenario hand-hygiene action recognition and detection task. We also analyze
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and summarize the underlying reason for the hand-hygiene recognition model to fail

at cross scene recognition. As the final system, we propose to use multi-modalities to

create K individual classifiers that collaborate to perform cross scenario hand-hygiene

recognition.
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2. RELATED WORK

Activity recognition focuses on detecting the events inside a video clip and categorizing each

into its activity category [  8 ]. The research topic of action recognition can be extended into

many real applications. For example, a surveillance camera placed on the street is capable

at monitoring abnormal behaviors. Or automatically edit an untrimmed video of a sport

game for highlight video segments. Basically, the expectation behind action recognition is

to replace human labors with machine to achieve the same level of action understanding

[ 9 ]. To achieve this goal, researchers have spent years on developing sufficient models to

improve the detection performance. In recent years, the research focus of action recognition is

updated from traditional representation and classifier combination into end-to-end trainable

convolutional neural networks (CNN). Taking advantage of CNN structure and large scale

data collection, the recognition accuracy has been improved significantly.

For food safety area, especially food handling, the major focus is on the interaction

between food staff and produces. Similar to the core motivation behind action recognition,

the implementation of effectively food handling requires large investigate of human labor as

well. Begin with staff training to the final quality test, every steps in food handling could

potentially involve hiring more than one food area expert, which is relatively expensive for

small food business owner to handle. Therefore, our research is interested in applying action

recognition method into food handling field to assistant or even replace human experts. This

could potentially provide an alternative way for food business owners to self-audit food safety.

Since the majority cost our action recognition was about cameras, sensors, and computers,

it has money saving advantage over traditional human experts.

In this chapter, we present the overview of action recognition methods in computer vision

and analyze the potential usage of them in food handling.

2.1 Traditional action recognition

Traditionally, action recognition relies on finding hand-craft robust feature representa-

tion and combine with machine learning classifiers. Researchers are interested in using a

detector to identify key points among video clips and construct salient information around
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these locations. One of the classic methods is called spatial-time interest point (STIP) [ 10 ].

As Figure  2.1 , STIP takes use of a Harris point operator to detect spatial-time interest point

where the image value has significant changes. Later on, Laptev et al. [ 11 ] extended their

space-time feature into space-temporal bag-of-features. The method constructed a vocabu-

lary of features and mapped features into histograms of visual words. Through combining

their new representations with a Non-linear Support Vector Machine (SVM), their exper-

iments were able to achieve a state-of-the-art result on KTH dataset [ 12 ], which contains

fundamental actions such as walking, running, and hand waving.

Figure 2.1. Illustration of strong spatio-temporal interest points. Originally shown in [  10 ]

As the number of research work grow in this field, more feature descriptors are proposed

to describe appearance and motion information. Histograms of Oriented Gradient (HOG)

descriptors [  13 ] was one of the most crucial features used for activity recognition. It was

originally proposed for human detection for its efficiency on extracting appearance informa-

tion. Moreover, Histogram of Optical Flow (HOF) and Motion Boundary Histogram (MBH)

[ 14 ] are popular features used to extract motion information. As the pipeline bag-of-features

became popular, an evaluation of combinations between features and detectors under bag-of-

features and SVM setting was presented [  15 ]. The result indicates the Histogram of Oriented

Gradients (HOG) and the Histogram of Oriented Flow (HOF) are effective features for ac-

tivity recognition.
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One of the most representative methods that follows this methodology is the Improved

Dense Trajectory (IDT) [  16 ], which created track points based on dense optical flow across

time, and extracted HOG, HOF and MBH features around these salient points. In order to

describe complex action types which might have various durations across time, they trained a

codebook combined with a linear SVM classifier to make the final prediction. The algorithm

achieved the state-of-art in many third-person data sets.

As indicated in Figure  2.2 , the IDT method applies dense sampling to select interest

points at different image scales for each frame. Between consecutive frames, a dense optical

flow field is used to estimate the motion interest points. The position of each interest

point is recorded and updated to construct their trajectories. Along with the shape of each

trajectory, HOG, HOF and MBH features are extracted from 3D volumes. A technique of

warping between consecutive frames is also applied to eliminate the effect of camera motion.

Figure 2.2. Illustration of extraction of descriptors HOG, HOF, and MHI.
Originally shown in [ 17 ]

Overall, the method achieves good performance among many datasets back to that time.

However, it is still difficult for hand crafted feature to be extended into many more different

applications.

2.2 Deep learning based action recognition

In recent years, methods based on deep learning have largely replaced these traditional

methods. In general, because traditional hand-crafted feature extraction algorithms are
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designed by human experts, it is difficult to customize them to different applications. In

contrast, deep learning methods can overcome this limitation by using sufficient training

data to learn ”customized” features. Among all different deep learning models, convolutional

neural network (CNN) is the most commonly used structure in computer vision field.

To explain the working principle of CNN, we show a toy example of image classification.

In Figure  2.3 , the goal is to classify an input image as a shape of ”cross” or ”circle”. A CNN

structure will first using different filters to convolve with the input image. Figure  2.3 (a)

applied the filter shape of ”slash”, ”cross” and ”back slash” to identify the patterns in the

input image. From the resulted feature maps, we can observe these patterns are successful

recognized and marked with high values. In Figure  2.3 (b) the CNN further processing these

features with max pooling to reduce the dimension. In the end, feature patterns from filters

are ”summarized” by fully connected layer to get a final class label for the input image.

Figure 2.3. CNN convolution and relu activation

The design of convolution kernels filters in combine with non-linear functions and spatial

pooling enables CNN to learn shallow features of texture and shape in its beginning layers.

As the layer grows, the feature representation generated from previous layers contains en-

capsulated feature of the entire image. As Figure  2.4 , an example of image classification in

face class category. The early layers in CNN (top figure) learns body parts such as nose, eye,

and mouth. In contrast, the late layer (bottom figure) represent features on the entire face.
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Figure 2.4. CNN face feature representation at different layer. Originally shown in [  18 ]

Due to deep learning based method has more flexibility on its feature construction, with

the support of sufficient training data, the performance of deep learning based method ex-

ceeds traditional hand-crafted feature in all perspectives. Convolutional neural network

(CNN) models, such as AlexNet [  19 ], VGGNet [ 20 ], and ResNet [  21 ] has achieved good per-

formance on image classification task. To incorporate temporal information, CNN model can

be solely considered as feature extractor to extract spatial information. And combine with

temporal models such LSTM [  22 ], BLSTM [ 23 ], ConvLSTM [ 24 ], and TRN [  25 ]. Moreover,

researchers have also developed 3D CNN methods [  26 ][ 27 ][ 28 ][ 29 ] for action recognition. 3D

CNN processes video as fixed size input volumes which capable at capturing spatial and

temporal information at once.

2.3 Egocentric action recognition

Beside the general action recognition with third person view video, egocentric action

recognition also becomes a popular research topic. As portable camera equipment becomes

available, researchers have begun to explore action recognition in egocentric videos. Egocen-

tric videos in daily living scenes is explored in [  30 ], using recordings from wearable cameras.

Since the daily living scenes considered contain many hand/object interactions, the author

proposes to learn an object model that takes into account whether or not the object is being

interacted with.
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Researchers continue to explore what key information is needed to recognize egocentric

activities. One contribution [  31 ] analyzes the important cues to recognize egocentric actions.

As shown in Figure  2.5 , they experiment with object, motion, and egocentric features and

conclude that object cues are crucial clues to classify egocentric actions. This work is influ-

ential for pointing out the key factors in egocentric action recognition, which are appearance

and motion. The appearance includes hand pose and object. The motion is further sepa-

rated as head and hand motion. Following the idea of recognizing egocentric objects, Ma et

al. [ 32 ] create an end-to-end CNN model which embeds hand and object information into

one system. The model automatically segments the hand regions and localizes objects close

to the hands. By merging these data with motion cues, the model achieves good perfor-

mance. Moreover, hand poses and motion information is also considered in [ 33 ]. A compact

EgoConvnet is constructed and fused with a two-stream network. However, most of the

methods have been tested using datasets such as Georgia Tech Egocentric Activity (GTEA)

[ 34 ] and Activities of Daily Living (ADL) [  30 ]. These data sets contain clear object cues.

For instance, detecting a dish object close to the hand region reveals a salient clue that the

action is dish-washing or eating.

Figure 2.5. CNN face feature representation at different layer. Originally shown in [  31 ]

2.4 Multi-modality action recognition

Beside the most commonly used image or video representation extracted from RGB

modality as previous sections, researchers also explore on using other modalities for action

recognition. Simonyan et al.[ 35 ] and Wang et al. [ 36 ] both applies optical flow modality,

31



which captures pixel level motion information, to combine with RGB for action recognition.

As indicated in Figure  2.6 , the two stream network not only presents an additional modality

for action recognition, but also addresses the concept of spatio-temporal by designing two

separate models and merge them for final prediction.

Figure 2.6. CNN face feature representation at different layer. Originally shown in [  35 ]

Moreover, there exists works which apply skeleton joints [ 37 ][ 38 ][ 39 ] as the major modality

for action recognition. The skeleton joints can capture the crucial semantic body joints which

provides rich information for action recognition as indicated in Figure  2.7 . Also, Meng et

al. [ 40 ] intermediately apply skeleton joints as a indicator to spatial discriminative area in

the image. This combination of both skeleton joints and RGB modalities also achieve good

performance. Thus, the multi-modalities provide additional feature representations which

compensates the shortage of RGB modality.

Figure 2.7. Skeleton joints detection on human. Originally shown in [  41 ]
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2.5 Pure gesture action recognition

Moreover, in addition to the exploration of actions that involve hand-to-object interaction

as egocentric action in Section  2.3 , actions that only involve pure hand gestures have also

been studied. An important approach in this field is to use multi-modalities instead of

solely RGB image as the input to the system. One of the crucial modalities is the skeleton

joints, which offer a neat and accurate representation of human pose. A multi-model system

was designed in [  42 ] for gesture detection and recognition in the 2014 ChaLearn Looking at

People dataset [  43 ]. The goal is to recognize 20 Italian sign languages in a video sequence

that is captured using a Kinect camera in third-person view. In their system, one of key

steps is to do temporal segmentation by identifying the start and end frame of each gesture

candidate. Taking advantage of the Kinect sensor, they used the skeleton joint locations

as input features to obtain precise information associate with the hand gesture. Combining

with an SVM model, the candidate gesture regions can be localized within an untrimmed

video sequence. Another work [ 44 ] also illustrated the importance of using skeleton joints

in recognizing hand gestures. The work is also targeting at the ChaLearn 2014 dataset

with multi-model architecture. One of their modalities is to construct a pose descriptor

from the skeleton joint locations to describe the global appearance. Recently, Pigou et al.

[ 45 ] compared the performance of multiple architectures on gesture recognition datasets;

their conclusion is that temporal convolution using a recurrent network achieves the best

performance. In addition, their results indicate that depth and skeleton information can

help improve the detection accuracy in general. Wu et al. [  46 ] propose a Deep Dynamic

Neural Networks (DDNN) that processes skeleton, depth, and RGB images as multi-modal

inputs. The structure achieves better performance compared to those that only process a

single input. Granger et al. [  47 ] compared hybrid NN-HMM and RNN models for gesture

recognition when the system input is only the body pose defined by the skeletal joints.

From the studies above, the importance of skeleton joints in recognizing pure hand ges-

tures without the presence of objects is clear. However, skeleton joints extractions are not

always feasible. From a camera perspective, all the videos recorded with a special camera

like Kinect can naturally provide human skeleton information. While this type of camera
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has been used in research, it is still not widely used in practical video monitoring. An al-

ternative approach for gathering skeleton data is to through video processing algorithms.

OpenPose [ 48 ] and DeepLabCut [  49 ] demonstrate the possibility of detecting 2d skeleton

joints on humans and animals. However, depends on the data collection, there will always

exist some mis-detections due to occlusion and camera angle constraints.

2.6 Human-object interaction

Human-object interaction (HOI) is also another research field [  50 ][ 51 ][ 52 ] which focuses

on a deeper understanding of action in scene, which is equivalent to a sub-task of action

recognition. Instead of considering the entire image area, HOI starts by the localization

of objects and human in the scene, and consider both separate object and human and the

interaction between them. Through the localization, the model could focus on meaningful

region which contributes to the final prediction result.

Figure 2.8. Skeleton joints detection on human. Originally shown in [  50 ]

As indicated in Figure  2.8 , a person riding bicycle is decomposed in to human, object,

and interaction branches. For human and object, their region of interest (ROI) is localized

and the corresponding models will only need to process everything within the ROI. This

implementation can be understand as a ”hard attention” mechanism, every other object

outside of ROI cannot involve into the final prediction, which prevents the irrelevant distrac-

tion from influencing the final result. For the branch of interaction, appearance information
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is completely removed and the interaction is solely represented by the spatial position of

human and object.

From my perspective, the importance of HOI is its ”hard attention” idea to individually

checking on human, object, and interaction, and summarize the results from all these three

branches to predict final result. Compare to methods which ”focus” on entire image spatial

region, HOI allows the model to pay attention only on task related ROI. This is extremely

beneficial when we have the pre-knowledge on our task. For example, an action of ”play cell

phone”, the most discriminative regions have to be on ”human hand” and ”cell phone”.

2.7 Soft-attention in action recognition

Figure 2.9. Attention heatmap visualization. Originally shown in [  53 ]

The term ”attention” has been widely applied in the field of Natural Language Processing

(NLP). In computer vision field, there also exists the discussion of attention and how does

it affect the performance of various tasks. Figure  2.9 represents attention visualization for

the task of image classification. The heatmaps are generated with GRAD-CAM [  54 ]. The

red color in each image covers the most discriminative spatial area contributes to the final
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prediction result. From top to bottom row, we observe that if the discriminative red area

locates on the target object, the CNN model tends to make correct prediction. Because these

discriminative regions don’t have a certain shape such like rectangle, it is often addressed

as ”soft-attention“. Many of the soft-attention based method [ 53 ][ 55 ] is attempting to guide

the ”soft-attention” to focus on the crucial objects in the image.

Figure 2.10. Attention influences image classification robustness. Originally
shown in [ 56 ]

Moreover, the attention of CNN locates on the discriminative image region not only

benefits the prediction result under the same data collection, but also improve the robustness

when the input comes from unseen data. Li et al. [ 56 ] in Figure  2.10 demonstrates this

idea with a industrial camera orientation classification experiment. The image classification

classes are the two different orientations of a camera, which can only be distinguished by the

gaps and small markers on the camera surface. With normal CNN model, the attention area

locates on the bottom area of camera, which is less discriminative. As a result, this model

success on classifying images from the same data collection as its training set. But when the

testing data comes from a unseen data collection, the model failed completely. In constrast,

with soft-attention based method, the model’s attention is adjusted onto the discriminative

gaps and markers, which is proved to have robust prediction result even when inferences on

unseen data collection.
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2.8 Domain adaptation

Figure 2.11. Difference in machine learning and transfer learning. Originally
shown in [ 57 ]

Under ideal situation, the action recognition model assumes the train and test data come

from the same data distribution. In reality, it is impossible to collect data from all potential

scenarios the model could be deployed to. Therefore, it is unavoidable to have a performance

drop if the CNN model is constructed on one scenario and deployed for another. Transfer

learning is a research field to address this issue. As shown in Figure  2.11 , the goal of transfer

learning is to apply existed source data to solve target task with unseen data. A sub-topic

related to computer vision is called domain adaption. In general, different scenarios can

be addressed as different domains, and the goal is to construct a model on source domain

data and apply to target domain. In the field of domain adaptation, there exists a sub-area

called Unsupervised Domain Adaptation (UDA) that further assumes that target domain

only has unlabeled data. The UDA is more related to realistic application with limited

target domain availability. Researchers have developed works on UDA [  58 ][ 59 ][ 60 ][ 61 ] for

image classification task. Recently, the works [ 62 ][ 63 ][ 64 ] in UDA are extended to video

classification task as well.
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2.9 Action detection

Figure 2.12. Pipeline of action detection with temporal proposal. Originally shown in [  6 ]

Action recognition focuses on recognizing class category from a trimmed video clip, which

includes one action. In reality, a regular video is high likely to include more than one action,

and the start and end time of each action in unknown. Thus, researchers defined a task

named ”action detection” to process on untrimmed video. The goal of action detection is

not only to recognize all actions, but also localize each action in temporal. One typical

approach is inspired [  7 ][ 6 ][ 65 ][ 66 ] from object detection to use temporal proposal in action

detection like Figure  2.12 . Another approach [  67 ][ 68 ] applies temporal convolution to build

encoder-decoder structure to solve this problem.
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3. DATASET

The goal of our study is to explore hand-hygiene actions in food handling procedures. How-

ever, there is no currently available dataset for this type of actions. To overcome the video

data issue, we propose to create a hand-hygiene dataset to help explore video analytic meth-

ods for hand-hygiene action recognition. To throughly explore the how different camera angle

might affect hand-hygiene recognition. We apply both egocentric and third person camera

as our primary camera angle selection. In Chapter  3.1 , we introduce the selected publish

available datasets in egocentric and third person camera view. In Chapter  3.2 , we introduce

the camera settings in our data collection. In Chapter  3.3 , we define three different levels

of hand-hygiene tasks. In Chapter  3.4 , we discuss our exploration on hand-hygiene in home

scenario. In Chapter  3.5 , we introduce our ”nelson100” hand-hygiene dataset collected in

college bathroom. In Chapter  3.6 , we introduce our ”class23” hand-hygiene dataset collected

in college cooking class. In Chapter  3.7 , we introduce our data collection of produce washing

in a student farm of Purdue University.

3.1 Reference other action recognition datasets

3.1.1 Egocentric video dataset

In this section, we talks some of the current public available egocentric datasets, which

we go through design purposes of these datasets and how they choice their camera settings.

Pirsiavash et al. [  30 ] created a Activity for Daily Living (ADL) dataset. The dataset

includes 20 subjects to perform a list of 18 daily activities, which includes but not limited

to making food, laundry and using computer. They used one chest mounted GoPro camera

to record 1280x960 resolution, 30 FPS egocentric video with wide angle. Each video last

around 30 minutes.

Fathi et al. [  34 ] collected the GTEA dataset with 7 daily activties performed by 4

subjects. These activities are all food making related and each of them contains a sequence

of sub-actions about hand-to-object interaction. The camera they selected is GoPro mounted

on a baseball cap. All the videos has 1280x720 resolution, recorded under 30 FPS.
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Figure 3.1. Activity for Daily Living (ADL) dataset

Figure 3.2. GTEA dataset

Comparing with the above datasets, Lee et al. [  69 ] created UTE dataset with more

generalized daily activities types. The videos were not limited to in-door daily activities,

but also out-door activities such as driving, shopping and attending lectures. Because of

their special demands of long-time recording, the camera they used for video recording is

Looxcie wearable camera. They exist 10 videos from 4 subjects in this dataset, each video

in this dataset last for 3 to 5 hours with 320x480 resolution, 15 FPS.
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Figure 3.3. UTE dataset

Besides using single egocentric videos, the CMU-MMAC databse [ 70 ] used 5 static cam-

eras and 1 wearble cameras to record cooking activities. The wearable camera has a high

resolution of 800x600/1024x768, 30 FPS.

Figure 3.4. CMU-MMAC dataset

From all these datasets listed above, we can conclude that egocentric videos are encour-

aged to be recorded under high resolution. The mount location of egocentric camera can
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be either head or body. If the activity requires the wearer for long time or secret recording,

head mounted camera is preferred. Otherwise, body mounted camera is a good option.

3.1.2 Third person video dataset

Moreover, we also explore some third person action recognition datasets and reference

their camera settings for data recording.

The UCF101 dataset [  71 ] includes total number of 101 action and 13320 clips. All clips

have fixed frame rate and resolution of 25 FPS and 320 × 240 respectively.

Figure 3.5. UCF101 dataset

The HMDB51 dataset [  72 ] contains 51 distinct action categories. Each category has at

least 101 clips. And the total number of video clips is 6766. Within each clip, the frame’s

height is scaled to 240 pixels and the width is scaled accordingly to maintain its aspect ratio.

For all these third person datasets, they include a large amount of video collections, which

are gathered from youtube, or movies. And majority of these videos is focusing on sport,

which a human takes use of its entire body to perform an action. Because of the original

video quality and storge reason, all videos in these datasets have a relatively low resolution.

For our hand-hygiene data, the action is majorly focusing on the upperbody of human.

Thus, it is necessary for us to record these actions with high resolution video, where motions

from arms and hands can be clearly visualized. Also, human involves in hand-hygiene actions

will not move with high speed, which support us to record with static camera at fixed
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Figure 3.6. HMDB51 dataset

position. Moreover, due to the limitation of resource availability, we are not able to record

large scale video as these datasets. High resolution videos in our dataset might not cause

storage issue compare to their datasets.

Therefore, if we plan to record hand-hygiene action with third person view camera, we

are encouraged to record with static, high resolution third person view camera.

3.2 Cameras

According to hand-hygiene techniques from WHO [ 3 ], the duration of the entire hand-

hygiene procedures lasts 40-60 seconds, which is relatively short compare with daily activity

recognition. This allows us to record high resolution videos as well as maintaining efficient

camera battery. Based on this idea, we select to use GoPro hero 6 as our egocentric camera.

GoPro hero 6 is able to record high quality videos with 1080p resolution under 30 FPS.

Table 3.1. Camera settings
Camera name Camera type Video quality
Chest camera GoPro Hero 6 1080p, 30 FPS
Nose camera IVUE Rincon 1080p, 30 FPS
Wall camera GoPro Hero 6 1080p, 30 FPS
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Besides the camera video quality, the location to mount a camera on the wearer is also

important in video recording. As we discussed in Section  3.1.1 , if the camera wearer doesn’t

record long-duration video, the body mount of a camera can provides stable camera views.

However, we also argue that the head mount camera provides unique information during

hand-hygiene procedures. For example, if the camera wearer rubs his/her hands while turning

his/her head to talk to another person, the body camera may not capture this information

effectively. On the other hand, a head mounted camera can capture the whole talking scene,

which shows the camera wearer was distracted during hand-hygiene actions.

Figure 3.7. (a) GoPro hero 6 (b) IVUE camera

Based on these considerations, we design two different mount options for egocentric

cameras, in Figure  3.7 , on a subject’s chest and head during video recording. The chest

camera is a GoPro hero 6 with chest harness. Considering of the recording efficiency and

comfort, we use IVUE camera to mount on the wearer’s nose as the head camera. The IVUE

camera works the same as wearing a glasses and provides high video quality of 1080p under

30 FPS.

Even though hand-hygiene actions concentrate on the interactions between hands which

can be clearly recorded through egocentric camera view, we would still like to investigate

the utility of applying third person camera view in this type of actions. Therefore, we

use another GoPro camera to mounted on a static position near the subject during the

hand-hygiene procedures. The camera records the same video quality as the two egocentric

cameras.
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3.3 Definition of hand-hygiene action and task levels

To the best of our knowledge, we are the first project to apply video analytic methods

on hand-hygiene actions. Therefore, we want to define the different types of hand-hygiene

actions and the purpose of analyzing these actions. We defined three different video analytic

tasks to explore in hand-hygiene actions. Based on the level of difficulties of these tasks, we

define them as detail-level, standard-level, and detection-level tasks.

According to the World Health Organization, there are 12 steps [ 3 ] a person should follow

to perform effective hand-hygiene. As illustrated in Figure  3.8 , the basic steps include: rinse

hands, apply soap, rub hands with a variety of different motions, and dry hands.

Figure 3.8. Standard hand-hygiene steps.

