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ABSTRACT

Due to the increase in the advances in wireless communication, there has been an in-

crease in the use of multi-agents systems to complete any given task. In various applications,

multi-agent systems are required to solve an underlying optimization problem to obtain the

best possible solution within a feasible region. Solving such multi-agent optimization prob-

lems in a distributed framework preferable over centralized frameworks as the former ensures

scalability, robustness, and security. Further distributed optimization problem becomes chal-

lenging when the decision variables of the individual agents are coupled.

In this thesis, a distributed optimization problem with coupled constraints is considered,

where a network of agents aims to cooperatively minimize the sum of their local objective

functions, subject to individual constraints. This problem setup is relevant to many practical

applications like formation flying, sensor fusion, smart grids, etc. For practical scenarios,

where agents can solve their local optimal solution efficiently and require fewer assumptions

on objective functions, the Alternating Direction Method of Multipliers(ADMM)-based ap-

proaches are preferred over gradient-based approaches. For such a constraint coupled prob-

lem, several distributed ADMM algorithms are present that guarantee convergence to opti-

mality but they do not discuss the complete analysis for the rate of convergence. Thus, the

primary goal of this work is to improve upon the convergence rate of the existing state-of-

the-art Tracking-ADMM (TADMM) algorithm to solve the above-distributed optimization

problem. Moreover, the current analysis in literature does not discuss the convergence in

the case of a time-varying communication network.

The first part of the thesis focuses on improving the convergence rate of the Tracking-

ADMM algorithm to solve the above-distributed optimization problem more efficiently. To

this end, an upper bound on the convergence rate of the TADMM algorithm is derived in

terms of the weight matrix of the network. To achieve faster convergence, the optimal weight

matrix is computed using a semi-definite programming (SDP) formulation. The improved

convergence rate of this Fast-TADMM (F-TADMM) is demonstrated with a simple yet il-

lustrative, coupled constraint optimization problem. Then, the applicability of F-TADMM
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is demonstrated to the problem of distributed optimal control for trajectory generation of

aircraft in formation flight.

In the second part of the thesis, the convergence analysis for TADMM is extended while

considering a time-varying communication network. The modified algorithm is named as

Time-Varying Tracking (TV-TADMM). The formal guarantees on asymptotic convergence

are provided with the help of control system analysis of a dynamical system that uses

Lyapunov-like theory. The convergence of this TV-TADMM is demonstrated on a sim-

ple yet illustrative, coupled constraint optimization problem with switching topology and is

compared with the fixed topology setting.
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1. INTRODUCTION

1.1 Background and Motivation

Large-scale networks, such as the Internet, handheld ad hoc networks, and cellular sen-

sor networks, have gained considerable attention because of recent developments in wireless

communication technology. Data-based networks, autonomous networks, unmanned aerial

vehicle systems, social and economic networks, smart power networks, and disease networks

are among the emerging network technology areas that have emerged because of these net-

works. To support multiple operations, such as resource allocation, teamwork, learning, and

prediction, such systems often include decentralized in-network control and optimization

techniques.

As a result, new models and tools for the architecture and performance analysis of mas-

sive, complex networked systems are urgently needed. The issues that arise in such networks

are primarily caused by two factors: a lack of a central authority or coordinator (master

node) and the network’s underlying complex communication structure. A network system’s

lack of central control necessitates a modular architecture for network operations. In many

applications, the decentralized framework is often preferred over a centralized one for mainly

three reasons: (a) (scalability) The size of the network (the number of agents) and the

resources needed to coordinate (i.e., communicate with) many agents make a centralized

architecture impractical, (b) (robustness) a centralized network architecture is not robust

to the failure of the central entity, and (c) (privacy) the privacy of agent information often

cannot be preserved in a centralized system.

Over the last decade, there has been a lot of interest in distributed computing and

decision-making problems, particularly consensus and flocking problems [1 ], [2 ], multiagent

coverage problems [3 ], rendezvous problems [4 ], sensor localization in a multi-sensor net-

work [5 ], and distributed management of multi-agent formations [6 ], to name a few. Often

the underlying problem in all these applications is an optimization problem where the deci-

sion variables, objective function, constraints, and other problem parameters are distributed

among the agents of the network.
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More recently, significant efforts have been made to create distributed optimization algo-

rithms that can be implemented in such networks without the need for a central coordinator

and that can take advantage of the network access to reach a global success. Such distributed

algorithms are characterized by the following properties: (a) They rely only on local infor-

mation and observations (i.e., the agents can exchange some limited information with their

one-hop neighbors only), (b) they are robust to the changes in the network topology (the

topology is not necessarily static, as the communication links may not function perfectly),

and (c) they are easily implementable in the sense that the local computations performed

by the agents are not expensive.

In this thesis, we study a specific distributed optimization set-up that is relevant to several

practical network control applications like formation flying and sensor network estimation.

We consider that the agents which can communicate only with their neighbors in a network.

Each agent only knows its local cost function and constraints, that depend on its individual

decision variables. Moreover, the agents’ decision variables are coupled by a linear constraint.

Each agent knows only how its local decision variables affect the coupling constraint. The

agents collectively aim at minimizing the sum of the local cost functions subject to both local

and coupling constraints. The presence of this coupling element makes the problem solution

challenging, especially in the considered distributed context in which no central authority

(communicating with all the agents) is present. To explain the practical significance of

constraint coupled problem consider the application of distributed optimization in smart

grids [7 ]. Here, each sub-station need to optimally redistribute the power and can only

communicate the power load to neighbouring substations. Since the total incoming power to

substations is conserved, thus the individual decisions of the agents are required to satisfy a

coupling constraint.

In the literature of distributed optimization, there have been many algorithms proposed

that tackle the above-described problem. These are generally classified into two types. The

first type is based on using the (sub)gradient of the local objective function to approach the

optimal solution at each step, followed by using the neighboring nodes estimates to update

the decision variable. The computation at each step can be very inexpensive and lead to

distributed implementations [8 ]. The best known rate of convergence for sub-gradient based
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distributed methods is O
(

1√
k

)
[9 ], where k represents the iteration count. However, these

methods require strong assumptions on objective functions and the fine tuning of step-size

to ensure convergence [10 ].

The second type relies on dual methods where at each step, for a fixed value of the dual

variable, the primal variables are solved to minimize some Lagrangian related function, then

the dual variables are updated accordingly. This type of methods is preferred when each

agent can solve the local optimization problem efficiently. One of the well known method of

this kind is the Alternating Direction Method of Multipliers (ADMM), which decomposes

the original problem into two sub-problems, sequentially solves them and updates the dual

variables associated with a coupling constraint at each iteration. The best known rate of

convergence for the classic ADMM algorithm is O
(

1
k

)
[11 ], where k represents the iteration

count. The ADMM-based approach is vastly preferred for practical implementation over

competing methods because it can be easily formulated into a distributed problem and due

to its robustness and extremely mild assumptions for convergence [12 ], [13 ], [10 ], [14 ]. Thus,

in this work we focus on distributed ADMM-based approach to solve the problem of couple-

constrained problem.

Although, empirically, ADMM has great performance, on a theoretical level as well as

on practical level, its convergence rate properties are still not fully understood, especially

in distributed settings. As shown in [15 ], [16 ], the convergence rate analysis of distributed

ADMM is studied for the problem with unconstrained optimization. Their analysis further

provides optimal penalty parameter for faster convergence. In [17 ], the convergence rate

analysis considers the network weights and but again gives guarantees for an unconstrained

optimization problem. In this work, we specifically consider a more general problem with

local constraints. Further for such problem setting, in current literature there are no ADMM-

based algorithms that guarantee convergence to optimality under the case of time varying

communication network.

