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ABSTRACT

In spatio-temporal data analysis, the problem of non-separable space-time covariance

functions is important and hard to deal with. Most of the famous constructions of these

covariance functions are fully symmetric, which is inappropriate in many spatiotemporal

processes. The Non-Fully Symmetric Space-Time (NFSST) Matérn model by Zhang, T. and

Zhang, H. (2015) [1 ] provides a way to construct a non-fully symmetric non-separable space-

time correlation function from marginal spatial and temporal Matérn correlation functions.

In this work we use the relationship between the spatial Matérn and temporal Cauchy

correlation functions and their spectral densities, and provide a modification to their Bochner’s

representation by including a space-time interaction term. Thus we can construct a non-fully

symmetric space-time Matérn-Cauchy model, from any given marginal spatial Matérn and

marginal temporal Cauchy correlation functions. We are able to perform computation and

parameter estimate on this family, using the Taylor expansion of the correlation functions.

This model has attractive properties: it has much faster estimation compared with NFSST

Matérn model when the spatio-temporal data is large; it enables the existence of temporal

long-range dependence (LRD), adding substantially to the flexibility of marginal correlation

function in the time domain. Several spatio-temporal meteorological data sets are studied

using our model, including one case with temporal LRD.
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1. Introduction

The objective of this dissertation is to provide a new approach to constructing non-fully

symmetric, non-separable correlation models with known marginal correlation functions in

space-time geostatistics studies. In this chapter, we give a literature review of the history,

research problems and traditional methodology of geostatistics, and introduce our motivation

to propose the non-fully symmetric space-time (NFSST) correlation models.

1.1 Geostatistics and correlation functions

Spatial statistics, as a research field within the discipline of statistics, was originally

developed from different areas of real world applications, including mining industry, spatially

concerned agriculture, and forestry. Generally speaking, spatial statistics is consisted of three

major branches: (1) geostatistics, which is focused on processes with continuous spatial

variation; (2) lattice data study, concerns those processes with discrete spatial variation; (3)

spatial point processes. During the past 30 years, due to the development of high-speed

computing and the worldwide usage of geographical information systems (GIS), researchers

are endowed with the ability to collect larger spatial and spatio-temporal datasets, and they

are able to investigate more complicated and challenging models. As a result, there has be

an explosive growing of interest in the studies of space and space-time processes.

Geostatistics originates from mining industry, and develops its methodology for predic-

tion (kriging) by Mathéron in 1950s [2 ]. Its original real-world application was to predict the

expected yield of a mine over a geographical region D, knowing the samples of ores collected

from a finite set of locations. Using a stochastic process {S(x), x ∈ D} to represent the yield

of ores, we observe data {Yi : i = 1, . . . , n} as the realized value (along with random error)

of the process S(x) at locations {xi : i = 1, . . . , n}. The model is Yi = S(xi) + Zi, where the

Zi are independent noise term with mean zero and variance τ 2. For any unobserved location

x, the point predictor of S(x) is the least mean square error linear estimator. In the kriging

method, the process S(·) is assumed to have mean µ(x) = d(x)>β, where d(x) is a vector

of explanatory variables. The kriging method also takes account of the covariance structure

of S(·).

12



In general, the aim of geostatistics is to model and predict a spatially distributed variable

of interest in a geographical region. The model often includes a response variable and a set

of explanatory variables. The response variable is defined in theory at every point over

the geographical region, and the region is a bounded D ⊂ Rd, where d = 2 or 3. In the

circumstance of spatio-temporal study, the region is assumed to be a bounded D ⊂ Rd × R,

where d = 2 or 3, Rd is the spatial domain and R is the temporal domain. Values of the

response variable are observed at fixed stations (and time, in the spatio-temporal case) in

the region. Values of explanatory variables can be derived from other source. Therefore,

we often assume that the response is only observed at stations (and certain time) and the

independent variables are available everywhere in the region. The aim of a geostatistical

method is to predict the value of response at unobserved locations (and unobserved time).

Assume a response and a p-dimensional vector of explanatory variables are observed

over space and time domain, and the observed values are denoted by yi and the vector of

explanatory variables are denoted by xi at location (si, ti), for i = 1, ..., n. Here yi = Y (si, ti),

and Y (s, t) is a Gaussian random field where (s, t) ∈ Rd × R . Let y = (y1, ..., yn)> be the

column vector of the response and X = (x1, ...,xn)> be the matrix of the explanatory

variables of the observations. Then, a geostatistical model is

y = Xβ + δ, (1.1)

where δ is a spatial correlation error term usually assumed distributed of N (0, σ2R), where

the spatial correlation matrix R = cor(δ, δ) is the correlation matrix which may depend on

parameter vector θ.

Note that {yi : i = 1, . . . , n} is the realized values of Y (s, t) at different space-time

locations (si, ti), for i = 1, ..., n, which are usually distinct locations in real applications.

This makes the estimate of the correlation matrix R unrealistic, unless some more structures

are imposed on it. Therefore we often assume the covariance have certain stationarity, and

further we may assume some parametric models for the covariance structure.

It is often assumed the spatial covariance function is either stationary or isotropic.

In the pure spatial case, t is absent. We say the covariance function is stationary [3 ] if

13



cov(Y (s + h), Y (s)) = σ2r(h) only depends on h for any s. It means that the covariance

of Y (·) at two different locations only depends on their relative locations, or in other words,

on their spatial lag. We say the covariance function is isotropic [3 ] if cov(Y (s + h), Y (h)) =

σ2r(h) only depends on ||h||. It means that the covariance of Y (·) at two different locations

only depends on their (Euclidean) distance. It is clearly that isotropic implies stationary and

if the covariance function of Y is stationary, then var(Y (s)) does not depend on s. Therefore,

we can write covariance of Y as σ2R.

It is often model the spatial correlation matrix of δ by a parametric correlation function.

Suppose the correlation is expressed as cθ(h), where h is the spatial distance. The correlation

matrix is

R =



cθ(d11) cθ(d12) · · · cθ(d1n)

cθ(d21) cθ(d22) · · · cθ(d2n)
... ... . . . ...

cθ(dn1) cθ(dn2) · · · cθ(dnn)


, (1.2)

where dij is the distance between site i and j. Clearly, we have cθ(0) = 1 and cθ(h) < 1

if ||h|| > 0. If θ is derived, then cθ is derived which means R is known. Then β can be

estimated by the generalized least square method as

β̂ = (X>R−1X)−1X>R−1y, (1.3)

and σ2 is estimated by

σ̂2 = 1
n− p

y>[R−1 − R−1X(X>R−1X)−1X>R−1]y. (1.4)

Based on the above, we can estimate θ by using the profile maximum likelihood method,

which aims to maximize the function

`p(θ) = − n

2 [1 + log(2π

n
)] − 1

2 log | det(Rθ)|

− n

2 log [y>R−1
θ y − y>R−1

θ X(X>R−1
θ X)−1X>R−1

θ y]

= − n

2 [1 + log(2π

n
)] − 1

2 log | det(Rθ)| − n

2 log(y>Mθy).

(1.5)
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where

Mθ = R−1
θ − R−1

θ X(X>R−1
θ X)−1X>R−1

θ . (1.6)

Therefore, θ can be estimated using maximum likelihood estimate. Let ˙̀ = ( ∂`p

∂θ1
, ∂`p

∂θ2
, . . . , ∂`p

∂θn
)

be the vector of gradient and ῭
p = ( ∂2`p

∂θi∂θj
) be the Hessian matrix. We have the first order

partial derivatives with respect to each element of θ is

∂`p

∂θj
= −1

2tr(R−1
θ

∂Rθ

θj
) +

ny>Mθ
∂Rθ

∂θj
Mθy

2y>Mθy
. (1.7)

and the second order partial derivative function is

∂2`p

∂θj1∂θj2
= − 1

2tr(R−1
θ

∂2Rθ

∂θj2∂θj1
) + 1

2tr(R−1
θ

∂Rθ

∂θj1
R−1

θ

∂Rθ

∂θj2
)

+
ny>Mθ

∂2Rθ

∂θj1 ∂θj2
Mθy

2y>Mθy
+
n(y>Mθ

∂Rθ

∂θj1
Mθy)(y>Mθ

∂Rθ

∂θj2
Mθy)

2(y>Mθy)2

−
ny>Mθ(∂Rθ

∂θj1
Mθ

∂Rθ

∂θj2
+ ∂Rθ

∂θj2
Mθ

∂Rθ

∂θj1
)Mθy

y>Mθy
.

(1.8)

where j, j1, j2 = 1, . . . , k.

The maximum likelihood estimate of θ can be solved by Newton-Raphson iterative

method by

θ(l+1) = θ(l) − ῭−1(θ(l)) ˙̀(θ(l)). (1.9)

The predicted value of y at an unobserved site s0, denoted by y0, is computed by the

kriging (or co-kriging) method as

y∗
0 = E(y0|y) = E(y0 − c>

0 R−1y|y) + c>
0 R−1y

= x>
0 β + c>

0 R−1(y − Xβ),
(1.10)

where c0 = (cor(y0, y1), . . . , cor(y0, yn))> is the correlation vector between y0 and y.

From the procedure above, we learn that once the parametric family of the correlation

function cθ(h) is determined, we are able to estimate the parameters in the model and
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make predictions based on the likelihood approach. Therefore, in a geostatistical model

the critical point is to figure out a valid spatial correlation function. Currently, a well-

known parametric family of correlation function is the popular Matérn correlation function,

which was firstly introduced by Bertil Matérn’s doctoral dissertation [4 ]. An one-dimensional

Matérn correlation function is given by

cθ(h) =

 1, when h = 0,
θ1

2α−1Γ(α)(
h
θ2

)αKα( h
θ2

), when h 6= 0.
(1.11)

where 0 < θ1 < 1, θ2 > 0 and Kα is the modified Bessel function of second kind. θ2 is called

the scale parameter and α is called the smoothness parameter. This parametric family is

related with the student-t family, and it has been the choice of correlation family in many

geostatistics studies.

1.2 Spatio-temporal processes

In spatio-temporal geostatistics studies, we consider processes

{Y (s, t) : (s, t) ∈ D ⊆ Rd × R}

defined on both spatial domain s ∈ Rd and temporal domain t ∈ R. From a purely mathe-

matical perspective, there is no much difference between the spatio-temporal processes and

pure spatial processes. Since the temporal domain can be considered as an extra dimension of

space. And a spatio-temporal process can be viewed as a process defined on Rd+1 = Rd ×R.

The modelling, estimation and kriging procedure can also be applied using the results on

domain Rd+1. However, from a physical perspective, such viewing may not be appropriate.