Our goal here was to use cameras to monitor hand-hygiene activities, to automatically

identify both positive activities (like those in the figure) and mistakes that either prevent

complete decontamination or lead to re-contamination. These mistakes include not rubbing

the hands for the required amount of time, touching the faucet with the hands after washing,

and not drying the hands. In the following sub-sections, we define different hand-hygiene

tasks, where each task represents one level of difficulty and includes an individual set of

hand-hygiene actions.
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3.3.1 Detail-Level Hand-Hygiene Task

In the detail-level task, the goal is to strictly follow each of the steps outlined by the

World Health Organization in Figure  3.8 ; did a participant perform each of the 12 steps?

This detail-level task has the highest difficulty compared to other hand-hygiene tasks,

especially for those actions that involve subtle motions of the hand and fingers, such as

those illustrated in Figure  3.9 a. As indicated in Figure  3.9 b,c, the egocentric camera does

not always capture the entire hand regions, because participants have different body size

and personal habits. Therefore, it is inevitable that hand regions may be missing during the

detailed hand-hygiene steps.

Figure 3.9. (a) Standard subtle actions between fingers. (b) Clear view of
subtle actions. (c) Hands out of camera views.

Even if the entire hand regions are clearly recorded, recognizing actions with subtle finger

and hand motions is still difficult. The temporal boundaries between actions of rub cross

finger, rub palm, and rub thumb are difficult to distinguish even by a human expert. The

method in [ 73 ] to recognize dynamic long-term motion is only likely to be able to recognize

the entire action sequence. To accurately localize the boundary between these similar actions,

we may need to apply an RGB-D sensor and construct hand-finger skeleton models [ 74 ].
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3.3.2 Standard-Level Hand-Hygiene Task

In the standard-level hand-hygiene task, we focus on analyzing only the components of

the 12 steps in Figure  3.8 that are most critical from a food-safety hand-hygiene perspective.

As a result, we define the standard-level hand-hygiene task to distinguish among the 7 types

of actions shown in Figure  3.10 : touch faucet with elbow, touch faucet with hand, rub hands

with water, rub hands without water, apply soap, dry hands, and a non-hygiene action.

Essentially, the six rubbing actions are condensed into a single rubbing action, and we retain

the critical components of applying water and soap, rubbing for an extended period, and

drying the hands. In addition, this task includes identifying the action “touch faucet with

hand”, which must be avoided to prevent re-contamination after the hands have been rinsed

with water [ 3 ].

Figure 3.10. (a) Touch faucet with elbow, (b) touch faucet with hand, (c)
rub hands with water, (d) rub hands without water, (e) apply soap, (f) dry
hands with towel, (g) non-hand-hygiene action.

As mentioned above in Section  3.3.1 , the subtle hand and finger motions may not be

completely recorded for a variety of reasons. The standard-level task removes the need to

distinguish among the subtle hand and finger motions, so a classifier for these 7 action classes

will be more robust than for the detail-level task, both with respect to the variations of a

participant’s body size and to the hands not appearing in the camera view
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3.3.3 Detection-Level Hand-Hygiene Task

In addition to the previous two task levels we defined, there exists a detection-level hand-

hygiene task, which simply analyzes whether or not the hand-hygiene action happened. For

this task, egocentric camera information regarding the hands is not necessary, and directly

analyzing the third-person camera should achieve an acceptable result.

3.4 Hand-hygiene under home scenario

For many public available egocentric datasets, the recording environments are inside each

subject’s home apartment, especially for daily activity videos. For our hand-hygiene dataset,

we need to decide what environments should we select to record our data.

Figure 3.11. (a),(b) Objects in kitchen (c),(d) mirrors in bathrooms
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We start trying our video recording at different subjects’ home apartments. The locations

of performing hand-hygiene actions are either in the kitchen or bathroom (Figure  3.11 ).

However, we found the environments of each apartment varies a lot. There usually exists

many cooking tools or food in the kitchen environment. These objects are different in types

and most of them shouldn’t appear at a standard industrial food handling factory. Moreover,

videos recorded in apartment bathrooms usually include mirrors. The hands actions reflected

in the mirrors are also recorded by cameras. This fact increased the video processing difficulty

to correctly recognize hand actions. And automatic removal of mirror disturbances is not

our priority target in this stage. Because of these reasons, recording inside home apartments

is not a good choice to create our dataset.

We also needed to decide the number of participants for our study. Many egocentric

datasets were constructed by few subjects repeat each activity several times. We attempted

to record only few subjects and asked each subject to record more than 10 times for the

whole hand-hygiene procedures.

Figure 3.12. (a),(b),(c) rinse hand action repeated by one subject among 3 times

However, every subject has their own style of hand-hygiene actions. And a subject may

not behave differently between each time of hand-hygiene. As it is indicated in Figure  3.12 ,

a subject was doing hand rinsing among 3 different times of recording. In each time, the

subject repeated for the same sequence of subtle motions. If we ask only few subjects to

repeat multiple times hand-hygiene actions in their own styles, our dataset might contain
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too much repetitive hand-hygiene patterns. This is not an appropriate method to explore

hand-hygiene actions.

Base on the discussion above, we decide to record our hand-hygiene dataset under a fixed,

clear environment with large amount of subjects.

3.5 Hand-hygiene in college bathroom

3.5.1 Data collection

As the area of egocentric video becomes popular, researchers have published datasets

[ 30 ], [  34 ] for evaluating the performance of different egocentric action recognition methods.

Many publicly available datasets involve only a few participants with recordings done inside

home apartments. However, there exists significant differences between a home kitchen and

an industrial food handling facility. Moreover, every participant has their own style of hand

washing. We believe our data will generalize better if we involve more participants.

To ensure that our dataset includes enough variation between samples, we invited 100

participants and recorded the videos in two separate public restrooms with similar envi-

ronments (All data collection took place in August 2018 and was done within the context

of Purdue IRB # 1804020457.). All participants were allowed to wear any type of cloth-

ing, including watches and hand jewelry, and had varied ages, genders, and races. Each

participant was recorded twice while they washed their hands. Initially, each participant

performed a naive hand washing in the first room, according to their typical hand washing

style. Then, the participant was asked to read the instructions for hand-hygiene shown in

Figure  3.8 . Finally, each participant was recorded washing their hands again in the second

room. When the data were collected, all participants indicated their willingness to have their

data published. However, not all participants agreed to a public dissemination of their data;

therefore, our hand-hygiene dataset will not be made publicly available at this time.

Our overall goal was to design a method that will operate in any indoor environment,

including temporary environments with portable wash-stations. A single camera mounted on

the ceiling created a top-down view for the previous work in [ 75 ], [  76 ]. However, the layout

may not be consistent across all indoor environments; for example, the location of faucet,
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the height of the ceiling, the location (or existence) of a mirror, may all be different for

different environments. Therefore, instead of designing a particular camera installation plan

for every potential environment, we choose to collect our data in “portable” way. Thus, we

use cameras that can be easily mounted on a participant or easily moved from one location

to another.

Two type of cameras, egocentric and third-person, are applied in our data collection. An

egocentric camera is capable of capturing subtle motions of hands and fingers, which provides

supportive information to classify different types of hand actions. In contrast, a third-person

camera is efficient at capturing a participant’s body motion as well as any interaction with

the surroundings.

To explore the efficiency of third-person video and egocentric video in hand-hygiene

actions, we used both egocentric cameras and a static third-person view camera for video

recording. Each participant wore a GoPro camera with a harness on their chest as one

egocentric camera and an IVUE glasses camera on their nose as another egocentric camera.

The third-person view camera was a GoPro camera placed on top of a flat platform near the

sink. We will refer these three camera views as “chest camera view”, “nose camera view”,

and “wall camera view” for the rest of this paper. Each video has 1080p resolution, 30 FPS,

and a wide viewing angle. A visualization of of this dataset can be found at Figure  3.10 ,

which is recorded under egocentric chest camera view.

The entire dataset is recorded in Purdue University, Philip E. Nelson Hall of Food Science

with 100 participants. We name this dataset as ”Nelson100” hand-hygiene dataset.

3.5.2 Data labeling and availability

Frame-level labeling In our ”Nelson100” dataset, all the hand-hygiene actions are labeled

by human expert at a frame level for all three camera views. Due to the limited labeling

resource, ”Nelson100” dataset is only labeled for standard level hand-hygiene task, which

includes 6 types of hand-hygiene actions: ”touch faucet with elbow”, ”touch faucet with

hand”, ”rub hands with water”, ”rub hands without water”, ”apply soap”, ”dry hands with

towel”. Beside these hand-hygiene actions, all the other actions performed by participants
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are labeled as ”non-hygiene” actions. Therefore, the ”Nelson100” includes 7 types of actions

in total.

Data availability The dataset consists video data to support both action recognition and

detection tasks. For action recognition task, each of these hand-hygiene or non-hygiene

actions are considered as ”trimmed video clips”, which will be applied to the task of action

recognition. For action detection task, the videos which includes all actions of a person’s

start recording to the end of recording, we refer these videos as ”untrimmed video” which

will be applied to the task of action detection. Table  3.2 lists the number of trimmed video

clips for each camera view. The train, validation, and test action sets are split with ratio

0.66 : 0.12 : 0.22 based on number of participates, where each participate might contribute

different number of trimmed video clips. Video clips include invalid information due to

inappropriate recording are deleted. For the number of untrimmed video, There are 44 of

untrimmed videos each camera view.

Table 3.2. Number of trimmed video clips for each camera view: out of
parentheses hand-hygiene actions only; in parentheses: hand-hygiene and non-
hygiene actions

Camera Train Validation Test
Chest 947 (1357) 144 (208) 307 (427)
Nose 947 (1358) 144 (208) 307 (427)
Wall 942 (1314) 144 (202) 307 (427)

3.5.3 Potential challenge of the dataset

Hand-hygiene actions are unique due to their specialty in viewing angles and subtle

motions. Hands reaching out of the camera view is one of the problems that usually occurs

in hand-hygiene action videos, especially if the video is recorded under egocentric view.

Figure  3.13 shows an example of the out-of-view problem during hand-hygiene. The camera

was mounted on the actor’s chest with a harness. Because of the difference in people’s body

shape and height, it is difficult to track the actor’s hands all time. For instance, in Figure

 3.13 (a), the actor’s is much higher than the washing sink. Therefore, when he bowed to
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approach the sink, the camera view was shifted to record his legs. Moreover, in Figure

 3.13 (d), when the actor’s height is close to the washing sink, it is easy for him/her to put

the arms in front of camera when rubbing hands.

Figure 3.13. Hand-hygiene actions occluded in egocentric view

The illumination condition is also an important factor for egocentric videos. For our hand-

hygiene videos, we maintained the lighting condition at the same level for all the participants.

However, because different participants have different heights, when the camera view gets

close to the sink, the shadow of arms became explicitly recorded. For example, in Figure

 3.14 , the arms’ shadow appeared on white sinks. These shadows have impact on the motion

computation in video processing, which can potentially disturb the detection results.

The most challenging part in hand-hygiene action recognition is to detect the subtle

motions, especially in the pair of action rinse hands and rub hands. It is required by hand-

hygiene procedures to rub hands with different poses. To detect the strength used in hand

rubbing, we defined two action classes: rub hands and rinse hands. Rub hands describes that
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Figure 3.14. shadow of the arms on the washing sink

Figure 3.15. (a),(b) rinse hands action (c),(d) rub hands action

the participant use quite a mount of strength to rub hands without pose limitations. On the

other hand, rinse hands describes that the participant uses little strength at hand-to-hand

interactions. Normally, the participant will only let the water flow through his or her hands.

However, in the real scenario, the participant normally switches between the actions

of rub hands and rinse hands in a short time period, which makes it difficult to identify

each action. Moreover, the appearance of rub hands action and rinse hands action are very

similar, which causes confusion when using appearance information from these actions.
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3.6 Hand-hygiene in food class

Beside our ”nelson100” dataset introduced in Section  3.5 , we extend our exploration into

a food class in Purdue University. In this section, we introduce our new ”Class 23” hand-

hygiene dataset. We first introduce our video collection steps and data pre-processing. Then,

we define the hand-hygiene task which the dataset targets at and the related adaptations for

this dataset. Finally, we describe the ground truth labeling and data availability for action

recognition and detection tasks.

3.6.1 Data collection

As we introduce in Section  3.1 , the published available food related datasets have a differ-

ent focus than our food safety research. Georgia Tech Egocentric Activity (GTEA) [  34 ] and

Activities of Daily Living (ADL) dataset [  30 ] collected a dozen of people’s daily activities

in home scenario. MPII cooking activity dataset [ 77 ], 50salads dataset [  78 ], and Breakfast

Actions Dataset [  79 ] recorded food handling and cooking in home scenario. However, pro-

fessional food safety facilities share a different scenario than the general home kitchen. To

simulate the food safety environment, we collected 100 participants perform hand-hygiene in

college bathrooms as our ”nelson100” dataset. In this section, we extend our data collection

scenario into professional food handling laboratory.

In our new data collection, we invited 23 students who participate a cooking class of

Purdue University to participate in our data collection. Therefore, we name the dataset

as ”class23”. In the cooking class, students are required to perform hand-hygiene before

they start the lab portion of the course. To reduce waiting time, students are split into

two groups to do hand-hygiene in two different rooms, namely ”room1” and ”room2”. Each

room has one hand-hygiene sink, and students line up to wash hand one after another. All

students follow the strict laboratory policy to wear a lab coat and a bouffant cap during

the entire lab section. Students are aware of standard hand-hygiene procedures. During the

video recording, students perform hand-hygiene by themselves without the supervision or

disruption from the instructor. Therefore, ”non-hygiene” behaviors such as ”talking to each

other” and ”walking around the room” are also captured in our data collection.
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Figure 3.16. Data image; (a) Left: room1 camera1. (b) Right top: room2
camera1. (c) Right bottom: room2 camera2

The two rooms have a distinct layout; the location of the sink and the configuration of

objects around the sink are different in each room. This affects our camera placement in

each room. Figure  3.17 indicates the layout of ”room1”, where the sink is located at the

corner of laboratory. Thus, we can only place the camera on one side of the sink for video

recording. The angle between ”sink to camera” and ”camera to human” is approximately 90

degree. However, as indicated in Figure  3.18 , the sink in ”room2” is inset into a countertop,

which prevents us from placing the camera at 90 degree as in ”room1”. The two cameras

in ”room2” are placed on each side of the person (labeled ”human” in the figure). The

angle between ”sink to camera” and ”camera to human” is about 70 degree. A frame from

each resulting video is shown in Figure  3.16 . Due to the clear variability across these 3

camera views, we define 3 scenarios in this context: ”room 1 camera1”, ”room2 camera1”,

and ”room2 camera2”.

All the three third-person view cameras for video recording were GoPro camera placed

on top of a tripod. Each video is has 1080p resolution, 30 FPS. We collect 5 days of video

data, which is 5 times of cooking class, for our ”class23” dataset  

1
 . In each day’s recording,

”room1” and ”room2” may have a different number of students based on the way the group

was split into two rooms.

Data pre-processing The collection of videos is pre-processed to remove those time periods

where students or staff unintentionally occluded the camera view for a long period. We also
1

 ↑ Data collection stopped when the class shifted unexpectedly to all-remote learning in March 2020.
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Figure 3.17. Room1 layout; Side-camera view with 90 degree angle

Figure 3.18. Room2 layout; Two side-camera views with approximate 70 degree angle

remove those videos for which the tripod was incorrectly positioned. All cameras were

mounted and set to start recording before students arrived. After the last students finished

his/her hand-hygiene, the instructor manually stop all the camera’s recording. To reduce

the redundant content in our data collection, we further cut each camera’s video by person,

where each video starts when a person begins hand-hygiene, and ends after the person

finishes. After removing unsatisfied videos, a total of 63 person’s hand-hygiene video remain

across all three camera views.

Spatial region pre-processing The original video data collected in our dataset are under

1920 x 1080 spatial size. In each video, all the students appear in the room are being

recorded. However, the hand-hygiene action recognition only applies to the student who is

standing near the sink area. To construct a valid hand-hygiene recognition system, the first

step is to identify the person near the sink. This task can be potentially achieved by major
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object localization methods, such as Faster RCNN [ 80 ], YOLO [  81 ], and SSD [  82 ]. Because

this is the first time we collect hand-hygiene data under different rooms with different layout,

illumination, and object configuration, instead of focusing on designing good performance

object detector for a sub-task, we would like to first explore the feasibility of hand-hygiene

recognition on these data. Therefore, we manually labeled the region of interest (ROI)

of sink area for each day and each ”scenario” video. And each video’s region of interest

(ROI) area is cropped and resized into 224 x 224 size. For the rest of this paper, unless

specifically explained, these cropped and resized ROI images or videos are the default input

to all experiments. The visualization of these cropped ROI images are shown in Figure  3.19 .

3.6.2 Hand-hygiene action definition

After data collection, we want to define hand-hygiene actions types in our dataset.

Hand-hygiene task selection Reference the previous Chapter  3.3 , there are three types

of video analytic tasks for hand-hygiene. Based on their difficult level, we name them as

”detail level”, ”standard level”, and ”detection level” tasks. ”Detail level” hand-hygiene

recognition is a task to recognize 12 different hand-hygiene actions. Some of these actions

involve subtle motions of hands and fingers, which are hard to record even under egocentric

camera. The ”detail level” hand-hygiene recognition is not an appropriate task for our side-

view third person camera dataset. Therefore, we focus on the ”standard level” hand-hygiene

task, which includes 6 different hand-hygiene actions, which are ”touch faucet with elbow”,

”touch faucet with hand”, ”rub hands with water”, ”rub hands without water”, ”apply soap”,

and ”dry hands with paper towel”.

Action type adjust Moreover, we adjust the action types in ”standard level” hand-hygiene

task to adapt to the class23 dataset. Due to the behavior of the students, the action set

in different ”scenario” are not the same. In ”room2 camera1” and ”room2 camera2”, the

location of paper towel is out of the view of both camera. Therefore, none student performs

”dry hands with paper towel” under those two cameras. Also, there exist only few examples of

”dry hands with paper towel” actions in ”room1 camera1”. Based on our previous definition

in Chapter  3.3 , the action of ”dry hands with paper towel” is best described under egocentric
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camera recording. Because the location of paper towel is uncertain and the participant could

walking as well as wiping their hands. For the reasons above, we will not explore ”dry hands

with paper towel” as hand-hygiene action in this paper and it will be considered as a ”non-

hygiene” action. Moreover, it is quite surprising that none of the students in 5 days recording

performed the action of ”touching faucet with elbow”. Therefore, we will only focus on 4

types of hand-hygiene actions in this work, which are ”touch faucet with hand”, ”rub hands

with water”, ”rub hands without water”, and ”apply soap”.

Figure 3.19. Cropped Region of interest on sink with 4 hand-hygiene ac-
tions: (1) ”touch faucet with hand” (2) ”rub hands with water” (3) ”rub
hands without water” (4) ”apply soap”; Each row (a) Room1 camera1, (b)
Room2 camera1, (c) Room2 camera2

3.6.3 Data labeling and availability

Frame-level labeling In our ”class23” dataset, all the hand-hygiene actions are labeled by

human expert at a frame level. Beside hand-hygiene actions, ”non-hygiene” actions such as

”swing hands”, ”grab paper towel”, ”dry hands with paper towel”, and ”camera occlusion”

are also labeled at the frame-level.

Data availability Our dataset consists video data to support both action recognition and

detection tasks. For action recognition task, each of these hand-hygiene or non-hygiene

actions are considered as ”trimmed video clips”, which will be applied to the task of action
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recognition for the remaining of this paper. For action detection task, the videos which

includes all actions of a person’s start to end hand-hygiene steps as described in  3.6.1 , we

refer these videos as ”untrimmed video” which will be applied to the task of action detection

for the remaining of this paper. Table  3.3 lists the number of trimmed video clips for each

scenario. The train, validation, and test action sets are split with ratio 0.66 : 0.12 : 0.22.

For the number of untrimmed video, There are 9, 10, 15 of untrimmed videos for testing

purposes in room1 camera1, room2 camera1, and room2 camera2, respectively.

Table 3.3. Number of trimmed video clips for each scenario: out of parenthe-
ses hand-hygiene actions only; in parentheses: hand-hygiene and non-hygiene
actions

Scene Train Validation Test
Room1 cam1 127 (177) 16 (26) 60 (80)
Room2 cam1 55 (78) 9 (12) 34 (48)
Room2 cam2 96 (114) 14 (17) 53 (65)

3.7 Produce washing in student farm

In previous sections, we introduced our data collections for the topic of hand-hygiene

action recognition in different scenarios. However, if we proceed from the whole picture

of food handling, hand-hygiene is only one of the steps which often happens during food

handling. To explore more complicate food handling situation, we also collected video data

from a student farm for produce washing.

3.7.1 Data collection

In this data collection, we invite the staff in a student farm of Purdue University to

collaborate with us to record their daily produce washing steps. In the student farm, the

produce washing is a daily based activity. In the morning, all the produce in the farm are

harvested and collected in different baskets. The staff is responsible to wash all the produce

and store them into the storage. After washing the produce, the containers and work stations

should also be cleaned follow standard procedures.
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To collect the realistic produce washing video data, we applied 4 different cameras to

record the produce washing steps. Among all the 4 cameras, two of them are egocentric

view and the rest are static third person view. The two egocentric cameras applied the

same chest and nose camera setting as discussed in Section  3.2 . The two third person view

cameras also follow the same setting as the wall camera introduced in Section  3.2 . To explore

the appropriate camera placement in the produce washing room, the two third person view

cameras are localized in two separate positions close to the window and corner of the room.

Figure 3.20. 4 cameras video frame display: (a) chest camera (b) nose camera
(c) third person camera at window (d) third person camera at corner

Before the produce washing begins, the food staff is asked to wear a chest and a nose

camera on him/her. All 4 cameras are recording continuously until the staff claims the

produce washing is finished. The video frames from all 4 cameras are shown in Figure  3.20 .

We collected the total video data more than 10 hours for each camera view of continuous

produce washing. The general video duration for each single produce washing is approximate

30 minutes, which is relatively long compare to hand-hygiene actions.
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3.7.2 Potential task

Due to the constraint on time schedule, the data we collected in produce washing are not

being explored with any experiment. Therefore, in this section, we will analyze the potential

topic to explore with this data collection.

The produce washing is required to follow a long sequence of standard produces, which

could last more than half an hour to finish are required steps. The actions happen during

produce washing could include but not limited to: wash produce, wash hands, clean contain-

ers, put produce into storage room, and staff takes a break. Part of these actions is shown

in Figure  3.21 .

Figure 3.21. Action video frames in produce washing.

Besides these meaning actions which contributes to produce washing quality, there could

also exist potential distractions during produces washing. Behaviors such as staff chatting,

arguing as Figure  3.22 , or visitors break into the room could affect the efficiency of produce

washing.

From food handling perspective, the distractions happen during produce washing are

inappropriate and should be reported to the supervisor in the time. However, it is inefficient

for human labors to watch such a long duration video and summarize all the accidents within

it. Therefore, with the support of video monitoring, we can apply computer vision algorithm

on these videos to automatically summarize all the events occur in the video.
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Figure 3.22. Distraction video frames in produce washing: (a) chatting. (b). arguing.