In this work, we are focused on improving the converge rate of distributed ADMM algo-

rithms for couple constrained problems with local constraints with a specific emphasis on the

network topology which is characterized by the edge weights. Particularly, we build upon the

asymptotic convergence results of the existing Tracking ADMM (TADMM) algorithm [18 ] to
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demonstrate faster convergence. The TADMM algorithm is preferred over other variants of

ADMM because it can handle both local constraints and coupled constraints. Also as com-

pared to other methods, TADMM does not require any parameter tuning and considers less

assumptions on initialization of variables. Each agent in the TADMM algorithm maintains

a local estimate of the constraint violations and collectively work to minimize the violation.

Falsone et. al. [18 ] have shown that the TADMM algorithm converges asymptotically. But

to improve the convergence speed, in this work, we analytically derive the convergence rate

in terms of the communication weight matrix and compute the optimal weights to guarantee

faster convergence. Lastly we build up on the analysis of TADMM to provide formal guar-

antees for convergence and optimality under the special case of time varying communication

network.

1.2 Objectives and Contributions

In this thesis, we consider a system of multiple agents that cooperatively solve the problem

of couple-constrained optimization problem. We aim to solve the problem in a distributed

framework. We also consider the network weights. We specifically focus on the state-of-the-

art algorithm, TADMM, for solving such problem. The main contributions of this work are:

(1) computing and analyzing the convergence rate of the distributed TADMM algorithm in

terms of the weight matrix of the communication graph; (2) computing the optimal weight

matrix to minimize the convergence time; (3) demonstrating faster convergence of the pro-

posed F-TADMM algorithm via an illustrative formation flying example, and (4) computing

and analyzing the convergence and optimality of the distributed TADMM algorithm with

respect to time-varying communication graph.

1.3 Organization

This thesis is organized as follows. In Chapter 2 , we present the problem formulation

and introduce the fixed topology for the distributed setting. In Chapter 3 , we give a brief

overview of TADMM algorithm and then derive and optimize its convergence rate to propose

the F-TADMM algorithm. Here, we also demonstrate faster convergence rate of the proposed
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F-TADMM algorithm with a sample problem. In Chapter 4 , we demonstrate a real-world

application of the F-TADMM algorithm via an illustrative example of distributed trajectory

planning for formation flight. In Chapter 5 , we introduce the distributed setting for time

varying communication network. Then, we extend the convergence analysis of TADMM to

propose Time Varying TADMM (TV-TADMM) with formal guarantees. We also demon-

strate the convergence of the proposed TV-TADMM algorithm with a sample problem and

present a comparison with the fixed topology setting. Finally, in Chapter 6 , we provide a

few concluding remarks along with our future plan to extend this work.
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2. PROBLEM FORMULATION

We consider a multi-agent system comprising of N agents. These agents are indexed by the

set V = {1, 2, . . . N}. The goal of the agents is to solve a global optimization problem, with

the decision variables coupled by a linear constraint. Further, the agents are only allowed to

communicate with the neighboring agents. Here, we first define the global optimization prob-

lem and state the assumptions. Then we describe the underlying communication network

among the agents.

2.1 Coupled-Constrained Optimization Problem

Let fi : Rn → R represent the local objective function and let xi ∈ Rn represent the local

decision variable of agent i. Further let the linear coupling constraint between the agents

represented by, ∑
i∈V

Aixi = b (2.1)

where Ai ∈ Rm×n, be the coupling coefficients available only to the agent i, and b ∈ Rm, is

the constant of the linear coupling constraint. It is noted that, the agent i only knows the

partial information of this coupling vector given by bi, such that ∑i∈V bi = b. The problem

also considers that the local decision variable xi is constrained to the local set Xi ⊆ Rn.

Then, the optimization problem is that all the agents i ∈ V must reach the optimal values

of their decision variables, such that the overall system minimizes the sum of their individual

objective functions while satisfying local and the linearly coupled constraint. Mathematically,

the global optimization problem can be stated as,

min
x1,...,xN

N∑
i=1

fi (xi)

subj. to:
N∑

i=1
Aixi = b, xi ∈ Xi, {i = 1, . . . , N},

(2.2)

Assumption 2.1.1 (Local Objectives). The local objective function, fi, is convex, and the

local constraint set, Xi, is convex and compact, for all i ∈ {1, 2, . . . , N}.
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Problem (2.2 ) is rewritten in it’s dual form by forming the Lagrangian function. Let

xk = [xT
1 , xT

2 , . . . xT
N ]T and λ ∈ Rp denote the Lagrangian multipliers. Then,

L(x, λ) =
N∑

i=1
fi(xi) + λT (

N∑
i=1

Aixi − b). (2.3)

The formulation for the dual problem follows as,

max
λ∈Rp

min
x∈X̃

L(x, λ) = max
λ∈Rp

N∑
i=1

ϕi(λ)

where : ϕi(λ) = min
xi∈Xi

fi (xi) + λ> (Aixi − bi)
(2.4)

where X̃ = X1 × X2 × . . . XN and ∑N
i=1 bi = b.

Assumption 2.1.2 (Existence of Solution). The solution to the primal problem 2.3 , x∗,

exists and the solution to the dual problem 2.4 , λ∗, also exists within the domain.

The above assumption is common in the literature, [15 ], [17 ], [18 ], as it ensures feasibility

of the given problem.

2.2 Distributed Computation Framework

Here we describe the network topology and state the necessary assumptions. The un-

derlying, undirected communication graph of the network is denoted by G = (V , E), where

V = {1, . . . , N} is the set of nodes, representing the agents, and E ⊆ V × V is the set

of edges, representing the communication links. An edge (i, j) ∈ E if agent i receives in-

formation from agent j and vice versa. It is assumed that the communication graph is

time-invariant. The neighborhood of agent i in G is denoted by Ni = {j ∈ V | (i, j) ∈ E},

with (i, i) ∈ E , ∀i ∈ {1, . . . , N}. Each edge (i, j) ∈ E has an associated weight wij, which

measures how much agent i values the information received from agent j. The weight matrix

of the entire network is denoted by W ∈ RN×N , where wij represents the (i, j)th element of

W , such that,

wij =


0, (i, j) /∈ E ,

≥ 0, otherwise.
(2.5)
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Additionally, we consider the following assumption on these network weights,

Assumption 2.2.1 (Network Properties). The communication graph G is undirected and

connected. The associated weight matrix W has the following properties:

1. W is balanced, i.e., wij = wji, ∀(i, j) ∈ E ,

2. W is a doubly stochastic matrix, i.e.,

W 1̂N = 1̂N , W T 1̂N = 1̂N ,

where 1̂T
N := [1, 1, . . . , 1]1×N

3. W is a positive semidefinite, ie, W � 0

From Assumption 2.2.1 , the weight matrix W belongs to the following set of matrices

Γ = {W ∈ RN×N |wi,j = wj,i, W 1̂ = 1̂, W T 1̂ = 1̂, W � 0}

Based on many applications, it is assumed that this underlying network topology is

provided. Such practical scenarios include, a network of agents in formation flight [19 ],

large scale networks for distributed machine learning [12 ], power grid networks [20 ] and

sensor networks [5 ]. However many of these applications consider standard adjacency weight

matrix. It is noted that if wi,j = 1/di,i, ∀{(i, j) ∈ E} ∩ {i 6= j} and wi,i = 1, where degi is

degree of agent i then W coorespond to the standard adjacency matrix of the given network

topology. But here we consider a more general case where these weights can vary between

(0, 1). And, as shown in this thesis, based on the network topology, we have more flexibility

to maximize the convergence speed of our distributed algorithm through choosing these

weights.