Since time can only move forward not backward while there is no such restriction on space.

Space and time differ in their scale and units as well. Therefore we want to build realistic

statistical models taking care of these issues, more specifically, we want to construct space-

time correlation functions revealing both distinction and interaction between space and time

domains.
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For a second-order stationary spatiotemporal process Y (s, t), s ∈ Rd and t ∈ R, its

covariance function, C(h, u) = Cov(Y (s, t), Y (s + h, t + u)), h ∈ Rd, u ∈ R, is essential to

estimation and prediction. A space-time covariance function C is called fully symmetric [5 ]

if

C(h, u) = C(−h, u) = C(h,−u) = C(−h,−u),∀h ∈ Rd, u ∈ R. (1.12)

In the purely spatial context, this property is also known as axial symmetry [6 ]. With

fixed temporal lag, a fully symmetric model can not distinguish the different effects as spatial

lag towards one direction or its opposite direction. In real applications, there are climate

and geophysical processes under some predominant forces following certain directions. And

these factors make the fully symmetric model unrealistic. For instance, in mainland China,

during summer monsoon seasons there are prevailing air movement towards northeast. Then

today’s high pollutant concentration at a southwestern location will likely result in tomor-

row’s high pollutant concentration at a northeastern location, but not vice versa. There

are similar effects in ocean currents as well, for example the north Atlantic ocean currents

flow towards certain directions in every summer and winter. These effects are well known in

the geophysical literature, and it has been pointed out by Gneiting (2002) [5 ] that the fully

symmetry is often violated when environmental processes are considered dynamically, it is

more appropriate to use non-fully symmetric space-time covariance functions in applications.

A space-time covariance function C is called separable [7 ] if

C(h, u) = K1(h)K2(u), ∀h ∈ Rd, u ∈ R, (1.13)

where K1(·) is a covariance function on Rd and K2(·) is a covariance function on R. One

clear drawback of the separability models is the lack of space-time interaction. Stein in 2005

[7 ] pointed out the ridge issue caused by separable models. Thus non-separable models is

more appropriate in real-world studies.

One basic, non-fully symmetric and non-separable construction of space-time covariance

functions from known spatial covariance function is the frozen field model

C(h, u) = Cs(h − vu), (1.14)
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where h ∈ Rd,u ∈ R, Cs is a spatial covariance function on Rd, v is a velocity vector showing

the time-forward movement speed of Cs. This model was proposed by Briggs (1968) [8 ]

and proved useful when there are transportation effects in spatio-temporal processes [3 ].

The frozen field model cooperates spatial lag and temporal lag via v. For a fixed temporal

lag, the spatial marginal covariance function follows Cs, however for fixed spatial lag h the

temporal marginal covariance function is not clear.

A space-time covariance function is a spatial covariance function if time is ignored or a

temporal covariance function if space is ignored. As mentioned in last section, if time is not

involved, a great interest is to consider the Matérn family of spatial correlation functions as

Md(h|ν, a) = (a‖h‖)ν

2ν−1Γ(ν)Kν(a‖h‖)

= Mν(a‖h‖),h ∈ Rd, a, ν > 0,
(1.15)

where Kν is a modified Bessel function of the second kind, a and ν are scale and smoothness

parameters respectively, and Mν(z) = |z|νKν(z)/[2ν−1Γ(ν)], z ∈ R. The Matérn family is

isotropic in space. It was proposed by Matérn (1986) [9 ] and has received more attention

since some theoretical work by Handcock (1993) [10 ] and Stein (1999) [11 ]. A nice review

and discussion on Matérn family is given by Guttorp and Gneiting (2006) [12 ]. The Matérn

spatial correlation family has been used in many applications (Lee and Shaddick, 2010 [13 ];

North, Wang, and Genton, 2011 [14 ]).

As discussed, an isotropic correlation function is inappropriate in modeling a spatiotem-

poral process since the temporal axis and the spatial axis are of different scales and the

Euclidean distance in the product space in not suitable. The construction of space-time cor-

relation functions is an interesting but difficult problem. There have been good developments

in recent years on the construction of space-time correlation functions. The simplest case is

the separable one provided by the product of a spatial correlation function and a temporal

correlation function, but it does not model the space-time interaction [15 ] [7 ] and also too

restrictive for space-time data analysis. A more detailed discussion of the shortcomings of

separable models can be found in Kyriakidis and Journel (1999) [16 ]. Recently, much effort

has been put on the construction of nonseparable space-time covariance functions. Many
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models have been proposed. Examples include the product-sum model (De Iaco, Myers,

and Posa, 2001 [17 ]), the mixture models (Ma, 2002, 2003b [18 ] [19 ]), and anisotropic spa-

tial component models (Mateu, Porcu, and Gregori, 2008 [20 ]; Porcu, Gregori, and Mateu,

2006 [21 ]; Porcu, Mateu, and Saura, 2008 [22 ]). In the construction of these models, many

methods have been proposed. Examples include the spectral representation method (Cressie

and Huang, 1999 [15 ]; Stein, 2005 [7 ]), the completely monotone function method (Gneiting,

2002 [5 ]), the linear combination method (Ma, 2005 [23 ]), the convolution-based method

(Rodrigues and Diggle, 2010 [24 ]), the stochastic different equation method (Kolovos, et. al,

2004 [25 ]), and the mixture representation method (Fonseca and Steel, 2011 [26 ]). There

have been a number of studies on the properties of space-time correlation functions, includ-

ing, for example, the test for separability (Brown, Karesen, and Tonellato, 2000 [27 ]; Fuentes,

2006 [28 ]; Li, Genton, Sherman, 2007 [29 ]; Mitchell, Genton, and Gumpertz, 2005 [30 ]), the

evaluation of spatial or temporal margins (De Iaco, Posa, and Myers, 2013 [31 ]), and types

of nonseparability (De Iaco and Posa, 2013 [32 ]).

An important issue is the assessment of full symmetry. Although fully symmetry is a

desirable assumption from a computational point of view, it may not be appropriate in appli-

cations (Shao and Li, 2009 [33 ]). Atmospheric, environmental, and geophysical processes are

often under the influence of prevailing air or water flows, resulting in a lack of full symmetry

(Gneiting, Genton, and Guttorp, 2007 [34 ]). Non-separable and fully-symmetric space-time

covariance functions can be constructed by mixtures of separable covariance functions (De

Iaco, Myers, and Posa, 2002 [35 ]; Ma, 2003a [36 ]). A geometric non-fully symmetric space-

time covariance function can be formulated using a geometric transformation on a fully

symmetric space-time covariance function (Stein, 2005 [7 ]). There is a great need for covari-

ance functions which are non-fully symmetric in the spatiotemporal domain (Mateu, Porcu,

and Gregori, 2008 [20 ]).

1.3 Our contribution

In this work, we focus on the construction of a non-separable, non-fully symmetric

space-time (NFSST) correlation model that satisfies any given spatial Matérn or temporal
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Cauchy margins. Specifically, given any spatial Matérn correlation function Md(h|ν1, a1)

(called the spatial Matérn margin) and a temporal Cauchy correlation function D(u|ν2, a2)

(called the temporal Cauchy margin), we construct an NFSST correlation function C(h, u)

satisfying

C(h, 0) = Md(h|ν1, a1), C(0, u) = D(u|ν2, a2). (1.16)

Although the model is non-fully symmetric, its spatial and temporal margins are both

isotropic. We allow the two smoothness parameters and the two scale parameters to be

arbitrary. In some settings, the temporal Cauchy margin can have long-memory property.

The remainder of this dissertation is organized as follows. In Chapter 2 , we provide

an approach of constructing valid space-time correlation functions from using of Bochner’s

representation. In Chapter 3 , we review the construction of some space-time correlation

models and an non-fully symmetric space-time (NFSST) Matérn model. In Chapter 4 , we

employ the spectral approach to construct an NFSST Matérn-Cauchy model. In Chapter 5 ,

we apply our models to some meteorological data sets. In Chapter 6 , we provide a discussion

on our models and our future work.
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2. Spectral methods

This chapter introduces the spectral methods we use in the construction of space-time corre-

lation functions. Bochner’s representation, or spectral representation builds a bridge between

the space-time domain and frequency domain. We can construct valid covariance functions

and introduce new covariance models using their spectral densities.

2.1 Bochner’s Representation

The study of space-time correlation functions is essential in spatio-temporal geostatistics

research. A correlation function with appropriate properties leads to better fitting and pre-

diction. However, the construction of valid correlation functions is not trivial, and Bochner’s

representation works as a powerful tool in such construction. One important characteristic

of a valid (stationary) correlation function is that it must be positive definite, which means

that the variance-covariance matrix

R =



c(s1 − s1) c(s1 − s2) · · · c(s1 − sn)

c(s2 − s1) c(s2 − s2) · · · c(s2 − sn)
... ... . . . ...

c(sn − s1) c(sn − s2) · · · c(sn − sn)


(2.1)

must be non-negative definite: for real numbers a1, . . . , an, there is

n∑
i=1

n∑
j=1

aiajc(si − sj) ≥ 0. (2.2)

Suppose a space-time correlation function follows a parametric family Cθ(h, u), it is

positive definite thus has its Bochner’s representation, or spectral representation

C(h, u) =
∫
Rd×R

eih>s+iutF (ds, dt), (2.3)

for any s,h ∈ Rd and t, u ∈ R, where F is the spectral measure satisfying F (A,B) =

F (−A,−B) for any Borel A ⊆ Rd and B ⊆ R.
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If F is a finite measure and C(h, u) is integrable, then F is absolutely continuous with

respect to the Lebesgue measure on Rd × R and Bochner’s representation becomes

C(h, u) =
∫
R

∫
Rd

eih>s+iutf(s, t)dsdt, (2.4)

where the non-negative integrable function f(s, t) is called the spectral density of the process

satisfies f(s, t) = f(−s,−t).

It can be shown that the spectral density representation is positive-definite, since

n∑
i=1

n∑
j=1

aiaj

∫
eiz>(si−sj)f(z)dz

=
∫ n∑

i=1

n∑
j=1

aiajeiz>sie−iz>sjf(z)dz

=
∫

(
n∑

i=1
aieiz>si)(

n∑
j=1

ajeiz>sj)f(z)dz

=
∫

||
n∑

i=1
aieiz>si ||2f(z)dz ≥ 0.

According to Bochner’s theorem [37 ], a real continuous space-time function C on Rd ×R

is a space-time covariance function if and only if it can be represented in the form of 2.4 .

Thus, the structure of a space-time process can be analyzed using its spectral density, or

equivalently by estimating its autocorrelation function.

