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ABSTRACT 

There are myriad of ecological questions to consider when assessing the spread and impact of non-

native invasive forest pests. In my thesis, I investigated invasion dynamics in two ways. First, I 

used visual survey data collected from USDA Animal Plant and Health Inspection Service to 

analyze the historical changes in the range of spotted lanternfly Lycorma delicatula (White) (SLF) 

in the US to understand rates of spread and identify factors that influence risk of invasion. Second, 

I used historical gypsy moth outbreak data and water quality data to quantify the impact of gypsy 

moth (Lymantria dispar L.) defoliation on measures of water quantity and quality across the 

invaded range of the gypsy moth for the period 1999-2018. In the first study, I found there has 

been an upward trend in the number of counties newly invaded by SLF every year since initial 

discovery, with a consistent number of long-distance dispersals throughout the study period (2014-

2019). Radial rates of spread, estimated using three methods, varied from 15.19 to 46.23 km/year. 

A Cox proportional hazards model identified two proxies for human-aided dispersal as significant 

drivers of SLF invasion. We anticipate that SLF will continue to spread, especially along human 

pathways of travel and transport. Efforts to manage SLF populations potentially could target these 

pathways to reduce rates of spread. In the second project, I found that overall, gypsy moth 

defoliation had a negative relationship with discharge, a slight positive relationship with water 

temperature, and a stream size-specific impact on dissolved oxygen. Expected differences in 

discharge with defoliation ranged from 16-25% reduction in discharge with varying degrees of 

defoliation. I conclude that observed changes in temperature and dissolved oxygen of between 1% 

and 6% with defoliation can have biologically meaningful impacts. The effects of defoliation 

observed across large regions are somewhat different from those observed in single watersheds, 

and offer important insights into the ecosystem impacts of gypsy moths. Taken together, these 

research projects provide increased understanding about the key driving factors contributing to 

forest pest spread as well as the impacts of forest pest dynamics on ecosystem services.  
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 INTRODUCTION 

The number of established non-native invasive species in the US, including forest pests, is 

on the rise largely due to globalization and international trade (US Congress 1993, Hulme 2009), 

accumulating new exotic pests every year that are very unlikely to be eradicated. We know forest 

pests affect ecosystems in complex ways, and also have enormous associated economic costs. 

Invasions by non-native pests can pose significant ecological threats to forest ecosystems by 

reducing biodiversity and biomass, shifting forest composition, and destabilizing the community 

(Liebhold et al. 1995, Lovett et al. 2006, Fei et al. 2019) and have economic implications, costing 

over a billion dollars annually (Aukema et al. 2011). Despite implementation of biosecurity 

programs by national governments as well as by international conventions, an approximately 

constant number of damaging pests establish in the US every year, leading to a steady 

accumulation of non-native pests (Aukema et al. 2010). Given this growing problem and the 

limited number of options for its mitigation, information is needed on the spread and ecosystem 

impacts of these species.  

Three stages are recognized that occur during the invasion of any non-native species: 

arrival in the new location (often referred to as introduction), establishment of reproducing 

populations, and spread into additional new areas (Sakai et al. 2001, Blackburn et al. 2011). 

Understanding how pests spread following their introduction and establishment is critical to the 

development of strategies for limiting further spread. By understanding what drives a species’ 

spread, how it spreads, and the speed at which it spreads, we can prepare forest and land managers 

for new invasions. After a pest is established, quantifying the environmental impacts allows for 

prioritization of management efforts and allocation of resources. In this thesis, I assess spread and 

ecosystem impacts separately in two projects focused on different high-profile and damaging 

forest pests.  

Spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridate), is a relatively 

new invasive pest in North America, and thus has a small but growing body of literature 

investigating its biology, behaviors, and spread. Spotted lanternfly (SLF) is the subject of a large 

amount of recent research as scientists quickly try to understand how far SLF will spread, where 

it is likely to spread, and how it will impact local ecosystems and economies. In contrast, gypsy 
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moth (Lymantria dispar L.) is a well-known pest that has been present in North America since 

1869 with a large body of literature on a wide variety of topics.  

Current knowledge about SLF biology includes information about its ability to feed on a 

wide range of host plant species and deposit eggs indiscriminately on a variety of surfaces (Parra 

et al. 2017, Urban 2019), allowing SLF to survive and reproduce in both forested and non-forested 

areas. There are no known sex or aggregation pheromones, and thus a species-specific trap is 

currently not available for use in SLF detection. Within the growing body of literature, there is still 

a knowledge gap in understanding how SLF has spread in North America and what factors 

influence its spread since first detection. 

Though the biology and historical spread of gypsy moth are well understood, gypsy moth 

impacts on water quality is less well-studied. There have been small-scale studies on the effects of 

gypsy moth defoliation on water quality (Webb et al. 1995, Eshleman et al. 1998, Addy et al. 2018), 

many of which indicate negative impacts to water quantity, chemistry, and metabolism. However, 

there are few broad-scale studies that investigate the effect of gypsy moth defoliation over a wide 

time span and at the landscape level. In these projects, I aim to address these research gaps 

mentioned above in the field of invasive pest ecology using study systems of two well-known 

generalist pests, with a focus on spread dynamics and ecosystem impacts. The main objectives of 

the studies are to characterize and determine drivers of SLF spread and determine what impacts 

gypsy moth defoliation has on water quality. 
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 SPATIAL DYNAMICS OF SPOTTED LANTERNFLY, 

LYCORMA DELICATULA, INVASION OF THE NORTHEASTERN 

UNITED STATES 

2.1 Introduction 

Though most non-native pests fail to establish after arrival, those that successfully found 

reproducing populations can subsequently spread via a coupling of population growth with 

dispersal. The dispersal of many invading species is characterized by the simultaneous occurrence 

of local diffusion and occasional long-distance dispersal (Hastings 2005, Liebhold and Tobin 

2008). Information on what factors drive spread of a non-native pest can guide management to 

contain its populations and reduce their impacts to ecosystems and economic costs (Sharov and 

Liebhold 1998, Liebhold and Kean 2019). Understanding the factors that drive spread is 

particularly important for newly established species, for which dispersal behaviors and population 

growth characteristics are often unknown. 

Spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), is a non-native 

planthopper recently established in the United States. The species is native to southeast Asia, but 

recently invaded the USA in Berks County, Pennsylvania in 2014 (Barringer et al. 2015). Spotted 

lanternfly (SLF) is univoltine and lays egg masses on a variety of surfaces, including tree bark, 

stone, motor vehicles, and trains (Urban 2019). In addition to indiscriminate egg deposition, SLF 

also has a wide breadth of host use. This pest feeds on over 70 species of herbaceous and woody 

plants belonging to over 20 families, though it prefers tree of heaven (Ailanthus altissima), 

especially as a late instar (Dara et al. 2015, Parra et al. 2017). Notably, SLF feeds on apple (Malus 

spp.) and grape (Vinus spp.), both important agricultural plants in the Northeastern USA. Feeding 

on grape has reportedly resulted in lower fruit quality, less fruit production, and elevated mortality, 

though minimal impacts to fruit tree health have been reported (Urban 2019). The most 

conspicuous impact of SLF in forests is the accumulation of honeydew in the understory, which 

results in sooty mold growth that limits photosynthesis and growth of understory plants (Ding et 

al. 2006, Parra et al. 2017). There is also evidence that aggregation of SLF can cause weeping 

wounds on trees, resulting in crown dieback (Dara et al. 2015). While detrimental impacts on tree 

of heaven might be beneficial due to its status as an invasive plant, SLF is considered a serious 

pest due to its negative impacts to agricultural crops and native trees. 
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Despite regulations by the state of Pennsylvania that prohibit movement of any SLF living 

stage (e.g. egg masses, nymphs, adults) or material potentially harboring the pest (e.g. firewood, 

nursery stock, etc.) outside of a quarantine area, SLF has spread from Pennsylvania to seven 

surrounding states as of 2019 (Figure 2-1). Because SLF was detected in the USA recently, there 

is little information on how this species spreads or what drives its invasion. Though the body of 

knowledge on this insect is growing, many aspects of SLF spread, especially the role of 

environmental drivers, are unknown. Elucidating how this pest spreads can inform future 

management and survey efforts. 

 

 

Figure 2-1. County-level distributions of spotted lanternfly (SLF) in the eastern USA. 

Distribution of SLF detections and establishments by year based on USDA Animal and Plant 

Health Inspection Service and Pennsylvania Department of Agriculture visual survey data. 

Counties with hash marks had SLF detections that failed to establish. We define a county as 

invaded when the county experiences at least two consecutive years of SLF detection. Counties 

with white color were not surveyed. 
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The ranges of introduced species are influenced by a multitude of anthropogenic factors 

and habitat features. For SLF, climatic niche models indicate that half of the USA, including most 

of the New England, Mid-Atlantic, and Pacific Coast states, is at risk of invasion (Wakie et al. 

2020). While these climatic niche models provide valuable information on where SLF can 

potentially establish, analyses of spread can provide insight into how quickly SLF will arrive and 

what habitat and/or anthropogenic factors affect the dynamics of SLF spread. SLF has undergone 

several long-distance dispersal events that likely resulted from human-mediated transportation 

(Eddy 2018, Scheid 2020). Tree of heaven is also more abundant in urban areas, and thus human 

activities may increase both propagule pressure and habitat suitability. However, the rate of spread, 

including the frequency and distance of long-distance dispersal events, and drivers of spread have 

not been quantified. Therefore, we investigated how anthropogenic and habitat factors are related 

to SLF spread. 

We analyzed the known geographical distribution of SLF (2014-2020) in the USA to 

quantify its rates of spread and identify factors that influence its invasion risk. Our goals were to: 

1) describe the patterns of SLF spread following the initial detection in 2014, and 2) identify key 

drivers that are associated with SLF spread. For our second goal, we used known occurrences of 

SLF in conjunction with habitat and anthropogenic variables to determine the most important 

factors driving county-level invasion risk across the study area, defined below. We hypothesized 

that anthropogenic factors are important drivers of SLF spread, given the ability of this insect to 

lay inconspicuous eggs on a variety of materials, including motor vehicles and trains (Urban 2019).  