Moreover it is noted that the problem setting can be applied to a wide range of practi-

cal problems, including formation flight, and it can handle the commonly used linear and

quadratic objective functions. In Chapter 4 , we describe one such approach on how the for-

mation flight problem can be modeled as a coupled constraint convex optimization problem

as described in problem (2.2 ).
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3. ALGORITHM DEVELOPMENT FOR FAST-TRACKING

ADMM

In this chapter, we develop the Fast Tracking ADMM (F-TADMM) algorithm for itera-

tively solving problem (2.2 ). Here we begin our approach by introducing Tracking ADMM

(TADMM) algorithm which is the state of the art algorithm to handle distributed problems

with coupled constraints. TADMM [18 ] is a fully distributed optimization algorithm used

to solve the coupled-constraint problem (2.2 ), over a network by means of an ADMM-based

approach. On comparison, it is observed that the TADMM algorithm requires no parameter

tuning, unlike the distributed ADMM algorithm in [15 ], and it requires less restrictions on

the initialization of decision variables when compared to the algorithms in [12 ], [17 ]. In [18 ],

the authors also proved asymptotic convergence of the TADMM algorithm to the optimal

solution. Therefore, given the above advantages, in this paper, we focus on improving the

convergence rate of the TADMM algorithm for solving problem (2.2 ).

Essentially, the TADMM algorithm 11 , creates local copies of the dual variable, λi, as

well as local copies of the coupling constraint violation, defined as di = Aixi −bi. At each step

k, after receiving the constraint violation and dual variable (step 2) from neighbours, each

agent computes the weighted average of dk
i and λk

i , represented as ∆dk
j and ∆λk

j , respectively

(steps 3, 4). Using these averages, each agent performs the local optimization to obtain xk+1
i

(step 5). And finally, it enforces the consensus-based approach (steps 6, 7) to ensure the

total coupling constraint is satisfied.

Optimality and Convergence: For the primal and dual problems, (2.2 ) and (2.4 ), respec-

tively, under Assumptions 2.1.2 ,and 2.2.1 , it has been proved that the TADMM algorithm

achieves asymptotic convergence (see Theorem 1, [18 ]) to the pair of optimal solutions (x∗, λ∗)

(see [18 ], Theorem 2).

However, in real world problems, a stronger analysis of the convergence rate is required

to ensure that a solution will reached in practical time. Therefore, in the next section, we

extend the analysis of the above algorithm to provide some guarantees on the convergence

rate.
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Algorithm 1 TADMM
1: procedure Initialization
2: x0

i ∈ Xi, λ0
i ∈ Xi, d0

i = Aix
0
i − bi

3: end procedure
4: procedure Repeat till convergence
5: Communicate to neighbors: (dk

i , λk
i )

6: Compute Deviation: ∆dk
i = ∑

j∈Ni wi,jd
k
j

7: Compute Dual Variable: ∆λk
i = ∑

j∈Ni wi,jλ
k
j

8: Local Optimization: xk+1
i = arg minx∈Xi{fi(x)+(∆λk

i )T Aix+ ρ
2 ||Aix−Aix

k
i +∆dk

i ||2}
9: Update Deviation: dk+1

i = ∆dk
i + Ai(xk+1

i − xk
i )

10: Update Dual Variable: λk+1
i = λk

i + ρdk+1
i

11: end procedure
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3.1 Convergence Rate Analysis for TADMM

While TADMM does discuss the convergence analysis to the optimal solution, it does

not share any information on the convergence rate. In this section, we analytically derive

the convergence rate of the TADMM algorithm and show that it depends on the weights

of the communication network. Further, we present the network weight optimization for

better convergence using SDP and finally present our Fast-Tracking ADMM (F-TADMM)

algorithm.

To analyze the convergence rate, we use a compact representation of the update rules of

the TADMM algorithm, by stacking the vectors from each node. Let

xk := [xT
1,k, xT

2,k, . . . xT
N,k]T , dk := [dT

1,k, dT
2,k, . . . dT

N,k]T , λk := [λT
1,kλT

2,k, . . . λT
N,k]T (3.1)

∆dk := [∆dT
1,k, ∆dT

2,k, . . . ∆dT
N,k]T . ∆λk := [∆λT

1,k, ∆λT
2,k, . . . ∆λT

N,k]T (3.2)

Therefore, the update rules in Algorithm 1, [18 ], can be written compactly as:

(1) xk+1 = arg min
x∈X

{f(x) + ∆dT
k Adx + ρ

2 ||Adx − Adxk + ∆λk||2}

(2) dk+1 = Wdk + Adxk+1 − Adxk

(3) λk+1 = Wλk + ρdk+1

(3.3)

where f(x) = ∑N
i=1 fi(xi) is the global objective function. The block diagonal matrix

Ad = blkdiag(A1, A2, . . . , AN) is the compact matrix representation of the coupled con-

straints, while X = X1 × X2 × . . . × XN represents the concatenation of the local constraint

sets. The global weight matrix W := W ⊗ Ip, where ⊗ represents the Kronecker prod-

uct. Therefore, the update rules to compute the constraint violations and changes in dual

variables are now given as ∆dk = Wdk and ∆λk = Wλk, respectively.

Now, let the network average of the consensus variables be given as: d̄k := 1
N

∑N
i=1 dk

i and

λ̄k := 1
N

∑N
i=1 λk

i .
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From Assumption 2.2.1 , it follows that ∀k ≥ 0,

d̄k = 1
N

(
N∑

i=1
Aix

k
i − bi

)
, λ̄k+1 = λ̄k + ρd̄k+1. (3.4)

The introduction of variables d̄k and λ̄k is useful to analyze the behavior of dk
i and

λk
i . Specifically, to analyze the convergence rate, we first model the error dynamics of the

TADMM algorithm by studying the distance between the agents’ local estimates dk
i and λk

i

and the respective network averages d̄k and λ̄k.

Let d̄k := 1̂N ⊗ d̄k and λ̄k := 1̂N ⊗ λ̄k. Then, using the fact that W is doubly stochastic

and the properties of Kronecker product,

Wd̄k = (W ⊗ Ip)(1̂N ⊗ d̄k) = d̄k (3.5)

Defining the error vectors as:

ed
k = dk − d̄k, eλ

k = λk − λ̄k (3.6)

For clarity, we define an additional term zk := Adxk − d̄k. Now, using the update (2) in eq.

5.2 , the error dynamics for ed is derived as:

ed
k+1 = dk+1 − dk+1

= Wdk + Adxk+1 − Adxk − dk+1 ± dk

(a)= Wdk − dk + [zk+1 − zk]
(b)= Wed

k + [zk+1 − zk]

(3.7)
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Where the equality (a) is due to the the definition of zk and in (b) we use equation 3.5 .

With similar arguments, using the update (3) in eq. 5.2 , the error dynamics for eλ is derived

as:
eλ

k+1 = λk+1 − λk+1

= Wλk + cdk+1 −
(
λk + cdk+1

)
= Weλ

k + ρed
k+1

= Weλ
k + ρed

k+1

(3.8)

Now let the limiting matrix O = 1
N

1̂N 1̂T
N . And as discussed in [21 ], based on network

assumptions 2.2.1 , the network weight matrix converges to this limiting matrix,

limk→∞ W k = O (3.9)

Further the following properties on the error vecotrs are introduced as

(O ⊗ Ip)ed
k = ( 1

N
1̂N 1̂T

N ⊗ Ip)
[
dk − d̄k

]
= 1̂N ⊗ 1

N

N∑
i=1

[dk
i − d̄k] = 0.

(3.10)

Similarly,
(O ⊗ Ip)eλ

k = ( 1
N

1̂N 1̂T
N ⊗ Ip)

[
λk − λ̄k

]
= 1̂N ⊗ 1

N

N∑
i=1

[λk
i − λ̄k] = 0

(3.11)

Defining W̃ = (W − O) ⊗ Ip and using the above properties, the overall error dynamics is

given as:

ek+1 = Aek + B (zk+1 − zk) (3.12)

where

ek =

 eλ
k

ρed
k

 , A =

 W̃ W̃

0 W̃

 , B = ρ

 I

I


From Assumption 2.2.1 ,

∥∥∥W − O
∥∥∥ < 1. Therefore, all the eigenvalues of W̃ lie within the

unit circle. This implies that the dynamical system describing the evolution of the consensus
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errors in (3.12 ) is asymptotically stable. Also, it is proven [18 ] that the sequences, {ek}k≥0

and {dk}k≥0, are bounded.