It is useful to think of correlation functions and spectral densities as occupying two

domains. The correlation functions are in the space-time domain, while the spectral densities

are in the frequency domain. Because of the properties of Bochner’s representation, if we

perform operations in one domain, there are corresponding operations in the other [38 ].

For instance, one multiplication operation in the frequency domain becomes convolution

operation in the space-time domain, and vise versa. It enables us to jump between the space-

time domain and frequency domain, and perform operations when they are most convenient.

Thus Bochner’s representation is very useful in the construction of space-time correlation

functions. Those functions can be specified as spatial correlation functions if time is ignored

or as temporal correlation functions if space is ignored. In the spatio-temporal context,
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a few nonseparable space-time covariance models have been constructed using Bochner’s

representation, including Cressie and Huang’s model, proposed in 199 and Stein’s model

proposed in 2005.

2.2 Our methodology

We use spectral methods in the construction of our NFSST model. And the methodology

is based on the following two theorems.

Theorem 2.2.1. Let A(h, u) be a space-time covariance function. Let Z1 and Z2 be positive

random variables with joint CDF G. Then

C(h, u) =
∫ ∞

0

∫ ∞

0
A(hz1, uz2)G(dz1, dz2) (2.5)

is a valid space-time covariance function.

Proof. Let F be the spectral distribution of A(h, u). Without the loss of generality, assume

F is a probability measure, which is generated by a random vector x1 ∈ Rd and X2 ∈ R. If

(x1, X2) is independent of (Z1, Z2), then

A(hZ1, uZ2) = E(ei(Z1h>x1+Z2uX2)|Z1, Z2)

and

C(h, u) =
∫ ∞

0

∫ ∞

0
E[ei(Z1h>x1+Z2uX2)]G(dz1, dz2)

=E[E(ei(Z1h>x1+Z2uX2))|Z1, Z2]

=E(ei(Z1h>x1+Z2uX2)).

Therefore, C(h, u) is a characteristic function of x1Z1 and X2Z2, implying that C(h, u) is

a valid space-time correlation function. if F is not a probability measure, then C(h, u) is a

covariance function but not a correlation function.
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Theorem 2.2.1 shows how can we construct a new space-time covariance function C(h, u)

given a known space-time covariance function A(h, u). By introducing two positive random

variables, compounding them with space and time variables, and integration out, we can get

a new valid covariance function. By careful selection on Z1 and Z2, the new C(h, u) may

have ideal properties and its computation might be efficiency.

The properties of the original A(h, u) also affect C(h, u), states by the following theo-

rem.

Theorem 2.2.2. Let Z1 and Z2 be independent positive random variables on (0,∞) in

Theorem 2.2.1 . The necessary and sufficient conditions for C(h, u) to be separable in 2.5 is

that A(h, u) be separable.

Proof. The sufficiency is directly implied by the expression of C(h, u). For the necessity,

if C(h, u) is separable then, using the uniqueness of the inverse Fourier transformation, we

conclude that x1Z1 and X2Z2 are independent. Since (x1, X2), Z1 and Z2 are independent,

(x1Z1, Z1) is independent of Z2 and (x2Z2, Z2) is independent of Z1. Let z1 and z2 be real

values such that P (Z1 ∈ dz1) and P (Z2 ∈ dz2) are positive if |dz1| and |dz2|, the Lebesgue

measures of dz1 and dz2 respectively, are positive. For any B1 ∈ B(Rd) and B2 ∈ B(R),

P (x1 ∈ B1, X2 ∈ B2)

= lim
|dz1|→0,|dz2|→0

P (Z1x1 ∈ z1B1, Z2X2 ∈ z2B2|Z1 ∈ dz1, Z2 ∈ dz2)

= lim
|dz1|→0,|dz2|→0

P (Z1x1 ∈ z1B1, Z2X2 ∈ z2B2, Z1 ∈ dz1, Z2 ∈ dz2)
P (Z1 ∈ dz1, Z2indz2)

= lim
|dz1|→0,|dz2|→0

P (Z1x1 ∈ z1B1, Z1 ∈ dz1)P (Z2X2 ∈ z2B2, Z2 ∈ dz2)
P (Z1 ∈ dz1)P (Z2indz2)

= lim
|dz1|→0,|dz2|→0

P (Z1x1 ∈ z1B1|Z1 ∈ dz1)P (Z2X2 ∈ z2B2|Z2 ∈ dz2)

=P (x1 ∈ B1)P (X2 ∈ B2).

Therefore, x1 and X2 are independent, implying that A(h, u) is separable.

The general idea in our approach is to use a trivial A(h, u) to construct a non-trivial

C(h, u). As the choice of Z1 and Z2 is generally flexible, many different families of space-time
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correlation functions may be obtained if different types of Z1 and Z2 are utilized. In the

following sections, we provide a way to construct a non-fully symmetric space-time Matérn-

Cauchy model by using particular Z1 and Z2, along with a Gaussian characteristic function

A(h, u).
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3. Correlation Models

In this chapter we review some widely used correlation models and some famous construction

of space-time correlation functions. We can find how Bochner’s representation plays a key

role in many of these constructions, and some properties of these correlation models are

studied as well.

3.1 Matérn Models

A well-known family of spatial correlation functions is the Matérn family.

Md(h|ν, a) = (a||h||)ν

2ν−1Γ(ν)Kν(a||h||), h ∈ Rd, a, ν > 0,

where Kν is a modified Bessel function of the second kind, a and ν are the scale and smooth-

ness parameters respectively. It was proposed by Matérn (1986) [9 ] and studied by Handcock

and Stein (1993) [10 ], Guttorp and Gneiting (2006) [12 ]. And it has been used in many ap-

plications such as Lee and Shaddick (2010) [13 ], North, Wang and Genton (2011) [14 ].

The spectral density of the spatial Matérn correlation function is

md(x|ν, a) = Γ(ν + d/2)
πd/2adΓ(ν)

1
(1 + ||x||2

a2 )ν+d/2
,x ∈ Rd, a, ν > 0. (3.1)

There is relationship between the spatial Matérn correlation function and the charac-

teristic function of a multivariate t-distribution. It has can also be defined by the following

theorem.

Theorem 3.1.1. Let u be a d-dimensional N (0, Id) random variable and V be an univariate

Γ(ν, 1/2) random variable. If u and V are independent, then md(x|ν, a) is the PDF and

Md(h|ν, a) is the characteristics function of x = au/
√
V .

Proof. u and V are independent, so the joint PDF of (u, V ) is

f(u, v) = vν−1

2ν+ d
2 π

d
2 Γ(ν)

e− 1
2 (||u||2+ν).
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The inverse transformation of (x, V ) = (au/
√
V , V ) is (u, v) = (

√
V x/a, V ). The

determinant of the Jacobian matrix is (V/a) d
2 . So the joint PDF of (x, V ) is

g(x, v) = vν+ d
2 −1

2ν+ d
2a

d
2 π

d
2 Γ(ν)

e− 1
2 (1+ ‖u‖2

a2 )v.

Integrating out the v in g(x, v), we will get the marginal PDF of x is md(x|ν, a). And

thus the characteristic function of x is Md(h|ν, a).

Theorem 3.1.1 gives the integral representation of a Matérn correlation function.

Corollary 3.1.1. If ν, a > 0, then for any h ∈ Rd there is

Md(h|ν, a) = 1
2νΓ(ν)

∫ ∞

0
vν−1e− 1

2 ( a2‖h‖2
v

+v)dv. (3.2)

Proof. There is

Md(h|ν, a) = E(eih>x) = E[E(eih>(au/
√

V )|V )] = E(e− a2‖h‖2
2V ),

which yields 3.2 .

By comparing 3.2 with 1.15 , another expression of the modified Bessel function is derived

: ∫ ∞

0
vν−1e− 1

2 ( z2
v

+v)dv = 2|z|νKν(z) = 2νΓ(ν)Mν(z), z ∈ R, ν > 0. (3.3)

This expression is useful in the numerical computation for our NFSST Matérn-Cauchy model

in Section 4.3.

3.2 Cauchy Models

In this section we introduce the Cauchy spatial correlation function:

C(u) = 1
(1 + a2u2)1/β

, u ∈ R, a, β > 0, (3.4)
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where a and β are the scale and smoothness parameters respectively. It is a special case of

Generalized Cauchy distribution (GCD) (Devroye, 1990). The whole family of Generalized

Cauchy distribution (GCD) has a closed form PDF, and heavy, algebraic tails that makes it

suitable for modeling many real-life impulsive processes (Rider PR, 1957 [39 ]; Miller J and

Thomas J, 1972 [40 ]; Carrillo, Aysal and Barner, 2010) [41 ]. The proposition below shows

the relationship between the generalized Cauchy distribution and the characteristic function

of an exponential distribution.

Proposition 3.2.1. Devroye (1990) Let α ∈ (0, 2] and β > 0 be given constants. Let Sα

be a symmetric stable random variable with characteristic function e−|t|α. And let Vβ be

an independent random variable with density exp(−νβ)/Γ(1 + 1/β), ν > 0. When β = 1,

Vβ ∼ exp(1).

Then X = SαV
β/α

β has characteristic function ϕ(t) = 1/(1 + |t|α)1/β.

Proof. The characteristic function of X = SαV
β/α

β is

E(eitX) =E(eitSαV
β/α

β )

=E(e−V β
β

|t|α)

=
∫ ∞

0

exp(−vβ)
Γ(1 + 1/β)e−vβ |t|αdv

= 1
(1 + |t|α)1/β

.

Let α = 2 in the above proposition, the GCD family reduces to the Cauchy distribution

family, which is the characteristic function of y =
√

2aUV β/2,

C(u|a, β) = E(e−a2u2V β ), (3.5)

where U ∼ N(0, 1), Vβ with density exp(−νβ)/Γ(1 + 1/β), ν > 0 and they are indepen-

dent with each other. Thus Cauchy distribution function is a valid one-dimension spatial

covariance function.
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The heavy tails of Cauchy distributions may lead to the long-range dependence (LRD)

property of Cauchy correlation models. Long-range dependence, also called long memory

or long-range persistence, is a phenomenon that may arise in the analysis of spatial or time

series data . It relates to the rate of decay of statistical dependence of two points with

increasing time interval or spatial distance between the points. A phenomenon is usually

considered to have long-range dependence if the dependence decays more slowly than an

exponential decay, typically a power-like decay (Granger, Joyeux, 1980 [42 ]). In time series

analysis, the Hurst exponent H is a measure of the extent of long-range dependence [43 ]. H

takes on values from 0 to 1. A value of 0.5 indicates the absence of long-range dependence.