2.2 Methods 

The SLF distribution data analyzed in this study were derived from visual surveys 

conducted from 2014-2019 by the US Department of Agriculture, Animal and Plant Health 

Inspection Service (APHIS) and the Pennsylvania Department of Agriculture (PDA). We also used 

SLF county-level presence data for 2020 from the New York State Integrated Pest Management 

Program (Cornell 2021). Survey data include geospatial coordinates for survey locations as well 

as the number of SLF observed (if any). A total of 241,366 survey locations were obtained for this 

study (Figure S2-1). Given irregularity of survey locations and potential biases (e.g. surveys at 

expected SLF locations) and to render data at an equivalent scale as the 2020 presence data, we 

converted counts to county-level presence/absence records and used county as our unit of analysis.  
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The survey data contained many points that we identified as failed establishments in which 

SLF were observed in a county in a given year but were absent in surveys of the same county in 

subsequent years. These detections were likely either populations that failed to establish or 

regulatory incidents, such as dead SLF adults found in transported materials, and thus we did not 

treat them as invasions. Hereafter, we refer to detections as establishments plus failed 

establishments and establishments as only populations that persisted for more than one survey year 

in consecutive years within a county. Moreover, we categorized each invaded county in year n as 

contiguous or non-noncontiguous based on the presence or absence, respectively, of an invaded 

neighboring county in year n-1. 

Described below are methods we used to 1) determine aspects of spread dynamics, such as 

jump distances and spread events into contiguous vs. non-contiguous counties, 2) compare three 

methods of estimating spread rates, and 3) fit a Cox proportional hazards model estimating time-

to-invasion as a function of variables representing spatial proximity to existing SLF populations 

(henceforth referred to as spatial proximity), habitat suitability, and anthropogenic influences. Our 

study area was defined as the area of the eastern USA invaded in 2019 plus a buffer distance of 

355 km, equal to the maximum observed jump distance (see “Characterization of spread events” 

in Methods). This study area was used for all subsequent analyses. Counties, which are the level 

at which quarantines and other management decisions are set, served as the unit of analysis for all 

analyses. All analyses were conducted using R version 4.0.2 (R Core Team 2020). 

2.2.1 Characterization of spread events 

To characterize spread, we quantified the number of yearly spread events into contiguous 

and non-contiguous counties, as well as the distribution of jump distances. Jump distance is 

defined as the distance between establishments or detections in non-contiguous counties in year n 

and the nearest previously invaded county in year n-1. We estimated jump distances for every 

newly invaded county by calculating the distance to the closest previously invaded county, as 

assuming new SLF establishments originate from the closest previously invaded county provides 

a conservative estimate. Distances were measured using county centroids. We repeated this 

process for each year, and summarized the distribution of jump distances (e.g. median, minimum, 

maximum). To determine if spatial proximity is related to whether or not a detection became an 

establishment (i.e. an invasion persisted), we separated jump distances by establishments and 
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failed establishments and used a Mann-Whitney U test to compare the distribution of jump 

distances between these two groups.  

2.2.2 Spread rates 

Because little is currently known about SLF spread patterns and different approaches can 

provide variable estimates of annual spread (Tobin et al. 2006), we compared three methods to 

calculate spread rate described by Gilbert and Liebhold (2010). The purpose of our comparison of 

these methods is to provide a range of possible spread rates as well as to determine robustness of 

each when applied to an insect at early stages of invasion. 

The first method is to apply regression of the distance (centroid to centroid) of every county 

with positive establishment from the point of initial detection (Berks County, PA) as a function of 

years since initial detection (2014). The resulting slope of the estimated regression equation 

estimates the radial rate of spread measured in distance/year. The second method is to regress the 

square root of the invaded area (estimated by summing the area of invaded counties in each year) 

divided by π on time. The resulting slope of the estimated regression line estimates the radial 

spread rate in distance/year (e.g. effective range radius; Shigesada et al. 1995). Last, we calculated 

the average distance between invasion boundaries in consecutive years along radii emanating 

every 0.5 degrees from the centroid of Berks County, PA. We used radii at a frequent degree 

interval to obtain a high-resolution estimate of yearly distance between boundaries. We found 

invasion boundaries by fitting a convex hull polygon to the area of invasion in each year and 

subsequently converting the polygon edges to lines. The convex hull polygon in each year was 

stretched to the edges of non-contiguous invaded counties. The resulting average distance between 

boundaries on each radius between consecutive years can be used to estimate the annual radial 

spread rate (e.g. boundary displacement rate). Due to the nature of fitting a convex hull polygon 

around invaded counties, we used county boundaries as opposed to county centroids to calculate 

distances in boundary displacement estimations. In summary, distance regression is based on 

distance and year of sampling points from the origin where the species was first detected, while 

effective range radius considers area invaded over time. Boundary displacement estimates distance 

between invasion boundaries in consecutive years. 



 

 

20 

2.2.3 Dispersal kernel estimation 

Dispersal kernels estimating risk of invasion as a function of distance have been developed 

for other invading forest insects (Orlova-Bienkowskaja and Bienkowski 2018). Given interspecific 

variation in spread rates (Fahrner and Aukema 2018), however, we estimated a SLF specific 

dispersal kernel, which, in turn, should enable more reliable estimates of the effects of SLF spatial 

proximity on invasion risk. Our analysis used 2015-2019 county-level SLF survey data from 

USDA APHIS and PDA and follows methods from Kovacs et al. (2010). A negative exponential 

function was used to model the probability, p, of each non-invaded county in the study area 

becoming invaded on an annual basis from 2015-2019: 

 

pi,j = e-αd                                                                                  (1) 

 

where α is the parameter we sought to estimate and d is the distance in kilometers to a 

previously invaded county. To estimate α, we simulated county-level spread starting from the five 

initially invaded counties in 2014 using values of α between 0.01 and 0.10 in 0.001 intervals. 

To simulate spread for a given α value, we calculated the distance from each non-invaded 

county i in year n to each invaded county j as of year n-1, as each county j invaded as of year n-1 

could serve as a source for invasion into county i in year n. The distances from county i to each 

invaded county j were input into Equation 1, producing an estimate, p, for the probability of SLF 

invading from each county j. This probability value was then used to parameterize a Bernoulli 

distribution such that the probability of an event was equal to p. We then took a random draw from 

that Bernoulli distribution in which a draw of 1 or 0 would indicate invasion or non-invasion, 

respectively. This meant that there were x draws for each non-invaded county i, where x=number 

of invaded counties in year n-1. If any draw produced a 1, the county was categorized as invaded 

for the rest of the simulation (i.e. counties could not become uninvaded).  

A single iteration of this process produced a simulated, county-level invasion at annual 

time steps (2015-2019) that may or may not have reflected the realized invasion. For each α value, 

we conducted 500 iterative simulations, starting with the initially invaded counties in 2014 and 

forecasting spread to 2019. Results were summarized with accuracy values - false negatives and 

positives, and true negatives and positives - compared with the actual invasion data from 2015-
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2019. We selected the value of α that simultaneously resulted in the lowest number of false 

negatives and false positives when comparing actual spread to predicted spread. 

2.2.4 Invasion drivers 

Cox proportional hazards models can be used to estimate survival time based on predictor 

variables, including both static and time-varying predictors (Thomas and Reyes 2014). If we 

equate survival to a county persisting without invasion, we can use Cox proportional hazards 

models to evaluate which factors explain variation in time-to-invasion. Therefore, we used a Cox 

proportional hazards time-to-invasion model to evaluate potential drivers of SLF invasion at the 

county level, in a manner analogous to the implementation by Jules et al. (2002) and Ward et al. 

(2020).  

The Cox proportional hazards model quantifies the probability of invasion at each one-year 

time step. Time steps ranged from 2014-2015 to 2018-2019. Predictor variables included static 

habitat variables (Table S2-1) and one time-varying predictor, spatial proximity. To quantify 

spatial proximity, we first used Equation 1, setting α = 0.045 (i.e. determined from the dispersal 

kernel estimation process described above; see “Invasion drivers” in Results) and d as the distance 

in kilometers between each uninvaded county to all previously invaded counties. Spatial proximity, 

denoted SpatialProx, was then calculated for each county: 

 

 SpatialProxi = 1 - Π(1 – pi,j).                                                                            
  (2) 

 

The other predictors included two anthropogenic variables and six habitat variables. The 

anthropogenic variables were human population from the U.S. Census and road density calculated 

by Liebhold et al. 2013 from the ArcGIS World Transportation reference layer (Figure S2-2) and 

each was considered a proxy for human-aided dispersal. The six habitat variables included forested 

area and five host availability terms expressed as basal area, host trees per acre, number of host 

trees per county, tree of heaven occurrence, and canopy cover (Figure S2-3). Forested land was 

obtained from the US Forest Service FIA MapMaker online data query system 

(https://www.nrs.fs.fed.us/fia/data-tools/mapping-tools). Percent forest canopy cover was 

obtained from the Forest Service’s cartographic tree canopy cover product (USDA Forest Service 

2016).  
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Host basal area and numbers of host trees per acre and county were obtained from the 

Forest Service’s Forest Inventory and Analysis (FIA) program, using a published list of known 

SLF hosts from Barringer and Ciafre (2020). The FIA program is a long-term forest inventory 

program with one 0.40 hectare sample every 2,428 hectares, with most counties partially assessed 

annually since 2000. FIA assesses forest areas defined as at least 37 meters wide and 0.40 hectares 

in size, covered by at least 10% trees (Bechtold and Patterson 2005). We obtained plot-level basal 

area and stem density per acre from FIA records from 2015-2017. To estimate these variables at 

the county-level, we aggregated each by the summed county plot area for every known host with 

available FIA data by species code, obtained from the National Core Field Guild (USDA Forest 

Service 2019). We then estimated the number of each host species in a county by multiplying the 

estimated number of trees per acre by the total acres of forested land in each county. Because FIA 

only surveys forested areas, and tree of heaven is often found in developed or urbanized areas, 

number of tree of heaven observations were downloaded separately as point data from EDDMapS 

(EDDMapS 2021) and aggregated to the county level by summing the number of observations per 

county.  

Prior to model development, we quantified pairwise correlations between our predictors to 

check for collinearity (defined as Pearson's product moment correlation coefficient ≥ 0.70). Based 

on this step, we removed road density and number of host trees per county due to collinearity with 

human population and forested area, respectively. We removed these two variables as opposed to 

human population and forested area because in preliminary models, they were more strongly 

associated (i.e. occurred in models with lower Akaike Information Criterion values) with SLF 

time-to-invasion than their co-varying counterparts. We then refined the model by applying a 

backward selection procedure that iteratively removed the variable associated with the highest p-

value and refitting the model until only statistically significant predictors remained. 