Theorem 3.1.1. The convergence rate factor, γ, of the TADMM algorithm is bounded by

γ <
∥∥∥A∥∥∥+ sup

∥∥∥B (zk+1 − zk)
∥∥∥∥∥∥ek

∥∥∥ . (3.13)

Proof: Using the standard definition of per-step convergence factor, defined in [21 ], we

have

γ = sup
ek 6=ē

∥∥∥ek+1 − ē
∥∥∥∥∥∥ek − ē
∥∥∥ . (3.14)

Also, from Theorem 1 in [18 ], since the consensus updates converge asymptotically as

limk→∞

∥∥∥ek

∥∥∥ = 0 and limk→∞

∥∥∥d̄k

∥∥∥ = 0, it implies the error itself converges to ē = 0. Hence,

γ = sup

∥∥∥ek+1

∥∥∥∥∥∥ek

∥∥∥ (3.15)

(a)= sup

∥∥∥Aek + B (zk+1 − zk)
∥∥∥∥∥∥ek

∥∥∥ (3.16)

(b)
< sup

∥∥∥Aek

∥∥∥∥∥∥ek

∥∥∥ +

∥∥∥B (zk+1 − zk)
∥∥∥∥∥∥ek

∥∥∥ (3.17)

(c)
<
∥∥∥A∥∥∥+ sup

∥∥∥B (zk+1 − zk)
∥∥∥∥∥∥ek

∥∥∥ . � (3.18)

where in (a), the error dynamics equation 3.12 is used and in (b) and (c), following matrix

norm properties are used. ∥∥∥Q + R
∥∥∥ ≤

∥∥∥Q∥∥∥+
∥∥∥R∥∥∥

∥∥∥Q∥∥∥ := sup‖x‖ 6=0

∥∥∥Qx
∥∥∥∥∥∥x∥∥∥

where Q and R, are matrices of arbitrary size.
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3.2 Optimal Weights for Fast Convergence

Now, since the convergence time is given by, [21 ],

τstep = 1
log 1/γ

,

minimizing the convergence time corresponds to minimizing the convergence rate factor γ.

From (3.18 ), it is also noted that the optimal value of γ is achieved by optimizing the network

weight matrix W . This optimization problem is given as:

min
W

γ(W )

subject to: W ∈ Γ.

(3.19)

Now minW γ(W ) =⇒ minW

∥∥∥A∥∥∥, because only the first term depend on the network

weights. Further, using the definition of A,

∥∥∥A∥∥∥ =
∥∥∥
 W̃ W̃

0 W̃

 ∥∥∥.

It is also noted that the eigenvalues of A are the same as the eigenvalues of W̃ because it is

a block diagonal matrix. Since the matrix norm is related to the eigenvalues, we have
∥∥∥A∥∥∥ ∝∥∥∥W∥∥∥ =

∥∥∥W − O
∥∥∥∥∥∥Ip

∥∥∥. Hence, the objective function in (3.19 ) becomes minW γ(W ) =⇒

minW

∥∥∥W − O
∥∥∥.

Therefore, problem (3.19 ) is now modeled as the spectral norm minimization problem,

which can be expressed as an semi-definite programming (SDP) [21 ], by introducing a scalar

variable s to bound the norm
∥∥∥W − O

∥∥∥, and expressing the norm bound constraint as a

linear matrix inequality (LMI). Thus, we have

min s

subject to: − sI � W − 1
N

1̂N 1̂N � sI,

W ∈ Γ,

(3.20)
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where s ∈ R, W ∈ RN×N . Also let the optimal weights are given by [W ∗]i,j = w∗
i,j. Note that

the process of weight optimization is offline. This approach is practical in formation flying

scenarios where we are given that certain agents are paired by communication constraints.

Therefore, we are tasked with finding the best possible network weights to ensure faster

convergence. Finally, the F-TADMM algorithm is given in Algorithm 2.

Algorithm 2 F-TADMM
1: procedure Initialization
2: x0

i ∈ Xi, λ0
i ∈ Xi, d0

i = Aix
0
i − bi

3: find W ∗ using equation (3.20 )
4: end procedure
5: procedure Repeat till convergence
6: Communicate to neighbors: (dk

i , λk
i )

7: Compute Deviation: ∆dk
i = ∑

j∈Ni w∗
i,jd

k
j

8: Compute Dual Variable: ∆λk
i = ∑

j∈Ni w∗
i,jλ

k
j

9: Local Optimization: xk+1
i = arg minx∈Xi{fi(x)+(∆λk

i )T Aix+ ρ
2 ||Aix−Aix

k
i +∆dk

i ||2}
10: Update Deviation: dk+1

i = ∆dk
i + Ai(xk+1

i − xk
i )

11: Update Dual Variable: λk+1
i = λk

i + ρdk+1
i

12: end procedure

3.3 Comparison with TADMM

The performance of the proposed F-TADMM algorithm is compared with that of the

standard TADMM algorithm on a sample problem with the same form as that of (2.2 ). More

specifically, a random communication graph is generated for N = 20 agents, as shown in Fig.

3.1 (a). Let M represents the edge-node incidence matrix of the undirected communication

graph. Each row of M corresponds to the edge E(i, j) in the graph without repetition and

each column an agent, such that

[M ]E(i,j)
k =



1, if k = i

−1, if k = j

0, otherwise.
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The consensus constraint {x1 = x2 = . . . = xN} can be written as: {∑N
i=1 Aixi = 0}, where

the coupling matrix Ai corresponds to the i − th column of incidence matrix M as following:

Ai = MT
i ⊗ In×n.

For the simulation problem, xi ∈ R2, ∀i ∈ V and are initialized randomly. The local objective

functions are designed as quadratic functions, i.e., fi(x) = xT Pix+qT
i x, where Pi are random

positive definite matrices. The local constraints are given as xi
min ≤ xi ≤ xi

max. One such

random instance of the problem setting is visualized in Fig. 3.1 (b), where the red points

represent the initial positions of the agents. The local constraints are represented using

blue rectangular boxes and the intersection of these constraints are represented by the green

rectangle.

Both the standard TADMM and F-TADMM algorithms are implemented to solve the

problem and both the algorithms converge at a consensus. According to [18 ], TADMM

network weights are randomly generated such that they satisfy W ∈ Γ. However, Fig. 3.2 

shows that the F-TADMM algorithm converges much faster than the standard TADMM

algorithm to the same threshold. we also compute
∥∥∥W − O

∥∥∥ both algorithms. For optimal

weights (OW), it is 0.6440 whereas for standard randomized weights (SW) used by TADMM,

it is 0.7787. This matches the convergence behavior of OW and SW shown in Fig 3.2 and

justifies that the minimization of
∥∥∥W − O

∥∥∥ has indeed improved the convergence time. Note

that since the optimal weights are computed by solving an offline optimization problem,

the number of computations in each iteration of both the algorithms are the same. Hence,

comparing the convergence rate in terms of number of iterations is justified in this paper.

To test the scalability of the proposed F-TADMM algorithm, we conduct an empirical

study of the number of iterations required for convergence with increasing number of nodes in

Table 3.1 . To reduce the effect of changing graph topology, 10 random simulations were per-

formed for different values of N , with both the standard TADMM and proposed F-TADMM

algorithms. The mean and standard deviation of the number of iterations are documented

in Table 3.1 . It is observed that for all the different values of N , the proposed F-TADMM

algorithm requires fewer iterations than the standard TADMM algorithm to converge. Ad-
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ditionally, the standard deviation of the number of iterations for standard TADMM is higher

than that for F-TADMM. This implies that the performance of the proposed algorithm is

less susceptible to the topology of the underlying communication graph network than the

TADMM algorithm. These simulation results shows an improvement in convergence rate by

the proposed F-TADMM algorithm.