The most relevant topic in computer vision which matches our desire is video summa-

rization [  83 ][ 84 ][ 85 ] which automatically generates brief summarization from long video. The

detailed application of using video summarization for produce washing videos is expected to

be explored in the future.
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4. HAND-HYGIENE IN EGOCENTRIC VIDEO

This chapter introduces hand-hygiene recognition method by using only egocentric video

data. The majority content in this chapter is also covered in our previous work [  86 ]. Ego-

centric video is recorded by mounting wearable cameras on human body. This video type

contains rich body and camera motion, which matches the characteristic of hand-hygiene

actions. In this chapter, we apply the chest camera view video data from our ”nelson100”

dataset as mentioned in Chapter  3.5 to explore hand-hygiene action recognition. The hand-

hygiene action recognition task is at the difficulty level of ”standard level” as discussed in

Chapter  3.3 . In Chapter  4.1 , we discuss the adjustment of ”nelson100” data and ”standard

level” hand-hygiene task in this work. In Chapter  4.2 , we introduce the overall system design

for hand-hygiene recognition in egocentric video. In Chapter  4.3 , we introduce and compare

the methods of two-stream network and LSTM. In Chapter  4.4 , we discuss the processing

details on untrimmed hand-hygiene videos.

4.1 Action set adjustment

Figure 4.1. Action set: (a) touch faucet with elbow (b) touch faucet with
hand (c) rinse hands (d) rub hands without water (e) rub hands with water
(f) apply soap (g) dry hands with paper towel (h) non-hand hygiene action

Because this work was done on the early stage of our entire hand-hygiene exploration

framework, the action set we explored is not exactly the same but close to the ”standard
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level” hand-hygiene task. To explore the strength of hand rubbing during the hygiene steps,

we further divided the action ”rub hands with water” in our ”standard level” task into ”rub

hands with water” and ”rinse hands”.

The detailed definition of all hand-hygiene actions in this chapter is the following: A

subject should not touch the faucet with their hands, to avoid re-contamination [ 3 ]. There-

fore, we need to distinguish whether the subject touched the faucet with hand or with an

elbow. Moreover, it is also important to detect the strength used to rub hands. We enable

this by labelling an action of rinse hand, where the subject rubs hands with little strength.

Furthermore, the subject should apply soap before hand washing and dry their hands after

hand washing. When soap is applied, the subject needs to rub hands without keeping their

hands in water. Based on these principles, we define and label 8 actions as indicated in Fig-

ure  4.1 , which are: touch faucet with elbow, touch faucet with hand, rinse hands, rub hands

without water, rub hands with water, apply soap, dry hands, and a background non-hygiene

action. All 8 actions are manually labelled at the frame-level.

Moreover,the ”nelson100” videos are recorded under 1080p resolution with 30 FPS and

wide viewing angle. To increase processing speed, we further down-sampled these videos to

480 × 270 resolution for all the usage in this chapter.

4.2 Two stage hand-hygiene system

4.2.1 System design background

Activity recognition for untrimmed video clips is often termed temporal action proposals

or temporal action localization [  87 ]. For hand-hygiene videos, our goal is to localize temporal

regions where hand-hygiene actions happen in untrimmed videos. Then, by applying an

action classifier on these targeted short segments, we will be able to identify what hand-

hygiene actions have been performed by a participant.

Our hand-hygiene videos contain densely-distributed hand actions with an average of

5 different types of actions per video. Non-hygiene actions such as standing or walking

around can happen anytime during the video. Thus, it is difficult for coarse-level temporal

proposal methods [ 6 ][ 7 ] to localize hand-hygiene actions in our videos. Moreover, the average
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duration of an untrimmed hand-hygiene video is around 1 minute. Therefore, the temporal

segmentation method [ 88 ] designed for long duration egocentric videos is also not applicable

here.

4.2.2 System basic description

We propose a two-stage system to localize and detect hand-hygiene actions from untrimmed

videos as shown in Figure  4.2 .

Figure 4.2. Two-stage prediction system pipeline

In the first stage of our system, we localize the temporal interval where hand-hygiene

actions happen inside the untrimmed video. Hand-hygiene actions are dominated by hand

and arm motion, which can be interpreted as the appearance of hands, arms and their

related motion patterns. We divide our 8 types of actions into two categories. First, actions

containing strong motions, including rinse hands, rub hands without water, rub hands with

water and wipe hands, are considered as action class ”1”. The other four types of actions,

including non-hygiene actions, are labelled as action class ”0”. We apply a low cost hand

mask and motion histogram features to process the input video. And the goal of this first
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stage is to correctly predict these labels at a frame-level inside the whole untrimmed video.

The implementation details are explained in Section  4.4.1 and  4.4.2 .

In the second stage, we use a two-stream network to make a fine-level prediction on

all 8 action classes in our data. Using the location information from the first stage, we

apply a deep learning model to predict on unit of 30 frames. By combing this model with a

certain searching algorithm, we are able to localize and identify all the hand-hygiene actions

that happen inside the input video. The construction of deep learning model is introduced in

Section  4.3 . The implementation detail of the system’s second stage and overall performance

are explained in Sections  4.4.3 and  4.4.4 .

4.3 Hand-hygiene action classification

Based on our system design, we need to construct a robust model which is capable to

recognize all hand-hygiene actions. In this section, we explore the performance of the two-

stream network on recognizing actions in trimmed hand-hygiene video clips.

4.3.1 Two-stream convolutional neural network

Hand-hygiene actions are composed of hand and arm motions, which lack meaningful

objects that might reveal clues about action itself [  32 ]. In this Section, we would like to

apply a deep learning based model to learn deep feature representations to distinguish all 8

types of actions.

The two-stream network has demonstrated its effectiveness in activity recognition in

third-person videos [  35 ]. The two-stream network considers both appearance and motion

information by separately constructing a spatial-stream ConvNet and a temporal-stream

ConvNet. The spatial-stream ConvNet takes RGB images as inputs, which provides ap-

pearance information in the scene. On the other hand, the temporal-stream ConvNet takes

chunks of optical flow images between consecutive frames as inputs. These optical flow

images provide strong clues to the motion information that exists in the video.

Optical flow is a commonly used method to describe motion of objects in visual scenes.

Assume the brightness condition is constant, for an image I, the change of intensity at
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I(x, y, t) between two consecutive images are represented as ∆x, ∆y and ∆t. Due to the

unchanged intensity of the same pixel over consecutive images, we can have the equation as

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t). By eventually solving this equation, we get Vx, Vy as

the velocity in x, y direction, which are the optical flows. However, solving this equation is

not a straight forward problem and requires additional conditions.

Basically, optical methods can be divided into 2 categories, dense optical flow and sparse

optical flow. For dense optical flow methods, they manage to process all the pixels in an

certain image area or the whole image. In contrast, sparse optical flow methods only track

small amount of pixels, which can be selected by algorithm such as Harris Corner detector.

In our experiment, we compared two different dense optical flow methods: Farneback optical

flow [ 89 ] and TV-L1 optical flow [  90 ]. As it is indicated in Figure  4.3 , the Farneback optical

flow images can barely detected the optical flow on the arm skin region, therefore, only the

flow of border arms are correctly computed. As TV-L1 optical flow, all the optical flows on

object regions can be found. Therefore, we choose TV-L1 method to compute optical flow

images.

Figure 4.3. Optical flow comparison:(a) RGB image.(b) TV-LV1 optical
flow.(c) Farneback optical flow.

After getting prediction score separately from spatial and temporal network, the final

prediction result is generated from a score fusion of these two individual networks.

For our experiment, we use the method of Wang et al. [ 91 ] with implementation [  92 ],

which applies deeper network structures and takes advantage of a small learning rate and

more data augmentation techniques.
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4.3.2 Experiments on two-stream network

We split the 200 videos in our dataset into training and testing sets with 135 videos and

65 videos respectively. All videos are trimmed into clips where each clip includes only one

action from beginning to end, which result in 1380 training video clips and 675 testing video

clips.

For training, we use the pre-trained ResNet 152 [  21 ] from ImageNet [  93 ] for both the

spatial and temporal networks with fine-tuning on the 8 action classes. Input video with

480 × 270 are down-sampled to resolution 224 × 224 to fit the ResNet.

For testing, we apply both the sparse [ 91 ] and dense sampling strategies. For the sparse

sampling, only 25 frames with equal distance step are selected from each input video clip.

For dense sampling, all frames are selected. The two-stream network model predicts each

selected frame individually and uses the average prediction score from these frames as the

prediction for the input video.

Table 4.1. Two-stream network performance
Model Accuracy

Spatial Network sparse 85.3%
Spatial Network dense 86.4%

Temporal Network sparse 84.4%
Temporal Network dense 86.8%

Fusion sparse 87.3%
Fusion dense 87.7%

Figure 4.4. Confusion matrix for two-stream network fusion, dense sampling.
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The results in Table  4.1 show the average detection accuracy among all 675 video clips.

The dense sampling only outperforms the sparse sampling by 0.4 % after score fusion. There-

fore, sparse sampling is a better strategy for its faster processing speed and minor sacrifice

on detection accuracy.

A prediction confusion matrix for dense sampling after score fusion is shown in Figure

 4.4 . We observe that the trained deep model performs well on several of the actions with

over 90% accuracy. However, for the action pair of rinse hands and rub hands with water,

many participants switch between these two actions in a short period of time, which caused

difficulty in creating ground truth labels. Therefore, the trained model makes mistakes on

recognizing these two actions.

Figure 4.5. Grad cam [ 54 ] results of (a) rub hands with water (b) apply soap
(c) touch faucet with elbow

To understand what the two-stream model has learned, we use Grad-cam [  54 ]. Figure  4.5 

shows these heat maps, where the highlighted region indicates saliency for a target class. In

Figure  4.5 (a), the trained model successfully captures hand related regions to recognize rub

hand with water. In Figure  4.5 (b)(c), however, the chest camera angle hasn’t completely

captured the entire action of applying soap or touching faucet with elbow. As a result, the

trained model makes mistakes by recognizing these two actions as non-hygiene actions.
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4.3.3 Convolutional neural network combine with LSTM

Beside the two stream network, we also explore the performance of CNN network com-

bines with LSTM (Long-Short Term Memory). For hand-hygiene actions, they usually re-

quire the subject to repetitively performing some basic movements. For example, when

rubbing hands, the subject will repetitively do the left-to-right or right-to-left hands rub-

bing. Therefore, we think it is worth to study this latent variable in time sequence to classify

hand-hygiene actions.

One of the most efficient methods to the gradient issue is called Long-Short Term Memory

(LSTM). As it is indicated in  4.1 , the LSTM is constructed in a combination of input gate

it, forget gate ft, output gate ot and input modulation gate gt. All the it, ft, ot, gt, ct and

ht have the same dimensional d. The hidden units in LSTM structure is computed through

memory cells ct. The gradient flows allowed to pass through the cell unit ct in controlled

through forget gate ft and input gate it. Each of these gates generate a value between 0 to

1 as rate to selectively forget its previous memory and study from its current input.

it = σ(Wxixt + Whiht−1 + bi),

ft = σ(Wxfxt + Whfht−1 + bf ),

ot = σ(Wxoxt + Whoht−1 + bo),

gt = tanh(Wxcxt + Whcht−1 + bc),

ct = ft � ct−1 + it � gt,

ht = ot � tanh(ct),

yt = tanh(Whyht + by)

(4.1)

As it is defined in [  94 ], there are 3 types of LSTM structures. These structures are

different by the format of input and output, which can be described as multiple inputs to

single output, single inputs to multiple outputs and multiple inputs to multiple outputs.

Each of these LSTM structure in Figure  4.6 fits for one type of computer vision problems.

For the problem of activity recognition, the general idea is to describe the particular action
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Figure 4.6. Three LSTM structures

type from an input video. As it shown in Figure  4.6 (a), the first LSTM structure can take

multiple input video frames and generates an action label as output.

For our hand-hygiene videos, we would like to apply the sequential input to sequential

output format, as it is indicated in Figure  4.6 (c), which allows us to track on the prediction

result in each time step.

4.3.4 Implementation details of Long-Short Term Memory model

In this section, we explains the extraction of input features to LSTM structure. An

LSTM based model usually combined with deep CNN features to recognize temporal latent

information among actions. For our data, we would like to extract deep CNN feature for

every video frame to be used for LSTM training and testing.

Deep CNN features has been proved its efficiency in recognizing third person view actions

[ 94 ][ 95 ]. Inspired from their works, we would like to test its performance when applies to

our hand-hygiene actions.
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Figure 4.7. CNN feature + LSTM structure

We use ResNet 152 [  21 ] pre-trained on ImageNet as the feature extractor to LSTM due

to its effectiveness on the in ILSVRC 2015 classification task. For a video frame at time t,

we re-size its spatial dimension into 224x224 as an input image to ResNet 152 and collect

output features with dimension 1x2048 from it. The feature vector extracted at time step t is

used as the input xt to the LSTM. For the selection of hidden unit ht dimension d, we select

it to be 1
4 of the input vector as 516 to force the model to select and summarize information

from input feature.

As in figure  4.7 , the LSTM model takes both xt and the previous hidden states ht−1 into

consideration to cre and outputs a prediction label vector yt. The length of yt is the number

of action classes N, and the predicted value at index i of yt indicates the confidence score for

class i. For our dataset, we have N=8 number of actions.

When the procession at time step t finished, we continually input the feature vector from

next time step xt+1 into the LSTM, where xt and xt+1 are features extracted from consecutive

frames in a video at time t and t + 1. Through continually input feature vectors from time

t to t + L, we receive a sequence of output predictions, where L is the fixed number of time

steps included in an LSTM.

After processing all the time steps in LSTM, we collected totally L prediction vectors

[y1, y2, ..., yL], yi ∈ R8. Corresponding to our 30 FPS video, we set the length of L equals to
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30 to match the length of 1 second time period. Because of the activation function tanh, the

values in yi are match into the range [ − 1, 1]. Through averaging 30 yi vectors and applies

softmax, which maps the confidence score into prob-abilities, we get the final classification

result for this chunk of 30 frames video clips.

4.3.5 Training and testing of LSTM

In this stage, we only use the chest camera view to test the efficiency of LSTM. Because

of the camera location, some of our videos contain significant occlusion and cannot be used.

After removing these occluded videos, 191 videos remain. For the experiments in this paper,

we split the dataset into training and testing parts with a 2:1 ratio. The training part

contains 134 videos and the testing part has 57 videos. For the convenience of using existing

CNN for feature extraction, we downsample all videos to a resolution of 224x224.

Each of our videos in training set has been cut into video clips according to our ground

truth annotation. Each video clip only contains one action from begin to end. Inside a video

clip, we extract overlapped video frames with length 30 frames with stride 1 as training

samples as indicated in Figure  4.8 . This strategy guarantees all the variations of a 30 frames

duration video chunk in an action type can be learned by the LSTM model.

Figure 4.8. Training sample creation

For the loss function, we use cross-entropy loss (  4.2 ), where yti represent the prediction

label vector at time step t for class i. The loss equals the sum of all the time steps L=30

among all classes N=8.

L =
t=29∑
t=0

i=7∑
i=0

ytilog(softmax(yti)) (4.2)
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Table 4.2. LSTM comparison in number of layers
Model Accuracy

1 layer LSTM 72.9%
3 layers LSTM 74.3%
5 layers LSTM 73.6%

Moreover, we also test the variations on LSTM structure which includes number of layers.

It has been explored that deep in LSTM layers can efficiently use parameters by distributing

them in several layers [  96 ]. Therefore, we varied the number of layers in LSTM with 1, 3

and 5. When LSTM has multiple layers, we add a drop rate of 0.5 in training to prevent

over-fitting.

In testing stage, each video clip is trimmed into 30 frames video overlapped video chunk

with stride 1. The averaging prediciton result among all these video chunks is the prediction

result of the test video.

The results in  4.2 show that having multiple layers increases detection accuracy. However,

detection accuracy no longer improves when increasing the number of layers from 3 to 5.

Figure 4.9. 3 layers LSTM result confusion matrix

If we take a look at the confusion matrix result in Figure  4.9 , the worst performance of

classification comes from action class of faucet elbow. More than half of this action has been

mis-classified as non-hygiene actions. One reason is because of the camera view on chest can

not capture the participant’s arm or hands during this action. On the other hand, the lack
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of training samples is also an important factor. Among 134 training samples, there exists

only 20 video clips of faucet elbow actions.

4.3.6 Comparison of LSTM and two stream network

In this section, we compare the LSTM model with two-stream network. To make this

comparison valid, we trained the two-stream networks by fine-tuning the pre-trained ResNet

152 with our hand-hygiene dataset and using the fine-tuned networks as feature extractors

for the LSTM. We also constructed another LSTM model which takes a stack of optical flow

images with the same size as the two-stream temporal network

Table 4.3. Two stream networks and LSTM comparison
Model Accuracy

3 layers LSTM RGB 80.2%
3 layers LSTM Optical Flow 80.5%

3 layers LSTM fusion 81.6%
Two-stream network spatial 86.4%

Two-stream network temporal 86.8%
Two-stream network fusion dense 87.7%

The results in Table  4.3 show that the two-stream network achieves higher detection

accuracy than LSTM model. Therefore, we prefer to use two-stream network as our hand-

hygiene recognition model for the rest of this work.

4.4 System implementation details

4.4.1 Hand-hygiene localization

Hand mask Hand poses are good indicators of hand-hygiene actions. Especially when rins-

ing or rubbing hands, the two hands overlapping each other create distinguishable patterns.

In our work, we applied the pixel-level hand detection method [  97 ] to generate hand masks.

We train the model with a set of 134 images of manually labelled segmented hand regions

under different illumination conditions. The resulting hand masks are gray-scale images with

size Sm × Sn.
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Inspired by the work of Singh et al. [ 33 ], we create a network structure to predict frame-

level ”0” or ”1” action using hand mask as features. The network is composed of 2 Conv

layers followed by RELU, max pooling and LRN (local response normalization) and 2 fully

connected (fc) layers. The network takes L hand masks as input. In our training stage, a

cross entropy loss is applied as well as a dropout 0.5 to avoid over-fitting. In testing, the

softmax score from the last fc layer indicates the prediction result.

Motion histogram Motion is also a good indicator of hand-hygiene actions. We create a

optical flow histogram feature within the hand mask region to represent motion patterns.

Applying the hand masks generated on dense optical flow images, we create two optical

flow histograms with bin size B for both region inside and outside hand mask. Within each

region, we count the magnitude and angle of optical flow for each pixel i.

Mi =
√

gx2
i + gy2

i , θi = tan−1(gyi

gxi
) (4.3)

The pixel with θi angle that falls into the range of [ b−1
B

π, b
B

π) contributes to the bin b

with magnitude Mi, where 1 ≤ b ≤ B. To overcome the problem of hand mask size variation,

the final sum value for each bin b is normalized by dividing the total number of pixels in its

corresponding region. The result histograms for hand masked region and outside hand mask

region at frame t are represented as Hht = [hht,1, hht,2, ..., hht,B] and Hbt = [hbt,1, hbt,2, ..., hbt,B].

The concatenation of these two histograms creates a motion representation at frame t. We

also compute the ratio Rt =
∑B

i=1 hht,i∑B

j=1 hbt,i
and hand motion sum St = ∑B

i=1 hht,i as two additional

features. The final representation of motion histogram at frame t is Ht = [Hht, Hbt, Rt, St]

with size 1 × 2B + 2.

For classification, we apply a Random Forest classifier with 30 estimators and max depth

40 to learn the motion histogram patterns.

4.4.2 Hand-hygiene localization testing

In this section, we test the performance of the hand mask and motion histogram feature

on localizing hand-hygiene actions from untrimmed videos.
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Training For the efficiency of system design, we split the untrimmed 65 videos, with reso-

lution 480 × 270, from 100 people’s testing dataset into 43 and 22 videos for training and

testing the hand localization system. To increase the processing speed of the hand-hygiene

localization, the hand masks are generated with size of 32×18 and 64×36 in this experiment.

Motion histogram features are generated on 480 × 270 dense optical flow images and applied

previous generated hand masks,which resized to 480 × 270, on it. The hand mask network

is trained under batch size 128 and learning rate 1e−5 with a stack of L = 5 hand masks.

The Random Forest classifier is trained with three bin size options: 9,12 and 16.

Testing The testing experiment is done on 22 untrimmed videos with the label ”0”,”1” as

positive and negative labels on every frame. The hand mask network slides through the

whole video and predicts using an overlapped stack of hand masks. The Random Forest

classifier predicts on every frame of each video. For each testing video, we count the TP

(true positive), TN (true negative), FP (false positive), and FN (false negative) at the frame-

level. The performance of each classifier is measured by the accuracy = tp+tn
tp+tn+fp+fn

and true

negative ratio = tn
tn+fp

.

Table 4.4. Classifier comparison
Model Accuracy True negative ratio

9 bins motion hist 73.7% 74.0%
12 bins motion hist 74.7% 71.6%
16 bins motion hist 75.0% 70.4%

32x18x5 hand mask network 78.9% 74.1%
64x36x5 hand mask network 80.7% 76.8%

Table  4.4 indicates the average accuracy and true negative ratio among 22 testing videos.

We notice that hand mask network outperforms the combination of motion histogram with

Random Forest, and the input stack with hand-mask size 64 × 36 × 5 is the best option.

However, since the hand mask feature only reveals appearance information, mistakes can be

made when a participant holds his/her hands in a overlapped manner without motion.

In the final design of hand-hygiene localization, we first apply the hand mask network to

predict frame-level negative label ”0” and positive label ”1”. Then we re-check the positive

predicted frames with motion histogram and Random Forest classifier. A frame is predicted

as positive label ”1” only when it is confirmed by both classifiers. Otherwise, a frame is
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marked as negative label ”0”. The detailed performance of this structure will be explained

in the next section.

4.4.3 Hand-hygiene search and detection

In this Section, we describe the second stage of our two stage hand-hygiene system. As

it has been shown that two-stream network has a reasonable performance on recognizing

trimmed hygiene videos, we would like to use this model as a unit level detector to further

process untrimmed hand-hygiene videos.

Location unitization We consider an untrimmed video composed by non-overlapped units.

Each unit has 30 frames, which is 1 second in under 30 FPS. We start by assigning each

unit with a unified label of ”0” or ”1”. Based the frame-level prediction from the first system

stage, if a unit contains more than 15 frames of positive label ”1”, the unit is marked with

”1”. Otherwise, it will be marked as ”0”.

Unit level prediction The unit with positive label ”1” indicates those actions with strong

hand motion. We start to check these locations first. To recognize all 8 action classes, we

employ the pre-trained two stream network in Section  4.3.1 with a sparse sampling strategy.

We sample 10 RGB images and 3 non-overlapped 10 pairs of optical flow images for each

frame unit. The spatial network and temporal network individually predict using their

sampled inputs and fuse the results with equal weights for the final prediction.

Searching algorithm There exist 7 types of hand-hygiene actions to recognize. However,

due to short duration and indistinctive motion patterns, actions of applying soap, touching

faucet with hands and touching faucet with elbow are categorized into class ”0” in the

localization step. These actions normally happen before or after the actions labeled in ”1”.

Therefore, we designed a searching algorithm to find all 7 types of hand-hygiene actions.

The algorithm iteratively searches the surrounding unit of each label ”1” unit and makes

predictions using the two-stream network model. The algorithm stops when it reaches non-

hygiene actions on both left and right-side unit. After finishing the searching algorithm, each

unit visited has been predicted with a result label and the unvisited units are automatically

considered as non-hygiene actions.
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4.4.4 System testing

Testing of the overall two-stage system is applied on the same 22 untrimmed videos in

Section  4.4.2 . To evaluate a video’s prediction accuracy, we compare the prediction result

with our frame-level ground truth labels. We map unit-level prediction result into a frame-

level result by replicating each unit’s result by 30 times.

The system performance is evaluated by frame-level accuracy = tp+tn
tp+tn+fp+fn

and the

percentage of units visited (PV). We introduce the PV to measure the system efficiency. A

high frame-level accuracy with a low PV value indicates the system was effective at localizing

hand-hygiene actions and avoiding non-hygiene regions. For comparison, we create a baseline

by applying two-stream network model to densely predict all non-overlapping units in each

untrimmed video.