2.3 Results 

2.3.1 Characterization of spread events 

There was overall an upward trend in the number of newly invaded counties every year 

since initial discovery, although some counties contained failed establishments. There was drop in 

counties with establishment in 2016 and 2017, while the highest number of establishments was 
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observed in 2019 (Table 2-1). Similar to the number of newly invaded counties per year, number 

of counties with failed establishments generally increased across the study period and peaked in 

2019. The highest percent of counties with failed establishment occurred in 2017, with 83% of 

detections failing to establish. The median yearly jump length into counties with detection and 

establishment ranged from 46 to 73 km and 50 to 92 km, respectively.  

We did not find a significant difference between distributions of jump distances in 

established populations vs. failed establishments. Median jump distances across all years in failed 

establishments and established populations were 55 km and 71 km, respectively. A Mann-Whitney 

U test showed the distributions in the two groups did not significantly differ (W = 706, p = 0.46).  

 

Table 2-1. Spread events summary. Number of observed contiguous (having at least one 

previously invaded neighboring county at time of invasion) and non-contiguous (having no 

previously invaded neighboring counties at time of invasion) newly invaded counties per year 

and median jump distances between invaded and uninvaded counties between consecutive years 

for both the non-persistent and the persistent counties.  
 

2014 2015 2016 2017 2018 2019 Total 

Counties with 

detections (n) 

5 6 4 6 18 47 86 

Counties with 

establishment (n) 

5 5 1 1 15 27 54 

Counties with failed 

establishments (n) 

0 1 3 5 3 20 32 

% of Counties with 

failed establishments  

- 16.7 75.0 83.3 16.7 42.6 - 

Median jump length 

(km) into counties with 

detection 

- 137.4 100.5 79.6 104.5 46.5 - 

Median jump length 

(km) into counties with 

establishment  

- 54.5 49.9 69.5 91.7 57.8 - 

Counties with 

contiguous invasion 

5 3 1 1 12 13 35 

Counties with non-

contiguous invasion 

- 2 0 0 3 14 19 
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The SLF invasion began in eastern Pennsylvania, and many of the counties invaded in the 

surrounding area of eastern and central Pennsylvania were contiguous with previously invaded 

counties (Figure 2-2). In contrast, several populations in western Pennsylvania and northern 

Virginia resulted from invasion into non-contiguous counties, indicating long-distance jumps. 

There were no newly invaded non-contiguous counties in 2016 or 2017. Trends in the number of 

both contiguous and non-contiguous counties tracked the overall number of counties invaded, 

starting out low and increasing in 2018 and again in 2019 (Table 2-1). However, there were overall 

fewer non-contiguous counties invaded than contiguous counties across all years. 

 

 

Figure 2-2. Contiguous and non-contiguous establishments of spotted lanternfly. Spatial 

distribution of contiguous (having at least one previously invaded neighboring county at time of 

invasion) and non-contiguous (having no previously invaded neighboring counties at time of 

invasion) counties across the study area. 
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Establishments showed similar patterns in numbers of new counties invaded and jump 

distances by year (Table 2-1), with lower values from 2014 to 2017 and an increase in 2018 and 

2019. Median jump distances were greatest in 2017-2018 in the established counties, and were 

greatest in 2014-2015 in counties with detections. The year with the highest number of counties 

with newly established populations was 2019, whereas the year with the largest median jump 

distance (92 km) was 2018. Median jump distances were generally higher into counties with 

detections than counties with establishments. The overall maximum jump distance was 355 km 

into Mercer County in northwest Pennsylvania (Figure 2-3), while the median jump distance was 

55 km for detections and 71 km for establishments. 

 

Figure 2-3. Jump distance distributions and probability of invasion by spotted lanternfly 

(SLF). Line graph of observed jump distances (the distance between new establishments in year 

n and the nearest previously invaded county in year n-1) for every newly invaded county for both 

establishments (black) and detections (blue). The red line indicates the probability of invasion by 

distance, based on the estimated SLF-specific negative exponential kernel function pij = e-0.045d . 
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2.3.2 Spread rates 

Estimated spread rates varied from 15-46 km per year among our three methods. Spread 

rate estimated by effective range radius was 46.2 km/year (SE = 7.19 km, 95% CI 26.26-66.20; 

Figure 2-4A). Spread rate was estimated at 15.2 km/year (SE = 6.40 km, 95% CI 2.35-28.03) 

using distance regression (Figure 2-4B).  Spread rate estimated by average boundary displacement 

(averaged over all years) was 38.6 km/year (range 0 to 75 km;  Figure 2-4C), which was 

approximately 10 km less than estimated by effective range radius. The median boundary 

displacement across all years was 20.8 km/year. There was no difference in invaded area 

boundaries between 2016 and 2017, because the only newly invaded county was within the 

existing invasion boundary. 
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Figure 2-4. Estimated radial spread rates of spotted lanternfly (SLF). A. Plot of the square 

root cumulative county area containing SLF establishments divided by π by year of 

establishment. The slope of the regression is estimated at 46 km, providing an estimate of radial 

spread. B. Plot of distance from the centroid of the county with the first SLF detection point 

(Berks County, PA) by year of establishment. The slope of the regression is estimated at 15 km, 

providing an estimate of radial spread rate. C. Boxplots of boundary displacement distances 

between years of establishment, with average across all years of 38 km and median across all 

years of 21 km.  
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2.3.3 Invasion drivers 

The best fitting value of α in the exponential dispersal kernel (Equation 1) was 0.045, which 

simultaneously resulted in the lowest number of false negatives and false positives. We used this 

value to estimate spatial proximity in the Cox proportional hazards model. 

In the final Cox proportional hazards model, the hazards ratios for both spatial proximity 

and human population were greater than 1, indicating a positive relationship with increased risk of 

invasion (Table 2-2). Spatial proximity was identified as the strongest predictor (i.e. highest Z-

value) with a notably high hazards ratio of ~40, followed by human population. No other covariates 

were statistically significant.  

 

Table 2-2. Final Cox proportional hazards model summary. Summary statistics from final 

Cox proportional hazards model predicting time-to-invasion of SLF at the county level in the 

study area. 

Predictor Estimate 

(coefficient) 

SE Z p-value Hazards ratio (95% CI) 

SLF spatial proximity 3.70 0.286 12.94 <0.0001 40.29 (23.01-70.54) 

Human population 0.28 0.126 2.22 0.0265 1.32 (1.03-1.69) 

2.4 Discussion 

Spread of invasive species is often characterized by both short- and long-distance dispersal. 

In many systems, short-distance dispersal is caused by the natural movement of organisms (e.g. 

flight behavior) while long-distance dispersal is caused by accidental human movement (Hastings 

et al. 2005). Even small amounts of long-distance dispersal can result in greatly elevated rates of 

spread (Shigesada et al. 1995). So far in the SLF invasion, movement appears to consist of both 

short- and long-distance dispersal. Little is known about natural dispersal in this species. Our 

results indicate, however, that risk of long-distance movement increases with human population 

density, likely reflecting the propensity of SLF to become associated with objects transported by 

humans, such as when SLFs oviposit onto train cars and motor vehicles (Urban 2019). 

A higher number of new establishments occurred in contiguous than in non-contiguous 

counties, but several long-distance jumps were observed and the frequency of jumps appears to be 
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increasing (Table 2-1). Human-mediated long-distance dispersal events are responsible for spread 

outside of the center of invasion, allowing for invasion of a larger geographic area than would be 

possible via insect movement alone. For example, the established population in northern Virginia 

(Frederick County) is believed to have originated from shipments from a stone yard in 

Pennsylvania (Eddy 2018). As SLF spreads, there may be increases in both long- and short-

distance movement due to increases in numbers of source populations or increases in population 

size. A Mann Whitney U test showed no significant difference between jump distance distributions 

in detected but non-established vs. established populations, indicating that jump dispersal events 

are not necessarily more likely to persist if they are closer to the point of establishment (i.e. have 

closer spatial proximity). Ranges of jump distances were visually similar in range for both detected 

and established populations (Figure 2-3), signifying that established jumps went at least as far as 

jumps that failed to establish. Shigesada et al. (1995) demonstrated that such long-distance 

dispersal events typically result in faster rates of spread as well as accelerating patterns of radial 

spread. SLF spread rates could increase in this way, and we observed the largest increases in radial 

spread in the last two years of the study period (2018 and 2019), potentially indicating accelerating 

spread.  

Our estimates of spread rate varied between methods, with the effective range radius 

method estimating the highest spread rate. The large differences observed between these methods 

may reflect the discontinuous nature of SLF spread. Measurement of the radial rate of spread of 

invading organisms was originally envisioned for continuous range expansion (e.g. Skellam 1951) 

and may not fully capture discontinuous spread such as observed here, which is also reflected in 

the low variance explained by distance regression spread estimation (r2 =0.098) (Figure 2-4B). 

The effective range radius approach may provide a more representative measure of spread in this 

situation as it accounts for both the frequent long-distance dispersals and subsequent spread into 

the counties between contiguous and non-contiguous counties. For example, a long-distance 

dispersal event established a SLF population in northern Virginia in 2018, and in 2019, SLF spread 

to several counties between the eastern Pennsylvania invasion area and the new area in northern 

Virginia (Figure 2-1). The effective range radius approach accounts for the cumulative invaded 

area as these counties are occupied in subsequent years, whereas boundary displacement does not 

include those counties in estimates of radial spread. That is, counties closer to the previously 
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invaded area following a long-distance jump are enclosed by the convex hull polygon and do not 

influence future boundary displacements as they become invaded.  

Based on the findings presented here, we estimate radial spread rate at around 40 km/year 

based on the average of the two more reliable methods (i.e. effective range radius and boundary 

displacement). If SLF were allowed to spread without any intervention, spread might be much 

higher given considerable management efforts are currently targeted to suppress SLF populations 

and limit movement. For example, active management programs conducted by USDA APHIS 

include egg scraping, sanitation (i.e. host tree removal) around SLF detections, and insecticide 

application to tree of heaven (USDA-APHIS 2018). Additionally, the State of Pennsylvania’s 

quarantine on movement of goods out of the invaded area is implemented to limit spread of SLF. 