Further, we perform another set of simulations with fixed topology and network weights

but different F-TADMM penalty factor ρ = {0.01, 0.1, 0.5, 1, 5}. The results are shown in

3.5 . It clear from simulations regardless of ρ, the F-TADMM algorithm converges to the

optimal value ie consensus. Also it is observed that the choosing an optimal ρ also changes

the convergence rate of the algorithm. This study of convergence rate with respect to ρ is

left for future work.

In the next chapter, we demonstrate how the F-TADMM algorithm can be applied to

solve the practical problem of formation flight.
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Table 3.1. Scalability analysis of TADMM algorithm with standard weights
(SW) and optimized weights (OW).

N (# of agents) 5 10 20 30 40 50

SW (Standard Weights) Mean 226.30 489.70 602.20 537.80 459.00 445.70
Variance 31.78 112.67 199.69 253.04 87.84 58.23

OW (Optimal Weights) Mean 154.90 398.60 371.00 258.60 265.80 308.00
Variance 27.27 140.61 99.38 53.75 12.98 22.86

Figure 3.1. (a) The random graph network for N = 20 agents; (b) Consensus
is achieved in the feasible region by all the agents starting from random initial
points (in red)
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Figure 3.2. Comparison of convergence trend between the proposed F-
TADMM and the baseline algorithm with N = 20.

Figure 3.3. (a) The random graph network for N = 10 agents; (b) Consensus
is achieved in the feasible region by all the agents starting from random initial
points (in red)
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Figure 3.4. Comparison of convergence trend between the proposed F-
TADMM and the baseline algorithm with N = 10.
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Figure 3.5. Comparison of convergence trend between the proposed F-
TADMM with different ADMM penalty factor ρ = {0.01, 0.1, 0.5, 1, 5}.
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4. APPLICATION TO FORMATION FLYING

In this section, the trajectory planning of multiple vehicle coordination problem is consid-

ered. Here each vehicle pursues private objectives as well as a linearly coupled formation

constraints. To apply F-TADMM to formation flying, we propose the following problem

formulation. Let x̂i(k) ∈ Rn and ûi(k) ∈ Rm, respectively, represent the n-dimensional state

vector and m-dimensional input vector of agent i at time step k. Then for each vehicle

i ∈ {1, . . . , N}, the variables, Xi ∈ RnK and Ui ∈ RdK , are introduced as the trajectory of

state and the control input of the vehicle over the next K time steps. Hence,

Xi =



x̂T
i (1)

x̂T
i (2)
...

x̂T
i (K + 1)


, Ui =



ûT
i (1)

ûT
i (2)
...

ûT
i (K + 1)


.

The trajectory of position of each vehicle is designated by Pi = CXi such that C ∈ RnK
2 ×n

4.1 F-TADMM to Formation flying

To demonstrate the application of F-TADMM to formation flying, we first make the

decision variable vector as the input trajectory Ui for all agents. Therefore, using the system

dynamics, we identify the relationship between Ui and Xi, and write the optimization problem

in terms of Ui alone.

4.1.1 Agent Prediction Model

Here, the individual agent dynamics is considered as a second-order system given by,

x̂i(k + 1) = Adx̂i(k) + Bdûi(k) (4.1)
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where the system matrices are given as:

Ad =

 I dtI

0 I

 , Bd =

 dt2

2 I

dtI


and dt is the time step of prediction. These are standard assumptions in many practical

applications where agents are quadcopters [22 ] or aircraft [23 ]. Knowing the definition of

state trajectory,

Xi = Hx̂i(0) + GUi (4.2)

where,

H =



Ad

A2
d

...

AT
d


, G =



Bd 0 . . . 0

AdBd Bd
. . . ...

... ... . . . 0

AT −1
d Bd AT −2

d Bd . . . Bd



4.1.2 Desired Formation as Equality Constraints

Further, as generally assumed in the literature, [23 ], [19 ] that the agents know the desired

formation locally represented by

∆Pij = Pi − Pj, ∀j ∈ Ni

These constraints are rewritten as:

Pi − Pj = ∆Pij

CXi − CXj = ∆Pij

2 − ∆Pji

2
C(GUi + Hx̂i(0)) − C(GUj + Hx̂i(0)) = ∆Pij

2 − ∆Pji

2

CGUi − CGUj =
[

∆Pij

2 − Hx̂i(0)
]

︸ ︷︷ ︸
1

−
[

∆Pji

2 − Hx̂j(0)
]

︸ ︷︷ ︸
2

.

(4.3)
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It is noted that the terms on the RHS are available to local agents only. Also, we use

the fact that ∆Pij = −∆Pji. Thus, the equality constraints for the desired formation are

converted into the coupling constraints for F-TADMM using the definition of edge-node

incidence matrix Mi as follows,

Ai = MT
i ⊗ CG,

[bi]jth−block =


0, (i, j) /∈ E ,[

∆Pij
2 − Hx̂i(0)

]
otherwise.

4.1.3 Local objective function

In practice, private objectives range from fuel consumption minimization to target track-

ing to trajectory optimization along a specified path. Here, we consider the target tracking

and define

fi(Xi, Ui) =
∥∥∥CXi − Pi,target

∥∥∥2
2 +

∥∥∥Ui

∥∥∥2
2 (4.4)

where CXi and Pi,target are, respectively, the position and the desired final position of agent

i. The objective function is rewritten in terms of the decision variable Ui alone as:

fi(Ui) =
∥∥∥C(GUi + Hx̂i(0)) − Pi,target

∥∥∥2
2 +

∥∥∥Ui

∥∥∥2
2. (4.5)

Since the optimization problem is to minimize a positive definite quadratic form objective

function over a linear set, it is a convex problem. Again, the network weights are calculated

using (3.20 ).

4.1.4 Input Constraints

In practical conditions, it is not always possible to get the arbitrarily large input. There-

fore, we consider that the agent input is constrained as

ûmin
i ≤ ûi(k) ≤ ûmax

i ∀k ∈ [0, K]
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4.2 Simulation Results

Using the above formulation, the F-TADMM algorithm is applied to a multi-agent system

of 10 agents with a randomly generated graph topology. This random communication graph

and the desired formation are represented in Fig. 4.1 . In Fig. 4.2 , the formation flying

scenario is presented. The agent trajectories are considered to be in the 2-d plane (px, py).

Each agent’s state is randomly initialized as seen in Fig. 4.2 . Also from Fig. 4.2 , it is

observed that the proposed F-TADMM algorithm makes the network of agents successfully

attain the desired formation.
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Figure 4.1. Desired Formation and randomly generated communication
graph topology for N = 10 agents.
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Figure 4.2. Individual agent trajectories show that the proposed F-TADMM
algorithm successfully achieves the desired formation.
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5. CONVERGENCE ANALYSIS FOR TIME-VARYING

TOPOLOGY

In this chapter, we extend the TADMM algorithm for iteratively solving problem ((2.2 )) but

with time-varying network topology. We begin our analysis after re-stating the Distributed

Computation Framework as described in Section (2.2 ).

5.1 Distributed Computation Framework with Time-Varying Topology

Here we describe the network topology with time varying network and state the necessary

assumptions. The underlying, undirected communication graph of the network at the instant

k is denoted by Gk = (V , Ek), where V = {1, . . . , N} is the set of nodes, representing the

agents, which do not change with time, and Ek ⊆ V × V is the set of edges, representing the

communication links. An edge (i, j) ∈ Ek if agent i receives information from agent j and vice

versa at instant k. The neighborhood of agent i in Bk is denoted by N k
i = {j ∈ V | (i, j) ∈ Ek},

with (i, i) ∈ Ek, ∀i ∈ {1, . . . , N}. Each edge (i, j) ∈ Ek has an associated weight wk
ij, which

measures how much agent i values the information received from agent j. The time varying

weight matrix of the entire network is denoted by Wk ∈ RN×N , where wk
ij represents the

(i, j)th element of Wk, such that

wk
ij =


0, (i, j) /∈ Ek,

≥ 0, otherwise.
(5.1)

Additionally, we consider the following assumption on these network weights,

Assumption 5.1.1 (Network Properties for each Bk). The communication graph Bk is

undirected and connected ∀k. The associated weight matrix Wk has the following properties

∀k:

1. Wk is balanced, i.e., wk
ij = wk

ji, ∀(i, j) ∈ Ek,
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2. Wk is a doubly stochastic matrix, i.e.,

Wk1̂N = 1̂N , W T
k 1̂N = 1̂N .