The closer H is to 1, the greater the degree of persistence or long-range dependence (Beran,

1994, p.34 [44 ]) .

Many past studies concluded that some geographical processes, including in weather,

show long range dependence, excessive temporal dependence in widely separated events. For

example, William Hurst showed in a classic 1951 [43 ] study that Nile river levels showed

unexpected correlation over long time intervals, providing valuable practical information

for the development of reservoir sizes. As for climate processes, a millennial-scale climate

model (Franke et al., 2018 [45 ]) suggests that LRD rarely exists on the land regions of the

earth. However there are rich LRD processes at the ocean regions such as annual average

temperature processes in the north Atlantic ocean, elevated-CO2 processes in the southern

oceans, etc.

Definition 3.2.1. (Stationary long-range dependence process) A stationary process X has

the long-range dependence property, if for its autocorrelation function holds:

∫ ∞

−∞
ρ(u)du = ∞, u ∈ R. (3.6)

The Cauchy correlation model

C(u|a, β) = 1
(1 + a2u2)1/β

, u ∈ R, a, β > 0. (3.7)
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has long-range dependence property when β ≥ 2. However, the Matérn correlation model

Md(h|ν, a) = (a||h||)ν

2ν−1Γ(ν)Kν(a||h||), h ∈ Rd, a, ν > 0 (3.8)

does not have long-range dependence property no matter what scale and smoothness param-

eters it has.

3.3 Cressie and Huang’s Model

In spatial statistics, a space-time covariance function C(s, t) is separable if

C(s, t) = K1(s)K2(t), (3.9)

where K1 and K2 are covariance functions in R2 and R, respectively. Separable models is

not recommended due to the lack of space-time interactions.

In the spatiotemporal context, a few well-known nonseparable space-time covariance

models were constructed. Cressie and Huang in 1999 [15 ] proposed an approach to construct

of non-separable space-time covariance functions based on Bochner’s representation. They

showed that if h(ω;u) = ρ(ω;u)k(ω), where the following two conditions are satisfied:

Condition 1. For each ω ∈ Rd, ρ(ω; ·) is a continuous autocorrelation function,∫
R ρ(ω;u)du < ∞, and k(ω) > 0.

Condition 2.
∫
Rd k(ω)dω < ∞.

Then C(h;u) =
∫
Rd×R eihωρ(ω;u)k(ω)dω is a valid continuous space-time stationary

covariance function on Rd × R.

Example 3.3.1. (Cressie and Huang, 1999) Let

ρ(ω;u) = exp{−||ω||2|u|2/4} exp{−δu2}; δ > 0, (3.10)

and

k(ω) = exp{−c0||ω||2/4}; c0 > 0. (3.11)
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Then both condition 1 and condition 2 are satisfied. From

C(h;u) =
∫
Rd×R

eihωρ(ω;u)k(ω)dω, (3.12)

and Matérn (1960, p.17),

C(h, u) ∝ 1
(u2 + c0)d/2 exp{− ||h||2

u2 + c0
} exp{−δu2}; δ > 0, (3.13)

is a valid space-time covariance function in Rd×R. Let δ → 0, because the limit of a sequence

of space-time covariance functions is still valid if the limit exists (Matérn 1960, p.17),

C(h;u|θ) = σ2

(a2u2 + 1)d/2 exp{− b2||h||2

a2u2 + 1}, (3.14)

where θ = (a, b, σ2) is a 3-parameter nonseparable space-time stationary covariance function

family. When d = 2 and a = b = σ2 = 1, the contour plot of the space-time covariance

function is shown in Figure 3.1 .

3.4 Gneiting’s Model

Gneiting’s 2002 paper [5 ] made another construction of nonseparable space-time covari-

ance functions via the spectral properties of completely monotone functions.

A continuous function ϕ(t), defined for t > 0 or t ≥ 0, is said to be completely monotone

if it possesses derivatives ϕ(n)(t) of all orders and

(−1)nϕ(n)(t) ≥ 0 (t > 0, n = 0, 1, 2, . . .).

It was shown by Bernstein’s theorem (Feller 1966, p. 439) that if we let ϕ(t), t ≥ 0 be

a completely monotone function and ψ(t), t ≥ 0 be any positive function with a completely

monotone derivative, and let σ2 > 0. Then

C(h;u) = σ2

ψ(|u|2)d/2ϕ( |h|2

ψ(|u|2)), (h;u) ∈ Rd × R (3.15)
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Figure 3.1. Contour plot for C(h;u|θ) = σ2

(a2u2+1)d/2 exp{− b2||h||2
a2u2+1} as a func-

tion of u and ‖h‖, when d = 2 and a = b = σ2 = 1.

is a valid space-time covariance function.

Example 3.4.1. (Gneiting, 2002) Let ϕ(t) = exp(−ctγ) and ψ(t) = (atα + 1)β in 3.15 , it

leads to a parametric family of valid space-time covariance functions

C(h;u) = σ2

(a|u|2α + 1)βd/2 exp(− c||h||2γ

(a|u|2α + 1)βγ
), (h;u) ∈ R2 × R. (3.16)

When d = 2, α = 1/2 and a = β = c = σ2 = 1, the contour plot of the space-time covariance

function is shown in Figure 3.2 .

3.5 Stein’s Model

Stein in 2005 [7 ] had some discussion about the ridge issue among common space-time

covariance functions. According to Proposition 1 of Stein (2005), suppose the space-time
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Figure 3.2. Contour plot for C(h;u) = σ2

(a|u|2α+1)βd/2 exp(− c||h||2γ

(a|u|2α+1)βγ ) as a
function of u and ‖h‖ ,when d = 2, α = 1/2 and a = β = c = σ2 = 1.

covariance function C(s, t) is continuous in (s, t) ∈ R3, α1, < . . . < αp < 2, c1, . . . , cp are

even functions on R with c1(0) 6= 0, such that

C(s, t) = C(0, 0) +
p∑

j=1
cj(s)|t|αj +Rs(t), (3.17)

where for any given s, Rs(t) has a bounded second order derivative in t and Rs(t) = O(t2).

Let ρε(s, t) = Corr(Y (0, ε) − Y (0, 0), Y (s, t+ ε) − Y (s, t)). Then

lim
ε→0

ρε(s, t) =


c1(s)/c1(0), t = 0

0, t 6= 0
(3.18)

The lack of continuity of ρε(s, t) along the s axis leads to best linear unbiased predictors

that depend on observations whose correlations are bounded away from 1 as ε → 0, implying
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that correlation functions satisfying 3.17 have ridges along their axes. Stein points out that

most separable correlation functions satisfy 3.17 . All examples of Cressie and Huang (1999)

satisfy 3.17 . It would appear that nonseparable covariance functions proposed by Gneiting

(2002) may not be smoother along their axes than at the origin. It was shown that one rich

class of spectral densities of space-time covariance functions that may overcome the ridge

issues is

f(w) = {c1(a2
1 + |w1|2)α1 + c2(a2

2 + |w2|2)α2}−ν . (3.19)

for c1 and c2 positive, a2
1 + a2

2 > 0, α1 and α2 positive integers and d1/(α1ν) + d2/(α2ν) < 2.

However, this family of covariance functions may have no closed form expression.

3.6 Space-Time Matérn Models

The non-fully symmetric space-time (NFSST) Matérn Model was firstly proposed by T.

Zhang and H. Zhang. Using the relationship between a spatial Matérn correlation function

and the characteristic function of a multivariate t-distribution, they provided a way to con-

struct a non-fully symmetric nonseparable space-time correlation function from any given

marginal spatial Matérn and marginal temporal Matérn correlation functions.

Definition 3.6.1. The NFSST Matérn Model. Let

Mr,a1,a2,ν1,ν2(h, u) = E(e
− 1

2 (
a2

1||h||2

V1
+ 2a1a2ur>h√

V1V2
+

a2
2u2

V2
)
), (3.20)

where V1 and V2 are independent Γ(ν1, 1/2) and Γ(ν2, 1/2) random variables, respectively. If

a1, a2, ν1, ν2 ∈ R+ and r ∈ Rd with ||r|| < 1, then Mr,a1,a2,ν1,ν2(h, u) is a valid space-time

correlation function. The class of space-time correlation functions

M = {Mr,a1,a2,ν1,ν2 : a1, a2, ν1, ν2 ∈ Rd, ||r|| < 1} (3.21)

is called the NFSST Matérn model.

In such a space-time Matérn correlation function, the spatial margin is a spatial Matérn

correlation function, and the temporal margin is a temporal Matérn correlation function.
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There are 5 parameters in the NFSST Matérn model: (a1, a2, ν1, ν2, r). They represent the

scale parameter of the spatial marginal process, the scale parameter of the temporal marginal

process, the smoothness parameter of the spatial marginal process, the smoothness parameter

of the temporal marginal process, and the correlation coefficient between the spatial marginal

process and temporal marginal process, respectively. The symmetry and separability NFSST

Matérn correlation function is uniquely determined by r. This correlation function can be

numerically approximated using its Taylor expansion, and the MLE of parameters can be

obtained using the profile likelihood functions. This model also overcomes the ridge problem

mentioned in Stein’s model. If r 6= 0 and the non-fully symmetry is satisfied, Mr,a1,a2,ν1,ν2

does not belong to the covariance family with a covariance ridge problem considered by

Proposition 1 of Stein (2005) [7 ]. The NSFFT model has rich application in the analysis of

space-time processes showing a linear space-time interaction.

Example 3.6.1. Let d = 2 in the NFSST Matérn model since it is important in our practical

geostatitics research. Let r = (r1, r2), and h = (h1, h2) when d = 2. Figure 3.3 to Figure

3.6 show the contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h for different u, with fixed

r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35. The contour plots are more symmetric for

small positive u than those large positive u values. And the values of the correlation function

strictly decreases in ‖h‖ along a certain direction. The speed of the decrease depends on

the direction of r, which is maximized at the positive direction of r and minimized at the

negative direction of r.

From Figure 3.7 to Figure 3.10 , the 3d contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions

of h = (h1, h2) for different u are shown. It can be observed that as u increases, the

asymmetry along x axis becomes stronger and stronger.

Figure 3.11 to Figure 3.14 show the contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of

h = (h1, h2) for different r, when u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35. The contour

plots in Figure 3.11 and in Figure 3.3 are actually paralleled and both of them are isotropic.