It is also important to note SLF is in the early stages of invasion, and the spread rate may increase 

as this pest continues to colonize new locations in the USA. 

Results of the Cox proportional hazards model indicated that anthropogenic factors, 

specifically human density, are stronger drivers of SLF spread than forested area or availability of 

host trees. The role of humans in facilitating spread of invading organisms is a common 

phenomenon. Known international and domestic pathways of human-mediated spread of tree pests 

include transportation of pests on live plants (Liebhold 2012) and wood products (e.g. packing 

materials or movement of firewood) (Yemshanov et al. 2012), though pests can also be transported 

on non-host materials, such as on stone imports as with SLF. Domestic pathways of human-

mediated spread include movement of firewood, transportation via vehicles (e.g. trains, motor 

vehicles), and “hitchhiking” on travel gear (e.g. hiking gear) and/or pets. Given that SLF lays eggs 

indiscriminately, human-mediated spread is not limited to host materials. Humans could facilitate 

the spread of this pest via travel (e.g. automobiles, trains) and movement of both host and non-

host materials from an invaded area. Gilbert et al. (2004) came to similar conclusions in their 

analyses of the horse chestnut leafminer Cameraria ohridella Deschka & Dimic (Lepidoptera, 

Gracillariidae), finding that geographical variation in human population density explained most of 

the variation in historical spread of this species. Similarly, in an analysis of 79 damaging forest 

pests, Liebhold et al. (2013) found human population density associated with both spatial 

proximity and number of invasive forest pests per county across the USA. However, with all such 

analyses of historical spread, there is always some possibility that statistical associations may be 

caused in part by more intensive survey and reporting in more populated areas. 
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The invasion of tree of heaven in the eastern USA more than 200 years prior to the arrival 

of SLF may have facilitated the insect’s initial establishment, causing an “invasional meltdown” 

(Feret 1985, Simberloff and Von Holle 1999) in which invasion of one species facilitates the 

invasion of another. Tree of heaven is the preferred host for SLF and SLF fitness (survival and 

fecundity) is maximized when feeding on tree of heaven, but this pest can survive and reproduce 

without access to tree of heaven (Uyi et al. 2020). In addition, SLF’s ability to feed on a wide 

breadth of plant species (more than 70 species) increases likelihood of the insect encountering a 

suitable host following dispersal (Dara et al. 2015). The final Cox proportional hazards model did 

not include a significant effect of tree of heaven abundance on SLF spread, and therefore we found 

no evidence that this tree species has influenced SLF spread. Surveys for tree of heaven were 

conducted by many different people including volunteers and residents, and so it is possible the 

data are biased or incomplete despite verification by EDDMapS reviewers. In addition, as SLF 

invasion progresses, additional relationships to host trees or other environmental variables may 

become apparent or the importance of such variables may vary geographically. 

Spatial proximity will remain an important predictor in the future spread of this pest, 

rendering estimation of SLF populations an important step in assessing spread. Current challenges 

in estimating SLF populations are primarily lack of long-term, systematic population assessment 

data and difficulties detecting small populations. The SLF-specific dispersal kernel we estimated 

here provided the best estimates of spatial proximity based on available distribution data but it was 

limited by the coarse spatial scale of county-level data and the limited temporal replication. We 

anticipate that as more data are collected on SLF populations, the estimated dispersal kernel could 

be refined and thus enhance model predictions.  

There are a few limitations involved in our study. First, the data used in these analyses 

consisted of visual surveys that were located based on perceived risk of SLF establishment. These 

data were not collected in a systematic fashion, and thus there is potential for sampling bias. 

Though work is underway on developing traps to efficiently survey for SLF (Francese et al. 2020), 

a sensitive SLF-specific trapping system has not yet been widely implemented. The lack of a pest-

specific trap increases risk of missed detections in visual assessments, especially for low 

population densities. Given these potential biases, we used counties as the unit of analysis, and the 

estimates of spread rate as well as drivers of local spread at a finer resolution may be different. We 

also assumed counties with only a single year of SLF detection indicated populations that failed to 
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establish and thus were not detected in future surveys. Failure to establish could be the result of 

stochastic dynamics or Allee effects, both of which can drive low-density, newly invaded 

populations to extinction (Liebhold and Tobin 2008). For example, Liebhold and Bascompte (2003) 

concluded that low density gypsy moth Lymantria dispar (L.) populations are likely to reach 

extinction without intervention, and in their analysis, most of the populations that did go extinct 

without treatment did so within a year of detection. Where management efforts are in place, failure 

to establish could also be the result of local eradication efforts. However, there is also a possibility 

that low-density populations did indeed persist, but due to difficulties in detecting this pest without 

specific lures or traps, small populations went undetected.  

Focusing efforts on assessing populations and on estimating spatial proximity is important 

in describing and predicting spread of non-native pests. Our findings indicate that SLF has spread 

from 2014-2020 primarily through local diffusion with less frequent but consistent long-distance 

dispersal from previously established populations with influence from human populations. Based 

on the results presented here, we anticipate that SLF will continue to spread in the USA, though 

management and eradication efforts may effectively reduce population densities, reproductive 

potential, and ultimately rate of spread. Additional monitoring efforts to prevent and detect long-

distance dispersals may prove useful, especially regarding transports of materials from areas with 

existing SLF populations. 
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2.5 Supplementary Materials 

 

 

 

 

Figure S2-1. Distribution of survey locations. Locations of SLF visual surveys conducted by 

the US Animal and Plant Health Inspection Service and Pennsylvania Department of 

Agriculture. 
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Table S2-1. Predictor variable summary. Summary statistics of predictor variables used in 

Cox proportional hazards model development. 

Variable Mean Standard Deviation 

a) Habitat Variables 

Host Basal Area/Acre 14.50 4.92 

Host Trees per Acre 31.84 10.07 

Estimated Number of Host 

Trees 

614.84 598.03 

Tree of Heaven Observation 

Count 

44.61 300.74 

Forested Land (Acres) 17.57 16.61 

Canopy Cover (%) 45.38 19.74 

b) Anthropogenic Variables 

Human Population (2000) 151207 279291 

Road Density 29.97 37.20 
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Figure S2-2. Anthropogenic predictor variable distributions. Distributions of anthropogenic 

predictor variables used in Cox proportional hazards model development. 
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Figure S2-3. Habitat predictor variable distributions. Distributions of habitat predictor 

variables used in Cox proportional hazards model development.
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 REGIONAL IMPACTS OF GYSPY MOTH 

DEFOLIATION ON WATER QUANTITY AND QUALITY 

3.1 Introduction 

Non-native pests can significantly alter ecosystem functions by reducing biodiversity and 

biomass, shifting forest composition, and destabilizing communities (Liebhold et al. 1995, Lovett 

et al. 2006, Fei et al. 2019). Several of the most important ecosystem services provided by forests 

are collection, filtration, and delivery of water into surface waters. These ecosystem services will 

become increasingly important with climate change, as predicted changes to air temperature, 

precipitation, and extreme weather events alter water availability and water quality (Arnell 1999, 

Danladi Bello et al. 2017). Despite the importance of both non-native pests and water resources, 

no broad-scale quantification of the impact of non-native species on water resources has been 

conducted.  

Defoliation by non-native forest pests may have impacts on surface water similar to those 

caused by other landscape disturbances, such as clearcutting (Scoles et al. 1996), which can result 

in water redistribution, changing availability of water, and altered water chemistry (Schwarze and 

Beudert 2009, Schafer et al. 2014). Gypsy moth defoliation is known to change the amount and 

timing of water that is released from forested watersheds, as well as the concentrations of nutrients 

and other water quality indicators. Redistribution and changing availability and condition of water 

resources not only impact the forest in which forest pests reside, but downstream waters as well. 

The amount, timing, and condition of surface water resources play important roles in supporting 

ecosystems of both aquatic and terrestrial life (Ruegg et al. 2020), as well as providing important 

services to humans, such as drinking water, irrigation, disposal of wastewater, etc. This is 

particularly important because both invasions by non-native species and water availability are 

likely to be impacted by environmental changes resulting from climate change (Hellmann et al. 

2008, Kreuzwieser and Gessler 2010).  

Gypsy moth (Lymantria dispar L.) is a particularly well-known non-native pest with a long 

history in North America. Gypsy moth was accidentally introduced to the US in 1869 in 

Massachusetts by Etienne Leopold Trouvelot, when moth larvae he was cultivating for study of 

silk production escaped, and has since spread and caused considerable damage (Liebhold et al. 

1989). Gypsy moth outbreaks can cause mass defoliation and, in some instances, mortality to a 
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wide breadth of tree species. Tree mortality is most common in forest stands with repeated 

defoliation over two or more consecutive years, even for healthy trees (Campbell and Sloan 1977). 

Gypsy moth larvae have a preference for oaks (Quercus spp.) and aspens (Populus spp.) in general, 

but when populations are high and food is limited, larvae will consume a large variety of foliage 

of other species (Lovett et al. 2006).  

There are studies on the effects of gypsy moth defoliation on water quality and quantity at 

the watershed or ecosystem scale, typically over one or several years. Observed impacts include 

increased stream temperature (Collins 1961, Addy et al. 2018), lower dissolved oxygen (DO) but 

wider diel cycles (Addy et al. 2018), higher nitrate concentrations (Webb et al. 1995, Eshleman et 

al. 1998), increased stream metabolism (Addy et al. 2018), and higher streamflow (Corbett and 

Lynch 1987, Smith-Tripp et al. in review). While the impacts on water quality have been 

demonstrated at a small scale, they have infrequently been quantified and generalized at the 

landscape level.  

The goal of this research is to detect and quantify patterns over decades at a broad spatial 

scale to synthesize major impacts of gypsy moth defoliation on water resources. The questions 

driving this research are: 1) Are there differences in water quality, temperature, and oxygenation 

between watersheds with and without gypsy moth defoliation? 2) If so, what are the magnitudes 

of these effects? 3) At what defoliation intensity are these differences evident? In this study, we 

use historical data to investigate the effect of gypsy moth defoliation on water quality and quantity 

over the range of gypsy moth invasion in the US from 1999 to 2018.  