3. Wk is a positive semidefinite, ie, Wk � 0

5.2 Modified TADMM updates

We rewrite the TADMM algorithm with time varying network topology as shown below

in Algorithm 3 as Time Varying Tracking ADMM (TV-ADMM). It is noted that the case of

time varying network topology implies time varying network weights.

Algorithm 3 TV-TADMM with Time varying weights
1: procedure Initialization
2: x0

i ∈ Xi, λ0
i ∈ Xi, d0

i = Aix
0
i − bi

3: end procedure
4: procedure Repeat till convergence
5: Communicate to neighbors: (dk

i , λk
i )

6: Compute Deviation: ∆dk
i = ∑

j∈Ni wk
i,jd

k
j

7: Compute Dual Variable: ∆λk
i = ∑

j∈Ni wk
i,jλ

k
j

8: Local Optimization: xk+1
i = arg minx∈Xi{fi(x)+(∆λk

i )T Aix+ ρ
2 ||Aix−Aix

k
i +∆dk

i ||2}
9: Update Deviation: dk+1

i = ∆dk
i + Ai(xk+1

i − xk
i )

10: Update Dual Variable: λk+1
i = λk

i + ρdk+1
i

11: end procedure

After re-introducing the concatenated vectors for the required from (3.1 ) and (3.2 ), we

get the following updates, written compactly as,:

(1) xk+1 = arg min
x∈X

{f(x) + ∆dT
k Adx + ρ

2 ||Adx − Adxk + ∆λk||2}

(2) dk+1 = Wkdk + Adxk+1 − Adxk

(3) λk+1 = Wkλk + ρdk+1

(5.2)
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5.3 Convergence Analysis for Time Varying topology

We begin our analysis with similar way as shown in [18 ]. We show that the Lemma 1,

2, and 3 and Preposition 1, [18 ], will still be true for a time varying network topology as

described in (5.1 ).

Lemma 5.3.1. (Tracking property). Under Assumption (5.1.1 ) it holds that

d̄k = 1
N

(
N∑

i=1
Aixi,k − b

)
(5.3)

for all k ≥ 0

Proof See Proof for Lemma 1 in [18 ], but where W is mentioned we consider Wk and

using the column stochastic of each Wk∀k on step 3, we conclude to the same result. �

Lemma 5.3.2. (Average dual update). Under Assumption (5.1.1 ), it holds that

λ̄k+1 = λ̄k + ρd̄k+1 (5.4)

for all k ≥ 0.

Proof See Proof for Lemma 2 in [18 ], but again where W is mentioned we consider Wk

and using the column stochastic of Wk∀k on step 2, we conclude to the same result. �

Now we rewrite the error dynamics in equation (3.12 ) with Wk. Defining W̃k = (Wk −

O)⊗Ip and using the analogous math as described in section (3.1 ), the overall error dynamics

for time varying case is given as:

ek+1 = Akek + B (zk+1 − zk) (5.5)

where

ek =

 eλ
k

ρed
k

 , Ak =

 W̃k W̃k

0 W̃k

 , B = ρ

 I

I


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From Assumption (2.2.1 ),
∥∥∥Wk − O

∥∥∥ < 1 ∀k. Therefore, all the eigenvalues of W̃k lie

within the unit circle at each instant. This implies that the dynamical system describing the

evolution of the consensus errors in (5.5 ) is asymptotically stable.

Since the proof of Lemma 3 and Preposition 1 [18 ] do not any require the network

properties, they still hold true under the assumption (5.1.1 ). Therefore we borrow their

proof to state the following lemmas.

Lemma 5.3.3. (Bounded sequences). Under Assumptions (2.1.1 ) and (5.1.1 ) we have that

(i) the sequences {xk}k≥0 and {zk}k≥0 are bounded; (ii) the sequences
{
ed

k

}
k≥0

and
{
eλ

k

}
k≥0

are bounded.

Proof See Lemma 3, [18 ]. �

Lemma 5.3.4. (Local optimality). Under Assumptions (2.1.1 ) and (2.1.2 ) we have that

‖λk+1 − λ?‖2 + 2ρ [zk+1 − Adx?]> eλ
k+1

≤
∥∥∥λk − λ?

∥∥∥2
−
∥∥∥λk+1 − λk

∥∥∥2
,

(5.6)

for any optimal solution pair (x?, λ?) for (2.3 ) and (2.4 ), where we set λ? = 1̂N ⊗ λ?.

Proof See Preposition 1, [18 ]. �.

Now we have all the preliminaries required to prove that the modified updates in Algo-

rithm 3 converge as summarized in theorem below.

Theorem 5.3.5. Under Assumptions (2.1.1 ), (2.1.2 ), (5.1.1 ) the sequences generated by

algorithm (3) satisfy:

(i) limk→∞

∥∥∥ed
k

∥∥∥ = 0,

(ii) limk→∞

∥∥∥eλ
k

∥∥∥ = 0,

(iii) limk→∞

∥∥∥d̄k

∥∥∥ = 0,

(iv)
{∥∥∥λk − λ?

∥∥∥2
+ ρ2 ‖zk − Adx?‖2

}
k≥0

is convergent,

for any optimal solution pair (x?, λ?) for (2.3 ) and (2.4 ), with λ? = 1̂N ⊗ λ?.

The main idea behind the proof is as following. We start by considering (5.5 ) together

as a discrete-time varying dynamical system for the consensus updates. Since the consen-

sus system is asymptotically stable, we then build a piecewise positive definite quadratic
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Lyapunov function which after each iteration guarantees contraction of solution. However,

since the consensus system is not autonomous, the inequality describing the variation of such

Lyapunov function across each iteration contains terms that are not defined in sign, so that

it is no longer necessarily decreasing. The idea is to properly combine such the inequality in

(5.6 ) so as to “balance out” the terms that are not defined in sign. In this way, we obtain an

aggregate descent condition that allows us to prove the asymptotic stability of the overall

(nonlinear) dynamical system modeling algorithm (3).

Proof of Theorem (5.3.5 ) Let a positive definite symmetric matrix Pk = P T
k � 0,

‖Buk+1 − ek+1‖2
Pk

(5.7)

= ‖Buk − ek + (I − Ak)ek‖2
Pk

(5.8)

= ‖Buk − ek‖2
Pk

+ 2 [Buk − ek]> Pk(I − Ak)ek + e>
k

(
I − A>

k

)
Pk(I − Ak)ek (5.9)

=‖Buk − ek

∥∥∥2
Pk

−
∥∥∥ ek‖2

Pk−F T
k

PkFk
+ 2u>

k BT Pk(I − Fk)ek (5.10)

Now use this equality both sides of inequality in lemma (5.3.4 ).

∥∥∥λk+1 − λ?
∥∥∥2

+ 2ρu>
k+1Hek+1 + ‖Buk+1 − ek+1‖2

Pk

≤
∥∥∥λ̄k − λ?

∥∥∥2︸ ︷︷ ︸
a

−
∥∥∥λ̄k+1 − λk

∥∥∥2︸ ︷︷ ︸
b

+
∥∥∥Buk − ek

∥∥∥2
Pk︸ ︷︷ ︸

c

−
∥∥∥ek

∥∥∥2
Pk−AT

k
PkAk︸ ︷︷ ︸

d

+ 2u>
k B>Pk(I − Ak)ek︸ ︷︷ ︸

e

(5.11)

where H = [I 0]. Now it is observed that if we choose appropriate Pk, such that Pk −

AT
k PkAk � 0, then term (d) will be always positive. Further term (b) is always positive.