Table 4.5. Average performance on 22 untrimmed videos. H: Hand mask net-
work localization, M: Motion histogram localization, S: Searching algorithm
with two-stream network recognition

Methods Accuracy PV
Baseline 79.3% 100.0%

H+S 79.3% 81.5%
H+M+S 78.6% 76.4%

As indicated in Table  4.5 , the baseline system that checked every unit in each video

obtains an average accuracy of 79.3%, which is lower than the performance on Section ??

due to the strict frame-level comparison. When applying the hand mask network only on the

first system stage of localization, the PV drops from 100% to 81.5% while maintaining the

same accuracy as the baseline system. This proves that the hand-hygiene localization stage

helps to avoid processing the non-hygiene action. By applying the hand mask network with

motion histogram, the PV further drops to 76.4% while sacrificing 0.7% detection accuracy.

It is worth to note that the average percentage hand-hygiene actions occupied in the 22

untrimmed videos is 71.3%, which is the upper bound for the PV value.
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4.5 Conclusion

In this chapter, we introduced our new hand hygiene-egocentric two stage system to lo-

calize and recognize hand-hygiene actions in untrimmed hand-hygiene video. The system

consists of two stages. In the first stage, our system takes of the hand mask and motion

histogram feature to localize hand-hygiene actions temporally. In the second stage, we ex-

panded the two-stream network model to combine with a searching algorithm to recognize all

the hand-hygiene actions in the video. The system has achieved an acceptable performance.
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5. HAND-HYGIENE IN MULTIPLE CAMERA VIEWS

In this chapter, we compare different camera views in hand-hygiene actions and propose a

two-stage system, which involves multiple camera views, to detect hand-hygiene actions in

untrimmed video. The majority content in this chapter is also covered in our previous work

[ 98 ]. As we discussed in Chapter  4 , we are capable at recognizing hand-hygiene actions under

a egocentric camera view with chest mount camera. However, the efficiency of other camera

views is not explored. Stationary cameras placed in a so-called third-person perspective

have been used for surveillance, person and vehicle detection and re-identification, activity

recognition, and anomaly detection. When recognizing activities of a person, third-person

cameras have the advantage of viewing actions from the side view. First-person, or egocentric

cameras are mounted on the person performing the activity, often on their head or chest [ 4 ].

These cameras have the advantage of viewing the person’s hands and any objects being

manipulated, and are particularly useful to observe subtle hand motions and small objects.

However, because they are mounted on a person, these cameras often move chaotically as the

person moves. As a result, they may not capture the desired activities, and video processing

methods like background subtraction and camera calibration become more difficult [  4 ]. In

this chapter, we extend hand-hygiene action recognition from solely using egocentric video

into a combination of using both egocentric and third-person video. In Chapter  5.1 , we

introduce the overview of our system design. In Chapter  5.3 , we describe our experiment

on evaluating deep learning model performance on trimmed action clips. In Chapter  5.4 , we

evaluate the performance of the entire system. In Chapter  5.5 , we conclude our work with a

brief discussion and summary.

5.1 System overview

In this section, we describe a basic two-stage system to detect standard-level hand-hygiene

actions, namely, the 7 actions described in Chapter  3.3 , that occur in real-life scenarios, i.e.,

in untrimmed videos. The data involved in this work comes from the chest, nose, and wall

camera view videos in our ”nelson100” dataset as mentioned in Chapter  3.5 . Our two-stage

design is motivated by the desire to apply low-complexity processing during a first pass,
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Figure 5.1. Hand-hygiene periods in untrimmed video.

with the goal to reduce the amount of video that later must be processed with more complex

methods in the second stage. Both stages process each of the wall and chest camera outputs,

and the specific tasks of each stage are motivated from our experiments described below in

Section  5.3 . In particular, the two stages and selection of which camera should be applied to

a certain hand-hygiene stage are motivated by our experiment (described below in Section

 5.3.1 ) which explores which camera is most effective for each action, and by our observations

from Figure  5.1 above.

Recall that most hand-based actions are densely located in the hand-hygiene period and

partially distributed within the post-hygiene period. All the remaining video content consist

of non-hygiene actions with unknown and variable duration. Thus, it would be inefficient to

densely process the entire untrimmed video with a computationally-complex CNN model.

Recall that an untrimmed video clip contains more than one action type, while a trimmed

video clip contains only one action.

The first stage of the system consists of two so-called coarse classifiers; one processes the

wall video and one processes the chest video. They each densely process the entire untrimmed

video and localize potential candidates for the temporal regions that might contain standard-
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level hand-hygiene actions. In the second system stage, we apply two so-called refinement

classifiers that only process the candidate locations identified in the first stage.

Specifically, in the first system stage, as shown in Figure  5.2 , we apply the wall coarse clas-

sifier to densely process the entire untrimmed video in non-overlapping 30 frame units. Even

if a non-overlapping split might cut a small portion of consecutive hand-hygiene action into

two different units, this will have little affect on our goal here, since when our system is

applied in practice, whether the hands are detected as rubbing for 10 or 10.1 s will not

influence on the final hand-hygiene quality. The entire untrimmed video is then divided

into pre-hygiene, hand-hygiene, post-hygiene regions, and candidate regions of the “faucet

elbow” action. The pre-hygiene region will not be further processed later in the system, but

the other regions will be processed by subsequent specifically-targeted classifiers. Design

considerations for the wall coarse classifier are described in Section  5.3.9 .

Figure 5.2. System stage 1: Untrimmed hand-hygiene video processing with
coarse classifiers.

Additionally in the first system stage, the chest coarse classifier processes only the region

identified as “post-hygiene”. Its goal is specifically to identify whether the action of “dry

hands” happened or not. Further detail on its design is provided in Section  5.3.10 .

In the second system stage, shown in Figure  5.3 , we apply two refinement classifiers. The

first wall-refinement classifier only processes the short temporal region that was identified

by the first-stage wall coarse processor as being a candidate region for the “faucet elbow”

action. Its goal is simply to verify the existence of the “faucet elbow” action and further

refine its temporal location.
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Figure 5.3. System stage 2: Trimmed hand-hygiene video processing with
refinement classifiers.

The final classifier uses the chest view to refine the actions that take place in the hand-

hygiene region. Its goal is to label every time unit according to each of the 7 actions in the

standard-level hand-hygiene task described in Chapter  3.3 . The design of this classifier is

considered in Section  5.3 below. In particular, as we show in Section  5.3.1 , the chest camera

view provides rich details for hand actions during the hand-hygiene period. Therefore, this

classifier is well suited for identifying the actions that the earlier classifiers have not consid-

ered, namely, the 4 actions “touch faucet with hand”, “rub hands with water”, “apply soap”,

and “rub hands without water”.

However, some actual hand-hygiene periods may have been misidentified as non-hygiene

in the first system stage. This is illustrated in Figure  5.4 . To compensate for this possibility,

we expand the hand-hygiene temporal region by applying an iterative search method. In

particular, we apply the chest refinement classifier to all time units to the left and right of

any identified hand-hygiene time unit. This continues recursively, until this classifier labels

a time unit as either a non-hygiene action or “touch faucet with elbow”, and all the initially-

labeled hand-hygiene units have been processed. An illustration of the final temporal region

searched by the chest refinement classifier is indicated in Figure  5.4 b.

To summarize, the overall system takes as input the untrimmed video that contains both

hygiene and non-hygiene actions. Four actions must be identified as to whether they happen

or not. These are the actions of “dry hands”, “touch faucet with elbow”, “touch faucet with

hand”, and “apply soap”. The first is detected by the chest coarse classifier, the second
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Figure 5.4. Temporal location of hand-hygiene temporal (a) produced by the
first system stage (b) and final searched region. Each plot shows the confidence
score of deciding “hand hygiene” or not as a function of the number of frames.
The dashed circle indicates the region that is misidentified by the wall coarse
classifier.

by the refinement wall classifier, and the latter two by the refinement chest classifier. For

the remaining two actions, “rub hands without water” and “rub hands with water”, both

of which are identified by the refinement wall classifier, it is important to verify that they

lasted for at least 20 s. During our final system evaluation in Section  5.4 , we will consider

estimates of this duration as a measure of performance. However, in the next section, which

explores detailed questions about how to design each of the four classifiers, we consider only

detection and recognition accuracy.

5.2 Evaluating Hand Hygiene for a Real Application

In this chapter, we focus on the standard-level hand-hygiene task, which considers 7

different action types. In a real application for hand-hygiene verification, a user would like

to know if some actions happened for a sufficiently long time, and if other actions happened at

all. Therefore, performance evaluation of a system requires distinct measurements depending

on the action type. For example, both “rub hands with water” and “rub hands without

water” reflect the participants’ effort to clean their hands. Thus, it is important for us not
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only to detect the existence of these actions, but also to determine how long they last. Three

actions, “touch faucet with elbow”, “apply soap”, and “dry hands”, help sanitize and prevent

re-contamination; therefore, we only need to confirm the existence of these actions. However,

“touch faucet with hands” actually re-contaminates hands, and should be identified if it

happens. Meanwhile, the background non-hand-hygiene actions do not influence the hand

washing quality, and these are included in the set of actions for completeness.

Based on these observations, we evaluate the hand-hygiene performance of a participant

by evaluating whether a correct decision was made regarding which action occurs during

each second of the video. Thus, we divide each target video into non-overlapping units of

30 consecutive frames, which corresponds to 1 s in time. Each unit is labeled with only one

action type by counting the most frequent action type of each frame among all 30 frames.

This assumes a detector makes one prediction during each unit. To achieve this, a detector

can predict an action for 30 frames individually and average the confidence scores to create

a prediction result for the unit, for example.

The top and bottom of Figure  5.5 illustrate the unit-based ground truth and prediction

results, respectively. The region between the dashed lines is the intersection between ground

truth label and system prediction of a hand-hygiene action. If, for this particular action,

we only need to assess whether it happened or not, we can simply verify the existence of

an intersection region. However, if for this action, we need to assess how long it lasted, we

evaluate the prediction result by the Jaccard index, which is also known as the Intersection

Over Union (IOU). The Jaccard index is defined as J = (Rn ∩ Bn)/(Rn ∪ Bn), where Rn

is the number ground-truth units and Bn is the number of predicted units, for a particular

action.

5.3 Design and Evaluation of Individual Classifiers in the Two-Stage System

In this section, we explore the design of each individual classifier in the the two-stage

system described in the previous section. We take an experimental approach to address the

following questions:

• Question 1: Which camera is most informative for which actions? (Section  5.3.1 )
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Figure 5.5. Unit-level prediction. Top: ground truth labels. Bottom:
prediction results. Each rectangle represents consecutive 30 frames. Label “b”
is a “non-hygiene” action and label “h” a is “hand-hygiene” action.

• Question 2: How much computational complexity is required for the standard-level

hand-hygiene task? What models should we use? How deep? How much accuracy do

we lose if we use classifiers with lower computational complexity? (Section  5.3.6 )

• Question 3: Is RGB information sufficient or should we include motion information?

(Section  5.3.7 and part of  5.3.9 )

• Question 4: To coarsely recognize hand-hygiene temporal regions from untrimmed

input video, what model should be used for the wall camera? (Section  5.3.9 )

• Question 5: To coarsely recognize the single action of “dry hands”, can we use hand-

crafted features or would a CNN perform better? (Section  5.3.10 )

First in Section  5.3.1 , we compare the performance of using wall camera, nose camera

videos, and chest camera videos on solving the standard-level hand-hygiene task which rec-

ognizes 7 hand-hygiene actions. After determining that the chest and wall camera are the

best two camera views, we explore how sophisticated a model needs to be to solve this task

for both camera views in Section  5.3.5 . This design comparison across well-known CNN

structures leads us to select the models for both refinement classifiers. Finally in Section

 5.3.8 , we design simpler structures for the coarse classifiers for both these camera views.
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5.3.1 Camera-View Comparison for Hand Hygiene

As indicated in previous Chapter  3.5 , the ”nelson100” dataset consists of video data from

a third-person camera and two egocentric cameras. As a result of the camera placement,

each camera view has its advantage for recording certain types of actions. As demonstrated

in Figure  5.6 b, the chest camera view fails to capture the participant’s arm when the pose

involves body motion. In addition, in Figure  5.6 c, the wall camera view can only record half

of the participant’s body when the participant walks away from the sink. The nose camera is

designed to record the same video as the user’s eye view. However, due to the nature of our

hand-hygiene task in a narrow space, the user’s gaze does not always align with the camera

view. Thus, some of the nose camera videos do not actually show the hands; an example is

shown in Figure  5.6 a.

Our goal in this section is to better understand which camera view is most effective for

each action. Therefore, we apply a single model for each camera; the input to each model

the set of RGB images from a trimmed video, and the output is one of the 7 actions for

the standard-level hand-hygiene task. Since, for hand-hygiene actions, the majority of the

content is composed of hand-to-hand and hand-to-arm interactions and there are no salient

objects to help distinguish each action type, we choose to use a single deep-learning based

model to learn an efficient representation. In this chapter, we follow the idea of the two-

stream network [  35 ] to consider a 2D CNN structure that processes both RGB image and

motion information for activity recognition. In particular, for this exploration, we apply

ResNet152 [ 21 ] to be consistent with our previous work [ 86 ] where we considered only the

view from the chest camera.

In the following subsections, we describe our experimental design (Section  5.3.2 ), the

model training (Section  5.3.3 ), and finally the results of applying the model to our dataset

(Section  5.3.4 ).

5.3.2 Experimental Design

To solve the standard-level task defined in Section  3.3.2 , we manually labeled our hand-

hygiene video data at a frame level with 7 action types to create ground truth. Since our
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Figure 5.6. Images from chest camera (left), nose camera (middle), and wall
camera (right): (a) “rub hands without water”; (b) “touch faucet with elbow”;
(c) “dry hands”.

100 participants were each recorded twice, this provides us with around 200 videos for each

camera view. To verify the system’s robustness against different subjects, the training,

validation, and testing data were randomly selected among 100 participants with 66, 12, and

22 people, respectively. This partition and random selection was performed 5 times to create

the 5 trials that we will refer to throughout this chapter. We further trim each video into

clips based on the frame-level ground truth of actions types. As a result, each contains only

one action type for its duration.

5.3.3 Model Training on RGB Images

For each camera view, we begin with a ResNet152 model that was pre-trained on Im-

ageNet [  93 ]. We fine-tune the model so its last fully-connected layer outputs one of our

7 action classes. As a result that our data were all recorded in two nearly identical envi-

ronments and because we are interested in a pure comparison between the different camera
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views, we do not apply data augmentation techniques like image scaling or random crop for

training. However, since the wall camera was placed on one side in the first room and the

opposite side in the second room, we horizontally flip its frames to the same direction. This

improves both training and testing efficiency.

The training hyperparameters for each camera view are set to the same for comparison,

although they could be further optimized. However, our goal for this experiment was to

compare the efficiency of each camera when processed by the same CNN architecture. Each

model was trained for 250 epochs using a Stochastic Gradient Descent (SGD) optimizer with

learning rate 0.001. The learning rate was decreased by a factor or 10 at 100 and 200 epochs.

The batch size is 25, and each sample in a batch is a randomly selected video frame from a

trimmed training video clip.

5.3.4 Model Evaluation on RGB Images

Testing is performed on each trimmed video clip. The trained model is applied on every

frame of a test video clip, followed by a softmax function. The average score among all

frames indicates the prediction result. The testing results of all 7 actions averaged over the

5 trials is shown in Table  5.1 , for each of the three camera views.

Table 5.1. Classifier accuracy for all three camera views; seven actions
Action\Camera Wall RGB Chest RGB Nose RGB Number of clips
Faucet elbow 94.03% 85.07% 83.58% 67
Faucet hand 91.76% 94.59% 93.41% 425
Rub water 93.73% 92.68% 91.38% 383

Rub nowater 87.21% 94.06% 86.30% 219
Soap 93.19% 88.48% 96.34% 191

Dry hand 54.76% 90.48% 76.19% 210
Non-hygiene 91.36% 93.39% 92.03% 590

Average 88.01% 92.57% 90.12% NaN

Comparing across the rows of the table, we can see that the chest view outperforms

the other views for recognizing actions with detailed hand-hand interactions, such as “rub

hands without water”, “touch faucet with hands”, and “dry hands”. However, we observe
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a small performance drop for the chest view on the actions “rub hands with water” and

“apply soap” compared to the wall view, because the chest camera does not always capture

the hand regions.

Compared to the chest camera view, the nose camera view achieves less accurate results

for all action types except “apply soap”. This is because the nose camera is mounted above

the chest camera, so it is easier for the nose camera view to capture the scene when the user

applies soap.

On the other hand, the wall camera can also predict many of the action types within its

viewing range, especially when an action contains the body motion from a participant. As

the shown in the heatmaps in Figure  5.7 a,b,and c, the chest camera can accurately capture

human hands. But due to the limitation of the camera angle, the chest camera cannot

capture the salient region of the arm as well as the wall camera can. Thus, the CNN model

from the chest camera view predicts the “touch faucet with elbow” action by focusing on the

sink region. This may be effective for the current action set where only one action contains

significant body motion, but in general, the chest camera view will not be robust to body

actions. As a result, the wall camera outperforms the chest camera by about 10% on the

“touch faucet with elbow” action. Another drawback of the wall camera view is also obvious

if we consider the “dry hands” action. For this, a participant is likely to move around the

room while they wipe their hands with a paper towel. The failure to track the participant

causes the wall camera’s low prediction accuracy of 54% on detecting “dry hands”.

The last row of Table  5.1 summarizes the average accuracy over all 7 actions for each

camera view. Due to the disparity in the number of videos for each action type, the wall

camera’s advantage is not reflected by the average accuracy. However, it is undeniable that

the wall camera performs best for recognizing actions related to body motion. Overall, to

answer Question 1 in the beginning of Section  5.3 , we conclude that the chest camera view is

effective at recognizing hand-hand related actions and the wall camera view can be applied

to recognize body actions to monitor the presence of a participant within its viewing area.
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Figure 5.7. Grad cam [  54 ] results of (a) chest cam: rub hand with water, (b)
chest cam: touch faucet with elbow, (c) wall cam: touch faucet with elbow,
when applied to the respective model.

5.3.5 Model Comparison for Refinement Classifiers

In the last subsection, we applied the ResNet152 model to explore the relative advantages

of using the wall and chest camera views for a standard-level hand-hygiene task. ResNet152

is a relatively complex model; therefore, in the following subsections, we evaluate the perfor-

mance of different CNN models on the standard-level hand-hygiene task (Section  5.3.6 ). In

addition, we also evaluate whether adding optical flow improves performance for the chest

camera (Section  5.3.7 ). Together, these experiments inform the design of the refinement

classifiers in the second stage of our system.

5.3.6 Model Comparison for RGB Images

The models we consider are VGG19, VGG16, and VGG11, which are variants of the VGG

network [  20 ] with high to low structure complexity. Again, we apply pre-trained models and

fine-tune the last fully-connected layer to output 7 action classes. For comparison purposes,

the training settings of VGG19, VGG16, and VGG11 are exactly the same as ResNet152

from Section  5.3.3 .
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The testing results of data from trial 1 (only) are listed in Table  5.2 . The model accuracy

is evaluated as the number of true positive and true negative predicted video clips divided

by the total number of video clips. As we can see, the overall detection accuracy from

both wall camera and chest camera view have minor variations as the model complexity

drops, and the final performance of VGG11 is similar to that of ResNet152. This is mainly

because the scenario we currently consider is limited to a public bathroom environment

with similar camera angles. Therefore, the less complex CNN architecture can still achieve

reasonable detection accuracy. This decision may have to be revisited if the model is tested

with different camera angles in different environments. However, for the current scenario,

these results suggest that the answer for Question 2 in the beginning of Section  5.3 is that

VGG11 with an input RGB image is adequate for the standard-level hand-hygiene task as a

refinement classifier.

Table 5.2. Classifier accuracy for models of different complexities; seven actions
Model\Detection Accuracy
Chest ResNet152 93.44%

Chest VGG19 93.68%
Chest VGG16 92.74%
Chest VGG11 94.38%

Wall ResNet152 86.65%
Wall VGG19 88.06%
Wall VGG16 88.52%
Wall VGG11 87.12%

5.3.7 RGB and Optical Flow Comparison

Based on the result from Section  5.3.3 , we have demonstrated that chest camera RGB-

image model has an advantage for analyzing the hand-hygiene actions that specifically con-

cern the hands. Many previous works have demonstrated the importance of including motion

information for egocentric activity recognition [  32 ], [  33 ] and third-person activity recognition

[ 35 ]. Thus, we conducted an experiment to explore the degree to which incorporating motion
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information helps to interpret egocentric hand-hygiene videos. For this, we create optical

flow images using the TV-L1 optical flow [ 90 ] implementation [ 36 ].

Training: Similar to the chest camera RGB model, the chest camera optical flow model

still takes a pre-trained ResNet 152 network and fine-tunes the last fully-connected layer

for our 7 action classes. The first convolutional layer is revised to take as input 10 frames

of horizontal and vertical optical flow images. The model is trained with 350 epochs and

learning rate 0.001. The learning rate was decreased by 10 at 200 and 300 epochs. The

remaining hyperparameter settings are the same as above.

Testing: The testing step follows the same procedures as Section  5.3.3 on each trimmed

video clip, except that the trained model processes every 10 optical flow frame pairs instead

of a single RGB frame. The testing results of all 7 actions averaged across the 5 trials are

listed in Table  5.3 .

Table 5.3. Classifier accuracy for the chest camera with spatial and temporal
models; Seven actions.

Action\Camera Chest RGB Chest flow
Faucet elbow 85.07% 83.58%
Faucet hand 94.59% 89.41%
Rub water 92.68% 92.43%

Rub nowater 94.06% 94.98%
Soap 88.48% 76.96%

Dry hand 90.48% 94.28%
Non-hygiene 93.39% 95.59%

We see from the table that for all 7 actions classes, using optical flow does not provide

significant improvements for recognition. In addition, in our previous work [  86 ], fusing

the RGB and optical flow models did not show a meaningful boost in recognition accuracy.

Therefore, to answer Question 3 in the beginning of Section  5.3 , we conclude that the adding

temporal motion information is not necessary for the standard-level hand-hygiene task.
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5.3.8 Model design for coarse classifiers

In this section, we develop classifiers to recognize coarse hand-hygiene actions in the first

system stage described in Section  5.1 . The actions to be recognized in this stage are easier

to distinguish than in the second stage. Thus, we can apply less complex CNN architectures

in this stage. The designs for the coarse wall and chest classifiers appear in Sections  5.3.9 

and  5.3.10 , respectively.

5.3.9 Wall Camera Coarse Classifier

The wall camera (a third-person view camera) is placed on a flat platform in our ex-

periment, so it captures the participant’s actions near the sink from a close range. Due to

the limitation of the camera angle, this camera view cannot capture hand actions in detail;

however, we showed in Section  5.3.1 ,  5.3.2 ,  5.3.3 , and  5.3.4 that it is useful at providing par-

ticipant’s body actions and location. We believe the wall camera view is suitable for coarsely

localizing both the hand-hygiene period and the action of touching the faucet with an elbow.

Thus, the goal of the wall coarse classifier is to predict 3 types of action classes: “touch faucet

with elbow”, hand-hygiene, and non-hygiene. The non-hygiene actions that happen before

the first hand-hygiene action is identified are categorized as pre-hygiene actions, while those

identified after are called post-hygiene.