We hypothesize that gypsy moth defoliation is related to higher stream discharge given the 

reduction of evapotranspiration flux, particularly in the form of transpiration (Bearup et al. 2014), 

in trees by gypsy moth defoliation during the summer growing season (Dingman 2015, Smith-

Tripp et al. in review). In addition, we hypothesize that in watersheds with defoliation, loss of 

foliar area and thus overhead shading from defoliation (and occasionally mortality) (Lance et al. 

1987)leads to higher stream temperatures. In turn, increased stream temperatures will boost algal 

productivity and photosynthesis, and therefore increase DO levels. We investigated these three 

variables (stream discharge, water temperature, and DO) due to availability of large amounts of 

data over broad temporal and spatial scales. This project provides a benchmark for how streams 

and rivers in the US are affected by defoliation from gypsy moths during the past two decades. 
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3.2 Materials and Methods 

3.2.1 Gypsy moth defoliation 

We used the annual US Forest Service (USFS) Insect and Disease Detection Surveys (IDS), 

which are geospatial aerial defoliation and ground survey products identifying forest areas 

impacted by forest pests, diseases, and other disturbances. These surveys are part of a forest health 

protection initiative by the USFS to appraise forest conditions in terms of detriments and 

improvements over time and are stored in an online IDS database (Johnson and Wittwer 2006). 

The online database contains data dated back to 1999, and includes information about survey type, 

disturbance type and intensity, and descriptions of damage observed. Using these data from 1999 

to 2018, we generated a spatial product containing years of survey and observation of gypsy moth 

defoliation presence.  

In order to most accurately identify areas affected by gypsy moth defoliation, we removed 

records with less than 30% defoliation intensity reported, the lower threshold for aerial detection 

(Ciesla 2000). Due to inconsistency in defoliation intensity reports between earlier and more recent 

surveys, we converted records to presence or absence of gypsy moth defoliation. Thus, we 

rasterized defoliation polygons into yearly binary 4 km by 4 km rasters covering the gypsy moth 

expansion area from 1999 to 2018, where defoliated areas are assigned 1 and undefoliated areas 

are assigned 0. We overlaid these rasters with watersheds for sites of interest (described below) 

and summarized gypsy moth defoliation by watershed in terms of percent cover, i.e., how many 

cells out of the total in the watershed have gypsy moth defoliation. Henceforth this measure is 

referred to as defoliation or defoliation intensity.  

3.2.2 Hydrology and water quality data 

We queried the US Geological Survey National Water Information System (USGS NWIS) 

for public stream gage data using the dataRetrieval package in R (De Cicco et al. 2018) for the 

study area affected by gypsy moth as determined by USFS IDS data. Queries utilized the USGS 

parameter codes for discharge, temperature, and dissolved oxygen (00060, 00010, and 00300, 

respectively) for all available data in the period 1998 to 2018. USGS NWIS is a long-term 

nationwide water data repository that combines water quality and quantity data from both water 

sensors and historical field collections to report water information for almost 2 million sites across 
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the US and Territories. Stream gages vary in location along water bodies and have associated site 

information within the database, such as drainage area (watershed size), date of collection, station 

name, error codes, and other identification information.  

For all sites, we performed a series of quality checks, removing records with error codes 

and erroneous records (e.g., temperatures over 40 degrees C, negative DO values). In addition, we 

removed any site downstream from a dam or reservoir, in heavily developed areas, or in primarily 

agricultural areas based on visual inspection. We removed these sites under the assumption that 

gypsy moth defoliation is unlikely to substantially impact water quality at a site without adequate 

forest cover. Our final site list contains only sites for which the watershed experienced gypsy moth 

defoliation at some point during the study period. We analyzed 244 total sites for discharge patterns, 

186 for temperature, and 67 for DO (Figure 3-1). See Table S3-1 for a full list of sites. We found 

the watershed for each site using the nhdplusTools R package (Blodgett 2019), querying NHDPlus 

using identifiers associated with each site. For statistical analysis, hydrology and water quality 

data were converted to monthly averages for each watershed. To conduct analyses on DO data, we 

converted DO concentration in mg/L to DO percent saturation using the rMR package (Moulton 

2018) assuming barometric pressure at sea level and using temperature values for the same samples.  

This function converts DO concentration to DO percent saturation using solubility equations for 

oxygen in water. Henceforth we refer to DO percent saturation as DO. 
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Figure 3-1. Stream gage map. Map of locations of USGS stream gages used in analyses for A) 

discharge, B) temperature, and C) dissolved oxygen. 
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3.2.3 Water balance 

For each watershed within the dataset, we obtained monthly precipitation and 

evapotranspiration values. Monthly precipitation data come from PRISM at Oregon State 

University for the period 1998 to 2018 (PRISM Climate Group 2004). The PRISM Climate Group 

develops spatial climate data products that use over 13,000 national weather stations to interpolate 

precipitation values across a smoothed surface. Precipitation is interpolated based on input climate 

data, elevation, location, proximity to coastal areas, and other factors (Daly et al. 2008). We 

downloaded monthly averages directly from PRISM through R, using the prism package (Hart and 

Bell 2015) as gridded data with 4 km cell size.  

Monthly evapotranspiration data come from USGS Center for Integrated Data Analytics 

(CIDA) for the period 2000 to 2017 (USGS 2019). These data were generated using a Simplified 

Surface Energy Balance model with ET inputs estimated from MODIS thermal imagery (Senay et 

al. 2013). The result is actual estimated ET, summarized in monthly and yearly data products. We 

obtained total monthly ET directly from USGS’s GeoData Portal as gridded data with 1 km cell 

size.  

Both precipitation and evapotranspiration data are available at the national level, which we 

spatially subset with the extent of the gypsy moth defoliation rasters we generated (described 

above). We found the total precipitation and evapotranspiration volume per watershed for each 

month between July and October using zonal statistics, then calculated water balance by 

subtracting water lost via evapotranspiration from water entering the watershed via precipitation. 

For statistical analysis, resulting precipitation, evapotranspiration, and water balance values were 

converted to monthly averages for each watershed. 

3.2.4 Analyses 

We used linear mixed models in combination with Satterthwaite-approximated Tukey tests 

to compare mean discharge, temperature, and DO in watersheds with defoliation versus without 

defoliation. For each fit mixed model, we used an ANOVA to identify significant interaction terms 

within the fitted models. Therefore, fitted mixed models were used as input into the ANOVAs. We 

subsequently extracted slopes of relationships from the fitted models to identify trends. In addition, 

the fitted mixed models were used as input to the Tukey test to compute and compare least-squares 
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means using the emmeans package in R (Lenth 2021). Mixed models allow for the analysis of 

interactions while accounting for repeated measures. Tukey tests conduct post-hoc mean 

comparison while pooling variance across the entire dataset used, instead of for individual groups 

being compared. We used a Satterhwaite adjustment to find “effective degrees of freedom”, or to 

similarly pool degrees of freedom to correspond with the pooled variance in the Tukey test. In 

addition, Tukey tests protect against inflated risk of Type I error from conducting many 

significance tests among groups, and is thus a more conservative measure of significant differences 

between means (Abdi and Williams 2010).  

For several analyses, we use runoff ratio (discharge divided by precipitation) to account 

for the amount of water entering the watershed versus exiting the watershed in the form of 

discharge. We split the data by major water basin (2-digit Hydrologic Unit Code, or HUC) and 

watershed area to identify trends among different regions and watershed sizes. Both 2-digit HUC 

and watershed area were provided with a site information table exported from NWIS. We binned 

samples by respective major water basin (2-digit HUCs 01-07 are represented in our study area, 

with varying amounts of representation across variables) and by watershed sizes of 0.1 - 10 km2, 

10 - 1,000 km2, 1,000 - 10,000 km2, or greater than 10,000 km2. These subsets allowed us to 

determine patterns between defoliation and measures of water quality/quantity among various 

characteristics of the surface waters in our study area while maintaining approximately equivalent 

numbers of sites in each group. We chose these respective watershed sizes to capture comparable 

numbers of samples and sites in each grouping while investigating trends at a range of watershed 

areas. Approximately even splits among data are most appropriate based on the assumptions of 

linear mixed models and also help visual assessment of trends. While we aim to generalize trends 

across the entire study area, identifying if patterns emerge only under certain conditions provides 

additional information about the impacts of gypsy moth on water resources.  

To model observational data (i.e. sample data compiled for water quality, climate, and 

gypsy moth defoliation), we conducted random forest (RF) using the randomForest package in R 

(Liaw and Wiener 2002) to quantify the impact of defoliation on discharge, temperature, and DO, 

and to predict response variables with varying defoliation conditions. RF is a non-parametric 

machine-learning algorithm that relies on regression trees using bootstrapped samples of the 

original data based on iteratively randomly chosen variables (Breiman 2001). The algorithm makes 

predictions for observations that were not used in model development, and calculates mean 
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squared error (MSE) from the difference in actual observations versus predicted observations. 

Given the large amount of non-normally distributed data in our study, the use of a non-parametric 

test that utilizes bootstrapping allows for better model performance and predictions. 

We ran 500 trees using the default number of variables per bootstrapped sample (number of 

included predictor variables divided by 3) and used the resulting model to assess variable 

importance and predict response values based on ranges of input parameters. General model 

structure included a response variable as a function of all included predictor variables, the 

specified number of trees to generate (500), and an argument specifying the function to return 

importance values. The variables included in the RF algorithm for each response variable are 

shown in Table 3-1. Precipitation, watershed area, and defoliation were included as predictors in 

every RF based on their potential impact on each response variable, with additional specific 

predictors for each response variable. For all subsequent predictions, we created new datasets to 

generate predicted response variables values. For every set of predictions, we used input 

defoliation values of 0%, 20%, and 40%, expressed as proportion of watershed area, and 

watershed areas of 100 km2, 1,000 km2, 10,000 km2, and 100,000 km2. We used these defoliation 

intensities as they captured the range of defoliation intensities seen in the observational data 

while representing low, intermediate, and high defoliation events. Additional input predictor 

values varied among response variables modeled: we included evapotranspiration in the 

discharge RF, month and discharge in the temperature RF, and temperature and discharge in the 

DO RF.  
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Table 3-1. Random forest predictor variables. Predictor variables included in random forest 

algorithms by response variable with relative percent increase in MSE. 