In Figure 3.12 to Figure 3.14 , the curves are not isotropic, and the magnitude of anisotropy

increases as ‖r‖ increases.
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Figure 3.3. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

Remark: Both r and h are 2-dimensional vectors and can be expressed using their

norms and angles. We can use polar coordinates to express the Taylor expansion of Mr,a1,a2,ν1,ν2(h, u)

as well. Let the angle of r be ω and the angle of h be η, ω, η ∈ (−π, π]. Then we have

r = (r1, r2) = (‖r‖ cosω, ‖r‖ sinω), h = (h1, h2) = (‖h‖ cos η, ‖h‖ sin η), and r>h =

r1h1 + r2h2 = ‖r‖‖h‖ cos(ω − η), which yields cos(−η) = (r1h1 + r2h2)/(‖r‖‖h‖). In

Figure 3.15 to Figure 3.18 , we let r = (0.5, 0), a1 = a2 = 1, ν1 = ν2 = 0.35 such that ω = 0

and cos(ω − η) = cos η. It shows that the value of the correlation function is not symmetric

about zero in u when η 6= π/2. If η = π/2, then cos η = 0, implying that Mr,a1,a2,ν1,ν2(h, u)

is separable and fully symmetric.

By the end, we evaluate the performance of Mr,a1,a2,ν1,ν2(h, u) in the temporal domain.

Let r change and h = (0.5, 0) be fixed, and a1 = a2 = 1, ν1 = ν2 = 0.35. Figure 3.19 to

Figure 3.22 show that values of Mr,a1,a2,ν1,ν2(h, u) are symmetric about u if η = π/2.

Mr,a1,a2,ν1,ν2(h, u) has a nice property that it is symmetric about r in the spatial domain.

Particularly, for any h1,h2 ∈ R2 satisfying ‖h1‖ = ‖h2‖, if h1 and h2 are symmetric about
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Figure 3.4. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.1, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

r, then Mr,a1,a2,ν1,ν2(h1, u) = Mr,a1,a2,ν1,ν2(h2, u). This provides a nice way to interpret the

NFSST Matérn model, especially in applications where data is dominated by some linear

trends.
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Figure 3.5. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.2, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.
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Figure 3.6. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.5, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

Figure 3.7. 3d contour plot for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.h1 varies evenly
from -0.1 to 0.1, and h2 varies evenly from -0.1 to 0.1.
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Figure 3.8. 3d contour plot for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.1, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.h1 varies evenly
from -0.1 to 0.1, and h2 varies evenly from -0.1 to 0.1.

Figure 3.9. 3d contour plot for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.2, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.h1 varies evenly
from -0.1 to 0.1, and h2 varies evenly from -0.1 to 0.1.
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Figure 3.10. 3d contour plot for Mr,a1,a2,ν1,ν2(h, u) as functions of h =
(h1, h2), with u = 0.5, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.h1 varies
evenly from -0.1 to 0.1, and h2 varies evenly from -0.1 to 0.1.
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Figure 3.11. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with r = (0, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35
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Figure 3.12. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with r = (0.1, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35
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Figure 3.13. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with r = (0.2, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35
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Figure 3.14. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with r = (0.5, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35
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Figure 3.15. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u
with η = 0, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the angle
between h and the horizontal axis.
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Figure 3.16. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u
with η = π/8, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between h and the horizontal axis.
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Figure 3.17. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u
with η = π/4, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between h and the horizontal axis.
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Figure 3.18. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u
with η = π/2, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between h and the horizontal axis.
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Figure 3.19. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = 0, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the angle
between r and the horizontal axis.
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Figure 3.20. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = π/8, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between r and the horizontal axis.
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Figure 3.21. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = π/4, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between r and the horizontal axis.
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Figure 3.22. Contour plots for Mr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = π/2, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between r and the horizontal axis.

52



4. Matérn-Cauchy Models

In this chapter we introduce the construction, properties, and numerical computation of our

non-fully symmetric space-time Matérn-Cauchy models. Our main idea is to provide special

A(h, u), Z1, and Z2 in Theorem 2.2.2 such that C(h, u) is non-fully symmetric and satisfies

1.16 . According to Theorem 2.2.1 , if A(h, u) is non-fully symmetric, then C(h, u) is also

non-fully symmetric. Therefore, we need to provide a non-fully symmetric A(h, u) in the

construction. As for the marginal properties of C(h, u), it is ideal that its spatial margin

correlation function belongs to the Matérn family since the rich applications this family

has been used in. However, we want to choose the Cauchy family for the temporal margin

correlation function of C(h, u), since it may cover the circumstances of temporal long-range

dependence. The way to choose A(h, u), Z1, and Z2 is motivated from the following.

4.1 Construction of Non-Fully Symmetric Space-Time Matérn-Cauchy Models

If u1 ∼ N (0, Id) and U2 ∼ N (0, 1) be standard normal distributions and they are

independent with each other, then the characteristic function of (u1, U2) is

E(ei(h>u1+uU2)) = e− 1
2 (‖h‖2+u2). Let V1 ∼ Γ(ν1, 1/2) and V2 has density exp(−vν2)/Γ(1+1/ν2),

v > 0 independently, which are also independent of (u1, U2). Then, according to Section 3.1

and Section 3.2,

C(h, u) = E(e− 1
2 (

a2
1‖h‖2

V1
+2a2

2u2V
ν2

2 )) (4.1)

is a valid space-time correlation function, which is separable and satisfies 1.12 and 1.16 . If

the dependence between u1 and U2 is imposed, then an NFSST Matérn-Cauchy model is

obtained. Let
u1

U2

 ∼ N


0

0

,
 Id r

r> 1


 .
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Since the eigenvalues of the variance-covariance matrix are either 1 or 1 − ‖r‖2, the distri-

bution is valid if and only if ‖r‖ < 1. The characteristic function of u1 and U2 is

Ar(h, u) = e− 1
2 (‖h‖2+2ur>h+u2). (4.2)

According to 4.2 , Ar(h, u) 6= Ar(h,−u) unless ur>h = 0. Generally, it is non-fully sym-

metric if ||r|| 6= 0. Applying theorem 2.2.1 , we derive a new family of non-fully symmetric

space-time covariance functions.

Definition 4.1.1. (The NFSST Matérn-Cauchy Model). Let

Nr,a1,a2,ν1,ν2(h, u) = E(e
− 1

2 (
a2

1‖h‖2

V1
+

2
√

2a1a2ur>hV
ν2/2
2√

V1
+2a2

2u2V
ν2

2 )
), (4.3)

where V1 and V2 are independent random variables, V1 ∼ Γ(ν1, 1/2) and V2 has density

exp(−vν2)/Γ(1 + 1/ν2), v > 0, respectively, If a1, a2, ν1, ν2 ∈ R+ and r ∈ Rd with ‖r‖ < 1,

then Nr,a1,a2,ν1,ν2 is called an NFSST Matérn-Cauchy correlation function. The class of

space-time correlation functions

N = {Nr,a1,a2,ν1,ν2 : a1, a2, ν1, ν2 ∈ R+, r ∈ Rd, ‖r‖ < 1} (4.4)

is called the NFSST Matérn-Cauchy model.

Lemma 4.1.1. Let d ≥ 2, ‖h‖, ‖r‖, and u be positive in 4.3 . Let Md(h|ν1, a1) be a Matérn

correlation function with smoothness parameter ν1 and scale parameter a1, C(u|ν2, a2) be a

Cauchy correlation function with smoothness parameter ν2 and scale parameter a2. If r>h =

0 , then Nr,a1,a2,ν1,ν2 = Md(h|ν1, a1)C(u|ν2, a2); if r>h > 0, then Md(h|ν1, a1)C(u|ν2, a2) <

Nr,a1,a2,ν1,ν2; if r>h < 0, then Md(h|ν1, a1)C(u|ν2, a2) > Nr,a1,a2,ν1,ν2.

Proof. The conclusion is implied by comparing

Nr,a1,a2,ν1,ν2(h, u) = E[e
−

√
2a1a2ur>hV

ν2/2
2√

V1 e− 1
2 (

a2
1‖h‖2

V1
+2a2

2u2V
ν2

2 )]
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with

Md(h|ν1, a1)C(u|ν2, a2) = E(e− 1
2 (

a2
1‖h‖2

V1
+2a2

2u2V
ν2

2 )),

since it is drawn by looking at the sign of r>h.

Let

Dr,a1,a2,ν1,ν2(h, u) = Nr,a1,a2,ν1,ν2(h, u) −Md(h|ν1, a1)C(u|ν2, a2) (4.5)

be the difference between the NFSST Matérn-Cauchy and the separable Matérn-Cauchy

correlation functions. For any d ≥ 2, there is

Dr,a1,a2,ν1,ν2(h, u)Dr,a1,a2,ν1,ν2(−h, u) ≤ 0 (4.6)

and the equality holds if and only if r>h = 0 or u = 0. If d = 1, then

Dr,a1,a2,ν1,ν2(h, u)Dr,a1,a2,ν1,ν2(−h, u) ≤ 0 (4.7)

and the equality holds if and only if at least one of u, h ∈ R and r ∈ (−1, 1) is zero.

Theorem 4.1.1. Nr,a1,a2,ν1,ν2 is fully symmetric or separable if and only if r = 0.

Proof. The necessary and sufficient conditions for Nr,a1,a2,ν1,ν2 to be separable is implied by

Theorem 2. The sufficiency of full symmetry is concluded using the definition of Nr,a1,a2,ν1,ν2 .

If d ≥ 2 then the necessity of full symmetry is implied by 4.6 . If d = 1, then the necessity of

fully symmetry is implied by 4.7 .

An NFSST Matérn-Cauchy correlation function can be either separable or nonseparable.

If r 6= 0, then Nr,a1,a2,ν1,ν2(h, u) is nonseparable in the whole space but separable in the

subspace {h ∈ Rd : r>h = 0}. Its spatial margin is a spatial Matérn correlation function

and its temporal margin is a temporal Cauchy correlation function. The two margins can be

arbitrary. Given the two margins, Nr,a1,a2,ν1,ν2 can be constructed by introducing additional
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parameter r, which reflects the spatial-temporal interaction. Let r = (r1, r2, . . . rd). Then,

r can also be expressed via a polar transformation on Rd as

r1 =‖r‖ cos θ1,

rj =‖r‖(
j−1∏
k=1

sin θk) cos θj, j = 2, . . . , d− 1,

rd =‖r‖(
d−1∏
k=1

sin θk),

where θ1, . . . , θd−2 ∈ [0, π] and θd−1 ∈ [0, 2π]. One can also use (‖r‖, θ1, . . . , θd−1) to describe

nonseparability. In practice,it gives geometric interpretation about the nonseparability.