Based on the observations in [  33 ], [  75 ], shallow CNN models with 2 convolutional layers

and 2 fully connected layers are effective for recognizing hand actions in both egocentric

and third-person camera views. However, simply applying an RGB-based model ignores

potentially useful information about motion. Indeed, motion information [  35 ] or multi-

modality depth and skeleton [  44 ] information has been shown to improve detection accuracy

for action recognition. Therefore, we propose to use a simple CNN model for this coarse

classifier to quickly process the untrimmed video, and we also explore whether the addition

of motion information can improve accuracy. Designs based on these two considerations are

described next. The performance of these design choices is then compared to finalize our

design of the wall camera coarse classifier.
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Model for RGB images: To ensure a low computational cost and fast processing speed

for this coarse processor, we are inspired by the tiny image dataset CIFAR 10 [ 99 ]. Thus,

we explore CNN structures that take as input a down-sampled image of size 32 × 32. The

basic architecture of the model follows the design of the VGG networks with a 3 × 3 kernel

size and max pooling kernel size of 2 × 2 and stride 2.

To explore how variations of the CNN architecture affect the detection performance, we

evaluate three structures. The first structure consists of 5 groups of convolutional layer, max

pooling layer, and RELU non-linearity followed with a fully connected layer and softmax as

indicated in Figure  5.8 . The second structure is modified from the first by changing the last

group of convolutional layers with 512 output channels into a fully connected layer, which

results in 4 groups of convolution layers followed by 2 fully connected layers. In the last

setting, we attempt to further reduce the model complexity by replacing the 4th group of

convolutional layers with depthwise separable convolutional layers [ 100 ].

Figure 5.8. Coarse wall classifier: Model with RGB only.

Features to describe supplemental silhouette information: Since our wall cam-

era is stationary, foreground–background segmentation is a powerful method to understand

moving objects in the scene. Three methods we consider here are an adaptive background

learning [  101 ] method, the Fuzzy Choquet integral [  102 ] and SuBSENSE [  103 ]. We compute

these using the implementation in [ 104 ].

In addition, we consider the motion history image (MHI), which is an efficient method

to create a temporal template that indicates motion [  105 ]. MHI encodes the motion density

from past frames into the current frame. It is a robust representation of human gestures

especially under static camera view. This feature has three parameters to set: the motion

history duration τ , the decay parameter δ, and a threshold ξ [ 105 ]. In our experiment, these

are set to τ = 5, δ = 1, and ξ = 20, respectively.
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Figure  5.9 shows the three different background detections along with the MHI for one

frame. Compared with the fuzzy method and SuBSENSE method in Figure  5.9 , the basic

adaptive background learning method and motion history image appear to be more robust

for isolating the human silhouette. Overall, the motion history image shows the best results

of tracking the human silhouette with less background noise. Therefore, we select motion

history image as an additional input for the wall camera coarse classifier.

Figure 5.9. (a) Adaptive background learning [ 101 ]. (b) Motion history
image. (c) Fuzzy Choquet integral [ 102 ]. (d) SuBSENSE [ 103 ].

Model for both RGB images and MHI: In addition to the three RGB-only models

mentioned above, we also consider a model that takes RGB and the motion history image

as indicated in Figure  5.10 . MHI is computed using RGB images of size 224 × 224 and

down-sampled to 32 × 32 size to be input to the model. We use the same architecture for

both the MHI and the RGB image. The output feature maps from the last convolutional

layer are concatenated with the feature maps from RGB model and passed into the final

fully-connected layer.

Model training: All the training and testing are performed on the first data trial

defined in Section  5.3.2 . We applied the same hyperparameters settings for the model that

uses only the RGB as well as the model that uses both RGB and MHI. All models are trained

from scratch without using pre-trained weights. For fast convergence and to reduce over-
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Figure 5.10. Coarse wall classifier: Model with RGB and motion history image (MHI).

fitting, batch normalization [ 106 ] is applied to the output of every convolutional layer before

it enters the ReLU non-linearity. Each model is trained by 250 epochs using Stochastic

Gradient Descent (SGD) optimizer, cross entropy loss, and learning rate 0.001. The learning

rate was decayed by 10 at 100 and 200 epoch. Batch size is selected at 128 and each sample

in the batch is a randomly selected video frame from a trimmed training video clip.

Testing: To compare the performance of these structures, we consider untrimmed testing

videos and predict 3 action types: “faucet elbow”, hand-hygiene, and non-hygiene. We

evaluate the performance of each structure with two metrics: the frame-level accuracy and

the unit-level accuracy. Frame-level accuracy is computed by the sum of true positive and

true negative predictions over all frames in the video. Instead of predicting every single

frame, the unit-level prediction starts by cutting the untrimmed video into non-overlapping

units of consecutive 30 frames, which is 1 s in our video. Then, we make a prediction of an

action class for each unit by averaging each frames prediction confidence score. The unit-

level accuracy is also computed as the sum of true positive and true negative units over the

total number of units in the video.

The prediction results of the three structures for RGB-only, as well as for the RGB +

MHI model are shown in Table  5.4 . As can be seen, among the three different structures

that have RGB-only input, the structure with 5 groups of convolutional layers combined

with 1 fully connected layer has better performance than others. Notably, the structure

with depthwise separable convolution experienced a large performance drop. In addition,

the structure with both RGB + MHI achieves better performance than using only the RGB
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modality. These two architectures are further compared in Table  5.5 , which indicates that

incorporating the MHI markedly improves performance for the “faucet elbow” action and

the hand-hygiene action. Therefore, to answer Question 4 in the beginning of Section  5.3 ,

we select the RGB + MHI to be the model for the wall coarse classifier.

Table 5.4. Coarse wall classifier: Performance of RGB and RGB + MHI
structures. conv: convolutional layer. dw conv: depthwise separable convo-
lution. fc: fully connected layer.

Structure\Evaluation frame-level unit-level
RGB, 5 groups conv, 1 fc 89.96% 90.41%
RGB, 4 groups conv, 2 fc 86.45% 87.13%

RGB, 4 groups dw conv, 2 fc 83.50% 84.35%
RGB + MHI, 5 groups conv, 1 fc 91.21% 92.42%

Table 5.5. Coarse wall classifier: Performance of RGB and RGB + MHI
between 3 actions at unit-level, both RGB and RGB + MHI use 5 groups of
convolutional layers and 1 fc layer setting.

Action\Structure RGB RGB + MHI
faucet elbow 75.00% 85.71%
hand-hygiene 89.52% 93.08%
non-hygiene 89.17% 87.64%

5.3.10 Chest-Camera Coarse Classifier

As described in Section  5.1 , after applying the wall coarse classifier on the untrimmed

hand-hygiene video, three temporal periods are identified. In the “post-hygiene” period, the

participant is expected to dry their hands with a paper towel. However, the wall camera

cannot predict accurately whether the “dry hands” action exists or not. Therefore, in this

section, we design a system to process the videos from the chest camera, but only in the post-

hygiene temporal region to detect the “dry hands” action. Since we only need to confirm

if the “dry hands” action happens or not, we anticipate that a low-complexity model is

sufficient for this task. A low-complexity model is also desired because the exact location of

the “dry hands” action could be anywhere in the long post-hygiene region.
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Several options are available for low-complexity models. For temporal segmentation of

egocentric videos, Bolaños et al. [  107 ] apply color descriptors to detect the action “in transit”.

They computed the color histogram for each video frame and use the difference between

histograms as a feature to describe changes in the camera angle. Moreover, Azad et al.

[ 108 ] argued that hand-crafted features have an advantage over deep-learning methods when

applied to small data sets. They achieve good performance by using Histogram of Oriented

Gradients (HOG) [  13 ] and Local Binary Pattern (LBP) [  109 ] descriptors on a depth motion

map to recognize hand gestures. Therefore, to recognize the “dry hand” action within the

post-hygiene period, we propose to test both deep-learning features and the hand-crafted

features of color histogram, HOG, and LBP.

Training: Similar to the experiments in the previous section, all training and testing

are performed on the first data trial defined in Section  5.3.2 . For the deep-learning model,

we apply the same architectural structure of five groups of convolutional layers with a fully

connected layer chosen for the wall coarse classifier in Section  5.3.9 . The hyperparameters

and training steps are also the same as mentioned previously. Since the model is designed to

predict only “dry hand” and “non-hygiene” actions, we modify the last fully-connected layer

to output a single confidence score using the sigmoid function. The model applies binary

cross entropy as its loss function.

We compute the hand-crafted features on an RGB image with size 224 × 224. We

compute the color histogram separately on 4 non-overlapping spatial regions of the image

using the hue, saturation, value (HSV) color space. The histogram for the lightness (i.e.,

value) channel has 8 evenly-spaced bins while the histograms for the other two each have 3

evenly-spaced bins. Concatenating all the histograms yields a final color feature with 288

dimensions. We also extract HOG [ 13 ] and LBP [  109 ] descriptors for comparison experiment.

To classify the action “dry hands” from the post-hygiene period using these hand-crafted

features, we train a Random Forest.

Testing: We perform frame-level prediction to compare both the deep-learning model

and hand-crafted feature Random Forest classifiers for the two ground-truth actions labeled

either “dry hands” or “non-hygiene”. We evaluate the methods using precision, recall, and
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accuracy at the frame level by considering “dry hands” as a positive sample and “non-

hygiene” as a negative sample.

From the results in Table  5.6 , we observe that the CNN model performs best among

all methods, even though the recall is a few percent lower than the other methods. As

discussed in Section  5.2 , the goal of detecting the “dry hands” action is to verify that it

took place. If a non-hygiene action is mistakenly classified as drying hands, the system will

fail to correctly assess the entire hand-hygiene process. Therefore, recall is less important

than precision. To answer the Question 5 in the beginning Section  5.3 , we conclude that the

low-complexity CNN model is the preferred model to recognize “dry hands” action in the

post-hygiene period.

Table 5.6. Coarse chest classifier: Prediction result for the ”dry hand” action.
Positive class: dry hand, negative class: non-hygiene.

Model\Evaluation Precision Recall Accuracy
32x32 CNN 79.54% 61.31% 81.63%

Color histogram 54.32% 64.33% 70.49%
HOG 49.53% 65.38% 66.65%
LBP 50.51% 66.99% 67.58%

5.4 Performance of the Two-Stage Hand-Hygiene System

In the previous Section  5.3 , we explore the individual designs for each of the coarse and

fine classifiers. The overall two-stage system for recognizing and evaluating hand-hygiene

activities within untrimmed video appears in Section  5.1 . In this section, we evaluate the

performance of the entire two-stage system for detecting actions within untrimmed hand-

hygiene videos. We first explain the experimental protocol, then report our experimental

results for the overall system performance.

5.4.1 Experimental Protocol

In the first stage of the system, the wall coarse classifier uses the CNN model with

RGB and MHI as inputs, and the chest coarse classifier applies a CNN model for binary
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classification on the “dry hands” action. In the second system stage, both the CNN model

for wall and chest camera view are applied with VGG11 network architecture.

To create a point of comparison, we consider a baseline system that applies the second-

stage VGG11 networks to the entire chest camera video and wall camera video. Each classifier

densely processes the entire untrimmed video using non-overlapped 30-frame units. The

classifier for the wall camera is only responsible to detect the action “touch faucet with

elbow” action, and the classifier for the chest camera is applied to detect all other actions.

Recall that our goal for the two-stage system was to achieve similar performance to the

baseline system, but with less computation. The baseline system applies VGG11 on every

30 consecutive frame units throughout the entire video, while the two-stage system applies

VGG11 only when a simpler classifier would be insufficient. Therefore, we expect that both

systems will achieve very similar detection accuracy. If so, it demonstrates that our coarse

classifier successfully localizes the crucial hand-hygiene temporal parts, reducing the overall

system complexity without sacrificing performance.

The overall performance of the two systems is evaluated on the first trial defined in

Section  5.3.2 .

5.4.2 Results and Discussion

We evaluate the overall performance of this system in two parts. In the first part, we

evaluate only the two actions that require an estimate of how long they last; these actions

are “rub hands with water” and “rub hands with no water”. We measure their detection

performance using the Jaccard index, applied for units of 30 consecutive frames. In addition,

we measure the average prediction error by computing the absolute difference between the

detected time duration and ground-truth duration, averaged across all test videos. In the

second part of evaluation, we consider the remaining actions for which we only need to

confirm whether or not they happened. We evaluate these simply using the accuracy across

all test videos, computed by dividing the number of correct predictions divided by the total

number of predictions.
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Tables  5.7 and  5.8 show the evaluation of the rubbing actions. As we can observe, both

the baseline and proposed two-stage system have similar performance in terms of both the

Jaccard index and error in the estimated duration. This indicates that the first stage of the

two-stage system could successfully localize the hand-hygiene period within the untrimmed

video; the estimates of how long each action happens is consistent. Moreover, the ground-

truth statistics for these two actions across the entire data set is shown in Table  5.9 . Given

the large average duration and standard deviation of these two actions, an estimation error of

around 2 s is an reasonable result. To obtain further improvement, increasing the complexity

of the CNN model and optimizing the hyperparameters might reduce the average error.

Table 5.7. Two-stage system: Average Jaccard Index
Action\Model Baseline Two-stage system

Rub without water 0.8036 0.8036
Rub with water 0.8299 0.8307

Table 5.8. Two-stage system: Average mis-prediction in seconds
Action\Model Baseline Two-stage system

Rub without water 2.39 2.39
Rub with water 2.23 2.20

Table 5.9. Statistics for the duration of each action in the ground truth
Action Mean (secs) Std. dev. (secs)

Rub without water 16.40 11.83
Rub with water 13.72 7.93

Table  5.10 demonstrates the accuracy across all test videos for the discrete actions of

”apply soap”, ”dry hands”, and ”touch faucet with elbow”. These three actions have nearly

identical performance for both the two-stage system and the baseline system. Therefore, no

performance is lost by applying the low-complexity model for temporal localization.

Overall, the two-stage system and the baseline system achieve similar performance for

recognizing each action and for estimating the duration of rubbing. However, with the
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Table 5.10. Two-stage system: Average detection accuracy
Action\Model Baseline Two-stage system

Soap 86.36% 86.36%
Dry hands 97.73% 93.18%

Faucet elbow 95.45% 95.45%

support of the low-complexity CNN models for localization, the two refinement classifiers in

our two-stage system only process 67.8% of the frames in the untrimmed videos. This is in

contrast to the baseline that must densely process 100% of the frames in the untrimmed video,

regardless of the duration of the hand-hygiene activity. Further, it should be noted that the

videos we collected in this project were specifically designed to analyze hand hygiene, and

as such they contain very little time spent on non-hygiene actions. Specifically, the average

non-hygiene actions occupy only 28.1% of the total video duration, with the remaining

71.9% containing hand-hygiene activities. In more typical situations, where the hand hygiene

would take less time relative to the overall collection of activities, the computational savings

achieved by the temporal localization in our two-stage system would increase dramatically.

5.5 Conclusion

In this chapter, we introduce the task of hand-hygiene action recognition from untrimmed

video. We approach this problem by designing a system that performs hand-hygiene recog-

nition at the standard level. To explore the efficiency of using different camera views on

recognizing 7 hand-hygiene actions, we used the data in our ”nelson” dataset with three

cameras and 100 participants. Using this dataset we are able to explore different deep-

learning models on our hand-hygiene dataset with both egocentric and third person camera

views. The results indicate both these camera views have their own unique advantages

for recognizing certain action types. Thus, it is important to use both camera views for

hand-hygiene action recognition.

Moreover, we also explore the realistic scenario in which we recognize hand-hygiene ac-

tions inside untrimmed video. We design a two-stage system to localize the target hand-

hygiene regions and we apply deep-learning models from two camera views for the final
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recognition. In the first stage, a low-complexity CNN model is applied on the third-person

view to segment the untrimmed video into three temporal periods. In the second stage, we

assign these temporal periods to more complex CNN models trained for different camera

views, so that each model only has to recognize the actions suited for that camera view.

In the final evaluation, our two-stage system achieves similar performance to the baseline,

which applies CNN models to densely process every second in the entire untrimmed video.

We demonstrate that the two-stage system can efficiently filter out non-hygiene regions so

that it only needs to apply complex CNN models to the crucial hand-hygiene temporal

regions.
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6. HAND-HYGIENE IN CROSS SCENARIO

In this chapter, we further extend hand-hygiene recognition from single scenario into multiple

scenarios. In here, the term ”scenario” represent the variation in video data in background

environment or camera view or both. The majority content in this chapter is also covered in

our work [ 110 ]. In previous Chapter  4 and  5 , we apply the dataset of ”nelson100”, which is

recorded in two separate college bathroom. Even though the scenario changed, but college

bathroom shares a common layout and there does not exist a significant difference between

those two rooms. To study the feasibility of developing a hand-hygiene system which works

in general situation, it is necessary for use to explore the hand-hygiene recognition problem

in multiple scenarios.

Therefore, in this chapter’s work, we take use of the ”class23” dataset introduced in

Chapter  3.6 to address the following questions with experimental approach:

• Question 1: In same scenario, what is the general approach to recognize hand-hygiene

actions? Is temporal information necessary? (Section  6.1.1 to  6.1.5 )

• Question 2: In cross scenario, does the system designed in the same scenario still work?

What is the main issue to prevent it from working? (Section  6.1.6 to  6.1.8 )

• Question 3: In cross scenario, how to design a system to utilize multi-modality infor-

mation for hand-hygiene recognition? (Section  6.2 and  6.3 )

6.1 Preliminary exploration on Hand Hygiene with RGB

In this section, we describe experiments on exploring hand-hygiene action recognition

with RGB image or video, which is the most commonly used input source for action recog-

nition. The exploration is motivated by our new dataset ”class23”, which includes hand-

hygiene video collected under 3 different ”scenarios” as we mentioned in ”class23” dataset in

Chapter  3.6 . Under ideal experimental setting, the model to recognize hand-hygiene actions

are suppose to be developed and deployed onto video data from the same scenario, namely

”room1 camera1”, ”room2 camera1”, and ”room2 camera2” in our dataset. In real life, how-

ever, both the camera setting and room layout for hand-hygiene can not always be the same.
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We would like to take use of the 3 separately recorded scenarios of hand-hygiene to explore

the possibility of cross-scenario hand-hygiene recognition, which our model trains on data

from one scenario, and tests on data from another scenario. Especially, our experiments

focus on using RGB image or video as model input, since it is the most commonly used

modality in many computer vision tasks. We take an experimental approaches to address

the following questions:

• In same scenario, how well does RGB modality perform on hand-hygiene action recog-

nition? (Section  6.1.1 ,  6.1.2 , and  6.1.3 )

• In same scenario, how well does RGB modality perform on hand-hygiene action detec-

tion? (Section  6.1.4 and  6.1.5 )

• In cross scenario, does RGB modality still have good performance? What is main

reason for RGB modality to fail? (Section  6.1.6 ,  6.1.7 , and  6.1.8 )

6.1.1 Same scenario hand-hygiene action recognition

In this section, we explore the performance of using RGB modality for hand-hygiene

action recognition on the same scenarios of our ”class23” dataset. Action recognition is a

task to take a trimmed video clip which includes only one action, and make a prediction on

its action category class. We have explored hand-hygiene action recognition on a uniform

college bathroom scenario from our previous work [ 86 ] [  98 ]. With our new dataset, we would

like to extend this exploration onto 3 different food laboratory scenarios to recognize the

four hand-hygiene actions introduced in Chapter  3.6.2 . To analyze the efficiency of both

spatial and temporal information in hand-hygiene recognition, we compare the performance

of CNN with spatial RGB information only with spatio-temporal modeling which combines

CNN with Long Short-Term Memory (LSTM) [ 22 ] and Temporal Relational Network (TRN)

[ 25 ].

In Section  6.1.2 , we compare the action recognition performance between spatial only

model and spatio-temporal model on four hand-hygiene actions. The experiment indicates

that the spatial only model is capable to achieve hand-hygiene recognition in same scenario.
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In Section  6.1.3 , we continue to use the spatial only model on the combination of hand-

hygiene and non-hygiene actions to further explore its performance.

6.1.2 Four-task hand-hygiene action recognition

For each of our three scenarios, namely ”room1 camera1”, ”room2 camera1”, and ”room2

camera2”, they all include the 4 hand-hygiene actions: ”touch faucet with hand”, ”rub hands

with water”, ”rub hands without water” and ”apply soap”. In this section, we will focus on

the action recognition tasks on these hand-hygiene actions. We begin with a 2D CNN

ResNet50 model. Due to the limitation of our data collection, we initialize the network

with the pre-trained weights from ImageNet [  19 ] and fine-tune it using our data. The final

fully-connected layer is replaced with an output of 4 action classes.

Training: For comparison purposes, the training procedures for each scenario are identical.

Specifically, the ResNet50 model is trained with 250 epochs with batch size 32 and an

initial learning rate 0.001, which decreased by 10 at 100 and 200 epochs. We apply a

Stochastic Gradient Decent (SGD) optimizer and cross-entropy loss function. In a training

batch of images, each image is selected by random sampling from the input training trimmed

video. To avoid over-fitting, we apply data augmentation using multi-scale crop and random

horizontal flip duration training as introduced in [ 111 ].

Testing: Testing is performed on every trimmed video clip of the same scenario’s test

dataset. The trained ResNet50 model is applied on every frame of the test video clip,

followed by a softmax function. The prediction result for a video clip is the average score

among all its frames. The testing results for all three scenarios is shown in the first row of

Table  6.1 . Across all three scenarios, the performance of applying spatial RGB information

only model achieved over 90% accuracy. This indicates that spatial RGB based model is

capable for standard-level hand-hygiene action recognition under different food laboratory

scenarios.

Besides using spatial 2D CNN with RGB, we also experiment with adding temporal mod-

eling for hand-hygiene recognition. As it has been proved in many works [  94 ] [  112 ], the 2D

CNN combines with temporal model create better performance than 2D CNN solely. There-
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Table 6.1. Model accuracy for all three scenarios, four hand-hygiene actions
and non-hygiene actions. R1C1: room1 camera1. R2C1: room2 camera1.
R2C2: room2 camera2. ALL: Accuracy of total correct video prediction
among all three scenarios. H: involve only hand-hygiene actions. H+N:
involve both hand-hygiene and non-hygiene actions.

Model\Scene R1C1 R2C1 R2C2 ALL
ResNet50 (H) 91.67% 97.06% 98.11% 95.24%

ResNet50 + LSTM (H) 91.76% 94.59% 93.41% 95.24%
ResNet50 + TRN (H) 93.73% 92.68% 91.38% 95.92%

ResNet50 (H+N) 92.50% 91.67% 95.38% 93.26%

fore, we experiment the efficiency of temporal models by combining them with our previously

tested 2D CNN ResNet50. The temporal models we selected are Long Short-Term Memory

(LSTM) and Temporal Relational Network (TRN). LSTM is one the most commonly used

temporal modeling structures not only in Nature Language Processing (NLP), but also in

computer vision. And reference to the work [  113 ], TRN is a high performance structure

with expensive number of parameters and computational cost. For temporal modeling, it

requires multiple frames input with fixed length to involve temporal information. We are

aware that there exists many popular choices for input selection. For example, Temporal

Segment Network (TSN) [  36 ] proposes to cut a video input into N segments and apply ran-

dom sampling at each segment to get fixed length input. Other methods include uniform

sampling or select fixed length consecutive frames at the beginning of video are also feasible

for input selection. For hand-hygiene action recognition, one of the crucial tasks is to detect

how does a rub hands action last. Therefore, it is important to select consecutive input

video frames to our temporal modeling. For a video V = {f1, f2, · · · , fn}, which fi is the

ith frame in V . In training stage, we randomly select a start frame fs and consecutively

sample k frames until fs+k−1 as an input for temporal modeling. In our experiment, we

select k = 10 for both LSTM and TRN model. The 2D CNN ResNet50 is used as a feature

extractor by removing the last fully-connected layer and connected to the temporal model.