Also if H = BT Pk(I − Ak), the overall inequality in (5.30 ), guarantees a descent condition

for all k → k + 1.

41



These conditions are rewritten as

H = BT Pk(I − Ak) (5.12)

Pk − AT
k PkAk � 0 (5.13)

Pk � 0 (5.14)

Take Pk partitioned in blocks as follows

Pk =

 Pk,1 Pk,2

P >
k,2 Pk,3



Owing to the fact that all eigenvalues of W̃k lies in the open unit circle, thus (I − W̃k) is

invertible and, from the equality MM−1 = M−1M = I with M = (I − W̃k), we have the

following identities

W̃k(I − W̃k)−1 = (I − W̃k)−1 − I (5.15)

(I − W̃k)−1W̃k = (I − W̃k)−1 − I (5.16)

Noticing that

(I − Ak)−1 =

 (I − W̃k)−1 (I − W̃k)−1W̃k(I − W̃k)−1

0 (I − W̃k)−1



condition (5.12 ) can be rewritten as BT Pk = H(I−Ak)−1 and translates into the following

constraints on the blocks of Pk :

Pk,1 + P T
k,2 = (I − W̃k)−1 (5.17)

Pk,2 + Pk,3 = (I − W̃k)−1W̃k(I − W̃k)−1 (5.18)
(a)= (I − W̃k)−2 − (I − W̃k)−1 (5.19)

Pk,1 + P T
k,2 + Pk,2 + Pk,3 = (I − W̃k)−2 (5.20)
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where in (a) we used (5.15 ), while follows by simply summing (5.17 ) and (5.19 ). Note

that, from (5.17 ), we deduce that Pk,2 = P T
k,2 since both P1,k and (I − W̃k)−1 will be

symmetric. Now we can write LHS of (5.13 ) as a function of Pk,1 alone, using blocks and

above properties,

 Pk,1 − W̃kPk,1W̃k Pk,1 − W̃k (Pk,1 + Pk,2) W̃k

P >
k,2 − W̃k

(
P1 + P >

k,2

)
W̃k Pk,3 − W̃k

(
Pk,1 + P >

k,2 + Pk,2 + Pk,3
)

W̃k

 (5.21)

(a)=

 Pk,1 − W̃kPk,1W̃k Pk,2 − W̃k(I − W̃k)−1W̃k

P >
k,2 − W̃k(I − W̃k)−1W̃k Pk,3 − W̃k(I − W̃k)−2W̃k

 (5.22)

(b)=

 Pk,1 − W̃kPk,1W̃k W̃k − (Pk,1 − I)

W̃k − (Pk,1 − I) Pk,1 − I

 (5.23)

where in (a) we used (5.17 ) and in (b) we leveraged identities in (5.15 ) together with

(5.17 ) and (5.19 ) to express Pk,2 and Pk,3 as a function of Pk,1 only. Next, we find a value for

Pk,1 � 0 ensuring that Pk − AT
k PkAkF is positive definite. This requirement can be posed in

terms of its blocks by means of the Schur complement, i.e., Pk − AT
k PkAk � 0 if and only if

Pk,1 − I � 0, (5.24)

Pk,1 − W̃kPk,1W̃k −
(
W̃k − (Pk,1 − I)

)
(Pk,1 − I)−1

(
W̃k − (Pk,1 − I)

)
(5.25)

= 2W̃k + I − W̃k

(
Pk,1 + (Pk,1 − I)−1

)
W̃k � 0 (5.26)

Now if we choose Pk,1 = 2I. And letting V T ΛkV = W̃k be the eigenvalue decomposition of

W̃k, we have

2W̃k + I − W̃k(2I + I)W̃k = 2W̃k + I − 3W̃2
k

= V
(
I + 2Λ − 3Λ2

)
V T � 0

(5.27)

which is equivalent to I + 2Λ − 3Λ2 � 0 and always holds true when all the eigenvalues

of W̃k lies within (−1/3, 1) based on assumption (5.1.1 ). Finally, using again Schur’s com-
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plement, it is also easy to prove that Pk,1 = 2I satisfies condition Pk � 0. In fact, we have

that

Pk =

 2I (I − W̃k)−1 − 2I

(I − W̃k)−1 − 2I (I − W̃k)−2 − 2(I − W̃k)−1 + 2I

 � 0 (5.28)

if and only if

2I � 0,

(I − W̃k)−2 − 2(I − W̃k)−1 + 2I − 1
2

(
(I − W̃k)−1 − 2I

)2

= 1
2(I − W̃k)−2 � 0

(5.29)

Above condition (5.29 ) is satisfied since W̃k has all eigenvalues in the open unit circle and

hence I − W̃k � 0.

Remark: It is noted that this analysis will provide that same result regardless of the

iteration count k as far as each Wk satisfies assumption (5.1.1 ).

From above results we can rewrite (5.30 ) as

∥∥∥λk+1 − λ?
∥∥∥2

+2u>
k+1Hek+1 + ‖Buk+1 − ek+1‖2

Pk

≤
∥∥∥λk − λ?

∥∥∥2
+ 2u>

k Hek + ‖Buk − ek‖2
Pk

−
∥∥∥λk+1 − λk

∥∥∥2
− ‖ek‖2

Qk

(5.30)

where Qk = Pk −AT
k PkAk. Now rearranging the terms on and summing from k = 0 to s−1,

for any s ∈ N, we have

s−1∑
k=0

‖λk+1 − λk

∥∥∥2+
∥∥∥ ek‖2

Qk
(5.31)

≤
∥∥∥λ0 − λ?

∥∥∥2
+ 2u>

0 He0 +
s−1∑
k=0

‖Buk − ek‖2
Pk

− ‖Buk+1 − ek+1‖2
Pk

(5.32)

−
∥∥∥λs − λ?

∥∥∥2
− 2u>

s Hes (5.33)

≤
∥∥∥λ0 − λ?

∥∥∥2
+

s−1∑
k=0

‖Buk − ek‖2
Pk

− ‖Buk+1 − ek+1‖2
Pk︸ ︷︷ ︸

a

+2C (5.34)

where in the second inequality we neglected the terms −
∥∥∥λM − λ?

∥∥∥2
and − ‖Bus − es‖2

P

in the RHS since they are non-positive (recall Pk � 0) and we used the fact that | 2uT
k He
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k |≤ C for all k ≥ 0 owing to the results of Lemma 5.3.4 . Also the term (a) in last inequality,

is
s−1∑
k=0

‖Buk − ek‖2
Pk

− ‖Buk+1 − ek+1‖2
Pk

≤
s−1∑
k=0

‖Buk − ek − Buk+1 + ek+1‖2
Pk

≤
s−1∑
k=0

‖(I − Ak)ek‖2
Pk

=
s−1∑
k=0

‖ek‖2
(I−Ak)T Pk(I−Ak)

(5.35)

where we use (3.12 ) and norm inequality
∥∥∥a∥∥∥−

∥∥∥b∥∥∥ ≤
∥∥∥a−b

∥∥∥. Thus the LHS on 5.34 is upper

bounded by

s−1∑
k=0

‖λk+1 − λk

∥∥∥2+
∥∥∥ ek‖2

Qk
≤
∥∥∥λ0 − λ?

∥∥∥2
+

s−1∑
k=0

‖ek‖2
(I−Ak)T Pk(I−Ak) + 2C (5.36)

s−1∑
k=0

‖λk+1 − λk

∥∥∥2+
∥∥∥ ek‖2

Qk−(I−Ak)T Pk(I−Ak) ≤
∥∥∥λ0 − λ?