4.2 Computation

As there is no closed-form expression for 4.3 , we decided to provide a Taylor expansion

for Nr,a1,a2,ν1,ν2 such that we can compute its numerical values. The basic way is to solve the

Taylor expansion of the right hand side of 4.3 with positive ‖h‖,‖r‖, and |u| as

Nr,a1,a2,ν1,ν2 =
∞∑

n=0

(−1)n(
√

2a1a2ur>h)n

n! E(V −n/2
1 V

nν2/2
2 e− 1

2 (
a2

1‖h‖2

V1
+2a2

2u2V
ν2

2 ))

=
∞∑

n=0

(−1)n(
√

2a1a2ur>h)n

n! E(V −n/2
1 e− 1

2 (
a2

1‖h‖2

V1
))E(V nν2/2

2 e−a2
2u2V

ν2
2 )

=
∞∑

n=0
bn,r,a1,a2,ν1,ν2(h, u),

(4.8)

where

bn,r,a1,a2,ν,ν2(h, u) = (−1)n(
√

2a1a2ur>h)n

2νΓ(ν)Γ(1 + 1
ν2

)n! Dν− n
2
(a1‖h‖)Gν2, n

2
(a2|u|), (4.9)

and

Dα(z) =
∫ ∞

0
vα−1e− 1

2 ( z2
v

+v)dv, α ∈ R, (4.10)

and

Gν2,τ (z) =
∫ ∞

0
vν2τ e−vν2 (1+z2)dv, ν2, τ ∈ R. (4.11)
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The first and second equation in 4.8 is trivial because of the independence of V1 and V2.

For the third equation, there is:

E(V − n
2

1 e−
a2

1‖h‖2

2V1 ) =
∫ ∞

0
v− n

2 e−
a2

1‖h‖2

2v
1

Γ(ν)2ν
vν−1e− v

2 dv

= 1
Γ(ν)2ν

∫ ∞

0
vν− n

2 −1e− 1
2 ( (a1‖h‖)2

v
+v)dv

= 1
Γ(ν)2ν

Dν− n
2
(a1‖h‖)

E(V
nν2

2
2 e−a2

2u2V
ν2

2 ) =
∫ ∞

0
v

ν2n

2 e−a2
2u2vν2 e−vν2 1

Γ(1 + 1
ν2

)dv

= 1
Γ(1 + 1

ν2
)

∫ ∞

0
v

ν2n

2 e−vν2 (1+a2
2u2)dv

= 1
Γ(1 + 1

ν2
)Gν2, n

2
(a2|u|)

Thus Nr,a1,a2,ν1,ν2 can be represented as the summation of a series of bn,r,a1,a2,ν1,ν2(h, u).

Remark that the difference between Dα(z) and the integral in 3.3 is that we allow α ≤ 0

in the definition of Dα, which is not contained in 3.3 . Values of Dα when α ≤ 0 cannot be

directly obtained by Corollary 1 3.2 . If α > 0, then Dα(z) is well-defined for any z ∈ R.

If α ≤ 0, then Dα(z) is only well-defined for z 6= 0. In order to have a well-defined Taylor

expansion in 4.8 , we need an approach to compute Dα(z) for any α ≤ 0 with z 6= 0 and also

a way to justify the convergence rate of the Taylor expansion.

Theorem 4.2.1. If α > 0, then Dα(z) = 2αΓ(α)Mα(|z|) for all z ∈ R. If α < 0 and

|z| > 0, then Dα(|z|) = 2|α|Γ(|α|)|z|2αM|α|(|z|). If α = 0 and |z| > 0, then D0(|z|) =

4|z|−2[M2(|z|) −M1(|z|)].

Proof. The conclusion for α > 0 can be directly implied by 3.3 . If α < 0 and z 6= 0, using

variable transformation w = z2/v in the integral expression of Dα(z), there is

Dα(z) = |z|2α
∫ ∞

0
w−α−1e− 1

2 ( z2
w

+w)dw = z2α
∫ ∞

0
w|α|−1e− 1

2 ( z2
w

+w)dw = |z|2αD|α|(|z|), (4.12)
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implying the conclusion for α < 0. For α = 0, there is

D0(z) = 2
z2

∫ ∞

0
ve− v

2 de− z2
2v = 2

z2 [
∫ ∞

0
(v2 − 1)e− 1

2 ( z2
v

+v)dv] = 2
z2D2(z) − 1

z2D1(z).

Corollary 4.2.1. If α ≤ 0 and β > |α| then |z|2βDα(z) is well-defined and continuous in

all z ∈ R.

Proof. If α < 0 then |z|2βDα(z) = 2|α|Γ(|α|)|z|2(β+α)M|α|(|z|) implying that it is continuous

in z ∈ R. Write

|z|2βD0(z) = |z|2β
∫ 1

0
v−1e− 1

2 ( z2
v

+v)dv + |z|2β
∫ ∞

1
e− 1

2 ( z2
v

+v)dv. (4.13)

The second term on the right hand side of 4.13 is continuous in z ∈ R. For any β > γ > 0,

the first term is dominated by

|z|2β
∫ ∞

0
v−γ−1e− 1

2 ( z2
v

+v)dz = |z|2βD−γ(z),

which is continuous in all z ∈ R. Letting γ → 0 and using the Dominated Convergence

Theorem, we conclude that the first term on the right hand side of 4.13 is also continuous

in all z ∈ R.

Remark: Gν2,τ (z) can be represented using Gamma functions:

Gν2,τ (z) =
∫ ∞

0
vν2τ e−vν2 (1+z2)dv. (4.14)

Using variable transformation t = vν2 , we have v = t
1

ν2 and dv = 1
ν2
t

1
ν2

−1. Thus

Gν2,τ (z) =
∫ ∞

0
tτ e−t(1+z2) 1

ν2
t

1
ν2

−1
dt

= 1
ν2

∫ ∞

0
t
τ+ 1

ν2
−1e−t(1+z2)dt

= 1
ν2

Γ(τ + 1
ν2

)(1 + z2)−(τ+ 1
ν2

)
.

(4.15)
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Similarly, the derivative and second order derivative of Gν2,τ (z) can also be represented using

Gamma functions:

dGν2,τ (z)
dz

= − 2
ν2

(τ + 1
ν2

)Γ(τ + 1
ν2

)z(1 + z2)−(τ+ 1
ν2

+1)
. (4.16)

d2Gν2,τ (z)
dz2 = − 2

ν2
(τ + 1

ν2
)Γ(τ + 1

ν2
)(1 + z2)−(τ+ 1

ν2
+1)+

4
ν2

(τ + 1
ν2

)(τ + 1
ν2

+ 1)Γ(τ + 1
ν2

)z2(1 + z2)−(τ+ 1
ν2

+2)
.

Let h0 = h/‖h‖, u0 = u/|u|, and r0 = r/‖r‖. Then the term bn,r,a1,a2,ν,ν2(h, u) can be

also written as:

bn,r,a1,a2,ν,ν2(h, u) = (−1)n(
√

2u0r
>
0 h0)n

2νΓ(ν)Γ(1 + 1
ν2

)n! ‖r‖ndn,ν(a1‖h‖)gn,ν2(a2|u|), (4.17)

where

dn,ν(z) = |z|nDν− n
2
(|z|), z ∈ R, (4.18)

and

gn,β(z) = |z|nGβ, n
2
(|z|), z ∈ R. (4.19)

If 2ν1 is not an integer, it is enough to consider

dn,ν(z) = 2|ν− n
2 |Γ(|ν − n

2 |)|z|2ν∧nM|ν− n
2 |(|z|), z ∈ R (4.20)

in the computation of 4.17 ; otherwise, one also needs to consider

dn, n
2
(z) = 4|z|n−2[M1(|z|) −M2(|z|)], z ∈ R. (4.21)

It is enough to consider both 4.20 and 4.21 in the computation of Nr,a1,a2,ν1,ν2 . Also, the

Taylor expansion converges exponentially fast if ‖r‖ < 1.
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Theorem 4.2.2. The summation of the Taylor series

∞∑
n=0

bn,r,a1,a2,ν1,ν2(h, u) =
∞∑

n=0

(−1)n(
√

2u0r
>
0 h0)n

2νΓ(ν)Γ(1 + 1
ν2

)n! ‖r‖ndn,ν(a1‖h‖)gn,ν2(a2|u|) (4.22)

absolutely uniformly converges in h ∈ Rd, u ∈ R, r ∈ Rd exponentially fast if ||r|| ≤ 1 − ε

for any ε ∈ (0, 1).

Proof. If n > 2ν1, then

dν1− n
2
(a1||h||) = 2n

2 −ν1Γ(n2 − ν1)(a1||h||)2ν1Mn
2 −ν1(a1||h||),

and

gν2, n
2
(a2|u|) = (a2|u|)n

2
1
ν2

Γ(n2 + 1
ν2

)(1 + (a2|u|)2)−( n
2 + 1

ν2
) ≤ 1

ν2
Γ(n2 + 1

ν2
)(1 + (a2|u|)2)− 1

ν2 .

Implying that

bn,r,a1,a2,ν1,ν2(h, u) ≤

(−1)n(u0r
>
0 h0)n(a1||h||)2ν1 [1 + (a2|u|)2]−

1
ν2

22νΓ(ν1)Γ(1 + 1
ν2

)
2nrnΓ(n

2 − ν1)Γ(n
2 + 1

ν2
)

n! Mn
2 −ν1(a1||h||).

Thus

bn,r,a1,a2,ν1,ν2(h, u) ≤ (−1)n(a1||h||)2ν1 [1 + (a2|u|)2]−
1

ν2

22ν1Γ(ν1)Γ(1 + 1
ν2

) cn,

where

cn =
2nrnΓ(n

2 − ν1)Γ(n
2 + 1

ν2
)

n! .
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It is enough to show the uniform converges of
∞∑

n=[2ν1]+1
cn in r ∈ [0, 1 − ε] for any 0 < ε < 1.

Using Stirling’s approximation that Γ(z) ≈
√

2πe−zzz− 1
2 (1 + o(1)) for sufficiently large z,

there is

lim
n→∞

cn+1

cn

= lim
n→∞

2rΓ(n+1
2 − ν1)Γ(n+1

2 + 1
ν2

)
(n+ 1)Γ(n

2 − ν1)Γ(n
2 + 1

ν2
)

= lim
n→∞

2r(n+1
2 − ν1)

1
2 (n+1

2 + 1
ν2

) 1
2

(n+ 1)e .

Theorem 4.2.1 provides a way to compute bn,r,a1,a2,ν1,ν2(h, u) for any given n. A numer-

ical algorithm is obtained if 4.8 is employed. Corollary 2 concludes that bn,r,a1,a2,ν1,ν2(h, u)

is continuous in all h and u for any n. Theorem 4.2.2 concludes that 4.8 is valid and its

right hand side is absolutely continuous in h, u and r is ‖r‖ < 1 − ε for any given ε > 0.