Variable % Increase in MSE 

a) Discharge 

Precipitation 130.51 

Evapotranspiration 61.45 

Watershed Area 51.77 

Gypsy Moth Defoliation 38.22 

b) Temperature 

Month 465.59 

Watershed Area 132.33 

Discharge 98.63 

Precipitation 54.97 

Gypsy Moth Defoliation 47.7 

c) DO 

Watershed area 94.54 

Temperature 24.67 

Gypsy Moth Defoliation 21.84 

3.3 Results 

3.3.1 Discharge 

We observed a trend of higher discharge and runoff ratios in sites without defoliation across 

our dataset. The slopes of the relationship between defoliation intensity and runoff ratio were 

generally negative, regardless of watershed, month, or major water basin grouping. There was an 

overall significant difference in monthly runoff ratios related to intensity of defoliation (F1, 15804 = 

47.90, p<0.001) using a linear mixed model. There was also a significant interaction between 

defoliation and watershed area (F1, 1144.3 = 2.01, p<0.001), thus we found individual slopes of the 
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relationship between defoliation and runoff ratio for each watershed group (Figure 3-2). The slope 

of the relationship between defoliation and runoff ratio was negative regardless of watershed area. 

We also found a significant interaction between defoliation and month (F3, 15601 = 3.087, p = 0.026), 

and again found individual slopes of the relationship between defoliation and runoff ratio for each 

month. Slopes across all months were negative (Figure S3-1). There were no significant 

interactions between defoliation and major water basins. However, for every major water basin 

with enough data to plot, the trend between defoliation intensity and runoff ratio was negative with 

the exception of HUC 04, in which slope was slightly positive (Figure S3-2). 

When split by watershed area, Tukey tests indicated the mean monthly runoff ratios at sites 

with defoliation were statistically significantly lower than in sites without defoliation in 

intermediate sized watersheds (100 - 1000 km2 and 1000 - 10,000 km2) (both p < 0.001, see  Table 

S3-2.  for group estimates and SEs). These tests indicated that in defoliated sites, runoff ratio was 

0.028 (+- SE 0.006) lower for watersheds in the 100 - 1000 km2 group and 0.029 (+- SE 0.006) 

lower for watersheds in the 1000 - 10,000 km2 group. In other watershed sizes, the differences 

were insignificant, though we saw the same trend of higher runoff ratio in undefoliated sites 

regardless of watershed size (Figure S3-3, Table S3-2). 

We also found significantly lower monthly runoff ratios in defoliated sites in July (p = 

0.007), September (p < 0.001), and October (p < 0.001). 

Tukey tests among major water basins indicated that only in HUC 02 the mean monthly 

runoff ratio at sites with defoliation was statistically significantly lower (p < 0.001) than in sites 

without defoliation (Figure S4, Table S2). The results of this test indicated that in HUC 02, the 

runoff ratio was 0.031 (+- SE  0.005) lower in defoliated sites than in undefoliated sites. Although 

differences in all other major water basins were not statistically different, we generally observed 

lower measures of discharge (both discharge and runoff ratio) in sites with defoliation than without 

across most major water basins (Figure S2). See Table S2 for the results of all Tukey tests. 
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Figure 3-2. Runoff ratios by watershed area. Distribution of average monthly runoff ratios 

across observed defoliation intensity by watershed area. Reported equation extracted from mixed 

effect model. 

 

The RF algorithm explained 60% of variance in monthly discharge. Defoliation had a lower 

importance value in terms of impact on MSE than all other predictor variables. Other variables 

more directly tied to hydrology (precipitation, evapotranspiration, and watershed area) had a 

stronger impact on MSE. Yet, gypsy moth defoliation explained a substantial amount of model 

variance (38% increase in MSE) (Table 3-1).  

Predicted discharge was generally lower in watersheds with defoliation regardless of 

watershed size, aligning with the trends seen in sample data (Figure 3-3). RF discharge predictions 

were higher on average at 0% defoliation than 20% (22% higher) or 40% defoliation (24% higher), 

though the degree of difference varied between watershed areas and average monthly rainfall 
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(Table 3-2). In sites most heavily defoliated (greater than 60% of the watershed defoliated by 

gypsy moth), we found negative slopes between defoliation and runoff ratio (Figure S5), 

indicating that even at high defoliation, discharge decreases slightly with increasing defoliation at 

the same precipitation level. 

 

 

Figure 3-3. Specific discharge predictions. Specific discharge predicted from the random forest 

algorithm, using a set range of average daily precipitation, gypsy moth defoliation intensity, and 

watershed area values. 
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Table 3-2. Predicted percentage of differences in discharge from zero defoliation. Percent 

difference in predicted discharge and temperature values between 0% defoliation and 20% or 

40% defoliation. Asterisks (*) indicate that the average predicted value was less than the average 

of predicted value at 0% defoliation.  

 Mean Percent Difference from 0% 

Watershed 

Size 

0% 

defoliation 

20% 

defoliation 

40% 

defoliation 

20% 

defoliation 

40% 

defoliation 

Discharge 

<100 0.0013 0.0010 0.0010 23.70* 25.31* 

100-1000 0.0011 0.0010 0.0009 16.34* 20.12* 

1000-10,000 0.0012 0.0009 0.0009 23.07* 25.21* 

>10,000 0.0011 0.0009 0.0009 23.53* 24.95* 

Temperature 

<100 16.87 16.49 16.58 2.25* 1.75* 

100-1000 17.23 16.92 16.97 1.77* 1.51* 

1000-10,000 19.04 19.28 19.28 1.26 1.28 

>10,000 19.64 19.44 19.44 1.02* 1.01* 

DO 

<100 96.47 94.08 93.31 2.51* 3.33* 

100-1000 96.59 91.77 91.19 5.11* 5.75* 

1000-10,000 93.42 96.40 95.94 3.14 2.67 

>10,000 99.93 99.07 98.57 0.86* 1.37* 

3.3.2 Temperature 

We did not find an overall significant difference in monthly temperature directly related to 

intensity of defoliation. However, we observed slightly positive trends between defoliation and 

temperature across the dataset. In the mixed models with defoliation and watershed size, HUC, or 

month as predictors and temperature as the response variable, there were no significant interactions 

between defoliation and watershed size, HUC, or month. An examination of the slopes of these 
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relationships showed that in all but the largest watersheds, there was a positive slope between 

defoliation intensity and temperature (Figure 3-4), indicating an overall small positive relationship. 

Though Tukey tests indicated no statistically significant differences among months, watershed size, 

or major water basin, across all months of the study period, we observed a trend of higher mean 

temperature at sites with defoliation (mean = 18.74, SD = 4.79) than those without (mean = 18.15, 

SD = 4.55) (Figure S3-6, Table S3-2). 

 

 

Figure 3-4. Temperature by watershed area. Distribution of average monthly water 

temperature across observed defoliation intensity by watershed area. Reported equation extracted 

from mixed effect model. 
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The RF algorithm explained 84% of variance in monthly temperature. Similar to the results for 

discharge RF, gypsy moth defoliation explained less model variance than other predictor 

variables, but still had substantial impact (Table 3-1). Month intuitively had the strongest 

influence on temperature given monthly variations in air temperature. Gypsy moth defoliation 

contributed to the percent increase in MSE within 10 percentage points of precipitation (48% and 

55%, respectively). 

Predicted temperature values were slightly lower for 20% and 40% defoliation than 0% 

defoliation, though this trend varied marginally by watershed size and by month (Figure 3-5). For 

example, predicted temperature at 0% defoliation was always higher than at 20% or 40% 

defoliation in September, but was generally lower than at 20% or 40% defoliation in October. 

However, regardless of watershed size, there were minimal differences in predicted temperature 

between defoliation percentages (1.01%-2.25% difference) (Table 3-2). We also used the RF 

algorithm to predict temperature values for a wider range of watershed sizes to identify if there are 

watershed sizes at which defoliation substantially impacts water temperature. In watersheds 

smaller than approximately 30 km2, temperature predictions were higher at 20% and 40% 

defoliation than 0%. At watersheds between 30 km2 and 200 km2, the relationship switched and 

average predicted temperature was higher with no defoliation than 20% or 40% defoliation. Above 

200 km2, the difference became negligible (Figure S3-7).  
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Figure 3-5. Predicted temperature by watershed area. Temperature predicted from the 

random forest algorithm across summer months, using a set range of precipitation, discharge, 

watershed area, and gypsy moth defoliation values. 

3.3.3 Dissolved Oxygen 

We found a significant negative relationship between defoliation intensity and monthly 

percent DO saturations related to intensity of defoliation based on the results of the linear mixed 

model. Trends between defoliation intensity and DO were generally slightly negative across the 

dataset. There was also a significant interaction between defoliation intensity and watershed area 

(F3, 2319.82 = 3.25, p = 0.021), thus we found individual slopes of the relationship between 

defoliation and DO for each watershed group (Figure 3-6). Slopes were negative in every 

watershed group except the 1,000 - 10,000 km2 group. We also found a significant interaction 

between defoliation intensity and major water basin (F2, 2319.47 = 3.62, p = 0.027), and again found 
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individual slopes of the relationship between defoliation and DO for each major water basin with 

enough DO data to run mixed models independently (Figure S3-8). We therefore omitted HUCs 

01, 03, 06, and 07 from these analyses and plots due to lack of adequate DO data. Slopes extracted 

from the mixed models were negative in HUCs 02 and 04, but positive in HUC 05. There was not 

a significant interaction between defoliation intensity and month. All Tukey tests comparing mean 

DO between defoliated and undefoliated sites by month, watershed area, and HUC were not 

significant (Table S3-2). Though the results of all Tukey tests indicated there were no statistically 

significant differences among defoliated and undefoliated sites, we observed a generally negative 

trend between defoliation intensity and DO. 

 

 

Figure 3-6. Dissolved oxygen by watershed area. Observed dissolved oxygen saturation (%) 

by gypsy moth defoliation intensity, split by watershed area.  
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The RF algorithm explained 56% of variance in monthly DO. Watershed area had the 

highest importance value in terms of predicting DO. Defoliation had a  higher importance value 

than discharge or precipitation, and contributed to the percent increase in MSE within 5 percentage 

points of temperature (24% and 26%, respectively) (Table 3-1). RF predictions reflected the 

observational data trends, indicating generally lower DO with higher defoliation intensity (Figure 

3-7). In all but the 1,000 - 10,000 km2 group, predicted DO was lower with defoliation regardless 

of discharge. In 1,000 - 10,000 km2 watersheds, the RF algorithm predicted higher DO with 

defoliation regardless of discharge, the opposite trend as observed in all other watershed groups. 