LSTM model includes 10 time steps and generates the prediction result at the last step. For

TRN model, we applied the multiscale TRN that builds 2-frames, 3-frames, ..., 10 frames
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relations with a selection of 3 relations for efficient training and testing as mentioned in the

original work [  25 ]. The training and testing setting are the same for both LSTM and TRN

for a fair comparison.

Training: The ResNet50 model is trained with 250 epochs with batch size 8 and an initial

learning rate 0.001, which decreased by 10 at 100 and 200 epochs. We select to use Stochastic

Gradient Decent (SGD) optimizer and cross-entropy loss function. In a training batch of

images, each image is selected by random sampling from the input training trimmed video.

Testing: Testing is performed on every trimmed video clip of the same scenario’s test

dataset. The trained 2D CNN temporal model is applied on every sliding window on test

video clip. Each window has fixed size of 10 frame and step size of 1 frame. The prediction

result for a video clip is the average score among all the softmax-ed score of each window.

The testing results for all three scenarios is shown in the second and third row of Table

 6.1 . Comparing the results of using spatial 2D CNN and 2D CNN combined with temporal

modeling, we find that adding additional temporal modeling only has small impact on the

final prediction accuracy for same scenario hand-hygiene action recognition. Therefore, we

conclude that 2D CNN with spatial RGB information is suitable for hang-hygiene action

recognition.

6.1.3 Hand-hygiene and non-hygiene action recognition

In the last sub-section, we compared the performance of different model on hand-hygiene

action recognition and confirmed that 2D CNN with spatial RGB information as a suitable

selection. In this section, we extend our exploration to includes not only hand-hygiene

actions, but also non-hygiene actions. During daily hand-hygiene, it is unavoidable for

a participant to perform a variety of unexpected actions other than hand-hygiene. For

example, in our class23 data collection, students doing hand washing in the same room

could potentially talk to each other, and walk past and occlude the camera. Even when a

student is doing hand-hygiene, actions like ”swing hands” could still happen; however, this

action has no contribution one way or another with respect to hand-hygiene quality. Our

dataset are collected in two separate room, and each room has its own non-hygiene action
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types. As we described in Chapter  3.6.2 , data collected in room1 has non-hygiene actions

of ”dry hands with paper towel”, ”grab paper towel”, ”occlusion”, and ”swing hands”. In

contrast, data from room2 only has non-hygiene actions of ”occlusion” and ”swing hands”.

We applied 2D CNN ResNet50 model with spatial RGB image from Section  6.1.2 on each

scenario’s data collection. The test result is indicated in the last row of Table  6.1 . Compared

with the overall accuracy of 95.24% when apply ResNet50 on 4 hand-hygiene actions only,

the overall accuracy on all actions dropped around 2%. But we conclude 2D CNN ResNet50

with spatial RGB image still perform adequately on recognizing hand-hygiene actions when

mixing with non-hygiene actions.

6.1.4 Same scenario hand-hygiene action detection

In this sub-section, we continue our exploration of same scenario hand-hygiene on a more

difficult task, action detection. Instead of trimmed video clips that contain one action from

begin to end, action detection processes untrimmed videos which include a mix of multiple

actions. Therefore, the goal is not only to predict an action class label, but also predict the

temporal location of each action. A typical approach in the literature [  7 ][ 6 ][ 68 ] is to create

temporal proposals or apply an end-to-end training structure to solve this problem. However,

in hand-hygiene, we focus on the action in terms of one second. Instead of generating multi-

scale temporal proposals, it is more efficient to apply fixed size sliding window and recognize

actions in each window individually. Also, hand-hygiene video for a person is usually last 1

to 2 minutes long. Compare to large untrimmed video which might last half an hour, hand-

hygiene untrimmed video has a short duration. Therefore, we propose to implement action

detection by using action recognition model and densely processing the entire untrimmed

hand-hygiene video. To evaluate the performance, we propose to use three different metrics:

frame-wise accuracy, window-wise accuracy, and task-wise accuracy, as indicated in Section

 6.1.5 .
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6.1.5 Method and Evaluation

We apply the 2D CNN ResNet50 with spatial RGB information introduced in Section

 6.1.3 as the action recognition model. The model densely processes every frame of the input

untrimmed video and predicts an action class category for every frame.

Metrics: For evaluation, we propose to use three different metrics: frame-wise accuracy (F-

acc), window-wise accuracy (W-acc), and task-wise accuracy (T-acc). Frame-wise accuracy

directly compares the frame level prediction result with ground truth label. Window-wise

accuracy cuts the untrimmed video into non-overlapping fixed size windows, and averages

all the frame prediction results in a window as the window’s prediction result. Finally, the

window-wise accuracy is computed by comparing the window level prediction with ground-

truth window level label. This metric is designed to evaluate the ”seconds duration” in

detecting hand-hygiene actions. Since our video was recorded under 30 FPS, the window

size is set to 30 frames.

Finally, the task-wise accuracy is particular designed for hand-hygiene actions. Since

the purpose of doing hand-hygiene recognition is to report the participant’s hand-hygiene

quality, it is necessary to have a metric directly connects to that purpose. The task-wise

accuracy includes four standards: (1) mis-detection seconds for ”rub hands with water”. (2)

mis-detection seconds for ”rub hands without water”. (3) existence of ”touch faucet with

hand” after the last hand to hand (rub hands with or without water) action. (4) existence

of ”apply soap” in between of a ”rub hands with water” and a ”rub hands without water”

action. During the evaluation of the task-based accuracy, we applied a tolerance towards

the ”transit” actions within our untrimmed videos. The transit action usually occurs in the

middle of two hand-hygiene actions, for example, after rubbing hands in water, a person

will move his/her hands toward the soap. This intermediate actions are the transit actions.

The action usually last for few frames and has no crucial influence to hand-hygiene quality.

Thus, we tolerate these actions by not counting them into our evaluation.

Experiment results: The test is performed on every untrimmed video clip of the same

scenario’s test dataset. The experimental results for all three metrics are shown in Table  6.2 

and  6.3 . The results indicate our strategy of using an action recognition model combined
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with a sliding window produces reasonable action detection accuracy of about 80%. A

visualization of action detection result on two sample untrimmed videos are shown in Figure

 6.1 . The performance of spatial only action recognition model with fixed size sliding windows

predicts majority of actions to the correct action type and temporal location. The only defect

is some minor mis-predictions on transit action.

Table 6.2. Frame-wise accuracy (F-acc) and window-wise accuracy (W-acc)
for all three scenarios, action detection. R1C1: room1 camera1. R2C1:
room2 camera1. R2C2: room2 camera2.

Metric\Scene R1C1 R2C1 R2C2
F-acc 85.75% 74.75% 82.76%
W-acc 86.28% 79.22% 85.41%

Table 6.3. Task-wise accuracy (T-acc) for all three scenarios, action detection.
R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2 camera2.

Metric\Scene R1C1 R2C1 R2C2
Rub water 2.00s 1.70s 2.13s

Rub nowater 1.44s 1.20s 2.40s
Faucet hand 78% 80% 93%

Soap 100% 100% 93%

Figure 6.1. Visualization result from hand-hygiene action detection
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6.1.6 Cross scenario hand-hygiene action recognition

After discussing hand-hygiene recognition in same scenario, we continue to explore hand-

hygiene action recognition under cross scenarios. For researcher in the area of computer

vision, deep learning is one the most popular strategies to solve various tasks. And majority

of deep learning methods require large-scale dataset to build a robust model. In our research

of hand-hygiene, the final model is expected to be deployed onto different laboratories or

food factories scenarios. And it is unlikely we will be able to collect video data from all these

facilities for training usage. Therefore, our goal is to explore the performance of constructing

a CNN model on one scenario, and inference it on a different scenario. In this section, we

explore the action recognition performance by applying the same models from Section  6.1.1 

and inference them on cross scenarios for the four hand-hygiene action recognition. Based

on the experiment results, we also analyze the main problem for RGB information to fail on

cross scene hand-hygiene recognition task.

6.1.7 Four hand-hygiene action recognition

In this section, we apply the models introduced in Section  6.1.2 onto cross scenario

recognition. For example, the model trained on scenario ”room1 camera1” will be tested on

”room2 camera1” and ”room2 camera2” test sets. All the training and testing setting are

exactly the same as Section  6.1.2 . Compare with the performance of testing on the same

scenario, the testing on cross scenario experience a huge performance drop among all models,

including both spatial only and spatio-temporal model.

6.1.8 Dataset bias in hand-hygiene action recognition

In this section, we focus on exploring the reason for cross scenario hand-hygiene to fail

under RGB modality. As introduced by [  114 ], a data collected for a particular task inevitably

describes only part of the task; this is termed the dataset bias problem. Especially, the cap-

ture bias is related to how the data are captured under different camera view, illumination

conditions, and background scenes. As our hand-hygiene data is collected under three differ-
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Table 6.4. Model accuracy for all three scenarios cross recognition, four hand-
hygiene actions. R1C1: room1 camera1. R2C1: room2 camera1. R2C2:
room2 camera2. CNN: ResNet50. LSTM: ResNet50 with LSTM. TRN:
ResNet50 with TRN. H: involve only hand-hygiene actions.

Model\Scene R1C1 R2C1 R2C2
R1C1 CNN (H) 91.67% 5.88% 30.19%
R2C1 CNN (H) 33.33% 97.06% 43.40%
R2C2 CNN (H) 56.67% 73.53% 98.11%

R1C1 LSTM (H) 91.76% 11.76% 43.40%
R2C1 LSTM (H) 28.33% 94.59% 47.17%
R2C2 LSTM (H) 35.00% 55.88% 93.41%
R1C1 TRN (H) 93.73% 38.24% 54.72%
R2C1 TRN (H) 58.33% 92.68% 45.28%
R2C2 TRN (H) 50.00% 61.76% 91.38%

ent scenarios, we believe dataset bias is a major cause of our poor performance in the cross

scenario recognition.

To prove the existence of this issue, we use Grad-CAM [ 54 ] on the conv_5x layer of

ResNet50 to generate a saliency map. These saliency maps help visualize the discriminative

area that a CNN model uses to make a prediction. The top and bottom rows of Figure  6.2 

show two different scenarios depicting the same ”rub hands with water” action. These images

are tested by their corresponding 2D CNN ResNet50 with spatial RGB with correct predic-

tion results. From the Grad-CAM, we observe the discriminative region for room1 camera1

not only covered “hands” and “waterflow”, but also include “sanitizer”, “water spout” and

“faucet”, which are irrelevant objects to “rub water”. In contrast, room2 camera1’s discrim-

inative region mostly covers the ”waterflow” and ”hands” region. Our hypothesis is that in

certain room scenario, the discriminative region learned by CNN through weak supervision

might involve irrelevant object. Thus, the irrelevant spatial object becomes a visual cue

which contributes to ”hands related” action recognition. This bias on data capturing limits

the model’s capability to do cross scene recognition.

To further demonstrate our hypothesis, we construct a hidden patch experiment. It has

been addressed in several previous works [  115 ][ 116 ][ 117 ], hide patch on a certain spatial area

of in training could force a CNN model to extent its attention onto other discriminative areas.
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Figure 6.2. Saliency map for hand-hygiene; Row (a): rub hands with water
in room1 camera1; Row (b): rub hands with water in room2 camera1.

Moreover, if hide patch applies onto images only for testing, the change in performance could

reflect the importance of the hidden area to the target task. To reveal the “contribution” of

irrelevant object to hand related action, we plan to cover an irrelevant object for hide patch

experiment in testing stage. Our experiment makes comparison between scenarios ”room1

camera1” and ”room2 camera1” on the target action ”rub hands with water”. We plan to

cover an irrelevant object ”alcohol sanitizer” in both scenarios’ test dataset of target action.

All the ”alcohol sanitizer” in image are covered with black color patch, as shown in Figure

 6.3 . We test the 2D CNN ResNet50 models of each scenario on their own hide-images. Our

expectation is that the detection accuracy on hide-image will decrease compare to original

image, which indicates the irrelevant object indeed contributes to hand related actions.

We apply the same 2D CNN ResNet50 with spatial RGB as introduced in Section  6.1.2 .

The training and testing steps are also remains the same. In Table  6.5 , we show the average

prediction results on both scenarios’ test ”rub hands with water” videos. To distinct the

change in recognition result before and after apply hide path, we directly apply the raw

prediction score from CNN without softmax function. As we observe, the confidence score

on ”rub hands with water” action for ”room1 camera1” model dropped 2.32 after apply

hide patch to ”alcohol sanitizer”. In contrast, the confidence score on ”rub hands with
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Figure 6.3. Hide patch image (a): room1 camera1; Row (b): room2 camera1.

water” action for ”room2 camera1” model dropped only 0.55. Thus, model train on ”room1

camera1” significantly relies on the irrelevant object ”alcohol sanitizer” to recognize “rub

hands with water”. And model trained on ”room2 camera1” is barely affected that object.

Table 6.5. Prediction score (no softmax) on testset, rub hands with water
videos; R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2
camera2; origin: test on regular image. hide: test on image with hide patch.
Act1: touch faucet with hand. Act2: rub hands with water. Act3: rub
hands without water. Act4: apply soap.

Model\Action Act1 Act2 Act3 Act4
R1C1 origin -1.93 4.71 0.02 -2.86
R1C1 hide -1.24 2.39 -1.24 0.08

R2C1 origin -1.98 4.99 -0.05 -3.10
R2C1 hide -1.67 4.44 0.25 -3.24

This reveals that under weakly supervised learning, where each action is only given a

class label, the model’s learning stage is “uncontrollable”. Depends on the scenario layout of

data collection, there exist different kinds of irrelevant objects surround hand washing sink.

Because RGB modelity is our only input resource, these irrelevant objects will always exist

in our input data. The model could identify irrelevant object as discriminative visual cue

to recognize an action. Even though in Table  6.5 , which tests on the same scenario, both

models are still capable to make correct prediction base on the highest confidence score,

this “model doesn’t pay attention on the correct discriminative part” issue could impact its

capability to do cross-scenario action recognition.
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6.2 Multi-modalities for cross scenario hand-hygiene recognition

In this section, we propose to use multi-modalities as input sources to solve hand-hygiene

recognition problems in cross scenarios. The concept of using multi-modalities in action

recognition has been explored in many previous works [ 35 ][ 118 ], where optical flow images

and depth information are applied to combine with RGB information for action recognition.

First, we take the concept from transfer learning to explain our problem on cross scenario

hand-hygiene recognition. Through this exploration, we confirm that the nature of solving

this problem relies on focusing a common hand-hygiene actions set which shared by all

scenarios and developing robust feature representation which build similarity refer to all

scenarios.

Second, we propose to apply optical flow, segmentation masks, and skeleton joints as

modalities as multi-modalities for cross scenario action recognition. We compare and explore

each of these modalities on their capability of distinguishing certain type of hand-hygiene

actions.

6.2.1 Idea from transfer learning

To solve the problem of cross scenario hand-hygiene recognition, we will need to analyze

the necessary conditions. In this section, we introduce the idea from ”transfer learning” area

to address our own task of hand-hygiene recognition. Reference to the work from Pan et al.

[ 57 ], we can define our hand-hygiene recognition in terms of domain D and task T . A domain

contains a feature space χ and a marginal probability distribution P (X), where our video

data collection X = {x1, x2, · · · , xn} ∈ χ. A task contains a label space γ, which contains

our ground truth label, and an objective predictive function f , which refers to our action

recognition model. Since our goal to do cross scenario recognition, there exists at least 2

groups of ”domains” and ”tasks”, which name as ”source” and ”target”.

By the definition of ”transfer learning”, or ”domain adaptation”, the cross scene recog-

nition can be interpreted as a transfer from ”source” to ”target”. Given a source domain Ds

and a source task Ts, a target domain Dt and a target task Tt, the goal is to improve target

task’s objective predictive function ft with Ds and Ts. And the constraints are Ds 6= Dt and
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Ts = Tt. If we consider our cross scene hand-hygiene, it is always guaranteed that different

camera angle, room layout, and illumination condition will always allow Ds 6= Dt. But for

Ts and Tt, there will usually exist a different action set collection in non-hygiene actions.

For example, data collected in roomA has ”talking” action, and data in roomB doesn’t. For

our hand-hygiene, we summarized two strategies to deal with this action set issue. The

first strategy is to assign all different non-hygiene actions into a uniform action class ”non-

hygiene”. The second one is to classify an action as ”non-hygiene” if it gets rejected by all

hand-hygiene classes. Due to the uncountable various of non-hygiene actions types, we select

the second strategy to define both Ts and Tt in hand-hygiene.

Moreover, as a hand-hygiene action recognition task, we also need to find a reliable

method which capable of using the knowledge of Ds and Ts to support the learning of ft.

There exist previous works on ”domain adaptation” for action recognition in cross views.

Kong et al. [  119 ] constructed view shared feature with auto-encoder to recognize cross-view

actions. For the same task, Liu et al. [  120 ] built view-invariant feature through sparse

feature representation and distribution adaptation. From these cases, we summarize the key

to transfer the existing knowledge in source domain to build objective function in target

domain can be achieved by constructing robust feature representation.

In conclusion, we summarize that the two major components on solving cross scenario

hand-hygiene recognition are focusing on common hand-hygiene action set and building

robust feature representation.

6.2.2 Explore multi-modalities in hand-hygiene recognition

In action recognition, images or videos are the most commonly used input resource which

represented by RGB color model. Beside RGB video/image, researchers also attempts to

using other representations, which we refer as modalities, to help recognition. Simonyan

et al. [ 35 ] applied stack of optical flow images in combining with RGB image to build a

two-stream network model. Hu et al. [  118 ] used RGB-D input, which contains depth map

beside RGB video, to recognize human actions. Moreover, Yan et al. [  37 ] took only skeleton

joints information with Graph Convolutional Neural Network for action recognition. As
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we discussed in Section  6.1.8 , the irrelevant objects in RGB images is the major obstacle

to prevent cross scenario hand-hygiene recognition. Modalities such as optical flow and

human skeleton joints are capable of maintaining motion or human only information, which

effective removes the disturbance of irrelevant objects and robust against different scenarios.

Furthermore, human action has grown into a large research area. Large scaled human action

datasets such as UCF101[  71 ] and NTU RGB-D[ 121 ] provide solid training data for deep

learning models. With the support of these previous work, it is convenient for us to apply

deep learning models pre-trained on large scale human action dataset and generate robust

modality feature on our hand-hygiene data directly. For example, we can directly apply

OpenPose[ 122 ] method to generate human skeleton joints information directly on our hand-

hygiene data without the need for additional training.

Figure 6.4. Human object interaction, Red rectangle: water spout. Blue
rectangle: soap head. Green rectangle: faucet. Yellow circle: hand
motion.

Moreover, inspired by the research topic Human-Object Interaction (HOI)[  50 ][ 51 ], which

could be considered as a sub-task to action recognition, the spatial region where partici-

pant interacts object could have significant contributions toward cross scenario hand-hygiene

recognition. The task of HOI is to localize both human and object locations and predict

an interaction class category for them. Reference to Chao et al, the baseline framework

of HOI consists object, human, and interaction streams. Especially for object and human

streams, a ”hard attention” is applied by cropping region of interest (ROI) at object and

human location to force CNN models to extract only information on these regions. As shown
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in Figure  6.4 , the hand-hygiene human object interaction ties with ”faucet”, ”soap head”,

and ”water spout” regions. Basically, hands appear in one of these regions could trigger a

corresponding hand-hygiene action. The motion of hands could reveal action cues by itself

as well. To acquire the locations of ”faucet”, ”soap head”, and ”water spout”, one could

construct an object detector, such as YOLO [ 81 ]. In this work, our prime goal is to explore

cross scenario hand-hygiene recognition. For exploration purpose, we apply human labeling

bounding box for the rest of this paper.

For the rest of this section, we introduce to use multi-modalities we selected to recognize

cross scenario hand-hygiene actions. The modalities we select are RGB modality, optical

flow, segmentation masks, and human skeleton joints. We explore what is each modality’s

capability on recognizing certain hand-hygiene action types, and which region of interest

from the input video should each modality applies to. To better describe each modality’s

capability, we further categories our four hand-hygiene actions into two parent category, hand

to hand action and hand to object action. The hand to hand action includes ”rub hands with

water” and ”rub hands without water” actions. The hand to object action includes ”touch

faucet with hand” and ”apply soap”. Through our exploration, we conclude to use skeleton

joints modality for non-hygiene action rejection, optical flow modality to categorize hand

to hand and hand to object action, hand mask modality to distinguish ”touch faucet with

hand” and ”soap” actions in hand to object category, and RGB modality with adversarial

learning to recognize ”rub hands with water” and ”rub hands without water” actions in hand

to hand category.

6.2.3 Optical flow

Optical flow is one of the widely used modalities in action recognition [  33 ][ 32 ][ 35 ], which

is capable at describing motions on image pixel level. For our hand-hygiene actions recorded

with a static third person camera view, optical flow can track the moving body parts of the

participant, which majorly focus on the forearm, as well as rejecting static objects informa-

tion such as the appearance of soap and sanitizer. Thus, we propose to use optical flow on
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recognizing cross scenario ”hand to hand” action and ”hand to object” action as we defined

in the beginning of Section  6.2.2 .

Figure 6.5. Optical flow modality model structure

All three different scenarios optical flow are pre-computed with TV-L1[  90 ], rescaled to

[0, 255], and saved as images. Refer to the temporal network structure mentioned in [ 35 ][ 111 ],

we select ResNet50 with pre-trained weight on ImageNet[  93 ] as our model to take 10 stack

of optical flow image pairs as input as shown in Figure  6.5 . The first convolutional layer is

edited to take 20 channels input. The pretrained weight on that conv layer is averaged by

its original 3 channels and repeated 20 times to match the edition.

Training: The ResNet50 model is trained with 350 epochs with batch size 32 and an

initial learning rate 0.001, which decreased by 10 at 200 and 300 epochs. We select to

use Stochastic Gradient Decent (SGD) optimizer. For the loss function, we compare the

binary cross-entropy loss with cross-entropy loss, and decide to use cross-entropy loss for

better performance. To avoid over-fitting, data augmentation multi-scale crop and random

horizontal flip duration training stage as introduced in [ 111 ].

Testing: Each model is tested on all 3 scenarios’ trimmed video clip datasets. The model is

applied on every sliding window on test video clip. Each window has fixed size of 10 frame

and step size of 1 frame. The prediction result for a video clip is the average score among

all the softmax-ed score of each window.

The testing results of using optical flow are shown in Table  6.6 . We observe the result

model trained on one scenario and inference to any other scenario achieve good result of over
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Table 6.6. Model accuracy for all three scenarios cross recognition, two ac-
tions. R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2
camera2. flow: ResNet50 with optical flow input.

Model\Scene R1C1 R2C1 R2C2
R1C1 flow 98.33% 94.12% 98.11%
R2C1 flow 95.00% 100.00% 96.23%
R2C2 flow 96.67% 94.12% 100.00%

90% accuracy. To conclude, optical flow based model is capable at cross scenario hand to

hand and hand to object recognition without pre-knowledge of target data.

6.2.4 Mask modality

In this section, we continue to explore another modality in cross scenario hand-hygiene

recognition, the mask modality. The mask modality is based on the result from image

segmentation task, which segments an image by labeling each pixel with a class category

[ 123 ]. There exist previous work [ 33 ] apply segmentation masks as clue of hands to recognize

egocentric activities. For hand-hygiene actions, the majority of actions are performed by

human body parts and its interaction with fixed location objects. With image segmentation

masks, we could discard redundant appearance information and maintains the shape and

silhouette which is robust cross scenarios. Therefore, we apply both the mask information

of human and objects to explore on cross scenario hand-hygiene recognition.