The expansion uniformly converges to a separable model as ‖r‖ → 0. The convergence rate

of 4.8 is exponentially fast, therefore the algorithm based on Taylor expansion approach is

efficient.

Using the Taylor expansion of Nr,a1,a2,ν1,ν2 , the scaling parameters a1, a2 and the space-

time interaction parameter r in the correlation models can be estimated via the profile

likelihood function. And the smoothness parameters ν1 and ν2 can be estimated using the

two dimensional golden section search.

4.3 The Case When d = 2

We specify Nr,a1,a2,ν1,ν2 in the case when d = 2, in order to study its properties in

geostatistics applications. Let r = (r1, r2), and h = (h1, h2) when d = 2. If ‖r‖ and ‖h‖ are

positive, then h0 = (h01, h02) = (h1/‖h‖, h2/‖h‖) and r0 = (r01, r02) = (r1/‖r‖, r2/‖r‖) are

well defined. Equation 4.3 becomes

Nr,a1,a2,ν1,ν2(h, u) = E[e
−

√
2a1a2u0|u|‖r‖‖h‖(r01h01+r02h02)V

ν2/2
2√

V1 e− 1
2 (

a2
1‖h‖2

V1
+2a2

2u2V
ν2

2 )]. (4.23)
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If u0 > 0, then given |u| and ‖h‖, Nr,a1,a2,ν1,ν2(h, u) is maximized at h0 = r0 and minimized

at h0 = −r0. If h0 and u0 are vertical, then Nr,a1,a2,ν1,ν2(h, u) = M2(h|ν1, a1)C(u|ν2, a2).

This is satisfied if r01h01 + r02h02 = 0.

To study the performance of N in the spatial domain, we use 4.17 to numerically

compute the values of the correlation function on the left hand side of 4.23 for selected u

when r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35 (Figure 4.1 to Figure 4.4 ). It shows that

the right hand side of 4.23 reduces to M2(h|ν1, a1) is u = 0 (Figure 4.1 ). Similar to what

we have seen in Figure 3.3 to Figure 3.6 , the contour plots are more symmetric for small

positive u, and the values of the correlation function strictly decreases in |u| or ‖h‖ increases

along a certain direction. The decreasing speed is maximized at the positive direction of r

and minimized at the negative direction of r. These contour plots share many properties

with those of the NFSST Matérn model.
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Figure 4.1. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

In Figure 4.5 to Figure 4.8 , we change the smoothness parameter ν2 in Nr,a1,a2,ν1,ν2 ,

from 0.35 to 3. The contour plots become denser and more similar to those in Figure 3.3 to
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Figure 4.2. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.1, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

Figure 3.6 . In fact, by toning the scale and smoothness parameters of the temporal Cauchy

correlation function in Nr,a1,a2,ν1,ν2 , it may have very close values with the NFSST Matérn

model.

To compare, we also use 4.17 to study the performance of N in the spatial domain

when r varies. We numerically compute the correlation function on the left hand side of

4.23 for selected r when u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35 (Figure 4.9 to Figure 4.12 )

. By theorem 4.1.1 , the curves in Figure 4.9 are isotropic. In Figure 4.10 ) to Figure 4.12 ,

the curves are not isotropic, and the magnitude of anisotropy increases as ‖r‖ increases.

We can also use polar coordinates to represent the Taylor expansion of

Nr,a1,a2,ν1,ν2(h, u). Similar to the approach in section 3.4, let the angle of r be σ and the

angle of h be η, ω, η ∈ (−π, π]. Then we have r = (r1, r2) = (‖r‖ cosω, ‖r‖ sinω), h =

63



u=0.2

h1

h
2

 0
.6

6 

 0.66 

 0
.6

8 

 0.68 

 0
.7

 
 0.72 

 0.74 

 0.76 

 0.78 

 0.8 

 0.82 

 0.84 

 0.86 

 0.88 

−0.10 −0.05 0.00 0.05 0.10

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

Figure 4.3. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.2, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

(h1, h2) = (‖h‖ cos η, ‖h‖ sin η), and r>h = r1h1 + r2h2 = ‖r‖‖h‖ cos(ω − η), which yields

cos(−η) = (r1h1 + r2h2)/(‖r‖‖h‖) and

bn,r,a1,a2,ν1,ν2(h, u) = [ −
√

2(u) cos(ω − η)]n
2ν1Γν1Γ1 + 1

ν2
n! ‖r‖ndn,ν1(a1‖h‖)gn,ν2(a2|u|). (4.24)

If u and ‖h‖ are positive, then Nr,a1,a2,ν1,ν2(h, u) < M2(h|ν1, a1)C(u|ν2, a2) if |ω − η| < π/2.

And Nr,a1,a2,ν1,ν2(h, u) > M2(h|ν1, a1)C(u|ν2, a2) if |ω−η| > π/2. Using the polar expression

of bn,r,a1,a2,ν1,ν2(h, u) in 4.24 , we can also interpret Figure 4.1 to Figure 4.4 according to

a rotation of r : if r is rotated by an orthogonal transformation then the corresponding

contour plot of Nr,a1,a2,ν1,ν2(h, u) is also rotated with the same angle of the transformation.

To study the performance of N in the spatiotemporal domain, we use 4.24 to nu-

merically compute the values of Nr,a1,a2,ν1,ν2(h, u). We keep r = (0.5, 0), a1 = a2 = 1,

ν1 = ν2 = 0.35 such that ω = 0 and cos(ω−η) = cos η in 4.24 . As Figure 4.13 to Figure 4.16 

show, the value of the correlation function is symmetric about zero in u only when η = π/2,
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Figure 4.4. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.5, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35.

which indicates cos(η) = 0 and Nr,a1,a2,ν1,ν2(h, u) is separable. When η ∈ (π/2, π], because

cos(η) = − cos(π − η), we can derive the contour plots for η ∈ (π/2, π] by reflecting the plots

for η ∈ [0, π/2].

The performance of N is evaluated in Figure 4.17 to Figure 4.20 where we let r change

and let h be fixed at h = (0.5, 0), while the rest parameters keep unchanged. It shows

that values of Nr,a1,a2,ν1,ν2(h, u) decreases in ‖r‖ if η < π/2 and u is positive. Values of

Nr,a1,a2,ν1,ν2(h, u) does not change with ‖r‖ if η = π/2, which is clear due to 4.8 .

Similar as the NFSST Matérn model, Nr,a1,a2,ν1,ν2(h, u) is symmetric about r in the

spatial domain. For h1,h2 ∈ R2 with the same mode, if they are symmetric about r, then

Nr,a1,a2,ν1,ν2(h1, u) = Nr,a1,a2,ν1,ν2(h2, u); otherwise, Nr,a1,a2,ν1,ν2(h1, u) > Nr,a1,a2,ν1,ν2(h2, u)

if the angle between h1 and r is less than the angle between h2 and r. Particularly, for

positive u, the space-time correlation is strongest if the direction of the space change follows

the opposite direction of r, and it is weakest if the direction of the space change is the same

as r.
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Figure 4.5. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0, r = (0.5, 0), a1 = a2 = 1, and ν1 = 0.35, ν2 = 3.

4.4 Discussion

In this section we have some discussion on the comparison between NSFFT Matérn

correlation model and NFSST Matérn-Cauchy model. Although these two models are closed

related and they share many similar properties, the temporal Cauchy margin gives the model

some unique advantages compared with temporal Matérn margin.

Firstly, the computation efficiency of the NSFFT Matérn-Cauchy model is much higher

than that of the NSFFT Matérn model. As discussed in Section 4.2, using the Taylor expan-

sion of Nr,a1,a2,ν1,ν2 , the scaling parameters a1, a2 and the space-time interaction parameter

r in the correlation models can be estimated via maximizing the profile likelihood function.

In order to maximize the profile likelihood function via Newton-Raphson method, we need

to calculate the derivatives and second order derivatives of 4.17 . The spatial Matérn compo-

nent dn,ν1(a1‖h‖) in 4.17 contains the modified Bessel functions of the second kind by 3.3 ,

while the temporal Cauchy component gn,ν2(a2‖u|) contains Gamma functions by 4.15 . The
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Figure 4.6. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.1, r = (0.5, 0), a1 = a2 = 1, and ν1 = 0.35, ν2 = 3.

computation complexity of the modified Bessel functions of the second kind is much higher

than that of Gamma functions. When doing numerical computation using R for a Shandong

province temperature data set, which will be introduced in Chapter 5, the average elapsed

time for each iteration of updating θ = (a1, a2, r) using the NFSST Matérn-Cauchy model

was 7.5 hours, almost halved the average elapsed time of the NFSST Matérn model, which

was 14.0 hours.

Secondly, as mentioned in Section 3.2, the NFSST Matérn-Cauchy model may better fit

spatiotemporal processes with temporal long-range dependence. The heavy tails of Cauchy

distributions lead to temporal LRD properties of corresponding Matérn-Cauchy correlation

functions. More specifically, if the smoothness parameter ν2 in a Matérn Cauchy correlation

function

C(u) = 1
(1 + a2u2)1/ν2

, u ∈ R, a, ν2 > 0 (4.25)

is greater or equal to 2, its temporal margin has long-range dependence property.
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Figure 4.7. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.2, r = (0.5, 0), a1 = a2 = 1, and ν1 = 0.35, ν2 = 3.

There have been rich studies on LRD climate processes. In these studies, the climate

processes are studied as time series observed at different locations. In our model, we view the

climate processes as space-time processes, which allows us to gain insight into the interaction

between space and time , as well as the long-term statistical behavior of the climate systems.

We study space-time processes whose temporal margin processes have LRD properties. If

such space-time processes are fitted using the NFSST Matérn-Cauchy model, their temporal

smoothness parameters ν2 should be greater or equal to 2.
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Figure 4.8. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2),
with u = 0.5, r = (0.5, 0), a1 = a2 = 1, and ν1 = 0.35, ν2 = 3.
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Figure 4.9. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2) ,
with r = (0, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35.
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Figure 4.10. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2)
, with r = (0.1, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35.
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Figure 4.11. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2)
, with r = (0.2, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35.
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Figure 4.12. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of h = (h1, h2)
, with r = (0.5, 0), u = 0.5, a1 = a2 = 1, and ν1 = ν2 = 0.35.
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Figure 4.13. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u,
with η = 0, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the angle
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Figure 4.14. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u,
with η = π/8, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between h and the horizontal axis.
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Figure 4.15. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u,
with η = π/4, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between h and the horizontal axis.
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Figure 4.16. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖h‖ and u,
with η = π/2, r = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between h and the horizontal axis.
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Figure 4.17. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = 0, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the angle
between r and the horizontal axis.
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Figure 4.18. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = π/8, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between r and the horizontal axis.
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Figure 4.19. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = π/4, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between r and the horizontal axis.
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Figure 4.20. Contour plots for Nr,a1,a2,ν1,ν2(h, u) as functions of ‖r‖ and u,
with η = π/2, h = (0.5, 0), a1 = a2 = 1, and ν1 = ν2 = 0.35, where η is the
angle between r and the horizontal axis.
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5. Numerical Results

As mentioned earlier, there are rich climate and geophysical processes under the influence

of monsoon and ocean currents. And traditional fully-symmetric models are not realistic

for these processes. In this chapter we fit three meteorological processes with our NFSST

Matérn Cauchy model, and give analysis on fitting results.