In the largest watersheds (>10,000 km2), there were marginal differences between undefoliated 

and defoliated predictions (0.86% - 1.37%). The largest differences were predicted in 100 - 1,000 

km2 watersheds, with predicted temperature approximately 5% lower with 20% defoliation than 

0%, and approximately 6% lower with 40% defoliation. 

 

 



 

 

55 

 

Figure 3-7. Dissolved oxygen predictions. Dissolved oxygen saturation (%) predicted from the 

random forest algorithm, using a set range of precipitation, watershed area, temperature, and 

gypsy moth defoliation values. 

3.4 Discussion 

We observed a negative relationship between defoliation intensity and discharge, the 

opposite of the expected result based on our hypotheses. Both observational data and RF 

predictions showed lower discharge with higher defoliation. Similarly, there was a negative trend 

between defoliation intensity and DO in both observational data and RF predictions, again opposite 

of our expected result. We saw small increases in temperature with higher defoliation intensity, 

consistent with our hypothesis. While our results largely did not support our hypotheses, we 

propose additional considerations below. 
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3.4.1 Discharge 

We observed a negative relationship between discharge and defoliation intensity across all 

watershed groupings, months, and in the most intensely defoliated sites. Tukey tests of 

observational discharge data also indicated discharge was lower at sites with defoliation than those 

without defoliation in several watershed groupings. In addition, the RF predictions indicated the 

same relationship regardless of watershed size while accounting for variation in relevant 

hydrologic conditions and watershed characteristics. The results of our study indicate across much 

of the US gypsy moth range, there is generally a decrease in discharge with defoliation. We 

estimate the decrease as about 0.03 runoff ratio units in watersheds from 100 - 10,000 km2, and 

there may be as much as 25% decrease in discharge in 40% defoliated watersheds (Table 3-2). 

This result is contrary to our original hypothesis on the effects of defoliation on discharge.  

However, several studies have shown similar or no patterns between defoliation and 

discharge. Lewis and Liken (2007) found that following defoliation by elm spanworm (Ennomos 

subsignarius Hübner), two watersheds experienced drier conditions. In addition, Addy et al. (2018) 

were unable to identify trends between discharge and gypsy moth defoliation during an extreme 

defoliation event (35% watershed defoliation) and a major drought. Therefore, the effects of 

defoliation on water quantity likely vary by many factors, including region, forest composition, 

soil and geology type, intensity and duration of defoliation, and compounded stress from additional 

disturbances (such as drought, high wind, etc.).  

In studies of the effect of forest clearing on discharge, several authors concluded that in 

general, changes in discharge were observable only when at least 20% of a catchment was 

disturbed (Bosch and Hewlett 1982, Stednick 1996). Clearcutting is a more intense disturbance 

than gypsy moth defoliation, given that entire trees are removed from the system. In addition, 

many trees grow new leaves after defoliation in the same growing season. Unless trees are 

repeatedly defoliated, the impact of lost foliage on ET can be minimal due to regrowth of foliage 

and epicormic branching compensating for lost ET (Schafer et al. 2014). We can assume a larger 

percentage of a watershed must be defoliated before seeing increases in discharge with an outbreak 

event similar to that observed following clearcutting. 

However, even in heavily defoliated watersheds (>60% of the watershed defoliated), we 

did not observe a positive effect on discharge, and instead saw slight negative relationships. One 

potential explanation for this observed negative relationship, even in heavily defoliated sites, is 
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that drier soils absorb water more readily. Our hypothesis was that more water would enter the 

system as trees transpire less during and after defoliation. However, if more solar radiation reaches 

the ground via gaps in the canopy due to defoliation, temperature at the forest floor will be higher 

(Lance et al. 1987), and evaporation and thus water lost from the system can also increase, 

counteracting the effect of lost transpiration and also drying soils further.  

3.4.2 Temperature 

Though we did not find statistically significant differences in temperature among 

defoliation intensities, and the RF predicted temperature values similarly showed small differences 

in temperature between defoliation intensities, we saw a slight positive trend between defoliation 

and temperature in all but the largest watersheds. The impact of defoliation on temperature may 

be smaller than can be detected statistically, while still having ecologically relevant impacts. Even 

very small increases in water temperature can negatively impact aquatic life, including fish 

(Tarzwell 1970) and aquatic insects (Li et al. 2011). Studies of the impact of hemlock woolly 

adelgid on water quality have also found increased stream temperature resulting from loss of 

canopy cover, though as we demonstrated here, the changes are often small (Roberts et al. 2009, 

Webster et al. 2012).  

There are similar interactions between drought, gypsy moth outbreaks, and temperature as 

with discharge. High air temperature and dry conditions (such as droughts) are directly linked 

(Trenberth and Guillemot 1996). Higher air temperature in conjunction with increased solar 

radiation during drought-induced defoliation events can lead to higher water temperatures than 

during dry conditions or defoliation events alone. Climate events, such as drought, in conjunction 

with forest disturbances are shown to have additive effects on water quality (Kaushal et al. 2018). 

For example, in a study of the effect of gypsy moth defoliation on water quality and metabolism, 

Addy et al. (2018) demonstrated the additive effect of drought and defoliation. They found 

increased stream temperature during a gypsy moth outbreak in which canopy cover in the riparian 

area of the watershed was reduced by 51% and by 35% in the entire watershed. This study also 

demonstrates that a high level of defoliation may be necessary to observe impacts to stream 

temperature, especially in riparian areas, and even in small watersheds. The watershed investigated 

by Addy et al. (2018) was 4.4 km2, within the range of watershed area the RF in our results 

predicted to have higher temperature with defoliation (Figure S7). However, we suspect that due 
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to low sample size in small watersheds, predictions of temperature below about 100 km2 are less 

reliable than the watershed sizes with more samples in the observational data. Based on the results 

of the RF presented here and existing literature, we conclude that defoliation could increase water 

temperature minimally, but with biologically meaningful implications.  

The positive trend we observed between defoliation intensity and water temperature in the 

observational data was not verified by the RF predictions. This difference may be due to 

unexplored relationships between discharge and temperature, where at lower discharge, especially 

in smaller watersheds, the impact of defoliation on water temperature may be exaggerated.  

3.4.3 Dissolved Oxygen 

While the results of Tukey tests with observational data showed no significant relationship 

between defoliation and DO across groupings by month, watershed size, and major water basin, 

we observed a slight negative trend overall. Both results of linear mixed models and RF predictions 

indicate that defoliation intensity has a negative relationship with DO. One notable exception to 

the negative trend we observed was in RF predictions for watersheds 1,000 - 10,000 km2 in size. 

In these watersheds, the RF predictions for DO were 2-3% higher with defoliation than without, 

potentially indicating a relationship between stream size (represented by watershed size) and the 

impacts of defoliation on DO. 

During gypsy moth defoliation events, higher levels of turbidity and lower light penetration 

in the water can result in decreased autotrophic activity, which results in lower DO (Kortmann and 

Cummins 2018). These effects are stream-specific, depending on the amount of detritus that enters 

the stream, and are more likely in headwater streams where generally higher amounts of canopy 

cover and smaller stream sizes contribute to increased turbidity. In contrast, increased solar 

radiation from loss of canopy cover via defoliation can stimulate autotrophic activity in streams, 

thus increasing DO (Mulholland et al. 2001, Bernot et al. 2010). There is also evidence that gypsy 

moth defoliation events increase nutrient loading to streams (Webb et al. 1995, Kortmann and 

Cummins 2018), which can also stimulate autotroph activity, again increasing DO. This 

stimulation of stream metabolism is common in larger streams, where low turbidity and long water 

residence times, particularly during droughts, enhances photosynthesis (Hosen et al. 2019). The 

results of our study may show the effect of this drought-metabolism relationship, in which larger 

streams experience increases in metabolism during droughts while small streams do not. Our 
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results support this relationship, given that we observed lower DO in smaller watersheds during 

defoliation (which contributes to turbidity and often co-occurs with drought), but saw increased 

DO in larger downstream waters. Therefore, if defoliation by gypsy moth is stimulating 

photosynthesis by increasing nutrient input (e.g., from release of nitrogen in frass) and reducing 

canopy cover, the effects may be masked until waters travel downstream where turbidity lessens, 

more solar radiation reaches surface waters, and autotroph activity is stimulated.  

Additionally, low flows, which are common during drought conditions, are related to both 

low DO and higher water temperature (Woltemade 2017, Danladi Bello et al. 2017), and warmer 

waters can hold less oxygen. We observed both decreased discharge and saw slightly increased 

predicted temperature at sites with defoliation, which could in turn decrease the DO levels in those 

sites despite increases in either autotroph activity or nutrient loadings. Furthermore, there may be 

additional variables influencing DO flux in surface water, as indicated by the relatively low amount 

of variability explained by the RF algorithm predicting DO. We anticipate additional hydrological 

and metabolism modeling is required to determine differences in DO with varying defoliation 

intensity. 

3.5 Conclusions 

In summary, we did not find support for our hypothesis that defoliated watersheds 

experience increased discharge and in fact found support for the opposite trend. In our analysis 

over a large geographic area, we found that the overall relationship between defoliation and 

discharge was negative, regardless of several watershed characteristics and even in highly 

defoliated watersheds. We suggest several potential causes for this negative relationship, and there 

may be other factors contributing to reduced discharge beyond the scope of our modeling efforts. 

In addition, we did not find evidence to support the hypothesis that DO is higher in watersheds  

with defoliation and found that watershed area may play a significant role in identifying defoliation 

impacts. We did, however, find evidence via trends extracted from mixed effects models that 

defoliation increases water temperature marginally. The results of our study indicate that broad-

scale relationships between gypsy moth defoliation and water quantity and quality are largely 

different from trends observed on a single- or several-watershed scale.  