As human mask, we compare two different mask types, hand mask and person part mask.

The hand mask is generate by the method in [  124 ], which applies RefineNet[ 125 ] pretrained

on EYTH (EgoYouTubeHands) dataset for hand segmentation. The result hand mask image

is a binary image. For person part mask, we use the method of [ 126 ], which is a RefineNet

pretrained on PASCAL Person-part[ 127 ] dataset to segment 6 human body parts. The result

hand mask image is a RGB image.

To explore the capability of mask modality on cross scenario recognition, we compare

two different tasks.Task 1 : Action recognition of ”hand to hand”, ”touch faucet with hand”,

”apply soap”. Task 2: Action recognition of ”touch faucet with hand” and ”apply soap”.
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6.2.5 Task 1: recognition of 3 actions

In this task, we explore the capability of both hand mask and person part modalities at

recognizing ”hand to hand”, ”touch faucet with hand’, and ”apply soap” actions. As shown

in Figure  6.6 , in order to include both object and human masks information in the input

source, we put ”faucet and water spout” bounding box mask, hand or person part mask,

and ”soap head” bounding box mask into different images and combine them as channels

to create a mask image. And to include temporal information as comparison to optical flow

modality, we stack 10 of the mask images as input to CNN network. This results into 30

and 50 channels input source for hand and person part modalities. For model selection, we

choose to apply ResNet50 model with pretrained weight. The first convolutional layer is

edited to match the corresponding modality’s channel size. The usage of pretrained weight

is the same as Section  6.2.3 .

Figure 6.6. Object and human mask, images from left to right (a) faucet and
water spout mask, hand mask, soap mask (b) faucet and water spout mask,
person part mask, soap mask.

For training, the ResNet50 model is trained with 250 epochs with an initial learning rate

0.0001, which decreased by 10 at 100 and 200 epochs. The rest training and testing setting

is the same as Section  6.2.3 . The test result of hand and person part modalities among all

three scenarios are summarized in Table  6.7 . We observe that both modalities demonstrate

their capabilities to recognize all three actions under same scenario for over 90% accuracy.

However, when applying cross scene recognition, there exists performance drop.

A more detailed version of modality performance on cross scenario recognition among

three actions is shown in Table  6.8 . In this Table, we observe the person part mask has a
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better performance than hand mask at hand to hand action. However, for the performance

of ”touch faucet with hand” and ”apply soap” actions, hand mask is more effective. Since

we have demonstrated optical flow modality in Section  6.2.3 with high performance at rec-

ognizing hand to hand action, our expectation is to use other modalities to better recognize

”touch faucet with hand” and ”apply soap” action. So far, even though hand mask has better

performance than person part mask at recognizing these two actions, the performance could

still be improved.

Table 6.7. Model accuracy for all three scenarios cross recognition, three
actions. R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2
camera2. hand: ResNet50 with hand mask modality. person: ResNet50
with person mask modality.

Model\Scene R1C1 R2C1 R2C2
R1C1 hand 93.33% 88.24% 84.91%

R1C1 person 100% 85.29% 94.34%
R2C1 hand 73.33% 100.00% 64.15%

R2C1 person 75.00% 100.00% 67.92%
R2C2 hand 63.33% 97.06% 96.23%

R2C2 person 63.33% 79.41% 98.11%

Table 6.8. Modality average accuracy for cross scenarios only, three actions.
Hand: average performance of hand mask modality. Person: average perfor-
mance of person mask modality. F(C): touch faucet with hand action, tested
on other scenarios beside the training scenario. HH(C): hand to hand ac-
tion, tested on other scenarios beside the training scenario. S(C): apply soap
action, tested on other scenarios beside the training scenario.

Modality\Action F(C) HH(C) S(C)
Hand 50.00% 90.56% 72.91%

Person 42.42% 97.78% 43.75%

6.2.6 Task 2: recognition of 2 actions

In this task, we remove ”hand to hand” from our action set and only focusing on rec-

ognizing hand to object actions, which are ”touch faucet with hand” and ”apply soap”. It
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has been proved in Table  6.8 that hand mask is better at recognizing hand to object actions

than person part. Thus, we select hand mask modality for this task. Moreover, based on

our discussion about HOI in Section  6.2.2 , the ”touch faucet with hand” and ”apply soap”

actions occur in the ROI of ”faucet” and ”soap head”. Instead of using the whole image, we

crop the ROI of ”faucet” and ”soap head” on the hand mask as input source to our model.

For hand mask ROI images on ”faucet” and ”soap head”, we compare different settings

and decide to resize these images to fixed size 224 x 224 and stack with 10 frames to include

temporal information. As shown in Figure  6.7 , each stack of hand mask ROI image input

into a VGG11[ 20 ] backbone with unshared weights and concatenate their features before the

last fully-connected layer for final prediction. The model is trained with 350 epochs with an

initial learning rate 0.0001, which decreased by 10 at 200 and 300 epochs. The rest training

and testing setting is the same as Section  6.2.3 .

Figure 6.7. Hand mask modality model structure

The performance of cropped ROI hand mask for each action on cross scenario recognition

is shown in Table  6.9 . The average detection accuracy of each action is computed from cross

scenario recognition only, where a model is tested on all other scenarios except its training

scenario. The hand mask with ROI targeting on objects is giving good performance on

both actions, especially with model trained on room1 camera1. Due to the lack of depth

information and camera angle constraint, it is difficult to distinguish when hands and object

are spatially overlapped but not touched. Thus, there exist a performance drop especially

with model trained on room2 camera1. To conclude, the usage of hand mask modality with
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cropped ROI is capable at recognizing ”touch faucet with hand” and ”apply soap” actions

in cross scenario, even without any pre-knowledge of target data.

Table 6.9. Two action average accuracy for cross scenarios only Faucet
hand: average performance of ”touch faucet with hand action”. Soap: average
performance of ”apply soap” action. R1C1(C): Model trained on room1
camera1, test on other scenarios beside room1 camera1. R2C1(C): Model
trained on room2 camera1, test on other scenarios beside room2 camera1.
R2C2(C): Model trained on room2 camera2, test on other scenarios beside
room2 camera2.

Action\scene R1C1(C) R1C2(C) R2C2(C)
Faucet hand 100.00% 100.00% 68.00%

Soap 90.91% 28.57% 75.00%

6.2.7 Coordinate modality

In this section, we explore the usage of coordinate modality in cross scenario hand-hygiene

recognition. As introduced in previous sections, modalities such as optical flow and mask

segmentation are capable of keeping shape and silhouette information. In contrast, coordi-

nate base modality further discards silhouette and maintains semantic location information.

It has been demonstrated in previous works[ 128 ][ 32 ] that coordinates information can be

applied onto action recognition, either use human skeleton joints as feature or use object

coordinate to localize region of interest. For our cross scenario hand-hygiene recognition, we

experiment the performance of coordinate information to recognize three actions: ”hand to

hand” action, ”touch faucet with hand” action, and ”apply soap” action.

6.2.8 Coordinate generation

Our coordinate modality includes two parts: object coordinates and human skeleton

joints. For object coordinates, we focus on the location of three objects, namely ”faucet”,

”water spout”, and ”soap head”. The coordinates are computed as center coordinates of

each object’s bounding box, which is detected from a object detector. In our exploration, we

apply human labeling of object location to replace the object detector. For skeleton joints,
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we are interested in the upper body skeleton joints of a participants, namely ”shoulder”,

”elbow”, ”wrist”, and ”hands”. We reference to the methods [ 122 ][ 129 ][ 130 ] for the upper

body skeleton detection. The skeleton joints detection was applied on the original 1080

image which whole human can be clearly viewed. Using OpenPose method, 18 human body

joints and 21 hand joints for all the people in the image are detected, and we keep only

joints from person around the sink area defined in Section  3.6.2 . Among all 18 body joints,

we keep ”shoulder”, ”elbow”, and ”wrist” of both left and right side. The 21 hand joints

location is averaged to generate the coordinates of hand.

Figure 6.8. Coordinate detection results, left: OpenPose, right: object +
upperbody coordinates; Row (a) room2 camera1. Row (b) room1 camera1.

6.2.9 Method and Evaluation

We apply the CNN based method of Li et al.[ 39 ] which stacks coordinates by time as

a input matrix to recognize action. For cross scenario hand-hygiene action, we apply the 4

human upper body joints of left and right side plus 3 object coordinates, which builds 11

coordinates from each video frame. The time stack length is chosen as 16 frames to match the

down samplings in the CNN. For training, we apply the same setting as the work[ 39 ] of NTU

RGB+D dataset. And the model is applied on every sliding window of each test video clip.

Each window has fixed size of 16 frame and step size of 1 frame. The prediction result for a

video clip is the average score among all the softmax-ed score of each window. The detection
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result are shown in Table  6.10 . The performance of coordinate modality is reasonable when

train and test on the same scenario. However, when doing cross scenario recognition, its

performance is worse than mask modality shown in Table  6.7 . The performance drop of

coordinate information is majorly caused by the inconsistency at skeleton joint detection.

From Table  6.11 , the scenario room1 camera1 is able to detect almost all the upperbody

joints. However, the scenario room2 camera1 and room2 camera2 always have issue on

detecting one side of wrist and hand. This missing wrist and hand issue constraints the

coordinate modality to build robust feature against different scenarios.

Table 6.10. Model accuracy for all three scenarios cross recognition, three
actions. R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2
camera2. coord: coordinates modality.

Model\Scene R1C1 R2C1 R2C2
R1C1 coord 98.33% 70.59% 92.45%
R2C1 coord 60.00% 94.12% 79.25%
R2C2 coord 71.67% 64.71% 96.23%

Table 6.11. Upperbody skeleton detection rate for all three scenarios. R1C1:
room1 camera1. R2C1: room2 camera1. R2C2: room2 camera2. L: left side.
R: right side. S: shoulder. E: elbow. W: wrist. H: hand.

(a) Left side detect rate

Model\Scene L+S L+E L+W L+H
R1C1 98.44% 97.01% 91.21% 91.21%
R2C1 98.83% 98.57% 97.91% 97.91%
R2C2 98.73% 83.89% 52.73% 52.73%

(b) Right side detect rate

Model\Scene R+S R+E R+W R+H
R1C1 99.41% 99.32% 99.04% 99.04%
R2C1 95.83% 94.04% 56.37% 56.37%
R2C2 99.29% 99.17% 99.06% 99.06%

Despite coordinate modality does not provide a competitive performance over other

modalities on recognizing ”hand to hand”, ”touch faucet with hand” and ”apply soap” ac-

tions. It is still an useful modality which can be applied to reject non-hygiene actions. As

introduced in Section  6.2.1 , we plan to not create an action class category ”non-hygiene”
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and reject it with other methods. Human skeleton joints are capable of providing semantic

information of human body points. As we observe from Table  6.11 , among all three scenar-

ios, the detection rates of hand and wrist are over 90%, at least in one of the left or right

side. Therefore, many of non-hygiene actions can be rejected by checking if hand and wrist

joints present in the sink ROI. To conclude, the coordinate modality is capable for rejecting

non-hygiene actions with unsupervised based method among all scenarios.

6.2.10 RGB modality

In this section, we continue to explore the usage of RGB modality in cross scenario

hand-hygiene recognition. As mentioned in Section  6.1.8 , the RGB modality has its own

disadvantage on cross scenario recognition by involving redundant object appearance. How-

ever, RGB modality also contains special appearance information which is not covered by

any of the rest modalities. For example, the appearance ”waterflow” is crucial for actions

”rub hands with water” and ”rub hands without water”. Thus, we experiment the capability

of RGB modality on recognizing the two actions in hand to hand action category, which are

”rub hands with water” and ”rub hands without water”. First, we compare the different

selection of region of interest for RGB modality in cross scene recognition and evaluate the

performance. Second, we further improve the result of RGB modality on recognizing ”rub

hands with water” and ”rub hands without water” actions with offline data augmentation

and domain adaptation methods.

6.2.11 Region of interest selection for RGB modality

Based on the idea of ”hard attention” to crop relevant objects and human in Human-

Object Interaction (HOI), and our demonstration that RGB modality might include redun-

dant object appearance, we select the relative regions of interest (ROI) to recognize ”rub

hands with water” and ”rub hands without water” actions. Our ROI fall into two candidates:

hand ROI and waterflow ROI. As shown in Figure, both of these candidates are cropped

with a fixed size patch and resized into 224 x 224 image. The hand ROI is achieved through

skeleton recognition in Section  6.2.7 of the leading hand joint, the closest hand to water
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spout, and fix crop of 80 x 80 image patch. The missing hand joint is replace by a black

image. The waterflow ROI is achieved by the human labeling bounding box of water spout

and extend it to the bottom of the image. Our comparison sets are selected as hands and

waterflow ROI or waterflow ROI only.

Figure 6.9. ROI candidates; Row left: hand ROI. Row right: waterflow ROI.

We select ResNet50 model for both comparison sets, and input the stack 10 frames for

temporal information. For the set of two ROI images, we expand two branch of ResNet back-

bones with unshared weights and concatenate their features before the last fully-connected

layer for final prediction. Model in both sets are trained with 350 epochs with an initial

learning rate 0.0001, and decreased by 10 times at 200 and 300 epochs. The rest training

and testing setting is the same as Section  6.2.3 .

Table 6.12. Model accuracy for all three scenarios cross recognition, two
actions. R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2
camera2. H: hand ROI. W: waterflow ROI.

Model\Scene R1C1 R2C1 R2C2
R1C1 H + W 96.15% 62.96% 62.16%

R1C1 W 100.00% 88.89% 62.16%
R2C1 H + W 73.07% 100.00% 62.16%

R2C1 W 73.07% 100.00% 62.16%
R2C2 H + W 92.31% 66.67% 100.00%

R2C2 W 88.46% 100.00% 100.00%
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The result is indicated in Table  6.12 . As we observe, the performance of using waterflow

ROI only is better than using both hand and waterflow ROI, especially on scenarios room1

camera1 and room2 camera2. The main reason is because that the participant’s hand might

show up in any place of the scenario, which brings uncertainty to the information included in

the background of hand ROI as well as increase the miss detection rate of hands. Therefore,

we will select only to use the waterflow ROI for RGB modality.

6.2.12 Data augmentation and adversarial learning

Data augmentation With waterflow ROI applied, there exists three situations for ”rub

water with hands” and ”rub water without hands” actions: (1). Hands cut waterflow. (2).

Hands away from waterflow. (3). Hands overlap waterflow, where (1) belongs to ”rub water

with hands” action and (2) (3) belong to ”rub water without hands” action. In our data

collection, however, room1 camera1 and room2 camera2 doesn’t include any of the situation

(3), which is an crucial sample type to distinguish the two actions. As shown in Figure

 6.10 , the overlapped hand and waterflow forces CNN model to recognize the bottom area of

water as discriminative region, and increases feature robustness. Therefore, we observe in

Table  6.12 that the model trained on room2 camera2 with waterflow has a highest prediction

accuracy at recognize cross scenario actions over models trained at the other two scenarios.

Figure 6.10. Hands overlap waterflow; (a) Left: water spout ROI extends
to acquire waterflow (b) Right top: resized waterflow ROI. (c) Right bottom:
waterflow ROI attention.
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To compensate this situation for room1 camera1 and room2 camera1, we use offline data

augmentation to create samples. The sample video is created by manually selecting few

consecutive frames in those two scenarios video where hands are overlapped with waterflow.

And these frames are repeated to reach 60 frames to create a video clip for situation ”hands

overlap with waterflow”. Consider the balance of two action classes during training, we

created 8 and 3 ”hands overlap with waterflow” video samples and added into room1 camera1

and room2 camera1 training sets. As indicated in Table  6.13 , the offline data augmentation

improved the recognition accuracy for room1 camera1 and room2 camera1 models on room2

camera2 data.

Domain adaptation Moreover, we apply adversarial learning based domain adaptation

method [ 61 ] to improve CNN model robustness across scenarios. As we explained in Section

 6.2.1 , each of our three scenarios could be considered as a individual domain, and the nature

of cross scenario recognition is to build a model based on source domain data and label,

and apply to target domain. Despite we narrow the discriminative regions on waterflow

ROI to distinguish ”rub water with hands” and ”rub water without hands” actions, the

dataset bias problem still exists among different domains. To overcome this problem, we use

a discriminator in training stage to help mapping target domain model’s feature onto source

domain. A source domain CNN model is trained separately in the beginning with its labeled

data. For target domain CNN model, the discriminator and target domain CNN are trained

alternatively follow two steps. As indicated in Figure  6.11 , step one starts by training the

discriminator with mixed input of CNN feature extracted from data in both domains with

their corresponding CNN models. The goal of discriminator is to recognize the domain of

each input feature vector. Step two, the target domain CNN extracts feature from target

domain data and input into discriminator. To constraint the target domain CNN’s feature to

match source domain, this predicted domain labels is expect to match source domain label

(inverted label).

Moreover, we target at actions of ”rub hands with water” and ”rub hands without water”

from all four hand-hygiene action types, it is expected that we could adapt source domain

to target domain only for the action set of these two actions only. However, our assumption

is that the target domain training data doesn’t have ground truth label provided, and we
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Figure 6.11. Target domain model training procedures.

couldn’t directly select the hand to hand action set out of all action clips. To solve this

problem, we apply the optical flow model trained in Section  6.2.3 and make prediction on

the training data of target domain to assign ”hand to hand” and ”hand to object” class

label, and use data with ”hand to hand” label as training data in target domain. With this

additional procedure, the unnecessary hand to object actions in target domain get filtered

out and it reduces the level of difficulty to do domain adaptation.

To accomplish the domain adaptation, we choose the same ResNet50 with input of stack

10 frames as CNN model for both source and target domain. The discriminator is a multilayer

perceptron (MLP) with 3 layers. Both the target domain CNN and discriminator are trained

with cross entropy loss in combine with Adam optimizer with 0.00001 and 0.001 learning

rate respectively for 350 epoches. Since we have three scenarios as individual domain, each

source domain is tied with two target domain models. In testing, we will need to have the

pre-knowledge of which target domain the test data belongs to. The rest testing setting is

the same as Section  6.2.3 .

As results in Table  6.13 , the adversarial learning further improve the performance over

most of the cross scenarios. especially for model trained on room2 camera1. Moreover, there

also exist some cross scenario results which are not good as expected, such as room1 camera1

model inference on room2 camera2. The reasons behind this issue is due to both the data

collection and algorithm. The data we collected in room1 camera1 scenario is naturally short
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Table 6.13. Model accuracy for all three scenarios cross recognition, two
actions. R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2
camera2. W: waterflow ROI. D: offline data augmentation. A: adversarial. I:
ideal.

Model\Scene R1C1 R2C1 R2C2
R1C1 W 100.00% 88.89% 62.16%

R1C1 W + D 100.00% 96.30% 70.27%
R1C1 W + D + A 100.00% 92.59% 56.76%

R1C1 W + D + A(I) 100.00% 88.89% 81.08%
R2C1 W 73.07% 100.00% 62.16%

R2C1 W + D 84.62% 100.00% 78.38%
R2C1 W + D + A 100.00% 100.00% 83.78%

R2C1 W + D + A(I) 100.00% 100.00% 94.59%
R2C2 W 88.46% 100.00% 100.00%

R2C2 W + D + A 88.46% 100.00% 100.00%
R2C2 W + D + A(I) 100.00% 100.00% 100.00%

of some types of action variation. Even though we attempt to compensate this issue with

data augmentation with manually created data, it is still not as satisfied as real data. Also,

the mistake in optical flow target domain data labeling might also influence the domain

adaption performance.

To further demonstrate the efficiency of our method, we provide the results from ideal

situation as well. The ideal situation assumes we have a perfect method, instead of our

current optical flow model, to label and select all the hand to hand data in target domain

for training. As we observe, the results under ideal situation is further improved, especially

for model train on room2 camera2, which achieved 100% accuracy on all cross scenario

recognition.

Therefore, we conclude that RGB modality with adversarial learning is capable at rec-

ognizing ”rub hands with water” and ”rub hands without water” actions.

6.3 Cross scenario hand-hygiene recognition system

In previous Section  6.2 , we explored the capability of multiple modalities on recognizing

hand-hygiene actions under cross scenarios and proved that each modality is expertise at
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recognizing certain set of actions. In this section, we combine all these different modalities

for hand-hygiene action detection task in cross scenarios. In Section  6.3.1 , we introduce

our idea to design the system refer to K-class pattern recognition problem with K neural

networks. Our system is designed as a collaboration between multiple modalities’ CNN

models to hierarchically detect hand-hygiene actions. In Section  6.3.2 , we show our final

performance of multi-modality system on cross scenario action detection.

6.3.1 System design

As we explored in previous sections, each of the modalities we chose has its own advantage

on recognizing certain action types and the model architecture design for each modality is

also varied. It becomes a question of how to collaborate all these modalities for a action

detection task? We refer to the work of Ou et al.[ 131 ] which leads to the K-class pattern

classification problem. Basically, our hand-hygiene recognition problem can be considered

as a branch of K-class pattern classification problem. As mentioned in [  131 ], one solution

to solve this problem is to apply K neural networks using OAA (one-against-all). This

solution has advantages to allow each network to have its own non-interfered feature space

and model architecture. The solution matches our desire for each modality to solve a partial

task with its own model design without interfere with other features. As we mentioned

before, each modality is only capable at recognizing certain action types. The OAA strategy

which requires a model to learn all other actions as one action category becomes unrealistic

for our application. Therefore, we use a hierarchical design to collaborate all the modalities.

As shown in Figure  6.12 , we apply densely processing strategy to iterate through the

target untrimmed video. Because all of our modality models take a video chunk of 10 frames

as input, we iterate every frame i by selecting frame i to frame i + 9 as a video chunk

and predict on the video chunk as the result for frame i. Each chunk of video clip is first

input into the skeleton joint modality model, which applies unsupervised method to reject

non-hygiene actions which upperbody joints does not present in the sink ROI. Then, the

remaining hand-hygiene action clip is input into optical flow modality to distinguish hand

to hand and hand to object actions. Clips of these two categories is further delivered into
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Figure 6.12. Hierarchical action recognition with multi-modalities.

RGB and hand mask modality models respectively, and predict final action label as one of

the four types hand-hygiene actions. The rest of test setting details and evaluation is the

same as Section  6.1.6 .

Figure 6.13. Cross scenario action detection.
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6.3.2 Metric and Evaluation

For action detection in cross-scenario hand-hygiene, we follow the same densely processing

strategy to acquire video chunk from untrimmed video and the video chunk is input into

our hierarchical multi-modalities models to recognize its class category. The detailed test

setting is the same as Section  6.1.6 . For comparison, we select the action detection method

in Section  6.1.6 as the baseline method. Moreover, to demonstrate the full potential of

our method, we add the ideal situation introduced in Section  6.2.12 to build the system

and show its result for comparison as well. The final result in shown in Table  6.14 with

metrics frame-wise accuracy (F-acc) and window-wise accuracy (W-acc). On average, our

multi-modality system outperforms the baseline system by 36.42% and 38.46% on cross

scenario with respect to frame-wise accuracy and window-wise accuracy. This proves that

our system design is effective against cross scenario hand-hygiene recognition. Moreover,

the ideal situation further improves the performance of our multi-modality system by 3.82%

and 4.19% on cross scenario by average with respect to frame-wise accuracy and window-

wise accuracy, especially for the cross scenario between room1 camera1 and room2 camera2.

Figure  6.14 and  6.15 show two different untrimmed video cross scenario action detection

from current multi-modality and ideal systems. As we observe, ideal system is better at

distinguish ”rub hands with water” and ”rub hands without water actions” due to the ideal

target domain hand to hand labeling.