5.1 Shandong Temperature Data

We applied our Matérn- Cauchy model to the Chinese daily temperature data in this

section. The data were provided by the Climatic Data Center, National Meteorological

Information Center, China Meteorological Administration. They contained the average daily

temperature, the lowest daily temperature, and the highest daily temperature at 756 weather

stations from 1951 to 2007 in all of the nine climatic zones in China. In order to avoid the

consideration of climate zones and seasonal patterns, we decided to focus on our analysis for

data within a single month and a single province.

We extracted the daily highest temperature data in July 2007 in Shandong province.

Shandong province is located in Northern China, extended from 34.37◦ to 39.38◦ latitude

north and 114.32◦ to 122.72◦ longitude east. Its area is about 157.8 thousand square kilo-

meters. After extraction, the data set contained 20 stations in the province from the first

day to the last day in July 2007.

After excluding one missing value, it had 619 observations of daily highest temperature

values. The impact of altitude was removed by regressing the daily highest temperature

across sites on their monthly averages.

Let Y (s, t) be the daily highest temperature relative to its site average. We used a

geostatistical model

Y (s, t) = µ+ Z(s, t) + ε(s, t)
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Figure 5.1. Locations of Weather Stations in Shandong Province, China in July 2007.

to analyze the spatiotemporal process Y (s, t), where ε(s, t) was a white noise process and

Z(s, t) was a mean zero stationary Gaussian process. The covariance function of Z(s, t) was

modeled as

E[Z(s, t)Z(s + h, t+ u)] = τ 2Nr,a1,a2,ν1,ν2(h, u),

where a1 and a2 were the scale parameters and ν1 and ν2 were the smoothness parameters

for the space and time processes, respectively. We used θ = (ν1, a1, ν2, a2, r1, r2) to represent

the correlation parameters and η = τ2

τ2+σ2 to represent the nugget effect parameter, where

σ2 was the variance parameter in the white noise process. We estimated η and θ by the

profile likelihood approach. Applying a Newton-Raphson algorithm, the estimates were

η̂ = 0.92931 and θ̂ = (0.2646,0.0009794,0.1977,0.4816,-0.1867,0.3728). Because the estimates

of the correlation parameters were r̂ = (0.1867,

0.3728) 6= 0, we concluded that the model was nonseparable. And because of ν̂2 = 0.1977 <

2, we concluded that there was no temporal long-range dependence in this process.

To conclude our model is appropriate in the analysis of the data set, we fixed the time

difference to be 1 and let the space difference varied, and plotted the sample correlations

along the direction parallel to r and along the counterclockwise direction vertical to r. We
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found that most of large Ĉ(si − sj, 1) values were at the opposite direction of r, indicating

that the sample correlations were not symmetric along r. Along the direction vertical to r,

we found that large Ĉ(si − sj, 1) values were almost symmetric. Therefore, we concluded

that our model was more appropriate than a fully symmetric model in the analysis of the

data set.
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Figure 5.2. Values of Ĉ(si − sj, 1) when they are greater than 0.4 corre-
sponding to the direction parallel to r̂ (left) and the counterclockwise direction
vertical to r̂ (right).

5.2 Irish Wind Data

We also applied our NFSST Matérn-Cauchy model to the Irish wind speed data set,

which is available in the R package gstat . The data set contained the daily average wind

speeds from 1961 to 1978 at 12 stations in Ireland. As recommended by Gneiting (2002)

[5 ], we removed Rosslare in our analysis. The whole period of the data has been previously
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analyzed by many authors (Fonseca and Steel, 2011 [26 ]; Gneiting, 2002; Stein, 2005 [7 ], e.g.).

In order to understand the non-fully symmetry, we focused on the wind speed in July 1961.

The final data contained 11 stations in 31 days. The size of the data was n = 11 × 31 = 341.

Following Haslett and Raftery (1989) [46 ], we used the square root transformation of the

wind speed because this transformation made the data nearly Gaussian. After that, we

obtained the response values by removing the station averages.

Using similar procedure we displayed in the previous data analysis, let Y (s, t) be the

square root of wind speed. We used the model

Y (s, t) = µ+ Z(s, t) + ε(s, t)

to fit the process. And let the covariance function of Z(s, t) be NFSST Matérn-Cauchy:

E[Z(s, t)Z(s + h, t+ u)] = τ 2Nr,a1,a2,ν1,ν2(h, u).

Let θ = (ν1, a1, ν2, a2, r1, r2) and η be the nugget effect, their MLEs were η̂ = 0.9459 and θ̂ =

(0.6806, 0.001653, 0.5606, 0.7979,−0.6286, 0.3167). The estimated model was nonseparable

as r̂ 6= 0. And it had no temporal long-range dependence since ν̂2 = 0.5606 < 2

5.3 North Atlantic Ocean Temperature Data

We fitted a North Atlantic Ocean Temperature data set, which is available at http://rim-

frost.no/ with our NFSST Matérn-Cauchy model. The data set contained the annual average

temperature from 1961 to 2010 at 10 different stations in North Atlantic Ocean, some of

them located around Greenland, while others located in Norwegian sea. Knowing that some

climate time-series processes within this geographical region were long-range dependent,

we investigated further into the temporal LRD of our model. The stations studied were

Angmassalik (Greenland-S.E.), POS : (65.60, -37.63), Bjørnøya (Norway-North Atlantic),

POS : (74.5, 19.0), Egedsminde (Aasiaat-Greenlan West), POS : (68.70, -52.75), Hopen

(Norway-North Atlantic), POS : (76.30, 25.0), Illulisat (Jacobshavn-Greenland West), POS

: (69.12, -51.10), Ittoqqortoormiit (Greenland EAST) POS : (70.50, -22.00), Jan Mayen
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(Norway-North Atlantic), POS : (70.93, 8.67), Nuuk - Godthøp (Greenland-South West),

POS : (64.10, -51.35), Tasiilaq (Greenland-East), POS : (64, -41), Upernavik (Greenland-

North West), POS : (72.49, -56.20).

Figure 5.3. Locations of Weather Stations in North Atlantic Ocean.

After 2 missing values were removed, the data size was n = 10 × 50 − 2 = 498. Firstly

we viewed the data as time series at each station, and estimated the Hurst exponents of the

temperature processes at each location. All those estimated exponents were great than 0.5,

indicating the existence of LRD. For instance, figure 5.4 shows the temperature process at

station Angmassalik. The estimated R over S Hurst exponent of this process was 0.76.

Then we fitted the data as a spatio-temporal process using the NFSST Matérn-Cauchy

model

Y (s, t) = µ+ Z(s, t) + ε(s, t),

where Y (s, t) is the annual average temperature. E[Z(s, t)Z(s+h, t+u)] = τ 2Nr,a1,a2,ν1,ν2(h, u).

Let θ = (ν1, a1, ν2, a2, r1, r2) and η be the nugget effect, the MLEs were η̂ = 0.9452 and

θ̂ = (0.7893, 0.0003199, 2.7238, 2.6711, 0.03384, 0.1356). There seemed to be slight non-fully

symmetry towards northeast, and the temporal margin Cauchy correlation had LRD since

ν̂2 = 2.7238 > 2.
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Figure 5.4. Yearly average temperature process at Angmassalik, source
http://rimfrost.no/.
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6. Conclusion and Future Work

6.1 Conclusion

In this dissertation, we review the methodology of geostatistics and the analysis of

space-time processes. With Bochner’s representation, one can construct space-time correla-

tion functions using existing spatial marginal and temporal marginal correlation functions.

Inspired by the Non-Fully Symmetric Space-Time (NFSST) Matérn model by Zhang, T.

and Zhang, H. (2015) [1 ], we construct the non-fully symmetric space-time Matérn-Cauchy

correlation model, with spatial Matérn marginal correlations and temporal Cauchy marginal

correlations. The theoretical and computational properties of the Matérn-Cauchy model

are studied. And three meteorological space-time processes are fitted with Matérn-Cauchy

correlation functions, including one with temporal long range dependence property.

The numerical computation of the NFSST Matérn-Cauchy model is much faster com-

pared with the NFSST Matérn model, since its temporal component does not contain modi-

fied Bessel functions of the second kind. Meanwhile it has similar estimate of the parameters

when applied to meteorological space-time data sets. Moreover, it handles space-time pro-

cesses with temporal long-range dependence, which were traditionally studied merely as time

series. Our model allows us to gain insight into the interaction of spatial correlated long-term

statistical behavior of climate systems.

6.2 Future Work

There are two interesting topics we want to further study on. The first one is about

the ridge problem 3.18 proposed by Stein (2005) [7 ]. Zhang, T. and Zhang, H. in 2015

[1 ] proved that the NFSST Matérn model may overcome this issue when ν2 ∈ (0, 1/2)

in Mr,a1,a2,ν1,ν2(h, u). However, we have not reached similar conclusions in the NFSST

Matérn-Cauchy model. We would like to find a sufficient condition under which the NFSST

Matérn-Cauchy model does not satisfy 3.17 , thus overcome the ridge problem.

The second problem is about the extension of the definition of space-time long-range

dependence. Our NFSST Matérn-Cauchy model can fit some space-time processes with
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temporal marginal LRD, as defined in 3.6 . When the spatial lag h is fixed, {(h, u); h = h0}

is a subspace of {(h, u); h ∈ Rd, u ∈ R}. In other words, the temporal marginal process of a

space-time process is a sub-process on a subspace of Rd × R. We wonder if we can extend

the definition of LRD to sub-spaces like L(h, u) = 0, such that
∫

L(h,u)=0 C(h, u)du = ∞,

where L is a function of h and u, and C(h, u) is the corresponding correlation function of

the space-time process. This extension may further reveal the interaction between space and

time.

We also plan to upload a R package to CRAN, including the fitting and kriging of both

NFSST Matérn model and NFSST Matérn-Cauchy model.
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