It is also worth noting that gypsy moth defoliation reduces defenses of trees and increases 

tree stress, thus making them more susceptible to other secondary pests and more likely to be killed 
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by additional disturbances (Twery 1991). Trees impacted by gypsy moth defoliation may die a 

year or several years after the gypsy moth outbreak via secondary mechanisms, though this occurs 

in a relatively small fraction of trees. This delayed mortality could impact water resources long 

after the initial gypsy moth defoliation occurred in a watershed. Several studies suggest changes 

in water chemistry following defoliation are strongest a year after the defoliation event, and can 

last for several years, depending on the duration of defoliation (Webb et al. 1995, Eshlemann et al. 

1998, Lewis and Liken 2007). These delayed impacts may be a result of secondary mechanisms 

resulting in increased tree mortality due to the weakening or stressing of trees by gypsy moth 

defoliation, and could potentially be captured with additional hydrological time-series modeling.  

Though the effects of gypsy moth defoliation on ecosystems have been widely studied, 

there are few syntheses of gypsy moth defoliation impacts to water quantity on a broad scale. Here, 

we identified trends and quantified impacts between defoliation and several measures of water 

quality and quantity across a broad spatial scale. This research highlights the importance of 

quantifying relationships at the landscape scale when adequate multi-scale data are available. 
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3.6 Supplementary Materials 

Table S3-1. USGS site table. USGS NWIS sites used in analyses, included in a separate file in 

appendix. 

 

 

 

 

Figure S3-1. Runoff ratio by month. Average monthly runoff ratio by proportion of watershed 

with defoliation by month. Reported equation extracted from mixed effect model. 

https://docs.google.com/spreadsheets/u/0/d/1wVX191VT_2YP1r87qBbCVvEDVeUESKmqsT0O8LFxXEg/edit
https://docs.google.com/spreadsheets/u/0/d/1wVX191VT_2YP1r87qBbCVvEDVeUESKmqsT0O8LFxXEg/edit
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Figure S3-2. Runoff ratio by major water basin. Average monthly runoff ratio by proportion 

of watershed with defoliation by major water basin (2-digit HUC). Reported equation extracted 

from mixed effect model. 
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Figure S3-3. Runoff ratio by gypsy moth presence and watershed size. Runoff ratio by gypsy 

moth presence, split by watershed area. Associated p-values for significant Tukey tests included. 

 



 

 

64 

 

Figure S3-4. Runoff ratio by gypsy moth presence and major water basin. Runoff ratio by 

gypsy moth presence, split by major water basin (HUC 2). Associated p-values for significant 

Tukey tests included. 
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Table S3-2. Tukey test results. Results of Satterthwaite-approximated Tukey tests for each 

variable, split by month, major water basin (HUC), and watershed area. Dashes (-) indicate there 

were not enough records to conduct the Tukey test. 

 Contrast Estimate SE df t-ratio p-value 

Discharge 

Month 

July 

Gypsy Moth False 
- Gypsy Moth True 0.0234 0.0065 15758.11 3.62 0.007 

August 

Gypsy Moth False 
- Gypsy Moth True 0.0135 0.0065 15760.06 2.09 0.423 

September 

Gypsy Moth False 
- Gypsy Moth True 0.0304 0.0065 15759.23 4.69 0.0001 

October 

Gypsy Moth False 
- Gypsy Moth True 0.0348 0.0065 15758.93 5.32 0.000 

2-Digit HUC 

01 

Gypsy Moth False 
- Gypsy Moth True 0.0409 0.0184 15817.40 2.22 0.613 

02 

Gypsy Moth False 

- Gypsy Moth True 0.0309 0.0050 15826.66 6.22 0.000 

03 

Gypsy Moth False 

- Gypsy Moth True 0.0184 0.0181 15695.16 1.02 0.999 

04 

Gypsy Moth False 

- Gypsy Moth True 0.0092 0.0102 15842.18 0.90 1.000 

05 

Gypsy Moth False 

- Gypsy Moth True 0.0201 0.0083 15779.67 2.41 0.469 

06 

Gypsy Moth False 

- Gypsy Moth True 0.0586 0.1039 15597.21 0.56 1.000 

07 

Gypsy Moth False 

- Gypsy Moth True 0.0101 0.0399 15828.88 0.25 1.000 

Watershed Size 

<100 

Gypsy Moth False 
- Gypsy Moth True -0.0071 0.0143 15319.71 -0.50 1.000 

100-1000 

Gypsy Moth False 
- Gypsy Moth True 0.0284 0.0055 15834.82 5.19 0.000 
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Table S3-2 continued 

1000-10,000 

Gypsy Moth False 
- Gypsy Moth True 0.0293 0.0061 15842.43 4.84 0.000 

>10,000 

Gypsy Moth False 
- Gypsy Moth True 0.0201 0.0133 15767.56 1.51 0.803 

Temperature 

Month 

July 

Gypsy Moth False 

- Gypsy Moth True -0.04 0.11 4869.84 -0.40 1.000 

August 

Gypsy Moth False 
- Gypsy Moth True 0.02 0.11 4868.91 0.17 1.000 

September 

Gypsy Moth False 
- Gypsy Moth True 0.02 0.11 4869.15 0.15 1.000 

October 

Gypsy Moth False 
- Gypsy Moth True 0.13 0.11 4869.19 1.20 0.933 

2-Digit HUC 

01 

Gypsy Moth False 
- Gypsy Moth True 0.04 0.83 3850.67 0.05 1.000 

02 

Gypsy Moth False 

- Gypsy Moth True -0.30 0.22 4393.54 -1.38 0.984 

03 

Gypsy Moth False 

- Gypsy Moth True 0.83 2.56 225.42 0.32 1.000 

04 

Gypsy Moth False 

- Gypsy Moth True 0.49 0.33 4862.95 1.49 0.970 

05 

Gypsy Moth False 

- Gypsy Moth True -0.26 0.37 4778.86 -0.70 1.000 

06 

Gypsy Moth False 

- Gypsy Moth True -1.44 2.13 4687.74 -0.68 1.000 

07 

Gypsy Moth False 

- Gypsy Moth True - - - - - 
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Table S3-2 continued 

Watershed Size 

<100 

Gypsy Moth False 
- Gypsy Moth True 0.12 0.49 3611.45 0.24 1.000 

100-1000 

Gypsy Moth False 
- Gypsy Moth True -0.11 0.25 4235.78 -0.44 1.000 

1000-10,000 

Gypsy Moth False 
- Gypsy Moth True -0.22 0.23 4742.66 -0.94 0.982 

>10,000 

Gypsy Moth False 
- Gypsy Moth True 0.03 0.66 4985.32 0.05 1.000 

DO 

Month 

July 

Gypsy Moth False 
- Gypsy Moth True -0.84 0.60 2318.99 -1.41 0.854 

August 

Gypsy Moth False 
- Gypsy Moth True 0.67 0.60 2318.95 1.13 0.951 

September 

Gypsy Moth False 
- Gypsy Moth True 0.39 0.59 2313.27 0.65 0.998 

October 

Gypsy Moth False 
- Gypsy Moth True 1.00 0.60 2311.18 1.66 0.710 

2-Digit HUC 
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Table S3-2 continued 

01 

Gypsy Moth False 

- Gypsy Moth True - - - - - 

02 

Gypsy Moth False 

- Gypsy Moth True 0.71 0.66 2346.97 1.07 0.987 

03 

Gypsy Moth False 

- Gypsy Moth True - - - - - 

04 

Gypsy Moth False 

- Gypsy Moth True 0.17 0.53 2314.42 0.31 1.000 

05 

Gypsy Moth False 
- Gypsy Moth True -0.01 0.73 2331.67 -0.01 1.000 

06 

Gypsy Moth False 
- Gypsy Moth True - - - - - 

07 

Gypsy Moth False 
- Gypsy Moth True - - - - - 

Watershed Size 

<100 

Gypsy Moth False 
- Gypsy Moth True 1.29 1.73 2304.70 0.74 0.996 

100-1000 

Gypsy Moth False 

- Gypsy Moth True 1.10 0.64 2342.79 1.73 0.666 

1000-10,000 

Gypsy Moth False 

- Gypsy Moth True -0.18 0.50 2335.01 -0.36 1.000 

>10,000 

Gypsy Moth False 

- Gypsy Moth True 0.20 1.01 2310.57 0.20 1.000 
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Figure S3-5. Runoff ratio by gypsy moth cover in the most defoliated sites. Runoff ratio 

versus proportion of watershed with gypsy moth defoliation at sites with at least 60% of 

watershed defoliated.  
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Figure S3-6. Temperature by month. Difference in observed temperature in watersheds with 

and without defoliation by month. 
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Figure S3-7. Expanded temperature predictions by watershed area. Random forest predicted 

temperature values at a range of smaller watershed sizes with three levels of defoliation intensity: 

0%, 20%, and 40%. 
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Figure S3-8. Dissolved oxygen by major water basin. Average monthly dissolved oxygen 

saturation (%) by defoliation intensity in major water basins with adequate dissolved oxygen 

samples to run mixed effects models. Reported equation extracted from mixed effect model
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 CONCLUSIONS 

The purpose of my research was to investigate two major components of invasion ecology - 

spread dynamics and ecosystem impacts. By utilizing large data sets, I was able to investigate both 

how a new non-native pest spreads and how defoliation from a well-known damaging forest pest 

affects the nation’s water resources. I concluded from this research that human populations are an 

important driver of the spread of a new pest, even more so than the availability of host plants. This 

conclusion has important implications about the relationship between humans and invasive pests. 

We know that more non-native pests are being introduced due to travel and trade, and the 

knowledge that humans are also driving the spread of new pests post-establishment provides 

another link between human dynamics and spread dynamics. These pests then have complicated 

impacts to ecosystems that provide services humans rely heavily on. Thus, there is an inextricable 

link between human-mediated introduction and spread, and our own ability to utilize ecosystem 

services, such as availability of clean water.  

These studies also highlight the importance of utilizing broad-scale data to investigate multi-

regional trends and patterns when the data are available. In a world of increasing data collection 

and storage capacity, there are millions of records of ecological data on invasive pests, factors 

potentially impacting spread, and ecosystem resources. In Chapter 2, we identified trends not 

captured by small-scale studies, showing that regional and ecosystem-level patterns may differ. 

Thus, it is important to investigate multi-scale relationships and discover what we might miss at 

smaller scales. The topics I studied have rich available datasets for further investigation, and I hope 

to see future research on both the spread and invasion risk of spotted lanternfly, and broad-scale 

impacts of gypsy moth on water resources. 
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