∥∥∥2
+ 2C (5.37)

Now we focus our attention to Qk − (I − Ak)T Pk(I − Ak) as,

Qk − (I − Ak)T Pk(I − Ak) = Pk − AT
k PkAk − (I − Ak)T Pk(I − Ak)

= AT
k Pk + PkAk − 2AT

k PkAk

Using the derived value of Pk and Ak, we have

AT
k Pk + PkAk =

 4W̃k 2W̃k(I − W̃k)−1W̃k

2W̃k(I − W̃k)−1W̃k 2W̃k(I − W̃k)−2W̃k

 (5.38)

2AT
k PkAk =

 4W̃2
k 2W̃k(I − W̃k)−1W̃k

2W̃k(I − W̃k)−1W̃k 2W̃k(I − W̃k)−2W̃k

 (5.39)
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AT
k Pk + PkAk − 2AT

k PkAk =

 4W̃k − 4W̃2
k 0

0 0

 (5.40)

Now it is noted that W̃k − W̃2
k = W̃k(I − W̃k) � 0 which implies that the Qk − (I −

Ak)T Pk(I − Ak) � 0. This implies that all the terms in LHS of 5.37 is always positive.

Let Q̄ = mink σmin,2(Qk − (I − Ak)T Pk(I − Ak))I where σmin,2(.) corresponds to the second

minimum eigenvalue. And it is noted that Q̄ � 0 based on above analysis. Hence we get,

∞∑
k=0

(∥∥∥λk+1 − λk

∥∥∥2
+ ‖ek‖2

Q̄

)
≤

∞∑
k=0

(∥∥∥λk+1 − λk

∥∥∥2
+ ‖ek‖2

Qk−(I−Ak)T Pk(I−Ak)

)
(5.41)

Also it is noted that based on lemma 5.3.3 , the RHS (5.37 ) shows that the sum of the series

in finite because the
∥∥∥λ0 − λ?

∥∥∥2
and 2C are always bounded. Therefore,

∞∑
k=0

(∥∥∥λk+1 − λk

∥∥∥2
+ ‖ek‖2

Q̄

)
≤ ∞ (5.42)

which, recalling that Q̄ � 0 ∀k ≥ 0, implies that limk→∞ ‖λk+1−λk‖ = 0 and limk→∞ ‖ek‖ =

0. Hence, limk→∞

∥∥∥ed
k

∥∥∥ = 0 and limk→∞

∥∥∥eλ
k

∥∥∥ = 0, thus proving points (i) and (ii), respec-

tively. Since dk+1 = 1
ρ

(
λk+1 − λk

)
, we also have that limk→∞

∥∥∥dk

∥∥∥ = 0 and therefore

limk→∞

∥∥∥d̄k

∥∥∥ = 0, thus proving point (iii). From equation (5.29 ), we also have that the

sequence {∥∥∥λk − λ?
∥∥∥2

+ 2u>
k Hek + ‖Buk − ek‖2

Pk

}
k≥0

is non-increasing, bounded below since
∥∥∥u>

k Hek

∥∥∥ ≤ C and ‖Buk − ek‖2
Pk

≥ 0 (recall Pk � 0

), and, therefore, convergent. Since ‖ek‖ is vanishing and {uk}k≥0 is bounded, we have that

also the sequence
{∥∥∥λk − λ?

∥∥∥2
+ ‖Buk‖2

Pk

}
k≥0

is convergent. A straightforward computation

using (5.20 ) shows that B>PkB = (I − W̃k)−2 � 0 which, recalling the definition of uk =

ρ (zk − Adx?), implies that the sequence

{∥∥∥λk − λ?
∥∥∥2

+ ρ2 ‖zk − Adx?‖2
(I−W̃k)−2

}
k≥0
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is convergent, which finally implies that

{∥∥∥λk − λ?
∥∥∥2

+ ρ2 ‖zk − Adx?‖2
}

k≥0

is convergent due to norm equivalence, thus proving point (iv) and concluding the proof. �

Now we prove that this converged value is actually the optimal solution. For the proof we

observe that the same analysis as Theorem 2, [18 ] gives the desired result for a time varying

topology, therefore only the theorem is stated here.

Theorem 5.3.6. (Optimality) Under Assumptions (2.1.1 ), (2.1.2 ), (5.1.1 ) the sequences

generated by algorithm (3) satisfy:

(i) any limit point of the primal sequence {xk}k≥0 is an optimal solution x? of (2.3 );

(ii) each dual sequence {λi,k}k≥0 , i = 1, . . . , N , converges to the same optimal solution λ?

of (2.4 ).

Proof : See Theorem 2, [18 ]. �

5.4 Numerical Study under Switching Topology

Here we demonstrate the effectiveness of our approach, we again consider the problem of

distributed optimization with linear coupling as consensus constraint. We test algorithm (3)

on the same problem as discussed in section (2.2 ) but with switching between two strongly

connected topologies. Here for both the cases we consider that the network weights for each

topology is derived using Metropolis weights.

More specifically, two random communication graph are generated for N = 20 agents,

as shown in Fig. (5.1 ). While simulations we consider that at every second time instant the

graph to the other one and therefore we the weights are

wi,j =


1

max {deg1
i ,deg1

j } , (i, j) ∈ E1, mod{k, 2} == 0

1
max {deg2

i ,deg2
j } , (i, j) ∈ E2, else

(5.43)

where degk
i represents the degree of the agent i in the k − th graph excluding the agent itself.
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Figure 5.1. (a) The random network G1 and (b) the G2 for N = 20 agents;
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Figure 5.2. Comparison of convergence trend between the proposed Switch-
ing topology, Fixed topology with metropolis weights of G1 and G2, (a) itera-
tions vs

∥∥∥d̄k

∥∥∥2 (b) iterations vs consensus error;

Similar to earlier case the consensus constraint {x1 = x2 = . . . = xN} can be written

as: {∑N
i=1 Aixi = 0}, where the coupling matrix Ai corresponds to the i − th column of the

incidence matrix M of either of the graph as following:

Ai = MT
i ⊗ In×n.

For the simulation problem, xi ∈ R2, ∀i ∈ V and are initialized randomly. The local objective

functions are designed as quadratic functions, i.e., fi(x) = xT Pix+qT
i x, where Pi are random

positive definite matrices. The local constraints are given as xi
min ≤ xi ≤ xi

max.

As it can be seen from the (5.2 ), the algorithm (3) reaches feasibility and optimality

under a switching network topology. It is noted that the switching method outperforms the

rate of convergence of as compared to individual network topology. Intuitively, this may be

due to the fact that switching topology helps in the distribution of information in a better

way as compared to any fixed topology. However further analysis on convergence rate with

time varying communication graph is required to formally explain this behaviour.
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6. CONCLUSION AND FUTURE WORK

In this work, we considered a general distributed optimization problem with coupling con-

straints. We presented formal guarantees on the convergence rate of the tracking alternating

direction method of multipliers (TADMM) algorithm to solve this problem. Specifically, we

showed that the convergence rate can be bounded by the norm of the communication weight

matrix. Further, we optimized this weight matrix using a semi-definite programming (SDP)

approach, thereby ensuring a faster convergence rate. This result was demonstrated on a

sample problem and the results were compared with the baseline algorithm. We demon-

strated the performance of the proposed Fast-TADMM (F-TADMM) algorithm via an illus-

trative example of distributed trajectory planning for formation flight. As part of further

analysis we prove that under certain assumption on time-varying communication network,

the modified algorithm TV-TADMM converges to optimal solution.

We also plan to extend the convergence rate analysis presented in this thesis for the case

of a time-varying network topology and network weights. Additionally, we are looking into

the problem of computing the optimal weight matrix in real time, to further improve the

convergence rate of the proposed algorithm. We also plan to implement the F-TADMM

algorithm and TV-TADMM algorithm to other practical applications such as Distributed

Model Predictive Control and Distributed Sensor Estimation.
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