Moreover, we also show the task-wise evaluation, as introduced in Section  6.1.5 , in Table

 6.15 and  6.16 with respect to ideal labeling and optical flow labeling in target domain. In

Table  6.15 (b) and  6.16 (b), we observe that the multi-modalities trained on room2 camera

1 scenario achieves a reasonable performance in cross scenario action detection. Especially

in ”rub hands with water” and ”rub hands without water” actions, many cross scenario

detection achieve mis-match seconds around 2 or 3 seconds, which is close to some results

in same scenario detection. In contrast, the multi-modalities system trained with room1

camera1 data, as Table  6.15 (a) and  6.16 (a), is experiencing a performance worse than other

models. This indicates that some certain scenarios has its natural disadvantage for its
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layout and data collection, which could result into a less good performance at cross scenario

detection.

Table 6.14. Frame-wise accuracy (F-acc) and window-wise accuracy (W-acc)
for all three scenarios, action detection. R1C1: room1 camera1. R2C1:
room2 camera1. R2C2: room2 camera2.

(a) Baseline system

Metric\Model R1C1 R2C1 R2C2
R1C1 F-acc 85.75% 10.93% 12.29%
R1C1 W-acc 86.28% 10.33% 12.25%
R2C1 F-acc 9.69% 74.75% 34.14%
R2C1 W-acc 9.54% 79.22% 33.38%
R2C2 F-acc 37.99% 52.70% 82.76%
R2C2 W-acc 38.94% 55.50% 85.41%

(b) Multi-modality system

Metric\Model R1C1 R2C1 R2C2
R1C1 F-acc 74.92% 67.62% 54.56%
R1C1 W-acc 76.69% 67.74% 56.68%
R2C1 F-acc 58.11% 75.14% 68.68%
R2C1 W-acc 63.07% 76.14% 71.45%
R2C2 F-acc 53.18% 74.08% 82.31%
R2C2 W-acc 57.20% 74.56% 86.08%

(c) Ideal multi-modality system

Metric\Model R1C1 R2C1 R2C2
R1C1 F-acc 74.92% 67.08% 66.00%
R1C1 W-acc 76.69% 66.90% 69.91%
R2C1 F-acc 58.47% 75.14% 69.42%
R2C1 W-acc 63.81% 76.14% 72.81%
R2C2 F-acc 62.84% 75.32% 82.31%
R2C2 W-acc 66.71% 75.72% 86.08%

Figure 6.14. Visualization result from cross scenario hand-hygiene action detection.
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Figure 6.15. Visualization result from cross scenario hand-hygiene action detection.

Table 6.15. Task-wise accuracy (T-acc) for all three scenarios, action detec-
tion, ideal labeling. R1C1: room1 camera1. R2C1: room2 camera1. R2C2:
room2 camera2. RW: rub hands with water. RNW: rub hands without water.
Faucet: touch faucet with hand. Soap: apply soap.

(a) Ideal labeling: R1C1 model

Scene\Task RW RNW Faucet Soap
R1C1 0.89s 4.11s 67% 89%
R2C1 4.00s 6.50s 70% 80%
R2C2 4.60s 6.80s 80% 93%

(b) Ideal labeling: R2C1 model

Scene\Task RW RNW Faucet Soap
R1C1 2.00s 2.89s 67% 100%
R2C1 2.30s 2.40s 60% 90%
R2C2 3.60s 3.67s 27% 93%

(c) Ideal labeling: R2C2 model

Scene\Task RW RNW Faucet Soap
R1C1 2.00s 3.89s 89% 89%
R2C1 1.90s 3.20s 60% 80%
R2C2 1.60s 2.20s 33% 100%

6.4 Conclusion

In this chapter, we introduce hand-hygiene video systems to evaluate hand-hygiene ac-

tions with different application requirements. To support our exploration in hand-hygiene

actions, we collect a dataset from 23 students in a food class with static third person camera

view. Our first application targets at hand-hygiene recognition in same scenario. We com-

pare the performance of utilizing spatial information only and spatio-temporal information

for the tasks of action recognition and action detection. The results indicate that using
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Table 6.16. Task-wise accuracy (T-acc) for all three scenarios, action detec-
tion, ideal labeling. R1C1: room1 camera1. R2C1: room2 camera1. R2C2:
room2 camera2. RW: rub hands with water. RNW: rub hands without water.
Faucet: touch faucet with hand. Soap: apply soap.

(a) Flow labeling: R1C1 model

Scene\Task RW RNW Faucet Soap
R1C1 0.89s 4.11s 67% 89%
R2C1 3.90s 6.30s 70% 80%
R2C2 6.87s 8.93s 80% 87%

(b) Flow labeling: R2C1 model

Scene\Task RW RNW Faucet Soap
R1C1 2.67s 3.44s 67% 100%
R2C1 2.30s 2.40s 60% 90%
R2C2 4.00s 3.80s 27% 93%

(c) Flow labeling: R2C2 model

Scene\Task RW RNW Faucet Soap
R1C1 6.33s 6.11s 89% 100%
R2C1 2.10s 3.60s 60% 70%
R2C2 1.60s 2.20s 33% 100%

spatial information only is effective enough to process hand-hygiene actions within the same

scenario.

Moreover, we also explore the dataset bias problem in hand-hygiene actions. Because

of the variance in camera angle, illumination, and background scene, hand-hygiene data

collected in different facilities doesn’t share same appearance. A model trained on one

data collection might failure at recognizing the same type of actions from videos of another

data collection. As a demonstration, we build a hide-patch experiment which intends to

cover irrelevant object in the background scene in hand-hygiene actions and observe the

performance change from hand-hygiene model. The results prove that the appearance in

background could be mistakenly considered as discriminative cues towards hand-hygiene

actions. This is one of the main reasons to prevent hand-hygiene actions to be recognized in

different data collections.

Furthermore, we propose a multi-modalities system to recognize hand-hygiene actions in

cross scenarios. We experiment the capabilities of optical flow, hand segmentation mask, and

human skeleton joints’ on recognizing certain hand-hygiene action types. And we combine
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all these separate modalities as K separate classifiers to recognize hand-hygiene actions in

a hierarchical way. Our result indicate this multi-modalities system outperforms the single

RGB modality method on detecting cross scenario hand-hygiene actions.

In the future, we plan to explore and find a more robust camera view for hand-hygiene

action recognition. In our previous work [ 86 ][ 98 ], the egocentric camera views of chest

and nose, they share a common advantage on capturing subtle-motion level details in all

the food handling actions. Therefore, if a food handling task involves subtle motions or

requires to capture the texture details on objects, egocentric camera view is a good selection.

However, the shortcomings of egocentric camera view, such as target out of camera view and

uncomfortable for long time wearing, is also obvious. In contrast, static third camera view

offers a burden-free data collection experience to the participants and capable at capturing

many of the hand-hygiene actions. However, it is unavoidable to loss the subtle information

on hands with the side third person camera view as we introduced in Figure  3.17 and  3.18 .

Based on the above, we would like to find a new camera view which mounts the camera

equipment in the front of the sink area. The camera view is expected to capture all the

action details as an egocentric camera without interfering the subject from focusing on their

actions.
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7. ADDITIONAL EXPLORATION OF ACTION

RECOGNITION ON VIDEO QUALITY

Besides the previous exploration of hand-hygiene actions with different approach methods, I

also worked on an additional exploration of action recognition with video quality variation.

The content in this chapter is an extended version of my previous work [  132 ]. Executing

video analytics tasks using a large camera network is a challenging problem in the field of

video processing. Video compression is a necessary step to reduce video data size before

transmission. However, the performance of video analytics tasks generally degrade as video

quality drops.

In this chapter, we explore the impact of compression on detection accuracy in activity

recognition. We explore this using different sets of activities, and show that each activity is

affected by compression differently and the impact of compression depends on the “neigh-

boring” activities from which this activity is to be distinguished. Moreover, we propose a

video analytics system corresponding to the task of activity recognition using compressed

videos. We use feature descriptors to predict activity recognition task success or failure

under different QP values. With this prediction result, the system then selects an optimal

compression rate for each input video. And therefore, an acceptable detection accuracy and

video data bitrate can be achieved. The chapter is organized as following: Section  7.1 pro-

vides the data selection of this work. Section  7.2 explores the impact of compression on

activity recognition. Section  7.3 describes the design details of the video analytics system.

Section  7.4 demonstrates the system can perform better than one that uses the same QP to

compress all videos and Section  7.5 concludes the paper.

7.1 Data selection

Compare to the particular hand-hygiene action task in previous chapters, the work in this

chapter focuses on the action recognition task in general category. Thus, we need to select

appropriate data to explore this topic. The dataset we used is UCF101 [  71 ] dataset, which

contains 101 action class categories from 5 types, which are ”Human-Object Interaction”,
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Table 7.1. Activity names of five different sets
Activity Set A Activity Set B Activity Set C Activity Set D Activity Set E
ApplyEyeMakeup ApplyEyeMakeup ApplyEyeMakeup Archery ApplyEyeMakeup
ApplyLipstick ApplyLipstick ApplyLipstick BabyCrawling BreastStroke
Archery Archery Archery BandMarching Fencing
BabyCrawling BabyCrawling BabyCrawling HorseRace Haircut
BalanceBeam BalanceBeam BalanceBeam JugglingBalls IceDancing
BandMarching BandMarching BandMarching MoppingFloor MilitaryParade
JugglingBalls Rowing JugglingBalls PlayingSitar PlayingDhol
Basketball Basketball PlayingCello Punch SalsaSpin
Kayaking Kayaking PlayingSitar Rowing TaiChi
BenchPress BenchPress Rowing YoYo WalkingWithDog

”Body-Motion Only”, ”Human-Human Interaction”, ”Playing Musical Instruments”, and

”Sports”. To explore the impact of the set of activities, we use different subsets of 10

activities chosen among the entire collection of 101 activities. We create five different activity

sets which are listed in Table  7.1 . There are small variations between the activities chosen

for Sets A, B, C and D, while in Set E, most of the activities are completely different from

the other sets.

7.2 Impact of compression

To investigate how video compression influences activity recognition, we encode each

video using Mencoder [ 133 ] into five different compressed versions in H.264 format, each

using among a constant QP (Quantization Parameter) from the list {20,26,32,38,44}. A

large QP value generates a low bitrate, which results in low video quality. In our designed

method, we train only one SVM for each activity class and use it on videos from that class

for all QP values. As it is indicated in Figure  7.1 , the general trend of the fixed QP curves

shows decreasing performance as the bitrate drops, especially below 100 kbit/s. And it is

very different across each test set. In addition, there exist a few surprises. For instance, on

the fixed QP curve of Set C, the performance degrades as bitrate increases in the middle

range of the curve.

To understand more about these observations, we analyze the impact of video compres-

sion on each activity class in Set A. The impact of compression for each activity is evaluated

as the average of all test videos’ confidence score from SVM. The results are demonstrated
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in Figure  7.2 and Figure  7.3 . Figure  7.2 represents detection results from each individual

activity class in Activity set A. It is obvious as the video quality degrades (QP increases),

most actions’ detection confidence score decrease, but each to a different degree. In Figure

 7.2 , the confidence score for the activity “ApplyLipstick” drops 34% as the QP increases

from 20 to 44. However, the confidence score for activity “BalanceBeam” drops only 4%.

Moreover, the activity “JugglingBalls” increases its confidence score as the compression

increases from QP value 20 to QP value 44. This implies that compression actually makes

this activity class easier to identify, and accounts for the decrease in accuracy across the

entire set shown in Figure  7.1 as the QP increases from 38 to 44. Therefore, from Figure  7.2 ,

we see that for the task of activity recognition, the impact of compression depends heavily

on the specific activity class.

Figure 7.1. Activity Set A to E ideal QP points and Fixed QP curves

We also observe that different combinations of activity classes influences detection accu-

racy. Set A, Set B, Set C and Set D all include the activity class “BabyCrawling”. In

Figure  7.3 , all of them start with the same confidence score around 81%, but as QP increases

to 44, the confidence score of class “BabyCrawling” in Set A, Set B, Set C and Set D

decreases: 26.3%, 22.3 %, 16.7% and 33.3%. This indicates that the impact of compression

on the detection performance of each activity depends on the set of other activities.

As these results show, when considering the impact of compression on activity recog-

nition, it is important to consider the impact both on each individual activity and due to
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different collections of activities. Therefore, in this paper, we propose a system that predicts

the optimal amount of compression for each individual video.

Consider a system that could compress each individual video i using an ideal quantizer,

QP ∗
i , that corresponds to the largest QP in our list that produces the correct detection result

for that video. While such a selection may not be possible in practice, performance of such

a system can demonstrate whether overall performance could be improved if the amount of

compression could be optimally chosen for each input video.

To demonstrate the power of such a system, we define the concept of ideal QP point. The

ideal QP point represents the result where all the test videos are compressed to the lowest

quality to be detectable by “Improved Dense Trajectory” (IDT) activity recognition

Figure 7.2. Set A confidence score versus QP

Figure 7.3. “BabyCrawling” confidence score versus QP
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algorithm. The ideal points for each set are also shown in Figure  7.1 . Compared to the

fixed QP curves, ideal points demonstrate promising performance both in bitrate saving

and accuracy improvement. These ideal points are obtainable only with perfect knowledge.

Therefore they provide the upper bounds on the performance of our system.

7.3 Prediction system

In this section, we present our prediction system whose goal is to predict each input

video’s performance under different compression QP values and select the optimal QP value

for each video. The proposed system is illustrated in Figure  7.4 . The main components are:

Feature extraction, Hierarchical K-means, Random Forest and Compression rate selection.

The system starts with feature extraction from all compressed versions of the input video, and

then applies the visual word assignment pipeline [ 134 ] to assign words to each descriptor.

The resulting histogram represents the video. After that, the histogram is input to the

trained Random Forest to receive a classification result whether the detection performance

is “success” or “failure” for a given QP value. The final step is to collect the classification

results from the previous step and select the optimal QP. The following sections will describe

each component in detail.

Figure 7.4. Prediction system pipeline
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Feature Extraction Texture features normally include representative information about

the video. In order to find an appropriate feature for the prediction system, we evaluated

four different types of features in this paper. According to [  15 ], densely sampled features

have the best performance on complex datasets. Therefore, all the features evaluated in this

paper are densely sampled. We selected HOG (Histogram of oriented gradients) [  134 ], HOF

(Histogram of oriented flow) [  134 ], MBH (Motion Boundary Histograms) [ 134 ][ 14 ] and SIFT

(Scale-invariant feature transform) [ 135 ][ 136 ] to test our prediction system.

Visual word assignment Densely sampled features extracted from different videos nor-

mally have a different amount of descriptors due to the video length. In our system, we

choose to use hierarchical k-means [  134 ] to assign each video with an equal length histogram

of visual words.

Random Forest A Random Forest [  137 ] includes a collection of decision trees, where the

growth of trees and the split of nodes both depend on random selection. An input vector

proceeds through each tree to receive a decision vote. After collecting all the votes, the

forest selects the class that receives the most votes as the final decision. In our prediction

system, for a given set of activities, we design five Random Forests, one for each QP value

considered. Each Random Forest predicts success or failure of the activity recognition task

for a given input video compressed using that QP.

To train each Random Forest for this classification problem, we require feature inputs

and the correspond labels. As feature input for one video, it is the histogram of visual words

from the last step. For feature labels, we use the confidence score of the SVM predictor in

the activity recognition task. The score indicates the probability that a video belongs to its

ground truth activity class. In our system, if the score is higher than 0.5, we denote it as

“success”. Otherwise, we denote it as “failure”.

From the perspective of training our system, we need to train both the activity recognition

IDT algorithm and our prediction system. We split the 25 groups of videos inside each

activity class into two parts. Group 01 to 12 is used for testing the IDT algorithm and 13

to 25 for training the IDT algorithm. Furthermore, to avoid training the Random Forests

on the same data used to train the IDT, we randomly splits groups of 01 to 12 into two

parts equally, one part for training the Random Forests, another part for testing them. The
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Table 7.2. Random Forest training and testing samples for Set A and E
success failure

Number of Set A Training samples 1365 230
Number of Set A Testing samples 1437 168
Number of Set E Training samples 1464 136
Number of Set E Testing samples 1499 116

prediction result for each video is a 1x5 vector indicating “failure” or “success”, where

each element in the vector corresponds to one QP value.

Compression rate selection After each Random Forest predicts whether a correct decision

will be made at each QP considered, we select the estimated Q̂P i to be the largest QP that

yields a “success” prediction.

Examining the fixed QP curves in Figure  7.1 , we notice that the detection accuracy

drops gradually at high bitrate and sharply at low bitrate. Therefore, it is usually good

to conservatively trade a small amount of bitrate for a relatively large detection accuracy

increment. Therefore, in some extreme cases, when all QPs lead to a “failure” prediction,

we conservatively compress these videos using QP 20, which corresponds to the highest video

quality and bitrate.

7.4 Experimental Result

In this section, we construct an evaluation method whose goal is to test the performance

of our prediction system. The prediction system’s pipeline has already been discussed in

Section  7.3 .

Figure 7.5. Prediction result from Set A
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Figure 7.6. Prediction result from Set E

In addition to the fixed QP curve and ideal QP point as we discussed Section  7.2 , we

tested our prediction system with each of the different features mentioned in Section  7.3 .

However, as shown in Table  7.2 , we can see that the number of overall samples among all QP

values for “success” and “failure” are quite imbalanced. The “failure” cases only occupy

a small proportion of the total samples. This is a crucial factor that limits our prediction

accuracy [  138 ]. To reduce the impact of this imbalance, we pre-assigned class weights to

the Random Forest during training to increase the importance of the minority class. As the

assigned class weight varies, we plot each feature’s prediction result as a curve.

Figure  7.5 and  7.6 examine the performance of an entire activity recognition system that

incorporates our prediction results, for activities Set A and Set E respectively. For Set A,

most of our features have a better performance than the fixed QP curve, both in accuracy

and compression rate. For Set E, our prediction has a better performance compared with

the fixed QP curve only when the bitrate is less than 100 kbit/s, even though the accuracy

from the prediction is still significantly lower than the ideal point.

To interpret the result in Figure  7.5 and  7.6 , we present confusion matrices of the ideal

QP value (horizontal axis) and predicted QP value (vertical axis). In Figure  7.7 and  7.8 ,

respectively. Both matrices reflect the prediction point of highest accuracy. For Set A, this

is the right-most point on the SIFT curve. For Set E, this is the right-most point on the

HOG curve.
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The most important distinction we can find is the difference in the ratio of “Task failure”

between these two sets. Since, our prediction system is limited by the imbalanced data, there

exists some videos’ prediction results that are mistakenly predicted as all “failure” across all

QP values and marked as “Task failure”, even though an ideal QP exist. As we described

in section 4, it is worthwhile to conservatively compress these videos with QP 20 to increase

the chance that the activity is correctly detected while only sacrificing a small amount of

bitrate. As we noticed, the percentage of “Task failure” videos for Set A and Set E are

27.10 % and 14.86 %.

Figure 7.7. Confusion matrix for SIFT from Set A

Figure 7.8. Confusion matrix for HOG from Set E
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Moreover, videos that have higher predicted QPs than their ideal QPs are considered to

be aggressively predicted. These aggressively predicted videos appear in the lower triangular

region below the diagonal in the matrices of Figure  7.7 and  7.8 . Comparing these matrices,

the percentage of aggressively predicted videos for Set A and Set E are 0.31 % and 2.78 %.

These videos will certainly fail at the activity recognition. Therefore, it is understandable

for Set E to have a worse performance than Set A.

We also compare the performance of each feature in our prediction system. For example,

in Figure  7.5 , SIFT feature has a better detection accuracy compared with other features over

all bitrates. Therefore, SIFT has the best performance for Set A. However, after checking

the performance of each feature in all sets, we notice that the feature HOF (Histogram of

oriented flow) has the best performance in three out of five of these activity sets. Thus while

more exploration is needed, the HOF may be the most reliable feature for our prediction

system.

7.5 Conclusion

In this chapter, we proposed a system to predict each video’s optimal compression rate for

the task of activity recognition. We explored the effect of compression on the performance

of activity recognition using different sets of activities. We also defined the concept of

an ideal QP point and fixed QP curve to help evaluate the performance of our prediction

system. The ideal QP point provides a great deal of promise that significant gains might be

possible in both detection accuracy and bitrate. Through our experiments, we were able to

generate an acceptable prediction result for some of the combinations of activities. For other

combinations, we analyzed the potential factors which limit the performance of our system.

There still exists potential space to explore in this field.
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8. CONCLUSIONS AND FUTURE WORK

This chapter summarizes the projects in the thesis and provides future insights of food han-

dling in video analytics. In Section  8.1 , we summarize this thesis in two different perspectives.

In Section  8.2 , we propose our directions of the future work.

8.1 Conclusions

8.1.1 Human machine trade-off

In this thesis, we propose to build a video monitoring system to assist food handling,

which involves both human and machine. In general, a fully automated system relies on

the machine to take the majority of the responsibility and relieve a human from their work.

However, in food handling, a human is also responsible to put their effort to support and

ensure the machine to get the video monitoring job done.

Food handling, especially hand-hygiene in food handling, is a type of activity which

requires its participants to have willingness to collaborate. In other words, it is the partic-

ipant’s responsibility, not the machine’s, to clearly demonstrate each step of his/her action

in front of the video monitor to pass the quality check. In Chapter  4 and  5 , we compared

the performance of three camera views with the same CNN model architecture. Egocentric

camera views such as chest and nose camera always experience with different level of hands

or objects out of camera view issues. The reason for issues is that different participant has

difference in body shape and personal habits. It is difficult to set a uniform standard to

apply on every individual to clearly capture all their hand-hygiene steps. Therefore, it is

important for participants to ensure their actions are under video monitoring rather than

designing an omnipotent algorithm to overcome problematic input data.

8.1.2 Camera view influence

Food handling as a sequence of actions can be addressed with different video monitoring

tasks. For example, as we defined in Chapter  3.3 , the hand-hygiene actions include three
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levels of tasks. According to the task’s difficult level, one could select to use the most

appropriate camera view.

In this thesis, we explore three different types of camera views, as defined in Chapter

 3.2 , for food handling. For the egocentric camera views of chest and nose, they share a

common advantage on capturing subtle-motion level details in all the food handling actions.

Therefore, if a food handling task involves subtle motions or requires to capture the texture

details on objects, egocentric camera view is a good selection. However, the shortcoming of

egocentric camera view is also obvious. Because the camera is equipped on human subject,

the video recording quality heavily depends on the behavior of that subject. An effort-

less participant could record the video input in inappropriate manners which could cause

video monitoring system fails at detecting and reporting the actual food handling quality.

Moreover, the equipment to tie a camera onto a participant could cause an uncomfortable

experience. Especially for produce washing, which requires a labor to hold the same pose

for more than half an hour, the camera equipment becomes a burden to the subject.

In contrast, static third person camera view which mounts on a flat platform frees the

subject from carrying the camera equipment. Based on our results in Chapter  5.3.4 , even

though the wall camera is less accurate on certain subtle motion actions, it is still a reasonable

camera choice for the ”standard level” hand-hygiene task.

8.2 Future work

In the future, we plan to improve our current hand-hygiene system to address the conclu-

sions in Section  8.1.1 and  8.1.2 . First, to better engage a subject to perform food handling

without disturb video monitoring system, our video monitoring system is expected to remind

a subject to repeat its actions until all the actions can be clearly captured by the system.

Second, we would explore a new camera view which mounts the camera equipment in the

front of the sink area. This camera view is expected to capture all the action details as an

egocentric camera without interfering the subject from focusing on their actions.
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